
PREDICTIVE DECODING FOR DELAY REDUCTION
IN VIDEO COMMUNICATIONS

Yue-Meng Chen
B.Eng in Electronics Engineering, Zhejiang University, P.R.China

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the School
of

Engineering Science

O Yue-Meng Chen 2007

SIMON FRASER UNIVERSITY

Fa11 2007

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Yue-Meng Chen

Master of Applied Science

Predictive decoding for delay reduction in video
communications

Examining Committee:

Chair: Dr. Atousa HajShirMohammadi
Lecturer, School of Engineering Science

Dr. Ivan Bajic
Senior Supervisor
Assistant Professor, School of Engineering Science

Dr. Jie Liang
Supervisor
Assistant Professor, School of Engineering Science

Dr. Jiangchuan Liu
Examiner
Assistant Professor, School of Computing Science

Date DefendedlApproved: 23 ,

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/l892/112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007

ABSTRACT

Low delay is critically important for interactive video communication.

Unpredictable delays and bursty traffic in today's networks may significantly

degrade the performance of interactive video services. This thesis presents

several predictive decoding techniques for delay reduction. The basic idea is to

predict future video frames from past video data, and display them before they

arrive at the decoder. Inevitably, this will reduce the quality of the displayed

frames somewhat, but it will also enable the user to choose the proper trade-off

between quality and delay.

The frame prediction module was implemented as an add-on to the XviD

version of MPEG-4 video decoder, and tested on a variety of standard

sequences. The performance highly depends on the characteristics of the

sequence, such as motion intensity, frame rate, resolution, etc. Our results

indicate that in most cases, it is possible to reduce the perceived end-to-end

communication delay by about 100 ms while maintaining reasonable video

quality.

Keywords: Communication delay, Motion Segmentation, Temporal prediction,
Variable-block-size motion prediction

DEDICATION

To my parents and my beloved wife

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and guidance of

many people.

First, I would like to thank my supervisor Dr. Ivan Bajic, for giving

opportunity to work with him, for guiding me toward interesting projects and for

his involvement and interest in my progress. I also learn a lot from his methodical

and critical

motivating

talks, and (

approach to research problems. I would like to thank Dr. Jie Liang for

me to learn more about multimedia through his source coding class,

;onstructive feedback. I would also thank Dr. Jiangchuan Liu for the

patience to read this thesis and contributing to its content. I would like to thank

Dr. Atousa HajShirMohammadi for chairing the defence.

I would also thank to my fellow graduate students in multimedia

communication research group at Simon Fraser University.

As this work comes closer to completion, I start to look forward to some

good research work in my PhD program, that will hopefully be both useful and

intellectually pleasing. Therefore, I would see this dissertation as a valuable

learning process, and the start of my effort toward PhD research.

TABLE OF CONTENTS

..
Approval .. 11

...
Abstract ... III

Dedication ... iv

Acknowledgements .. v

Table of Contents ... v i
...

List of Figures .. VIII

List o f Tables ... x

Chapter 1 Introduction .. I
1 . 1 Motivation .. I

1 . 1 . 1 Interactive Video Applications ... 1
1 . 1 . 2 Impairments Introduced by the Network .. 4
1 . 1 . 3 Impact of Delay on Video Performance ... 5
1 . 1 . 4 Questions 6

1.2 Approach .. 6
1.2.1 Error Concealment Techniques ... 7
1.2.2 Predictive Decoding ... 8

1.3 Thesis Contribution and Outline .. 9

Chapter 2 Predictive Decoder Architecture and Design 12
2.1 Frame Prediction Module .. 14

2.1 . 1 Add-on Module to Standard Video Decoders 17
2.2 Prediction Module Architecture . 18
2.3 Frame Prediction Procedure ... 20

Chapter 3 Adaptive Frame Prediction Module .. 24
System and Interface Aspects . 24
Motion Segmentation 25

Motivations .. 25
Clustering Threshold Estimator ... 28
Seed Block Pattern .. 30
Region Growing Criterion 32
Motion Region Smoothing . 34
The Processing Steps ... 35

Variable-block-size Motion Prediction ... 37
Temporal Prediction .. 42
Post-processing for Overlapped Areas 43
Post-processing for Empty Areas .. 45

Chapter 4 Implementation and Smulation Rsults .. 50
4.1 Test Sequences .. 50
4.2 The Assessment of Motion Segmentation .. 51
4.3 Assessment Methodology .. -54

4.3.1 Method 0: Zero Motion Vector .. 54
4.3.2 Method 1 : Motion Extension .. 54
4.3.3 Method 2: Motion Segmentation, VMF, Sequential Frame

Synthesis ... 56
4.3.4 Method 3: VBS Motion Prediction and Region Smoothing 56

4.4 The Overall Assessment of Frame Prediction 57
4.4.1 The Objective Quality .. 57
4.4.2 The Subjective Quality ... 71

4.5 The Complexity Analysis ... 77

Chapter 5 Conclusion and Future Directions ... 82
5.1 Possibilities for Improving Prediction Performance 83
5.2 The Frame Prediction in H.264lAVC ... 85
5.3 Comprehensive Video Quality Assessments 86

Reference List ... 89

vii

LIST OF FIGURES

Figure 1 . 1 : The Teleconference System ... 2

Figure 1.2. The network impairments to video teleconference 4

................................... Figure 1.3. Perceived delay reduction by frame prediction 9

Figure 2.1 : Jitter buffer for video packets .. 13

Figure 2.2. Video receiver system diagram ... 15

Figure 2.3. Prediction module in the standard NIPEG-4 decoder 17

Figure 2.4. Internal architecture of prediction module ... 19

Figure 2.5. The error propagation of Motion Prediction 21

.. Figure 2.6. Sequential frame prediction mechanism 22

Figure 3.1 : System and interface aspects ... 25

Figure 3.2. Diagram of motion segmentation .. 28

Figure 3.3. The seed pattern ... 31

Figure 3.4. The region growing directions ... 32

Figure 3.5. Typical IMotion Vector IVoise .. 34

Figure 3.6. VMF-based MV filtering ... 35

Figure 3.7. The system diagram of Variable-Block-Size Motion Prediction 37

Figure 3.8. The motion vector prediction for 4x4 sub-blocks . 40

Figure 3.9. MV prediction for overlapped areas .. 41

Figure 3.1 0: A preliminary version of the future frame .. 42

Figure 3.1 1 : Boundary matching for overlapped areas 44

Figure 3.1 2: Filling thin empty areas ... 46

Figure 3.13. Filling thick empty areas . 47

Figure 3.14: Illustration of empty area post-processing where [top left] is
the intermediate frame after post-processing of overlapped
areas; [top right] is the frame after filling thin vertical empty
areas; [bottom left] is the frame after filling thin horizontal
empty areas; [bottom right] is the final frame after filling thick

....... empty areas 49

.. Figure 4.1 : The motion segmentation result: Garden 52

viii

Figure 4.2. The motion segmentation result: Coastguard 52

... Figure 4.3. The motion segmentation result: Tennis 53

Figure 4.4. The motion segmentation result: Football ... 53

Figure 4.5. MV inversion followed by motion extension 55

Figure 4.6. Prediction performance in PSNR (dB) - High Motion Level 58

Figure 4.7. Prediction performance in PSNR (dB) . Medium Motion Level 59

Figure 4.8. Prediction performance in PSlVR (dB) . Low Motion Level 59

Figure 4.9. Prediction performance VS . Frame Rate - High Motion Level 61

Figure 4.10: Prediction performance VS . Frame Rate - Medium Motion
Level ... 61

Figure 4.1 1 : Prediction performance VS . Frame Rate - Low Motion Level 62

Figure 4.12:The PSNR of frame prediction vs . The motion level -
Carphone . 64

Figure 4.1 3:The PSNR vs . The motion level - Foreman 64

Figure 4.14.The PSNR vs . The motion level - Mother & Daughter 65

Figure 4.1 5:The PSNR vs . The motion level - Miss America . 65

Figure 4.1 6: Prediction performance vs . Motion Density: Foreman. Left:
Same bit-rate. Right: Same encoded PSNR 69

Figure 4.1 7: Prediction performance vs . Motion Density: Carphone, Left:
Same bit-rate. Right: Same encoded PSNR 69

Figure 4.1 8: Prediction performance vs . Motion Density: Mother &
Daughter. Left: Same bit-rate. Right: Same encoded PSNR 70

Figure 4.19: Prediction performance vs . Motion Density: Miss America,
Left: Same bit-rate. Right: Same encoded PSNR 70

Figure 4.20: Visual comparison for frame prediction assessment . [Top left]
is the frame without prediction. and other figures show the
same frame produced when predicting three frames ahead by
three prediction methods . [Top right]: Method 1. [Bottom left]:
Method-2. [Bottom right]: Method-3 ... 72

Figure 4.21 : Quality of frame prediction (Foreman) ... 73

Figure 4.22. Quality of frame prediction (Flower Garden) 74

Figure 4.23. Quality of frame prediction (Mother & Daughter) . 75

Figure 4.24. MIPS Dissipation of frame prediction (High Motion) . 79

Figure 4.25. MIPS Dissipation of frame prediction (Medium Motion) 80

Figure 4.26. MIPS Dissipation of frame prediction (Low Motion) 80

LIST OF TABLES

Table 1 . 1 : Several ping RTTs from Vancouver ... 5

Table 4.1 : Test sequences .. 51

.......................... Table 4.2. Bit rates needed to maintain the same video quality 68

Table 4.3. Decoding and prediction time ... 77

CHAPTER 1
INTRODUCTION

1 .I Motivation

1 .I .I Interactive Video Applications

As one of the greatest inventions of the 2oth century, the lnternet and its

applications have expanded significantly in the past decades to become the

basis for personal, economic, and political advancement. lnternet applications

have evolved from simple communication tools, like email and ftp, to advanced

communication services, such as interactive multimedia applications and media

streaming. As the advances in connectivity, geographical reach and access

networks continue, multimedia communications on the lnternet are gaining more

attention than ever before.

Interactive video applications, such as video phone and video

conference, have become a feasible alternative to traditional telephony services.

The block diagram of a typical teleconference system is shown in Fig. 1 . I . Video

conferencing is becoming increasingly popular for reporting news from remote

locations, for business meetings with participants at multiple sites, and for virtual

classrooms in distance education. At the same time, interactive video

applications are very demanding; they require low latency, good visual and audio

quality, and accessibility by a variety of devices, to provide better user

experience compared to traditional telephony applications.

Video encoder -

Packing system stream

Audio encoder

Video Video decoder

Unpack RTP packet
Playback

synchronization
Audio System level decoding

Figure 1 .I : The teleconference system

Video characteristics and requirements. Video phone and video

conferencing use the H.261, H.263, H.263+ and H264 standards that are

designed specially to meet the delay constraints and very low bit rates. Low

frame rate, e.g. 15 frames per second, and low resolution (CIF or QCIF) are

typically used to enable real-time encoding. At the transport level, RTP (Real

Time Protocol) is usually chosen to packetize the encoded video sequence,

using an appropriate RTP profile [9]. To maintain good video quality, certain

requirements in terms of loss, delay and delay variability need to be satisfied.

First, low loss or no loss is desirable to maintain good video quality. Second, the

temporal and spatial dependencies in the compressed video bring the risk of

error propagation due to packet loss, thereby increasing loss sensitivity.

Furthermore, in order to maintain good interactivity, especially for "lip-

synchronization" between video and audio, the end-to-end video delay needs to

be similar to the end-to-end audio delay. Finally, for a smooth video playback,

little or no delay jitter is needed.

Audio characteristics and requirement. Packet voice has been studied

intensively in the past two decades, and ITU-T has standardized a series of

speech vocoder for voice over IP (VolP) as well as video conferencing. These

vocoders include G.711, G.726, G.729, G.723.1 [41][42][43][44] and produce a

variety of bit rates from 5.3 kbps to 64 kbps. In VolP, RTP is used to transport

speech packets across an IP network at a fixed rate. The requirements for voice

transmission are similar to those of video. First, low packet loss is needed to

maintain good speech quality, and some error concealment algorithms are

available that make a slight loss of up to 1O0/0 [I 01 tolerable. Second, the end-to-

end delay for interactive voice conference should be lower than 150 ms to

achieve an acceptable quality [17]. Echo-cancellation is a unique requirement in

speech processing to get rid of unwanted acoustic echo caused by large end-to-

end delay. Finally, if the audio is accompanied by the corresponding video signal,

delay jitter should be kept under control to maintain lip-synchronization with video

frames.

1 .I .2 lmpairments Introduced by the Network

A summary of impairments introduced by network transmission of audio and

video is illustrated in Fig. 1.2. The importance of having low packet loss, low

delay and low delay variability for good speech and video quality is well-known.

However, today's Internet cannot guarantee any of these requirements. The

experiments with interactive video applications show that any delay beyond 150

ms greatly worsens the user experience; delays above 400 ms make interactive

communication virtually impossible [45].

lmpairments

Delay lmpairments

Figure 1.2: The network impairments to video
teleconference

The overall end-to-end delay is composed of several components,

including acquisition, processing at the transmitting and receiving end,

processing in the intermediate nodes (routers), coding, decoding, and pure

transmission delay due to the finite speed of the information carrier

(electromagnetic waves). In the Internet, transmission delay alone may approach

150 ms, as indicated in Table 1 . I .

Table 1.1: Several ping RTTs from Vancouver.

The table shows several Round Trip Times (RTTs) measclred on the

Host

afternoon of Feb. 24, 2007, by pinging various hosts from the Blenz Cafe in

RTT (ms)

Yaletown (Vancouver, BC), using the FatPort broadband wireless access

I

network. In this scenario, one can expect about 150 ms one-way transmission

delay between Vancouver and lVew Zealand.

1 .I .3 Impact o f Delay on Video Performance

As interactive video applications become more popular, more attention is being

paid to the impact of the delay impairments on the performance of video

communication systems. Several research works have been conducted to

characterize video traffic over data networks by using traffic measurement

methods or simulation. The performance of H.261 and MPEG2 is studied over

10Base-T and 100Base-T Ethernet via simulation in [22]. The packet loss and

delay jitter are studied by sending RTPIUDP-packetized MPEG video over the

Internet between sites in Europe and the USA in [23]. A more recent study, [24],

conducted a very large scale measurements by streaming MPEG-4 video to

more than 600 sites in the US. Reference [25] assessed the quality of multimedia

communications over the Internet backbone networks. All these research works

assessed the network delay impairments from perspectives of different video

compression standards, transmission scenarios as well as network environments.

In addition to the network delay in transmission, the interactive video

system includes other delay components, such as i) acquisition, digitization ii)

encoding by a real-time encoder, packetization iii) unpacking, decoding, playout

at the receiver. Reference [I71 gives an overview of the specific video delay

components. However, video acquisition and encoding typically take longer than

audio acquisition and encoding, so in practice, audio is often purposefully

delayed in order to maintain lip synchronization [I 71.

I .I .4 Questions

Many interesting and challenging research questions arise when we try to

provide high-quality audiovisual communication over the Internet. Packet loss,

variable bandwidth and delay, as well as heterogeneity of end-user equipment all

contribute to this problem. In this work, we particularly focus on the problem of

delay in interactive video communications. As illustrated above, this delay can be

significant.

1.2 Approach

In order to tackle the problem of end-to-end delay, we introduce the concept of

predictive decoding [I]. In this scenario, video decoder predicts future video

frames and displays them before they actually arrive. Since a frame that has not

arrived at the decoder can be thought of as a frame subject to 100•‹/~ loss, the

problem of predictive decoding resembles error concealment [15]. Hence, as we

will elaborate in this thesis, predictive decoding employs some error concealment

techniques in its key processing unit. However, predictive decoding is more

challenging than typical error concealment, since no information about the frame

that is to be predicted is available at the decoder. In the following sections, we

will first briefly review some popular error concealment algorithms, and then

introduce predictive video decoding.

1.2.1 Error Concealment Techniques

Boundary Matching Algorithm (BMA) is a commor~ly used method in video

packet loss recovery. Based on the boundary matching principle, the missing

macroblock (MB) is recovered from previous or future video frames [I 1][12][13].

A variety of BMAs have been studied by researchers, and they in general

achieve an excellent trade-off between complexity and visual quality.

Multiple reference teniporal error concealment is another common

method for better video packet recovery [14-1, where multiple reference frames

are used in motion field interpolation (MFI) techniques.

Median motion vector concealment is also used in temporal error

concealment algorithms to give better performance in both objective and

subjective quality during video transmission [16].

These methods are designed to recover the packet loss for video

transmission over packet network in error-prone environment. When part of a

frame, which consists of multiple macroblocks, is missing due to packet loss,

these methods can recover the missing area with a relatively good visual quality.

However, we may ask what if the entire frame is missing? Or what if the frame

arrives at the receiver too late for playout? Can we predict or recover the entire

frame in these cases? This thesis gives a possible answer by proposing

predictive decoding.

1.2.2 Predictive Decoding

Reducing the delay associated with video would be beneficial for interactive

video applications. In this thesis, we present several frame prediction techniques

that can help reduce the perceived transmission delay of video. Using the

received video data, future frames are predicted and displayed before they arrive

at the decoder, as illustrated in Fig. 1.3.

A future frame, which hasn't been received yet, may be thought of as a

frame subject to 100•‹/o loss. Hence, some of the methods adopted in our frame

prediction resemble popular error concealment techniques, taking advantage of

spatial and temporal correlation. The predicted video frames are generated using

one or more recently reconstructed frames, and their motion information.

This process inevitably reduces the quality of the displayed frames,

especially when the motion is complex. But it also provides the user with the

ability to trade-off quality for delay. Our results indicate that using these methods,

it is possible to reduce the perceived end-to-end video delay by about 100 ms

while maintaining reasonable video quality.

Frame to be displayed

4 b -
Received frames Future frames

Figure I .3: Perceived delay reduction by frame
prediction.

1.3 Thesis Contribu,l:ion and Outline

This thesis proposes predictive decoding for delay reduction in video

communication, and examines its properties and performance on a variety of

sequences with varying motion complexity. The thesis contributions and outline

are summarized below.

Thesis contributions

The first contribution is the proposed framework for synthesizing the future frame

based on motion information in previously reconstructed video frames. This

framework essentially consists of motion vector prediction, temporal prediction

and frame post-processing.

Our second contribution is the use of motion segmentation to improve

motion vector prediction. Motion segmentation is implemented on a block-level,

using variable block sizes. Its goal is to isolate all moving objects from the

background area. Frame synthesis incorporating motion segmentation shows

much better video quality with greatly reduced prediction noise level.

Finally, we introduced varia ble-block-size motion vector prediction to

enhance the edges of moving objects. Frames synthesized in this way show

better subjective quality on sequences with high motion levels.

Thesis Outline

The thesis is organized as follows. In Chapter 2, we present the system

architecture of the proposed frame prediction module. In Section 2.1, we show

how to interface the frame prediction module with standard video decoder in

interactive video applications. In Section 2.2, we show the internal architecture of

the prediction module. In Section 2.3, we present the frame prediction procedure.

In Chapter 3, we elaborate on the key processing steps in frame

prediction. In Section 3.1, we briefly introduce the system and interface aspects

in frame prediction module. In Section 3.2, we present the motion segmentation

algorithm, including its control flow, seed pattern, region growing method, motion

smoothing and its visual quality. In Section 3.3, we present variable-block-size

motion prediction algorithm, and how it relates to segmented motion objects. In

Section 3.4, we describe the temporal prediction method. In Sections 3.5 and

3.6, we present the frame post-processing unit for overlapped area as well as

empty area, and we discuss how to combine linear interpolation and boundary

matching algorithm to give a good trade-off between computation complexity and

video quality.

In Chapter 4, we present the implementation of the frame prediction on

XviD MPEG4 codec and some simulation results. The test sequences cover a

variety of motion levels, and test cases are also categorized in terms of different

prediction techniques and complexity. Finally, in Chapter 5, we conclude the

thesis, summarize our findings, and discuss future directions.

CHAPTER 2
PREDICTIVE DECODER ARCHITECTURE AND DESIGN

Nowadays, video communica~tions over the Internet are more prevalent than ever

before. Video delivery methods vary in a variety of ways, from video clip

downloading, through one-way video streaming (e.g., live newscasts), to

interactive video applications (e.g., videoconferencing, video phone, etc.).

Increased popularity of these applications has resulted in a significant increase in

video traffic on the lnternet in the past couple of years. This thesis addresses one

of the crucial aspects of interactive video communications - that of the perceived

end-to-end communication delay.

The perceived end-to-end delay and video quality are two main criteria by

which interactive video applications are evaluated. First, low delay is crucial for

effective interactive communication. For example, to maintain lip-synchronization,

the delays associated with the audio stream and the video stream need to be

approximately the same. In an interactive video application, the adaptive jitter

buffers located in both receivers are carefully designed to deal with delay issues,

and to smooth out any variations in delay. These buffers perform two important

tasks: I) they receive incoming audio and video packets and sort them in the

proper order, and 2) they schedule the packets for decoding and playout. The

size of jitter buffers is usually managed adaptively, but to maintain delay as low

as possible they need to be relatively small, thus a late packet might not get the

chance to be decoded and played out on time. Fig. 2.1 shows the buffer

structure. The question raised here is how we can use the late received video

packet for current playback instead of throwing it away

I
Past Video Packets I

I
I

I Future Video Packets

I
I

Decoded & Played 01.14

n-m

Figure 2.1 : Jitter buffer for video packets.

The acceptable video quality is another requirement for interactive video

communication, especially the temporal smoothness. According to [17], the

performance degradation caused by video quality is less severe than that of large

delay, and a moderate amount of compression and transmission artefacts is

tolerable. Therefore, reducing the delay while maintaining acceptable video

quality becomes the most important challenge for interactive video

communication.

I

Late
Video w+ Packets I To be I

Most video compression methods are vulnerable to packet loss due to

temporal dependency among different pieces of compressed video bitstream. A

lost packet, or a late packet, can cause error propagation in the motion-

compensated prediction loop at the decoder, and can even affect the other parts

of the same frame due to intra prediction. In the worst case, the entire frame may

.... n+j n-2 n+4 n-I n n+5 n+l
-

n+2 n+3

fail to decode. Therefore, besides the traditional error recovery techniques 1151,

we need to consider delay control mechanisms to reduce the delay as well as

improve the video quality.

In this Chapter, we will present an overview of our adaptive frame prediction

at the decoder. In Section 2.1, we describe how the proposed frame prediction

module fits into standard video decoders. In Section 2.2, we give an overview of

the frame prediction module and its internal architecture. Finally, in Section 2.3

we explain the prediction procedure.

2.1 Frame Prediction Module

The block diagram shown in Fig. 2.2 represents a typical video receiver with

adaptive frame prediction module inserted in its architecture. The system shown

here is an extension of a standard video decoder, and the frame buffer is taken

over by adaptive frame predictor for playout control.

Received System decoder
(Video Packet Parser) op'F (Video Jitter Packets) buffer Control Delay

- +
Motion Information Standard Texture Information

Video Decoder

Reconstructed frames b +
Sliding window Adaptive

Frame Predictor ---
Figure 2.2: Video receiver system diagram

The interface design to the existing video receivers include the following

aspects:

1. Motion vectors (MVs) extracted from past video packets are used to

build statistics of historical motions, where a sliding window is used to

control the motion tracing length.

2. Texture information, which includes the residual information of

temporal prediction from past video frames, is combined with MVs to

aid in motion prediction.

3. Reconstructed video frames form the basis for temporal predictor to

synthesize future frames.

4. The final predicted frame is sent to the frame buffer for the actual

playout.

5. The prediction depth is signalled by the delay monitor in the jitter buffer.

The whole module tries to make the best use of the available information

so that a number of future frames can be predicted under different network delay

condition. Jitter buffer sends its delay estimates to the prediction module, which

then predicts a suitable number of future frames to maintain similar video and

audio delay level for lip-synchronization. When the end-to-end delay is

acceptable and no prediction needs to be done, the prediction module can be

bypassed easily, so the last decoded video frame will be directly sent to the

frame buffer for display.

A unique feature of this prediction module is that all the modifications are

limited to the receiver itself, and the prediction procedure is essentially an open-

loop system. By designing the frame prediction in this way, we can save all effort

on the encoder side, thus the delay caused by the real-time encoder won't get

any worse.

A variety of video codecs have been used in interactive video applications,

such as H.261, H263, H263+ [18][19], MPEG4 [2], and H264 [3]. They all rely on

block-based motion-compensated prediction coding, which makes it possible for

us to unify the interface between the prediction module and a standard video

decoder. Therefore, our frame prediction module is designed to be an "add-on" to

standard video decoders without sign~ficant impact on video codec architecture.

In this thesis, MPEG4 video decoder is the sample platform we work on to

develop the frame prediction algorithm.

2.1 .I Add-on Module to Standard Video Decoders

MPEG-4 [2] , one of the popular video standards in video communications, has

been chosen as the implementation platform in this work. Fig. 2.3 shows the

block diagram of a typical MPEG-4 video decoder and indicates where the

proposed prediction module fits.

Input Video Stream

Frame
Prediction

Motion Vectors

Decodina I Buffer
I -

Figure 2.3: Prediction module in the standard
MPEG-4 decoder.

The decoder feeds the last reconstructed frame and its corresponding

motion vectors (MVs) to the prediction module, which maintains a buffer of

several previous reconstructed frames and their MVs. These frames, along with

their associated motion, are used to predict and synthesize future frames for

display. For a video at 30 frames per second (fps), predicting one frame ahead

corresponds to a delay reduction of 33.3 ms; predicting two frames ahead

corresponds to a delay reduction of 66.7 ms, etc.

This architecture can be easily adapted to other video standards, like

H.264 [3], as long as they use a similar block-based coding methodology. The

following section describes the internal architecture of our prediction module.

2.2 Prediction Module Architecture

Fig. 2.4 shows the internal architecture of the prediction module with the

following key blocks. Further operational details are provided in Chapter 3.

Unified Module Interface. This is the unified interface between the block-

based video decoder and the adaptive frame prediction module. The

interface includes all motion information from past video frames, the

prediction error information, the delay signal for prediction depth control

from the jitter buffer, and previous reference frames.

Motion Segmentation Unit. Combining the motion information and the

prediction residual, this unit segments the motion objects from the

background area on a block-by-block basis. This is a crucial step to

predict the motion between the last decoded frame, and the future frame

we would like to display.

Prediction
For lip-synch Ref. Frames

1 1 Module Interface I
Motion Pre-processing

Segmentation
1 t v v

MV Multiple Frame
Statistics MV Pred. Prediction Controller

Frame
Buffer 4

Post Processing
(empty area)

Figure 2.4: Internal architecture of prediction
module

Variable-Block-Size Motion Prediction. Motion prediction is seen as the key

step in frame prediction, and prediction is essentially done on the basis of

each segmented object as well as the background area. A variable-block-

size prediction algorithm is proposed to improve prediction near the edges

of moving objects.

Temporal Prediction Unit. Temporal Prediction unit synthesizes the future

frame using the blocks from previously decoded frames and predicted

MVs.

Post Processing Units. As the motion objects which consist of blocks with

consistent motion vectors get moved along the predicted MVs, they

usually do not fill the entire future frame - some areas of the frame may

remain empty (we call these "empty areas"), others may have multiple

blocks landing on them (we call these "overlapped areas"). These issues

are dealt with in the post-processing unit.

Multiple Frame Prediction Control unit. This unit uses the estimate of the

current end-to-end delay to decide how many future frames are being

synthesized, i.e., how many frames ahead are we predicting. The last

predicted frame will be sent to the frame buffer for display.

2.3 Frame Prediction Procedure

Frame prediction module is inserted into the traditional video decoder, and

utilized to reduce delay adaptively according to an estimate of the current end-to-

end delay. The main issue in frame prediction is that of prediction error

propagation as we synthesize more future frames. To clarify this difficulty,

consider a simple prediction method where the motion of a block is predicted

based on the motion vector of the last received block, and its magnitude is

linearly increased depending on the number of frames that need to be predicted.

A small prediction error is introduced when we predict the motion of the first

future frame, and it is magnified as we predict more frames ahead.

This issue is depicted in Fig. 2.5 where, for the future frame (1 1) ,

M I ' , , i , , (~ r) denotes the real MV, iL.IJf , , , , , (l~) denotes the predicted MV, and N is the

number of future frames that need to be synthesized.

Figure 2.5: The error propagation of motion
prediction.

The error of this simple motion predictor is:

(n) = kV' (n) - M Y , , (n)

Eq. 2.1

Since the objects do not usually move along a straight-line trajectory, this

simple motion prediction on the decoder side will wander off the real trajectory if

not mitigated properly.

To mitigate the prediction error, we introduce sequential frame prediction,

where we have moving-window to store motion information for several past

frames, and we make use of motion segmentation in prediction so that we can

refine MVs within a region with homogeneous motion. Furthermore, a sequential

frame synthesis loop is used to predict motion vectors if more than one frame

needs to be synthesized ahead of time. "Sequential frame prediction" means that

if we need to predict several frames ahead, we first synthesize the first future

frame, then the next future frame, and so on until the final frame. We do not

attempt to synthesize the final future frame directly (unless we are predicting only

one frame ahead of time). This sequential frame prediction mechanism is

depicted in Fig. 2.6.

Prediction loop ...

1'' Frame Pred. 1
Prediction loop ...

sequential frame
predktiun loop

J L Targeted Pred. Frame

I Frame Buffer I

Figure 2.6: Sequential frame prediction
mechanism.

We do not anticipate eliminating the error completely, but by adopting

sequential frame prediction, the prediction error is greatly reduced as we

synthesize all intermediate frames between the last reconstructed frame and the

targeted future frame for display. The moving-window of motion information also

helps with motion statistics and can smooth out the trajectory of some moving

objects.

Chapter 3 elaborates on the key prediction unit, and emphasizes the way

we minimize the prediction error.

CHAPTER 3
ADAPTIVE FRAME PREDICTION MODULE

In this Chapter, we are going to describe the key processing units of the frame

prediction module, as well as its internal data flow. We start with the system and

interface aspects of the adaptive frame prediction module, followed by the

description of design motivations and algorithm details for each processing unit.

3.1 System and Interface Aspects

Fig. 3.1 shows the abstracted module interface and internal architecture of the

proposed adaptive prediction module.

We have given a rough introduction about the system architecture of

adaptive frame prediction in Section 2.2. A unified module interface is proposed

for the prediction module so that all block-based video decoders can take

advantage of it. Also, the core control loop is a sequential prediction loop which is

responsible for synthesizing future frames. The frame prediction m o d ~ ~ l e

essentially consists of motion segmentation, motion vector prediction, temporal

prediction, and post-processing, and the details will be presented in the following

sections.

~ p z z + ~ 7 G z G +
For Lip-Synch

Module Interface Motion Segmentation

Motion Prediction Module
Adaptive Prediction Controller
(sequential prediction Loop)

Temporal Prediction

Post-Processing

Playout Frame Buffer

Figure 3.1: System and interface aspects

3.2 Motion Segmentation

3.2.1 Motivations

Predicting the moving direction precisely has proved to be crucial to synthesizing

future frames in our experiments, and both motion vectors and prediction

residuals from previous frames can contribute to MV prediction for future frames.

All recent block-based video encoders use variable-block-size motion

estimation, and all these motion vectors represent moving directions of different

parts of a particular MB. However, conventional motion estimator at the encoder

side is built based on the criteria of minimum prediction error instead of motion

homogeneity within certain region, and this might cause serious problems when

we use all these motion vectors as the only information to predict future motion.

The motion estimation results might not indicate real motion in the following

cases [30]:

1 > In flat areas, random vectors are likely generated due to the

noise in the video sequence. The motion vectors associated with

macro blocks in background region might end up differing from

each other randonily.

In areas with repetitive patterns, false motion vectors may be

generated as blocks get matched with other, further instances of

the pattern.

3 When the motion is larger than the search area, no meaningful

motion vectors can be obtained.

Motion estimation errors caused by these phenomena are sometimes

referred to as "noise." Motion prediction that relies solely on these potentially

false motion vectors becomes unreliable, especially for background areas.

Without eliminating the noise present in motion vectors, predicted frames

may contain false and unnatural motion such as the "shaking background," etc.

The problems gets worse as we predict further ahead, since prediction errors get

amplified.

Another common issue concerns the relationship between blocks and

object boundaries. It is commonly observed that the block-wise boundary doesn't

match perfectly with the true object boundary [31], because the true object

boundary may cut across the block. Therefore, frame prediction might mess up

the object boundary since texture information might either disappear along the

edge between different objects or appear along object boundaries in the future

frames. To deal with all these issues, we develop a motion segmentation

algorithm as the first step of variable-block-size motion vector prediction.

Simulation results in Chapter 4 will illustrate the improvement of frame prediction

based on motion segmentation, versus the prediction that does not use motion

segmentation.

Motion segmentation has been a hot research topic in video processing.

Reference [32] uses motion segmentation for very-low-data-rate object-based

video coding. In [33], frames are adaptively partitioned into blocks of variable size

with homogeneous motion, therefore a significant improvement of the

compression ratio can be achieved. Reference 1341 proposed a variational

method for segmenting image sequences into spatio-temporal domains of

homogeneous motion. Reference [39] addresses motion segmentation

techniques in MPEG-4 video standardization, where hybrid block-based coding

techniques are used. These works make use of motion segmentation in different

scenarios.

Our motion segmentation ahis to improve motion prediction at the

decoder side. Here, the available motion information exists in the compressed

video stream in the form of motion vectors, and it demands a different approach

for the segmentation. References [35-361 have described methods for achieving

multiple affine motion decomposition, with K-means clustering in the affine

parameter space. Our proposal for motion segmentation algorithm is a

combination of K-means clustering [29] and motion consistency model.

Fig. 3.2 shows the diagram of the main processing units for motion

segmentation. The motion information and texture information associated with

each macro block are extracted from the encoded video bit stream for low-

precision motion segmentation, and the segmented motion objects are fed to the

motion prediction module for object-based motion vector prediction. Detailed

description of processing units is given in the following sections.

Region - Region
Searching Growing classifier

w

Encoded video
Bit Stream

b

Figure 3.2: Diagram of motion segmentation

Clustering
Threshold
Estimator

l Finalized

3.2.2 Clustering Threshold Estimator

Motion Region
Smoothing

Our experiments show that the motion level of each particular video frame greatly

affects the motion segmentation performance. Without an appropriate knowledge

of the motion level, after motion segmentation, one video frame might end up

with a) too many moving objects, with some parts of an object segmented into

different objects, or b) different moving objects clustered into the same object by

Region
Merger

Edge
Splitter

Motion Re

mistake. Also, a good estimation of the motion level will speed up the

segmentation. Therefore, we come up with a clustering threshold estimator to

give the statistic of the motion level for motion segmentation.

Two important parameters are estimated in clustering threshold

estimation: the region growing step size and the threshold of minimum moving

object distance.

The region growing step size is used to control the speed of region

growing. Large step size will make motion segmentation converge quickly, but it

might increase the risk of grouping the blocks into a wrong motion region.

The threshold of minimum moving object distance is used in the region

merge unit in Fig. 3.2. After motion objects are identified, we are going to

calculate the distance between each pair of objects. If the distance between two

particular objects is less than this threshold, these two objects are merged into

one to get rid of falsely segmented moving objects.

To calculate these two parameters, a statistical model is used to estimate

both the mean and variance of motion vectors in the frame that is to be

segmented.

The mean of the motion vectors

Eq. 3.1

The variance of the motion vector magnitude

Eq. 3.2

Here, N and M denote the width and height of the frame in terms of 8x8

blocks, and E;., denotes the motion vector of block MB(i,.j).

The region growing step size is set to be related to the variance, so that

high variance leads to a large region growing step size. Currently in our software,

we take the standard deviation as the region growing step size, and limit its

maximum value to 8.

The threshold of minimum moving object distance is also decided by the

motion vector variance. Currently in our software, we set the standard deviation

as the threshold of minimum moving object distance, and limit the maximum

value of the threshold to 4.

3.2.3 Seed Block Pattern

The seed-block pattern is defined as a group of blocks with minimum

mean MV distortion, which works as a starting point for subsequent clustering. If

-
we denote Ml/ i , i = 1, . . . , /V as the motion vectors of each block, where N

represents the number of blocks inside a seed, and DXIc,, as the overall MV

distortion, equation (3.3) is used to find a seed through the entire video frame.

Eq. 3.3

It is also crucial to define a good pattern for seed-blocks. The main

criterion in choosing a good pattern is to avoid false moving object seed, which

can be caused, for example, by four identical motion vectors (8x8 blocks) split

from one 16x16 MB. Fig. 3.3 shows two pattern candidates. Pattern on the left

was found to give better performance in our motion segmentation experiments.

Shape of a Seed - I r 7
Figure 3.3: The seed pattern

After we identify a seed block, the neighbouring blocks in horizontal and

vertical directions, which are shown in Fig. 3.4, are first clustered together to form

a new motion region [37]. K-Means clustering is used to group surrounding

blocks based on motion vector consistency, as explained below.

Identified
seed-block

I

Figure 3.4: The region growing directions

3.2.4 Region Growing Criterion

Based on a Motion Consistency Model (IMCM), the moving object can be

identified by clustering ungrouped surrounding blocks that border the existing

motion region into that region, if the motion vectors of these blocks are

sufficiently similar to the motion inside the region, i.e., if they satisfy the

consistency criterion in MCM. This procedure is called "region growing."

The MCM is established based on the minimum distortion criterion, and

updated adaptively as the region is growing. Let's denote M V , , , as the MV for

- -
the considered block, MV,,,,,,,,,,(as the centroid MV of the region, MV,, , as MVs

of all internal blocks within the region. Once a new seed-block is found, the

centroid MV, MV,,, , , , , , , , , is initialized, and the region growing threshold D, is

computed as shown in equation (3.4). Essentially, D, is the average distance

between the MVs in the region and the centroid MV of the region, increased by

the offset D, , where Dell indicates the region growing step size which is

estimated in the Clustering Threshold Estimator, the first processing unit in Fig.

3.2.

The region growing process checks whether an ungrouped block which

borders the existing region has sufficiently similar motion to the prevalent motion

inside the region, by checking if equation 3.5 is satisfied. Here, ~ , , , , , , , i ~ f . , ,

denotes the motion vector centroid of region 1 1 , z..,, denotes the motion vector

of the block that is being tested, D,,,,,, denotes the growing threshold of region 1 1 ,

and D,,,, is the distance between motion vector centroid of the region and the MV

of the block

For a particular ungrouped block, if there is more than one bordering

region for which equation 3.5 is satisfied, then we pick the minimum D,,,, and

group the block into that region accordingly.

Eq. 3.5

After the block is assigned to one of its neighboring regions, the motion

vector centroid of that region gets updated as shown in equation 3.6. This

process is repeated for other neighboring blocks until the region cannot grow

anymore. Once the region stops growing, our estimate of the location of a

moving object is formed.

3 3

3.2.5 Motion Region Smoothing

Fig. 3.5 ~llustrates some typical manifestations of motion vector "noise"

addressed in section 3.1, such as false MV, background MV noise, etc. These

problems are basically caused by MV estimator at the encoder side which utilizes

the standard Mean Absolute Difference (MAD) error criterion [30]. To mitigate

these problems, we add a special processing step, Motion Region Smoothing. In

this step, MV filtering is applied to reduce the amount of MV noise.

False MV for 8x8 MB False MV for 16x16 MB Background MV Noise

Figure 3.5: Typical motion vector noise

With segmented moving objects and background area in the previous

section, it is possible to do separate motion vector filtering in each region. Two

filtering me'thods are proposed here.

a) Replace MV of all internal blocks with the centroid MV of the entire

region.

b) Use Vector Median Filtering (VMF) for motion vector smoothing [38].

34

variance of motion vectors of the frame to be segmented, the corresponding

region growing step size is determined as well as the threshold of minimum

moving object distance. These two parameters are used in the region growing

unit and the object merge unit, respectively.

step 2) With the pre-defined seed pattern, a group of blocks with minimum MV

distortion is found as the starting point for region growing, to identify moving

objects.

step 3) With the threshold of MV distortion range from step 1) and seed-

blocks from step 2) , a region will be grown gradually by clustering bordering

blocks into the region, if their motion is sufficiently similar to the prevalent

motion inside the region. This step will be executed repetitively until no blocks

are left which satisfy the minimum distortion criterion in the motion

consistency model.

step 4) Classify all existing motion regions, and update all parameters for

motion consistency model, such as the motion vector centroid, the region

growing threshold, and so on.

step 5) Repeat Step 2) to Step 4) until no further seed can be found.

step 6) Motion region smoothing consists of two main parts: clustering all

remaining ungrouped blocks to weed out potential false motion vectors, and

using median filtering to reduce motion vector noise inside each region.

step 7) Calculate the distance between centroid MVs of adjacent regions, and

merge two adjacent regions if the distance between their centroid MVs is less

than the threshold of minimum moving object distance, which is determined in

the clustering threshold estimator.

3.3 Variable-block-size Motion Prediction

In each coded frame, the MV associated with a block points to the most similar

block in the reference frame, and can be interpreted as a motion path for that

block. We assume the object will keep moving in a similar direction, thus a crucial

step towards synthesizing a future frame is to predict the motion for each block

between the last decoded frame and the future frame. With segmented motion

objects as well as the background area, a variable-size block motion prediction

algorithm is proposed in this thesis, and its system diagram is illustrated in Fig.

8x8 MV Motion MB VBS
Conversion Segmentation Classification Motion Prediction

Variable-Block-Size Motion Prediction Predicted

I Frame Synthesis Loop I
Figure 3.7: The system diagram of variable-block-
size motion prediction

The whole MV prediction algorithm can be further divided into two

processing phases in terms of frame prediction depth.

Phase a) When we synthesize the first future frame (i.e., when we

predict one frame ahead of time), both motion information and

prediction residual are extracted from the compressed video stream.

Motion segmentation is used to isolate all motion objects from the

background, and vector median filtering is applied to smooth each

motion field out. To further improve the quality of motion estimates

near object boundaries, all blocks are classified based on their position

and the energy of the prediction residual. Finally, a Variable-block-size

Motion Prediction (VBS-MP) is employed to predict motion path for

each individual block [3'1], [33].

Phase b) To predict the motion path for other future frames (i.e., when

predicting more than one frame ahead of time), the processing is

slightly different due to the lack of prediction residual data. Therefore,

instead of the VBS-MP method, vector median filtering is adopted to

predict motion vectors near object boundaries.

The predicted motion path is fed to the temporal prediction module to aid

the synthesis of the future frame. The elaboration of all major processing units in

Fig. 3.6 follows.

Conversion to 8x8-based MVs. Recall that in MPEG-4, MVs can refer to

8 x 8 blocks or 16x16 blocks. To simplify further processing, all MVs are converted

to 8x8-based MVs by assigning the same MV to four 8 x 8 sub-blocks of a 16x16

block where necessary. For intra-coded blocks (I-blocks) which do not have a MV

associated with, a Zero MV will be assigned.

Motion Segmentation was described in Section 3.2.

Block Classification. 8x8 blocks are classified prior to variable-block-size

motion prediction. Within each region, each block is classified as either an

internal block or a boundary block in terms of its position and the energy of the

prediction residual. a) A block is classified as internal if it is surrounded by blocks

which belong to the same motion region, or if its residual energy is lower than a

pre-defined threshold whose value is set to 256 based on our experiments (which

indicates an average prediction error of 4 per pixel). b) A block is classified as a

boundary block if it is near the boundary between different regions and its

residual energy is higher than the threshold.

Variable-Block-Size Motion Prediction. For the block classified as a

boundary block, assigning a single MV may be inappropriate since a more

complex motion structure is likely involved. Splitting the 8x8 block into smaller

blocks, like 4x4 sub-blocks, and predicting MV for each of them can mitigate the

risk of predicting a wrong single MV [17][50]. Fig. 3.8 shows two scenarios where

blocks near the boundaries of moving regions are split into 4x4 sub-blocks, and

an MV is assigned to each sub-block based on which region it is closest to.

A) 4x4 blocks, each of which
is at the edge of one region

I I I I I

B) 4x4 blocks surrounded
by multiple motion regions

Figure 3.8: The motion vector prediction for 4x4
su b-blocks

The way to assign MVs for sub-blocks is as follows:

a) If a 4x4 sub-block is surrounded by blocks from the same region, then

the MV of that region is assigned to the 4x4 sub-block.

b) If a 4x4 sub-block is surrounded by multiple regions, then the MV

distance is first calculated between these regions and the parent 8x8

block (before splitting). The MV of the region with rr~ir~imum distance

to the parent MV is assigned to the 4x4 sub-block.

Let /Z41i,,,,l. be the MV of the 8x8 parent block near the boundary, and

.- -. -
let S be a set of N motion vectors, 5' = ; M V ,,,, , ,MYItI f > , ..., M V I I r f , 1 , whose

elements are the centroid MVs of the surrounding regions. Equation (3.8)

is used to pick the most likely MV, MV,.,,.,, , for the k-th 4x4 sub-block.

Eq. 3.8

VMF Filtering. As an alternative to variable-block-size motion prediction

(VBS-MP), vector median filtering can be used to smooth the motion field in the

boundary areas between moving objects if no residual information is available.

This happens when predicting MVs to synthesize future frames that are more

than one frame ahead of the last received frame. In these cases, we often find

that multiple blocks land on the same area (overlapped area), as illustrated in

Fig. 3.9. The question is how to predict the motion of that area into future frames,

given that it may have come from different blocks in the previous frame, and so

may take different motion trajectories into the future. Again, we found it useful to

use the vector median of all candidate MVs as a predictor of motion for the

overlapped area.

[Current block 1
J

/- Final
Median

MV
L

vetlapping blocks

c
Figure 3.9: MV prediction for overlapped areas

3.4 Temporal Prediction

The term "temporal prediction" refers to the process of synthesizing the future

frame after the motion between this future frame and the previous frame has

been predicted as described in the previous few sections. Once MV estimates

have been obtained, we move all the blocks including 4x4 sub-blocks of the

previous frame along the predicted MVs. In this way, we synthesize a preliminary

version of the future frame. Fig. 3.10 illustrates what a preliminary version of the

future frame might look like.

areas

Figure 3.10: A preliminary version of the future
frame

At this point, some areas of the synthesized frame may have multiple

blocks landing on them - we call these areas "overlapped areas." Other areas

may remain empty, if no block lands on them. We need to decide which pixel

values will be written into the overlapped and empty areas. These decisions are

made in the two post-processing blocks whose operation is described below

3.5 Post-processing for Overlapped Areas

We distinguish two types of overlapped areas: "thin1' areas are those whose width

or height does not exceed 3 pixels, while "thick" areas are those whose both with

and height exceed 3 pixels. Different post-processing is applied to each type of

the overlapped area.

For thin areas, we apply a simple averaging of all candidate blocks. Let

there be N blocks overlapping a certain area and let OVk denote the k-th block.

The pixel value at location (x, y) in the overlapped area is set to be the average

of corresponding pixel values in each of the overlapping blocks:

Eq. 3.9

Once all thin overlapped areas are processed, we are left with thick

overlapped whose height and width exceed 3 pixels. An illustration is shown in

Fig. 3.1 1.

x Overlapped area
0 Surrounding area

Figure 3.1 1 : Boundary matching for overlapped
areas.

These areas will be filled by pixel values from the block that fits the best

into the surrounding area. To decide which block fits the best, we employ

boundary matching by computing the mean square difference between the

boundary pixels of candidate blocks, and the boundary pixels of the surrounding

area.

Let OVk(x, y) be the pixel at location (x, y) in the k-th overlapping block.

Let B be the set of boundary pixels of the overlapped area, and for each (x, y) E

6, let n(x, y) be the value of the neighboring pixel across the boundary, in the

surrounding area. The best matching block OVbesl is the one whose square

difference from the surrounding area along the boundary is the smallest, as in

equation (3.10). Pixels from this block are used to fill the thick overlapped area.

Eq. 3.10

3.6 Post-processing for Empty Areas

In addition to overlapped areas, we also find empty areas in the synthesized

frame. These are the areas where no block has landed. A similar situation arises

in error concealment, where a block of size 8x8 or 16x16 may be missing due to

packet loss. However, in our case, empty areas may have different shapes and

sizes. Again, we distinguish "thin" empty areas (those whose width or height

does not exceed 3 pixels), from "thick" empty areas (those whose both height

and width exceed 3 pixels). Different post-processing is applied to each type of

the empty area.

Thin empty areas are filled using linear spatial interpolation [27]. Each

pixel is estimated as a weighted sum of the boundary pixels in the surrounding

areas. The weight of each boundary pixel is inversely proportional to the distance

from the empty pixel whose value is being computed. An illustration of a thin

empty area whose height is 3 pixels is shown in Fig. 3.12. Let P(x, y) be the pixel

value we wish to determine in an empty area, and let Pl(xl, yl) and P2(x2, y2) be

two of its nearest neighbors in the surrounding area.

Figure 3.12: Filling thin empty areas.

In the situation depicted in Fig. 3.12, P1 and P2 are above and below P, so

in this case x, = x2 = X. The pixel in the empty area is linearly interpolated as

Eq. 3.11

where hl and h2 are the distances from P to P, and P2, respectively, and h, + h2

= H.

Simple linear interpolation works reasonably well for thin empty areas, but

tends to produce excessive blurring when applied to thick empty areas.

Therefore, we adopt a more sophisticated method for filling thick empty areas

based on boundary matching [6-71.

An example of a thick empty area is shown in Fig. 3.13. First, we divide

each thick empty area into rectangular regions, which we call "empty rectangles1'

(ERs), and label them ER1, ER2, . . ., ERN. We fill ERs in sequence, startmg with

ER1 and ending with ERN. For each ER we extract the boundary pixels from the

surrounding area and use them for boundary matching in previous frames.

Boundary B1
\

I I
I - - _ _ _ _ _ _ - - _ _ I

Search region

Previous frames

Thick empty area

Figure 3.1 3: Filling thick empty areas.

Let 6, be the set of boundary pixel coordinates for ER,. Denote the

current frame as P, and previous K frames as P I , P2, . . ., PK. We will search in

each of the previous K frames over an area of size X x Y pixels for the best

matching boundary.

This boundary is found in frame Pk, offset by (dx, dy) from its position in

the current frame, where

Eq. 3.12

Once (3.12) is solved and the best matching boundary is found, we copy

the corresponding rectangle from Pk to f~ l l ER,. At this point, ER, is removed from

the list of empty rectangles, and we continue with ER,,,. The pixels of ER, may

now become boundary pixels for the remaining empty rectangles. The procedure

is illustrated in Fig. 3.13.

An example of how empty areas are filled is shown in Fig. 3.14

The figure shows a frame as it passes through the empty area post-

processing block. The top left image shows the frame produced by temporal

prediction and overlapped area processing. Thin vertical empty areas are filled

first (top right), followed by thin horizontal empty areas (bottom left). The final

predicted frame, obtained after filling thick empty areas, is shown at the bottom

right of Figure 3.14.

Figure 3.14: Illustration of empty area post-
processing where [top left] is the intermediate
frame after post-processing of overlapped areas;
[top right] is the frame after filling thin vertical
empty areas; [bottom left] is the frame after filling
thin horizontal empty areas; [bottom right] is the
final frame after filling thick empty areas.

CHAPTER 4
IMPLEMENTATION AND SMULATION RSULTS

In this Chapter, we describe the implementation of frame prediction in the XviD

MPEG-4 decoder [26] . We also develop the methodology for assessing the

motion segmentation as well as the overall predictive decoding process, and

present the simulation results.

4.1 Test Sequences

We test the performance of the proposed frame prediction on several sequences

with varying motion content. We used six sequences in our experiments, each at

three different frame rates: 30, 15, and 7.5 frames per second (fps). These

sequences are listed in Table 4.1. Frame prediction module was incorporated

into the XviD implementation of the MPEG-4 video codec [26]. Up to 400 frames

of each sequence were encoded using the IPPP . . . GOP structure. QClF

sequences were encoded at 128 kbps, and CIFISIF sequences at 512 kbps.

On the decoder side, we tested prediction of up to 3 frames ahead.

Depending on the frame rate (30 fps, 15 fps, or 7.5 fps) of the sequence, the

perceived delay reduction is up to 100 ms, 200 ms and 400 ms when predicting

three frames ahead of time. Using different corr~binations of frame prediction

building blocks from the previous section, we constructed four prediction

methods with different complexities, and compared their performance.

Table 4.1: Test sequences.

1 Sequence I Resolution I Motion 1
1 Carphone 1 QClF I High 1
1 Flower Garden 1 C I F 1 High 1
I Foreman 1 QClF 1 Medium 1
I Singer 1 SIF 1 Medium I
1 Mother 8 Daughter I QClF 1 Low 1
1 Miss America I QClF I Low 1

4.2 The Assessment of Motion Segmentation

In Section 3.1, we proposed a motion segmentation algorithm whose aim is to

improve the performance of motion prediction. Before we assess the overall

performance of predictive decoding, we conduct several experiments to test the

performance of motion segmentation itself.

Four video sequences, Garden, Coastguard, Tennis and Football, are

used in this assessment. The input to the motion segmentation unit are the

motion vectors extracted from the encoded video stream. Segmentation

procedure is elaborated in section 3.1. Fig. 4.1 - Fig. 4.4 show the segmentation

results where the original video frame is also displayed to give a reference on

what the exact moving objects look like. To display the rescllt of motion

segmentation, moving regions are filled with different luminance values to

distinguish them from each other.

Original - Garden Motion Segmentation result

Figure 4.1: The motion segmentation result:
Garden

Original - Coastguard Motion Segmentation result

Figure 4.2: The motion segmentation result:
Coastguard

Original - Tennis Motion Segmentation result

Figure 4.3: The motion segmentation result:
Tennis

Original- Football Motion Segmentation result

Figure 4.4: The motion segmentation result:
Football

From these results, one can see that the proposed motion segmentation

algorithm nicely segments the moving objects at a block precision level. However,

it is not hard to observe that the edges of each moving object cannot exactly

match its original boundary. The jagged object boundaries are caused by the fact

that motion estimation at the encoder is block-based, and uses the criterion of

53

minimizing prediction error, which may lead to inaccurate estimates. Because of

this, it is necessary to come up with a method to enhance segmentation

performance and subsequent MV prediction near the edges. Our solution is the

variable-block-size motion prediction, which was described in section 3.2.

4.3 Assessment Methodology

To assess the techniques described in Chapters 2 and 3, we construct four

different prediction methods by combining different techniques. We then compare

these methods to asses what benefit do the different techniques bring to frame

prediction. We tested the four methods using both objective and subjective

criteria.

4.3.1 Method 0: Zero Motion Vector

This method applies the simplest motion prediction model for frame prediction.

The ZERO MV is assigned to all blocks so that there is no temporal movement at

all regardless of the number of frames that need to be synthesized. In other

words, the latest reconstructed frame is taken directly as the predicted frame for

playout. This method is the basis against which we measure the performance of

the proposed prediction techniques.

4.3.2 Method I : Motion Extension

In this method, MV of each block is inverted and extended up to the frame we

wish to predict. For intra-coded block, where there is no motion vector provided

in compressed bit stream, the median neighbouring MV is chosen using the

Vector Median Filter. Fig. 4.5 illustrates this simple motion prediction procedure.

Temporal replacement

The Rec. Frame

Figure 4.5: MV inversion followed by motion
extension.

Motion vectors shown in dashed lines represent .the predicted IVIVs. As the

figure shows, the block will keep moving along the same direction that it came

from. The moving distance is simply proportional to the number of frames to be

synthesized. The post-processing for empty areas and overlapped areas is as

described in Chapter 4.

The computation cost is slightly increased compared to method-0 due to

temporal prediction and post-processing. However, since only the final predicted

frame is synthesized (and no intermediate frames), the overall processing time

remains almost the same no matter how far the prediction goes.

4.3.3 Method 2: Motion Segmentation, VMF, Sequential Frame Synthesis

Method-2 has more complicated motion prediction than method-I. First, this

method includes motion segmentation and vector median filtering to reduce

prediction errors. Second, the sequential frame synthesis loop is introduced,

whereby each intermediate frame between the last received frame and the final

future frame is synthesized one by one, using previously synthesized frames as

references.

As illustrated in Section 4.2, the proposed motion segmentation algorithm

nicely isolates moving objects from the background. Hence, motion prediction is

able to identify areas of homogeneous motion and use some filtering techniques

to predict consistent motion within each particular region. The vector median filter,

which has an excellent trade-off between corr~plexity and smoothing performance

[5], is chosen for this purpose.

Since all intermediate frames are synthesized, the complexity of this

method is obviously higher than the complexity of the previous two methods, and

is proportional to the distance between the last received frame and the final

frame we wish to synthesize.

4.3.4 Method 3: VBS Motion Prediction and Region Smoothing

This is the final full-featured prediction method. Compared to the previous three

methods, here the motion smoothing is applied to get rid of false MVs and MV

noise in large homogeneously-moving areas, and variable-block-size motion

prediction is adopted near the edges of moving objects to further improve visual

56

quality. This method has the highest complexity among all methods, but it also

shows the highest visual quality and Peak Signal-to-Noise Ratio (PSNR), as will

be illustrated below.

4.4 The Overall Assessment of Frame Prediction

In the assessment of the four frame prediction methods we described in the

previous section, we measure both the objective and subjective quality of the

predicted frames.

4.4.1 The Objective Quality

The predicted video frames can be qualified in an objective way, and such a

measure is the mean square error (MSE) between the original raw video

sequence and the predicted video sequence. The most widely used video quality

measure is the Peak Signal-to-Noise Ratio (PSNR), defined in equation 4.1 in

decibels (dB). The difference between luminance (Y) components of the original

and predicted frame is calculated pixel by pixel, and then an average over the

entire frame is taken.

In this section, PSNR in dB is used to assess frame prediction in two

different ways. First, we measure the displayed video quality for all four methods

we discussed in section 4.3. We run the prediction for up to three frames ahead

of time for each method, and PSNR is used for the comparison of their

performance.

Second, we examine the effects of block size used for motion estimation

at the encoder on the performance of frame prediction at the decoder. In

particular, we compare the prediction performance in the case where encoder

forces all MVs to be 8x8 against the case where the encoder can choose to

assign a MV to either an 8 x 8 or a 16x1 6 block.

4.4.1.1 The Quality vs. Frame Prediction Depth

Fig. 4.6 - 4.8 shows how video quality measured by PSNR in dB depends on

how far ahead we predict. The results are sorted from high motion level

sequences to low motion level sequences. All these simulation were done with

30 fps sequences.

Clip: -- Garden

0 1 2 3
Frames In advance

Clip: -- Carphone

0 1 2 3
Frames In advance

Figure 4.6: Prediction performance in PSNR (dB) -
High Motion Level

Clip: - Foreman

0 1 2 . O 1 2 3
Frames In advance Frames In advance

Figure 4.7: Prediction performance in PSNR (dB) -
Medium Motion Level

Clip: - Mothrdot

0 1 2 3
Frames In advance

Clip: - Miss

2 3
Frames In advance

Figure 4.8: Prediction performance in PSNR (dB) -
Low Motion Level

From the PSlVR plots, we can observe the following:

The PSNR is decreasing as the prediction goes further. The quality

decay varies according to the motion activity level and texture pattern

in the sequence. Garden has the most complicated texture pattern and

its PSNR (method-3) drops up to 3 dB when predicting one frame

ahead of time, while the PSNR of method-0 drops 10 dB after

predicting the first frame.

On sequences with relatively high motion levels, like Garden, Singer,

Carphone, and Foreman, the full-featured method-3 outperforms other

methods.

For sequences with relatively low motion, like Miss America and

Mother & Daughter, the sophisticated frame prediction method doesn't

provide as much improvement as for high-motion sequences. On

these sequences, even simple methods do reasonably well.

4.4.1.2 The Frame Prediction Performance vs. Frame Rate

The franie rate is another important factor which links prediction depth and delay

reduction. Figure 4.9, 4.10 and 4.1 1 show how the frame prediction performs at

different frame rates.

During the experiments, each test sequence is subsampletd from its

native frame rate of 30 fps down to 15 fps and 7.5 fps. Prediction depth goes up

to 3 frames ahead for each frame rate. Figure 4.9 illustrates the relationship

between the frame prediction performance and frame rate for high motion

60

sequences, while Figure 4.10 and Figure 4.1 1 are for medium motion and low

motion sequences, respectively.

Clip: - garden Clip. -- carphone

I I
1 2 3 1 2 3

Frames In advance Frames In advance

Figure 4.9: Prediction performance VS. Frame
Rate - High Motion Level

Clip: - Foreman

I
1 2 3

Frames In advance

Clip: -- singer

1 2 3
Frames In advance

Figure 4.10: Prediction performance VS. Frame
Rate - Medium Motion Level

Clip: -- mthrdot Clip: - miss

Frames In advance Frames In advance

Figure 4.1 1 : Prediction performance VS. Frame
Rate - Low Motion Level

The simulation results are consistent with our expectations. Prediction is

better at high frame rates. We can also observe that the quality (PSNR) of

predicted frames is approximately determined by perceived delay reduction. For

example, predicting one frame ahead with 15 fps Foreman gives us similar

quality to predicting two frames ahead with 30 fps Foreman. In other words, the

cost of quality loss to reduce perceived end-to-end delay for high frame rate

source is similar to the quality loss incurred with its low frame rate counterpart.

This simulation shows that the frame prediction performance is mainly

related to the amount of delay we want to reduce. However, video source with

high frame rate offers us more flexibility in frame prediction than the low frame

rate source. For example, if the user can accept the video quality at 150 ms

delay reduction, then with 30 fps video communication, we will have options for

delay reduction at 33ms, 67ms, 1 OOms, and 133ms, while for 15 fps video source

we only have options 67ms and 133 ms, and only one option (133 ms) for 7.5 fps

source.

4.4.1.3 The Frame Prediction Performance vs. Motion Level

The results in the previous figure indicate the average PSNR over the entire

sequence. In this section, we further investigate the frame-by-frame PSNR

fluctuation through the sequence, and look into the relationship between quality

and motion level. For this experiment, choose four test sequences with different

motion levels: Carphone (High), Foreman (Medium), Miss America (Low), and

Mother & Daughter (Low). Method-3 is chosen as the prediction method, since it

gave the best results overall in the previous section.

In Fig. 4.12 to Fig. 4.15, we plot the frame-by-frame PSNR for different

prediction depths.

Frames lndex

Figure 4.12:The PSNR of frame prediction vs. The
motion level - Carphone

Clip: - Foreman
38

34

32
P
:30
2

2 . 2 a
8
5~
a

9"
22

20

1 b

I L 1 I I I

Xr 10 80 M) lo0 246
Frames lndex

Figure 4.13:The PSNR vs. The motion level -
Foreman

Frames lndex

Figure 4.14:The PSNR vs. The motion level -
Mother & Daughter

Clip - Miss America

. -.

I I I 4 I I h
0 M W 80 00 7 W I 120 1

Frames lndex

Figure 4.15:The PSNR vs. The motion level - Miss
America

These plots indicate that prediction performance depends on the motion

intensity in a particular segment of the sequence. Prediction is much better in

low-motion sequences such as Miss America and Mother & Daughter, then it is

on the higher-motion sequences like Foreman and Carphone. Within the

Carphone sequence, prediction deteriorates towards the end of the sequence as

the motion intensity increases.

4.4.1.4 The Frame Prediction Performance vs. Motion Field Density

As mentioned in Chapter 3, motion vector accuracy is a very important factor

affecting the overall frame prediction performance. What we have discussed so

far only concerns the decoder; the encoder operates independently without any

knowledge that prediction will be carried out at the decoder. In this section, we

investigate the impact of motion estiniation at the encoder side, and how different

coding techniques affect the prediction system. In particular, we investigate the

effects of motion field density on prediction accuracy. MPEG-4 supports motion

vectors based on 16x1 6 or 8x8 blocks. In variable-block-size motion estimation,

the encoder may choose to split a 16x16 block into four 8x8 sub-blocks, if this

reduces the energy of the prediction residual. One can also force the encoder to

use fixed-size 8x8 blocks only.

Decisions regarding the block size for motion vectors (which in turn

determine the "density" of the motion field) are made in the video encoder based

on the Sum of Absolute Differences (SAD) information from motion estimator.

When the function that makes these decisions is enabled, four 8x8 blocks are

used for inter-coding if the SAD sum of four 8x8 blocks is less than the SAD of

one 16x1 6 block; otherwise, 16x1 6 block is chosen.

An alternative is to force four 8x8 blocks for inter-coding for the entire

sequence by disabling block size decision function. In this way, we might end up

with a denser motion vector field, which may help prediction. On the other hand,

the total bit rate will also increase due to the cost of encoding extra motion

vectors.

The purpose of fixing the 8x8 coding mode is to increase the density of the

motion vector field, which may benefit motion segmentation as well as

subsequent motion prediction. However, in addition to increasing the bit rate,

there is another risk associated with this. Smaller blocks may lead to more noise

in the motion vectors. To identify how much improvement we can get in frame

prediction in terms of motion field density and how much penalty we might suffer

from video quality in terms of bit rate, we carried out the experiments on four

sequences with different motion levels: Foreman, Carphone, Miss America, and

Mother & Daughter.

In our experiment, we generate two compressed video files for each video

sequence: one for adaptive 16x1 6 block size coding mode, and the other one for

fixed 8x8 block size coding mode. These two video streams are fed to the frame

prediction at the decoder separately, and their PSNR is measured for different

frame prediction depth. Since the two coding modes might lead to different bit

rates, to make a fair comparison we made the PSNR plots in two different ways:

Fixed encoded video quality (PSNR) with different bit rates,

6 7

Different encoded video qualities (PSNR) at the same bit rate.

Table 4.2 shows the bit rate difference when we use the two different

coding modes to achieve the same quality (PSNR).

Table 4.2: Bit rates needed to maintain the same
video quality.

Bit-Rate
Sequence I PSNR (dB) I (Adaptive 16x1 6 mode)

As expected, the table shows that the adaptive 16x16 mode is more

Bit-Rate
(fixed 8x8 mode)

Foreman

Carphone

Mother & Daughter
- -

Miss America

efficient that the fixed 8x8 mode. Efficiency difference between these two modes

is highest on low-motion sequences, where lack of motion can be easily exploited

by the large block size. The difference in efficiency reduces as the motion

intensity and complexity increase.

Fig. 4.16 - Fig. 4.19 illustrate the frame prediction performance in terms of

different motion field densities for four different video sequences. The plots on

the right side correspond to the case where the encoded PSNR is the same for

31.5

33.7

32.4

39.6

the two modes, and the plots on the left side correspond to the case where the

bit rates of the two modes are the same.

70 kbps

65 kbps

20 kbps

55 kbps
-

144 kbps

144 kbps
-- -

149 kbps
-

134 kbps

Clip: -- Foreman Clip: -- Foreman

.-

Frames In advance Frames In advance

Figure 4.16: Prediction performance vs. Motion
density: Foreman, Left: Same bit-rate, Right:
Same encoded PSNR.

Figure 4.1 7: Prediction performance vs. Motion
density: Carphone, Left: Same bit-rate, Right:
Same encoded PSNR.

Clip. -- Mother & Daughter Clip: -- Mother & Daughter
40 -- - --

- --

-block size 8x8
b l o c k size 16x1 6 or 8x8

-
34 8

X
.-d .- -
5 32
0

30 I

I I

281!l

I j 2 ~ ~ ~ - --
1 2 I 2 3

Frames In advance Frames In advance

Figure 4.18: Prediction performance vs. Motion
density: Mother & Daughter, Left: Same bit-rate,
Right: Same encoded PSNR.

C11p -- MISS Amerlca C l~p -- MISS Amenca
44 4 2

block size 8x8 I block slze 8x8
b l o c k w e 16x16 or 6x11'1

- --

I
326

1 -,
L 3 2,3 1 L 1

Frames In advance Frames In advance

Figure 4.19: Prediction performance vs. Motion
density: Miss America, Left: Same bit-rate, Right:
Same encoded PSNR.

We can observe that increased motion vector density doesn't give too

much improvement on the performance of frame prediction, especially when

encoded bit streams have the same PSNR. The main reason is that increased

motion density brings higher risk of false motion vectors in homogeneous areas,

and motion accuracy turns out to be more important than motion field density in

frame prediction.

By studying the impact of motion field density on frame prediction, we

have come to the conclusion that increasing the motion field density by forcing

small block size in motion estimation is not beneficial for predictive decoding.

Using the default adaptive 16x16 block-based motion estimation produces less

dense motion field, but has the benefit of improved coding efficiency and higher

motion vector accuracy, which is crucial for prediction.

4.4.2 The Subjective Quality

In terms of subjective performance, the full-featured method is visibly better than

all other methods on all sequences. An illustration is given in Fig. 4.20, which

shows a sample Foreman frame produced by three different frame prediction

methods (method-I through method-3) when predicting three frames ahead. In

the upper left corner, we also show the original frame for comparison.

Figure 4.20: Visual corr~parison for frame
prediction assessment. [Top left] is the frame
without prediction, and other figures show the
same frame produced when predicting three
frames ahead by three prediction methods. [Top
right]: Method 1, [Bottom left]: Method-2, [Bottom
right]: Method-3

Finally, in Fig. 4.21 - Fig. 4.23, we show how the predicted frame quality

deteriorates as the prediction depth increases from zero to three. The PSNR

curve is also included in the figures. As expected, the further ahead we predict,

the lower the quality of the predicted frames.

Frame: #63

Figure 4.21: Quality of frame prediction (Foreman).

Figure 4.22: Quality of frame prediction (Flower
Garden).

Figure 4.23: Quality of frame prediction (Mother &
Daughter).

Fig. 4.21 - Fig. 4.23 illustrate how the quality of predicted frames

deteriorates as frame prediction depth increases. In each of the figures, the

PSNR curves and the sample frames are arranged from top to bottom in the

following way: No prediction, prediction 1 frame ahead of time, prediction 2

frames ahead of time, prediction 3 frames ahead of time. The locations of the

sample frames within the sequence are also indicated..

We observe that the degradation in PSNR is related to the motion level

associated with the particular segment within the sequence. For those frames

from very high-motion segments, the PSNR of the predicted frames drops quickly,

and increased prediction depth leads to lower PSNR, such as Frame #60 in

Mother & Daughter, and Frame #28 in Foreman. For frames associated with

medium or very slow motion, the quality degradation is relatively low as

prediction depth increases, which can be observed on Frame #93 in Mother &

Daughter, and Frame #98 in Foreman.

From the visual quality comparison, we can conclude that having accurate

motion prediction is the key to improve the quality of the entire frame prediction.

This point will be addressed as a possible future work in the next chapter, where

we suggest a couple of methods to improve motion vector prediction.

4.5 The Complexity Analysis

In this section, we analyze the complexity of frame prediction module in full-

featured configuration (method-3 in section 4.3.4). The complexity analysis

consists of two aspects:

(1) The overall time consumption of the frame prediction module compared to

the decoding time consumed by standard MPEG4 video decoder;

(2) The Nlillion Instructions Per Second (MIPS) dissipation on all processing

units in the frame prediction module.

The entire frame prediction module is embedded into the XviD MPEG4

video decoder, and the simulations were conducted on a desktop PC with Intel

Pentium CPU 3.0 GHz and 1.99 GB of RAM. Table 4.3 shows the simulation

results in terms of time consumption for standard video decoder and multiple

frames prediction for six 30 fps test sequences.

Table 4.3: Decoding and prediction time.

DecodinrT:-3-rn- 1
STD Dec I ahead aheac 3 ahead

Mother & QClF
Daughter (1 76x 1 44) 0.42 1.35 3.28 4.69

-
Flower SIF
Garden (352g40) ..

2.87 8.84 17.95 27.3

Miss QClF
(1 76x1 44) 0.61 1.87 3 .33 5.42 America

The goal of overall decoding and prediction time testing was to gather

information about the resource demand of frame prediction embedded into

MPEG4 decoder running on a PC platform in real time. The table 4.3 gives us a

preliminary knowledge of algorithm complexity with an un-optimized version of

the frame prediction module.

First, in order to achieve real-time video decoder with frame rate at 30 fps,

current frame prediction implementation can support the video resolution up to

CIF or SIF, while predicting three frames ahead of time, and reducing delay up to

100 ms. For lower resolution such as QCIF, the overall time consumption,

including frame reconstruction and three-frame prediction, is less than 10 ms,

thus it meets the requirement of running in real time. However, if a real-time

encoder needs to run on the same system (as in typical PC-based

videoconferencing), the current frame prediction module would need heavy

optimization to reserve enough MIPS, especially for higher resolutions like CIF

and SIF.

Second, compared to the standard video decoder, predicting one future

frame costs significant extra computation - about 3 times more in low motion

sequences such as Miss America and Mother & Daughter, and even higher in

mediumlhigh motion sequences like Foreman and Carphone. The motion level

results affect the time consumption of frame prediction because a large portion of

prediction effort is spent on MV prediction and motion segmentation. Therefore,

it is necessary to further block down the MIPS dissipation over internal

processing units of the prediction module, and come up with ,the corresponding

optimization plan.

Figure 4.24 to Figure 4.26 show the MlPS distribution of internal

processing units in the frame prediction module. We analyze the average MlPS

dissipation on sequences with different motion levels. The processing units are

categorized into Pre-Processing, MV prediction (including Motion Segmentation),

Terr~poral prediction, Post-processing for overlapped areas, and Post-processing

for empty areas.

Temp. Pred.
25% (

Complexity analysis - High Motion

Pre-Pro
:WMV Red. 1

Pre-Pro
2%

Temp. Pred. I
0 PostPro-Overlapped

PostPro-Empty
-

MV Pred.
65%

Figure 4.24: MlPS dissipation of frame prediction
(High Motion).

Complexity analysis - Medium Motion

PostPro-Empty
3%

Pre-Pro
5%

PostPro-Overlapped
1 %

Temp Pred. ,/'

. Pre-Pro
I w MV Pred.
UTernp. Pred.
D PostPro-Overlapped

PostPm-Ernpty

- -
MV Pred.

-

62%

Figure 4.25: MlPS dissipation of frame prediction
(Medium Motion).

Complexity analysis - Low Motion

Pre-Pro
PostPro- 4%

2%

Temp. Pred. J
35%

MV Pred.
Temp. Pred.
PostPro-Overlapped

H PostPro-Empty

\ MV Pred.
55%

Figure 4.26: MlPS dissipation of frame prediction
(Low Motion).

These pie charts show a clear picture of computational demand of

different frame prediction processing units. First, more than 50% MIPS

consumption comes from MV prediction part, which includes motion

compensation and variable-block-size MV prediction, and takes a somewhat

larger percentage of overall computation for higher motion sequences than for

lower motion sequences. Second, temporal prediction has the second highest

computational complexity, because this unit is responsible not only for

synthesizing the preliminary future frame, but also for generating all position

information for later post-processing, such as pixel mapping table and

overlapped pixel table. Those processing steps are all time-consuming. These

two parts, Temporal prediction and MV prediction make up to about 90% of

overall NllPS consumption, thus our future optimization effort will mainly

concentrate on these components.

By conducting the complexity analysis on MPEG4 video decoder, we have

obtained a rough knowledge of computational resource demand of frame

prediction integrated into a video decoder. However, as we mentioned in Chapter

2, our frame prediction module can also be ported to other block-based video

codecs, such as H.261, H.263, and H.264. All these video codecs have different

performance characteristic in terms of motion estimation, transformation

techniques and so on, thus the complexity will vary accordingly as frame

prediction module is tailored to fit each individual codec. In Chapter 5, we will

discuss how the frame prediction module can be customized to H.264 decoder,

and how this would affect the complexity.

CHAPTER 5
CONCLUSION AND FUTURE DIRECTIONS

In this work, we addressed the issue of delay in video communications, and

proposed predictive decoding to reduce the delay. The main idea behind our

delay reduction method is to incorporate a frame prediction module into a

standard video decoder, predict the upcoming video frames from the available

video data, and display them before they arrive at the receiver.

By using this "predictive decoding," it is possible to reduce the perceived

end-to-end delay at the expense of displayed video quality. The key steps in this

decoding scheme include: a) Mo-tion segmentation-based motion vector

prediction, which considers both prediction residuals from the last received frame

and motion region homogeneity to improve motion prediction. b) Temporal

prediction is used to synthesize future frames using the predicted motion vectors.

c) A combination of bi-linear interpolation and boundary matching is used as a

post-processing step to deal with overlapped areas and empty areas.

The benefits we may get from frame prediction depend on the complexity

of the video. For scenes involving complex motion, the number of frames which

can be predicted with acceptable quality is very limited. However, for scenes with

less complex and relatively smooth motion, as we might expect in a video

conference, predictive decoding shows promising performance.

5.1 Possibilities for Improving Prediction Performance

By studying the reasons behind predicted video quality degradation, we identified

some possibilities for improving prediction performance.

First, our current motion prediction strategy only considers the last

received frame, and all predicted motion vectors are based on this one frame and

its motion vectors. Although motion objects are segmented carefully, significant

amount of motion vector noise is still likely to remain in the motion field, which

reduces prediction performance.

Second, the same prediction strategy is used for all frames. However, it is

likely that motion activity changes from time to time in a video, and different

prediction strategies may be appropriate for different segments. Hence,

recognizing the type of motion in a particular segment and changing the

prediction strategy accordingly may be another way to improve prediction

performance.

Finally, without an efficient motion trajectory model, it is hard to keep a

consistent motion region, and we commonly observed different shapes of motion

regions in successive frames. Good motion trajectory models for objects that are

commonly observed in particular applications (e.g. head or mouth in video

conferencing) would go a long way towards improving prediction performance. It

is also likely that using these models would increase the complexity of predictive

decoding.

In summary, further improvements might be obtained by a) doing better

motion prediction at the decoder side based on motion trajectory models, b)

doing joint motion estimation and prediction, which optimizes the motion

estimator at the encoder side according to a suitably chosen motion model, and

transmitting precise motion information to aid the MV predictor at the decoder.

Motion Trajectory Model

By establishing a motion trajectory model, the historical motion information from

past video frames are collected and used to extrapolate the motion trajectory.

This way, it may be possible to predict more accurately the future position and

orientation of a moving object in a time-variant environment.

There have been some studies concerning filtering techniques and

autoregressive models to characterize motion in video processing. For example,

reference [21] utilizes the predicted motion and measured motion to obtain the

optimal estimate of motion vectors, where the predicted motion information is

obtained by autoregressive models, and Kalman filters are used for prediction.

Joint Motion Prediction Method

The idea here is to optimize the mo-tion estimator at the encoder side, so that the

motion vectors generated by motion estimation can better approximate the actual

moving directions of objects, instead of purely minimizing the prediction error.

With more accurate motion vectors, the decoder may be able to do better motion

prediction by setting up the same motion model, and having the entire predictive

decoding improved.

5.2 The Frame Prediction in H.2641AVC

H.264lAVC is the latest video coding standard and it is designed for a variety of

technical solcltions including interactive applications [13]. H.264lAVC enhancees

coding efficiency significantly compared to MPEG4 and H.263 through various

optimizations such as rate-distortion optimal motion estimation [51][52], which

would directly affect the performance of frame prediction. In this section, we will

briefly discuss the R-D optimal motion estimation in H.264/AVC, and how it might

affect frame prediction in a H.2641AVC decoder.

The rate-distortion optimal motion estimation algorithm in H.264lAVC

leads to an efficient bit allocation between inter- and intra- frame information. The

motion information is determined by searching the optimal solution of R-D pairs

to minimize the total Lagrangian cost function

J = D + / Z R
Eq. 5.1

where D denotes the prediction error, R represents the bit rate spent on motion

vectors and A is the Lagrange multiplier related to the quantization parameter

QP [52]. With a reasonable bit rate, the motion vectors packed in the bit stream

nicely reflect the real motion, therefore, the noisy motion vectors [30] might be

suppressed in H.2641AVC. Frame prediction might benefit from R-D optimal

motion estimation in following aspects as well.

1. Reduce the computational demand on motion segmentation and vector

median filtering. The purpose of motion segmentation is to identify the

areas with homogeneous motion, while vector median filter smoothes out

noisy motion vectors. Since the motion vectors have been locally refined

by R-D optimal motion estimation in H.264/AVC, the need for motion

segmentation may be reduced. This could save up to 40 percent of total

computation.

2. H.264IAVC offers variable-block-size motion estimation [50], with block

sizes down to 4x4. Also, there is an in-loop deblocking filter in the decoder

to reduce the block boundary artifacts. These techniques may simplify the

variable-block-size MV prediction, and improve both objective and

subjective video quality.

To realize frame prediction algorithm in H.264/AVC, it is important to

achieve a good balance between complexity reduction and quality improvement.

It is also a part of our future work to give a comparison of prediction performance

using different video codecs.

5.3 Comprehensive Video Quality Assessments

Besides seeking the possibility for improving prediction performance, accurate

assessment of the perceptual quality of predicted frames is also important. PSNR

is the main quality measure used in this thesis because of its simplicity. However,

it is well-known that PSNR doesn't accurately model the perceptual quality.

There are quite a few of new video quality measurement approaches

proposed in recent years, such as VQM [28], MPQM [46], SSlM [47], and NQM

[49]. Each of them has a unique value in measuring perceptual video

8 6

characteristics. How to combine these methods to give a comprehensive video

quality assessment is also part of our future work.

The Video Quality Measure (VQM) [28]

The Video Quality Measure (VQM), developed by the Institute for

Telecommunication Sciences (ITS), is based on feature extraction [28].

Compared to the PSNR, the VQM is more likely to identify the nature of quality

loss. It measures the perceptual effects of video impairments including blurring,

jerkylunnatural motion, global noise, block distortion, and color distortion, and

combines them into a single metric.

Moving Pictures Quality Metric (MPQM) [46]

MPQM is an objective quality metric for moving pictures, which integrates two

human vision characteristics into the quality assessment: contrast sensitivity and

masking. Compared to PSNR, it considers the visual masking phenomenon in

assessing video quality.

Structure Similarity lndex Metric (SSIM) [47][48]

Reference [47] presents another video quality metric called Structure Similarity

lndex Metric, which uses the structural distortion measurement instead of mean

square error. The reason considering the structural distortion is that the human

vision system is highly specialized in extracting structural information from the

viewing field, while it is not specialized in extracting errors. Thus, a measurement

on structural distortion should give a better correlation to the subjective

impression.

Noise Quality Measure (NQM) [49]

The video quality measurement metric addressed in reference [49] is called

Noise Quality Measure (NQM), where the image quality is assessed based on a

degradation model. Two sources of degradations are considered in this model:

linear frequency distortion and additive noise injection, and it leads to two quality

measures: a frequency distortion measure (DM), and a noise quality measure

(NQM). Compared to SNR, the NQM weights the quality assessment on:

Variation in contrast sensitivity with distance, image dimensions

Variation in the local luminance mean

Contrast interaction between spatial frequencies

Contrast masking effects

REFERENCE LIST

Y. M. Chen and I. V. Bajic, "Predictive Decoding For Delay Reduction in
Video Communications," accepted for presentation at IEEE Globecom'07,
Washington, DC, Nov. 2007.

Information Technology - Coding of Audio-Visual Objects, Part 2: Visual,
ISOllEC 14496-2, 1999.

Advanced Video Coding for Generic Audiovisual Services, ITU-T
Recommendation H.264, Mar. 2005.

J. Astola, P. Haavisto, and Y. Neuvo, "Vector median filters," Proc. IEEE,
vol. 78, no. 4, pp. 678-689, Apr. 1990.

N. C. Gallagher, Jr. and G.L. Wise, "A theoretical analysis of the properties
of median filter," IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-29, pp. 1136-1 141, Dec. 1981.

M. J. Chen, L. G. Chen, and R. M. Weng, "Error concealment of lost motion
vectors with overlapped motion compensation," IEEE Trans. Circuifs Syst.
Video Technol., vol. 7, no. 3, pp. 560-563, Jun. 1997.

Y. Chen, 0. C. Au, C.-W. Ho, and J. Zhou, "Spatio-temporal boundary
matching algorithm for temporal error concealment," Proc. IEEE ISCAS, pp.
686-689, May 2006.

M. T. Orchard, "Predictive motion-field segmentation for image sequence
coding," IEEE Trans. Image Processing, vol. 3, no. 1, pp. 54-70, Feb. 1993

H. Schulzrinne, S. Casner, R. Federick, V. Jacobson, "RTP: A Transport
Protocol for Real Time Applications," IETF Requests for comments, RFC
1889, January 1996.

ITU-T Recommendation G. 113, "Transmission impairments due to speech
processing," February 2001

L. Atzori, Francesco G. B. De Natale, C. Perra, "A Spatio-Temporal
Concealment Technique Using Boundary Matching Algorithm and Mesh-
Based Warping (BMA-IVBW)," IEEE Trans. Multimedia, vol. 3, no. 3, Sep.
2001.

T. H. Tsai, Y. X. Lee, and Y. F. Lin, "Video Error Concealment Techniques
using Progressive Interpolation and Boundary Matching Algorithm," Proc.
IEEE ISCAS, pp. 433-436, May 2004.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the
H.2641AVC Video coding Standard," IEEE Trans. Circuits Syst. Video
Technol., , vol. 1 3 , no. 7, pp. 560-576, July 2003.

M. E. AI-Mualla, C. Nishan, D. R. Bull, "Multiple-Reference Temporal Error
Concealment," Proc. IEEE ISCAS, vol. 5, pp. 149-1 52, May 2001.

Y. Wang and Q. F. Zhu, "Error control and concealment for video
communication: A review," Proceedings of the IEEE, vol. 86, no. 5, pp. 974-
997, May 1998.

T. S. Chong, 0. C. Au, W. S. Chau, T. W. Chan, "Temporal error
concealment for video transmission," Proc. IEEE ICME, vol. 2, pp. 1363-
1366, June 2004.

Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and
Communications. Upper Saddle River, NJ: Prentice-Hall, 2002.

ITU-T, H263+ public implementation, TMN-8, 1997

ITU-T, Recommendation H.263 v.2, "Video Coding for Low Bit Rate
Communication," January 1998.

0. Komogortsev and J. Khan, "Predictive Perceptual Compression for Real
Tinie Video Communication," Proceeding of the 1 2 ' ~ annual ACM
International Conference on Multimedia, Tech. session 5 , pp. 220-227,
2004.

C. M. Kuo, C. H. Hsieh, Y. D. Jou, H. C. Lin, and P. C. Lu, "Motion
Estimation for Video Compression Using Kalman Filtering," IEEE
Transaction on Broadcasting. vol. 42, pp. 1 10-1 16, Jun. 1996.

F. Tobagi and I. Dalgic, "Performance evaluation of 10Base-T and
100Base-T Ethernet Carrying Multimedia Traffic", IEEE JSAC, vol. 14, no. 7,
pp. 1436-1454, September 1996.

J. Boyce and R. Gaglianello, "Packet Loss Effects on MPEG Video Sent
over the Public Internet", Proc. ACM Multimedia 1998, pp. 181 - 190, Bristol,
UK, September, 1998

D. Loguinov and H. Radha, "Measurement Study of Low-Bitrate lnternet
Video Streaming," Proceedings of the 1'' ACM SIGCOMM Workshop on
lnternet Measurement. pp. 281 - 293, 2001

A. P. Markopolou, "Assessing The Quality of Multimedia Communications
Over lnternet Backbone Networks," PhD Dissertation, Sfanford University,
October, 2002

XviD MPEG-4 codec: http://www.xvid.org/

A. Katsaggelos and N. Galatsanos, Signal Recovery Technique for lmage
and Video Compression and Transmission, Kluwer Academic Publishers,
1998

K. Kim and L. Davis, "A fine-structure imagelvideo quality measure using
local statictis", Proc. IEEE IClP 04, vol. 5, pp. 3535 - 3538, Oct. 2004.

T. Kanungo, D. M. Mount, et al., "An Efficient k-Means Clustering
Algorithm: Analysis and Implementation," IEEE Trans. On Pattern Analysis
and Machine Intelligence vol. 24, no. 7, pp. 881 -892, July 2002.

S. Desmet, B. Deknuydt, L. Van Eycken, and A. Oosterlinck, "Classified
Motion Estimation for Video Coding," Proceedings of SPIE, vol. 21 82,
lmage and Video Processing II, pp. 11 1 - 119, March 1994.

B. D. Choi, J. W. Han, C. S. Kim, and S. J. KO, "Motion-Compensated
Frame Interpolation Using Bilateral Motion Estimation and Adaptive
Overlapped Block Motion Compensation," IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 4, Apr. 2007.

A. Shamim and J. A. Robinson, "Object-Based Video Coding by Global-to-
Local Motion Segmentation," IEEE Trans. Circuits Sysf. Video Technol., vol.
12, no. 12, pp. 11 06-1 116, Dec. 2002.

M. Silveira and M. Piedade, "Variable Block Sized Motion Segmentation
For Video Coding," Proc. IEEE ISCAS, pp. 1294-1296, June 1997.

D. Cremers and S. Soatto, "Variational Space-Time Motion Segmentation,"
Proc. IEEE ICCV, vol 2 , pp. 886-892, Oct. 2003.

J. Y. A. Wang and E. H. Adelson, "Representing Moving Images with
layers," IEEE Trans. lmage Proc., vol. 3 , no. 5, p.625-638, Sep. 1994.

G. D. Borshukov, G. Bozdagi, Y. Altunbasak, and A. M. Tekalp, "Motion
Segmentation by Multistage Affine Classification," IEEE Trans. lmage
Processing, vol. 6, no. 11, pp. 1591-1 594, Nov. 1997.

H. Y. Chung, Y. L. Chin, K. Wong, K. P. Chow, T. Luo, and S. K. Fung,
"Efficient Block Based Motion Segmentation Method using Motion Vector
Consistency," Proc. IAPR Conference on Machine Vision Application, pp.
550 - 553, May 2005.

J. Zan, M. 0. Ahmad and M. N. S. Swamy, "Median Filtering-based
Pyramidal Motion vector Estimation," Proc. IEEE ICASSP, vol. 3 , pp. 1605-
1608, May 2001.

A. Kaup, "Object-Based Texuture Coding of Moving Video in MPEG-4,"
IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 1, pp. 5-1 5, Feb. 1997.

S. Desmet, B. Deknuydt, L. Van Eycken and A. Oosterlinck, "A
segmentation-based video codec with a block-based fall-back mode," Proc.
SPlE Vol. 2925, pp. 276-285, Sep. 1996.

ITU-T Recommendation G.723.1, "Dual Rate Speech Coder For Multimedia
Communications Transmitting at 5.3 and 6.3 kbitls," Mar. 1996.

ITU-T Recommendation G.729, "Coding of Speech at 8 kbiffs Using
Conjugate-Structure Algebraic-code-excited Linear Prediction (CS-
ACELP)," March 1999.

ITU-T Recommendation G.726, "40, 32, 24, 16 kbitls Adpative Differential
Pulse Code Modulation (SB-ADPCM)," 1996

ITU-T Recommendation G.711, "Pulse Code Modulation (PCM) of Voice
Frequencies," Nov. 1988.

J. A. Zebarth, "Let Me Be Me [Video Telephony and Teleconferencing
Tests]," Proc. IEEE Globecom'93, Vol. 1, pp. 389-393, Nov. 1993.

C. J. Branden Lambrecht and 0. Verscheure, "Perceptual Quality lbleasure
using a spatio-Temporal Model of the Human Visual System," Proc. SPlE
Vol. 2668, pp. 450-461, March. 1996.

Z. Wang, L. Lu, and A. C. Bovik, "Video Quality Assessment Using
Structural Distortion Measurement", Signal Processing: lmage
Communication, special issue on "Objective video quality metrics," Vol. 19,
No. 2, pp. 121-132, Feb. 2004.

Z. Wang and A. C. Bovik, "A Universal lmage Quality Index", IEEE Signal
Processing Letters, Vol. 9, pp. 81 -84, Mar. 2002.

N. Damera-Venkata, T. D. Kite, W. S. Geisler, 6. L. Evans, and A. C. Bovik,
"lmage Quality Assessment Based on a Degradation Model," IEEE Trans.
lmage Processing, Vol. 9, No. 4, pp. 636-650, Apr. 2000.

Z. Yang, J. J. Bu, C. Chen, and X. Li, "Fast Predictive Variable-block-Size
Motion Estimation For H.2641AVC," Proc. IEEE ICME'05, 4 pp.-, Jul. 2005

J. Stottrup-Andersen, S. Forchhammer, and S. M. Aghito, "Rate-distortion-
complexity optimization of fast motion estimation in H.2641MPEG-4 AVC,"
Proc. IEEE ICIP'04, Vol. 1, pp. 11 1-1 14, Oct. 2004.

T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, "Rate-
Constrained Coder Control and Comparison of Video Coding Standards,"
IEEE Trans. Circuits Syst. Video Technol., Vol. 13, IVo. 17, pp. 688-703
July 2003.

