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Abstract 

Learning theories play a significant role to machine learning as computability and complexity 

theories to software engineering. Gold's language learning paradigm is one cornerstone of 

modern learning t,heories. The aim of this thesis is to establish an inductive principle in 

Gold's language learning paradigm to guide the design of machine learning algorithms. 

We follow the common practice of using the number of mind changes to measure com- 

plexity of Gold's language learning problems, and study efficient learning with respect to 

mind changes. Our starting point is the idea that a learner that is efficient with respect to 

mind changes minimizes mind changes not only globally in the entire learning problem, but 

also locally in subproblems after receiving some evidence. Formalizing this idea leads to 

the notion of mind change optimality. We characterize mind change complexity of language 

collections with Cantor's classic concept of accumulation order. We show that the character- 

istic property of mind change optimal learners is thak they output conjectures (languages) 

with maximal accumulation order. Therefore, we obtain an inductive principle in Gold's 

language learning para.digm based on the simple topological concept accumulation order. 

The new inductive principle enables the analysis of the practical problem of learning 

Bayes net structure in the rich theoretical framework of Gold's learning paradigm. Bayes 

net is one of the most prominent formalisms for knowledge representation and pr~babilist~ic 

and causal reasoning. Applying the inductive principle of mind change optimality leads to 

a unique fastest mind change optimal Bayes net learner. This learner conjectures a g a p h  

if it is a unique minimal "independence map", and outputs "no guess" otherwise. 

As exact in~plen~entation of the fast mind change optimal learner for learning Bayes net 

structure is NP-hard, mind change optimality can be approximated with a hybrid criterion 

for learning Bayes net structure. The criterion combines search based on a scoring function 

with information from statistical tests. We show how to adapt local search algorithms 



to incorporate the new criterion. Simulation studies provide evidence that one such new 

algorithm leads to substant,ially improved structure on small to medium samples. 

Keywords: Learning theory, inductive inference, mind change, accumulation order, induc- 

tive principle, Bayes net, conditional independence, constraint-based learning, score-ba.sed 

learning 
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Chapter 1 

Introduction 

,4mazingly, almost all books on pattern 

recognition or neural networks include 

no real or realistic examples. 

13. D. Ripley 

At the 2005 DARPA Grand Challenge, the Stanford team won the 2-million-dollar prize. 

Sebastian Thrun, head of the Stanford team, attributed the team's success partly to "[Tlhe 

pervasive use of machine learning, both ahead and during the race" [95, p. 6911. Behind 

the glamour of machine learning, computational learning theory (sometimes simply called 

learning theory) plays a significant role, as computability and complexity theory does for 

software engineering. For yexs ,  research in learning theory enables new machine learning 

algorithms that have greatly impacted our daily life. Well known examples include, but 

are not limited to, VC theory for support vector machine, PAC theory for boosting, and 

mistake bound theory for the weighted majority alg~rit~hrn [103]. 

Gold's language learning paradigm [37](also known as algorithmic learning theory, or 

inductive inference) is a cornerstone of modern learning theories. The  theory and its vari- 

ants, however, do not provide explicitly an inductive principle that can guide the design of 

machine learning algorithms. This thesis seeks an inductive principle inside Gold's language 

learning paradigm by proposing the notion of mind change optimality (as known as mind 

change e f ic ient  learning [60]). The thesis also studies how to apply the inductive principle 

to design algorithms for learning Bayes net structure, which is an important problem in 

Bayesian inference. As Gold's language learning paradigm, Bayesian inference is another 



CHAPTER 1. INTRODUCTION 2 

leg of computational learning theory. To my knowledge, this is the first attempt to combine 

results from these t,wo theories into machine learning algorithm design. 

1.1 Background and Motivation 

As Freud and Schapire put it [23], much of the work in computational learning theory can be 

traced to Valiant's work on PAC learning [99], and Gold's work on Language identification 

in the limit [37]. We situate our study in Gold's paradigm. 

1 .l. 1 Gold's Language Learning Paradigm 

In 1967, Gold in his seminal paper [37] proposed the model of language  identification 

in  t h e  l imit .  Osherson and Weinstein, from the perspective of cognitive scientists, later 

named it formal learn ing  theo ry  [72, 73, 62, 431. Kelly [49], Glymour [35], and Schulte 

[87], from the perspective of philosophers, also use the terms "logical reliability" and "means- 

ends epistemology". In addition to its impact on theories of natural languages [78, 1021, 

Gold's work convened a research community inside the discipline of computer science, and 

led to the incarnation of the conference on learning theory (COLT) in 1988, the conference 

on Algorithmic Learning Theory (ALT) in 1990, and the EuroCOLT in 1993. 

In Gold's model, a language  is a subset of a predefined universe of s t r ings .  Consid- 

ering a string can be encoding any thing, the theory has wide applicability. We sha.ll give 

a brief account of Gold's model in terms of the data protocol and the success criterion pre- 

scribed by the theory (cf. [49, Chapter 21). A formal description of the model is postponed 

to Chapter 2. 

D a t a  P ro toco l  Training data are strings in the target language. They are presented to 

a learner through a t e x t ,  which is an (indexed) enumeration of the language with possible 

repetitions and pauses. The sequential nature of a text gives a notion of "time steps" in 

Gold's model. At any step, a learner observes only a.n initial segment of the text up to that 

step. 

Success Cr i t e r ion  Gold's model requires a learner to make a guess of the target language 

at  each step. The learner identifies a language in  t h e  l imit ,  if, given any text, on all but 
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finitely many steps, the learner's makes the right guess. Likewise a learner identifies a 

language collection if it identifies every individual language in the collection. 

Therefore Gold's language learning paradigm is a general framework; it can be applied 

to a wide range of machine learning problems where convergence of outputs is of concern. 

1.1.2 Mind Change Complexity and Other Classifications of Language 

Learning Problems 

Much of the research in Gold's language learning paradigm is on learnabil i ty of language 

collections. With additional constraints on resources available to learners, just as in recur- 

sion theory, various complexity notions may arise. A widely a,dopted notion is the mind 

change complexity [2, 3, 100, 56, 57, 68, 91, 86, 511. Formal definition of mind change com- 

plexity will be given in Chapter 2. Simply put, a mind change refers to a change of guess 

along the process of learning, and the mind change complexity of a language collection is the 

maximal number of mind changes any reliable learner may make in the worst case. Hence 

mind change complexity provides a natural gradation of learnability. 

Since "hardness" of language collection highly depends on the assumptions about learn- 

ers. When these assumptions change, an unlearnable problem can become a learnable prob- 

lem, and vice versa. On the other h m d ,  one can argue that the subtle differc~ices among 

learner models are only of interest to mathematicians and computer theorists. Instead of 

looking a t  the "hardness" of language collections, an ~rt~hogonal  way to classify language 

collections is to treat a language as a set and directly capture the set-theoreticad charac- 

teristics of language collections. Examples include the study of thickness [92] and elasticity 

[105, 661 of language collections. To my knowledge, however, there are very few attempts 

to characterize hardness of language collections using set-theoretica.1 concepts. 

1.1.3 Aim of the Thesis 

The a,im of this thesis is to establ ish a n  inductive principle in  Gold's language 

learn ing  p a r a d i g m  to guide  t h e  design of machine  learn ing  algori thms.  

As suggested previously, the theories on Gold's language learning paradigm and its 

variants are rich and profound. In practice, however, the applications of the theories to 

machine learning are limited in terms of both number and influence. Successful applications 

of learning theories often depend on a good inductive principle. For examples, structural risk 
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minimiza.tion is an inductive principle that  enables successful applications of VC theory; the 

"Occam's Razor" defined in [12] is an inductive principle that  is essential to the applicability 

of PAC theory. Compxed to other learning paradigms, Gold's learning paradigm seems to 

lack a clear operational inductive principle. In other words, much of previous studies is on 

the hardness of problems, but not on the optimality of learners. Only after we have a good 

idea of what an optimal learner l o o l ~  like in the Gold's paradigm, can the theory effectively 

help the design of learning algorithms or strategies. 

To achieve the aim of the thesis, I consider the following set of objectives. 

To Provide a Refinement to the Theory of Mind Change Complexity Mind 

change complexity provides a useful hierarchy of lmguage learning problems in terms of their 

hardness. The  formalization, however, does not provide enough intuition on the behaviour 

of learners because complexity requirements do not constrain learner suficiently. In other 

words, two learners that succeed with the same number of mind changes may adopt radically 

diffcrcnt stra.t,egies, with onc maybe more natural t,han the ot,her. Should some refinement 

constrain a learner to behave more "naturally", an inductive principle will follow natura.11~. 

To Characterize Mind Change Complexity with Set-theoretical Concepts The 

language of set theory is rigorous and appeals to a broad audience. We shall use concepts 

from the point-set topology to characterize mind change complexity in language collections. 

By doing this, we bring together the research on set-theoretical features (e.g.,[92] and [66]) 

and the research on learning complexity ( e g ,  [3]). In additional, the optimality behavior 

of a learner will be better understood when its inputs and outputs are described in terms 

of set-theoretical concepts or related mathematical notions. Last but  not least, the charac- 

terization helps translate learning theoretical problems into set theoretical ones, and hence 

enables the use of existing theorems in set theory. 

To App ly  the Theory to a Real-life Application To evaluate the inductive principle 

obtained, we shall apply it to a machine learning problem of pra~t~ica.1 significczncc. Wc choose 

the problem of learning Bayes net structure. The problem serves our purpose because it is 

an important (see 1831) and real problem (for lack of perfect solution, see [39]). 
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1.2 Structure of the Thesis 

This thesis is organized as follows. 

Chapter 2 covers the basic definitions of Gold's language learning paradigm and mind 

change complexity of language collections. We start with the idea that a learner efficieut 

with respect to mind changes minimizes mind changes not only globally in the entire learning 

problem, but also locally in subproblems after receiving some evidence. Formalizing this 

idea leads to an inductive principle: strong mind change optirnulity. 

The major theoretical framework of this thesis is built in Chapter 3. After a brief review 

of point-set topology, we give a characterization of mind change complexity using Cantor's 

classic concept of accumulation order. We use accumulation order to rigorously prescribe 

the input-output behavior of a mind change optimal learner. The chapter ends with a 

comparative study of accumulation order with respect to other set-theoretical a.nd recursion- 

theoretical notions of language collections such as thickness, inclusion depth, elasticity, and 

intrinsic complexity. 

Chapter 4 illustrates the theory with a group of applications in formal language theory. 

In particulas, the optimal learning problems for patterns, one-variable patterns, a d  fixed- 

length patterns are examined. These are interesting problems in their own right. 

The remaining chapters constitute a major application of the theory: mind change 

optimal learning of Bayes net structure. In Chapter 5, we reformulate the structure learning 

problem into a language learning problem so that our theory can be applied. We also 

show that imposing exact optimality criterion leads to intractability. Chapter 6 shows that 

existing algorithms for learning Bayes net structure a.re not mind change optimal. They 

do not even always produce valid outputs according to the Bayes net theory. This shows 

consistency between our theory and the Bayes net theory, and suggests a new algorithm using 

the inductive principle offered by the theory of mind change efficient learning. Chapter 7 

describes the algorithm and gives empirical evaluation for it. 

The structure of the thesis is demonstrated in Figure 1.1. 
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MC Optimal Learning 

+ 
Chapter 6 

ing by Existing 

Chapter 7 m 
A New Algorithm for 
Learning Bayes Net 

Figure 1.1: Organization of the thesis 



Chapter 2 

Language Learning and Mind 

Change Optimality 

Computer Science is just applied 

mathematics. 

a computer scientist 

This chapter reviews standard concepts in Gold's paradigm of language identification 

and presents our definition of mind change optimality. 

2.1 Preliminaries: Language Identification 

In natural language processing, historically researchers try to model the process of children 

learning a language by just listening to  sentences in that language. In his seminal paper 

[37], Gold considered the following problem: given a class of candidate languages a.nd a way 

to present information about the target language to a child, does the child have suficierit 

information to  single out the target language from the class? This setup later evolves into 

a more general learning paradigm. 

We employ notation and terminology from [45], [62, Chapter 11, and [37]. We write 

N for the set of natural numbers: {0,1,2, . . . I .  The symbols G, 2, c, >, and 0 respectively 

stand for subset, superset, proper subset, proper superset, and the empty set. As in na.tura1 

language processing, we view a language as a set of strings. We identify strings with natural 

numbers encoding them. Thus we define a language to be a subset of N and write L 
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for a. generic langua,ge [37, page 4491. A language learn ing  p rob lem is a collection of 

languages; we write C for a generic collection of languages. A t e x t  T is a mapping of N 

(natural numbers representing time steps) into N U  {#), where # is a symbol not in N. (The 

symbol # models pauses in data presentation.) We write content(T) for the intersection of 

N and the range of T. A text T is for a language L if L = content(T). The initial sequence 

of text T of length n is denoted by T[n]. The set of all finite initial sequences over NU {#) 

is denoted by SEQ. We also use SEQ(C) to denote finite initia.1 sequences consistent with 

languages in C. We let a and T range over SEQ. MIe write content(a) for the intersection 

of N and the range of 0 .  The initial sequence of a of length n is denoted by a[n,]. We say 

that a language L is consistent  with a if content(a) C L. We write a c T or T > a to 

denote that text T extends initial sequence a .  

Example 2.1.1. 

1. Let Li z {n : n > 2 1 ,  where i E N; we use COlNlT to denote the class of languages 

{L.; : i E N) [3, page 3241. 

2. In the n-dimensional linear space over the field of rationals Ql we can effectively 

encode every vector v' by a natural number. Then a linear subspace of Qn corre- 

sponds to a language. We write LINEAR, for the collection of all (encodings of) linear 

subspaces of Qn. 

Figure 2.1: The language collection COINIT. 

A lea rne r  is a function that maps a finite sequence to a language or the question mark 

?, mea.ning "no answer for now". We normally use the Greek letter 9 and variants to denote 

a learner. Our term "learner" corresponds to the term "scientist" in [62, Chapter 2.1.21. 
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In typical applications we have available a syntactic representation for each member of the 

language collection C under investigation. In such settings we assume the existence of an 

index for each member of L, that is, a function index : L H N (cf. 143, page 18]), and we 

can take a learn ing  func t ion  to he a function that maps a finite sequence to an index for 

a language (learning functions are ca.lled "scientists" in [43, Chapter 3.31). A computable 

learning function is a learn ing  a lgor i thm.  We use the general notion of a learner for more 

generality and simplicitmy until we consider issues of computability. 

Let C be a collection of languages. A learner Q for L is a mapping of SEQ into C U {?}.  

Thus the learners we consider are class-preserving; for the results in this dissertation, this 

assurnptiori carries no loss of geilcrality. Usually context fixes the language collection C for 

a learner 9 .  

We say that  a learner 9 identifies a language L on a text T for L, if 9(T[n])  = L for 

all but a finite number of stages n. Next we define identification of a language collection 

rehtive to some evidence. 

Defini t ion 2.1.1.  A learner Q ident,ific.s C given o -+=> for every language L E L ,  and for 

every text T > a for L, we have that \Ti identifies L on T. 

Thus a lea,rner 9 identifies a language collection C if '3 identifies L given the empty 

sequence A. 

Example 2.1.2. 

1. The  following 1ea.rner Qco identifies COINIT: If content(u) = 0, then Qco(u):=?. 

Otherwise set m := rnin(content(u)), and set QCo(u) := Lm 

2. Let vectors(a) be  the set of vectors whose code numbers appear in u. Then define 

9LIN(u )  = span(vectors(a)), where span('(/) is the linear span of a set of vectors V. 

The  learner qLIN identifies LINEAR,. The problem of identifying a linear subspace of 

reactions arises in particle physics, where it corresponds to the problem of finding a set 

of conservation principles governing observed particle reactions 153, 971. Interestingly, 

it appears that the theories accepted by the particle physics community match the 

output O F  QLIN [98, 891. 

A learner \P changes  i t s  m i n d  a t  some nonempty finite sequence (T E SEQ if q ~ ( a )  # 
9 ( u P )  and \II((T-) #?, where rr- is the initial segment of a with a's last element removed 

[31, 31. (No mind changes occur a t  the empty sequence A . )  
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Definition 2.1.2 (based on [3]). Let 9 be a learner and c be a function that assigns an 

ordinal to each finite sequence a E SEQ. 

1. c is a mind-change coun te r  for \I, a.nd L if c(a)  < c(a- )  whenever 6 changes its 

mind at  some nonempty sequence a .  When L is fixed by context, we simply say that 

c is a mind change counter for 9. 

2. \I, identifies a class of languages L w i t h  mind-change b o u n d  cr given u 9 

ident,ifies L given u and there is a mind-change counter c for 9 a.nd L: such that 

C(U)  = 0.  

3. A language collection C is identifiable w i t h  mind change  b o u n d  a given a 

there is a learner 9 such that 9 identifies C with mind change bound a! given a. 

Example 2.1.3.  

1. For COINT, define a counter co as follows: @ ( a )  := w if content(a) = 0, where w 

is the first transfinite ordinal, and ~ ( a )  := min(content(a)) otherwise. Then co is 

a mind change counter for @co given A. Hence qco identifies COlNlT with mind 

change bound w (cf. [3, Sect.11). 

2. For LINEAR,, define the counter c l (u)  by c l (a)  := n - dim(span(vectors(a))), where 

dim(V) is the dimension of a space V. Then cl is a mind change counter for Q L I N  

given A,  so QLIN identifies LINEAR, with mind change bound n. 

3. Let FIN be the class of languages {D W : D is finite). Then a learner that always 

conjectures content(u) identifies FIN. However, there is no mind change bound for 

FIN [3]. 

2.2 Strong Mind Change Optimality 

In this section we introduce a new identification criterion that is the focus of this dissertation. 

Our point of depart,ure is the idea that learners that are efficient with respect to mind 

changes should minimize mind changes not only globally in the entire learning problem but 

also locally after receiving specific evidence. For example, in the COlNlT problem, t,he best 

global mind change bound for the entire problem is w [3, Sect.11, but after observing initial 
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data (5), a mind change efficient learner should succeed with a t  most 5 more mind changes, 

as does Qco. However, there are many learners that require more than 5 mind changes 

after observing (5) yet still succeed with the optimal mind change bound of w in the entire 

problem. 

To formalize this motivation, consider a language collection L. If a mind change bound 

exists for L given a ,  we write M C L ( a )  for the least ordinal a! such that L is identifiable 

with cr mind changes given a .  We require that a learner should succeed with M C L ( a )  mind 

changes after each data sequence a E SEQ(L). For example, the learner Qco achieves this 

performance for COINIT. This leads us to the following definition. 

Definition 2.2.1. A lcasner Q is strongly mind change optimal for C if there is a mind 

change counter c for 9 such that c(a) = M C c ( a )  for all sequences a .  

We use the abbreviation "SMC-optimal" for "strongly mind change optimal" (The ter- 

minology and intuitlion is similar to Kelly's in [50, 521). A learner 9 is simply SMC-optimal 

for L if QJ is SMC-optir~~al give11 A. 

Example 2.2.1. 

1. In the COlNlT problem, MC,r(A) = w ,  and MCc(u )  = min(content(0)) when content(a) # 
0. Since co is a mind change counter for Qco, it follows that Qco is SMC-optimal. 

Any learner Q such that (1) $ ( a )  = QCO(a) if content ( r r )  # 0 and (2) @(a) = g ~ ( n - )  if 

content(a) = fl is also SWIC-optimal. (The initial conjccturc *(A)  is not constrained.) 

2. The learner qLIN is SMC-optimal. Thus for the problem of inferring conservation 

laws, SMC-optimality coincides with the inferences of the physics community. 

2.3 Summary and Discussion 

We reviewed the basic definitions of Gold's language learning paradigm and mind chmge 

complexity of language collections. After a motivating example of the language collection 

COINIT, we formalized the properties of strongly mind change optimal learners: roughly, a 

learner is strongly mind change optimd if it realizes the best possible mind change bound 

not only in the entire learning problem, but also in subproblems that arise after observing 

some data. In the next chapter, we shall see a characterization of this optimality. 



Chapter 3 

Properties of Mind Change 

Efficient Learners 

The fear of infinity is a Form of myopia 

Lhat destroys the possibility of seeing 

the actual infinite, even though it in its 

highest form has created and sustains 

us, arid in its secondary transfil~ite 

form occurs all around us and even 

inhabits our minds. 

Georg Cantor 

In this chapter, we study a new inductive principle in Gold's model using point-set 

topology. 

3.1 A Topological Characterization of Mind- Change Bounded 

Ident ifiability 

Set-theoretical aspects of inductive inference have been studied by many learning theorists 

(e.g., [43] and [62]). As Jain et. al. observe [43, page 341: 

Many results in the theory of inductive inference do not depend upon com- 

putability assumptions; rather, they are information theoretic in character. Con- 

sideration of noncomputable scientists thereby facilitates the analysis of proofs, 
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malting it clearer which assumptions carry the burden. 

Example 3.1.1. In [5], Angluin studied a series of conditions for language collections. A 

language collection { L i )  satisfies Condition 1 if there exists an effective procedure M such 

that h/l(i) is a finite subset of Li and {Lj : M ( i )  5 L,) conta.ins no proper subset of L.i. 

Angluin showed that  Condition 1 characterizes the indexed families of nonempty recursive 

languages inferable from positive data  by computable learners [5, page 1211. A language 

collection {Li} satisfies Coriditiori 2 if evcry lmguage Li has a finite subset Ti such that 

{ L j  : Ti, 2 L,} contains no proper subset of Li. Condition 2 is the noneffective version of 

Condition 1, a.nd hence is a necessary condition for inferability by computable learners.' 

Variants of Condition 2 turn out to be both sufficient and necessary for various models of 

language identifiability by noncomputable learners ([62, Chapter 2.2.21143, Theorem.3.261). 

Information theoretic requirements such as Condition 2 constitute necessary conditions 

for computable learners, and are typically the easiest way to prove the unsolvability of some 

learning problems when they do apply. For example, Apsitis used the Baire topology on 

total recursive functions to show the difference between problem classes EX, and EX,+1 

(for the definition of these problem classes, see [8, Sect.31). On the positive side, if a sufficient 

condition for noneffective learnability is met, it often yields insights that lead to the design 

of a successful learning algorithm. 

It  has often been observed that point-set topology, one of the most fundamental and 

well-studied mathematical subjects, provides useful concepts for describing the information 

theoretic structure of learning problems [73, Chapter 101, [64, 8, 49, 631. In particular, 

Apsitis investigated the mind change complexity of function learning problems in terms of 

the Baire topology [8]. He showed that Cantor's 1883 notion of accumulation order in a 

topological space [15] dcfirles a ria,tural ordinal-valued measure of complexity for function 

learning problems, and that accumula,tion order provides a lower bound on the mind change 

complexity of a function learning problem. We generalize Apsitis' use of topology to apply 

it to language collections. 

This chapter characterizes strongly mind change optimal (SMC-optima1)algorithms. We 

give specific examples of SMC-optimal algorithms in Chapter 4. The  general form of the 

characterization is this. We assign a topological measure of complexity to each language 

'Condition 2 characterizes BC-learnability for computable learners [lo]. 
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or hypothesis in a language collection. SMC-optimal algorithms a.re those that output the 

simplest languages where "simplicity" is defined by the topological measure. 

The  following section briefly reviews the relevant topological concepts. 

3.1.1 Basic Definitions i n  P o i n t - s e t  T o p o l o g y  

A topological space over a set X is a pair (X, O),  where O is a collection of subsets of X, 

called open sets, such that 0 and X are in 0 and O is closed under arbitraxy union and 

finite intersection. One way to dcfine a topology for a sct is to f h d  a base for it. A base B 

for X is a. class of subsets of X such that 

1. UB  = X, and 

2. for every x E  X and any B1, B2 E  B that contain x ,  there exists Bg E B such that 

X E  BS C B1nB2. 

For any base B,  the set { U C  : C g B) is a topology for X [ 5 5 ,  page 521. That is, we 

may take an open set to be a union of sets in the base. Let L be a class of languages 

and a E SEQ.  We use Llo to denote all languages in L that are consistent with a (i.e., 

{ L  E C : L is consistent with a ) ) ;  similarly L I D  denotes the languages in L that include a 

given finite subset D. The next proposition shows that BL = {Lla : a E SEQ) constitutes 

a base for C. 

Proposition 3.1.1. BL = { L l a  : n E S E Q }  is a base for L ;  hence 7~ = { U S  : S c BL) is 
a topology for L. 

The topology TL generalizes the positive information topology from recursion theory 

[71, page 1861 if we consider the graphs of functions as languages (as in [43,  Chapt,er 3.9.21[62, 

Chapter 2.6.21). 

Examples. For the language collection COlNlT we have that COl NIT 1{2,3} = { L o ,  L1, L2)  

and COlNlT I{O) = { L o ) .  The base BCOINIT consists of all sets of the form COlNlT Id, where 

d is a finite subset of N. 
In a topological space (X, 'T), a point x is an isolated point of a set A X if there is 

an open set O E 7 such that x E 0 and A n O \  {x) = 0.  If x is not isolat,ed point of A c X,  

then x  is an accumulation point of A. Following Cantor [15], we define the derived sets 

using the concept of accumulation points. 
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Definition 3.1.1 (Cantor). Let (X, I) be a topological space. 

1. The 0-th der ived  set of X ,  denoted by x ( O ) ,  is just X .  

2. For every successor ordinal a,  the a-th derived se t  of X ,  denoted by x(&), is the 

set of all accumulation points of X(O- ' ) .  

3. For every limit ordinal a, the set x(") is the intersection of all P-th derived sets, where 

p < (Y. That  is, x(&) = no,, x@). 

We give an example from the topology of the real plane that illustrates the geometrical 

intuitions behind the topological concepts. 

Example. Let. 

be a set of points in the real plane lR2 with the standard topology. We use iso(X) to denote 

all isolated points in X.  Then iso(A) = {(i, A) : n, rn E N}. Therefore 

Similarly, we ha:ve = (0 ,0) ,  and = fl (see Figure 3.1). 

I n  the topology TL, a language L is an  isolated point of C i f  there is a finite subset D G L 

such that the observation of D entails L (ie., LID = {L) ) .  The derived sets of L can be 

defined inductively as shown in Definition 3.1.1. Note if a < ,O then L(&) > ~ ( 0 ) .  It  can 

be shown in set theory that there is an ordinal a such that dB) = ~ ( " 1 ,  for all P > a [46]. 

In other words, there rriust be a fix-point for thc derivatioli opera,tion. If C has an empty 

fix-point, t,hen we say C is s ca t t e r ed  [55, page 781. In a non-scattered space, the nonempty 

fixed point is called a per fec t  kernel.  

The  accumula t ion  o r d e r  of a language L in L ,  denoted by a.ccL(L) is the maximum 

ordinal a such that L E ~ ( ~ 1 ;  when L is fixed by context, we simply write acc(L) = a. The 

accumula t ion  o r d e r  of a class of languages L ,  denoted by acc(C), is the supremum 

of the accumulation order of all languages in it. Therefore a language collection has an 

accumulation order if and only if it is ~ c a t t e r e d . ~  

2~ccumulat ion order is also called scattering height, derived length, Cantor-Bendixson rank, or Cantor- 
Bendixson length 1461. 
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Figure 3.1: A set A on the real plane. Applying derivation once will remove the points 
marked with dots; applying derivation twice will remove the points marked with crosses; 
applying derivation again will remove the point marked with the circle. 

Examples. 

(1) The only isolated point in COlNlT is Lo = N, for COINIT [ {O)  = {Lo}. Therefore 

COIN IT(^) = {Li : i > 1). Similarly L1 is the only isolated point in COINIT('); hence 

COIN IT(^) = {Li : i > 2). It  is easy to verify that COINIT('" = {Li : i > n). Therefore the 

accumula,tion order of language Li in COlNlT is 1; a.nd the accumulation order of COlNlT is 

w = sup N. 

(2) In LINEAR, = {linear subspaces of Qn},  the only isolated point is Qn itself: Let S be 

a set of n linearly independent points in Qn; then LINEAR, IS = {Qn}.  Similarly every 

(n - i)-dimensional lineax subspace of Qn is an isolated point in LINEAR?). Therefore the 

accumulation order of LI [\I EAR, is n. 

(3) In FIN, there is n o  isolated point. This is because for every finite subset S of N, there 

are infinitely Inally languages ill FIN that are consistent with S. Therefore FIN is a perfect 

kernel of it,self and FIN has no accumulation order. 
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3.1.2 How Accumulation Order Characterizes Mind Change Complexity 

In this section we show that the accumulation order of a 1a.nguage collection L is an exact 

measure of its mind change complexity for (not necessa.rily effective) learners: if acc(L) is 

unbounded, then L is not identifiable with any ordinal mind change bound; and if acc(C) = 

a, then L is identifiable with a. mind change bound.3 

In a language topology, accumulation order has two fundamental properties that we 

apply often. Let accL(a) - sup{accL(L) : L E C(o}; as usual, we omit the subscript in 

context. A lmguage L t o p s  Lla if accL(L) = a c c ~ ( a ) ;  a sequence a is topped if  there is 

some 1a.nguage that  tops 0. Note that  if accL(a) is a successor ordinal (e.g., finite), then a is 

topped. All data  sequences in SEQ(LINEAR,n,) are topped. In COINIT, the initial sequence 

A is not topped. A language L uniquely t o p s  a in L if L is the only language that tops 

a in L.  

Lemma 3.1.1. Let L be a scattered class of languages with bounded accumulation order. 

1. For every language L E C ,  for every text T for L, there exists a t ime n such that L 

uniquely tops T[n] in L; moreover, for every m > n ,  language L uniquely tops T[m] 

i n  L.  

2. For any two languages L1, L2 E L such that L1 c L2 i t  holds that accL(L1) > acc~(L2) .  

Proof. Part 2 is immediate. Part 1: For contradiction, assume there is a text T for L 

such that  for all n, LI(T[n]) contains some language L' such that acc(L1) 2 acc(L) = a. 

Then L is an  accumulation point of L("), the subclass of L that  contains all languages 

with accumulation order less than or equal to a. Therefore acc(L) L. a + 1, which is a 

contradiction. 0 

We now establish the correspondence between mind change complexity and accumulation 

order: MCL ( a )  = accL(o). 

Theorem 3.1.1. Let L be a language collection and let a be a finite data sequence. Then 

there is o, learner 9 that identifies C given a with mind change bound a accL(a) < a. 

3Neccssilry a n d  suf ic ien t  conditions for finite mind change identifiability by learning algorithms appear 
in  156, 681. 
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Proof. (+) Define the mind change counter c by c (a)  := accc(a).  We show that c is a mind 

change counter for the following learner 9 that identifies L: 

3. *(a)  := L if accL(a) = accc(a-) and L uniquely tops a in C, 

4. @(a )  := @(a-)  if accL(a) = accL(u-) and there is no language L that uniquely tops 

a in L.  

It  is easy to see that Q identifies L. Let T be any text for any language L E L.  Then 

by Lemma 3.1.1 there is a time n such that L uniquely tops LIT[nl] for all n' > n .  This is 

because if language L uniquely tops a ,  then L uniquely tops any data sequence T > a if T 

is consistent with L (i.e., content(7) C L). Hence Clause 3 applies a t  all times n' > n, and 

9 converges to L on T, as required. 

It remains to show that c is a, mind c:lnarigc (:orinter for Q. We begin with an auxiliiuy 

observation (a): For all languages L 4 1310, if @(a) # L, then @(r) # L for every r E 

SEQ(L)  such that  T > a. In other words, if 8 rejects a hypothesis L inconsistent with 

a,  then 9 never returns to L after a. To see that this holds, consider some T > a and 

suppose for reductio that Q(T) = L.  Then there must be some u with a c v C T such that 

9 ( v - )  # L and @ ( I / )  = L .  Then Clause 3 implies that L uniquely tops I/, which  contradict,^ 

the assumption that  L is inconsistent with a and hence with v. 

We argue that (*) if Clause 3 applies a t  a ,  then no mind change occurs a t  a; such that 

either Q(a)  = *(a-) or 9 ( a - )  =?. Suppose that *(a-) = L' # L and accL(a) = accL(a-) 

and L uniquely tops Cia. Let n < la1 be the least time such that 9 ( a [ n ] )  = L'. Then by 

definition of 9, Clause 3 applies at; a[n],  and and so L' uniquely tops a[n] in C. Since L 

uniquely tops LIa and L # L', we know that accc(a) < accL(a[n]), and therefore n < 1 0 - 1  
since accL(a) = accL(uP). 

Thus accL(ad)  < accL(a[n]).  Therefore by Clause 2, there is some time m such that 

n < m < 1 0 1  such that Q(a[m])  =? , and moreover L' 6 Lla[m].  Therefore the observation 

(a) implies that  @(a- )  # L'. This contradiction shows that either @(a-)  =? or 9(a-) = L, 

and thus no mind change occurs a t  a ,  as required. 

It  is i~nnlediute from the construction that 9 changes its mirid a t  a only if Clauses 2 

or 3 apply, so (*) implies tha.t (P changes its mind only if Clause 2 applies. In that case 
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C(U) = accL(u) < accL(u-) = c(g-). SO counter c is a mind change counter for 9 since this 

holds for all mind changes of 9. 

(+) Let 9 be a. learner that identifies C given a.  Suppose c is a mind change counter 

such that c(a)  = a. We prove by transfinite iliductiori that if acc(a) > then c is not a 

mind change counter for C. Assume the claim holds for all ,f3 < n and consider a .  Suppose 

acc(u) > a ;  then there is L E 1310 such that acc(L) = cr -t 1. Case 1: Q(a)  = L. Then since 

L is a limit point of ~ ( ~ 1 ,  there is L' in L(") such that L' f L and acc(L1) = a. Let T' 3 a 

be a text for L'. Since 9 identifies L', there is a time n > la1 such that 9(T1[n]) = L'. Since 

Q(T1[n]) # 9(a)  and @(a) #?, this is a mind change of Q, hence c(T1[n]) < c(a) .  That. 

is, c(T1[n]) = /3 < 0. On the other hand, since acc(L1) = a, we have acc(T1[n]) > 0. By 

inductive hypothesis, c is not a mind change countcr for 9 .  Case 2: 9 (0 )  # L. Let T > a 

be a text for L. Since 9 identifies L, there is a time n > la1 such that @(T[n]) = L. As 

c(T[n]) < c(a)  = a and acc(T[n]) > a ,  as in Case 1, c is not a mind change counter for 

9 .  0 

Corollary 3.1.1. Let C be a class of languages. Then  there exists a mind-change bound 

for C if and only i f  C i s  scattered in the topology TL. 

3.2 Necessary and Sufficient Conditions for Mind Change 

Optimal Learners 

Theorem 3.1.1 establishes that if the accumulation order of a language collection C is 

bounded by an ordinal a, then there is a learner Q that identifies L with a t  most a mind 

changes; moreover, the proof of the theorem shows that there is a strongly mind-change 

optimal learner Q that does so. 

The goal of this section is to characterize the behaviour of strongly mind-change optimal 

learners. These results allow us to design mind change optimal learners and to prove their 

optimality. 

Propos i t ion  3.2.1. Let 9 be a learner. that identifies a lunyuuge collection L. Then  @ is 

SMC-optimal for L if and only ,if for all data sequuxces u: 

1. If there i s  a language L topping a in C ,  and 9 ( u )  #?, then Q(u) uniquely tops a i n  

C. 
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2. If a # A is not topped and accL(a) = accL(a-), then no mind change occurs at a 

Proof. (+) Clause 2 follows immedia.tely from the fact tha.t i f  9 is SMC-optimal, then a c c ~  

is a mind change counter for q .  For Clause 1, suppose a is topped. Assume for contradiction 

that q ( a )  = L' #? and L' is not the only language topping Lla. Then there exists a language 

L E Cia such that L # L' and accc(L) = accc(o). Let T be a text for L such that T > a.  

If 9 identifies C,  there exists a time n > 1 0 1  such that 9 (T[n ] )  = L. Therefore Q makes at 

least one mind change between a and T[n]. If accc is a rnirid change counter for \Dl then 

accL(a) > accL(T[n]). On the other hand, we have accL(T[n]) = accL(L) = accL(a). This 

contradiction shows that 9 is not SMC-optimal. 

(+) We want to show that a c c ~  is a mind change counter for Q. 

Let a be an  arbitrary sequence in SEQ(C). There are four cases t o  consider: 

1. a is topped and acc(a) < acc(aP) 

2. a is topped and acc(a) = acc(a-) 

3. a is not topped and acc(a) < acc(a-). 

4. a is not topped and acc(a) = acc(a-). 

We prow that. +(a)  # +(a-)  and +(a- )  #? imply acc(a) < accL(a-) in all four cases. 

That  is, if a mind change occurs at  a ,  then the accumulation order drops a t  a. 

In cases 1 a.nd 3, the implication holds trivially. In case 4,  we have by Condition 2 of 

the proposition that there is no mind change at a.  

Case 2a: Q(a-) =?; then there is no mind change a t  a .  Case 2b: q ( a - )  #?. We note 

that a- is topped since acc(c~) = acc(aP) and a is topped. So *(up) has the highest accu- 

mulation order by Condition 1. Since *(a - )  and $(a )  both have the highest accumulation 

order acc(a),  we have Q(o-)  = 9 ( a ) .  0 

Proposition 3.2.1 shows that the key property of strongly mind change optimal learn- 

ers is that when they output a consistent informa.tive conjecture L different from ?, the 

conject,ure L maximizes accumulation order. In many applications, hypotheses with higher 

accumulation order are intuitively simpler than those with lower accumulation order. In 

such language collections, we ca.n think of mind change optimal methods as choosing the 
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simplest hypothesis consistent with the data  when a unique simplest hypothesis is a ~ a i l a b l e . ~  

In the following cha,pter, we shall see examples of Sh4C-optimal algorithms. 

3.3 SMC-optimal Learning for Language Collections with Fi- 

nite Thickness 

It follows from Clause 2 of Lemma 3.1.1 that the accumulation order of a language L in a 

language collection C is a t  least as great as the length of a chain of supersets of L. We refer 

to this length as the inclusion depth of L, as formalized the following definition. 

Defini t ion 3.3.1. Let C be a language collection and L be a language in C. The  inclusion 

depth of L in C is the size n of the largest index set {Li)lliln of distinct languages in L ,  

such that  L c L1 c . . . c Li c - - - c L,. The inclusion d e p t h  of L: is the maximum of 

the inclusion depths of languages in C (see [59]). 

For example, in COINIT, the inclusion depth of 1angua.ge L, = {i  E N : i 2 n) is n. The 

inclusion depth of COlNlT is w .  For many language collections, the inclusion depth of a 

language L is not only a lower bound on its accumulation order but characterizes it exactly. 

As we will show, examples include COINIT, LINEAR,, and language collections PI, T,, and 

PATTERN defined in later chapters. The  following proposition shows that  a fairly simple 

property due to Angluin [5, Condition 31 is a sufficient condition for the accumulation order 

of a la,nguage to be equal to its inclusion depth. Following Angluin [5, Condition 31 and 

Shinohara [92], we say that a class of languages C has finite thickness if C { s )  is finite for 

every string s E U C .  Note that if the language collection C has fiuite thickness, then every 

language in C has finite incllision dcpth, so the inclusion depth of L is at most w .  

In language collections of finite thickness, the inclusion depth of a language is exactly 

its accumulation order. 

P ropos i t i on  3.3.1. Let L be a language colleclion with finite thickness and L be a language 

in C .  

1.  Th,ere is  a finite subset S G L such that L is a C - m i n i m u m  in CIS .  

4 ~ e  are indebted to S. Jain for suggesting this interpretation of Proposition 3.2.1. Kelly develops the 
ideaof linking mind change efficient learning with simplicity of hypotheses, and presents it as a formalization 
of Occam's Razor [52][51]. 
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2. The inclusion depth of L is accL(L). 

ProoJ For clause I ,  let s be a string in L; then Cl{s) is finite since C has finite thickness. 

For every language L' E Cl{s) such that L' 2 L, the set L \ L' is nonempty. For each L', 

choose a string s ~ t  from L \  L', and S := {s) u {sLt : L' E C){s) \ {L)). Then CIS contains 

only languages that include L. 

We prove clause 2 by induction. 

Base case: Let L be a language with the inclusion depth 0, which means that there 

is no language that  properly includes L. Then there existas a finite set S C_ L such that 

CIS = {L). Therefore a c c ~ ( L )  = 0 by the definition of accun~ulation order. 

inductive step: Assume for every language with inclusion depth less than k that its 

accumulation order equals its inclusion depth. Consider the case that L has inclusion dept,h 

k. From the induction assumption, we know that there exists a language L' such that 

L c L' and ixcL(Lf) = k - 1. Therefore (1) accL(L) > k by Clause 2 of Lemma 3.1.1. 

On the other hand, since C has finite thickness, there exists a subset S c L such that, 

CIS contains only languages that include L .  It  is clear that for every language L' E CIS, 

if L' # L then L' > L; this implies that L' has inclusion depth less than k for every 

language L' E CIS - L,  otherwise L would have inclusion depth greater than k. Therefore 

acc((C1S) \ {L))  = sup (acc~{L '  E C S  \ {L)))  < k; thus (2) accL(L) 5 k. Combining the 

two inequalities (1) and (2);  we have accL(L) = k, which complete the inductive step. 

As it is easy to verify that each of the language collections COINIT, PI,  T,, and 

PATTERN has finite thickness, the proposition implies that  the  accumulation order of 

each languag-e L in these collections is t,he inclusion depth of L,  or the maximum length of 

a chain of supersets of L .  Clause 1 of the proposition establishes the following corollary. 

Corollary 3.3.1. Let @ be a learner that identifies a language collection C with finite 

inclusion depth. T h e n  \I, i s  SMC-optimal for L if and only if for all data sequences a: if 

@(a) #?, then $(a) is the un,ique language with the largest inclusion depth for a. 

Among all SMC-optimal learners, there are ones that produce a guess faster; in fact, 

using Gold's notion of "uniformly faster", we can show that for a language collection with 

finite inclusion depth there is a unique fastest SMC-optimal learner. Gold proposed the 

following way to compare the convergence speed of two learners [37, page 4621 (we follow 

the nota.t,ion of [73, Definition 8.1.C]). 
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Defini t ion 3.3.2. Let L be a language collection 

1. The convergence time of a learner 9 on text T is defined as CONV(\ZI, T) = the least 

time m such t,hat for all m' 2 m we have 9 (T[m] )  = \I,(T[ml]). 

2. A learner \k identifies L uniformly faster than learner +=+ 

(a) for all languages L E C and all texts T for L,  we have CONV(Q, T) < CONV(@, T), 

and 

(b) for some language L E L and some text T for L, we have CONV($,T) < 
CONV(@, T). 

For a language collection C wit,h finite inclusion depth, Propositmion 3.1.1 implies that if 

there is no language L that uniquely maximizes inclusion depth given a ,  then a learner that 

is SMC-optimal outputs ? on a .  Intuitively, the fastest SMC-optimal learner procrastinates 

with making a conjecture no longer than is necessary to meet this condition. Formally, this 

leitrnar is defiricd ils follows for d l  sequences a E SEQ(L): 

? if no language uniquely maximizes inclusion depth given a 
%.A4 = 

L where L E C uniquely maximizes inclusion depth given a.  

The next observation shows that $kt identifies L fa.ster than any other SMC-optimal 

method. 

Observa t ion  1. Let C be a 1angu.age collection with finite inclusion depth. Then 9kt is 

SMC-optimal and identiJies C unzformly ,faster than any other SMC-optima,l 1ea.rner for L.  

Proof. I t  is easy to see that identifies L: so Proposition 3.1.1 implies that $kt is 

SRIIC-optirnal. Let 9 # 9kt be any other SMC-optimal learner that identifies C. Again by 

Proposition 3.1.1, if \ZI(a) f ?, then Q ( a )  = 9f*,. Therefore for any language L E L and 

text T for L, we have cONV(Q&,,T) < CONV($,T). NOW let a E SEQ(L) be a data 

sequence such that  @(a )  # \kk,(a). Since both 9 and !P&, are SMC-optimal, Proposition 

3.1.1 implies that there is a language L E L that uniquely maximizes inclusion depth given 

a.  So @&:,,(a) = L and *(a)  =?. NOW let T > a be any text for L extending a .  It  is 

easy to see that L remains the language that, uniquely maximizes inclusion depth on any 

data. sequence a' with a 2 a' C T. SO C O N V ( ~ ~ , , T )  5 1 0 1 .  On the other hand, clearly 
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CONV(9 ,T)  > la1 since +(a) =?. Thus 9k, identifies C uniformly faster than 9 and in 

general faster than any other SMC-optimal learner. 0 

3.4 Gold Learning Paradigm with Set Learners 

In Chapter 2, we define a learner to be a function tha.t outputs either a single language or 

the question mark "?". Alternatively, we can define a learner to  output a set of languages. 

Defini t ion 3.4.1 (Set Learner). A set l ea rne r  for a language collection L is a mapping 

of SEQ into 2'. 

For convenience of exposition, we shall call a learner that out,puts a single language or 

the question mark a regular  learner .  Compared to a regular learner, a set learner takes a 

different approach when facing model uncertainty. One can argue that  a set of languages is 

a more informative output than the question mark. 

A set learner g~ identifies a language L in a language collection C if it cofiuitely outputs 

{L), and Q identifies L if it identifies cvery L E C. A set learner 9 changes  i t s  mind a t  

some nonempty finite sequence a E SEQ if Q(0) 9 *(IT-). In other words, a set learner 

changes its mind if it changes its conjecture, unless that conjecture is just a strengthening 

of the previous one. With the modified definition of mind change, we can consider the mind 

change complexity and the mind change optimality of set learners. 

Using the technique in Theorem 3.1.1, we can easily prove the following lemma. 

L e m m a  3.4.1. Accumulation, order is  a lower bound of the mind change complexity for a 

set learner. 

Propos i t i on  3.4.1. Let L be a language collection of finite accumulation order. Then L is  

identifiable by a set learner in n mind changes if and only if acc(l3) = n. 

Proof. Let \-I, be a SMC-optimal regular learner for C. Mk construct a set learner 9' and 

prove that it not only realizes the same mind change bound, but a,lso is SMC-optimal. 

The  learner @' is constructed as follows. 

1. \-I,'((T) = 9 ( a )  if @ ( a )  # ?; 

2. *'(a) contains the set of 1angua.ges with the highest accumulation order if \P(a) =? .  
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Since C has finite accumulation order, the set of languages with the highest accumulation 

order is always defined. 

Clearly the Q' identifies L as Q does. Moreover 9' changes its mind only if the accumu- 

lation order drops, this is exactly when 9 changes its mind. 

Hence we proved that acc(L) is an upper bound on the mind cha,nge complex it,^ for a 

set learner. Combined with Lemma 3.4.1, we proved the proposition. 0 

In the previous proof, we see a natural SMC-optimal set-learner for language collections 

of finite accumulation order. In chapter 6 and 7, we shall consider approximation to this 

SMC-optimal set-learner. For now, we will turn back to study regula,r learners. 

3.5 Accumulation Order and Structural Complexity 

Our final section relates accumulation order to other well-known learning-theoretic concepts 

that describe the structure of a learning problem. 

3.5.1 Elasticity 

We show that the concept of elasticity provides a sufficient condition for a language collec- 

tion L to have s bounded accumulation order, which by Theorem 3.1.1 implies that L is 

identifiable with a bourded uu~riber of mind changes. 

A class of languages L has infinite elasticity if there exist an infinite sequence of 

strings (si)iEw and a infinite sequence of languages (Li)icn, where Li E L,  such that for 

each i E N, {so,. . . , s i )  Li but si+l @ Li. A class of languages has finite elasticity if it, 

does not have infinite elasticity [105] [66, Definition 71. For example the language collection 

LINEAR, has finite elasticity because if vector v'i+l is not in a linear subspace L;, then v'i+l is 

independent of any subset {Go, G, . . . , v',). It, is not, hard to sec that finite thiclmcss implics 

finite elasticity [105], so T,, and PI have finite elasticity. 

We use D(L)  to denote all finite subsets of languages in L. A subset P of a topological 

space is perfect if 7' ha.s no isolated points [55, page 781. 

Lemma 3.5.1. Let F' be a perfect nonempty set o,f languages. Then  P d  is also nonempty 

n,nd perfect .for eveyj finite ~ z ~ h ~ e t ,  d E D(?). 
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To illustrate, the language collection FIN which comprises all finite subsets of N is perfect 

and nonempty. Since no finite subset d entails a single language in FIN (i.e., card(FIN Id) > 
I),  we have that  FIN (d  is nonempty and perfect. 

The  next proposition gives a topological coriditiori sufficient to establish that a language 

collection C has infinitc elasticit,y, namely that C contain a subset that  is perfect in the 

language topology for C. If C has a perfect subset, the derivation procedure from Section 

3.1.1 terminates with a nonempty perfect kernel, and L has no bounded accumulation order, 

which by Theorem 3.1.1 is equivalent to the statement. that C is not identifiable with an 

ordinal mind change bound. Contrapositively, if C has finite elasticity, then C is identifiable 

with an ordinal mind change bound. 

Proposition 3.5.1. Let L be a collection of languages. 

1. If C contains a nonempty perfect subset P C ,  then C has infinite elaskicity. 

2. If  L has finite elasticity, then L ha.s a bounded accumulation order and hence C is 

identifiable with a bounded number of mind changes. 

Proof. Part  1: If P # 0 is perfect, then P is infinite and so there are infinitely many 

languages L E P such that L # UP. Choose a nonempt>y language Lo # UP and strings 

so E Lo and sl E U P - Lo.  Let PI := PI {so, s l ) .  Then by Lemma 3.5.1, Pl is a nonempty 

perfect set. So there is nonempty L1 E Pl such that L1 # U P I ,  and we may choose a string 

s2 E U PI - L1.  Coritir~uing this process indefinitely, we obta.in two sequences (Li)iEn and 

(s i ) iEN such that for each i E N, { s o , .  . . , s i )  C Li but si+l $ Li .  In other words, C has 

infinite elasticity. 

Part 2: Suppose that L has finite elasticity. Then by the contrapositive of Clause 1, the 

only perfect subset of C is the empty set. Since the derivation procedure from Definition 

3.1.1 terminates with a perfect subset of C, it thus terminates with the empty set, so C is 

scattered and has bounded accumulation order by Corollary 3.1.1. 0 

The proposition implies that  LINEAR, and all sub-collections of PATTERN are identi- 

fiable with a bounded number of mind cha.nges. 

If a language has infinite elasticity, then it also has infinite thickness. It is known that, 

for indexed language families, finite elasticity is a sufficient condition for effective learnability 

1105, 661. A sequence of nonempty languages { L i )  constitutes an indexed family just in case 
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there exists a computable function f such that for each i E N and for each x E N, we have 

f (2,  x) = 1 if x E Li and f (i, x) = 0 otherwise [5, Sec. 2][43, Ex. 4.71. Figure 3.2 illustrates 

the relationship among these structural concepts. 

Finite thickness d Finite elasticity 

Figure 3.2: Relations between various computable and noncomputable identifiability con- 
cepts. EMC, denotes language collections identifiable by a computable learner with a 
bounded number of mind changes. MC, denotes language collections with bounded accu- 
mulation orders, or equivalently, identifiable by a noncomputable learner with a bounded 
number of mind changes. Following [43], we use Lang to denote all language collections 
identifiable by noncomputa.ble learners and use T x t E x  to denote all language collections 
identifiable by computable learners. Thc  notaLion ++ indexed fami ly  indicates that the impli- 
cation holds only for indexed language collections. 

3.5.2 Intrinsic Complexity 

Next we consider the relationship between weak and strong reducibility, intrinsic complexity 

[31, 441, and accumulat~ion order. Our basic result is that if language collection C1 is 

reducible to C2, then acc(Ca) 2 acc(C1). In this sense reducibility agrees with accumulation 

order-and hence mind change complexity-as a compa.rison of the complexity of different 

learning problems. 

Definition 3.5.1 ([42, 44, 311). 

1. An enumera t ion  o p e r a t o r  is a computable function that maps SEQ into SEQ. 

2. An infinite sequence G is admissible for a text T if G converges to an index (or 

grammar) of the language L = content(T). 

3. Let C1 and C2 be two classes of languages. Then C1 is weakly reducible t o  Car 

denoted by L1 L2, if there exist two enumera.tion operators Q and E such that 

for every text TI for C1, 

(a) @(TI) = U, O(Tl [n]) is a text for C2. 
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(b) for every a.dmissible sequence G for @(TI), the sequence E(G) = U, Z ( G [ n ] )  is 

admissible for TI. 

Wc say that operators 8 and E witness C1 I,,,k C2. 

4. Language collection C1 is strongly reducible to Cz; denoted by L1 SStTmy CE, if 

there exists O and such that 

(a) and S witness C1 L2; and 

(b) for every language Ll E L I ,  there exists a language L2 E C2 such that L2 = 

content(O(T)) for every text T for L1. 

The  following proposition relates accumulation order to reducibility. 

Proposition 3.5.2. Let L1 and L2 be two la.nguage collections such that L1 C2 i s  

witnessed by operators O and E. 

I .  Let L and L' be two distinct languages in C1, and let T and TI be texts for L and 

L1, respectively. Then, content (Q(T)) # content (@(TI)). (Thus ,  texts from distinct 

languages are mapped to  texts from distinct languages.) 

2. Let T be a text for some L1 E Ll ,  and let L:, = coritc~lt(Q(T)). Then  accL,(L2) 2 

accc, (L1). 

3. If C1 L2, then acc(C1) 5 acc(L2). Therefore zf C2 is identifiable with mind 

change bound cr, so is  Cl .  

Proof. Clause 1: For contradiction, assume content(Q(T)) = content(Q(T1)) = L:! E 132. 

If G is an admissible sequence for O(T) ,  then G is also an admissible sequence for O(T1). 

Tllerefore E(G) is admissible for both T and TI, which is impossible. 

Clause 2: The proof is by transfinite induction on accL,(L2). Assume the claim hold for 

all cases where accL2(L2) = P < a,  and suppose that accL2(L2) = a. 

For contradiction, assume that accc,(L1) = y > cr. Since Q(T) is a text for Lz, by 

Lemma 3.1.1, there exists a time n such that L2 uniquely has the highest accumulation 

order a in L210(T)[n]. Let m be a time such that (a) O(T[m]) > Q(T)[n]. Since T is a text 

for L1 and a c c ~ ,  (L) > a, there is a language Li E C1lT[m,] such that a c c ~ ,  (Li)  = a. Let 

T' be a text for LI1 that extends T[m]; then by Clause 1 we have that content(O(Tf)) # L2. 
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Let us write L', for content(Q(T1)). Clearly content(Q(T1[m])) c content(O(Tf)) = Lk, so 

Lk E L2IQ(T'[m]). Since T[m] = T'[m] we have (b) L; E C2IQ(T[m]). Combining (a.) and 

(b) we have (c) Lt2 E L2JO(T)  [n]. 

Since L2 is the only language in L21@(T)[n] with the accumulation order a ,  the language 

L', must has an accumulation order /3 < a in 132. Therefore, accL, (Li)  = a > accc, (L',) = ,O, 

which contradicts the induction hypothesis and establishes the inductive step. 

Clause 3: Immediate consequence of Clause 2. 0 

The above proposition gives us a necessary condition for reducibility, which we illustrate 

in the following examples. As in [44], SINGLE denotes the class of all singleton languages. It  

is easy to see that acc(C0INIT) = w but acc(SINGLE) = 0, therefore COlNlT SINGLE, 

as shown in [44]. 

If C1 is not scattered (i.e., has no mind change bound) and L2 is scattered (i.e., has a 

mind change bound), then Proposition 3.5.2 implies that L1 is not weakly reducible to La. 

Since the class of all finite languages FIN is not scattered (cf. Section 3.1.1), it follows that 

FIN gwealc COINIT, as established by [44]. 

If O and Z witness C1 <,t,,,, L2, then Q induces a function fe that maps L1 into C2 as 

follows: for a language L E C1, choose any text T for L, and assign f ( L )  = content(@(T)). 

The definition of st,rong reducibility guarantees that f o  is well-defined. We show that, f e  is 

a continuous one-one function in our topology. A function f : X + Y is continuous if for 

every point x E X and every neighbourhood V of f (x) in Y, there exists a neighborhood U 

of z in X I  such that f (U) g V.5  For two language collections L1 and C2, this means that 

f : C1 + La is continuous if for every language L1 E L1 and every finite subset D2 L f (L1), 

there is a finite subset Dl C L1 such that {f (L) : L E L1lD1) G L21D2. 

Lemma 3.5.2. Suppose Q and 3 witness C1 <,st,,g C2. Then fo defined above is a 

continuous one-one function. 

The proof is left to the reader. 

Lemma 3.5.2 connects strong reducibility with many basic results in point-set topology. 

As an illustration, we apply standard theorems in topology to immediately derive that 

strong reducibility respects accumulation order without the need for the construction of 

Proposition 3.5.2. 

'l'his definition is equivalent to the condition that f - ' ( V )  is open in X for every open set V of Y 
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Proposition 3.5.3. Let f : X H Y be a continuous one-one fumtion,  and let A C X a,nd 

x € X .  

1. I f  x E then f (x) E f (A)( ' )  ( i e . ,  f ( ~ ( l ) )  c [f (A)](')). 

2. Ij 'acc(Y) is defined, then acc(X) is also defined and moreover acc(X) 5 acc(Y). 

Proof. Clause 1 is Theorem 2.3 of [ll.]. Clause 2 follows easily by transfinite induction. 

Therefore we can establish the following result from standard topological results. 

Corollary 3.5.1. Suppose O and E witness L1 ISt,,, L2. Then acc(L1) 5 acc(Lz). 

Thus if fo : L1 -) Cz is onto and (fo)-' : C2 -) C1 is continuous, then acc(L1) = 

acc(C2); in topological terminology, homeomorphic language collections have the same ac- 

cumulation order. 

3.6 Summary 

We applied the classic topological concept of accun~ulation order to characterize the mind 

change complexity of a learning problem: A language collection C is identifia.ble by a learner 

(not necessarily computable) with a mind changes if a,nd only if the accun~ulation order of 

C is a t  most a. This reveals the characteristic property of strongly mind change optimal 

learners: They output languages with maximal accumulation order. Thus analyzing the 

accumulation order of a learning problem is a powerful guide to constructing mind change 

efficient learners. We illustrated these results in the learning problem of identifying a linear 

space. For learning linear subspaces, the natural method of conjecturing the least subspace 

containing the data  is the only mind change optimal learner that  does not "procrastinate" 

(i.e., never outputs ? or an inconsistent conjecture). This procedure reproduces exactly the 

inference procedure that the particle physics community has followed to arrive a t  the set of 

conservation laws found in the current standard model of particle physics. In general, mind 

change optimal learners maximize the simplicity of the output language. 



Chapter 4 

Mind Change Optimal Learning of 

Patterns 

A mathematician, like a painter or 

poet, is n maker of patterns. 

G.  H. Hardy 

In this chapter we consider further computational issues and illustrate how our analysis 

of mind change cornplcxity can aid the desigrl of ~ r l i~ id  change efficient learning algorithms 

in specific problems. As i t  turns out, Angluin's well-known pattern languages bring out a 

number of general points about constructing SMC-optimal learning algorithms. 

It  is straightforward to computationally implement the learners Qco and Q L I N .  These 

learners have the feature that whenever they produce a conjecture L on data u ,  the language 

L is a subset of every other languages in Lla. Formally, we say L is the c-minimum at 

a if L is a subset of every other language in Lla. I t  follows from Clause 2 of Lemma 3.1.1 

that a c-minimum also maximizes accumulation order, so Qco and QLIN always output the 

language uniquely having the highest accumulation order and hence by Proposition 3.2.1 

they are both SMC-optimal. For a language collect~ion C like COlNlT and LINEAR, if we can 

compute the 2-minimum, an SMC-optimal learning algorithm for L can be constructed on 

the model of Qco and QLIN. However, these conditions are much stronger than necessa,ry in 

gencral. In general, it sufficcs that we can eventually compute a C-minimum along any text. 

In paxticular, we can make a learner output ? when it is computationally impossible or too 

complex to find an c-minimum consistent language. We illustrate this point by specifying 
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SMC-optimal learning algorithms for PI and T,,,, two subcla.sses of 1a.nguages defined by 

Angluin's well-known patterns [4, p.481. 

4.1 Patterns 

Let X be a set of variable symbols (e.g., XI, xz, . . . ) and let C be a finite alphabet of a t  least. 

two constant symbols (e.g., O , l , .  . . , n). A p a t t e r n ,  denoted by p, q etc., is a finite non-null 

sequence over X U C (e.g., xlOxl or x1x2x2). We use var(p) to denote the set of distinct 

variables in p and use #var(p) to denote the number of distinct variables in p. A pattern p 

is canonical  if var(p) = {zl, xz, . . . , x,,,(,)) and their first occurrence (from left to right) 

is in that order. For example, the pattern x12x2x1 is canonical, but patterns x21xq and xzxl 

are not. We use PATTERN to denote the set of all canonical patterns. A subs t i t u t i on  0 

replaces a variable in a pat,tern p by another pattern uniformly. For example, 0 = [x2x3/x1] 

maps the pattern ~ 1 x 1  to the pattern ~ 2 ~ 3 ~ 2 x 3 .  Substitutions give rise to a partial order 

over all patterns. Following [79, 801, we say that a pattern q s u b s u m e s  a pattern p, denoted 

by p 5 q, if there is a substitution 0 such that p = qB. The language  gene ra t ed  by a 

p a t t e r n  p, denoted by L ( p ) ,  is the set {q E C* : q 5 p). The  l eng th  of a pattern p, 

denoted by Ipl, is the number of symbols occurred in p. T h e  set of strings of the same 

length a s  a given pattern p plays an important role in the proofs below; we denote this set 

by S(p)  e {s E L(p) : Is1 = lpl). We observe that  for an alphabet C, the size of S(p)  is 

given by IS(p) 1 = I CI#"~'(P). 

To discuss effective lcarnirig we havc to take care of some technicalities. First, the out- 

put of a learning algorithm are descriptions of languages instead of languages themselves. 

Therefore, we extend our notation in Section 2.1 by replacing languages and language collec- 

tions by language descriptions and classes of language descriptions. For example, in pattern 

identification problem, we use PATTERN to  denote both the class of all canonical patterns 

and the language collection it generates; we use accpATTERN(p) to denote the accumulation 

order of L(p) in the language collection denoted by PATTERN. As another example, we 

use PATTERN IS to denote both languages consistent with the evidence set S and the pat- 

terns that generate them. I t  should be clear from the context whether we are referring to a 

language or its description by a pattern that generates the language. 
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4.2 Mind Change Optimal Identification of One-Variable Pat- 

terns 

If a pattern contains exactly one distinct variable (i.e., #var(p) = I), then it is a one- 

variable pattern. For one-va.riable patterns, we usually omit the subscript for the variable 

(e.g., x01 or 0 x 0 0 ~ 1 ) .  Following [4], we denote the set of all one-variable patterns by PI. 

Arlgluir~ described all a.lgorithrn that,  giver1 a finite set S of strings as illput, finds the set of 

one-variable patterns descriptive of Sj and then (arbitrarily) selects one with the maximum 

length [4, Th.6.51. A one-variable pattern p is descriptive of a sample S if S C L(p) 

and for every one-variable pattern q such that S c L(q), the language L(q) is not a. proper 

subset of L(p) [4, p.481. To illustrate, the pattern Ix is descriptive of the samples (10) and 

{10,11), the pattern xO is descriptive of the samples (10) and {10,00), and the pattern x 

is descriptive of the sample {10,00,11). 

We give an example (summarized in Figure 4.1) to show that Angluin's algorithm 

is not an SMC-optimal learner. Let x be the target pattern and consider a text T = 

(10,00,11,0, .  . . ) for L(x). As mentioned above, we write Pl ( S  for the set of one-variable 

patterns consistent with a sample S. Then PI 1{10) = {lx ,  XO, x), PI 1{10,00) = {xO, x), 

Pll{lO, I t )  = { I X , ~ )  and PII{l0,00, 11) = {x}. The accumulation orders of these lan- 

guages are determined as follows: 

1. amp, (L(x)) = 0 since L(x) is isolated; so accp, ((10,00,11)) = 0 . 

2. accp,(L(lx))  = 1 since P1/{10,11) = { lx ,  x) ;  so accp, ((10,11)) = 1. 

3. accp, (L(x0)) = 1 since Pll{lO, 00) = { x o , ~ ) ;  so accp, ((10,OO)) = 1. 

Also, we have accp, ( ( l o ) )  = 1. Since for T[1] = ( lo) ,  the one-variable patterns l x  

and xO are both descriptive of { lo ) ,  an Angluin-style learner MA conjectures either l x  

or xO; suppose &IA((lO)) = l x .  Now let c~ be any mind change counter for M A .  Since 

l x  is consistent with ( lo) ,  SMC-optimality requires that ~ ~ ( ( 1 0 ) )  = accp,((lO))= 1. The 

next string 00 in T refutes lx ,  so MA changes its mind to xO (i.e., MA(T[2]) = xO), and 

cA((lO,OO)) = 0. However, MA changes its mind again to pattern x on T[3] = (10,00, I I ) ,  

so c~ is not a mind change counter for M A ,  and AdA is not SMC-optimal. In short, after 

the string 10 is observed, it is possible to identify the target one-variable pattern with one 

more mind change, bu t  MA requires two. 
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The issue with M A  is that  MA changes its mind on sequence (10,OO) even though 

accp, ( ( lo) )  = accp, ((10,OO)) = 1. Intuitively, a mind change optimal learner has to wait 

until the data  decide between the two patterns l x  and xO. As Proposition 3.2.1 indicates, 

we can design an SMC-optimal learner A!! for PI by "procrastinating" with ? until there is a 

pattern with the highest accumulation order. For example on the text T described above, our 

SMC-optimal learner A!l makes the following conjectures: M ( ( 1 0 ) )  =?, M((10,oo))  = xo, 

M((10,00,11))  = x (see Figure 4.1). 

Text T 

Stage n 
Patterns consistent 

with T[n] 

Patterns descriptive of T[n] 

Accumulation order of T[n] 
Output  of Angluin's 

learner &IA 
Output  of a UMC-optimal 

learner M 

Figure 4.1: An illustration of why Angluin's learning algorithm for one-variable patterns is 
not strongly mind change optimal. 

The  general specification of the SMC-optimal learning algorithm M is as follows. For a 

terminal a E C let pa E p[a/x]. The  proof of [4, Lemma 3.91 shows that  if q is a one-variable 

pattern such that  L(q) > {pa,pb) for two distinct terminals a ,  b, then L(q) > L(p). So if for 

a pattern p consistent with data  a ,  the data  contain {pn,pb), then L(p) is a C-minimum for 

PIJo and hence has the highest accumula,tion order for a.  Thus an SMC-optimal learning 

algorithm M can proceed by waiting until the data  feature pa and pb for some pa,ttern p. 

More precisely, d c h e  M as follows. 

1. Set &!(A) :=?. 

2. Given a sequence a with S := content(a), check (*) if there is a one-variable pattern p 

consistent with a such that S 2 { P " , ~ ~ )  for two distinct terminals a, b. If yes, output 

M ( 0 )  := p. If not, set M ( u )  :=?. 

Since there are a t  most finitely many patterns consistent with o, the check (*) is effective. 

In fact, (*) and hence M can be implemented so that computing M ( a )  takes time linear 

in 1 0 1 .  Outline: Let m = m i n { s  : s E S). Let Sm be the set of strings in S of length m. 
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Define ps(i) : = a if s( i )  = a for all s E S", and ps (i) : = x otherwise for 1 < i 5 m. For 

example, p~,,,,l,lll) = l x  and p~lo,ol)  = x. Then check for all s E S if s E L(ps). For a 

one-variable pattern, this can be done in linear time because lO(x)l, the length of 0(x), must 
Isl - t e ~ m ( p s )  

be I?Jsl-t erm(ps) where term(ps) is the number of terminals in ps. For example, if s = 111 

and p s  = lx ,  then IU(x)l must be 2. If ps  is consistent with S, then there a,re distinct 

a ,  b E C such that ) S .  Otherwise no pattern p of length m is consistent with S 

and hence (*) fails. 

It  is worth noting that sometimes the mind change efficient learner &IP, may take longer 

to converge than the Angluin-style learner M A .  For example, let T be a text for the pattern 

Ix such that T(0)  = 10 and T ( l )  = 11; then we can verify that the Angluin-style learner 

h/lA in Figl~rc 4.1 converges at  t,ime 0, but a mind change efficient learner does not converge 

until time 1. In general, an Angluin-style learner will converge to the correct one-variable 

pattern a t  least c?s soon as a SMC-optimal learner and strictly sooner on some texts. Thus, 

the Angluin-style learner dominates the SMC-learner with respect to convergence time in 

the sense of [62] and [49]. 

4.3 Mind Change Optimal Identification of Fixed-Lengt h Pat- 

terns 

Following [67], for each positive integer n ,  we write T, to denote the set of canonical patterns 

of length n. We apply the concept of accumulation order to design a mind change efficient 

algorithm that identifies Tn for a fixed n. The first step is to find an easily computable, 

closed-form expression for the accumulat~ion order of a pattern in T,. 

Lemma 4.3.1. Fix a positzve integer n > 0, and let p be a. pattern in T , .  Then acc.r,,(p) = 

n - #var(p), where #var(p) is the number of distinct variables in, p. 

Proof. We prove the claim by downwa.rd induction. 

Base case: #var(p) = n. Then p is the most general pattern ~ 1 x 2 .  . . x,; thus accL(p) = 

0. 

Inductive step: Assume accX(q) = n - #var(q) for all q with #var(q) > k. Consider a 

pattern p with #var(p) = k. Let r E Tn be another pattern of length n. If #var(r) < k, 
then IS(r)l < IS(p)l SO S(p) S(r). Angluin shows that S(p)  = S ( r )  implies L(p) = L(r)  

[4, Lm. 3.21. So if #var ( r )  = k and L(p) # L(r ) ,  then S(p) # S ( r )  and so S(p)  S ( r )  since 
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IS(p)l = IS(r)l. So in either case, S(p) S ( r ) .  As there are only finitely many patterns 

of length n ,  this implies that there exists a finite subset S 5 L(p) such that L(r )  # L(p) 

implies that #var(r)  > k for every pattern r E TnIS. By the induction assumption, it 

follows that (1) accrr,(p) 5 n - k.  

Second, since #var(p) < n,  it is easy to see that there exists a pattern r such that 

#var(r) = #var(p) + 1 and q ? p; thus L(p) C L(q). This implies that (2) accG,(p) 2 
n - (k  - 1) + 1 = n - k. Combining the above two inequalities (1) and (2), we have 

accT,(p) = n - k = n - #var(p). 0 

To illustrate, the lemma implies that accT,, (xlx2 . . . x,) = 0, acc?;, ( ~ ~ 0 x 2  . . . x , -~ )  = 1, 

and a c ~ ~ ( x ~ x ~ .  . . xl)  = n - 1. 

Lemma 4.3.1 a.llows us to design a strongly mind change optima.1 learner as follows. 

First we observe that  every data sequence a is topped for the language collection T,. this 

is because Tn is finite. For a finite set of ordinals { a l ,  aa, . . . , its supremum is its 

maximum. Thus Condition 2 of Proposition 3.2.1 holds vacuously. Condition 1 requires a 

strongly mind change optimal learner to output ? or the pattern that uniquely tops the 

given data sequence a. For a given data sequence a, we can enumerate the finitely many 

pakterns Tnla of length n that are consistent with the strings in a. Then we simply check if 

any pattern p in T,Ia uniqueIy maximizes n - #var(p) or equivalently minimizes #var(p). 

In principle, closed form expressions for the accumulation order of a pattern p in the one- 

variable pattern space PI and in the general pattern space PATTERN,  such as Lemma 4.3.1 

provides for T,, would yield mind change optimal learners for these language collections. 

Finding closed form expressions for accp, and ~CC~ATTERN are currently open problems [59]. 

4.4 Summary 

We illustrated strongly mind change optimal learning of one-variable and fixed-length pat- 

terns. We showed that Angluin's algorithm for learning one-variable patt,ern is not strongly 

mind change optimal. We described a different SMC-optimal algorithm for this problem 

that has linear upda,te time. As we have seen, mind change optimdity imposes strong 

constraints on learners. This means that the theory provides an inductive principle that 

can be used to design optimal learning algorithms for problems of interest. An analysis in 

terms of the principle can validate existing inference procedures, as in the case of learning 
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conservation laws (see [88]) or lead to the development of new ones, as with one-variable 

patterns a.nd with Bayes net structures (see Chapter 7). 

In sum, strong mind change optimality guides the construction of learning algorithms by 

imposing strong and natural constraints; and the a.nalytica1 tools we established for solving 

these constraints in preceding chapters reveal significant aspccts of the fine strrict,ure of 

learning problems. 



Chapter 5 

Mind Change Optimal Learning of 

Bayes Net Structure 

Decisions made in real time are never 

perfect. 

CIA Deputy Director Noah Vosen (in 

The Bourne Ultimatu-m) 

In this cha.pter, we model learning the structure of a Bayes net as a language learning 

problem in the Gold paradigm. This makes it possible to apply identification critcria such 

as mind cha.nge bounds [43, Chapt,cr 12.2][81], text-efficiency (minimizing time or number 

of data points before convergence) [73, 371, and more importantly the inductive principle 

of mind-change optimality [60] (see previous chapters in this thesis). Bayes nets are one of 

the most prominent knowledge representation formalisms [75, 76, 47, 251. They are widely 

used to define probabilistic models in a graphical manner. A Bayes net model consists of 

a structure with parameters. The structure is a directed acyclic graph (DAG) whose edges 

link the variables of interest. The parameters are conditional probability tables that specify 

the distribution of a child variable given an insta.ntiation of its parents. 

We base our model of Bayes net structure lexning on an approach known as "constraint- 

based" learning [24]. Constraint-based learning views the Bayes net structure as a specifi- 

cation of conditional dependencies of the form XJ! Y J S  , where X and Y are variables of 

interest a.nd S is a set of variables disjoint from {X, Y ) .  (Read X$ YIS as "va.riable X is 
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dependent on variable Y given values for the variables in the set S".) For example, a con- 

ditional dependence statement represented by a Bayes net may be "Wetness is dependent 

on Rain given the Season" (see Figure 5.1 below). In this view, a Bayes net structure is a 

syntactic representation of a dependency relation [75, Sect,ion 3.31. A dependency relation 

meets the nmthcmatical definition of a language in the sense of Gold's paradigm, where the 

basic "strings" are dependence statements of the form "XJ!  YIS" .  

We show that  in this learning model, the mind change complexity of learning a Bayes net 

graph for a given set of variables V is (I:[)-the maximum number of edges in the graph. 

Our analysis leads t,o a characterization of Bayes net learning algorithms that are mind- 

change optimal. Intuitively, mind-change optimality means that a learner that is cfficierit 

with respect to mind changes minimizes the number of mind changes not only globa.11~ in the 

entire learning problem, but also locally in subproblems after receiving some evidence (601. 

We show that mind-change optimal BN learners are exactly those that meet the following 

condition: A mind-change optimal learner may output the vacuous conjecture "7' (for "no 

guess"). But if the learner does conjecture a graph G,  the graph must, be the only one that 

satisfies the observed depcrldcricies with a minimum number of edges. 

To examine the speed of convergence to a correct Bayes net structure, we a,pply Gold's 

notion of dominance in convergence time [37, page 4621. There is a fastest mind-change 

optimal learner whose convergence time dominates that of all other mind-change optimal 

learners. The  fastest learner is defined as follows: If there is more than one Bayes net pattern 

G (see Definition 5.2.1) that satisfies the observed dependencies with a minimum number of 

edges, output ? (for "no guess"). If there is a unique pattern G that satisfies the observed 

dependencies with a minimum number of edges, output G. Thus standard identification 

criteria in the Gold paradigm lead to a natural and novel algorithm for learning Bayes net 

structure. 

We also examines the computational complexity of the fastest mind-change optimal 

learner for Bayes net structure: assuming that P = RP,  computing its conjectures is NP- 

hard. 

The  chapter is organized as follows. The next section shows the connection and distinc- 

tion between our model and related work. It is followed by basic definitions from Bayes 

net theory. Section 5.3 presents and discusses our model of Bayes net structure learning 

from dependency da t a  as a language learning problem. Then we malyze the mind change 
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complexity of Bayes net structure learning. Section 5.4 chasacterizes the mind-change op- 

timal learning algorithms for this problems and describes the fastest mind-change optimal 

learner. The final I;wo sections define the problem of computing the output of the fastest 

mind-change optirnd learner and show that the problem is NP-hard. 

5.1 Related work 

Constraint-based algorithms for learning Bayes net structure are a well-developed area of 

machine learning. Introductory overviews are provided in [24], [70, Chapter 101. The Tetrad 

system from Carnegie Mellon University [85] includes a number of constraint-based methods 

for learning Bayes nets; the theory for these methods is presented in [93]. The papers [61,18] 

describe some other constraint-based algorithms. While constraint-based algorithms share 

the view of a. Bayes net gra.ph as defining a dependency relation, a fundamental difference 

between existing constraint-based approaches and our model is that the existing methods 

assume access to an oracle that returns an answer for every query of the form "does X$ YIS 

hold"? So in learning theory terms, existing constraint-based methods are best seen as 

query algorithms for learning from an oracle [6]. Our model in contrast corresponds to the 

situation of a learner whose evidence grows incrementally over time. Another difference 

is that existing constraint-based methods presuppose that their oracle indicates whether 

two variables are conditionally dependent and whether they are conditionally independent. 

In language learning terms, the constmint-based method has access to both positive data 

(dependencies) and negative data (independencies). In our analysis, the learner receives 

positive data (dependencies) only. We discuss the relationship between the oracle-based 

and our sequential on-line data model further in Section 5.5. To our knowledge, our work 

is the first ana.lysis of Ba,yes net learning in the Gold language learning paradigm. 

A Bayes net that satisfies a set of given dependencies D is said to be an I-map for V 

[75, page 1191. In these terms, we show the NP-hardness of the following problem: for 

a given set of dependencies 2) represented by an oracle 0 (Section 5.5), decide whether 

there is a unique edge minimal I-map G for V ,  and if so, output G. Bouckaert proved 

that the problem is NP-hard without the uniqueness condition [13, Lemma 4.51. However, 

Bouckaert's proof cannot be adapted for our uniqueness problem; which requires a much 

more complex reduction. To our knowledge, this is the first NP-hardness result for deciding 

the existence of a uniquely optimal Bayes net structure for any optimality criterion. 
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5.2 Bayes Nets: Basic Concepts and Definitions 

We employ notation and terminology from [76], [75] and [93]. We consider Bayes net for a 

set of variables V = {XI ,  X2,  . . . , X,) where each Xi has a finite number of values or states. 

A Bayes  n e t  s t r u c t u r e  G = ( V I E )  for a set of variables V is a directed acyclic graph 

(DAG) with node set V. A Bayes n e t  (BN) is a pair (G, UG) where OG is a set of parameter 

values that specify the probability distributions of children conditional on instantiations of 

their parents. (Informally, a Bayes net is a directed acyclic graph (DAG) in which nodes 

represent random variables and edges represent direct dependencies between variables.) A 

Bayes net (G, OG) defines a joint probability distribution over V .  

5.2.1 Colliders and d-separation 

Two nodes X ,  Y are ad jacen t  in a Bayes net G if G contains an edge X 4 Y or Y + X .  

An (undirected) p a t h  in a graph G is a sequence of nodes such that every two consecutive 

nodes in the sequence are adjacent in G. 

Definition 5.2.1. Let G be a directed graph and p be a path in G.  Then a node X is 

a collider on p if X is a.n int-erior node on p and X's left and right neighbors on p both 

ha.ve edges pointing to X .  The collider X is shielded if its right and left neighbours are 

adjacent; otherwise X is unshielded on path p. Removing from G the arrowheads that do 

not participate in an unshielded collider yields a partially directed graph that is called the 

p a t t e r n  of G, often denoted pattern(G) or .rr(G). 

As long 1-ls there is no ambiguity, we shall use G to denote both graphs and patterns. 

Fig. 5.1 shows a Bayes net from [76, page 151. In this network, node wet is a collider 

on the path s p r i n k l e r  - wet - ra in ;  in contrast, node wet is not a collider on the path 

s p r i n k l e r  - w e t  - s l ippe ry .  The pattern of the network has the same skeleton, but 

contains only two edges that induce the collider wet .  

Definition 5.2.2 (d-separation). Let G be a Bayes net over variables V. 

1. Two nodes X and Y are d-separa ted  by a set of nodes S V \ {X,Y) ,  written 

( X U  YIS)G, i f  for every path p connecting X and Y,  

(a) there exists some collider Z on p such that S does not contain Z or any descendant 

of 2, or 
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slippery (3 slippery 6 
Figure 5.1: Sprinkler network and its pattern. 

(b) set S contains a node in p which is not a collider on p. 

2. Two nodes X and Y are d-connected by a set of nodes S 2 V \ {XI Y ) ,  written 

(X)! Y if X and Y are not d-separaked by S. The  d-connectedness relation, 

or dependency  relat ion,  for a graph is denoted by D c ,  that is, (X,  Y, S) E Z)G iff 

(x$ Y~S)G.  

For example, in Fig. 5.1, we have ( s p r i n k l e r u  r a i n l { s e a s ~ n } ) ~ ,  but ( spr inkler  

J! rainl{season, wet))G. Verma and Pearl proved that two Bayes nets GI and G2 rep- 

resent the sa.me dependency relation iff they have the same pa.ttern (i.e., VG, = DG2 iff 

PATTERN(G1) = PATTERN(G2) [101, Theorem. 11). Thus we use a pattern as a syntac- 

tic representation for a Bayes net dependency relation. The s t a t e m e n t  space  over a set 

of variables V ,  denoted by Uv, contains all conditional dependency statements of the form 

(X$ YIS), where X ,  Y are distinct variables in V and S c V \ {X, Y}. 

5.2.2 The Markov Condition and I-maps 

Let P be a joint distribution over variables V. If X, Y and S are three disjoint sets of 

variables, then X and Y a,re s tochast ical ly independent  given S ,  denoted (XI1 YIS)p 

if P (X,YIS)  = P(X1S)  . P(Y1S) whenever P ( S )  > 0. The distribution P satisfies the 

composit ion principle if (XI1 YIS)p whenever (XIL YIS)p for all variables X E X. 
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A Bayes net structure G is an I-map of distribution P if (X$ Y ( S ) p  implies (X$ Y IS)G 

for all variable sets X ,  Y and variable sets S disjoint from X ,  Y. A basic result in Bayes 

net theory states that for a. given Bayes net structure G and joint distribution P, there is 

a parametrization OG such that P is the joint distribution over V defined by ( G ,  0 )  if and 

only if G is an I-map of P [70, Theorem 1.4,1.5]. 

In constraint-based Bayes net learning, it is common to assume that the probsbi1it.y 

distribution generating the data of interest has a faithful Bayes net representation [93, 

Theorem 3.21, [76, Chapter 2.41. 

Definition 5.2.3. Let V be a set of varia.bles, G a Bayes net o17er V, and P a joint 

distribution over V. Then G is faithful t o  P if (X$ YIS)p in P (X$ Y J S ) G  in G. 

Assuming faithfulness, the dependencies in the data can be exactly represented in a 

Ba.yes net or a pattern, which is the assumption in our language learning model. I t  is easy 

to see that a graph G is faithful to a distribution P if and only if  G is faithful with respect 

to variable pairs, that is, if ( X $  Y(S)p in P ( X $  YIS)G in G for all vxiables 

X ,  Y. Therefore constraint-based methods focus on conditional dependencies of the form 

( X $  Y IS), which is the approach we follow throughout the chapter. 

Next we introduce our model of Bayes net structure learning, which associates a language 

collection Lv to a given set of variables V of interest; the language collection Lv comprises 

all dependency relations defined by Bayes net structures. 

As Gold's paradigm does not specify how linguistic data are generated for the learner, our 

model does not specify how the observed dependencies are generated. In practice, a Bayes 

net learner obtains a random sample S and applies a suitable statistical criterion to decide if 

a dependency X$ YIS holds. One way in which data for our model ca,n be generated from 

random sa.mples is the following (we discuss another interpretation in Section 5.5): For every 

triple X$ YIS with {X, Y) n S  = 0, a statistical test is performed with X U  YIS as the null 

hypothesis. (For small numbers of variables, this is a common procedure in statistics called 

"all subsets variable selection" [107, page 591.) If the test rejects the null hypothesis, the 

dependency X$ Y ( S  is added to the dependency data.; otherwise no conclusion is drawn. 

This is similar to how many constraint-based systems answer queries to a dependency oracle: 

given a query "Does X$ Y I S  holds", the system performs a statistical test, and answers 

"yes" if the test rejects the hypothesis X U  YIS, a,nd "no" otherwise. The assumption 

that this procedure yields correct results is ca.lled the assumption of valid statistical testing 
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[24, Section 6.21. Compared to this assumption, our model is more realistic in two respects. 

First, the model assumes only that dependency information is available, but does not require 

independence data. In fact, many statisticians hold that no independence conclusion should 

be drawn when a statistical significance test fails to reject an independence hypothesis [34]. 

Second, our model does not assume that the dependency information is supplied by an 

oracle all a t  once, but allows that more information may become available as the sample 

size increases. 

Since the set of dependency relations Cv constitutes a language collection in the sense of 

the Gold paradigm, we can employ standard identification criteria to analyze this learning 

problem. We begin by applying a fundamental result in Bayes net theory to determine the 

mind change complexity of the problem. 

5.3 The Mind Change Complexity of Learning Bayes Net 

Structure 

Since we are considering Bayes nets with finitely many variables, the statement space Uv is 

finite, so the language collection Cv containing all Bayes net-dependency relations is finite 

and therefore Cv has finite thickness. Hence we have the following corollary. 

Observation 2. Let V be a set of variables. There exists a lea.rner Q th.at identifies Cv 

with mind change bound k * the inclusion depth o f  Cv i s  at most  k ,  that is, ID(Lv) 5 k .  

The observation shows that the mind change complexity of learning a Bayes net depends 

on the inclusion depth of the space of dependency relations that can be represented in a 

Bayes net. A fundamental result in Bayes net theory allows us to determine the inclusion 

depth of a dependency relation in Lv. 

An edge A -+ B is covered in a DAG G if the parents of B are exactly the parents of 

A plus A itself (e.g., edge A + B is covered in Figure 5.2). The  operation that reverses the 

direction of the arrow between A and B is a covered edge reversal. 

Theorem 5.3.1 (Meek-Chickering). Let G and H be two Bayes nets over the same set of 

variables V .  Then, VG V H  the Bayes net  H can be transformed in,to the Bayes net  

G by repeating the Jbllowing two operatzons: (1) covered edge reversal, and (2) single edge 

deletion. 
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Figure 5.2: A simple network with a covered edge. Edge A + B is covered, but D 4 A is 
not covered. 

The theorem was conjectured by Meek [65] and proven by Chickering [19, Theorem 41. 

Corollary 5.3.1. Let G be a Bayes net  over a set of variables V .  T h e n  the inclusion depth 

of the Bayes net-dependence relation VG equals the number of missing edges in G, and we 

take the inclusion depth of a Bayes net  to be th,e inclusion depth of its dependence relation. 

I n  particular, th,e totally disconnected network h,as mclusion depth (I:'); a complete network 

has the inclusion depth 0. 

Proof. We use downward induction on the number of edges n in ga ,ph  G. Let N = (I;'). 

Base case: n = N. Then G is a complete graph, so VG contains a,ll dependency statements 

in the sta.tement space &, and therefore G has 0 inclusion dept,h. Inductive step: Assume 

the hypothesis for n + 1 and consider a graph G with n edges. Add a.n edge to G to 

obta.in a Bayes net G' with n + 1 edges that is a super-graph of G'. The definition of 

d-separation implies that D c  c Vb.  By inductive hypothesis, there is an inclusion chain 

DL C . . . c DGN-(,+,) consisting of Bayes net dependency relations. Hence the inclusion 

depth of G is at least N - (n+  1 )  + l  = N -n. 
To show that the inclusion depth of G is exactly N - n,  suppose for contradiction that 

ID(Vc) > N - n .  Then there is an inclusion chain VG c VH, c VH2 c . . . c Uv of length 

greater than N - n. So the inclusion depth of DHz is at least N - (n  + 1 )  and the inclusion 

depth of D H ~  is at  least N - n. Hence by inductive hypothesis, the number of edges in H2 

is at  most n + 1 and in HI  at  most n. So at  least two of the graphs G, HI, H2 have the 

same number of edges. Without loss of generality, assume that HI  and Hz have the same 

number of edges. Since VH, c VH,, Theorem 5.3.1 implies that HI can be obtained from 

Hz with covered edge reversals. But covered edge reversals are symmetric, so we also have 

that VH2 C DHl,  which contradicts the choice of H1 and H Z .  So ID(VG) = N - n, which 

completes the inductive proof. 0 

The corollary characterizes the inclusion depth of the Bayes net dependence relation VG 

for a graph G in terms of a simple syntactic fea,ture of G, namely the number of edges. 



CHAPTER 5.  M C  OPTIMAL LEARNING OF BN STRUCTURE 46 

Together with Proposition 3.3.1, the corollary implies that  the mind change complexity of 

identifying a Bayes Net structure over variables V from dependency data is given by the 

maximum number of edges over V. 

Theorem 5.3.2. For any set of variables V ,  the inclusion depth of Cv i s  (Iy1). So  the 

mind change complexity of identifying the correct Bayes Net s tructwe from, dependency data 

is (1;'). 

The next section characterizes the Bayes net learning algorithms thak achieve optimal 

mind change performance. 

5.4 Mind Change Optimal Learners for Bayes Net Structure 

The complexity of a learning problem is a lower bound on the best possible performance by 

a learning algorithm. A goal of learning theory is to design algorithms that achieve the best 

possible performance. This section analyzes mind-change optimal dgorithms for identifying 

Bayes net structure. The  intuition underlying mind-change optimality is that a learner that 

is efficient with respect to mind changes minimizes mind changes not only globally in the 

entire learning problem, but also locally in subproblems after receiving some evidence [60]. 

We formalize this idea as in [60, Definition 2.31. If a mind cha.nge bound exists for C given 

a ,  we write MC,r(a)  for the least k such that L is identifiable with k mind changes given 

r r .  For example, given a sequence a of dependencies, let G = ( V ,  E) be a Bayes net that 

covers (satisfies) thc depcndcncies in a with a minimum number of edges. Then the mind 

change complexity M C r ,  (a) is - IEl. 
Applying Corollary 3.3.1 to Bayes net learners yields the following corollary. 

Corol la ry  5.4.1. Let 9 be a Bayes net learner tha,t identifies the correct Bayes net  structure 

for a set of variables V .  The learner \I, is SMC-optimal for all dependency sequences 

a ,  if the output of \I, i s  not 9, then Q outputs the unique edge-minimal pattern for the 

dependencies 23 = content ( a ) .  

It  is easy to implement a slow SNIC-optimal Bayes net learner. For example, for a given 

set of dependencies D it is straightforward to check if t,here is a pattern G that covers exactly 

those dependencies (i.e., 2 3 ~  = 23). So an SMC-optimal learner could output a pattern G if  

there is one that ma.tches the observed dependencies exactly, and output ? otherwise. But 
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such a slow learner will require exponentially many dependency statements. We have seen 

in Chapter 3 that there is a fastest SMC-optimal learner for each language collection with 

finite inclusion depth. 

Applying Observation 1 to identifying Bayes net-dependency relations leads to the fol- 

lowing algorithm for identifying a Bayes net pattern. 

Corollary 5.4.2. Let V be a set of variables. For a given sequence of dependencies a ,  

the learner 9L, outputs 2 if there is  more thmn one edge-minimal pattern that covers the 

dependencies in a ,  and otherwise outputs the unique edge-minimal pattern P consistent with 

a .  The learner 9L, i s  SMC-optimal urd identifies the correct pattern unijormly ,faster than 

any other SMC-optimal Bayes net  structure learner. 

Example 5.4.1. Let V = A , B , C , D .  If 

then 'JjfV,, outputs the graph shown in Figure 5.3(a). Now suppose after some time, we have 

accumulated more data, and obtain the following data sequence 

the11 the output of \-kL, is shown in Fig 5.3(b). 

We have seen that the criteria of mind-change optimality and convergence speed deter- 

mine a unique, natural and novel method for learning Bayes net structure. The next section 

analyzes the run-time complexity of this method; we show that computing the output of 

the learner is NP-hard (assuming that RP = P). 



CHAPTER 5. MC OPTIMAL LEARNING OF BN STRUCTURE 

Figure 5.3: Intermediate outputs of the fast SMC-optimal learner. Figure (a) shows the 
output on the data. sequence a in Example 5.4.1; figure (b) shows the output on the data 
sequence a' 

5.5  Complexity Model for Constraint-Based Bayes Net Learn- 

ers 

This section describes the standard approach of analyzing the complexity of constraint-based 

learners in the Bayes net literature. We also state some known results from complexity 

theory that we require as background. 

As with any run-time analysis, an iniportant issue is the representation of the input 

to the algorithm. The most straightforwa,rd approach for our lexning model would be 

to take the input as a list of dependencies, and the input size to be the size of that list. 

However, in practice constraint-based learners do not receive an explicitly enumerated list 

of dependencies, but rather they have access to a dependency oracle (cf. Section 5.3). 

Enumerating relevant dependencies through repeated queries is part of the computational 

task of a constraint-based learner. Accordingly, the standard complexity a.nalysis takes a 

dependency oracle and a set of variables as the input to the lea,rning algorithm (e.g., [21, 

Definition 12],[13]. The oracle is assumed to be represented syntactically in a reasonably 

concise way. For example, it ma,y be a Turing Machine that computes the cha,racteristic 

function of a given dependency relation 23. To facilitate comparison with the related litera- 

ture, we follow the approach of representing the set of dependencies in the data through an 

oracle. We remark that the NP-hardness result for the learner 9:, still holds if the input 

a.re enumerated dependencies (see [go]). 



CHAPTER 5. MC OPTIMAL LEARNING OF BN STRUCTURE 49 

Definition 5.5.1. A dependency oracle 0 for a variable set V is a Turing Machine that 

takes as input dependency queries from the statement space Uv and returns, in constant 

time, either "yes" or "?" (meaning "unknown"). 

The dependency relation associated with oracle 0 is given by DO = {XJbl YIS E Uv : 

0 returns "yes" on input XJ! YIS). We note that our model of learning Bayes net structure 

can be reformulated in terms of a sequence of oracles: Instead of a complete sequence of 

dependency statements for a dependence relation Vc, the learner could be presented with 

a sequence of dependency oracles O1,. . . , On,.  . . such that Doi C Doi+, and UzflOi = 

VG. The notion of a one-sided dependency oracle makes clear the relation to the standard 

constraint-based learning model which presupposed the existence of a two-sided oracle: 

(1) a dependency oracle assumes valid statistical testing only for dependence findings, not 

independence conclusions, and (2) our sequential data model envisions the dependency 

model becoming more informative as more data is obtained, whereas the standard model 

considers a. completely informative oracle at a single point in time. 

We will reduce the problem of computing the output of the fastest mind cha,nge optimal 

lea,rner 9L, to deciding the existence of a unique exact cover by 3-sets; this problem is 

defined as follows. 

Definition 5.5.2. Unique Exact Cover by 3-Sets (UXSC) 

Instance A finite set X with 1x1 = 39 and a collection C of 3-element subsets of X. 

Ques t ion  Does C contain a unique exact cover for X ,  that is, a subcollection C' C C such 

that every element of X occurs in exactly one member of C'? 

We will apply the following result, which is well-known in complexity theory. The 

class R P  comprises the decision problems that ca.n be decided in polynomial time with a 

raridornizcd algorithm [74, Definition 11.11. 

Propos i t ion  5.5.1. A polynomial time algorithm for UX3C yields a po1ynomia.l time al- 

gorithm. for the satisfiability problem SAT provided that P = RP. So  UX3C is NP-hard. 

The proof is based on the famous theorem of Valia.nt and Vazirani which gives a proba- 

bilistic reduction of SAT to UNIQUE SAT. Standard reductions (such as those in [74, 331) 

show that UNIQUE SAT reduces to UX3C. 
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5.6 Computational Complexity of Fast Mind Change-Optimal 

Identification 

Computing the conjectures of the fastest SMC-optimal learner 9L, poses the following 

computational problem. 

Defini t ion 5.6.1. UNIQUE MINIMAL I-MAP 

I n p u t  A set of variables V and a dependency oracle 0 for V 

Output If there is a unique DAG pattern P that covers the dependencies in 0 with a 

minimal number of edges, output P. Otherwise output ?. 

This is a function minimization problem; the corresponding decision problem is the 

following. 

Definition 5.6.2. UNIQUE I-MAP 

Instance A set of variables V, a dependency oracle 0 for V, and a bound k. 

Ques t ion  Is there a DAG pattern P such that: P covers the dependencies in 0, every 

other DAG pattern P covering the dependencies in 0 has more edges than P, and P 

has a t  most k edges? 

Clearly an efficient algorithm for the function minimization problem yields an efficient 

algorithm for UNIQUE I-MAP. We will show that UNIQUE I-MAP is NP-hard, assuming that 

P = RP. 

T h e o r e m  5.6.1. Assuming that P = RP,  U X 3 C < p U ~ ~ Q u ~  I - M A P < ~ U N I Q U E  MINIMAL 

I-MAP. SO UNIQUE MINIMAL I-MAP is NP-hard. 

Proof Outline. We transform UX3C to UNIQUE I-MAP. 

Let an arbitrary instance of UX3C be given by a set X such t,hat 1x1 = 3q and a. 

collection C of 3-element subsets of X. We construct a set of variables V, a dependence 

oracle 0 for V ,  and a bound k such that C has an exact subcover for X if and only if there 

is a unique I-map over V for 0 with at  most k edges. 

First, suppose X = { x l , .  . . , xSq) and C = {q, . . . , c,); the variables in V belong to one 

of the following types: 
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1. A root variable R; 

2. A member variable X j  for each point x j  E X, where 1 5 j 5 3q. 

3. A set variable Ci for each set c, E C ,  where 1 5 i 5 rn. 

Second, const,ruct the following procedure hI  as the dependency oracle 0. Given a 

dependency query Vl J! V21S?, 

1. M returns "yes" if one of the following conditions is satisfied: 

(a) Vl = Ci is a set variable, V2 = Xj  is a member variable, and x, E ci. 

(b) Vl = X j  and V2 = Xk are both member variables, and S contains a set variable 

Ci such that c, E C contains both z j  and xj .  

(c) Vl = R is the root variable, and V2 is a member variable, and S is the empty set 

0. 

(d) Vl = R is the root variable, and V2 = X j  is a member variable, and Ci @ S for 

all c, containing 2 , .  

2. M returns "?" otherwise. 

Finally, we let the bound k = 3m + q. 

Int,uitively, the reduction males sure that a minimal I-map has the form shown in Fig- 

ure 5.4. Clause l a  enforces edges connecting Ci and X j .  Clause I b  enforces the arrows 

from Xj and Xk to Ci. Clause l c  enforces for an edge connecting the root variable R and a 

set variables Ci, the arrow is always pointing to R. Clause Id requires that every member 

variable is d-connected to the root variable. It  allows that the d-connection is of the form 

X  - C - R where J: is in c. The  intuition is that  this is the most edge-efficient way to 

connect the member variables to the root varia.ble because if a. set c contains three variables 

X I ,  x2, and xg, adding a single edge C -+ R d-connects all three member variables X I ,  X2,  

and Xg at once. The  formal verification of this intuition ran bc found in [go]. 

0 
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Figure 5.4: The basic graph for the NP-hardness proof. A set cover of size q corresponds to 
q edges of the form C + R. 
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5.7 Summary 

This chapter applied learning-theoretic a,nalysis to a practically important learning prob- 

lem: identifying Bayes net structure. We presented a learning model of this task in which 

learning is based on conditional dependencies between variables of interest. This model 

fits Gold's definition of a languagc lcarning problem, so identifi~at~ion criteria from Gold's 

pa.radigm apply. We considered mind-cha.nge optimality and text efficiency (or domina.nce 

in convergence time). The  mind change complexity of identifying a Bayes net over vari- 

able set V is (I:'), the maximum number of edges in a graph with node set V.  There is 

a unique mind-change optimal learner QL, whose convergence time dominates that of all 

other mind-change optimal learners. This learner outputs a Bayes net G if G is the unique 

graph satisfying the observed dependencies with a minimum number of edges; otherwise 

@L',, outputs ? for "no guess". In many language learning problems, it its plausible to 

take the mind change complexity of a hypothesis as a form of simplicity [60, Section 41. 

Our results establish that the notion of simplicity corresponding to mind change complexity 

of a Bayes net graph G is the inclusion depth of G, which we showed is measured by the 

number of edges in G. In  these terms, the fastest mind-change optimal learner outputs a 

uniquely simplest Bayes net consistent with the dependency data if there is one, and outputs 

"no guess" otherwise. Using the number of edges as simplicity criterion to guide learning 

appears to be a new idea in the Bayes net literature. 

We have seen that determining whether there is a uniquely simplest (edge-minimal) 

Bayes net for a given set of dependencies is NP-hard. The NP-hardness result implies 

that a practical, polynomial-time application of the fastest mind-change optimal lexner 

must use search heuristics. Many Bayes net learning a.lgorithms are based on an optimality 

measure or score (see Section 6.2); exact optimization of this measure is typically NP-hard 

(211, so the learning algorithm employs heuristic search instea,d. Resea,rch in this area has 

developed various strong local search methods for finding optimal Bayes nets [13, 701. These 

methods can be applied to search for Bayes nets that optimize our simplicity criterion as 

well. The  result would be a practical, novel constraint-based Bayes net learner that has a 

learning-theoretic foundation. We shall discuss the implications in following chapters. 

In sum, applying Gold-style identification criteria leads to a fruitful analysis of Bayes 

net learning. We gained insights into the structure of the hypothesis space (determining 

its mind change complexity or inclusion depth),  which leads to a natural new notion of 
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simplicity for Bayes nets (simpler graphs have fewer edges) that can guide learning with a 

theoretical foundation. 



Chapter 6 

From Theory to Practice: 

Approximating an MC-Optimal 

Bayes Net learner 

There is no magic about numeric 

methods, and ma.ny ways in which they 

can break down. They are a valuable 

aid to the interpretation of data, not 

sausa.ge machines a~~tornatically 

transforming bodies of numbers into 
packets of scientific fact. 

F.H.C. Marriott 

In the previous chapter, the inductive principle of mind change optimality leads to 

fast mind cha.nge-optimal identification of Bayes net structure. Directly implementing the 

learning strategy is NP-hard. From this chapter on, we shall study approximations to fast 

mind cha.nge-optimal identification. 

6.1 The Principle of I-map Learning 

In Chapter 3.4, we have seen that for problems with finite accumulation order, every SMC- 

optimal regular learner (a  learner that outputs either a single language or ?) corresponds 
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to an SMC-optimal set learner. That  set learner always outputs the set of languages with 

the highest accumulation order. Hence we ca.n reformulate our problem as follows: 

Problem 6.1.1. G.i.uen u kist o f  dependencies ,  f ind t h e  set of edge-min imal  graphs t h a t  are 

cons i s t en t  w i t h  t h e  observed dependencies .  

This task apparently is no easier t h m  deciding uniqueness, but it suggests a further 

approximation: looking for s o m e  minimal I-map that satisfies the observed dependencies. 

We call this the principle of I-map learning. 

Problem 6.1.2. G i v e n  a list  of dependencies ,  ,find a n  ed,qe-minimal  graph th,at i s  conszstent 

w i t h  t h e  dependenc ies .  

The difference between problems 6.1.1 and 6.1.2 is somewhat analogous to the difference 

between model averaging and model selection. 

In practice, we do not have a list of dependencies, instead we have a sample s from 

which a set of dependencies D ( S )  can be inferred by a statistical testing strategy T. Hence 

we have the following approximation: 

Problem 6.1.3. G i v e n  a s a m p l e  s, find a n  edge-min imal  graph t h a t  i s  cons i s t en t  w i t h  

V ( s ,  T ) ,  a se t  of dependenc ies  inferred f r o m  s u s i n g  t e s t ing  s trategy T .  

For this problem, two decisions are critical in algorithm design: how to get V ( s ,  T )  and 

how to find a.n edge-minimal gra.ph. 

Assuming that we use statistical testing to infer dependencies, there are more than one 

ways to get D(s ,  T) . First, we may run a constraint-based algorithm (e.g., the P C  algorithm 

described later in the chapter) over the sample, and then collect the dependencies resulted. 

Second, we can bound the size of conditioning set (hence bound the time complexity of 

statistical tests) to a constant k; and then exhaustively test all conditional independence 

statements. Experiments show that the second approach is more robust and often returns 

a set of dependencies that better reduces underfitting. 

To find an edge-minimal graph consistent with V ( s , T ) ,  a common strategy is to use 

a score-based heuristic. First, we can search with a score based on the number of edges. 

Second, we can use the GES search heuristic with BDeu score (described later). Experiments 

show that GES search with BDeu score can be modified into a better performed algorithm 

(see Chapter 7). 



CHAPTER 6. APPROXIMATING AN MC-OPTIMAL BN LEARNER 5 7 

When talking a.bout approximation, a natural question is whether existing algorithms 

qualify as good solver for Problem 6.1.3. However, we shall see tha.t most of the existing 

algorithms, given a sample of small to medium size, do not output a graph that is consistent 

with known the dependencies that can be easily inferred from the sample. 

In learning theory, a consistent learner is a learner that always outputs a hypothesis 

that is consistent with the data'. For a finite hypothesis space, inconsistency is a source 

of unnecessary mind changes (see Proposition 3.2.1). In the previous chapter, dependencies 

are modeled as data  points presented to a learner, while a Bayes net structure is modeled 

as a collection of such points. Therefore the principle of I-map learning requires a learner to 

output a minimal consistent hypothesis; this behavior is aligned with some other algorithms 

(e.g., the closure algorithm for intersection-closed concept classes [9]). 

More importantly, the principle of I-map learning respects Pearl's original definition of 

Ba,yes net [75, page 1191, which is stated here. 

Definition 6.1.1 (Pearl's definition of Bayes net). Given a probability distribution P on a 

set of variables U; a DAG D = (U, E) is called a Bayesian network of P if D is a minimal 

I-map of P. 

Empirical evidence in this chapter shows that two typical algorithms for learning Bayes 

net structure, the GES algorithm with the BDeu score [40] a,nd the P C  algorithm [93], often 

produce inconsistent hypotheses, and hence violating the principle of I-map learning. Since 

these two algorithms rc.prc.scilt t,wo most influential rnct,hodologies for learning Bayes net 

structure, a new method is needed to address the inconsistency. 

6.2 Underfitting in Score-base Learning of Bayes Net Struc- 

t ure 

In score-based learning, a scoring funct,ion S(., .) maps the given sample d and a candidate 

structure G to a real number S ( d ,  G) .  Hence the learning problem is converted to an 

optimiza.tion problem in which a structure with the ma.ximum score is sought. 

' ~ n f o r t u n a t e l ~ ,  consistency has a very different meaning in statistics. A point estimator is said to be 
consistent i f  it converges to  a constant when sample size goes to infinity (see [16, Section 5.51). In  this thesis, 
we will not use consistency in this sense. 
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6.2.1 Structure Learning as Model Selection 

A typical scoring function tries to optimize the predictive power of the resulting structure. 

Hence it assigns higlner scores to structures that both fit the sample well and are parsimo- 

nious (to suppress over-fitting). Therefore, most score functions in structure learning derive 

from model selection criteria such as BIC, AIC, Cross Validation, and so on. 

A Bayes net structure G defines a family of distributions f(c,s), where 8 is an instanti- 

ation of parameters over G. In model selection, we look for a pair of G and 6 to minimize 

the discrepancy between f(c,o) and the true distribution (in the parlance of model selec- 

tion, the operating model) g. With only a. (fi~iitc) si.mplc D from g,  the discrepancy can 

only be estimated (for example, by taking average discrepancy of possible instantiations 

of g). Although different model selection criteria should be used for different definitions 

of discrepancies 158, Chapter 101, they all look for the balance between data fitness and 

parsimoniousness of models. Tha,t is, they respect a syntactic notion of Occam's Razor to 

avoid overfitting2 [29, Section 9.6.51. 

Many scoring functions are special cases of the Bayesian score. 

Definition 6.2.1 (Bayesian score). Let. G be a Bayes net structure and d be a sample. 

Then the Bayesian score of G is the joint probability (or density in the continuous case) 

where P ( G )  is the prior distribution of G, and P(QIG) is prior distribution of O given the 

structure G. 

Machine learning researchers impose various assumptions on P(dlO, G) and P(O(G);  

Heckerman et. al. list 7 such assumptions in 1401. These assumptions lead to the widely 

a,dopted BDeu score 140, Theorem 51. 

Definition 6.2.2 (BDeu score). Let V be a set of random variables and G, be a conlplete 

Bayes net structure over V (i.e., every two nodes in G, are adjacent). Let AT' be a Dirichlet 

equivalent sa.mple size for model G,. The BDeu score of a Bayes net structure G over V 

is defined t.o be 

2 ~ h i s  is in contrast to maximizing accumulation order, which can be understood a semantic notion of 
Occam's Razor. 
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where qi is the number of states for node i's parents, Ti is the number of sta,tes for node i,  Nijk 
N ' is the number of occurrences of that specific instantiation, Nij := Ck Nijk, Nkk := 

N' and N!. := -. 
z3 qi 

A typical setup for P ( G )  and N' is P ( G )  := O.OOlk, where k is the number of free 

parameters in G, and N' := 10 (see [19, Section 61). 

The problem of optimizing the BDeu score is NP-hard in general [20, 211; hence a search 

heuristic is used. The  Greedy Equivalence Search (GES) is a heuristic designed to search 

over the space of dependence-equivalent Bayes net structures. The GES search with BDeu 

score is implemented in most Bayes learning software packages, such as Tetrad [77], the 

BNT for Matlab [69], and Weka [14]. We shall give a more detailed description of the GES 

search in later chapters. For now, it suffices to know that it is a popular score-based search 

algorithm. 

6.2.2 Underfitting in Score-based Learning 

Maximizing a scoring function alone often leads to Bayes nets that underfit data. Hence 

maximizing score often sacrifices the principle of I-map learning. 

Most scoring functions take the form of the likelihood regularized with the number of 

parameters in a Bayes net. For example, the BIC score, which approximates the Bayesian 

score [70, p 4571, has the form 

k 
BIC(d, G) := log(p(d16, G)) - , logm, 

where 6 is the maximal-likelihood estimation of Q, rn is the size of sample d; and k is 

the number of parameters in Q.  Therefore, an algorithm based on such type of scoring 

functions is biased towards Bayes net structures with minimal parameters. Note that the 

principle of I-map learning requires an algorithm, in contrast, to be biased towards I-maps 

with minimal edges .  Hence two potential problems of score-based learning are: 

1. Minimizing the number of parameters is not always aligned with minimizing the num- 

ber of edges. 

2. An underfitting structure often has higher score than an I-map, although it does not 

fit dependencies because it has fewer number of para,meters. 

Later experiments illustrate both problen~s. 
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Figure 6.1: A Bayes net with fewer edges than parameters. 

P(D=O) (A, B )  = (0,O) (A, B )  = (1,O) (A, B )  = ( 0 , l )  (A, B) = ( 1 , l )  
C = 0  0.2920 0.0813 0.5247 0.5586 
C = 1  0.0382 0.8159 0.3206 0.7733 

Table 6.1: The conditional probability of variable D given variables A, B ,  and C of the 
Bayesian network in Figure 6.1. 

Parameters vs. Edges 

Let G be the Bayesian network shown in Figure 6.1. The variables A, B ,  and C denote 

three fair coins. The conditional probability table for D given A, B,C is shown in Table 

6.1. This Bayes net obviously has a large number of pwameters (9) and a relatively small 

number of edges (4). 

We randomly draw samples of various sizes from G, and the networks of the highest 

BDeu score (with structure priors O.OOlk and the equivalent sample size 10, where k is the 

number of parameters, see [19, Section 61) are shown in Figure 6.2. None of them has the 

same DAG pattern as G. The parameters in Table 6.1 do not entail ext,ra independencies 

for the target distribution; hence every I-map of the distribution should contain all edges in 

G. Therefore none of the resulting graphs with the highest BDeu score in Figure 6.2 is an 

I-map. This simple experiment shows that a score-based method is not designed to respect 

the principle of I-map lexning and it often fails to return even an I-map. 

(a) 50 data points (b) 100 data points (c) 150 data points (d) 200 data points 

Figure 6.2: Structures with the highest BDeu score over the variable set { A ,  B, C, D) on 
four samples generated from the Bayesian network in Figure 6.1. In the BDeu score used, 
the structure prior is O . O O l k ,  where k is the number of parameters in the structure; the 
equiva.lent sample size is 10. These are the settings used by Chickering [19] and Tetra,d [77]. 



CHAPTER 6. APPROXIMATING A N  MC-OPTIMAL BN LEARNER 

Underf i t t ing  of G E S + B D e u  

In most implementat,ions of score-based learning, greedy search is taken; therefore the Bayes 

net structure returned may not have the highest score. The  existence of greedy search does 

not help reduces the problem of underfitting. We again consider the GES algorithm with 

the BDeu score (GES+BDeu). This is the default combination used in various Bayes net 

structure learning packages, such as Tetrad [77] and BNT [69]. 

We use an experiment to demonstrate the underfi1;ting problem in GES+BDeu. We 

randomly generated Bayes nets over a set of binary variables, and then generated random 

samples of various sizes from these networks and feed them to GES+BDeu. For the priors 

of GES+BDeu, we used the default setting in Tetrad. We here only describe the case of 10 

variables; other settings return similar results. The number of edges in the resulting networks 

are box-plotted in Figures 6.6, 6.7, 6.8, and 6.9. The  ratios of the number of parameters 

are box-plotted in Figures 6.10, 6.11, 6.12, and 6.13. (The number of pammeters is used by 

the MDL score [84, 381 to measure the complexity of a model. For the sake of comparison, 

we also show in the fig~ircs the  result,s of the PC algorit.hm and our IGES algorithm, which 

will be introduced in the following chapter.) These figures clearly indicate that GES+BDeu 

under Fits small-to-medium sized samples. 

6.3 Underfitting in Constraint-based Learning of Bayes Net 

Structure 

Earlier works by Spirtes, Glymour, Scheines [93], and Pearl [76] have shown that it is possible 

to recover Bayes nets from observational data  using conditional independence information. 

This is the so-called constraint-based approach of learning Bayes net structure. The chal- 

lenge of implementing constraint-based learning lies mainly a t  orienting arrows using noisy 

independence information. In this section, we briefly review the assumptions and mecha- 

nisms underlying current constraint-based algorithms, in particular the PC algorithm. We 

point out a problem in the way the PC estimates independence information. 

Before moving on to spccific alg~ri t~hms,  we introduce a concept that helps us understand 

constraint-based learning. 

Definition 6.3.1 (d-separating collection). Let G = (V, A )  be a Bayes net, and X, Y be 

two nodes in G. 
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1. The  comple t e  d-separa t ing  collection of X and Y, denoted s,ty, consists of a.11 

sets S c V \ {X, Y)  such that X and Y are d-separated by S in G. 

2. A nonempty subset of the complete d-separating collection will be called a par t ia l  

d -separa t ing  collection, often written Sxv. 

3. A partial d-separating collection consists of all d-separating subsets of neighbor(X) u 
neighbor(Y) \ {X, Y)  is called the s t a n d a r d  d-separa t ing  collection, denoted siY. 

Relation among a complete d-separating collection, a standard d-separating collection, 

and an (arbitrary) partial d-separating collection is shown in Figure 6.3. 

Figure 6.3: The  
d-separating col 
the figure). 

collect 

all suhwts of V \ ( X ,  Y) 

relations among the complete d-separating collection (sXK~), the standard 
lection (SgY), and an (arbitrary) partial d-separating collection (S,uv in 

6.3.1 C o n s t r a i n t - b a s e d  L e a r n i n g  A l g o r i t h m s  

We shall outline the PC algorithm. Irrelevant details of the algorithms are omitted so that 

the main problem can be revealed. 

The PC A l g o r i t h m  

The  PC algorithm is considered by many the most popular constraint-based causal discovery 

algorithm; the algorithm has been implemented in Tetrad [77] and the Bayes Net Toolbox 

for Matlab [69]. A full description can be found at [93, page 84-85]. A brief outline of the 

PC algorithm is as follows. 

Inpu t s :  A sample from a distribution generated by the Bayes net structure. 
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Outpu t s :  A Bayes net pattern. 

S t age  1: Fast Adjacency Search.  

1. Start with a complete undirected graph G over the set V of variables. 

2. Repeat the following step: For each edge X - Y in G, estimate a partial d- 

separating collection gxY using conditional independence test. The estimation 

is designed such that sxv either contains one d-separating set or none. 

3. If 3,. y is nonernpty, remove the edge X - Y from G. 

The justifica.tion for this stage is that a nonempty partial d-separating collection S x y  

of X ,  Y implies non-adjacency between X and Y [82, Proposition 11. 

The  resulting graph G is undirected and called a skeleton.  At the same time, we 

obtain a singleton estimation >,~y for each pair of nonadjacent nodes X , Y  in G. 

S tage  2: Coll ider  Identification. For each unshielded triple (X ,  Y, 2) in the skeleton, 

direct the path X - Y - Z as X + Y c Z if Y is contained in the only set in sXz. 
The justifimtion for this stage is that,, with tho faithfulncss assumption, a d-separating 

set must contain Y if it is not a collider on X - Y - 2, a,nd it must not contain Y if 

it is not a collider on X - Y - Z (see Definition 5.2.2). 

I s; z 
aU subscts of V \ ( X ,  Z )  

Figure 6.4: Estimation of a singleton d-separating collection by the PC algorithm sXyz. 
Since it has only one element, noise may cause it to fall completely out of s!&. 

For the P C  algorithm, Stage 1 (fast adjacency search) affects the skeleton of the final 

graph, whereas Stage 2 affects the direction of arrows in the resulting DAG patterns. 
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6.3.2 Underfitting with the PC Algorithm 

The performance of Stage 1 in the PC algorithm is directly related to the accuracy of partial 

d-separating collections 3x1.. Since s x y  contains only one element, it matters only whether 

that element of sxY falls in the complete d-separating collection ~ , f ( ~  (see Figure 6.4). 

The PC algorithm uses Fisheria.n significance test of conditional independence to esti- 

mate the d-separating collection sxY. Let X, Y be two nonadjacent nodes in the resulting 

skeleton and d be the training sample. The d-separating collection estimate sxY is gener- 

ated by as follows: 

sxy +8 
for all S g neighbor(X) u neighbor(Y) do 

Let the null hypothesis Ho be X U  YIS. 

Set the significance level a: with a small number (e.g., 0.05 in Tetrad [77]). 

Calculate a test statistic and its P-value p. 

if p > a t h e n  

Add S into sXy (accepting X U  Y IS) and exit. 

end if 

end for 

Fisherian significance test To understand why the above procedure leads to inaccurate 

estimation of Sxy, we briefly review Fisherian significance test. 

In a significance test, a distribution of a test statistics (e.g., x2 in X2-test of conditional 

independence) exists assuming the null hypothesis. If the value of the statistics on a sample 

is extreme under the distribution, then "we shall say that in this case the deviations from 

expectatio~l are clearly significant" (quote f ro~n [30, Chapter 41). In the context of condi- 

tional independence test, if the P-value goes under the significance level a that we ha.ve 

assigned beforehand, then the independence is very unlikely to be true. In other words, 

it happens only with probability at most a. On the other hand, the P-value being above 

the significance level a: does not mean that the independence is likely to be true (for an 

in-depth discussion, see [go]). Therefore if we use the procedure previously described to 

estimate SXY, it often falls off s;, because we assume a null hypothesis to be true when 

we are really just not sure of the falsity of the opposite. 

To summarize, unorthodox use of significance test in the PC algorithm leads to many 

incorrect independencies and hence missing edges (underfitting) in the constructed network. 
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(a) 50 data points (b) 100 data points (c) 150 data points (d) 200 data points 

Figure 6.5: Structures returned by the PC algorithm on four random samples generated 
from the Bayesian network in Figure 6.1. The significa.nce level used in the PC algorithm 
is 0.05. 

Examples of M a r k o v  Condi t ion  Violation 

We apply the PC algorithm over a sequence of samples generated the network in Figure 6.1. 

We observe similar results as in Figure 6.2; that is, none of the resulting networks is an 

I-map of the distribution. 

For randomly generated networks and samples, results similar to GES+BDeu are shown 

in Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, and 6.13. These figures clearly indicate the 

~nderfit~ting problem causcd by t,he PC algorithm3. 

6.4 Summary 

With the NP-hardness of exact implementation of fast mind change optimal learner, a 

11atura1 approxilnation is to find any one minimal I-map consistent with the observed de- 

pendencies. This requires a learner to be consistent, that is, being an I-map of observed 

dependencies. 

Score-based learning and constraint-based learning are two most common approaches for 

learning Bayesian network structures. Although they are based on different interpretation 

of Bayesian network structures, they share a common problem: underfitting the target 

distribution on small-to-medium samples. In other words, they do not always output an 

I-map of observed dependencies. 

The  following chapter will study a 1ea.rning algorithm that combines the two approaches 

to approximate mind change optimality. 

31n a boxplot, the middle black dot denotes the median, the box prescribes the upper and lower quantile 
(containing 50% or so data),  and the dashed appendages encode adjacent values. For complete explanation 
of box plots, see [96]. 
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10 nodes, 10 edges in the true graph 

rC 
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50 100 200 400 800 1600 6400 50 100 200 400 800 1600 6400 

sample size 

Figure 6.6: Number of edges in resulting pa.tterns when true patterns have 10 edges. For 
each predefined sample size; up to 10 Random DAGs are generated over 10 nodes. When the 
sa.mple sizes are smdl ,  the GES algorithm and the PC algorithm produce far fewer edges 
compared to the true graph. The IGES algorithm, in contrast, reduccs the underfitting 
problem. 
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10 nodes, 20 edges in the true graph 

GES IGES 

sample size 

Figure 6.7: Number of edges in resulting patterns when true patterns have 20 edges. For 
each predefined sample size, up to 10 Random DAGs are generated over 10 nodes. When the 
sample sizes are small, the GES algorithm and the PC algorithm produce far fewer edges 
compared to the true graph. The IGES algorithm, in contrast, reduces the uliderfittir~g 
problem. 
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10 nodes, 30 edges in the true graph 

IGES 
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GES 

Figure 6.8: Number of edges in resulting patterns when true patterns have 30 edges. For 
each predefined sample size, up to 10 Random DAGs are generated over 10 nodes. When the 
sample sizes are small, the GES algorithm and the PC algorithm produce far fewer edges 
compared to the true graph. The IGES algorithm, in contrast, rcduces the underfitting 
problem. 
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10 nodes, 40 edges in the true graph 

GES IGES 

sample size 

Figure 6.9: Number of edges in resulting patterns when true patterns have 40 edges. For 
each predefined sample size, up to 10 Random DAGs are generated over 10 nodes. When the 
sample sizes are small, the GES algorithm and the PC algorithm produce far fewer edges 
compared to the true graph. The IGES algorithm, in contrast, reduces the underfitting 
problem. 
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10 nodes, 10 edges in the true graph 

50 100 200 400 800 1600 6400 50 100 200 400 800 1600 6400 

sample size 

Figure 6.10: Ratio of the number of parameters in resulting patterns compared to the true 
number of pammeters. For each predefined sample size, up to 10 random target patterns 
are generated. Target patterns have 10 edges over 10 nodes. 
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10 nodes, 20 edges in the true graph 

sample size 

Figure 6.11: Ratio of the number of parameters in resulting patterns compared to the true 
number of parameters. For each predefined sample size, up to 10 random target patterns 
are generated. Target patterns have 20 edges over 10 nodes. 
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10 nodes, 30 edges in the true graph 
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sample size 

Figure 6.12: Ratio of the number of parameters in resulting patterns compared to the true 
number of parameters. For each predefined sample size, up to 10 ra.ndom target patterns 
are generated. Target patterns have 30 edges over 10 nodes. 
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10 nodes, 40 edges in the true graph 

GES 

sample size 

Figure 6.13: Ratio of the number of parameters i n  resulting patterns compared to the true 
number of parameters. For each predefined sample size, up to 10 random target patterns 
are generated. Target patterns have 40 edges over 10 nodes. 



Chapter 7 

Learning Bayes Nets by Adding 

Dependency Constraints 

All of these ways are usually too weird 

For norma.1 use, but useful only on 

occasion. That's another way to say 

that they are the perfect hack. 

from Per1 Hacks 

In the previous chapters, we ha.ve seen that given a sample of small-to-medium size, both 

constra.int-based methods and score-based methods may output a network that violates the 

I\/Ia,rkov condition. Hence they neither incidentally nor accidentally get close to being a 

candidate for a mind change optimal Bayes net learner. However, by leveraging the ideas 

from the two methods, we reach a way to apply the principle of I-map learning. In this 

chapter, we propose a new criterion that combines information from statistical tests with a 

score-based search; such methods were termed "hybrid" by [36, p.501. The basic idea is to 

combine conditional dependency constraints and a score function into a single criterion for 

evaluating a Bayes net structure G given sample d: maximize the score S (G,d )  given the 

constraint that G must satisfy the dependencies detected by a suitable statistical test. For 

the ease of comparison, we shall adopt more terms from machine learning than ones from 

learning theory. We hope tmhe trivial details will not blur the central idea of t,he method, 

which is to emulate a mind change optimal Bayes net learner. 

As we have seen, in Bayes net theory, a graph structure that entails a. set of dependencies 
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V is called an I-map for V. Thus our hybrid criterion corresponds to the constrained op- 

timization problem max{S(G, d)  : G is an I-map of conditional dependencies V). We have 

shown evidence that GESfDBeu often underfits the true Bayes net structure. Several p r e  

vious studies have also suggested the tendency of many score-based methods to learn graphs 

that are sparser than the target structure [27, 1, 191. The motivation for adding dependency 

constraints is to correct the tendency of these score-based methods towards underfitting the 

data with overly sparse models. We also found that dependency information helps the 

learner to correctly orient edges; as shown later. 

We need to address two main issues to apply our hybrid learning criterion: (1) choosing 

a statistical test for identifying the set of dependencies 2) appropriate for a given data 

sample d,  and (2) computing a Bayes net structure that optimizes (at least approximately) 

the score given the dependencies 23. In this chapter, we follow a simple exhaustive query 

strategy thak applies a statistical test (here, X 2 )  to d l  conditional independencies of the 

form X L  Y S ,  where X a.nd Y are distinct variables, S is a set of variables disjoint from X 

and Y, and the size of S is bounded by a consta.nt k. The constant k is a parameter of the 

system; our experiments inclicat-e that even with a fairly small bound of k = 3, the system 

detects helpful dependency constraints, at reasonable computational cost. Note that our 

approach relies only on dependencies detected by the sta.tistica1 test, not independencies. 

In statistical tests of independence, the null hypothesis is independence, so we follow the 

test when it rejects the null hypothesis. We do not, however, accept the null hypothesis 

when the test fails to reject. To motivate this, observe that (at small to medium sample 

sizes) a. rejection is a quite reliable indicator that the null hypothesis is false, but failure to 

reject is a less reliable indicator that the null hypothesis is true. Since we treat the output 

of the statistical test as a constraint for the score-based search, it is important that this 

information is correct. 

Once a set of conditional dependencies is found, the next question is how to apply the 

score criterion computationally to guide a learning algorithm. As computing a Bayes net 

structure tha.t optimizes a. given score filnction is difficult [ Z l ] ,  it is necessary to use a local 

search heuristic. We provide a general schema for adapting any local search algorithm to 

perform this constrained search with dependencies. Adapting a local search procedure for 

constrained score optimization raises two main issues: 2a) carrying out the local constrained 

search, and 2b) choosing an initial graph as the starting point. For our implementation, we 



CHAPTER 7. LEARNING BNS WITH DEPENDENCY CONSTRAINTS 76 

chose to adapt the state-of-the-art GES search procedure 165, 191 for constrained optimiza- 

tion; we refer t,o the resulting procedure as IGES (for "I-map + GES"). Under mild s tandad  

assumptions, GES and IGES provably converge to the same output in the sample size limit 

when IGES is given correct dependency information. The GES procedure searches in two 

phases over patterns that  represent equivalence classes of directed acyclic graphs (DAGs). 

In the first phase, the search expands an initial sparse pattern until i t  reaches a local ma,xi- 

mum in the score function. In the second pha.se, the GES search prunes the pattern through 

edge deletions until it reaches a. local maximum. Our ada.ptation of GES search continues 

expanding the pattern in the first phase until it arrives a t  an I-map of the dependencies 23. 

(Thus the difference is that if a pattern P is not an I-map of D, then IGES may add an edge 

to P even if this operation moves the search to a lower scoring pattern.) The  IGES pro- 

cedure has the same pruning phase as GES except that the search considers only patterns 

that are I-ma,ps of 23. For the starting point of the constrained search, we use the output of 

the unconstrained search - because the starting pattern tends to be close to a constrained 

local optimum, this leads to a fast search. That is, we view the constrained search as a post- 

processor for tlic urumstrairied search. The 1nai11 c f i c t  of our post-processing is to expand 

an insufficiently complex model by fitting the additional dependency constraints observed 

in the data. In a sense, this is dual to common post-processing procedures in Machine 

Learning where an overly con~plex structure is pruned. Thus I-map learning is implemented 

as separate module in addition to the original score-based search. Experiments have shown 

that on small to medium sample sizes, maximizing the BDeu score and related scores tends 

to select Bayes net structures that are sparser than the target graph generating the data. 

For such structures, the main effect of our post-processing is to expand an insufficiently 

complex model by fitting the additional dependency constraints observed in the data. This 

contrasts with common post-processing procedures in Machine Learning where a,n overly 

complex structures is pruned. Figure 7.1 shows the components of our algorithm. 

For evaluation, we performed a number of experiments con~paring GES search based 

on the well-established BDeu score function [40] with and without dependency constraints. 

We present simulation results where the target graphs are randomly generated Bayes net 

structures and compare the graphs learned with and without dependency constraints to the 

target graph. 

These  experiment.^ illustrate how, for small to medium sample sizes, adding dependency 
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Figure 7.1: Constrained Optimization as Postprocessing. A local search procedure applied 
to a sample produces an initial graph. A statistical significance test is used to produce a 
set of conditional dependencies. The local search procedure, constrained to satisfy these 
dcpel~dencies, outputs a final graph. 

constra.ints corrects some of the underfitting tendency of parameter-count based score func- 

tions. In order to fit the observed statistically significant dependencies, constrained learning 

tends to add a.djacencies and arrowheads missing from the unconstrained search model. (Ar- 

rowheads ma,y be missing when we search for pattern graphs; see Sections 2.1 a.nd 7.3.) In 

our experiments, the constrained search model has lower KL-divergence than the uncon- 

strained search model, which is evidence that the additiond structure is importa.nt for the 

distribution defined by the target model. 

7.1 Related Work 

There are many constraint-based algorithms that employ statistical tests to reconstruct 

Bayes net graph structure [93, 61, 181. Many of these methods use the "single link deletion" 

strategy [106]: if a significa.nce test does not reject a null hypothesis X I L  YIS, infer a 

conditional independence and mark variables X and Y as nonadjacent. As we do not 

infer independence from failure to reject, our approach does not rely on the single edge 

deletion strategy. Many statisticians recommend against inferring the truth of the null 

hypothesis when the null hypothesis is not reject,ed [41]; our use of statistical tests follows this 

recommendation and is more conservative tha.n the use of tests in previous constraint based 

algorithms. For more discussion of independence testing in constraint based algorithms, 

see [70, p.5931, [93, Sec.5.6). There are several previous Bayes net leaxning algorithms that 

may be classified as hybrid algorithms (e.g., [27, 321). While these algorithms do consider 

statistical measures (e .g . ,  mutual information), they do not incorporate the out,come of 
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a statistical test as a constraint that the learned model must satisfy. Combining such 

constraints with score-based sea,rch is ba,sed on the principle of I-map learning, and is a 

novel feature of our system. A number of previous studies have observed the tendency of 

score-based methods to learn graphs that are sparser than the target structure 127, 1, 191. 

Our experimental methodology mainly follows that of previous investigations. 

Several theoretical results have been established about the computational complexity of 

learning Bayes nets that satisfy a given set of dependencies. Bouckaert shows that finding 

an edge-minimal or parameter-minimal I-map for a given dependence oracle is NP-hard [13, 

Lemma. 4.51. Our previous work [go] has shown that learning unique I-map given depen- 

dencies is also NP-hard. To our knowledge, there has been no work on heuristic algorithms 

for computing an edge-minimal I-map for a given set of dependencies. Chickering et al. 

prove that minimizing a. score is NP-hard even if the learner has access to an independence 

oracle [21]. This problem specification is different from constrained optimization because 

the goal is not to use dependency information as an aid to finding a graph that opt-imizes 

the score with respect to all possible network structures, but to find a graph that optimizes 

the score with respect to the network structures that satisfy the dependencies. Moreover, 

our motivation for employing information about, dependencies is not to speed up the compu- 

tation of a graph with an optimal score, but to improve the 1ea.rned model (see Figure 7.2). 

7.2 Algorithm Design for Constrained Score Optimization 

This section discusses the major design choices in our system, following the architecture 

outline of Figure 7.1. 

7.2.1 Use of Statistical Tests for Detecting Conditional Dependencies 

I-map 1ea.rning requires a, statistical significance test for conditional independence hypotheses 

of the form X U  YIS. As with constraint based methods, the test can be chosen to suit 

the type of available data and application domain. We used the traditional X 2  test for 

categorical data. Since I-map learning treats the results of the statistical test as "hard" 

constraints, it is important that the decisions of the test be as reliable as possible, even on 

small to medium sample sizes. To this end, our system follows two principles for applying 

the significance test. (1) Take "rejection of the independence null hypothesis" as indicating 
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Figure 7.2: Relation of algorithms in terms of speed and accura.cy with small-to-median 
samples. Both the GES and the PC algorithm run fast, but  output incorrect networks. 
Depending on the number of constraints a.dded, the IGES algorithm may achieve improve 
accuracy, at the cost of extra running time. 

dependencies, but draw no conclusion from failure to reject. 

Tlie significame levcl controls a trade-off between reliability and informativeness: a lower 

significance level implies more reliable rejections of the null hypothesis, but also fewer conclu- 

sions t,o guide the search (see Figure 7.4). We follow previous constraint based methods [17] 

and use a fixed significance level for sta.tistica1 testing; our experiments set a standard sig- 

nificance level of 5%. (2) Require a minimum sample coverage for the X 2  test: the number 

of samples in each cell Ci must be a t  least m x pi, where pi is the probability of cell Ci 

according to the null hypothesis, and ,m is the pre-assigned minimum sample size. This 

suggests that the X2 dist,ribution should be a reliable approximation to the dis tr ib~t~ion of 

the test statistic [28, Ch.9.11. If the sample coverage condition is not met, we draw no 

conclusion from the outcome of the test. (A similar sample coverage condition for the G2 

test is discussed in [93, Section 5.51. The authors, however, assume dependency when the 

conditional is not met.) 

If the number of variables is small, it is feasible to exhaustively apply the statistica,l 
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Figure 7.3: Statement space of distribution P  consists of Z(P)  and V(P). Given a small 
sample, the membership of some statements are more uncertain than others. In particu- 
lar, the larger the conditioning set, the more uncertain its membership is. Therefore, the 
estimation of the boundary is statistically unstable. 

Figure 7.4: Rejections by independence test provide a reliable subset of dependencies. The 
lower the significance level of each test, the smaller but the more reliable the subset of D(P) 
is obtained. 

test to all possible conditional independence statements. This corresponds to a procedure 

known as "all subsets variable selection" in model selection. The exhaustive testing strategy 

quickly becomes infeasible as the number of variables grows [107, p.59). We use two restric- 

tions: (1) Test only pairwise conditional independence statements of the form X U  YIS  

for single variables X and Y. Testing only pairwise independence statements can be theo- 

retically justified if we assume the corripositio~i property (Section 2.1), which implies that 

independence X U  Y I S  holds if and only if X V  Y ( S  for each pair of varia,bles X E X and 

Y E Y. Chickering and Meek [22] shows that the composition property holds for a large 

class of probability distributions. (2) Exhaustively test the pairwise conditional indepen- 

dence statements, but only for conditioning sets S whose size is bounded by a constant k. 

In our experiments, we set the bound k = 3. One advantage to generating the dependency 

constraints independently of a local search strategy is that they serve to check errors made 
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by the heuristic search. Our simulations provide evidence that even this limited correlation 

analysis yields constraints that improve the qua.lity of the model learned in score-based 

search. As a side benefit, the statistically significant conditional correlations between vari- 

ables are often in themselves of interest to a user. Other possible strategies for choosing a 

set of conditional independencies to test include the following: 

1. Statistical Queries From Constraint-Based Methods: constraint based methods per- 

form a sequence of statistical tests, so one possibility is to run a constraint based 

a lg~r i t~hm on the sa.mple first and t,hen apply constrained optimization with the set 

of dependencies detected by the constraint based method. Some researchers have ap- 

plying a constraint based method to obtain an initial graph G, which serves as the 

starting point for a score-based search [94]. With this approach, it is natura.1 to ap- 

ply constrained optimimtion such that the score-based search not only starts with 

the output of the constraint based method, but also utilizes the conditional depen- 

dencies discovered by the constraint based method's statistical tests as constraints 

for score optimization. Our experiments so fa.r do not indicate that this combination 

of constraint based and score-based methods leads to better result than our simpler 

approach, but further investigation seems warranted. 

2. Search-Based Hypothesis Choice: Several hybrid methods compute statistics such as 

conditional mutual information to measure the strength of association between two 

variables; the statistics to be computed are based on the graph constructed at, the 

current state of the local search [27] This approach can be adapted for I-map learning. 

For example, suppose the current graph G contains an edge A - B and the search 

algorithm considers deleting the edge to move to a graph GI. Let M be the Marltov 

blanket of A in G' and suppose that B # M. Then if a test indicates thak A$ BIM,  a 

dependency not covered in GI, we could direct the search not to delete the edge A - B. 

An attractive feature of constrained optimization on this approach is that although the 

decision to test a certain conditional independence is made locally depending on the 

state of the search, if a dependency is detected, it becomes part of a global cache that 

constrains the search at all future stages. A disadvantage of search-based hypothesis 

choice is that errors made by the local search algorithm may propagate to choosing 

less than optimal dependencies to test. In contrast, if the dependency constraints are 

generated independently of the local search, they can serve to check its errors. 
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F'rom the perspective of classical statistics, statistical test-s should be done without any 

knowledge about the samples. Since the above two approaches dynamically select which 

hypotheses to test based (directly or indirectly) on the data observed so far, they raise the 

difficulty of interpretiug the test results. 

7.2.2 Heuristic Search Algorithm with Dependency Constraints 

Assume that a set of statistically significant dependencies D of the form XJ! Y IS have 

been found by the procedures of the previous section, and that a sample d is given. We 

describe a general schema for adapting any local hill-climbing search procedure L with score 

function score(G,d) to perform constrained optimization of the score that honors the set 

of dependencies V.  We refer to the constrained version of the L search procedure as I L  

search (for I-map + L). If the current state of the search is a graph G, a local search 

procedure L moves to the highest scoring graph G' in a neighborhood nbdh(G) provided 

that score(G1, d) > score(G, d) .  The neighborhood constrained by dependencies V is dcfincd 

as follom. A graph G' is a member of n b d h v ( ~ )  if 

1. G' E nbdh(G) and (V(G1) n V) 2 (D(G) n D), and 

2. score(G1, d) > score(G, d)  or 

(V(Gt ) n V) 3 (V(G) n V). 

The first clause requires that a candidate graph G' for constrained optimization must 

be a candidate graph in the original search space, and that it must cover at  least as many 

of the given dependencies V as the current graph G. The second clause stipulates that a 

candidate graph G' must make progress, in that G' has a higher score or covers more of 

the given dependencies. F'rom a current graph G, the I L  search moves to the neighboring 

candidate graph G' E n b d h D ( ~ )  with maximum score. Note that IL  search may move 

to a graph with lower score G' if G' covers more dependencies and all the neighbors of 

G have a lower score than G. The I L  search terminates with graph G when there are 

no more candidate graphs, that is, when n b d h v ( ~ )  = 0. Given the modified definition of 

neighborhood, this schema can be extended in an obvious way to local search strategies 

more complex than hill climbing. 

The  next observation asserts that adapted local search finds a local optimum for our 

hybrid criterion, provided that the basic operations of the local search procedure make it 
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possible to reach an I-map for any set of dependencies V. This is the case if single edge 

addition is one of the local operations; all local search algorithms that we know consider 

single edge additions. 

Observa t ion  3. Let L  be a local search procedure for score S that has single ed,ge addition, 

as one of its basic operations. Then  on  any sample d, the constrained local search I L  with, 

dependenczes D terminates with a local score optimum. G that i s  an I-map for D .  Thut is, 

i f  G' is  a neighbor in nbdh(G), then G' is not an I-map of V ,  or score(G1, d )  5 score(G, d ) .  

Proof. If a current graph G does not cover the dependencies V ,  the constrained I L  search 

can apply an operation (e.g. ,  add an edge to G) to increase the set of covered dependencies 

V, so Clause 2 applies. So the search covers more and more of the dependencies in 2) until 

it reaches an I-map of V.  Then Clause 1 implies tha.t all subsequent candidates are I-maps 

of V, and the search continues until no neighboring I-map of V has a higher score. Then it 

terminates with a local score optimum given D. 0 

For our system we adapt the GES (Graph Equivalence Search) local search algorithm. 

GES is a state-of-the-art Bayes net seaxch strategy that satisfies optimality guarantees in 

the large sample limit and has been extensively evaluated [19]. The general conclusion 

from experimental evaluation is that GES performs very well in finds high-scoring high- 

quality graph models (albeit a t  increased computation time), arguably better than any 

other standard deterministic local search algorithm. Since our goal is to investigate whether 

adding dependency constraints improves the quality of learned models, we want to employ 

a high-quality score-based method such as GES. We describe GES only in sufficient detail 

to indicate how we adapt GES search; for a full description see [19]. The GES algorithm 

seaxches the space of patterns in two phases. During the growth phase, GES adds an edge 

to a. current pattern .rr, subject to several conditions, until reaching a local score maximum. 

The growth phase terminates with a pattern n if no valid edge addition to n increases the 

score. The  definition of d-separation implies that adding an  edge to a pattern n leads to a 

pattern T' that covers strictly more conditional dependencies. So during the growth phase 

of the GES algorithm, the set of covered dependencies increases monotonically. During the 

subsequent shrink phase, GES deletes a.n edge from a current pattern n, subject to severa.1 

conditions, until reaching a local score maximum. GES is particularly na.tura1 for I-map 

learning because the second part of Condition 1 of I L  search is always satisfied during 

its growt,h phase. Applying the I L  schema defines the constrained IGES, which continues 
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adding edges to a pattern until it reaches an I-map of V and deletes edges only if the result 

is still an I-map of 2). The algorithm is as follows: 

Inputs: A sample from a distribution generated by the Bayes net structure. 

Outputs: A Bayes net pattern. 

Dependencies Generation: Generate a set of dependencies V using statistical testing. 

Growth Phase: 

1. Start with the Bayes net pattern n over the set V of variables with no edges. 

2. Repeat the following step: replace n with maximum-score pattern n' E nbdh+(n) 

if either s w r e ( d )  > score(n)  or V ( d )  n 2) > V ( n )  n 2). 

3. Go to the shrink phase. 

Shrink Phase: 

1. Repeat the following step: replace .rr with maximum-score pattern d E n b d h P ( n )  

if score(-/rl) > score(7r) and V(T' )  > Z). 

2. Output the pattern when the sea.rch stops. 

The next observation relates the outputs of GES and IGES. 

Observation 4. Let P be any joint probability distribution over the variables V .  Suppose 

that V i s  a set of conditional dependencies that hold in P and let d be a given sample. 

1. If the growth phase of G E S  terminates with a n  I-map n of P,  then the growth phase 

of I C E S  with dependencies Z) terminates with the same pattern T .  

2. If th,e shrink phase of GES terminates with an I-map n of P ,  then the sh,rin.k phase of 

IGES with dependencies V te.rmino,tes with the same pattern n .  

Proof. Clause 1: Suppose that on some sample d, the growth phase of the GES produces a 

sequence T I ,  ..,n of patterns where x is an I-map of P. Then each pattern xi+l is a score- 

maxinlizing neighbor of ni, so IGES also reaches .rr. Since the pattern .rr is an I-map of P, 

it is also an I-map of V ,  so the IGES terminates with T ,  as required. Clause 2: Suppose 

that on some sample d,  the shrink phase of the GES goes through a sequence n l ,  ..,T of 
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patterns where n is a parameter-optimal I-map of P. Suppose for contradiction that any of 

the pa.tterns -rri is not an I-map of the dependencies 23. Since the shrink phase deletes edges, 

the set of covered dependencies monotonically decreases, and so no pattern -rri+l, ..., .rr is an 

I-map of 2). But then IT is not an I-map of P, which contradicts our supposition. This shows 

that all pa,tterns in the sequence  IT^, .., IT are I-maps of D, and also local score-maximizers. 

So the IGES follows the sequence T I ,  .., IT, as required. 0 

Chickering [19] proved that  if the scoring function is consistent, and the generating 

distribution P satisfies the composition property, then the following statements hold with 

probability 1 in the sample size limit: (1) the growth phase of GES yields an I-map of 

the genemtive distribution P, and (2) if P has a perfect I-map, and the shrink phase 

of GES starts with an I-map of P, then it terminates with the perfect I-ma.p of P. 

Observation 4 together with Chickering's results implies that  we can expect IGES to behave 

like GES when the sample size is large. The motivation for taking into account statistically 

significant dependencies is that we expect fitting these dependencies to speed up convergence 

to a correct graph structure. The next section presents evidence from simulation studies 

validating this expectation. 

7.3 Evaluation 

Our experiments investigate the BDeu score function. The  BDeu score has a Ba,yesian 

theoretical foundation, and has been shown to be a competitive score for learning Bayes 

net models [40, 191 (see also Chapter 6.2). The BDeu score requires specifying a prior 

equivalent sample size and a structure prior. We followed [27] and used a uniform structure 

prior in order to maximize the impact of the data-driven likelihood tern1 in the BDeu score 

and thereby minimize underfitting [27, Section 51. In additional, we also used the default 

structure prior O . O O l k  in Tetra.d [77] and [19], where k is the number of parameters in 

that  structure. For the convenience of exposition, we simply refer the two settings as the 

structure prior 1 and the structure prior 0.001. Our simulations examine models with binary 

 h he assumptions are that the score function is consistent and the generative distribution P satisfies 
the composition property. Chickering's theorems actually guarantee somewhat stronger properties of the 
result of GES than the ones we sta.ted. We note that the convergence guarantees still hold if we replace the 
assumption that the statistical test returns only correct dependencies by the weaker assumption that the 
dependencies are correct with probability 1 in the sample size limit. 
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vasiables, as in [I] .  The  methodology follows previous studies of Bayes net learning such 

as [I, 94, 27, 821. Our code is written in Java, and uses many of the tools in the Tetrad 

package [77]. 

7.3.1 Evaluation Criteria 

Following [27], We consider both topological criteria for the resulting DAGs and dist,ribu- 

tional criteria for the fitted model. 

As in [27], [94], [82], we consider the following set of topological criteria for the resultzing 

g-aph. 

1. number of added edges(E+), 

2. number of removed edges ( E - ) ,  

3. number of added arrowheads (A+),  

4.  number of removed arrowheads (A-), 

5. number of added unshielded colliders (C+) ,  

6. number of removed unshielded colliders ( C - ) .  

To aid interpretation of t,he experimental results, we combine false po~it~ives and false 

negatives using the F-measure from information retrieval [104, p.1461, which is defined as 

2(True Positive) 
2(True Positive) + (False Positive) + (False Negative) 

As in other Bayes net learning studies (e .g . ,  [27, I ]) ,  the distributional criterion consid- 

ered is the Kullback-Leibler (KL) divergence of the fitted model to the true distribution [54]. 

Given an operating or target distribution f t,hat generates the training sample, and a DAG 

G inferred from the sample, let fG be the fibted distribution (with MLE estimation of pa- 

rameters). Then the KL divergence of fG to f is defined as KLD( f ,  fG)  = IEf(log f / f ~ )  
where Ef denotes the expectation with respect to distribution f .  Our simulations use an 

exact method to compute KL divergence. Note tha.t fitting a DAG with more edges or 

pa.rameters does not necessarily define a distribution with smaller KL divergence, because 

the pxameter  estimation in a complex model often has large bias [107]. 
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7.3.2 Simulation Results 

The target models considered were randomly generated networks with number of nodes n 

varying from 4 to 10. We used Tetrad's random DAG generating functions 

GraphUtils. createRandomDagC0 to build the networks with 3n or (i) edges, whichever 

is sma,ller. For each graph, samples of various sizes (ranging from 100 to 12800) were drawn 

and presented to both the IGES algorithm and the GES algorithm with the BDeu score. 

To reduce the va.riance in performance measurement, we repeated the experiment 10 times, 

resulting in 10 random graphs for each combination of sample size and node count, and took 

the average of all measures. The sampling procedure is as follows. 

for all n such that 4 5 n. 5 10 do 

for i = 1 to 10 do 

Genera.te a DAG with n nodes and min(3n, (;)) edges. 

From the DAG, create a Bayes net Gi with binary variables and randomly generated 

conditional probability tables. 

Let m = 100. 

repeat 

Draw m random instantiations from Gi. 

Double the value of m (i.e., m t 2 x m). 

unt i l  m > 20000. 

end for 

end for 

Figures 7.5-7.13 show the KL-divergence and F-measures for adjacency, arrow and col- 

lider identification. On small-to-medium size training samples, the IGES algorithm pro- 

duces structures with smaller KL-divergence and larger F-measures, which indicat,e a better 

agreement with the target graph structure compared to the GES algorithm. Table 7.1 shows 

typical values for topological meas~urements in the experimental results. 

Our postprocessing approach runs GES twice, the second time with dependencies. A 

potential explanation of the learning improvement is that just iterating GES by itself leads to 

better results, independently of adding the dependency constraint. To test this hypothesis, 

we also compared a twice iterated GES to single GES and to GES with post-processing by 

IGES. The double-run GES sometimes gives different results from the singlerun GES, but, 

no clear improvement is discernible; however, GES with post-processing by IGES leads to 
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Table 7.1: Measures of structural errors for the randomly generated graphs. Here / V /  denotes 
the number of variables, m the sample size; the other symbols are defined in the text. E+ 
the number of added edges, E- the number of removed edges, A+ the number of added 
arrows, A- the number of removed arrows, C+ the number of added unshielded colliders, 
C- the number of removed unshielded colliders. The IGES algorithm tends t,o have fewer 
false negatives, a t  the cost of more false positives. As the sample size increases, the IGES 
and the GES algorithm produce similar measures. For each sample size, 10 samples are 
generated. 
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an improvement over the double GES similar t,o the improvement over the single GES. 

The  run-time difference between GES and IGES is mainly due to the number of i nde  

pendence tests performed by IGES. The  number of independence tests with n. vasiables is 
n2(n-2)k- '  c:=~ (;) . (ni2), which is bounded by (k- l ) l  = O(nk+') [93, Ch.5.4.2.11. For 10 vari- 

ables, the runtime of the IGES and the GES algorithms on some typical sample sizes are 

shown in Table 7.2. 

Table 7.2: Runtime (in seconds) of the IGES and the GES algorithms on some random 
samples. The  samples are drawn from a random network of 10 nodes. 

For off-line analysis of a dataset, the increased run-time seems acceptable for the ex- 

pected improvement in the quality of the learned model. There is considerable room to 

improvc t,he efficiency of our currcnt. implc~ncnt~ation for t,imc-critical applications; for ex- 

ample, during the grow phase of the IGES algorithm, it is not necessary to perform a 

statistical test X V  YIS if the current graph already contains an adjacency X - Y. The 

most important step towards a fast application of our hybrid criterion would be a query 

strategy for generating a feasibly small yet informative set of dependency constraints. 

Our experiments provide a proof of concept that motivates further research into com- 

bining score functions with statistical tests. They show that even a very high quality 

searchfscore algorithm often fails to fit statistically significant dependencies on small-tc- 

medium sample sizes, and that adding these dependencies as a constraint typically speeds 

up convergence to the target structure. 

7.4 Summary 

This chapter introduced a new criterion for learning Bayes nets: find the graph G that max- 

imizes a given score, subject to the constraint that G cover the dependencies detected by 

a statistical test. This is a hybrid criterion that combines the basic idea behind constraint 

based approaches-to treat the output of a statistical test as constraints on the learned 

structure-with the search+score framework. The practical motivation for the hybrid cri- 

terion is that many standard scoring criteria based on parameter counts tend to produce 
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overly sparse graphs; our criterion selects expanded graphs that fit the observed statistically 

significant correla,tions. 

We showed how to adapt a generic local search+score procedure for the constrained 

optimization required by the hybrid criterion. In the case of GES search, the resulting IGES 

search procedure prova.bly maintains the convergence and optimality gua,rantees associated 

with GES (provided that, the conditional dependencies accepted by the statistical test hold 

in the target distribution). We presented evidence from simulation studies (from both real- 

world structures and synthetic ones) with the well-established BDeu criterion that fitt,ing 

dependencies even with relatively small conditioning sets (at, most 3 variables) leads to 

better learning, a,s evaluated both by distributional and topological criteria,. Most model 

selection criteria penalize networks with more parameters. For Bayes net structures with 

discrete variables, the number of parameters is large compared to the number of variables, 

and thus the penalization term tends to lead to underfitting. We expect that our hybrid 

approach will be effective for score functions that penalize parameter counts. 

In sum, our hybrid criterion is a bridge between the two main frameworks for Bayes net 

learning, score-based and constraint-based. It  appears to be s principlcd and cffcctive way 

to address underfitting tendencies in Bayes net learners. 
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Figure 7.5: Evaluation measures of learned graphs from target graphs with exactly 5 nodes 
and up to 10 edges. The  structure prior is set to 0.001, the ssmple prior to 10. Average is 
taken over every 10 samples. 
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Figure 7.6: Evaluation measures of learned graphs from target graphs with exactly 5 nodes 
and up to 10 edges. The  structure prior is set to 1, the sample prior to 10. Average is taken 
over every 10 samples. 
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Figure 7.7: Evaluation measures of learned graphs from target graphs with exactly 5 nodes 
and up to 10 edges. The structure prior is set to 1, the sample prior to 1. Average is taken 
over every 10 samples. 
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Figure 7.8: Evaluation measures of learned graphs from target graphs with exactly 8 nodes 
and up to 24 edges. The  structure prior is set to 0.001, the sample prior to 10. Average is 
taken over every 10 samples. 
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Figure 7.9: Evaluation measures of learned graphs from target graphs with exactly 8 nodes 
and up to 24 edges. The  structure prior is set to 1, the sample prior to 10. Average is taken 
over every 10 samples. 
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Figure 7.10: Evaluation measures of learned graphs from target graphs with exactly 8 nodes 
and up to 24 edges. The structure prior is set to 1, the sample prior to 1. Average is taken 
over every 10 samples. 
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Figure 7.11: Evaluation measures of learned graphs from target, graphs with emctly 10 
nodes and up to 30 edges. The structure prior is set to 0.001, the sample prior to 10. 
Average is taken over every 10 sa,mples. 
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Figure 7.12: Evaluation measures of learned graphs from target graphs with exactly 10 
nodes and up to 30 edges. The structure prior is set to 1, t,he sample prior to 10. Average 
is taken over every 10 samples. 



CHAPTER 7. LEARNING BNS W I T H  DEPENDENCY CONSTRAINTS 

Dlalribulional discrepancy to the true pattern Edge ldenllficatlon 

Arrow identification 

samolc size 

Run lime 

Figure 7.13: Evaluation measures of learned graphs from target graphs wit,h exactly 10 
nodes and up to 30 edges. The structure prior is set to 1, the sample prior to 1. Average is 
taken over every 10 samples. 



Chapter 8 

Conclusion 

People learn inductively. 

Joel Peterson 

This thesis establishes an inductive principle in terms of mind change complexity in 

the context of Gold's learning paradigm: When  a learner changes its mind to a h,ypothesis, 

the hypothesis should correspond to  a language that uniquely has the h.ighest accumulation 

order in the subproblem entailed by previous ob.servations. When applied to the problem 

of learning Bayes net structure, the principle leads to a hybrid criterion that combines 

score-based search with information from statistical tests. Empirical evaluation provides 

evidence that the application of the inductive principle effects a. substantial improvement 

on the machine learning task. 

8.1 Contributions of the Thesis 

The contributions of the thesis to learning theory and machine learning are summarized as 

follows. 

Mind Change Efficient Learning We investigated a refinement to the notion of identzJ- 

cation with bounded mind change in Gold's lmguage learning paradigm. Briefly, a learner is 

mind change optimal (or mind change efficient) if the learner achieves the best possible mind 

change bound not only for the entire problem, but also relative to any data sequences that 

thc learner may oobservc. We provided necessary slid sufficierit conditions for a learner to be 

mind cha,nge efficient. These results show that mind change optimality st,rongly constrains 
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the conjectures of learners in a similar way as Occam's Razor does for model selection prob- 

lems. Hence mind change optimality can be viewed as Occam's Razor for language learning 

problems. 

Topological Cha rac t e r i za t i on  of M i n d  C h a n g e  Complex i ty  We studied the notion 

of mind change complexity in the framework of point-set topology. Previous work has shown 

the usefulness of topology for learning theory. We showed how to view a language collection 

as a topological space; this allowed us to apply Cantor's classic concept of accumulat~~on 

order which assigned an ordinal to a language collection, if the collection had bounded 

accumulation order. We showed that a language collection L is identifiable with mind change 

bound a by a learner if and only if the accumulation order of the topological space entailed by 

L: is a. This result establishes a purely information-theoretic, structural necessary condition 

for language identification with bounded mind changes. 

A New M o d e l  for  Cons t ra in t -based  Learn ing  of Bayes  N e t  S t r u c t u r e  We an- 

alyzed the problem of learning the structure of a Bayes net in the framework of Gold's 

language learning paradigm. We based the learning on observed conditional dependencies 

among variables of interest, which to our knowledge is a new practice in constraint-based 

learning of Bayes net. Applying learning criteria in this model leads to the following results. 

1. The mind change complexity of identifying a Bayes net pattern over variables V from 

dependency data is (I:), the maximum number of edges for graphs over V.  

2. There is a unique fastest mind-change optimal Bayes net learner, when convergence 

speed is evaluated using Gold's domina.nce notion of "uniformly faster convergence". 

A N e w  F r a m e w o r k  for  Combin ing  Cons t ra in t -based  a n d  Score-based Learn ing  of 

Bayes  N e t  S t r u c t u r e  We developed a hybrid criterion for learning Bayes net structure; 

the criterion combines search based on a scoring function S( . )  with information from statisti- 

cal tests: Given a sample dj search for a structure G that maximizes the score S(G,  d ) ,  over 

the set of structures G tha,t satisfy the dependencies detected in d. Again, we rely on the 

statistical test only to reveal conditional dependencies, not conditional independencies. We 

showed how to adapt local search algorithms to accommodate the observed dependencies. 

Simulation studies with t,he GES search and the BDeu scoring function provide evidence 
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that the additional dependency information leads to a substantially improved structure on 

small to medium samples. 

8.2 Recommendations for Further Study 

There are several avenues for future work, in both Gold's paradigm and Bayes net theory. 

M i n d  C h a n g e  Op t ima l i t y  a n d  T i m e  Efficiency An interesting open issue in the gen- 

eral theory of SMC-optimal learning is the relationship between mind change optimality 

and time efficiency. As t,he example of one-variable patterns shows, there can be a trade-off 

between time efficiency and producing consistent conjectures, on the one hand, and the 

procrastination that minimizing mind changes may require on the other (see Sect. 4.2). We 

would like to characterize the learning problems for which this tension arises, and how great 

the trade-off can be. For example, if a language collection C is closed under intersection, 

then conjecturing n(C10) for every data sequence (T yields an SMC-optimal learner that 

never procrastinates (the so-called "closure algorithm" [9]). The language collection LINEAR 

and the learner QLIN are an instance of an intersection-closed language class and the corre- 

sponding closure algorithm. Are there other general sufficient or necessary conditions for a. 

procrastination-free SMC-optimal learner? 

O t h e r  P o t e n t i a l  Appl ica t ions  of the T h e o r y  As we have seen, mind change optimality 

imposes strong constraints on learners. This means that we can apply our theory to design 

optimal learning algorithms for problems of interest. Such an analysis can validate existing 

inference procedures, as in the case of lea,rning conservation laws, or lead to the development 

of new ones, as with one-variable patterns. In Chapter 5, we have seen a mind change optimal 

algorithm that  identify a correct graph in the limit from independence data. Other potential 

applications include the following. For pattern languages, the next challenge is to find an 

SMC-optimal algorithm for learning a general pattern with arbitrarily many variables. An 

important step towards that goal would be to determine the accumulation order of a pattern 

language L(p )  in the space of pattern languages [59]. Another application is the design of 

SMC-optimal learners for logic programs. For example, Jain and Sharma have examined 

classes of logic programs that can be learned with bounded mind changes using explorer 

trees [45]. Do explorer trees lead to mind change optimal learning algorithms? 
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Simulation Studies of Constraint Optimization with Other Score Functions and 

Search Methods We presented evidence from simulation studies (from both real-world 

structures and synthetic ones) with the well-established BDeu criterion that fitting depen- 

dencies even with relatively small conditioning sets (at most 3 variables) leads to better 

learning, as evaluated both by distributional and topological crit,eria. &lost model selection 

criteria penalize networks with more parameters. For BN structures with discrete variables, 

the number of passmeters is large compared to the number of variables, and thus the pe- 

nalization t,erm tends to lead to underfitting. We expect that our hybrid approach will be 

effective for score functions that penalize parameter counts-a task for future research is 

to verify this expectation for other scoring functions than BDeu. An important task for 

f~l t~ure work is t,o improve the efficiency of implem~nt~ing IGES search, mainly in terms of 

the number of statistical tests performed and the time for checking i f  a gra.ph satisfies the 

given set of dependencies. For example, if the starting point of the IGES search contains 

an edge A-B, t,hen during the growth phase it is not, necessary to test if A$ BIS for any 

variable set S. 

The idea of imposing dependency constraints on Ba,yes net learning is quite general and 

can be applied to modify CB methods as well as score-based methods. For example, the 

well-known P C  algorithm [93, Ch.51 performs a number of independence tests, but does not 

always cover the dependencies returned by the test (it does cover the independencies). A 

natural application of our approach is to expand the structure learned by the P C  search to 

satisfy these dependencies; our experiments so far indicate that this leads to improvements 

for P C  search similar to those for the BDeu score. 

Adaptively Select Statistical Independence Tests In constrained score optimization 

of Bayes net structure, an important and challenging topic of research is how to target 

statistical independence tests so that they are maximally helpful for a given stage of model 

construction. Constraint-based and hybrid methods follow a strategy for applying statistical 

tests/computing sta,tistical measures to aid the model search as it, proceeds; it should be 

possible to adapt some of these ideas for constrained optimization. This could motivate 

interesting problems in both extremal combinatorics [48] and active learning [7][26]. 
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