
PREDICTIVE DECODING FOR DELAY REDUCTION 
IN VIDEO COMMUNICATIONS 

Yue-Meng Chen 
B.Eng in Electronics Engineering, Zhejiang University, P.R.China 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 

In the School 
of 

Engineering Science 

O Yue-Meng Chen 2007 

SIMON FRASER UNIVERSITY 

Fa11 2007 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of Thesis: 

Yue-Meng Chen 

Master of Applied Science 

Predictive decoding for delay reduction in video 
communications 

Examining Committee: 

Chair: Dr. Atousa HajShirMohammadi 
Lecturer, School of Engineering Science 

Dr. Ivan Bajic 
Senior Supervisor 
Assistant Professor, School of Engineering Science 

Dr. Jie Liang 
Supervisor 
Assistant Professor, School of Engineering Science 

Dr. Jiangchuan Liu 
Examiner 
Assistant Professor, School of Computing Science 

Date DefendedlApproved: 23 , 



Declaration of 
Partial Copyright Licence 
The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the "Institutional Repository" link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/l892/112>) and, without changing 
the content, to translate the thesislproject or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author. This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 

Revised: Fall 2007 



ABSTRACT 

Low delay is critically important for interactive video communication. 

Unpredictable delays and bursty traffic in today's networks may significantly 

degrade the performance of interactive video services. This thesis presents 

several predictive decoding techniques for delay reduction. The basic idea is to 

predict future video frames from past video data, and display them before they 

arrive at the decoder. Inevitably, this will reduce the quality of the displayed 

frames somewhat, but it will also enable the user to choose the proper trade-off 

between quality and delay. 

The frame prediction module was implemented as an add-on to the XviD 

version of MPEG-4 video decoder, and tested on a variety of standard 

sequences. The performance highly depends on the characteristics of the 

sequence, such as motion intensity, frame rate, resolution, etc. Our results 

indicate that in most cases, it is possible to reduce the perceived end-to-end 

communication delay by about 100 ms while maintaining reasonable video 

quality. 

Keywords: Communication delay, Motion Segmentation, Temporal prediction, 
Variable-block-size motion prediction 
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CHAPTER 1 
INTRODUCTION 

1 .I Motivation 

1 .I .I Interactive Video Applications 

As one of the greatest inventions of the 2oth century, the lnternet and its 

applications have expanded significantly in the past decades to become the 

basis for personal, economic, and political advancement. lnternet applications 

have evolved from simple communication tools, like email and ftp, to advanced 

communication services, such as interactive multimedia applications and media 

streaming. As the advances in connectivity, geographical reach and access 

networks continue, multimedia communications on the lnternet are gaining more 

attention than ever before. 

Interactive video applications, such as video phone and video 

conference, have become a feasible alternative to traditional telephony services. 

The block diagram of a typical teleconference system is shown in Fig. 1 . I .  Video 

conferencing is becoming increasingly popular for reporting news from remote 

locations, for business meetings with participants at multiple sites, and for virtual 

classrooms in distance education. At the same time, interactive video 

applications are very demanding; they require low latency, good visual and audio 



quality, and accessibility by a variety of devices, to provide better user 

experience compared to traditional telephony applications. 

Video encoder - 

Packing system stream 

Audio encoder 

Video Video decoder 

Unpack RTP packet 
Playback 

synchronization 
Audio System level decoding 

Figure 1 .I : The teleconference system 

Video characteristics and requirements. Video phone and video 

conferencing use the H.261, H.263, H.263+ and H264 standards that are 

designed specially to meet the delay constraints and very low bit rates. Low 

frame rate, e.g. 15 frames per second, and low resolution (CIF or QCIF) are 

typically used to enable real-time encoding. At the transport level, RTP (Real 

Time Protocol) is usually chosen to packetize the encoded video sequence, 

using an appropriate RTP profile [9]. To maintain good video quality, certain 

requirements in terms of loss, delay and delay variability need to be satisfied. 

First, low loss or no loss is desirable to maintain good video quality. Second, the 

temporal and spatial dependencies in the compressed video bring the risk of 



error propagation due to packet loss, thereby increasing loss sensitivity. 

Furthermore, in order to maintain good interactivity, especially for "lip- 

synchronization" between video and audio, the end-to-end video delay needs to 

be similar to the end-to-end audio delay. Finally, for a smooth video playback, 

little or no delay jitter is needed. 

Audio characteristics and requirement. Packet voice has been studied 

intensively in the past two decades, and ITU-T has standardized a series of 

speech vocoder for voice over IP (VolP) as well as video conferencing. These 

vocoders include G.711, G.726, G.729, G.723.1 [41][42][43][44] and produce a 

variety of bit rates from 5.3 kbps to 64 kbps. In VolP, RTP is used to transport 

speech packets across an IP network at a fixed rate. The requirements for voice 

transmission are similar to those of video. First, low packet loss is needed to 

maintain good speech quality, and some error concealment algorithms are 

available that make a slight loss of up to 1O0/0 [I 01 tolerable. Second, the end-to- 

end delay for interactive voice conference should be lower than 150 ms to 

achieve an acceptable quality [17]. Echo-cancellation is a unique requirement in 

speech processing to get rid of unwanted acoustic echo caused by large end-to- 

end delay. Finally, if the audio is accompanied by the corresponding video signal, 

delay jitter should be kept under control to maintain lip-synchronization with video 

frames. 



1 .I .2 lmpairments Introduced by the Network 

A summary of impairments introduced by network transmission of audio and 

video is illustrated in Fig. 1.2. The importance of having low packet loss, low 

delay and low delay variability for good speech and video quality is well-known. 

However, today's Internet cannot guarantee any of these requirements. The 

experiments with interactive video applications show that any delay beyond 150 

ms greatly worsens the user experience; delays above 400 ms make interactive 

communication virtually impossible [45]. 

lmpairments 

Delay lmpairments 

Figure 1.2: The network impairments to video 
teleconference 

The overall end-to-end delay is composed of several components, 

including acquisition, processing at the transmitting and receiving end, 

processing in the intermediate nodes (routers), coding, decoding, and pure 

transmission delay due to the finite speed of the information carrier 

(electromagnetic waves). In the Internet, transmission delay alone may approach 

150 ms, as indicated in Table 1 . I .  



Table 1.1: Several ping RTTs from Vancouver. 

The table shows several Round Trip Times (RTTs) measclred on the 

Host 

afternoon of Feb. 24, 2007, by pinging various hosts from the Blenz Cafe in 

RTT (ms) 

Yaletown (Vancouver, BC), using the FatPort broadband wireless access 

I 

network. In this scenario, one can expect about 150 ms one-way transmission 

delay between Vancouver and lVew Zealand. 

1 .I .3 Impact o f  Delay on Video Performance 

As interactive video applications become more popular, more attention is being 

paid to the impact of the delay impairments on the performance of video 

communication systems. Several research works have been conducted to 

characterize video traffic over data networks by using traffic measurement 

methods or simulation. The performance of H.261 and MPEG2 is studied over 

10Base-T and 100Base-T Ethernet via simulation in [22]. The packet loss and 

delay jitter are studied by sending RTPIUDP-packetized MPEG video over the 

Internet between sites in Europe and the USA in [23]. A more recent study, [24], 

conducted a very large scale measurements by streaming MPEG-4 video to 



more than 600 sites in the US. Reference [25] assessed the quality of multimedia 

communications over the Internet backbone networks. All these research works 

assessed the network delay impairments from perspectives of different video 

compression standards, transmission scenarios as well as network environments. 

In addition to the network delay in transmission, the interactive video 

system includes other delay components, such as i) acquisition, digitization ii) 

encoding by a real-time encoder, packetization iii) unpacking, decoding, playout 

at the receiver. Reference [I71 gives an overview of the specific video delay 

components. However, video acquisition and encoding typically take longer than 

audio acquisition and encoding, so in practice, audio is often purposefully 

delayed in order to maintain lip synchronization [I 71. 

I .I .4 Questions 

Many interesting and challenging research questions arise when we try to 

provide high-quality audiovisual communication over the Internet. Packet loss, 

variable bandwidth and delay, as well as heterogeneity of end-user equipment all 

contribute to this problem. In this work, we particularly focus on the problem of 

delay in interactive video communications. As illustrated above, this delay can be 

significant. 

1.2 Approach 

In order to tackle the problem of end-to-end delay, we introduce the concept of 

predictive decoding [I]. In this scenario, video decoder predicts future video 



frames and displays them before they actually arrive. Since a frame that has not 

arrived at the decoder can be thought of as a frame subject to 100•‹/~ loss, the 

problem of predictive decoding resembles error concealment [15]. Hence, as we 

will elaborate in this thesis, predictive decoding employs some error concealment 

techniques in its key processing unit. However, predictive decoding is more 

challenging than typical error concealment, since no information about the frame 

that is to be predicted is available at the decoder. In the following sections, we 

will first briefly review some popular error concealment algorithms, and then 

introduce predictive video decoding. 

1.2.1 Error Concealment Techniques 

Boundary Matching Algorithm (BMA) is a commor~ly used method in video 

packet loss recovery. Based on the boundary matching principle, the missing 

macroblock (MB) is recovered from previous or future video frames [I 1][12][13]. 

A variety of BMAs have been studied by researchers, and they in general 

achieve an excellent trade-off between complexity and visual quality. 

Multiple reference teniporal error concealment is another common 

method for better video packet recovery [14-1, where multiple reference frames 

are used in motion field interpolation (MFI) techniques. 

Median motion vector concealment is also used in temporal error 

concealment algorithms to give better performance in both objective and 

subjective quality during video transmission [16]. 



These methods are designed to recover the packet loss for video 

transmission over packet network in error-prone environment. When part of a 

frame, which consists of multiple macroblocks, is missing due to packet loss, 

these methods can recover the missing area with a relatively good visual quality. 

However, we may ask what if the entire frame is missing? Or what if the frame 

arrives at the receiver too late for playout? Can we predict or recover the entire 

frame in these cases? This thesis gives a possible answer by proposing 

predictive decoding. 

1.2.2 Predictive Decoding 

Reducing the delay associated with video would be beneficial for interactive 

video applications. In this thesis, we present several frame prediction techniques 

that can help reduce the perceived transmission delay of video. Using the 

received video data, future frames are predicted and displayed before they arrive 

at the decoder, as illustrated in Fig. 1.3. 

A future frame, which hasn't been received yet, may be thought of as a 

frame subject to 100•‹/o loss. Hence, some of the methods adopted in our frame 

prediction resemble popular error concealment techniques, taking advantage of 

spatial and temporal correlation. The predicted video frames are generated using 

one or more recently reconstructed frames, and their motion information. 

This process inevitably reduces the quality of the displayed frames, 

especially when the motion is complex. But it also provides the user with the 

ability to trade-off quality for delay. Our results indicate that using these methods, 



it is possible to reduce the perceived end-to-end video delay by about 100 ms 

while maintaining reasonable video quality. 

Frame to be displayed 

4 b - 
Received frames Future frames 

Figure I .3: Perceived delay reduction by frame 
prediction. 

1.3 Thesis Contribu,l:ion and Outline 

This thesis proposes predictive decoding for delay reduction in video 

communication, and examines its properties and performance on a variety of 

sequences with varying motion complexity. The thesis contributions and outline 

are summarized below. 

Thesis contributions 

The first contribution is the proposed framework for synthesizing the future frame 

based on motion information in previously reconstructed video frames. This 

framework essentially consists of motion vector prediction, temporal prediction 

and frame post-processing. 



Our second contribution is the use of motion segmentation to improve 

motion vector prediction. Motion segmentation is implemented on a block-level, 

using variable block sizes. Its goal is to isolate all moving objects from the 

background area. Frame synthesis incorporating motion segmentation shows 

much better video quality with greatly reduced prediction noise level. 

Finally, we introduced varia ble-block-size motion vector prediction to 

enhance the edges of moving objects. Frames synthesized in this way show 

better subjective quality on sequences with high motion levels. 

Thesis Outline 

The thesis is organized as follows. In Chapter 2, we present the system 

architecture of the proposed frame prediction module. In Section 2.1, we show 

how to interface the frame prediction module with standard video decoder in 

interactive video applications. In Section 2.2, we show the internal architecture of 

the prediction module. In Section 2.3, we present the frame prediction procedure. 

In Chapter 3, we elaborate on the key processing steps in frame 

prediction. In Section 3.1, we briefly introduce the system and interface aspects 

in frame prediction module. In Section 3.2, we present the motion segmentation 

algorithm, including its control flow, seed pattern, region growing method, motion 

smoothing and its visual quality. In Section 3.3, we present variable-block-size 

motion prediction algorithm, and how it relates to segmented motion objects. In 

Section 3.4, we describe the temporal prediction method. In Sections 3.5 and 

3.6, we present the frame post-processing unit for overlapped area as well as 



empty area, and we discuss how to combine linear interpolation and boundary 

matching algorithm to give a good trade-off between computation complexity and 

video quality. 

In Chapter 4, we present the implementation of the frame prediction on 

XviD MPEG4 codec and some simulation results. The test sequences cover a 

variety of motion levels, and test cases are also categorized in terms of different 

prediction techniques and complexity. Finally, in Chapter 5, we conclude the 

thesis, summarize our findings, and discuss future directions. 



CHAPTER 2 
PREDICTIVE DECODER ARCHITECTURE AND DESIGN 

Nowadays, video communica~tions over the Internet are more prevalent than ever 

before. Video delivery methods vary in a variety of ways, from video clip 

downloading, through one-way video streaming (e.g., live newscasts), to 

interactive video applications (e.g., videoconferencing, video phone, etc.). 

Increased popularity of these applications has resulted in a significant increase in 

video traffic on the lnternet in the past couple of years. This thesis addresses one 

of the crucial aspects of interactive video communications - that of the perceived 

end-to-end communication delay. 

The perceived end-to-end delay and video quality are two main criteria by 

which interactive video applications are evaluated. First, low delay is crucial for 

effective interactive communication. For example, to maintain lip-synchronization, 

the delays associated with the audio stream and the video stream need to be 

approximately the same. In an interactive video application, the adaptive jitter 

buffers located in both receivers are carefully designed to deal with delay issues, 

and to smooth out any variations in delay. These buffers perform two important 

tasks: I )  they receive incoming audio and video packets and sort them in the 

proper order, and 2) they schedule the packets for decoding and playout. The 

size of jitter buffers is usually managed adaptively, but to maintain delay as low 

as possible they need to be relatively small, thus a late packet might not get the 



chance to be decoded and played out on time. Fig. 2.1 shows the buffer 

structure. The question raised here is how we can use the late received video 

packet for current playback instead of throwing it away 

I 
Past Video Packets I 

I 
I 

I Future Video Packets 

I 
I 

Decoded & Played 01.14 

n-m 

Figure 2.1 : Jitter buffer for video packets. 

The acceptable video quality is another requirement for interactive video 

communication, especially the temporal smoothness. According to [17], the 

performance degradation caused by video quality is less severe than that of large 

delay, and a moderate amount of compression and transmission artefacts is 

tolerable. Therefore, reducing the delay while maintaining acceptable video 

quality becomes the most important challenge for interactive video 

communication. 

I 

Late 
Video w+ Packets I To be I 

Most video compression methods are vulnerable to packet loss due to 

temporal dependency among different pieces of compressed video bitstream. A 

lost packet, or a late packet, can cause error propagation in the motion- 

compensated prediction loop at the decoder, and can even affect the other parts 

of the same frame due to intra prediction. In the worst case, the entire frame may 

.... n+j n-2 n+4 n-I  n n+5 .... n+l 
- 

n+2 n+3 



fail to decode. Therefore, besides the traditional error recovery techniques 1151, 

we need to consider delay control mechanisms to reduce the delay as well as 

improve the video quality. 

In this Chapter, we will present an overview of our adaptive frame prediction 

at the decoder. In Section 2.1, we describe how the proposed frame prediction 

module fits into standard video decoders. In Section 2.2, we give an overview of 

the frame prediction module and its internal architecture. Finally, in Section 2.3 

we explain the prediction procedure. 

2.1 Frame Prediction Module 

The block diagram shown in Fig. 2.2 represents a typical video receiver with 

adaptive frame prediction module inserted in its architecture. The system shown 

here is an extension of a standard video decoder, and the frame buffer is taken 

over by adaptive frame predictor for playout control. 



Received System decoder 
(Video Packet Parser) op'F (Video Jitter Packets) buffer Control Delay 

- + 
Motion Information Standard Texture Information 

Video Decoder 

Reconstructed frames b + 
Sliding window Adaptive 

Frame Predictor --- 
Figure 2.2: Video receiver system diagram 

The interface design to the existing video receivers include the following 

aspects: 

1. Motion vectors (MVs) extracted from past video packets are used to 

build statistics of historical motions, where a sliding window is used to 

control the motion tracing length. 

2. Texture information, which includes the residual information of 

temporal prediction from past video frames, is combined with MVs to 

aid in motion prediction. 

3. Reconstructed video frames form the basis for temporal predictor to 

synthesize future frames. 



4. The final predicted frame is sent to the frame buffer for the actual 

playout. 

5. The prediction depth is signalled by the delay monitor in the jitter buffer. 

The whole module tries to make the best use of the available information 

so that a number of future frames can be predicted under different network delay 

condition. Jitter buffer sends its delay estimates to the prediction module, which 

then predicts a suitable number of future frames to maintain similar video and 

audio delay level for lip-synchronization. When the end-to-end delay is 

acceptable and no prediction needs to be done, the prediction module can be 

bypassed easily, so the last decoded video frame will be directly sent to the 

frame buffer for display. 

A unique feature of this prediction module is that all the modifications are 

limited to the receiver itself, and the prediction procedure is essentially an open- 

loop system. By designing the frame prediction in this way, we can save all effort 

on the encoder side, thus the delay caused by the real-time encoder won't get 

any worse. 

A variety of video codecs have been used in interactive video applications, 

such as H.261, H263, H263+ [18][19], MPEG4 [2], and H264 [3]. They all rely on 

block-based motion-compensated prediction coding, which makes it possible for 

us to unify the interface between the prediction module and a standard video 

decoder. Therefore, our frame prediction module is designed to be an "add-on" to 

standard video decoders without sign~ficant impact on video codec architecture. 



In this thesis, MPEG4 video decoder is the sample platform we work on to 

develop the frame prediction algorithm. 

2.1 .I Add-on Module to Standard Video Decoders 

MPEG-4 [ 2 ] ,  one of the popular video standards in video communications, has 

been chosen as the implementation platform in this work. Fig. 2.3 shows the 

block diagram of a typical MPEG-4 video decoder and indicates where the 

proposed prediction module fits. 

Input Video Stream 

Frame 
Prediction 

Motion Vectors 

Decodina I Buffer 
I -  

Figure 2.3: Prediction module in the standard 
MPEG-4 decoder. 

The decoder feeds the last reconstructed frame and its corresponding 

motion vectors (MVs) to the prediction module, which maintains a buffer of 

several previous reconstructed frames and their MVs. These frames, along with 

their associated motion, are used to predict and synthesize future frames for 

display. For a video at 30 frames per second (fps), predicting one frame ahead 



corresponds to a delay reduction of 33.3 ms; predicting two frames ahead 

corresponds to a delay reduction of 66.7 ms, etc. 

This architecture can be easily adapted to other video standards, like 

H.264 [3], as long as they use a similar block-based coding methodology. The 

following section describes the internal architecture of our prediction module. 

2.2 Prediction Module Architecture 

Fig. 2.4 shows the internal architecture of the prediction module with the 

following key blocks. Further operational details are provided in Chapter 3. 

Unified Module Interface. This is the unified interface between the block- 

based video decoder and the adaptive frame prediction module. The 

interface includes all motion information from past video frames, the 

prediction error information, the delay signal for prediction depth control 

from the jitter buffer, and previous reference frames. 

Motion Segmentation Unit. Combining the motion information and the 

prediction residual, this unit segments the motion objects from the 

background area on a block-by-block basis. This is a crucial step to 

predict the motion between the last decoded frame, and the future frame 

we would like to display. 
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Figure 2.4: Internal architecture of prediction 
module 

Variable-Block-Size Motion Prediction. Motion prediction is seen as the key 

step in frame prediction, and prediction is essentially done on the basis of 

each segmented object as well as the background area. A variable-block- 

size prediction algorithm is proposed to improve prediction near the edges 

of moving objects. 

Temporal Prediction Unit. Temporal Prediction unit synthesizes the future 

frame using the blocks from previously decoded frames and predicted 

MVs. 

Post Processing Units. As the motion objects which consist of blocks with 

consistent motion vectors get moved along the predicted MVs, they 

usually do not fill the entire future frame - some areas of the frame may 



remain empty (we call these "empty areas"), others may have multiple 

blocks landing on them (we call these "overlapped areas"). These issues 

are dealt with in the post-processing unit. 

Multiple Frame Prediction Control unit. This unit uses the estimate of the 

current end-to-end delay to decide how many future frames are being 

synthesized, i.e., how many frames ahead are we predicting. The last 

predicted frame will be sent to the frame buffer for display. 

2.3 Frame Prediction Procedure 

Frame prediction module is inserted into the traditional video decoder, and 

utilized to reduce delay adaptively according to an estimate of the current end-to- 

end delay. The main issue in frame prediction is that of prediction error 

propagation as we synthesize more future frames. To clarify this difficulty, 

consider a simple prediction method where the motion of a block is predicted 

based on the motion vector of the last received block, and its magnitude is 

linearly increased depending on the number of frames that need to be predicted. 

A small prediction error is introduced when we predict the motion of the first 

future frame, and it is magnified as we predict more frames ahead. 

This issue is depicted in Fig. 2.5 where, for the future frame ( 1 1 )  , 

M I ' , , i , , ( ~ r )  denotes the real MV, iL.IJf , , , , , ( l~)  denotes the predicted MV, and N is the 

number of future frames that need to be synthesized. 



Figure 2.5: The error propagation of motion 
prediction. 

The error of this simple motion predictor is: 

( n )  = kV' ( n )  - M Y , ,  ( n )  

Eq. 2.1 

Since the objects do not usually move along a straight-line trajectory, this 

simple motion prediction on the decoder side will wander off the real trajectory if 

not mitigated properly. 

To mitigate the prediction error, we introduce sequential frame prediction, 

where we have moving-window to store motion information for several past 

frames, and we make use of motion segmentation in prediction so that we can 

refine MVs within a region with homogeneous motion. Furthermore, a sequential 

frame synthesis loop is used to predict motion vectors if more than one frame 

needs to be synthesized ahead of time. "Sequential frame prediction" means that 



if we need to predict several frames ahead, we first synthesize the first future 

frame, then the next future frame, and so on until the final frame. We do not 

attempt to synthesize the final future frame directly (unless we are predicting only 

one frame ahead of time). This sequential frame prediction mechanism is 

depicted in Fig. 2.6. 

Prediction loop ... 

1'' Frame Pred. 1 
Prediction loop ... 

sequential frame 
predktiun loop 

J L Targeted Pred. Frame 

I Frame Buffer I 

Figure 2.6: Sequential frame prediction 
mechanism. 

We do not anticipate eliminating the error completely, but by adopting 

sequential frame prediction, the prediction error is greatly reduced as we 

synthesize all intermediate frames between the last reconstructed frame and the 

targeted future frame for display. The moving-window of motion information also 

helps with motion statistics and can smooth out the trajectory of some moving 

objects. 



Chapter 3 elaborates on the key prediction unit, and emphasizes the way 

we minimize the prediction error. 



CHAPTER 3 
ADAPTIVE FRAME PREDICTION MODULE 

In this Chapter, we are going to describe the key processing units of the frame 

prediction module, as well as its internal data flow. We start with the system and 

interface aspects of the adaptive frame prediction module, followed by the 

description of design motivations and algorithm details for each processing unit. 

3.1 System and Interface Aspects 

Fig. 3.1 shows the abstracted module interface and internal architecture of the 

proposed adaptive prediction module. 

We have given a rough introduction about the system architecture of 

adaptive frame prediction in Section 2.2. A unified module interface is proposed 

for the prediction module so that all block-based video decoders can take 

advantage of it. Also, the core control loop is a sequential prediction loop which is 

responsible for synthesizing future frames. The frame prediction m o d ~ ~ l e  

essentially consists of motion segmentation, motion vector prediction, temporal 

prediction, and post-processing, and the details will be presented in the following 

sections. 
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Figure 3.1: System and interface aspects 

3.2 Motion Segmentation 

3.2.1 Motivations 

Predicting the moving direction precisely has proved to be crucial to synthesizing 

future frames in our experiments, and both motion vectors and prediction 

residuals from previous frames can contribute to MV prediction for future frames. 

All recent block-based video encoders use variable-block-size motion 

estimation, and all these motion vectors represent moving directions of different 

parts of a particular MB. However, conventional motion estimator at the encoder 

side is built based on the criteria of minimum prediction error instead of motion 

homogeneity within certain region, and this might cause serious problems when 



we use all these motion vectors as the only information to predict future motion. 

The motion estimation results might not indicate real motion in the following 

cases [30]: 

1 > In flat areas, random vectors are likely generated due to the 

noise in the video sequence. The motion vectors associated with 

macro blocks in background region might end up differing from 

each other randonily. 

In areas with repetitive patterns, false motion vectors may be 

generated as blocks get matched with other, further instances of 

the pattern. 

3 When the motion is larger than the search area, no meaningful 

motion vectors can be obtained. 

Motion estimation errors caused by these phenomena are sometimes 

referred to as "noise." Motion prediction that relies solely on these potentially 

false motion vectors becomes unreliable, especially for background areas. 

Without eliminating the noise present in motion vectors, predicted frames 

may contain false and unnatural motion such as the "shaking background," etc. 

The problems gets worse as we predict further ahead, since prediction errors get 

amplified. 

Another common issue concerns the relationship between blocks and 

object boundaries. It is commonly observed that the block-wise boundary doesn't 

match perfectly with the true object boundary [31], because the true object 



boundary may cut across the block. Therefore, frame prediction might mess up 

the object boundary since texture information might either disappear along the 

edge between different objects or appear along object boundaries in the future 

frames. To deal with all these issues, we develop a motion segmentation 

algorithm as the first step of variable-block-size motion vector prediction. 

Simulation results in Chapter 4 will illustrate the improvement of frame prediction 

based on motion segmentation, versus the prediction that does not use motion 

segmentation. 

Motion segmentation has been a hot research topic in video processing. 

Reference [32] uses motion segmentation for very-low-data-rate object-based 

video coding. In [33], frames are adaptively partitioned into blocks of variable size 

with homogeneous motion, therefore a significant improvement of the 

compression ratio can be achieved. Reference 1341 proposed a variational 

method for segmenting image sequences into spatio-temporal domains of 

homogeneous motion. Reference [39] addresses motion segmentation 

techniques in MPEG-4 video standardization, where hybrid block-based coding 

techniques are used. These works make use of motion segmentation in different 

scenarios. 

Our motion segmentation ahis to improve motion prediction at the 

decoder side. Here, the available motion information exists in the compressed 

video stream in the form of motion vectors, and it demands a different approach 

for the segmentation. References [35-361 have described methods for achieving 

multiple affine motion decomposition, with K-means clustering in the affine 



parameter space. Our proposal for motion segmentation algorithm is a 

combination of K-means clustering [29] and motion consistency model. 

Fig. 3.2 shows the diagram of the main processing units for motion 

segmentation. The motion information and texture information associated with 

each macro block are extracted from the encoded video bit stream for low- 

precision motion segmentation, and the segmented motion objects are fed to the 

motion prediction module for object-based motion vector prediction. Detailed 

description of processing units is given in the following sections. 
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Figure 3.2: Diagram of motion segmentation 
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Our experiments show that the motion level of each particular video frame greatly 

affects the motion segmentation performance. Without an appropriate knowledge 

of the motion level, after motion segmentation, one video frame might end up 

with a) too many moving objects, with some parts of an object segmented into 

different objects, or b) different moving objects clustered into the same object by 
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mistake. Also, a good estimation of the motion level will speed up the 

segmentation. Therefore, we come up with a clustering threshold estimator to 

give the statistic of the motion level for motion segmentation. 

Two important parameters are estimated in clustering threshold 

estimation: the region growing step size and the threshold of minimum moving 

object distance. 

The region growing step size is used to control the speed of region 

growing. Large step size will make motion segmentation converge quickly, but it 

might increase the risk of grouping the blocks into a wrong motion region. 

The threshold of minimum moving object distance is used in the region 

merge unit in Fig. 3.2. After motion objects are identified, we are going to 

calculate the distance between each pair of objects. If the distance between two 

particular objects is less than this threshold, these two objects are merged into 

one to get rid of falsely segmented moving objects. 

To calculate these two parameters, a statistical model is used to estimate 

both the mean and variance of motion vectors in the frame that is to be 

segmented. 

The mean of the motion vectors 

Eq. 3.1 

The variance of the motion vector magnitude 



Eq. 3.2 

Here, N and M denote the width and height of the frame in terms of 8x8 

blocks, and E;., denotes the motion vector of block MB(i,.j). 

The region growing step size is set to be related to the variance, so that 

high variance leads to a large region growing step size. Currently in our software, 

we take the standard deviation as the region growing step size, and limit its 

maximum value to 8. 

The threshold of minimum moving object distance is also decided by the 

motion vector variance. Currently in our software, we set the standard deviation 

as the threshold of minimum moving object distance, and limit the maximum 

value of the threshold to 4. 

3.2.3 Seed Block Pattern 

The seed-block pattern is defined as a group of blocks with minimum 

mean MV distortion, which works as a starting point for subsequent clustering. If 

- 
we denote Ml/ i , i  = 1, . . . ,  /V as the motion vectors of each block, where N 

represents the number of blocks inside a seed, and DXIc,, as the overall MV 

distortion, equation (3.3) is used to find a seed through the entire video frame. 

Eq. 3.3 



It is also crucial to define a good pattern for seed-blocks. The main 

criterion in choosing a good pattern is to avoid false moving object seed, which 

can be caused, for example, by four identical motion vectors (8x8 blocks) split 

from one 16x16 MB. Fig. 3.3 shows two pattern candidates. Pattern on the left 

was found to give better performance in our motion segmentation experiments. 

Shape of a Seed - I r 7 
Figure 3.3: The seed pattern 

After we identify a seed block, the neighbouring blocks in horizontal and 

vertical directions, which are shown in Fig. 3.4, are first clustered together to form 

a new motion region [37]. K-Means clustering is used to group surrounding 

blocks based on motion vector consistency, as explained below. 
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Figure 3.4: The region growing directions 

3.2.4 Region Growing Criterion 

Based on a Motion Consistency Model (IMCM), the moving object can be 

identified by clustering ungrouped surrounding blocks that border the existing 

motion region into that region, if the motion vectors of these blocks are 

sufficiently similar to the motion inside the region, i.e., if they satisfy the 

consistency criterion in MCM. This procedure is called "region growing." 

The MCM is established based on the minimum distortion criterion, and 

updated adaptively as the region is growing. Let's denote M V , , ,  as the MV for 

- - 
the considered block, MV,,,,,,,,,,( as the centroid MV of the region, MV,, ,  as MVs 

of all internal blocks within the region. Once a new seed-block is found, the 

centroid MV, MV,,, , , , , , , ,  , is initialized, and the region growing threshold D, is 

computed as shown in equation (3.4). Essentially, D, is the average distance 

between the MVs in the region and the centroid MV of the region, increased by 



the offset D, , where Dell indicates the region growing step size which is 

estimated in the Clustering Threshold Estimator, the first processing unit in Fig. 

3.2. 

The region growing process checks whether an ungrouped block which 

borders the existing region has sufficiently similar motion to the prevalent motion 

inside the region, by checking if equation 3.5 is satisfied. Here, ~ , , , , , , , i ~ f . , ,  

denotes the motion vector centroid of region 1 1 ,  z..,, denotes the motion vector 

of the block that is being tested, D,,,,,, denotes the growing threshold of region 1 1 ,  

and D,,,, is the distance between motion vector centroid of the region and the MV 

of the block 

For a particular ungrouped block, if there is more than one bordering 

region for which equation 3.5 is satisfied, then we pick the minimum D,,,, and 

group the block into that region accordingly. 

Eq. 3.5 

After the block is assigned to one of its neighboring regions, the motion 

vector centroid of that region gets updated as shown in equation 3.6. This 

process is repeated for other neighboring blocks until the region cannot grow 

anymore. Once the region stops growing, our estimate of the location of a 

moving object is formed. 

3 3 



3.2.5 Motion Region Smoothing 

Fig. 3.5 ~llustrates some typical manifestations of motion vector "noise" 

addressed in section 3.1, such as false MV, background MV noise, etc. These 

problems are basically caused by MV estimator at the encoder side which utilizes 

the standard Mean Absolute Difference (MAD) error criterion [30]. To mitigate 

these problems, we add a special processing step, Motion Region Smoothing. In 

this step, MV filtering is applied to reduce the amount of MV noise. 

False MV for 8x8 MB False MV for 16x16 MB Background MV Noise 

Figure 3.5: Typical motion vector noise 

With segmented moving objects and background area in the previous 

section, it is possible to do separate motion vector filtering in each region. Two 

filtering me'thods are proposed here. 

a) Replace MV of all internal blocks with the centroid MV of the entire 

region. 

b) Use Vector Median Filtering (VMF) for motion vector smoothing [38]. 

34 





variance of motion vectors of the frame to be segmented, the corresponding 

region growing step size is determined as well as the threshold of minimum 

moving object distance. These two parameters are used in the region growing 

unit and the object merge unit, respectively. 

step 2 )  With the pre-defined seed pattern, a group of blocks with minimum MV 

distortion is found as the starting point for region growing, to identify moving 

objects. 

step 3) With the threshold of MV distortion range from step 1) and seed- 

blocks from step 2) ,  a region will be grown gradually by clustering bordering 

blocks into the region, if their motion is sufficiently similar to the prevalent 

motion inside the region. This step will be executed repetitively until no blocks 

are left which satisfy the minimum distortion criterion in the motion 

consistency model. 

step 4) Classify all existing motion regions, and update all parameters for 

motion consistency model, such as the motion vector centroid, the region 

growing threshold, and so on. 

step 5) Repeat Step 2) to Step 4) until no further seed can be found. 

step 6) Motion region smoothing consists of two main parts: clustering all 

remaining ungrouped blocks to weed out potential false motion vectors, and 

using median filtering to reduce motion vector noise inside each region. 

step 7) Calculate the distance between centroid MVs of adjacent regions, and 

merge two adjacent regions if the distance between their centroid MVs is less 

than the threshold of minimum moving object distance, which is determined in 



the clustering threshold estimator. 

3.3 Variable-block-size Motion Prediction 

In each coded frame, the MV associated with a block points to the most similar 

block in the reference frame, and can be interpreted as a motion path for that 

block. We assume the object will keep moving in a similar direction, thus a crucial 

step towards synthesizing a future frame is to predict the motion for each block 

between the last decoded frame and the future frame. With segmented motion 

objects as well as the background area, a variable-size block motion prediction 

algorithm is proposed in this thesis, and its system diagram is illustrated in Fig. 

8x8 MV Motion MB VBS 
Conversion Segmentation Classification Motion Prediction 

Variable-Block-Size Motion Prediction Predicted 

I Frame Synthesis Loop I 
Figure 3.7: The system diagram of variable-block- 
size motion prediction 

The whole MV prediction algorithm can be further divided into two 

processing phases in terms of frame prediction depth. 

Phase a) When we synthesize the first future frame (i.e., when we 

predict one frame ahead of time), both motion information and 



prediction residual are extracted from the compressed video stream. 

Motion segmentation is used to isolate all motion objects from the 

background, and vector median filtering is applied to smooth each 

motion field out. To further improve the quality of motion estimates 

near object boundaries, all blocks are classified based on their position 

and the energy of the prediction residual. Finally, a Variable-block-size 

Motion Prediction (VBS-MP) is employed to predict motion path for 

each individual block [3'1], [33]. 

Phase b) To predict the motion path for other future frames (i.e., when 

predicting more than one frame ahead of time), the processing is 

slightly different due to the lack of prediction residual data. Therefore, 

instead of the VBS-MP method, vector median filtering is adopted to 

predict motion vectors near object boundaries. 

The predicted motion path is fed to the temporal prediction module to aid 

the synthesis of the future frame. The elaboration of all major processing units in 

Fig. 3.6 follows. 

Conversion to 8x8-based MVs. Recall that in MPEG-4, MVs can refer to 

8 x 8  blocks or 16x16 blocks. To simplify further processing, all MVs are converted 

to 8x8-based MVs by assigning the same MV to four 8 x 8  sub-blocks of a 16x16 

block where necessary. For intra-coded blocks (I-blocks) which do not have a MV 

associated with, a Zero MV will be assigned. 

Motion Segmentation was described in Section 3.2. 



Block Classification. 8x8 blocks are classified prior to variable-block-size 

motion prediction. Within each region, each block is classified as either an 

internal block or a boundary block in terms of its position and the energy of the 

prediction residual. a) A block is classified as internal if it is surrounded by blocks 

which belong to the same motion region, or if its residual energy is lower than a 

pre-defined threshold whose value is set to 256 based on our experiments (which 

indicates an average prediction error of 4 per pixel). b) A block is classified as a 

boundary block if it is near the boundary between different regions and its 

residual energy is higher than the threshold. 

Variable-Block-Size Motion Prediction. For the block classified as a 

boundary block, assigning a single MV may be inappropriate since a more 

complex motion structure is likely involved. Splitting the 8x8 block into smaller 

blocks, like 4x4 sub-blocks, and predicting MV for each of them can mitigate the 

risk of predicting a wrong single MV [17][50]. Fig. 3.8 shows two scenarios where 

blocks near the boundaries of moving regions are split into 4x4 sub-blocks, and 

an MV is assigned to each sub-block based on which region it is closest to. 



A) 4x4 blocks, each of which 
is at the edge of one region 

I I I I I 

B) 4x4 blocks surrounded 
by multiple motion regions 

Figure 3.8: The motion vector prediction for 4x4 
su b-blocks 

The way to assign MVs for sub-blocks is as follows: 

a) If a 4x4 sub-block is surrounded by blocks from the same region, then 

the MV of that region is assigned to the 4x4 sub-block. 

b) If a 4x4 sub-block is surrounded by multiple regions, then the MV 

distance is first calculated between these regions and the parent 8x8 

block (before splitting). The MV of the region with rr~ir~imum distance 

to the parent MV is assigned to the 4x4 sub-block. 

Let /Z41i,,,,l. be the MV of the 8x8 parent block near the boundary, and 

.- -. - 
let S be a set of N motion vectors, 5' = ; M V  ,,,, , ,MYItI f  > ,  ..., M V I I r f  , 1 , whose 

elements are the centroid MVs of the surrounding regions. Equation (3.8) 

is used to pick the most likely MV, MV,.,,.,, , for the k-th 4x4 sub-block. 



Eq. 3.8 

VMF Filtering. As an alternative to variable-block-size motion prediction 

(VBS-MP), vector median filtering can be used to smooth the motion field in the 

boundary areas between moving objects if no residual information is available. 

This happens when predicting MVs to synthesize future frames that are more 

than one frame ahead of the last received frame. In these cases, we often find 

that multiple blocks land on the same area (overlapped area), as illustrated in 

Fig. 3.9. The question is how to predict the motion of that area into future frames, 

given that it may have come from different blocks in the previous frame, and so 

may take different motion trajectories into the future. Again, we found it useful to 

use the vector median of all candidate MVs as a predictor of motion for the 

overlapped area. 
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Figure 3.9: MV prediction for overlapped areas 



3.4 Temporal Prediction 

The term "temporal prediction" refers to the process of synthesizing the future 

frame after the motion between this future frame and the previous frame has 

been predicted as described in the previous few sections. Once MV estimates 

have been obtained, we move all the blocks including 4x4 sub-blocks of the 

previous frame along the predicted MVs. In this way, we synthesize a preliminary 

version of the future frame. Fig. 3.10 illustrates what a preliminary version of the 

future frame might look like. 

areas 

Figure 3.10: A preliminary version of the future 
frame 

At this point, some areas of the synthesized frame may have multiple 

blocks landing on them - we call these areas "overlapped areas." Other areas 

may remain empty, if no block lands on them. We need to decide which pixel 



values will be written into the overlapped and empty areas. These decisions are 

made in the two post-processing blocks whose operation is described below 

3.5 Post-processing for Overlapped Areas 

We distinguish two types of overlapped areas: "thin1' areas are those whose width 

or height does not exceed 3 pixels, while "thick" areas are those whose both with 

and height exceed 3 pixels. Different post-processing is applied to each type of 

the overlapped area. 

For thin areas, we apply a simple averaging of all candidate blocks. Let 

there be N blocks overlapping a certain area and let OVk denote the k-th block. 

The pixel value at location (x, y) in the overlapped area is set to be the average 

of corresponding pixel values in each of the overlapping blocks: 

Eq. 3.9 

Once all thin overlapped areas are processed, we are left with thick 

overlapped whose height and width exceed 3 pixels. An illustration is shown in 

Fig. 3.1 1. 
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Figure 3.1 1 : Boundary matching for overlapped 
areas. 

These areas will be filled by pixel values from the block that fits the best 

into the surrounding area. To decide which block fits the best, we employ 

boundary matching by computing the mean square difference between the 

boundary pixels of candidate blocks, and the boundary pixels of the surrounding 

area. 

Let OVk(x, y) be the pixel at location (x, y )  in the k-th overlapping block. 

Let B be the set of boundary pixels of the overlapped area, and for each (x, y )  E 

6, let n(x,  y) be the value of the neighboring pixel across the boundary, in the 

surrounding area. The best matching block OVbesl is the one whose square 

difference from the surrounding area along the boundary is the smallest, as in 

equation (3.10). Pixels from this block are used to fill the thick overlapped area. 

Eq. 3.10 



3.6 Post-processing for Empty Areas 

In addition to overlapped areas, we also find empty areas in the synthesized 

frame. These are the areas where no block has landed. A similar situation arises 

in error concealment, where a block of size 8x8 or 16x16 may be missing due to 

packet loss. However, in our case, empty areas may have different shapes and 

sizes. Again, we distinguish "thin" empty areas (those whose width or height 

does not exceed 3 pixels), from "thick" empty areas (those whose both height 

and width exceed 3 pixels). Different post-processing is applied to each type of 

the empty area. 

Thin empty areas are filled using linear spatial interpolation [27]. Each 

pixel is estimated as a weighted sum of the boundary pixels in the surrounding 

areas. The weight of each boundary pixel is inversely proportional to the distance 

from the empty pixel whose value is being computed. An illustration of a thin 

empty area whose height is 3 pixels is shown in Fig. 3.12. Let P(x, y) be the pixel 

value we wish to determine in an empty area, and let Pl(xl, yl) and P2(x2, y2) be 

two of its nearest neighbors in the surrounding area. 



Figure 3.12: Filling thin empty areas. 

In the situation depicted in Fig. 3.12, P1 and P2 are above and below P, so 

in this case x, = x2 = X. The pixel in the empty area is linearly interpolated as 

Eq. 3.11 

where hl and h2 are the distances from P to P, and P2, respectively, and h, + h2 

= H. 

Simple linear interpolation works reasonably well for thin empty areas, but 

tends to produce excessive blurring when applied to thick empty areas. 

Therefore, we adopt a more sophisticated method for filling thick empty areas 

based on boundary matching [6-71. 

An example of a thick empty area is shown in Fig. 3.13. First, we divide 

each thick empty area into rectangular regions, which we call "empty rectangles1' 

(ERs), and label them ER1, ER2, . . ., ERN. We fill ERs in sequence, startmg with 



ER1 and ending with ERN. For each ER we extract the boundary pixels from the 

surrounding area and use them for boundary matching in previous frames. 

Boundary B1 
\ 

I I 
I - - _ _ _ _ _ _ - - _ _ I 

Search region 

Previous frames 

Thick empty area 

Figure 3.1 3:  Filling thick empty areas. 

Let 6,  be the set of boundary pixel coordinates for ER,. Denote the 

current frame as P,  and previous K frames as P I ,  P2, . . ., PK. We will search in 

each of the previous K frames over an area of size X x Y pixels for the best 

matching boundary. 

This boundary is found in frame Pk, offset by (dx,  dy) from its position in 

the current frame, where 

Eq. 3.12 

Once (3.12) is solved and the best matching boundary is found, we copy 

the corresponding rectangle from Pk to f~ l l  ER,. At this point, ER, is removed from 



the list of empty rectangles, and we continue with ER,,,. The pixels of ER, may 

now become boundary pixels for the remaining empty rectangles. The procedure 

is illustrated in Fig. 3.13. 

An example of how empty areas are filled is shown in Fig. 3.14 

The figure shows a frame as it passes through the empty area post- 

processing block. The top left image shows the frame produced by temporal 

prediction and overlapped area processing. Thin vertical empty areas are filled 

first (top right), followed by thin horizontal empty areas (bottom left). The final 

predicted frame, obtained after filling thick empty areas, is shown at the bottom 

right of Figure 3.14. 



Figure 3.14: Illustration of empty area post- 
processing where [top left] is the intermediate 
frame after post-processing of overlapped areas; 
[top right] is the frame after filling thin vertical 
empty areas; [bottom left] is the frame after filling 
thin horizontal empty areas; [bottom right] is the 
final frame after filling thick empty areas. 



CHAPTER 4 
IMPLEMENTATION AND SMULATION RSULTS 

In this Chapter, we describe the implementation of frame prediction in the XviD 

MPEG-4 decoder [26] .  We also develop the methodology for assessing the 

motion segmentation as well as the overall predictive decoding process, and 

present the simulation results. 

4.1 Test Sequences 

We test the performance of the proposed frame prediction on several sequences 

with varying motion content. We used six sequences in our experiments, each at 

three different frame rates: 30, 15, and 7.5 frames per second (fps). These 

sequences are listed in Table 4.1. Frame prediction module was incorporated 

into the XviD implementation of the MPEG-4 video codec [26]. Up to 400 frames 

of each sequence were encoded using the IPPP . . .  GOP structure. QClF 

sequences were encoded at 128 kbps, and CIFISIF sequences at 512 kbps. 

On the decoder side, we tested prediction of up to 3 frames ahead. 

Depending on the frame rate (30 fps, 15 fps, or 7.5 fps) of the sequence, the 

perceived delay reduction is up to 100 ms, 200 ms and 400 ms when predicting 

three frames ahead of time. Using different corr~binations of frame prediction 

building blocks from the previous section, we constructed four prediction 

methods with different complexities, and compared their performance. 



Table 4.1: Test sequences. 

1 Sequence I Resolution I Motion 1 
1 Carphone 1 QClF I High 1 
1 Flower Garden 1 C I F 1 High 1 
I Foreman 1 QClF 1 Medium 1 
I Singer 1 SIF 1 Medium I 
1 Mother 8 Daughter I QClF 1 Low 1 
1 Miss America I QClF I Low 1 

4.2 The Assessment of Motion Segmentation 

In Section 3.1, we proposed a motion segmentation algorithm whose aim is to 

improve the performance of motion prediction. Before we assess the overall 

performance of predictive decoding, we conduct several experiments to test the 

performance of motion segmentation itself. 

Four video sequences, Garden, Coastguard, Tennis and Football, are 

used in this assessment. The input to the motion segmentation unit are the 

motion vectors extracted from the encoded video stream. Segmentation 

procedure is elaborated in section 3.1. Fig. 4.1 - Fig. 4.4 show the segmentation 

results where the original video frame is also displayed to give a reference on 

what the exact moving objects look like. To display the rescllt of motion 

segmentation, moving regions are filled with different luminance values to 

distinguish them from each other. 



Original - Garden Motion Segmentation result 

Figure 4.1: The motion segmentation result: 
Garden 

Original - Coastguard Motion Segmentation result 

Figure 4.2: The motion segmentation result: 
Coastguard 



Original - Tennis Motion Segmentation result 

Figure 4.3: The motion segmentation result: 
Tennis 

Original- Football Motion Segmentation result 

Figure 4.4: The motion segmentation result: 
Football 

From these results, one can see that the proposed motion segmentation 

algorithm nicely segments the moving objects at a block precision level. However, 

it is not hard to observe that the edges of each moving object cannot exactly 

match its original boundary. The jagged object boundaries are caused by the fact 

that motion estimation at the encoder is block-based, and uses the criterion of 
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minimizing prediction error, which may lead to inaccurate estimates. Because of 

this, it is necessary to come up with a method to enhance segmentation 

performance and subsequent MV prediction near the edges. Our solution is the 

variable-block-size motion prediction, which was described in section 3.2. 

4.3 Assessment Methodology 

To assess the techniques described in Chapters 2 and 3, we construct four 

different prediction methods by combining different techniques. We then compare 

these methods to asses what benefit do the different techniques bring to frame 

prediction. We tested the four methods using both objective and subjective 

criteria. 

4.3.1 Method 0: Zero Motion Vector 

This method applies the simplest motion prediction model for frame prediction. 

The ZERO MV is assigned to all blocks so that there is no temporal movement at 

all regardless of the number of frames that need to be synthesized. In other 

words, the latest reconstructed frame is taken directly as the predicted frame for 

playout. This method is the basis against which we measure the performance of 

the proposed prediction techniques. 

4.3.2 Method I :  Motion Extension 

In this method, MV of each block is inverted and extended up to the frame we 

wish to predict. For intra-coded block, where there is no motion vector provided 



in compressed bit stream, the median neighbouring MV is chosen using the 

Vector Median Filter. Fig. 4.5 illustrates this simple motion prediction procedure. 

Temporal replacement 

The Rec. Frame 

Figure 4.5: MV inversion followed by motion 
extension. 

Motion vectors shown in dashed lines represent .the predicted IVIVs. As the 

figure shows, the block will keep moving along the same direction that it came 

from. The moving distance is simply proportional to the number of frames to be 

synthesized. The post-processing for empty areas and overlapped areas is as 

described in Chapter 4. 

The computation cost is slightly increased compared to method-0 due to 

temporal prediction and post-processing. However, since only the final predicted 

frame is synthesized (and no intermediate frames), the overall processing time 

remains almost the same no matter how far the prediction goes. 



4.3.3 Method 2: Motion Segmentation, VMF, Sequential Frame Synthesis 

Method-2 has more complicated motion prediction than method-I. First, this 

method includes motion segmentation and vector median filtering to reduce 

prediction errors. Second, the sequential frame synthesis loop is introduced, 

whereby each intermediate frame between the last received frame and the final 

future frame is synthesized one by one, using previously synthesized frames as 

references. 

As illustrated in Section 4.2, the proposed motion segmentation algorithm 

nicely isolates moving objects from the background. Hence, motion prediction is 

able to identify areas of homogeneous motion and use some filtering techniques 

to predict consistent motion within each particular region. The vector median filter, 

which has an excellent trade-off between corr~plexity and smoothing performance 

[5], is chosen for this purpose. 

Since all intermediate frames are synthesized, the complexity of this 

method is obviously higher than the complexity of the previous two methods, and 

is proportional to the distance between the last received frame and the final 

frame we wish to synthesize. 

4.3.4 Method 3: VBS Motion Prediction and Region Smoothing 

This is the final full-featured prediction method. Compared to the previous three 

methods, here the motion smoothing is applied to get rid of false MVs and MV 

noise in large homogeneously-moving areas, and variable-block-size motion 

prediction is adopted near the edges of moving objects to further improve visual 
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quality. This method has the highest complexity among all methods, but it also 

shows the highest visual quality and Peak Signal-to-Noise Ratio (PSNR), as will 

be illustrated below. 

4.4 The Overall Assessment of Frame Prediction 

In the assessment of the four frame prediction methods we described in the 

previous section, we measure both the objective and subjective quality of the 

predicted frames. 

4.4.1 The Objective Quality 

The predicted video frames can be qualified in an objective way, and such a 

measure is the mean square error (MSE) between the original raw video 

sequence and the predicted video sequence. The most widely used video quality 

measure is the Peak Signal-to-Noise Ratio (PSNR), defined in equation 4.1 in 

decibels (dB). The difference between luminance (Y) components of the original 

and predicted frame is calculated pixel by pixel, and then an average over the 

entire frame is taken. 

In this section, PSNR in dB is used to assess frame prediction in two 

different ways. First, we measure the displayed video quality for all four methods 

we discussed in section 4.3. We run the prediction for up to three frames ahead 



of time for each method, and PSNR is used for the comparison of their 

performance. 

Second, we examine the effects of block size used for motion estimation 

at the encoder on the performance of frame prediction at the decoder. In 

particular, we compare the prediction performance in the case where encoder 

forces all MVs to be 8x8 against the case where the encoder can choose to 

assign a MV to either an 8 x 8  or a 16x1 6 block. 

4.4.1.1 The Quality vs. Frame Prediction Depth 

Fig. 4.6 - 4.8 shows how video quality measured by PSNR in dB depends on 

how far ahead we predict. The results are sorted from high motion level 

sequences to low motion level sequences. All these simulation were done with 

30 fps sequences. 

Clip: -- Garden 

0 1 2 3 
Frames In advance 

Clip: -- Carphone 

0 1 2 3 
Frames In advance 

Figure 4.6: Prediction performance in PSNR (dB) - 
High Motion Level 



Clip: - Foreman 

0 1 2 . O  1 2 3 
Frames In advance Frames In advance 

Figure 4.7: Prediction performance in PSNR (dB) - 
Medium Motion Level 

Clip: - Mothrdot 

0 1 2 3 
Frames In advance 

Clip: - Miss 

2 3 
Frames In advance 

Figure 4.8: Prediction performance in PSNR (dB) - 
Low Motion Level 



From the PSlVR plots, we can observe the following: 

The PSNR is decreasing as the prediction goes further. The quality 

decay varies according to the motion activity level and texture pattern 

in the sequence. Garden has the most complicated texture pattern and 

its PSNR (method-3) drops up to 3 dB when predicting one frame 

ahead of time, while the PSNR of method-0 drops 10 dB after 

predicting the first frame. 

On sequences with relatively high motion levels, like Garden, Singer, 

Carphone, and Foreman, the full-featured method-3 outperforms other 

methods. 

For sequences with relatively low motion, like Miss America and 

Mother & Daughter, the sophisticated frame prediction method doesn't 

provide as much improvement as for high-motion sequences. On 

these sequences, even simple methods do reasonably well. 

4.4.1.2 The Frame Prediction Performance vs. Frame Rate 

The franie rate is another important factor which links prediction depth and delay 

reduction. Figure 4.9, 4.10 and 4.1 1 show how the frame prediction performs at 

different frame rates. 

During the experiments, each test sequence is subsampletd from its 

native frame rate of 30 fps down to 15 fps and 7.5 fps. Prediction depth goes up 

to 3 frames ahead for each frame rate. Figure 4.9 illustrates the relationship 

between the frame prediction performance and frame rate for high motion 
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sequences, while Figure 4.10 and Figure 4.1 1 are for medium motion and low 

motion sequences, respectively. 

Clip: - garden Clip. -- carphone 

I I 
1 2 3 1 2 3 

Frames In advance Frames In advance 

Figure 4.9: Prediction performance VS. Frame 
Rate - High Motion Level 

Clip: - Foreman 

I 
1 2 3 

Frames In advance 

Clip: -- singer 

1 2 3 
Frames In advance 

Figure 4.10: Prediction performance VS. Frame 
Rate - Medium Motion Level 



Clip: -- mthrdot Clip: - miss 

Frames In advance Frames In advance 

Figure 4.1 1 : Prediction performance VS. Frame 
Rate - Low Motion Level 

The simulation results are consistent with our expectations. Prediction is 

better at high frame rates. We can also observe that the quality (PSNR) of 

predicted frames is approximately determined by perceived delay reduction. For 

example, predicting one frame ahead with 15 fps Foreman gives us similar 

quality to predicting two frames ahead with 30 fps Foreman. In other words, the 

cost of quality loss to reduce perceived end-to-end delay for high frame rate 

source is similar to the quality loss incurred with its low frame rate counterpart. 

This simulation shows that the frame prediction performance is mainly 

related to the amount of delay we want to reduce. However, video source with 

high frame rate offers us more flexibility in frame prediction than the low frame 

rate source. For example, if the user can accept the video quality at 150 ms 

delay reduction, then with 30 fps video communication, we will have options for 

delay reduction at 33ms, 67ms, 1 OOms, and 133ms, while for 15 fps video source 



we only have options 67ms and 133 ms, and only one option (133 ms) for 7.5 fps 

source. 

4.4.1.3 The Frame Prediction Performance vs. Motion Level 

The results in the previous figure indicate the average PSNR over the entire 

sequence. In this section, we further investigate the frame-by-frame PSNR 

fluctuation through the sequence, and look into the relationship between quality 

and motion level. For this experiment, choose four test sequences with different 

motion levels: Carphone (High), Foreman (Medium), Miss America (Low), and 

Mother & Daughter (Low). Method-3 is chosen as the prediction method, since it 

gave the best results overall in the previous section. 

In Fig. 4.12 to Fig. 4.15, we plot the frame-by-frame PSNR for different 

prediction depths. 
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Figure 4.12:The PSNR of frame prediction vs. The 
motion level - Carphone 
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Figure 4.13:The PSNR vs. The motion level - 
Foreman 
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Figure 4.14:The PSNR vs. The motion level - 
Mother & Daughter 
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Figure 4.15:The PSNR vs. The motion level - Miss 
America 



These plots indicate that prediction performance depends on the motion 

intensity in a particular segment of the sequence. Prediction is much better in 

low-motion sequences such as Miss America and Mother & Daughter, then it is 

on the higher-motion sequences like Foreman and Carphone. Within the 

Carphone sequence, prediction deteriorates towards the end of the sequence as 

the motion intensity increases. 

4.4.1.4 The Frame Prediction Performance vs. Motion Field Density 

As mentioned in Chapter 3, motion vector accuracy is a very important factor 

affecting the overall frame prediction performance. What we have discussed so 

far only concerns the decoder; the encoder operates independently without any 

knowledge that prediction will be carried out at the decoder. In this section, we 

investigate the impact of motion estiniation at the encoder side, and how different 

coding techniques affect the prediction system. In particular, we investigate the 

effects of motion field density on prediction accuracy. MPEG-4 supports motion 

vectors based on 16x1 6 or 8x8 blocks. In variable-block-size motion estimation, 

the encoder may choose to split a 16x16 block into four 8x8 sub-blocks, if this 

reduces the energy of the prediction residual. One can also force the encoder to 

use fixed-size 8x8 blocks only. 

Decisions regarding the block size for motion vectors (which in turn 

determine the "density" of the motion field) are made in the video encoder based 

on the Sum of Absolute Differences (SAD) information from motion estimator. 

When the function that makes these decisions is enabled, four 8x8 blocks are 



used for inter-coding if the SAD sum of four 8x8 blocks is less than the SAD of 

one 16x1 6 block; otherwise, 16x1 6 block is chosen. 

An alternative is to force four 8x8 blocks for inter-coding for the entire 

sequence by disabling block size decision function. In this way, we might end up 

with a denser motion vector field, which may help prediction. On the other hand, 

the total bit rate will also increase due to the cost of encoding extra motion 

vectors. 

The purpose of fixing the 8x8 coding mode is to increase the density of the 

motion vector field, which may benefit motion segmentation as well as 

subsequent motion prediction. However, in addition to increasing the bit rate, 

there is another risk associated with this. Smaller blocks may lead to more noise 

in the motion vectors. To identify how much improvement we can get in frame 

prediction in terms of motion field density and how much penalty we might suffer 

from video quality in terms of bit rate, we carried out the experiments on four 

sequences with different motion levels: Foreman, Carphone, Miss America, and 

Mother & Daughter. 

In our experiment, we generate two compressed video files for each video 

sequence: one for adaptive 16x1 6 block size coding mode, and the other one for 

fixed 8x8 block size coding mode. These two video streams are fed to the frame 

prediction at the decoder separately, and their PSNR is measured for different 

frame prediction depth. Since the two coding modes might lead to different bit 

rates, to make a fair comparison we made the PSNR plots in two different ways: 

Fixed encoded video quality (PSNR) with different bit rates, 
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Different encoded video qualities (PSNR) at the same bit rate. 

Table 4.2 shows the bit rate difference when we use the two different 

coding modes to achieve the same quality (PSNR). 

Table 4.2: Bit rates needed to maintain the same 
video quality. 

Bit-Rate 
Sequence I PSNR (dB) I (Adaptive 16x1 6 mode) 

As expected, the table shows that the adaptive 16x16 mode is more 

Bit-Rate 
(fixed 8x8 mode) 

Foreman 

Carphone 

Mother & Daughter 
- - 

Miss America 

efficient that the fixed 8x8 mode. Efficiency difference between these two modes 

is highest on low-motion sequences, where lack of motion can be easily exploited 

by the large block size. The difference in efficiency reduces as the motion 

intensity and complexity increase. 

Fig. 4.16 - Fig. 4.19 illustrate the frame prediction performance in terms of 

different motion field densities for four different video sequences. The plots on 

the right side correspond to the case where the encoded PSNR is the same for 

31.5 

33.7 

32.4 

39.6 

the two modes, and the plots on the left side correspond to the case where the 

bit rates of the two modes are the same. 

70 kbps 

65 kbps 

20 kbps 

55 kbps 
- 

144 kbps 

144 kbps 
-- - 

149 kbps 
- 

134 kbps 
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Figure 4.16: Prediction performance vs. Motion 
density: Foreman, Left: Same bit-rate, Right: 
Same encoded PSNR. 

Figure 4.1 7: Prediction performance vs. Motion 
density: Carphone, Left: Same bit-rate, Right: 
Same encoded PSNR. 
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Figure 4.18: Prediction performance vs. Motion 
density: Mother & Daughter, Left: Same bit-rate, 
Right: Same encoded PSNR. 
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Figure 4.19: Prediction performance vs. Motion 
density: Miss America, Left: Same bit-rate, Right: 
Same encoded PSNR. 

We can observe that increased motion vector density doesn't give too 

much improvement on the performance of frame prediction, especially when 

encoded bit streams have the same PSNR. The main reason is that increased 

motion density brings higher risk of false motion vectors in homogeneous areas, 



and motion accuracy turns out to be more important than motion field density in 

frame prediction. 

By studying the impact of motion field density on frame prediction, we 

have come to the conclusion that increasing the motion field density by forcing 

small block size in motion estimation is not beneficial for predictive decoding. 

Using the default adaptive 16x16 block-based motion estimation produces less 

dense motion field, but has the benefit of improved coding efficiency and higher 

motion vector accuracy, which is crucial for prediction. 

4.4.2 The Subjective Quality 

In terms of subjective performance, the full-featured method is visibly better than 

all other methods on all sequences. An illustration is given in Fig. 4.20, which 

shows a sample Foreman frame produced by three different frame prediction 

methods (method-I through method-3) when predicting three frames ahead. In 

the upper left corner, we also show the original frame for comparison. 



Figure 4.20: Visual corr~parison for frame 
prediction assessment. [Top left] is the frame 
without prediction, and other figures show the 
same frame produced when predicting three 
frames ahead by three prediction methods. [Top 
right]: Method 1, [Bottom left]: Method-2, [Bottom 
right]: Method-3 

Finally, in Fig. 4.21 - Fig. 4.23, we show how the predicted frame quality 

deteriorates as the prediction depth increases from zero to three. The PSNR 

curve is also included in the figures. As expected, the further ahead we predict, 

the lower the quality of the predicted frames. 



Frame: #63 

Figure 4.21: Quality of frame prediction (Foreman). 



Figure 4.22: Quality of frame prediction (Flower 
Garden). 



Figure 4.23: Quality of frame prediction (Mother & 
Daughter). 



Fig. 4.21 - Fig. 4.23 illustrate how the quality of predicted frames 

deteriorates as frame prediction depth increases. In each of the figures, the 

PSNR curves and the sample frames are arranged from top to bottom in the 

following way: No prediction, prediction 1 frame ahead of time, prediction 2 

frames ahead of time, prediction 3 frames ahead of time. The locations of the 

sample frames within the sequence are also indicated.. 

We observe that the degradation in PSNR is related to the motion level 

associated with the particular segment within the sequence. For those frames 

from very high-motion segments, the PSNR of the predicted frames drops quickly, 

and increased prediction depth leads to lower PSNR, such as Frame #60 in 

Mother & Daughter, and Frame #28 in Foreman. For frames associated with 

medium or very slow motion, the quality degradation is relatively low as 

prediction depth increases, which can be observed on Frame #93 in Mother & 

Daughter, and Frame #98 in Foreman. 

From the visual quality comparison, we can conclude that having accurate 

motion prediction is the key to improve the quality of the entire frame prediction. 

This point will be addressed as a possible future work in the next chapter, where 

we suggest a couple of methods to improve motion vector prediction. 



4.5 The Complexity Analysis 

In this section, we analyze the complexity of frame prediction module in full- 

featured configuration (method-3 in section 4.3.4). The complexity analysis 

consists of two aspects: 

(1) The overall time consumption of the frame prediction module compared to 

the decoding time consumed by standard MPEG4 video decoder; 

(2) The Nlillion Instructions Per Second (MIPS) dissipation on all processing 

units in the frame prediction module. 

The entire frame prediction module is embedded into the XviD MPEG4 

video decoder, and the simulations were conducted on a desktop PC with Intel 

Pentium CPU 3.0 GHz and 1.99 GB of RAM. Table 4.3 shows the simulation 

results in terms of time consumption for standard video decoder and multiple 

frames prediction for six 30 fps test sequences. 

Table 4.3: Decoding and prediction time. 

DecodinrT:-3-rn- 1 
STD Dec I ahead aheac 3 ahead 

Mother & QClF 
Daughter ( 1  76x 1 44) 0.42 1.35 3.28 4.69 

- 
Flower SIF 
Garden (352g40) .. 

2.87 8.84 17.95 27.3 

Miss QClF 
(1 76x1 44) 0.61 1.87 3 .33  5.42 America 



The goal of overall decoding and prediction time testing was to gather 

information about the resource demand of frame prediction embedded into 

MPEG4 decoder running on a PC platform in real time. The table 4.3 gives us a 

preliminary knowledge of algorithm complexity with an un-optimized version of 

the frame prediction module. 

First, in order to achieve real-time video decoder with frame rate at 30 fps, 

current frame prediction implementation can support the video resolution up to 

CIF or SIF, while predicting three frames ahead of time, and reducing delay up to 

100 ms. For lower resolution such as QCIF, the overall time consumption, 

including frame reconstruction and three-frame prediction, is less than 10 ms, 

thus it meets the requirement of running in real time. However, if a real-time 

encoder needs to run on the same system (as in typical PC-based 

videoconferencing), the current frame prediction module would need heavy 

optimization to reserve enough MIPS, especially for higher resolutions like CIF 

and SIF. 

Second, compared to the standard video decoder, predicting one future 

frame costs significant extra computation - about 3 times more in low motion 

sequences such as Miss America and Mother & Daughter, and even higher in 

mediumlhigh motion sequences like Foreman and Carphone. The motion level 

results affect the time consumption of frame prediction because a large portion of 

prediction effort is spent on MV prediction and motion segmentation. Therefore, 

it is necessary to further block down the MIPS dissipation over internal 



processing units of the prediction module, and come up with ,the corresponding 

optimization plan. 

Figure 4.24 to Figure 4.26 show the MlPS distribution of internal 

processing units in the frame prediction module. We analyze the average MlPS 

dissipation on sequences with different motion levels. The processing units are 

categorized into Pre-Processing, MV prediction (including Motion Segmentation), 

Terr~poral prediction, Post-processing for overlapped areas, and Post-processing 

for empty areas. 
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Figure 4.24: MlPS dissipation of frame prediction 
(High Motion). 
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Figure 4.25: MlPS dissipation of frame prediction 
(Medium Motion). 

Complexity analysis - Low Motion 
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Figure 4.26: MlPS dissipation of frame prediction 
(Low Motion). 



These pie charts show a clear picture of computational demand of 

different frame prediction processing units. First, more than 50% MIPS 

consumption comes from MV prediction part, which includes motion 

compensation and variable-block-size MV prediction, and takes a somewhat 

larger percentage of overall computation for higher motion sequences than for 

lower motion sequences. Second, temporal prediction has the second highest 

computational complexity, because this unit is responsible not only for 

synthesizing the preliminary future frame, but also for generating all position 

information for later post-processing, such as pixel mapping table and 

overlapped pixel table. Those processing steps are all time-consuming. These 

two parts, Temporal prediction and MV prediction make up to about 90% of 

overall NllPS consumption, thus our future optimization effort will mainly 

concentrate on these components. 

By conducting the complexity analysis on MPEG4 video decoder, we have 

obtained a rough knowledge of computational resource demand of frame 

prediction integrated into a video decoder. However, as we mentioned in Chapter 

2, our frame prediction module can also be ported to other block-based video 

codecs, such as H.261, H.263, and H.264. All these video codecs have different 

performance characteristic in terms of motion estimation, transformation 

techniques and so on, thus the complexity will vary accordingly as frame 

prediction module is tailored to fit each individual codec. In Chapter 5, we will 

discuss how the frame prediction module can be customized to H.264 decoder, 

and how this would affect the complexity. 



CHAPTER 5 
CONCLUSION AND FUTURE DIRECTIONS 

In this work, we addressed the issue of delay in video communications, and 

proposed predictive decoding to reduce the delay. The main idea behind our 

delay reduction method is to incorporate a frame prediction module into a 

standard video decoder, predict the upcoming video frames from the available 

video data, and display them before they arrive at the receiver. 

By using this "predictive decoding," it is possible to reduce the perceived 

end-to-end delay at the expense of displayed video quality. The key steps in this 

decoding scheme include: a) Mo-tion segmentation-based motion vector 

prediction, which considers both prediction residuals from the last received frame 

and motion region homogeneity to improve motion prediction. b) Temporal 

prediction is used to synthesize future frames using the predicted motion vectors. 

c) A combination of bi-linear interpolation and boundary matching is used as a 

post-processing step to deal with overlapped areas and empty areas. 

The benefits we may get from frame prediction depend on the complexity 

of the video. For scenes involving complex motion, the number of frames which 

can be predicted with acceptable quality is very limited. However, for scenes with 

less complex and relatively smooth motion, as we might expect in a video 

conference, predictive decoding shows promising performance. 



5.1 Possibilities for Improving Prediction Performance 

By studying the reasons behind predicted video quality degradation, we identified 

some possibilities for improving prediction performance. 

First, our current motion prediction strategy only considers the last 

received frame, and all predicted motion vectors are based on this one frame and 

its motion vectors. Although motion objects are segmented carefully, significant 

amount of motion vector noise is still likely to remain in the motion field, which 

reduces prediction performance. 

Second, the same prediction strategy is used for all frames. However, it is 

likely that motion activity changes from time to time in a video, and different 

prediction strategies may be appropriate for different segments. Hence, 

recognizing the type of motion in a particular segment and changing the 

prediction strategy accordingly may be another way to improve prediction 

performance. 

Finally, without an efficient motion trajectory model, it is hard to keep a 

consistent motion region, and we commonly observed different shapes of motion 

regions in successive frames. Good motion trajectory models for objects that are 

commonly observed in particular applications (e.g. head or mouth in video 

conferencing) would go a long way towards improving prediction performance. It 

is also likely that using these models would increase the complexity of predictive 

decoding. 



In summary, further improvements might be obtained by a) doing better 

motion prediction at the decoder side based on motion trajectory models, b) 

doing joint motion estimation and prediction, which optimizes the motion 

estimator at the encoder side according to a suitably chosen motion model, and 

transmitting precise motion information to aid the MV predictor at the decoder. 

Motion Trajectory Model 

By establishing a motion trajectory model, the historical motion information from 

past video frames are collected and used to extrapolate the motion trajectory. 

This way, it may be possible to predict more accurately the future position and 

orientation of a moving object in a time-variant environment. 

There have been some studies concerning filtering techniques and 

autoregressive models to characterize motion in video processing. For example, 

reference [21] utilizes the predicted motion and measured motion to obtain the 

optimal estimate of motion vectors, where the predicted motion information is 

obtained by autoregressive models, and Kalman filters are used for prediction. 

Joint Motion Prediction Method 

The idea here is to optimize the mo-tion estimator at the encoder side, so that the 

motion vectors generated by motion estimation can better approximate the actual 

moving directions of objects, instead of purely minimizing the prediction error. 

With more accurate motion vectors, the decoder may be able to do better motion 

prediction by setting up the same motion model, and having the entire predictive 

decoding improved. 



5.2 The Frame Prediction in H.2641AVC 

H.264lAVC is the latest video coding standard and it is designed for a variety of 

technical solcltions including interactive applications [13]. H.264lAVC enhancees 

coding efficiency significantly compared to MPEG4 and H.263 through various 

optimizations such as rate-distortion optimal motion estimation [51][52], which 

would directly affect the performance of frame prediction. In this section, we will 

briefly discuss the R-D optimal motion estimation in H.264/AVC, and how it might 

affect frame prediction in a H.2641AVC decoder. 

The rate-distortion optimal motion estimation algorithm in H.264lAVC 

leads to an efficient bit allocation between inter- and intra- frame information. The 

motion information is determined by searching the optimal solution of R-D pairs 

to minimize the total Lagrangian cost function 

J = D + / Z R  
Eq. 5.1 

where D denotes the prediction error, R represents the bit rate spent on motion 

vectors and A is the Lagrange multiplier related to the quantization parameter 

QP [52]. With a reasonable bit rate, the motion vectors packed in the bit stream 

nicely reflect the real motion, therefore, the noisy motion vectors [30] might be 

suppressed in H.2641AVC. Frame prediction might benefit from R-D optimal 

motion estimation in following aspects as well. 

1. Reduce the computational demand on motion segmentation and vector 

median filtering. The purpose of motion segmentation is to identify the 



areas with homogeneous motion, while vector median filter smoothes out 

noisy motion vectors. Since the motion vectors have been locally refined 

by R-D optimal motion estimation in H.264/AVC, the need for motion 

segmentation may be reduced. This could save up to 40 percent of total 

computation. 

2. H.264IAVC offers variable-block-size motion estimation [50], with block 

sizes down to 4x4. Also, there is an in-loop deblocking filter in the decoder 

to reduce the block boundary artifacts. These techniques may simplify the 

variable-block-size MV prediction, and improve both objective and 

subjective video quality. 

To realize frame prediction algorithm in H.264/AVC, it is important to 

achieve a good balance between complexity reduction and quality improvement. 

It is also a part of our future work to give a comparison of prediction performance 

using different video codecs. 

5.3 Comprehensive Video Quality Assessments 

Besides seeking the possibility for improving prediction performance, accurate 

assessment of the perceptual quality of predicted frames is also important. PSNR 

is the main quality measure used in this thesis because of its simplicity. However, 

it is well-known that PSNR doesn't accurately model the perceptual quality. 

There are quite a few of new video quality measurement approaches 

proposed in recent years, such as VQM [28], MPQM [46], SSlM [47], and NQM 

[49]. Each of them has a unique value in measuring perceptual video 
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characteristics. How to combine these methods to give a comprehensive video 

quality assessment is also part of our future work. 

The Video Quality Measure (VQM) [28] 

The Video Quality Measure (VQM), developed by the Institute for 

Telecommunication Sciences (ITS), is based on feature extraction [28]. 

Compared to the PSNR, the VQM is more likely to identify the nature of quality 

loss. It measures the perceptual effects of video impairments including blurring, 

jerkylunnatural motion, global noise, block distortion, and color distortion, and 

combines them into a single metric. 

Moving Pictures Quality Metric (MPQM) [46] 

MPQM is an objective quality metric for moving pictures, which integrates two 

human vision characteristics into the quality assessment: contrast sensitivity and 

masking. Compared to PSNR, it considers the visual masking phenomenon in 

assessing video quality. 

Structure Similarity lndex Metric (SSIM) [47][48] 

Reference [47] presents another video quality metric called Structure Similarity 

lndex Metric, which uses the structural distortion measurement instead of mean 

square error. The reason considering the structural distortion is that the human 

vision system is highly specialized in extracting structural information from the 

viewing field, while it is not specialized in extracting errors. Thus, a measurement 

on structural distortion should give a better correlation to the subjective 

impression. 



Noise Quality Measure (NQM) [49] 

The video quality measurement metric addressed in reference [49] is called 

Noise Quality Measure (NQM), where the image quality is assessed based on a 

degradation model. Two sources of degradations are considered in this model: 

linear frequency distortion and additive noise injection, and it leads to two quality 

measures: a frequency distortion measure (DM), and a noise quality measure 

(NQM). Compared to SNR, the NQM weights the quality assessment on: 

Variation in contrast sensitivity with distance, image dimensions 

Variation in the local luminance mean 

Contrast interaction between spatial frequencies 

Contrast masking effects 
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