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Abstract 

In this t,hesis, we st,udy the extraction of biomedical relations specifically, the cxtrac- 

tion of bacterial protein subcellular localizations (BPLs), from abstracts of biomedical 

scientific articles. A BPL indicates where the protein is located in the bacterium. The 

extraction of BPLs provides a valuable clue to the biological function of the protein 

and helps to identify suitable drug, vaccine and diagnostic targets. The work is mo- 

tivated by our collaboration with researchers in molecular biology, with the goal of 

automatically extracting BPLs from text to expand their BPL database. 

We first introduce a Biomedical Information Retrieval (IR) system, which expands 

synonyms from a set of biomedical ontology sources and applies a boosting algorithm 

that captures natural language sub-structures embedded in the text to re-rank re- 

trieved documents. Experiments show that the boosting algorithm works well in 

cases where the conventional IR system performs poorly. 

Our research on the BPL extraction focuses on two learning perspectives: gener- 

ative and discriminative learning. We propose a three-tier system that integrates a 

generative model, a discriminative model and a graph-based model to extract BPLs 

from MEDLINE abstracts. The generative model integrates syntactic features and 

domain-specific semantic features on the parse tree for a sentence. The model is capa- 

ble of identifying biomedical named-entities and relations simultaneously from a large 

set of noisy data and exhibits a significant improvement on the overall performance 

against a supervised alternative. 

We also introduce a discriminative model that applies rich syntactic features from 

pa.rse trccs to extract relations from single sentences. A hybrid pipelined system that 

integrates generative and discriminative models shows a further improvement against 

the generative model alone. 



Finally we implement a graph model to identify global and hidden relations from 

multiple sentences and to detect inconsistent predictions. 

The study is new to the biomedical na,tural language processing community in 

terms of the specific molecular biology task and the capture of the ternary relation 

among bacterium, protein and location. Our key contributions also lie in learning from 

noisy data, integrating syntactic and semantic features to extract named-entities and 

relations simultaneously and establishing an annotated BPL corpus that will benefit 

relation extraction research. 
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Chapter 1 

Introduction 

1.1 Introduction to Biomedical Relation Extraction 

With the rapid growth in biological and medical research in the last decade, the 

amount of biomedical data has dramatically increased and is becoming one of the 

largest data  sources available on the Web for research and public uses. For instance, 

the Genome database a t  National Library of Medicine1 provides genome sequence 

data of over 1,200 organisms, all of which are either completely sequenced or in 

the process of sequencing. In addition, MEDLINE at National Library of Medicine 

provides approximately 13 million references to  biomedical articles from 4,800 journals 

published in more than 70 countries from the year 1950. The volume of MEDLINE 

grows rapidly, with over 2,000 new articles being added every day2. 

The challenge of finding useful information from the rapidly growing collection of 

biomedical data  lies in developing techniques to  aid the understanding of the data. 

Data Mining is the identification of previously unknown patterns from normally large 

amount of data and establishment of relationships among data. Data mining tech- 

niques are widely applied to many application scenarios, such as customer relationship 

management and web mining. Data mining is one of the major approaches to  iden- 

tifying gene sequences and determining gene expression levels. Well defined tasks 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome 

'MEDLINE is a bibliographic database of biomedical scientific articles a t  National Library of 
Medcine (NLM, http://www.nlm.nih.gov/). 
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include aligning multiple DNA sequences based on how nucleotides and known genes 

pair up with one another as well as identifying gene expressions from microarray data  

and interactions among protein and gene subsequences. 

Another direction for information extraction from biomedical data involves natural 

language processing in two ways. First, language parsing techniques are being applied 

to gene sequence data  to  exploit the sequential structure of genes, with the motivation 

that genes are believed to  be the language of life and could thus be understood by using 

techniques of language processing. Second, natural language processing techniques are 

being used to understand biomedical scientific articles, for instance, from MEDLINE, 

and to  extract knowledge from them. An example of a MEDLINE record is shown in 

Figure 1.1. Our research focuses on information extraction from MEDLINE records. 

It is extremely difficult for biomedical researchers t o  build up their own knowl- 

edge base from existing publications and update it daily. Since simple indexing and 

keyword searching cannot satisfy complex searching requirements, automatic meth- 

ods that can understand human languages and identify interesting information are 

becoming essential in biomedical information management. The task includes not 

only identifying individual terms of biomedical substances, such as disea.ses, drugs, 

genes and gene productions, but also extracting relevant information of what is ex- 

pressed or predicted about specific terms, including relations and inferentiah among 

biomedical substances and other hidden information. 

Biomedical term identification is a N a m e d  E n t i t y  Recognit ion (NER) task in 

the specific domain of biomedical literature. Table 1.1 lists some biomedical terms in 

the MEDLINE record in Figure 1.1. The task received great attention for years in 

the research areas of molecular biology, natural language and machine learning. Tech- 

niques involved include tagging [go], learning from contextual information [94, 81, sta- 

tistical thesaurus generation [19], rule-based [27], H i d d e n  Markov  Models  (HMMs) 

[74], S u p p o r t  Vector  Machines  (SVMs) [48] and Naive  Bayes Classification 

[I141 for dictionary-based approaches, in which one or more public lexicons or termi- 

nology databases are used; decision tree [79], HMMs [18, 51, 1001 and SVMs [110, 501 

31nferential: result of reasoning involving inferences from general principles. 



CHAPTER 1. INTRODUCTION 3 

Title: Functional Characterization of the HasA Hemophore and Its T h n c a t e d  and Chimeric Vari- 
ants: Determination of a Region Involved i n  Binding to  the Hemophore Receptor 
Abstract: Hemophores are secreted by several gram-negative bacteria (Serratia marcescens, Pseu- 
domonas aeruginosa, Pseudomonas JEuorescens, and Yersinia pestis) and f o r m  a family of homol- 
ogous proteins. Unlike the S. marcescens hemophore (HasA),  the P. fluorescens hemophore HasA 
has an  addition.al region of 12 residues located immediately upstream from the C-terminal secretion 
signal. W e  show that HasA undergoes a C-terminal cleavage which removes the last 21 residues 
when secreted from P. jhorescens and that only the processed form i s  able to  deliver heme to  the S. 

marcescens outer membrane hemophore-specific receptor, HasR.  Functional analysis of variants in-  

cluding those with an  internal deletion of the extra C-terminal domain show that the secretion signal 
does no t  inhibit the biological activity, whereas the 12-amino-acid region located upstream does. Th is  

extra domain m a y  inhibit the interaction of the hemophore with HasR. T o  localize the hemophore 
regions involved i n  binding to HasR, chimeric HasA-HasA proteins were tested for biological activity. 

W e  show that residues 153 to  180 of HasA are necessary for i ts  interaction with the receptor. 
Figure 1.1: Title and abstract of MEDLINE record PMID: 10913071. 

for non-dictionary-based approaches. These techniques will be described in more de- 

tail in Chapter 2. 

Words provide additional information when they are found relevant to each other. 

Once the biomedical terms are identified, the next step is t o  determine certain rela- 

tions in order to answer the crucial questions, such as "how a gene is related to some 

disease or drug", "how two proteins interact with each other", "what the pathway of a 

gene product is" or "how to represent unknown relations of biomedical substances in 

building an ontology". Many biomedical discoveries originate from the identification 

and characterization of relations among macromolecules. Many interesting interac- 

tions are reported in unstructured free text, and thus, unfortunately, are unavailable 

Type of Biomedical Terms 
Organism 
Protein 
Protein Domain or Region 
DNA Domain or Region 
h4olecular Function 
Location 

Mentions 
S. marcescens, Pesudomonas aeruginosa, P. fluorescens 
HasAPF, HasRSM, HasR 
C-terminal secretion signal 
12-a.mino-acid region, hemophore regions 
binding, interaction 
secreted 

Table 1 .l: Biomedical terms in the MEDLINE record in Figure 1 .l. 
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for high-throughput analysis. Because of the vast number of molecules and relations, 

identifying them manually is daunting. Therefore, researchers are investigating the 

suitability of text processing algorithms to extracting interactions [108]. 

The N a t u r a l  Language  Processing (NLP) community ha,s particular interest 

in identifying relations from text. The series of Message Understanding Conferences 

(MUCs) sponsored by DARPA defined various Informat ion  Ex t r ac t ion  (IE) tasks, 

including the relations among different types of entities and involved the uniform 

evaluation metrics applied to  the IE tasks4. The task for MUC-6 involved the filling 

of a template with extracted information for specific class of events. Multilingual IE 

tasks were defined in the MUC in 1997. 

Automatic Content Extraction (ACE) at the National Institute of Standard and 

Technology (NIST) is another IE program for the newswire. Since 2003, the program 

has been providing relation-detection and relation-recognition tasks. These tasks re- 

quire the detection of certain types of binary relations in the source language data, and 

the selection of information about these relations. This information is then merged 

into a unified representation for each detected relation [I]. 

The shared tasks of the Conference on Computational Linguistic Learning (CoNLL) 

in 2004 and 2005 focused on Semant ic  Role Label ing (SRL): analyzing proposi- 

tions expressed by some target verbs in a sentence. In particular, for each target verb, 

all the constituents in the sentence which fill a semantic role of that verb have to  be 

recognized [13]. Typical semantic arguments include Agent, Patient, Instrument, etc. 

and also adjuncts such as Locative, Temporal, Manner, Cause, etc. The target verbs 

exhibit semantic relations among semantic arguments. 

In contrast to the news domain, terms in a biomedical text are more difficult to 

recognize and the relation identification relies largely on domain knowledge. There 

have also been open evaluations of biological IE tasks on relation identification. The 

Knowledge Discovery and Data Mining (KDD) Challenge Cup is an open evaluation 

of data-mining algorithms. The 2002 contest specifically focused on biological text 

mining. It  posed two tasks. The first task dealt with identifying papers containing 
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experimental evidence for gene expression and identifying the relevant gene products 

[121]. The second focused on predicting how a gene is related to  cellular activities 

1221, 
Another comnlunity-based evaluation on biomedical IE is the Critical Assessment 

of Information Extraction Systems in Biology (Bi~CreAtIve)~ .  One of its 2004 tasks 

involved the annotation of human proteins with Gene Ontology (GO) classes, the 

identifiers for an ontology of gene functions, and documents retrieval that would 

provide the annotations. 

The Text Retrieval Conference (TREC) sponsored by NIST and the U.S depart- 

ment of Defense provides the Information Retrieval (IR) community with an in- 

frastructure necessary for large-scale evaluation of IR methodologies [113]. Since 2003, 

TREC included an information extraction task in its Genomics track. The first year's 

track consisted of two tasks. The first was an ad hoc document retrieval task given 

a document collection, topics and relevance judgments. The second dealt with anno- 

tations of Gene Reference into Function (GeneRIF). GeneRIF resource was used as 

both a source of relevance judgments for ad hoc document retrieval and as a target 

text for information extraction. The track in 2004 also featured two tasks. The first 

was also an ad hoc retrieval task using topics obtained from real research scientists 

and a large subset of the MEDLINE database. The second focused on categorizing 

full-text documents and simulating the task of curators, thus providing structured 

annotations of gene functions. The Genomics track attracted the most participants 

in all of TREC 2004. 

The biomedical relations identified by most systems can be categorized as follows: 

unnamed relation, which provides the associated biomedical terms but does not 

specify the actual relation. 

relation class, which does not specify the relation either but indicates which 

predefined classes the relation may fall in. 

5Critical Assessment of Information Extraction Systems in Biology: 
http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html. 2004. 
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named-relation, the actual relation among terms 

pathway, the course of the cellular or metabolic process that the biomedical 

substances may affect. 

1.2 Introduction to Bacterial Subcellular Localization 

Subcellular Localization (SCL) is one typical biomedical relation. Bacterial SCL 

states where proteins locate in bacteria. For example: 

Example 1.1: E. Coli produces [LOCATION membrane-bound] [PROTEIN lytic trans- 

glycosylase] and localizes it in murein sacculus] . 

indicates a membrane-bound localization relation between the said bacterium and 

protein. The bacterial SCL is a key functional characteristic of proteins, since a 

protein has to be translocated to the correct intra- or extra-cellular compartments or 

attach to a membrane in order to function properly. This characteristic is essential to 

the understanding of the functions of different proteins and the discovery of suitable 

drugs, vaccines and diagnostic targets. Locations of bacterial proteins are listed in 

Figure 1 .2  for Gram+ and Gram- bacteria. 

Different from protein-protein, gene-gene and protein-disease relations that are 

associations of protein molecules from the perspective of biochemistry and signal 

transduction, the SCLs indicates functions of single proteins and therefore are more 

fundamental to the study of proteins. 

However, experimental determining SCLs is a laborious and time consuming task. 

Research in computer sciences has been carried out to automatically predict SCLs 

from protein sequences and the biomedical scientific text. Some of these SCL pre- 

diction methods, for instance, Support Vector Machines (SVMs), now exceed the 

accuracy of some high-throughput laboratory methods for the identification of pro- 

tein subcellular localization [91.]. In later chapters, we will introduce our proposed 

models that can further improve the performance of SVMs on the SCL prediction 

from text. 

From the natural language processing point of view, finding relations from the 

biomedical text is more difficult than from widely used domains, for instance, newswire. 
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The SCL extraction highly relies on protein name identification, which has been recog- 

nized as a much harder task than the identification of person, location, organization 

names and the like. In addition, domain knowledge is required to understand the 

biomedical text. 

This thesis introduces our approach for identifying bacterial SCLs from MEDLINE 

articles. Specifically, our task is to extract from biomedicaJ articles a relation among: 

a LOCATION, e.g., membrane-bound, a particular BACTERIUM, e.g. murein sac- 

culus, and a PROTEIN name, e.g. lytic transglycosylase. Therefore, the task is to 

identify a B A C T E R I U M - P R O T E I N - L O C A T I O N  ( B P L )  function, a relation 

among bacterium, protein and location. 

Examples of expected system output are shown in Table 1.2. In many circum- 

stances, such relations are not explicitly given and thus this task may require some 

level of induction from the context. For instance, "binding of [PROTEINTqd] to  the 

site I" infers a cytoplasmic localization from the fact that Site I is the site to which a 

DNA molecule binds and that the DNA locates a t  the cytoplasmic layer. 

This work is motivated by our collaboration with molecular biologists, who have 

built an BPL database for bacterial proteins. These BPLs are either curated manu- 

ally by the biologists or predicted by an automatic BPL prediction model from the 

most recent NCBI Taxonomy dataset6 of completely sequenced genomes. Our task is 

however to extract BPLs from NIEDLINE articles. 

The task is new to BioNLP in terms of the specific biomedical relation being 

sought. Therefore, we have to build an annotated corpus from scratch and we are 

unable to  use existing BioNLP shared task resources in our experiments. 

The BPLs extracted by our proposed approach will be ultimately examined by 

human experts, populated into the SCL database and then used by the biologists to 

improve the accuracy of the SCL prediction model. We have worked closely with them 

t o  ensure that the output produced by our system is directly useful in expanding their 

protein localization database. 
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Gram- 

c y t o p l a s m i c  
membrane \\ 

secret 
i n n e r  o u t e r  

.ed membrane 

Figure 1.2: Illustration of locations of proteins with respect to  the bacterial 
structure. 

cell 

Organism 1 Localization 1 Protein 1 Relevant Sentence I Pubmed ID 1 

Table 1.2: Examples of the BPL output 

- 
Metha. fervidus 
Halo. salinarium 

CW 
C 

slgA 
H ~ 7 1  

The genes (slgA) . . . 
The sam~les  were ... 

1712296 
9396829 
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1.3 Thesis Organization 

In this thesis we examine research related t o  biomedical relation extraction and focus 

ourselves on two learning directions: generative and discriminative. We propose a 

generative model that integrates syntactic features and domain-dependent semantic 

features of a sentence in the parse tree for a sentence, and is capable of identifying 

biomedical named-entities and relations simultaneously. We also introduce a discrim- 

inative model that applies rich syntactic features from parse trees to extract relations 

from single sentences. In addition, we implement a graph model that finds global 

and hidden relations from multiple sentences and documents. The overall system is 

a 3-tier approach that integrates the generative, discriminative and graph models to 

extract BPL relations from NIEDLINE articles. 

Research related to  biomedical relation extraction is categorized and described in 

Chapter 2. A biomedical IR system that combines the synonym-based query expan- 

sion and boosting-based re-ranking is described in Chapter 3. Chapter 4 introduces 

details of our relation extraction task, including the process of creating cura,ted data 

set, details of evaluation metrics and two baseline systems. From Chapter 5 to 7, 

we describe details of the proposed system, including a generative model, discrimina- 

tive model, hybrid models and a graph model to address the relation extraction task. 

Models are evaluated based on our standard test set and compared with baseline sys- 

tems in each chapter. Finally, in Chapter 8 we summarize our research contributions 

and draw some conclusions on the techniques being applied and the evaluations being 

carried out in this research. Appendices contain descriptions of some widely used 

biomedical data sources and pseudo code of the proposed algorithms. 
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Related Work 

2.1 Introduction 

The Biomedical Natural Language Processing (Bio-NLP) research community has 

built numerous information extraction systems to identify relations from biomedical 

articles. Various types of relations have been addressed using NLP, machine learning 

and other state-of-the-art techniques. We will briefly introduce these relation types 

below and will describe details of the techniques applied to extract these relations in 

the rest of this chapter. 

The extraction of protein-protein interactions has been widely studied. For in- 

stance, [68, 81, 291 were interested in interactions among yeast proteins; [26, 101 fo- 

cused themselves on interactions between human proteins; systems proposed in [6, 81 

experimented with cell cycle control; and [82] attempted to extract interactions among 

signal compounds, such as Cytokines. The fact is that all proteins in a given cell are 

connected through an extensive network and the interactions a.mong them affect all 

processes in a cell. 

"The success of genetic epidemiology in identifying polymorphisms associated with 

common, complex multifactorial diseases largely depends on the detection and char- 

acterization of gene-gene and gene-environment interactions" [73]. The gene-gene re- 

lation identification tasks have been addressed in [62, 60, 88, 98, 331. Other relations 

involved in biological processes of gene regulation include the gene-protein interaction 

[97, 921 and gene-drug-disease interaction [94, 23, 111, 109, 44, 85, 34, 1081. 
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Other specific relations between molecular entities include cellular localization 

or structure of proteins that allow proteins to  function [23, 461, molecular binding 

relations - a core phenomenon in molecular biology that provide a strong indication 

of macromolecular functions [93], molecular pathways involving a series of enzymatic 

reactions that converts one biological substance to  another [33] and relations in general 

[32, 671. 

Various techniques being used for the task of relation extraction from biomedical 

text. NLP techniques that are used to analyze syntax and semantics of biomedical 

text include shallow parsing, full parsing, negation detection and co-reference res- 

olution. Rela.tions can also be extracted by identibing co-occurrence of biomedical 

names. Identification of predicates and their arguments in a sentence also helps finding 

verbal relations. Rules that formularize patterns of relations can be built manually, 

semi-automatically and fully-automatically. Statistical machine learning techniques 

have also been widely applied to the task. These techniques include Naive Bayes 

classification, Bayesian rules, Bayesia.n Networks, Support Vector Machines (SVMs), 

association rules, clustering and kernel methods. Graph-based approa.ches are capa- 

ble of visualizing the relations and identifying unapparent relations and pathways. 

Details of these techniques are described in Section 2.2. Section 2.3 introduces tech- 

niques applied to the subcellular localization extra.ction, the main focus of in this 

work. Finally, results of some systems being introduced are listed and discussed in 

Section 2.4. 

2.2 Techniques 

Since biomedical relations happen among molecular substances, they may be identified 

from text following certain rules, which would reveal the existence of the relations, 

e.g., term co-occurrence. Statistical and other machine learning methods that can 

infer such rules have thus been widely applied to find biomedical relations. Rules can 

be built from features of the surface string patterns, e.g., words and their frequencies, 

and/or the syntactic and semantic information by NLP techniques. In this section we 

categorize the techniques used in biomedical relation identification. 
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2.2.1 Syntac t ic  a n d  semant ic  analysis 

Parsing techniques are used to analyze the sentence and determine its structure. Such 

syntactic information has also been widely applied to  identification of biomedical 

terms and relations. However, building the complete parse tree requires polynomial 

time and gives relatively low efficiency and accuracy. In contrast to the full parser, 

a shallow parser provides partial parsing information. It  is usually used to determine 

Part-Of-Speech (POS) tags and to  find phrases and relations between phrases. For 

instance, the Charniak's parser is applied to the GENIA corpus with 96.4% POS 

tagging accuracy and a lower full pa.rsing accuracy (82.9%) [57]. 

Shallow pars ing  

Shallow parsing is a natural language processing technique to identify constituents, 

e.g., nouns, verbs, adjectives, adverbs and the like, of a sentence. It may also pro- 

vide some understanding of the structure of the sentence, without specifying the full 

structure in a parsed tree form. 

Sekimizu et al. adopt a shallow parser, EngCG [117], in place of the traditional 

full parser [97]. EngCG is a constraint grammar parser that assigns morphological, 

syntactic and boundary tags for each word in the corpus, based on syntactic rules, 

syntactic and heuristic constraints. Figure 2.1 shows a result of shallow parsing by 

EngCG on a sentence that contains a protein-protein interaction. The strong point 

about EngCG is its ability to  "guess" some morphological or even syntactic tags 

of unknown words, which is especially useful for tackling biomedical domain texts 

[97]. Biomedical literature normally contains more unknown words than, for instance, 

newswire. Lease et al. reported that unknown word rates in Wall Street Journal and 

GENIA are 2.7% and 25.5% respectively [57]. 

EDGAR [94] matches N o u n  Phrases  (NPs) with concepts in a controlled vocab- 

ulary. It  attempts to  determine the relations among biomedical terms with respect 

to the interaction of gene expression and drug sensitivity in particular cell types. It  

begins with assigning a partial syntactic parse to each sentence in the given abstracts 

with a stochastic tagger [25 ]  that resolves part-of-speech ambiguities in support of a 

shallow parser [4]. Each NP is examined in the parse for each sentence. It  is then 
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"<*i*1-4>" "*i*l-4" <*> <?> N NOM SG QSUBJ 
"<was>" "be" <SV> <SVC/N> <SVC/A> V PAST SG1.3 VFIN Q+FMAIMV 
"<the>" "the" <Def> DET CENTRAL ART SG/PL QDN> 
"<only>" "only" A ABS QAN> 
"<cytokine>" "cytokine"  N NOM SG QPCOMPL-S 
" < t h a t > "  " t h a t "  <NonMod> <**CLB> <Rel> PRON SG/PL (DSUBJ 
"<binds>" "bind" <SVO> <SV> <P/with> V PRES SG3 VFIX (E+FMAI?IV 
I1<to> I' " t o "  PREP QADVL 
"<a>" "a"  <Indef>  DET CENTRAL ART SG QDN> 
"<hemopoietin>" "hemopoietin" <?> N NOM SG GNN> 
I1<receptor>" " recep to r"  M NOM SG Q<P 
"<and>" "and" CC QCC 
" < t h a t > "  " t h a t "  <NonMod> <**CLB> <ReD PRON SG/PL QSUBJ 

" t h a t "  PROH DEM SC QSUBJ 
"<did>" "do" <SVO> <SVOO> <SV> V PAST VFIN Q+FAUXV 
"<not>"  "no t"  NEC-PART QNEG 
" < a c t  ivate>I1 " a c t i v a t e "  <SVO> <DER:ate> V INF 0-FMAINV 
" < p 2 l r a ~ > ~ ~  "p21ras1'  <?> <NoBaseforrnNormalisation> W XOM SG/PL @OBJ 

Figure 2.1: An example of shallow parsing result by EngCG [97]. 

determined whether the NP matches a UMLS Metathesaurus concept1. 

Genescene [59,61, 62, 601 identifies structures of relations with the help of a shallow 

parser. It introduces the Arizona relation parser [69] that automatically extracts 

precise and semantically rich relations between pairs of NPs in MEDLINE abstracts. 

The relation can contain five elements. A Left-hand side N P  is connected to a 

Right -hand side N P  by a Connector ,  which is usually a verb. A Modifier,  

usua.11~ anf adverb, can modify the connector. A Negat ion  can modify the entire 

relation. For example: 

Example 2.1: Thus [ L H s  HspSO] does [negation not] [,n,,t, inhibit] [ R H S  receptor 

function] solely by steric interference. 

To extract structure information from text, the relation parser distinguishes between 

two sets of words: open- and closed-class words. Open-class words are the category of 

'The UMLS Metathesaurus is a biomedical and health-related vocabulary database in the Na- 
tional Library of Medicine: http://www.nlm.nih.gov/research/umls/. 
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words that continuously grows because new words are added. These are nouns, NPs, 

and verbs that provide the semantic content of text. Closed-class words are those 

categories whose membership does not change, such as prepositions, conjunctions, 

and negations. The relation parser uses closed class words to  eshblish the structure 

for a sentence. These structures become templates for relations [60]. Templates will 

be introduced in Section 2.2.4.  

Full pars ing  

In contrast to  the shallow parsing, the full parsing is a natural language processing 

technique to specify grammatical structure of a sentence, in a form of the parsed 

tree that contains all syntactic dependence information among constituents of the 

sentence. 

Ya,kushiji et al. used a full parser with a large-scale, general-purpose grammar to 

extract predicate-argument structures from text [119]. The parser converts a variety 

of sentences in the text, which describe the same event, into an argument structure. In 

the argument structure, the verb is represented by the event and the subject and object 

are represented by arguments. Figure 2.2 shows an example of the argument structure, 

which basically consists of Relation and A r g u m e n t  elements. The event templates 

are then mapped by the predicate-argument structures as described in Section 2.2.4. 

Two preprocessors are used to  reduce ambiguity in the syntactic parsing stage. One 

preprocessor identifies and semantically classifies NPs that are technical terms; these 

are treated as atomic units in the parsing stage. The second preprocessor uses local 

constraints instead of part-of-speech tagging to reduce lexical ambiguity [119]. 

In contrast to [119], GENIES extracts and constructs information about cellular 

pathways from full articles based on manually-built grammar rules [33]. It  attempts 

to obtain a complete parse according to grammar rules, which consist of semantic 

patterns interleaved with syntactic and semantic constraints to  identify relevant rela- 

tions. The grammar was defined manually by observing typical syntactic and seman- 

tic co-occurrence patterns in the sample text. If full parsing fails, it uses alternative 

strategies, such as segmenting and shallow parsing. GENIES categorizes verbs into 

semantic classes as listed in Figure 2.3. The following is the parse tree produced by 
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<PRO'IIEIN-I@ inco~ora t ion  into cells was ulso obsemed when the cells were 
incubated with < P R O T E I N 2 5  or with <<PRO?%IN_J>. 

EtEL : "o6serve)' 
ARCS : [ Comps : '(<PROTEIN-I@ incorporation into cells" ] 
ADJ : "aluo", "when the cells were incubated", 

''with < PROTEIN-25 or with <PROTEIN-?> " 
REL : Nincubate" 
ARCS : [ Comps : "the cells" ] I 

I 
Figure 2.2: An example of argument structure of a sentence [119]. 

their full parser on the sentence, phosphrylated Cbl coprecipitated with CrkL, which 

was constitutively associated with the C3G: 

[action, attach, brotein,  Cbl, [state,phosphorylated]], 

brotein,  CrkL,  [action, attach, brotien, CrkL], brotein,  C3G]]]] 

where Cbl, CrkL and C3G are protein names, coprecipitate and associate belong to  

the attach semantic class, as listed in Figure 2.3. GENIES was integrated into the 

GeneWays System [52, 951. 

MedScan also extracts relations based on semantic structures built on the top of 

syntactic trees. Unlike [119], MedScan applies a more compact and efficient repre- 

sentation of rules and produces more formal semantic structures for sentences. It 

has been used to extract relations between human proteins by efficiently processing 

sentences from MEDLINE abstracts and producing a set of semantic structures repre- 

senting the meaning of each sentence [80, 261. Sentences are processed by a syntactic 

parser based on active chart parser algorithm [3] in combination with a bottom-up 

parsing approach. The parser constructs a set of alternative syntactic structures using 

a set of grammar rules in a form of augmented transition networks (ATNs), which are 

formally equivalent but are a significantly more compact and efficient representation 

of rewrite rules, where common parts of rules are packed into a single network path 

and are traversed only once during parsing [go]. Once the syntactic structures of an 

input sentence are produced, a semantic processor transforms each of them into a 

normalized semantic tree, representing logical relations between words in a sentence. 
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Class Actions and Processes 

activate 
attach 
breakbond 
cause 
contain 
createbond 
generate 
inactivate 
modify 
process 
react 
release 
signal 
substitute 

hastcn, incite, up-regulate 
bind, form complex, add 
sever, cleave, dephosphorylate 
based on, due to, result in 
contain, container 
methylate, phosphorylate 
express, produce, overexpress 
repress, suppress, down-regulate 
mutate, modify 
rnyogenesis, apoptosis, cell cycle 
interact, react 
disassemble, discharge 
regulate 
repIace, substitute 

Figure 2.3: Semantic classes associated with actions, processes and other relations 

P3I. 
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inhibition 

{ 
agent: {11768=TGF-beta 2) 
patient: activity 

{ patient: {11892=tumor necrosis factor) ) 

attribute: [type: "in"; value: resting lymphocytes] 
attribute: [type: "after"; value: Treatment 

{agent: 

subject: 
substance: nitric oxide 

11 
Figure 2.4: An example of semantic structure by [SO]. 

Semantics in MedScan represent the meaning of a sentence as a tree of categorized 

predicate-argument relations between lexemes. A semantic tree is built from elemen- 

tary semantic nodes, each representing a particular sentence lexeme. Semantic nodes 

reference other argument semantic nodes through two types of slots. Role Slots 

represent the most important lexeme relations, such as subjects or objects of actions. 

Attribute Slots represent auxiliary lexeme relations such as time, place or mode of 

action [SO]. Figure 2.4 shows an example of the semantic structure built on the top 

of a syntactic tree, which contains role slots and attribute slots identified from the 

sentence. 

Coreference resolution 

Coreference is essential to  establish the connections and identify biomedical relations 

among sentences and is regarded as one of the most difficult problems in NLP. The 

coreferential terms normally include pronouns2, definites3 and indefinites4 

Sekimizu et al. described their preliminary coreference resolution module that 

deals with impersonal pronouns%nly in [97]. The algorithm is similar to that in [56]. 

'Pronoun is a function word or expression that replaces a noun or an NP. 

3Definite is the NP distinguishing between entities which are specific and identifiable in a given 
context and indefinites, for example, the cat. 

41ndefinite is the word that replaces a noun without specifying which noun it replaces, such as 
one,  another,  each. 

51n contrast to personal pronoun, an impersonal pronoun does not refer to a particular person. 
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It  takes morphological and syntactic features of all terms from the previous stage and 

resolves each impersonal pronoun as follows: 

Collect the potential antecedent term(s) in the same sentence. 

Filter each pronoun-antecedent pair using number, sortal and modifier consis- 

tency constraints. 

Order pairs by dynamic syntactic preference, such as recency and salience. 

Consider Example 2.2. 

Example 2.2: . . .  when cellular sterol levels are low, the SREBPs are released from 

the endoplasmic reticulum membrane, allowing them to  translocate to  the nucleus 

and activate SREBP target genes. 

The sentence contains an activate relation between them and SREBP target genes. 

Using the coreference resolution technique introduced above, they were able to con- 

nect SREBPs and them and predict such a relation between SREBPs and SREBP 

target genes. A similar technique w s  used in Medstract [89, 901 to resolve biologi- 

cally relevant sortal terms (i.e., proteins, genes, and bio-processes) and pronominal 

anaphora including third person pronouns and reflesive pronouns. A reflexive pro- 

noun is a pronoun with a reflexive relationship with its self-identical antecedent, such 

as myself, yourselves. 

In addition to  patterns and preference rules applied in [97], Thomas et al. used sta- 

tistical methods to recognize phrases referring to entities and events of interest [112]. 

Hahn and Romacker tracked coreference relations by center lists in the MedSyn- 

DiKaTe system [38]. Similar to the method of [97] that orders a list of pronoun- 

antecedent pairs, the center list provides a list of antecedents of an anaphoric ex- 

pression in the subsequent utterance, with the decreasing order of the preference for 

establishing referential links based on the centering model [37, 1071. An utterance is 

the basic unit of text. It could be a sentence, a clause or a. phrase. The centering 

model describes relations among local coherence, the use of referring expressions and 

the track of focus attention within a discourse segment. 
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Negation Detection 

Although negative expressions do not occur frequently in biomedical articles, negation 

detection is necessary since a detection failure may result in an opposite prediction. 

For instance, an inhibit relation between Hsp9O and receptor function would be mis- 

takenly predicted if the negation is ignored in the following sentence: 

Example 2.3: Thus [ L H s  HspSO] does not] [,,,,,~, inhibit] [RHS  receptor 

function] solely by steric interference. 

Blaschke and Valencia employed a rule-based method in the relation identification 

(in Section 2.2.4) and included negative rules to reduce the number of false positive 

identifications. Negations are given an associated score of zero to prevent them from 

contributing to the establishment of associations between the corresponding names 

PI. 
Summary 

Full parsing provides more complete information about a sentence than shallow pars- 

ing, however, it requires more computation. Shallow parsing could be flexible enough 

for specific subtasks, such as document retrieval, information estraction and question 

answering, and it could be more reliable in handling ill-formed sentences, such as 

conversation. Coreference resolution is essential to  associating terms and identifying 

relations among terms. Negative expressions were ignored in most of the systems, 

since they do not frequently occur in sentences. 

Now that we have examined some fundamental syntactic processing techniques, 

let us move on to some semantics-related and statistics-intensive approaches. 

2.2.2 Term co-occurrence 

The assumption of the co-occurrence approach is that,  if two genes have a related 

biological function, it is likely that these two gene names (or aliases of those genes) 

co-occur within the biomedical literature [104]. The relations between co-occurring 

terms can be identified statistically or by rules. 
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BIOBIBLOMETRICS [lo41 retrieves biomedical information using the Saccha- 

romyces cerevisiae Genome Database (SGD) and a set of MEDLINE abstracts pub- 

lished between 1997 and 1998 containing the term 'Saccharomyces cerevisiae', with 

two or more gene names co-occurring in each abstract. From this co-occurrence dat,a a 

matrix that contains dissimilarity measurements of every pair of genes is constructed, 

based on their joint and individual occurrence statistics as below. 

, where Si and Sj 

the dissimilarity 

are sets of all documents containing gene i and j respectively. bij is 

metric and used to identify syntactic relations. 

An analysis and knowledge discovery method, introduced in [106], aims to  identify 

related genes as well as their shared functionality (if any) based on a collection of 

retrieved relevant MEDLINE abstracts in a vector space model. The weight of the 

kth term in the abstract ai is calculated as: 

where T,[k] is the frequency of the kth gene term in the abstract ai, N is the total 

number of abstracts in the collection, and n[k] is the number of abstracts containing 

the kth gene term [106]. The relation of two genes is measured as the sum of the 

product of gene weights over all abstracts. To find out what the relation is, the 

following method is applied: if a word in a sentence that contains co-occurrences of 

genes matches a relation in the thesaurus, the word is given a score of 1. The highest 

score over all sentences for a given relation is then taken to be the score of the relation 

between two genes or proteins [106]. 

Concept Space, implemented in Genescene system [60], is a bottom-up technique 

that captures relations between pairs of noun phrases from MEDLIhTE abstracts. 

Three external knowledge sources are used to  tag NPs: GO6, HUGO nomenclature7 

6Gene Ontology (GO; http://www.geneontology.org/) provides a common language to describe 
aspects of a gene products biology. 

7HUG0 nomenclature provides names to human genes: http://www.genenames.org/. 
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and UMLS. Each identified NPs is assigned a weight by an equation similar to 2.2. 

Concept Space finally produces a list of relations that consist of two, ordered, relevant, 

medical NPs. Each relation consisting of two NPs, Tk and Tj, is given a weight 

Wezght(Tk, T,)  indicating its importance [60] by the following asymmetric cluster 

function [16] : 

where i denotes the i th  of n documents and dij indicates the number of occur- 

rences of Tj in the i th document. The function is asymmetric due t o  the fact that 

Ding et al, investigate in [28] the task of mining relations among biochemical 

terms, based on term co-occurrence at different levels: abstracts, adjacent sentence 

pairs, sentences and phrases, using the standard information retrieval performance 

measures of recall, precision and effectiveness. The corpus consists of MEDLINE 

abstracts retrieved from PUBMED using ten queries, each of which is the AND of 

two biochemical nouns. The text between two successive periods is defined to be 

a sentence. The text between any two successive punctuation marks is defined as 

a phrase. Their experiment results show that term co-occurrence at sentence pairs 

performs poorly in precision and more sophisticated text processing techniques than 

statistical term co-occurrence (e.g., rule-based extraction or some machine learning 

approaches) can increase precision. 

XplorMed [84, 861 is intended to  extract dependency relations between the words 

of the abstracts in MEDLINE. The system starts with a query in MEDLINE and 

calculates relations between words present in the same abstract described using prob- 

abilistic binary relations. The degree of relatedness between the words is defined as 

the reciprocal of dissimilarity measurement 2.1. The degree of inclusion of word i 

into word j is defined as: 

where Si is set of all documents containing the word i and Sij is the set of all documents 
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containing both i and j. Important words can be identified by their high association 

score, which is the sum of the inclusion degree of all other words into that word: 

Association-Score(i) = Incluszon(k, 2) 

k 
(2.5) 

The system selects words with high association score and predicts relations between 

them [84]. 

G2D is a database of candidate genes for mapped inherited human diseases [85]. 

A data mining algorithm extracts associations of genes and diseases by searching 

among MEDLINE, RefSeq as well as GO and matching RefSeq sequences of genes 

with chromosomal mapping information of diseases. The algorithm consists of three 

major steps: 

1. The associations between pathological conditions (MeSH C) and chemical terms 

(MeSH D) are computed by their co-occurrences in MEDLINE abstracts, while 

the relations between chemical terms and terms describing protein function are 

calculated using the RefSeq database, which contains more than 10,000 genes 

whose function is annotated with terms from GO; 

2. The algorithm combines the associations of functional terms to chemical terms 

with the previously established associations of pathological conditions to  chemi- 

cal terms, to derive the aforementioned relations between pathological conditions 

and protein-function terms; 

3. The gene candidates for a given mapped disease are then sorted by carrying out 

a sequence comparison between the respective chromosomal region and the set 

of scored RefSeq sequences. 

The gene relations can be translated from content-based relations among MED- 

LINE abstracts, as introduced in [99, 981. According to their method, each gene is 

mapped to  a single document, roughly discussing the gene's biological function. The 

document is the representative of the gene and is called the kernel of the gene. The 

literature da,tabase is then searched for documents similar to the gene's document. 
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Thus, for each gene, a set of similar documents related to its functional role is pro- 

duced. Since each set corresponds t o  a gene, the similar document sets can be mapped 

back to  their corresponding genes, and functional relations among these genes can be 

established. 

Arrowsmith, BITOLA and G2D suggest the linkage between a given disease and 

certain genes by tracing chains of terms. However, since they accept only one or 

two intermediate terms, the variance of meaning between terms could be too large to 

enable a precise relation of a disease to genes. Takahata and Kouchi attempted to 

minimize such variance by proposing a hypothesis on the relation between a disease 

and a gene, with intermediate terms falling into physiology, biological phenomena or 

biochemical material category [109]. The co-occurrence relation between any terms 

in h4EDLINE abstracts is calculated by the reciprocal of Equation 2.1. 

Summary 

The co-occurrence of terms can be found within a sentence, among sentences and 

even within articles. Most term co-occurrence systems only find unnamed relations 

as described above. Many systems prefer statistical approaches by applying some 

dissimilarity measurement between two biomedical terms that form a relation. 

2.2.3 Predicate-argument structure 

In the scope of natural languages, Arguments are logical subject and object and a 

Predicate can refer to  a verb, noun or pronoun that "connects" subject and object 

. Therefore, predicate-argument structure indicates how subconstituents are seman- 

tically related to their predicates. The idea behind extracting relations by predicate- 

argument structure is that sentences usually contain a significant number of terms 

connected by verbs that indicate the type of relations between them. 

Early work towards biomedical relation identification was conducted by [97] by 

Sekimizu et a1 [89, 71. They describe an automatic way of extracting the relations 

between the proteins and gene products expressed by a set of frequently-seen verbs 

from MEDLIhTE abstracts. Their system first determines all NPs and introduces a 

heuristic algorithm [97] to find the arguments (subject and object) of frequently-seen 

verbs. A protein name identification system [35] is then used to  determine whether 
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the arguments are protein names. 

Instead of using frequently seen verbs used in [97], the SUISEKI project [6] manu- 

ally chooses a set of pre-specified words indicating relations related to protein interac- 

tions. Then a series of simple rules that interpret the construction "protein - relation 

- protein" is applied to  recognize one relation in each sentence. 

Proux et al. [88] use a combination of existing linguistic and knowledge pro- 

cessing tools to  extract gene interactions from Flybase, the database on Drosophila 

Melanogaster. These sentences contain two gene names and have been checked by ex- 

perts to  determine whether they contain gene interactions. A shallow parser is used 

to  extract basic syntactic relations such as subject-verb or verb-object. The relation 

is then built into a conceptual graph, which will be introduced in Section 2.2.6. 

ClearResearch [32] implements a generic template, VerbalRelation, which is a set 

of rule-based patterns consisting of shallow syntactic information (i.e., POS tags, 

phrases) and named-entity information (i.e., genes, proteins, diseases, etc.) a t  a full 

sentence or phrase level. The template is used to match relations by extracting two 

NPs connected by a verb. The extracted NPs are then classified according to the 

pre-defined categories (e.g., genes and diseases) to which their terms belong. 

Methods that extract relations using predicate-argument structure as introduced 

above are actually creating rules, which indicate verbal relation and biomedical sub- 

stances associated with the relation. In fact, rule-based approaches are closely related 

to the syntactic processing and term co-occurrence that we described in previous 

sections. Next, we will discuss various methods from the rule-based point of view. 

2.2.4 Rule-based ex t rac t ion  

The predicate-argument structure actually acts as a typical pattern to match the 

phrases indicating relations. There could be other identifiable patterns to which the 

text conforms. This can be used to define a Templa t e  or Frame - a table with 

slots that can be instantiated with the bits of information extracted from a given 

article. The aim of an information extraction system is then to  compose a set of 

pattern matching rules for assigning entities and events in the slots of such templates. 

This approach is called Rule-Based,  Template-Based or Frame-Based extraction. 
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Rules can be generated manually, automatically learned from hand-made rules or 

generated fully automatically. 

Manually-built rules 

Blaschke et al. in [8] show an extension of their work on predicate-argument struc- 

ture as described in [6] and introduce an object-oriented rule-based approach. The 

templates are defined manually by filtering large amounts of text to find the most 

frequent constructions that implicate two protein names and express a direct or indi- 

rect relation. Typical descriptions of protein relations include "protein A is a" and 

"protein B is a new member of a family". Each template is assigned a probability 

score depending on its reliability and also accounts for negation and distance between 

protein names and relation term (the larger the distance, the lower the score). The 

score of a relation is the sum of the scores of all templates it matches. 

A system for the extraction of protein-protein interactions from MEDLINE ab- 

stracts is given in [81]. It  used only surface forms of word patterns that were pre- 

sented by the word positions. Several keywords that are frequently encountered and 

are related to  protein interaction are collected from the abstracts. The system thus 

searches for particular patterns including the keywords. The patterns also represent 

positions between the keywords, protein names, and other characteristic words, such 

as prepositions in the sentences. 

Highlight is a general purpose IE system and is applied to the relation extraction 

from MEDLINE abstracts [112]. Instead of using surface pattern of words as described 

in [81], It  applies POS taggers and partial parsers for certain syntactic structures, such 

as NPs, and performs discourse analysis to  identify co-referring NPs. The domain spe- 

cific patterns are written to map releva.nt information to templates that contain slots 

for specific information. The system captures only the subset of protein interactions 

associated with the verb phrase, such as interact with, associate with, and bind to. A 

given template is ranked according to a measure of confidence that it is filled correctly, 

depending on factors such as certainty that each NPs is a protein, number of times 

the relation occurs and modality associated with the relation. 

EDGAR [94] extract information about drugs and genes relevant t o  cancers from 
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MEDLINE citations, as well as abstra.cts. They argue that many abstracts show the 

characteristic that relations are usually described in a single sentence containing a gene 

name, a drug name and a cell name. A set of simple hand-made rules corresponding 

to  this characteristic is thus made to assert the interactions of drugs, genes and cells. 

However, the relevant relations are not always expressed this straightforwardly and 

some phenomena - such as coordination, anaphora and underspecified reference - ca.n 

complicate the task. For instance, to process the sentence: 

Example 2.4: The overexpression of [,,,, catalase] or [,,,, Cu,Zn-superoxide dismutase] 

([,,,, Cu,Zn-SOD]) did not affect the sensitivity of [,,[[ HeLa] cells to  [drug cis-platinum]. 

their system would identify (catalase, HeLa, cis-platinum) and (Cu,Zn-superoxide dis- 

mutase, HeLa, cis-platinum), but would not be capable of handling the or  construct. 

ARBITER is a Prolog program that extracts assertions about macromolecular 

binding relations asserted in MEDLINE abstracts [93]. Only those binding terms 

that are asserted in the text as participating in a particular binding predication are 

extracted, and a set of pre-defined morphological and semantic rules is specified on 

NPs to  determine binding arguments. A partial analysis of negation and coordination 

is undertaken by ARBITER, but anaphora resolution and a syntactic treatment of 

relativization are not attempted [93]. So it can handle the a.bove example with the 

o r  logic, but would fail to identify the specific referents of these drugs in the sentence 

below. 

Example 2.5: By contrast, activated H-ras, which acts downstream of src, failed to 

induce resistance to  either of these drugs. 

BioNLP is a component of the system PIES [I181 and is focusing on the discovery 

of specific protein-protein relations from MEDLINE abstracts and the automatic con- 

struction of underlying pathway maps8 [78]. BioNLP maintains a set of function words 

for each supported relation type. For example, function words of the inhibit-activate 

relation are: 

SA pathway map is a directed graph in which biomedical substances and events are interconnected 
with each other based on interactions among them. 
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inhibitor: {inhibit, suppress, negatively regulate) 

activator: {activate, transactivate, induce, upregulate, positively regulate) 

Noun phrases in classical dictionaries are excluded from the set of function words, 

while those in protein dictionaries are included. BioNLP then seeks out sentences 

containing any of the function words for specific relation type and then searches for 

any protein names, which are then associated with the function words using hand- 

made pattern matching rules. 

BioRAT extracts biomedical information from the full papers of MEDLINE [19, 

201. It  defines the relations by template, which consists of a hand-made object- 

oriented-based set of rules. It also includes a template design tool with a graphical 

user interface, which allows non-expert users to  develop templates without having to 

learn a complex new language [20]. BioRAT is one of the Bio-IE systems that use the 

full papers instead of just abstracts. Their experiments confirm that the density of 

'interesting' facts found in the abstract is much higher than the corresponding density 

in the full text. They also suggest the study of information density, which focuses on 

finding the location of each fact extracted from the set of full-length papers. 

Semi-Automatically-built rules 

The rule-based systems introduced above match sentences by hand-made patterns 

on some pre-defined set of syntactic structures representing certain types of relation. 

However, a relation can be represented in various forms in natural language text and 

the workload of preparing patterns manually would be significantly expensive if the 

text involves a wide scope of events. For example, Yakushiji et al. attempt to min- 

imize manual pattern construction, by converting the surface form of sentences to 

predica.te-argument structures, using a general-purpose, domain-independent parser 

[119]. The predicate-argument structures are then converted to  template representa- 

tions by domain-specific mapping rules. Although the mapping rules are still hand- 

made, the variation is decreased significantly by converting the surface form of sen- 

tences to argument structures and thus requires much less human effort. 

Plake et al. proposed a method for automated extraction of protein-protein in- 

teractions from scientific text [87]. The system matches sentences against syntactic 
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patterns typically describing protein interact,ions. They define a set of 22 patterns, 

each a regular expression consisting of anchor positions and parameterizable con- 

straints. This small set is then refined and optimized using a genetic algorithm on a 

training set. No heuristic definitions are necessary, and the final pattern set can be 

generated completely without manual curation. 

Automatical ly-bui l t  rules 

Genescene [59, 61, 621 extracts relations by filling preposition-based templates, specif- 

ically the action, theme and agent slots. Their system first identifies basic templates, 

based on English closed word classes, such as prepositions and conjunctions. This can 

be accomplished by retrieving the main verb close to  the preposition to fill the action 

slots, and searching for NPs to the left and right of the verb and preposition to fill 

the theme and agent slots. NP detection is based on a variant of stop word phrasing: 

punctuation, auxiliaries, verbs, and closed-class words that are used as indicators of 

the start and end of phrases [59]. Basic templates are then combined and rewritten 

by rewrite rules into more complex patterns that reflect the underlying sentence logic, 

which is necessary to  correctly represent the information 1591. 

Three methods of automatically generating rules are introduced in [ lo]  to extract 

protein interactions from MEDLINE abstracts. They all start with sentences con- 

taining interacting proteins and repeatedly generalize these sentences to form rules, 

which allows adjunctions of words and counts the distances between words. The first 

method finds Longest  C o m m o n  Subsequences (LCS) between original rules and 

words in LCS composing the new rules. The second method uses Edit Distance 

(ED) and creates more specific rules that contain disjunctive words. The common 

words between the rules are preserved, the disjunctions of words are made when one 

is replaced by another in the edit sequence, and words that are added or deleted in the 

edit sequence are dropped. The third method finds all common sequences between 

the two rules and considers their conjunction as the generalization. An algorithm 

similar to beam search is then applied using one of the above generalization methods. 

It  considers only the best rules for generalization a t  any time. 
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Summary 

Both the term co-occurrence approach and predicate-argument structure can be re- 

garded as special forms of rule-based extraction. Finding co-occurring terms is rel- 

atively intuitive for identifying relations between terms, and the predicate-argument 

structure seems a more precise method by assuming that many relations are rep- 

resented as co-occurring terms connected by verbs. Therefore, predicate-argument 

structure systems can identify named relations that associate with verbs. The rule- 

based extraction systems introduced in this section generate even more complex rules 

in addition to  co-occurrence and NP-verb-NP. 

Rules ca.n be created manually, semi-automatically and fully automatically. Gen- 

erally speaking, manual rules are expensive, especially when the text involves a wide 

scope of events. Semi-automatic rule-based approaches usually start from a set of 

manual rules and create new rules by converting, optimizing or learning from exist- 

ing rules. In contrast to approaches with manual rules, fully automatic rule-based 

methods directly learn rules from text, thus are highly adaptable and scalable to var- 

ious information extraction tasks. Next, we will examine systems that apply machine 

learning techniques to extract relations. 

2.2.5 Statistical machine learning approaches 

Statistical machine learning has been widely applied to  biomedical relation identifica- 

tion tasks. These methods include Naive Bayes classification, Bayesian rules, Bayesian 

Networks, Support Vector Machines (SVMs), association rules, clustering and kernel 

methods. 

Craven et al. classify sentences into those with relation and without relation [23]. 

They define a few types of relations, including subcellular-localization, cell-localization, 

tissue-localization, associated-diseases and drug-interactions. They attempted to ex- 

tract a pair of words that could possibly express some type of the relations, when both 

words occur in the same sentence and when the sentence is classified as a positive in- 

stance by the statistical model. The model is learned by a Naive Bayes classifier with 

a bag-of-words representation. Given a sentence e of n words (wl , wa, . . . , w,) , Naive 

Bayes estimates that the sentence belongs to each possible cla,ss cj E C corresponding 
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to a relation from the training data  as following. 

Marcotte et a.1. show that the frequencies of discriminating words in MEDLINE 

abstracts scored by a Bayesian approach can be used to determine whether or not 

a given paper discusses protein-protein interactions [68]. Discriminating words that 

appear a t  unexpectedly high or low frequencies in abstracts discussing the interactions 

are identified from the training set of abstracts. They indicate words that would be 

useful for discriminating the training abstracts from other abstracts. Using a Bayesian 

approach, each of the many IVIEDLINE abstracts can then be scored for its probability 

of discussing the interactions according to  the frequencies of the discriminating words 

observed in the abstract. 

Hristovski et  al. use association rules between pairs of medical concepts as a 

method to  determine which concepts are related t o  a given starting concept [45, 441. 

They first calculate all the associations between the major MeSH terms, and then 

limit the amount of associations, by only taking the associations between major MeSH 

headings and with high support and confidence measures [45]. This method, however, 

produces a large number of candidate concept relations that have to be evaluated. For 

example, their system proposed 15,617 potential discoveries from 2582 documents in 

which Multiple sclerosis occurs. To decrease the number of candidate relations and 

to make the system more suitable for disease candidate gene discovery, they included 

background knowledge about the chromosomal location of the starting genetic disease 

as well as the chromosomal location of the candidate genes when such knowledge is 

available [44]. The background knowledge consists of genes and chromosomal location 

information extracted LocusLinkg, OMIM1•‹ and HUGO. As a result, they are able 

to  limit the candidate genes to  those that fall into the same chromosomal location as 

"ocusLink (http://www.ncbi.nlm.nih.gov/projects/LocusLink/) provides a single query inter- 
face to curated sequence and descriptive information about genetic loci. It is superseded by Entrez 
Gene (http://wwv.ncbi.nlm.nih.gov/sites/entrez?db=gene). 

l0Online Mendelian Inheritance in Man (OMIM, http://www.ncbi.nlm.nih.gov/sites/entrez?db= 
OMIM, is a database of human genes and genetic disorders a t  National Library of Medicine. 
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the starting disease. 

PreBIND is a component of a literature mining system designed to  find protein- 

protein interaction information from MEDLINE abstracts and to present this to cu- 

rators or public users for review and submission to  the BIND database1' [29]. It  

uses Support Vector Machines (SVMs) to quickly train a machine learning algorithm 

to recognize interaction-like articles and bypasses the laborious process of building 

a domain-specific semantic grammar. PreBIND first maps positive and negative ex- 

amples to  a multi-dimensional vector space and then employs SVMs to discover a 

boundary that best separates positive from negative examples. So text samples can 

be classified by this boundary. 

VCGS (Vocabula.ry Cluster Generating System) is designed to automatically ex- 

tract and determine associations among cancers from MEDLINE abstracts [34]. Firstly, 

each document is mapped to  a vector by Latent Semantic Analysis (LSA) [ 55 ] .  Each 

element in a vector is a tf . i d f  weight of the corresponding term, where tf . i d f  is the 

product of term frequency and inverse document frequency. Next, term vectors are 

generated by considering all the weights corresponding to a term as represented in all 

the documents. Terms are then associated with each other by the clustering method 

based on their distance in the vector space. A similar method is employed in [42]. 

They utilize LSA to identify conceptually related genes based on titles and abstracts 

in MEDLINE. Related genes are identified by rank order or by hierarchical clustering 

using the gene distance matrices. 

Chang uses the co-occurrence approach to identify the related genes and drugs 

from MEDLINE abstracts and classifies them into five pre-defined cakegories based 

upon Pharmacogenomics Knowledge Base (PharmGKB12), which collect information 

about related genes and drugs using a community-based online submission tool [108]. 

l lThe Biomolecular Interaction Network Database (BIND, http://bind.ca), is a database of cu- 
rated and achieved biomolecular interaction and pathway data. 

I2PharmGKB, the Paramacogenetics and Pharmacogenomics Knowledge Base, 
http://www.pharmgkb.org/ 
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These categories are Clinical Outcome, Pharmacodynamics and Drug Response, Phar- 

macokinetics, Molecular and Cellular Functional Assays and Genotype. In the exper- 

iments of co-occurrence, he counts the number of abstracts and sentences where both 

the gene and drug occurred and finds that the absence of a thesaurus of gene and 

drug synonyms results in nearly a quarter of relations being missed. Each document 

is then mapped to a vector of words. Finally, a Maximum Entropy classifier is applied 

to assign each gene-drug pair one of the five categories. 

Hasegawa et al. discover relations among terms based upon clustering on context 

vectors of term pairs [39]. The term pair is defined a.s two terms co-occurring within 

the same sentence and being separated by a t  most N intervening words. A context 

vector consists of the bag of words formed from all intervening words from each term 

pair. Each word of a context vector is weighted by tf . idf. All context vectors are 

then clustered based on their cosine similarities. The cosine similarity of two vectors 

A and B is defined as: 

Cosine-Similarity (A,  B) = 
A . B  

a r c c O s l l ~ l ~  . IlBll 

Each cluster represents one relation and is characterized by common words as cluster 

labels in its context vectors. However, it is difficult to choose the total number 

of clusters or . to set a threshold on cosine simihrity when clustering. Besides, less 

common (frequent) words that contain important information would likely be ignored. 

Although only tested in The New York Times (1995) in [39], this method may be 

applied to the identification of other kinds of relations. 

Applying the kernel methods to  relation classification based on the dependency 

tree is discussed in [24]. Context vectors are also used in this system, but augmented 

by the syntactic and semantic features of words. Each context vector is represented by 

a Dependency Tree and is classified by an SVM based on the similarity with other 

vectors, which is obtained from the kernel method applied to  the dependency tree. A 

dependency tree is a representation that denotes grammatical relations between words 

in a sentence. Kernel methods are non-parametric density estimation techniques that 

compute a Kernel Function between data  instances, where the kernel function can 
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be thought of as a similarity measure. Two kernel functions are defined over features 

of the dependency tree: the matching function and the similarity function that count 

for the similarity among vectors and among features respectively. Their system was 

tested on news text and would be applicable to the biomedical relation identification 

task. 

2.2.6 Graph-based  ex t rac t ion  

Graph mining, based on compiling relations with semantic and syntactic informa- 

tion and searching for common structural patterns in sub-graphs is implemented and 

named Lexical Networks  in BioTeKS [67]. Lexical networks apply data-mining 

techniques to graphs that are derived from syntactic parse trees, where the nodes in a 

graph represent proteins, and the links represent relatively strong co-occurrences be- 

tween these proteins within a sentence or paragraph. Figure 2.5 shows an example of 

the lexical network collected from a set of 600 MEDLINE documents. The strong co- 

occurred proteins are linked with strength. Although the pair-wise term relations can 

be computed in documents to be compiled into longer sequences that span multiple 

documents, lexical networks are basically the visualization tool of unnamed relation 

between proteins and are not used to extract hidden information. 

Jessen et al. introduce PubGene, a system that extracts explicit and implicit 

biomedical knowledge of human genes from MEDLINE abstracts by creating a gene- 

to-gene co-citation network [47]. The system builds the network by linking two genes 

if they occurred in the same article and represents each gene in the database by a 

node in the network. As an indication of strength, each pair of genes is given a weight 

equal to the number of articles in which the pair was found. The extracted network 

is validated by three large-scale experiments showing that co-occurrence correctly 

reflects biologically meaningful relations (60% and 71% for low-weight and high-weight 

gene pairs respectively). 

Acting as an inference network13, Biobilmetrics is a tool for efficiently exploring 

biomedical information [104]. As introduced in Section 2.2.2, it constructs a ma- 

trix that contains dissimilarity measurements of every pair of genes, based on their 

13An inference network is basically a Bayesian network to model documents [115]. 
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Figure 2.5: A lexlcal network showing co-occured proteins collected from 600 MED- 
LINE documents [67]. 

joint and individual occurrence statistics. A graph is then generated from this ma- 

trix. Nodes of the graph represent genes and can be hypertext-linked to sequence 

databases, while edge lengths are a function of the occurrence of the two genes within 

the literature and are linked to those NIEDLINE documents that generated them. 

Tested on MEDLINE documents published between 1997 and 1998 and containing 

the MeSH term Saccharomyces Cerevisiae, their system is able to  extract knowledge 

latent with retrieved information. However, since the graph is built on co-occurrences 

of gene pairs, edges are still representations of un-named relations and may not reflect 

actual relations. 

Leroy and Chen build a co-occurrence-based semantic net representing Concept 

Space relations in Genescene [60]. Concept Space is a bottom-up technique that 

captures relations between pairs of NPs from large collections of text. I t  provides 

a network of semantically-related concepts that form relations for the entire collec- 

tion. Each relation is directional and contains two NPs and a weight of co-occurrence 

analyzed based on the asymmetric cluster function [16] to  indicate its strength of 
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relevance. For example, from the sentence: 

Example 2.6: Proliferation and apoptosis were assessed in a panel of NSCLC cell 

lines that .. . 

two relations are introduced into the network: Assess In(apoptosis, panel) and 

Of(pane1, NSCLC cell). The Concept Space relations are more precise when selected 

with ontological knowledge (GO, HUGO nomenclature a.nd UMLS). 
Proux et al. construct the semantic representation of sentences based on Concep- 

tual Gra.ph from the syntactic dependencies extracted by the parser [88]. The verb is 

placed a t  the top of the conceptual graph structure symbolizing the sentence. Nouns 

appearing in subject or object group, are connected to  this verb through links repre- 

senting their syntactic relation. Figure 2.6 shows an example of a conceptual graph 

built from the sentence: 

Example  2.7: ems directly regulates sc function. 

User requests are stored in the system using exactly the same structure. The extrsc- 

tion mechanism then tries to establish a projection between user request graphs and 

the semantic representation of sentences to detect matching patterns. A projection 

between two graphs is accepted if and only if one of them contains concepts and 

relations that are all more abstracted than those of the other graph [88]. 

Concept Chain Graphs (CCGs) for discovering unknown associations between con- 

cepts are introduced in Infoxtract [103, 1021. A chain graph is a probabilistic network 

model that mixes undirected and directed graphs to give a probabilistic representation 

that includes Markov random fields and Markov models. It  is a hybrid probabilistic 

IR framework combining a traditional bag-of-words model with higher-level concepts 

and relations provided by an IE system. The CCG is implemented as a multilevel in- 

dex where the highest level represents relations, the middle level represents concepts, 

and the lowest level represents a word index. Figure 2.7 shows concepts (such as 

protein names, gene names, relations terms, etc.) linked to the gene CDKNlA. These 

are weighted based on frequency of occurrence. The CCG is applied to discovering 
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- - 

regulate 

(Modifier) (Subject) (Object) 

directly ems function 

(Related-To) 

Figure 2.6: An example of conceptual graph from the syntactic dependencies extracted 
by the parser [88]. 

unapparent relations and finding paths connecting two and more concepts from a set 

of relevant documents. It can also be used to generate relevant document summary 

and narrative description of users. 

Summary 

Graph-based biomedical relation extraction aims to interconnect biomolecular sub- 

stances with a graph-like structure based on relationship predictions among them. 

Most of graph-based approaches are capable of visualizing the relations between terms, 

due to the natural characteristic of graph representations. In addition, some of them 

attempt to learn unapparent relations and even pathways from the graph represen- 

tations, with assumption that nodes interconnected indirectly (with other nodes in 

between) may be functionally related t o  each other. 

Graphs implemented in these systems can be categorized as directed, undirected 

and hybrid. Generally speaking, directed graphs (e.g. Bayesian networks) charac- 

terize named relations, while undirected graphs (e.g., based on co-occurrence only) 

represent unnamed relations. Therefore, some unnamed relations may not reflect 

actual relations. 
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Figure 2.7: Concepts linked t o  the gene CDKNlA [103]. 

2.3 Subcellular Localization Extraction 

In this section we examine research on extraction of a particular biomedical functional 

relation: Subcel lular  Localization (SCL). The focus on our work, Bac ter ia l  P ro -  

te in  Localization (BPL), is one type of SCL. As introduced in Chapter 1, BPL is a 

key functional characteristic of bacterial proteins. The example: 

Example  2.8: E. Coli produces [LOCATIO~  membrane-bound] [PROTEIN lytic trans- 

glycosylase] and localizes it in [ B A C T ~ R I U M  murein sacculus]. 

indicates a membrane-bound localization relation between lytic trans-glycosylase and 

murein  sacculus. BPLs are essential to the understanding of the function of different 

proteins and the discovery of suitable drugs, vaccines and diagnostic targets. 

Na.ir and Rost build a subcellular classifier on keywords of functional annotations 

of proteins in the SWISS-PROT sequence database [76]. They first map each protein 

annotation onto a keyword-based vector space, i.e., representing the presence of a 

certain keyword by 1 and the absence by 0. They then use a classifier consisting 

of vectors of examples with known localizatjon, to classify examples with unknown 

localization based on keyword information gain. They concentrate on 10 subcellular 

localizations (see Table 1 of [76]). Their work is elaborated on by Eskin and Agichtein 

[31], who combine text and sequence analysis by adding subsequences from proteins 

amino acid sequence as part of terms in the text representation. However, their 

evaluation results do not suggest an improvement over [76]. 
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Stapley et al. represent yeast proteins as vectors of weighted terms from all the 

PubMed articles mentioning their respective genes [105]. A support vector machine 

(SVM) is trained on protein-text vectors to distinguish among subcellular localiza- 

tions. Their system outperforms a baseline trained on amino acid composition alone, 

but it is not tested against existing systems and their evaluation results do not demon- 

strate any improvement over earlier systems. Their experiments also indicate that,  

by combining amino acid composition with text, the system does not significantly 

improve performance with respect t o  the text-based classifier alone. 

Another use of molecu1a.r function terms to extend sequence-based subcellular lo- 

calization prediction is proposed by Lu and Hunter [66]. Different from [76] and 

[31] t11a.t explore SWISS-PROT protein annotations, Lu and Hunter extract the rela- 

tion between GO function annotations and localization information, identifying both 

highly predictive single terms and terms with large information gain with respect to  

location, the same method adopted in [76]. Their system exhibits an improvement by 

the addition of function information over sequence alone. However, the experiment 

results does not compare nor suggest any improvement over existing systems. 

LOCtree [77] is a hierarchical system combining SVMs and other prediction meth- 

ods to predict SCLs from SWISS-PROT function annotations. They build a hierarchi- 

cal architecture for each of non-plant, plant and prokaryote SCL tasks as illustrated in 

Figure 2.8. Each node in the architecture is a binary classifier and is implemented us- 

ing an SVM . Accuracy of LOCtree (78%) on extraction of five SCLs (i.e., extra-cellular, 

nuclear, cytosolzc, mitochondrza and chloroplast) indicate a significant improvement 

over SubLoc (57%)) PSORT (51%) a.nd NhTPSL (52%). 

Hoglund et al. predict subcellular localizations from both text and protein se- 

quence data [40]. They first apply SVMs to make predictions from protein sequence 

data, and then they weight from the text the terms co-occurred with the location name 

(organism) and assign each protein name a vector based on this terms co-occurred 

with the protein. Finally an SVM is applied on all protein vectors generated from the 

sequence data  and text. Their evaluation results show a significant improvement over 
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Eu karyotic 
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Figure 2.8: 

Eukaryotic 
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I 

pzzqp i iq  
Hierarchical architecture of LOCtree [77]. 

.5  and 

Summary 

In this section, we introduced systems that extract SCLs from biomedical sources. 

Some systems combine both textual information and sequence data  and show im- 

provement over sequence-based extraction alone. However, these approaches either 

miss the actual location information in their predicted localizations or only focus 

on a small portion of eukaryotic proteins, while we aim a t  bacteria-protein-location 

relations for bacterial proteins. 

Moreover, lexical analysis implemented in these systems limits itself a t  the bag-of- 

words level. No serious linguistic approaches, such as syntactic or semantic analysis, 

have been attempted. In the subsequent chapters, we will propose severd approaches 

14TargetP data set contains a total of 3,415 distinct proteins representing four plant (ch, mi, SP, 
and OT) and three non-plant (mi, SP, and OT) localizations.[30] 

lSPOLC consists of proteins extracted from Swiss-Prot release 39.0, covering 12 localizations [83]. 
16The MultiLoc data  set contains a total of 5,959 protein sequences, which were extracted from 

the Swiss-Prot database release 42.0 [4:1.]. 
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that apply and combine syntactic and semantic information to extract SCLs. 

2.4 Performance of Related Work 

Table 2.1 shows tasks, data sets and experimental results of some biomedical relation- 

ship identification systems introduced in this chapter. Systems are grouped by task: 

protein/gene relation identification, SCL identification and others. 

Inside each task group, systems are sorted by data  set and then performance. 

MEDLINE and SWISSPROT are among the most used data  sets, while some systems 

built their own data  sets or did not specify what data  sets were used in their papers. 

The table also shows that systems using the same data set in the same group 

are comparable to each other in terms of performance. For instance, [29] and [43] 

extracted protein-protein relations from MEDLINE records and their F-scores are 

around 92%; [76], [77] and [31] extracted SCLs from SWISS-PROT and also performed 

closely to each other. As for the rest of systems, we cannot simply compare their 

performances by experimental results, since the tasks and data  sets they used are 

different, and their evaluation methods may be different too. 



CHAPTER 2. RELATED WORK 

System 
preBIND [29] 

1431 
PI 
PI 
[331 
SUISEKI [8] 

PI 
Highlight [I121 
Genescene [62] 
MedScan [80] 

1471 

L6ckey [76] 
LOCtree [77] 

[311 
11051 
Medstract I901 
ARBITER '1931 

1201 
BITOLA [44] 
MedSynDiKaTe [38] 
GENIES [33] 
PASTA [36] 
PubGenc 11061 

gene-gene 
protein-protein 
protein-protein 
protein-protein 

gene-gene 
protein-protein 
protein-protein 

Task 
protein-protein 
protein-protein 

gene-protein 
gene-gene 

protein-protein 
SCL 
SCL 
SCL 
SCL 
SCL 

Data set 
MEDLINE 
MEDLINE 
MEDLINE 

Flybase 

- 
binding 

- 
drug-gene 

build ontology 
pathway 

protein structure 

protein-disease-drug 
- 

TargetP etc. 
SWISS-PROT 
SWISSPROT 
SJVISS-PROT 

MEDLINE 
MEDLINE 
MEDLINE 
MEDLINE 
MEDLINE 

- 
- 

YPD 
- 

Performance (P/R) 

0.91/0.93 
0.731- 

0.81/0.47 
Confidence: 0.85 -- 1 .OO 

0.5 -- 0.8/ > 0.7 
0.48/0.80 

0.69 -- 0.77I0.29 -- 0.58 
0.7010.47 
0.91/0.21 

0.60 -- 0.721- 
-10.71 

0.8510.86 (for plant) 
Accuracy: 0.82 
Accuracy: 0.78 

0.8010.75 
F1: 0.33 -- 0.82 

0.90/0.57 
0.73/0.51 
0.51/0.44 
0.55/0.12 

0.80 -- 0.93I0.81 -- 0.93 
0.9610.63 
0.86/0.67 
0.89/0.61 
0.9210.21 

-10.23 
tntification systems 



Chapter 3 

Biomedical Informat ion Retrieval S ys- 

tern 

Information Retrieval (IR) is a process to find documents relevant to a query. The 

query can be in various forms from one or a few keywords to a complex well-formed 

question. Compared to information extraction (IE),  which can be viewed as the 

process of finding more detailed and finer information such as names and relations, 

IR is the process of providing entire documents relevant to a query. So IR is generally 

token as a step precedentto the fine informa,tion extraction process. 

Before introducing our relation extraction system, in this chapter we propose a 

biomedical IR system1 as a coarse level of relation extraction. The system participated 

in the TREC 2005 ad-hoc retrieval task in the Genomics track, at which it aktempted 

to  find documents relevant to  answers of complex questions. Example 3.1 shows one 

of such questions. 

Example 3.1: Provide information about the role of the gene DRD4 in the disease 

Alcoholism. 

The main approach taken in the IR system is t o  expand synonyms by exploiting a 

fusion of a set of biomedical and general ontology sources, and apply machine learning 

and natural language processing techniques to re-rank retrieved documents. In our 

'This is a joint work with Baohua G u ,  a t  the Natural Language Processing Lab, Simon Fraser 
University. 
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system, we integrate EntrezGene2, HUGO3, Eugenes4, ARGH5, GO6, h/IeSH7, UMLSR 

and WordNetg into a large reference database and then use a conventional Information 

Retrieval (IR) toolkit, the Lemur toolkit [58], to build an IR system. In the post- 

processing phase, we a,pplied a boosting algorithm [53] that captures natural language 

sub-structures embedded in texts to re-rank the retrieved documents. Experimental 

results show that the boosting algorithm works well in cases where a conventional 

IR system performs poorly, but this re-ranking approach is not robust enough when 

applied to broad coverage task typically associated with IR. 

3.1 Introduction 

The TREC 2005 Genomics track consists of the ad-hoc retrieval task and the cate- 

gorization task. We were participating in the ad-hoc retrieva.1 task only, due to the 

considerable effort we spent on building the framework of the biomedical IR system. 

The ad-hoc retrieval task aims a t  the retrieval of MEDLINE records relevant to the 

official topics. In constrast with the free-form topics of the 2004 task, the 2005 topics 

are more structured and better defined. A set of 5 generic topic templates (GTTs) 

was developed following the analysis of the the 2004 topics a,nd the information needs 

from 25 b j o l o g i ~ t s ~ ~ .  Ten topic instances were then derived from each of GTTs. As 

with the ad-hoc retrieval task in 2004, the document collection of the 2005 task is a 

10-year MEDLINE subset (1994-2003), about 4.6M records and 9.6G bytes in total. 

The relevance judgement was made by the same pooling method used in the 2004 

task, where top ranking documents of every topic from all submitted runs are given 

2EntrezGene a t  National Center of Biotechnology Information, 
http://www.ncbi.nlm.nih.gov/entrez/. 

3HUG0 at  Gene Nomenclature Committee, http://www.gene.ucl.ac.nk/nomenclature/. 

4Eugenes: Genomic Information for Eukaryotic Organisms, http://eugenes.org/. 

'ARGH: Biomedical Acronym Resolver, http://invention.swmed.edu/arth/. 
6GO: The Gene Ontology. http://www.geneontology.org/. 

'MeSH: Medical Subject Headings, http://www.nlm.nih.gov/mesh/meshhome.htrnl. 
'Unified Medical Language System at  National Institute of Health, 

http://www.nlm.nih.gov/research/umls/. 

'WoreNet: a lexicon database for English language, http://www.cogsic/princeton.edu/wn/. 

'0http://ir.ohsu.edu/genomics/2005protocol.html 
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to human experts, who then determined if each document is either definitely relevant 

(DR), possibly relevant (PR) or not relevant (NR) to the topic. 

Three run types were accepted in the Genomics track: automatic, manual and 

interactive, which differed depending on how the queries were constructed. Each par- 

ticipant was allowed to submit up to  two runs. Our submission was in the manual 

category, since our queries were manually constructed. One of our goals was to deter- 

mine how natural language processing (NLP) techniques could be used for re-ranking 

in a post-retrieval step. In our current system, we only apply such techniques for re- 

ranking. In the future we plan to  apply similar techniques towards query expansion. 

3.2 System Architecture 

In general, the performance of an IR system largely depends on the quality of the 

query expansion. Most participants of the ad-hoc retrieval task in previous years 

applied reference database relevance feedback, a technique that finds synonyms and 

relevant terms from the outside term databases and adds them in the query. Over 

the past decade, the biomedical databases have evolved dramatically in terms of both 

the number and the volume, but from the reviews of previous work in this task, most 

of participants only employed a couple of them to  build the reference database. In 

our system, we collect terms from EntrezGene, HUGO, euGenes, ARGH, MeSH, GO, 

UMLS and WordNet, and integrate them into a large reference database, which we 

then use in our system. 

Traditional NLP techniques have been generally un-successful in improving re- 

trieval performance [116], but there is still interest in examining how the linguistic 

and domain specific knowledge contained in NLP models and algorithms might be 

applied to  specific IR subtasks to improve performance. In this work, we applied 

a classification technique: a boosting algorithm to capture sub-structures embedded 

in texts [53] in the second phase of our IR system. Different from the typical bag- 

of-words approach, the algorithm takes each sentence as a labeled ordered tree and 

classifies it by assigning a relevance score as either relevant (positive) or not (nega- 

tive). The releva.nce of each document is then calculated from relevance scores of the 

sentences in the document. 
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Standard IR framework I Postprocessing 
I 

Figure 3.1: The system architecture 

I 

Our system consists of two major phases, shown in Figure 3.1. In the first phase 

(left of the dashed line in Fig 3.1), we applied extensive synonym expansion with 

a conventional IR system, the Lemur toolkit 4.1 [58]. The details of our synonym 

expansion phase and reference database construction are introduced in Section 3.3. 

The second phase is a post-processing step, in which the boosting classification algo- 

rithm [53] was used to re-rank the list of retrieved documents from the first phase. 

Section 3.4 describes its implementation details, experiments and evaluations of the 

boosting-based classification. 

top ic  que ry  

3.3 Conventional IR Module 

3.3.1 Extensive Synonym Expansion 

r e l evance  f w d b n c k  
I 
I 

referznce 
darebases I 

expanded 
A q u e r y  

Our system involves the manual selection of key words from the official topics (for 

most topics the key words were already given in the tabular version of topics) ac- 

cording to the given GTTs. The names and symbols related to  each key word, for 

instance, synonyms, acronyms, hyponyms and similar names, were then matched 

with the public biomedical and generic databases that include synonyms and relevant 

terms. Specifically, for genelprotein names, we automatically integrated EntrezGene, 

HUGO, Eugenes and ARGH into a large genelprotein database with 1,620,947 en- 

tries, each of which consists of names and symbols that represent the same biomedical 

substance, and then matched them with each key word in the topics. Similarly, for dis- 

eases, organisms and drugs, related names and symbols were automatically matched 

re-rank i n g  
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Figure 3.2: Extensive synonym expansion 

with entries in MeSH; molecu1a.r functions, biological processes and cellular compo- 

nents made use of GO, and general words/phrases were matched (manually so fa.r) in 

WordNet. In addition, all sets of related names and symbols were further expanded 

by searching via the UIVILS Knowledge Source (UMLSKS) Socket Server. Figure 3.2 

illustrates the procedure of constructing the reference databases. 

3.3.2 Document Retrieval 

In this project, we use the Lemur Language Modeling Toolkit 4.1. The Lemur system 

was designed to facilitate research in language modeling and information retrieval 

(IR), such as the ad-hoc and distributed retrieval, structured queries, cross-language 

document retrieval, summarization, filtering, and categorization. 

We use the following three modules provided in Lemur 4.1: 

1. Parsing Query module 
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2. Building index module 

3. Structured Query Retrieval Module 

In the following subsections, we will briefly describe how each module was used in 

our system. 

Parsing Query 

The Parsing Query module contains two utilities to handle different types of queries: 

ParseQuery and ParseInQueryOp. ParseQuery handles queries written in NIST's Web 

or TREC formats, while ParseInQueryOp is used to parse structured queries written 

in a structure query language. Both types of queries are then converted into the 

BasicDocStream format, an document format used inside Lemur. In our experiments, 

we tried both types of queries and found that the structured queries generally provided 

better results. Therefore, we used the structured queries in our submitted run. 

The structure query language used in Lemur can be found on its web site1'. Briefly, 

it allows a user to define va.rious AND/OR/NOT relations, and it provides for weights 

of sums (WSUM) among the terms. It  even allows a user to consider a sequence of 

single terms by defining them as a phrase. Hence, the structured query enables more 

precise query definition. A sample structured is shown in Example 3.2. 

Example 3.2 

q135 = #band( 

#or( 

#phrase(cellgrowth) 

#phrase(cel lexpansion) 

#phrase(CellularExpansion) 

#ph~ase(CellularGrowth) 

) 

#or( 

#phrase(Bop) 
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#phrase(bacterio - opsin) 

#phrase(bacterioopsin) 

#phrase(bacterio - opsingene) 

#phrase(bop) 

#phrase(BiocompatibleOsteoconductivePolymer) 

Building t h e  I n d e x  

Lemur's BuildIndex module supports constructiion of four types of indices, specifi- 

cally: InvIndex, InvFPIndex, KeyfileIncIndex, and IndriIndex12. We used the Key- 

fileIncIndex, which includes the position information of a term and can be loaded 

faster than InvIndex and InvFPIndex while using less disk space than IndriIndex. 

Ret r iev ing  S t r u c t u r e d  Q u e r y  

The structured queries were passed to the StructQueryEval module, which ran re- 

trieval experiments to  evaluate the performance of the structured query model using 

the inquery retrieval method. Note that for structured queries, relevance feedback 

was implemented as a WSUM of the original query combined with terms selected 

using the Rocchio implementation of the TFIDF retrieval method [96]. In our official 

runs, the parameters (feedbackDocCount, feedbackTermCount, feedbackPosCoeff) for 

relevance feedback are: (100, 100, and 0.5). 

3.3.3 Evaluat ion 

Among all the official runs submitted to  the ad-hoc task of the TREC-2005 Genome 

Track, 48 are using automatic retrieval methods and 12 including ours are manual 

ones. Figure 3.3 shows MAP (upper), P I0  (middle) and PlOO (lower) scores of the 

manual runs. Three runs are shown in the figure: the best, the worst and ours on 

each topic. To better illustrate the performance of our system among others, we plot 

each value in the figure as the differenece between the actual score and the median 

score 
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Although we do not know the evaluation results of every other system, Figure 3.3 

seems to indicate that our system is above the average. For instance, for the PI0 

scores of our system on all 49 topics, 36 are above the median and 10 of them are the 

best; for the MAP scores, 32 are above the median and 2 are the best. The automatic 

runs perform better than the manual runs on the whole and our system is around 

the average of the automatic runs. Our future research will involve the invetigation 

of how our system performs on each topic and each template, looking for insights to  

further tune our system. 

3.4 Post-processing Module 

3.4.1 Boosting-based Classification 

Traditional NLP techniques, such as word sense disambiguation resolution, chunking 

and parsing, were examined in the IR community a t  the TREC-5 NLP track, but few 

of them were shown successful for good retrieval performance. The reasons may lie in 

the broad coverage of the typical retrieval task, the lack of good weighting schemes 

for compound index terms and the statistical nature of the NLP techniques [116]. 

However, the attempts of applying NLP and machine learning techniques to the 

IR tasks are still attractive, since a good understanding of the documents could be 

a breakthrough to the IR tasks. In this project, we adopted Taku Kudo's Boosting 

Algorithm for Classification of Trees (BACT), a classification method that captures 

the sub-structures embedded in texts. We use the method and implementation de- 

scribed in [53]. BACT takes a set of all subtrees as the feature set, from which it 

iteratively calls a weak learner to produce weak hypotheses. The strong hypothesis is 

finally generated by a. linear combination of weak hypotheses. 

We incorporated BACT into the post-processing step, where the list of retrieved 

documents from Lemur was re-ranked by taking the classification of the documents 

into account, as shown in the Figure 3.4. The documents in the training data were 

parsed using Charniak's parser [15] and then classified by BACT in terms of relevant 

(positive) or irrelevant (negative). A re-ranking mechanism made the final relevance 

decision by combining the relevance scores from both Lemur and BACT. 
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Figure 3.3: The MAP, P I 0  and PlOO scores of the best, worst manual runs and our 
system on each topic. Each value is the actual score minus the median. 
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Figure 3.4: The post-processing phase 

The major difficulty of applying BACT in this task is that it assigns a classifica- 

tion score (positive or negative) to ea,ch sentence rather than assigning a score to a 

document. This results in two issues: 1) the lack of the training data  with the label 

for each sentence; 2) the lack of a mechanism for combining sentence scores into a 

document score. 

Since we lacked training data of sufficient quality m d  quantity for the classification 

task, we were not able to  submit the post-processing results to  the TREC in time for 

the initial deadline. After the results of the ad-hoc retrieval task were announced 

(on Sept. 30, 2005), we were able to test the performance of the post-processing, by 

taking the following steps to prepare the training and test data  for BACT: 

1. The retrieved documents in the first two topics in each TTL were taken as the 

test data and those in the remaining topics as the training data. 

2. The irrelevant documents in the training data were removed due to the unbal- 

ance of the training data  (irrelevant documents are much more common than 

relevant ones). 

3. In the training data, sentences were given "approximate" labels by matching 

them against a disjunction of all terms in the corresponding query as either 

matched (+I) or unmatched (-1). 
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BACT assigned a real number as the classification score to each sentence, with 

a larger score corresponding to  a more relevant sentence. We took the mean of all 

sentence scores in each document as the document score. 

The goal of re-ranking is to combine RL and RB, the ranks from Lemur and BACT 

respectively, such that the rank R' maximizes the evaluation scores, for example, 

MAP, P I 0  and P100. RL, RE and R' are score vectors of retrieved documents. We 

assumed that such a combination was linear, i.e.: 

We thus looked for i' that maximizes the evaluation function E(R1): 

3.4.3 Evaluation 

As described in Section 3.4.1, we extract relevance scores of our retrieved documents 

(by Lemur) from the evaluation results of 2005 ad-hoc retrieval task. For each TTL, 

the retrieved documents of the first two topics were taken as the test data, and those 

of the remaining topics as the training data. 

Table 3.1, 3.2 and 3.3 list the hdAP, P10 and PlOO before (i = 0) and after the 

re-ranking for the TTL #1, #2 and #3. A linear combination coefficient i' was 

predicted for each TTL following Equation 3.2. For the TTL #2, i' converges a t  15 

and the linear combination model significantly improves the IR performance: MAP 

increases from 0.0012 to 0.0024 for the topic #I10 and from 0.0492 to  0.1602 for the 

topic # I l l ;  Same situations for P I0  and P100. However, for the TTL #1 and #3, 

no linear combination model can improve the IR performance, i.e., if = 0. The scores 

at  i = 10 are also listed in Table 3.1 and 3.3 to show that the performance dropped 

when the linear combination models were applied. 
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Topic # 

lol 

PlOO 0.1 0.4 

Topic# 

Table 3.2: Performances of re-ranking on the TTL #2 

i = 10 
0.1785 

Metrics 
MAP 

Table 3.1: Performances of re-ranking on the TTL #1 

P 100 
MAP 
bp re f 
P10 
PlOO 

i = O ( i t )  
0.2221 

Metrics 
MAP 

0.28 
0.0685 

0.75 
0 

0.07 

0.22 
0.0195 

0.75 
0 

0.01 

i = O  
0.0012 

2= l5 ( z t )  
0.0024 
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1 1 PlOO 1 0.88 1 0.29 1 

Topic # 

I I PlOO I 0.34 1 0 
I 

Table 3.3: Performa.nces of re-ranking on the TTL #3 

Metrics 
MAP 

3.4.4 Discussion 

Our experiments show that BACT as the post-processing does help when bpref (pro- 

portion of judged relevant documents that are retrieved) of the conventional IR system 

is low, for instance, 0.25 and 0.4356 in the TTL #2. For the TTL #1 and #3 where 

BACT failed, the average bpref  is very high, above 0.8. 

It seems as if our current use of BACT for re-ranking cannot scale to the broad 

coverage of relevant documents in the retrieved document set, especially in the case 

where bpref  is high. This is a common problem of NLP techniques when applied 

to  the IR task. However, employing machine learning and NLP techniques such as 

BACT as the post-processing step may help the conventional IR system when the 

recall is low, by re-ranking the retrieved documents towards a better performance. 

The biomedical IR system introduced in this chapter can be taken as a coarse 

level of information extraction. Starting from the next chapter, we will introduce 

the task of biomedical relation extraction and propose a system, which extracts more 

detailed and finer information relevant to a specific molecular biological relation from 

the biomedical text. 

i = O(if) 
0.6113 

i = 10 
0.2410 



Chapter 4 

Task Descriptions 

4.1 Introduction 

From Chapter 4 to 7, we will introduce the extraction of a specific biomedical relation: 

subcellular localization, and propose a system that includes various Natural Language 

Processing (NLP)  and machine 1ea.rning techniques to extract subcellular localizations 

from biomedical text. 

Subcellular Localization (SCL) is one typical biomedical relation. Bacterial 

SCL states where proteins locate in ba,cteria. For example: 

Example 4.1: E. Coli produces [LOCATION membrane-bound] [PROTEIN lytic trans- 

glycosylase] and localizes it in murein sacculus] . 

indicates a membrane-bound localization relation between the said bacterium and 

protein. The bacterial SCL is a key functional characteristic of proteins, since a 

protein has to be translocated to  the correct intra- or extra-cellular compartments or 

attach to a membrane in order to  function properly. This characteristic is essential to  

the understanding of the functions of different proteins and the discovery of suitable 

drugs, vaccines and diagnostic targets. Locations of bacterial proteins are listed in 

Figure 4.1 for Gram+ and Gram- bacteria, which was originally introduced in Figure 

1.2. 

This thesis introduces our approach for identifying bacterial SCLs from IVlEDLINE 

articles. Specifically, our task is to extract from biomedical axticles a relation among: a 
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LOCATION, e.g., membrane-bound, a particular BACTERIUM, e.g. murein sacculus, 

and a PROTEIN name, e.g. lytic transglycosylase. Therefore, the task is to identify 

a BPL function, a relation among bacterium, protein and location. 

Examples of expected system output are shown in Table 4.1. In many circum- 

stances, such relations are not explicitly given and thus this task may require some 

level of induction from the context. For instance, "binding of [PROTEINTqd] to the 

site I" infers a cytoplasmic localization from the fact that Site I is the site to which a 

DNA molecule binds and that the DNA locates a t  the cytoplasmic layer. 

This work is motivated by our collaboration with molecular biologists, who have 

built an BPL database for bacterial proteins. These BPLs are either curated manu- 

ally by the biologists or predicted by an automatic BPL prediction model from the 

most recent NCBI Taxonomy dataset1 of completely sequenced genomes. Our task is 

however to  extract BPLs from MEDLINE articles. 

The task is new to BioNLP in terms of the specific biomedical relation being 

sought. Therefore, we have to  build an annotated corpus from scratch and we are 

unable to  use existing BioNLP shared task resources in our experiments. 

The BPLs extracted by our proposed approach will be ultimately examined by 

human experts, populated into the SCL data.base and then used by the biologists to 

improve the accuracy of the SCL prediction model. We have worked closely with them 

to ensure that the output produced by our system is directly useful in expanding their 

protein localization database. 

Organism I Localization I Protein I Relevant Sentence ( Pubmed ID / 

Table 4.1: Examples of the BPL output 

- 

Metha. fervidus 
Halo. salinarium 

CW 
C 

slgA 
H ~ 7 1  

The genes (slgA) . . . 
The s a m ~ l e s  were.. . 

1712296 
9396829 
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Gram+ Gram- 

11 

cytoplasmic 
\ inner outer membrane 

secreted membrane membrane 

Figure 4.1: Illustration of locations of proteins with respect to  the bacterial cell 
structure. 

4.2 Description of Data Sets 

Our corpus of biomedical abstracts was obtained by collecting results from several 

queries to  the PubMed Central [12]. Two sample queries are provided in 4.2 and 4.3. 

Example 4.2: "pseudomonas aeruginosa" , extracellular, protein 

Example 4.3: "pseudomonas aeruginosa" , "outer membrane", protein 

where "pseudomonas aeruginosa" is a BACTERIUM Named-Entity (NE). Each search 

retrieved thousands of full papers in XML or plain text format. However we only use 

the abstracts of 12,143 papers, because abstracts are shorter and generally contain 

denser information, thus taking less processing time. 

We are also provided an initial set of training data,  consisting of 132 BPL examples 

with relevant BACTERIUM, PROTEIN LOCATION NEs, passages, PubMedCentral 

article ID (PMID), from biologists. To expand this small training set, we perform a 

bootstrapping-based data  curation process on the corpus. In each iteration, we apply 

a sentence classification algorithm to coarsely predict BPL relations and give them to 

biologists to review. Four iterations have been performed and 333 positive and 1059 

negative examples were obtained by this process. Details of the curation process will 

be described in 5.2. 
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We randomly separated the data  set into training and test sets. Table 4.2 lists 

numbers of sentences, relation instances, and relevant NEs in each data  set. This 

table will be shown again in Section 5.2.3. Note that the small size of our dataset 

is a common problem of most of bio-medical information extraction tasks. One of 

the contributions of this paper is that we show how we can get around this lack of 

training data  by using semi-supervised methods. 

Several biomedical ontology sources are available for looking up biomedical terms. 

The NCBI taxonomy database2 contains names of all organisms and their taxonomical 

information. It defines standard and variant genetic code tables for nuclear and 

organelle genomes, as well as their placements in the taxonomic tree. To date, the 

NCBI ta,xonomy database contains 232,631 taxonomy nodes including 772 archaea 

and 26,142 bacteria. 

The Unified Medical Language System (UMLS) provides biomedicine and health 

knowledge sources and associated software tools for building or enhancing electronic 

information systems as well as for computational research of knowledge representa- 

tion and information retrieval". UMLS consists of three Knowledge Sources: 1) the 

Metathesaurus, a large multi-lingual vocabulary database that includes biomedical 

and health related concepts, their various terms and relations among them; 2) the 

Semantic Network, an ontology of concepts and their relations; 3) the SPECIALIST 

lexicon, which provides lexical information needed for the Natural Language Process- 

ing systems. 

4.3 Evaluation metrics 

Relations can be either Partially Extracted or Fully Extracted. A relation is par- 

tially extracted if any relevant NE is recognized. Correspondingly in the full relation 

extraction, all relevant NEs are recognized. Since full and partial relation extractions 

provide different level of information about the target relations, they should be dis- 

tinguished and evaluated differently. In this thesis, evaluations are all based on full 

relation extraction by default. 
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Data set 
Positive training set 

1 Negative training set I 653 649 0 

- I 1 I 

Sentences 
505 

Positive test set 

NEs 

- - I I I 

Similarly, NEs can be either Partially Recognized or Fully Recognized. An 

NE is partially recognized if any word in the NE is recognized. Correspondingly in the 

full NE recognition, all words in an NE are recognized. It  is also worth emphasizing 

the difference between full and partial NE recognitions, in terms of the quality of in- 

formation they provide. In this thesis, evaluations are all based on full NE recognition 

by default. 

Standard definitions for Precision, Recall and F-score for the relation extraction 

are defined as follows: 

BPL Instances 
333 

100 

Negative test set I 146 

Precision = T P / ( T P  + FP) 
Recall = T P / ( T P  + F N )  

F1= 2 P R / ( P  + R) 

Relevant NEs 
768 

where TP is the number of examples with correctly extracted relations, FP is the 

number negative examples from which the system mistakenly extracts relations, FN 

is the number of positive examples from which the system fails to extract relations 

and TN is the number of examples that the system correctly predicts as negative. 

The evaluation metrics can be measured against either 1) only examples that 

contain relations, or 2) any examples. Many relation extraction tasks, such as [76, 77, 

311, only evaluate against examples containing relations. However, in real application 

situations, we need to analyze all examples, in which only a subset of examples have 

BPL relations. Therefore, we define Standard Evaluation method, which consists 

of the evaluation measures of Definition 4.1 - 4.3 against all test examples. We use 

this standard method to evaluate all models proposed in this report by default, except 

65 

Table 4.2: Training and test sets: numbers of sentences, BPL instances and relevant 
145 

160 

0 
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[Seed] - [ Find Occ~urences of Seed Tuples ) 
/- 

Generate New Seed Tuples 

\ [ ( ' 1 -  Generate Extraction Pattelns 1 F' 

Figure 4.2: High level architecture of Snowball system [2]. 

some new metrics to be introduced in Section 5. The genera.tive model we propose in 

Section 5 is trained on positive examples only, and thus it would not be reasonable 

to  test it against negative examples. 

4.4 Baseline Systems 

Three baseline systems are introduced in this section. The first baseline system is 

a naive approach, which basically assumes any example containing BACTERIUM, 

PROTEIN and LOCATION NEs has a BPL relation. The second one is a well-known 

information extraction system called Snowball. Experiments with these two baseline 

systems allow us to compare a naive approach to a well-established system. The third 

one is a discriminative model characterized by word-based features. 

4.4.1 Baseline 1: NE Co-occurrence 

Since the task is to identify relations among BACTERIUM, PROTEIN and LOCA- 

TION NEs, a simple method would be assuming that any sentence having all 

three NEs contains the BPL relation. This NE co-occurrence method would 

achieve very high recall, since intuitively a BPL relation could not exist without men- 

tions of the relevant NEs. However, our observation is that any sentence having all 

three NEs does not necessarily contain a BPL relation. It would be interesting to 

experiment with this method and to  measure its performance on precision. 

We implemented the NE-co-occurrence method and call it baseline 1. 
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4.4.2 Baseline 2: Snowball  

To compare our proposed system with only the naive approach introduced above 

does not seem convincing. We choose Snowball [Z] as the baseline 2, which is a 

well-established relation extraction system. Similar to our proposed system, Snow- 

ball extracts relations from text by starting from a small set of training examples of 

relations. However, Snowball is a bootstrapping-based system and applies only word 

surface patterns to  identify relations, utilizing no information from linguistic analysis. 

Examples are used to  generate patterns, which in turn result in new tuples being 

extracted from a collection of documents. Figure 4.2 illustrates how Snowball works 

in the bootstrapping fashion between the pattern extraction and tuple extraction. 

4.4.3 Baseline 3: Word-based Discr iminat ive mode l  

In Section 6, we will propose some discriminative models to extract BPL relations. 

We will also introduce a baseline system, which is a Support Vector Machine featured 

by uni-grams and bi-grams between PROTEIN and LOCATION/BACTERIUM NEs. 

It  is used exclusively for comparison with the proposed discriminative models. 



Chapter 5 

Generative Model 

5.1 Introduction to the BPL Relation Extraction System 

Starting from this chapter, we propose our BPL Relation Extraction system: BPLRE. 

This section provides a high-level overview of BPLRE. 
We believe that sentences containing biomedical functional relations can be distin- 

guished from others by certain syntactic and semantic patterns that could be learned 

statistically. These patterns represent linkages among entities and contain syntactic 

and semantic information, such as POS, chunking, parsing, named entities and on- 

tologies, all of which are used in this work. Furthermore, the implicit relations across 

articles would be identified by integmting partial relation information from individual 

articles. 

Our system takes structured MEDLINE documents (e.g., XML documents) and 

predicts BPL relations from the documents. A preprocessing module is applied to per- 

form syntactic and shallow semantic analysis, including syntactic parsing and biomed- 

ical NER, as illustrated in the left side of Figure 5.1. Within the module, a sentence 

classification coarsely identifies sentences with relations. The.module also includes an 

expert curation process, in which biologists annotate those classified sentences that 

actually contain BPL relations and indicate related BACTERIUM, PROTEIN and 

LOCATION NEs. The preprocessing module will be described in Section 5.2. 

We then extract BPL rehtions with a 3-tier approach as shown in the right side 

of Figure 5.1. Each tier will provide more accurate and complete relation information 
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than the previous tier. 

Tier I: A parsing-based generative model to extract relations from single sen- 

tences, by analyzing deep syntactic a.nd shallow semantic information (see the 

rest of Chapter 5). 

Tier 11: A discriminative model that integrates rich syntactic features from parse 

trees to extract relations from single sentences (see Chapter 6) .  Systems that 

combine the generative model and the discriminative model are also proposed 

in Chapter 6, in order to  further improve the overall system performance. 

Tier 111: Build a graphical representation of relations, find global and hidden 

relations from multiple sentences and documents, using a graph mode that will 

be introduced in Chapter 7. 

Finally, in Chapter 8 we draw conclusions on the proposed models and also discuss 

our contributions to  this research. 

5 .2  Preprocessing 

In the preprocessing phase, we collect and annotate MEDLINE abstracts, from which 

we create a small training set for the BPL extraction task, by inviting human experts 

(curators) to  review a set of candidate examples. 

5.2.1 Anno ta t ion  

Documents downloaded from PubMedCentral are in either XML or plain text for- 

mat. We first extract titles, author information, publication information, abstracts, 

contents, references and the like from these documents. The Charniak-Johnson re- 

ranking parser [14] is then applied for sentence boundary detection and fully syntactic 

parsing of the abstracts. 

The conceptual information consists of both general and domain-specific concepts. 

WordNetl provides us base forms: general words and ontological relations among 

'Wordnet is a large semantic lexicon database for English, http://wordnet.princeton.edu/ 
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them, including synonyms, hypernyms and holonyms. Domain-specific concepts are 

collected by a majority voting from the following two methods: 

0 Dicti0na.r~ lookup from the UMLS Metathesaurus, the NCBI Taxonomy, SWIS- 

SPROT and GO. This method introduces word sense ambiguity problem and 

does not identify new entities. We collect NEs related to the task from these 

sources and build our own dictionary. Numbers of entries of the dictionary from 

each source are in Table 5.1. 

0 Applying existing Named-Entity Recognition (NER) tools: Lingpipe2 and MetaMap 

Transfer (MMTx)" t o  training the entity identification model. Lingpipe is a free 

package that performs various tasks including language identification, sentence 

detection, Part-Of-Speech tagging, text clustering and NER. IClMTx is a tool to  

map arbitrary text to  concepts in UMLS Metathesaurus. 

Dictionary Sources I UMLS 1 NCBI I SwissProt / GO 1 

Table 5.1: Types and numbers of entries from dictiona,ry sources 

Number of protein names 
Number of bacterium names 
Number of location names 

We could also apply other machine learning methods to  the identification of 

domain-specific concepts, but this is not the focus of our research. Our major contri- 

bution will be the extraction of functional relations. 

5.2.2 Sentence Classification 

434,324 
94,020 

The initial set of the training data is 132 BPL examples with relemnt BACTERIUM, 

PROTEIN LOCATION NEs, passages, PubMedCentral article ID (PMID) from biol- 

ogists. However, most of these relevant passages are found in the body of the papers, 

while we only have annotations of the abstracts. 

- 

384,915 
- 

139,412 
- 

- 

- 

7 5 



CHAPTER 5. GENERATIVE MODEL 

New 

Initial set - 
~ ~ - ~ -  

Sentence Human 
Expert 

Reviews 

True PPLs 
Figure 5.2: The bootstrapping strategy to collect tra,ining data 

In order to get the first set of training data  from the abstracts, for each BPL 

example, we took sentences including both PROTEIN and LOCATION NEs from 

abstracts of relevant articles as relevant sentences (please note that these sentences 

may not be truely releva.nt) and remaining sentences as irrelevant. The ORGANISM 

name is excluded from the matching pattern in order t o  end up with more relevant 

sentences, since we assume all sentences are more or less talking about pseudomonas 

aeruginosa. At this point we got 72 relevant and 1197 irrelevant sentences from 148 

abstracts. 

We trained a classification model with these sentences by a Boosting Algorithm 

for Tree Classification (BACT) [53], which then predicted 614 sentences as relevant 

from the whole corpus. 

5.2.3 Training Set Curation 

From this point a bootstrapping strategy (as illustrated in Figure 5.2) is adopted to 

build up the training set and experiment with the relation extraction methods: in 

each round we passed predicted sentences/passages to the curator and then tested 

our proposed relation extraction method with the curated data. 

The curatZion interface is shown in Figure 5.3. The curator determined the sentence 

relevance, validations of BACTERIUM, LOCATION and PROTEIN nsmes, as well 

as appending valid PROTEIN names that are not identified by the Annotator. 

Together with four biologists, we made four rounds of prediction and curation. 

The first set v1.0 contains 75 predictions (chosen from 614 sentences), each includes 

one sentence and all BACTERIUM, PROTEIN and LOCATION NEs identified by 

the Annotator. 32 predictions are verified true. 

In the second set vl .1,  87 out of 149 predictions are true. The major differences 
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from the first set are: 

0 Each prediction includes a pa,ssage with two consecutive sentences. 

0 A Maybe choice is added to the passage relevance metric for the indirect evidence 

of an experimentally determined localization. Curators label a passage as Maybe 

when the relation was experimentally determined but not explicitly indicated 

in the example. 

0 The curators are able to  label the false positive and false negative identifications 

of PROTEIN names. 

In the third set v1.2 each predication contains multiple sentences which do not 

have to be consecutive. This set consists of 319 predictions, out of which 110 contain 

BPL relations. The fourth review set v2.0 contains 300 single-sentence predictions, 

among which 61 predictions are found true. Table 5.2 lists the numbers of BPL 

positive and negative predictions. 

Table 5.2: Numbers of predictions in the curated set 

A BPL prediction mqy contain multiple BPL relations. For instance, the fol- 

lowing example shows two BPL tuples in a single sentence: (Erwiniaamylovora, 

levansucrase, extracellular) and (Pseudon~onassyringae, levansucrase, extracellular). 

In this case, we duplicate the sentence as two positive examples in the curated set, 

with different relation annotations, each of which indicates one BPL tuple. 

Number of examples 
Posi t ive 
Negat ive 

To ta l  

Example  5.1 : ( Valid) 

The EPS levan is synthesized by the extracellular] enzyme [ P R O T E I N  levansucrase] 

in [ B ~ ~ T E ~ ~ u ~  Pseudomonas syringae] , [BACTERIulM Erwinia amylovora], and other bac- 

terial species. 

v1.0 
75 

539 
614 

vl.1 
87 
62 
149 

v1.2 
110 
219 
319 

v2.0 
61 

239 
300 

To ta l  
333 
1059 
1392 
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Data set I Sentences I BPL Instances I Relevant NEs I 
Positive training set 

Positive test set 

Table 5.3: Training and test sets: numbers of sentences, BPL instances and relevant 
NEs 

Negative training set 
Negative test set 

Example 5.2 shows an example of Maybe relation, in which glucan is a SUGAR 

not a PROTEIN NE. Example 5.3 is an invalid esample which does not contain a 

valid PROTEIN name. 

505 
100 

Example 5.2: ( M a y b e )  

The  [LOCATION periplasmic] cyclic beta-l,2-glucan of f B A  cTERIuM Agrobacterium tumefaciens] 

i s  believed to maintain  high osmolarity in the perzplasm during growth of the bacteria o n  

low-osmotic-strength media. 

653 
146 

Example 5.3: (Invalid) 

Collectively, these data suggest that the C. jejuni Cia proteins are secreted from the flagellar 

export apparatus. 

333 
65 

The positive and negative examples are then split into training and test sets as 

listed in Table 4.2, which is re-listed in Table 5.3 below, for the purposes of training 

and evaluating our proposed models. The training set is four times larger than the 

test set. We use these examples as standard training and evaluation sets for models 

proposed in this report. 

768 
160 

649 
145 

5.3 Generative Model 

0 
0 

5.3.1 Introduction 

Conventionally, parsing techniques are used to  find the grammatical structure of a 

sentence given a formal grammar, while Miller et al. [72] integrake both syntactic and 

semantic interpretations into the parsing process of a lexicalized probabilistic context- 

free parser (LPCFG). This generative model not only proves capable of performing 
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both syntactic and semantic processing, but also limits the propagation of errors by 

the mutual influence of syntactic and semantic interpretations. The parser is applied 

to the Template Entities and Template relation tasks of MUC-7 and achieved F-score 

a t  83.49% and 71.23% respectively. 

A Link Parser [ lo l l  is used to  build a syntactic bi-gram model, which represents 

the relation (or link) between two syntactic constituents in the sentence [12]. These 

bi-grams are then classified (using Naive Bayes and SVMs) based upon the relevance 

to the gene/protein interactions. Compared to LPCFG, the link parser is able to 

interpret larger sub-structures of sentences, for instance, subject to  verb, verb to  

object. However, the method proposed by the authors limited itself to a few types 

of links (e.g, subject and verb, verb and object, noun and its modifier, etc.) and 

does not involve the semantic information. Some recent work on applying parsing 

techniques to the information extraction task use dependency tree parsing. Compared 

to dependency tree, the link parser only produces partly derivable dependencies (the 

notion of head is essentially missing). In addition, since links are undirected and the 

notion head is abandoned, the link parser lacks of the central dependency and cannot 

generate hierarchy of dependencies. 

Culotta et al. proposed a kernel method for to the detection and classification of 

relations between entities [24]. This was done by estimating the similarity between 

the dependency trees between sentences in the training vs. the test data. Each node 

of the dependency tree consists of the word and its syntactic and semantic information 

(e.g., POS, entity type, WordNet hypernyms, semantic role labels, etc.) and matches 

against others in the kernel similarity function. 

Bunescu et al. applied the same kernel method as Culotta and Sorensen's, except 

that they argued that the relation information is concentrated on the shortest path in 

the dependency tree [ll]. They extracted the path between two entities along pred- 

icates and arguments in the dependency tree and enriched the path by the syntactic 

and semantic information of the passed-through nodes. The shortest path is there- 

fore an even smaller representation of the dependency tree than the smallest common 

subtree of two entities, thus more efficient as a tree kernel approach. 

All methods introduced above are seeking binary relations, which is generally 
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less challenging than the ternary BPL relation. In addition, most of them work 

on the newswire, which is generally much less dependent on domain knowledge than 

biomedical articles. We introduce a parsing-based generative approach that integrates 

syntactic parsing, entity type, WordNet ontological annotation and domain-specific 

information into the parse tree and trains a semantic parser with MEDLINE articles 

curated by domain experts. In addition, we propose the following methods to  minimize 

the problems of the generative model introduced in Section 6.2.1. 

Sparse  d a t a  problem.  The idea is to double the training set size by replacing 

protein, organism and location names with their NE tags. The other advmtage 

of this method is that we can make use of results of the NE recognizer in the 

test phase, in order to  largely increase accuracy of protein name identification. 

Very local re lat ion pa t t e rns .  After the prediction phase, we apply a discrim- 

inative model on features of the parse trees (mainly from links among entities) 

to capture more global patterns. 

In order to take the existing annotations as the additional information instead 

of constraints during the prediction phase, each prediction of the trained gener- 

ative model will be slightly adjusted by its agreement with the existing annota- 

tions. For instance, if both the trained model and NER agree that "IL-2" is a 

PROTEIN, the prediction probability will increase, and otherwise will decrease. 

In this section we propose a statistical parsing technique that simultaneously iden- 

tifies biomedical named-entities (NEs) and extracts subcellular localization relations 

for bacterial proteins from the text in MEDLINE articles. We build a parser that 

derives both syntactic and domain-dependent semantic information and achieves an 

F-score of 16.7% for the BPL extraction. This performance is generally not accept- 

able, since half of BPLs predicted by this pa-rser is incorrect (the precision is only 50%) 

and only 10% of actual BPLs are extracted. We propose a semi-supervised approach 

that incorporates automatically labeled data with noise to improve the F-score of our 

parser to 40.5%. 
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Our goal is to  automatically extract BPL predictions, which will then be reviewed 

by human experts and populated into the relation databa.se. As a result, precision of 

the predictions is more important than recall in order to  save human efforts, providing 

a reasonably high recall. Therefore, the semi-supervised approach greatly improves 

the overall performance of the BPL extraction. The precision is significantly increased 

to  from 50% to 88.9%) while the recall is improved to  26.2%. 

Evaluation metrics are described in Chapter 3. Since the parser is trained on 

the positive examples only, it would be reasonable to  evaluate it on positive test 

examples only. In this Chapter, all proposed parsing-based methods are evaluated 

against positive examples only, in order to  compare them with each other. The best 

performing method is then also evaluated against all test examples. 

5.3.2 Description of the Statistical Parser 

Similar t o  the approach in [72] and [54], our parser integrates both syntactic and 

semantic annotations into a single annotation as shown in Figure 5.4. A lexicalized 

statistical parser [5] is applied t o  the parsing task. The parse tree is a.ugmented by 

two types of semantic annotations: 

1 Annotations on relevant PROTEIN, BACTERIUM and LOCATION NEs. Tags 

are PRO TEIN-R, BA CTERIUM-R and LOCA TION-R respectively. 

2 Annotations on paths between relevant NEs. The lower-most node that spans 

both NEs is tagged as -LNK and all nodes along the path to the NEs are tagged 

as -PTR. 

5.3.3 Ternary vs. Binary relation 

Since binary relations are more feasible to represent on the parse tree, the BPL relation 

is split into two binary relations: 

0 BP: BACTERIUM and PROTEIN 

PL: PROTEIN and LOCATION 
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The PROTEI-N-WNP -LR& NP -RRB gene 

I 
PROTEIN-WJJ PROTEIN-FVNNP -LRB- NNP -RRB- BACTERIUM-WNNP BACTER~UM-WNNP 

I I 
phospholipase 

I 
C PLC 

I 
Pseudomonas 

I 
aeruginosa 

Figure 5.4: An example of parsing results 

The BACTERIUM-LOCATION relation is ignored since it is given knowledge 

as illustrated in Figure 1.2. This dual-binary-relation approach also makes it easier 

t o  capture BPLs across sentences (i.e., a BPL occurs in multiple sentences), since 

in these cases it is more likely to  see two names (e.g., only protein and prokaryote 

names) instead of all three in a single sentence. 

The BPL relation can be predicted by a fusion of BP and PL once they are 

extracted. The fusion of PL and BP relations is a process to  generate the target BPL 

relation from already extracted PL and BP relations. A PL and a BP relation will 

be combined if they appear in the same abstract and both PROTEIN names refer to 

the same protein. 

For instance (PMID: 15868041): 

Example 5.4: [pRoTE1,v KatB] was localized to the [LOCATION cytoplasm], while Ka tA ,  

the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A 

P. aeruginosa] [PROTEIN katB] mutant  demonstrated 50% greater sensitivity 

to  hydrogen peroxide than  wild-type bacteria, suggesting that K a t B  is  essential for optimal 

resistance of P. aeroginosa to  exogenous hydrogen peroxide. 

Suppose a BP relation between KtaB . . . . . .  and cy top lasm . . . . . . . . . .  is identified from the first sentence 

and a PL relation between K t a B  . . . . . .  and P. aeruginosa from the second sentence. These 
. . , . . . . . . . . . . . .  



CHAPTER 5. GENERATIVE MODEL 74 

two binary relations would imply a BPL(KtaB, P. aeruginosa, cytoplasm). 

One problem with this "dual-binary-relation" approach is that when a protein as- 

sociates with more than one organism, we may end up with the wrong BACTERIUM- 

LOCATION relation. An analysis on how the problem affects the overall performance 

will be discussed later. 

5.3.4 Recovery of Incomplete Parse 

The initiative of predicting binary relations is straightforward: a PROTEIN and a 

BACTERIUM (or LOCATION) NEs compose a BP (or PL) relation if all nodes on 

the path between them are annotated with -PTR labels. However, a sentence with 

relation may not be correctly parsed but we still wish t o  find the right relation from its 

parse. We apply two techniques in a row to make predictions from incomplete parses: 

Relation Recovery and NE Recovery. With Relation Recovery, any nodes on the 

path between PROTEIN and BACTERIUM (or LOCATION) NEs are annotated as 

BP(or PL)-PTR if they are not. With the N E  Recovery, an NP is annotated as an 

NE (i.e., all non-leaf nodes under the N P  are annotated with NE tags) if: 

a.ny of its descendent nodes is annotated with the NE tag, or 

it is located a t  one end of a path that,  except for this NP, is fully annotated 

with NE and relation tags. 

For example, Figure 5.5 shows the actual parsing results of the sentence in Figure 

5.4. Three nodes in circles are incorrectly annotated: 1) the relation tag is missing 

on PP; 2) "C" is not predicted as part of a PROTEIN NE; 3) "gene" is mistakenly 

identified as a PROTEIN NE. We attempt to recover the incomplete parse tree in the 

following steps corresponding to  the two techniques introduced above. 

Firstly, with the relation recovery, the node PP in the circle is added with the 

relation ta.g B P - P T R .  Now two BP relations can be predicted from this example: 

BPI (phospholipase, Pseudomonas aeruginosa) and BP2 (gene, Pseudomonas aerugi- 

nosa), as linked by dashed lines in Figure 5.5. Secondly, with the NE recovery, we 

add the PROTEIN NE tag to the word "C", since "phospholipase" is annotated with 

the NE tag by the parser, so is the NP "phospholipase C". In addition, the word 
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Figure 5.5: An example of parsing results 

"gene" is in our hand-built stop-word list of PROTEIN NEs and therefore the rela- 

tion BP2 is then removed. The final relation prediction we make from this example 

is BP(phospho1zpase C, Pseudomonas aeruginosa). 

5.3.5 Confidence of Rela t ion  Predic t ion  

Bikel's parser produces a log probabilistic confidence score CT for each parse T. How- 

ever, cl does not measure the confidence of a relation prediction, which only covers 

a sub-tree of the entire parse tree. Instead of modifying Bikel's parser to produce 

the log probability of any sub-tree, we approximately assign a confidence score of a 

sub-tree t from C T :  

where l(t) and 1(T) denote the number of words covered by the sub-tree t and the 

entire tree T respectively, as illustrated in Figure 5.5. 

In addition, a penalty is applied to ct of relations recovered by the techniques 

introduced in Section 5.3.4. A penalty coefficient pt is defined as: 
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where npath denotes the number of nodes on the path, and nt,, the number of 

nodes being annotated with NE or relation tags by the parser (before any recovery 

is applied) along the path. For instance, the relation RP~(phospholzpase C, Pseu- 

domonas aeruginosa) in Figure 5.5,  nta,, = 9 and npath = 11. The new definition of 

Data set 
Positive training set 

Positive test set 
Negative training set 

Negative test set 

ct now is: 

Table 5.4: Training and test sets: numbers of sentences, BPL instances and relevant 
NEs 

BPL Instances 
- 333 

6 5 
649 
145 

Sentences 
505 
100 
653 
146 

ct = CT + log L ( t )  x n t a g s  

L (T )  npath 

Relevant NEs 
768 
160 
0 
0 

When fusing two binary relations (from the same sentence with the same PRO- 

TEIN NE) into a BPL relation, we add confidence scores of BP and PL as the confi- 

dence score of BPL. Our experiments show that the confidence score of the majority 

of predicted BPL relations is between (-3.0, -1.0). An observation indicates that any 

two binary relations containing the same PROTEIN NEs from the same sentence have 

great chance to form a valid BPL relation. Therefore, we set a threshold -2.5 on the 

confidence score of BPL predictions, such that any BPL predictions with confidence 

score less than -2.5 will be ignored. 

5.3.6 Extraction Using Supervised Parsing 

We first experiment with a fully supervised approach by training the parser on the 

BP/PL training set and evaluating the parser on the test set. Table 4.2 that summa- 

rizes the tra.ining and test sets is listed again in Table 5.4 for an easy reference. 

Evaluation results in Table 5.5 show low precision and recall on binary predictions. 

When combining binary relations, precision on ternary predictions increases but recall 

drops. 
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ods. The training data  is described in Table 4.2 

Method 

Baseline 1 

Looking into the results of the parser, we find that the quality of the syntactic 

annotations is poor. Figure 5.6 shows the parse tree of the sentence in Example 

5.5 generated by the supervised parser, in which some major syntx t ic  constituent 

dependencies are incorrect as highlighted by dashed regions. The correct dependencies 

are indicated by dashed arrows. Moreover, recall of the PROTEIN NER is only 13.5% 

due to  1) too few PROTEIN NEs in the training set; 2) not using available protein 

name sources. 

Example 5.5: W e  now show that [PROTEIN pagP] and i ts  [BACTER.I(II\ /I  Escherichia coli] 

homolog (crcA)  encodes a n  unusual enzyme of lipidA biosynthesis localized in the [LOCATION 

outer membrane].  

Performance (Precision/Recall/F-score)(%) 

We also find that most paths between PROTEIN and BACTERIUM/LOCATION 

NEs are not complete, as shown in Figure 5.6, due to incorrectly identified and missed 

NEs. The lack of syntactic and semantic information in the training set is also one of 

reasons that result in incomplete paths. 

In summary, a major reason for above observed problems is the lack of training 

B P  
27.1/56.5/36.6 

Supervised (curated data  only) 

data, which as we said earlier is a common problem in the bio-NLP area. 

Semi-supervised (curated data  + newswire) 
Semi-Supervised (noisy data  only) 

semi-supe&ised (curated data  + noisy data) 

P L  
338.9/69.0/49.8 

B P L  
14.1/61.5/23.0 

Table 5.5: Evaluation results of supervised and semi-supervised parsing-based meth- 

8.7/7.1/7.8 
86.7/46.4/60.5 
85.7/66.7/75.0 

28.0/15.5/20.0 
69.2/40.9/51.4 
73.3/50.0/59.5 

16.7/3.3/5.5 
83.3/16.7/27.8 
88.9/26.2/40.5 
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I 
PRP 
/ 
We now I show NP CC W-.- ---, 

- ,' /" \ 
its NNP N k S  

/ \ I / 
\ - -_---  

Escherichia colt crch 

Figure 5.6: An example of parsing results from the supervised parser. The parse tree 
includes both syntactic and semantic (NEs and relations) annotations. 

5.3.7 Ex t r ac t ion  Using Semi-supervised Learn ing  

Training S e t  Expans ion  w i t h  Newswire D a t a  

In order to  improve syntactic parsing performance, we included the Penn Treebank 

corpus4 into our training set. The Penn Treebank contains nearly 1 million syntacti- 

cally parsed sentences. Evaluation results are shown in Table 5.5. 

We observed a few typical sentences and found the accuracy of syntactic annota- 

tions is highly improved. For instance, the sentence in Example 4.5 is correctly parsed 

in terms of syntactic dependencies among constituents, as shown in Figure 5.7. How- 

ever, the overall performance is significantly worse than the supervised system. The 

reason is that the feature distributions of PROTEIN, ORGANISM and LOCATION 

names significantly decrease due to the large size of non-biomedical articles. 

Training s e t  expansion wi th  noisy d a t a  

Experiments with purely supervised learning show that our generative model requires 

a large curated set to minimize the sparse data problem, but domain-specific anno- 

tated corpora are generally rare and expensive. However, there is a huge source of 

4The  Penn Treebank Project ,  http://www.cis.upenn.edu/ treebank/ 
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/ ' //-------- 
V P 
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NP -LKB- NP -RRB- encodes 
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Figure 5.7: An example of parsing results by the supervised parser with additional 
newswire training examples. Note that the parse tree fails to  include any semantic 
(NEs and relations) annotations. 

unlabeled MEDLINE articles available that may meet our needs, by assuming that 

any sentence containing BACTERIUM, PROTEIN and LOCATION NEs has the 

BPL relation. We then choose 14,008 such sentences from a subset of the MEDLINE 

database as the training data. These sentences, after being parsed and BPL relations 

inserted, are in fact the very noisy data  when used to train the parser, since the as- 

sumed relations do not necessarily exist. The reason this noisy data  works a t  all is 

probably because we can learn a preference for structural relations between entities 

that are close to each other in the sentence, and thus distinguish between competing 

relations in the same sentence. 

Two experiments were carried out corresponding to choices of the training set: 1) 

noisy data only, 2) noisy data and curated training data. 

Evaluation results in Table 5.5 show that,  compared to supervised parsing, our 

semi-supervised methods dramatically improve precision and recall for both binary 

and ternary predictions. For ternary predictions of the semi-supervised method 

trained on the curated data and noisy data, recall increases from 10% to 26.7% and 
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precision increases from 50.0% to  88.9%. Evaluation results suggest that BP pre- 

dictions benefit more from the semi-supervised learning. They also show that the 

inclusion of curated data in the semi-supervised method also improves the overall 

performance. 

We also experimented with training the semi-supervised method using noisy data 

alone, and testing on the entire curated set, i.e., 333 and 286 sentences for BP and 

PL extractions respectively. Note that we do not directly tra.in from the training set 

in this method, so it is still "unseen" data for this model. The F-score of ternary 

predictions is 25.1%. 

We name the best-performing parser, the one trained on noisy data  and curated 

training data, ZParser ,  for easy reference later on. 

As we discussed before, evaluation results given above are based on positive exam- 

ples only. We also test the best-performing parser, ZParser, against all test examples 

(see Table 4.2). BPL prediction results of ZParser and two baseline systems intro- 

duced in Section 4.4: NE co-occurrence and Snowball, are listed in Table 5.6. 

1 NE co-occurrence I Snowball I ZParser 1 

Table 5.6: Evaluation results on BPL predictions of the NE-co-occurrence baseline 
system, Snowball and the best-performing ZParser aga,inst all test examples 

Precision (%) 
Recall (%) 
F-score (%) 

The NE co-occurrence baseline takes BACTERIUM-PROTEIN-LOCATION tu- 

ples that are identified by the automatic NER as BPL ~a~ndida tes  and therefore 

achieves the highest recall among all three systems listed in Table 5.6. Reasons that 

this baseline does not receive 100% recall are: 1) the performance of NER, especially 

PROTEIN NER, is not significantly good; 2) not all true NEs are relevant to BPL 

relations; 3) the system cannot extract BPLs across multiple sentences. Due to the 

large number of FPs, the NE co-occurrence system of course gets very low precision 

and accuracy, which make its F-score the lowest among all three systems. 

5.9 
61.5 
10.8 

66.6 
18.2 
28.6 

58.6 
26.2 
36.2 
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Snowball seems very careful when making predictions, thus obtaining highest pre- 

cision but lowest recall. Our best-performing ZParser achieves the best F-score among 

all the systems. Its precision is close to  that of Snowball, while the recall outperforms 

Snowball by 7.6%. 

To assess the statistical significance of the improvements achieved by ZParser, we 

also perform a two-tailed significance test on the results of Baseline 1 and ZParser, us- 

ing an implementation of a computer-intensive, stratified approximate-randomization 

test [120]. The significance test on positive and negative test data  shows that the 

improvements on F-score are statistically significant with p value of 8 x 

5.3.8 Bio-NER Shared Task 

The NER module of the Annotator consists of existing NER tools (Lingpipe and 

MMTx) and dictionary-lookup from UNILS, NCBI Taxonomy, SwissProt and GO. 

However, it introduces many false NEs thus performing poorly on precision. Table 

5.7 lists types and numbers of enties from each dictionary source. 

Dictionary Sources I UMLS I NCBI I SwissProt I GO I 
Number of protein names 1 434,324 1 - 1 139,412 

Number of bacterium names 94,020 384,915 - 
1 Number of location names I - 1 - 1 - 1 75 1 

Table 5.7: Types and numbers of entries from dictionary sources 

The parsing-based relation extraction method introduced in this chapter actually 

identifies NEs as the same time, since the semantic parser implemented to  identify 

NEs produces a parse tree with PROTEIN NE annotations. Therefore, it would be 

capable of improving the performance of the current NER module. 

To the initial training and test sets (2,000 and 404 abstracts respectively) are from 

the COLING/BIONLP shared task5. 

A few experiments on the parsing-based NER with different methods were carried 

out as listed below. Evaluation results are in a form of Recall/Precision/F-Score of 
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full name matching. The best performing system in the shared task are: 69.01% / 
79.24% / 73.77%. F-score of the worst system is around 48%. 

1 Baseline. Dictionary-lookup only: 54.31% / 31.65% / 40.00%. The dictionary 

was collected from UMLS, SwissProt and iProClass. 

2 Fully Supervised learning. The training set was from BIONLP only. 61.52% / 
61.93% / 61.72%. 

3 Method 1 + 2. The training set: 1) the BIONLP training set + 2) the BIONLP 

test set with dictionary-lookup. 57.89% / 42.13% / 48.77%. 

Method 4 and 5 train the parser with the additional noisy data as introduced in 

Section 5.3.7 : 

4 The training set consists of 1) the BIONLP training set, 2) the noisy data  set. 

63.58% / 47.7% / 54.51%. 

5 Same as Method 4, except multiplying the BIONLP training set 5 times to 

"emphasize" the human-curated examples. 63.76% / 51.29% / 56.85%. 

The methods introduced above take advantage of BPL relations to find PROTEIN 

NEs. However, other types of NEs may also indicate occurrences of PROTEIN NEs. 

Method 6 and 7. build paths between PROTEIN and another NEs (CELL-TYPE and 

DNA respectively). 

6 Based on Method 2, we build additioned paths between PROTEIN NEs and 

CELL-TYPE NEs on the parse tree in the training phase. 63.54% / 60.44% / 
61.95%. 

7 Same as Method 6, except that we build paths by linking DNA NEs and PRO- 

TEIN NEs. 62.41% / 60.12% / 61.24%. (CELL-TYPE and DNA are largest 

NE types after PROTEIN in the BIONLP training set) 
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The dictionary-lookup results in both low precision and recall. One of the reasons 

is that NE annotations in the BIONLP sets are not a t  all consistent. For instance, 

"cytokine" appears 98 times in the training set, while only 55 of them are annotated 

as PROTEIN NEs. This word-sense disambiguation problem has to  be solved by 

looking a t  the contexts in which the NEs occur. 

Furthermore, noisy data  slightly improves recall but largely decreases precision. 

It seems that the BIONLP data  sets are more sensitive to the noisy data than our 

own corpus, on which our previous experiments with noisy data  have shown a great 

improvement on NER. 

Finally, other types of NEs do not provide much help in recognizing protein names. 

The reason is that we do not have a meaningful relation between these NE types from 

the molecular biology point of view, and this is also why we succeeded with our own 

corpus - with the BPL relation. 

5.3.9 Discussion 

Methods and experiments described in this section have already shown promising and 

exciting results of the proposed semantic parsing approach on BPL relation extraction. 

At this stage each BPL relation is extracted from a single document. 

In this chapter we introduce a statistical parsing-based method to extract biomed- 

ical relations from MEDLINE articles. We make use of a large unlabeled data set 

to  train our relation extraction model. Experiments show that the semi-supervised 

method significantly outperforms the fully supervised method with F-score increasing 

from 16.7% to  40.5%. 

However, generative models are generally limited by the sparse data  problem due 

to  the significant number of zero occurrences of joint events. In addition, since ZParser 

is built from very local contexts: head constituents, modifiers and parent nodes, it may 

not be able to capture more complex relation patterns. Discriminative models, on the 

other hand, are not limited by local characteristics, but usually have error propagation 

problems. In the next chapter, we will introduce a discriminative model [65] which 

takes as input the examples with gold named entities and identifies BPL relations on 

them. A combina,tion of the generative model and the discriminative model, which 
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attempts to make use of advantages of both models, is also implemented to further 

refine the relation extraction results. 



Chapter 6 

Discriminative and Hybrid Models 

6.1 Discriminative Model 

In this chapter, we propose a ternary relation extraction method1 primarily based on 

rich syntactic information. We extract BACTERIUM-PROTEIN-LOCATION (BPL) 

relations from the text of biomedical articles. Different kernel functions are used with 

an SVM learner to integrate two sources of information from syntactic parse trees: (i) 

specific syntactic features extracted along the path between entities, and (ii) features 

from entire trees using a tree kernel. We use the large number of syntactic features 

that have been shown to be useful for Semantic Role Labeling (SRL) and apply them 

t o  the relation extraction task. Our experiments show that the use of rich syntactic 

features outperforms shallow word-based features. 

6.1.1 Introduction 

Previous work in the biomedical relation extraction task [97, 6, 321 suggested the use 

of predicate-argument structure by taking verbs as the center of relation expressions2. 

In contrast, in this chapter we directly link PROTEIN NEs to their locations. Claudio 

et al. [17] proposed an approach that solely considers the shallow semantic features 

extracted from sentences. 

'This is a joint work with Yudong Liu a t  the Natural Language Processing La,boratory, Simon 
Fraser University. 

2There are several other papers that exploit predicate-argument structure for relation extraction, 
but since our approach is substantially different and due to lack of space, we do not cite them all 
here. 
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For relation extraction in the newswire domain, syntactic features have been used 

in both a generative model [71] and a discriminative log-linear mode.1. [49]. In contrast, 

we use a much larger set of syntactic features extracted from parse trees, many of 

which have been shown useful in SRL. 

Kernel-based methods have been used for relation extraction on various syntactic 

representations. Culotta and Sorensen applied a kernel method to  the detection and 

classification of relationships between entities [24], by estimating the similarity be- 

tween the dependency trees of sentences. Each node of the dependency tree consists 

of the word and its syntactic and semantic information ( e g ,  POS, entity type, Word- 

Net hypernyms, semantic role labels, etc.) and matches against others in the kernel 

similarity function. Bunescu and Mooney applied the same kernel method as Culotta 

and Sorensen's, except that they argued that the relation information is concentrated 

on the shortest path in the dependency tree [ll]. They extracted the path between 

two entities along predicates and arguments in the dependency tree and enriched 

the path with the syntactic and semantic information of the passed-through nodes. 

The shortest path is therefore an even smaller representation of the dependency tree 

than the smallest common subtree of two entities, thus more efficient as a tree kernel 

approach. 

In contrast we explore a much wider variety of syntactic features in this work. 

To benefit from both views a composite kernel [122] integmtes the flat features from 

entities a,nd structured features from parse trees. In our work, we also combine a 

linear kernel with a tree kernel for improved performance. 

Our proposed discriminative models that use rich syntactic features will also be 

compared with bag-of-word approaches. Nair and Rost build a subcellular classifier 

on keywords of functional annotations of proteins in the SWISS-PROT database [76].  

They first retrieve keywords from the protein annotations and then map each pro- 

tein annotation onto a keyword-based vector space. Stapley et al. represent yeast 

proteins as vectors of weighted terms from Medline documents mentioning their re- 

spective genes [105]. The term weights of a vector are functions of their frequencies 

within the document collection as a whole and the frequency within the relevant doc- 

uments. SVMs are applied in both papers as the classifier using bag-of-word features. 
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Figure 6.1: An example of BPL ternary relation in a parse tree 

To compare with the proposed discriminative models, we implement a bag-of-word 

model, the Baseline3. Experiments in Section 6.1.4 will show that models using rich 

syntactic features outperform word-based models. 

6.1.2 SRL Features for Information Extraction 

Figure 6.1 shows one example illustrating the ternary relation we are identifying. In 

this example, "Exoenzyme S" is a PROTEIN NE, "extracellular" a LOCATION NE 

and "Pseudomonas aeruginosa" a BACTERIUM NE. Again our task is to  identify 

whether there exists a BPL relation among these three NEs. 

To simplify the problem, as was done in Chapter 5, we first reduce the BPL ternary 

relation extraction problem into two binary relation extraction problems. Specifically, 

we split the BPL ternary relation as follows: 

0 BP: PROTEIN and BACTERIUM 

0 PL: PROTEIN and LOCATION 

Notice that the BACTERIUM-LOCATION relation is ignored because it is irrel- 

evant to  PROTEIN and less meaningful than B P  and PL relations. Based on this 

simplification, and following the idea of semantic role labeling, we take the PROTEIN 

NE in the role of the predicate (verb) and the BACTERIUM/LOCATION NE as its 

argument candidates in question. Then the problem of identifying the binary relations 

of BP and PL has been reduced to  the problem of argument classification given the 
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predicate and the argument candidates. The reasons that we pick PROTEIN NEs as 

predicates are: 

0 We assume PROTEIN NEs play a more central role in linking the binary rela- 

tions to the final ternary relations. 

Neither BACTERIUM nor LOCATION NE is appropriate for being predicate, 

since the relation BACTERIUM-LOCATION is known and not our interest. 

Compared to a corpus for the standard SRL task, there are some differences: first 

is the relative position of PROTEIN and BACTERIUM/LOCATION NEs. Unlike 

the case in SRL, where arguments locate either before or after the predicate, in this 

application it is possible that one NE is embedded in another. A second difference is 

that a predicate in SRL scenario typically consists of only one word; here a PROTEIN 

NE can contain up to 8 words. 

Note that we do not use the PropBank data  set in our model a t  all, since it is not 

a biomedical corpus. All of our training data  and test data  is annotated by domain 

expert biologists and parsed by Charnia.k-Johnson's parser [14]. When there is a 

misalignment between the NE and the constituent in the parse tree, we insert a new 

NP parent node for the NE. 

6.1.3 System Description 

- 
Relationship 

I I 

SRL-based Relatlonshlp 
Extraction System , . -------- . . -  -----. 

L _ _ _ _ _ - - - - - - - - - - - ,  

Figure 6.2: High-level architecture of the discriminative model 
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each word and its Part-of-Speech (BPS) tag of the PRO NE 
head word (hw) and its BPS of the PRO NE 
subcategorization that records the immediate structure that expands from the PRO 

NE. Non-PRO daughters will be eliminated 
BPS of parent node of the PRO NE 
hw and its BPS of the parent node of the PRO NE 
each word and its BPS of the ORG NE (in the case of "BP " relation extraction). 
hw and its BPS of the ORG NE 
BPS of parent node of the ORG NE 
hw and its BPS of the parent node of the ORG NE 
BPS of the word immediately beforelafter the ORG NE 
punctuation immediately beforelafter the ORG NE 
feature combinations: hw of PRO NEhw of ORG NE, hw of PRO NEBPS of hw of 

ORG NE, BPS of hw of PRO NE-BPS of hw of ORG NE 
path from PRO NE to ORG NE and the length of the path 
trigrams of the path. We consider up to 9 trigrams 
lowest common ancestor node of the PRO NE and the ORG NE along the path 
LCA (Lowest Common Ancestor) path that is from the ORG NE to its lowest common 

ancestor with PRO NE 
relative position of PRO NE and 0R.G NE. In parse trees, we consider 4 types of 

positions that ORGs are relative to PROS: before, after, inside, other 
LTAG-based features along the path from PRO NE to ORG NEt 

Table 6.1: Features adopted from the  SRL task. PRO: PROTEIN; ORG: BAC 
TERIUM 

Figure 6.2 shows an overview of the  discriminative model. T h e  input t o  our sys- 

tem consists of titles and abstracts that  are extracted from MEDLINE records. These 

extracted sentences have been annotated with the  NE information (PROTEIN, BAC- 

TERIUM and LOCATION). T h e  syntactic Annotator inserts the  head information 

into the  parse trees by using the  Magerman/Collins head percolation rules. T h e  

main component of the  system is our SRL-based relation extraction module, where 

we first manually extract features along the path from the PROTEIN NE t o  the 

BACTERIUM/LOCATION NE and then train a binary SVM classifier for the binary 

relation extraction. Finally, we combine the  extracted binary relations t o  the  ternary 

relations, the  same process as introduced in Section 5.3.3. 
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subcategorization that records the immediate structure that  expands from the ORG 
NE. Non-ORG daughters will be eliminated 
0 BPS of the word immediately beforelafter the PRO NE* 
0 punctuation immediately beforelafter the PRO NE* 

if there is an VP node along the path as ancestor of the PRO NE 
if there is an VP node as sibling of the PRO NE 
if there is an  V P  node along the path a s  ancestor of the ORG NE* 
if there is an V P  node as sibling of the ORG NE* 
path from PRO NE to LCA and the path length (Ll) 
pa,th from ORG NE to LCA and the path length (L2) 
combination of L1 and L2 
sibling relation of PRO and ORG 
unigrams between PRO N E  and ORG NE; stop words are selectively filtered. 
bigrams between P R O  NE and ORG NE* 

0 distance between PRO NE and ORG NE in the sentence. ( 3 valued: 0 if nw (number 
of words) = 0; 1 if 0 < nw <= 5; 2 if nw > 5) 

combination of distance and sibling relation 

Table 6.2: New features used in the SRL-based relation extraction system. 

As a discriminative feature-based relation extraction system, identification of im- 

portant features is crucial to  the task. After a series of feature calibrations, we 

proposed features for BP/PL relation extraction that are listed in Table 6.1 and Ta- 

ble 6.2. Features marked with an asterisk are used for BP but not for PL relation 

extraction. Features with no mark are used for both. LTAG (Lexicalized Tree- 

Adjoining Grammar) based features are extracted in the same way as described in 

[64l. 

6.1.4 Expe r imen t s  a n d  Evaluat ion 

Expe r imen ta l  Resul t s  

The data  set used to train and evaluate proposed models was shown in 4.2, which is 

re-listed here in Table 6.3. To ensure significance of our results, we do 5-fold cross 

validation3 in all our experiments. 

3While some researchers use 10-fold cross validation, we have sufficient data for 5-fold cross 
validation, an evaluation scheme which is often used by other researchers in the field [76, 211. 
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1 Positive test set 1 100 1 6 5 I 160 1 

1 Data set 
- 

Positive training set 

I " I I I I 

Table 6.3: Training and test sets: numbers of sentences, BPL instances and relevant 
NEs 

Sentences 
505 

Negative tra.ining set 
Negative test set 

-- 
649 
145 

653 
146 

Table 6.4: Percent scores of Precision/Recall/F-score for PL, B P  and BPL relation 
predictions. 

BPL Instances 
333 

0 
0 

We built several models to compare the relative utility of the various types of rich 

syntactic features we can exploit for relation extra,ction. For various representations, 

such as feature vectors, trees and their combinations, we applied different kernels 

in a Support Vector Machine (SVM) learner [21]. Specifically, we use Joachims' 

SVM_light4 with default linear kernel to  feature vectors and Moschetti's SVM-light- 

T K - I . ~ ~  with the default tree kernel. The models are Baseline1 and Baseline3 as 

introduced in Section 4.4. Baseline2 is Snowball, an established data-mining system. 

Baseline1 is a naive approach that assumes that any example containing PROTEIN, 

LOCATION NEs has the PL relation. The same assumption is made for BP and BPL 

relations. 

Baseline3 is a purely word-based system, where the features consist of the unigranis 

and bigra,ms between the PROTEIN NE and the BACTERIUM/LOCATION NEs 

Relevant NEs 
768 

Method 

Baseline1 
Baseline3 

PAK 
SRL 
TRK 

TRK+SRL 

4http://svmlight.Joachims. org/ 

http://ai-nlp.info.un~iroma2.it/moschittz/TK1.2-software/Tree-Kernel. htm 

BPL 
Prec 
5.9 
57.1 
66.0 
70.6 
79.6 
75.3 

PL 
Prec 
9.6 
62.4 
71.0 
72.9 
69.8 
74.9 

B P  
Rec 
61.5 
67.1 
51.6 
49.8 
48.9 
55.0 

Prec 
5.0 
57.9 
69.0 
66.0 
64.2 
73.9 

F 
10.8 
61.7 
57.9 
58.4 
60.5 
63.6 

Rec 
69.0 
61.0 
52.4 
56.9 
60.2 
58.6 

F 
16.9 
61.7 
60.3 
63.9 
64.7 
65.8 

Rec 
56.5 
59.7 
49.2 
52.4 
62.1 
57.6 

F 
9.2 
58.8 
57.5 
58.4 
63.1 
64.8 



CHAPTER 6. DISCRIMINATIVE AND HYBRID MODELS 92  

inclusively. 

The P A K  system uses the predicate-argument structure kernel (PAK) based method. 

PAK was defined in [75] and only considers the path from the predicate to  the target 

argument, which in our setting is the path from the PROTEIN to the BACTERIUM 

or LOCATION NEs6 

The S R L  is an SRL system which is adapted to use our new feature set. A default 

linear kernel is applied with SVM learning. 

The T R K  system is similar to PAK system except that the input trees are entire 

parse trees instead of PAK paths. 

The T R K + S R L  combines full parse trees and manually extracted features and uses 

the kernel combination. 

The SVM-light produces a Confidence Score for each relation prediction. We 

take relations with a confidence score larger than 0 as positive predictions, otherwise 

as negative predictions. 

We na.me the best-performing discriminative system, TRK+SRL, as Y S R L  for 

easy reference. 

6.1.5 Discussion 

Table 6.4 shows the results we obtained when running on our data set with 5-fold cross 

validation. We evaluated the system performance for ternary relation extraction as 

well as the extraction of the two binary relations. The total accuracy of finding the 

correct ternary relation in the test data using rich syntactic features is 63.6% and 

we can see that it outperforms shallow word-based features, which obtains 61.7% 

accuracy.7 

By comparing the P A K  model and SRL model, we observe that with the same 

path, a system based on manually extracted features significantly boosts precision 

and accuracy and therefore obtains a significantly better overall performance than 

6We also experimented with PAK+SRL but since the results were similar to using only SRL, 
we do not discuss it here. 

7We highlight precision and accuracy of finding the ternary relations in text, i.e. distinguishing 
between positive and negative examples of relations as these are the most important figures for the 
domain expert biologists. 
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the PAK model. In contrast to the baseline systems, the TRK model obtains the 

highest precision but lower recall on ternary predictions. This means that the sub- 

structures considered by TRK are good in discriminating the instances but may not 

be necessary. In YSRL, the addition of SRL features boosts the overall performance 

of TRK system to the best overall F-score by moderating precision and recall. 

The gaps between models reinforce the fact that the path between NEs in the parse 

tree is very important for the relation extraction task. In particular, it illustrates that 

along this path, SRL-based syntactic features are discriminative as well as necessary 

for this task; In addition, our experiments showed that some features outside this 

path can contribute t o  the task to  some extent. In Baseline1 all examples in the test 

set are predicted to  have the BPL relation and thus the Recall is always 73.8% (the 

remaining 26.2% are across multiple sentences). However, negative examples in our 

test set normally contain all NEs annotated by the automatic annotator, thus causing 

from a few to tens of false predictions, which result in very low precision a~nd F-score. 

We also attempted to train YSRL with noisy data  we trained, but its performance 

dramatically decreased. This experiment indicates that YSRL does not work as well 

as ZParser does with noisy data. 

6.1.6 Conclusion 

In this section we explored the use of rich syntactic features for the relation extraction 

task. In contrast with the previously used small set of syntactic features for this 

task, we use a large number of features originally proposed for the SRL task. We 

provide comprehensive experiments using many different models that exploit syntactic 

information. The total accuracy of finding the correct ternary relation in the test data 

using rich syntactic features is 63.6%, and we can see that it outperforms shallow 

word-based features which obtains 61.7% accuracy. 

MJe built a BPL ternary relation extraction system primarily by exploiting rich 

syntactic information from parse trees. In particular, we extracted features mainly 

based on the SRL framework. We also proposed some new features to  address the 

peculiarities of this particular application. For comparison purposes, we built up 

6 different systems and applied different kernels in conjunction with SVM learners. 
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Experiments show that these manually-extracted features under SRL framework play 

an important role in discriminating relation instances as well as providing necessary 

information for complementing tree kernel based system. 

Even though there exists some gap between the performance of the YSRL and 

TRK system, we still can claim that the path between the NEs in the parse trees 

plays a critical role in relation extraction. Moreover, the idea of SRL can be applied 

successfully in guiding feature extraction along the path, which therefore could make 

SRL systems more general and adaptable to other types of relation extraction tasks. 

6.2 Hybrid Models 

6.2.1 Generative vs. Discriminative 

In sections 5.3 and 6.1 we introduced a generative model, ZParser, and a discrimi- 

native model, YSRL, for BPL relation extraction. ZParser captures both syntactic 

and semantic information and simultaneously identifies NEs and relations. However, 

it is limited by the sparse data problem due to the significant number of zero oc- 

currences of joint events. Moreover, ZParser is built from very local contexts: head 

constituents, modifiers and parent nodes, therefore may not be able to  capture more 

complex relationship patterns. In addition, ZParser is capable of predicting all types 

of annotations indicated by the training model, but only providing the size of the 

training set be large enough. 

The discriminative model YSRL is basically a classification model based on rela- 

tion patterns extracted from syntactic parsing information. In contrast to the gen- 

erative model, the discriminative approach usually has error propagation problems. 

For instance, an annotation error could be enlarged in the classification phase. 

In this section we now aim to integrate ZParser and YSRL, with the hope that they 

could help each other to further improve their performance on the relation extraction 

task. The other reason to  combine these two models is that YSRL itself cannot 

identify NEs. But given NEs identified by ZParser, YSRL is able to participate in 

our relation extraction system. 
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6.2.2 Pipelined Sys t em 

As introduced in Section 5.3 ,  the generative model ZParser identifies relevant hTEs 

and extracts BPL relations at  the same time. ZParser significantly outperforms two 

baseline systems: NE co-occurrence and Snowball. In contrast to  ZParser, the discrim- 

inative model, tree-kernel-based YSRL, was shown effective on the BPL extraction, 

but does not identify NEs. Therefore, YSRL cannot be applied to the BPL prediction 

task directly, unless relevant NEs are predicted and provided to  YSRL. 

The idea of the pipelined system is running ZParser and YSRL in series, so that 

NEs predicted by ZParser are taken by YSRL to predict BPL relations. We use 

standard evaluation metrics as described in Section 4.3, which are precision, recall 

and F-score based on the full NE recognition and full relation extraction. The data 

sets are positive and negative examples split into training and test sets, as shown in 

Table 4.2. 

There are two ways to make BPL predictions from the pipelined system: 

1 predictions made by YSRL only 

2 union of predictions of ZParser and YSRL. The Confidence Score of the final 

prediction is obtained by Equation 6.1. 

Note that a relation predicted by ZParser but not YSRL is given C o n S i d e n ~ e ( r - ~ ~ ~ ~ )  = 

0. Since C~n,fidence(r-~~,,,,,) is a log linear likelihood, a relation that is not pre- 

dicted by ZParser is assigned Con f i d e n c e ( ~ - ~ ~ ~ ~ ~ ~ , )  = - 00. 

Table 6.5 shows evaluation results of ZParser and the pipelined system with the 

above two ways of making BPL predictions. 

Taking "noisy" NEs from ZParser, YSRL makes much fewer predictions than 

ZParser does, which results in a large decrease of recall. This again suggests that noisy 

data  may not work effectively for YSRL on the relation extraction task. However, 

YSRL extracts some new BPL relations and the combined results outperform ZParser 

alone by 2.6% on F-score. 
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Measure 

Table 6.5: Comparison of evaluation results of ZParser and the pipelined system. 

Precision (%) 
Recall (%) 
F-score (%) 

6.2.3 Co-training System 

ZParser 

Co-training is a bootstrapping-based algorithm [9], in which there are two different 

"views" on training examples, and two learners corresponding to these views label 

unlabeled training examples for ea,ch other. The idea of co-training may apply to our 

relation extraction task, such that, in each iteration, ZParser and YSRL label a large 

set of unlabeled data, which are then added into the training set for each other. 

In this section, we propose four variations of the co-training algorithm and evaluate 

them with the standard data sets listed in Table 4.2 and evaluation metrics described 

in Section 4.3. 

Pipeline System 
YSRL I ZParser+YSRL 

58.6 
26.2 
36.2 

Co-training Algorithm 1 

Figure 6.3 illustrates a high-level architecture of the co-training algorithm that alter- 

natively calls ZParser and YSRL. The algorithm makes PL and BP binary predictions 

separately and combines them into ternary relations when evaluated. 

Specifically, in each iteration, YSRL is trained on the curated training set and 

examples predicted by ZParser in the last iteration, if any. The trained YSRL is 

then used t o  classify a development set, which is the noisy data  set with PROTEIN, 

BACTERIUM and LOCATION NEs appearing in each sentence, as introduced in 

Section 5.3.7. We then pick the top N1 predictions from the development set and 

build the path between NEs on the top of the automatically annotated parse tree, the 

same tree augmentation method described in Section 5.3.2.  

Following a similar process, ZParser is trained on the curated training set and the 

top Nl positive predictions by YSRL and then parses the development set. Parse 

trees of the top N2 positive and top N2 negative predictions from the development set 

47.1 
12.3 
19.5 

59.4 
29.2 
39.0 
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I Curated Set 1 Development Set I 
1 Train 

4 
Parse 

Classifien: 1 
ZParser 

i - -  , Train 

Development Set ' 1 Curated Set 1 
I 

Building TOP NI 1 (~7 1 Add 
Predictions NE Path 

Figure 6.3: High-level architecture of the co-training algorithm that integrates ZParser 
and YSRL 

are recovered to include PROTEIN NEs that are not identified, the same process as 

described in Section 5.3.4. The top N2 positive/negative predictions are then added 

into the training set for YSRL in the next iteration. 

The pseudo-code of the co-training algorithm is shown in Appendix B. 

It  is clear that the choice of N, and N2 is crucial t o  the effectiveness of the al- 

gorithm, since we expect to  remove the noise from the development set by making a 

small set of predictions, while keeping the prediction list growing in each iteration. 

In this section, we experiment with four different settings on Nl and N2. In Co- 

training Algorithm 1, we grow the prediction list by add 20 more predictions in each 

iteration. For instance, a t  the i th  iteration, the number of predictions Pi = 20 x i. 

The reason we choose 20 is that the size of the curated training set is about 1,600 

(for both PL and BP) and 1/80 would be a reasonable growth rate for the training 

set. 

In each iteration, ZParser a.nd YSRL are evaluated against the standard test set 

(see Table 4.2). In addition, we combine the predictions of ZParser and YSRL and find 
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the combined results improve the overall performance. Table 6.6 shows the evaluation 

results of ZParser, YSRL and combined predictions of Co-training Algorithm 1 in its 

first ten iterations. 

1 Iteration ID YSRL ( Combined Results (%) I 
I R I F 1 

Co-training Algorithm 1: results of ZParser, YSRL and 
combined predictions of ZParser and YSRL in first ten iterations. 

In the first three iterations, the F-score of combined predictions increases gradually 

from 12.3% to 17.3%, but then goes down. The performance decreases dramatically 

a t  the 6th iteration and YSRL produces no true positive predictions thereafter. A 

major reason of the decrease is that,  as the number of predictions is getting larger, 

the classifiers cannot effectively make predictions with good quality, due to the very 

small size of training data.  

Co-training Algorithm 2 

The failure of the Co-training Algorithm 1 reminds us of a similar situation when 

we experimented with the generative model in Section 5, where a large set of noisy 

training data  compensated for the lack of curated data. 

According to  the principles of semi-supervised learning, we implement the Co- 

training Algorithm 2 by adding as many predictions as possible to the curated training 

set, and hope that the quality of predictions would get better after each iteration. 

Specifically, all positive examples predicted by YSRL are added into the training set 

of Zparser; all predictions made by ZParser are added into the training set of YSRL 

in the next iteration. 
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Table 6.7 shows the performance of the Co-training Algorithm 2 in first two itera- 

tions. It  is not surprising that YSRL does not perform well with the large set of noisy 

data, since discriminative models have been shown unsuitable for outlier detection 

the number of positive/negative examples added into the training set of ZParser and 
YSRL. 

Iteration ID 

1 
2 

Co-training Algorithm 3 

Previous experiments show that the inclusion of noisy data by setting Nl as la.rge 

as possible works well for ZParser, but not for YSRL. Therefore, in this experiment, 

we treat YSRL and ZParser differently by introducing noisy data to ZParser and 

maintain a reasonable growth rate of YSRL's training set. 

Specifically, Nz = 20 for both positive and negative predictions made by ZParser, 

similar to  that of Co-training Algorithm 1. Moreover, we add as many as possible 

positive and negative predictions from YSRL t o  the training set of ZParser, on the 

condition that ratio of positive predictions, N:, to  negative predictions, N;, is 1 : 2. 

NE and relation annotations of these negative predictions are removed from parse 

trees. The reason we set the ratio is that the ratio of positive to  negative examples 

in the curated training set is 1 : 2. In summary: 

Table 6.7: Evaluation results of Co-training Algorithm 2. The table also contains 

N2 = 20 for both positive and negative examples 

YSRL 

Assuming YSRL makes p positive predictions and q negative predictions. If 

p > q/2, then NT = q/2 and N; = q; otherwise, N,f = p and N; = 2p.  

ZParser 

Evaluation results of the Co-training Algorithm 3 listed in Table 6.8, however, 

indicate that the inclusion of negative predictions in the training set significantly 

# o f B P  
156513085 
247413683 

P 
0 
0 

P 
31.3 
28.6 

R 
0 
0 

# o f P L  
2910 
3210 

R 
7.7 
3.1 

# o f B P  
33310 
26510 

F1 
0 
0 

F1 
12.3 
5.6 

# o f P L  
6451987 
64911169 
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decreases the performa,nce of ZParser. Evaluation results of the first two iterations 

show that ZParser produces a very small amount of NEs and relation a.nnotations and 

thus makes few BPL predictions, because probability distributions of NE and relation 

tags are "diluted" by the negative examples. 

Iteration ID YSRL ZParser 
P R F1 P R F1 # o f P L  # o f B P  

1 40.0 3.1 5.7 0 0 0 30160 3341668 
2 0 0 0 0 0 0 33/66 2661532 

Table 6.8: Evaluation results of Co-training Algorithm 3. The table a,lso contains the 
number of positive/negative examples added into the training set of ZParser 

Co-training Algorithm 4 

Evaluation results of the co-training algorithm 4 indicate that ZParser does not prefer 

negative examples. Therefore, in the last experiment experiment on the co-training 

system, we run the Co-training Algorithm 3, except that no negative examples are 

feed to ZParser. The results are shown in Table 6.9. 

1 Iteration ID 1 1  YSRL ZParser 

Table 6.9: 

8 

10 

Evaluation r 
I I 

:o-training Algorithm 4. ' he table also contains the 
number of positive examples added into the training set of ZParser. 

This variation of the co-training system is referred as Co-training Algorithm 4. It 

is similar to Co-training Algorithm 1 , except that ZParser was trained on many more 

positive examples. However, YSRL with both algorithms makes no correct predictions 
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after a few rounds. Besides, ZParser with Co-training Algorithm 4 performs even 

worse. 

Summary 

We introduced the co-training system that integrates the generative model ZParser 

and the discriminative model YSRL, such that data  labeled by one model are used to 

train the other model. 

YSRL is trained on positive and negative examples, while ZParser is trained on the 

positives ones. Experiments were carried out on the co-training system with respect 

to different growth rates of the tmining set. 

In Co-training Algorithm 1, the top 20 predictions made by one model are added 

into the training set of the other model; while in Co-training Algorithm 2, all pre- 

dictions are picked. Co-training Algorithm 3 combines ideas of two forerunners, by 

adding top 20 predictions of ZParser to the training set of YSRL and as many as 

possible predictions of YSRL to the training set of ZParser. In addition, negative 

predictions of YSRL are also picked by ZParser, on the condition that predictions 

being picked and the original training set have the same positive/negative ratio. We 

then found ZPa.rser does not work well at  all with the negative training examples. 

Co-training Algorithm 4 is the same as Algorithm 3 but the ZParser does not take 

negative predictions from YSRL. Table 6.10 lists a summary of the four co-training 

algorithms in terms of their growth rates of the training set. 

rates of the training set. *: negative examples is twice as large as positive examples 
in the Co-training Algorithm 3. 

Co-training Algorithm 

1 
2 
3 
4 

The evaluation results of the first two algorithms suggest that YSRL favors small 

Table 6.10: A summary of the four co-training algorithms in terms of their growth 

YSRL 
Positive 

20 
all 
20 
20 

ZParser 
Negative 

20 
all 
2 0 
20 

Positive 
20 
all 

all* 
a1 1 

Negative 
- 
- 

all* 
- 
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growth rates on its training set and ZParser prefers a large amount of training data, 

even with noise. However, providing ZParser with as much training data  as possible 

does not make YSRL learn effectively after the first few rounds. Co-tra.ining Algorithm 

3 also finds that training ZParser on negative examples results in very few BPL 

predictions. In summary, none of the proposed co-training algorithms outperforms 

the semi-supervised ZParser as introduced in Chapter 5 .  

We believe that the idea of the co-training system would be the right direction for 

further progress in integrating generative and discriminative models and in enabling 

them to compensate each other for general classification tasks. The major reason our 

proposed co-training algorithms do not compete with the semi-supervised method is 

that the curated data  set is too small to  effectively identify NEs and relations. Previ- 

ous experiments indicate that the semi-supervised ZParser may not benefit much from 

adding more curated training data, but we would expect a significant improvement 

to the co-training system by a larger training set. 

Both the generative and discriminative models introduced in previous and current 

chapters work for relation extraction from single sentences only. However, a consider- 

ably large portion of BPL relations in our corpus exists in multiple sentences. In the 

next chapter, we will purpose a graph-based model that extracts BPLs from multiple 

sentences, based on predictions made by the generative and discriminative models, to 

further improve the overall performance of the system. 



Chapter 7 

Biomedical Relation Networks 

7.1 Introduction 

Both the parsing-based method and the discriminative model limit themselves to  

relation extraction from single sentences only. However, in our training and test sets, 

about 26% of BPL relations are from multiple sentences. In other words, single- 

sentence relation extraction cannot achieve a recall over 74%. 

The following example shows a relation, BPL(Bacillussubtilis, T r e A ,  Cytoplasm), 

from two consecutive sentences, in which each sentence contains a binary relation. A 

BPL may be extracted from non-consecutive sentences of a single document or from 

multiple documents1. 

Example 7.1: A 2.5 kb DNA fragment contain a gene encoding a [PROTEIN phospho- 

alpha-(1-1)-glucosidase] f lPROTEIN phosphotrehalase]), designated [PROTEIN treA], was iso- 

lated from a Bacillus subtilzs] chromosomal library by  complementation of 

the tre-12 mutation. The major [PROTEIN R e A ]  activity was found in the [LOCATION 

cytoplasm]. 

A Biomedical Relation Network (BRN) is a graph model that represents relations 

from multiple sentences and even multiple documents. In general, a BRN is a data 

structure that stores relations between biomedical substances as a directed weighted 

'Our training and test sets currently do not contain BPL relations across multiple documents. 
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cyclic graph, in which each node represents a biomedical NE (i.e., PROTEIN, BAC- 

TERIUM or LOCATION NE in this task) that is the name of the node, and each link 

represents the rela.tion (i.e., BP or PL) between two NEs being linked. Each node has 

a weight indicating the confidence of its name being a correct NE. Each link is also 

associated with a weight, which is the probability of the relation being correct. 

There are two aspects of BRNs that we will consider: 

1. the construction of BRNs from sentences, 

2. the utilization of BRNs: extracting relations from them. 

Figure 7.1 shows a high-level illustration of these two aspects, with Sections 7.2 and 

7.3 below providing deta.ils. The work related to BRNs are discussed in Section 7.4. 

Experiments and evaluations are described in Section 7.5. Discussion about BRNs is 

given in Section 7.6. 

7.2 BRN Construction 

A BRN contains two types of links. One is associated with the functional relation 

r ,  while the other represents the ontological relation. As shown in Figures 7.2 and 

7.3, ontological links connect NEs with their ontologically related NEs, e.g., parents, 

children, hypernyms, hyponyms, similar NEs; while functional links connect pairs of 

NEs with a designated biomedical relation, e.g., up-regulation or BPL. A link weight 

(valued between -1  and 1) is assigned to each link representing the similarity or 

probability of two NEs being related. 

In our task, a BRN is constructed from NEs and binary relations identified by the 

ZParserfYSRL pipelined model as introduced in Section 6.2.2. The weight of each 

link in the BRN is the confidence score as defined in Equation 6.1. Note that a link 

weight can be negative if a linguistic negation is detected in the sentence. However, 

the negation detection is not our research focus and thus not included in the proposed 

system. In addition, each node could also be assigned a node weight, in which case the 

NE represented by the node is recognized as a biomedical NE with certain probability. 

In summary, the following steps are carried out t o  build a BRN: 
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Connecting each pair of nodes with the functional relations as shown in Figure 

7.3. As introduced above, these relations are binary predictions (PL and PO)  

from the ZParser+YSRL pipelined model as described in Section 6.2.2, so far the 

best performing system. The nodes correspond to PROTEIN, BACTERIUM 

and LOCATION NEs. 

Building and connecting nodes with the ontological relations as shown in Figure 

7.2. We search the NE of each node d in the UMLS Metathesaurus and look 

for its children, hyponyms and similar NEs. Each of these related NEs is then 

represented by a node in the BRN and linked to  t,he node d. 

Weighting each node and link. The weights of links are confidence scores pre- 

duced by the ZParser+YSRL model. Ideally the weights of nodes would be 

probabilities given by an NE Recognizer, but since the ZParser+YSRL model 

only produces one confidence score for each predicted relation, we assign 1 to 

the weights of all nodes for now, including the ones found in the dictionary. 

Inter-connecting links by merging nodes that represent the same NE. The node 

weight of merging two nodes wl and w2 is: A4erged(wl, w2) = wl + w2 - wl * w2. 

The purpose of the inter-connection is to  increase the confidence of an NE that 

occurs multiple times within the context, when in the future the node weights 

are given by some NE recognizer and thus are not necessarily 1. 

Figure 7.4 illustrates a portion of the BRN consisting both ontological and functional 

links to  represent the example in Section 7.1. Note that,  during the evaluation to 

be described in Section 7.5, we do not include the related NEs obtained from the 

dictionary in the final predictions, since the gold answer generally does not contain 

these NEs and thus we are unable to evaluate them. 

A window is applied when two nodes are merged. It also controls the distance 

of two sentences, across which a BPL is extra.cted. The window size w denotes the 

distance of two sentences. w = 1 indicates that two sentences are consecutive; w = n 

indicates that there a.re n - 1 sentences between the two sentences from which the 

BPL is extracted. w = oo when these two sentences belong to different documents. 
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Figure 7.4: A portion of BRN 

7.3 Relation Extraction from BRN 

Once the BRN for the entire corpus is constructed, we can predict BPL relations 

from multiple sentences and documents by finding a sub-graph that contains a BAC- 

TERIUM node, a PROTEIN node and a LOCATION node in the BRN, as illus- 

trated in Figure 7.5. Assuming two binary relations that have been extracted a t  

single-sentence level: PL(PR0TEIN-1, LOCATION-1) and BP(, BACTERI UM-I, 

PROTEIN-]), a new prediction can be made on BPL(BACTERIUM-1, PROTEIN-1, 

LOCATION-I), along with a significance score, i.e., 0.8*0.5 = 0.4. This new BPL 

relation is predicted from multiple sentences in single or multiple documents within 

the specified window size. Generally speaking, the larger the window size, the better 

the recall. However, the precision suffers as a result. In Section 7.5 we will experi- 

ment with a set of window sizes and show how the window size impacts on the overall 

performance. 

Moreover, inconsistent BPL predictions can be detected on top of the constructed 
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Figure 7.5: An illustration of BPL relation identification 

BRN, with an assumption that one protein only is present a t  one location in the 

specific bacterium (this is mostly true). Suppose two BPLs are discovered: 

BPL(0RGA NISM-1, PROTEIN-1, LOCATION-1) and BPL(0RGA NISM-1, PRO- 

TEIIV-1, LOCATION-2), as shown in Figure 7.5. The one with lower significance 

score can then be removed. 

7.4 Related Work 

Graph models applied to  the general relation extraction task were described in Section 

2.2.6. Here we reiterate relevant graph-based approaches and compare them with 

BRNs. 

Concept Chain Graphs (CCGs) for discovering unknown associations between con- 

cepts are introduced in Infoxtract [103, 1021. A chain graph is a probabilistic network 

model that mixes undirected and directed graphs to give a probabilistic representation 

that includes Markov random fields and Markov models. It is a hybrid probabilistic 

IR framework combining a traditional bag-of-words model with higher-level concepts 

and relations provided by an IE system. The CCG is implemented as a multilevel in- 

dex where the highest level represents relations, the middle level represents concepts, 

and the lowest level represents a word index. However, these relation, concepts and 

word indexes are weighted based on the frequency of occurrence and predicted rela- 

tions may not reflect actual meanings. Furthermore, in contrast to BRNs, CCGs are 

built on the top of the bag-of-words model thus unable to represent linguistic assets 

to the relation extraction task. 

The Concept Space introduced in [60] provides a co-occurrence network of seman- 

tically related concepts that form relations containing two noun phrases (NPs). It  
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provides a network of semantically related concepts that form relations for the en- 

tire collection. Each relation is directional and contains two NPs and a weight of 

co-occurrence analyzed based on the asymmetric cluster function [16] to indicate its 

strength of relevance. The operation on the Concept Space is a bottom-up technique 

that captures relations between pairs of NPs from large collections of text. How- 

ever, in contrast to  BRNs, the concept space cannot represent named relations and is 

unable to  represent relations such as pathway and negation. 

Mack et al. proposed the Lexical Networks [67], which apply data-mining tech- 

niques to  graphs that are derived from syntactic parse trees, where the nodes in a 

graph represent proteins, a.nd the links represent relatively strong co-occurrences be- 

tween these proteins within a sentence or paragraph. Strong co-occurred proteins are 

linked with strength. In contrast, BRNs are built on the top of proposed generative 

and discriminative models, which provide state-of-the-art methods to  extract BPLs 

from syntactic and semantic characteristics of text. Moreover, although the pair-wise 

term relations of the lexical Networks can be compiled into longer sequences that span 

multiple documents, lexical networks a.re basically the visualization tool of unnamed 

relation between proteins and are not used to  extract hidden informa,tion. 

Similarly, PubGene [47] and the inference network introduced in [I151 are built on 

co-occurrences of gene pairs, therefore, edges are still the representations of un-named 

relations and may not reflect actual meanings. 

h4cdonald et al. present a two-stage method for n-ary relation extraction from 

Medline abstracts in [70]. Similar to  building and utilizing BRNs, their first stage 

creates a graph from pairs of named entities that are likely to be related, and the 

second sta.ge finds potential n-ary relation instances in that graph. In contrast, they 

predict binary relations using a maximum entropy classifier and get around the named- 

entity recognition problem by assuming named entities are known. The potential n- 

ary relation instances are predicted by finding maximal cliques2, which a.re however 

always exponentially many, since the graph is fully connected. 

2A clique C of G is a subgraph of G in which there is a n  edge between every pair of vertices. A 
maximal clique of G is a clique C = (Vc, Ec) such t h a t  there is no other  clique C' = (Vcl, E c f )  
such t h a t  Vc c Vcl. 
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7.5 Experiments and Evaluations 

We build a BRN from the binary predictions of ZParser+YSRL (described in Section 

6.2.2) on the standard data  sets (see in 4.2), which are positive and negative curated 

data  split into the training and test sets. BPL relations are then predicted from the 

BRN corresponding to  a set of different window size w: 1, 2 and 5. Evaluation results 

of the BRN with different window sizes are listed in Table 7.1. The reason we do 

not choose w equal to  m is that the test set includes no BPL relations from multiple 

documents. 

Table 7.1: Evaluation results (in percent) of ZParser, pipelined system and the BRN 
with the window size w = 1, 2 and 5. 

M e a s u r e  

(%I 
Precis ion 

Recal l  
F-score 

When w = 1, the system correctly extracts 4 BPL relations from consecutive 

sentences in the BRN. When enlarging the window size, the system makes more pre- 

dictions, which are all incorrect. The fact is that BPL relations across non-consecutive 

sentences in our test set are infrequent. So as the window size is increased, there is a 

dramatic increase in the number of predictions, very few of which will have a chance 

to be correct. The experiment suggests that w = 1 would the best choice for this 

task. 

The system performs effectively on the inconsistency detection. It  finds that two 

BPL relations identified by ZParserfYSRL are inconsistent with each other as listed 

in Table 7.2: They have the same PROTEIN and BACTERIUM NEs, but predicted 

LOCATION NEs are different. The system then changes the BPL prediction with 

the lower confidence score to negative and thus slightly improves the precision and 

F-score. 

ZParser  

58.6 
26.2 
36.2 

P ipe l ined  Sys t em 
(ZParser+YSRL)  

59.4 
29.2 
39.0 

BRN 
w = l  
64.7 
33.8 
44.4 

w=2 
61.1 
33.8 
43.5 

w=5 
51.2 
33.8 
40.7 
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Table 7.2: Two BPL relations predicted by ZParser+YSRL are found inconsistent. 

B A C T E R I U M  
T. pallidum 
T. pallidum 

7.6 Discussion 

BRNs make it possible to  identify the BPL relations from multiple sentences and 

documents. In addition, the nature of BRNs would make the following problems 

easier to  handle: 

P R O T E I N  
lipoprotein 
lipoprotein 

Answering questions, such as, which genes are most likely relevant to  specific 

cancers, and vice versa. In general, correctly identifying NEs and relations 

among them would be one of the crucial tasks of a question-answering system. 

The BRNs could be one of the right tools to  identify NEs and relations and thus 

could be a solution to  the question mswering task. 

Finding the biological pathways between any medical substances by choosing a 

path between them with the largest weight. In this BPL extraction task, we have 

only illustrated how to find ternary relations from the BRNs. The same idea, 

can be applied to  find biological pathways, which a,re basically n-ary relations, 

from the BRNs. Then the task would be finding a path of nodes and links on 

the BRN between two unknown nodes. The types of intermediate nodes and 

links may be known or unknown, depending on the requirements of the specific 

task. 

L O C A T I O N  
periplasmic 

cytoplasmic membrane 

Identifying the relation between any pair of NEs also indicates relations between 

their ontologically related NEs. 

Confidence Score 
0.676 
0.703 

Exploiting relations among biomedical articles by clustering a BRN. Nodes in 

the BRN connect two articles if their NEs occur in both articles. By clustering 

the BRN based on which articles the nodes occur in, the links between two 

clusters would indicate the relations of the corresponding articles. 
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0 Performing multiple document summarization. Once a BRN is built from mul- 

tiple documents, it would be possible to  choose paths with large weights on 

nodes and links along the paths in the BRN. These paths are supposed to be 

more important than other paths and could be taken as a summary of multiple 

documents. 

Generally speaking, the designated relation between arbitrary biomedical sub- 

stances can be found in BRNs and may indicate useful information that has not pre- 

viously been recognized. The process of relation extraction from BRNs may be easily 

applied to the extraction of other relations from multi- sentences and documents, for 

instance, to find the ternary relation (COMPANY, T I T L E ,  P E R S O N ) .  

Our analysis of prediction results suggests that co-reference resolution would be 

very helpful to this graph-based model. However, we have not found any well- 

performing co-reference resolution systems and co-reference resolution is not our re- 

search focus. Leaving this topic for future research is a reasonable approach for now. 



Chapter 8 

Conclusion and Future Work 

In this dissertakion we introduce the task of biomedical function relation extraction 

from MEDLINE articles. The specific relation we are working on is Bacterial Protein 

Subcellular Localization, a ternary relation among a bacterium, protein and location. 

Specifically, the task is to identify BACTERIUM, PROTEIN and LOCATION Named 

Entities (NEs) from the articles and determine whether they interact with each other 

to achieve certa.in biomedical functionality. 

Before introducing the relation extraction system, we described our biomedical IR 

system, which in generally is taken as a coarse level of information extraction. The sys- 

tem participated in the TREC 2005 ad-hoc retrieval task in the Genomics track, where 

it attempted to find documents relevant to answers complex questions. Built on top 

of a conventional information retrieval toolkit, the system applies a synonym-based 

query expansion from various biomedical sources to  retrieval relevant documents. It  

then re-rank the retrieved documents using a boosting-based algorithm, which is capa- 

ble of capturing natural language sub-structures embedded in text. Experiments show 

that the algorithm works well in cases where the conventional information retrieval 

system performs poorly. 

Our relation extraction system takes structured MEDLINE articles and predicts 

BPL(BACTERIUM, PROTEIN, LOCATION) relations from them. A preprocessing 

module is applied to automatically annotate these articles with syntactic and shallow 

semantic analysis, including syntactic parsing and biomedical NER. We went through 

a four-round curation process. In each round, a boosting algorithm on syntactic 
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subtree features was used to coarsely classify sentences; biologists then reviewed the 

classified sentences and review results were added into the training set for the next 

round. This curation process enabled us to obtain more curated data  with the help of 

automatic machine learning algorithm and avoided laborious manual curation. The 

number of positive examples increases from 72 to 333. Finally, a three-tier relation 

extraction module predicts BPLs from the annotated a.rticles. 

For the first tier, a parsing-based generative model extracts relations from sin- 

gle sentences, by performing syntactic and shallow linguistic analysis. The parser 

integrates domain-independent syntactic information and domain-specific semantic 

information on parse trees, and is ca.pable of identifying NEs a,nd extracting relations 

simultaneously. We propose a semi-supervised generative model that takes advantage 

of noisy data  generated by the automatic annotator and greatly improves the overall 

performance compared with the supervised alternative. The semi-supervised model 

also significantly outperforms a naive NE-co-occurrence baseline system by 13.2% of 

F-score and a well-known text mining system (Snowball) by 7.6% of F-score. 

For the second tier, a discriminative model integrates rich syntactic features from 

parsing trees to  extract relations from single sentences. To further improve the overall 

system performance, we combine the generative model and the discriminative model 

in a pipelined system and a co-training system. The pipelined system improves both 

precision and recall of the semi-supervised generative model and increases F-score by 

2.8%. 

Lastly, a graphical representation of BPL relations, a Biomedical Relation Net- 

work (BRN), is proposed to find global and hidden relations from multiple sentences 

and articles. The BRN integrates ontological and functional relations in a directed 

weighted cyclic graph. Based on binary predictions of the generative and discrim- 

inative models, the BRN is capable of extracting BPLs and detecting inconsistent 

predictions. Our evaluation shows that BRNs increase F-score of the pipelined sys- 

tem by 2.2%. Due to  the limitation of our test data,  we only evaluate the performance 

of BRNs predicting relations from a single article. 

We summarize our contributions to  the task of extracting biomedical functional 

relations from text as follows: 
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Protein subsellular extraction has been studied in the BioNLP community for 

years, but researchers mainly focused on the binary relations (e.g., between 

organism and protein) of the eukaryotic SCLs. The BPL relation is fairly new 

to both the molecular biology and the BioNLP research. 

One of major problems of most BioNLP tasks is the lack of curated data. In 

addition to a very limited amount of curated data, we made use of a large data 

set with noise to train the relation extraction model, i.e., the semi-supervised 

generative model, which significantly improves the overall performance. 

We proposed a parsing technique that integrates syntactic and semantic informa- 

tion and identifies NEs and relations simultaneously. The approach is different 

from the bootstrapping technique in that the information is not extracted iter- 

atively and thus there is no error propagation to the next iteration. Identifying 

NEs and relations a t  the same time would be new in the biomedical information 

extraction research area. 

We studied the relevance of the Semantic Role Labeling (SRL) task and the 

BPL extraction task, and applied features normally used by SRL systems to a 

discriminative model for the BPL extraction. 

We proposed a graphical representation for BPL relations and utilized the rep- 

resentation to  effectively predict relations from multiple sentences. 

We had a set of MEDLINE articles curated by biologists, in order to train and 

evaluate various models. The proposed system will finally make predictions 

from the whole MEDLINE database, which contains over 12 million articles. 

The predictions will then be judged by biologists and added into the curated 

corpus, which would be an new asset to the NLP community. To build a pub- 

licly available corpus would greatly benefit the BioNLP research on relation 

extraction. 

Our experiences in this research suggest that the BPL relation extraction is a very 

hard task. The system should be able to  not only identify NEs, but also tell which NEs 
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occurring together can perform certain biomedical functionalities. Furthermore, the 

lack of curated data makes it very difficult to train an effective system. Our hope is 

that, with unremitting efforts on researching various models and gradually increasing 

the size of the curaked data  set, the BPL and other relation extraction tasks would be 

more and more attractive to  the BioNLP community and beneficial to other relevant 

research. 



Appendix A 

Biomedical data sources 

Most biomedical relationship identification systems make use of some publicly acces- 

sible data sources, such as annotated articles, ontologies and other databases. These 

data sources were generated, collected or curated by professionals and have been 

opened to the public with two major purposes. One is to  help the IE systems save 

the time and efforts on building or collecting data. The other purpose is to make 

evaluations among IE systems that use the same data  sources easier. 

The most popular biomedical data  sources are briefly introduced as follows. 

Medical Literature Analysis and Retrieval System Online (MEDLINE1) 

is the bibiographic database a t  National Library of Medicine (NLM2). It  includes 

approximately 13 million references to biomedicaJ articles from 4,800 journals 

in more than 70 countries from the year 1950. MEDLINE uses a language 

called Medical Subject Headings (MeSH) to index the articles in the database. 

The volume of biological and medical research literature grows so rapidly that 

over 2,000 new articles are being added in MEDLINE everyday. It is now the 

largest biomedical information source in the world. MEDLINE is accessible via 

PubMed3. 

GENIA corpus is a semantically annotated molecular and biological corpus 
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based on the GENIA ontology, the taxonomy of a subset of the substances and 

the biological locations involved in reactions of proteins, developed by Tsujii lab- 

oratory of the University of Tokyo4. The corpus is annotated by POS tags and 

biomedical entity tags. Its latest version consists of 2,000 MEDLINE abstracts. 

GENIA intends to incorporate parsing technique and has already provided cor- 

pus in the Penn TreeBank style with 200 abstracts5. Some GENIA-based cor- 

pora by third parties have been developed to provide more linguistic information, 

such as coreference by MEDCo project6 a,nd dependency by OntoGene project7. 

Yeast Proteome Da tabase  (YPD) is a model for the organization and pre- 

sentation of comprehensive protein information based on the detailed curation 

of the scientific literature for the yeast Saccharomyces cerevisiae, in Proteome 

BioKnowledge Library Databases8. YPD contains 6,100 yeast proteins with 

more than 50,000 annotations lines derived from the review of 8,500 research 

publications. The information concerning each protein is structured around a 

convenient one-page format, the Yeast Protein Report, with detailed informa- 

tion or descriptions. 

Flybase is a database of the drosophila genomeg produced by a consortium 

of researchers funded by the National Institutes of Health (NIH) ,  U.S.A., and 

the Medical Research Council, London. It includes a bibliography of more 

than 81,000 Drosophila citations, information on more than 38,000 alleles of 

more than 11,000 genes, descriptions of over 13,300 chromosomal aberrations, 

Drosophila genetic map information, information on the functions of gene prod- 

ucts, etc. 

BioCreAtIvE corpus. In the challenge cup of 2004, BioCreAtIve provided a 
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corpus of training data  for the task of automatic functional annotation using 

the Gene Ontology annotationslO. 

Da tabases  of In te rac t ing  P ro te ins  (DIP) experimentally determined inter- 

actions between proteins. It combines information from a variety of sources to 

create a single, consistent set of protein-protein interactions. The data stored 

within the DIP database were curated, both, manually by expert curators and 

also automatically using computational approaches that utilize the knowledge 

about protein-protein interaction networks extracted from the most reliable, 

core subset of the DIP data1'. DIP currently consists of 17,556 proteins and 

46,463 interactions from 2,884 articles and 34 other data  sources. 

0 NLhl's Unified Medical  Language  Sys t em (UNILS) provides biomedicine 

and health knowledge sources and associated software tools for system devel- 

opments in building or enhancing electronic information systems as well as for 

informatics research about investigating knowledge representation and retrieval 

questions12. There are three UMLS Knowledge Sources: the Metathesaurus, the 

Semantic Network, and the SPECIALIST lexicon. They are distributed with 

several tools (programs) that facilitate their use, including the MetamorphoSys 

install and customization program. 

Saccharomyces G e n o m e  D a t a b a s e  ( S G D )  is an organized collection of ge- 

netic and molecular biological information about Saccharomyces cerevisiae, bak- 

ers' and brewers' yeast. I t  contains the sequences of yeast genes and proteins; 

descriptions and classifications of their biological roles, molecular functions, and 

subcellular localizations; links to  literature information; links to  functional ge- 

nomics datasets; and tools for analysis and comparison of sequences13. 

0 Medical  Sub jec t  Headings  ( M e S H )  is NLM's controlled vocabulary used 
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for indexing articles for MEDLINE/PubMed14. MeSH terminology provides a 

consistent way to retrieve information that may use different terminology for the 

same concepts. It consists of sets of terms naming descriptors in a hierarchical 

structure that permits searching at various levels of specificity. There are 22,568 

MeSH descriptors, more than 139,000 supplementary headings and thousands 

of cross-references. 

G e n e  Ontology (GO) project was established to  provide a common language 

to describe aspects of a gene product's biology15. The objective of GO is to pro- 

vide controlled vocabularies for the description of molecular functions, biological 

processes and cellular components of gene products. I t  started as a collaboration 

between three model organism databases, the Saccharomyces Genome Database 

(SGD), FlyBase (Drosophila), and Mouse Genome Informatics (MGI). 

The Reference Sequence (RefSeq) database provides a foundation for the 

functional annotation of the human genome, which consists of a biologically 

non-redundant collection of DNA, RNA, and protein sequences16. Each RefSeq 

represents a single, naturally occurring molecule from a particular organism. 

RefSeqs are frequently based on GenBank records but differ in that each RefSeq 

is a synthesis of information, not a piece of a primary research data  in itself. 



Appendix B 

Pseudo code of Co-training Algorithm 

1: Classi f ierl =YSRL 

2 :  Classi f ier2 =ZParser 

3: 

4:  L:'-(0) =positive/negative curated set for Classifierl 

5: L2(0) =curated set for Classifier2 

6 : 

7:  U =large set of da ta  from medline which have B, P,  L named entities of interest 

8: Uc = U parsed with Charniak-Johnson parser 

9 : 

lo: for t = 0 to  T do 

11: # train YSRL, the Classifierl, on ~ : ' - ( t ) ,  the curated set for YSRL a t  t th  

iteration 

12: for each parsed sentence p in Uc do 

13: for each (B, P) in p do 

14: if Classifierl output = +1 then 

15: pwith-links = p with LNK/PTR annotation 

16: add pwith-links in L2(t f 1 )  

17: end if 

18: end for 

19: for each (P, L) in p do 

20: if Classifierl output = +l then 
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21: pwith-links = p with LNKIPTR annotation 

22: add pwith-links in L2(t + 1) 

23: end i f  

24: end f o r  

25: end for 

26: 

27: # train ZParer, the Classifier2, on L2(t), the curated set for ZParer a t  t th 

iteration 

28: f o r  each sentence s in U do 

29: parse s with Classifier2 to provide parse tree p 

30: for each (B, P) in p do 

31: p w i t h - ~ ~ s  = p with B ,  P NE annotations only 

32: if Classifier2 output has conf idence  > cl then 

33: add p w i t h - ~ ~ ~  in L:(t + 1) 

34: else if Classifier2 output has con f idence  < c2, where c2 < CI  then 

35: add p w i t h - ~ ~ , g  in L,(t + I.) 
36: end if 

37: end f o r  

38: for each (P, L) in p do 

39: p w i t h - ~ ~ s  = p with P ,  L NE annotations only 

40: if Classifier2 output has conf idence  > cl then 

41: add Pwith-NES in L:(t + 1) 
42: else if Classifier2 output has conf idence  < c2 then 

43: add PWith-NEs in L, ( t  + 1) 
44: end if 

45: end f o r  

46: end f o r  

47: end f o r  
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