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Abstract 

Among various linguistic structures that can be used in a sentence, named entities are 

one of the most important and most informative. Transcribing them from one language into 

another is called transliteration. This thesis proposes a novel spelling-based method for the 

automatic transliteration of named entities from Arabic to English which exploits various 

types of letter-based alignments. The approach consists of three phases: the first phase uses 

single letter alignments, the second phase uses alignments over groups of letters to  deal with 

diacritics and missing vowels in the English output, and the third phase exploits various 

knowledge sources to repair any remaining errors. The results show a tog20 accuracy rate 

of up to 88%. Our algorithm is examined in the context of a machine translation task. 

We provide an in-depth analysis of the integration of our Arabic-to-English transliteration 

system into a general-purpose phrase-based statistical machine translation system. We study 

the integration from different aspects and evaluate the improvement that can be attributed 

to the integration using the BLEU metric. Our experiments show that a transliteration 

module can help significantly in the situation where the test data is rich with previously 

unseen named entities. 



I won't dedicate this thesis to  m y  parents because they deserve m u c h  more. 



"We don't see things as they are, we see things as we are. " 

- Anais Nin 
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Chapter 1 

Introduction 

Human language is constantly changing, with new words being created on a daily basis. 

With the recent advances in technology (in terms of both physical transportation and cyber 

communications) we are even more in need of overcoming language barriers. Computers, 

with their ever-increasing processing power, play a major role in monolingual (text sum- 

marization, extraction, etc.) and multilingual (text translation, question answering, etc.) 

challenges. 

It is a formidable task to extract the key information from the vast amount of multilin- 

gual data generated by millions of people every day. Of the notably informative linguistic 

structures are named entities (NEs). NEs are noun phrases in the sentence that refer to per- 

sons, locations and organizations. NE handling can be divided into two independent phases: 

first, they should be recognized in the text (a monolingual task) and then their equivalent in 

other language(s) should be discovered or generated (a bilingual or multilingual task). The 

former is not discussed in this thesis and the focus will be on the latter instead. This task, 

namely transcribing the words from a source language's writing style into target language's 

writing style, is called transliteration. 

There are a wide range of uses of applications for transliteration. Three major applica- 

tions involve online lexicons, machine translation and information retrieval. 

0 Lexicon: There are many online lexicons on the web that can be used for several 

purposes including direct end user applications. A lexicon can also be used by the 

following two applications. 



Machine Translation (MT): Having people around the world speaking diverse lan- 

guages makes Machine Translation one of the most useful and well-studied research 

areas among Natural Language Processing (NLP) fields. MT systems try to find the 

best translation for each sentence in the source language using the words or phrases 

of the target language. Although many MT systems are very rich in terms of their 

repository of words and phrases, they often lack the right words for named entities. 

Therefore transliteration systems can be embedded as a module in MT systems to 

provide them with suggestions of equivalent words for NEs. 

Cross Lingual Information Retrieval (CLIR): The goal of Information Retrieval (IR) 

systems is to process a user's query about a specific topic and retrieve the requested in- 

formation from a vast set of documents. CLIR systems are an extension to IR systems 

in that they search for information from foreign language resources. Transliteration 

can contribute to this task by transliterating the query keywords to the languages 

specified by the end user. Considering the high number of NEs in users' queries, 

transliteration can have a huge impact on the CLIR task. 

Let us now focus on a specific transliteration task, where we are converting a named 

entity from Arabic to English. There are two types of transliterations that need to be 

considered l ,  forward and backward transliteration. 

Forward Transliteration: It occurs when the name to be transliterated is actually 

Arabic. In such a case, many variations for the name are acceptable as long as they 

maintain a reasonably close pronunciation of the name. This is especially true when 

transliterating between two languages with many phonemic incompatibilities, such as 

English and Arabic. For example a web search for "Muammar Qaddafi" (spelled in 

Arabic as &I&+ +) revealed a total of 87 different spellings in English (including 

but not limited to Qathafi, Kaddafi, Qadafi, Gadafi and Kathafi). 

Backward Transliteration: It occurs when the original form of an Arabic version of 

an English name is desired. Almost always, only one transliteration is acceptable. 

For example Clinton is the only acceptable transliteration for ;~&i&i&~, 3- and 

d9-G. 

 h he definition can be extended to other language pairs as well. 



Other cases, when a name with its origin from a third language is transliterated from 

Arabic to English can be considered as forward transliteration. Since there is usually not 

a unique agreed-upon transliteration for that foreign name. Obviously such a name can 

be written in different forms in Arabic as well. As an example, take the Russian name 

Dostoevsky with other correct spellings including Dostoyevsky, Dostoievsky and Dostoevski, 

and with acceptable spellings in Arabic as N+~J and &+LIJ. 

While the difficulties of machine translation are clear to almost everyone, transliteration 

seems to be a straightforward task at  first glance. One might wonder why transliteration 

should be deemed as a sub-area in the field of Natural Language Processing. In translation, 

the machine must deal with different noticeably hard issues: word sense disambiguation, 

sentence reordering, etc. The simplicity of the transliteration definition belies its real chal- 

lenge. The truth is that each language and its alphabet has its own spelling method which 

usually matches with the frequent phonetics and sounds the people use in that language. 

The eccentrities of languages makes the portability an issue. It is sometimes hard to find suf- 

ficiently accurate equivalents for foreign named entities in any language and the translators 

should estimate something close enough to make the native reader pronounce the foreign 

named entity as close as possible to the correct pronunciation. This estimation requires 

statistical models or some rules in order to find the best corresponding sequence of letters. 

To solve the problem of transliteration, some researchers choose to generate the word 

by using statistical models and filter out the noise with post-processing techniques. Others 

use similarity measures to find the transliteration pairs in two languages. Depending on the 

application, one of these two general methods could be more appealing than the other. 

In this thesis, the focus is on generating the transliteration in the target language. Also 

a comparison mechanism is provided to find a close match for generated words in a target 

language monolingual dictionary. 

Aside from the adopted approach to deal with transliteration, the evaluation method 

is also important. There is not a standard or unique testbed upon which a transliteration 

method can be evaluated as a stand-alone task, neither is there a comparative way to test 

the impact of transliteration when applied to other applications. Evaluation thus constitutes 

a major part of this thesis. 

The structure of the thesis is as follows: In Chapter 2, a short introduction to the Arabic 

language is provided. It is not a deep introduction, rather focusing only on those points 

that are mentioned in the later chapters. No computing science knowledge is necessary 



to understand this chapter and if the reader is familiar with Arabic, this chapter can be 

skipped. Chapter 3 provides a review of the related research with a closer focus on the 

research that inspired our own work. Chapter 4 explains how the training data and test 

data were prepared for our task. Chapter 5 fully describes our system along with an example 

through the whole pipeline. In chapter 6 we evaluate the system as a stand-alone task and 

also as an application in the context of MT. Conclusion and potential future work is then 

provided in Chapter 7. 



Chapter 2 

Arabic Language 

Since the focus of this thesis is the transliteration from Arabic to English, a brief in- 

troduction to the Arabic language is appropriate. Instead of putting various blocks of 

explanations on Arabic in different parts of thesis, it is better to allocate a chapter to this 

language and shed light to those areas that are needed along the way. This chapter is purely 

linguistic and no previous knowledge of Arabic grammar is required. Here we will provide an 

introduction to the Arabic writing style, alphabet and some peculiarities. For the content 

of this chapter, the book referenced in [26] is used as the reference. 

2.1 The Arabic Alphabet 

The Arabic alphabet has 28 letters and is written from right to left. Aside from these 28 

characters, there are vowel signs and various other orthographic signs some of which are 

introduced in this chapter. The 28 characters are consonants by themselves but a few of 

them can make long vowel sounds with help of vowel signs. The consonants, as they appear 

when standing alone, are shown in Table 2.1. Usually they will have a different form when 

they appear within the words. 

It should be noted that many grammars give alif ( I )  as the first letter in the alphabet. 

In reality alif is only a "chair" on top of which the hamzah "sits" thus I ,  and as such has no 

phonetic value. However, in unvowelled texts only alif is written, hamzah being understood; 

and in reciting the alphabet, one says alzf, baa: etc. and not hamzah, baa', etc. 

There is no need to delve into the pronunciation of all the 28 letters, only three of them 

are selected here, whose roles become important later: 



I Name of Letter I Symbol I Transliteration 1 
I - 

hamzah 

taa7 

waaw w 

jeem 
haa7 

khaa' 

yaa' Y 

P 

IL 

Table 2.1: Consonants in Arabic taken from [26] 

7 

t 

r 
t 
i 

t h thaa' 

j 
h 

kh 

& 



rn F: The hamzah represents a glottal stop produced by completely closing the vocal 

chords and then by suddenly separating them. The sound is frequently made in 

English at the beginning of a word with an initial vowel, particularly if emphasized. 

rn 3: Waaw represents the same sound as does the consonantal English w. 

rn d: Yaa' represents the same sound as does the consonantal English y. 

The form 5,  called tau' marbuutah is a combination of the letter taa' (ij) and the letter 

haa' (0). It only occurs at the end of words. When vocalized, it is pronounced as is taa'; 

when not vocalized it is pronounced as is haa'. 

2.2 Arabic Vowels 

There are three vowels in Arabic: a, u and i. The orthography of these three vowels are 

respectively: 

rn Fathah, a small diagonal stroke above a consonant, as in + [ba]. 

> 
rn Dammah, a small waw (3) above a consonant, as in + [bo]. 

rn Kasrah, a small diagonal stroke under a consonant, as in + [be]. When hamzah bears 

kasrah, both hamzah and kasrah are writen under alif (j). 

In addition to the three vowel symbols there is another symbol called sukuun which 

indicates the absence of a vowel after a consonant. It consists of a small circle written above 

the consonant. 

Depending on their position in the word, most of the consonants have different forms. 

In general there are four cases: 

1. The letter can stand alone like in o (h). 

2. It can join the following letter only (initial) as in 3% (hlAl) 

3. It might be joined to both a following and a preceding letter (medial) like in 

(mhdy 1. 

4. It can be joined only to a preceding letter (final) as in ajpe (mwnh). 



In addition, six letters 3 j J 3 :, I cannot be joined to following letters. So, while both 

p~ and p:, are composed of two consonant letters, the former is in one piece and the latter 

is not. 

When a consonant occurs twice without a vowel in between the two occurrences , it is 
,a, 

written only once and the sign , called shaddah, is written above it, as in U. Letters which 

have shaddah above them are commonly said to be doubled. Shaddah, however, is rarely 

written in Arabic texts. 

2.3 Long Vowels and Diphthongs 

The letters alif (d), waaw (g) and yaa' (d) are known as weak (i.e. irregular)' letters. 

These three letters have the additional function of lengthening the vowels to which they 

respectively correspond, namely, fathah, dammah and kasrah and resulting in the creation 
> ,  I ' I > 

of long vowels. Thus, JLA (daaru) as opposed to JA (daru), J& (nuuru) as opposed to 
I > > , 
9 (nuru) and (niiru) as opposed to _;I (niro). When the weak letters are used as 

lengtheners, they do not bear any sign. 

The pronunciation of the long vowels is as follows: 

I -: This combination represents the same sound as does the a of acid when none of 

the letters 3 cti & + J is in juxtaposition with it. When these consonants are 

juxtaposed, it represents the same sound as the a of father. In both cases the sound 

is long. 

> 
3 -: This combination represents a sound similar to that of the oo in boot, but much 

longer. There is no diphthongization. 

0 -: This combination represents a sound similar to that of the ee in sleep, though 

much longer. There is no diphthongization. 

There are two diphthongs (i.e. monosyllabic vowel combination involving a quick but 

smooth movement from one vowel to another, often interpreted by listeners as a single 

vowel sound or phoneme) in Arabic represented by the combinations 3 - and & -. The 

combination 3 - is transliterated as "awn and its sound is similar to that of the ou in about. 

I ,  

'F'rom now on, throughout the thesis, we will refer t o  -, - and - as short vowels and the letters 1, g and 
as long vowels. 



The combination ~ 5 ,  is transliterated as "ay" and its sound is similar to that of the i in kite. 

However, in literary Arabic diphthongs, the glide is carried all the way to the consonant 

positions of the w and y respectively. 

2.4 Some Other Important Points about Arabic 

Aside from previous introductory sections, some other aspects of Arabic language should 

be discussed before delving into computational approaches. These points are summarized 

here: 

It is a common practice in modern written Arabic to omit the short vowels. Therefore, 
' I 

a name like (mohamed) would be likely written as (mhmd). This phenomenon 

makes the transliteration from Arabic to English hard and ambiguous, because the system 

has to guess the omitted vowels during the process of transliteration. 

While the grammar and most of the vocabulary of Farsi (Persian) and Arabic are quite 

different their alphabets are very similar. So, in the context of transliteration-where there 

is no concern for language grammar-Farsi can be considered as a dialect of Arabic language 

and almost all the approaches for the transliteration from Arabic to English are portable 

to Farsi to English. However, in the alphabet, Arabic lacks four letters possessed by Farsi. 

These four letters and their closest counterparts in Arabic are shown in Figure 2.1. The lack 

of such sounds in Arabic, which makes the translators choose a close letter for corresponding 

absent sound, adds a layer of ambiguity to the transliteration. For example, John and Jean 

have the same equivalent in Arabic while j in each is pronounced differently in the source 

language. 

Some letters in Arabic have different behavior based on their position in the word. For 

example, ~5 at the beginning of the word always has a "y" sound while in the middle it is 

usually (not always) pronounced as "ee". 

When aligning Arabic words with their transliterated English counterparts, one can 

notice that an Arabic letter often aligns with two or more English letters (For example 

"tt", "sh" and "sch" are aligned to a single English letter), however the reverse is not that 

frequent. Still, a transliteration system should accommodate such a trait. 

Throughout this thesis, when we want to show the English corresponding presentation 

of letters in an Arabic word, we use Buckwalter notation. It is devised by Tim Buckwal- 

ter at Xerox and provides an ASCII only transliteration scheme which represents Arabic 



orthography strictly one-to-one. This scheme is widely used in the community. The full 

conversion table can be found at http://www.qamus.org/trans1iteratior1.htm. 

Letter in 
Farsi 

Figure 2.1: Farsi letters absent in the Arabic alphabet 

Sound in English 

"p" in "Pedro" 

llj" in "Jean" 

"g" in "garibaldi" 

"ch" in "Che 
Guevara" 

Equivalent 
chosen in 

Arabic 

~ ; 1  

c 

t 

& 

Sound of 
equivalent 

in 
English 

b 

j 

g h 

tsh 

Example 

Paul 3 3! 
(bl) 

Jean + 
3 4  (jAn) 

Gari baldi 
+ '5%k 

(gharibaldi: 

Belucci 
+ $A 
(blutshi) 



Chapter 3 

Computational Approaches to 

Transliterat ion 

The task of transliteration can be usually classified in one of the following two categories 

or a hybrid of these two: 

Transliteration Generation: by using generative approaches, methods in this category 

try to generate the equivalent transliteration from the source language to the target 

language. These methods are useful mostly for machine translation and cross lingual 

information retrieval tasks. In general, either pronunciation of named entities or the 

written spelling of them or a combination of both can be used to train the corpus and 

generate the output. The efficiency of each is dependable of the pair of language. 

Either case, the general framework follows the noisy channel concept, in which the 

~ ( t l s ) '  is broken into P(s / t )  times P( t ) ,  where s and t represent source and target 

language expression respectively. 

Transliteration Discovery: methods in this category mostly rely on the structural 

similarities between the languages and writing systems. Usually, parallel corpora and 

some distance metrics are used with these methods. These methods can be applied in 

order to automatically build bilingual lexicons (in the case of our study, named entity 

lexicons). 

In the rest of this section we study the related work in transliteration from Arabic to 

'Recall that P(x(y)  means the probability of an event x given that event y has occured. 

11 



English. In a few cases some work from other pairs of language are presented as well either 

because of the interesting approach or its relevance to Arabic-to-English approaches. 

3.1 Transliteration Generation 

As one of the first attempts in Arabic transliteration, Arbabi et al. in [3] describe an 

algorithm for Arabic to Romance languages (for example ~ n ~ l i s h ~ ) .  In their approach 

diacritization is performed on Arabic names, i.e. appropriate short vowels are inserted 

into the words which otherwise lack them. After this step, which constitutes the crucial 

part of their algorithm, the vowelized Arabic name is converted int,o its phonetic Roman 

representation using a parser and table lookup. Using this phonetic representation and a 

table lookup, the correct spelling in the target language is produced. 

However, this method can only be applied to the names with known morphological rules, 

other names would be ignored and the transliteration would not be produced for them. The 

reason is that the vowelization rules apply only to Arabic names that conform to strict 

Arabic morphological rules. So, methods described in [3] cannot be used in the context of 

backward transliteration, where the name does not conform to Arabic morphological rules. 

As a pioneer in generative approaches Knight and Graehl in [13] use pronunciation-based 

approach to transliterate from Japanese to English. They build five probability distribu- 

tions matching five phases in their adopted generative story of converting an English name 

into Japanese: P(w) generates written English sequences; P(e1w) pronounces English word 

sequences; P(jle) converts English sounds into Japanese sounds; P(klj) converts Japanese 

sounds to katakana writing; and P(o(k) introduces misspellings caused by optical character 

recognition (OCR). Then they implement P(w) in a weighted finite-state acceptor (WFSA) 

and they implement other distributions in weighted finite-state transducers (WFST). A 

WFSA is a stateltransition diagram with weights and symbols on the transitions, making 

some output sequences more likely than others. A WFST is a WSFSA with a pair of symbols 

on each transition, one input and one output. They apply a general composition algorithm 

to construct an integrated model, treating WFSAs as WFSTs with identical inputs and 

outputs. Their evaluation on names from Japanese news articles shows an accuracy of 64% 

compared to that of human which was only 27%. 

2~ngl ish  is not a Romance language but does have a Roman alphabet. 
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Stalls and Knight in [22] present an Arabic-to-English back-transliteration system based 

on the source-channel framework. The transliteration process is based on a generative model 

of how an English name is transliterated into Arabic. The model has three components P(w), 

P(e1w) and P(a1e). P(w) is a typical unigram model that generates English word sequences 

according to their unigram probabilities. A given English word sequence w is converted to 

its corresponding phoneme sequence e with probability P(e1w). Finally, an English phoneme 

sequence e is converted into an Arabic letter sequence according to the probability P(a1e). 

This system has limitations when it comes to those names with unknown pronunciations in 

the dictionary. 

Aside from making some minor improvements to Stalls and Knight's phonetic-based 

model, Al-Onaizan and Knight in [2] also developed a spelling-based model and evaluated 

the performance of their system in different cases of a phonetic-based model alone, spelling- 

based model alone and finally both models combined. Their spelling-based model directly 

maps English letter sequences into Arabic letter sequences with a probability P(a1w). Their 

motivations to use a spelling-based model are as follows. 

Firstly, the phonetic-based model has the limitation that only English words with known 

pronunciation can be produced. This is not a problem for backward transliteration of names 

of English origin because they are typically found in the dictionary. However, applying this 

technique to transliterate names of origins other than English is not going to work, because 

many such names are not likely to be in the dictionary. Moreover, if somebody wants to 

use the same technique to transliterate into another language other than English a large 

pronunciation dictionary would be required. 

Secondly, based on Al-Onaizan and Knight's observation in [2] (which is quite true for 

Arabic), human translators often transliterate words based on how they are spelled in the 

source language and not on how they are actually pronounced. For example, Graham is 

typically transliterated as p b l +  (graham) and not as pl> (gram). 

In their spelling-based model they used a letter trigram language model which was 

trained on a list of person names. So, their generative system is able to produce any equiv- 

alent for a given named entity as long as it has high translation probabilities and trigram 

language model probabilities. Later, they use web filtering to filter out the malformed 

candidates. To decode they use Knight and Graehl's finite-state approach in [13]. 

They provide two different kinds of evaluation: the first method of evaluation is to 

compare the candidates with a gold standard and check if the top first candidate is the 



correct one or if the correct transliteration can be found among the first 20 candidates. The 

second method is to use human subjective evaluation of the quality of the output candidates. 

The reason to use this criterion is that the gold standard is too rigid for when there is more 

than one acceptable transliteration. 

The evaluation shows that in general the spelling-based method works better than the 

phonetic-based method and surprisingly it is still better for the names that exist in the 

dictionary. It is surprising because we expect that the phonetic-based method works better 

for the names with known pronunciation. 

AbdulJaleel and Larkey in [l] provide a statistical transliteration system from English 

to Arabic in the context of CLIR. Although their language direction is reverse to our task's, 

the method they used was inspiring for us. 

Their algorithm treats each letter and each word as "word" and "sentence" respectively. 

The first letter is prefixed with a start symbol, B and the last letter is suffixed with an 

end symbol, E. Single Arabic and English letters in the training pairs are aligned using 

GIzA++~. The instances in which a sequence of English characters were aligned to a single 

Arabic character were counted and the 50 most frequent of those character sequences, or n- 

grams, were added to the English symbol inventory. These new groups of letters are applied 

to the training data. For example "Bb a s h a rE" becomes "Bb a sh a rE" (since "sh" is 

a frequent sequence). Then again, GIZA++ is used to align the above English and Arabic 

training word-pairs, with English as the source language and Arabic as the target language. 

The transliteration model was built by counting alignments from the GIZA++ output and 

converting the counts to conditional probabilities. 

To generate Arabic transliterations for an English word, the word is first segmented 

according to the n-gram inventory (for example, bashar into b a sh a r). Then, for each 

segment, all possible transliterations are generated and based on their scoring scheme they 

are ranked. 

As another interesting and related research, Karimi et al. in [17] provide a novel align- 

ment algorithm and transliteration approach tailored for English-Persian transliteration and 

back-transliteration. Their method can be applied for the English-Arabic pair as well and 

that is why their work is introduced in this thesis. Throughout their paper, they have 

treated consonants and vowels quite distinctively. In the alignment phase, they replace each 

3 G ~ ~ A + +  is introduced later. But briefly speaking, as part of a toolkit, it performs alignment between 
two parallel aligned corpora. 



consonant with Cand each vowel with V. Then they reduce each string by replacing all runs 

of C with a single C and all runs of V with a single V. For example Antonioni would end up 

as VCVCVCV. In Step 1, the reduced consonant-vowel sequences in English-Arabic pairs 

of training data are compared and if they match, the corresponding vowel and consonant 

sequences are considered as aligned. In Step 2, the frequencies obtained from the first step 

are used to align the sequences in the unaligned pairs. In this step it is assumed that there 

can be three alignments: single letter to single letter, single letter to digraph and digraph 

to single letter. They introduce some ad hoc details to handle exceptional cases during 

alignment. 

The transliteration method is basically an extension to Karimi et al's previous work de- 

scribed in [9]. Instead of using the collapsed vowel model they introduced in [17] they use the 

collapsed consonant and vowel model during training and transliteration generation. They 

investigate the effectiveness of their model and their new alignment approach on transliter- 

ation separately. First, they use GIZA++ for alignment and evaluate their transliteration 

method which at its best gives 17.2% more accuracy relative to the baseline system (i.e. 

their former system). Second, they evaluate their alignment method which at  its best gives 

an 8.1% relative increase. 

In order to integrate their transliteration system into a machine translation system, 

Hassan and Sorensen in [7] use a block based transliteration method, which transliterates 

sequences of letters from Arabic to sequences of letters in English. To accommodate vowel 

insertion, their system tries to model bi-grams from Arabic to n-grams in English. The 

translation matrix from their own MT system is applied and the poor translation pairs are 

filtered out. The resulting high confident translations are further refined by calculating 

phonetic based edit distance between both romanized Arabic and English names. The 

highly confident name pairs are used to train a letter to letter translation matrix using 

HMM Viterbi training [24]. Each bi-gram of letters on the source side is aligned to an n- 

gram of letters sequence on the target side, such that vowels have very low cost to be aligned 

to NULL. For a source block s and a target block t, the probability of s being translated as 

t is the ratio of their co-occurrence and total source occurrence. A weighted Finite State 

Transducer (WFST) is used to do the actual transliteration. However, since they wanted 

to try they transliteration module in an MT application, they do not provide a stand-alone 

evaluation. Their evaluation in the context of MT is discussed in Chapter 6. 

Another approach adapts the phrase-based models of machine translation to the domain 



of transliteration. Substring based transliteration methods devised by [?I are inspired by 

the monotone search algorithm proposed in [25]. The monotone search algorithm proposes 

a linear-time decoding algorithm for phrase-based machine translation. The algorithm does 

not allow any kind of distortion or sentence reordering which is fine for transliteration. 

Decoding in the monotone search algorithm is performed with a Viterbi dynamic program- 

ming approach. However the fact that the Viterbi substring decoder employs a dynamic 

programming search through the source/target letter state space renders the use of a word 

unigram language model impossible, because alternate paths to a given source/target letter 

pair are being eliminated as the search proceeds. This approach is only able to produce the 

top-1 candidate since the other paths are eliminated during the search. 

In order to be able to use the word unigram model, Sherif and Kondrak in [?I pro- 

pose a substring-based transducer in which the substring transliteration model learned for 

the Viterbi substring decoder is encoded as a transducer. The top-1 exact match perfor- 

mance that they provide shows a high percentage accuracy on the seen test set for Substring 

transliteration compared to Viterbi substring method and letter-based transliteration pro- 

posed in [2]. However their exact-match performance on unseen data does not exceed the 

10.3% achieved by the Viterbi substring decoder. They do not report the performance for 

any other top-n other than n=l. 

Vilar et al. in [23] take the concept of letter translation to the context of machine 

translation between similar and related languages (in their case Spanish and Catalan) by 

generating correct words out of the stream of letters. The traditional approach in SMT is 

used except that letters are treated as words (including digits, whitespace and punctuation 

marks as well). Since the vocabulary size is reduced to only about 70 tokens (as opposed to 

millons of tokens in traditional machine translation task), it is possible from computational 

aspect for letter-based language model to be as long as 16-gram instead of 3 or 4-grams 

normally used in translation systems. 

Their letter-based system deteriorates in performance compared to a word-based system. 

However by combining the two systems, they gain a slight raise in terms of BLEU score 

[16], Word Error Rate (WER) and Position-independent Error Rate (PER). 



3.2 Transliteration Discovery 

Aside from transliteration generation approaches outlined in the previous section, some re- 

search has been done to "discover" the named entity equivalent in comparable and parallel 

corpora. The main pattern practiced by different researchers is to have a simple transliter- 

ation module and along with that use some temporal and spatial clues found in the corpora 

to confirm or reject the candidates as possible equivalent pairs. 

Samy et al. in [19] use an Arabic-Spanish parallel corpus and a Spanish NE tagger to 

tag Arabic NEs. The parallel corpora they use is aligned to the sentence level. They rely 

on this basic assumption in their implementation: "Given a pair of sentences where each is 

the translation of the other; and given that in one sentence one or more NE were detected, 

then the corresponding aligned sentence should contain the same NE either translated or 

transliterated". For an aligned sentence pair (x,y) for each NE found in a Spanish corpus, 

the letters are mapped to the corresponding Arabic letter Unicode values and each Arabic 

word in Arabic sentence is turned into the Unicode values and compared. The closest match 

is returned as the equivalent Arabic named entity. They report the precision and recall 

values as 90% and 97.5%. 

Sproat et al. in [21] and Klementiev and Roth in [12] apply the temporal information 

in comparable corpora, each in its own way. Sproat et al. in [21] try to do transliteration 

between Chinese and English using two different criteria: phonetic transliteration and tem- 

poral distribution of candidate pairs. To score English-Chinese transliteration pairs they 

adopt a source-channel model. To align the training data the alignment algorithm from [19] 

and a hand-derived set of 21 rules-of-thumb is used. They apply temporal information based 

on the following intuition: if a document in language L1 has a set of names, and one finds 

a document in Lz containing a set of names that look as if they could be transliterations of 

the names in the L1 document, then this should boost one's confidence that the two sets of 

names are indeed transliterations of each other. 

For the task of transliteration detection and extraction, Freeman et al. in [6] take the 

approach of encoding language knowledge directly into their Arabic-English fuzzy matching 

algorithm. They define equivalence classes between letters in two languages and also per- 

form some rule-based transformations to make word pairs more comparable. They iterate 

through both words to remove any vowels in the English word for which there is no similarly 

positioned vowel in the Arabic word. This way they can compare the resulting word pair 



better by using equivalence classes. As an example, the Arabic letter j can match with 

the English letters q,g and k. Therefore, they are in the same equivalence classes. However, 

their method is very language dependent and requires vast knowledge of the language pair. 

Sherif and Kondrak in [20] propose a method to learn letter relationships directly from the 

bitext containing the transliterations. Using a transducer, they derive a probabilistic word- 

similarity function from a set of examples. In their approach there is no need for language 

knowledge but a large set of training examples is required. To overcome this problem they 

use a bootstrapping approach to train the stochastic transducer iteratively at it extracts 

transliterations from a bitext. They show their approach beats Freeman et al's approach in 

[GI. 



Chapter 4 

Training and Test Data 

Preparation 

In order to create the language model and translation model that we use in our system 

we need a long list of Arabic-English pairs of named entities. In the ideal case, the Arabic 

and English entry of each pair should be the exact transliteration of each other. We did not 

have such a well-prepared list and decided to make our own. At the beginning we processed 

the LDC Arabic Treebank part 3 v. 2l and LDC Arabic Treebank part 2 v 2 . 0 ~  to prepare 

the training data and test data. The resulting training data proved to be insufficient and 

the distribution created out of it was unable to predict many cases (i.e. the conditional 

probability matrices were very sparse). Therefore, as explained in 4.2, we processed the 

Arabic-English Parallel News Corpus3 and added the resulting list to increase the size of 

the training data. Each step is described in the following sections. 

4.1 Arabic Treebank 

The LDC Arabic Treebank part 3 v 2.0 is a set of fully annotated Arabic news articles with 

the closest translation for each word (along with other information). The XML annotated 

text has a structure shown in Figure 4.1: 

'With catalog ID LDC2005T02. LDC's project is to annotate 1,000,000 words of modern standard Arabic. 
They release portions of it each year calling them "part". 

'With catalog ID LDC2004T02. 

3 ~ i t h  catalog ID LDC2004T18. 



INPUT STRING: & 
LOOK-UP WORD: E1Y 
Comment: 
INDEX: P7W37 
SOLUTION 1: (EalaY) [EalaY-11 EalaY/PREP 
(GLOSS): on/above 
SOLUTION 2: (Ealay a)  [EalaY-11 Ealay/PREP+ a/PRON-1s 
(GLOSS): on/above + me 
SOLUTION 3: (Eal aY) [Eal aY-I] Eal aY/VERB-PERFECT+(null)/PVSUFF_SUBJ:3MS 
(GLOSS): elevatelraise + helit  < verb > 
SOLUTION 4: (Ealiy ) [Ealiy -11 Ealiy /ADJ 
(GLOSS): supremelhigh 
SOLUTION 5: (Ealiy u) [Ealiy -1.1 Ealiy /ADJ+u/CASE-DEF-NOM 
(GLOSS): supremelhigh + [def.nom.] 
SOLUTION 6: (Ealiy a) [Ealiy -11 Ealiy /ADJ+a/CASEDEF-ACC 
(GLOSS): supremelhigh + [def.acc.] 
SOLUTION 7: (Ealiy i) [Ealiy -11 Ealiy /ADJ+i/CASE-DEF-GEN 
(GLOSS): supremelhigh + [def.gen.] 
SOLUTION 8: (Ealiy N) [Ealiy -11 Ealiy /ADJ+N/CASE-INDEF-NOM 
(GLOSS) : supremelhigh + [indef.nom.] 
SOLUTION 9: (Ealiy K) [Ealiy -11 Ealiy /ADJ+K/CASEINDEF-GEN 
(GLOSS): supremelhigh + [indef.gen.] 
SOLUTION 10: (Ealiy ) [Ealiy -21 Ealiy /NOUN-PROP 
(GLOSS): Ali 
SOLUTION 11: (Ealiy u) [Ealiy -21 Ealiy /NOUN-PROP+u/CASE-DEF-NOM 
(GLOSS): Ali + [def.nom.] 
SOLUTION 12: (Ealiy a) [Ealiy -21 Ealiy /NOUN-PROP+a/CASE-DEF-ACC 
(GLOSS): Ali + [def.acc.] 
SOLUTION 13: (Ealiy i) [Ealiy -21 Ealiy /NOUN-PROP+i/CASE-DEF-GEN 
(GLOSS): Ali + [def.gen.] 
SOLUTION 14: (Ealiy N) [Ealiy -21 Ealiy /NOUN-PROP+N/CASE-INDEF-NOM 
(GLOSS): Ali + [indef.nom.] 
SOLUTION 15: (Ealiy K) [Ealiy -21 Ealiy /NOUN-PROP+K/CASE-INDEmN 
(GLOSS): Ali + [indef.gen.] 

Figure 4.1: A sample of annotated text in Arabic Treebank part 3 version 2.0 



It is straightforward to parse the XML file and extract those words tagged as named enti- 

ties along with their translation. We did this and obtained a list of 2167 pairs. However, not 

all of them can be used for training purposes. Some named entities are not really transliter- 

ated but rather translated. It is especially the case for the names of ancient places or biblical 

names. For example, the country Egypt is written in Arabic as y and pronounced as 

MESR. Although not very frequent, such cases have severe impact on translation model 

distribution and hence on the transliteration quality. Before using the set, the undesired 

pairs should be filtered out. 

We need a quantified automatic criterion to remove noise from the training data to decide 

which pairs to keep and which pairs to remove. The tool we use for alignment (explained 

in the next chapter) is an ideal one since it gives alignment score to each of the given input 

pairs. Each letter in the source language is aligned to a letter in the target and the final 

score is a multiplication of alignment probabilities of each constituent. Clearly, bad name 

pairs result in low alignment scores. The alignment score also depends on the length of 

the name pairs which needs to be reflected in the formula we use for filtering. We used 

the Inequality 4.1, obtained empirically, and the name pairs with the alignment score below 

that threshold were removed from the training set. After this step the number of name pairs 

was reduced to 2085 pairs. 

2 * 1 0 - ~  
Alignment score > . 

szze o f the N E  i n  Arabic 

4.2 Additional Corpus Preparation 

It was clear very soon that the training data obtained from Section 4.1 (2085 pairs) is not 

enough. Thus, we used the parallel corpora to add more name pairs to the existing set. 

The parallel corpora were aligned to the sentence level but not annotated. Therefore, a 

third-party named entity tagger was used to tag the NEs in Arabic and English corpora. 

Ideally, equal number of named entities should be found and the ith NE in Arabic corpus 

should correspond to the ith NE in English corpus, but the NE tagger performance is far 

from it. Even for the corresponding sentences with equal number of NEs, their relative 

position might be altered in translation. So, again the alignment tool comes into play. 

Suppose in two sentence pairs the named entities shown in Figure 4.2 are detected: 



#1: pIu-* 
#1: bush saddamhussein 
#2: p l u - & e  &eA&I 

#2: saddam-hussein el-baradei 

Figure 4.2: A sample of named entities detected in sentence pairs 

Then the EM tool learns that p I m - w  should be aligned with saddam-hussein and 

given the highest alignment score. Since the corpora are news articles about particular 

topics, the odds of repetition of named entities is high, hence the EM algorithm has a 

higher chance to align them more accurately. 

Up to this step, named entities referring to the same entity are found but sometimes the 

tagger is not able to fully select the whole named entities in both languages and something 

like i)9+-& (Bill Clinton) might get aligned with clinton. The pairs that have different 

number of constituents are removed from the list. 

Finally, the resulting list has the same property discussed in Section 5.2, namely, some 

named entities are translated and not transliterated. The same approach described in 

Subsection 5.3.1 is applied to remove them. After this step, 2162 name pairs are prepared 

that along with 2085 name pairs from Section 4.1 constitute our training data of 4247 name 

pairs. 

Some named entities extracted in this section are multi-word named entities (for example, 

"bill clinton"). This is not a problem for the aligment tool since corresponding letters in each 

word pair of multi-word NE get aligned appropriately (as blank space is also aligned with 

blank space). In the actual transliteration though, we transliterate each word separately. 

4.3 Test Data 

We have two quite different types of evaluation of our system. One involves testing the 

system and its transliteration capability as a stand-alone task and the other evaluating the 

system as a module inside a real application. We leave all the description of the second 

evaluation for Chapter 6 but the preparation of test data for the first evaluation is outlined 

here. 

As mentioned earlier, Arabic Treebank part 2 v2.0 is used to prepare a list of name pairs. 

The result was a list of 1167 pairs. Instead of automatically filtering out the unwanted pairs, 



we decided to manually detect them. This would give us more control. First 300 pairs were 

selected as a development test set and the second 300 pairs as blind test set and the rest 

were held for future use. After filtering out the non-transliterated pairs, we ended up with 

273 and 291 pairs for development and test sets respectively. The evaluation criteria will be 

explained in detail in Chapter 6, making use of our development and blind test set. 



Chapter 5 

Our Three-phase Transliteration 

As seen in Chapter 3, there are various approaches to perform transliteration and one of 

the main deciding factors in choosing between them is the application in which the translit- 

eration module is intended to be incorporated. If the goal is to discover transliterations and 

prepare a bilingual named entity dictionary, the parallel and comparable corpus methods 

are desirable. For Cross Lingual Information Retrieval (CLIR), the parallel and compara- 

ble corpus methods are still applicable but generative methods seem more comprehensive. 

On the other hand, in the context of Machine Translation (MT), generative methods, in 

general, are the best. The usual practice in MT is to give the MT system a text in the 

source language and ask the MT system to translate it into the target language. Except in 

some ad hoc environments (where a corpus in the target language with the same subject is 

provided), in general there is no clue for the MT system to discover the equivalents in the 

target language. The only chance for a typical MT system to find the correct equivalents 

for a given named entities is to find it in its phrase table1. But experiments [7] show it is 

not always the case and there are various occasions that a transliteration module should 

generate the correct equivalents2. Since, our main purpose was to examine the effect of a 

transliteration system within an existing MT system, we adopted a generative approach. 

As mentioned in Chapter 3, at least for Arabic, the spelling-based generative approach 

'A table where the conditional probabilities of target phrases given source phrases (and vice versa) is 
kept. 

 ore on this in later chapters. 



works better than pronunciation-based 3.  The reason might be because human transliter- 

ators prefer that the reader should be able to reconstruct the actual writing of the name 

in the source language rather than pronounce it correctly. The example in [2] is Graham 

which is always transliterated as (graham) instead of (gram). The other advantage of 

the spelling-based method is that it does not require a phonetic dictionary for the language 

pairs which makes it easier to adopt the same approach for any language pair (as long as 

there is a sufficiently large list of named entity pairs for training). We adopt a spelling-based 

method with some changes that are elaborated in the following paragraphs. 

In Chapter 2 it was shown that the omission of diacritics plays a major role in adding 

ambiguity in pronunciation and hence mapping the Arabic words into English. It is espe- 

cially the case with names that are originally Arabic. For foreign names, people usually try 

to transliterate by using long vowels in order to make it easier for the native speaker to 

pronounce them. 

To find the best candidates for the transliteration of a given Arabic named entity we use 

Viterbi algorithm in Hidden Markov Model (HNLM) framework in two passes. In the first 

pass the system tries to find the best English matches for the explicitly written letters. Then 

in the second pass, by using the language model and the output of the first pass, the system 

guesses the empty slots between the letters (i.e. guesses the missing diacritics). From now 

on, we call these two passes as the first two phases of the three-phase transliteration system. 

In the third and last phase, the HMM outputs are compared to the entries of a mono- 

lingual dictionary to find and extract the close matches. The rationale behind this phase is 

that while having a rich Arabic-English dictionary of named entities is difficult, there are 

numerous monolingual English dictionaries of names available that are much larger than 

existing bilingual dictionaries. Having the dictionary comparison with an appropriate dis- 

tance metric can help us correct minor inaccuracies in HMM outputs only if the desired 

name exists in the dictionary. 

The content of this chapter is organized as follows: First, in Section 5.1 we explain 

why we use the Hidden Markov Model in our system. Then, Section 5.2 discusses why the 

HMM is performed in two distinct phases. In Section 5.3 the first phase is explained and the 

Viterbi algorithm and the ad hoc decoding technique used to find the best path is discussed. 

The process performed on the training data to make it usable for the task is fully explained 

3Al-Onaizan and Knight preferred to use the term phonetic-based. We, however, adopt pronunciat ion-  
based since it is more general and clear. 



in this section. Section 5.4 entirely elucidates Phase Two with frequent references to the 

Phase One, since the steps are quite similar. In Section 5.5 the third phase is described 

with an in-depth study of the distance metric algorithm. An example accompanies the 

description of each phase to better illustrate the process. Note that all the probabilities in 

the example are hypothetical and purely for demonstration purposes. An earlier description 

of the system appeared in [ll]. 

5.1 Why HMM? 

In probability theory, a stochastic process has the Markov property if the conditional proba- 

bility distribution of future states of the process, given the present and past states, depends 

only on the present state. A process with the Markov property is called a Markov process. 

A Hidden Markov Model is a statistical model in which the system that is being modeled 

is assumed to be a Markov process. In a regular Markov model, the state is directly visible 

to the observer, and therefore the state transition probabilities are the only parameters. In 

a hidden Markov model, the state is not directly visible, but variables influenced by the 

state are visible. Each state has a probability distribution over the possible output tokens. 

Therefore the sequence of tokens generated by an HNlM gives some information about the 

sequence of states. A sample of Hidden Markov Model is shown in Figure 5.1. 

In our research, we can think of observable states as the source language (i.e. Arabic) and 

of hidden states as the target language (i.e. English). The good thing about this framework 

is that different model parameters can be mapped to widely-known concepts in machine 

translation for which there are off-the-shelf processing tools. The transition probabilities 

(the distribution that determines the probability of moving from one hidden state to the 

other) can be mapped to language model probabilities. The emission probabilities (the 

distribution that determines the probability of generating an observable state from the 

given hidden state) can be mapped to translation model probabilities. In a special case of 

Markov chain called first order Markov chain, the state transition probabilities only depend 

on the preceding state. So, considering that the transition probabilities in our HMM depend 

only on the previous state, we are actually using first-order HMM. 



Figure 5.1: A hidden Markov model with the state transitions. x, y, a and b denote hidden 
states, observable states, transition probabilities and emission probabilities respectively. 



5.2 Motivation for two-pass HMM 

When a human reader encounters a new4 name in Arabic (or Farsi) and wants to transliterate 

it, one could imagine her unconsciously doing it in two steps. First, she tries to make the 

closest equivalent for each written letter. Then, by using her knowledge of English and 

Arabic she fills in the gaps by guessing the vowels. 

Other than perhaps imitating human behavior, the break-down to two passes has scien- 

tific justification. Let's say Arabic letter ai usually corresponds to ejl and seldom to ej2. 

In this case, it is desirable to have P(ailejl) >> P(ailej2). However, during the alignment 

process it is not only ejl that gets aligned with ai but the short vowels (if any) right after it 

as well. So P(ailejl) breaks down into P ( ~ ~ l a ~ , . ~ )  where a l , . k  are all the English sequences 

prefixed by ejl and followed by short vowels5. Now, in a single HMM pass each of these 

probabilities should compete with ej2. Such a case is more significant when the size of 

training data is narrow and the distribution is sparser. 

Here is an example: almost always m is the correct transliteration for "?" but in rare 

cases it gets aligned with n. We expect P(,=lm) >> P(? In). In the single pass case P(?lm) 

is broken down into P(?/mi), P(plm),P(p(mo) and etc. But in two-pass pattern, in the first 

pass we come up with conditional probabilities for P(?lm) and P(?ln) without considering 

the following short vowels. In this configuration, we indeed have the desired property of 

P(?lm) >> P(?ln) which results in having m in the best path fed to the second pass. In 

the second pass, only those paths with m as prefix are ~ons idered .~  

5.3 Phase One 

To train the system, we need to  convert the representation of training data to a desirable 

form. Some part of the process is common to both Phase One and Phase Two. In practice, 

those steps are performed just once for both phases and explained here under a different 

subsection. 

4 ~ f  the name is familiar, this argument is not probably valid since the human has a predefined entry in 
his/her brain to come up with the right transliteration. 

51t can also include ejl alone as well. 

6 ~ t  might be speculated that ejz will have a similar distribution as ejl which means the strength of ejz 
will be discounted as well. But in practice it is not always the case. Also note that in sparse data there is 
only one piece of evidence for many alignments. 



5.3.1 'I'raining Steps Common to Phase One and Phase Two 

Some groups of letters in English are always aligned to a single Arabic letter. This happens 

to a much lesser extent in reverse order. There are some subtle differences between them 

that we will illustrate here. 

English Letters Grouping 

In English, some groups of letters frequently appear together having single sound. Some- 

times their grouping alters the sound of the constituents (ex. ph and sh) and other times 

they retain the original sound of the constituents (ex. tt and ck).  In all of these cases the 

letter groups correspond to single Arabic letters7. It encourages us to extend the English 

alphabet and accommodate for these new composite letters. 

For the main alignment procedure, when we want to get the actual probability distri- 

bution, we use an EM tool called which is frequently used in different alignment tasks. 

GIZA++ is a training program that learns statistical translation models from bilingual 

corpora. It is one software tool within the Statistical Machine Translation toolkit called 

EGYPT. In order to do the alignment it uses IBM model 4 [4] which is a rather sophisticated 

model but still is able to align our simple corpus. We only use GIZA++ to obtain trans- 

lation probabilities that map to the emission probabilities of our HMM model. GIZA++ 

implements IBM model 4 [4] which has fertility feature (i.e. one letter getting aligned with 

more than one letter). We need fertility because the nature of the letter alignment requires 

it. In both phases some letters must be able to get aligned with more than one letters (one- 

to-many alignment) if necessary and IBM model 4 (implemented by GIZA++) provides us 

with this capability. 

When fed by a list of named entity pairs, GIZA++ outputs a file like the following 

example (among other files) shown in Figure 5.2 

Now that we have all the alignments it is trivial to find the groups aligned to the same 

Arabic letter and compute their frequency (in this case ss is an example). At this stage we 

do not care to what they are aligned to. The groups are sorted based on their frequency 

and those occuring more than once are selected and added to the English alphabet. The 

7 ~ h e y  are respectively aligned to & (f) ,  L (sh), G (t), 9 (k). 

'Find the documentation and downloadable toolkit from www.fjoch.com/GIZA++.html. 



# Sentence pair (50) source length 3 target length 6 alignment score : 
6.3438e-05 
Bh a s  s ,a nE 
N U L L ( 2 5 )  ( 1 ) , ( 3 4 ) ; , ( 6 )  

Figure 5.2: A sample of GIZA++ output with English as the source and Arabic as the 
target. 

reason that we do not group those with one occurrence to the repository of grouped letters 

is that some of them are the result of misalignments performed by GIZA++. As we checked 

the groupings with frequency of more than one almost all of them were correct and valid 

groupings. 

To be treated as a single letter, it is sufficient to concatenate them together in the list. 

For example, Bs c h 1 e s i n g e rE becomes Bsch 1 e s i n g e rE. 

It is important to note that this replacement (i.e. concatenating all the occurrences of 

the most frequent sequences) is done on the entire English training data set even for those 

instances that are not aligned to the same Arabic letter. In other words, if ei..ej are aligned 

to ak more than n times (in this case n=l) ,  the ei..ej are grouped even if in some parts of 

the training data constituents of their sequence are aligned to different Arabic letters. 

Arabic Letters Grouping 

Arabic script is different from English script in the sense that it is based on the assumption 

that a group of letters might have independent sounds or altogether result in a single sound 

as a whole. Such ambiguity happens in three different cases. 

The first case comes form Arabic language rules. For example, when letters I (A) and 

~f (y) appear at the beginning of the word they usually sound like ee but not always. For 

instance, the words ; , I 2 1  and ~ k l  are pronounced as EERAN and AYAD respectively. 

The second case happens when an English letter has a sound that corresponds to more 

than one Arabic letter. The most obvious example is "x" that in most cases corresponds to 

Arabic 4 and p as in Max and &La. In this case too, and might have their own 

independent sounds. For example, one expects be transliterated as Cassandra and 

not Xandra. 

The last case is very much similar to second case, that is where some sounds are absent 



# Sentence pair (157) source length 8 target length 6 alignment score : 
0.0171336 
J J i , L ! W I  

NULL()Bi(l)s(2)k(3)a()n(4)d(5)a()rE(6) 

Figure 5.3: A sample of GIZA++ output with Arabic as the source and English as the 
target. 

in Arabic language and an attempt is made to find the closest corresponding letter or 

letters. :For instance, in Arabic the sound "ch" does not exist and the letters rl, (t) and 

$ (sh) together build a close impression of that sound, so Richard is written as 

(RITSHARD). Similar to above cases, ~ ( t )  and $(sh) are pronounced differently (such as 

A& pronounced as TASHAHOD). 

To find these Arabic groups the same approach used to find English groups is adopted, 

but with a difference. the GIZA++ output is scanned and the pairs in which more than one 

Arabic letter is aligned to the same English letter are detected and altered (i.e. the Arabic 

letters aligned to the same English letter are concatenated to each other). Other occurrences 

of these Arabic sequences will remain intact. The newly found Arabic composite letters are 

added to the alphabet. 

5.3.2 'Training Steps Specific to Phase One 

This part, of training is exclusively for Phase One. The goal is to remove those short vowels 

in the English training data that are aligned to null which indicates they are not of interest 

for this phase. Again, GIZA++ is used and the same output file is processed to find the 

short vowels that are supposed to be removed. 

GIZA++ is run with Arabic as the source and English as the target. The output for an 

instance pair would be as shown in 5.3. 

The numbers in the bracket show the index of Arabic letter(s) that the English letter 

is aligned to. The English letters that are not aligned have empty brackets on their right, 

suggesting that probably they should have aligned to the unwritten vowels. These letters 

are detected and removed. In the above example both as are removed, replacing "Bi s k a 

n d a rE" with "Bi s k n d r". Note that a distinction should be made between the English 

letters aligned to Arabic short vowels and those aligned to the long vowels. While it is 



desirable to remove English letters aligned to short vowels, it is vital to retain those aligned 

to the long vowels. That is why we do not just blindly remove all the vowels in English 

corpus. In the example, Bi at the beginning should be there because it is aligned to  Arabic 

I (A). 

After we are done with preparing the right representation of our training data, we are 

able to run GIZA++ with English as the source and Arabic as the target, to get the 

translation probability distribution. After the run, we have P(aiJe j )  for every Arabic letter 

ai and English letter e j  that are seen together at least once in the training set. 

For t:he language model, we use the Cambridge Language Model Toolkit (LM tool)g . It 

receives the alphabet (letters include composite ones as explained in Subsection 5.3.1) and 

the English corpus (in our case the list of names in English) and gives unigram, bigram and 

trigram probabilities with back-off weights for Witten-Bell smoothing10 

We used smoothing in our language model, where it was found to be effective however 

we did not use smoothing for our translation model as is the usual practice in the machine 

translation community. The reason is that the probability distribution for converting letters 

from one language to another is much more deterministic compared to the distribution 

between phrases at the sentence level. Therefore having a sparse matrix of probabilities in 

the letter-level translation model does not affect the performance in a negative manner. 

Note that we should use the same corpus prepared in Subsection 5.3.2 for language 

model training. The reason is illustrated in the following example: 

Example: For the Arabic name, sJ+, ideally we want to generate Cortinz so that 

in Phase Two get the desired output, Cortinez. However, for a typical corpus, P(zln), the 

probability that z appears after n is very low if not zero which is not desirable. In contrast, 

in our training set preparation, many names contribute to make P(zln) high enough (ex. 

Martinez, Naaar, Nozhat which are represented as Martinz, Nzr, Nzht in Phase One). 

Now that we have the language model and translation model probabilities, we have 

everything necessary to use the Viterbi algorithm. Since we use the Hidden Markov Model 

(HMM) framework, translation probabilities and language model probabilities are equivalent 

to emission probabilities and transition probabilities respectively. The algorithm shown in 

Figure 5.5 is applied when an Arabic name al.., is given to the system. 

'~ocumentat ion and downloadable code can be found at  ht tp  : / /mi.eng.cam.ac.uk/ prcl4/toolkit .html.  

'O~or an in-depth study of Witten-Bell smoothing refer to [ 5 ] .  Basically Witten-Bell smoothing encourages 
to use higher order model if mgrams were seen in training data, otherwise backs off to  a lower order model. 



a. .At step 1, for each English letter ej, P(allej) * P(ej)  is computed and stored in a 
matrix. This score is regarded as the best partial path to ej  probability at time 1 and 
represented as B P P P l  (ej) . 

b. .At step i (i > I ) ,  for each English letter ej  and every English letter in the previous 
step ek, the following product is computed and the maximum probability among all 
the n candidates is stored in the matrix. 

c. At the same step, the top 511 back-paths for every ei are stored in a m * n * 5 
matrix. This three-dimensional matrix will be used during decoding, where we want 
to find the top N candidates. 

Figure 5.4: The Viterbi algorithm used in Phase One. 

When the algorithm finishes the mth step, the two-dimensional and three-dimensional 

matrices are completely full. In typical use of the Viterbi algorithm in which the objective 

is to find the best path, each cell in every state has a back-pointer to another cell in the 

previous state and by following the back-pointers from the best cell in the last state, one 

can find the best path. However, in this case we are interested in top N candidates, where 

N is specified by the user. That is why we keep 5 back-paths for each cell instead of just a 

back-pointer. 

Before going further into the decoding step, it should be emphasized again that in one 

pass we traverse the word from its starting letter to its ending letter and following the Viterbi 

algorithm the partial path information is stored in each cell (i.e. the English composite 

letters that can emit the corresponding Arabic letter). Then decoding starts from the final 

letter and by using the Viterbi information, the substrings are generated recursively. 

Decoding 

The steps shown in Figure 5.5 are taken to look into the search space and find the top N 

candidate. Score computation and the pruning scheme are explained later. 



1. The n letters at step m are sorted based on their score. The top 5 letters are selected. If 
there are less than 5 letters with score higher than zero only those letters are selected. 

2. For each selected letter, its five back-paths are considered recursively. If there are 
less than five back-paths only those existing are considered. The partial score of the 
bigram is computed. 

3. From now on, each cell has a partial transliteration along with its score. Each cell 
goes back to its sorted back-paths recursively until it hits the beginning of the word 
which is first state of the HMM. 

Figure 5.5: Decoding algorithm 

Score Computation 

Partial score computation during decoding is quite similar to partial score computation 

during Viterbi. The only difference is that during decoding the trigram language model is 

used instead of the bigram language model used in Viterbi. This rescoring technique enables 

us to have more reasonable linguistic information in ranking the candidates. Equation 5.2 

shows the formula used in this scoring scheme. 

Language Model 

Hypothesis Pruning 

During decoding, the computational space can be very large. Given that we have chosen 5 

as the number of back-paths for each cell, in the worst case 5" cells should be visited. For 

short-lengthed Arabic named entities the running time is negligible, but as the NE's size 

starts increasing the running time expands exponentially. For example, for an Arabic NE 

with 15 letters (which happens rarely), almost 30 billion cells would be visited. It should 

be noted though, that in general Arabic words (regardless of them being NEs or not) are 

shorter that English words. There are two reasons for this fact: firstly because in Arabic, 

diacritics are not written, and secondly because there are fewer compound constructs like 

sh and tt in Arabic. We were curious to see what the ratio of length is on average. We 



computed the accumulative size of the parallel names in our training data. For 2167 names, 

the avera,ge length is 5.81 and 4.78 for English and Arabic NEs respectively. In other words, 

for each .Arabic letter there are 1.22 corresponding English letters. 

To avoid excessive running time we used beam search decoding [8]. Given the score so 

far, we C~UI prune out hypotheses that fall outside the beam. There are two kinds of beam 

size that can be applied to our problem. The beam size can be defined by threshold and 

histogram pruning. A relative threshold cuts out a hypothesis with a probability less than a 

factor a of the best hypotheses (e.g. cr = 0.001). Histogram pruning keeps a certain number 

n of hypotheses (e.g. n = 1000). 

For our purpose we used relative threshold pruning. The important point is that scores 

on the same state can be compared to each other and it is meaningless to compare two 

scores from different states. The reason is obvious: on different states there are different 

numbers of multiplications. Therefore, for an Arabic word with length n, n numbers are 

kept during decoding, each of them being the best score for state i (0 < i < n). At first the 

score of it11 the best hypotheses is equal to zero and at each point where a better score is 

found for a state, the score is replaced by the new score. 

Because of the number of multiplications, the factor a should be dependent on the state 

as well. Hypotheses will be pruned if the Inequality 5.3 does not hold for them, 

highi 
score > 

b e ~ r n ~ - - ~  

where highi denotes the highest score for the state i (0 < i < n) and beam is set empir- 

ically12. 

Now we start going through Phase One of our example. Let us suppose the input to the 

system is PLZ. *(Peter Schaffer) and we want to transliterate the last name PLZ.. For 

the current task we are not worried about the fact that Schaeffer, Schaffer and Shaffer are 

written the same way in ~ r a b i c l ~ .  

A portion of the HMM during the Viterbi algorithm execution is shown in Figure 5.7. 

At each state, at most five cells from the previous state are kept into each cell's memory. 

In the example, for the sake of simplicity there are not more than four back-pointers. For 

" ~ e a m  size can be different for words with different size. For our experiments, we set two different beam 
sizes for words less than 9 letters and greater than or equal t o  9 letters. 

1 3 ~ h e  disambiguation will be discussed in Chapter 6. 



rE -> f -> a -> Bsh 
rE -> f -> a -> Bch 
rE -> f -> u 
rE -> ff -> a -> Bsh 
rE -> ff -> a -> Bsch 
rE -> f f -> u 
rE -> p:h -> ae 
rrE 

Figure 5.6: A sample of sequences generated during decoding in Phase One 

example, f in state 3 has two back-pointers to a and u in state 2. Since we are dealing 

with first-order Markov Model only, the last state plays a role in the score computation 

and maximum finding. During decoding the sequences shown in 5.6 are traversed in the 

tree. Some of the sequences are not pursued because their partial score is less than beam 

threshold of that step. At the end Bshlal f leE, BchJal f leE, Bshlal f f IrE and BschJa( f f IrE 

are sent to Phase Two. 

\ Li J 

Figure 5.7: An example for a portion of HMM for Phase One 



5.4 Phase Two 

The k candidates from the previous phase are the possible transliterations of the Arabic 

input excluding diacritics. For example, the input d-4~0 (mhdY) would end up as "mhdi" 

instead of the correct transliteration "mehdi". Phase Two specifically deals with adding the 

short vowels to these candidates, based on the newly built training set. 

To make the training set consistent with this objective, Step 1 of Phase One is repeated, 

but this time the English letters aligned to null are concatenated to the first left English 

letter that is aligned to anything other than null, forming phrases. For example, in case of 

LiM~ham:med'7, the sequence ''Mlol hJa(mmlald" becomes "Mol halmmald" . Then using the 

newly represented training data, the translation and language models are built as in Phase 

One. Th.ere is a difference in populating Viterbi probability tables compared to those of 

Phase One. Let us assume aolall.. . lan is the input Arabic name and eolell. . . en represents 

one of th.e k outputs of Phase One, where ao.. . an  are the Arabic letters, eo.. .en are the 

English letters and "I" is the delimiter. In each state i (0 5 i 5 n),  there are a group of 

non-zero P(aiJti) probabilities, where tis are the phrases. But we set all the probabilities, 

whose related ti is not prefixed by the given ei, to zero. This populating scheme is repeated 

for each state of the HMM. By doing this, we only give the chance to those phrases whose 

prefix is suggested from Phase One. 

The decoding in this phase is performed exactly the same way it was done in phase One. 

The decoder starts traversing from the end to the beginning and recursively generates the 

output substrings. Beam search filters the candidates below the threshold. 

So far, each candidate has two different scores each one coming from one HMM phase. 

At this point we combine the two scores and send a single score along with each candidate 

to Phase Three. In order to get rid of several scores, Equation 5.4 is used to produce the 

combined score. Log-linear score is also easier to work with when it comes to combining it 

with other scores in Phase Three. 

H M  M score = log(scorePha,, 1) + log(scorePha,, 2) (5.4) 

Let us go back to our example, with an HMM similar to the one shown in Figure 5.9. 

The only difference is that the output of the first phase affects the probability distribu- 

tion of certain conditional probabilities. Out of the four outputs from Phase One we chose 



rE -> f : f e  -> a -> Bsch 
rE -> f : f e  -> a -> Bscha 
rE -> f f  -> a -> Bsch 
rE -> f:f -> a a  
rE -> f:fo 
reE -> f f e  -> a -> Bsch 
reE -> f f e  -> a a  

Figure 5.8: A sample of sequences generated during decoding in Phase Two 

Bschlal f f (rE in Figure 5.9. Other outputs would receive similar treatment. At each state, 

only those conditional probabilities that are prefixed by Phase One output retain their non- 

zero probability. That is why despite the fact that P(Bshl&) is relatively high sh would 

never end up in a best path. In the decoding for this phase the system goes through the 

sequences shown in Figure 5.8, with those incomplete ones being rejected by beam search 

criteria. 

So, given the Arabic input $Lj and Phase One input BschJal f f lrE, Phase Two out- 

puts Bschlal f f elrE, Bschalal f felrE, Bschlal f f lrE and Bschlal f fi(reE to the next phase. 

However before going to Phase Three, the log of Phase One and Phase Two scores are added 

together as specified in Equation 5.4. 

Bsch, G ff, 
Figure 5.9: An example for a portion of HMM for Phase Two 



5.5 Phase Three 

Up to this point, at most m n  candidates are generated by the Viterbi algorithm. They are 

all prodwed by probability distributions at the character level. Therefore many of them are 

just noise that should be removed from the final set. After that, the dictionary comparison is 

performed to find some other valid names close enough to what is generated in the previous 

phase or to boost the score of those correctly generated names. 

We used two different resources in order to remove invalid words, one is the World Wide 

Web and the other an English unigram model. 

World Wide Web 

With the ever-increasing content published on the Web, one can safely assume that if a 

word does not appear on the Web it does not exist or in the worst case it was coined very 

recently. Therefore, by using a reliable search engine one can query a word's existence on 

the Worlsd Wide Web. We intended to use ~ o o ~ l e ' ~  or Altavista15 but Google limited the 

queries from the same IP address to 1000 per day and Altavista blocks the IP address if 

used excessively. For our task, where for each given Arabic word there are a couple hundred 

candidates to be tested, these two search engines could not be used. 

However, we were able to use a well-known Iranian search engine, parseek16 that is 

capable of searching in any language. It also allows unlimited queries per minute. 

Google 'Unigram Model 

Using the WWW to filter the unwanted words has two drawbacks. First, many commonly 

misspelled words exist on the web. For example, while for the former Iranian minister of 

culture, &l*Lga, there exists 32200 instances of the correct spelling, Mohajerani on the 

web, there are 7 instances of the misspelled Muhajerani. For shorter names (less than 5 

letters) the noise on the web is much more frequent. The second drawback is that in order 



to integrate a transliteration system as a module into a real machine translation system, it 

is specified in some competition rules that no online resources should be used. 

Therefore we decided to use a reliable offline resource. The Google Language Model 

package .which used web content to create its unigram to five gram language models is ideal 

for our task. We can use its unigram model to make a huge finite state acceptor (FSA). 

Google's unigram model, which is simply a list of words on the internet, is comprised of 

about 13 million words17. We used AT&T's FSM toolkit18 to make a simple FSA from 

every word and then incrementally combined them altogether. To make the final FSA the 

following: steps were taken: 

all the words in the unigram model were converted into FSAs. 

The union of two FSAs was built. 

Ep:jilon was removed from the resulting FSA. 

The resulting FSA was determinized. 

The resulting FSA was minimized. 

So, instead of making an online query, we simply give the word to the FSA to see 

whether it accepts the word or not. The Google unigram model only retains the words with 

frequency over 200 which also helps us get rid of those misspelled infrequent words that 

were mentioned above.lg 

Each candidate from the previous phase might be in close string distance to some entries in 

the monolingual dictionary or might also appear in the dictionary. In the former case, the 

matched entry is retrieved with a penalty assigned to it depending on how similar it is to 

the candidate and in the latter case the candidate is boosted in terms of scoring. 

 h he exact number was 13,588,391 unigrams. However, In our processing, we ignored the unigrams 
starting with numbers which made the number of unigrams around 10 million. 

18http:/,'www.research.att.com/ fsmtools/fsm/ 

lgFor performance issues, the big FSA is not loaded into memory for every single candidate. Rather, 
another FSA is built out of all of the candidates and these two candidates are intersected. 



1. The candidate is added to the final output set. 

2. All vowels are removed from the candidate. 

3. The stripped-off candidate is compared to the vowel-stripped version of entries in the 
dictionary, looking for a perfect match. The original (unstripped) forms of the matched 
entries are returned. For example, the dictionary entry "mohammed" and the Viterbi 
output LLmohammd" both have the same vowel-stripped version: "mhmmd". 

4. The Levenshtein distance of the candidate's original form and the original form from 
step 3 is computed. For the example in step 3 the distance is 1. 

5. Some of the entries in the dictionary may match with more than one candidate. The 
number of repetitions for the candidates is also computed. For example, among the 
m candidates, we might have "mohammed", "mohammd" and "mohemmed". In this 
case, the number of repetitions for dictionary entry "mohammed" is three. 

6. Those names with Levenshtein distance less than a certain threshold value (set em- 
pir:ically) are added to the final output set (if not already there). 

Figure 5.10: Algorithm for dictionary matching step. 

As a pre-processing task, for each entry in the monolingual dictionary we keep another 

version of the name without vowels. For example, along with "carolina", krln" is also 

stored in the dictionary. 

The algorithm shown in Figure 5.10 is repeated for all the candidates coming from Phase 

Two: 

Since the output of the HMM phases is enormous (around 1000 candidates which are 

filtered out by Google's unigram model), we only used the top-5 HMM candidates in the 

dictionary phase of our experiment. Otherwise, many irrelevant close matches would have 

been retrieved which could have even deteriorated the current results. In order to return 

final n best candidates the rescoring scheme shown in Equation 5.5 is applied. 

Final Score = aS + PD + y R  (5.5) 

where S is the combined Viterbi score from first two phases, D is the Leveneshtein distance 

and R is the number of repetitions. a,p and y are set empirically. 

Let us see how two steps of Phase Three actually work with our example. In the first step 

invalid names are filtered out and in the second step a dictionary comparison is performed. 



For our example (by only taking into consideration the four candidates discussed in Phase 

Two), Schaffr and Schafire are filtered out and Schaffer and Schaafer are put in the final 

list. At this point all of four candidates are stripped off of their vowels. The stripped-off 

versions would be Schffr, Schffr, Schffr and Schfr respectively. Schfr does not match with 

anything; in the whole dictionary. Each candidate is processed independently. 

The stripped version of Schaffr (Schffr) is matched with the stripped version of the 

dictionary entry Schaffer (Schffr). So, the full version of the candidate Schaffr and the 

dictionary entry Schaffer are compared and their Levenshtein distance is computed. The 

distance is 1 since with the insertion of e we can get from the former to the latter. Therefore 

the score of Schaffer in the final list is updated based on Equation 5.5. 

The next candidate is Schafire. Like the previous candidate the stripped version of 

Schafire is compared with the stripped version of Schaffer. One insertion and one substi- 

tution is needed which makes the Levenshtein distance 2. The score of Schaffer is updated. 

The thirld candidate, Schaffer goes through the same process. This time the Levenshtein 

distance is 0. The score is updated. The stripped version of the fourth candidate, Schaafer 

(Schfr) does not match any entry in the dictionary, so no name is retrieved from the dictio- 

nary. However, as mentioned earlier Schaafer itself is still in the final list. 

At the end of this chapter the process pipeline that a given Arabic input takes can be 

summarized as follows. In Phase One, a list of candidates are generated by assuming there 

is no unwritten diacritic involved. Then in Phase Two, a different probability distribution 

is used to guess the English equivalent of the diacritics for the given Arabic named entity 

and the given English candidate from the Phase One. The list of new candidates are sent 

to Phase Three. At first, those candidates not available in the unigram model are filtered 

out. The candidates are matched with a monolingual English dictionary of names and close 

entries are retrieved and returned. 



Chapter 6 

Evaluating the Transliteration 

System under Different Contexts 

While transliteration can be described as a stand-alone task of transcribing a group of 

names from a source language into a target language, it can also be embedded in various 

applicati~ons. 

The lack of a fully comprehensive bilingual dictionary including the entries for all named 

entities (NEs) renders the task of transliteration necessary for certain natural language pro- 

cessing applications dealing with named entities. Two applications where transliteration can 

be particularly useful are machine translation (MT) and cross lingual information retrieval 

(CLIR). While transliteration itself is a relatively well-studied problem, its effect on the 

aforementioned applications is still under investigation. 

In this chapter, we first analyze the performance of a transliteration system as a stand- 

alone system. Then a deep analysis is provided for integrating the transliteration system 

as a module into an existing statistical translation system. Some parts of this section are 

previously published in [lo]. This part of thesis is the result of a collaboration with Lan- 

guage Technology Group at National Research Council of Canada1, to whom I am grateful 

to work with. 

'NRC homepage can be found at http://iit-iti.nrc-cnrc.gc.ca/index-e.htm1. 



Table 6.1: Distribution of seen and unseen names. 

Dev Set 
Blind Set 

6.1 Transliteration as a Stand-alone System 

Before we continue to see the practical applications of the transliteration system, it is 

important to study its performance in its own context. The usual practice is to prepare 

a list of name pairs and give the source language names to the transliteration system and 

compare the output with the corresponding name in the target language. As mentioned in 

Section 4, 273 name pairs for development test set and 291 name pairs for blind test set 

were prepared. 

We were curious to see how many cases of our test sets also appeared in the training 

data and how differently the system treats them. Table 6.1 shows the distribution of seen 

and unseen names in our test sets. Seen names are those names appeared in the training 

set and unseen names are those that do not appear in the training set. The high number 

of common names between training and test sets can be attributed to the similar nature of 

the resources. 

We computed the percentage of cases in which the correct transliteration is the top 

candidate or among the top 2, top 5, top 10 or top 20 candidates. The reason that we break 

up the evaluation into these different categories is that having only the top-1 result does 

not give us enough insight on how well the system performs. A more refined and detailed 

evaluation allows us to study the effect of different phases more carefully. Besides, less exact 

results (top-10 and top-20) are still good for some applications (refer to Section 6.2). 

We conducted the evaluation for three different scenarios. First, we had only a single 

HMM phase. In this scenario, the system has to generate the whole English word (as well 

as the vowels) in a single pass. Second, we tested the two-phase HMM without a dictionary. 

Finally the whole three-phase system was evaluated. In all three scenarios, the Google 

Unigram model was used to filter out poor candidates (i.e. those not existing in Google 

unigram). The results are summarized in Table 6.2 and Table 6.3. The top-20 result shows 

the percentage of test cases whose correct transliteration could be found among the first 

Seen 
164 
192 

Unseen 
109 
99 

Total 
273 
29 1 



I Single Phase HMM / 44% / 59% / 73% / 8;% / 85% 1 
L, I I I I I 1 Double Phase HMM 1 45% 1 60% 1 72% 1 84% 1 88% 1 

Table 6.2: Performance on Development Test Set. 

Table 6.3: Performance on Blind Test Set. 

Single Phase HMM 
Double Phase HMM 
HMM+Dictionary 

20 outputs from the transliteration system. A similar definition goes for top-10, top-5 and 

top-2 results. The top-1 result shows the percentage of the test cases that could get their 

correct transliteration as the first output of the transliteration system. 

As is apparent from the tables, using a dictionary will significantly help us to get more 

exact results (improving the top-1 and top-2 criteria) while keeping the top-20 accuracy 

almost the same. So, a dictionary is useful for applications in which there are no other clues 

(ex. context) to resolve the contention among the candidates. 

The main issue with the evaluation is that the gold standard is overspecified. Especially 

in the case of Forward Transliteration (where you want to convert a name originally from 

Arabic into English) there is usually more than one acceptable corresponding name in En- 

glish. We performed a search through 1167 extracted name pairs and if a single Arabic name 

had more than one English representation we deemed any of them as acceptable. If none of 

the final candidates matched any of the correct interpretations in the gold standard, then 

that test case would be considered to be rejected. For example, the name *& has two 

different equivalents in our test set: "Shaheen" and "chahine". If the system comes up with 

either of those it gets credit and any other candidate (ex. Shahin) would be rejected even if 

looks correct according to a human. Due to the small set, there are not many names with 

more than one alternative. The distribution of names with different number of alternatives 

is summarized in Table 6.4. 

The performance without using dictionary (i.e. excluding dictionary) on seen and unseen 

Top 1 
38% 
41% 
46% 

Top 2 
54% 
57% 
61% 

Top 5 
72% 
75% 
76% 

Top 10 
80% 
82% 
84% 

Top 20 
83% 
85% 
86% 



I One I Two I Three I Four 1 

Table 6.4: Number of Alternative Names. 

Dev Set 
Blind Set 

Table 6.5: HMM Accuracy on Seen/Unseen Data. 

test data is summarized in Table 6.5. 

Part of the gap between seen and unseen names accuracy is acceptable and part of it 

can be attributed to the small size of the training data which affects the system's ability 

to predict unseen events. Also the generation of infrequent, novel and/or foreign names 

heavily depends on the thoroughness of the training data. For example, the closest thing to 

"Bordeaux" that our system can generate is "Bordeau" . 

161 
185 

6.2 Transliteration in MT Systems 

Transliteration as a self-contained task has its own challenges but applying it to MT intro- 

duces even new challenges. When working on a limited domain, given a sufficiently large 

amount of training data, almost all of the words in the unseen data (in the same domain) 

will have appeared in the training corpus. But this argument does not hold for NEs, because 

no matter how big the training corpus is, there will always be unseen names of people and 

locations. Current MT systems either leave such unknown names as they are in the final 

target text or remove them in order to obtain a better evaluation score. None of these meth- 

ods can give the reader who is not familiar with the source language any information about 

those out-of-vocabulary (OOV) words, especially when the source and target languages use 

different scripts. If these words are not names, one can usually guess what they are, by 

using the partial information of other parts of speech. But, in the case of names, there is no 

85 
79 

22 
20 

5 
7 



and this trip was cancelled [ . . . I  by the american authorities responsible 
for security at the airport d\j . 

Figure 6.1: MT output for an Arabic input sentence. 

and this trip was cancelled I...] by the american authorities responsible 
for security at the airport at dallas . 

Figure 6.2: MT output with dallas suggested for 4 1 2 .  

way to determine the individual or location the sentence is talking about. So, to improve 

the usability of a translation, it is particularly important to handle NEs well. Even if the 

transliteration module is not a hundred percent accurate, still it gives the reader of the 

target language a clue about the meaning of the text. 

The importance of NEs is not yet reflected in the evaluation methods used in the MT 

community, the most common of which is the BLEU metric. BLEU [16] was devised to 

provide automatic evaluation of MT output. In this metric n-gram similarity of the MT 

output is computed with one or more references made by human translators. BLEU does 

not distinguish between different words and gives equal weight to all. In this study, we base 

our evaluation on the BLEU metric and show that using transliteration has an impact on 

it (and in some cases significant impact). However, we believe that such integration is more 

important for practical uses of MT than BLEU indicates. 

Other than improving readability and raising the BLEU score, another advantage of 

using a transliteration system is that having the right translation for a name helps the lan- 

guage model select a better ordering for other words. For example, our phrase table does 

not have any entry for 4 1 2  (Dulles) and when running the MT system on the plain Arabic 

text we get 

We ran our MT system twice, once by suggesting "dallas" and another time "dulles" as 

English equivalents for " 4 1 2  " and the decoder generated the following sentences, respec- 

tively: 

Note that the language model can be trained on more text, and hence can know more 

NEs than the translation model does. 



and this trip was cancelled [ . . . I  by the american authorities responsible 
for security at dulles airport . 

Figure 6.3: MT output with dulles suggested for d l ~ .  

Obviously the alternative shown in Figure 6.3 is the most accurate both semantically 

and syntactically. So, the choice of the right candidate can have a positive impact on the 

fluency of the final output. 

Every statistical MT (SMT) system assigns a probability distribution to the words that 

are seen in its parallel training data, including proper names. The richer the training data, 

the higher the chance for a given name in the test data to be found in the translation tables. 

In other words, an MT system with a relatively rich phrase table is able to translate many of 

the common names in the test data, with all the remaining words being rare and foreign. So 

unlike a self-contained transliteration module, which typically deals with a mix of 'easy' and 

'hard' names, the primary use for a transliteration module embedded in an SMT system will 

be to deal with the 'hard' names left over after the phrase tables have provided translations 

for the 'easy' ones. That means that when measuring the performance improvements caused 

by embedding a transliteration module in an MT system, one must keep in mind that such 

improvements are difficult to attain: they are won mainly by correctly transliterating 'hard' 

names. 

Another issue with OOV words is that some of them remained untranslated due to 

misspellings in the source text. For example, we encountered 9+ (Hthearow) instead of 

3 s  (Heathrow) or J>* (Brezer) instead of -3 (Bremer) in our development test 

set. In such cases it is unlikely that the transliteration system comes up with the error- 

corrected transliteration, so in terms of BLEU, there would be no gain. But the human 

reader in the target language will probably have an idea about that named entity. 

Also, evaluation by BLEU (or a similar automatic metric) is problematic. Almost all of 

the MT evaluations use one or more reference translations as the gold standard and, using 

some metrics, they give a score to the MT output. The problem with NEs is that they 

usually have more than a single equivalent in the target language (especially if they do not 

originally come from the target language) which may or may not have been captured in the 

gold standard. So even if the transliteration module comes up with a correct interpretation 

of a name it might not receive credit as far as the limited number of correct names in the 

references are concerned. Also, in some cases none of the human references are correct about 



a named entity (remember we are talking about infrequent named entities) which also has 

an effect on the BLEU score. 

Our first impression was that having more interpretations for a name in the references 

would raise the transliteration module's chance to generate at least one of them, hence 

improving the performance. But, in practice, when references do not agree on a name's 

transliteration that is a sign of ambiguity. In these cases, the transliteration module of- 

ten suggests a correct transliteration that the decoder outputs correctly, but which fails to 

receive credit from the BLEU metric because this transliteration is not found in the refer- 

ences. As an example, for the name w % ~ p  (swyryws), four references came up with 

four different interpretations: swerios, swiriyus, severius, sweires. A quick query in Google 

showed us another four acceptable interpretations (severios, sewerios, sweirios, sawerios). 

6.2.1 Related Work 

Machine transliteration has been an active research field for quite a while (Refer to Chapter 

3) but to our knowledge there is little published work on evaluating transliteration within 

a real MT system. The closest work to ours is described in [7] where they have a list of 

names in Arabic and feed this list as the input text to their MT system. They evaluate 

their system in three different cases: as a word-based NE translation, phrase-based NE 

translation and in the presence of a transliteration module. Then, they report the BLEU 

score on the final output. Since their text is comprised of only NEs, the BLEU increase is 

quite high. Combining all three models, they get a 24.9 BLEU point increase over the naive 

baseline. The difference they report between their best method without transliteration and 

the one including transliteration is 8.12 BLEU points for person names (their best increase). 

6.2.2 Our Approach 

Before going into detail about our approach, an overview of Portage (Sadat et al, 2005), 

the machine translation system that we used for our experiments and some of its properties 

should be provided. 

Portage is a statistical phrase-based SMT system similar to Pharaoh [14]. G' wen a 

source sentence, it tries to find the target sentence that maximizes the joint probability 

of a target sentence and a phrase alignment according to a loglinear model. Features in 

the loglinear model consist of a phrase-based translation model with relative frequency 



and lexical probability estimates; a 4- gram language model using Kneser-Ney smoothing, 

trained with the SRILM toolkit; a single parameter distortion penalty on phrase reordering; 

and a word-length penalty. Weights on the loglinear features are set using Och's algorithm 

[15] to maximize the system's BLEU score on a development corpus. To generate phrase 

pairs from a parallel corpus, we use the "diag-and" phrase induction algorithm described in 

[14], with symmetrized word alignments generated using the IBM model 2 [4]. 

Portage allows the use of SGML-like markup for arbitrary entities within the input text. 

The markup can be used to specify translations provided by external sources for the entities, 

such as rule-based translations of numbers and dates, or a transliteration module for OOVs 

in our work. Many SMT systems have this capability, so although the details given here 

pertain to Portage, the techniques described can be used in many different SMT systems. 

As an example, suppose we already have two different transliterations with their proba- 

bilities for the Arabic name ~ako (mHmd). We can replace every occurrence of the ~ a x a  

in the Arabic input text with the following: 

By running Portage on this marked up text, the decoder chooses between entries in its 

own phrase table and the marked-up text. One thing that is important for our task is that 

if the entry cannot be found in Portage's phrase tables, it is guaranteed that one of the 

candidates inside the markup will be chosen. Even if none of the candidates exist in the 

language model, the decoder still picks one of them, because the system assigns a small 

arbitrary probability (we typically use e-18) as unigram probability of each unseen word. 

We considered four different methods for incorporating the transliteration module into 

the MT system. The first and second methods need an NE tagger and the other two do not 

require any external tools. 

Method 1: use an NE tagger to extract the names in the Arabic input text. Then, 

run the transliteration module on them and assign probabilities to the top candidates. 

Use the markup capability of Portage and replace each name in the Arabic text with 

the SGML-like tag including different probabilities for different candidates. Feed the 

marked-up text to Portage to translate. 

Method 2: similar to method 1 but instead of using the marked-up text, a new phrase 



a1 a2 a3 a4 

Phrase Tables 
NE tagger 

Figure 6.4: Algorithm for Method 1 

a, g2 a3 a4 Transliteration 
a5 %j a7 gs Module e13 e23 e34 e41 

e55 e61 e72 e85 



table, only containing entries for the names in the Arabic input text is built and added 

to Portage's existing phrase tables. A weight is given to this phrase table and then 

the decoder uses this phrase table as well as its own phrase tables to decide which 

translation to choose when encountering the names in the text. The main difference 

between methods 1 and 2 is that in our system, method 2 allows for an optimal BLEU 

weight to be learned for the NE phrase table, whereas the weight on the rules for 

method 1 has to be set by hand. 

1 NE tagger 

I a, g2 a, a4 Transliteration 

e21 a, 03 

e22 a, *04 

e2, a, no02 

e61 a6 01 

e62 a, .03 

e,, a, .25 

e,, a, .02 

Other 
Phrase Tables 

Figure 6.5: Algorithm for Method 2 

Method 3: run Portage on the plain Arabic text. Extract all untranslated Arabic 

OOVs and run the transliteration module on them. Replace them with the top can- 

didate. 

0 Method 4: run Portage on the plain Arabic text. Extract all untranslated Arabic 

OOVs and run the transliteration module on them. Replace them with SGML-like 

tags including different probabilities for different candidates, as described previously. 

Feed the marked-up text to Portage to translate. 

Figures 6.4, 6.5, 6.6 and 6.7, illustrate how each of the four methods actually works 
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Figure 6.6: Algorithm for Method 3 
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, 1 Transliteration 

a 7  

Figure 6.7: Algorithm for Method 4 



respectively. 

The first two methods need a powerful NE tagger with a high recall value. We computed 

the recall value on the development set OOVs using two different NE taggers, that we call 

them Tagger A and Tagger B (each from a different research group). Taggers A and B showed 

a recall of 33% and 53% respectively, both being low for our purposes. Another issue with 

these two methods is that, for many of the names, the transliteration module will compete 

with the internal phrase table. Our observations show that if a name exists in the phrase 

table, it is likely to be translated correctly. In general, observed parallel data (i.e. training 

data) should be a more reliable source of information than transliteration, encouraging us 

to use transliteration most appropriately as a 'back-off' method. In a few cases, the Arabic 

name is ambiguous with a common word and is mistakenly translated as such. For example, 

Jai 91 Ljb an Arabic name that should be transliterated as "Hani Abu Nahl" but since 

Jai also means "solve", the MT system outputs "Hani Abu Solve". The advantage of the 

first two methods is that they can deal with such cases. But considering the noise in the NE 

detectors, handling them increases the risk of losing already correct translations of other 

names. Note that making the training data lower case does not affect method 1 and method 

2, because lower case conversion is performed on the English side2 and here we only deal 

with tagging the Arabic text. The third method is simple and easy to use but not optimal: 

it does not take advantage of the decoder's internal features (notably the language models) 

and only picks up the highest scoring candidate from the transliteration module. The fourth 

method only deals with those words that the MT system was unable to deal with and had 

to leave untranslated in the final text. Therefore whatever suggestions the transliteration 

module makes do not need to compete with the internal phrase tables, which is good because 

we expect the phrase tables to be a more reliable source of information. It is guaranteed 

that the translation quality will be improved (in the worst case, a bad transliteration is 

still more informative than the original word in Arabic script). Moreover, unlike the third 

method, we take advantage of all internal decoder features on the second pass. We adopt 

the fourth method for our experiment. The following example better illustrates how this 

approach works: 

Example: Suppose we have the following sentence in the Arabic input text: 

 here is no concept of lower case in Arabic. 



Figure 6.8: Arabic input to the MT system 

blair accepts 3439 report in full . 

Figure 6.9: Portage output for the Arabic input sentence 

Portage is run on the Arabic plain text and yields the following output: 

The Arabic word 3439 (Hutton) is extracted and fed to the transliteration module. 

The transliteration module comes up with some English candidates, each with different 

probabilities as estimated by the HMM. If we were to stick to method 3 we would have 

simply replaced the OOV with the best candidate (Hoton) and we would have been done. 

However to continue with method 4, the English candidates are rescaled (as will be ex- 

plained in Subsection 6.2.3) and the following markup text will be generated to replace the 

untranslated 3439 in the first plain Arabic sentence: 

Portage is then run on this newly marked up text (second pass). From now on, with 

the additional guidance of the language models, it is the decoder's task to decide between 

different markup suggestions. For the above example, the following output will be generated: 

6.2.3 Task-Specific Changes to the Module 

Due to the nature of the task at hand and by observing the development test set and its 

references, the following major changes became necessary: 

Removing Part of Phase Three: By observing the OOV words in the development test 

set, we realized that having the monolingual dictionary in the pipeline and using the 

Figure 6.10: markup tag for Arabic name 3439. 



blair accepts hutton report in full . 

Figure 6.11: Portage final output. 

Levensthtein distance as a metric for adding the closest dictionary entries to the final 

output, does not help much, mainly because OOVs are rarely in the dictionary. So, 

the dictionary part not only slows down the execution but would also add noise to 

the final output (by adding some entries that probably are not the desired outputs). 

However, we kept the Google unigram filtering in the pipeline, since it still proved 

quite helpful in removing tons of invalid candidates. 

Rescaling HMM Probabilities: Although the transliteration module outputs the HMM 

probability score for each candidate, and the MT system also uses probability scores, 

in practice the transliteration scores have to be adjusted. For example, if three consec- 

utive candidates have log probabilities -40, -42 and -50, the decoder should be given 

values with similar differences in scale, comparable with the typical differences in its 

internal features (eg. Language Models). Knowing that the entries in the internal fea- 

tures usually have exponential differences, we adopted the conversion formula shown 

in Equation 5.1: 

where pi = 10output of HIvlIvI for  candidate i and max is the best candidate. We rescale 

the HMM probability so that the top candidate is (arbitrarily) given a probability of 

phax = 0.1. It immediately follows that the rescaled score would be 0.1 * pi /pmaz .  

Since the decoder combines its models in a log-linear fashion, we apply an exponent a 

to the HMM probabilities before scaling them, as way to control the weight of those 

probabilities in decoding. This yields Equation 6.1. Ideally, we would like the weight 

a to be optimized the same way other decoder weights are optimized, but our decoder 

does not support this yet, so for this work we arbitrarily set the weight to a = 0.2, 

which seems to work well. For the above example, the distribution would be 0.1, 0.039 

and 0.001. 

Prefix Detachment: Arabic is a morphologically rich language. Even after performing 

tokenization, some words still remain untokenized. If the composite word is frequent, 



there is a chance that it exists in the phrase table but many times it does not, especially 

if the main part of that word is a named entity. We did not want to delve into the 

details of morphology: we only considered two frequent prefixes: j ("va" meaning 

"and") and 31 ("al" determiner in Arabic). If a word starts with either of these two 

prefixes, we detach them and run the transliteration module once on the detached 

name and a second time on the whole word. The output candidates are merged 

automatically based on their scores, and the decoder decides which one to choose. 

Keeping the Top 5 HMM Candidates: The transliteration module uses the Google 

unigram model to filter out the candidate words that do not appear above a certain 

threshold (200 times) on the Internet. This helps eliminate hundreds of unwanted 

sequences of letters. But, we decided to keep top-5 candidates on the output list, even 

if they are rejected by the Google unigram model because sometimes the transliteration 

module is unable to suggest the correct equivalent or in other cases the OOV should 

actually be translated rather than transliterated3. In these cases, the closest literal 

transliteration will still provide the end user more information about the entity than 

the word in Arabic script would. 

6.2.4 Evaluation 

Although there are metrics that directly address NE translation performance, we chose 

to use BLEU because our purpose is to assess NE translation within MT, and BLEU is 

currently the standard metric for MT. 

Training Data 

We used the data made available for the 2006 NIST Machine Translation Evaluation. Our 

bilingual training corpus consisted of four million sentence pairs drawn mostly from newswire 

and UN domains. We trained one language model on the English half of this corpus (137M 

running words), and another on the English Gigaword corpus (2.3 giga bytes running words). 

For tuning feature weights, we used LDC's "multiple translation part 1" corpus, which 

contains 1,043 sentence pairs. 

3 ~ h i s  would happen especially for ancient names or some names that  underwent sophisticated morpho- 
logical transformations (For example, Abraham in English and (Ibrahim) in Arabic). 



I Whole Text I OOV Sentences 1 OOV-NE Sentences I 

Table 6.6: Distribution of sentences in test sets. 

Dev test set I 1353 

Table 6.7: BLEU score on different test sets. 

233 

Dev 
Blind 

Test Data 

100 
Blind test set I 1056 

We used the NIST MT04 evaluation set and the NIST MT05 evaluation set as our develop- 

ment and blind test sets. The development test set consists of 1353 sentences, 233 of which 

contain OOVs. Among them 100 sentences have OOVs that are actually named entities. 

The blind test set consists of 1056 sentences, 189 of them having OOVs and 131 of them 

having OOV named entities. The number of sentences for each experiment is summarized 

in Table 6.6. 

baseline 
44.67 
48.56 

Results 

189 

As the baseline, we ran the Portage without the transliteration module on development and 

blind test sets. The second column of Table 6.7 shows baseline BLEU scores. We applied 

method 4 as outlined in Subsection 6.2.2 and computed the BLEU score, also in order to 

compare the results we implemented method 3 on the same test sets. The BLEU scores 

obtained from methods 3 and 4 are shown in columns 3 and 4 of Table 6.7. 

Considering the fact that only a small portion of the test set has out-of-vocabulary 

named entities, we computed the BLEU score on two different sub-portions of the test set: 

first, on the sentences with OOVs; second, only on the sentences containing OOV named 

entities. The BLEU increase on different portions of the test set is shown in Table 6.8. 

To set an upper bound on how much the use of any transliteration module can contribute 

to the overall results, we developed an oracle-like dictionary for the OOVs in the test sets, 

131 

Method 3 
44.71 
48.62 

Method 4 
44.83 
48.80 

Oracle 
44.90 
49.01 



Table 6.8: BLEU score on different portions of the test sets. 

which was then used to create a marked up Arabic text. By feeding this marked up input 

to the MT system we obtained the result shown in column 5 of Table 6.7. This is the 

performance our system would achieve if it had perfect accuracy in transliteration, including 

correctly guessing what errors the human translators made in the references. Method 4 

achieves 70% of this maximum gain on the development set, and 53% on the blind set. 

For each particular corpus, the BLEU algorithm assigns a confidence interval within 

which the raise in BLEU point is significant. For example, if the baseline BLEU score is 

35.71 and the new BLEU score by applying a new feature is 36.14 and the confidence value 

is 0.65 then the improvement is scientifically negligible and insignificant. In our experiment 

the confidence value was 0.9 which means the raise on the whole set (even by using the 

Oracle) is insignificant. However, the BLEU point raise on the selected texts shown in 

Table 6.8 is significantly higher than the confidence bound. 



Chapter 7 

Conclusion 

In this thesis we introduced a three-phased transliteration system for Arabic to English. 

We also showed the integration of this system with a real NIT system. 

By studying the characteristics of Arabic writing style, we proposed a two phase approach 

HNIM. During phase one, the transliteration module generates English letter sequences 

corresponding to the Arabic letter sequence; for the typical case where the Arabic omits 

diacritics, this often means that the English letter sequence is incomplete (e.g., vowels are 

often missing). In the next phase, the module tries to guess the missing English letters. 

After we are done with the HMM phases, a third phase processes the HMM output. First, 

by using a long list of words made from internet, it filters out the non-existing named 

entities. Then, by using a rich dictionary of names, it retrieves named entities that are 

sufficiently similar to the HMM outputs. 

We first evaluated the three-phased algorithm as a stand-alone application. We consid- 

ered different cases, such as performance on seen and unseen data or performance of each 

phase separately. Then, we demonstrated the result of the transliteration as an embed- 

ded module in an existing machine translation system and showed in some cases it can be 

effective. 

The contributions of this thesis can be summarized as follows. 

A customized framework for transliteration is provided that directly addresses the 

characteristics of Arabic language. 

A dictionary algorithm is designed to improve the accuracy of the HMM output. 

The proposed transliteration algorithm is applied in an MT system and the different 



methods of integration and evaluation are discussed. 

0 The above integration methods are completely independent of the transliteration sys- 

tem and any transliteration system can be embedded using these methods. Such 

integrations can provide a practical testbed to compare different transliteration sys- 

tems. 

As for future work, the most interesting and exciting experiment is to apply the same 

method for similar pairs of languages. One close language to Arabic is Farsi. While the 

grammar is totally different, the alphabet and phonemics are quite similar. Considering the 

fact that Farsi speakers, too, omit the diacritics in their writing, the transliteration task 

brings about the same challenges. 

As for our dictionary matching method, the proposed method is just a starting point. 

One might wonder how effective it would be to make the rigid matching technique explained 

in Chapter 5 more flexible. For example our algorithm does not accommodate for unpro- 

nounced consonants in target language. The name -lh is transliterated as "Faukner" 

and our matching algorithm does not retrieve "Faulkner" only because "fknr" and "flknr" 

do not match. 

It is also useful to evaluate the efficiency of integrating with machine translation systems 

with a metric other than BLEU. As discussed in Chapter 6, BLEU is a less desirable metric 

to reflect the real impact of transliteration module. It is also interesting to incorporate an 

NE tagger (as method 1 and method 2 suggested in Chapter 6) and observe if they can tag 

named entities that are otherwise translated incorrectly instead of being transliterated. 
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