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Abstract

In this thesis. the problem of view planning with combined view and travel costs, denoted
by Traveling VPP. is addressed. It refers to planning a sequence of viewpoints to fullv
inspect the objects of interest and a path to realize these viewpoints, while minimizing total
cost. including both view cost and traveling cost. The idea of combining the two costs is
motivated by robotic applications. especially the remote missions, where the time and energv
spent arve a critical factor to successfully complete the tasks. Travel cost is the cumulative
time and energv consumption due to the robot wmovements and thus is proportional to the
total clistance traveled by the robot. View cost corresponds to the image processing. hnage
registration and geometric model construction after each view is taken and is proportional
to the nunber of viewpoint planned.

First, we assume that the viewpoints are given, the geometries of the object, and the
graph encoding the robot paths are known (also known as the model-based case). We aive
an LP based approximation algorithm the solution cost of which is within a certain ratio
of the optimal cost. We show that the approximation ratio is in the order of the frequency
parameter, defined as the maximum number of viewpoints that see a single surface patch of
the object, of the problem. Together with the poly-logarithmic approximation ratio provided
by an existing LP based randomized algorithm (after reducing our problem to the related
group Steiner tree problem), the best known approximation ratio to Traveling VPP is the
minimum of a constant times frequency and the poly-logarithmic of the input size, which
matches (with the approximation ovder) the existing hardness of approximation result for a
closelv related problem. the Group Steiner Tree problem. This result parallels that for the
well-known set covering problem.

Then we introduce a geometric problem, namely the Watchnan Route Problem with

Discrete View Cost. denoted by GWRP, which refers to planning a continuous robot tour

il



inside a polvgon and a number of discrete viewpoiuts on it with the muinimum total cost
as the weighted sum of the view and travel cost. such that every point on the polygon
(interior) boundary is visible from at least one viewpoint planned. The GWRP generalizes
the well-known Watchiman Route Problen, which refers to plan the shortest tour such that
any polvgon boundary point is visible to at least one poiut on the tour. We propose a
novel sampling method to reduce any GWRP instance to a Traveling VPP instance with
a bounded nuniher of viewpoints such that the optimal solution to the GWRP is within a
constant ratio of the optimal solution cost of the reduced Traveling VPP. Thus combining
the approximation algorithm to the Traveling VPP, we have an approximation algorithm
to the GWRP. We also implement our approximation algorithm for the GWRI that takes
a polveon and a robot start point and produces a GWRP solution. We present some

preliminary experimental results that show the power of the algorithm.
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Chapter 1

Introduction

1.1 Introduction

TImagine at a historic site. a robot is asked to autonomously scan the artifacts on the site and
build their conplete surface representations. The robotic artifact “docimentation” or vir-
tual reality envirommuent construction ability automates many tedious tasks done primarily
by himan thus far. (See Ref. [BA0G] and the references therein for some of the few existing
works on automating this process.) Please see Ref. [LPCT00] for an interesting work ou
3D digitization of historic artifacts in which a group from Stanford University spent nine
months in Italy digitalizing the sculptures made by Michelangelo. In Ref. [LPC00], the
planning and moving were done by human. Note that if using autonomous robot sensor
systems, not only the time spent in moving the 3D laser scanner and planning the scanning
activities can be greatly shortened, but tedious work can he avoided for human operators.

The aforementioned vision-based robotic application motivates the problem considered
in this thesis: to plan sensing actions and a robot traveling path in realizing these actions
such that the surfaces of the objects of interest are completely “documented”/scanned. For
a solution to be feasible, it must satisfy: the covering constraint that for any object surface
patch, at least one viewpoint where the surface patch is visible from is chosen: and the
connection constraint that the viewpoints chosen are connected via the path planned. At
the same time, for such applications, especially in remote missions. the time and energy
spent are a critical factor for the tasks to be successfully completed. Thus, we model this
robotic objeet inspection task as an optimization problem of minimizing the corresponding

total cost, a weighted sum of both the view cost and the travel cost. View cost corresponds
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to the hmage processing, hmage registration and geometric model construction after cach
view Is taken and is thus proportional to the manber of viewpoints planned [SRRO3]. Travel
cost is the cumulative time and energy constmption due to the robot movements and we
model it as proportional to the length of the total path the robot travels. We call this
problem of view planning with combined view and travel cost, as Traveling View Planning
Problem, or Traveling VPP. Clearly, the solution to this problem has ample applications
ranging fron surveillance to object inspection.

Sec Fig. 1.1 for a simple example where the rohot-sensor system, a mobile manipulator
with a range sensor mounted at the manipulator’s end-effector, is required to inspect the
surface of a large object. Compared with just the mobile hase, the mobile manipulator
gives the sensor additional degrees of freedom and maneuverability. This is illustrated in
Fig. 1.1, where the robot achieves visibility by extending the manipulator over occluding
obstacles. The six robot configurations that realize the planned viewpoints are also shown.
and the dotted lines between these conligurations denotes the traveling path. including
the manipulator movements, of the robot. The dotted triangles that are attached to the
robot end-cffector are the sensor's fleld of view (FOV) at different configurations. It is clear
that the solution shown in Fig. 1.1 is a successful plan that satisfies both the covering and
the connection constraints. Its total cost includes the total view cost, proportional to the
number of viewpoints planned (six in this case), and the travel cost, proportional to the
length of the path traveled by tlie robot.

In this thesis, we consider two cases of the problem, namely a discrete version, where
the set of possible discrete viewpoints are given as the problem input, and the geometric
version in a 2D scene where the viewpoints can be any points in a polvgon (possibly with
holes). The latter version corresponds to the case where a mobile robot, usually modeled
as a point, is asked to inspect a 2D environment.

We use the same name Traveling VPP for the discrete version. Traveling VPP uses a
graph connecting the input viewpoints to encode the robot traveling paths for realizing the
corresponding sensing actions. The use of graph makes Traveling VPP general enough for
such complex robot model as the many degree-of-freedom (dof) mobile manipulator shown
in Fig. 1.1, where the 1D graph structure called roadmap is generally considered as the only
data structure to solve the robot motion planning problem practically [Lat91, KSLO9G]. In
addition. we consider a special case of Traveling VPP, in which a point robot equipped

with a ommidirectional range sensor with a certain range D, is asked to iuspect object



CHAPTER 1. INTRODUCTION 3

w “2 Viewpiont
[ IR

Benso\r\ ~
~ P
| FOV >
|
1
-
2R d obictof
¥ A 1 N ject o
Y(ﬁ;}( k N int]eresl
‘ N
_f N
Robot start {”—'-"T'
position 6 g¢ ! -
Iy -i-)-,vu. l // ~ Ty
o -
V4
O—mA
A
--------- >~ |
Robot traveling path == ]
5= . _ :
DB 6 - g

Figure 1.1: A Traveling VPP instance. It shows 6 planned sensor viewpoints that totally
cover the surface of the object of interest, and the robot traveling path to realize themn.

surfaces in a two- or three-dimensional environment. We call this special case Metric View
Planning Problemn with Travel Cost and Visibility Range, or Metric TVPP in short. Note
that unlike the general Traveling VPP, for Metric TVPP, the robot travel distance hetween
two viewpoints is the shortest path length between them. Note that the shortest path
lengths are governed by a metric, i.e., they satisfy the triangular inequality.

Rather than calling the geometric version “Traveling VPP in a polygon”, we use a well-
known problem in the computational geometry literature, the Watchman Route Problem
or WRP in short [("N91]. which asks for the shortest path inside a polygon (possibly with
holes) such that everv point on the polveon houndary is visible from at least one point on the
path, and call the geometric version the Watchman Route Problem with Discrete View Cost.
or Generalized Watchman Route Problem (GWRP). GWRP is a true generalization to the
WRP: while the WRP for simple polygons (without holes) is in P (solvable in polynomial

time), GWRP is NP-hard. The latter follows from the fact that when travel cost is ignored,
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GWRDP reduces to the well-known NP-hard Art Gallery Problem (AGP).

In this paper, we consider a nontrivial restricted version of the GWRP, called the Whole
Edge Covering GWRP, or WEC-GWRP, in which any polvgon edge is required to be entirely
visible from at least one planned viewpoint. The restriction arises naturally in inspection
tasks in robotic applications, where the “map” given to the robot is often a discretized
houndary representation and during inspection tasks each small discretized boundary piece
is considered as inspected from one planned viewpoint if and only if all the points on it are
visible. Thus, by regarding each piece as a polygon edge, we have a whole edge covering
instance. The same restriction is also used in the terrain guarding problem [Eid02]. WEC-
GWRP has the same NP-harduess and inapproximability as GWRP. (Please see Appendix A
for a quick recap of the inapproximability concept and L-reduction method to prove inap-
proximability result.) It is because that the reductions used for establishing the NP-hardness
for Point AGP, for polvgons without holes [LL8G| and polygons with holes "OS83| respec-
tively, construct whole edge covering Point AGP instances from an arbitrary 3-Satisfiability
instance. In addition. the inapproximability result for Point AGP, i.e.. Point AGP is log-
inapproximable for polvgons with holes. follows from the reduction from an arbitrary Set
Covering Problem instance to a whole edge covering Point AGP instance. Formal definitions
of Traveling VPP and WEC-GWRDP are given in Chapters 2 and 4 respectively.

Both Traveling VPP and WEC-GWRP combine and generalize some well-known NP-
hard problems and are immediately NP-hard. We adopt in this thesis approximation algo-
rithms [Vaz01] that are fast (runs in time of the order of a polynomial of the input size)
and guarantee worst-case performance as our methodology. To measure the quality of an
approximation algorithm, we use the approximation ratio [Vaz01l]. For our minimization
problem, it is defined as the upper hound on the ratio between the algorithmic solution cost
(its objective function value) and the optimal solution cost.

In the following, we survey some related works to Traveling VPP and GWRP respec-

tively.

These works span the fields of algorithmic robotics, combinatorial optimization,
approximation algorithm, and computational geometry. They are organized in the follow-
ing fashion. First, we discuss those closely related to the case when the travel cost is ignored.
Second. we discuss those closcly related to the case when the planned viewpoints are given
and the view cost is ignored. Last. we discuss those related to the general problem, i.e.,

combining both view and travel.
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1.2 Related Work to Traveling VPP

1.2.1 View Planning Problem and Set Covering Problem

Without considering travel cost, Traveling VPP reduces to that of finding the minimum
number of viewpoints to cover all the surfaces of the object, and thus is closelv related to
the view planning problem (VPP) considered in the computer vision rescarch area and the
set covering problem (SCP) considered in the combinatorial optimization research area.

The View Planning Problem is defined formally as: given a set of viewpoints and a set
of surface patches, plan the minimum number of viewpoints such that the object surfaces are
totally viewed SRRO3/.

In such vision applications as cligitizing object geometries, usually a sensor positioning
system is used in a well-controlled and limited workspace. Hence the view cost that corre-
sponds to the image processing, image registration and geometric model construction after
cach view is taken dominates the cfort in moving the seusor and thus realizing different
viewpoints. Thus, the aim is to opthnize only the number of planned viewpoints. Please
sce [SRRO3] for a detailed survey on the VPP

The assumption of VPP that view cost is dominant limits its possible applications. For
instance, in the hazardous environment or in a large workspace, antonomous robot-sensor
systems are more appropriate and the travel cost cannot be ignored. Note that the combined
travel and view cost is a major consideration of the Traveling VPP.

The Set Covering Problem is defined formally as: given a universe of elements and some
subsets of the universe, determine the minimum number of such subsets. the wnion of which
is the universe [Vaz01].

The SCP is a well-know NP-complete problem and plays a central role in the combinato-
rial optimization area. The best known approximation algorithms for SCP proceed greedily
according to the (amortized) covering cost. and have an approximation ratio of either the
frequency constant, defined as the maximum number of given subsets ai element belongs
to, or the logarithm of the number of elements [Vaz01].

Scott et al. formulated the VPP into an integer linear program (ILP) [SRR00.SRRO1].
Also. thev claimed that VPP is isomorphic to the set covering problem below, but no
concrete construction was shown. (In Chapter 2. we give reductions in both directions

between VPP and SCP, thus establishing their equivalence.)
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1.2.2 Metric TSP and Steiner tree problem

For the Traveling VPP, if the viewpoints to be visited are pre-determined, the problem
reduces to the metric traveling salesman problem (Metric TSP). The Metric TSP is to
plan a tour to visit specified vertices on a complete graph with metric. The well-known
and straightforward approximation framework is to approximate the tour by solviug first a
shortest tree connecting these vertices and constructing a tour from the tree [Vaz0l]. The
construction can be either fto first double the edees on the tree. and construct a tour by taking
shorteuts (having a 2 approximation ratio): or to use Christofides™ algorithin (having a 1.5
approximation ratio) [PS82]. Christofides’ algorithm first constructs the minimum spanning
tree T on the original graph; second, it computes the minimum cost perfect matching
between vertices of T with odd degrees: third. it adds edges corresponding to this matching
to T to make it Eulerian; last, it computes a tour on the resulting Eulerian graph [Chr76].

Planuing the shortest connecting tree corresponds to another NP-complete problem, the
Steiner tree problent.! The Steiner tree problem of planning the shortest tree connecting a
given subset of all the vertices on a graph admits constant approxiniation ratio algorithis.
These approximation algorithms generally exploit the underlying metrics of the problem,
for instance, some algorithms use greedy techuiques that utilize the metric information to
first optimallv solve the minimum spanning tree (MST) on the shortest path graph. Note
that this metric information is not available for a general SCP, while it exists implicitly in

the Metric TVPP due to its finite range constraint.

1.2.3 Attempts to combine both travel and view

There is some existing work on combining the view and travel cost in the robotics literature,
but not in a unified and global fashion. For example, Fekete et al. [FKNO04] and Isler et
al. [IKDO3| considered a local version of the robot exploration problem, “to look around a
corner”, i.e., to detect an object hidden behind a corner while minimizing the suin of the
robot travel distance and the sensor scan time. The problem is considerably simpler since
the goal is local, i.e.. the objective is not to cover all the object surfaces.

Danner and Kavraki [DK02] considered the combined probleni, however. in a “weak

'Please note the difference between the Steiner tree problemn (connecting a subset of the vertices) and
the minimum spanning tree problem (connecting all the vertices). Although NST can be solved exactly in
polynomial time, Steiner tree is NP-complete.
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sense . sitce no view cost s considered, thus corresponding to a special case of Traveling
VPP, Thev proposed to solve the problem by a decoupled two-level approach, i.e., to plan
the mininunn number of viewpoints without considering robot travel cost first and then
to solve (approximately) the Metric TSP using the shortest path graph. This two-level
decoupled approach would work well for cases where the coverage of the views considered
do not overlap (they become the only choice for a view plan.), or those with large coverage
overlap are close to each other (they correspond to similar travel cost). In Chapter 3, we also
show that for the Metric TVPP, this two-level approach achieves an approximation ratio of
O(log m), mn being the number of surface patches, of the same order as the inapproximability
result of the problem. Intuitively, the sensor range constraint of the Metric TVPP implicitly
couples the traveling and view components: -in order to cover a surface patch, the robot has
to travel to at least within the sensor range of it. Thus the two-level approach is no longer
decoupled.

However. this is not true for a general Traveling VPP setting. For example. as shown in
Fio. 1.2, even assuming that at cach level the respective optimization subproblem, obtain-
ing the minimum munber of viewpoints and the shortest path tour respectively, is solved
optimallv. this two-level decoupled approach provides no performance bhound (with vespect
to the optimal solution cost). and can perform arbitrarilv poorly. This is easily achieved by
pulling the leftinost viewpoint arbitrarily farther from the rightmost ones. This issue occurs
hecause the planned viewpoints at the first level are too far apart for the robot to realize a
plan efficiently since no travel cost is considered at the first stage.

These related works mentioned above do not address the two types of cost of different

natures, thus are not applicable to solving the Traveling VPP.

1.2.4 Connected facility location problem

In an interesting work [SK04]. the problem of connected facility location is addressed, which,
given a set of facilities and a set of clients both residing in a metric space, asks for a set of
open facilities connected by a Steiner tree and the service assignments hetween these open
facilities and all the clients. such that the total cost. the sum of both the total service assign-
ment cost and the tree cost, is minimized. Using the metric heuristics in their algorithm.
the authors give a greedy algorithm with constant approximation ratio. By regarding the
clients as the surface patches in the Traveling VPP and regarding the facilities as the view-

points. the connected facility location problem is related to the Traveling VPP, However,
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Obj. of Interest

Vv
2
=S
Y .
g - 3
2 [ ]
Vv |.,ﬁ—""."~.‘ e - ‘\
Sy . ) *
- 1 — V4
v B
3
(1) Optimal solution (i1) Two level solution

Fioure 1.2: A planar example shows the arbitrarily poor performance of the two-level de-
coupled approach. The object to inspect, the triangle, has three surface patches. sy. s2 and
s3; the four possible sensing positions, or viewpoints, are vy, vq, v3 and v, all shown in
the top figure. vy coincides with the robot start position s. The shaded sensing triangles
show the covering relations: viewpoints vy, v and vy cover the surface patches s;, so and
s3 respectively, while vg (sensing triangle of which is not shown) covers both s; and s». The
line segments connecting the views, ey, e; and e3, cdenote the rohot’s traveling path; the
numbers on each segment are the respective travel cost (distances). (The distances are not
drawn to scale.) We assume the view and travel cost are equally weighted in the objective
function, i.e. the unit view cost (cost for each view) is the same as the unit travel cost (cost
for unit travel distance). Thus the total cost is the sum of the number viewpoints planned
and the total distance of the path planned. The dashed lines shown in the two hottom
Rgures are the planned paths connecting the planned viewpoints. The optiinal solution is to
take three views at s. vy and oo using the dashed line segments as the traveling patli. The
solution given by the decoupled cost can he made arbitrarily poor by pulling ¢y farther to
the left.
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the visibility relation between viewpoints and surface patclies does not assume a metric,

and the heuristic by Swamy and Kumar [SK04] is not applicable to the Traveling VPP.

1.2.5 Group Steiner tree problem, traveling purchaser problem, and er-

rand scheduling problem

The problems of group Steiner tree (GST), traveling purchaser {(TPP), and errand scheduling
(ESP) are closely related to Traveling VPP,

The Group Steiner Tree Problem is defined formally as: given a graph G = (V. E). where
the verter set V' is divided into k distinct groups. g1, g2, ..., g, construct the minimum cost
Steiner tree to connect at least one wverter from. each group.

The GST generalizes both the SCP and the Stener tree problem where the best known
approximation ratios are O(logn) and O(1) respectively. Chekuri et ol. [CEKO0G| and Garg
et al. [GKROO| used a greedy algorithm and an LP-based randomized rounding algorithm
respectively to achieve the best known poly-log approximation ratio, Qlog |V|log log |V -

log klog N), where [V, & and N are the number of graph nodes, the number of groups aind

the maximum cardinality of the groups respectively. As an interesting robotic application.
Saha et al. [SRLSAQ0G| used the approximation GST algorithim proposed by Chekuri et
al. [CEIK06] to solve the problem of planning tours for the robot arn to achieve at least one
configuration from each distinct group of configurations that achieve the same end-effector
pose.

It was open whether the gap between the best known SCP and GST approximation ratios
could be closed until recently, Halperin and Krauthgamer show the poly-log inapproximality
hardness result for GST, i.e.. the optimal solution to GST cannot be approximated by any
polynomial algorithm within the O(log® k) ratio, for any ¢ > 0 [HK03]. By considering
each group in any GST instance as the viewpoint set of a surface patch in the Traveling VPP,
GST is reduced to a special case of the Traveling VPP where the viewpoint sets that cover
different surface patches arc exclusive, i.e.. they do not share common viewpoints. Thus, the
Traveling VPP is certainly a harder problem than GST and can not be approximated within
log? “ |S|. Please see Chapter 2 for the reduction from Traveling VPP to GST, thus showing
their equivalence. It also hnplies that the Traveling VPP is not approximable within the
same poly-log ratio.

The Traveling purchaser problem (TPP) is defined formaolly as: given o set of ware-
houses. W, connected by a graph G = (W.E),E C 2 and a set of products P with



CHAPTER 1. INTRODUCTION 10

requivements and the prices of buying a product at a warehouse, d,. ,,w ¢ W.p € P. the
(unlimited capacitated) Traveling Purchaser problem (TPP) asks for certain warehouses for
each product and the tour connection between the planned warchouses with the minimum
total cost. the sum of the product purchase cost and the tour cost.

The Traveling VPP is a special case of TPP where the prices are uniform for all the
product and warehouse pairs. In Chapter 2, we also show that TPP can be reduced to
Traveling VPP. This again shows the equivalence of the two problems.

The equivalence between GST, TPP and Traveling VPP also implies that the approxi-
mation result we develop for Traveling VPP also applies to GST and TPP.

The errand scheduling problem (ESP) is defined formally as: given a graph G = (V| E)
with metrics (the edge weights of which satisfy the triongular inequality) and a set of exrands.
where each verter is associated with a subset of these errands. plan a short tour such that
the wnion of the subsets associated with the vertices visited is the whole set [Sla97].

Slavik [Sla97] gives an algorithm with an approximation ratio of 3p/2, where p is the
maximum number of nodes an errand is associated with. Traveling VPP generalizes ESP in
the following seuses: the graph in Traveling VPP does not assunme metrics; there is no view
cost in ESP: and there is no distinetion in ESP of viewpoint and Steiner node on the graph.
In Traveling VPP, even if some viewpoints are traversed in the solution, the robot does not
need to take a view of them. They are simply for travel use and do not incur view cost,
hence termed as Steiner nodes |Vaz01]. Thus the results by Slavik 1S1a97] do not apply to
Traveling VPP. Simple reductions from Traveling VPP to ESP, for example, adding to the
travel cost of each edge ¢ = (u,v) the view cost of both viewpoints v and v, do not work,

since this construction requires that the robot take a view at every graph node it visits.

1.3 Related Work to GWRP

1.3.1 Art Gallery Problem

[gnoring the travel cost, GWRP reduces to the art gallerv problem (AGP) considered in
the computational geometry research. In the similar fashion that Traveling VPP generalizes
VPP, the GWRP generalizes the AGP. We refer to {O’R87,5he92, Urr00] for detailed surveys
on works for AGP in the last century. Here we only mention those closely related to this

thesis work, and somne recent developments.
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The AGP (point guard) is defined formally os: gieen a polygon. plan the minimum
number of quards. points in the polygon (including polygon interior and boundary). such
that every point on the polygon boundary is visible to at least one quard planned [O'R87].

The AGP has different versions depending upon the restrictions on the guard set. The
AGP defined above is often called the AGP with point guards, denoted by Point-AGP, where
the guards can be any point in the polygon. as opposed to the AGP with vertex guards, de-
noted by Vertex-AGP, where the guards are restricted to be placed on the polygon vertices.
All these versions are NP-hard, even for simple polygons (without holes) [O'R87]. This mo-
tivates the efforts to design approximation algorithm. To the best of our knowledge the best
existing approximation algorithm for Vertex-AGP has the approximation ratio of O(log n), n
being the number of polygon vertices [Gho87]. There is no existing approximation algorithin
for Point-AGP.

There are two major recent developments on AGP. On the complexity analysis. the
Point-AGP and Vertex-AGP are shown to be APX-hard. i.c., there exists a constant ¢ > 0
such that no polynomial algorithin can approximate the optimal solution within a ratio of
(1 +¢), for shple polygons and log-inapproximable for polygons with holes [ESWO01]. Note
that the inapproximability result for polveon with holes is the sawme as that for SCP [Fei9g)|.
And indeed the reduction used to establish the inapproximability for Point-AGP is from
the SCP. On the other hand, recent efforts are made on designing approximation algorithms
for some simpler versions of Point-AGP. Nilsson [Nil05] designed a constant approximation
algorithm for Point-AGP for monotone polygons. A simple polygon P is monotone if there
exists a line [ such that the intersection of P and any line I’ perpendicular to [ is either an
empty set, a single point, or a single line segment [dBvKOS00]. Constant approximation
algorithms were given for 1.5D terrain guarding problem [BMKMO05,Kin06]. A 1.5D terrain
is a polygonal curve that is monotone w.r.t. the horizontal axis, i.e. its intersection with
any vertical line is either an empty set or a single point [BMIKNMO05]. The terrain guarding
problem refers to finding the minimum number of points from a terrain such that all the
points of the terrain are visible. Note that it is open whether the two above-mentioned
guarding problems are in P. As also mentioned by Ben-Moshe et al. [BMKNMO05], their
efforts to obtain an approximation algorithm for the Point-AGP have failed.

There are also related works on how to practically solve Point-AGP. Efrat and Har-Peled
assume that a dense grid laid on the polygon is available and viewpoints are restricted to be

grid vertices 'FHP02|. Gonzalez-Banos and Latombe proposc to first randomly sample the
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interior of the polvgon; and by restricting the possible guard positions to be these samples,
solve the corresponding SCP by regarding each sample as the set of the decomposed polvgon
boundary it covers [GBLO1]. These approaches have an immediate drawback. As shown in
Fig. 1.3, if the polygon has a small kernel (the sct of viewpoints that sees the whole polygon
boundary), taking a view at a single point in the kernel becomes the optimal solution,
both methods are likely to fail: the discretization method has to make the resolution very
fine; and sampling a point in the kernel hecomes a rare event for the randomized sampling

method.

Figure 1.3: A polygon with a small kernel, the shaded region.

1.3.2 Watchman Route Problem

Tgnoring the view cost. the GWRP is equivalent to the watchman route problem (WRP).
The Watchman Route Problem is formally defined as: given a polygon. plan a continuous
tour in the polygon with minimum length. such that every point on the polygon interior

boundary is visthle to at least one point on the tour planned [CN9I1J.
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[t is interesting enough that although the covering constraint is inherent in the WRDP, for
shmple polygons, it is actually polynomially solvable "("N91, Tan0O4]. However, for polygons
with holes (even with a bounded number), the WRP is NP-complete. (learly, the Traveling
VPP and the GWRP that consider the view cost are generalizations to the WRP. Also,
unlike the WRP being restricted in 2D enviromnent, Trawcling VPP uses a graph to encode
the traveling, thus is applicable to more general cases, for example robots with nontrivial
geometries and kinematics. Note also that GWRP is not a trivial extension to the WRP in
the following sense. Firvst, unlike the WRP, the GWRP is a clear generalization to hoth the
Point-AGP and the NMetric TSP, hence is as Jeast as hard. Second, the best WRP solution
may incur an unhounded cost for the corresponding GWRP solution. i.e., infinite number

of viewpoints are needed on the tour to cover the whole polygon boundary, [GB04].

1.3.3 Shortest Path Problem

Here we give a quick preview of the approach we take for GWRDP. We applyv a sampling
algorithm that computes a finite number of viewpoints iuside the polvgon to reduce the
GWRP instance to a Traveling VPP instance and apply the Traveling VPP solver to the
induced Traveling VPP instance. This sampling algorithin utilizes the metric structuve of
the polveon and is related to approximation algorithms for shortest path problems, such
as the unweighted shortest path problem in 3D [Paps5, MMP87| and the weighted shortest
path problem? in 2D [MP91,SR06,AMS05|. Unlike the unweighted shortest path problem in
2D where the shortest path is encoded in the visibility graph consisting of only the polygon
vertices and the start and end points of the path, for both the above-mentioned problems,
the shortest path may pass through the polygon or polyhedron edges at points between the
vertices and these points are hard or impractical to compute. From our point of view, these
works can be categorized into those that use the principle of optimality and approximate
the globally optimal path, for example, [MMP&7,MP91[; and those that do not and thus
approximate all the locally optimal paths. Due to the view cost and visibility constraints,
onlv techniques of the second category can be used for WEC-GWRP. To our knowledge,
there are two such works as discussed below.

Papadimitriou [Pap85] designed an approximation algorithin for the Euclidean shortest

“I'hat is. a plane partitioned into regions with different weights is given and the length of the path is the
S 8 & 5
weighted simmation of the lengths of its parts in different region.
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path problem in 3D, i.c.. to plan the shortest path between a start point and a goal point in
a 3D space while avoiding polyhedral obstacles in the space. The algorithm approximates
(within (1 + €) ratio) every locally optimal path by discretizing each edge of the polyhe-
dron obstacle according to the shortest distance from any point on that edge to the start
point. This sampling step is applicable to WEC-GWRP: first, apply the same algorithim to
discretize every visibility segment; and then solve the Traveling VPP instance using these
computed viewpoints. Since the distance from a visibility edge where a planned viewpoint
in the optimal WEC-GWRP solution resides to the start position (after being weighted hy
w),) is at most the optimal cost of WEC-GWRP, the error introduced by the discretization is
still hounded w.r.t. the optimal cost of WEC-GWRP. The number of computed viewpoints

is O ”\-.-l:—'-:-"—-[—“). where L is the largest coordinate of any point in P.

Aleksandrov et al. [AMS05] designed an approximation algorithm for the problem of
planning the shortest path on weighted (triangulated) polyhedral surfaces. The aloorithm
discretizes each triangular face of the input polvhedral surface P such that cvery locally
shortest path can be approximated within a ratio of (1 + €) using these discretized points.
The number of such computed poiuts is bounded by O(C(P) l"r log, T)‘ where 1’ is the
ntther of triangulated faces of P. C(P) captures the geometric characteristic of P and is
proportional to the average reciprocal of the sine values of all the triangular face angles.
This sampling step is also applicable to WEC-GWRP: first, triangulate all the visibility
cells; second, discretize each triangle using their algorithm; last, solve the corresponding
Traveling VPP instance. Since the number of triangles is O(n*), the number of computed
viewpoints is O(C(p)’\’/1 logs %)

Note that for both of the above-mentioned approximation algorithms, the number of
computed viewpoints depend critically on some geometric parameters, the largest coordinate
of any point in the polygon [Pap85], and the quality of the polvgon triangulation [AMSO05]
(Triangulation with sharp angles result in large C(P) values.) respectively, as opposed
to our sampling algorithm. To better illustrate, in Section 4.5, we give a simple example
in which the triangulation-based algorithm [AMSO05]| requires substantially more sampling

viewpoints than our sampling algorithm to achieve the same approximation ratio.
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1.4 Overview of Results

The emphasis of this thesis is to design good algorithms for Traveling VPP and the GWRD.
Approximation algorithins are fast and guarantee the algorithmic performances even in the
worst case scenarios. In the following, we discuss the methodology adopted and the results

for the Traveling VPP and the GWRP respectively.

1.4.1 Traveling VPP and Metric TVPP

The fact that the decoupled approach by Danner and Kavraki, [DK02], cannot solve the
Traveling VPP satisfactorily niotivates us to model the problem in a unified formulation that
combines the view and travel cost in a single objective function to minimize. In Chapter 2,
we give an [LP formulation for the Traveling VPP. We show via a reduction to the group
Steiner Tree problem (GST) [HKO03] that Traveling VPP is log-square inapproximable. We
desien a rounding algorithm, called Round and Connect. that takes an optimal solution to
the relaxed linecar program (LP) and outputs an integral solution. We also show that the
approximation ratio of o rounding algorithim is a constant times F', the frequency of the
Traveling VPP, ie.. the maximun munber viewpoints that cover a single surface patch.
Together with the poly-logarithmic approximation algoritlin given in [CEK06, GKRO00] for
the GST, our algorithm can approximate the Traveling VPP within the ratio of either
constant times frequency or the poly-log of the input size, whichever is smaller. This result
parallels the well-known approximation ratio result for SCP, i.e., the best approximation
ratio for SCP is either the frequency or the logarithm of the number of elements, whichever
is smalley.

In Appendix B and Chapter 2, we also discuss several ways of solving the relaxed LP,
including the column generation method and give an alternative LP formulation using multi-
commodity network flows, the size of which is a polynomial of the input size.

In Chapter 3, we consider a restricted version of the Traveling VPP, the Metric TVPP.
We propose a greedy two-step algorithm that first solves the SCP component and then
solves the Metric TSP to get a tour connecting the planned viewpoints at the first step.
We show the approximation ratio for this algorithm is in the order of the logarithm of the

number of surface patches.
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1.4.2 WEC-GWRP

Even if seemingly very close to the Traveling VPP, to actually apply the approximation
algorithm designed for the Traveling VPP, we will have to deal with the different viewpoiut
spaces respectively for the two problems, i.e., unlike the Traveling VPP where the discrete
viewpoint set is given in advance, for the WEC-GWRP, we have to deal with the continuous
polygon interior and an infinite number of possible viewpoints. Although one can discretize,
up to a certain resolution, or randomly sample the polygon interior and then call the Trav-
cling VPP solver, as mentioned above, there are two clear shortcomings with this approach:
first, the resulting algorithm runuing time depends critically on the size of the polvgon aud
is no longer truly polynomial (the running thne also depends on the number of samples,
not an input to the problem):; and as we discussed earlier, some critical viewpoints mav be
missed during the discretization and this results in unhounded approximation ratio.

This motivates the approach we take in this thesis: to propose a novel method that only
samples a polvinomial number of viewpoints ~adequately”™ (not missing any critical points
up to a constant approximation ratio): and then to call the Traveling VPP solver for an
approximate solution for these samples. The resulting algorithm then has the approximation
ratio as the product of the two parts, i.e., the constant as the result of the sampling algorithm
and the minimum of the view frequency parameter and the poly-logarithm of the number

of polygon edges.

1.4.3 Experiments

As the first step towards implementations on real robot-sensor systems, we developed a
preliminary implementation of the algorithm for simulated 2D polygonal environments as
well as real environment maps generated by robot-sensor systems. For the latter, we first
compute the polygon approximations. We implement the viewpoint sampling algorithin
mentioned above; after calling an LP solver and getting the LP optimal solution, we imple-

ment the algorithin Round and Connect for Traveling VPP.

1.5 Contributions

¢ To the best of our knowledge. Traveling VPP is the first work in robotics that tries to

optimize both view and travel cost in a unified and global fashion (as opposed to the
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decoupled two-level approach [DK02] and the local optimization of looking around a
corner [FKNO4, IKDO3]), and the algorithuns developed give the best known approxi-
mation ratio. in the order of the view [requency or a polynomial of log n whichever is

smaller.

e WEC-GWRP is also the first and the only work in the computational geometry area
that combines AGP and the shortest path problem. We also give the first approxima-
tion algorithm for this problem. It has the approximation ratio of the smaller of the
orcer of the view frequency or O(logn). We believe that the major component of the
GWRP solver, the sampling algorithi, is a general technique and can also be used for
other shortest route problems. As opposed to the sampling techniques in the shortest
path literature, [Pap85, AMS05], the number of computed viewpoints by our sampling
aleorithim is bounded by a polynomial of the nuinber of polygon vertices and does not

depend on anv geometric parameter of the polvgon.

1.6 Thesis Organization

In the rest of the thesis, we cover the problem formulation and algorithins for Traveling

VPP, Metric TVPP and GWRP in Chapters 2. 3. and 4 vespectively. The details of the

5. We also outline some future

simulator and the simulation results are given in Chapter
work directions in Chapter 6, including formulating and proposing possible approaches for

unknown version of Traveling VPP.



Chapter 2

Traveling VPP

In this chapter. we model Traveling VPP as a combinatorial optimization problem, give its
integer linear program (ILP) formulation, analvze its inapproximabilitv. and give a linear

program (LP) relaxation based approximation algorithm.

2.1 Notations and ILP formulation

2.1.1 Traveling VPP: abstraction to set covering on a graph

Traveling VPP is formally defined as: given a set of viewpoints, a set of surface patches, a
graph connecting the viewpoints with edge costs. the unit view cost and the unit travel cost,
plan a subset of the viewpoints and a subset of the edges. with the minimum total cost as
the summation of the view cost (unit view cost times the number of planned vicwpoints) and
the travel cost (unit travel cost times the total edge cost), such that every surface patch is
covered by al least one planned vieupoint.

In this following, we formulate Traveling VPP as a combinatorial optimization probh-
lem combining two well-known problems, nainely the set covering problem (SCP) and the
traveling salesman problem (TSP).

By considering each object surface patch as an element in a subset that a viewpoint
can cover [SRRO1], an arbitrary VPP instance is immeciately an SCP instance. Since the
VPP has a inherent geometric structure, one might hope that VPP is a siinpler version of
SCP. In Chapter 3, we give a reduction from SCP to a special casc of the Metric TVPP, a

restricted case of Traveling VPP, in which the view cost is dominant, thus equivalent to the

18
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VPP '. This implies the equivalence of the SCP and VPP.

On the other hand, assuming the planned viewpoints are given (or the VPP as a sub-
problem is already solved), Traveling VPP is reduced to the Metric Traveling Salesman
Problem (Metric TSP) by constructing the shortest path graph on the planned viewpoints
[DKO02]. The shortest path graph is defined as the complete graph between the planned
viewpoints in which the edge cost between two viewpoints is the length of the shortest path
the robot needs to travel to realize themn. Since the two problems, SCP (without metrics) and
Metric TSP (with metrics}, have fundamentally different structures and solving techniques,
Traveling VPP is an interesting and non-trivial generalization.

Thus, in the abstract sense, Traveling VPP can also be termed as “Set Covering on a

Graph™.

2.1.2 Integer program formulation of Traveling VPP

We now give an integer linear program (ILP) formulation for the Lraveling VPP,

Ity our wnified formulation of traveling VPP, we make assumptions to abstract out and
focus on certain kev ingredients, in particular the interplay between SCP and Metric TSP,
We assume that the surface patches to be inspected are given, the viewpoints [rom which a
surface can be inspected are also given. and that a graph which encodes the possible robot
movements connecting the viewpoints and the robot start position, is also given. We assume
binary covering relationship, i.e., a viewpoint either covers a surface patch or does not cover
it. These assumptions are based on a realistic scenario and algorithins from the literature
can be used to derive these quantities. We discuss these realistic issues with an eye towards
implementation in Section 2.8.

Our formulation of Traveling VPP is to choose a subset of the viewpoints and a (Steiner)
tree on the graph to connect them, under the (covering) constraint that every surface patch
is covered by at least one planned viewpoint and the {connection) constraint that every
planned viewpoint is connected to the robot start position via the planned (Steiner) tree.
The objective is to minimize the total cost of the plan, defined as the sum of the view costs
and the tree cost (the sum of all edge costs in the Steiner tree).

The veason for using a (rooted) Steiner tree instead of a tour is that we are able to

I [SRRO1]. the authors claimed the VPP is isomorphic to the SCP but did nat give » concrete reduction
from an arbitrary SCP instance to a VPP instance.
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combine the (rooted) Steiner tree formulation with covering constraints. It is not clear
how to combine a tour (or path) constraints (especially the subtour elimination constraints
[GP02!) with the covering constraints. Moreover, Metric TSP can be casily approximated
using the solution to the Steiner tree prohlent [Vaz01].

We denote the set of all viewpoints by V and index them by 7. We denote the set of
surface patches by S and index them bv j. We use the notation = € V and j € S to imply
the =ith viewpoint™ and the “jth surface patch”, respectively. For i € V, let S(i) denote the
subset of the surface patches that viewpoint ¢ covers; and for j € S, let V(j) denote the subset
of viewpoints that cover surface patch j. The robot movements are restricted to the graph
G = (V, E), where the node set V is the set of all viewpoints and s, the starting position of the
robot. In casc the robot start position does not correspond to a viewpoint. we simply assign
the empty set as the set of surface patches it sces. The edge e between two views v, and v,
represents the path from v;, to v,,. We use c. to denote the cost (length) of edge e. We also
use T C Vs ¢ T to denote a cut or subset of the graph that does not include the robot start
position. We use §(7) to denote the set of edues that “crosses”™ T, having oue eud inside T
and the other outside T te, e = < ey > e o(T)y <oy eTrhm d T OR e ThAe ¢ T.
We nse . the unit view cost or cost per viewpoint, and w),, the unit path cost or cost per
unit traveling distance. Furthermore, we use F' to denote the view frequency, defined as the
maximuut number of viewpoints that cover a single surface patch. i.e., F' = maxjes [V(j)].
where | A| denotes the cardinality of a discrete set A.

We define a binary variable, y;, as the indicator whether to take a view at viewpoint 1,
corresponding to y; = 1, or not, corresponding to y; = 0; we define the binary variable, z,,
as the indicator whether to include the edge e in the robot traveling path, corresponding to
ze = 1, or not, corresponding to z, = 0. Thus, the ILP formulation for the traveling VPP

is given as:



CHAPTER 2. TRAVELING VPP 21

Traveling VPP (ILP)_E (2.1)
nin Wy Z yi +w, Z CeZe
eV cel
Subject to: vie S, Z yi = 1 (2.2)
iEV(T)
Vie VYT CV:iieTAsgT, Z Ze 2y, (2.3)
e=i(T)

Yiy = S {0,1}, 7€ V,( & E

The coverage constraints, (2.2), require that for each surface at least one view is chosen
from its viewpoint set. The connection constraints. (2.3). require that for each planued
view 7, i.e., y; = 1, and for every cut T of the vertex set that separates ¢ [rom the robot
start position s. at least one edge that crosses T must be chosen to conuect the cut. Such
connection constraints are used in the standard (rooted) Steiner tree problemt ILP formula-
tion [GWO2]. and essentially express the notion that each selected node must be reachable
from the start node. Note that the above ILP forinulation (2.1) is not the most compact
one, since there are a large number of constraints corresponding to the cuts in the graph. In
the following, we will also give a polynomial-sized formulation (especially useful to solve the
corresponding relaxed LP). Nonetheless, this formulation gives us a lot of intuition, since
it works directly with the edge assigniments, and is handy when we analyze the algorithmic

performance.

2.2 Hardness Analysis of Traveling VPP

As the generalization to both SCP and Metric TSP, Traveling VPP is imimediately scen to
be an NP-hard problem. The hardness of approximation, i.e., the best approximation ratio
by any polynomial algorithm, is of great importance to approximation algorithm design.
Please see the appendix for a brief recap of the hardness of approximation theorv. In this
section, we usc the result in [HK03] to show the hardness of approximation for Traveling
VPP via reductions to the group Steiner tree problem (GST).

GST is defined as follows. Given a graph G = (V. E). where the vertex set V is divided

into & distinct groups, ¢;.9s2, .. .. gr. construct the miniiun cost Steiner tree to connect at
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least one vertex from each group. The GST generalizes both the SCP and the Steiner tree
problem where the best known approximation ratios are O(logn) and O(1), respectively.
In [GKROO, CEKO06], the authors used an LP-Dased randomized rounding algorithim and a
greedy algorithm respectively to achieve the best known poly-log approximation ratio for
the GST, O(log |[V|loglog |V - log klog N), where |V]. & and N are the number of graph
nodes, the nuimber of groups and the maximum cardinality of the groups respectively.

We now show that the Traveling VPP is not approximable within the same poly-log
ratio via the reduction given in [GKRO00]. By considering each group in any GST instance
as the viewpoint set of a surface patch in the Traveling VPP, GST is recduced to a special
case of the Traveling VPP where the viewpoint sets that cover different surface patches are

exclusive, i.e., they do not share common viewpoints. Thus, the Traveling VPP is certainly

at least as hard as GST and cannot be approximated within log® *|S], following the result
of [HK03], where Halperin and Krauthgamer show that the optimal solution to GST cannot
be approximated by auy polvnomial algorithim within the O(log® k) ratio, for anyv € > 0.
The question remains whether Traveling VPP is havcder to approximate. We show ju the
following that the imapproximalities of Traveling VPP and GST are of the same order by
showing a reduction from Traveling VPP to GST in two steps.

We first show how to reduce an arbitrary Traveling VPP instance to a Traveling VPP
instance with 0 view cost. Given an arbitrary Traveling VPP instance with unit view cost
and unit traveling cost w, and wy, respectively, we add a new viewpoint i', for each original
viewpoint 7, with an identical surface patch set, let the surface patch set for i be empty.
and connect i’ to ¢ via an edge with cost of 1:/ It is easy to see an optimal solution to
the reduced (0 view cost) version of Traveling VPP corresponds to an optimal solution to
the original Traveling VPP instance since view costs are encoded in the edge costs of the
reduced Traveling VPP instance. (Since the surface patch set of the original viewpoint is
empty, the new solution has to go to the new copy of the viewpoint, thus incurring the
traveling cost :—:— which is equivalent to adding %’ wy, = w, in the objective function.) The
size of the resulting instance has 2{V| number of viewpoints and |V| + |S| number of edges.

We now show how to construct a GST instance from a Traveling VPP instance with
0 view cost. The idea is to duplicate cach viewpoint many times (equal to the number of
surface patches it covers) to make the resulting viewpoint sets distinct. Consider such a
Traveling VPP instance, i.e.. the viewpoint set V, the surface patch set S, the viewpoint set

V(j) €V for surface patch j € S, and the graph G that connects V. We first construct a
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covers jy COVEIS Ji

viewpoint i covers
T J2, 73 01s - - covers jo N

~7= 0 cost edges
covers J)

(a) (b)

Figure 2.1: Construction of an GST instance from Traveling VPP with 0 view cost.

group g; for each surface patch ) and construct a vertex for cach pair of a surface patch j
and one viewpoint from its viewpoint set. e (j.i). i V(j), ) € S. We modify the graph
G of Traveling VPP accordingly by first constructing a tree with O-cost edges between the
vertices corresponding to the same viewpoiut, Le.. {(j.¢) : J - S(i)} (picking an arbitrary
vertex (7.1) as the tree root) and then placing the tree root at the node i on G. Sce
Fig. 2.1. Thus, we have a GST instance on the graph over vertices in the form (7,7) and
eroups corresponding to the surface patches ;. And it is easy to see that an optimal GST
solution that picks vertices (7,4) and the Steiner tree between them correspond to an optimal
solution to Traveling VPP of picking viewpoints i and the resulting Steiner tree connection
by collapsing the 0-cost edges. The above GST instance construction produces O(|V||S])
number of vertices and O(E + [V|IS|) number of edges.

By combining the two reduction steps above, an arbitrary Traveling VPP instance with
viewpoint set V and surface patch set S is reduced to a GST instance with a graph having
O(|V]|S]) vertices, O{|V||S]) edges, and |S| groups. As a result, the Traveling VPP is inap-
proximable within O(log? ©|S]) ratio of the optimal using any polvnomial algorithm. Also
the best known approximation algorithms mentioned at the heginning of this section can
be applied to the Traveling VPP (after the reductions given above) and the approximation

ratio is O(log |V]loglog |V - log |S|log F'). where F'is the view frequency.
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2.3 LP based Algorithms for Traveling VPP (ILP)

In this section, we first give the LP relaxation for the ILP formulation given in Section 2.1.2,
introduce a rounding algorithim to get an integral solution from the LP solution, give the

approximation ratio analysis, and then discuss how to solve the LP.

2.3.1 LP Relaxation for Traveling VPP

By relaxing the binary intearal variables. v and z, . to be positive reals, we have the relaxed

linear program (LP) formulation given as:

LP Relaxation: nin . Z ui oy, Z oz
oV o F
Subject to: /jes Z y > 1 (2.4)
eV
vie YV VTcV:ieTasdT: Z Loy (2.5)
ceo(l

We call the optimal (fractional] solution and the corresponding cost the LP-optimal
solution and LP-optimal value respectively. The LP-optimal solution corresponds to the
fractional LP-optimal viewpoint assignments and the fractional LP-optimal edge assign-
ments. We call the optimal (integral) solution and corresponding cost to the original ILP
the ILP-optimal solution and ILp-optimal value, respectively. The ILP-optimal solution
correspond to the integral ILP-optimal viewpoint assignments and the integral I[LP-optimal

edge assignments.

2.3.2 Rounding Algorithm

Let y© and =z} denote the LP-optimal viewpoint assignments and the LP-optimal edge assign-
ments respectively. and let OPT* denote the LP-optimal value, i.c., OPT* = w. >yl |
Wy oepcezt. Let yl, =L denote the integral solution given by the algorithm Round and Con-

nect given below, and let cost 4, denote the corresponding cost, i.e., cost y, = w, L/ev vk



CHAPTER 2. TRAVELING VPP

[\
N

Wy > e s Throughout this thesis, we nse the superscript = to denote the LP-optimal so-
lution/cost to the corresponding problem instance: and use superscript / to denote a feasible
ILP solution/cost. The algorithin Round and Connect is given below:

Algorithm Round and Connect: (take LP-optimal y}, =} as input and output ., z. )

Step 1. Initialize.

Set viewpoint choice set V© to include all the viewpoints. i.e.. V¢« V! the viewpoint
solution set V' to be empty, i.e.. V' « {: the uncovered surface patch set S* to include oll
surface patches. i.e.. S* — S

Step 2. Round.

While set SY s not empty

Select the viewpoint i,,,,, € V° that covers some uncovered surface patch(es) and
s the lurgest LP-optimal viewpoint assigniment. i.e.. {ng, = argmaX;cye. S(HNSU#0 Y5 -
and add it to V' de.. V' =V U{ine:}

Delete the surface patch(es) that i,,,, covers from the uncovcred surface pateh set,
peo S e SN\ S(inay ) and delete i, from the viewpoint choice sef. i.c..
Ve VO A{imar }

End while

Output V', v.e.. sety, =1 foric V', and set y. =0 for i ¢ V'

Step 5. Connect.

Get the optimal solution to the Steiner tree problem to conneet V'. Set =L =1 for edges

in the solution, and O otherwise.

In the above algorithm, we iteratively choose the viewpoint with the largest (fractional)
LP-optimal viewpoint assignment until all the surface patches are covered. We then feed
these chosen viewpoints to a Steiner tree algorithm to get the optimal integral solution, in the
Connect step. Note that the Steiner tree problem is an NP-complete problem for a general
sraph. So practically speaking, we can use a constant-ratio approximation algorithm, for
example the one in [GW92|, and incur an additional hounded performance degradation. Tt
is casy to see that the rounding part of the above algorithm (up to the Connect step) runs

in polvnomial time, O(|V||S]).
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2.4 Approximation ratio for algorithm Round and Connect

It is trivial to see that the solution given by algorithm Round and Connect is a feasible
inteoral solution. In the following, we analyze the performance of the algorithim using the
fact that the LP-optimal value is a lower bound on the ILP-optimal value. We first show
that the view part of the cost of the solution given by the algorithin is bounded and then
bound the total cost using a feasible hybrid solution with intesral viewpoint assignments

and fractional edge assignments.

2.4.1 View cost analysis

In the following, we show in Lemuna 2 that the LP-optimal viewpoint assignments of the
chosen viewpoints are lower hounded by ,—[ This follows iinmediately from Lemma 1, which
is a simple observation based on the feasibilitv of the LP-optimal solution. In Corollary 1.

these results are used to hound the view cost part of the algorithinic solution.

Lemma 1. For any surface patch. there crists a viewpoint that covers it with the correspond-

ing LP-optimal viewpoint assignment greater than ,i e .Vje S, Jie V() iyl = [l

Proof. We show this by contradiction. Assume that for some surface patch j © S, all the LP-

optimal viewpoiut assignments are strictly less than ]—1 ie., yl < ,'/ € V(j). By recalling
that view frequency F' is the maximum number of viewpoint that covers any surface patch

(le., V()| < F.¥j € S). we must have.

PN %»:Jvml-%z !

V) iev)

The above implies that for 7 € S, the sum of covering viewpoint assignmeunts is strictly
less than 1, or in other words, surface j is not covered. This contradicts the feasibility of

the LP solution, specificallv the constraints (2.4). O

Lemma 2. The LP-optimal viewpoint assignment for each viewpoint chosen by Algorithm

Round and Connect is lower bounded by [L Le., yr > %‘Z eV

7

Proof. Tt is equivalent to show that the above algorithm cannot choose any viewpoint whose

LP-optimal viewpoint assignment is less than &. We show this by contradiction. Assume
] | g + \

we clioose one viewpoint i with y; }l— By the Round and Connect algorithm. the Round



CHAPTER 2. TRAVELING VPP 27

Step. at the iteration when 7 is picked, it has the maximum LP-optimal viewpoint assigmuent
aong the viewpoints that cover the remaining uncovered surface(s). We arbitrarily choose
one uncovered surface patch that i covers. By Lemuma 1, there exists another /' for which

* o~ L This i lies : u¥ i Lhas ot | los herwise all its coverineg
Ui Z - s implies gy > g7 10 has not yet been chosen, simce otnerwise all 1ts covering
surface pathes including this uncovered one would have been deleted from uncovered surface
patchiset. This contradicts that i has the largest LD solution, y7, among unchosen viewpoints

that cover uncovered surface pateli(es). |

Lemma 2 implies that the view cost part of the algorithmic solution is bounded by the

view cost of the LP-optimal, as stated in Corvollary 1.

Corollary 1. Algorithin Round and Connect gives an integral solution with view cost at

most I times the vicw cost of the LP-optimal solution, i.c.. w, Z/ev [TARSE SRR TIND DN

Proof. By Lemma 2. we have Fy? > 1. for all the chosen viewpoint / € V. It follows that

w, Z y = . Z 1< F-w, Z gyt F e, Z Y

17 ieV eV 1=

2.4.2 Total cost analysis

In the following, after stating in Lemuna 3 the half-integrality gap? result of the Steiner
tree problem [Vaz01], we show that the solution given by the algorithm Round and Connect
has a total cost at most 2F times the LP-optimal value. Since the LIP-optimal value is
a lower bound on the TLP solution, it follows that the algorithm Round and Connect has

approximation ratio of 2F.

Lemma 3. For the Steiner tree problem. the integrality gap between the IP and its relared
LP s 2.

Proof. See Chapter 22 of [Vaz01]. a

Note that the Counect Step of the algorithm Round and Connect correspounds to the

Steiner tree problem of connecting V', the ILP-optimal solution to which is zZ. We use

2lutegrality vap for an LP is defined to be the worse-case ratio hetween the cost of the ILP sohition and
that of its LP relaxation solution [Vaz0I].
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OPT/ ., to denote the corresponding optimal value. ie.. OPT/. . = >, c.zl. Again, we
use OPT} . to denote the corresponding relaxed LP-optimal value. Now we are ready to

rec

show the approximation ratio of algorithm Round and Conncet.

Theorem 1. Algorithm Round and Connect has an approzimation ratio of 2F . i.e.. cost y, -

OPT* - 2F.

Proof. To prove the approximation ratio result, we utilize an intermediate solution, denoted

by yi. =7, with integral viewpoint assignments and fractional edge assigiments. We empha-
size that this solution is only used in the proof and not computed in the algorithm. The
viewpoint assigmments are the sane as in the algorithni output yi. and the edge assigmments
are scaled by F, lc.. zf = Fz. The superscript s denotes it is a solution after scaling. We
call it the hybrid solution. and denote the total cost of this solution (?O.‘;’tl/’\[g. By Corollary 1

and the edge scaling. we have.

('0.&"[‘{7”’} : “‘:-§ TARS w), E Ce )

eV ccls

Fownd yi +Fowyy e < F-OPT".
[

el
Now, we claim that the hybrid solution is a feasible solution to the LP relaxation of
Traveling VPP. Since the viewpoint assignments of the hybrid solution is exactly the same
as in the solution given by the algorithm Round and Connect, all the covering constraints,
(2.4), are satisfied by the solution viewpoint set V. The connection constraints, (2.5), are

also satisfied, since
Sooaie > Fi s Fyl vy VieV,

The first inequality above is due to the feasibility of the LP-optimal solution, and the
second is clue to Lemma 2.
Since all y! are integral. =7 is a feasible LP solution to the Steiner tree probleni to connect

V' It follows immediately that the connection cost ) ez is at least the LP-optimal

> ezl > OPT),.

e

value to connect V', i.c.,



CHAPTER 2. TRAVELING VPP 29

Note that the algorithin Rownd and Conncet (the Connect Step) gives an optimal integral
Steiner free solution to connect V'. By the integrality gap result for Steiner trees. Lemma 3.

this tree cost is at most twice the LP-optimal value for the Steiner tree problem to connect

Viie. > _pcozl =0PT] . <2-OPT}, . . Sowe have,
Z Cerh <2-0OPT; . <2 Z Gz =2 Z CuZs
ec ceE ec o

(The last equality above is due to the edge scaling.)

Combined with the view cost part of the algorithimic solution (Corollary 1), we have.

. 'f . \ ! . s
coSt g, = U, Y o, oz,

eV el

< o, Z yi 4+ 2F e, Z ¢

oV cel!

OrPT" - 2F.

which implies the algorithin Round and Connect has approximation ratio of at most 2F.

2.4.3 Integrality gap for Traveling VPP

Theorem 1 shows that the algorithm Round and Connect, recovers an integral solution from
any LP-optimal solution to Traveling VPP and the solution cost is within 2F times the
optimal value. This implies that the integrality gap between ILP-optimal and LP-optimal
for Traveling VPP is at most 2£°. In the following, we show that 2F is also the integrality

gap for Travcling VPP by giving an example that achieves this ratio.
Theorem 2. The integrality gap of the Traveling VPP is 2F.

Proof. We show the integrality gap of Traveling VPP is at least 2F by giving a Traveling
VPP instance where the 2F ratio is achieved.

In the Traveling VPP instance in Fig. 2.2, there are n surface patches. There are n
clusters of viewpoints, denoted bv Cy.....C, respectively. each of which corresponds to
one surface patch. Each cluster has exactly F viewpoints, each of which covers only the

corresponding surface patch of that cluster. We label a viewpoint by the cluster it helongs
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to and its index within that cluster, for example viewpoint i¢, ;. There are two tyvpes of
ccdges. ¢! and ¢?. in the graph, superscript 1 ov 2 d - the edg . el edoes have the
edges. ¢ and e”.in the graph, superscript 1 or 2 denote the edge tvpe. e’ edoes have the
25 - P ; .
common edge cost ¢ << 1 and e? edges have the common cost 1. The ¢! edges in each cluster
. ‘) 3 v
form a complete graph; and the e edges forin a complete graph between the clusters. We
also use an ¢! edge to connect the robot start position s to a single viewpoint of a single
cluster. We further assume the view cost is uegligible compared with traveling cost, i.e.,

Uy, << ll‘/,.

Cy N
'iji‘- .

Figure 2.2: A Traveling VPP instance. There are n - £ viewpoints, grouped into n clusters

(circled by dashed curves). Each cluster contains exactly F viewpoints. For example,
cluster C; contains viewpoints ic, 1,. ..., . There are n surface patches (not drawn). All
viewpoints in a cluster, ¢ € Cj;, only cover one surface patch indexed the same as the cluster,
j € S. Two types of edges, labeled by e! and e?, connect the viewpoints. Inside each cluster,
e! edges form a complete graph. Between clusters, ¢ edges form another complete graph
among the representative viewpoints of the clusters. one representative per cluster.

It is not difficult to see that the ILP-optimal solution is to choose a single viewpoint
from cach cluster and construct a tree (which is also a path connecting these viewpoints)
using (1~ 1) €% edges, and the corresponding ILP-optimal value is approximatelv (1 —1)-1
(neglecting view cost and e' edge costs). The LP-optimal solution, however, is to assign %
to each viewpoint and ;1_1

the ohjective function, we can simply ignore all the e! edges in the solution.) This solution

2 1. .
: JL to each e? edge. (Since ¢! edges do not contribute much to
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is feasible since for anv viewpoint, the cuts that separate it from other clusters have at
2 . .
least n — 1 ¢ edges, and the sum of such edge assignment is at least (n — 1) - - 1_1 . IL
7. the viewpoint assignment. The corresponding LP-optimal value is thus approximately
23

t n

1!
! Y . :
77 (There are all together number of e* cdges.) So the ratio
2 - 2

between ILP and LP-optimal values approaches 2F assuming » is large. and the integrality
gap for the general problem is at least 2F.
In conclusion. since both the upper and lower bounds are 2F, the integrality gap of

Traveling VPP is 2F.

The integrality gap result for Traveling VPP, Theorem 2, implies that the 2F approxi-

mation algorithm Round and Connect is the best possible for the LP relaxation given above.

2.5 Solving the relaxed LP

With the algorithin Round and Connect, we can recover an intearal solition from a relaxed
LP-optimal solution. with the approximation ratio of 2F for a general Traveling VPP, How-
ever. the corresponding relaxed LP formulation may have exponential innmber of connection
constraints. (constraint (2.5)}). In the following, we first consider a special but important
case. the Traveling VPP on a Tree, 1.c., the graph G connecting the viewpoints is a tree,
and give a polynomially-sized LP relaxation formulation. It is motivated by tree structures
commonly used in motion planning techniques to explore and represent the connectivity
of the configuration space [BATM95, LI99]. For the general graph case, we suggest two
wavs: to use an alternative LP relaxation formulation with polynomial size based on multi-
commodity Hows; or to adopt the column generation approach to practically solve the LP.
We cover the former approach in this section and refer to Appendix B for the column

generation approach.

2.5.1 Traveling VPP on a Tree

Liaveling VPP on a Tree is defined formally as: given a set of viewpoints. a set of surface
patehes. a tree connecting the viewpoints with. edge costs. the unit view cost and the unit travel
cost. plan a subset of the viewpoints and a subtree that connects them. with the minimum

total cost as the summation of the view cost (unit view cost times the number of planned
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cicwpoints) and the travel cost (unit travel cost times the total edge cost of the planned
subtree ). such that every surface patch is covered by at least one plonned viewpoint.

First, we claim that the approximation ratio of algorithm Round and Connect hinproves
to F for Traveling VPP on a Tree. This is because there is no integrality gap for “Steiner
tree on a tree”, since both the ILP-optimal and LP-optimal solutions of “Steiner frec on
a tree” correspond to taking the wunion of the unique paths on the tree that counect the
planned viewpoints to the start position.

However, we emphasize that Traveling VPP on a Tree is not a simple problem. First,
note that the counterexample given in the introduction is also a Travelting VPP on a Tree in-
stance. Sceond, we show, via a counterexample, that a greedy algorithim based on amortized
costs can perform quite poorly (linear approximation ratio). The algorith is to iteratively
pick a viewpoint with the least amortized cost, i.e., the sum of the view cost and the shortest
path cost to connect to the existing tree, divided by the number of uncovered patch(es) it
covers, and iteratively erow the existing tree using this shortest path. Although greedy algo-
rithis based on amortized cost have heen shown to achieve the logarithuic approximation
ratio (the best approximation ratio) for the SCP [Vaz01]. it is not so for Traveling VPP on a
Tree. Consider the example in Fig. 2.3, We have to choose either viewpoint iy (which covers
all the surface patches, but connected to the start via a long edge) ov all the remaining
viewpoints (connected via much shorter edges). It is not difficult to see that the optimal
solution is to choose ig, ..., 1, and edges €. €4, ..., e;, and the cost is roughly 1, the edge

cost of ey, The algorithm, however, will choose i} since the amortized cost of 15, ~ i:—_} - 1,

]-ff € =1+ ¢. The algorithmic solution cost is thus

(n = 1), avrbitrarily worse than the optimal value (1). Intuitively, this is because the large

is less than that of any other viewpoint,

cost edge is “underestimated” by the large number of surface patches in the amortized cost.

LP formulation for Traveling VPP on a Tree

The Traveling VPP on a Tree admits a polynomial-sized relaxed LP formulation. Since
Linear Program is in P [Kha80], we have a polynomial time approximation algorithm (with
view frequency as the approximation ratio} for Traveling VPP on a Tree by solving first its
LP and using Round and Connect to recover an integral solution. In the following, we show
the polvnomial-sized formulation. Intuitively, for a viewpoint to he connected, only the cuts
corresponding to the edges on its unique path (to the start s) are needed in the connection
constraints, (constraint (2.5)), thus reducing dramatically the LP size.

Let p; denote the unique path connecting viewpoint ¢ to s. For an edge ¢ =< i).15 >.
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Ex/

.
6,‘/ (N,‘H
. .. e »
2 13 iy

Figure 2.3: An instance of the Traveling VPP on a Tree. There are n viewpoints, labeled by
11,72, - . 1,, and n — 1 number of surface patches (not drawn). Viewpoint iy covers all the
surface patch. Each of viewpoints is, ..., 4, covers ouly onc surface patch, but all together
they cover all the patches. Viewpoint 7| is connected to s via a long edge e with the cost of
7 — 1. The remaining viewpoints are first connccted to a common node (these connections
have negligible costs) aud then to s via a short edge ey with the cost of 1 + ¢, where € is a
small positive number. We also assume the traveling cost dominates, and the view cost is

Ci

A4

(3]

negligible.

with 7y closer to the root of the tree. s. thau 75. we use 1, to denote the subtree of the
original tree rooted at i,. i.e.. the subset of tree vertices that are connected to s via e, Note
that ¢ is the only edge that crosses the subset T, te., 8(T,) = {e}. The LP for Tiavcling

VPP on a Tree is then given as:

min Wy E y; + E [

i€V Ok
Subject to: V5 € S. Z y, =1 (2.6)
iEV(5)
VieVVec E:ec€p,. 2>y (2.7)

Yi,ze > 0ieVec FE

Since the covering constraints for the above formulation and for Traveling VPP are the
same, we only need to show the equivalence of the connection constraints, (2.5) and (2.7).
We show this equivalence by reductions in hoth directions. First, for i € ¥V and ¢ ¢ p;,
since T, is a cut that separates viewpoint ¢ from the start position s and e is the only edge
crossing T, . according to (2.5). we have >, 5 2 = 2z = y;, (2.7). Second. for any cut T

that separates i and s, there must be at least an edge ¢ € p; that crosses T, ie., e € §(T).



CHAPTER 2. TRAVELING VPP 34

(Otherwise / and s will not be separated by 1) So 2, >y, = > .. S(T) Tl 2 R 2 Y hence
(2.5) and (2.7) arve equivalent for the tree case.
F

Note that in the above formulation, the number of constraints is O(|S] V).
2.5.2 Alternative polynomial-sized LP relaxation formulation for Travel-
ing VPP

Note that for our Traveling VPP formulation (2.1), it is the large number of connection
constraints using cuts that prevents us from working with its relaxed LP and solving for the
optimal solution. In the following. we show how to use How formulation (rather than the
cut) for this tvpe of constraints. Thus the resulting LP formulation for Traveling VPP will
have a polvnomial size.

We {irst double the cdges in o undivected graph G in the Traveling VPP formulation
and build a digraph to direct the flows in the graph. With slizht abuse of notation, we denote
the resulting digraph by G = (V. E). We denote the start and end viewpoints of an arc «
by start(e) and end(e) respectivelv. For each vertex. or viewpoint, ¢, let Z(7) denote the set
of ares haviug 7 as their endpoint and let. O(7) denote the set of ares having / as their start-
point. We then define the commodity How for each viewpoint and arc pair, fi..i c Ve ¢ E
to reinforce the connection between s and @ if 7 is chosen. i.e.. we require Y -\ fie = ui.
The idea is to define each viewpoint 7 as the source of the commodity i and s as the teriminal
for all the commodities. We require the y; amount of commodity ¢ to flow from source 7 to
s. Then each arc assignment has to guarantee the flow capacity, ie., z. > f,..Vi€ V. In
addition, we require flow conservation for each flow and for each vertex on the graph that
is not the terminal of that flow, i.e.. > ;. fie = >, o) fie. Vi # i € V. So the overall

relaxed LP is given as:
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o

Traveling VPP (ILP using flows): (2.8)
min . Z Yi Z Co 2y
eV eeE
Subject to: Vj & S . Z v 1 (2.9)
i€V(j)
VieV > fieZu (2.10)
ecO(i)

Viey Z fie = i (2.11)
ecI(s)

Vi Vil £ 1,0 £ s i £ s S fe= > f (2.12)
c=L()

ee Q)

lec EVieV, Ze 2 fi (2.13)
Ui ,/:/.r BT -0

In the following. we show the equivalence of the above How-based formulation (2.8) to
the oue we give before (2.1) by showing the feasible solution to one formulation correspouds

to o feasible solution to the other.

Lemma 4. The flow bascd relaved LP formulation for Traveling VPP (2.8) is equivalent to

the graph cut based formulation (2.1).

Proof. We first show that any feasible solution y;, z., fi. to {2.8), corresponds to a feasible
solution y;, z, to (2.1). Since the covering constraints are the same for hoth formulations, we
only need to show the connection constraints. For any cut that separates viewpoint 7 from
s, via the flow conservation law, we know the total amount of commodity flow 7 crossing the
cut (from i to s) is at least the amount emanating from 7, which in turn is lower hounded
by the viewpoint assignment, {2.10). Since the arc assignment is lower bounded by the flow
going through it, (2.13), we have the total number of edges crossing T is at least y,.

Second, for any optimal LP solution y;, z. to (2.1), we can pick for each y; > 0 the
unique path from i to s in the solution®. and assign the flow for commodity i and arcs
(directing towards s) on the path to be y;. It is clear that this construction gives a feasible
flow solution to (2.8).

‘Note that the optimal LP solution must be a tree. i.e.. the positively assigned edges form a tree connection

rooted at s, since otherwise we simply delete. and thus reduce the overall cost. some edges while mnintaining
connectivity. [t lollows there exists a unique path from any tree node to the root.
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Note that the size of the formulation (2.8) has |V| - |E| number of variables and |S1+

O(|V||E]) constraints.

2.6 Poly-log approximation algorithm via reduction to GST

By the reduction mentioned in Section 2.2, we can construct from an arbitrary Traveling
VPP instance a GST instance with O(|V|[S]) vertices, O(]V||S]) edges. and [S] groups. We
then apply the randonmized rounding algorithm in [GKRO00] to achieve a
O(log |V|loglog | V] log |S|log F'), a poly-log. approximation ratio.

In conclusion, using botl the LP based algorvithms, deterministic (Round and Connect al-
vorithim) and randomized (the rounding algorithm in [GKRO00]) rounding algorithms respec-
tively, we have the approximation ratio of either O(F) or O(log |V|log log |Vlog |S|log F).

whichever is smaller. This approximation vesult parallels that for SCP.

2.7 Applications of Traveling VPP Algorithm to Related Prob-

lems

In this section, we apply the algorithm Round and Counnect to several related problems
and extend the best known approximation ratios for these problem from poly-log to the

minimum of poly-log and the order of frequency.

2.7.1 GST

Note that a GST instance is a Traveling VPP instance with 0-view cost. So the frequency
hound is just the larecst cardinality of the groups and applying algorithm Round and Con-
nect gives us a frequency approximation ratio. Thus by applying the aleorithm Round and
Connect above and LP randomized rounding in [GKRO00], the optimal solution to GST is

approximated within the ratio of min(O(F"), O(log |V]loglog |V |log k log N)).

2.7.2 Traveling Purchaser Problem (TPP)

The (unlimited capacitated) Traveling Purchaser problem (TPP) [Ram81| is defined as
follows. We have a set of warehouses, W, connected by a graph G — (W, E) with edge

costs. and a set of products P. Each warehouse w © W has a subset of the products with
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unlimited supplies, denoted by P(w), and the corresponding product prices, denoted by
Ay © Wop € Pluw). TPP asks for certain warehouses for each product and the tour
connection between the planned warehouses with the mininunn total cost, the sum of the
product purchase cost and the tour cost. Ravi and Saliman give a polv-log approximation
ratio for TPP [RS99].

The Traveling VPP is a special case of TPP where the prices are uniform for all the
product and warehouse pairs. We now show how to reduce an arbitrary TPP instance to
an instance of a weighted version of Traveling VPP. By “weighted™, we mean the view costs
associated with the viewpoints arc not uniform. Since this weighted version has exactly the
sanie constraints as Traveling VPP, the algorithm Round and Connect only rounds to 1 the
viewpoints with assignments lower bounded by IL By exactly the same arguments as in
Section 2.4, it is clear that the algorithim Round and Connect still has the frequency hound
approximation ratio for the weighted version. The reduction fromy TPP to Traveling VPP
is done by “duplicating” a warchouse according to the nmunber of different product prices it
offers and connecting them via O-cost edges.

Formally. we define the price set of a warehouse to the sct of different prices it offers for
different procucts, e D{w) = {dyp.w € W,p € Plur)}. We order the set D(w) according
to the price entities, and denote the i’ smallest price as d(m),. We then add warehouses
wis =2, .., D(w)] to the warehouse set W, (We replace the viewpoint w by w; with a
different product set described as follows.) and add edge < wy,w; > with 0 edge cost. The
warehouse w; will cover only the product in its product set that has the price of d(w);. l.e..
Plw,) = {p € P(w) : d(w,p) = d(w);}. By this construction, each warehouse has a unique
price for all the products in its product set. This corresponds to an instance of the weighted
Traveling VPP. Note that the frequency bounds for both instances are the same, since we
have not increased the number of warehouses that offer a single product.

Thus, by solving the resulting weighted Traveling VPP iustance, we can get the O(£)
approximation ratio for TPP, where F' is defined as the maximum number of warehouses

that sell a single product.
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2.8 Issues Towards Implementation on a real robot-sensor

system

In this section, we discuss several issues and coustraints towards hmplementing our algorithm
on a real robotic system.

Our Traveling VPP formulation assumes the viewpoint set V and the traveling graph G
connecting these viewpoints are given. For given scenes, these viewpoints can be derived
from the aspect graph of the scene [BD90], or by randomly sampling the sensor config-
uration space, the space of the sensor configurations that uniquelv determines the view-
points [GBLO1]. For 2D polvgons, in Chapter 4, we give a deterministic smnpling algorithin
that computes a polvnomial sized viewpoint set and guarantees that the optimal solution
can be approximated by the sampling viewpoints. We assuine a binary coverage relationship
mentioned. i.e.. a viewpoint can either cover a surface patch or not. In reality, a viewpoint
may cover a surface patch only partially. By subdividing surface patches, we can maintain
binary coverage relationship.

Realistic sensor field of view constraints such as the line of sight constraint {(i.c.. a
viewpoint sees a surface patch only if the line segiment that connects then is not occluded),
the range constraint (a viewpoint sces a surface patch only if the distance between them is
within a range), and the incidence constraint (i.e., a viewpoint sees a surface patch only if
the aungle between the line connecting them and the surface normal is in a range) can he
incorporated via viewpoint and surface patch visibility computations. The Traveling graph
would essentially be a roadmap built in the configuration space of the robot. This is a

standard and well-studied technique for robot motion planning [KSLO96G, Lat91].



Chapter 3

Metric Traveling VPP with
Visibility Range

In this chapter. we consider a special case of Traveling VPP where a point robot (in two-
dimensional or three-dimensional world) equipped with a range sensor of visibility rauge
I? is asked to spect a set of surface patches. We call it the Metric Traveling VPP with
Visibility Ronge or NMetric TVPP.

Metric TVPP is defined formally as: given a sct of viewpoints, a set of surface patches.
a graph connecting the viewpoints, the edges of which correspond to paths in the same space
as the vicwpoints, a sensing range that dictates that a viewpoint covers a surface patch only
of they are within the sensing ronge distonce. the wunit vicw cost, and the unit travel cost,
plan a subset of the viewpoints and a subset of the edges. with the minimum total cost as
the summation of the view cost and the travel cost, such that every surface patch is covered
by at lcast one planned viewpoint.

First, we give a reduction from SCP to Metric TVPP, which implies that the latter is a
harder problem than the SCP, and any approximation algorithm for it cannot have a better
approximation ratio than the hest approximation ratio for the SCP.

Since the Metric TVPP is a rvestricted version of Traveling VPP. it is natural to ask
whether we can find an algorithm for Metric TVPP with better approximation ratio. The
answer is ves! And this better approximation algorithm follows the two-level approach by
Danner and Kavraki |[DK02|. We show this greedy algorithim has the approximation ratio in

the same order of the approximation ratio for the set covering problem. Intuitively, the key

39
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insight is that the sensor range constraint in Metric TVPP implicitly couples the traveling
and view components: in order to cover a surface patch. the robot has to travel to at least

within the sensor range of it. Thus the two-level approach is no longer decoupled.

3.1 Notation and Formulation

First, we add some additional notations for Metric Traveling VPP with Visibiity Range.
We denote the enviromment where both robot and surface patches reside by P, We
assuie P is either a two-dimensional or a three-dimensional Euclidean space populated by
obstacles, and is denoted by P? and P? respectivelv, For any two points x; and 23, we
denote the Fuclidean distance between them by ||, 22|, For robot traveling, we again use
a complete graph G = (V. F) with metrics where the edge cost ¢..c =< i}, 1, > between
two viewpoints 11,7y € V is the shortest distance the robot travels. Note that the edge cost
is lower bounded by the Euclidean distance. Le.. Yo —< i iy =1 co = ||i1.i2]]. We denote
the visibility range by D. By definitiou. the uecessary condition for a viewpoint 7 to cover
a surface patch j is that the distance hetween thew is upper bounded by D, With a slight

abuse of notation. we use

[i.jl| to denote this distance. Rigorously, for a surface patch
that occupies a region R(j) (of co-dimension 1) in P. the distance |z, j|| is the upper bound
on the distances between any point bhelonging to surface patch j and the viewpoint i. ie..
5,31l = sup,ergy il L. We use w,,, the unit view cost or cost per viewpoint, and wy, the
unit traveling cost or cost per unit traveling distance, to allow users to specify the relative
weights between sensing and traveling.

With the above notations and settings, the Metric Traveling VPP with Visibility Range
is formulated as to plan a subset of the viewpoints. denoted by V', and a traveling path
connecting them on G, denoted by E'. such that the total cost, wy|V'| + wp > o co. is

minimum. (|.4] denotes the cardinality of set A.)

3.2 Inapproximability of Metric TVPP

In this section, we give an L-reduction from SCP to the Metric TVPP. (Please sec Ap-
pendix A for a quick recap of the L-reduction method to prove inapproximability result.)

YThis distance definition is different from what is usuallv nsed in the literature. the infimun. i.e.. |} j|
inf, ey |z fl. The supremummn definition is used here to uiocel the visibility range.
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Given an arbitrary SCP instance, we construct a two-dimensional Metric TVPP instance
where the unit view cost is 1 and the traveling cost is negligible. ie.. w, < w, = 1. In
the constructed Metric TVPP instance, the nunber of viewpoints and surface patches are
vespectively the same as the number of subsets and elements in the SCP instance. Any
solution to the constructed Metric TVPP instance corresponds to a solution to the SCP
instance with the same cost. This L-reduction extends the inapproximability result for SCP

to NMetric TVPP.
Theorem 3. Metric TVPP is O(log m) inapproximoble.

Proof. In the following, we use Turing Machine model for the reduction construction.

Given an arbitrary SCP instance, we denote the universe of elements by & = {s,.j =
1., m}. and a collection of its subsets by V = {v; 1 v, © 8,7 =1..... n}. We construct
a two-dimensional Metric TVPP instance as in Fig. 3.1. We first draw threc horizontal
line scements of length L, and at heights 0. H'. and H respectivelv. We are going to put
viewpoints on the bottom line segment. the obstacles on the middle segment, and the surface
patehes on top segments. The value of H is given while H' is to be given below. The left
endpoints of the three line segments all start on a single vertical line. We divide the top
line segment equally into three parts, and then divide equally the middle part 171, into m
pieces. These m pieces, more accurately the bottom surfaces of them, are the surface patches
of the constructed NMetric TVPP instance. The size of eaclhi patch is less than 3{‘,7. Each
surface patch corresponds to an element of the universe of the SCP instance. We denote
the surface patches using the same labels as those for the elements in the SCP instance,
S5, = 1,...,m, to imply this correspondence. We then create viewpoints, corresponding
to the subsets in the SCP instance. and put them on the bottom line segment (at height
0) with equal distances between two consecutive ones. Let r denote this distance. So we
have » ﬁ We construct obstacles of negligible thickness on the middle line (at height
H'). For convenience of description, we define the sensing cone of a viewpoint v, to bhe
ANv LT, For two neighboring viewpoints v; and v;41, we define the intersection point of
their sensing cone to be the intersection point of line seginents v; 1, and vy 1;. For example,
in Fig. 3.1(a), the intersection point of sensing cones of vy and vy is X,

For the middle line of ohstacles. we cut some openings, such that each viewpoint covers
only the surface patches corresponding to those elements in its corresponding subset. It is

obvious that we only need to do this for the part of the middle line inside the the sensing
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cone of the viewpoint. For example. in Fig. 3.1(b), for viewpoint v; corresponding to subset
{s1.59. 8 }. we cut three openings such that only the three surface patches corresponding
to 51, So. and s, are visible from v, As shown in Fig. 3.1(a). as long as the middle line
(at height H') is below the intersection points of the sensing cones, for example X and
Xo in the figure, for any viewpoint «, the obstacles in any other viewpoints’ sensing cones
canmot occlucle the sensing surface patches that v covers. By simple planar geometry, the

intersection points of the neighboring sensing cones are of the same height
3

H .

; i
The resulting Metric TVPP instance is to plan the minimum number of viewpoints and a

. whicl

simplifies to ,—I-%H using r ][ ;- So we require H' < 7|:?
connecting tour that cover all the surface patches. Since the traveling cost is negligible, the
cost to minimize is just the number of viewpoints planned. The solution to the Metric TVPP
instance implies a solution to the SCP instance, ie.. to choose the subsets corresponding
to those viewpoints chosen. The two solutions have the same cost. Thus. the L-reduction
from SCP to Metric TVPP is constructed.

The above reduction implies that Metric TVPP is at least as hard as the SCP. and
any approximation algorithm for the NMetric TVPP caunot have a better approximation
ratio than the best approximation ratio for the SCP. Thus the inapproximability result for

SCP [Fei98| implies this lemma. |

3.3 Two-level Algorithm for Metric TVPP

In this section, we give the the pseudo code of a two-level algorithm for Metric TVPP,
Algorithm 1. Two-level Algorithm for NMetric TVPP

Step 1. Solve the SCP greedily:
Iteratively choose the viewpoint that covers the most uncovered surface patches
until all surface patches are covered.
Output the chosen viewpoint set V'
Step 2. Solve the Metric TSP to conneet V'
Coustruct the shortest path graph G on V' ie.. the complete graph on V' where
the edge cost is the corresponding shortest path length on G

Use Christofides’ algorithm [Chr76. to construct the tour on G' to connect V' 2.

2Clirstofides algovithm first constvucts the minimum spavning liee T on G': second. il compules the
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This algorithm solves the problem in two steps. In the frst step, it solves the VPP or
SCP part of Metric TVPP greedily. In the second step, it solves the Metric TSP to connect

these picked viewpoints using the Christolides” algorithm [Clhr76].

3.4 Algorithm Analysis

Tu analvze the approximation ratio of the two-level algorithm, Algorithm 1, we present an
alternative algorithm. Algoritlhun 2, whose performance is no bhetter than Alcorithm 1. We
emphasize that Algorithm 2 is ouly for analvsis purpose and does not need to be hmple-
mented. We then give the approximation ratio of this alternative aleorithni. This ratio
thus also serves as the approximation ratio for Metric TVPP. In the following, we give the

algorithm after a few definitions, and then analvze its performance.

3.4.1 Alternative algorithm

For any surface patch j. anyv two covering viewpoints must lic within 2D distance of each
other. Vi ip € V(j).e = (i1.in). ¢ < 2D. This is because there exists a free path between
iy and 79 having distance less than 2D, as shown in Fig. 3.2. This path follows first the free
visibility line from i) to surface 7. and then the visibility line from j to ip. For viewpoint 1,
we deline the free region within its 2D distance, Le., the set of points i can reach using the
shortest path of length less than 2D, the domain of i. We call two viewpoints dependent if
onc lies in the other’s domain, and independent otherwise.

In the following, we give the pseudo code of the alternative algorithm.
Algorithm 2. Alternative Algorithm for Metric TVPP

Step 1. Solve the SCP greedily to get V.
(This step is exactly the same as Step 1 of Algorithm 1.)
Step 2. Choose independent viewpoints:
Tteratively choose o viewpoint from V' that is independent from already chosen
ones until all the surface patches are covered.
Quiput the chosen viewpoint set V.

Step 3. Solve the Metric TSP to connect V":

minimuni cost perfect matching between vertices of T with odd degrees: third, it adds edges corresponding to
this matching to T Lo moke it Fulerian: last. it compules a towr on llie resulting Eulerian graph [Chr76].
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Construct the shortest path graph G on V",
Use Christofides”™ algorithm [Chir76] to construct the tour on G" to comnect V.
Step 4. Connect the viewpoints in V' \ V" to its nearest neighbor in V" using the

shortest path on G.

Note that Algorithm 2 chooses exactly the same viewpoints. V', as Algorithm 1. How-
ever, it constructs the touwr differently: it frst constructs the tour to connect onlv the
viewpoiuts in V”, called centers; and for V' \ V", it constructs “detours™ to their necarest

centers. So clearly, the solution cost by Algorithim 2 is no better than that by Algorithm 1.

3.4.2 Analysis

In this section, after giving some notations. we first show that the optimal solution to Metric
TVPP has to pass through as least a viewpoint in every domain of the centers, Lemma 5.
This observation helps lower bound the optimal solution cost. Lemma 6. and upper bound
the algorithmic solution cost. Lemma 7. Combining both hounds gives us the algorithmic
approxiniation ratio.

Let OPTry pp denote the optimal solution cost to Metric TVPP. We denote the algo-
ritlimic solution cost (Algorithm 2) by cost .y, the view cost and traveling parts of which
are denoted by costfj{fq”’ and co.stfi’,(y"" respectively, We use OPTs¢ep to denote the optimal
SCP solution cost to cover all the surface patches, i.c.,

OPT_QCP = min |U|
Ucy:! ',\L,S(z')ZS

We call the tour that connects at least one point from every domain of the centers a domain

tour. We use OPTponrton, to denote the shortest length of such tours.

Lemma 5. The tour in the optimal solution to Metric TVPP has to visit the domains of

all centers. and is hence a feasible domain tour.

Proof. For any center i © V. we arbitrarily pick one surface patch j from its surface patch
set, ie., j € S(iy). As shown in Fig. 3.2, any viewpoint in of surface patch j's viewpoint
set, f.e., Viy € V(j). has to lie in the domain of 7;. Since the optimal solution to Metric
TVPP is a feasible solution, at least one viewpoint from V(j) is chosen and visited by the

constructed tour. O
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Lenuna 5 leads to the following upper bound result for the cost of the optimal solution

to Metric TVPP.

Lemma 6. The cost of the optimal solution to Metric TVPP is at least the sum of the
mintmum view cost (ignoring traveling) and the optimal tour cost to visit cvery domain of
the renters. i.e..

OPTpvpp > w.OPTscp + wp,OPTpomonr (3.1)

Proof. The viewpoint set chosen by the optimal solution to Metric TVPP is a leasible
solution to the corresponding SCP. Lemma 5 shows that the tour chosen is a domain tour.

Hence their costs are lower bounded by OPTscp and OPTpoasion, - respectively. ]
Also we give the upper bound result for the cost of the algorithmic solution.

Lemma 7. The algorithmic solution cost. cost .y, . is at most w,OPTg (146D YO log m)

L5w,OPL Do o wheve s the number of surface patches.

Proof. We use the greedy SCP aleorithm to get V. According to its approximation ratio

[Vaz01], we have:

V' < OPTscp - Olog m) (3.2)

This implics that:
costi’ = w. - [V < w, - OPTscp - O(log m) (3.3)

We use Cliristofides’ algorithm [Chr76] to get a towr of all the centers in V. This tour
is at most 1.5 times the cost of the optimal Metric TSP solution to connect the centers.
Since we do not know the value of the latter, we will instead use the cost of another feasible
Metric TSP solution to connect the centers. This solution is to first travel on the optimal
domain tour and then detour to the centers (and back) if needed. as shown by the dotted
path in Fig. 3.3. By the definition of the domain tour, for any center. there must exist a
point on the tour within its 20D distance. This implies that the tour constructed in Step 3
of Algorithm 2 has length at most 1.5(OPTpoastow |V 4D). The 4D factor corresponds

to traveling from such a point on the domain tour to the center and then traveling back.
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Further detouring (if necded) from a center to any of its dependent viewpoints in Y\ V",
Step <4 of Algorithm 2, incurs again a traveling distance of at most 4D. So the overall

traveling cost of the algorithmic solution is upper hounded as follow:

cost'ivet <y, 1L.5(OPTpo o + 4DIV"|)
+w, - 4D(V = V"))
145lL‘],(OPT[)OA\IIm/r ' ’lD[VID (54)

The factor 1.5 above is due to the approximation ratio of the Christofides™ algorithm
[Chr76).
In conclusion, using both Eqs. (3.2). (3.3). and (3.4). the total cost of the aleorithmic

solution is upper bounded as follows:

traced NI

cost g ('osﬁl\,g + costyy,
w, .
w OPTscp - (1-+6D-Y0(log m)
w,.

+1-5([’/)(-)[)1"00;\/[011/' (;r))

With the upper and lower bounds of the optimal and algorithmic solution costs to Metric

TVPP, we are ready to prove the approximation ratio result for Algorithm 2.

Theorem 4. The approrimation ratio of Algorithm 1 is max{1.5,(1 + 6D=2)O(log m)}.

(o

Proof. As mentioned before, the Metric TVPP solution by Algorithm 2 has no better
cost than that by Algorithm 1. Combining the lower hound for the optimal solution
cost OPTrvpp, Lemma 6, and the upper bound for the algorithmic solution cost cost yq,
Lemma 7. it is easy to show that the approximation ratio of Algorithm 2 is max{1.5, (1 +

6D 7)O(logm)}. (
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Figure 3.1: Reduction from an arbitrarv SCP instance to a VPP instance. See the text for

the explanation.
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Figure 3.2: Domain and dependence. Viewpoints 7; and o are dependent and have a free
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Figure 3.3: A feasible Metric TVPP solution that takes the optimal domain tour and detours
first to the centers, and then to rest of the planned viewpoints.



Chapter 4

Generalized Watchman Route
Problem

4.1 Introduction

A kev distinction between the Traveling VPP and the WEC-GWRDP is that while thie for-
mer has a discrete viewpoint set given in advance, for the latter. we have to deal with a
continuum of viewpoints, the entive polygon. This motivates us to compute a finite nwn-
ber of viewpoints inside the polygon to reduce the WEC-GWRP to Traveling VPP. We
propose a novel sampling algorithm that computes a finite number of discrete viewpoints
in the polygon (O(n'?), where n is the number of polygon vertices). We emphasize here
that the number of computed viewpoints does not depend on any geometric parameter of
the polygon as opposed to [Pap85] and [AMS05]. We show that if we restrict the problem
to choose planned viewpoints only from these sample viewpoints, the cost of the optimal
solution to the corresponding Traveling VPP instance is at most a constant times the cost of
the true optimal WEC-GWRP solution. We then construct a Traveling VPP instance using
the sample viewpoints and call the approximation algorithm in Chapter 2 for a solution.
This implies that the cost of the resulting solution is at most the cost of the optimal solution
to WEC-GWRP times the smaller of the order of the view frequency and a polvnomial of
log 1.

The sampling algorithm works in two steps: first it reduces the viewpoint space from

the polygon (2D) to a bounded number of line scgments (1D), and then from these line
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scaments (1D) to a bounded number of points. In the first step, we decotpose the polveon
into vistbelity cells, computed via a partition such that the same polvgon edges are cutirely
visible from all points in each cell. A cell is eithier an open 2D region, an open line segment, or
a point (an end-point of the line segment). We call the closures of the line segments including
the ccll boundaries the cisibility seqgments, and show that the optimal WEC-GWRDP solution
has a corvesponding solution with the sanie cost, in which the planned viewpoints (other
than the start position S) are restricted on the visibility segiments.

Note that if travel cost is ignored. it suffices to sample one viewpoint arbitrarily on
each visibility secment. However, due to the tracdeoff between view and travel cost, we do
not know which viewpoint on cach visibility segment the optimal WEC-GWRP solution
may choose. This motivates us to utilize the metric structure in the problem to guide our
sampling from 1D to points. We define a local region of each visibility segiment, called
domain, and compute a bounded munnber of viewpoints inside the domain such that the
optimal WEC-GWRP solution can be approximated (within a coustant ratio) locallyv using
these sample viewpoints, Please see Fig. 4.3 for a preview of the domain. a diamond shape
consisting of two isosceles triangles of side angle o Intuitivelv. when o is small. the part
of any path inside it can he approximated well horizontally. since the domain is a narrow
horizontal region. Similarlv. when ov is large. the part can be approximated well vertically. So
by choosing an appropriate ¢, the part can be approximated in any direction. We also show
that the optimal WEC-GWRP solution as a whole can be approximated within a constant
ratio once all the local approximations are chained together. [t turns out that there is an
optimal « for which this constant approximation ratio is minimun. For sampling inside
each domain, intuitively, we would like to impose an “ordering” on the visibility segments,
which lets us exploit the weak “metric” between them. This is achieved by dividing domnains
into strips using the visibility cell vertices such that the visibility segment ordering remains

the same within a strip.

4.2 Problem definition

We now formally state the WEC-GWRP. Let P denote the given polyvgon (with or without
holes), a closed set. Let 9P denote its boundary, including the boundary of the lholes. Let
A= {A1 Ay .. A} and £ = {e,e2.....¢,} denote the set of polvgon vertices and the

sct of polyvgon edecs, respectively. Let A, denote the set of reflex vertices of P (internal



CHAPTER 4. GENERALIZED WATCHMAN ROUTE PROBLEM 51

angle = 180 degrees). We use X X5 to denote the closed line scoment between two points
A1 and Xy, Under the line-of-sight assumption, the wvisibility relation between two points
Xy and X, ie., “X is visible from X7 or X is visible from X7, denoted hv X[ o X5, is
defined as:

XioXoe X\ X CP.
This definition permits the line segiment between two visible points be incident ou polveon
vertices and/or edges. If X is a viewpoint, we sav “X| covers X3, We also sav viewpoint

X covers a polvgon edge e, denoted by X o e, if all points of e are visible from X. i.c.,
NoceaVX' ce: Xo X

Let S & P denote the start position of the watchman. Let V' denote a subset of viewpoints,
Le. V= {X : X € P} aud route(V') denote a route connecting the viewpoints in V' and
S. Let w, and w,, denote the weights for the view and travel costs, respectively. Let 5]
denote the cardinality of a discrete set B.and let ||| denote the length of route o.

The WEC-GWRP is defined as follows:

nin w V' + u'pli:‘oufe(V/)H (4.1)

Subject to Yee £.dX eV Xoe

4.3 Sampling Algorithm

The sampling algorithm consists of two steps. It first constructs the visibility cell decomposi-
tion and restricts the planned viewpoints to be on the visibility segments. It then samples in
the vicinity of each visibility segiment. We define a local (w.r.t. a visibility seguent) region
called domain to quantify this vicinity concept. The shape of the domains is so designed
that the hehavior (both view and travel) of any watclhiman route is locally approximated

within a constant ratio. In the following, we give details of each step.

4.3.1 Visibility cell decomposition

First, we give some definitions and observations to clarify the visibility cell decomposition.
Our decomposition is a “finer” version than that given in [ZG05]. i.e., cach cell defined here

is completely contained in a single cell defined in [ZG05]. This implies that the properties
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of the cells defiued in [ZGO5] are prescrved here. Shmilar terminologies (not by exactly the
same names) and results can also be found in [BLM92, GNIR97].

Let VP(X) denote the visibility polygon of a point X ¢ P, ie., the set of points in
P that is visible from X. VP(X) is a star-shaped simple polygon, whose edges are either
those contained in P or are constructed edges incident on reflex vertices. We call these
constructed edges the windows of point X. We further extend each window in the direction
from X to the incident reflex vertex until it hits the polygon boundary for the last time,
and call it the ezxtended window. An extended window is a single line segment that may
contain parts outside the polygon P. For example, in Fig. 4.1, the visibility polygon of
vertex A, consists of a window A5 X, and the corresponding extended window is As X5, We
use W(X) to denote the set of extended windows of point X. The extended windows of the
polvgon vertices are of particular interest here. We call them the critical extended windows.
The set of all critical extended windows is denoted by CW(P). ie., CW(P) = Uy c aW(A;).
It is easy to sce [CW(P)] < |A,||A] = O(n?).

Figure -L.1: Visibility cell decomposition of polygonal P. The shaded region is a hole.

We use critical eatended windows to partition the polygon iuto wvisibility cells, Let C
denote the set of all visibility cells. See Fig. 4.1. The visibility cells include 2D open regions

called visibility faces. e.g., ¢; in Fig. 4.1, open line segments (excluding the end-points) called
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visibility edges, e.g., ¢y in Fig. 4.1. and points called visibility vertices, e.g.. ¢z in Fig. 4.1
We take the closure (to include the end-points) of all the visibility edges and call them the
vistbility segments. The set of all visibility segments is denoted by £. Any visibility face is
bounded by its bounding visibility segments. This visibility cell decomposition is efficiently
computed by first computing the extended critical windows, computing the arrangement of
these windows and the polyvgon edges, and then excluding parts of the arrangement that
are outside the polygon. We refer to [O’RY98] for cfficient arrangement algorithms. By the
Zone Theorem [ESS93], the nwmber of visibility cells, |C], is bounded by O(n*).

Oy visibility cell decomposition preserves the property shown in [ZG05], and is stated

as Leunna 8.

Lemma 8. All points in the same visibility cell have the same polygon edges entirvely visible

from. them.

Proof. We first show that the same polvgon vertices are visible from any two points in the
same visibility cell.

Suppose for any two points X[ and Xy of anyv visibility cell ¢ € C. one polvgon vertex
A€ Ais visible from X, but not Xu. See Fig. 4.2(a). Move along the line segment X X,
from X, to X, let X’ denote the first point that A is visible from. There must be a reflex
polveon vertex A’ incident on line segment 4X’. The critical window defined by A and A4’

cuts X Xy, which implies X| and X cannot be in the same visibility cell.

A/\ 3 \ A Ay

// N S A
- \ . e \
b ) S
{a) Visibility of vertex A (h) Visibility of edge A) Ay

Figure 4.2: The same vertices and cdges are visible from all the points in a visibility cell.

Now we are ready to show the lemma. For any two points X and Xy of any visibility
cell e € C, by the above argument. the same polygon vertices are visible from all the points

on the segment X X5,
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[t
U=

Sec Fig. 4.2(h). Assume A s is visible from X|. We now show that it is also visible
from X,. Since by assumption A A5 is visible from X . the triangle AA; A5 X is contained
in P. Since all the points on the segment XX, is visible from As, the triangle A4o X X,
is contained in P. This implies the union of both triangles, the region [14; X, X, 4y is

contained in P. So any point on A4, is visible from X, ]

We now show that WEC-GWRP is equivalent to its restricted version where all the

planned viewpoints are on the visibility seginent, Lemma 9.

Lemma 9. The optimal WEC-GWRP solution has o corresponding solution with the same
cost. in which the planned viewpoints except the start position S are restricted to be on the

visthility segments.

Proof. First. we want to exclude the trivial case where to take a view at the start position
S of the watchiman route is the optimal WEC-GWRP solution. This can be easily done by
checking if all the polvgon edges are entivelv visible from the start position S.

Now for anv feasible WEC-GWRP solution. any planned viewpoint X that is not on any
visibility segment cannot belong to the same visibility face as S, Otherwise. we can include
S inand exclude X from the planned viewpoint set respectively aud reduce path cost. Thus.
the route connecting S and the planned viewpoint X must cross some bounding visibility
seoment of the visibility face that X belongs to. Note that according to our visibility
definition, any polvgon edge visible from X is visible from any point on the bounding
visibility segment, and hence the crossing point. After replacing X with this crossing point,
we have a feasible WEC-GWRP solution with the same cost and all planned viewpoints are

on the visibility segments. O

4.3.2 Sampling visibility segment domain

For a visibility segment [, as shown in Fig. 4.3, we draw a diamond shape consisting of two
isosceles triangles with [ as the common hase. The sides of each triangle form an angle of
cv <2 90 degrees with the base. We will subsequently show how to determine o in Section 4.4,
We define the domain of the visibility segment, denoted by Dom(l). as the set of all points
of polygon P inside the diamond (including the diamond boundary edges). In Fig. 4.3,
Daomn{l) is the set of points in the diamond shape excluding the shaded area.

Lemma 10 states a simple, but crucial observation:
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oSy |
jo31

polyzon houndary

Domi(l)

Figure 4.3: Domain of visibility segment [, Dom(l). Iuside Dom(l), we draw vertical line
segments from each visibility cell vertex, e.a., X, and from each intersection point between
domain boundaries and visibility segiments, ¢.g.. Xy, The intersection points hetween these
vertical line segments, other visibility segments, the polveon boundaries, and the domain
boundaries are inclucded in the viewpoint sample sct.

Lemma 10. For a visibility segment [, the slope (w.r.t. ) of any other visibility segment I’

that intersects Dom(l) is less than o, i.e.,

YI' U Dom(l) £ 9, |21 < a

Proof. Otherwise, the extended critical window collinear with ' intersects { and splits it

into two edges. This contradicts that [ is a single visibility segiment. O

Sec Fig. 4.3. Inside each visibility segment domain Dom(l), we draw vertical (per-

pendicular to /) lines from all the vertices of visibility cells and all the intersection points
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between the domain boundaries and the visibility seements. The number of such vertical
lines is bounded by the numnber of visibility cell vertices plus twice the number of visibility
segments {cach visibility segment intersects at most two domain boundary edges). The seg-
ments of these vertical lines contained in Domi(l), the other visibility segments, the polygon
boundaries, and the boundaries of Dorn{l) intersect cach other. We call these intersection
points sample viewpoints and denote the set of sample viewpoints for all domains by . The
munber of sample viewpoints in each domain is the number of vertices in the arrangements
of the line scgments described above, and is bounded by (3|£] + |£] + n + 4)* = O(n®),
according to Zone Theorem [O'R98|. The terms in the brackets are the bounds on the
nwmber of vertical line segiments in each domain. the number of other visibility segments.
the number of polygon edges, the number of donmain boundaries, respectively.) Thus, I' is
bounded:

T < [£]-O(n%) = O(n').

We coustruct the complete graph G on T where the edge cost hetween two sample
viewpoints is the shortest path distance between themm in P, This can be done by first
constructing the cisibility graph of T and then the shortest path graph on the visibility
graph. Note that all the veflex vertices are included in I'. Now we have an induced Traccling

VPP instance. with the set of viewpoints and traveling graph given as T and G respectively.

4.4 Sampling Algorithm Approximation Ratio Analysis

In this section. we show that the cost of the optimal solution to the induced Traveling VPP
is at most a constant times that of the optimal solution to WEC-GWRP.

The idea is as follows. Assuming we have the optimal solution to the WEC-GWRP, we
will find a solution to the induced Traveling VPP by first traversing the optimal route and
partitioning it into pieces, then replacing each piece with a route passing through sample
viewpoints while keeping the end-points of the piece fixed, and then moving the end-points
to sample viewpoints. The partition process guarantees that the visibility segments that
cach piece passes through are orderecd. The slope lemma, Lemma 10, then helps bound the
length of the replacing piece w.r.t. that of the original piece on the optimal route.

For the optimal WEC-GWRP solution, let V* denote the set of planned viewpoints, and
let ©* denote the shortest route connecting V*. As discussed in Section 4.1, we can assume

all planned viewpoints are on the visibility segments. We denote the subset of visibility
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segments where the planned viewpoints are located by L% ie., L*={{le L X V" X ¢
L}.

First. we give an observation of the route planned in the optimal solution, o, Lenima 11.

Lemma 11. The planned optimal route & consists of a sequence of consccutive line seq-
ments. The end-points of these segments are cither planned viewpoints. V*. or refler vertices.

A

Proof. Note that ¢* is the shortest route connecting V*. The part of &' hetween any two
consccutive planned viewpoints must be the shortest path in P connecting them, hence
consists of a sequence of consecutive line segments, whose end-points are either the reflex

vertices or these two points. Thus, ¢° as a whole has the property stated in the lenuna, O

4.4.1 Partition of ¢~

In the following, we traverse o and partition it in two steps. First, we partition it according
to some visibility segment domains. Then. iuside each domain. we further partition it using

the vertical line segments incicdent on the cell vertices.

Partition according to domains

To help define the partition, we first introduce a labeling of some (not all} edges in £
Note that all the edges in L™ are naturally ordered by the way ¢* traverses and intersects
them. We start with the first visibility segment and label it [;. Skip the following visibility
segments whose corresponding planned viewpoints (V*) belong to the currently labeled
domain, Dom(l)). We then label the next visibility segment that & passes through after it
exits Dom(ly) by {3, and continue in this fashion. We partition ¢° according to the labeled
visibility segments. Let ¢,k =1,..., K denote these parts. Thus, the start- and end-points
of ¢ are Sy and Spqy, respectively. By definition, Sy & & € Dom(ly) and Sp 4 & Dom(ly)

for £ > 1. Please see Fig. 4.4 for an example.

Partition inside a domain

See Fig. 4.5. The vertical line segments in a domain partition it into vertical strips. The
strips are bounded by three types of boundaries: the polygon boundary; the strip bound-
ary that separates two neighboring strips: and the domain boundary, the boundarv of the

diamond shape defining a domain.
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Traversal direction

Dom(l,y" - ol

Figure -h.4: Partition of the optimal WEC-GWRP route ¢ according to the visibility seg-
ments and corresponding domains 1t crosses. Note that although shown disjointed, the
labeled domains may intersect each other and planned viewpoints on ¢} may be contained
in previous labeled domains.

Note that all the visibility segments are ordered inside a strip, since otherwise a vertical
line at the intersection point where the order changes would have divided the strip into
smaller strips. We order the visibility seginents in a strip according to their intersection
point with the left strip or domain boundary. The position relation between visibility
segments, above/below. is thus well delined inside a strip.

We further partition each part of the optimal route, o], inside the domain Dom(l}.) by
its strips. For a strip st, we denote the partitioned piece by oyp(st) = o) N st. We denote
the start-point and end-point of ¢; (st) by Ly and Ry respectively, also called the entry

and exit points respectively in the following. We denote the highest and lowest visibility
| | A 2 2 ]
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A strip

f

Dom(l) ¥ b

- I another strip
T p R o

-(:t' [ | v, | S
= - -~ - - - it e B N - )
5 ’ Ch. F strip
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--. 2 L boundary
l.::I:::= ¥ 2. ————w
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& ----1

.-
8

domain boundary

Figure 4.5: The vertical line segments from visibility cell vertices partition a domain into
strips, bounded by domain boundary and/or polygon and strip boundayv.

segients that ¢f(st) crosses (if applicable) by lpgn and g, respectively.

Categories and properties of o] (st)

o (st) can be categorized into five cases, according to whether its entry point is on the
labeled visibility segment or on the strip boundary and whether its exit point is on the strip
boundary or on the domain boundary. See Fig. 4.6 for illustrations. For cases (Ia) and
(Ib), o/ (st) enters on [ (at point Sy, ie., Ly = Sk}, and exits either through the strip
boundary, Case (Ia). or through the domain boundary, Case (Ib). For cases (IIa), (IIb)
and (Ilc). o (st) enters st through a strip houndary and exits through either the other strip
houndary, Case (Ila), or the same strip boundary, Case (1Ib), or the domain boundary. Case
(11h).

We now show that ¢ (st) consists of at most three straight line segiments:
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Do (i)

L b

Dom{ly,)

N SR o

Case (IIa) Case (1Ib)
> - - Dom(ly)
o E)L_ __________ [ ’;‘.‘_ S
st

Case (Ilc)

Figure 4.6: Five cases of o) (st). Case (Ia): o (st) starts at S, and exits from the strip
boundary. Case (Ib): o) (st) starts at S5, and exits through the domain boundary. Casc
(I1a): &} (st) enters and exits through different strip boundaries. Case (IIb): ¢} (st) enters
and exits through the same strip boundary. Case (Ilc): o (st) enters through the strip
bhoundary and exits through the domain boundary.
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Lemma 12. o, (st) consists of at most thrce straight line scyments. If o] (st) consists of
three segments. the exit point must lie between the highest and lowest visibility scqments

p(st) touches {pin and g,

Proof. The proof is by contradiction. If the above mentioned condition is not satisfed.
we can replace o/ (st) by a strictly shorter route in st with the same entry and exit points.
which crosses the same visibility segments as ¢} (st). This implies that ¢ cannot he optimal.
because we can replace ¢ (st) by this shorter route and choose viewpoints on the visibility
segments that are collinear with the viewpoints taken on o] (st) and hence reduce the solution
cost.

Wlog, suppose @) (st) goes upwards first after it enters st at point L. When o] (st)
changes directions. it has to go downwards. Otherwize. as showu in Fig. 4.7(a). we can
simply replace the two upward sloping segments (solid line scgiients) by a single line segment
(dashed-dotted line seegment) and the route is shorter. Since this single line segnient passes
all the visibility seements the two segments pass. it has exactly the same set of entirely
visible polvgou edges. Similarlv. o) (st} cannot change direction when going downwards.
We can also easily show that if afterwards o (st) goes upwards again. it has to exit sf.
Otherwise, as shown in Fig. 4.7(b) and (¢), we can replace it with a shorter route.

If o, (st) consists of three segments. as shown in Fig. 4.7(d), and it exits the strip by
intersecting the highest (resp. lowest) visibility scgment, we can replace the first (resp.
last) two segments by a single segment and reduce solution cost. So the exit point must lic
between g, and /o,

Although Fig. 4.7 shows Ly is on the strip houndary. it generalizes trivially to cases

where Ly — Si. O
4.4.2 Approximating ¢,(sf) using a route connecting sample viewpoints
We show, case by case, how to approximate ¢ (st) using a route, denoted by @ (st), which
connects sample viewpoints in I' and the start- and end-points of &) (st).

Approximation for Case (la)

This is the case where a smaller o gives us a better approximation ratio. o, (st) consists of

two segments, Fig. 4.8(a). or three segments. Fig. 4.8(b). The route o) (st) consists of the
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():.':[,\‘I‘T)

Figure 4.7: @, consists of at most 3 line segments.

straight line segment between S) and Ry and one or two detours on the strip boundary
from R.

We now show that the alternative route can approximate the corresponding part of the
optimal WEC-GWRP solution within a constant ratio (for a given «).

<.

Lemma 13. For case (la). ¢ (st) con approzimate o) (st) within the ratio of 1 + .
Proof. In the following, we show for the subcases when o) (st) consists of two segments and
when it consists of three scoments. respectively. The one-segment case is true trivially.

See Fig. 4.9. op(st) consists of two segments, a aud b; & (st) consists of the segment
¢ and a detour consisting of segiments d; and da. 3 corresponds to the slope of ., and

is measured counterclockwise from d, thus bounded by o, ie.. —a < J < a < 7/2. s
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Figure 4.8: Approximate ¢, (st) for case (Ia). (a) &;(st) consists of two segments to reach
Lpight O} (st) consists of the line segment S Ry and a detour going upwards to ;g and back
to Re. (b) of{st) consists of three segments to reach hoth Uy gn and lg,: &) (st) consists of
Splte and two detours. one going upwards to Thign and back, and the other going downwards

to 1y, and back.

measurced clockwise front . So its ranee is between —a and 7/2, ic..

=i
~
o

U

o< /2.

We have the following relations:

llell < llall + flo]
dy|| = |ld|| - tan 8y = ||b]| cos P2 tan )

lda | = [1b]] sin 3,

Since —av = ) < o < w/2, cos .3 # 0, we have,

Iy + dof] = ||b]| - | cos 3, tan 3, + sin H]
Ib] o, )
S [sin(B; + Fa)]
II;; ) fall + ||b]] _ [[all + [|b

cos 3y cosF COS v

~{Y * f-z

IA
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/hig/) /”’

st

Figure 4.9: Approximate o (st) for case (Ia) when ¢ (st) consists of two segments.

So we have,

||(_‘);v_(€'1)‘. el + 2(||(/]|| - f/2.|'l
2
(lall + [BID(1 + ——)
COS O
) 2
o) (st) [{1 — ).
h COs O

For the second sub-case where ¢} (st) consists of three segments, ¢} (st) includes the
segment SpRy and detours at Ry on the strip boundary to reach (and then come back)
Inign and lig, respectively. In the following, we analyze the approximation ratio. We use an
intermediate tour, a path consisting of S H. a detour at Si to reach Lpigr and back, and a
detour at Ry, to reach [,,, and back. We first show the approximation ratio of this tour to
o (st), and then the approximation ratio of ¢ (st) to this intermediate tour.

Let M denote the intersection point between the straight line segment Sy Ry, and o] (st).
We divide ¢} (st) into two parts, the part from Sy to Al and the part from M to Ry. Note
that each part consists of two line segments. We can approximate these two parts by the
corresponding parts of the intermediate tour shown in Fig. 4.11(b1) and (h2), respectively.
It consists of a straight line segment between S, and Al and a vertical detour at .S to reach
Tiign and back, Fig. 4.11(h1), followed by a straight line segiment between A/ and K. and a
vertical detour at Ry to reach [, and back, Fig. 4.11(b2). From the above analvsis for the

. . . . 9 .
two-segiment case, we kuow the approximations are within (1 + 7 )-ratio for hoth, thus
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Tt

P RS{

Figure 4.10: The worst case of the approximation of case (Ia). Sy is arbitrarily close to ;4
Tnign is parallel to the domain houndary, L. its slope is o) and the line segment connecting

Ry has slope 5 — «, Le. it s perpendicular to ;.

[SE

fhe intennediate tour can approximate o) (st) within the same vatio. (1 4 “5—“ )

Note the only difference of the intermediate tour from of (st) is that its detour at Sy the
solid loop shown in Fig. 4.11(b1). is not at the exit point. See Fig. 4.12. We now replace
the detour at Sy, the solid loop, with a detour at Ry, to reach I, at point A and back, the
dashed-dotted loop. From Sy, we draw a line segment I parallel to 4, and it intersects
the right strip boundary at point B. The part of the dashed-dotted loop between points
A and B has the same length as the solid loop. In the triangle AS.BRg, let € denote
the angle between SpB and SR, and # denote the angle between S B and BR,. Bv
the law of sines, |[BRy| = Sn8)|S Ry - 's‘“—],?—j" < Lo|[oi(st)]|. The last inequality is

cue to the slope lemma, Lemma 10, and the fact that ||S; Ry is at most [|é;(st)|. Thus,

|0 (st)]] is at most the length of the intermediate tour, which is at most (1+ Cf;)”";(sf)”
plus the length of the part of the dashed-dotted loop between B and Ry, which is at most
lop(st)]|. Consequently, ||} (st)|| < (1-+ A=)|on(st)].

COS i

To smmnmarize, we have that ||&) (st)| is at most ||oF (st)]| times 1 + - A |
k 1, Cos

Approximation for Case (Ib)

Wlog. here we only consider the case where ¢ (st) exits from the top left domain boundary.

By Lemma 12, if ¢} (st) has threc scgments, the exit point must lie between the highest and
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Figure 4.11: Approximate o, (st) for case (la) when o (st) consists of three segnients using

an intermediate tour. The two parts of this intermediate tour are shown in (b1l) and (h2)
respectively.

the lowest visibility scgments visited by ¢ (st). Since we know that the exit point is on the
dowain boundaryv. highey than [, 0. (st) consists of at most two scements, as shown in
Fio. 4.13.

We approximate ¢ (st) using the straioht line seqment connecting Sy and cither the
left o1 the vight strip boundary vertex on the doniain boundavy where Ry is on, whichever
gives us a shorter route, and a detour, if necessarv. at that vertex to reach lj,,. on the strip
houndary. In Lemma 14, we show the approximation ratio using the left domain vertex on
strip st.

Lemma 14. For case (Ib). &) (st) can approvimate &) (st) uithin the constant ratio of

1 2
f

SN 5 cosa

Proof Note that the first suh-case where &) (st) consists of one segment, Fig. 4.13(a), is
a special case of the second sub-case where ¢ (st) consists of two segments, Fig. 4.13(b),
(when points S, C and B coincide). So in the following, we only show the approximation
ratio for the two-segment sub-case. As shown in Fig. 4.13(b), ¢} (st) consists of the two line
segments SpVy and ViR, and the detour from V., to reach /. at point D and back. In
the following, we bound them respectively.

First, we bound the total length of segments S, V,, and Vi Ry wr.t. |op{st)]]. See

Fig. 4.14(a). Let 8 denote the angle between the two line segments S, V,, and Vi Ry, and

o <0<7/2+4 o <. We have
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Figure 4.12: Approximate first part of o) {st).

|8 Rall = \/f"HS‘k Vi ll2 + IWVa Rt |2 = 2| Sk Vi || Vi Bus || cos 8. ie.. ||Si Ry is monotonically

increasing w.r.t. 6.

Note that o is the lower bound on 0. So if we fix [|Sp V] and “\;[.[l)_”,l and vary 6. the
S Sl Ve Rt
155 Fru|

in the domain Dom(l) as shown in Fig. 4.14(b). For this case. Le.. when ¢ = o, we draw

ratio is largest when € = o. This is the case where st is the leftimost strip
a perpendicular line segiient fron Si to Vi Ly and denote the angle between it and S, 12,
by 3. The value of 3 is measured clockwise from the perpendicular line segment and can

be negative. J achieves its minimum value when point 7, is arbitrarily close to Vi, and at

this time ¥ = —(7/2 — ). So, o — /2 < 3 < 7 /2. Using basic trigonometry formulae, we
have
—— s ¢ L
Si Ry NSk Vel
cos 3

SVl + Vet Rstll = (1 + cosa + sinatan 8) - || Sy Ve ||

The ratio between them is bounded as follows:

1Sk Vel + Vet Rt cos 3+ cosacos F+sinasind  cos 3+ cos(av — 3)
[E sin v sina
a .0 '2_._3 e 29
2 cos 3008 — _ €os S5
2sin 5 cos § sin 9

z 1
—_ e

sin §

The equality above is achieved when 3 = §. By triangular inequality, [[Sp Ry is at
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st

(a) (h)

Figure 4.13: Approximate o (st) for Case (Ib). (a) ) yst) consists of one segment.  (b)

@ (st) consists of two segments.

niost [o) (st} Heuee. we have:

ISVaall + IVeeRtll < -

= lor(st)]. (4.2)

3
Similarly to the proof of Lemma 13, the length of the detour at Vi, (to point D and

back) is at 1nost [0} (st)]| times C3 — .

2 1

cosa

Sumining up both bounds. ||&] (st)]| is at most ||o) (st)]| - (-Tnl'_', +

Case (1la)

Note that in the analvsis of case (Ia), we did not use the fact that Sy is on ;. So the result
for case (Ia), Lemma 13, generalizes to case (I1a). For case (ITa), we have the freedom to

detour at either the entry or the exit points of @} (st). We can arbitrarily choose one.

Case (I1b)

Sce Fig. 4.15 (a) and (b) for cases where ¢ (st) consists of two and three segments respec-
tivelv. Similar to the proof of Lemuma 13 for Case (la). ||, (st)] is at most [[o) (st)]| thmes

14 -1

COS 4
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T
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Figure 4.14: Ilustration of the hound ou the length of route S,V R

Case (IIc)

Result for case (Ib) generalizes to (Ilc).

4.4.3 Chaining together the partitions

By its coustruction, of (st)'s chained together form a continuous route. denoted by o', a
sequence of line segiuents with loops at their end-points shown in Fig. 4.16 (a). However,
the start-point and end-point of ¢} (st) mav not belong to the sample viewpoint set . We
construct a solution é from ¢ as follows. For S and end-points without detours. c.g. point
C and S, in Fig. 4.16{a), we can simply ignore it, since it is taken care of by the end-points
of its previous and next strips. For example, in Fig. 4.16, let 4 and B denote the planned
viewpoints that are inunediately before and immediately after S on @ respectively. We can
bypass S; and connect directly A and B, (the dotted line segment). For end-points with
detours, we move them to the nearest sample viewpoint inside the loops. As illustrated in
Fig. 4.16(b), the segments WX and XZ are replaced with WY and Y Z respectively. By
the triangular inequality, |WY|| + [V Z| is at most |[WX|| + | XZ]| +2||XY|. Thus [o|
adds to [[¢']] at most the length of all the detours of ¢' and is at most 2||&|.

It is clear that o is a solution to the induced Traveling VPP, ie.. all the planned view-
points are from the sample viewpoint set. Using this solution, we can bound the cost of the

optimal solution to the induced Traveling VPP w.r.t. the true optimal to the WEC-GWRP.

Theorem 5. The cost of the optimal solution to the induced Traveling VPP is at most
11.657 times that of the optimal solution to the WEC-GWERP.
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st

[/ou'
]

(a) (h)

Figure 4.15: (a) case {IIb) when o] (st) consists of two segients. (b) case (IIb) when o) {st)

consists of three segments.

Proof. By sumarizing cases (Ia). (Ib). (ITa). (TIb) and (Ilc). [|of.(st)]| is at most |10} (st)

ol . . . . .
. l L+ —=). After chaining and moving the entry and exit points. the

times max(1 + o s

length of o is at most twice that of o ((st). Since  is a feasible solution to the induced

Traveling VPP its cost is a lower bound on the optimal solution cost to the induced Traveling

VPP. Thus, the cost of the optimal solution to the induced Traveling VPP is at most

2max(1+ 2 — -+ UE(J tirnes the cost of the true optimal solution to the WEC-GWRP.
! !

Now we choose the «v value to minimize this ratio, i.e., to solve 2min, max(1+ 5. 5=+

2_). The solution is ~ 11.657, when o = 34° (via numerical minimization using Matlab).

cosa’

After constructing the induced Traveling VPP using the sample viewpoints, we call the
approximation algorithm in Chapter 2 to get a solution. The approximation ratio result of
this Traveling VPP solver and Theorein 5 iinplies that the cost of the solution is at most
the cost of the optimal WEC-GWRP solution times either the order of the view frequency

or a polynomial of log n. whichever is smaller.
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Figure 4.16: The approximation solution within a domain Dom(l; ), alter chaining together
@) (st) for the strips ¢ crosses.

4.5 Comparison with triangulation based sampling algorithm
[AMSO05]

To illustrate our sampling and compare with other relevant sampling algoritlnns such as
the triangulation-based algorithm proposed by Aleksandrov et al. [ANS05]. we give a sim-
ple example in which the latter requires substantially more sampling viewpoints than our

sampling algorithm to achieve the same approximation ratio.

4.5.1 Recapitulation of triangulation-based sampling algorithm

In the following, we briefly cover the sampling algorithm proposed by Aleksandrov [AMS05)
in the context of GWRP. Note that it has an approximation ratio of (1 +€). To achieve the
same approximation ratio as our GWRP algorithm, =~ 11.657, ¢ =~ 10.657.

First, the region, the visibility cell decomposition in our case, is triangulated. Fig. 4.17
shows a triangulated region with triangular faces AA X 4y, AA XAz, ANAsX Ay, and
NAX A Second, at each vertex. for example X in Fig. 4.17. calculate the shortest dis-
tance to the edges of its incident triangles excluding the incident edges to the vertex, and
denote it by d(X). In Fig. 4.17. d(X) is the length of XD, perpendicular to edge AzAj.
Then, in each triangulated face, for each vertex X, draw the angular bisector X X7 (divid-

. A - . . . . .
ing the angle n = Z4,X A1) and compute sampling viewpoints along the bisector in the
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following way. Let r(X) denote the region (the shaded vegion in Fig. 4.17) around vertex
X, a isusceles triangle with side length of £d(X). XX’ intersects the edge of »(X) that is
not incident on X at point . Py is the also the first sampling viewpoint on X X’. The

ith sampling viewpoint P; is the one such that | X P = <1 + sin(n/?)\ﬂ 2) | X Py|. The

distances from the sampling viewpoints to X form a geometric series and the total number

_— X0
is given by log 0 ( _l_ : . >
- A\ cos :Az-ﬂ;l-.~(/(A.\)

O 4sin 4

-,

Figure 4.17: Illustration of the sampling algorithm proposed by Aleksandrov [AMS05].

4.5.2 Comparison using simple example example

Fig. 4.18(i) shows a simple polygon with its visibility decomposition. We now compare
the number of computed viewpoints in the neighborhood of triangle A X X94, by the two
algorithms. The angle £X | A1 X5 is denoted by 5 and is roughly 1.159 = 0.02rad.

We now show the sampling viewpoints computed hv our GWRP algorithm given in this
chapter and by the sampling algorithm proposed by Alcksandrov AMS05|. Fig. 4.19(i)

shows the sampling viewpoints computed by the GWRP algorithim for visibility segment
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frg

(1)

Figure 4.18: (i) A simple polvgon (A3 As Az A, A546.A47) with its visibility cell decomposition.
(ii) The zoomed figure of triangle AX | Xo4 | formed by extensions of A3 A . As Ay and A7 Ag.

XoA;. There are 22 viewpoints in total. Fig. 1.19(ii) shows those computed by Aleksandrov
et al.’s triangulation-based algorithm [AMSO5|. Using € = 10.657, aud (X} = L’l\—/ the
number of sampling viewpoints is approximately 43. For even more ill-shaped polygons. for
example, where 1 2= 0.04°. the number of viewpoints is approximmately 1203. However, the
number of sampling viewpoints computed by the GWRP algorithm is relatively unchanged.

From the above simple example, it is clear that the independence of the number of
computed sampling viewpoints and the geometric parameters of the input polygon makes

the GWRP algorithm have guaranteed performances for even #li-shaped polygons.

4.6 Application of sampling algorithm to generalized 2.5D

terrain guarding problem

We helieve that the sampling algorithm proposed here is a general techinique and can also
be used for other shortest route problems where one would like to get an approximation
algorithm by first reducing the continuous input space to a discrete sample viewpoint set, and
then solving the resulting discrete problem. For example. the algorithm can be applied to the

following generalized version of the 2.5D terrain gnarding problem [Eid02] with additional
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(ii)

Figure 4.19: Computed sampling viewpoints by the GWRP algorithm, (i) and sampling
algorithm Aleksandrov [AMSO05], (ii).

travel cost in the objective function.

Suppose an autonomous aerial robot flying at a certain height h is asked to inspect a
2.5D terrain, i.e., to fly on a tour at this height and stop at some points to scan the terrain.
A 2.5D terrain is defined as follows. A set of discrete points on the horizontal ground plane
(of height zero) is first triangulated, and then each point is lifted by some height. The
resulting 2D manifold in 3D is called the 2.5D terrain [Eid02]. We assume /i is greater than
the height of any point of the terrain. An existing algorithm for Terrain Guarding with
Triangle Restriction, [Eid02], first partitions the plane at height /4 into cells such that all

the points in the same cell wholly see/cover the same subset of terrain triangles. and then
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chooses ouly the cell vertices as the viewpoints to reduce the problem to a SCP instauce.
The greedy algorithm for SCP approximates the problem within a ratio of the locarithm of
the nuber of terrain triangles.

We introduce the problem of Generalized Terrain Guarding with Triangle Restriction
(TR-GTG), of planning a tour at the horizontal plane of height I and a set of discrete
viewpoluts on it such that every triangle of the terrain is visible from at least one planned
viewpoint, while minimizing the total cost as a weighted sum of the view cost. proportional
to the number of planned viewpoints, and the travel cost, the length of path planued. To
solve the TR-GTG problem, we first apply the visibility cell decomposition algoritlun to the
plane at height /i and partition it into visibility cells. We then use the sampling algorithm
proposed in this paper to reduce the problem to a finite set of sanple viewpoints, and
then construct a Traveling VPP instance. The Traveling VPP solver in Chapter 2 gives us
an approximation algorithm with the approximation ratio in the order of either the view

frequency or a polvnomial of log 7. whichever is smaller.



Chapter 5

Simulation Results for GWRP

To test onr approximation algorithm for the GWRP, and more importantly, as the first step
toward implementations on rcal robot svstems. we develop a preliminary implementation of
thie algorithin for real environments such as the the Robotic Algorithins and Motion Planning
(RAMP) Tab at School of Engincering School. Simon Fraser University. The nnplenientation
takes either 2D polvgons or real robot generated 2D wmaps as input. In the latter case it
first computes a 2D polvgon approximation of the real map for a valid GWRP input. [t
then computes a GWRP solution. ie.. a set of points in the imput polvgon as the planned
viewpoints. connected via a voute. For visualization, we simulate the solution. i.e., draw
2D polygon on the screen, the planned viewpoints, and the route connecting them. Hence,
we refer to this implementation as a simulator. In the following, we give details of this

simulator inplementation and the results for some polygons.

5.1 Simulator Implementation

The simulator consists of three parts, the polygon generation, the sampling algorithin. LP

optimizer, and the algorithm Round aud Counect.

5.1.1 Polygon generation

We offer two types of polvgon inputs: a User Interface (Ul) that allow users to draw a
polvgon; and a text file listing the coordinates of the polygon vertices in either the clockwise

or the counterclockwise order. The Ul is a window on the screen that takes the sequence
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of mouse ¢licks as the polygon vertices, ie.. the coordinates of the mouse specify those of
the corresponding polygon vertex. Sce Fig. 5.1 for such a manually created polygon. The
text file input mode can be used for maps generated from the real scenes used in the rohot

mapping and navigation applications.

Figure 5.1: A polygon input created manually.

A mobile robot, an ActiviMedia PowerBot [NMob], equipped with a Hokuyo laser range

finder [Hok], is used to gather the map data. We can either manually control or run an

active simultaneous localization and mapping (SLAM) algorithmn [TBF05] to automatically
control the robot to move around the lah area. The collected laser range finder’s scanning
data are fed to a SLAM algorithm to generated a map. For the active SLAM case, the
map can also be generated ou the fly. Afterwards. we run the DP-SLAM v2.0 developed

at Duke University [EP04] on the data to get the maps. For exawmple, in Fig. 5.2, we show
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the generated map of a part of the RANMP lab lavout. School of Engineering Science, Simon
Fraser University. In the figure shown, the grev level of each pixel indieates the occupancy
status of the corresponding region in the map, with the colors white, dark. and grey denoting

unknown region, obstacle and free region vespectively.

Figure 5.2: A map generated by DP-SLAM.

We then use the algorithm proposed by Latecki and Lakaciper LLOG| on the generated
map to get its polygon representation, i.c., the polygon boundarv. The polygon computed

for the map in Fig. 5.2 is shown in Fig. 5.3.

5.1.2 Sampling Algorithm Implementation

As discussed in Chapter 4, the sampling algorithim consists of: the visibility cell decompo-
sition that partitions the polygon into visibility cells and computes the visibility segments;
and the visibility segment domain sampling that computes the sample viewpoints inside the

domains of all the visibility segments.

Visibility cell decomposition

Visibility cell decomposition corresponds to computing the line arrangement of the critical
extended windows and the polygon edges. To compute the critical extended windows, we
need to compute the reflex vertices of the input polygon. This takes linear time by traversing
the polygon counterclockwise and checking if the three consecutive polygon vertices corre-

spond to a right turn. (When traversing counterclockwise. the polygon interior is on the left
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Figure 5.3: The polygon computed from the map in Fig. 5.2,

side.) Ov equivalently. for two vectors corresponding to the two polveon edges incident on
the vertex. we check the signed magiitude of their cross product. Reflex vertices are those
with negative magnitudes. For example, in Fig. 5.4, to check if polveon vertex A; is a reflex
vertex, we compute the cross product A; A4; ‘1‘ x A; A l. of the two incident vectors, V/—\,-A,;lx

and A; A;4;. The corresponding formula is as follows.

A, 1A x A A (5 — Ticts i — Yim) X (541 — TivYie1 — i)

= (v =ri1) Wi w) = (e — i) (Yi — vie1)

To compute the critical extended windows, we create a ray starting from a reflex vertex,
say Ay, which is collinear with another polygon vertex, sav As, and in the direction . LZA;‘
The part of the ray between A, and the last point where this ray intersects the polygon is an
critical extended window. In a brute force manner, we can compute all the critical extended
windows in O(n?), where n is the number of polygon vertices, since there are O(n?) ravs
and it takes O(n) times to find the last intersection point between a ray and the polvgon.
The number of critical extended windows is O(n?).

We then use the “incremental algorithm™, Chapter 6.3 of [O'R98], to compute the ar-
rangement of the set of line segmients that include all the critical extended windows and

the polygon edges. The incremental algorithm computes the arrangements incrementally
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A/—i—l = (.l'-,'{ 1. H)

‘ Polygon interior

.’-1,'41 (.I',‘,l..(/,'_])

Figure 5.4: Clieck the reflex vertices.

for each line segment, i.e., the segments are put in a list and handled one at a time. For
a new line segment w;, we “walk™ along it through all the previously handled segments
Wi, Wy, ... w;_; to construct the cells in O(i — 1) time. The whole process takes O(k?)
time for k line segments and takes O(n') for the arrangements of all the critical extended
windows, where n is the number of polygon vertices. During the incremental algorithm, we
can also easily tell whether a cell belongs to the polygon by the simple observation that to
walk from the interior of the polygon and cruss the polygon boundary results in a cell that
is outside the polygon. Thus, the visibility cell decomposition takes O(n') time to compute

O(n?) number of visibility scgments.

5.1.3 Visibility segment domain sampling

To compute the sample viewpoints inside a visibility scement domain., we first compute

the arrangements of the set of the line segments, including both the boundarv edoes of
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the domain and those incident on the visibilitv vertices inside the domain and vertical
to the visibility segment that defines the domain. We then compute the vertices of the
arrangenments that are inside the domain. In the following, we give details of this process.
To compute the domain boundary edges, we first compute the vertices of the domain.
The vertices include the end-points of the visibility segment that defines the domain, and
the remaining two “apex” vertices. For the domain corresponding to the visibility segment
[.let Xy = (ry,y1) and Xo = (29, y2) denote the end-points of [, and let Xy = (13, y3) and
X = (x4.yy) denote the two apex vertices of the domain. By siniple geometry using domain
side angle o, X3 and X are computed as follows. In the following, we use RV (o) and R (cv)
to denote the 2D rotation matrix (2 x 2) of rotating counterclockwise and clockwise o angle

respectively.

, T 1 =
Xas =X X5+ X, = R+(ﬂ)/\ 1 Xo 4+ X
2cosa
. = . 1 _ — )
,X,liz\Jx\I—{—X| =% R ((Y)_XPX‘_) —|"\1
2cos o
Ty 1 cosy —sina To — .Uy Ty
1e 5 +
s 2005 | sineg cos o Y — U1 Uy
€y 1 cos v sinoy Xy i T
f
Y4 2cosa | —gina  cosa Y2 — Y1 i

Using o = 34? which gives the best approximation ratio, we have sina =~ 0.5601 and
cos v == 0.284.

Using the apex vertices and the endpoints of the visibility segment, we can compute
the edges of the visibility segment domain. To check whether a visibility vertex is inside a
domain takes constant time, by shooting from the vertex a ray and counting the number of
intersection points between the ray and the domain boundary edges. If this number is odd,
then the vertex is inside the domain; if the number is even (including 0). it is outside the
domain.

Computing the sample viewpoints corresponds to computing the intersection points as
stated in Scction 4.3.2: we draw vertical line segments from each visibility cell vertex. and
from each interscetion point between clomain boundaries and visibility segments. The inter-
section points between these vertical line segments, other visibilitv segments. the polygon

houndaries. and the domain boundaries are included in the viewpoint sample set. This
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process is straightforward and we skip the details,

5.1.4 Generating and Solving LP Formulation
LP formulation

To compute the LP formulation, we first need to compute the covering relations hetween
the sanple viewpoints and the polvgon edges. and then compute the visibility graph of the
sample viewpoints. The formulation generation then follows Section 2.5.2. In the following,
we give details of the covering relation computation. (The visibility graph construction is
straightforward and skipped here.)

Computing the covering relation between a viewpoint X and a polvgon edge ¢ corre-
sponds to computing whether e is entirely visible from X. First, we check if both endpoints
of e. denoted by S{e) and T(e) respectively. are visible from X, or equivalently, whether
the line segnicuts Xb'((:-)r and X1 (e} intersect any of the other polveon edges £\ {e}. (£ is
the set of all polygon edges.) This takes liuear thme. If hoth S(¢Y and T(c) are visible from
X, the ¢ is not entirelv visible from X if and only if one of the polvgon holes is contained

(entirely) in the triangle AS(e)T(e).X. Checking this condition takes at most O(n) thme.

Solving Traveling VPP LP

We use the ILOG Cplex [CPL]. a comnercial LP solver, to solve the LP formulation for
the induced Traveling VPP, Eq.(2.8). It takes a plain text file as input and outputs another

text file as the solution.

5.1.5 Implementation of Algorithm Round and Connect

As input to Round and Connect, the LP optimal solution is given in a file with the extension

.

of “.txt”, in which the viewpoint fractional assigmments. y’, are given. Also we mput the
surface patch sets of these viewpoints to the round and connect algorithm.

In the Round step, by rounding iteratively the largest y7 to 1 until no uncovered surface
patch is left. we have the viewpoint solution set V'

The Connect step computes a Steiner tree connection of the viewpoints in V. We give a
2-approximation solution by using the minimum spanning tree [Vaz01|. The detailed steps
are given as follows. First. we construct the visibility graph [dBvKOSO00] of the sammple

viewpoints. V', and the reflex vertices of the polygon. Second, we construct the shortest
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path graph. VG, of V'. i.e, a complete graph. CG. on V' where the cdge cost of viewpoints
vy and wvo s the shortest path distance between them on VG. Third, we compute the
minimum spauning tree A/ ST(V') over C'G. For each edge of A/ST(V'), we compute the
corresponding shortest path on VG. Last, we take the union of the cdges on these paths.
The resulting edge set is the edge solution set E’. To show the result, we draw the line

segments corresponding to the edges in .

5.2 Simulation Results

In this section, we show the simulation results for some user-generated polvgons and two
polyvgon approximations of the layvout of the research labs at Simon Fraser University, a
smaller one with only the RANDP lab and nearby corridors, Fig. 5.11, and the larger one
with the RAMP lab and some other rescarch labs in the 8000 level of Applied Scieuce
building at Stmon Fraser University, Fig. 5.12. In the simulations. we use a PC with Iutel
Core2 2.13GHz Processor and 2G RAM for the sampling algorithmn and the round aud
connect algorith. and a Sun Blade 1000 with two 750 NMhz Sun UltraSPARC IIT CPU's
and 2GB DRAM for the LP optimizer.
-

The simulation results for different problem instances arve shown in Figs. 5.5

5 to 5.12.
Thev are labeled as Env. 1 to Env. 8 respectively. The number of vertices and reflex
vertices respectively of these input polygons and the view and travel weights for these envi-
romments are listed in Table 5.1. For the user-generated polygons, we make some arbitrary
assumptions on w, and w,. For the two maps of real scene, with our experiences on the
real robot systems, we assume the cost for traveling 1 meter is equal to taking onc view-
point. This explains why there is a sudden change of the w,’s for the veal maps from the
user-generated ones. In the figures, we show the input polvgon, the sampling viewpoints
(denoted by crosses in the figure) computed by the sampling algorithm, and the output of
the round and connect algorithm, a Steiner tree connecting the robot start position. denoted
by a small circle, and the planned viewpoints, denoted by crosses. We list the results, the
munber of sampling viewpoints computed. the view cost, travel cost and total cost respec-
tivelv for the resulting Traveling VPP solution, in Table 5.2. We list the running times for
the sampling algorithm. LP opthuizer, and the round and connect algorithim in Table 5.3
Note that in the run time reported for the sampling algorithm and LP optimizer, the larger

»arts (more than 50% and more than 60% respectivelv) are for I/O (input/output), i.e., to
I I
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output an LP to a text file and to reacd in an LP from the text file.

SINULATION RESULTS FOR GWRP

Env | # polyson vertices | # reflex vertices | Wp (per centimeter) | 1, (per viewpoint)
1 14 5 1 IV
2 22 | 10 1 - 5
3 11 4 1 10
! 17 7 1 10
5 13 i 7 1 5
6 g | 4 | 1 5
7 55 23 | 1 100
8 91 32 1 100

Table 5.1: Simulation parameters for different environmment

Env | # sampling viewpoints | View cost | Travel cost

1 }L 19 10 | 1.56
2 219 20 9.33
3| 12 10 2.08
1 75 10 1.95
5 | 269 15 2.5
6 151 15 3

7| 425 500 986
8 | 937 800 | 2000

I‘LE& cost -

11.56
20.33
42.08
44.25
17.5
18
1486

Table 5.2: Simulation result summary

The test results clearly show the power of the algorithms desiened. Although we cannot

compare it with the optimal solution due to the nature of the problem (NP-hard and log-

inapproximable), the results look reasonably close to the optimal solution.

5.3 Discussion

Currently. our implementation can handle polygon with at most 100 vertices and 40 reflex

vertices. The reason is that we use a data file that includes the whole LP formulation as the

input to the LP optimizer, CPlex. The size limit (set by CPlex) of this LP input determines

the most complex polygon for our implementation. However. one can use for example the

colunim generation method described in Appendix C to leverage this problem, since it always

maintains a reduced-sized active LP and includes variables as necded.
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e = e -
C ] st
* o o
(2) The input polvgon {1) The sampling aloorithm output

(¢} The Round and Connect algorithm output

Figure 5.5: The simulation result of Euvironment 1.
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R

(a) The input polygon

(b) The sampling algorithm output

(¢) The Round and Connect algorithm output

Figure 5.6: The simulation result of Environment 2.

36
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(a) The input polvgon (b) The sampling algorith output

(¢) The Round and Connect algorithm output

Figure 5.7: The simulation result of Environment 3.




CHAPTER 5. SINULATION RESULTS FOR GWRP

(020}
o

A

(a) The input polveon (b) The sampling algorithhn output

(¢) The Round and Connect algorithim output

Figure 5.8: The simulation result of Envirommnent 4.
f=)
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(a) The input polvgon ) The sampling algorithm output

=\
2

(¢) The Round and Connect algorithm output

Figure 5.9: The simulation result for Environment 5. a polvegon with a hole.
o =
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(a) The input polveon (b} The sampling algorithim output

(¢) The Round and Connect algorithm output

Figure 5.10: The simulation result for Environment 6: a polvgon with a hole.
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a) The input polygon

(b) The sampling algorithin output

(¢) The Round and Connect algorithm output

Figure 5.11: The simulation result for the layout of the RAMP lab. (Euvironment 7.) Scale
s 1:200.
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a) The input polvgon (1) The sampling aleorvithm output

__(“_ \(_\‘__

(c) The Round and Connect algorithm output

Figure 5.12: The simulation result for the layout of the RAMP and neighboring labs. (En-
viromnent 8 ) Scale is 1:300.
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Env | Sampling algorithm IT)T[)timiZ(; Round El_d_(:onnec'tmnfhm
1| 18 7 1
2 7 1 ' 9
3 | 2 1 - 0.3
L 62 ' 55 o 1
5} 250 118 2
6 134 78 D 1
) 34 - 25 | 3
8 B 13438 D

Table 5.3: Running time summary (in seconds)



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we considered the problem of planning a sequence of viewpoints and a connect-
ing path by the robot to completely inspect the surfaces of objects of interests. Thme and
energy cousumptions. pavticularly for remote missions. are eritical factors for the suceesstul
completion of these automated ohject inspection tasks. This motivates us to foriuulate this
problem as an optimization problem, View Planning Problem with Combined View and
Travel Cost (Traveling VPP), which mininizes the combined total cost of both view and
travel. To the best of our knowledge, this thesis is the work in robotics to solve the problem

in a global and unified way.

6.1.1 Traveling VPP

First, we considered a discrete version where the viewpoints and a graph that connects
them are given as the input. By reduction to the Group Steiner Tree (GST) problem, we
showed that Traveling VPP cannot be approximated within the poly-log ratio. We gave
an integer linear program (ILP) formulation that minimizes the weighted sum of travel and
view costs under the constraints that all the surfaces of the objects are covered by the
planned viewpoints and that planned viewpoints are connected. This formulation provides
the foundation to solve the problem optimally.

To design an approximation algorithin, we turncd to the LP relaxation approach. which
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address the overall problem in a unified fashion. We gave an LP relaxation based approxima-
tion algorithm, Round and Counect, which takes the optimal solution of the LP relaxation
of Traveling VPP and outputs an integral solution including the planned viewpoints and
the Steiner tree that connects them. We showed that Round and Connect can recover an
integral solution whose cost is at most the LP optimal cost times twice the view frequency,
2F. This hmplies that Round and Connect has the approximation ratio of 2F. We also
showed, via reduction from Traveling VPP to GST, that the poly-log approximation algo-
rithm for GST is applicable and Traveling VPP can be approximated by a poly-log ratio,
Thus, Traveling VPP is approximable within the smaller ratio of the order of view frequency
or a poly-log ratio.

That the LP relaxation can potentially have exponential number of coustraints motivated
us to either give an LP formulation with manageable size, or solve the problem practically
by always keeping an active sub-problem with reduced size. We used multi-commodity

network flows to achieve the forimer. and the colunmm generation technique for the latter.

6.1.2 Metric TVPP

We also considered a special case of the discrete problem where a mobile robot is used to
inspect objects in 2D or 3D and the sensor has a visibility range. We call this problem
“Metric View Plauning Problem with Travel Cost and Visibility Range™ (Metric TVPP).
The insight in the problem is that the visibility range couples the two different objectives,
view and travel, and it is possible to use existing solving techniques for the view planning
problem. Consequently, we analyzed the two-level approach of Danner and Kavraki [DK02],
which first solves the view planning problem without considering the travel cost and then
solve the tour problem to connect the planned viewpoints at the first level. Although we
showed that this two-level approach performed arbitrarily poorly for the general Traveling
VPP, for Metric TVPP we showed that its approximation ratio is in the order of a logarithm
of the number of surfaces. This ratio is also in the same order as the inapproximability result
of Metric TVPP. An intuitive explanation is that the visibility range ties the view and travel.

and the two-level algorithm is no longer decoupled.
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6.1.3 WEC-GWRP

We then cousidered a related geometric problem. the Watclinan Route Problewy with Dis-
crete View Cost (GWRP) where a point robot is required to inspect a 2D polygon (possibly
without holes) and viewpoints space is the continuous polygon interior. We tackled a NP-
hard and log-inapproximable version of GWRP, in which any polygon edge is required to be
entirely visible from at least one planned viewpoint. We call this problem Whole Edge Cov-
ering GWRP (WEC-GRWP). We gave a deterministic polynomial sampling algorithm that
computes a polynomial number of viewpoints using the geometric structure of the polygon
and outputs a Traveling VPP instance using these viewpoints. We showed that the optimal
solution of the induced Traveling VPP instance is within a constant (= 11.657) ratio of the
optimal WEC-GRWP solution. Combined with the approximation algorithm we provide for
Traveling VPP, WEC-GWRP admits an approximation algorithm.

The special advantage of the sanpling algorithm is that the number of sampled view-
points computed is a polynomial of the number of viewpoints and does not depend on
any geometric parameter of the polvgon. This contrasts to the algorithims by Papadim-
itriou [Pap85] and Aleksandrov et al. [AMSO05]. which the ummber of viewpoints needed also
depend on the size of the mput polvgon and the regularity of the polvgon triangulation.
We helieve that the sampling algorithm is a general technique and can be applied to other
problems, for example, the problem Terrain Guarding with Triangle Restriction covered in

Chapter 4.

6.1.4 Experiments

We then conducted some preliminary experiments/simulations of the approximation algo-
rithms for some 2D environments, including simulated 2D environments and real robot-
generated 2D maps of the lab areas at RAMP lab, Simon Fraser University. For the real
maps, we first compute a polygon approximation and then apply our approximation algo-
rithms. We display the computed sampled viewpoints and the traveling path of the robot.

This is an important step towards implementation on real robot svstems.
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6.2 Future Work: Traveling VPP in Unknown Environment

It is interesting to extend our Traveling VPP to the unknown case where the viewpoiuts,
the traveling graph. and the surface patches of the objects are not known in advance. The
algorithim hence has to decide, based on current information, whether to explore the possible
viewpoiuts, called graph exploration, or to view the “hounding boxes™ of the objects to get
more information about them.

In the following. we give the forinulation of Unkuown Traveling VPP after stating some
assumptions of the problem. To clarify the problem, we compare the formulation with the
online problems defined in the optimization literature [BEY98]. In Appendix C. we discuss
a simple case. called Traveling VPP on Exploved Graph, where the surface patch set is given
and the traveling graph is unknown, and give a competitive algorithm that combines a
competitive online graph scarch algorithin and our Traveling VPP approximation algorithm.
For future work, we would like to investigate the case where both the surface pateh set and

the graph are not known in advance.

6.2.1 Problem assumptions

To clarify. we make the following assumptions.

e [nspection and Exploration Sensors
We have two types of sensors onboard the robot, one used for object inspection and
thus called inspection sensor, denoted hy IS, and the other used for robot traveling
graph exploration thus called exploration seusor, denoted by ES. The IS is “expen-
sive” and the cost associated with each [.S view is counted in our objective function
to minimize; the FS, on the other hand, is considered “cheap”™ and the cost of each
ES scan is ignored. We define the process hefore the next IS(ES) scan an [S(ES)

1teration.

In real robotic applications, the E'S corresponds to a planar range sensor (a laser beamn
scans in a plane) used for simultaneous localization and mapping (SLAM) [TBF05],
whicli can. in real time, process 2D sensory input (range data in a plane obtained
via a single scan of a laser beam) to build a mnap representation of the environment

W. and estimate the robot location w.r.t. the map built: the IS corresponds to an
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arca scan laser range sensor (a laser beam scans an area to provide a 3D range im-

age) that can build a surface representation of the visible portion of the scanned object.

e Surface Coverage Completion Criterion
We asstime that a surface coverage completion criterion denoted by O is available.
Le., we know at any time whether the task is completed or not after calling O. (The
existence of such a task completion criterion is critical to our problemi.)
For our inspection tasks, such a completion criterion O can be implemented as, for
example. to compute whether all the missing parts in the coustructed object surface
model are “filled”. In the following, we show how to implement such a completion

criterion O using the online surface patch set generation model.

e Online Surface Pateh Set
Tutuitivelyv. the online surface patch set is the set of the surfaces of the bounding hox of
the object that the robot necds to take scans for complete surface construction based
on current knowledge. The online surface patch set is generated and modified after
each IS scan action, denoted by Ajs. We also require the set to be covered before the

next lteration.

The online surface patch set is generated in the following fashion. We are initially given
a set of “hounding boxes™ and the objects of interest are contained in respective boxes.
The unscanned surface patch set of these bounding hoxes hecome our initial online
surface patch set to cover. After each inspection scan/view is taken, the bounding
boxes are shrunk by newly scanned object surface or constructed edges or houndary
of the seusor field of view (FOV) at views taken. The unscanned surface patches of

the modified bounding boxes hecome the new online surface patches to cover.!

We call the unscanned surface patches of the bounding hoxes at [.S iteration k the
online surface patch set at iteration k, denoted by S*. Fig. 6.1 shows the required

surface patch sets. & and SF*! respectively. before and after an IS view,

"Note that due to the fact that the new surface patch set after a sensor scan is a proper subset of the
union of the former surface pateh set and those corresponding to the constructed surfaces and sensor FOV
boundarics. the interior of the bounding boxes are always shrinking.
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Figure 6.1: The online surface patch set hefore and after a 1S view
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Due to the scomectric nature of the problem. the change from S* to S*t! cannot
be completely arbitrary. For example. Fig. 6.1(i) shows that SF+1 {s1.90. 93,80}
is a proper subset of S* {s1 90,83, 51 55,56} Fig. 6.1(i1) shows that Skl

{s).52.%5.56. 57} Include some (but not all) clements of Sk and a constructed sur-
face s7. Note that since the hounding boxes alwavs shrink. S* cannot he a proper
subset of S¥*L Also. assuming omnidirectional line of sight of the IS, the num-
her of reflex vertices on the object surface bound the number of constructed surface
houndaries. This is especially useful when analyzing the algorithmic performance and

factoring the intrinsic problem complexity in the analysis.

Using the online surface patch set model. the completion criterion O can be miple-

mented as to check whether the current onlive surface pateh set S* is emptyv or not.

¢ Online Robot Traveling Graph Exploration
In exploring the robot traveling graph, the robot uses the ES to update the graph it
keeps for further robot traveling path planning and exploration purposes. We assune
that (with an appropriate SLAM mechanisim implemented) the robot explores the
environment, or equivalently, with the SLAN mechanism implemented. the rohot has

a fairly accurate map explored and can locate itself precisely.

The graph at an ES iteration k, denoted hy G¥ = (V¥ E*), includes the explored
viewpoints in V¥, the explored edges in E¥. An edge e is explored if the volume swept
by the robot if it were to move along ¢ is a subset of the free environment Wy, .: a
viewpoint ¢ is crplored if it is connected to the robot current position s¥ via explored
edges, i.e.. Ip € PATH(E") : s = start(p) A v = end(p), and the subset of online
surface patches that v covers is known. In addition, we maintain, for each cxplored
viewpoint v € V¥, an excursion edge set EE*(¢), the set of unexplored edges incident

on v at iteration .

A graph exploration iteration k starts by the robot planning an exploration action,
denoted by Aps. including a known/explored viewpoint v of the current graph G*.
Le., v e V', and an edge e, in its excursion cdge set EEY(v), Le.. e, € EEN(v). The
robot then travels from its current position s* to ¢ and then starts traversing edge e,,.
If an edge e, is explored, the viewpoint ©' that e leads to is added to the graph and

its excursion edge set is computed: if e, is un-explorable, i.e., the edge is blocked by
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obstacles in the environment. it is eliminated from EE¥(v), and we add to the evaph
the free part e/, ¢! € e, and the viewpoint ¢, leads to. The exploration cost include

the path distance from s* to ¢ and the edge cost, cither ¢, or Cot -

6.2.2 Problem definition

The unknown Traveling VPP is defined as follows. In the following, let & denote the iteration
of an unknown Traveling VPP algorithin. (It can he either an IS iteration or an ES
iteration.) Let ¥ be the last iteration hefore completion. In the following, we use |[p] to

denote the length of a path p.
Unknown Traveling VPP

“Given a surfoce covering completion criterion O. a partially known and iteratively
changing surface patch sel S*. a vicwpoint sct V¥ k = 0.1.... with known covering re-
lation. (w.r.t. S*). and a partially explored qraph GY -- (V¥ E¥Y - 0.1, ... plan an
optimal online strategy that. if the tash is incomplete according to O. decides the nect aclion.

AY of the robot. A% {Ars. Aps}.

o Aps = (v.e ). e e Vie, o EEFY. The corrcsponding cost is u‘/,(||[)(sk. oMt ) af

e, is explorable: or w,([|p(s®. v)|| + ¢ ). if e, is un-explorable.
o Arg =w, v c V& The corresponding cost is w, + iy, p(sF v)||.

A strategy is called “optimal” if the total cost until task completion by the online olgo-
rithm. is minimized. The total cost. denoted by cost(A). includes both the exploration and
traveling cost. the total distance the robot traveled. and the view cost. proportional to the

total number of IS scons, i.e..
K

cost{A) Z(wl, + u.zp||pafth(5/“. V)[[J(A == A4;s)
k=1

| Il.J,L,(IIp(Lt/I(.S']C, v) b e ) (A== Ags),
where (A == Ars) and (A == Ags denote the binary dccision variables whether the nert
action is to scan or not and whether to explore or not respectively. ™
Please note the difference between the model based off-line and the online cases. Unlike
the model-based case where a deterministic sequence of traveling path and viewpoints is
asked. the online case asks for an algorithin that decides the “best” action according the

current knowledge.
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6.2.3 Unknown vs. online

To further clarify the unkuown Traveling VPP formulation. here we distinguish it from the
online problem defined in the optimization literature [BEY9S].

In an online optimization problem, at each iteration a part of the problemi input is
generated and has to be solved before the input from the uext iteration comes. To tell
the quality of an online algorithm, the cumulative solution cost until the online input stops
coming is often compared with the offiine optinial solution cost, defined as the optimal
solution cost if all the online-generated inputs are known in advance. The quotient between
the online and offline optimal solution costs is called the competitive ratio.

To distinguish the online problem aud our unknown Traveling VPP formulation, let us
formulate a third problem, the model-based online Traveling VPP, and compare it with
the unknown Traveling VPP. For model-hased online Traveling VPP, there is 1o notion of
hounding box and all the surface patches given in cach iteration are in the input sct of the

corresponding offline problem.
Model-based Ouline Traveling VPP

“For a given vicwpoint set 'V connected via o known robot traveling graph G = (V. E). at
each iteration k. a surface patch subset S is given for the robot to scan. We further requir
SHSM = 0k < k. since once a surface patch is scanned it is no longer required to be
scanned again. The robot has to plan a set of viewpoints V¥ and the connecting graph edge
set E¥ such that all the elements in S* are covered. The total cost until completion is the
cumulative total view and traveling cost. i.c.. Z,Azl w, V¥ + w, Dokt Cer

In the following, we list some key differences between the unknown Traveling VPP and
model-based online Traveling VPP. Note that for the model-based online Traveling VPP

the traveling graph is known.

e Online surface coverage:

By definition, the model-hased online Traveling VPP requires the surface patches
generated at each iteration are covered before the next set of patches ave given, while

the unkiown Traveling VPP does not.

e Surface patch set generation:
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For the mocel-hased online Traveling VPP, the surface patch set generated at each
g 1 2

iteration does not have any interscction with previous generated scts, while for the

unknown Traveling VPP, the sets can have somewliat arbitrary relation as discussed

earlier while defining the online patch surface path set for the unknown case.

Also, for the model-based online Traveling VPP, the online surface patches at cach
iteration are also included in the offline problem, i.c., the offline optimal solution
still has to cover them. For the unknown Traveling VPP, different sensing outcomes
resulting from different viewpoints planned at cach iteration lead to different online
sturface patch sef in the next iteration. For exauiple, sce Fig. 6.1 (i) and (ii). Thus,
the union of these online surface patch sets of all iterations may change as a result of

the coursc of the online actions.



Appendix A

Background: Inapproximability

and L-reduction

Although different NP-complete optimization problems are considered at the same complex-
itv level in terims of solving for the optimal solutions. thev can have different difficulty levels
in obtaining approximation solutions. This concept is quantified by the inapprorimability
or the hardness of approximation. which refers to a problem specilic constant or a function
of the input size as the lower bound on the approximation ratio of any polvinomial algo-
rithim. assuning some generally-believed complexity class relations, for example P # NP.
For example, the inapproximability result for SCP says that the optimal solution to SCP
cannot be approximated within its (1 — o(1)) Inn ratio unless NP admits quasi-polynomial
algorithms [Fei9g].

We use the simiplest form of a common technique, called L-reduction, to cstablish the
inapproximability result for Metric TVPP, which works similarly as the reduction method
[GJ79] used in proving NP-completeness results. Rather than covering the theory, we refer
to [KV00] for a detailed coverage on L-reduction. An intuitive explanation of the form we use
is as follows. Suppose the problem of interest is /7, and we know the inapproximability result
for problem P». If. given an arbitrary instance of Py, we can construct in polvnomial time
an instance of P such that the optimal solution costs of the two instances are the same, and
for anv solution to the P» instance, we can construct in polynomial time a solution to the P
instance with the same cost, we can claim that the inapproximability result of Py extends to

P, Otherwise, if there exists an algorithm to P, with a better approximation ratio, we can
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recover a hetter approximation solution to any P instance by first solving the constructed
Py instance using this better algorithm. This is contradictory to the inapproximability result
we know for Pp. Note that if the inapproximability result depends on the input size, for
example that for SCP is log n where n is the nummber of elements in the universe, we will have
to introduce the size difference between the constructed [ instance and the Po instance
to P’s inapproximability result. However, this is not the case for our reduction given in
Section 3.2 where the given SCP instance and the constructed Metric TVPP instance have

the same nunber of surface patches.



Appendix B

Column Generation Technique
Applied to Traveling VPP

Column generation method is a practical wav to solve a LP formulation. and it is very
close to the simplex method [DDS051 It always works with a subproblen of the LP. with
onlv a recduced number of variables. [t adds variables when thev can improve the object
function; and drops those nonprofitable variables. The criteria that tell whether variables
are profitable are called the column generation rules.

For Traveling VPP, since the primal program has a large number of constraints, it is
more convenient to work with the dual program using the column generation method. In
the following, we give the dual program for Traveling VPP, derive the column generation
rules for solving the dual progran, and use the complementary slackness conditions (CSCs)

to get the solution.

B.1 Dual program and complementary slackness conditions

for Traveling VPP

Corresponding to the constraints (2.4), we associate the dual variables. «v;, to each surface
=} J

patch j7; and corresponding to the constraints (2.5), we associate the dual variables, 7, to

each pair of view node 7 and cut T that includes i but excludes s. The corresponding dual

linear program (DLP) is given as:
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DLP: max Z o

JjES
Subject to:
Viev: > o= Y Br<w (B.1)
FES() THeT
Ve € E: Z Z Bir < wp ce (B.2)
€Y TueTAeed(T)
oy, Bir > 0

As per the duality theorem, a feasible solution to the primal linear program (its dual)
provides bounds on the optimal solution to the dual (primal) and achieve the same optimal

value when the complementary slackness conditions (CSCs) are satisfied.

CSC of Traveling VPP:

Primal CSC: v > 0= Z ;= Z Bir + w,
JES(3) THeT

ze>0=>2 Z Bir = wpee

i€V THeTrees(T)

Dual CSC: a>0= Y y=1
ieVv(j)

Br>0= 3 z =y
ecd(T)

In the column generation paradigm, we are working with the DLP, which contains a large
number of variables, «; associated with surface patches and §;r associated with view point
i and a cut T of view set V that contains 7. The idea is simple and related to the Simplex
method: we always work with a reduced version of the LP by only considering a small
number of dual variables, corresponding to the basic variables in the Simplex algorithm for
LP, and add columns/non-zero dual variables whenever the dual solution can be improved.
From the primal program point of view, after solving the LP relaxation using only the basic
varialbes, we can use the CSCs to get the corresponding primal variable solution; we check
the infeasibility of the primal constraints and for infeasible constraint, add the corresponding

dual variable.
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B.2 Column generation algorithm

The infeasibility of the constraint (2.4) for a surface patch j, or the rule to add ¢, says that
we should add «; to the reduced LP if the sum (over its viewpoint set) of the (fractional)
viewpoint assignments is less than 1. We can simply add the fractional assignments of the
views that can see surface patch j and compare it with 1. So assuming we have the optimal
primal solution to the reduced LP, this takes O(|V||S]) time, where [V| and S| are the
numbers of surface patches and views respectively. (By some additional data structures,
for example the links between surface patch and the views that see it, we can reduce the
checking time.)

The rule for adding 8,7 for a specific viewpoint ¢ asks to check among all the cuts whether
there exists one cut 7" such that the number of edge crossing T is less than the viewpoint

assignment y;. In the following, we show this corresponds to the classic min-cut problem.

Lemma 15. The column generation rule for adding the dual variable 8,y for a viewpoint

and cut pair, for a specific viewpoint i is equivalent to requiring the minimum value of such

summation for all possible cuts T to be strictly less than the viewpoint assignment, i.e.,
__min Z Ze < Y (B.3)
TCVieTAs¢T ees(T)

Proof. First, if minrcy.eTasgr 2 ees(r) 2 < ¥i and supposing T’ is such a minimum cut,

ie.,

Bir <w;, T =ar min 2,
4 Yi, gTCV:iGT/\S¢T Z €
ecd(T)

the primal constraint corresponding to the dual variable 3;7 is not feasible and ;7 should
be added.
Second, for any dual variable 3;7 if the primal constraint is infeasible, i.e. Zreé(T) 2Ze <
y;, by fixing viewpoint i, we have
T’cvz?gfl}/\se??’ | r_%,,) Ze < GQSZ(:T) Ze < Yi

O

By recalling the definition of the min-cut problem as finding the s — ¢ cut (i.e., the cut

or partition of the graph vertices separating the vertices s and t on the graph) with the
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minimum cut capacity (defined as the sum of the capacities of the edges crossing the cut),

the subproblem of adding 8,1 for a specific i is equivalent to the min-cut problem.

Lemma 16. The subproblem of adding Byt for a specific i is equivalent to the min-cut

problem by assigning the edge assignments z. as the capacities for the edges.

Proof. The proof proceeds by constructing the min-cut problem from the primal solution
ze. By assigning the edge capacities ¢, as the edge assignments z, for all the edges, we have

a min-cut problem instance,

Min-Cut Problem Minimize »  z, VI'CV:i€TAs¢T
e€d(T)

The solution of the above min-cut problem is clearly minrcy.iernaser Zeeé(T) Ze. SO ac-
cording to the subproblem formulation of adding dual variable G;7 for a specific 4, (B.3), we
can decide whether to add such dual variable §iT by comparing the optimal solution with
Y- O

By identifying the second type of subproblem, adding B;7, to be the min-cut problem,
we can apply efficient algorithms for solving min-cut problems. Specifically, according to
the duality between min-cut and max-flow problems [PS82], the existing efficient max-flow

algorithms can be readily applied.



Appendix C

Traveling VPP on Explored Graph

In the following, we consider the case where the robot traveling graph is not known in
advauce but the surface patch set is given. So the robot has to first explore the eraph
efficiently to expand its known viewpoint set hefore deploving a plan using the known
viewpoints and on the known traveling graph. We call this problemv Traveling VPP on
Erplored Graph. 1t is not difficult to see the competitive ratio for the online araph searching
aleorithn is a lower bound on this online version, since the adversary! can hide one viewpoint
at where the online graph search algoritlun fails to explore to see all the surface patches.
In the following, we show how to combine a competitive ouline graph search algorithm and
a online Traveling VPP solver to get a offline Traveling VPP algorithin with double the
competitive ratio for the graph search.

The online grapli search problem is closely to Traveling VPP on Explored Graph. It refers
to searching an unknown graph for a goal with unkuown position on the graph [FKKT04].
In the next section, we show the competitive ratio for this problem is a lower hound on
the competitive ratio for the online Traveling VPP, even in the case where the surface set
is given in advance (thus the only unknown part is the graph for traveling). In [FKK*04],
the authors give an online algorithm using the spiral search heuristics in the breadth first
fashion that achieves the same performance (up to a constant factor) as the best offline
search algorithm.

Intnitively, the approach to Traveling VPP on Explored Graph is to decide when to stop

"I'he notation of adrversary is often used in the online algorithm analvsis. It is modeled as the adversary
that provides the online input to the problein such that the performance of the online algorithm is the worst.
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exploring the graph and start realizing a Traveling VPP solution using the explored graph.
We want the graph to be sufficiently explored in the sense that high quality viewpoints arc
not missed: and at the same thne, it is not necessary to exert too much exploration effort.
In the following, we give an online algorithm that answer the above ¢uestion. We use
the competitive ratio analysis to show that the performance of the algorithm proposed is
bounded when compared with the optimal offline algorithin when the graph is given.
We use G to denote the (partially) unknown graph and use G, superscripted by the

iteration label, to denote the known part of the graph after the exploration iteration k.

C.1  Online Algorithm

C.1.1 Online graph search algorithm

We first assume that we have available a competitive online praph search aloorithm A, It is
competitive in the sense that for any view point . the shortest path length from the robot
start position s to o is within a factor f of the total traveling length for the robot to search
e by algorithu A, By denoting the shortest path length between s and ¢ by sp(s. ) and

total robot traveling length to scarch ¢ by A(u), we have the ouline algorithm guarantees

A(v) £ f - sp(s.v) (C1)

For example in case the graph is two rays emitting from s, the online graph search
problem becomes the “lost cow problem™ and the iterative doubling algorithm has the

competitive ratio. f. of 9.

C.1.2 Online algorithm for Traveling VPP

With a competitive online graph search algorithm A, we start by using A to search the
graph iteratively. Each iteration ends when some new viewpoint(s) is(are) explored. At
the end of an itevation, labeled by k. we use the explored graph G* to solve the Traveling
VPP, Assuming the corresponding Traveling VPP can be solved optimally. we compare the
corresponding cost. OPT e with the (weighted) exploration cost so far. If the exploration
cost is equal to the Traveling VPP cost. we stop the exploration and solve the Traveling

VPP using the explored graph so far.
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C.1.3 Analysis

According to the algorithim, the cxploration stops at iteration & when the (weighted) cu-
mulative exploration cost is equal to the optimal Traveling VPP solution cost using the
explored graph, te..

Zl’,,_A/'" _ OPT(’/Z;‘\'PP (CZ)

In the following, we show the Traveling VPP solution cost using these explored view-
. g l 2. . . . N . . .
points. OPT(F,). PP s bhounded within at a certain ratio of the offline optimal solution cost.
TVPP
OPT. :
Assune the optimal offfine algorithi uses viewpoints vy, o, .. . v, and edges e j.eo. ... ey,

to solve the Traveling VPP and the corresponding cost is given as:

OPTEN " = wp - OPTC 4w
where OPY;I_;’;F[‘ vy denotes the optimal Steinter tree that connects the viewpoints ¢ eo. .

and s.
It is obvious that the shortest path distance from s to any viewpoint in the tvee is a
lower bound on the trec cost. i.e..
i Tre il =y
()Pl(\_,,i_u?_’____“) ~sp(sovy), L<j<n
Consequently, this shortest path distance is also a lower bound on the optimal offline

solution, i.e.,

TVRPP o & 5 ‘
orTy. > w,-sp(s,vy). T<j<n (C.3)
In the following, we consider two cases at iteration k.
D
First, if the optimal solution, namely viewpoints s, vy, 9, ..., v, and edges e|, e2,. ... &m,
. . s 7 ‘ >
are known when we stop the exploration, i.e., s.v,va,...,vn € GF, clearly OPT(Q‘ re _

OPTIVPP . And the total online algorithmic cost is AF | OPTg,yPP = 20PTIV PP So
the competitive ration is 2.

Second, if G* is a proper subset of G, i.e.,, Jv; ¢ G vi & GF. (In case e, € G e d GF.
we can simply (lmaginarily) put a viewpoint at the midpoint of e; and this reduces to

Juy e Grug ¢ G* ) Since our graph exploration algorithm is competitive, we must have
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Fospls.ey) = AN (C.4)
By Eq. (C.3), we have the total online algorithin cost:

cosronline algorithm “"I’Ak Loprrver

Gl
‘2(1',),4/" (By algorithm stopping criterion)
2f wpsp(s.vy)  (By competitive ratio of A, Eq. (C.4))

2f OPT(’?‘-PP (By bound on the Traveling VPT cost, Eq. (C.3))

In sminmary, the competitive ratio of onr online algorvithm is 2,
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