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Abstract 

New statistical methods allow discovery of causal models from observational data in some 

circumstances. These models permit both probabilistic inference and causal inference for 

models of reasonable size. Many domains, such as education, can benefit from such methods. 

Educational research does not easily lend itself to experimental investigation. Research 

in laboratories is artificial and potentially affects measurement; research in authentic envi- 

ronments is extremely complex and difficult to control. In both environments, the variables 

are typically hidden and only change over the long term, making them challenging and 

expensive to investigate experimentally. 

I present an analysis of causal discovery algorithms and their applicability to educational 

research, an engineered causal model of Self-Regulated Learning (SRL) theory based on the 

literature, and an evaluation of the potential for discovering such a theory from observational 

data using the new statistical methods and suggest possible benefits of such work. 
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Chapter 1 

Introduction & Motivation 

People make constant use of causal relationships in our everyday lives. We recognize many 

different types of causes, be they mechanical, psychological, or historical. We understand 

mechanical causes, like pressing on a gas pedal causes the car to accelerate and move; we 

understand psychological causes, that being mean to someone causes them to become angry 

and defensive. We understand historical causes, that I caused myself to fail a class because 

I didn't go to class and study and that things would have been different if I'd only not gone 

to that last party. 

Scientists also make use of causal relationships. Medical researchers evaluate whether a 

drug causes a patient to recover, economists study the causes of successful economies, and 

chemists study what chemicals and conditions cause a reaction. 

However, the methods of regular people and scientists differ considerably. Scientists per- 

form experiments to discover causes, whereas proper scientific experiments are not available 

to ordinary people in their day to day lives. People do 'experiment' in the colloquial sense, 

we try new things, change one thing at a time and see what happens, but we do not do 

experiments in the way that scientists do. Scientists do randomized controlled experiments 

and regard them as the only reliable way to discover causal relationships. 

Scientists typically do not do randomized controlled experiments in their every day 

lives though, because they, like everyone else, do not have the resources to do randomized 

controlled experiments for all things, even if it were possible, or sensible. Doing a randomized 

controlled experiment to test the effect of a hot element burning your hand would be frowned 

upon by most. Somehow though, people learn many reliable causal relationships without 

doing randomized controlled experiments. They do a combination of 'observational studies' 
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i.e. looking at the world and thinking, and 'quasi-experimental studies' where they look 

at the world, change something, and then look at the world some more, and draw some 

conclusions. 

We are often wrong about the causal relationships we assume in everyday life. Scientists 

are wrong about relationships too, but they have formal methods of evaluating the likelihood 

that they are right or wrong. The everyday behaviour of individuals lacks these formal 

mathematical methods. 

The inability to always do randomized controlled experiments isn't just a problem for 

everyday life, but for scientists. We cannot always do randomized controlled experiments. 

We cannot do experiments to see if smoking 'really' causes cancer for ethical reasons, and 

we cannot do experiments on lots of things in the social sciences for practical reasons, but 

we still seek to discover such relationships. 

People manage to learn causal relationships all the time, and it seems natural to try 

to formally characterize how to discover causal relationships from observational data. This 

would allow us to know with some certainty when we are right, when we are wrong, and 

how likely each is. 

The classic response to such an attempt is to assert that correlation does not imply 

causation, and logically it does not. However, the impossibility of discovering causal rela- 

tionships from observational data in any circumstance does not follow. Over the last two 

decades several groups of researchers, in particular Judea Pearl and colleagues at UCLA and 

Peter Spirtes group at CMU, as well as David Heckerman at Microsoft Research have begun 

to answer this question by making major advances in formally representing the notion of 

causality, providing mathematical manipulations of it, and algorithms for discovering causal 

relationships from data. 

These advances now allow us to discover some causal relationships formally, given certain 

assumptions, from purely observational data. We can also characterize what relationships 

can be learned in this way, and what assumptions are necessary. They also allow us to eval- 

uate when, how many, and which experiments are necessary to discover causal relationships 

we cannot derive from observational data alone. 

In addition to their formal properties, these causal models are graphical, and are rea- 

sonably easy for people to understand. They allow the compact representation of the causal 

claims made in a field for easier understanding by researchers in that field. 

These methods, though relatively new and still developing, have many possible areas 
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of application, and have begun to be applied in epidemiology, psychology, and the social 

sciences, as well as in Artificial Intelligence and its applications. In this thesis I evaluate 

how they may be applied to research in education, specifically Self-Regulated Learning. 

1.1 Background 

1.1.1 Self-Regulated Learning 

Self-Regulated Learning (SRL) theory attempts to explain academic learning and achieve- 

ment of learners in terms of various characteristics and processes individuals use to regulate 

their own behaviour. It emphasizes the student as an active participant in the learning 

process, as opposed to a passive recipient of information provided by a teacher. 

There are several different theoretical perspectives in SRL which draw inspiration from 

different areas of scholarship and offer different explanations for the relationships between 

the key variables as well as their relative importance. Most perspectives agree that key 

factors include the learner's motivation, goals, self-monitoring, volitional strategies, and 

self-evaluation and reflection behaviours. 

The popular models view SRL as a three or four stage cycle of broadly defined phases 

through which a learner passes repeatedly as they perform an academic task. Within each 

phase learners perform a variety of actions and employ skills to  regulate and improve their 

learning behaviour. A wide variety of observational measures have been used to evaluate 

SRL and interventional studies have been conducted with positive results with some of these 

results being incorporated into mainstream educational practice [lo]. 

SRL theory covers a large number of variables and situations which interact in a complex 

a difficult to control environment. The complexity of the environment and large number of 

variables, many of which are not directly observable, makes it difficult to conduct studies 

which provide causal relationships. 

SRL research has accumulated a formidable body of literature over the last 30 years of 

active research. As is inevitable with research involving people in complex domains, much 

of the research seems to conflict, and it is difficult to draw systematic causal conclusions. 

I propose using the new representations and methods of graphical causal models to 

improve both the ability to draw conclusions from complex observational studies, and to 

clearly and formally make sense of the existing results in the literature. 
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1.1.2 Representations in Education 

Educational researchers have a variety of existing representations for theories and relation- 

ships. The basic form of the theoretical literature in SRL is narrative, presenting natural 

language descriptions of theories as well as of the empirical results which support them. 

As is typical in the social sciences, SRL research analyzes data using statistical methods 

and the empirical results supporting the theories are presented in the language and repre- 

sentations of statistics and probability. Observational studies report descriptive statistics 

about the variables they measure as well as correlations between variables, often accompa- 

nied by intuitive attempts to propose causal relationships but warnings about doing so from 

observational data alone. When such studies do propose causal relationships and models, 

they often do so via multiple regression analysis, or through structural equation modelling 

and its specialization, path diagrams. 

There is a large divide between the representation of the theoretical papers and the 

empirical papers in terms of formality and specificity. This makes it difficult to see exactly 

the relationships between the theories and the empirical data, and evaluate the support. The 

narrative nature of the reports also increases difficulty in combining results from multiple 

studies. 

Meta-analysis provides one technique for evaluating the results of many studies, but it 

requires a researcher to parse the narrative results to discover the relationships and seek 

possibly incomplete or not fully described data in the papers. Graphical causal models pro- 

vide one means of representing a model thoroughly, understandably, and formally, which 

can be useful in helping researchers come to a common understanding of the domain. Struc- 

tural Equation Models (SEM), and their special cases path diagrams and factor diagrams, 

are the closest relatives of graphical causal models in the educational literature, and in fact 

functional graphical causal models can be regarded as an extension of SEM. 

Structural Equation Models provide a graphical model of the causal relationships be- 

tween variables of interest. However, the use of these models has generally been limited 

to conducting comparisons of a priori models proposed by a researcher, or evaluating the 

fit of a particular such model to a data set. They ignore the large class of other models 

which could be considered, many of which are equivalent to the models in question under 

observational data, thus limiting our ability to believe that the results of path diagrams are 

in some sense true. 
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1.1.3 Causal Models 

There are several varieties of graphical causal models, which will be discussed in detail in 

the following chapters. All of these models have in common the ability to represent causal 

relationships between a set of measured variables. The representations differ in their ability 

to represent latent variables and cyclic relationships. They also differ in their amenability 

to algorithms which discover causal relationships from observational data and efficiently 

perform both causal and probabilistic inference. The different models rest on different 

assumptions about the structure of the domain being modelled. 

By using a combination of techniques from the graphical causal model literature, we 

are able to discover some causal relationships from observational data, even allowing latent 

variables, and improve the model using both background knowledge and experimental re- 

sults. We may also learn parametrisations of the models from data, and conduct causal and 

probabilistic inference over the models to  answer questions of interest. 

While graphical causal models can be proposed a priori by researchers as with SEM, 

the ability they provide to discover an equivalence class of models directly from data pro- 

vides additional power to the researcher. The equivalence class indicates which potential 

relationships between variables require background knowledge or experimental results to 

determine. This knowledge allows a researcher to guide their investigation into productive 

areas, collecting observational data only where useful and experimental data only where 

necessary. 

Researchers have designed algorithms for performing causal inference over graphical 

causal models, allowing computational answers to questions about the likelihood of world 

states given an intervention, and counterfactual questions about alternative states of the 

world. These algorithms extend the capabilities of both SEM and existing probabilistic 

representations, and should prove useful in educational research. 

The two greatest limitations faced by these methods are the assumptions they require in 

order to connect statistical relationships with causal relationships, and the amount of data 

necessary for reliability. Detailed arguments have been made as to the when the assumptions 

can be expected to hold and these will be discussed in Chapter 3. The data requirements 

are dealt with at length in Chapter 5 
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1.2 Contributions 

This thesis offers two primary contributions to the literature. The first contribution is a pair 

of engineered causal models derived from the theoretical and empirical literature of SRL. 

The second contribution is to demonstrate the ability to discover such causal models of SRL 

from observational data, and assess to what degree this can be done. To my knowledge, 

both of these contributions are novel within the educational literature. 

The first contribution is two engineered causal models of SRL, one based on the the- 

oretical literature and one based on a composite of empirical results from the literature. 

These models were created by conducting a review of the SRL literature to identify vari- 

ables and relationships between those variables that have been established via experiment 

or observation, as well as the theoretical relationships expected by SRL researchers. 

Such models have several uses. Graphical causal models clarify the state of the theory in 

a clear and formal manner. Due to the narrative form of the literature it may not be clear 

exactly what claims have been supported and which have not, what different theoretical 

perspectives predict and how they relate. Represented as graphical causal models, they 

are clearly and formally defined, including what variables are implicit, explicit, covert, 

measurement variables, and the relationships between them all. 

Modelling the theory this way allows us to attempt to draw conclusions about appro- 

priate interventions to take based on the theory. For example, if having goals (self-set or 

otherwise) causes a student to perform better, we can intervene to set goals for the student. 

However if having goals is only correlated with performance as a result of a common cause 

like goal orientation, then we should attempt to intervene to cause goal orientation. They 

also provide the ability to incorporate additional observations and experiments to improve 

the model over time. If we are monitoring the behaviour of students with a system like a 

Intelligent Tutoring System (ITS), we can continue to add collected data to our model to 

improve our confidence in the values. 

The second primary contribution of my thesis is to demonstrate to what degree such a 

model can be discovered from observational data using structure learning algorithms and 

how much observational data would be required to reach the point of statistical indistin- 

guishability. Two models are statistically indistinguishable when they cannot be differenti- 

ated using a given set of assumptions and statistical data. Additionally this indicates which 

relationships would require additional background information or experimental results to 
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fully determine the causal relationships. 

Knowledge of how much of the causal relationships we can learn from observational data 

is useful because it is generally easier to collect observational data than experimental data. 

Hence we would like to learn as much as possible from the observational data. We would 

also like to know what assertions about causal relationships we can and cannot establish 

with observational data, and approximately how much data is required because it governs 

our distribution of effort, and our confidence in our conclusions. 

As a minor contribution I also analyze the models to determine the which experimental 

investigations would be necessary, and how many such investigations are theoretically re- 

quired. It is my hope that the methods outlined in this thesis will motivate the use of these 

representations in SRL research and educational research in general. 

1.2.1 Methodology 

Creating Engineered Models 

Two separate methods were used to construct the engineered models. In order to create 

the theoretical model a literature review was conducted of SRL papers which described 

the theory and the relationships it predicts, as well as review articles which summarized the 

body of empirical work in terms of the theories. This resulted in a collection of papers which 

were then read closely for variables' definitions and any correlational or causal relationships 

which were proposed between the variables. These relationships were then composed to 

form a complete model. 

To create the empirical model a correlation matrix was derived from existing meta- 

analysis in SRL. The correlational relationships suggested by these results was then em- 

ployed using the FCI algorithm (Algorithm 3.3.2) with background knowledge to create the 

empirical network. 

Causal Structure Learning 

In order to demonstrate the ability to discover such causal models from observational or 

statistical data I took several steps. 

The Fast Causal Inference' (FCI) algorithm, (described in Algorithm 3.3.2) is one al- 

gorithm for discovering causal models from conditional independence relationships, which 

can be determined from statistical data. When the statistical data is perfectly accurate it 
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represents the true dependencies and independencies which exist in the population. When 

supplied with the conditional independence relationships, either directly or through accurate 

statistical data, the FCI algorithm produces a representation of the equivalence class. Causal 

models represent the conditional independence relationships between the variables. Using 

the TETRAD IV software package [52] I employed the FCI algorithm on the conditional 

independence relationships represented by the engineered theoretical model to discover the 

model up to the point of statistical indistinguishability. By doing this from the conditional 

independence relationships represented by the graph we avoid any artifacts due to sampling 

variation. I then incorporate temporal background information to determine what if any 

additional links can be established. 

The equivalence class of the theoretical model establishes the upper limit of our ability 

to discover causal relationships from observational data alone, assuming that data is perfect. 

Unfortunately infinite perfect data is not available. In order to determine the amount of 

observational data required to accurately discover the equivalence class I next conducted a 

simulation study repeatedly using the engineered models to generate statistical data samples 

and then applying the causal discovery algorithms to that data, increasing the amount 

of data generated and evaluating the match of the discovered model against the model 

discovered directly from the conditional independence relationships, thus establishing the 

viability and limitations of discovering causal relationships from observational studies. 

Causal Analysis 

Finally I use theoretical results about the number of experiments necessary to evaluate 

which and how many experiments would be required to fully orient the causal network. I 

then compare this to the number of experiments required if such methods are not possible. 

1.3 Summary 

Causality is an essential concept to people in our everyday lives and to scientists and philose 

phers attempting to understand the world. The formalization of causal representation and 

reasoning over the last two decades offers an opportunity to bring more powerful analysis 

of cause and effect in the statistical sciences, and educational research provides an ideally 

challenging domain. I offer a demonstration of the ability of these formal models of causal- 

ity to represent SRL theory clearly and concisely, and the new possibilities they offer for 
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educational research. 

1.3.1 Overview 

I present a brief review of self-regulated learning in Chapter 2. In Chapter 3 I provide a 

detailed account of the causal modelling and structure learning methods used in the thesis 

and their foundations. I detail the methods used in model creation and analysis in Chapter 

4. Chapter 5 covers the results of the model engineering and analysis and their meaning, 

and in Chapter 6 I conclude and present pointers to further work which could be done in 

this area. In the appendix I cover background material and definitions in graph theory, 

probability, and statistics. 



Chapter 2 

Self Regulated Learning 

2.1 Overview 

Self-regulation of behaviour is a general concept in psychology and is studied in many 

different domains. SRL research focuses on self-regulation of learning, primarily in academic 

or classroom environments. SRL theory places the learner at the centre of the learning 

process as an engaged, proactive agent [78, 10, 421. Students are considered self-regulated if 

they actively manage their own learning behaviour, setting and evaluating goals, monitoring 

the progress, using strategies and tactics for learning and accomplishing their goals, and 

conducting self-evaluation in order to improve their goals and strategies. This is in contrast 

to theories which have influenced American educational reform over the past 50 years, which 

regard the learner as reactive instead of proactive, as a recipient of taught information [78]. 

SRL is a complex concept with multiple theories which differ in inspiration and empha- 

sis on different learning elements. Boekaerts and Corno [lo] suggest several assumptions 

common to most if not all SRL theoreticians: 

"...students who self-regulate their learning are engaged actively and con- 

structively in a process of meaning generation and that they adapt their thoughts, 

feelings, and actions as needed to affect their learning and motivation." 

"...biological, developmental, contextual, and individual difference constraints 

may all interfere with or support efforts at  regulation." 

"...students have the capability to make use of standards to direct their learn- 

ing, to set their own goals and sub-goals." 
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"...there are no direct linkages between achievement and personal or con- 

textual characteristics; achievement effects are mediated by the self-regulatory 

activities that students engage to reach learning and performance goals." 

In essence the researchers believe that actively engaged students take a proactive role in 

their learning employing learnable skills, strategies, and tactics in all their different domains 

of action, and that while their personal or environmental characteristics may affect their 

performance, those effects take place in the context of a students SR.L skills. 

In particular SRL researchers consider self-awareness of cognitive control strategies and 

learning strategies. Metacognition, the process of thinking about thinking, is a key aspect 

in the ability of learners to regulate their own behaviour. The process of learning in a 

self-regulated fashion is conceived of as a cycle. The student repeatedly passes through a 

series of phases as they learn, taking relevant actions and using appropriate cognitive and 

meta-cognitive strategies and tactics as they progress through the cycles. 

SRL researchers have proposed, used, and evaluated multiple models of the SRL. The 

differing models emerge from different theoretical orientations, differentiate and organize 

the phases differently, and focus on different actions and behaviours within each [46]. Some 

focus more on overtly visible behaviour, others on more covert behaviour. Zimmerman 

identifies seven major theoretical traditions in SRL: operant, phenomenological, social cog- 

nitive, information processing, volitional, Vygotskian, and constructivist [77]. While the 

major traditions generally agree on the few assumptions noted above, their stance on what 

is significant and included in SRL research varies with their source of inspiration. Two 

major models of SRL are the social cognitive model of Zimmerman [79]. I discuss these two 

models briefly below, and the model of Winne et al. based on information processing [65]. 

2.1.1 The Zimmerman Three Phase Model 

Zimmerman describes three phases in SRL. The forethought phase, which involves goal 

setting and strategic planning, the performance phase, which occurs when the learning be- 

haviour is taking place, and the self-reflection phase which covers processes which occur after 

the learning effort. Within each phase there are multiple self-regulatory behaviours which 

can take place. Zimmerman describes many of those which have already been investigated 

in [79]. 
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Figure 2.1: The Zimmerman Three Phase Model of SRL 

Social Cognitive 

Social cognitive theory considers learning to be situated in and affected by physical and 

social environmental factors as well as by internal cognitive factors. The social cognitive 

perspective considers SRL skills to be context dependent. Some SRL skills are expected 

to generalize, such as goal behaviours, but students are not expected to be equally self- 

regulated in all situations and at all times. Self-regulation can exist to the extent that the 

learner has some control over the factors of learning, including social, physical, and cognitive 

environments; if all of the factors are specified externally then a learner cannot self-regulate. 

A main cognitive component of SRL for social cognitive theory is self-efficacy beliefs. 

Self-efficacy beliefs, the belief of learners that they can successfully execute a strategy and 

accomplish their goal, are central to the social cognitive perspective. Self-efficacy beliefs 

have been found to influence performance and coping even when controlling for multiple 

additional factors [7]. 

2.1.2 Winne and Hadwin - Four Phase Model 

Winne and Hadwin proposed a four phase model with a consistent within phase structure 

of conditions, operations, product, evaluations, and standards (COPES) [65, 681. COPES 

distinguishes this model from others by providing a more detailed view of what is happening 



CHAPTER 2. SELF REGULATED LEARNING 13 

at each stage. The operations in COPES are cognitive operations, strategies, and tactics 

of the individual; the other components are all the various information inputs used by the 

operations or, in the case of products, created by operations. 

The model also embeds meta-cognitive monitoring as a key part of the operations at 

all points, evaluating the differences between products and standards to note discrepancies 

and feed that information back, allowing it to be used again. This produces a feedback loop 

within and throughout the stages which seeks to better match products to standards or to 

change standards. Additionally the stages are not seen as strictly ordered, and the student 

may move around between stages, with information flowing between them in other than the 

canonical ordering. 

Information Processing 

Information processing theory grew out of early results in coding theory by Shannon and 

others who defined the information content of a communication. These ideas were loosely 

applied by researchers seeking to establish connections between mind and brain accounts 

of cognition. The human mind was described in terms of two modules, memory and in- 

formation processing, which operated on symbols. Self-regulation within this environment 

was based on a negative recursive feedback loop attempting to reduce discrepancies between 

information on conditions and standards by which they are evaluated [78]. 

2.2 Met hods, Models, and Interventions 

2.2.1 Measurement Methods 

Boekaerts and Corno describe eight major categories of measurement methods used in SRL 

research [lo]; I reproduce their categories below with brief descriptions of the approaches. 

Self-Report Questionnaires attempt to measure learners' SRL behaviour via a series of 

questions which ask the learner to describe self-regulatory responses to various learning 

situations. Obseruations of Overt Behaviour record ongoing behaviour and 'score' it ac- 

cording to predefined coding system which determines what variables will be included for 

consideration. Counts of scores can be subjected to statistical analysis. Qualitative data 

(e.g. recordings of actions) can also be interpreted, but not statistically. Interviews gener- 

ally seek to obtain qualitative information about experiences during SRL. Interviews take 



CHAPTER 2. SELF REGULATED LEARNING 14 

several common forms, including unstructured interviews where learners tell stories of their 

behaviour, structured interviews where the interviewer asks questions which build upon 

each other, guiding the respondent, semi-structured interviews which allows researchers to  

adaptively select from a pre-defined list of questions as the interview progresses, and stimu- 

lated recall, in which students comment while watching a recording of themselves working. 

In Think Aloud Protocols students verbally report their thoughts/strategies etc while they 

work. This process is limited by the need to train learners beforehand, and it may impact 

the tasks due to the increased cognitive load experienced. It may also force the students to 

be more cognitively aware than they might otherwise be. With Traces of Mental Events and 

Processes the research attempts to identify observable traces (evidence) of student learning 

processes and code them for what each trace indicates. Situational Manipulations are ex- 

perimental studies where students' actions in the learning phase are connected with their 

performance. In Recording Student Strategies During Work students report their mental 

state with regard to particular variables at regular intervals. Finally with Keeping Diaries 

students keep a diary where they report their SRL behaviour, knowledge, and skills. Some 

students are more capable writers, which can affect the data. Like interviews, this method 

produces qualitative data. 

2.2.2 Experimental Methods 

While difficult to conduct, experimental investigations in SRL research are certainly possible. 

Bandura describes methods of experimental control and manipulation in investigations of 

self-efficacy beliefs [7]. Experimental investigations which attempt to investigate impacts 

while in an authentic educational environment are made more difficult by the complexity of 

the environment and the possibility for interactions between the groups. 

2.2.3 Statistical Met hods and Models 

Many of the measurement methods described above provide qualitative data about phe- 

nomena. Qualitative research can provide researchers with insight into which variables are 

important, which variables seem to have relationships, and give theoreticians an idea of 

the structure of the domain. However, most research in psychology, including educational 

psychology and SRL research is dependent on assessing quantitative data using statistical 

methods to draw conclusions about the relationships between its variables. 
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The power of these methods to draw conclusions accurately, and what conclusions can 

be represented with the methods are then essential to the ability to advance knowledge in 

SRL. 

Existing statistical techniques used in education research include 

0 Descriptive statistics 

Correlation 

0 Regression 

- Linear and nonlinear 

- Univariate and multivariate 

- Multi-level hierarchical 

0 Structural Equation Models 

- Path diagrams 

- Factor Analysis 

Descriptive statistics and correlations make no claims about causation, only statistical 

conclusions, i.e. correlations and conditional probabilities, can be drawn from descriptive 

statistics and correlation without additional assumptions or experimental results. Meta- 

Analysis is a popular technique for combining data and statistics, including descriptive 

statistics and correlations, recorded in multiple studies in the literature. Meta-analysis has 

the benefit of increasing statistical power of tests by increasing the effective sample size, 

and of consolidating information from many sources. It considers effect sizes, and uses 

simple techniques to combine them. However it does not directly allow one to draw causal 

conclusions unless experimental studies are being meta-analyzed. 

Regression testing is sometimes used to attempt to identify causal relationships by ana- 

lyzing how much variance variables 'explain' about each other. However, in general, regres- 

sion analysis per se makes no supportable claims about causation. Spirtes et al. [60] argue 

strongly that regression, as used, is in fact poorly suited to causal analysis in most cases. 

Structural Equation Models (SEM) are graphical representations of relationships between 

variables which have been in use in the social science for nearly 90 years. Linear SEM 

represents linear relationships between variables generally assuming a normal (Gaussian) 
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distribution. The relationship between variables is represented as a linear equation of the 

form y = px+u where y is the effect, x the cause, u the error term represents the effect of all 

other variables, and ,B is the path coefficient which quantifies the strength of the relationship 

between the variables [41]. They can be used to represent both measured variables and latent 

variables. The measured variables are often the results of surveys or other instruments where 

multiple measures are intended to estimate an unmeasured (latent) variable. In this case the 

measured variables are called the measurement model and the latent variables are called the 

structural model. In SEM an undirected edge represents a correlation relationship, and a 

directed edge represents a 'directed relationship' [25]. Structural Equation Models original 

interpretation did include causation, however that interpretation has fallen out of favour 

over time [39]. 

Path diagrams, also called path analysis, are a special case of SEM which excludes latent 

variables. In the terminology of Spirtes et al. [60] this is known as a pure measurement 

model. Pearl notes [41] that the causal assumptions in path diagrams are represented by the 

absence of links, which represents a definite absence of a relationship, whereas the presence 

of a link only represents the possibility of a cause. 

In psychology, SEM are often employed to analyze the results of observational studies, 

though they can represent experimental studies as well [25]. Social scientists generally use 

SEM in a confirmatory approach. The researcher proposes a model based on a theory or 

other considerations and then either tests the fit of the model to the data, or compares 

the fit of the proposed model against another baseline model. The a priori proposal of 

models presents a serious difficulty as model fit to data does not imply correctness of the 

model, and large sets of models which are statistically equivalent may exist. It appears 

that researchers are often unaware of or discount the existence of equivalent models, and 

are likely to overestimate the likelihood of the proposed model being correct [25]. The 

techniques I describe in the following chapters address this issue. 

2.2.4 Results of Educational Interventions 

There have been many different educational interventions made on the basis of different 

models of SRL. These vary from individual interventions to help with remediation of strug- 

gling students via strategy instruction to attempts to restructure classroom environments, 

to full school interventions, and the creation of computer mediated learning environments. 

Methods of academic strategy instruction have successfully been demonstrated to increase 
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achievement in multiple domains using path analysis methods, and have been incorporated 

into mainstream education [lo]. 

2.3 Summary 

SRL is a successful educational theory with a large literature that has contributed to a 

theoretical understanding of academic learning and to practical improvements in education. 

Researchers have attempted to derive causal relationships about SRL using the best statis- 

tical tools available to them combined with experimental investigations whenever possible. 

Unfortunately experimentation is very often not possible, and the statistical techniques for 

drawing causal conclusions otherwise are limited, prone to error, and require a great deal of 

subjective treatment leading to possible bias. Finally the scale of the literature itself and 

its narrative presentation presents a barrier to integrating, understanding, and communi- 

cating results clearly and accurately. The methods I describe in the following chapters can 

help address these issues by improving the formal statistical basis of causal inferences in 

SRL, offering a means to integrate results from multiple studies into causal conclusions, and 

providing a clarifying representation for theoretical and empirical causal claims. 



Chapter 3 

Causality and Causal Models 

In this chapter I review causal models in some detail and motivate the use of causal modelling 

in SRL research. 

3.1 Causality 

Causality has been a troubling concept for philosophers and scientists for generations. An 

intuitively obvious concept, it has been remarkably difficult to  define clearly and formally. 

In fact some statisticians, starting with Pearson, completely reject the concept as artificial, 

ill defined, and unnecessary. These statisticians define correlation as the fundamental rela- 

tionship between entities [39], and causation to be nothing more than convenient shorthand. 

Those who do not reject causation outright advance several potential definitions; I will focus 

on two: counterfactual causation and interventional causation. 

Causation has been defined in terms of counterfactual relationships. A counterfactual 

is a statement that is literally counter to fact, that is, something which did not happen. 

Counterfactual questions are about what would have happened had some factor been differ- 

ent from what in fact occurred. From the counterfactual perspective a causal relationship 

exists between two variables if the 'cause' occurred differently would have resulted in the 

'effect' occurring differently. Examples of counterfactual questions include: asking whether 

a poorly achieving student would be a good student if he had been in a smaller class, asking 

if the Iraq war would have happened if the September 11th attacks had been averted, and 

asking if Vancouver would be less livable if a third crossing of the Burrard inlet had been 

constructed. In causal language those questions are: is class size a cause of performance 
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gains in students, were the September 11th attacks a cause of the Iraq war, and is bridge 

and freeway construction a cause of decreased livability. Counterfactual questions are com- 

mon in our everyday lives, in political discourse, in the legal system where they are used to 

assign blame, and in making policy decisions. I address counterfactuals in more depth in 

the review however, my primary focus will be the interventional account of causation. 

Causality can also be defined in terms of intervention, also called manipulation. Essen- 

tially, a variable A is considered a cause of variable B if changing (manipulating) A results 

in a change in B. For example, we say that impending rain, and the accompanying increase 

in air pressure causes a barometer to rise, but the rising barometer does not cause the rain, 

or the air pressure. From the manipulation perspective this means that manipulating air 

pressure changes the barometer level but manipulating the barometer level does not change 

the air pressure or the rain. This practical definition is essentially what is used in random- 

ized controlled experiments throughout the sciences to detect causation. An experiment 

attempts to manipulate one or more variables while ensuring through randomization that 

the other variables have the same characteristics they would normally have. If an unmanip 

ulated variable changes with our manipulation we ascribe a causal relationship between the 

manipulated and unmanipulated variable. 

Spirtes et al. define causation thus: 

"We understand causation to be a relation between particular events: some- 

thing happens and causes something else to happen. Each cause is a particular 

event and each effect is a particular event. An event A can have more than one 

cause, none of which alone suffice to produce A. An event A can also be overde- 

termined: it can have more than one set of causes that suffice for A to occur. 

We assume that causation is (usually) transitive, irreflexive, and antisymmetric. 

That is, i) if A is a cause of B and B is a cause of C,  then A is also a cause of 

C,  ii) an event A cannot cause itself, and iii) if A is a cause of B then B is not 

a cause of A." [60] 

Maes et al. refer to Neapolitan defining causality thus: 

"Our operational definition of causality is as follows: a relation from variable 

C to variable E is causal in a certain context, when a manipulation in the form 

of a randomised controlled experiment on variable C ,  induces a change in the 

probability distribution of variable E, in that specific context." [26, 351 
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These definitions are more specific than the examples given previously, but greater pre- 

cision is required. The formalization of such definition~ of causality has allowed causality 

to be analyzed mathematically. I present formal definitions in Section 3.2.2. 

3.1.1 Importance of Causal Relationships 

The main argument I make for the importance of causal relationships and causal modelling 

is their usefulness. A model of the world is useful if it helps us understand and answer 

questions about the world. Causal representations allow us to answer a broader set of 

questions than stochastic representations. In a purely probabilistic model, represented by 

the joint probability distribution, we can answer questions about the correlation between 

any sets of variables. Probabilistic representations such as Bayesian networks can answer 

questions about the likelihood of one set of variables taking particular values, given that we 

have observed another set, and about which set of variables we should observe to obtain the 

most information about the likelihood of another set of variables taking particular values. 

Causal models add the ability to  answer questions about the likelihood of a set of vari- 

ables taking particular values if we intervene to change the value of another set of variables. 

The distinction may not seem large, but it has major implications. This type of question 

is asked often, for example, in trying to improve education, we are interested in how vari- 

ous factors relate to learning achievement because we want to take some action to improve 

achievement. Knowing the correlation of achievement with high self-efficacy beliefs is in- 

teresting, but what we want to know is if intervening to increase self-efficacy beliefs will 

cause an increase in achievement. These questions cannot be answered by purely stochastic 

models. 

The discovery of causal relationships is fundamental to science and to explaining how 

the world works in terms of the underlying mechanisms. In the social sciences such as 

economics or education, scientists try to determine which variables cause other variables and 

the strength of those relationships, such as the effects of taxation policies on the economy, or 

of negative feedback on academic performance. In medicine, we seek to understand whether 

a drug causes the remission of a disease, or whether a toxin causes an ailment. Historians 

also looks for causes, asking counterfactual questions about what historical events caused 

other events of interest, and how things might have turned out differently. 

One additional argument that has been made is that causal relationships are a natu- 

ral knowledge organization for human beings. Pearl argues that the causal organization 
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of knowledge is the most natural and fundamental [39], that it is how people organize our 

knowledge, and that people tend to ignore probabilistic information once they have learned 

the underlying causal relationships. This is in contrast to the traditional empiricist view of 

statistics, which defines correlation as the most fundamental relationship. Whichever rela- 

tionship is fundamental it is clear that we need techniques for answering both correlational 

and causal questions. 

3.2 Probabilistic Models vs Causal Models 

The most important differences between probabilistic models and causal models are the 

type of information they can represent and hence the type of questions they can answer. 

Probabilistic models can be used to perform probabilistic inference, answering questions 

such as "What is the likelihood of X if I observe Y?", "What is the prior probability of X", 

and "Which variable should I observe to gain the most information about X (other than 

X)?" These questions can either be answered directly from a joint probability distribution, 

or by using a probabilistic model which represents the joint probability distribution more 

efficiently, such as Bayesian Networks. 

Perhaps less obvious is what questions cannot be answered by stochastic models, but are 

answerable by causal models. Causal models allow for causal inference, answering questions 

such as "What is the likelihood of X if I do Y?", equivalently "What is the likelihood of 

X if I force Y to take on a particular value?" The difference between doing and seeing, 

elucidated by Pearl [39], is essential to the manipulative account of causation. Causal models 

allow us to answer questions about what will happen if we take action to change the world, 

instead of what will happen if we simply observe it. If we know that drinking and driving 

causes increased likelihood of car collisions, and car collisions cause increased likelihood of 

death, and we observe two cars get in a head on collision we have reason to increase our 

belief that the driver is both drunk and dead, but if we take control of the car remotely 

and cause the head on collision we still expect the unsuspecting driver to die, but we would 

have no reason to suppose him to be drunk. Our, rather immoral, intervention has broken 

the regular causal connection between drunk driving and traffic collisions, and trying to 

draw a conclusion solely from the correlation and drunk driving is erroneous. The change 

in circumstances invalidates our existing correlation and we have no way of recording the 

difference using probability alone. There is no way to write 'The barometer does not cause 
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the rain.' using the language of probability. We can only denote the dependency and only 

under static conditions. Causal models can also answer questions about counterfactuals 

such as "What is the likelihood that X would have been x if Y was y given that X was not 

x and Y was not y?" or more clearly "What would have happened if X had been different?" 

A wide variety of policy issues require answering causal questions. To take an example 

in education, a probabilistic question might be "If we observe that a student has high self- 

efficacy beliefs, what is the likelihood he will be a high-achiever?" a causal question "If 

we intervene to increase a student's self-efficacy beliefs, what is the likelihood he will be 

a high-achiever?" or "Will intervening to increase a student's self-efficacy beliefs cause an 

increase in his achievement?" or the counterfactual "Would a student's achievement have 

been greater if his self-efficacy beliefs had been higher?" The causal questions are clearly 

what we want an answer to, and those answers are not available from purely probabilistic 

models. Knowing that self-efficacy beliefs are correlated with performance does not tell us 

whether acting to increase an individuals self-efficacy beliefs would have an effect on their 

performance, and this is precisely what we want to know. 

Work in probabilistic models over the last twenty years, in particular the development 

of Bayesian Networks underpins much of the subsequent work in causal models. 

3.2.1 Bayesian Networks 

According to Pearl the role of graphs in probabilistic and statistical modelling is threefold: 

"1. to provide convenient means of expressing substantive assumptions; 

2. to facilitate economical representation of joint probability functions; and 

3. to facilitate efficient inferences from observations." 1391 

Bayesian Networks (BN), also called Bayesian belief networks or just belief networks, are 

a graph based representation of a joint probability distribution over a set of variables which 

accomplishes each of the above points. The BN consists of nodes and links between the 

nodes. The nodes represent variables, either discrete or continuous, and have attached con- 

ditional probability distributions. The links represent probabilistic dependencies between 

the nodes. 

The conditional probability tables attached to each node provide the probabilities of the 

node taking its different values given the different possible values of its parent nodes. BN 
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are a parsimonious representation of the joint probability distribution because they require 

less specification of probability values for basic events, but can be used to compute the full 

joint probability distribution. The complete joint probability distribution over n binary 

variables requires the specification of 2n probabilities. If the network is sparse, that is, each 

variable depends directly on a small subset of the complete set of variables, then the BN is 

much more efficient. For example if each variable depends only on 3 other variables, then 

each CPT requires only 23 probabilities. 

The ability to efficiently represent the joint in this way is given by the Markovian Parents 

definition, due to Pearl 1391, which states essentially that we may compute the conditional 

probability of a variable based only on the values of variables which it is dependent on 

conditional on any subset of the variables. A probability distribution is then related to 

the Bayesian network by either the Parental Markov Condition, which requires that every 

variable be independent of its non-descendants (excluding itself) in the graph, conditional 

on its parents. 

d-separation d-separation (for directional separation) is a graphical criterion which allows 

us to read off the conditional independencies from a BN. If a probability distribution P and 

a graph G are compatible then d-separation implies conditional independence. d-separation 

is important because it gives us a purely graphical method of determining conditional in- 

dependence. We represent d-separation as ( X  JJ Y IZ)G and conditional independence as 

( X  U YIZ)P 
A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if 1. p 

contains a chain i + m + j or a fork i t m + j such that the middle node m is in Z,  or 

2. p contains an inverted fork (or collider) i + m t j such that the middles node m is not 

in Z and such that no descendant of m is in Z. A set Z is said to d-separate X from Y if 

and only if Z blocks every path from a node in X to a node in Y. 

d-separation makes sense if we consider the links between the variables to be causal. In 

the case of a causal chain i + m + j the i causes m which causes j .  Initially i and j are 

dependent, because learning about either of them changes the probability of the other, but 

once we learn the value of m it 'screens off' the i from j, because the only way i influences j 

is through m, of which we already know the value. In the case of the the fork i t m + j i 

and j are initially dependent because of their common cause m. If we learn about either i or 

j it affects the probability of m and hence the other child. However, if we learn about m, we 
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can gain no further information about i from j or vice versa, the dependence is 'blocked' or 

'screened off'. Finally with the inverted fork i + m + j we have a common effect. In this 

case i and j are independent as long as we know nothing about m or its children. However, 

if we learn the value of m or any of its children we 'open' a path between the common 

causes, because now learning about one of them would affect our belief in the other. 

Observational Equivalence Observational equivalence occurs when two networks can- 

not be distinguished based on probabilities alone. Just as one graph can be compatible with 

multiple probability distributions, one probability distribution can be compatible with mul- 

tiple graphs. If two graphs are compatible with the same probability distribution, then we 

cannot distinguish them based on the probability distribution. In order to distinguish the 

graphs we must include further background information or assumptions about the relation- 

ship of the probability distribution to the graph. The two primary sources of background 

information are temporal information, about the ordering of the variables, and experimental 

results. 

Inference 

Inference is the process of computing results based on the model. From the complete joint 

distribution it is trivial to answer questions about the probability that a variable will take 

a particular value whether or not values are specified for any subset of the other variables. 

The joint distribution acts as a lookup table, we simply find the appropriate location in 

the table and read off the result. Unfortunately the joint distribution grows so quickly in 

the number of variables that it is completely impractical. Bayesian networks allow us to 

represent the joint efficiently, but at the cost of having to compute the results to particular 

queries when we want to know their values. 

Algorithm exist for BNs to compute the likelihood of variables taking on a particular 

value given the values of other variables, and which variable we should observe to gain the 

most information about the value of a particular variable. The algorithms are dramatically 

more efficient than computing the joint distribution directly, however both the exact infer- 

ence problem and the approximate inference problem are NP. It is possible to determine 

ahead of time the time and space requirements of the exact algorithms, which allows us to 

use the more efficient approximate algorithms. 
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3.2.2 Causal Models 

Graphical causal models represent the causal relationships between variables graphically in 

a manner directly analogous to Bayesian networks representing probabilistic relationships. 

Nodes represent variables, but now edges represent a causal relationship of some kind. 

In fact Bayesian networks can be given a causal interpretation, though it is possible to 

have a BN which isn't causal. There are many different types of graphical causal models, 

which correspond to different sets of assumptions about the underlying distributions and 

different axioms for associating causal and statistical relationships with graph elements. In 

this chapter I cover models which represent causal relationships with discrete or continuous 

variables, and linear relationships between the variables in the continuous case. The graphs 

presented can also represent the existence of confounding variables. 

Probability has long been subject to formal mathematical treatment, with axioms and a 

symbolic language. Causality has not had this benefit and has been forced to make do with 

vague natural language descriptions and varying definitions. The work of Pearl, Verma, 

Spirtes, Glymour, Richardson, and others over the twenty years has provided a formal 

representation and semantics for causal relationships and their connections to  graphs. This 

account of causation, based on manipulation, has begun to gain recognition and use in 

philosophy of science, econometrics, psychology, and artificial intelligence. Research into 

efficient algorithms, formal correctness, necessary assumptions, and appropriate axioms is 

ongoing actively. 

Definitions 

At the opening of this chapter I provided several approximate definitions of causation. These 

approximate definitions capture the intuition behind the manipulative account of causality, 

but we require a formal mathematical treatment if we are to calculate the results of causal 

relationships. 

Potential Causal Influence A variable X has a potential causal influence on another 

variable Y (that is inferable from P') if the following conditions hold. 

1. X and Y are dependent in every context. 

2. There exists a variable Z and a context S such that 
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(i) X and Z are independent given S and 

(ii) Z and Y are dependent given S.  

Genuine Causal Influence A variable X has a genuine causal influence on another 

variable Y if there exists a variable Z such that either: 

1. X and Y are dependent in any context and there exists a context S satisfying 

(i) Z is a potential cause of X 

(ii) Z and Y are dependent given S 

(iii) Z and Y are independent given the union of S and X 

2. X and Y are the transitive closure of the relation defined in criterion 1 

Causal mechanism A causal mechanism is the physical means or mechanism by which 

one variable influences another. Mechanisms are assumed to be independent, stable, and 

autonomous. By stable we mean that the mechanism remains regardless of changes to 

parameter values or context. Autonomous means that the mechanism remains invariant to 

changes in other mechanisms, changing the environment in which the mechanism does not 

change the mechanism unless we change it directly, Pearl calls this 'transportability'. 

Causal effect A causal effect of variable X on variable Y is the probability distribution 

of Y given that we have intervened on X. In Pearl's notation this is P ( Y  = yldo(x)) = 

C(.)P(., Y ldo(x)) [39, 411 

Direct/Actual Cause A direct cause is one which, given the set of variables under 

consideration, is never independent of its effect, conditioned on any subset of the variables. 

Whether a variable is a direct cause of another variable is dependent on the set of variables 

being considered. We can often introduce a mediating cause by adding another variable 

which is in some sense at a 'lower level' than the existing variables. 

Latent variables and Confounding Latent variables are those which are not directly 

measured in a study; they are present in most real world problems. Latent variables may be 

variables we are not interested in and hence have not measured, variables we are not aware 

of, variables we are not practically able to  measure, or variables which are by definition 

unmeasurable. 
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Latent variables become a problem for studies attempting to determine causality when 

they impact two or more of our measured variables; this problem is known as confounding. 

A latent variable which is a cause of two or more measured (observed) variables can cause 

the observed variables to be correlated even though the observed variables may not cause 

each other. It can also effect the degree of correlation between variables which are causally 

related. Confounding is a fundamental problem in attempting to derive causal relationships 

in any kind of study, whether experimental or observational. 

The following definitions due to Pearl, or Spirtes et al. as noted. 

Causal S t ruc ture  (Pearl) A causal structure of a set of variables V is a directed 

acyclic graph (DAG) in which each node corresponds to a distinct element of V, and each 

link represents direct functional relationship among the corresponding variables. 

Causal Model  (Pearl) A causal model is a pair M = (D, OD) consisting of a causal 

structure D and a set of parameters OD compatible with D. The parameters OD assign a 

function xi = fi(pai,ui) to each Xi E V and a probability measure P(ui)  to each ui, where 

PAi are the parents of Xi in D and where each Ui is a random disturbance distributed 

according to P(ui),  independently of all other u. 

Latent S t ruc ture  (Pearl) A latent structure is a pair L = (D, 0), where D is a causal 

structure over V where 0 2 V is a set of observed variables. 

Assumptions 

There are three main assumptions which relate a causal structure represented by a graph 

G to a probability distribution. These assumptions, or axioms, are the foundation for 

representing causality graphically. 

Causal Markov Condition (Spirtes et al.) The first assumption is the causal Markov 

condition. This is the same assumption that allows a Bayesian network to efficiently repre- 

sent the joint probability distribution, but with a causal interpretation. 

"Let G be a causal graph with vertex set V and P be a probability distribution over 

the vertices in V generated by the causal structure represented by G. G and P satisfy 

the Causal Markov Condition if and only if for every W and V,  W is independent of 

V\(Descendents(W) U Parents(W)) given Parents(W)." 1601 
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Minimality (Pearl) The minimality condition moves us beyond the assumptions inherent 

in Bayesian networks. The minimality condition holds if the removal of any edge from the 

model will cause the violation of the causal Markov condition. The minimality condition 

subsumes the Markov condition; a model may be Markov but not minimal, but it cannot be 

minimal and not Markov. The minimality condition follows the standard scientific principle 

of Occam's Razor, limiting the inclusion of unnecessary edges in the graph. 

Faithfulness and Stability Stability (also called Faithfulness) is the principle that a 

model is stable only if varying the parameters of the model does not destroy any indepen- 

dencies. The reason is that independencies induced by specific parametrisations are unlikely 

to be produced by data, and that all real independencies are assumed to be structural. 

There are several circumstances in which the faithfulness condition may be violated. 

In particular it may be violated if two variables with different causal relationships are 

aggregated, if the population is a mixture of sub-populations with different causal structures, 

or if there are deterministic relationships between variables. Recent work has been done 

on establishing weaker versions of the faithfulness condition which are still sufficient for the 

algorithms to be correct [75] .  

"Let I ( P )  denote the set of all conditional independence relationships embodied in P .  A 

causal model M = (D, OD) generates a stable distribution if and only if P( (D,  OD)) contains 

no extraneous independences - that is, if and only if I (P( (D,  OD))) C I (P ( (D ,  el,))) for 

any set of parameters el,." [39] 

"Let G be a causal graph and P a probability distribution generate by G. (G, P)satisfies 

the Faithfulness Condition if and only if every conditional independence relation true in P 

is entailed by the Causal Markov Condition applied to G." [60] 

Observational Equivalence 

Also known as Markov equivalence and statistical indistinguishability, observational equiva- 

lence is the point at which no additional information about a graphical causal model can be 

obtained from statistical data given the assumptions employed. There are different classes 

of observational equivalence for different assumptions and restrictions on the presence of 

latent variables. 

When unmeasured common causes are not permitted observational equivalence is fairly 

well understood. Assuming the Markov and Faithfulness conditions, running the SGS or 



CHAPTER 3. CAUSALITY AND CAUSAL MODELS 29 

PC algorithm on a distribution will produce a pattern which represents the equivalence class 

for the distribution. 

A pattern P is a partially directed graph which represents a class of DAGs. A DAG G 

is in the class represented by a pattern iff 

1. G and P have the same skeleton 

2. If an edge is directed in P it is also directed in G and 

3. if a unshielded collider exists in G it also exists in P. 

When unmeasured common causes are permitted the issue grows more complex. The 

FCI algorithm (Algorithm 3.3.2) produces a representation of the equivalence class in the 

form of a Partial Ancestral Graph (PAG). PAGs are describe below. 

Graphical causal models may be broadly arranged into two types: stochastic, and func- 

tional. Stochastic causal models represent relationships between nodes as indeterministic. 

The relationships between the nodes are defined by the probability tables and the sets of 

parents. Functional causal models posit a deterministic functional relationship between 

each variable and its parents, and include a randomly distributed error term as input to 

each function. The causal interpretation of BNs is a stochastic causal model. Structural 

Equation Models, described in the previous chapter, are linear functional models. 

Stochastic Causal Models 

Causal Bayesian Networks Causal Bayesian Networks are Bayesian Networks in which 

the links are given a causal interpretation instead of just a correlational interpretation. In 

a causal bayesian network a directed link between two variables represents a direct causal 

relationship. The Causal Markov Condition and Causal Faithfulness Condition are assumed. 

Functional Causal Models 

Semi-Markovian Causal Models Semi-Markovian Causal Models (SMCM) are graphi- 

cal causal models in which a directed link between two variables represents a direct functional 

causal relationship between the variables. All edges are directed, and there are no directed 

cycles permitted. Each variable is associated with a single exogenous error variable, and 

the error variables may be correlated. The presence of correlated error variables represents 
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confounding by latent common causes. SMCM assume that the Causal Markov Condition 

and the Causal Faithfulness Condition hold. 

Markovian Causal Models Markovian Causal Models are equivalent to 

Semi-Markovian Causal Models except that they require that the error terms are indepen- 

dently distributed, thus assuming the absence of confounding. 

Partial Ancestral Graphs Partial Ancestral Graphs are a graphical representation in 

which a directed edge between two variables represents an ancestral relationship instead 

of a direct causal relationship. That is, in the underlying causal graph G which the PAG 

represents, there is a directed path between variables A and B if there is a direct link between 

variables A and B in the PAG. Bi-directed edges are permitted and indicate the there is 

a latent common cause for the two connected variables. Partial Ancestral Graphs assume 

both the Causal Markov Condition and the Causal Faithfulness Condition. 

3.3 Structure Discovery Algorithms 

Structure discovery algorithms, also called causal learning, structure learning, or causal 

search algorithms, attempt to discover the causal structure which generates a set of data 

from the data itself. There are two main approaches to causal discovery. The first approach 

is constraint based algorithms. Constraint based algorithms attempt to combine a set of 

assumptions about the relationship between causal structure and conditional independence 

relationships present in the data to constrain the set of allowable structures that could 

be correct given the data. The second approach is Bayesian structure learning. Bayesian 

structure learning assigns subjective prior probabilities to complete structures and then 

updates the likelihoods of the models to select the model with the maximal likelihood. 

Both methods have had success, and the same assumptions about causal structure relating 

to statistical data are used by both. In this thesis I shall only consider the constraint based 

approach. 

In the remainder of this section I describe several constraint based algorithms for dis- 

covering causal structure and the assumptions they rely on. 
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A )  Form the complete undirected graph H on the  vertex s e t  V 

B )  For each p a i r  of ve r t i ces  A and B ,  i f  there  e x i s t s  a subset S of V 
{A,B) such t h a t  A and B  a re  d-separated given S,  remove the  edge 
between A and B  from H. 

C) Let K  be the  undirected graph r e su l t ing  from s t e p  B). For each t r i p l e  
of ve r t i ces  A ,  B ,  and C  such t h a t  the  p a i r  A and B  and the  p a i r  B  
and C  a re  each adjacent i n  K  (wri t ten a s  A - B  - C )  but the  p a i r  A 
and C  a re  not adjacent i n  K ,  or ient  A - B  - C a s  A -+ B  + C  i f  and 
only i f  there  is no subset S of { B )  U V\{A,C) t h a t  d-separates A and 
C .  

D) repeat  

If  A -+ B ,  B  and C  a re  adjacent ,  A and C  a re  not adjacent ,  and 
there  is no arrowhead a t  B ,  then o r i en t  B  - C  a s  B  -+ C .  

If  there  is a directed path from A t o  B ,  and an edge between A 
and B ,  then o r i en t  A -  B  a s  A - +  B .  

u n t i l  no more edges can be oriented 

Algorithm 3.1: SGS Algorithm - 1601 

3.3.1 Algorithms 

3.3.2 Algorithms without Latent Variables 

There are several constraint based algorithms for discovering causal structures given causal 

sufficiency. The algorithms of Verma and Pearl are very similar to those of Spirtes, Glymour, 

and Shienes. The IC algorithm was originally proposed by Pearl and Verma, and the SGS 

and PC algorithms proposed by Spirtes et al. are more detailed specifications and extensions. 

The basic proceedure of the SGS and PC algorithms is similar. Initially the complete 

undirected graph over the variables is formed. Then each adjacency is tested for d-separation 

and removed if it is found to be d-separated by any subset of variables not including the 

endpoints. Next orientation begins based on discovering unsheilded colliders. Finally ad- 

ditional edges are oriented as possible by repeatedly applying additional edge orientation 

rules. 
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A.) Form the  complete undirected graph C on the vertex s e t  V .  

repeat 

repeat 

s e l ec t  an ordered p a i r  of var iab les  X and Y t h a t  a r e  
adjacent i n  C such t h a t  Adjacencies(C,X)\{Y) has 
card ina l i ty  g rea t e r  than or  equal t o  n ,  and a subset S of 
Adjacencies(C,X)\{Y)of ca rd ina l i ty  n ,  and i f  X and Y are 
d-separated given S de le t e  edge X - Y from C and record S 
i n  Sepset(X, Y) and Sepset(Y, X )  ; 

u n t i l  a l l  ordered p a i r s  of adjacent var iab les  X and Y such 
t h a t  Adj acencies(C, X)\{Y) has ca rd ina l i ty  grea ter  than or  
equal t o  n and a l l  subsets  of S of ~djacencies(C,X) \{Y)  of 
card ina l i ty  n have been t e s t e d  f o r  d-separation; n = n + l ;  

u n t i l  f o r  each ordered p a i r  of adjacent ve r t i ces  X ,  Y ,  
Adjacencies(C, X\{Y) is of ca rd ina l i ty  l e s s  than n .  

C .  For each t r i p l e  of ve r t i ces  X ,  Y , Z such t h a t  t he  p a i r  X ,  Y and 
the  pa i r  Y ,  Z are  each adjacent i n  C put t he  p a i r  X ,  Z a re  not 
adjacent i n  C ,  or ien t  X - Y - Z a s  X + Y t Z i f  and only i f  Y 
is not i n  Sepset(X, Y) . 

D .  1 repeat 

If A  + B, B and C a re  adjacent,  A  and C a re  not adjacent , 
and the re  is no arrowhead a t  B ,  then o r i en t  B - C a s  B -+ C .  

If  t he re  is a d i rec ted  path from A  t o  B, and an edge between 
A  and B, then o r i en t  A -  B a s  A +  B. 

u n t i l  no more edges can be oriented.  

Algorithm 3.2: PC Algorithm 
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The output of the PC algorithm is a pattern, which is a partially oriented graph repre- 

senting the class of observationally equivalent models. 

While SGS is not viable for significant models due to complexity constraints, PC makes 

use of local information in order to be more efficient. PC takes advantage of the fact that 

with no latent variables, if a pair of variables A,B are d-separated, then they are d-separated 

given some subset of Parents(A) or Parents(B), so only nodes which are adjacent to A or B 

need to be considered, and the size of this set decreases as the algorithm runs. 

The complexity of PC is still significant, in fact it is exponential in the average in-degree 

of its nodes. 

Let n be the number of vertices and k be the maximal degree of any vertex 

Then the algorithm is bounded in the worst case by 

Which is bounded bv 

This worst case is rare, but a formal expected complexity analysis is not reported. 

According to Spirtes et al. [60] it is possible to recover graphs of up to 100 variables, given 

that they are reasonably sparse. 

3.3.3 Algorithms with Latent Variables 

The IC* algorithm was proposed by Verma and Pearl and the CI and FCI algorithms were 

created by Spirtes, Richardson, et al. [60]. These algorithms are constraint based and make 

use of conditional independence relationships plus a set of assumptions to discover causal 

relationships from data. The CI algorithm is not suitable for use on large data sets due to its 

computational complexity. The FCI algorithm produces a PAG representing the equivalence 

class. 

Background Knowledge 

Background knowledge can be incorporated into the algorithms as additional constraints 

on the relationships between variables. Temporal information about the time ordering of 

variables is the most common form of background information and has historically been 
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A.) Form the complete undirected graph Q on the vertex set V.  

B.) If A and B are d-separated given any subset S of V ,  remove the edge between A and 
B,  and record S in Sepset(B, A). 

C.) Let F be the graph resulting from step B). Orient each edge o - o. For each triple of 
vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in F but 
the pair A, C are not adjacent in F, orient A * - * B * - * C as A* + B t *C if and 
only if B is not in Sepset(A, C), and orient A * - * B * - * C as A * -+ - * C if 
and only if B is in Sepset(A, C). 

D J  repeat 
If there is a directed path from A to B,  and an edge A* - * B, orient A* - * B 
as A* + B,  
else if B is a collider along < A, B,  C > in n,  B is adjacent to Dl and D is 
in Sepset(A, C), then orient B * - * D as B t *D, 
else if U is a definite discriminating path between A and B for M in n, and 
P and R are adjacent to M on U, and P - M - R is a triangle, then 

if M is in Sepset(A, B) then M is marked as a noncollider on subpath 
P*-*M*-*R 

else P *  - * M * - * R is oriented as P *  + M t *R. 
else if P *  + J& - *R then orient as P *  + M + R. 

until no more edges can be oriented. 

Algorithm 3.3: Causal Inference (CI) Algorithm 
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A). Form the complete undirected graph Q on the vertex set V. 

B). n = O  

repeat 

repeat 

select an ordered pair of variables X and Y that are adjacent in Q such 
that Adjacencies(Q, X)\{Y) has cardinality greater than or equal to 
n, and a subset S of Adjacencies(Q, X))\{Y) of cardinality n, and if 
X and Y are d-separated given S delete the edge between X and Y from 
Q, and record S in Sepset(X, Y) and Sepset(Y, X) 

until all ordered variable pairs of adjacent variables X and Y such that 
Adjacencies(Q,X))\{Y) has cardinality greater than or equal to n and all 
subsets S of Adjacencies(Q, X))\{Y) of cardinality n have been tested for 
d-separation; 

until for each ordered pair of adjacent vertices X, Y, Adjacencies(Q, X))\{Y) 
is of cardinality less than n. 

C). Let F' be the undirected graph resulting from step B). Orient each edge as o - o. For 
each triple of vertices A, B, C such that the pair A, B and the pair B, C are each 
adjacent in F' but the pair A, C are not adjacent in F', orient A * - * B * - * C as 
A* + B t *C if and only if B is not in Sepset(A, C). 

D). For each pair of variables A and B adjacent in F', if A and B are d-separated 
given any subset S of Possible-D-SEP(A, B)\{A, B) or any subset S of Possible- 
D-SEP(B, A)\{A, B) in F remove the edge between A and B, and record S in 
Sepset(A, B) and Sepset(B, A). 

The algorithm then reorients an edge between any pair of variables X and Y as Xo- oY, and 
proceeds to reorient the edges in the same way as steps C) and D) of the Causal Inference 
Algorithm 

Algorithm 3.4: Fast Causal Inference (FCI) Algorithm 
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assumed to be necessary, though not sufficient, to deduce causal relationships. Incorpe 

rating temporal information can restrict the possibility of some orientations of adjacencies, 

thereby allowing the algorithms to be sure about more edges. Additional information about 

specifically required or disallowed links can also be incorporated in the same fashion. 

3.4 Applicability to SRL 

As Green and Azevedo put it "Self-regulated learning (SRL) theories attempt to model how 

each of these cognitive, motivational, and contextual factors influences the learning process" 

[21] (emphasis mine). The question is not zf various factors influence learning, it is how 

they influence learning, and that is a causal question. Given that SRL attempts to answer 

causal questions, the remainder of this thesis constitutes an attempt to demonstrate the 

applicability of causal modelling and causal structure discovery from observational data to 

the domain of SRL. 

3.4.1 Discovering Causal Structures in Education 

Causal discovery algorithms can be used to identify causal relationships between variables 

and to find equivalence classes. Causal discovery algorithms such as FCI provide a formal 

means of identifying causal relationships between variables of interest from observational 

data, possibly combined with experimental results. 

Compared to existing methods used in the social sciences this methodology is most 

closely related to an exploratory use of structural equation modelling. The very important 

difference is that as conventionally used SEM provides only a single model, which in some 

sense 'fits' the collected data. The FCI algorithm provides a representation of the equivalence 

class of causal models which can produce the given statistical data. 

An exploratory approach with SEM is difficult to justify for two reasons. Firstly, only 

a single model out of the many models which are indistinguishable given the evidence is 

considered. Assuming the justification for the model is observational data or statistics, 

there is no reason to prefer one model from the equivalence class to another. Thus the 'fit' 

of the model to the data does not provide a strong reason to believe that the relationships 

represented are true, that is, that they exist in the world. 

The class of indistinguishable models provided by the FCI algorithm indicates which 
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relationships are common in all models which can produce the data under the given as- 

sumptions. Given the accuracy of the data, and the validity of the assumptions, this does 

give us a strong reason to believe that those relationships are true, and hold in the world. 

The second reason the existing exploratory approach is difficult to justify is the possibility 

of over fitting, as it is called in machine learning. A model is over fitted if it assumes 

that either random variance in the sample data or peculiar characteristics of the sample 

apply to the wider population where they do not. In the exploratory approach we are 

attempting to generalize from sample data to population characteristics and risk assuming 

that relationships which appear to exist in the sample do no exist in the population. 

Attempts to specify a completely oriented causal model from statistical data when there 

are many models which can produce the same statistics is one form of over-fitting which 

results from the exploratory approach where a single model is proposed to fit the data. The 

FCI algorithm avoids this problem by only specifying the equivalence class. 

Several approaches are used in scientific work to avoid or overcome over-fitting. The first 

is the use of Occam's Razor which, to paraphrase, states that all things being equal we should 

prefer explanations which make less assumptions. This is embodied in the assumptions made 

by the FCI algorithm, that the model be minimal [39]. 

Another essential step is attempting to falsify models by testing their predictions. A 

model which is over fitted to the sample data will fail when applied to data gathered from 

another sample, or a somewhat broader population. This confirmatory or, more appropri- 

ately, disconfirmatory approach is used in SEM when a proposed model or theory is tested 

against data. The same approach can and should be applied to models which are discovered 

using this approach. 

3.4.2 Testing Relationships 

Not only does an equivalence class indicate which relationships are supported by the data, it 

also indicates which relationships cannot be determined from statistics alone. Statistically 

indistinguishable models may be distinguished by incorporating background information, 

temporal information, or experimental results to determine the nature and orientation of 

the remaining relationships. By indicating which relationships require experimentation to 

determine the equivalence class acts as a guide to which relationships to test experimentally. 

The clear implications of the model also allow a researcher to see what relationships are being 

asserted, and devise tests for those relationships if they seem suspect. 
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By clarifying exactly what relationships are claimed, this formal representation allows 

the claims to be more easily understood and argued for or against than comparatively vague 

natural language specifications or informal diagrams. Describing relationships in such for- 

mal detail leads directly to testable predictions. Fully parametrised causal models can be 

used to make testable predictions about the values of variables in different circumstances. 

A causal model which is fully oriented and parametrised can be used to infer the outcomes 

of different circumstances and interventions. If the predictions are being made about mea- 

surable variables then these predictions are testable against real world data. 

Education researchers can apply the models to different sets of circumstances and com- 

pare the results to their intuition, experience, theories, and evidence. If the results appear 

to be questionable, or if we simply wish to verify the results, observational or experimental 

studies can be undertaken to falsify or augment the model. The results of any such studies, 

data or additional constraints on the structure of the model, can be supplied to the causal 

discovery algorithm to refine or falsify portions of the existing model. 

Presuming the model is valid it can be used to guide educational practice and policy by 

computing the expected results of educational policies. For example a causal model which 

correctly identifies the relationships between study skills and learning could guide policies 

towards teaching such skills in the classroom. 



Chapter 4 

Detailed Design and Methods 

4.1 Engineered Model Construction 

The first contribution of this thesis is the creation of theoretical and empirical models of 

SRL. The models are intended as proofs of concept, demonstrating that the relationships 

in SRL can be represented in the form of graphical causal models. If we are to use causal 

models of SRL we must first demonstrate that SRL variables and relationships can in fact 

be represented in this formalism. The creation of a causal model of SRL from the literature 

acts as a kind of existence proof, demonstrating that the causal structure of SRL can be 

captured in this way. 

Both models have been constructed beginning with a literature review. For the theoret- 

ical model I considered theory and review papers from the SRL literature, which I read for 

definitions of variables and claims or predictions of causal relationships between the vari- 

ables. For the empirical model I considered empirical papers directly reporting results from 

observational or experimental studies. The literature on SRL is expansive and, of necessity, 

both of these models are built from subsets of the available literature on SRL. 

When creating a causal graph the appropriate identification of variables is necessary. 

There is almost always some choice in how to define a variable, in terms of the discretization 

of continuous variables or aggregating lower level variables into more abstract variables, 

and these choices change the structure. Omission of relevant variables can conceal causal 

effects and aggregation of variables which have different causal structures can result in an 

unfaithful distribution [60]. Identifying the relationships between variables also depends on 

the presence of other related variables because we determine causal structure by considering 



CHAPTER 4. DETAILED DESIGN AND METHODS 40 

how two variables relate in the presence of additional variables. Therefore, when using only 

observational data, excluding some variables from the model can limit the ability to discover 

causal relationships between modeled variables. 

In constructing the variables for these models I have attempted to be guided by the 

common uses and definitions provided by the literature. However, particularly in the case 

of the theoretical model, it is not expected that the model created corresponds perfectly 

to either the theory of SRL, or to the correct underlying structure. Even approaching 

such precision in the theoretical model would require enlisting multiple experts in SRL in 

a knowledge engineering effort. In the case of the empirical model it would require the 

inclusion of a larger proportion of the published empirical literature. 

4.1.1 Theoretical Model 

To construct the theoretical model I performed a literature review of theoretical and review 

papers in Self-Regulated Learning. Papers were found by searching major journals of educa- 

tional psychology, following references to additional papers, and searching article databases. 

10 theoretical and review papers, published between 1990 and 2007, were selected and used 

as the basis for the model. 

Each paper was processed by a careful reading of the paper, recording any variables or 

theoretical constructs mentioned, particular definitions of such variables, and any assertions 

made about correlational or causal relationships between variables, as well as assertions 

about the absence of a relationship. The relationships within each paper were then graphed 

as a Semi-Markovian Causal Model (SMCM) for clarity. 

Finally an initial complete model was created with all variables for which relationships 

had been found by straightforward inclusion of all relationships asserted in individual stud- 

ies. The initial complete model was cyclic, and our methodology only applies to acyclic 

graphs. When cycles were found they were broken by removing links which conceptually 

represented links between multiple passes through the SRL phases. When links were pro- 

posed in both directions between a pair of variables there are several options. If there is 

a cyclic relationship between the variables, then one link can be selected for exclusion as 

above. In any cases where this is not apparent the most commonly suggested link can be 

chosen. This situation did not occur in practice. 

Figure 4.1 on page 42 and Figure 4.2 on page 43 present several of the particular rela- 

tionships identified in the theoretical literature. In each, a quote from the literature makes 
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an assertion about the relationship between two or more variables, and is accompanied by 

a small causal graph, representing the structure suggested by the statement. For example, 

Figure 4.l(a) presents a quote from [7] that self-efficacy beliefs contribute to both motiva- 

tion and performance, and a graph showing causal links from self-efficacy to motivation and 

performance. 

Figure 4.2(b) presents a longer quote and a more complex set of relationships including a 

statement of a relationship "...the motivation of novices can be greatly enhanced when and if 

they use high-quality self-regulatory processes, such as self-monitoring." and a statement of 

its mediation by another variable "...their motivation does not stem from the task itself, but 

rather from their use of self-regulatory processes, such as self-monitoring, and the effects of 

these processes on their self-beliefs." Here we can see the ambiguity present in constructing 

a causal model from the literature. The quote indicates a path from self-monitoring to 

motivation, and that self-monitoring can affect motivation through self-efficacy beliefs, but 

it does not require or preclude a direct relationship from self-monitoring to motivation. In 

this case I have chosen to leave out the direct relationship, opting for less relationships 

assumed if they are not explicitly required by the literature. 

The process of combining the models created from each quote also leaves room for 

judgement. Figure 4.3 on page 44 shows a simple combination of relationships found in [7]. 

This version was created by including all of the variables and relationships suggested by 

the individual models, but without making any additional changes. Many possible changes 

might be made based on similarity of variables and background knowledge. For instance 

self-efficacy beliefs is a parent of performance, and also of grades, which are a measure 

of performance, but performance is not listed as a parent of grades. A common-sense 

interpretation might be that self-efficacy is not a direct cause of grades, but causes grades 

via performance. Another possible refinement arises from the multiple variables about goals. 

Goals, a general variable, is shown as a cause of performance, but goal challenge and self-set 

goals are not. Intuitively we might expect that if goals cause performance, then self-set 

goals should cause performance. The case for goal challenge to cause based solely on this 

graph is weaker and might require further evidence. 
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"The evidence from these meta-analyses is 
consistent in showing that efficacy beliefs 
contribute significantly to the level of 
motivation and performance. Efficacy beliefs 
predict not only the behavioral functioning 
between individuals at different levels of 
perceived self-efficacy but also changes in 
functioning in individuals at different levels of 
efficacy over time and even variation within 
the same individual in the tasks performed 
and those shunned or attempted but failed. 
Evidence that divergent procedures produce 
convergent results adds to the explanatory 
and predictive generality of the self-efficacy 
determinant." 

(a) Self-Efficacy, Performance, and Motivation 

Result "One direct way of altering perceived self-efficacy is to introduce a 
Supported trivial factor devoid of any relevant information whatsoever but that 
Experimentally can bias perceived self-efficacy. Studies of anchoring influences 

show that arbitrary reference points from which judgments are 
made bias judgmental processes because the adjustments from 
the arbitrary starting points are usually insufficient (Tversky 8 
Kahneman, 1974). For example, people will judge a larger crowd at 
a major sports event from an arbitrary starting number of 1,000 
rather than from an arbitrary number of 40,000, even though these 
anchoring numbers are completely irrelevant to judging the size of 
the crowd. Ce~one  and Peake (1986) raised perceived self- 
efficacy by having individuals rate their efficacy from a supposedly 
randomly selected high number and lowered their self-efficacy from 
a low arbitrary starting number. The higher the instated perceived 
self-efficacy was, the longer individuals persevered on difficult and 
unsolvable problems before they quit. Mediational analyses 
showed that the biasing anchoring influence had no effect on 
performance motivation when perceived self-eff icacy was 
controlled. Thus, the effect of the external anchoring influence on 
performance motivation was completely mediated by the degree to 
which it changed efficacy beliefs." 

(b) Self-Efficacy and Persistence 

Students whose perceived efficacy 
was illusorily raised set higher goals 
for themselves, used more efficient 
problem-solving strategies, and 
achieved higher intellectual 
performances than did students of 
eaual coanitive abilitv who were led 
to'believe that they lacked such 
capabilities. 

(c) Self-Efficacy, Goal Challenge, Strategy Use, and Performance 

Figure 4.1: Subset of relationships from [7] 
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"With such diverse skills as chess, sports, 
and music, the quantity of an individual's 

I studying and practicing is a strong 
predictor of his or her level of expertise. 
There is also evidence that the quality of 
practicing and studying episodes is highly 
predictive of a learner's level of skill 
(Zimmerman & Kitsantas, 1997; 1999)." 

(a) Studying Quality, Quantity, and Expertise 

However, few beginners in a new discipline 
immediately derive powerful self- 
motivational benefits, and they may easily 
lose interest if they are not socially 
encouraged and guided, as most music 
teachers will readily attest (McPherson & 
Zimmerman, in press). 

Fortunately, the motivation of novices can 
be greatly enhanced when and if they use 
high-quality self-regulatory processes, 
such as close self-monitoring. Students 
who have the capabilities to detect subtle 
progress in learning will increase their 
levels of self-satisfaction and their beliefs 
in their personal efficacy to perform at a 
high level of skill (Schunk, 1983). Clearly, 
their motivation does not stem from the 
task itself, but rather from their use of seli- 
regulatory processes, such as 
selfmonitoring, and the effects of these 
processes on their self-beliefs. 

(b) Self-Efficacy and Motivational Factors 

Figure 4.2: Subset of Relationships from [79] 
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This methodology is neither formal nor complete and is not necessarily able to find a 

unique correct representation of the theory of Self-Regulated Learning. To my knowledge 

no formal correct method for constructing a graphical causal model from natural language 

exists, and it is unlikely that any method could reliably produce a single 'correct' model. 

The SRL literature contains multiple theoretical perspectives and claims, not all of which 

are compatible. Additionally claims of relationships made in theoretical papers and review 

papers are typically made in natural language and are not always well defined in terms of 

the causal or correlational implications of the claims are. For example, Boekaerts and Corno 

assert that 

"...all theorists assume that there are no direct linkages between achievement 

and personal or contextual characteristics; achievement effects are mediated by 

the self-regulatory activities that students engage to reach learning and perfor- 

mance goals." 

POI 
This statement has several possible causal interpretations. One possible interpretation 

(see Figure 4.4 on page 46) is that all causal relationships between personal/contextual char- 

acteristics and achievement are mediated by self-regulatory activities. In our causal graphs 

this would prohibit any direct links between such characteristics and performance, making 

them independent conditional on self-regulatory activities. Read in this fashion this seems a 

very strong claim; that once we know the self-regulatory activities of a learner, knowledge of 

their personal characteristics should provide us no additional information about their aca- 

demic achievement. However, the specific definition of the very broad terms "personal or 

contextual characteristics" is not clear, and it is difficult to assign this relationship directly 

to a particular set of variables. It is also possible that this statement is only intended to 

apply in situations where individuals are actively self-regulating, and that in less mindful 

contexts achievement might be directly related to personal or contextual characteristics. 

Despite these limitations, what this methodology does produce is one perspective on 

the current theory of SRL, which could reasonably be construed to be similar to a correct 

model of SRL. As this model provides a more formal, concise representation of the causal 

claims of the theory than a narrative approach does, I hope it will be valuable for allowing 

education researchers to discuss theoretical claims in a formal yet understandable manner, 

thus enabling it to  be improved and to be useful to  researchers. The clarity of claims 
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Characteristics 

Figure 4.4: Possible interpretation of Boekaerts and Corno 
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formulated in this manner makes them particularly available for criticism, compared to 

more vaguely formulated claims. 

4.1.2 Empirical Model 

Structure discovery algorithms are used to discover the causal structure between variables 

from data about the variables. The FCI algorithm (Algorithm 3.3.2) and other constraint 

based algorithm need as their input a set of conditional independence relationships. These 

relationships can be determined from raw data using any standard statistical test for con- 

ditional independence or vanishing partial correlation or a correlation or covariance matrix 

can be supplied if known. 

Existing observational studies can provide the necessary information about covariance or 

correlation, though the raw data is not typically available. We can also attempt to collect 

the results of multiple individual studies, conducting a meta-analysis of many studies to 

determine the conditional independence relationships more accurately by increasing the 

number of studies included, subject to the usual limitations of meta-analysis. The ability to 

combine multiple studies is especially important when considering large networks or highly 

improbable events both of which require larger samples to deal with effectively. 

As an initial demonstration of the potential to discover an empirical model of SRL 

from existing empirical results I investigated existing empirical papers and meta-analyses. I 

present the results of the FCI algorithm when run on a correlation matrix from a single meta- 

analysis of SRL related variables found in the literature. The FCI algorithm is used because 

it is the most informative and best understood constraint based algorithm which allows 

for the presence of confounding variables and is efficient enough to  be used on realistically 

sized models. The FCI algorithm, as described in Section 3.3.2, uses a correlation matrix 

to determine a Partial Ancestral Graph (PAG) over the variables, which represents the 

equivalence class for the supplied data. 

4.2 Analysis 

4.2.1 Equivalence Classes 

As described in Section 3.2.2 the equivalence class for a model provides the upper limit on 

what causal relationships can be discovered from observational data given the assumptions 
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made. The equivalence class for the theoretical model then informs us of the relationships 

which can be discovered using observational data, and which cannot. It provides the best 

case scenario for our search algorithms. I find the equivalence class of the theoretical model 

by using the FCI algorithm directly on the conditional independence relationships repre- 

sented by the theoretical model. The FCI algorithm produces a Partial Ancestral Graph 

(PAG) which represents the equivalence class for the model. I then compare the equiva- 

lence class to the theoretical model, assessing the number of correct adjacencies and arrows 

(directionality) . 

4.2.2 Model Comparison 

The empirical model is a PAG output by the FCI algorithm. In order to evaluate it I conduct 

a comparison of the empirical model against the PAG representing the equivalence class of 

the theoretical model over the same variables for adjacency and orientation matching. This 

comparison provides an idea of how well the two models match, given the data that was 

available to produce the empirical model. I also present a visual comparison in order to 

compare which specific relationships were found to be different. 

4.2.3 Simulation Studies 

Algorithms for discovering causal structure from data are only useful if the amount of 

data required can be reasonably obtained in practical situations. Theoretical results and 

simulation studies have shown that simple structures can often be discovered up to the point 

of observational equivalence with sample sizes between 1000 and 10000 [60]. To evaluate the 

possibility of learning the causal structure of SRL theory from observational data, I conduct 

simulation studies over the engineered theoretical model to establish approximately the 

quantity of observational data required to correctly recover the equivalence class. If the 

model accurately reflects the theory, or has a similar structure and sparseness, this should 

provide an idea of the quantity of data required to learn the model from real data. The 

simulations are run using the TETRAD IV software package [52]. 

Since the engineered theoretical model is not parametrised, and to avoid any biasing 

effects from a particular parametrisation of the variables, each simulation run used a different 

randomly generated parametrisation. Each variable was assumed to be discrete, and to take 

between two and four values. 30 or more simulation runs each were done with samples of 
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1000, 2000, 5000, 10000, 20000, and 50000 complete data instances. A complete instance 

of data is a vector with one element for each variable in the model. Formally, for a model 

< G, P > over V, a complete data instance D is D =< VI, . . . , V, >. It can be considered 

a simultaneous measurement of all of the variables in the model. The PAGs produced 

at each sample size were compared with the PAG produced directly from the conditional 

independence relationships, as well as being compared with the theoretical model itself. 

In the terminology used in the comparisons, an adjacency is an edge between two vari- 

ables, possibly directed. An arrow point is an arrow mark as the end point on an edge. 

4.2.4 Recorded Factors 

Correct Adjacencies (ADJ-COR) The number of adjacencies which are present in the 

true graph or reference graph, which are also present in the discovered graph. 

False Positive Adjacency (ADJ-FP) The number of errors of commission in the dis- 

covered graph. That is, the number of adjacencies present in the discovered graph 

which do not exist in the true graph. 

False Negative Adjacency (ADJTN) The number of errors of omission in the discov- 

ered graph. That is, the number of adjacencies present in the true graph which are 

absent from the discovered graph. 

Correct Arrow Points (APT-COR) The number of arrow points which are present in 

both the true and discovered graphs. 

False Positive Arrow Points (APT-FP) The number of errors of commission of arrow 

points. That is, the number of arrow points which exist in the discovered graph, but 

not in the true graph. 

False Negative Arrow Points (APTTN) The number of errors of omission of arrow 

points. That is, the number of arrow points which exist in the true graph which do 

not in the discovered graph. 

False Positive Arrow Points on Correct Adjacencies (APTAFP) The number of 

arrow points which do not exist in the true graph but are present in the discovered 

graph, considering only adjacencies which are present in the true graph. 
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False Negative Arrow Points on Correct Adjacencies (APT-AFN) The number of 

arrow points which exist in the true graph but are not present in the discovered graph, 

considering only adjacencies which are present in the true graph. 

The median values and the standard deviation was recorded for each of these measures 

at  each of the levels of data generation. Additionally representative individual graphs are 

compared. 

4.2.5 Theoretical Analysis of Experiment a1 Informat ion 

The equivalence class indicates which relationships cannot be oriented completely using 

observational data alone, hence telling us exactly which relationships require experimental 

investigation. We can assess the maximum number of perfect single experiments needed 

to completely orient the PAG models using the rules provided in [26]. Because the edge 

orientation rules could be re-run after each experiment is conducted, the number is a worst 

case bound on the necessary number of experiments. We compare this with the worst 

case scenario given no causal relationships being discovered from observational data. These 

considerations apply only to ideal experimentation. Non-ideal experiments may contain 

errors or sampling variation which requires repetition of those experiments to verify. The 

need for replication of results is of course a requirement of any scientific study, not just 

those employing the methods described herein. 



Chapter 5 

Results and Discussion 

In this chapter I present the results of my investigation into discovering causal models of 

SRL. 

5.1 Engineered Network (Theoretical) 
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The initial form of the theoretical model based is directly on the complete set of claims 

from the literature review. The graph is presented in Figure 5.1 on page 52. This model 

depicts the structure derived from relationships asserted in the theoretical literature. The 

variables included are a significant subset of the possible variables in SRL. This model does 

not include all SRL variables and is not a unique description of the variables involved. In 

addition to the multiple possible interpretations of the SRL theories, there are multiple ways 

of operationalizing and aggregating the variables depending on the area of interest. 

For instance, in the presented model their are numerous variables representing different 

aspects of goal setting. These variables could be aggregated into fewer variables by combin- 

ing variables representing the quality of goals from an educational standpoint into a single 

scale variable, or divided into more variables of interest, for example by breaking down goal 

orientation into the various orientations and their degrees, as needed for representational 

power and computational efficiency. My goal is not to provide a definitive model, but to 

provide a demonstration of the ability to learn such representations in SRL, and of the 

understandability of such models. 

Unfortunately a large number of variables were described as causing self-efficacy beliefs 

and performance without indicating intermediate relationships. As a result the complexity 

of the initial model was too great to analyze with the FCI algorithm on available hardware 

within a reasonable period. The process of reducing the complexity of the original model to 

a feasible level is described in Section 5.3.4. Figure 5.2 is the first reduced structure created, 

with 24 variables and 32 relationships included. Deriving this reduced model was necessary 

for finding the equivalence class and running simulation studies. The full model is still the 

best representation to use for purposes of discussing SRL in causal terms and evaluating 

the relationships found. 
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5.1.1 Equivalence Classes 

The equivalence class for the model tells us the most we can hope to discover from purely 

observational data given the assumptions we are making. This demonstrates the ability 

to discover some causal relationships from observational data without experimentation in 

a principled fashion. It also allows us to see what relationships require experimentation 

or background information to orient. Figure 5.4 depicts the PAG produced by running 

the FCI algorithm directly on the conditional independence relationships represented by 

the theoretical model from Figure 5.2. This simulates running the algorithm on 'perfect' 

data without sampling error or bias. When the data inputs to FCI algorithm accurately 

represent the underlying model the result is the correct equivalence class. Therefore the 

PAG presented in Figure 5.4 provides an ideal case of what the algorithm can produce as 

the sample statistics converge on the population values. 

The equivalence class is presented in Figure 5.4 and the results of the edge comparison 

analysis in Table 5.1 and Table 5.2. The algorithm successfully discovered the complete set 

of 34 adjacencies present in the original graph, representing all the dependency relationships 

between the variables in the graph and no spurious edges were added to the graph. 

All but two arrow points from the original graph were recovered correctly, with the arrow 

points from PerceivedPersonalControl to Anxiety and Stress being labeled as unknown. No 

spurious arrowheads were added. The algorithm also managed to fully orient 18 of the 34 

adjacencies without any need for background knowledge, temporal data, or experimental 

results. 18 endpoints remain to be labeled and require additional information. This clearly 

demonstrates the ability of the FCI algorithm to discover many of the causal relationships 

directly from observational data. 

For the reduced theoretical model created for conducting simulation studies, shown in 

Figure 5.3, the equivalence class (Figure 5.5) edge comparison results are presented in Ta- 

ble 5.3 and orientation results in Table 5.4. The algorithm in this case again recovered the 

complete set of adjacencies with no false positives, and recovered 16 arrow points with 3 

false negatives and no false positives. Incorporating background knowledge that SelfEfica- 

cyBeliefs precede PersistenceDespiteDificulty and LevelOfGoalChallenge in a given phase, 

the complete set of arrow points are recovered. Additionally, without the background knowl- 

edge 13 endpoints are unable to be oriented, with the background information 9 endpoints 

remain unoriented. 
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As expected, the edges whose orientation was completely undetermined had fewer rela- 

tionships with other variables than the edges which were oriented, reflecting the fact that 

the algorithms orient edges based on constraints in the patterns of relationships between 

variables. This reinforces the need to include potential causes of variables, even if we are 

only interested in the effects of those variables. 

These results indicate that given the assumptions and data which accurately represents 

the population our adjacency relationships and their absence are likely to be correct. The 

orientations are less certain, however the propensity for false negatives in the ability to 

orient edges, and the lack of false positives indicates that the inclusion of an end point as 

oriented seems to be reliable. These results do not hold perfectly when data is not ideal, as 

described in Section 5.1.2. 
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Figure 5.3: Reduced Theoretical Model 
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Table 5.1: Theoretical Equivalence Class Adjacency Comparisons 

Table 5.2: Theoretical Equivalence Class Orientation Comparisons 

ADJ-COR 
34 

1 APT-COR I A P T J ' N  I APT-FP I APT-AFN I A P T A F P  I 

Table 5.3: Reduced Theoretical Model Equivalence Class Adjacency Comparisons 

ADJ-FP 
0 

A D J J ' N  
0 

5.1.2 Simulation Studies 

ADJ-COR 
19 

For these causal structure discovery algorithms to be practically useful, them models must be 

able to represent the information we are interested in, the algorithms must be theoretically 

correct and able to discover the information, and they must be reliable when given reasonable 

amounts of real data. The first two criteria have been demonstrated in the previous sections. 

I now turn to evaluating the amount of data required to reliably discover the equivalence 

class by running simulation studies on data generated by the theoretical model. 

The simulation studies were conducted on the reduced theoretical model due to com- 

putational constraints. Given reasonable computing resources the engineered theoretical 

model would also be possible to compute. A model such as the 'full' theoretical model, 

with high in-degrees to several variables, would require large scale computing resources to 

compute effectively, and assuming additional variables with 5 or more parents would rapidly 

become completely infeasible with existing algorithms and technology. 

The data for the simulations was generated and the FCI algorithm was run using 

TETRAD 4.3.8 on PCs running Windows XP. Simulated data was generated based on 

the reduced theoretical model at  sample sizes from 1000 up to 50,000 data items. At least 

ADJ-FP 
0 

A D J J ' N  
0 
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Figure 5.5: Equivalence Class (PAG) For Reduced Theoretical Model 

Table 5.4: Reduced Theoretical Model Equivalence Class Orientation Comparisons 

APT-COR 
16 

APT-AFN 
3 

APT-FN 
3 

A P T A F P  
0 

A P T J P  
0 
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30 simulation runs were completed for each sample size. Edge comparisons for each run 

were produced using TETRAD, and the median and standard deviations of the compari- 

son scores were calculated using Microsoft Excel. The total computing time used for the 

simulations was roughly 100 hours. 

Data Tables 

Table 5.5: Simulation Adjacency Comparisons with Reduced Theoretical Graph 

- 
Std - - 
1.37 
3.12 
3.47 
1.29 
1.15 
0.71 
0.49 

Table 5.6: Simulation Orientation Comparisons with Reduced Theoretical Graph 

Analysis 

APT-COR - 
Std - - 
1.94 
2.30 
2.52 
2.05 
1.97 
1.83 
1.41 

APT-FN 1 1  A P T T P  11 APT-AFN 11 APTAFP 
Std 

2.52 
2.17 
2.71 
2.12 
2.85 
3.27 
2.44 

Std 

1.94 
2.30 
2.52 
2.05 
1.97 
1.76 
1.41 

The graphs discovered from the simulated data were compared both with the true graph 

and with the equivalence class for the graph. The results of the simulation comparisons 

against the reduced theoretical model are presented in Table 5.5 and Table 5.6. These 

Md 

10 
7 
6 
4 
3 
2 
3 

Md 

6 
7 
4 
6 
6 
4 
2 

Std 
2.46 
2.17 
2.85 
2.12 
2.85 
3.24 
2.43 
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Table 5.7: Simulation Adjacency Comparisons with Equivalence Class 

Table 5.8: Simulation Orientation Comparisons with Equivalence Class 

1000 
2000 
3000 
5000 
10000 
20000 
50000 

APT-COR 11 APTTN A P T T P  I (  APT-AFN 11 APTAFP 

ADJ-COR 
Md 

13 
10 
13 
17 
17 
19 
19 

Md 

8 
10 
12 
13 
14 
15 
15 

Std 

1.37 
3.12 
3.49 
1.29 
2.26 
0.71 
0.00 

ADJTP 

Std 

1.77 
2.20 
2.43 
1.94 
1.72 
1.13 
0.95 

Md 

8 
6 
4 
3 
2 
1 
1 

Md 

0 
0 
0 
0 
0 
0 
0 

ADJTN 

Std 

1.77 
2.20 
2.43 
1.94 
1.72 
1.13 
1.11 

Md 

7 
8 

Std 

0.30 
0.00 
0.24 
0.15 
0.17 
0.24 
0.13 

Md 

6 
4.5 
3 
2 
1 
0 
0 

Std 

2.75 
2.62 

Std 

1.36 
1.56 
1.76 
1.33 
1.11 
0.70 
0.60 

Md 

8 
6 

Std 

1.77 
2.20 

Md 

7 
8 

Std 

2.80 
2.62 
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results indicate the reliability of the algorithm in discovering the full set of relationships 

from the graph. The comparisons against the equivalence class are presented in Table 5.7 

and Table 5.8. These results indicate the reliability of the algorithm against its theoretical 

best performance. 

With sample sizes of up to 5000 the majority of the adjacencies are correctly identified 

but there are large number of false negatives where adjacencies were not correctly identified. 

False positives were rare, with no false positives being the most common case at all sample 

sizes. This lends credence to the result from the equivalence class that the presence of 

an adjacency in the discovered graph is strong evidence for its existence. As sample sizes 

increased the results for adjacency detection begin to converge to correctly identifying the 

complete set of adjacencies with very low rates of both false negatives and false positives. 

The orientation results are less consistent. The equivalence class recovers 16 arrow points 

with 3 false negatives and no false positives. At very low sample sizes of 1000 and 2000 only 

approximately 9 to 12 of the 16 possible arrow points are correctly identified. As sample 

sizes increase to 5000 and above the algorithm begins recovering all of the arrow points it 

can correctly recover, matching the equivalence class. However, the algorithm produces a 

large number of false positive arrow points at  low sample sizes, and false positives continue 

to occur, even at sample sizes of 50,000. This limits the confidence we can have in the orien- 

tations produced by the algorithm, particularly at  low sample sizes. One possible technique 

to reduce the number of false positive orientations is to include background information 

about links which we are certain are not allowable due to temporal relationships or other 

constraints between the variables. Further study should investigate the effects of including 

such temporal information on simulation results. 

5.1.3 Experimental Requirements 

Using the results of [26] we can evaluate the PAGs discovered by FCI to see how many 

experiments are necessary in the worst case and which ones are required. The number 

of experiments required is roughly equivalent to the number of undetermined endpoints 

(endpoints labeled with a 0). Evaluating the PAG learned from the conditional independence 

relationships we see that we need experiments for 18 relationships. 

In the worst case assuming the theoretical graph is correct we would require (n - 1) 

experiments, in this case 68 experiments. Both of these estimates are worst cases, and 

actual results should require less ideal experiments due to application of orientation rules, 



CHAPTER 5. RESULTS AND DISCUSSION 64 

though possibly more experiments due to  the need for repetition and verification of results. 

The reduction is ideal experiments required is dramatic, with 73% of the experiments no 

longer necessary. 

5.2 Engineered Network (Empirical) 

We have now demonstrated that graphical causal models can represent many of the re- 

lationships in SRL, and the reliability of the techniques for discovering those models and 

relationships with simulated data. For this technique to be useful we still require some 

means of gathering sufficiently large samples for the algorithm to be useful. To begin to 

demonstrate this I consider a correlation matrix from an existing meta-analysis as the source 

for the FCI algorithm. 

Robbins et al. present the results of a meta-analysis of 108 papers relating psychosocial 

and study skill factors to  college outcomes [50]. From the correlation matrix they present it is 

possible to directly run the FCI algorithm and investigate the results. Figure 5.6 presents the 

results from running the algorithm on a subset of the variables they present, excluding two 

variables due to  insufficient sample size, and one due to  irrelevance to SRL. The aggregate 

sample sizes for the correlations vary from as low as 110 up to approximately 17,000. The 

correlations for variables are low enough that we do not expect the inferences to be extremely 

reliable. In particular this is the case for relationships between AcademicRelatedSkills and 

AcademicSelfEficacy and between AcademicRelatedSkills and GeneralSelfConcept. 

As can be seen from the double headed arrows in Figure 5.6, multiple variables are 

identified as having latent common causes. From the provided data the algorithm is unable 

to completely orient any edges other than those which represent the presence of confound- 

ing variables. For many of the variables it is reasonable to  expect confounding in this 

example, given the presence of several indicators of performance or ability such as GPA, 

ACT/SATScores and HighSchoolGPA. Overall, it is difficult to  draw conclusions from such 

a study network due to insufficient data. Given the known convergence of the algorithms 

at large sample sizes and the demonstrations of the results from the simulation study, I 

suggest that given increased data the results would be more informative. Sample sizes of 

17,000 as available for some correlations are sufficient to  be reliable for the adjacencies, and 

becoming reliable for the presence and absence of orientation information, unfortunately the 

low sample sizes for the other correlations can produce errors which propagate throughout 
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Figure 5.6: Equivalence Class (PAG) derived from Robbins et al. 
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the network. 

5.3 Limitations 

5.3.1 Quality of Data 

One of the foremost limitations that these methods face common to any data based inves- 

tigation, that is, the quality of the conclusions is limited by the quality, and quantity, of 

the data. When using causal discovery algorithms we are limited by the size of the sample, 

the statistical power of the simple correlations, the accuracy of the measurements, and the 

difficulty of evaluating high order conditional independence relationships from a reasonable 

amount of data. The solution to these problems is the same as in any observational study: 

collect more data, and collect better data. One means of attempting to gather more data is 

to conduct a meta-analysis of many studies of the same variables. By increasing the effective 

sample size we address the issues above, increasing the reliability of the conclusions reached 

by the algorithms. When attempting to combine data from many studies by reviewing the 

literature we face the same difficulties as in conducting a meta-analysis. Studies may be 

drawn on different populations, may have different biases, use different instruments, and 

differing definitions. In the ideal case we would collect a large amount of data using con- 

sistent techniques in a single study, either over time from a smaller sample, or from a large 

number of individuals. Computer technology for monitoring students during their learning 

process offers a potential solution to this need for data. 

5.3.2 Assumptions 

Whether the assumptions required by the representation and algorithms are valid is a major 

question which must be addressed when employing these methods. The first assumption, 

that the Causal Markov Condition holds for the underlying distribution, is the least contre 

versial. The second assumption, the Causal Faithfulness Condition, also called the Stability 

condition, has more exceptions. The Causal Faithfulness Condition in essence requires all 

independencies which hold over the distribution to be structural. That is, they should 

result from stable mechanisms in the data generating process as opposed to coincidental 

combinations of parameter values which perfectly cancel out to produce independence. For 

a detailed consideration of this assumption, see for example [75]. The other assumptions of 
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the algorithms are less philosophical and more practical. 

The algorithms require that the same causal relationships hold for the entire population 

under study. Mixing sub-populations with different causal relationships can result in a graph 

which is inaccurate and often complete. For example in [79] studying is described to have 

a negative impact on the motivation of novices, and a positive impact on the motivation of 

experts. Given the variables included, this indicates different (opposite!) causal relation- 

ships between studying and motivation for experts and novices which may result in a causal 

relationship which is not correct or even a conclusion of independence. Such difficulties can 

be often be resolved by including appropriate variables and mechanisms for consideration, 

in this case a variable representing degree of expertise. A more problematic case occurs 

when the direction of a causal relationship may change, with variable A sometimes causing 

B and sometimes caused by B. 

The algorithms will only produce correct results given correct statistical decisions. That 

is, if the determinations made of conditional independence or vanishing partial correlation 

are incorrect, errors may be made in edge inclusion and/or orientation. This is a general 

problem faced by any statistical procedure. 

5.3.3 Needed Theoretical Advances 

For a model with a large number of variables, running the tests for conditional indepen- 

dence at conventional significance levels may result in multiple incorrect results given the 

large number of such tests required. Increasing the thresholds for significance of the sta- 

tistical decisions changes the type of mistake likely to be made, as correct results may not 

meet significance thresholds. Given the reliance of the algorithms on patterns of such re- 

sults, changing the significance of the decisions can produce very different results from the 

algorithms. At present I am not aware of any exact characterization of the reliability of 

the FCI algorithm or related algorithms in the face of inaccurate data or violation of the 

assumptions. 

When causal sufficiency is assumed, results exist for calculating bounds on the number of 

experiments necessary and sufficient, and which experiments are most informative. However 

no such results have currently been reported for the general case where confounding variables 

are allowed. 
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5.3.4 Computational Complexity 

The FCI algorithm is exponential in the in-degree (number of parents) that nodes have in 

the graph. For a sparse graph the algorithm runs in a reasonable amount of time, however 

the algorithm quickly becomes infeasible for graphs with many parents. This is directly 

related to the issue Bayesian networks face with large conditional probability tables with 

graphs have high average in-degree. 

For example, in the version of the engineered theoretical model shown in Figure 5.7, 

the Performance node has in-degree of 13. On a current modern PC, graphs with average 

in degree of up to approximately 5 may be run in a reasonable period of time. For a 

graph which a large number of nodes (say 100 or more) and an average in degree of 10, a 

supercomputer would be required to run the FCI algorithm. There are several means of 

mitigating this limitation. 

Figure 5.7: Theoretical Model with High in-degree 

Removal of Variables 

Removal of variables can simplify the model by eliminating edges between the removed node 

and other variable which may have high in-degree. The effects of removing variables depends 

on their relationship to other variables in the model. The least problematic case is when the 

removed variable is an exogenous variable with only one child in the network. In this case 
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the effects of the variable become part of the error value for its child variable, which prevents 

us from directly considering the effects of the removed variable. A second undesirable effect 

is that the removal of a parent may prevent us from drawing a conclusion about causal 

relationships between the child which remains in the network and other variables. 

If an exogenous variable that is a parent of two or more variables is removed from the 

model it becomes a latent common cause (confounder). In addition to the problems which 

result from removing a exogenous variable with one child, we now face the situation in which 

we may not be able to orient relationships between the children of the removed variable if 

they exist, and a confounding relationship may appear even if those variables have no direct 

causal relationship. 

A more problematic case is the removal of endogenous variables, that is, variables which 

have one or more parents in the model. If the endogenous variable has no children it is 

called a leaf or a sink and its removal will generally simplify the network. If the leaf has 

only one parent, then removing it simply eliminates our ability to consider that variable 

in the network. If it has more than one parent it is a common effect of those parents and 

by d-separation the parents become dependent when we measure the common effect. By 

removing it we lose this information. 

If such a variable also has one or more children in the model it is called a mediat- 

ing variable. Removing a mediating variable may actually cause increased complexity, as 

relationships from its parents are then 'direct' to its children. 

Aggregation of Variables 

Several variables can be aggregated into a single variable which represents them collectively 

either exactly or approximately. Many variables may also be disaggregated into multiple 

variables. Both cases may either increase or decrease the average in-degree of the model. 

If several direct causes of a single variable are aggregated the resulting variable will have 

only a single relationship with the effect variable, reducing the complexity as well as our 

ability to reason about the relationships. If several variables which have different parents 

are aggregated the in-degree of the aggregated variable will be increased, and with it the 

complexity of the model. Aggregation of variables has an additional risk in that if variables 

are aggregated incorrectly the resulting model may violate the causal faithfulness condition 

which is required for the discovery algorithms to produce correct results. 
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Reducing Number of Values for Discrete Variables 

For discrete variable the number of possible values the variable can take on is important to 

the space complexity of the representation and the time complexity of both discovery and 

inference algorithms. Reducing the number of values possible for a discrete variable thus 

reduces the space and time requirements of the algorithms, however the time and space 

requirements grow more slowly in the number of values than in the in-degree so this effect 

is quickly overwhelmed. 

Model Reduction Considerations 

The considerations for what methods to use for reducing complexity as necessary vary 

depending on our purpose. When building a theoretical model for discussion and under- 

standing, the computational characteristics are not important. However if we attempt to 

use that model for causal inference they become important. In this case we can see the 

relationships and the effects of modifications by inspection. 

If we are attempting to discover causal relationships directly from data we do not yet 

have information about the causal structure which prevents us from optimizing the structure 

in advance. However, if we are investigating a small number of new relationships in addition 

to an existing structure the situation is similar to the theoretical model. 

The process I undertook to reduce the complexity of the model for purposes of simulation 

was a simple process of removing exogenous variables, that is, variables which have no 

parents included in the network. Since there were many exogenous variables they were 

prioritized for removal based on being parents of variables with a high in-degree. To some 

degree this process of limiting the scope of the model will always be necessary due to 

limitations both human and computational. When designing observational and experimental 

studies, all of these factors need to be taken into account. 

5.3.5 Comparison to Theories 

It is worth considering how these causal models relate to the various theories of SRL. I 

have not limited the models to  the consideration of variables emphasized in any particular 

theory of SRL, instead choosing to include all of the variable I reasonably could. The 

theories propose variables to be measured and what relationships are expected. The causal 

discovery techniques provide another way of analyzing the correctness of those theories and 
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suggesting new possible relationships. The exploratory methods of the causal discovery 

algorithm contrast to the confirmatory approach typically taken in SEM studies where a 

particular model is suggested by the theory and is subject to confirmatory analysis checking 

model fit against data. 

The causal models include only causal relationships between the specified variables. 

These causal relationships are a subset of the information contained in the theories of SRL. 

For instance, Winne and Hadwin's four-phase model of SRL is inspired by information pro- 

cessing and theory suggests the relationships between the variables is the flow of information 

and its processing. The social cognitive theory instead focuses on the social context and 

interactions between individuals to motivate its proposed mechanisms. Both of these models 

suggest additional variables for consideration, and possible mechanisms which underlie the 

relationships between those variables. 

These are differences in level of abstraction and areas of focus do not impact the correct- 

ness of particular causal relationships, though they may suggest other variables of interest 

which may mediate the relationships if included. For instance, it is reasonable to expect 

that all social interactions are eventually mediated by the processing of information by an 

individual whether conscious or not, and that the information processing steps are composed 

of relationships at the biological level. Any of these levels of abstraction may inspire us to 

consider new variables and relationships which can then be evaluated and employed using 

the same techniques discussed throughout this thesis. 
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Conclusion and Future Work 

In this thesis I have argued for the use of graphical causal models and structure learning 

to be applied to Self-Regulated Learning and demonstrated the viability and usefulness of 

such a course. I conducted a literature review of the theoretical and empirical literature of 

SRL to engineer a theoretical causal model of SRL and generate an empirical model using 

structure discovery algorithms over the data from the literature. I find that graphical causal 

models provide a useful means of representing the causal claims underlying SRL theory in a 

formal and computable form, but they are limited by the availability of sufficient quantities 

of accurate data. 

Using the engineered theoretical model I produced the equivalence class of relationships 

which can be discovered from ideal statistical data, and generated simulated statistical data 

of varying sample sizes. I then employed the FCI algorithm to discover the models back 

from the data. I compared the equivalence class of the theoretical model to the models 

discovered at different sample sizes by accuracy in adjacency inclusion and orientation. 

The results indicate that at  sample sizes of approximately 5000 complete data items most 

adjacencies are recovered with several false negatives. The results for recovering arrow points 

are less positive, with significant numbers of false positives and false negatives at low sample 

sizes. The accuracy of the methods gradually increased with the sample size, with complete 

recovery of adjacencies at approximately 10,000 data items and arrow point identification 

converging on the equivalence class results. However, even at large sample sizes of 10,000 

to 50,000 data items the algorithms continue to generate false positive arrow points. The 

application of more conservative algorithms may alleviate the errors of commission, but at 

the cost of increases in false negatives. This may be acceptable as it increases the reliability 
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of relationships which are discovered. 

Finally I analyzed the number of experiments necessary to fully orient the model from the 

equivalence class versus from just the adjacency set normally considered discoverable from 

probabilistic data and found that the worst case number of experiments for the equivalence 

class was less than one third of the worst case for the undirected adjacency model. This 

represents a large improvement in the number of experiments necessary to fully orient such 

a model. 

The exploratory approach taken by the causal discovery algorithms stands in contrast to 

the confirmatory approach to SEM. The use of a confirmatory approach in which a model is 

proposed a priori has the considerable limitation of ignoring the equivalence class of models 

which can equally account for data. The confirmatory approach is appropriate for discon- 

firming proposed models, but cannot confirm one model over another equivalent model. 

The exploratory structure discovery approach has the benefit of discovering the complete 

equivalence class for the available data. A standard challenge of data based methods in 

machine learning and in science is over-fitting of a model to idiosyncrasies of the data. The 

FCI algorithm and related algorithms partially overcome this difficulty by incorporating the 

faithfulness assumption, but may fail to correctly evaluate relationships when this assump 

tion is violated. The models must of course be tested repeatedly in the same fashion as any 

proposed theory in order to be considered valid. 

The creation of graphical causal models representing educational theories offers multiple 

benefits. They require a clear and precise specification of the claims of a theory and the 

definitions of the variables, and represent those claims in an understandable form. This 

formal, understandable representation should allow for clearer specifications of causal claims 

in the theoretical literature. 

We have also shown that it is possible to use causal structure learning to process the 

results of a meta-analysis of empirical results in SRL and create a causal structure directly 

from existing observational results. The results were limited by small sample sizes and an 

incomplete set of variables. Given sufficient time and computational resources the literature 

of SRL can be meta-analyzed to collect a large proportion of observational and experimental 

results which provide correlational data for the variables and then the FCI algorithm or a 

similar algorithm for the cyclic case can be used to discover an equivalence class of causal 

models. Such a representation has the benefits of indicating what experiments are necessary 

in order to evaluate un-oriented edges and clearly showing the relationships which can't be 
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derived solely from observational data. Additionally any new results can be incorporated 

into the model, producing a integrated, continuously improving model. 

6.1 Future Work 

In future I plan to improve the models created in this work by a more comprehensive review 

and analysis of the literature, and by involving experts in the analysis of the theoretical 

model. By incorporating a large number of studies we can overcome the limitations on 

accuracy and confidence imposed by small sample sizes. Alternative techniques for causal 

discovery which make different assumptions should also be applied and their results evalu- 

ated. In particular, algorithms which allow for cyclic graphs or time series models may be 

fruitfully applied to SRL to represent the cyclic nature of SRL instead of considering only a 

single step. When evaluating existing empirical studies through meta-analysis it may prove 

effective to make use of related discovery algorithms to evaluate the relationships between 

multiple measurements of a latent variable and reduce error introduced via that source. 

I intend to explore the use of discovered and engineered model as user models in ed- 

ucational technology systems, attempting to aid students both in improving their SRL 

behaviour, and in improving their knowledge in particular domains. I intend to evaluate 

the ability of computerized monitoring to collect large data sets which may improve the 

reliability of the methods. In the course of this work, I hope to perform automated observa- 

tions and interventions to improve and refine our model of causation in SRL. We hope that 

by allowing the automated ongoing use of theory based causal models backing educational 

technology systems we will be better able to gather data and make use of it on an ongoing 

basis. 



Chapter 7 

Appendices 

7.1 Formal Background 

In this section I present a basic review of the background concepts necessary to understand 

causal modelling. 

7.1.1 Graph Terminology 

Graph A graph G is a set of vertices V and a set of edges E. An edge E is a pair (possibly 

ordered) of vertices from the set V. There are many refinements to this definition 

which specify different types of graphs. 

Undirected vs directed edges An undirected edge is a unordered pair of vertices. A 

directed edge is an ordered pair of edges. Undirected edges are typically rendered 

graphically as a unmarked line between the vertices. Directed edges are rendered as 

a line with an arrowhead pointing to the latter vertex of the pair. 

Skeleton The skeleton of a graph is a pair V, E where V is the set of vertices and E is 

the set of edges with any directional marks removed. 

Cycle A cycle is a directed path with the same node as the start and end points. 

Complete A graph is called complete if and only if every pair of nodes in the graph is 

connected by an edge. 
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Connected A graph is connected if there is an undirected path between every pair of 

vertices in the graph. 

Path A path is a set of edges connecting two vertices. An undirected path ignores the 

directionality of the edges on the path, and a directed path follows the directionality 

of the edges. 

Clique A clique is any subset of a graph which is complete. A maximal clique is a clique 

which is not properly contained within any other clique. 

Directed Acyclic Graph A Directed Acyclic Graph or DAG is a graph in which all edges 

are directed, there are no bi-directed edges, and there are no directed cycles. 

Into An edge is into a variable if the endpoint at  the edge is marked by an arrowhead. 

Collider A node V is a collider on an undirected path U if and only if V is on U and there 

exist two other distinct variables on U which are both into V. 

Unsheilded Collider A collider is called unshielded if the nodes U1 and Uz which are into 

V are not adjacent. 

Pattern A Pattern P is a partially directed graph which represents a class of DAGs. A 

DAG G is in the class represented by a pattern iff i) G and P have the same skeleton 

ii) If an edge is directed in P it is also directed in G and iii) if a unshielded collider 

exists in G it also exists in P. 

7.1.2 Probability and Statistics 

There are several philosophical interpretations of probability. In this work I shall take 

the Bayesian(subjectivist) interpretation of probability, as opposed to frequentist. In the 

Bayesian interpretation probabilities represent subjective degrees of belief in a proposition, 

as opposed to actual physical properties as in the frequentist philosophy. Note that the 

causal discovery algorithms discussed in this thesis do not require the Bayesian interpreta- 

tion. 

The Bayesian interpretation satisfies the three axioms of probability theory 

0 5 P(A) 5 1 

P(certainevent) = 1 
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P(A V B) = P(A) + P ( B )  if A and B are mutually exclusive 

The central formula of Bayesian probability is Bayes' theorem 

Bayesian inference involves updating (subjective) probabilities based on new evidence, 

with Bayes theorem taken as a normative rule for updating the probabilities from data. 

P(e) is a normalizing constant if P(H--e) + P(not H--e) required to be 1. P(e) = 

P (e--H)P (H) + P (e--notH)P (not H) 

Conditional Probability is traditionally defined in terms of conjunction 

however Bayesians take conditional probability to be more fundamental to human under- 

stand than conjunctions. Since human knowledge generally comes in the form of conditional 

statements about the probability of some phenomena give what else we know, joint proba- 

bility (conjunction) can be calculated from the conditional probability. 

P(A, B) = P(AIB)P(B) 

Marginal Probability and Marginalizing 

The marginal probability (also called the prior probability) of a variable A taking a particular 

value A = a is the probability of that particular value over all the possible ways it can be 

realized. The marginal probability of A = a over B is the given by Chi P(A = albi)P(bi) 

equivalently Chi P ( a  A bi). Calculating the marginal probability of A = a over another 

variable or set of variables is called marginalizing over B. 

Independence (Marginal & Conditional) 

We say that two variables are independent of each other if learning about one does not 

change our beliefs about the other. That is: 

(X LI Y)i f f P(X1Y) = P ( X )  

This is also called marginal independence. 

We say that two variables are conditionally independent of each other if learning about 

one does not change our beliefs about the other, given that we know some third variable. 

That is: 

(X LIY1Z)if fP(XIY,Z) = P(XIZ) 
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Joint Probability Distribution 

The joint probability distribution specifies the complete state of probability information 

over a set of variables. 

For discrete variables, the joint is a table which provides the probability of each possible 

instantiation of the variables. 

For continuous variables, distribution functions represent the joint instead of tables. 

The joint probability distribution quickly becomes unmanageably large, as its size is 

exponential in the number of variables. 

Correlation 

The correlation of two variables is a measure of the linear relatedness of the variables. 

Correlation ranges from 0 (no correlation) to 1 (perfect correlation). Correlation is typically 

denoted by T , , ~  where x and y are the variables whose correlation is being measured. 

Partial Correlation 

Partial correlation is the correlation between two or more variables after controlling for a 

third variable or set of variables. The partial correlation of A and B given C is denoted 

PA,BIC 

Statistical Tests 

The causal discovery algorithms make use of statistical tests for dependence and indepen- 

dence when drawing conclusions from sample data. Any statistical test for vanishing partial 

correlation (in the continuous case) or conditional independence (in the discrete case) may 

be used. I cover two of the most common tests here. 

t-tests 

f-test 

Regression 

Regression is a statistical procedure which attempts to fit a curve to sample data of two or 

more variables. The most common form of regression is linear regression which attempts to 

fit a line to the data. 
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In linear regression the formula is y = PX + u where ,B is known as the regression 

coefficient and u is an error term. 

7.1.3 Graphical Models 

Graphical models represent relationships in terms of a graph structure according to  a set of 

axioms. 

Bayesian Networks are a graphical model of probability relationships between variables 

which is both easy for humans to understand and an efficient representation of probability 

information. 

Graphical causal models relate variables and their causal relationships t o  nodes in a 

graph and links between them, via a series of axioms defining the relationship. These 

graphical models show great promise for representing and reasoning about causal informa- 

tion. 
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