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Abstract

The logical task of model expansion (MX) has been proposed as a declarative constraint

programming framework for solving search and decision problems. We present a method

for solving NP search problems based on MX for first order logic extended with inductive

definitions and cardinality constraints. The method involves grounding, and execution of a

propositional solver, such as a SAT solver. Our grounding algorithm applies a generalization

of the relational algebra to construct a ground formula representing the solutions to an

instance. We demonstrate the practical feasibility of our method with an implementation,

called MXG. We present axiomatizations of several NP-complete benchmark problems, and

experimental results comparing the performance of MXG with state-of-the-art Answer Set

programming (ASP) solvers. The performance of MXG is competitive with, and often better

than, the ASP solvers on the problems studied.
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Chapter 1

Introduction

A program is declarative if it describes what its output is like, rather than how to produce

it. A declarative programming language for search problems provides users with a syntax

with which to describe the relationship between instances of their problem and solutions. A

"solver" for the language takes such a specification, together with an instance, and produces

a solution for the instance if there is one. The use of such tools can greatly reduce the effort

required to obtain effective practical solutions to a wide variety of problems, which otherwise

would require a significant investment in development of problem-specific algorithms and

implementations.

Descriptive complexity theory [28] seeks to characterize complexity classes by the type

of logic needed to express the languages in them. Results from descriptive complexity

allow viewing logics as "declarative programming languages" for problems in corresponding

complexity classes. This is an idea that is well known, but has been widely considered

of largely theoretical interest. Claims that it is not of practical interest can be roughly

categorized as based on two objections:

• The Language Objection Logic is unsuitable as a practical modeling language:

users with no formal logic background will not adopt the syntax, and in any case it

does not provide the features necessary to support effective modeling of real problems.

• The Solver Objection Practically effective solvers cannot be constructed for such

"general" or "abstract" languages as unrestricted classical logics.

Fagin's theorem [17], a seminal result in descriptive complexity, states that the classes of

finite structures definable in existential second order logic (380), are exactly those in the

1



CHAPTER 1. INTRODUCTION 2

complexity class NP. The theorem suggests a natural declarative problem solving approach

for NP-complete problems: Represent the problem with an :3S0 formula </J, and solve in

stances by (uniform) reduction to SAT or some other fixed NP-complete problem. When we

consider NP-search problems, a solution is a witness to the existentially quantified relation

variables of an :3S0 sentence. The task becomes that of expanding a given structure to give

suitable interpretations for those relation symbols. For </J a formula in logic L, the task is

L-model expansion (abbreviated as £-MX). When the logic L is classical first order logic

(FO), we have FO-MX. The decision problem for FO-MX (does a suitable expansion exist),

is the same as the model checking problem for :3S0, so Fagin's theorem tells us that FO

MX can describe exactly the NP search problems (i.e., search problems whose associated

decision problem is in NP).

In [44J, Mitchell and Ternovska proposed to take the task of Model Expansion as the

formal basis for a general framework for declarative programming for search problems. De

scriptive complexity results establish the basis for applying the framework for declarative

programming of search and decision problems from various complexity classes, based on the

choice of logic. They specifically proposed to based a system for solving NP-search problems

on FO(ID), an extension of FO with inductive definitions. Formally, for FO(ID)-MX can

represent the same problems as FO-MX, but the use of inductive definitions can make a

very significant difference in the ability to practically model problems. FO(ID) addresses

some challenges related to the 'language objection': It is based on classical logic, which has

a simple semantics for the user to understand, but the inductive definitions are convenient

for defining some problems which are very difficult to define in pure FO-MX.

Cook's theorem [11], that every NP problem can be reduced in polynomial time to SAT,

together with the impressive solving performance of SAT solvers, suggests that the following

solving method could be practical: Given an instance, and the FO(ID)-MX specification

of the problem, reduce the question of existence of a solution for the instance to to a

SAT problem, and then run a SAT solver. This reduction is called propositionalisation, or

grounding.

Polynomial-time grounding for FO-MX can be obtained naively by simple substitution,

and replacing each universal (existential) quantifier with a (possibly large) conjunction (dis

junction). Most grounding systems we are aware of use some version of this simple ap

proach. Grounding for MX can be seen as a generalization of database query answering,

and a grounding method based on a generalized relational algebra was defined and used in



CHAPTER 1. INTRODUCTION 3

[49] to obtain a theoretical result about grounding for FO-MX for a special class of FO for

mulas. Here, we extend and adapt that approach to produce a practical grounding scheme

for general FO-MX. Using the relational join in a grounding algorithm has been done in

practice [31], but only for constructing a guard for possible variable substitutions, and in a

very restricted syntax. The main module of most grounders that we are aware of generate

ground rules by simply instantiating variables [53, 31, 22, 30, 43]

Grounding for FO(ID) logic generates formulas of propositional calculus with inductive

definitions (PC(ID)). Solving PC(ID) formulas requires either to constructing an effective

solver for PC(ID) or producing a reduction of PC(ID) SAT that results in overall effective

performance. Neither of these tasks is straightforward (but see [39, 41]) and [50] for work on

the problems), and currently it is not clear what the most effective way to solve such formulas

is. Here, to demonstrate the feasibility of our overall approach and methods without solving

this problem, we restrict our implementation to classes of inductive definitions, as described

in Section 2.4.3, which can be effectively handled by application of classical techniques.

We demonstrate, by producing an implemented system, called MXG, that FO(ID)-MX

and grounding can be used to produce solver technology that is competitive, in terms of

performance and convenience, with some well-established competing technology.

To have a more feasible modeling language, we add Cardinality Constraints to our language.

MXG version 0.172 is the current solver of FO(ID+Card)-MX framework, which can handle

a restricted form of cardinality constraints, and a fragment of inductive definitions by using

a SAT solver. In more detail, we:

• add division, and a general union to the extended relational algebra of [49] and prove

soundness and completeness of a grounding algorithm for FO-MX based on this.

• define the notion of Extended-Hidden relations, a more space efficient version of Ex

tended relations, and generalize relational algebra operations to them.

• add a restricted semantics of Cardinality Constraints to FO(ID) logic, to provide a

convenient way for user to express cardinality properties. We denote FO(ID) with

cardinality constraints by FO(ID+Card). A (SAT+Card) solver should be used for

solving, FO(ID+Card) formulas.

• present a concrete solver language for FO(ID)-MX, which extends classical FO with

several features: sorts, order, inductive definitions, cardinality constraints.
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• produce a grounder for FO(ID+Card)-MX, based on applying relational algebra op

erations on extended-hidden relations.

We implemented MXGO.172, based on this language and the grounding technique. (In

this thesis, when we say MXG, we mean MXGO.172). To avoid dealing with complexity

of PC(ID), MXG can handle only a fragment of inductive definition. We present sample

specification for a number of benchmark problems in MXG, and compare the performance

of MXG and our specifications with other systems, both in terms of efficiency of grounding

and effectiveness as a solver. Our performance results show MXG to be competitive with

high-quality ASP systems, smodels [54], DLV [33], clasp [20], and another FO(ID)-MX

system, MidL (developed independently and concurrently with ours) [41], sometimes being

less effective but often being more effective. Our work provides support for several claims:

• FO(ID)-MX is feasible as the basis for practical technology for solving NP-hard search

problems.

• Grounding based on relational algebra is practical.

• Using languages with rich syntax is feasible, whereas some researchers have argued that

very restrictive syntax is necessary for practical effectiveness of logic-based systems.

• Inductive definitions and cardinality constraints can be added to FO-MX and used

effectively (even in rather limited forms).

• Solving by grounding to SAT works even with some form of inductive definitions and

cardinality constraints .

• Having a SAT+Card ground solver is useful in practice.

The outline of the thesis is as follows. Chapter 2 we present the mathematical back

ground of MXG, and justify our choice of language and solving method. Chapter 3 gives

the syntax of language for MXG. In Chapter 4 we explain the solving method of MXG. In

Chapter 5 we describe the grounding algorithm used in MXG. In Chapter 6 we compare the

performance of MXG with ASP tools and MidL, on some benchmark problems. Chapter 7

presents a set of other declarative programming framework that are most closely related to

MXG. Chapter 8 has the conclusion and future work.



Chapter 2

MXG Overview

The task of Model Expansion (MX) was proposed in [44] as the logical basis for a declarative

constraint programming framework for solving search and decision problems. In this chapter

we will explain the mathematical background for MX framework, and explain the choice of

the logic and solving approach on which our MX solver MXG is based.

2.1 MX Mathematical Overview

Before we give the formal definition of model expansion task, we provide some necessary

background from mathematical logic.

A vocabulary (or language) a is a collection of constant symbols (CI,... ,cn ) , relation

or predicate symbols (P1, ... ,Pm ) and function symbols (h, ... .h). Each relation and

function symbol has an associated arity. A a-structure 2t = (A; {c~}, {Fi'21}, U?}) consists

of a universe A together with an interpretation of:

• each constant symbol c; from a as an element c~ E A;

• each k-ary relation symbol Pi from a as a k-ary relation on A; that is a set Pi'21 ~ A k
;

• each k-ary function symbol Ii from a as a function I i'21 : A k ---+ A.

A structure 2t is called finite if its universe A is a finite set.

For example if a has constant symbol 0, a binary relation symbol <, and one binary

function symbol +, then one possible finite structure for a is Q{ = (A; 0'21, <'21, +'21), with

5



CHAPTER 2. MXG OVERVIEW 6

universe of discourse A = {O, ... ,1000} where O~ = 0, <'21, and +'21 have respectively the

interpretation of less than, and sum modulo 1000.

A logic E is defined by a set of formulas of E, together with a satisfaction relation which

says when a formula ¢ of .c is true in a structure 2L Here we restrict our attention to

finite structures, and to extensions of classical first order logic (Fa), because finite model

expansion for Fa is the logical task underlying MXG.

A a-formula ¢ of Fa is constructed in the standard way with atomic formulas over

vocabulary symbols (T and an infinite set of variables, and the usual inductive closure under

connectives -',1\, V, and quantifiers :J,V. If all variables of a formula are quantified (bound),

the formula is called a sentence. A variable is free in ¢, if it is not quantified in formula ¢.

vocab(¢) is the collection of exactly those function and relation symbols which occur in ¢.

A o-sentence ¢ of Fa expresses a proposition in the language (T, which is either true or

false when interpreted by a (T-structure 2L If ¢ is true in structure 2t, we say that 2t satisfies

¢, or 2t is a model for ¢, written 2t F ¢. If a formula ¢ has free variables, they must be

interpreted as specific elements in the universe A before ¢ gets a truth value under structure

2t. An object assignment w for a structure 2t is a function from variables to the universe A.

We write 2t F ¢[w] to indicate that structure 2t satisfies formula ¢ when the free variables

of ¢ are interpreted according to object assignment w.

The satisfaction relation t= for FO is defined recursively on the structure of a formula:

• 2t t= P(tl, ... , tn)[w] iff (t~[w], ... , t~[w]) E p'21.

• 21 t= -,C[w],2t t= (D 1\ E)[w], 2t t= (F V G)[w] iff 2t ~ C[wJ, 2t t= D[w] and 21 t= E[w],

2t t= F[w] or 2t F G[w] respectively.

• 21 t= (VxC)[w] iff 2t F C[w(ajx)] for all a E A. 1

• 2t t= (:JxC)[w] iff 2t t= C[w(ajx)] for some a E A.

A theory is a set of sentences. A o-structure 2t is a model of a theory T in Fa, written

2t F T , iff for every sentence ¢ of T, 2t t= ¢. vocab(T) is the union of vocab(¢) for all ¢ E T.

• A set of Fa formulas, cI>, is Satisfiable iff it has a model. That is for some structure

2t, and some object assignment w, 2t F ¢[w] for every ¢ E cI>.

'rr X is a variable and a E A, then the object assignment w(alx) is the same as w except w(x) = a.



CHAPTER 2. MXG OVERVIEW 7

• The Model Checking problem is to decide if a given structure Qt, satisfies a given theory

T: Qt F T[w] .

• The Model Expansion problem is: Given a theory T with vocabulary vocab(T) = crUe,

and a o-structure Qt = (A; (121), is there a (1 Us-structure 123 = (A; cr 21, e'B) which is an

expansion of Qt to e, such that 123 FT.

We call a the 'instance vocabulary', e the 'expansion vocabulary', Qt the 'instance structure',

123 the 'expansion structure'.

The model expansion problem is between model checking and satisfiability problems,

where part of the desired model is given and we ask for an expansion that satisfies the

given theory. For the cases e = 0 and (1 = 0 we have, respectively, model checking and

satisfiability, not model expansion. The three problems can be defined for any logic L, and

we will refer to the model expansion problem for logic £ as £-MX.

In the MX framework, the idea is to cast search problems as the logical task of model

expansion. This is a natural way to model a search problem: specify the relationship between

an instance and its solution by a set of sentences of some suitable logic L (theory T), and

describe the instance by a finite instance structure (Qt). A solution for an instance Qt is given

by an interpretation of the vocabulary symbols of the formula that are left uri-interpreted

by Qt.

Example. The graph 3-colouring problem can be axiomatized as a FO-MX problem. The

input structure is a graph G = (Vtx; Edge), and theory T is the collection of following

formulas over the vocabulary vocab(T) = {Edge, R, B,G}:

V v: R(v) v B(v) v G(v);

V v: -, R(v) v-, B(v);

V v: -, R(v) v-, G(v);

V v : -, B(v) v-, G(v);

V u v : Edge(u,v) :J -, (R(v) 1\ R(u»;

V u v ; Edge(u,v) :J -, (B(v) 1\ B(u));

V u v: Edge(u,v) :J -, (G(v) 1\ G(u».

The instance vocabulary is (1 = {Edge}, and expansion vocabulary is c: = {R, B, G}. A

structure 123 which is an expansion of G to vocab(T) is a model for T, 123 F T, iff R'B, B'B, G'B

comprise a proper 3-colouring of vertices in G.
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2.2 MXG: A FO-MX Solver

8

For an implementation of the MX framework, we must choose a logic which will be the

underlying logic for the language and design a modelling language for users. The choice of

logic underlying the modelling language depends in part on the complexity class of problems

you want to model and solve. The study of the relationship between logical definability

and computational complexity is called descriptive complexity [28]. Results show that, in

certain cases, a logic I:- captures a certain complexity class C, which means that any problem

expressed in I:- is in complexity class C, and moreover all problems in complexity class C

can be expressed in logic 1:-. Thus for modelling problems in a certain complexity class, the

we may choose as our underling logic one that captures the desired class. This allows us

to fine-tune our language for desired complexity classes and get a universal framework for

representing problems in that class, without imposing ad-hoc restrictions on syntax. This

is an important issue for us, to found all of our choices for implementing MXG on sound

theories.

Fagin's theorem [17], one of the first results in descriptive complexity, states that ex

istential second order logic, 350, captures N P. Based on this correspondence, first order

logic was proposed as the logic underlying the MXG language. For a fixed FO theory T

in FO-MX, expansion vocabulary symbols behave as existentially quantified second order

variables. Thus FO-MX has the same power as (3S0) over finite structures and can express

any problem in NP.

Note that this result is for the case that theory T is fixed, and only instance structure

2t can change and be specified by input. This is the 'Parameterised MX' setting in contrast

to 'Combined MX' setting [56] where both instance structure 2t and theory T are part of

the instance. FO-MX in the combined setting is NEXPTIME-complete (See [44].)

In the 'Parameterised' setting, there is a formal distinction between theory T and in

stance finite structure 2t, which suggests passing problem specification and instance descrip

tion separately to MXG. This separation in practice is quite useful, as for example in many

applications the problem specification will be carefully refined then used for many instances.

They can be reasoned about separately and specific pre-processing methods be applied to

each of them. We may use different languages for describing problem specification and

instance in MXG, as they are really different sorts of objects.
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2.3 MXG Solving Approach

9

There are many possibilities for building a solver for the MX framework. For example one

could directly implement a search algorithm for finding the desired expansion structures,

or use a theorem prover to check the validity of problem for different expansion structures.

Cook's theorem [11], that every problem in the complexity class NP can be reduced in poly

nomial time to SAT, suggested an alternative scheme: (1) For each problem P, implement

a reduction to SAT; (2) Given an instance of P, apply the reduction to produce a proposi

tional formula, then run the best SAT solver available to find a satisfying assignment (thus

solution) if there is one.

SAT-based techniques have been shown to be very effective in solving a number of

NP-hard problems, and in some cases have proven more effective than special-purpose pro

grams of the day in different areas, such as planning [24] [29], model checking in hardware

verification [7] and especially Bounded Model Checking (BMC). Implementations of other

logic-based tools routinely either use a SAT solver as the core engine, or implement variants

of SAT solver methods. An attraction of basing systems on SAT solvers is that performance

of standard SAT solvers improves regularly, and one can generally 'plug in' the latest and

best. SAT solvers are currently effective in a number of domains, and recent work suggests

much more potential.

Selecting SAT-based solving approach in our framework requires performing a generic

reduction from FO-MX axioms to SAT. This reduction is called "grounding" or "instan

tiation": it substitutes variables of each axiom with all the possible values for them, and

evaluates out the instance ground (instantiated) atoms with their values from the instance

structure. This leaves us with just expansion atoms in ground axioms. We call such an

axiom a reduced ground axiom. Then each reduced ground axiom is converted to a propo

sitional formula by mapping each ground atom to a unique propositional variable. The set

of propositional formulas are then transformed to CNF by a polynomial-time procedure.

A SAT-solver then searches for satisfying assignments of the CNF formula. The true lit

erals of a satisfying assignment are "uri-ground" to FO ground atoms, using the mapping

created in grounding phase. Interpretation of expanded vocabulary symbols is specified by

the "un-grounded" literals. The grounding algorithm should be sound and complete, which

means it associates each first order logic solution to exactly one propositional solution, and

no solution is lost or created incorrectly. We explain the grounding algorithm implemented
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Mapping fro ground atoms to
propositi al variables

Input StrucBJlI"lre~AD..r----1

Problem Specification f----=-=---~-'-"'-L=.cc==:.:::;

Satisfying Assignme tjUnSat

Figure 2.1: MXG General Solving Scheme

in MXG, Gnd-Hidden, in Chapter 5, and prove its soundness and completeness.

The general solving scheme for MXG is shown in Figure 2.1. The problem description and

instance structure are given in separate files to MXG. The module identified as "Grounder"

in Figure 2.1 generates the propositional clauses in DIMACS format and sends them to a

SAT solver. The mapping from FO ground atoms to propositional variable is sent to "un

grounder". If the SAT solver finds a satisfying, it assignment is translated back to a FO

model according to the mapping by "un-grounder" module.

2.4 Extensions to First Order Logic

Although any NP problem is expressible in FO-MX, it is useful to consider a language

based on certain extensions of FO which provide some facilities to improve convenience of

modelling. In particular, we extend standard first order logic with multiple sorts, ordered

domains, inductive definitions [15] [13J [14] and cardinality constraints. We denote the

problem of MX with this logic by FO(ID+Card)-MX. Note that adding these features to

FO does not give any extra expressiveness power: FO(ID+Card)-MX has the same power

and complexity as FO-MX. These features just come in very handy for expressing certain

properties.

2.4.1 Multi-sorted Logic

Defining and using types for vocabulary symbols helps rejecting some erroneous or undesir

able specifications. It also makes axiomatization more understandable. In Multi-Sorted FO

the universe is partitioned into a set of sorts, and we specify for each variable which sort
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it is to range over. We can reduce the multi-sorted case to single-sorted by using domain

predicates, introduced for each type. For a sentence 1 = 'tIx : P(x), where P is declared over

type D, in single-sorted FO the domain predicate D(x) is introduced, and added to 1 to

assure x ranges over values of D: 'tIx : (D(x) ::::) P(x». For 1 = :Jx : P(x) domain predicate

is conjoined with the quantified sub-formula: :Jx : (D (x) 1\ P(x». In these formulas, we call

D, guard for x.

2.4.2 Order

We take all structures to be ordered. A total ordering on elements of each sort is defined

by the ordering elements are specified in the instance structure. The imposed ordering

allows us to extend the instance vocabulary with binary relation symbols <, >, =1-, =, S;, 2::

over each sort, with their expected meaning regarding the ordering of elements of each sort.

Constants MIN and MAX denoting the first and last elements of each sort, and the binary

relation SUCC with its natural semantics for each sort are also provided.

2.4.3 Inductive Definitions

Ifr-logic [15] [13] [14] extends classical logic with inductive definitions. Both monotone and

non-monotone induction are formalized in a natural way in the Ilr-logic. The classical part

of the logic has the usual classical semantics. The semantic of inductive definitions is based

on the two-valued well-founded semantics of logic programs.

FO has no feature for expressing recursive properties such as reachability. These proper

ties are conveniently expressible with inductive definitions. To remedy this, we use FO(ID),

a fragment of ID-Iogic with FO as the classical logic, for MXG. FO(ID) is more expressive

than FO, but FO(ID)-MX is not more expressible than FO-MX, as we have the power of

:JSO logic in FO-MX. Recursive properties can be expressed in FO-MX, but axiomatizations

of this sort are often not intuitive, and may be very hard to produce.

The general semantics is complex, and it is not clear how to construct an effective solver

for FO(ID)-MX in general. Two possible approaches are to:

• produce a reduction of inductive definitions to SAT that captures the semantics of

non-monotone inductive definitions(See [50]);

• reduce to an extension of propositional logic with inductive definitions and build a

ground solver for this language (See [39] [41]).
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Neither reduction to SAT, nor direct implementation of a solver is trivial. In this stage

of MXG's development, we restrict our implementation to handle two special fragments

of inductive definitions of Fa, Horn-ID and Comp-ID, which we can handle simply and

effectively using standard techniques. We call an inductive definition "well-behaved", if it

is a Horn-ID, or a Comp-ID. Although MXG can not compute general inductive definitions

at this time, our "well-behaved" inductive definitions are useful for many problems.

Horn-ID:

An inductive definition is a Horn-ID, if the defined predicate occurs only positively in the

definitions, and all predicate symbols in its body are instance predicates or are effectively

instance predicates (as they have already been computed during grounding). Such a defi

nition is the same as a 'definite' logic program, for which a unique minimum model exists,

that is a model with with the minimum number of true atoms. If we treat <- as ::J, then

we get a set of Horn formulas (clause with only one positive literal). This set has a unique

minimum model, which is the same as the same the model of the inductive definition. The

minimum model for Horn theory is found by a polynomial time procedure [27J [16J. MXG

has a built-in module that precomputes this model. The defined predicate is then treated

as an instance predicate for the remainder of the grounding of this specification.

Example: To find the distance of vertices in a graph G = (V; Edge) from a particular

vertex Start E V we can use the following inductive definition, where Dist(v, n) is true iff

the distance of v, Start is n ;
{Dist(v,n) +- (v = Start) 1\ (n = MIN)

Dist(v, n) +- Dist(u, m) II Edge(u, v) II SUCC(m, n)}

Horn-ID definitions can be used for the preprocessing purposes. Instead of writing a

program to construct a new relation over elements of input structure, one might define the

new relation by a Horn-ID, and use MXG to compute the interpretation of relation. For

example, if distances of vertices from a fixed vertex are required in a graph problem, it

can be computed either by writing an individual program to read the instance graph and

compute distances, or easily by adding the above definition to problem axioms in MXG. Of

course only polynomial time preprocessing can be computed by a Horn-ID definition.
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Comp-ID
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We will sayan inductive definition is a Comp-ID iff it is defined over a well-founded order.

If a definition is not a Horn-ID, MXG replaces it with its completion [10], and compute the

model of completion. This replacement is only correct for Comp-IDs. User should be aware

that wrong solutions may be found if a non-Comp-ID is defined.

Example: In a structure with the universe a prefix of Natural numbers,S = [0 ... v], we

can define predicates Odd, Even with their natural meanings by two definitions:

{ Even(n) f- n=MIN / / MIN is 0 in sort S

Even(n) f- -, Odd(n)

Even(n) f- Odd(n') 1\ SUCC(n',n)}

{ Odd(n) f- Even(n') 1\ SUCC(n',n)}

Neither of these definitions is a Horn-ID: 8.', they have rule bodies containing expansion

predicates other than head predicate. On the other hand, they are defined over the well

founded order of the Natural numbers. So they are Comp-ID's and equivalent to their

completion.

Convenience of General Inductive Definitions

Having inductive definitions fully supported provides a very convenient paradigm for ex

pressing recursive properties. For example in the Hamiltonian Cycle problem for an undi

rected instance graph G = (Vtx; Edge), the reachability of vertices from a fixed vertex

MIN, Reached, through Hamiltonian cycle edges, He, can can be defined as:

{ Reached(v) f- v=MIN

Reached(v) f- Reached(v') 1\ HamCycle(v',v) }

However MXG can handle only a well-behaved fragment of inductive definitions. The

inductive definition for Reached is not well-behaved. To axiomatize Hamiltonian Cycle

problem correctly in MXG, we need to introduce an auxiliary binary predicate symbol. For

example we may introduce Map(Vtx, Vtx) and express the problem by the following first

order sentence:

/ /Map is a bijection from natural numbers[l..vertices#J to vertices

V v : 3 n : Map(n,v)

V n : 3 v : Map(n,v)

V v n1 n2: ((Map(n1,v) 1\ Map(n2, v)) ~ n1=n2)
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V n vl v2: ((Map(n,vl) 1\ Map(n, v2)) ::J vl=v2)

/ /if vertices vl , v2 are mapped to 2 consecutive natural numbers,

/ / there should be an edge between them

V nl n2 vl : ((Map(nl, v l ) 1\ (SDCC(nl, n2) V (nl=MAX 1\ n2 = MIN))) ::J

(3 v2 : (Map(n2, v2) 1\ (Edge(vl, v2) V Edge(v2, vI)))))

/ /HC(u,v) is defined based on the vertices mapped to consecutively to [l..vertices#J

V v u : (HC(v, u) {:} ((Edge(v,u) V Edge(u,v)) &

(3 nl n2 : (Map(nl, v) 1\ Map(n2, u) 1\ (SDCC(nl, n2) V (nl = MAX 1\ n2 =MIN))))))

14

Auxiliary predicate Map defines a one-to-one mapping from natural numbers [1.. ver

tices#l to vertices, and implies that every vertex appears exactly once as the 'to-vertex' in

edges of hamiltonian cycle. This example illustrates that indeed recursive properties can

be expressed in FO-MX, but it is more convenient to state them with inductive definitions.

One of our goals in the future implementations is to handle inductive definitions broadly,

with no restriction.

2.4.4 Cardinality Constraints

Expressing counting properties is not simple in FO-MX, and usually requires introducing

auxiliary relations to count elements of a set. MXG together with a SAT+Card solver pro

vides some simple cardinality options. Cardinality constraints are reduced to propositional

cardinality constraint clauses. These clauses are not supported by standard SAT solvers,

and a SAT+Card solver is needed for solving them. MXG uses a SAT+Card solver, MXC

(available from [4]). MXC is not the only SAT+Card solver, but is currently the only one

that can be used for handling cardinality clauses generated by MXG, as there is no standard

format for propositional cardinality clauses, and MXG generates clauses based on MXC's

format. (If a standard format for cardinality constraints is established, it is easy to revise

MXG to generate standard clauses.)

A cardinality constraint in MXC is of the form 'if: 0(v; Y; ¢(f, y)). Cardinality symbols

UB, LB, CARD allow user to express respectively an upper bound, a lower bound and

an exact bound on size of a set. The semantics of a cardinality constraint formula 'if :

0(v;y;¢(f,y)) in MXG, where 0 is one of the UB,LB,CARD is that, for any choice

of X, size of set {y : ¢(x, yn is less than, greater than, or equal to v respectively for

UB, LB, CARD.
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For example, axiom Vu : C ARD(1;v; Edge(v, u)) in a graph problem states that each

vertex should have in-degree 1. (For precise syntax of cardinality constraints see Sec

tion 3.2.3). In FO-MX, one might express the above property by the FO sentence Vu :

3v: (Edge(u, v) 1\ Vw : (Edge(w, u) => w = v)).

Presence of cardinality constraints does not change the expressiveness of language, and

just facilitates stating counting properties. The Social Golfer [51J problem is a good example

for demonstrating the facility provided by cardinality constraints. The problem is to try

to schedule Players = Groupsize * Group golfers into Group groups of Groupsize players

over Week weeks, such that no golfer plays in the same group with any other golfer more

than once. Let Groupsize be an instance constant, and Plays(Players, Weeks, Groups)

be an expansion predicate specifying a schedule. In FO(ID+Card)-MX the axiom V w g:

CARD(Groupsize;p; Plays(p, w,g)) states that exactly Groupsize players should play in

each group, in each week.

In FO-MX, we need to declare auxiliary predicate M(Weeks, Players, Groupsize) to

assign a player# from [1 ... GroupsizeJ to each player, for each week. To force exactly

Groupsize players be playing in each group, we state that players of the same group should

be assigned distinct player#.

'r/ w p: :3 I: M(w,p,l)

'r/ w g pI p2 I: ((Plays(pI,w,g) 1\ Plays(p2, w, g) 1\ M(w,p2,1) 1\ M(w,pI,I)) :) (p l = p2))

At the time of developing MXG, only a restricted format of cardinality constraints were

supported by MXC. The restricted syntax of cardinality constraints in MXGO.I72 is due to

the restriction of its SAT+Card solver, MXC at that time. Currently MXC can handle a

more general cardinality clauses. We can adopt MXG to handle a more general cardinality

constraints in next version, so that cardinality part (v; y; ¢(x, y)) can appear in any FO

formula, not only in the universal formulas.
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MXG Input Language

In this chapter we specify and explain the languages for problem specification and instance

description, which are distinct, in MXG. Grammars for these languages is given in Appen

dices A and B.

The languages are in part a co-operative effort involving ourselves, the developers of

another solver for FO(ID) model expansion, MidL [39] [41], at Katholieke Universitat Lueven

(KU Leuven), and others. Differences between the languages of MXG and MidL primarily

reflect differences in what is implemented in the respective systems. *** explaining what

is our contribution**** Specifically, the structure of problem specification file, ordered

strctures, bounded quantifiers, cardinality constraints, built-in constants MIN, MAX and

SUCC are proposed by us.

A problem specification file for MXG consists of 3 sections:

• Given: Has declarations of what is given with the instance, that is all types, and all

instance vocabulary symbols.

• Find: Has declarations of the "solution vocabulary". The solution vocabulary is

the collection of those expansion predicate and constant symbols that constitute a

solution.

• Satisfying: has the set of axioms, plus declarations of any "auxiliary vocabulary"

symbols. The axioms are arbitrary first order logic sentences, cardinality constraints,

and inductive definitions. Auxiliary vocabulary is the collection of expansion predicate

and constant symbols that are not really part of a solution, but are needed or useful

16
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Given: type Vtx Or;
Edge(Vtx, Vtx)

Find: Colour(Vtx. Clr)

Satisfying:
't/ x y z : ((Colour(x. y) 1\ Colourfx, z)) :J (y=z))
't/ x y : (Edge(x,y) :J ('t/ z : -.(Colour(x, z) & Colour(y,z))))
't/ x: :J y: Colour(x, y)

Figure 3.1: MXG Problem Specification for Graph Colouring

for axiomatization.

17

We present the syntax of an MXG instance specification file, in Section 3.1. Then each of

Sections 3.2.1, 3.2.2, and 3.2.3 describe in detail each the of sections Given, Find, and

Satisfying.

In Sections 3.1 and 3.2 we give the syntax for the specification file, using the Graph

Colouring problem as a running example to illustrate. The full specification for Graph

k-Colouring problem is given in Figure 3.1. Types are Vtx (vertices) and Or (colours);

the instance vocabulary is the binary relation Edge; the solution vocabulary is the binary

relation Colour. The axioms simply say that the interpretation of Colour must constitute a

proper colouring of the given graph.

3.1 Instance Description Syntax

An instance description file specifies the elements for each type, and the interpretation of

each instance vocabulary symbol. A type is specified by SortName = [elemets]' where

elements is a range of natural numbers or characters, i ..i, or a ';'-separated enumeration

of natural numbers, characters or strings. A string element is constructed with [A - Za 

zO - 9_] *, starting with a capital letter.

The interpretation of each instance predicate is given by the set of its tuples, separated by

';'. Attributes of each tuple are separated by','.

Example: If our instance is a graph, we may have a type Vtx which gives the set of vertices

and a binary relation, Edge, giving the edges of the graph. For type Vtx,
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Vtx = [1..4] in the instance file specifies elements of Vtx to be [1..4].

For problem predicate Edge:

Edge = {I, 2; 1, 4; 2, 3; 3, 4} in the instance file specifies tuples of relation Edge to be

{(1,2), (1,4), (2.3). (3,4)}.

Comments come within 1* *j, or on a line after j j.

3.2 Problem Specification Syntax

In the MXG problem specification file, each vocabulary symbol must be declared prior to

its use. Instance vocabulary, solution vocabulary, and auxiliary vocabulary are respectively

declared in Given, Find, and Satisfying sections. This separation makes the problem speci

fication file more informative. By looking at the problem specification, one knows that the

interpretation of symbols declared in Given part is given in instance description file, and a

solution is an interpretation of symbols declared in Find part.

A predicate or constant symbol, as well as a type name, is a string of [A - Za - zO - 9~ *

starting with an upper case letter [A - Z]. Variables are strings starting with a lower

case letter. MXG does not have variable declarations. We explain how type of a variable

occurrence in an axiom is determined in Section 3.2.3. Functions are not supported in MXG.

Comments come within 1* *j, or on a line after j j.

3.2.1 Given Section

Terms in MXG axioms are variables or constant symbols. Every term has a certain type,

which must be one of the types declared in the Given section, by the keyword type. For

graph the colouring example,

type Vtx Clr;

declares two types Vtx and Clr.

MXG treats the elements of each type as a prefix of the Natural numbers, by mapping

elements of a type to NaturaI numbers based on the ordering they appear in instance file.

For example type Clr defined with four elements by Clr=[Blue; Red; Yellow; Green] is mapped

to {O, 1,2, 3}, with Blue mapped to 0, Red mapped to 1, and so on. By this correspondence

to Natural numbers, a total ordering on the elements of each type is imposed: Blue <
Red < Yellow < Green. Ordering relations <, >, =, #,::;, ~ can be used over each type.

Interpretation of ordering relations is induced by the mapping of type elements to natural
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numbers. Binary relation SUCC, with its natural semantics, for each type, and constants

MIN and MAX denoting the first and last elements of each type, are also provided.

Instance vocabulary symbols, whose interpretations are given in the instance file, must

be declared in Given part. An instance predicate is declared by specifying the type of each

argument, in the following manner:

Edge(Vtx, Vtx)

declares Edge to be a binary predicate symbol, which must be interpreted by a relation on

Vtx * Vtx.

An instance constant is declared by specifying its type:

ColRed: Col

which declares a constant ColRed of type Col.

3.2.2 Find Section

Solution vocabulary symbols are declared in the Find section, in the same form as declara

tions of instance vocabulary. For example,

Find: Colour(Vtx, Clr)

declares a binary solution predicate Colour over Vtx * Clr.

The interpretation of Colour is the solution of the colouring problem. MXG outputs an

interpretation of the solution vocabulary symbols, if it finds a solution.

3.2.3 Satisfying Section

If, for axiomatization of a problem, vocabulary symbols other than instance and solution

vocabulary are needed, they are declared in this section, and can be used in axioms following

their declaration.

An axiom in an MXG Satisfying section is either a FO sentence, an inductive definition, or

a cardinality constraint.

FO Sentences: A FO sentence may use all vocabulary symbols declared in the Given

and Find parts, plus any auxiliary symbols declared before the sentence in the Satisfying

part. They may also use the ordering relations <, >, =, -1-,2:,::;, binary predicate SUCC,

constants MIN, and MAX, an infinite set of variables, connectives -', /\, V, =>, <=>, quantifiers

'Ii,:3 and parenthesis ().
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Logical Symbol
ASCII Representation

Table 3.1: ASCII Equivalents for Logical Symbols

In MXG we declare types (sorts) of arguments to predicate symbols, not variables. Vari

ables are not declared. The type of each variable, in a sentence, is inferred from its position

in predicates, which must be consistent. Every variable in a sentence must appear at least

once in a location that gives it a type. Formulas of the form, '<Ix'<ly < x : (y i- x) are not

acceptable in MXG, as x, yare not used in any typed predicate to determine their type.

Only terms of identical types can be compared by <, >, =, i-,~,~, and the two argu

ments to SUCC must be of identical type. MIN and MAX are built-in constants denoting the

first and last element of a type. Because arguments to predicate symbols are. typed, their

use is unambiguous. For example, in the sentence '<Iv: 3c: Colour(v,c), the types of v and

c are, respectively, Vtx and Clr. A first order formula QIXI : ... QIXn : can be abbreviated

to QIXI ... x., :. Each quantifier Q binds all variables following the Q and preceding the

next ':'.

Bounded quantifiers of the form Qa 8 {3 are supported, where Q is a quantifier, 8 is a

relational operator («, >, =, i-,~, ~), a, {3 are variables or constants and could be MIN or

MAX. At least one of a or {3 must be a variable. Both sides of a comparison should be of the

same type. In the graph colouring problem, the sentence '<Iv : 3c > ColRed : Colour(v, c),

for the given type Clr=[Blue; Red; Yellow, Green] and ColRed is interpreted as Red, states

that each vertex v can be coloured by either Yellow or Green. Total ordering Blue < Red <
Yellow < Green is inferred by the order of their appearances in type Clr.

The concrete syntax of an MXG file is obtained by replacing logical symbols with ASCII

versions as given in Table 3.1

Inductive Definitions: An inductive definition is defined by a set of rules within n.
Each rule is of the form Head +---- Body, where Head is an atom whose predicate symbol

is an expansion predicate, and is fixed in all rules of an inductive definition. Body is a

quantifier-free FO formula. Head (body) variables are implicitly universally (existentially)

quantified.

For example to find the distance of vertices in a graph G = (Vtx; Edge) from a particular

vertex Start E Vtx we can use the following inductive definition:
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{Dist(v,n) +-- (v = Start) /\ (n = MIN)

Dist(v, n) +-- Dist(u, m) /\ Edge(u, v) /\ SUCC(m, n)}

Dist(v, n) is true iff the directed distance from Start to v is n.

As explained in Section 2.3, MXG can handle only some classes of "well-behaved" induc

tive definitions, and wrong solutions (i.e., structures which are not models) might be re

turned as solutions if a problem axiomatization has inductive definitions that are not "well

behaved". The language syntax of MXG allows writing inductive definitions that are not

"well-behaved", and users should be careful to write only "well-behaved" inductive defini

tions.

Cardinality Constraints: cardinality constraints are provided for the convenience

of expressing counting constraints. MXG handles cardinality constraints of the following

form: VX: (-)(J.L;Yj <jJ(x, y)). Here, (-) is one of CARD, UB, LB which stand for Cardinality,

Upper-bound and Lower-bound, respectively. <jJ(x, y) is a FO formula with free variables

x,y. J.L is either a natural number or an instance constant symbol which can be of any type.

For each Ii : x -.-. A, the formula constrains the number of b : y -.-. A for which <jJ(a, b) is true

in the expansion structure Q3:

vs : lb ::; I{b : y -.-. A, Q3 F <jJ(Ii,b)} I ::; ub.

In the above, values of lb, ub, the lower bound and upper bound, are set accordingly for

UB, CARD, and LB:

• lb = O,ub = BOUND for UB,

• lb = ub = BOUND for CARD,

• and lb = BOUND,ub = k for LB, where k is the size of set {b: y -.-. A}.

Value of BOUND is:

• If J.L is a natural number, BOUND is the value of J.L.

• If J.L is a constant symbol, c : D, c denotes an element of type D. If that element is

the ith element in the order for D, then BOUND is i.

For example Vu: UB(l;v;Edge(v,u)) requires that the in-degree of each vertex is at most

one.



Chapter 4

MXG Solving Method

In this chapter we present in detail the "grounder" and "un-grounder" modules of MXG, as

illustrated in Figure 2.1.

4.1 "Grounder" Module

Grounding for any high-level language is the process of eliminating variables, by replacing

them with constant symbols, which represent elements of the appropriate type. In MXG,

a new constant symbol, Ca , is introduced for each element a E A for instance structure

2l = (A; IT21) . We denote the collection of these new constant symbols introduced for universe

A, by A. The instance IT-structure 2l is expanded to a (ITU A)-structure 2l* = (A,IT21 ,A21·),

where c;j" = a for all Ca E A, a E A.

Throughout this thesis, 2l = (A; IT21) is a finite instance structure, A is the collection of

constant symbols, 2l* = (A; IT21, A21· ) is the instance structure expanded with constants A,
IT is the instance vocabulary, and E is the expansion vocabulary, unless otherwise stated.

Def.(Reduced Grounding): Let cjJ be a formula over vocabulary ITUE. A reduced ground

ing of cjJ with respect to (w.r.t.) finite structure 2l = (A, (121), is a ground formula 'IjJ over

vocabulary E U A only, such that, for any structure l.B = (A; (121; A'2l' ;f'B) and any object

assignment w, l.B[w] 1== cjJ iff l.B 1== 'IjJ.

A reduced grounding exactly defines the set of solutions for the instance 2l. MXG obtains

a reduced grounding of a formula, by grounding (instantiating) the formula and simultane

ously 'evaluating out' the instance vocabulary.

We later in Chapter 5 explain a polynomial time grounding algorithm, Gnd-Hidden, that

22
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MXG uses for computing the reduced grounding of a Fa axiom w.r.t. instance structure Qt.

The "grounder" module of MXG generates the reduced grounding of each problem ax

iom w.r.t. instance structure Qt. The resulting ground Fa formulas must be transformed

to propositional CNF clauses before being passed to a SAT solver. In Section 4.1.1 and

Section 4.1.2 we explain this transformation in MXG.

4.1.1 Converting a Reduced Ground FO Formula to Clausal Form

A Fa clause is a disjunctive Fa formula. Conversion of an arbitrary ground Fa formula

to clausal form is a straightforward procedure. Polynomial time transformation requires

use of new variables, sometimes called Tseitin variables 1 [55]. Procedure Convert-To-FO

Clause(o:,1{i) in MXG, is an implementation of this procedure. It takes as input a reduced

ground Fa formula 1{i, and a new Tseitin predicate symbol 0: and recursively operates

on the structure of 1{i to generate a set of ground Fa clauses 1{ic equivalent to 1{i 2. A

Tseitin predicate symbol, is a O-ary predicate symbol that can be interpreted either to

true or false. Convert-To-FO-Clause associates each sub-formula Xp of 1{i, with a new Tseitin

predicate symbol p. We denote the collection of these new predicate symbols introduced

in this transformation by r. Convert-To-FO-C1ause generates clauses to ensure that for any

expansion structure 113 = (A; (121;£'13; r'13), p'13 ¢::} xi!. In the following, by "clauses for

¢" we mean the natural set of clauses ¢' over exactly the atoms of ¢, such that ¢ and

¢' are equivalent. For example, clauses that are generated for 0: ¢::} (0:1 V ... V O:n) are:

('0: V 0:1 V··· V O:n), and a set of binary clause: (0: V 'o:d, ... , (0: V 'O:n)

Procedure Convert-To-FO-Clause(o:,1{i) :

1. If 1{i is an atom, generate clauses for 1{i ¢::} 0: and return.

2. If 1{i = Xl 1\ . . . 1\ Xn, add Tseitin predicate symbols 0:1, ... ,O:n to r. Generate clauses

for equivalence 0: ¢::} (0:1 1\ ... 1\ O:n). Call Convert-To-FO-Clause( O:i, xd for each Xi and

3. If 1{i = Xl V ... V Xn, add Tseitin predicate symbols 0:1, ... ,O:n to r. Generate clauses

IThe polynomial transformation of an arbitrary propositional formula to clausal form, was first introduced
by Vladimir Tseitin, and the name of the extra variables needed in this transformation are named Tseitin
variables after his name.

2Two FO theories T 1 , T2 are equivalent iff every structure Qt that satisfies Ti; also satisfies T2 and vice
versa: 2l F T1 {=} 2l F T2 .
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for equivalence a ~ (al V··· Van)' Call Convert-To-FO-C1ause(ai, Xi) for each Xi and

ai, i ::; n.

4. If'ljJ = -'(X), add Tseitin predicate symbol (3 to r. Generate clauses for a ¢:> -,(3 and

call Convert-To-FO-C1ause((3, X).

Example. In execution of Convert-To-FO-Ciause('ljJ,a), for a ground FO formula 7j; =

P(1,3) V (P(l, 1) 1\ P(l, 2)), and Tseitin predicate a, new Tseitin predicates a j and a2

are introduced for sub-formulas 7j;1 = P(1,3) and 7j;2 = (P(l,l) 1\ P(l, 2)), and then

Convert-To-FO-Ciause('ljJl,ad and Convert-To-FO-Ciause('ljJ2,a2) are executed, and clauses

for a¢:> (al V (2) are generated.

• In execution of Convert-To-Ffl-Clausefwj j oj }, clauses for al ¢:> P(1,3) are generated.

• In execution of Convert-To-FO-C1ause(7j;2,a2), new Tseitin predicates a3 and a4 are

introduced respectively for P(l, 1), and P(1,2), and clauses for a3 ¢:> P(l,l), a4 ~

P(l, 2), and a2 ~ (a3 1\ (4) are generated.

By executing procedure Convert-To-FO-C1ause for all reduced ground formulas generated,

we obtain the grounding in clausal form. Expansion vocabulary E: is extended with r. By

projection out the interpretation of expansion O-ary predicate symbols of T', any model for

these clauses gives a solution for the original problem.

4.1.2 Transforming a FO Clause to a Propositional Clause

In the standard input syntax of SAT solvers, DIMACS format, propositional variables are

Natural numbers. To provide proper inputs for SAT solvers, ground FO atoms in FO clauses

generated by Convert-To-FO-C1ause, must be mapped to propositional variables by a function

from ground-atoms to Natural numbers.

One might create a table for mapping, by inserting a new pair (a, ap ) into the table,

for each ground atom a in clauses, and assigning the smallest natural number, not assigned

yet, ap , to it. This approach guarantees we are not introducing propositional variables more

than the number of ground atoms that have appeared in ground FO clauses. The drawback

is that both look-ups and inserts are done in linear time. To find the propositional variable

assigned to each FO ground atom, a look-up is needed. If no entry for the ground atom is

found in the mapping table, it means the ground atom has not already been assigned to
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a propositional variable, and a new entry will be inserted for it. A hashing function may

seem to be a good choice for this purpose. But we need to find two hashing functions, both

doing look-ups in a constant time: one from ground atoms to propositional variables, and

one from propositional variables to ground atoms, that does the inverse of first one. The

second one is needed in the ungrounding step when a satisfying assignment is translated

to a FO solution. A mapping with these properties should be defined with functions that

relate structural properties of a ground atom to a number (propositional variable). As we

do not know what ground atoms may appear in the answer of a formula, such relation can

not be defined without any gap in the propositional variables. So a hashing functions is not

applicable here.

The other approach is to reserve a prefix of Natural numbers for expansion ground

atoms of E, w.r.t. the size of sorts, and use a one-to-one function Map-To-PropVar to assign

a unique natural number to each expansion ground atom.

For expansion predicates PI,'" ,Pn declared in problem specification file and D 1 , ••• ,Dn

the maximum size of their interpretation, function Map-To-PropVar can be defined as below:

Map-To-PropVar: {Expansion Ground Atoms} -> [1··· Ei<n D i ]

Map-To-PropVar(Pm(ak,"" al)) = Ei<m D, + Ei<k((Image(ad) * ITj<k DOM(Pmj)) + 1

DOM(Pmj) denotes the size of domain of jth argument in predicate Pm. Image(ai) is

the natural number associated to the value of ai in the correspondence of its sort to natural

numbers.

We then assign the smallest unreserved and unassigned Natural numbers to Tseitin

predicate symbols of r. In this approach, look-ups for the ground atoms of E is done in

constant time by the one-to-one mapping defined by function Map-To-PropVar.

We implement the second approach in MXG, and moreover call function Map-To-PropVar

in steps of Convert-To-FO-C1ause procedure to simultaneously create propositional clauses.

Let function Get-Next-PropVar return the next unassigned and unreserved number. Convert

To-PropClause(a, 'ljJ), defined as below, generates propositional clauses equivalent to the

ground FO formula ib. a is a natural number (a propositional variable).

Convert-To-PropClauseto, 'ljJ):

1. If'ljJ is an atom, generate a unary propositional clause Map-To-PropVar( 'ljJ) and return.

2. If'ljJ = Xl /\ ... /\ Xn, generate propositional clauses for equivalence a <=> (al 1\ ... /\ an)
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where ai is Map-To-PropVar(xd if Xi is an atom, or Get-Next-PropVar if Xi is a non

atom. Call Convert-To-PropClause(ai,xd for each Xi,i < n.

3. If'lj; = Xl V··· V Xn, generate propositional clauses for equivalence a ~ (a1 V··· van)

where ai is Map-To-PropVar(xd if Xi is an atom, or Get-Next-PropVar if Xi is a non

atom. Call Convert-To-PropClausefce.vjj ) for each Xi,i < n.

4. If'lj; = --'(X), generate clauses for a ~ --,[3 and call Convert-To-PropClause([3, X).

Get-Next-PropVar generates the Tseitin variables in this transformation. In procedure

Map-To-PropVar the ground FO atoms are looked up in constant time.

4.2 "Un-grounder" module

Propositional assignments to satisfy the CNF clauses produced by Convert-To-PropClause

after projecting out the Tscitin variables are, in one-to-one correspondence with solutions of

the instance. There is no standard output format for SAT-solvers, which necessiates writing

a program for each choice of SAT-solver, to parse the output of the SAT-solver and collect

the set of literals giving the truth assignment. If the problem is satisfiable, the set of literals

are sent to MXG. Those true literals that are in the range of Map-To-PropVar constitute an

interpretation of expansion vocabularies in the founded model. MXG applies the reverse of

mapping Map-To-PropVar on true literals in range of Map-To-PropVar to obtain the ground

atoms. An interpretation of an expansion predicate, for this solution, is the collection of

ground atoms generated for it by this reverse mapping.

If the SAT-solver finds the CNF formula to be unsatisfiable, an empty set is sent to

MXG. MXG sends an output message "No Answer" , to show that problem has no solution.

4.3 Handling Inductive Definitions

MXG can handle only two fragments of inductive definitions, Horn-IDs and Comp-IDs as

defined in Section 2.4.3. In this section we explain how MXG handles the semantics of

inductive definitions for these fragments.
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4.3.1 Horn-ID
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For a Horn-ID, MXG treats ~ as :J. This gives a set of Horn formulas that has a unique

minimum model, which is the same as the well-founded model of the inductive definition.

The minimum model for a propositional Horn theory can be found by a linear time pro

cedure, by applying unit propagation techniques from SAT [27J [16J. MXG has a built-in

module, ComputeMinModel, that precomputes this model. The defined predicate is then

treated as an instance predicate for the remainder of the grounding of this specification.

For the example of Section 2.4.3, MXG rewrites the rules with the following FO implications

and generates reduced ground clauses for them. Then procedure ComputeMinModel is called

to find the interpretation of Dist.

'tIv n: ((v = Start 1\ n = MIN) => Dist(v,n))

'tIv n : ((3um: (Dist(u, m) 1\ Edge(u,v) 1\ SUGG(m, n))) => Dist(v, n))

4.3.2 Comp-ID

If an inductive definition is not a Horn-H), MXG replaces it with its Completion [10], by

interpreting ~ as ¢:}. The substitution is correct if the definition is a Comp-ID, but not in

general. For definitions of Odd and Even, in example of Section 2.4.3, MXG replaces them

with their completion.

'tin: (Even(n) {:;> [n = MIN V -.Odd(n) V (3n' : (Odd(n') 1\ SUGG(n', n)))])

'tin: (Odd(n) {:;> [-.Even(n) V 3n' : (Even(n') 1\ SUGG(n',n))])

As the definitions are Comp-ID's, they are equivalent to their completion. In any expan

sion structure, interpretation of Odd is the set of odd numbers in 5, and interpretation of

Even is the set of even numbers in 5, which is our intended interpretation of the definitions.

4.4 Handling Cardinality Constraints

There is no standard format for propositional cardinality clauses. MXG uses MXC, a

SAT+Cardinality solver, for solving the ground formulas including cardinality constraints.

A cardinality clause in MXC is in the following format:

# lb ub II ... lTL 0

It bounds the number of true literals from the set {ll, . . . ,In} to be at least lb and at most

ub. Here lb and ub are natural numbers including O.
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To ground formula Vx : 8(v; y; ¢(x, y)), for each a : x ---+ A, a propositional cardinality

clause of the following form is generated:

# lb ub [¢(a,br)] ... [¢(a,bk ) ] 0 , for all t: : fi -> A

The notation a : x ---+ A, means that each value ai, 1 :S i :S k in tuple a = (al"" ,ak) is

taken from the sort of variable Xi in attributes x = (Xl,' .. ,Xk). [¢(a, bdJ is the propositional

Tseitin variable assigned to ¢(a, bd by procedure Get-Next-PropVar. The values of lb, ub are

set accordingly for U B, CARD, LB :

• lb = 0, ub = v for U B,

• lb = ub = v for CARD,

• lb = t/, ub = k for LB where k is the size of set {bi : Y ---+ A}.

Then MXG generates the reduced grounding of FO sentences ¢(a,b i ) . and Convert-To

PropClause( [¢(a, bi ) ], ¢(a, bi ) ) is executed.

Cardinality constraints are not only a convenient way for expressing counting properties,

but also decrease grounding time noticeably in most of the cases. We observe that MXC

grounding time is reduced by using an encoding with cardinality constraints rather than an

equivalent one without (See Section 6.4).

Example: The following two FO sentences define predicate Map, over Num * Num, to

be a one-to-one relation:

Vx::Jy: Map(x,y)

VXYIY2 : ((Map(x,Yd 1\ Map(x,Y2)) J Yl = Y2)

For an instance structure with N um = [1 ... n], MXG generates n propositional clauses of

size n in the form:

Map(i, 1) V··· V Map(i,n), for 1::; i::; n,

and n(n - 1) binary propositional clauses of the form:

--.Map(i,j) V --.Map(i, k), for 1 ::; i,j, k ::; n, j -=1= k

The one-to-one correspondence property of predicate Map can be defined by a cardinality

constraint clause as below:

Vx: CARD(l; Y; Map(x, y))

for which MXG generates only n propositional cardinality clauses of size n :

# 1 1 Map(i,l) ... Map(i, n) 0
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~or large values of n, the differeuces in size and numher of clauses in the first and second

axiomatization can be very significant, and it takes more time for MXG to generates clauses

bf first axiomatization and save them in a file.

1405 Reducing the Number of Tseitin Variables

Tseitin variables are introduced in transformation of ground FO formulas to propositional

clauses, wherever there is an alternation of disjunction and conjunction in the formula. For

example 3 Tseitin variables qI, q2,q3 may be needed in a naive transformation of propo

sitional formula (PI V P2) /\ (P3 V P4) to clausal form: qi ¢::} qz /\ q3,qz ¢::} PI V P2, and

qs ¢::} P3 /\ P4·

Introduction of new Tseitin variables increases the number of clauses, as well as variables,

and consequently makes the solving step more complex. It is avoidable in some cases:

• Direct Handling of a Conjunction Formula: Propositional formula S = SI /\

... /\ Sn can be transformed to CNF form by a set of unary clauses {S1, ... , Sn} without

introducing any Tseitin variables. For the given sample formula, clauses PI V P2, and

P3 V P4, implying the same constraints.

• Pushing Negation: Pushing in negations at the beginning of a propositional for

mula, and transforming the result formula to CNF form, often reduces the number of

Tseitin variables needed for transformation. Formula '(PI /\ P2 /\ P3) without pushing

negation generates 'qI and clauses for qI ¢::} (PI /\ P2 /\ P3), while pushing negation

inside results to a single clause 'PI V 'P2 V 'P3.

For formula '(PI V P2 V P3), applying the "pushing negation" inside together with

"handling the conjunction directly" gives clauses 'PI, 'P2, and 'P3. These unary

clauses are easy for SAT solver to handle, comparing to clauses of larger size generated

for qI ¢::} PI V P2 V P3

• Merging Consecutive Conjunctions or Disjunctions: The answer to formula

3xP(x) V Q(x) w.r.t. to the instance structure 2l = {A; =} where A = {1,2} is the

ground formula:

(P(1) V Q(1)) V (P(1) V Q(2)) V (P(2) V Q(1)) V (P(2) V Q(2)).
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In the general case MXG replaces each formula in the parenthesis by a new Tseitin

variable, and generates clauses d l Vd2Vd3 Vd4 and clauses for equivalences of the form

dl ¢:> (P(l) V Q(l)). Detecting that the whole formula is a plain clause and there is no

operator alternation allows MXG to generate clauses in a more efficient way. For the

given formula it generates just one clause P(l) V Q(l) VQ(2) V P(2), after dropping

the repeated variables.



Chapter 5

A Grounding Algorithm for MXG

In this chapter we present in the detail the grounding algorithm of MXG, Gnd-Hidden, for

generating a "reduced grounding" of a Fa formula w.r.t. a given instance structure. Gnd

Hidden is based on a generalization of relational algebra operations to "extended-hidden"

relations. Gnd-Hidden is a variant of Gnd, which uses "extended" relations. Applying rela

tional algebra operations on extended relations was first used in [49J to obtain a theoretically

efficient algorithm for k-guarded fragment, GFk, of Fa. Our contribution includes a gener

alization of the union operator, introduction of division operator, intorduction of extended

relations with hidden columns, and producing an efficient implementation.

Note that in a multi-sorted logic, each variable has a specific sort, and the universe A is

the collection of all sorts in a problem. Throughout this chapter, the notation if: x -----> A,

means that each value ai,1 ::; i ::; k in tuple a = (al' ... , ak) is taken from the sort of

variable Xi in attributes x = (XI, ... ,Xk) I.

5.1 Gnd: A Grounding with Extended Relations

Before explaining the grounding algorithm, we need to define some concepts used in the

definition of Gnd.

Definitions of this section, and the relational algebra operations except for division, and

union were first presented in [49] (In [49], they define a special case of our union).

1As we explained in Section 3.2.3, in MXG predicates are typed, and sort of variables are inferred from
the role of a variable in formula.

31
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Def.(Extended Relation): An extended relation Tx is a table with attributes X, and

a ground formula attached to each tuple. Each entry in Ty may be represented by pairs

(a, 'l/Jr(a», where 'l/JrCa) is the ground formula associated with tuple a. 'l/Jr : c ~ <I> is a

function from type elements c to FO formulas <I>. TUples with formula false do not explicitly

appear in the representation of an extended table.

Def.{Answer to formula): An extended relation Tx is an answer to formula c/J(x) w.r.t.

structure 21., iff for all a : x ~ A and Ii E Tx , 'l/Jr(li) is a reduced grounding of c/J(a). The

answer for an atomic formula P(x) is obtained and precomputed from:

• If P is an instance predicate, an extended relation Tx with tuples from interpretation

of P and formula true attacheded to each tuple.

• If P is an expansion predicate, an extended relation Ty with tuples (a, P(a» for all

a:x~A.

The answer for a sentence is an extended relation containing only the empty tuple; the

formula associated with that tuple is the reduced grounding of the sentence.

Example 1 The answer to formulas P(x, v), and Q(x, z) w.r.t. instance structure 2t =

(A; p'2l.), where A has only one sort D = [1 ... 3], and p'2l. = {(I, 2), (2, 3)}, is represented in

Figures 5.1 and 5.2 by extended relations Rx,y, Sx,z.

x Y 'l/JR(X, y)
1 2 True
2 3 True

Figure 5.1: Rx,y: Answer to P(x, y) w.r.t. structure 21.

5.1.1 An algebra for extended relations

The standard relational algebra operations can be generalized to extended relations. Here

we give the definition of join, union, complement, projection, and division on extended

relations. If no entry for tuple Ii exists in an extended table, it is taken as (a, false) for

operations involving that table.
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x z 7/Js(x, z)
1 1 Q(l,l)
1 2 Q(1,2)
1 3 Q(1,3)
2 1 Q(2,1)
2 2 Q(2,2)
2 3 Q(2,3)
3 1 Q(3,1)
3 2 Q(3,2)
3 3 Q(3,3)

Figure 5.2: Sx,z: Answer to Q(x, z) w.r.t. structure Qt

33

Def.(Extended Join): Tx = R y IXJ Sz, where x = Y U:Z, iff for any (a,7/JT(a)) E Tx:

(aIY,7/JR(aly)) E Ry, (al:Z,7/Js(al:Z)) E sz, 7/JT(a) = 7/JR(aly) 1\ 7/Js(al:Z)·

Proposition: Tx = R y IXJ Sz is the answer to ¢dy) 1\ ¢s(:Z) W.r.t. Qt, where Ry and Sz are

the answers to ¢dY) and ¢s(:Z) with respect to structure Qt.

Proof. Ry is the answer to ¢R(Y) w.r.t. structure Qt = (A; (121), which means for any

expansion of Qt to structure lB = (A, (121,c'B), lB 1= ¢R(Y) iff lB 1= 7/JR(b) for all (b,7/Jdb)).

The same argument for Sz states that for any structure lB, an expansion of Qt, lB 1= ¢s(:Z) iff

lB 1= 7/Js(c) for all (c,7/Js(c)). 7/JR(b and 7/Js(c are the formulas attached to tuples with values

b, c respectively in extended tables Ry and Sz.

On the other hand, for any structure lB, lB 1= 7/J1 1\ 7/J2 iff lB 1= 7/J1' and lB 1= 7/J2 (by the

semantics of predicate calculus). Each tuple (a,7/JT(a)) E Tx is constructed from two tuples

(b,7/JR(b)) E Rfj, (c,7/Js(c)) E Sz· Thus for any structure lB, lB 1= 7/JR(b) and lB 1= 7/Js(c) iff

lB 1= 7/JT(a), for all (a,7/JT(a)) E Tx, (b,7/JR(b)) E Rfj, (c,7/Js(c)) E Sz. The equality defines Tx

as the answer to ¢T(X) = ¢R(Y) 1\ ¢s(:Z) given Ry and Sz are answers to ¢R(Y) and ¢s(:Z)

W.r.t. Qt.•

Example 2 For P,Q,Qt as defined in Example 1, the answer to formula P(x,y) 1\ Q(x,z)

ui.r.i. Qt is computed byjoining extended tables Rx,y and Sy,z of Figures 5.1 and 5.2. Tx,y,z =

Rx,y IXJ Sx,z is shown in Figure 5.3.

Def.(Extended Union): Tx = Rfj U Sz, where x = y U:Z, iff for any (a,7/JT(a)) E Tx,

(aIY,7/JR(a[y)) E Ry, (al:Z, 'l/Js(al:Z» E s-. 7/JT(a) = 7/JR(alY) v 7/Js(al:Z)·
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x y z J/;T(X, y, z)
1 2 1 Q(l,l)
1 2 2 Q(1,2)
1 2 3 Q(1,3)
2 3 1 Q(2,1)
2 3 2 Q(2,2)
2 3 3 Q(2,3)

Figure 5.3: Tx,y,z: Answer to formula P(x, y) 1\ Q(x, z) for Example 1
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Proposition: Tx = Ry U Sz is the answer to cPR("fJ) V cPs(z) w.r.t. 21, where Ry and Sz are

answers to cPRCY), cPs(z) with respect to structure 21.

Example 3 For P, Q, 21 as defined in Example 1, the answer to formula P(x, y) V Q(x, z)

w.r.t. 21, is the union of extended tables Rx,y, and Sy,z, of Figures 5.1 and 5.2. Wx,y,z =

Rx,y U Sx,z is shown in Figure 5.4.

x y z 1/'w(x, y, z)
1 1 1 Q(l,l)
1 1 2 Q(1,2)
1 1 3 Q(1,3)
1 2 1 true
1 2 2 true
1 2 3 true
1 3 1 Q(l,l)
1 3 2 Q(1,2)
.. .. .. .....

2 3 1 true
2 3 2 true
2 3 3 true
3 1 1 Q(3,1)
.. .. .. .....

3 3 3 Q(3,3)

Figure 5.4: Wx,y,z: Answer to formula P(x, y) V Q(x, z) for Example 1

Def.(Extended Complement): Tx = Rx, iff for any (a, J/;T(a» E Tx , (a, -'J/;T(a» E Rx .
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Proposition: Tx = R x is the answer to -'¢R(X) W.r.t. 21, where R x is the answer to ¢R(X)

w.r.t. structure 21.

Def.(Extended Projection): Tx' = llxlRx, for x' C x, iff for any tuple (a','l/JT(a')) E T-X',

there are tuples (a, 'l/JR(a)) E R x such that a/x' = a', and 'l/JT(a') = VCli,'l/JR(a))ERx'l/JR(a).

Proposltlon.Tp = llx\?Rx is the answer to "3x'¢R(X) W.r.t. 21, where R x is the answer to

¢R(X) w.r.t. structure 21.

Example 4 For P, Q, 21 as defined in Example 1, the answer to formula "3 z : P(x, y) !\

Q(x,z) w.r.t. 21, is obtained by the projection of Tx,y,z of Figure 5.3, answer to P(x,y)!\

Q(x, z) w.r.t. 21, on attributes x, y. Vx,y = llzTx,y,z is shown in Figure 5.5.

x y 'l/Jv(x, y)
1 2 Q(I, 1) V Q(I, 2) V Q(I, 3)
2 3 Q(2, 1) V Q(2, 2) V Q(2, 3)

Figure 5.5: Vx,y: Answer to formula "3 z : P(x,y)!\ Q(x,z) W.r.t. structure 21

Def.(Extended Division): TXIl = Rx!{x' ~ A}, where x" = x \ x' iff for any tuple

(a",'l/JT(a")) E TX" ' and for all a': x' ~ A, there are tuples (a"Ua','l/JR(a"Ua')) E R x and

'l/JT(a") =

!\(alluli','l/JT(alluli'))ERx 'l/JR(a" U a').

Proposition: Tx\? = Rx!{x' ~ A} is the answer to VX'¢R(?i) w.r.t. 21, where R x is the

answer to ¢R(?i) w.r.t. structure 21.

Example 5 For Vx,y computed in Example 4, the answer to formula V x y : Vx,y w.r.t. 21

is obtained by dividing Vx,y on {(x, y)} = {(I, 1), ... ,(3, 3)}. U0 = Vx,y! {x, y} is empty, and

can be represented by a table with one entry (0,false).

5.1.2 Algorithm Gnd

Now we can give the definition of procedure Gnd(¢, 21). The input is a FO formula ¢ and an

instance structure 21 = (A, (}21). It inductively operates on the structure of ¢ and computes

answers to sub-formulas of ¢ w.r.t. 21. Its output is an extended table which is the answer

to formula ¢ w.r.t. structure 21. The cases are:
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1. ¢ = P(x), P instance: returns Tx with tuples {(a, true) : a E p'2l},

2. ¢ = P(x), P expansion: returns Tx with tuples Ha, P(a)) : a: x ---> A},

3. ¢ = 81\ 'l/J: Gnd(8, Qt) [Xl Gnd('l/J, Qt),

4. ¢ = 8 v 'l/J: Gnd(8,Qt) U Gnd('l/J,Qt),

5. ¢ = .'l/J: Gnd('l/J, Qt),

6. ¢ = 3y'l/J(x): IIx\yGnd('l/J(x),Qt),

7. ¢ = Vfi'l/J(x): Gnd(¢(x) ,2t)/{y ---> A}.
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Theorem 1 For any given FO formula ¢ and structure Qt, Gnd returns an answer to ¢

w.r.t. Qt.

Proof: Proof is by induction on the structure of ¢. The base case is when ¢ is an atom

P(x):

• For P being an instance symbol, Gnd returns an extended relation Ry with tuples

{(a, true) : a E p'2l}. Rx is the answer to P(x), as the formula attached to each tuple

in Rx is the reduced grounding of P(x) w.r.t. Qt.

• For P being an expansion symbol, Gnd returns an extended relation Sy with tuples

{(a, P(a)) : a : x ---> A}. Sx is the answer to P(x), as the formula attached to each

tuple in Sx is the reduced grounding of P(x) w.r.t. Qt.

The induction step follows from the propositions in Section 5.1.1. Gnd operates inductively

on the structure of ¢ and at each step computes a certain relational algebra operation

corresponded to each logical operation. According to propositions of the Section 5.1.1, the

result of each operation is the answer to that subformula w.r.t. Qt. Thus finally Gnd returns

answer to ¢ w.r.t. Qt.•
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5.2 Gnd-Hidden: Grounding With Hidden Variables
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Gnd in case 2 constructs a 'universal' extended relation over variables x for each occurance

of an expansion predicate P. The size of such a relation for an expansion predicate that

is defined over large domains may be huge, and it may contribute greatly to the execution

time of Gnd. Gnd-Hidden is a refinement of Gnd based on extended-hidden relations, for

which columns corresponding to a universal inclusion are left implicit. Definition of Gnd

Hidden is the same as Gnd except that it applies the relational algebra operations adapted

to extended-hidden relations. In following we give definitions of reduced grounding, answer

to a formula, and relational algebra operations for extended-hidden relations.

In the following definitions, for a crU z-formula 1 (a is the instance vocabulary and c is

the expansion vocabulary), we denote the set of free variables in 1 that are arguments only

to predicate symbols of E by ExpVar(1), and the remaining free variables by InstVar(1).

Without loss of generality, and as a convention, we denote formula 1 with free variables

InstVar(1) U ExpVars(1) by 1(InstVar(1); ExpVar(1)).

Def.(Reduced-Hidden Grounding): Let 1(xj y) be a formula over vocabulary a U c. A

reduced-hidden grounding of 1(x; y) w.r.t. 2( is a formula ¢(y) over vocabulary c U A only,

such that for any structure lB = (A; a'21j A'21", E'B), and any object assignment w, lB[w] l=

1(x;y) iff lB[w] l= ¢('f}).

For a FO sentence with no free variables, a reduced-hidden grounding is also a reduced

grounding. MXG obtains a reduced-hidden grounding of a formula 1(x; y) by instantiating

only variables x and simultanously 'evaluating out' the instance vocabulary.

Def.(Extended-Hidden relation): An extended-hidden relation Tf is an extended re

lation with explicit attributes x and hidden attributes y. Values of hidden attributes do

not appear explicitly in tuples. ¢T (a) for each pair (a, ¢T (a)), a : x ---+ A, is a ground

formula with free variables y. Extended-hidden table Tf, with entries (a, ¢T(a)), a: x ---+ A,
is a compact representation of extended table Tx y with entries ((a, b), ¢T (a) (b/'f})) where

a : x ---+ A, b : y ---+ A.

Extended relation Tx is an extended-hidden relation with empty set of hidden attributes,

T$.
Def.(Universal Extended-Hidden Relation): A universal extended-hidden relation for

explicit attributes x, and hidden attributes y, w.r.t. 2(, is a table with pairs (a, true), a:

x ---+ A, and is represented by Of.
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Def.(Answer to formula): The extended-hidden relation Tl is the answer to formula

¢(x; y) w.r.t. structure m, iff for all a : X ---t A, 'l/JT(a) is a reduced-hidden grounding for

¢(x;y).

The answer for an atomic formula P(x) is obtained and precomputed from:

• If P is an instance predicate, an extended-hidden relation T: with tuples from inter

pretation of P and formula true attacheded to each tuple.

• If P is an expansion predicate, an extended-hidden relation T[ with one tuple (0, P(x)).

Example 6 For P, Q, mas defined in Example 1, the answer to P(x, y), R~,y, is the same

as extended table shown in Figure 5.1. The answer to Q( x, z), S;,z, is a table with one tuple

as shown below:

o 'l/Js

Q(x, z)

5.2.1 An Algebra For Extended Hidden Relations

Def.(Extended Join): T%: = R~~ t><J S;:, where Xt = Xr U Xs and Yt = (Yr U Ys) \ Xt,

iff for any tuple (a,'l/JT(a)) E T%:, (alxr,'l/JR(alxr)) E R!p;, (alxs,'l/Js(ajxs)) E S;:, and

'l/JT(a) = 'l/JR(a!xr) /\ 'l/Js(alxs).

Proposition: T%: = R!p; e-a S;: is the answer to ¢R(Xr; Yr) /\ ¢s(xs; Ys) w.r.t. m, where R~~

and S-;,: are answer's to ¢R(xriYr), and ¢s(xs;Ys) w.r.t. structure m.

Proof. R!p; is answer to ¢R(Xri Yr) w.r.t. structure m = (A; (1"21), which means that for any

expansion ofm to structure IB = (A, (1"21,c'13), andanyobjectassignmentw,lB[w] F ¢R(XriYr)

iff lB[w] F 'l/JR(b) for all (b, 'l/JR(b)) E R!p;. The same argument for S-;,: states that for any

structure IB, and any object assignment w, lB[w] F ¢S(Xsi Ys) iff lB[w] F 'l/Js(e) for all

(e, 'l/Js(c)) E S;:.
According to the semantics of predicate calculus, for any structure IB, and any object

assignment w, lB[w] F 'l/Jl and lB[w] F'l/J2 iff lB[w] F 'l/Jl /\ 'l/J2.

Each tuple (a, 'l/JT(a)) E T%: is constructed from two tuples (b, 'l/JR(b)) E R!p; and (e, 'l/Js(e)) E

S-;,:. Thus for any structure IB, and any object assignment w, lB[w] F 'l/J R(b) and lB[w] F'l/Js(e)

iff lB[w] F 'l/JT(a), for all (a,'l/JT(a)) E T%:, (b,'l/JR(b)) E R!p;, (c,'l/Js(c)) E S;:. The equality
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j(fefines T;: as the answer to cPT(Xt; Yt) = cPR(Xr; Yr) /\ cPs(xs ; Ys) given R~~ and s~; answers

to cPR(Xr;Yr) and cPs(xs;Ys) w.r.t. 2l.•

Example 7 For P, Q, 2l as defined in Example 1, the answer to formula P(x, y) /\ Q(x, z)

is the union of R%,y, and S:,z of Example 6. T;,y = R%,y [Xl S:,z is shown in Figure 5.6.

x Y 1/JT(X,y)
1 2 Q(l, z)
2 3 Q(2, z)

Figure 5.6: T;,y: Answer to formula P(x, y) /\ Q(x, z) for Example 1

Def.(Extended Union): T;: = R~: u S;:, where Xt = Xr U Xs, Yt = (Yr U Ys) \ Xt. iff

for any (a,1/JT(a)) E T;tt, (alxr,1/JR(alxr)) E R~:, (alxs,1/Js(alxs)) E S;:, and 1/JT(a) =
1/JR(alxr) V 1/Js(alxs).

Proposition: T;: = R!f;- u S,%:; is the answer to cPR(Xr;Yr) V cPs(xs;Ys) w.r.t. 2l, where RJ;,:,
and S;s are answers to cPR(Xr;Yr) and cPs (xs; Ys) w.r.t. structure 2l.

s

Example 8 For P,Q,21 as defined in Example 1, the answer to formula P(x,y) V Q(x,z)

is computed by joining R~,y, and S:,z from Example 6. W:,y = R%,y U S:,z is shown in

Figure 5.7. Note that, in Figure 5.4, the answer to the same formula has 27 tuples.

Def.(Extended Complement): Tl = ~ iff for any (a, 1/JT(a)) E Tl, (a, -'1/JT(a)) E ~.

Proposition: Tl = ~ is the answer to -'cPRCXiY) w.r.t. 2l, where R~ is the answer to

cPR (x; y) w.r.t. structure 2t
--; - - -

Def.(Extended Projection): T:, = I1x'yIR~, for x' ~ x, and Y' ~ Y, iff for any pair

(a' '/'T(a')) E T11 there are tuples (a" '/'s(a")) E S11 where 511 = R¥... [Xl D~ and x" =, t.V x' , , 'f/ x" , x" x y"

xU y" y" = Y \ y' such that a"lx' = a' 1/JT(a') = V_ _ tr 1/Js(a").
" , (a",1/JS (a"))ESY

"
x

/ - - - - - --
Proposition: T:, = I1X'yl~' for x'' = x\x', and v" = y\y' is the answer to 3XI Y"cPR(X;y)

w.r.t. Qt, where R~ is the answer to cPR(X; y) w.r.t. structure Qt.
" - -- - - - -

Def, (Extended Division): TY" = R~I{(x', y') ~ A}, for x" = x \ x', and u" = Y \ y'
x

iff for any pair (a",1/JT(a")) E T;::, and a' : x' ~ A, there is a tuple (all1,1/Js(all1
) ) E 5;::,
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x y 1/1w(x, y)
1 1 Q(1, z)
1 2 true
1 3 Q(1, z)
2 1 Q(2, z)
2 2 Q(2, z)
2 3 true
3 1 Q(3, z)
3 2 Q(3, z)
3 3 Q(3, z)

Figure 5.7: W:,y: Answer to formula P(x, y) V Q(x, z)
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where 5;::, ~ [XJ D:" x'" = X U y', such that a'" Ix" a", aliiIx' = a', 1/11' (a")

1\(--,-;-;- .1, (--'-;-;-»ESY" 1/1s(a"').
a ,o/S a x/II

Proposition: T;:: = R~/{(x', y') ---+ A}, for x" = x \ x', and y" = y \ y' is the answer to

Vx'y' cPR(X; y) w.r.t. 2l, where R~ is the answer to cPR(X; y) w.r.t. structure 2l.

5.2.2 Gnd-Hidden Algorithm

The specification of Gnd-Hidden is exactly the same as Gnd, except that relational algebra

operations are operating on extended-hidden relations.

For each axiom cP in problem theory T, MXG first parses cP and builds a syntax tree for it.

Each vertex v in the syntax tree has an extended-hidden relation Ans(v). Ans(v) keeps the

answer to the sub-formula rooted at v w.r.t. 2l. The answers to atomic formulas, located in

leaves of the syntax tree, are precomputed by MXG,(See definition of "answer to formula").

The extended-hidden relation for internal vertices will be computed during the execution

of algorithm. Gnd is a bottom-up algorithm: starting with answer of atoms in leaves of

syntax tree, and applying an appropriate extended-hidden relational algebra operation at

each vertex coming up the syntax tree. The answer for the whole formula is in Ans(v), for

v is the root of syntax tree.

Theorem 2 For any given FO formula cP and structure 2l, Gnd-Hidden returns an answer

to cP ui.r.t. 2l.



CHAPTER 5. A GROUNDING ALGORITHM FOR MXG 41

Proof: Proof is the same as proof of Theorem 1 by induction on the structure of c/J and

propositions in Section ?? •

5.3 Complexity of Gnd-Hidden Algorithm

Theorem 3 For a given FO formula c/J and a structure 2l, Gnd-Hidden runs in time

0(12L1/4>/).

Proof. The time and space complexity of each of the relational operations in Gnd-Hidden

procedure on two extended hidden relations R~~ and r:; are (the size of an extended-hidden

relation is at most 12(1):

• RJf& rxJ r:; creates an extended-hidden relation of size O( 12(1 2 ) in time of order O( 12(1 2 ) .

The same result holds for operation Union.

• R4!k creates an extended-hidden relation of size 0(12l1) in time of order 0(12l[).

• IlzR~~, returns an extended-hidden relation with 0(12l1) tuples, and the formula at

tached to each tuple be a disjnuction of size 12l1. So the size of result is of 0(12l1 2 ) and

is computed in time of 0(12qz). The same result holds for operation division.

Procedure Gnd-Hidden is called for each logical operator in the formula c/J. It is executed

0(1c/J1) times. Thus the time and space complexity of Gnd-Hidden for computing answer of

c/J w.r.t. structure 2l is 0(12l1 14>1).•

For any fixed formula, Gnd-Hidden is a polynomial time reduction from FO-MX to SAT.

The number of Tseitin variables that may be introduced, in the worst case, are of order

[2l1 14>1. Operations involving only expansion predicate symbols are computed in a constant

time. The number of instance predicates symbols in a formula contributes significantly in the

computation time. In the worst case, tables of size 1211 are generated for each predicate, and

the actual grounding time is of order 12l[I4>I. But in practice, usually this does not happen,

and the actual grounding time is less, as the number of tuples involving in computation are

less in the presence of expansion predicate symbols.
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5.4 Join Refinement by Indexing
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Joining two tables of size O(n) without any index is an expensive operation. A good indexing

on tables reduces the join computation time dramatically, especially for the cases when the

size of result table is of size the same order as of the input tables. We have implemented

a simpleHash Indexing method based on the following function Hash, which assigns hash

indices to entries of extended-hidden relations T%: and S;-:' invloved in a join, and is defined

as below:

Hash: {Xt n x ..~ A k} ~ [1··· TIxExnx DOM(Xi)]
~ s ."

Hash(ak"'" a1) = '£i<k(Image(ai) * TIj<k DOM(xj)) + 1

where k = IXt n xsl, DOM(Xi) is the size of the domain associated to Xi.

For the join of two relations T%: and S;-:' first a hash table is built for one of the relations,

say T%tt, that for each hash index keeps a linked list of tuples in T-,;: associated to that index.

Then the second relation, S~:' is scanned and for each tuple t with values Ii its associated

hash index Hash(a) is computed. Tuples t' from T%: that are kept by index Hash(a) in the

hash table will be joined with t.

Choosing an effective indexing method requires study of different indexing methods and

finding the one that fits to a particular application. Our hashing method significantly

reduces the grounding time for problems we studied. The drawback is the size of hash

tables. MXG can fail on join of some big tables due to the lack of memory space. Gnd

Hidden typically produces smaller tables than Gnd, so using Gnd-Hidden reduces this risk.
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Evaluation

Here we present an empirical comparison of the performance of MXG with with Midl., an

independently developed solver for FO(ID)-MX, and with several well-known ASP solvers,

on a collection of interesting benchmark problems. In the longer term, comparison with a

wider range of approaches and systems, and over a wider variety of problems and instances,

than we consider here is needed. Our current goal is to demonstrate that our approach can

be used in practice. We choose comparison with ASP systems as they are the most similar

competing approach which has reasonably mature theory and implementations. The results

show that our MXG has performance comparable with the best known ASP solvers, and

with MidL.

The following systems are compared in our experiments:

• MXGO.l72 with MXCO.5, a SAT+Cardinality solver, denoted by 'MX'.

MXG and MXC are available from http://www.cs.sfu.ca/research/groups/mxp/;

• MidL 2.2.0, a FO(ID) model expansion solver, with GidL 1.1.0 and Lparse 1.0.17 doing

the grounding. GidL translates FO(ID) axioms to logical rules of Lparse and then runs

Lparse to get ground rules, denoted by 'MidL'. GidL has Lparse1.0.17 embedded.

MidL and GidL are available from http://www.cs.kuleuven.be/rvdtai/krr/index.html;

• smodels 2.32, first ASP solver with Lparse 1.0.17 doing the grounding, denoted by

'smodels'.

smodels and Lparse are available from http://www.tcs.hut.fi/Software/smodels;

• clasp 1.0.4, a ASP solver with clause learning with Lparse 1.0.17 doing grounding,

43
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denoted by 'clasp'. clasp is available from http://www.cs.uni-potsdam.de/clasp/ and

Lparse is available from http://www.tcs.hut.fi/Software/smodels;

• DLV 2006-7-14, an ASP solver for disjunctive logic programs. DLV has its own em

bedded grounder, denoted by 'dlv'.

dlv is available from http://www.dbai.tuwien.ac.at/proj/dlv/.

The ASP community provides a collection of ASP axiomatizations and benchmark in

stances for a number of combinatorial problems in [1] These have been used, for example,

in an ASP system competition [2] run in 2006/2007 [21]. We selected the following set of

combinatorial problems from this collection:

• Graph k-Colouring

• Latin Square Completion

• Blocked Queens (BL-Queen)

• Social Golfer

• Bounded Spanning Tree (BST)

We ran the above systems on all instances of these problems provided on the Asparagus

site [1]. We found most of the Asparagus graph colouring instances computationally trivial,

so produced of colouring instances with few challenging instances from Asparagus plus a

number of challenging instances from [3].

We present the MXG axiomatizations together with our computational results, organized

by problem, later in this chapter. For evaluation of MXG+MXC, we used axiomatizations

with cardinality constraints where this seems natural. Our MXG axiomatizations are not

always the simplest possible, but neither are they highly refined to optimize performance.

We used axiomatizations for the other systems obtained as follows. For the ASP systems,

we used the axiomatizations downloaded from Asparagus. For MidL, we used axiomatiza

tions included in the MidL download package for K-colouring, Bounded Spanning Tree(BST)

and Hamiltonian Cycle. To produce an Blocked N-Queens axiomatization, we extended the

N-Queens axiomatization from the download package with an axiom enforcing the blocked

cells constraint. For the remaining problems, we used a direct translation of our MXG ax

iomatizations, without cardinality constraints, into the MidL language, which differs slightly

from the MXG language.
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problem #Instances MXG Lparse
Social - Golfer 174 0.19(0.26) 0.01(0.00)
BL - Queen - 28 10 0.28(0.00) 0.24(0.00)
BL - Queen - 48 10 1.47(0.04) 1.92(0.02)
BL - Queen - 50 10 1.62(0.04) 2.23(0.04)
BL - Queen - 56 10 2.38(0.06) 3.48(0.03)
Latin - Square 100 0.08(0.00) 0.53(0.01)
Colouring 17 1.11(1.13) 1.28(1.66)
BST- 35 15 3.22(0.02) 1.66(0.06)
BST- 45 15 8.88(0.19) 3.17(0.07)

Table 6.1: Grounding time in seconds of MXG and Lparse

6.1 Comparing Grounding Times of MXG and Lparse

45

Our main interest is the overall performance of MXG as a solver, in comparison with other

solvers. However, the overall running time of the solvers on an instance is composed of two

parts - grounding time and ground solving time - and one may wonder if these components

play significantly different roles in the performance of different systems.

Table 6.1 we compare grounding time of MXG and Lparse for the problems we have

studied in this chapter. Each row in the table gives the mean and standard deviation (in

parentheses) of the grounding times of MXG and Lparse for sets of instances studied in

this chapter. (DLV, as distributed, does not support separation of grounding and solving

times.) For the blocked queens and bounded minimum spanning tree problems, we partition

instances into different sizes, while for others we consider the full set of instances as one

distribution.

Comparing grounding times for grounders with different languages is somewhat of an

apples-and-oranges comparison. For example, the syntax of MXG is much richer than that of

Lparse, and thus the grounding problem could be harder. However, at least for the problems

and instances studied here, grounding times of the two systems are not very different, and

grounding times for both grounders are typically small in comparison with running times

of the ground solvers.

In each row of Table 6.1, the smaller mean time is presented in bold face. We see that

each is faster on about the same number of problems. In most cases, the grounding times

for MXG and Lparse are not very different, and these differences are small in comparison
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with overall run-times (as reported in the following sections of this chapter).

For BST problem, the grounding time of MXG plays a large role in overall solving time

of MXG + MXC. The difference of grounding time for Lparse and MXG for BST instances, is

almost the whole difference of overall solving for clasp-l-Lparse, MXG + MXC. In all other

cases, for both MXG and Lparse, grounding times are significantly smaller than ground solver

times.

6.2 Overall Solving Performance

In the remaining sections of this chapter we compare all systems in terms of total solving

time, which includes both grounding and ground solver time, and in the case of MXGincludes

"un-grounding" time also. In this section, we explain our method of comparison, including

the conditions under which we run our experiments and the manner in which we present

the resulting data.

6.2.1 Cumulative Performance Plots

When considering performance on NP-hard problems, looking at run-times for particular

instances often is very interesting, but is often not the best way to see the overall trend

in performance. Interpreting the table of running time for a large set of instances is not

easy. Solvers of essentially the same quality often succeed on different instances for NP-hard

problems, even within a collection of very similar instances.

Here, we present performance in a cumulative plot format that reduces emphasis on

particular run-times, and gives a good overall picture of relative performance and scaling 

how performance with problem size - of solvers on a collection of instances.

The performances plots (Figures 6.1 through 6.6) have the following format. The X

axis is logarithmic time in seconds; the Y-axis is the cumulative number of instances solved

within a given time bound. For example, a point at (10,5) indicates that among the instances

tested, 5 were solved in 10 seconds or less each, and the remaining all required more than 10

seconds each. We plot a point for each instance solved, so if the ith instance solved required

n seconds, there is a point at (i, n). We connect the points for each solver with a curve

purely as a visual aid. Notice that the X -axis of all plots is logarithmic to illustrate the

important variations happening in small running times.
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We ran all tests with a time cut-off of 30 minutes (1800 seconds), so the righthand edge

of each plot is at 1800 seconds. The upper edge of each plot is at a value a bit larger than the

number of instances in the relevant collection, so we can see the points when all instances

were solved within the cut-off time. If (x,y) is the extreme upper-right point of the curve

for solver A, then A solved y instances in x seconds or less, and failed to solve any of the

remaining instances within the 30-minute cut-off. In all cases, we report the total time for

both grounding and solving. For instances which are not computationally trivial, Lparse

and MXG grounding times are almost always a small fraction of solving time.

6.2.2 Test Platform

All tests were run on Sun Fire VZ20 Dual Opteron computers with two 2.4 GHz AMD

Opteron 250 processors having 1MB cache and 2GB of RAM per processor. The machines

were running Suse Enterprise Linux 2.6.11. The executables for DLV, clasp, MidL, MXC

and MXG were downloaded from the respective solver sites. Executables for smodels was

compiled with gee version 3.3.4, using the default settings of the makefile provided with the

solver source from http://www.tcs.hut.fi/Software/smodels.

In Sections 6.3 to 6.7, we present the plots showing the relative performance of the

various systems on the chosen benchmark problems, and also the MXG axiomatizations we

used. We verified every solution produced during our tests with both MXG and smodels.

For each problem, we estimate an order of preference of solvers based on performance.

Since we prefer to reward good scaling over fast solving of small instances, our ordering is as

follows: we prefer those solvers that solved the most instances within the cut-off time, and

among those we prefer the one that minimized the maximum time for solving an instance.

Solver order could change with an increased cut-off time, but this will be the case with any

preference scheme that rewards good scaling.

6.3 Graph K -Colouring

Graph colouring is a classic and well-studied NP-hard search problem. An instance consists

of a graph and a number K, and a solution is a proper K-colouring of the graph. That is,

we want a function mapping vertices to a set of K colours, so that no two adjacent vertices

are mapped to the same colour.
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We take our instance to consist of the graph plus the set of colours. So we have two

sorts: Vtx and Or. The axioms simply says there is a binary relation Colour which must be

a proper colouring of the vertices:

Given:

type Vtx Clr;

Edge(Vtx, Vtx)

Find:

Colour(Vtx, Clr)

Satisfying:

Colour(MIN,MIN)

V x y z < y :~(Colour(x, y) /\ Colour(x , z))

V x y : (Edge(x,y) J (V z : ~(Colour(x, z) & Colour(y,z»»

V x: :3 y: Colour(x, y)

(1)

(2)

(3)

(4)

Our test set consisted of 17 instances, 53-colouring instances from Asparagus and 12

instances from the LEI category of the graph colouring benchmark collection at [3]. These

latter are are challenging instances on graphs of 450 vertices, variously with 5, 15 and 25

colours. All 17 instances are colourable with the alloted number of colours. The performance

of the solvers is shown in Figure 6.1. The figure clearly shows the following order of solvers,

from best to worst: MXG+MXC, clasp, MidL, DLV, smodels. Notice that no solver was

successful on all instances: MXG+MXC and clasp solved 13 of the 17 instances, while others

solved 10 or fewer. The four instances that were not solved by MXG went unsolved by all

solvers tested.

6.4 Latin Square Completion

A Latin Square (or Quasigroup) is an n by n matrix with elements in {I, ... ,n}, where

every row and every column has every possible element. In the Latin Square Completion

problem, an instance is the set {I, ... ,n} plus prescribed values for certain elements. The

task is to construct a Latin square consistent with the prescribed elements. Existence of

such a completion is NP-complete.

In our MXG axiomatization, Cell denotes matrix elements. The bijection of each row,

column on {I, ... , n} is expressed by cardinality constraints (2), (3). Axiom (1) imposed

the preassigned elements. Axiom (4) ensures that each cell takes exactly one element.

Given:
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Figure 6.1: Performance on Graph K-Colouring

type Num;

Preassigned(Num, Num, Num)

Find:

Cell(Num, Num, Num)

Satisfying:

'if x y z : (Preassigned(x, y, z) J Cell(x, y, z)

'if x y : CARD(l, z; Cell(x, y, z»)

'if x z : CARD(l, y; Cell(x, y, z)

'if z y : CARD(l, x; Cell(x, y, z))

(1)

(2)

(3)

(4)

The test set consists of 100 instances from Asparagus. All are of size 30-by-30, and

all have solutions. The apparent ordering is: MXG, clasp, MidL, smodels, and DLV. The

performance plot is shown in Figure 6.2. MXG sees all the instances as essentially identical

and trivial.

To demonstrate the effect of cardinality constraints on the overall performance of solvers,

in Figure 6.3 we compare the performance of MXG for our best axiomatization without

cardinality constraints, denoted by MX-Norm, with the timing of MXG for axiomatization

with cardinality, and clasp. The results show that clasp beat MXG when we do not have

cardinality constraints.
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Figure 6.2: Performance on Latin Square

6.5 Blocked Queens

The n-Queens problem is to place n Queens on an n x n chessboard, so that no two attack

each other. In the blocked queens problem, we are not allowed to put a queen on certain

cells. Existence of such a completion is NP-complete.

Current version of MXG has no arithmetic. We defined predicate oiff, which represents

subtraction (Diff(i, x, y) holds iffy - x = i + 1), inductively with a Horn-ID(see Section 2.4.3).

Axioms 6 and 7 ensure that one queen is located in each row and column. Axioms 3 and 4

check that at most one queen is on each diagonal.

Given:

type Num;

Block(Num, Num)

Find:

Queen(Num, Num)

Satisfying:

Diff(Num,Num,Num)

{Diff(i,x2,y2) <- (x2 == MIN II y2 == i) (1)

Diff(i,x2,y2) <- (Diff(i,xl,yl) II SUCC(xl,x2) II SUCC(yI,y2))} (2)

V' x y: (Queen(x,y) :::) ~Block(x,y» (3)

V' i xl yl x2 y2: (yl <y2) :::) ((xl <x2) :::)

~(Queen(xl,yl) II Queen(x2,Y2) II Diff(i,xl,x2) II Diff(i,yl,y2») (4)

V' i xl yl x2 y2: (y2<yl) :::) ((xl <x2) :::J

~(Queen(xl,yl) II Queen(x2,y2) II Diff(i,xl,x2) II Diff(i,y2,yl») (5)
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Figure 6.3: Performance of MXG on Latin Square With/Without Cardinality Constraints

v x : CARD(l;y;Queen(x,y))

v y : CARD(l;x;Queen(x,y))

(6)

(7)

The test set consists of 40 instances from Asparagus, of sizes from 28*28 to 56*56, 20

of which have solutions. While having a similar flavor to Latin Square completion, the

performance profile (at least on the Asparagus instances) is different, in that all solvers

found the instances to vary considerably in difficulty. The order has changed to: clasp,

MXG, smodels, MidL, and DLV. (Figure 6.4)

6.6 Social Golfer

The goal is to schedule 9 x s golfers into g groups of s players over w rounds (weeks), such

that no two golfers play in the same group more than once. This problem has a lot of

symmetric solutions [6] [5J. For example a valid scheduling for weeks 1, ... ,w is also a valid

scheduling for any w! combinations of weeks. If the problem does not have a solution it

takes a lot of time from SAT solver to verify all these isomorphic solutions. To remove these

symmetries from problem solutions, a well known technique is to add some extra constraints

to break symmetries [51] [5]. In our MXG axiomatization, axioms 5, 6-1 to 6-4, and 7-1 to

7-4 are extra and added for breaking symmetries of players, groups, and weeks respectively.
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Figure 6.4: Performance on Blocked Queens

Plays(pi, Wi, gd assigns player Pi to play in group gi at week Wi. If two players PI < P2

play in the same group at week w, they are socialized: SOC(W,Pl,P2) (Axiom 1). Axiom (2)

states exactly Groupsize number players play in the same group in each week. Each player

should play in exactly one group each group is checked by axiom (3), and two players can

not be socialized more than once by axiom (4).

Given:

type Players Groups Weeks;

Groupsize : Players

Find:

Plays(Players, Weeks, Groups)

Satisfying:

MP(Weeks, Groups, Players)

SP(Weeks, Players)

Soc(Weeks, Players, Players)

V p l p2>pl w : (Soc(w,pl,p2) ¢} (3 g : (Plays(pl,w,g) /\ Plays(p2,w,g)))) (1)

V w g: CARD(Groupsize; p; Plays(p,w,g)) (2)

V p w : CARD(I; g; Plays(p, w, g)) (3)

V p l p2>pl : UB(I; w; Soc(w,pl,p2)) (4)

V gl g2>gl p l p2<pl : ~(Plays(pl, MIN, gl) /\ Plays(p2, MIN, g2)) (5)

V w p : (SP(w,p) ::) (p > MIN /\ Plays(p, w, MIN))) (6-1)

V w p2>MIN pl>p2 : ~(SP(w,pl) /\ Plays(p2, w, MIN)) (6-2)

V w : CARD(I; p; SP(w,p)) (6-3)

V w l w2>wl p l p2~pl : ~(SP(wl, p l ) /\ SP(w2, p2)) (6-4)

V w : Plays(MIN, w, MIN) (7-1)
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Figure 6.5: Performance on Social Golfer

'V w g : CARD(l; p; MP(w,g,p))

'V w g p : (MP(w,g,p) :::> (! pI < P : ~(Soc(w, pI, p))))

'V w pI p2'Spl gl g2>gl : ~(MP(w, gl, p l ) 1\ MP(w, g2, p2))

(7-2)

(7-3)

(7-4)

The test set consists of 174 instances from Asparagus, spanning(but not covering) the

parameter range: number of weeks from 2 to 8; group size from 2 to 6; number of groups

from 2 to 8. We know 72 instances to have solutions and 64 to have no solution, leaving 38

of unknown status. The order of solvers is: clasp, MXG, smodels, DLV, Cmodels, MidL.

6.7 Bounded Spanning Tree

A spanning tree of a graph is a sub-graph that is a tree and visits every vertex. A spanning

tree can be found in linear time. In this version of the problem, an instance consists of a

directed graph and a bound Bound, and we require a directed spanning tree in which no

vertex has out-degree larger than Bound. Existence is NP-complete.

Axioms (3),(4),(5) respectively state that Bstedge edges are subset of graph edges, each

vertex has in-degree one, and out-degree at most Bound. To make sure Bstedge does not

have any loops, we define a mapping over vertices of graph (axioms 1, 2), and force the

vertices of the spanning tree should be ordered according to mapping(axioms 6,7).

Given:
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Figure 6.6: Performance on Bounded Spanning Tree

type Vtx;

Edge(Vtx,Vtx);

Bound: Vtx

Find:

Bstedge(Vtx'ytx)

Satisfying:

Map(Vtx,Vtx)

If x: CARD(I, y; Map(x,y))

If y: CARD(I, x; Map(x,y))

If v u : (Bstedge(u,v) J Edge(u,v))

If x : UB(I, y; Bstedge(y,x))

If u : UB(Bound, v; Bstedge(u, v))

If u v x y:Sx : ~(Map(x,u) II Map(y,v) II Bstedge(u,v))

If v f>MIN: (Map(v, f) J (:Ju:Bstedge(u,v)))

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The test set is 30 instances from Asparagus, some with 35 and some with 45 vertices. All

have solutions. The solver order is: MidL, clasp, MXG, smodels, and DLV. The difference

between MidL and MXG+MXC is entirely accounted for by grounding time.



Chapter 7

Related Work

In this chapter, we survey some other declarative constraint programming systems for rep

resentation and solving NP-search problems which, like MXG, have as a goal to represent

problems in a high-level language and reduce the high-level specification into a low-level

one, for which they have a solver that can find solutions. We will also outline the grounding

methods used in these systems.

7.1 Other FO(ID)-MX Solvers

There are only two solvers, other than MXG, for FO(ID)-MX: IDSAT [50], and MidL [41].

IDSAT is an earlier solver for FO(ID)-MX produced at SFU. It used a slightly modified

version of Lparse [53] as a front-end. The problem specification was in input syntax of

Lparse, but with FO(ID) semantics. The ground rules generated by Lparse were translated

to PC(ID), the propositional analog of FO(ID)), producing a formula consisting of a set

of propositional clauses with a set of propositional inductive definitions. To use a general

SAT solver for finding models, a level-mapping reduction for the from the PC(ID) inductive

definitions to SAT was performed. While performance was not unacceptable on benchmark

problems considered, the level-mapping reduction was not faithful. That is, it did not

preserve a one-to-one correspondence between solutions and satisfying assignments of the

formula, which could be important for some purposes. Unfortunately, faithful reductions are

more difficult to produce, and are often larger, so their use may reduce solver performance.

MidL is a solver for FO(ID)-MX developed by Marc Denecker's group at KU Leuven [41].

The MidL input language is similar to that of MXG. Some differences, at the time of writing,

55
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are that the MidL language does not have ordered domains, and cardinality constraints, but

does have a form of arithmetic, and supports unrestricted inductive definitions. The MidL

grounder is based on Lparse. Inputs to MidL are translated to the Lparse language, and the

ground rules produced by Lparse are then transformed to a PC(ID) theory. The MidL solver

engine handles PC(ID) logic natively, rather than using reduction to SAT, as described in

[39].

7.2 ASP Systems

Answer Set programming (ASP) [38:1[48] is a declarative programming approach based on

the language of logic programs with stable model semantics [23]. Problem constraints are

described by rules similar to function-free Prolog rules, and the solver searches for the

minimal Herbrand models of the set of rules. An input program is normal (v-free) if the

head of each rule is a single predicate, and is a disjunctive logic program if head of some

rule is a disjunction. All ASP systems we know of operate by grounding to a ground

logic program and then application of a ground solver for this language. While there is

quite a variety of ASP solvers, Smodels [54], Cmodels [35], ASSAT [37], Cmodels-2 [36],

DLV [33], Clasp [20], there are merely three major ASP grounders, Lparse [53], DLV's

grounding component [33], and GrinGo [22]. Lparse [53] was originally developed as the

front-end for the ground solver Smodels [54], but has since been used as the grounder for

many other ground ASP solvers. Its language extends normal logic programs with weight

constraints (a generalization of cardinality constraints), and arithmetic. Gringo [22] is an

Lparse alternative, recently released by developers of Clasp [20J. The current version of

Gringo supports a large fragment of the Lparse language. DLV [33J has it own grounder,

embedded with solver, and is the state-of-the-art solver for disjunctive logic programs.

All three grounders use a similar approach for generating ground rules: a procedure "in

stantiate" recursively substitutes constant symbols for variables of a rule to produce ground

instances of rules. If the value of a ground body predicate is known at the substitution

time, then it is either eliminated from the ground rule (if it is true) or the rule is deleted

(if it is false). A simple "instantiate" procedure backtracks when all variables of a rule

are instantiated, or an assignment of variables makes a rule invalid to set the next vari

able assignment. Backtracking generates all rule instances, but it is possible to get a lot

of redundant and useless ground instances of rules. 'Backjumping' is a technique used in
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the instantiation modules of DLV [32] and GrinGo [22] to avoid generation of these. The

backjumping algorithm of Gringo reduces the number of redundant rules more than that of

DLV.

For ASP solvers, instances are provided in the form of a set of ground atoms, which

formally are part of the same logic program as the problem specification. Separation of

problem and instance descriptions is considered important [38], but maintained only as a

convention which is not always followed in practice. The semantics is based on Herbrand

models, which entails significant restrictions on the use of function symbols. In MXG, no

such mechanism is required to invoke closure on the universe, which is given explicitly with

the instance. Thus, functions can be added to MXG more easily than to the ASP languages.

The built-in recursion in ASP is often convenient, particularly for axiomatizing problems

involving sequences of events, such as verification and planning problems. One problem, in

our view, is that the entire formula (logic program) is involved in the recursion. Many

properties which can be easily and naturally expressed classically require a less natural

expression within this recursion.

7.3 Constraint Modelling Languages

Several languages known as "constraint modelling" or "constraint specification" languages

provide declarative languages for describing search (and decision and optimization) prob

lems. Examples include ESRA [18], Essence [19] and Zinc [12]. These languages are not

explicitly logic-based, although it is possible to view their specifications as MX specifica

tions for a suitable logic. Implementations of these languages work by either translation

to a high-level programming languages (including Constraint Logic Programming (CLP)

languages) or by a grounding process where the ground language is for some "CSP solver"

- roughly, a solver for some generalization of SAT to non-boolean domains.

7.4 Finite Model Finders (Generators)

A finite model finder is a tool trying to find models for a (sorted or unsorted) FO theory.

Searching for finite models for FO theories is complementary to theorem proving. Theorem

provers use the finite model finders to prove the consistency of a FO theory (find a model)

or to disprove its validity (by finding a counter-example). Methods of finding finite models
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can mostly be categorized in two different styles [9J: MACE-style, named after the tool

MACE [43], and SEM-style, named after the tool SEM [57J. SEM-style methods perform

backtracking search on the problems directly, while MACE-style methods transform the

problem of finding a model in a finite domain to a SAT problem. MACE-style tools, either

run a SAT solver on the SAT problem to find the model, as in ModGen [30], or they have

some satisfiability solving methods built-in that search for models, as in MACE [43].

Finite model finders can search for a model with fixed domain, or start with a domain of

basic size and goes through consecutive stages of increasing the domain sizes up to a certain

value (specified in the problem definition).

There are different input languages for model finders: Problems can be expressed by

quantifier-free Fa clauses, where all the variables are implicitly quantified universally, and

existentially quantified variables are replaced by some functions (Skolem functions). Some

systems accept arbitrary Fa sentences, but transform Fa sentences to quantifier-free Fa

clauses, introducing Skolem functions where needed to replace the existential quantifiers.

Most model generators allow the user to give some certain properties, such as quasigroup,

bijection, equality, order, etc, to vocabulary symbols easily. These properties usually provide

some means to express isomorphisms in problem models.

SAT-based finite model finders have to transform Fa clauses to propositional clauses.

Transformation is by "flattening" the clause, replacing complex predicate arguments (func

tion symbols) by new variables, and then "instantiating" the clause, by applying all substi

tutions of domain elements for variables, and evaluating out the known literals to generate

a set of propositional clauses. During flattening new predicates are needed to be defined

to state the relation of new variable with variables of a replaced function. For each predi

cate defined for a function, a set of clauses is added to problem theory to express "image

uniqueness", and "totality" of the new predicates.

SAT-based model finders that look for a model in a fixed multi-sorted domain, such as

ModGen [30], have quite similar solving method as MXG. Their main differences are in the

underlying logic of the modeling languages, and the method of grounding. MXG augments

Fa logic, with inductive definitions, cardinality constraints, and orders, to provide a more

practical modelling language than "bare-bones" classical logic. Finite model finders intro

duce new predicates in the "flattening" step, with a set of clauses for expressing "image

uniqueness" and "totality" of these predicates. This increases the size of clauses signifi

cantly for large domains. MXG's grounding algorithm applies relational algebra operations
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on extended relations to compute answer to each formula. While for finite model finders

an "instantiate" procedure substitutes all variables with domain elements, in a backtrack

procedure.



Chapter 8

Conclusion and Future work

NP-hard search problems arise frequently in application areas ranging from software verifi

cation to bio-informatics, and often the inability to solve sufficiently large instances within

practical time bounds is a significant obstacle to practical work. Practitioners in these

areas need effective tools, but producing good implementations requires considerable ef

fort; moreover, there are relatively few techniques which work well in practice, and these

are implemented over and over in different domains. There appears to be a role for well

implemented general-purpose tools for modelling and solving search problems. Such tools

could greatly facilitate the work of many practitioners who now must get by with poorly

adapted tools and techniques, or invest a great deal of energy implementing domain-specific

search algorithms.

To demonstrate that model expansion framework can be the basis for such technology,

we have implemented a solver, MXG, for parameterized FO(ID+Card) model expansion.

The performance of the solver clearly shows the feasibility of the approach, providing per

formance competitive to more mature ASP systems. The solving method in MXG is to

reduce the FO(ID+Card) model expansion problem to a SAT problem, possibly includ

ing cardinality clauses, and then run a SAT(+Card) solver. Reduction is a done by a

novel polynomial time grounding algorithm, based on applying relational algebra opera

tion to extended-hidden relations. Although MXG language is less restricted than language

of Lparse, and grounding should be harder, the grounding time performance of MXG is

comparable by that of Lparse for problem and instances we studied.
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8.1 Future Work

61

MXG is in its early stages of development, but already performs quite well. Future work

includes:

• handling general inductive definitions,

• using cardinality constraints in arbitrary FO formula, and adding more aggregate,

• providing arithmetic built-in in MXG,

• using a more effective hashing function to index tables, for join and other relational

algebra operations.
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MXG Problem Specification

Grammar

<TheoryFile>

<GivenPart>

<TypeDCL>

<TypeNames>

<SymbDCL>

<a_SymbDCL>

<PredDCL>

<PredTypes>

<ConstDCL>

<FindPart>

<SatisfyingPart>

<SatisfyingRules>

<a_SatisfyingRule>

<an_Axiom>

<Fa_Formula>

<unitary_formula>

<GivenPart> <FindPart> <SatisfyingPart>

Given : <TypeDCL> <SymbDCL>

type <TypeNames> ;

- <TypeName> I <TypeNames> <TypeName>

I <SymbDCL> <a_SymbDCL>

<PredDCL> I <ConstDCL>

<PredName> ( <PredTypes> )

<TypeName> I <PredTypes> <TypeName>

<ConstName> : <TypeName>

Find : <SymbDCL>

- Satisfying : <SatisfyingRules>

<a_SatisfyingRule> I

<SatisfyingRules> <a_SatisfyingRule>

<an_Axiom> I <a_SymbDCL>

<Fa_Formula> I { <IDD_Rules> }

<Unitary_Formula> I

<Fa_Formula> <Connective> <Unitary_Formula>

- ( <Fa_Formula> ) I <QuantPart> : <Unitary_Formula>

-<Unitary_Formula> I <atomic_formula> I
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<IDD Rule> I <IDD_Rules> <IDD_Rule>

<PredName> ( <Args> ) <- <QF_FO_Formula>

<atomic_formula> I ( <QF_FO_Formula» I

<QF_FO_Formula> <BinaryOperator> <atomic_formula>

-( <QF_FO_Formula» I -<atomic_Formula>

: :=

: :=

<PredName> ( <Args> ) I

SUCC ( <Args> )

<Ord_Relation>

<Card_Symb> «Bound>; <Variables>; <fof_formula»

<VarName> <OrdOperator> <VarName> I

<VarName> <OrdOperator> <ConstName>

<VarName> <OrdOperator> MIN

<VarName> <OrdOperator> MAX

<ConstName> <OrdOperator> <VarName>

MIN <OrdOperator> <VarName>

MAX <OrdOperator> <VarName>

<Quantifier> <Variables>

? I !

<a_Var> <Variables> <a_Var>

- <VarName> I <Ord_Relation>

<an_Arg> I <Args> J <an_Arg>

<VarName> I MIN MAX I <ConstName>

.. = < <= I > I >=

& <vline> I => I <=>

<Card_formula>

<atomic formula>

<Card_formula>

<Ord_Relation>

<QuantPart>

<Quantifier>

<Variables>

<a_Var>

<Args>

<an_Arg>

<OrdOperator>

<Connective>

<vline>

<IDD_Rules>

<IDD_Rule>

<QF_FO_Formula>



Appendix B

MXG Instance Description

Grammar

<InstanceFile>

<an_InstancePart>

<InstnaceType>

<TypeElements>

<TypeElementSet>

<a_TypeElement>

<InstnacePred>

<Tuples>

<a_Tuple>

<InstanceConst>

<an InstancePart> I <InstanceFile> <an_InstancePart>

<InstnaceType> I <InstnacePred> <InstanceConst>

<TypeName> = [ <TypeElements> ]

<Character> .. <Character> I

<Number>.. <Number> I <TypeElementSet>

<a_TypeElement> I

<TypeElementSet> ; <a_TypeElement>

<ElementName> I <Number> I Character

<PredName> = { <Tuples> }

<a_Tuple> I <Tuples> ; <a_Tuple>

<a_TypeElement> I <a_Tuple> , <a_TypeElement>

<ConstName> = <a_TypeElement>
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