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Abstract 

European earwigs, ForJicula auricularia L., are thought to use an aggregation pheromone but 

there is controversy about its source. Hence I investigated whether each developmental stage 

and sex produce and respond to this pheromone and what are its components. Laboratory 

experiments revealed that females, males and nymphs produce and respond to an airborne 

aggregation pheromone. Candidate pheromone components obtained from all potential 

sources were analyzed by gas chromatographic-electroantennographic detection (GC-EAD) 

and GC-mass spectrometry. A complex synthetic blend (SB) of 30 candidate pheromone 

components, including benzoquinones, acids, hydroquinone, vanillin, aldehydes, ketones and 

an acetal significantly arrested females and nymphs in laboratory experiments. In both 

laboratory and field experiments, the SB lacking benzoquinones elicited significant 

behavioral responses from nymphs, but not from adults, suggesting that adults, unlike 

nymphs, use an aggregation pheromone with benzoquinones as constituent components. 

Additional experiments are required to determine all essential components of the earwig 

aggregation pheromone. 

Keywords: 

European earwigs, aggregation pheromone, laboratory analyses, benzoquinones, olfactometer 

bioassays, field experiments 
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Chapter 1 General Introduction 

1.1 Biology and ecology 

The common name "earwig" is derived from the Anglo-Saxon word "earwicga" 

denoting ear creature (Fulton, 1924a). Earwigs in different European languages are 

associated with the superstition that they crawl into the ears of sleeping humans. The origin 

of this superstition is not known (Fulton, l924a; Crumb et al., 1941). 

1.1.1 Distribution 

The European earwig (EEW), Forficula auricularia L., is a native of Europe, western 

Asia and probably North Africa (Crumb et al., 1941 ; Clausen, 1978). It is an exotic species in 

North America with a wide distribution (Weems and Skelly, 2007). Chronological reports 

(Langston and Powell, 1975) indicate that it was first observed in 1909 in Portland (Oregon) 

(Fulton, 1924a), with subsequent observations in IVewport, Rhode Island (1 9 1 1 ; Jones, 19 1 7; 

Stene, 1934), Seattle (1 9 15; Jones, 191 7), Vancouver (British Columbia) (1 91 6; Treherne, 

1923) and California (1923; Langston and Powell, 1975). In Canada, it is found in British 

Columbia, Manitoba, Newfoundland, Nova Scotia, Ontario, Quebec and Saskatchewan 

(Weems and Skelley, 2007). Thirty species of earwigs have been reported from the United 

States (Haas, 2006). In Canada, there are five species of earwigs: Doru aculeatum (Scudder) 

is native, and the little earwig, Labia minor (Linnaeus), might have been established a long 

time ago (Buckell, 1929). Anisolabis maritima (GCnC), Euborellia annulipes (Lucas) and the 

EEW are exotic (Buckell, 1929). In North America, EEWs comprise two sibling species, 

which are reproductively isolated (Wirth et al., 1998). Populations in cold or continental 



climates (e.g., Quebec, New York, Connecticut) mostly have one clutch per year, forming 

species A (Gingras and Tourneur, 2001), whereas those in warmer climates (e.g., coastal BC, 

Oregon) have two clutches per year, forming species B (Wirth et al., 1998; Guillet et al., 

2000). 

In Canada, EEWs were reported for first time from Vancouver in 19 16, although they 

were suspected to have been introduced long before then (Treherne, 1923). Their population 

peaked in 1927-28 in Vancouver (Spencer, 1945) when they were considered pests (Lamb, 

1974). 

1.1.2 Morphological characters and taxonomic placement 

Before the hemimetabolous EEWs were placed taxonomically in the Order 

Dermaptera, they were considered close relatives of grasshoppers, crickets and cockroaches 

(Fulton, 1924a). EEWs have an elongate flattened brownish colored body (Borror and White, 

1 WO), with a shield-shaped pronotum (Buckell, l929), two pairs of wings and a pair of 

forcep-like cerci (Fulton, 1924a). The second tarsal segment is lobed, extending distally 

below the 31d tarsal segment (Helfer, 1963). The antenna consists of 1 1-14 segments, and the 

mouth parts are of the chewing type (Borror and White, 1970). Adult males are polymorphic 

in body weight and head width, as well as cercus length and width (Lamb, 1976b). Third 

instar or older nymphs that have lost one branch of cerci are capable of regenerating it in 

form of a straight structure. Males with such asymmetrical forceps are known as 

gynandromorphs or hermaphrodites because they resemble females (Behura, 1956). 

1.1.3 Dispersal 

EEWs spend the day time in cool, dark, inaccessible places such as flowers, fruits and 

wood crevices (Fulton, 1 9Ma; Goe, 1925; Crumb et al., 194 1). EEWs easily establish after 



introduction to a new place (Essig, 191 8) because they tolerate adverse conditions (Morgan, 

1926). They rarely fly but have well developed wings (Jones, 191 7; Goe, 1925 and Lamb, 

1974). They disperse passively through transportation of commercial products, including 

lumber, ornamental shrubs and even newspaper bundles (Walker, 1997). Humans are 

concerned with their dispersal because they invade human dwellings (Fulton, l924a; Crumb 

et al., 1941; Buxton, 1974; Weems and Skelley, 2007). EEWs are nocturnal, avoid strong 

light and hide during the day (Behura, 1956; Borror and White, 1970). 

1.1.4 Microhabitat 

EEWs survive well in cool and moist microhabitats with a mean temperature of 24•‹C 

(Crumb et al., 1941). Their daily abundance in a given year has been linked to temperature, 

wind velocity and the prevalence of easterly winds (Chant and McLeod, 1952). The 

development of EEWs also depends on temperature (Crumb et al., 1941; Behura, 1956). 

Thus, the occurrence of EEWs can be predicted based on weather parameters (Helsen et al., 

1998). Hibernating adults can tolerate cool temperatures, but their survival is reduced in 

poorly drained soils such as clay (Crumb et al., 1941). To avoid excessive moisture, EEWs 

seek the southern sides of well drained slopes. Sometimes they also occupy the hollow stems 

of flowers where the soil is poorly drained (Behura, 1956; Weems and Skelly, 1989). Their 

eggs are capable of resisting damage from cold and heat (Chauvin et al., 1991). 

1.1.5 Feeding habits 

EEWs are reportedly omnivorous (Fulton, 1927; Beall, 1932; Buxton, 1974; Lamb, 

1974; Walker, 1997) and necrophagous (Jones, 19 17; Fulton l924a), feeding on a wide 

variety of plants and insects (Crumb et al., 1941). Their favourite plants include the common 

crucifer Sisymbrium oflcinale L., white clover Trifolium repens L., and the dahlia Dahlia 



variabilis (Beall, 1932). They also like to feed on molasses and lower forms of plants, such 

as lichens and algae (Crumb et al., 1941). They prefer meat or sugar to natural plant material 

even though plants are a major natural food source (Fulton, 1927). EEWs prefer aphids to the 

plant material, such as leaves and fruit slices of apple, cherry and pear (Asgari, 1966 cited in 

Carroll and Hoyt, 1984). Adults reportedly eat relatively more insects than do nymphs 

(Crumb et a]., 1941). 

1.1.6 Life cycle 

The life cycle of EEWs has been studied in Edinburg, (UK) (Behura, 1956), Oregon, 

Washington and Virginia (USA) (Fulton, l924a; Crumb et a]., 194 1 ; Walker, 1997) and in 

Vancouver (Beall, 1932 and Lamb and Wellington, 1975). EEWs can have a single brood 

per year (Burr, 1939 and Guillet et a]., 2000) or two broods per year (Beall, 1932; Behura, 

1956 and Lamb and Wellington, 1975). Many females and males hibernate in pairs in 

subterranean nests (2.5-5 cm below surface) (Fulton, l924a; Behura, 1 %6), whereas others 

aggregate above ground (Lamb and Wellington, 1975). In Vancouver, females oviposit at the 

end of winter (Lamb and Wellington, 1975) and in United Kingdom from November to 

February (Behura, 1956). After oviposition, females expel the male from the nest (Behura, 

1956; Lamb, 1974). Males then aggregate in cracks and crevices above ground (Fulton, 

l924a), beginning typically in early spring (Lamb and Wellington, 1975). Many females 

oviposit a second time in the summer (Lamb, 1974). Each female lays on average 23-55 and 

6-36 eggs during the first and second oviposition period, respectively (Behura, 1956). Freshly 

laid eggs are opaque and pale yellow or cream in colour and broadly elliptical (Fulton, 

1924a), 1.9 x 0.9 mm in length and breadth, respectively (Behura, 1956). The incubation 

period is comparatively long in cold areas varying from 23-27 weeks (1 61 -1 89 days) in 

Montreal (Quebec) (Gingras and Tourneur, 2001). In Washington, the mean incubation 



period was 72.8 days for winter-laid eggs and 20 days for spring-laid eggs. The incubation 

period ranged from 56-85 days, depending upon the depth of the subterranean nest and the 

temperature of area (Crumb et al., 1941). 

Eggs start to hatch in early May in British Columbia and Washington (Crumb et al., 

194 1 ; Lamb and Wellington, 1975) and in February-March in Edinburgh (UK) (Behura, 

1956). In Vancouver, nymphs molt for the first time in their nests in mid-May and pass 

through four nymphal instars before turning into adults (Lamb and Wellington, 1975). The 

mean nymphal period at room temperature was 85.7 and 86.23 days for males and females, 

respectively (Behura, 1956). 

The earwigs' life history has a distinct nesting phase and free-foraging phase (Lamb 

and Wellington, 1975). In the nesting phase, the population consists of family units, 

comprising at first a female and male pair and later the female and her offspring nymphs. 

They leave the nest for nocturnal foraging bouts and return to and stay in their own nest 

during the day. During the free-foraging phase, family units mingle, family members no 

longer return to their own nest and food-forage long distances. In this phase, they do not 

show any preference for a particular shelter. Some females mate and oviposit again (Lamb 

and Wellington, 1975). 

The males use their forceps during copulation to lift a female's abdomen, and for 

defense (Fulton, l924b; Crumb et al., 1941 ; Behura, 1956; Eisner, 1960) coupled with spray 

secretions from abdominal glands (Eisner, 1960). Studies of the EEW's sex-ratio revealed a 

slight female bias (Behura, 1956), pronounced female bias in field populations (Brindley, 

19 12, 19 14; Beall l932), but no female bias in laboratory populations (Crumb et al., 194 1). 

Although there may be fewer males than females, a single male can fertilize many females, 

particularly considering that EEWs stay in aggregation (Callan, 194 1 cited in Behura, 1956). 



1.1.7 Mating behavior 

A male finds prospective mates by olfaction. He then slips his cerci under the tip of 

the female's abdomen so that his and her ventral abdominal surfaces are in contact with each 

other, while both face in opposite directions. Pairs can stay in copula for many hours if not 

disturbed (Fulton, 1924a; Behura, 1956). Matings occurred frequently among clustered 

individuals particularly in locations that allow both partners to cling to a surface (Fulton, 

1924a). The mating season peaked during August and September under laboratory 

conditions, and a single mating enabled females to lay fertilized eggs (Behura, 1956). 

1.1.8 Oviposition and eclosion 

Females construct a subterranean chamber in which they lay eggs during 2-3 days 

(Behura, 1956). During development, eggs double in size (Crumb et a]., 1941). When eggs 

are close to hatching, the dark red eyes, mandibles, antennae, palps and legs of the first 

instars nymph are visible (Fulton, 1924a). During hatching, the head of the nymph ruptures 

the egg's chorion within five minutes and then the nymph crawls out (Fulton, 1924b; Behura, 

1956), unassisted by their female parent (Fulton, 1924b and Crumb et al., 1941). After each 

molt, nymphs are white in colour and then turn grey in 10 hours. They pass through four 

instars before they become adults (Behura, 1956). 

1.1.9 Maternal care 

Maternal care includes nest construction, care of eggs and nymphs as well as defense 

and provision of food to newly hatched nymphs (Lamb, 1976a). Females use their mandibles 

to transform soil particles into small pellets for nest construction (Fulton, 1924b). They can 

also clean eggs with their mouth parts and move them from one place to another (Fulton, 

1924b; Crumb et a]., 194 1 ; Lamb, 1976a). Eggs fail to hatch in the absence of female (Goe, 



1925; Crumb et al., 1941; Guppy, 1947). In her absence, egg hatching can be stimulated by 

regular cleaning and rolling of eggs (Buxton and Madge, 1974). Females tend to eat their 

eggs if there is a disturbance or conditions are unfavorable (Crumb et al., 1941). They seal 

cracks of a nesting chamber for a few days after hatching of nymphs to prevent their escape 

(Fulton, 1924b). They also provision first instar nymphs with food which they carry to the 

nest or regurgitate (Crumb et al., 194 1; Lamb, 1976a). Females are not able to discern 

between their own offspring and those of other females, and care for all offspring (Fulton, 

1924b). Either fertilized or unfertilized eggs are laid in similar numbers and receive the same 

parental care (Behura, 1956). Because of this parental care EEWs are considered subsocial. 

They are not considered social insects because they don't have co-operative brood care, 

overlapping care between generations or reproductive castes (Lamb, 1976a). 

1.1.10 Natural enemies 

EEWs are affected by pathogens, such as (a) the fungus Entomophthora forJiculae 

and the muscardine fungus Metarrhizium anisopliae Sorokin; (b) the gregarine protozoan 

Clepsidrina ovata; (c) the round worms Mermis nigrescens Dujardin and M. subnigrescens 

Cobb.; and (d) tyroglyphid mites (Crumb et al., 1941). They are also parasitized by the 

tachinid flies Rhacodineurapallipes Fallen and Digonochaeta setipennis Meigen (Phillips, 

1983). They are commonly preyed upon by birds, such as the song thrush, Turdusphilomelos 

(Collinge, 19 13 cited in Brindley, 19 18), whimbrel, Numenius phaeopus, green woodpecker, 

Picus viridis, nuthatch, Sitta europaea, chaffinch, Fringilla coelebs, great titmouse, Parus 

major, whinchat, Saxicola rubetra (Newstead, 1908 cited in Brindley, 19 18), starling, 

Sturnus vulgaris, robin, Turdus migratorius, pheasant, Phasianus colchicus, cowbird, 

Molothrus ater, and brewer's blackbird, Euphagus cyanocephalus (Lamb, 1975). 



1.2 Economic importance 

The pest impact of EEWs appears exaggerated, although they can cause damage to a 

wide variety of plants (Lucas and Fes, 1906; Crumb et al., 194 I), and have been rated as one 

of the six most important structural pests in California (Ebeling, 1978). They are household 

nuisance pests in residential areas (Jones, 1917; Fulton, 1924a; Dimick and Mote, 1934; 

Stene, 1934; Crumb et al., 1941; Lamb 1974; Ebeling, 1978; Flint, 2002) particularly at high 

population densities (Vickery and Kevan, 1985). In the past, the presence of EEWs could 

adversely affect property values (Gibson and Glendenning, 1925 cited in Buckell, 1929). 

They are also an important pest of flowers, fruits and vegetables (Fulton, 1924a; Tillyard, 

1925; Lamb, 1974; Cranshaw, 2000; Flint, 2002; Anonymous, 2004a, b) and transmit the 

turnip yellow mosaic virus among crucifers under experimental conditions (Markham and 

Smith, 1949 cited in Behura, 1956). EEWs are capable of invading fruits through mechanical 

injuries and then cause secondary damage to soft fruits (Cranshaw, 2000; Flint, 2002; 

Anonymous, 2004a). On the other hand, EEWs are predators of insect pests, such as the 

aphid Eriosoma lanigerum (Carroll and Hoyt, 1984; Mueller et al., 1988; Nicholas et al., 

2005) and the codling moth, Cydiapomonella (Glen, 1975), and are therefore valued as 

biological control agents (Anonymous, 2004b). 

1.2.1 Trapping and detection 

A phenological model was developed in the Netherlands to predict the occurrence of 

EEW populations. The model was based on a correlation between EEW growth and a degree 

day temperature summation > 6"C, indicating that EEWs require 880 degree days to develop 

from first instar nymphs to adults (Helsen et al., 1998). Older and alternative methods of 

EEW population assessments include soil-core spade sampling of hibernating or nesting 

insects (Wilson and Wilde, 1971), and collection from diurnal shelters such as cracks and 



crevices of bark, rolled leaves (Lamb and Wellington 1974) or grooved board traps (Crumb 

et al., 1941 ; Chant and McLeod, 1952). 

1.2.2 Baits 

All literature concerned with trap baits dates back 50 years. Campaigns with 

poisonous baits were initiated in Oregon (Fulton, 1924a) and elsewhere along the Pacific 

Coast and were considered successful for EEW management (Buckell, 1929). Baits 

consisting of wheat bran, sodium fluosilicate and fish oil were recommended for earwig 

control (Crumb et al., 1941). Peanut butter used with whole wheat flakes in pitfall type traps 

was deemed better than fish oil and earwig scent (Legner and Davis, 1962). Grooved board 

traps were considered as effective as insecticide for EEW control and more effective than 

pitfall traps baited with bran flakes, honey, peanut butter, macerated earwigs or fish oil 

(Morris, 1965). 

1.2.3 Biological control 

In British Columbia, the dipteran parasite Bigonicheta setipennis (Fallen) was 

introduced in 1934-1939 as a biological control agent against EEWs (Spencer, 1947; 

McLeod, 1954 cited in Lamb, 1974). However, B. setipennis failed to cause long term 

decline of EEW populations (Lamb, 1974). In Vancouver, EEW populations stabilized at a 

level believed not to be pestiferous (Lamb, 1974). 

1.3 Evidence for pheromonal communication and research objectives 

EEWs are gregarious insects (Sauphanor and Sureau, 1993) that occupy diurnal 

shelters (Lamb, 1974) in groups ranging between 50-1 00 individuals per square meter (Lamb 

and Wellington, 1975). Prior occupancy enhanced the attractiveness of a shelter implying 



pheromone-mediated aggregation behavior (Philips, 198 1 cited in Helsen et al., 1998; 

Sauphanor, 1992). The source of the pheromone remains to be determined with certainty. It 

may be present in cuticular lipids of males and in fecal excreta (Walker et al., 1993) or in 

tibial glands (Brousse-Gaurry, 1983; Sauphanor, 1992). This controversy may be explained, 

in part, by the fact that fresh or old frass was bioassayed, and that tibial gland extracts were 

tested with nymphs (Sauphanor, 1992) and adults (Walker et al., 1993), respectively. 

To further our understanding of the pheromone and its source I investigated, 

whether (1) both nymph and adult EEWs produce and respond to pheromone (Chapter 2); 

(2) the pheromone is perceived by olfaction or contact chemoreception (Chapter 2); (3) 

the pheromone is present in the effluvium, body parts, or feces of EEWs (Chapter 2); and 

(4) the pheromone is a complex blend of various components (Chapter 3). 
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Chapter 2 
Evidence for an Aggregation Pheromone 

2.1 Introduction 

European earwigs (EEWs) are nuisance insects in residential areas (Mason, 2000; 

Flint, 2002; Cranshaw, 2007), and have become garden pests, damaging leaves, fruits, 

vegetable and flowers (Lamb, 1974; Anonymous, 2004b). They are also considered pests in 

soft-fleshed tree fruit crops (Cranshaw, 2000; Flint, 2002; Anonymous, 2004a), but are 

valued as biological control agents in other crops, feeding on developmental stages of a wide 

range of insect species (Buxton, 1974; Glen, 1975; Carroll and Hoyt, 1984; Mueller et al., 

1988). 

EEWs are subsocial insects with complex behavior that includes nest construction 

and progeny care (Lamb, 1976). Late instar nymphs and adults exhibit distinctive gregarious 

behavior (Sauphanor and Sureau, 1993), seeking humid and dark crevices for shelter during 

the day. Prior occupancy of a shelter enhanced its attractiveness (Sauphanor, 1992), 

implying pheromone-mediated aggregation behavior. Shelters previously occupied by adults 

or nymphs elicited significant behavioral responses from nymphs (Sauphanor, 1992). 

However, whether each developmental stage and sex produce and respond to pheromone was 

not investigated. 

The source of the pheromone remains to be determined with certainty. Extracts of 

amputated legs or leg trails caused EEW aggregations, leading Sauphanor (1992) to conclude 

that tibia1 glands (Brousse-Gaurry, 1983) are the source of the pheromones. In a subsequent 



study, Walker et al. (1993) did not support this conclusion and argued instead that the 

aggregation pheromone was derived from, or associated with, fecal excreta and the male's 

integument. 

My objectives were to determine whether (1) females, males and nymphs produce 

and respond to aggregation pheromone; (2) the pheromone is perceived by olfaction or 

contact chemoreception; and (3) whether the insects' integument or fecal excreta constitute 

the source of the pheromone. 

2.2 Materials and methods 

2.2.1 Collection and maintenance of experimental insects 

EEWs were collected from apple orchards in Cawston BC in sheets of single-faced 

corrugated cardboard (45-60 x 15-20 cm wide; Shippers Supply Inc.; BC Canada) affixed to 

the base of trees in the evening and retrieved the next morning. Insects were kept in plastic 

cages (38 x 28.9 x 28.5 cm) with a chiffon cloth top for ventilation, and provisioned with dog 

food and corncob (Morallo-Rejesus et al., 2001). The cages were kept in Simon Fraser 

University's insectary at room temperature and a 17L:7D photoperiod (Wirth et al., 1998). 

2.2.2 General bioassay procedure 

EEWs naturally reside within confined spaces (Lamb and Wellington, 1974) and are 

very sensitive to air currents (Chant and McLeod, 1952). Thus, all experiments except 10-13 

were conducted in still air three-chambered glass olfactometers (Takhcs and Gries, 2001), 

with treatment or control stimuli randomly assigned to side chambers. Experiments were 

conducted at 15-25OC and 35-55% RH. Considering that EEWs forage at night and seek 

shelter during the day (Lamb 1975), experiments 10-17,22-29,30-33 (conducted in 2004) 

were started 1-2 hours before the beginning of the 7-hour scotophase. For each replicate, an 

16 



insect isolated without food for 3-6 hours was released into the central chamber of the 

olfactometer and its position was recorded 21 hours later in the next photophase. In 2005 and 

2006, the protocol for all other experiments was modified to expedite acquisition of data. 

Each insect isolated without food for 16-19 hours was released into the central chamber 5-6 

hours into the scotophase and its position was recorded 3 hours into the following 

photophase. For each replicate, a thoroughly cleaned olfactometer (washed in hot water with 

Liqui-Nox Critical Cleaning Liquid Detergent, Alconox, Inc. New York, NY 10016 and oven 

dried), a new stimulus and a new insect were used. Unless otherwise stated, test stimuli were 

accessible to bioassay insects. 

2.2.3 Preparation of test stimuli 

Treatment paper towel discs (8 cm in diam., Embassy Scott Paper Towel Ltd. Ont.) 

were exposed for four days to either 20 male, 20 female or 20 nymphs in a Petri dish (2.5 x 

8.5 cm diam.). Both treatment and control discs (the latter not exposed to insects) received 

0.50-0.60 g of dog food (No Name@ Special Dinner for Adult Dogs, Loblaws Inc., Montreal 

H4N 3L4 Canada) and braided cotton rolls (30 x 9.4 mm; Richmond Dental, P.O. Box 

34276, Charlotte, NC 28205) soaked with water in a glass vial (2 dram, A VWR company, 

VW609 1 OA 1, San Francisco, CA.). After three days, food and water were removed and 

discs transferred to olfactometers to test the response of bioassay insects. 

2.2.4 Evidence for pheromone 

Experiments 1-9 tested whether females, males and nymphs produce and respond to 

aggregation pheromone. Experiments 10- 13 tested whether the aggregation pheromone is 

perceived by olfaction. Test stimuli were prepared as described above but were tested 



inaccessible to bioassay insects in 2-choice olfactometers (Duthie et al., 2003). Experiments 

14-1 7 served as positive controls, testing the same stimuli accessible to insects. 

2.2.5 Source of pheromone 

Experiments 18-29 tested whether fecal excreta (= frass) are the source of the 

aggregation pheromone. Fresh (0-48 hours old) frass (1 g) from separate groups of males and 

females was collected for bioassays, briefly (12 hours) stored in vials at -14OC or extracted 

with 4 ml of acetonitrile (MeCN) or methylene chloride (MeCL2). After 0.5 hour of 

extraction, the supernatant was withdrawn and stored at -14OC. Aliquots of frass 

(experiments 18-21) or frass extract (experiments 22-29) were tested at 50 male or 50 female 

day equivalents (1 MDE = frass produced by I male during 24 hours). Aliquots were placed 

on paper towel discs (see above), whereas control discs received no frass (experiments 18-2 1)  

or the same amount and type of solvent (experiments 22-29). 

Experiments 30-34 tested whether the insects' integument is the source of 

pheromone. Integument washes were obtained by immersing 150 males, 150 females or 150 

nymphs in a vial with hexane (12-1 7 ml) kept on dry ice for 3 min and then at room 

temperature for I hour. Aliquots of 5 female, 5 male or 1 nymph equivalent of body wash (1 

NE = Volatiles washed off the body surfaces of 1 nymph) were pipetted on paper towel discs 

and bioassayed for their ability to elicit behavioral responses from bioassay insects. Control 

discs received the equivalent amount of solvent. 

2.2.6 Statistical analyses 

Insects responding to treatment and control stimuli were analyzed with the x2 

goodness-of-fit test, using Yates correction for continuity (a = 0.05) (Zar, 1999). Insects that 



did not choose the treatment or control stimulus were considered nonresponders and were not 

included in statistical analyses. 

2.3 Results 

Unmated female, male and juvenile EEWs all exhibited significant behavioral 

responses to paper towel discs previously exposed for four days to either female, male or 

juvenile conspecifics (Figure 2.1). Females and males significantly responded to paper towel 

discs previously exposed to females or males whether test stimuli were accessible or 

inaccessible except response of females toward inaccessible female exposed paper towel 

discs (Figure 2.2). Neither fresh male frass nor fresh female frass at 50 insect-day- 

equivalents elicited significant responses from females or males (Figure 2.3, experiments 18- 

29). Similarly, neither MeCN nor MeCL2 extracts of fresh female or fresh male frass elicited 

any behavioral responses from females or males (Figure 2.3). Finally, body washes of 

females at 5 FE failed to elicit responses from females or males (Figure 2.4; experiments 30, 

3 1). Body washes of males were indifferent to females and deterrent to males (Figure 2.4; 

experiments 32, 33), and body washes of nymphs were indifferent to nymphs (Figure 2.4, 

experiment 34). 

2.4 Discussion 

My data support the conclusion that female, male and nymph EEWs produce an 

aggregation pheromone that elicits behavioral responses from conspecfics regardless of 

developmental stage or sex. Similar results have been obtained with insects of diverse taxa, 

including German cockroaches, Blattella germanica L., (Ishii and Kuwahara 1967, 1968), 

firebrats, Thermobia dornestica (Packard) (Tremblay and Gries, 2003), silverfish, Lepisma 



saccharina L., and giant silverfish, Ctenolepisma longicaudata Escherich (Woodbury and 

Gries, 2007). 

Significant behavioral responses to both accessible and inaccessible test stimuli 

indicate that the pheromone is perceived by olfaction rather than contact chemoreception. 

Volatile pheromones mediating aggregation behavior may attract andlor arrest conspecifics. 

My still-air olfactometer experiments did not allow me to discern between attraction and 

arrestment responses. Anemotactic responses to pheromone would unambiguously 

demonstrate long-range attractiveness, but such responses would be difficult to obtain 

because EEWs avoid, and may even be disturbed by, moving air (personal observation). One 

might argue, however, that an attractive pheromone would be better suited than an arrestant 

pheromone to help EEWs find their familiar shelters after nocturnal foraging bouts. This 

argument is supported by reports that EEWs are attracted to shelters emanating pheromone 

(G. Karg, unpublished data, cited by Burnip et al., 2002). 

The source of the aggregation pheromone remains unclear. Reportedly, the 

pheromone is associated with, or derived from, the males' cuticular lipids or from fecal 

excreta (Walker et al., 1993) or tibia1 glands (Sauphanor, 1992). In my experiments, neither 

fresh frass from males or females nor solvent extracts thereof elicited positive responses from 

males or females (Figure 2.3). Similarly, body washes of females, males or nymphs elicited 

no attraction or arrestment responses (Figure 2.4). Indeed, body washes of males were 

deterrent to males. The controversial conclusions in earlier studies with respect to the source 

of the pheromone may be explained, in part, by the bioassay procedure and developmental 

stage of the bioassay insects. Bioassays with groups of insects, as conducted by Walker et al. 

( I  993), are more likely to yield a positive response to a test stimulus than bioassays with 

individual insects, as conducted in my study. Only one insect in a group needs to be 



sufficiently sensitive to perceive and respond to trace pheromone components emanating 

from a test stimulus. Pheromone or other signals from the responding insect would then elicit 

a follow response from group members. Moreover, adults bioassayed by Walker et al. ( 1  993) 

and nymphs bioassayed by Sauphanor ( 1  992) may produce and respond to different 

aggregation pheromones. 

It is also conceivable that the pheromone constitutes a multiple component blend, 

with individual components derived from various body parts, glands, or excreted metabolites. 

If so, strong responses from bioassay insects would be obtainable only when all pheromone 

components or all sources they originate from were present. Finally, the ratio of components 

extractable from the body surface or from glands may differ from that released by insects. 

Considering that the aggregation pheromone is volatile (Figure 2.2), analyses of 

headspace volatiles either from aggregating EEWs or their frequently used shelters 

appear promising to determine the constituents of the aggregation pheromone. The 

identification and testing of candidate pheromone components will be reported in Chapter 

3. Chapter 3 will also reveal whether nymphs and adults produce the same aggregation 

pheromone. 
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2.6 Figures 

Figure 2.1. Number of female, male or juvenile F. auricularia responding to an inaccessible 
paper towel disc previously exposed to female, male or juvenile F. auricularia. 
An asterisk (*) indicates a significant preference for a particular test stimulus 
(x2-test; *P < 0.05, **P < 0.01). Numbers in brackets indicate numbers of 
nonresponding insects. 
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Figure 2.2 Number of female or male F. auricularia responding to a paper towel disc 
previously exposed to female or male F. auricularia when stimulus contact was 
prohibited (top) or allowed. An asterisk (*) indicates a significant preference for 
a particular test stimulus (x2-test; *P < 0.05, **P < 0.01). Numbers in brackets 
indicate numbers of nonresponding insects. 
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Figure 2.3 Number of female or male F. auricularia responding to accessible fresh female 
or male fecal excreta (= frass) at 50 insect-day-equivalents (IDE) or solvent 
extracts thereof. In none of experiments 18-29 was the treatment stimulus 
preferred over the corresponding control stimulus (x2-test; *P < 0.05). Note: (1) 
Number in brackets indicate numbers of non-responding insects; (2) 1 IDE = 

amount of frass produced by one insect during 24 hours; (3) MeCN = 

acetonitrile, MeC12 = methylene chloride; (4) control stimuli in experiments 22- 
29 received the same amount of solvent (41 -79 pl) as treatment stimuli. 
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Figure 2.4 Number of female or male F. auricularia responding in experiments 30-33 to 
accessible body washes of conspecific females or males tested at five insect 
equivalents (IE), and number of nymph F. auricularia responding to body 
washes of conspecific nymphs tested at 1 IE. An asterisk (*) indicates a 
significant preference for a particular test stimulus (x2-test; *P < 0.05). 
Numbers in brackets indicate the number of non-responding insects; 1 IE = 

chemical constituents washed off the surface of one insect; in all experiments, 
treatment and control stimuli received the same amount of solvent (40-68 PI). 
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Chapter 3 
Identification and Testing 
of Candidate Pheromone Components 

3.1 Introduction 

European earwigs (EEWs) are well known for their gregarious behavior in shelters 

they seek during daytime (Carillo, 1985; Sauphanor and Sureau, 1993). This behavior has 

been attributed to an aggregation pheromone that may be derived from, or associated with, 

tibia1 glands (Sauphanor, 1992), fecal excreta or the males' integument (Walker et al. 1993). 

The pheromone is produced by, and elicits aggregation responses from, each developmental 

stage and sex (Chapter 2). It is perceived by olfaction (Chapter 2) and thus may help EEWs 

relocate shelters after nocturnal foraging bouts. If so, synthetic aggregation pheromone could 

be deployed as a bait to capture EEWs and alleviate their damage to fruits, vegetables and 

flowers, or to enhance their concentration and predatory role in crops vulnerable to aphids 

(Albouy and Caussanel, 199 1). 

The defense compounds of EEWs, 2-methyl- 1,4-benzoquinone and 2-ethyl- 1,4- 

benzoquinone, were identified 47 years ago (Schildknecht and Weis, 1960), but the 

aggregation pheromone is still unknown. Twenty straight chain or methylated hydrocarbons 

were identified in cuticle washes of males and females, but none elicited significant 

behavioral responses in laboratory bioassays (Walker et al., 1993). Similarly, eight fatty 

acids were identified in fecal excreta, but only stearic and palmitic acids elicited behavioral 

responses at the high dose of 50 insect equivalents (IE) per day (Walker et al., 1993). In 



Chapter 2, neither fresh EEW fecal excreta at 50 IE nor various solvent extracts thereof, 

elicited significant behavioral responses from bioassay insects. 

With mounting evidence that the EEW aggregation pheromone may be complex 

(Sauphanor and Sureau, 1993) and associated with more than a single source, I extracted and 

captured (airborne) volatiles from many different potential pheromone sources. In Chapter 3, 

I report the identification as well as laboratory and field testing of complex blends of 

candidate pheromone components. 

3.2 Materials and methods 

3.2.1 Acquisition of candidate pheromone components from potential 
pheromone sources 

Considering the controversy and uncertainty as to what constitutes the source of the 

EEW aggregation pheromone, volatiles from various potential sources of pheromone were 

acquired, including headspace volatiles from aggregating insects, extracts of fecal excreta 

and glands as well as washes of the insects' body surface. 

3.2.1.1 Acquisition of headspace volatiles 

Headspace volatiles were obtained by capture on Porapak Q and by solid-phase 

microextraction (SPME) (Millar and Haynes, 1998). For capture of volatiles on Porapak Q, 

2 170 males, 21 00 females or 400 nymphs were placed in a glass chamber (1 5 x 27 cm) fitted 

with paper towels and provisioned with dog food (3-5 g) and water as in rearing cages. 

Charcoal-filter air was drawn at 1LImin for 1-9 days through the chamber and a glass tubing 

(15 x 1 cm) filled with Porapak Q (50-80 mesh, Water associates, Inc., Milford, 

Massachusetts). Volatiles were captured on Porapak Q and eluted with 3 ml of pentane. 



Aerations of control stimuli were identical except that no EEWs were present in glass 

chambers. 

To acquire volatiles by SPME, the exposed fiber coated with 100 pm of polydimethyl 

siloxane (Supelco, Bellefonte, PA, USA) was inserted for 30 minutes through a chiffon cloth 

opening into a plastic cage (38 x 28.9 x 28.5 cm) harbouring circa 170 males, 170 females or 

170 nymphs. Volatiles were desorbed in the injection port (250•‹C) of a gas chromatograph 

(GC) or a GC mass spectrometer (MS). 

3.2.1.2 Extraction of potential pheromone sources 

Glands in the third and fourth abdominal segment of EEWs were considered another 

potential source of aggregation pheromone. These glands were excised from separate groups 

of 15-20 females, males and nymphs and extracted for 1 hour in separate vials containing 100 

pi of hexane or methylene chloride. The supernatant was withdrawn and stored at -14'C until 

use. 

The EEWs' integument and fecal excreta (= frass) are reported sources of 

aggregation pheromone (Walker et al., 1993). Fresh (0-48 hours old) frass (1 g) was 

collected from separate groups of females and males, and extracted for 30 minutes with 4 ml 

of methylene chloride. Integuments were extracted by immersing males, females or nymphs 

in separate vials with hexane kept on dry ice for 3 minutes and then at room temperature for I 

hour. The supernatant of frass extracts or integument washes was withdrawn and stored at - 

14•‹C until use. 

3.2.2 Analyses of potential pheromone sources 

Aliquotes of Porapak Q headspace, gland and frass extracts, integument washes as 

well as volatiles desorbed from SPME fibers were analyzed by coupled gas chromatographic- 
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electroantennographic detection (GC - EAD) (Arn et al., 1975; Gries et al., 2002), and GC- 

mass spectrometry (MS). GC-EAD analyses employed a Hewlett Packard (HP) 5890A gas 

chromatograph equipped with a GC column (30 m x 0.25 or 0.32 mm ID) coated with DB-5, 

DB-210 or DB-23 (J &W Scientific, Folsom, CA, USA). For GC-EAD recordings, the base 

of an antenna was carefully dislodged from an insect's head and placed into the opening of a 

glass capillary electrode filled with saline solution (Staddon and Everton, 1980). The tip of 

the antenna was then removed by spring microscissors (Fine Science Tools Inc., North 

Vancouver, British Columbia, CA) and the severed antenna placed into the opening of a 

second (indifferent) electrode. 

Compounds that elicited antenna1 responses were analyzed by: (1) full-scan electron- 

impact mass spectrometry with a Varian Saturn 2000 Ion Trap GC-MS fitted with a DB-5 

MS column (30 m x 0.25 mm) (J & W Scientific); (2) retention index calculations (Van den 

Do01 and Kratez, 1963); and (3) micro-analytical treatments. The identification of EAD- 

active compounds was confirmed by comparing their GC retention times and mass spectra 

with those of authentic standards. 

Synthetic standards were purified by high-performance liquid chromatography 

(HPLC), employing a Waters LC 626 HPLC equipped with a Waters 486 Variable- 

Wavelength UV visible detector set to 210 nm, HP Chemstation software (Rev. A. 07. Ol), 

and a reverse-phase Nova-Pak C18 column (60 A, 4 pm; 3.9 x 300 mm) eluted with 1 mllmin 

of 100% acetonitrile. 



3.2.3 Procurement and syntheses of candidate pheromone components 

Candidate pheromone components were purchased from various suppliers (Table 1) 

or were synthesizedt, if they were not commercially available. 

Ethyl- l,4-benzoquinone and propyl- l,4-benzoquinone were synthesised from 1,4- 

benzoquinone (Aldrich) by addition of ethyl- or propyl-free radicals generated from 

propionic or butyric acids in the presence of silver nitrate and ammonium persulfate in an 

aqueous solution, following the general method description by Jacobsen and Torssell (1972) 

and Jacobsen (1 977). Similarly, mixtures of all three methylethyl- l,4-benzoquinones, 

diethyl- l,4-benzoquinones, methylpropyl- l,4-benzoquinones, and ethylpropyl- 1,4- 

benzoquinones (see Table 1) were synthesized from monosubstituted methyl- or ethyl-1,4- 

benzoquinones, using the same synthetic approach. 2,3-dimethyl-l,4-benzoquinone and 

some ethyl-l,4-benzoquinone were synthesised from 2,3-dimethylphenol and 2-ethylanisole, 

respectively, using ceric ammonium nitrate [Ce(NH4)2(N03)6] as an oxidating agent in an 

acetonitrilelwater solution (Fisher and Henderson, 1985; Nojima et a]., 2005). Ethyl-] ,4- 

hydroquinone was synthesised from ethyl-l,4-benzoquinone by reducing it with sodium 

hydrosulfite in a waterlmethanol solution (Morrison and Boyd, 1983). 3,5,6-Trimethyl-2- 

cyclohexen-1-one was synthesized following the procedure by Aurell et al. (1 994). 

3.2.4 Laboratory and field experiments 

3.2.4.1 General design of laboratory olfactometer experiments 

EEWs usually reside within confined spaces with little or no air movement (Chant 

and McLeod, 1952; Lamb and Wellington, 1974). Thus, all experiments were conducted in 

still-air olfactometers. Considering that EEWs forage at night and seek shelter during the day 

* Syntheses were conducted by Dr. Crigori Khaskin (Cries-Laboratory) 
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(Lamb 1975), experimental replicates were started 1-2 hours before the onset of the 

photophase and terminated 3 hours later by recording the insects' position. Experiments were 

conducted at 15-25"C, 33-55 % relative humidity and a 17L:7D photoperiod. 

Three-chamber glass olfactometers (Takacs and Gries, 2001) were deployed for 

experiments 1-41. For each replicate, treatment and control stimuli were randomly assigned 

to a paper towel disc in each of the side chambers. Aliquots of extracts (treatment) or 

equivalent amounts of solvent (control) were pipetted onto the paper towel disc (8 cm diam.), 

which was then covered with an inverted open-fluted corrugated cardboard disc (6 cm diam.), 

serving as a shelter for the single insect released per replicate. A thoroughly cleaned 

olfactometer (washed in hot water with Liqui-Nox Critical Cleaning Liquid Detergent; 

Alconox Inc., New York, IVY 10016 and oven-dried at 10O0C), a new stimulus and a new 

insect were used for each replicate. The insect was isolated for 16-19 hours prior to the onset 

of a replicate. 

Plexiglas arena olfactometers (1.2 x 0.43 m) (Mistal et al., 2000) were deployed for 

experiments 42-44, maintaining the same abiotic conditions as in preceding experiments. For 

each replicate, a single insect isolated for 16- 19 hours was released in centre of the arena 1-2 

hours before the onset of the photophase and its position was scored 3 hours later. The 

treatment stimulus and the control stimulus (an equivalent amount of so1vent;lO PI )  were 

randomly assigned to one of two paper towel discs (8 cm diam.) placed on opposite sides of 

the arena 4-5 cm from the wall. Stimuli were pipetted onto the discs which were then 

covered with a single-faceted corrugated cardboard disc (6 cm diam.) with corrugations 

facing downwards. An insect found at the end of each replicate in or on a disc was considered 

a responder. For each replicate, a thoroughly cleaned (Purell hand sanitizer with moisturizers 

and Vitamin E) and air dried arena, new stimulus, and a new insect were used. 



3.2.4.2 Stimuli tested in laboratory olfactometer experiments 1-41 

Experiments 1 and 2 tested the response of females (experiment 1) and nymphs 

(experiment 2) to a synthetic blend (SB) (Table 1) of 30 candidate pheromone components 

identified in potential sources of aggregation pheromone. To determine the essential 

components in SB, experiments 3-16 tested solvent versus SBs lacking single or groups of 

organic chemicals, such as benzoquinones (experiments 3,4), ketones (experiments 5, 6), 

aldehydes (experiments 7, 8), acids (experiments 9,l O), ethyl hydroquinone (experiments 1 1, 

12), vanillin (experiments 13, 14) or the acetal conophtorin (experiments 15, 16). Taking 

into account that nymphs appeared to respond best to the SB lacking benzoquinones (see 

results of experiment 4), experiments 17-19 re-tested the response of nymphs to SBs lacking 

benzoquinones (experiment 17) or containing them at a reduced or altered ratio (experiments 

18, 19). 

Considering that both females and nymphs significantly responded to SBs lacking or 

containing lower quantities of benzoquinones (see results of experiments 3 ,4 ,  17, 18), 

follow-up experiments tested a new synthetic blend (NSB=SB without benzoquinones) and 

explored whether additional components could be deleted from the NSB without effecting its 

behavioral activity. Specifically, I tested whether NSBs would remain effective when 

lacking one of the three ketones (Fig. 3.4, experiments 20-27), one of the three aldehydes 

(Fig. 3.5, experiments 28-35), all saturated acids or the single unsaturated acid (Fig. 3.6, 

experiments 36-4 1). 

Taken into account that blends less complex than NSB failed to be bioactive in 

experiments 20-4 1, (except NSB lacking 3,5,6-trimethyl-2-cyclohexen- 1 -one elicited 

attractionlarrestment responses by nymphs) arena olfactometer experiments 42-44 tested the 

lVSB minus 3,5,6-trimethyl-2-cyclohexen-1 -one for its effect on females, males and nymphs. 



3.2.4.3 Field experiments 

Field experiments were conducted in two orchards with 12- to 13-year-old apple trees 

near Cawston, British Columbia, from July until the end of August 2006. Traps were made 

from a sheet (13 x 8 cm) of single faceted corrugated cardboard which was folded 

longitudinally to form two identical halves. Between them was placed a white paper towel 

disc (8 cm diam.) impregnated with a test stimulus. The folded sheet was rolled up and tied 

with a rubber band, forming a cylindrical harborage. One treatment and one control 

harborage were then randomly assigned to opposite sides of a tree trunk (1 0-1 5 cm diam.) to 

which they were affixed with a metal wire 30-38 cm above ground. Experimental trees were 

separated by 10-1 2 m. Experiments were started at 18:OO-2 1 :00 hours and terminated noon 

the next day by carefully removing each harborage and placing it into a Ziploc@ bag which 

was transferred into a deep freezer to kill insects before counting them. 

Field experiments 45-58 were conducted in separate sets with individual experiments 

in each set run in parallel. Experiments 45-47,48-51 and 52-53 all compared different doses 

of the NSB (stimuli S I-S4 in Table 3.2). Field-tested NSBs did not contain 3,5,6-trimethyl- 

2-cyclohexen-1-one which did not appear to contribute to the behavioral activity of the NSB 

in three-chamber olfactometer experiment 23. Considering that a dose of 10 NSB was 

sufficient to attractlarrest EEWs, and that adults did not appear to respond well to lures 

lacking benzoquinones, follow-up experiments 54-58 re-evaluated the role of the 

benzoquinones by testing 10 NSB (S2 in Table 3.2) 10 SB (having benzoquinones; S6 in 

Table 3.2), 10 SB with benzoquinones at 10% (S5 in Table 3.1) and 10 SB with 

benzoquinones at 10% and MBQ absent (S7 in Table 3.2). 



3.2.4.4 Statistical analyses 

In laboratory experiments, insects responding to treatment or control stimuli were 

analyzed with the ~2 goodness-of-fit test, using Yates correction for continuity (a = 0.05) 

(Zar, 1999). Insects that did not choose the treatment or control stimulus were considered 

nonresponders and were not included in statistical analyses. In field experiments, number of 

insects captured in traps baited with treatment or control stimuli were analyzed with 

Wilcoxin paired-sample test (a = 0.05) (Zar, 1999). 

3.3 Results 

GC-EAD and GC-MS analyses of all possible pheromone sources, including body 

washes (Figure 3. I), fecal excreta, leg and abdominal extracts as well as Porapak Q and 

SPME headspace volatiles of aggregating EEWs revealed 16 components that elicited 

responses from male or female antennae (Table 1). These included 2-methyl- and 2-ethyl- 

1,4-benzoquinos (MBQ, EBQ), four saturated acids, two unsaturated acids, one 

hydroquinone, three aldehydes, three ketones and one acetal. All except (Z,Z)-9,12- 

octadecadienoic acid, which was previously reported (Walker et al. 1993) and in my own 

preliminary experiments shown to be repellent, were considered candidate pheromone 

components and were included in a synthetic blend (SB). This blend also included 14 other 

benzoquinones which occurred in small or trace quantities. They were included in the blend 

because MBQ and EBQ are defense compounds and other benzoquinones could be attractive 

at small quantities. Some components, such as MBQ and EBQ, were detected in all sources, 

whereas other components, such as acids, were present only in extracts of fecal excreta or in 

cuticle washes (Table 1). 

In three-chamber olfactometer experiments 1 and 2, the 30-component SB (Table 3.1) 

elicited significant behavioral responses from females, but not from nymphs (Figure 3.2). In 

40 



contrast, the SB lacking benzoquinones induced attraction or arrestment responses by both 

females and nymphs. SBs lacking ketones, aldehydes, acids, ethyl hydroxyquinone, vanillin 

or conophtorin were not behaviorally active (Figure 3.2). Even though vanillin did not 

appear to be bioactive in experiment 13 ( Fig. 3.2), subsequent experiments (data not shown) 

revealed that it was an important constituent of SB. SBs lacking benzoquinones or containing 

them at a lower quantity elicited significant responses from nymphs, whereas the SB with an 

altered ratio of benzoquinones did not (Figure 3.3). Both the new synthetic blend (NSB = SB 

minus benzoquinones) and NSB lacking 3,5,6-trimethyl-2-cyclohexen- 1 -one induced 

significant responses from nymphs but not from females (Figure 3.4, experiments 20-23). 

NSBs lacking geranylacetone or sulcatone elicited no responses from females and nymphs 

(Figure 3.4, experiments 24-27). Both females and nymphs significantly responded to the 

NSB, but not to NSBs lacking phenylacetaldehyde, (E)-2-nonenal or (E,E)-2,4-nonenal 

(Figure 3.5, experiments 28-35). Similarly, both females and nymphs responded to the NSB 

but not to NSBs lacking either the four saturated acids or (2)-9-hexadecenoic acid (Figure 

3.6). 

In arena olfactometer experiments 42-44, the NSB minus 3,5,6-trimethyl-2- 

cyclohexen-1 -one elicited significant responses from nymphs, but not from females or males 

(Figure 3.7). 

In early season (16-17 July) field experiments 45-47 (Table 3.3), numbers of EEWs 

in corrugated cardboard bands were too low to reveal treatment effects. In experiments 48- 

5 1, bands treated with 1 IVSB or 10 NSB attractedlarrested significantly more nymphs than 

did unbaited control bands (Table 3.3). The higher doses of 100 NSB or 1000 NSB, in 

contrast, were not effective. No bait was significantly effective for adult females or adult 

males. In experiments 52-53, significantly more nymphs resided in bands treated with 10 



NSB or 100 NSB than in untreated control bands. Significantly more males but not more 

females were present in bands baited with 10 NSB compared to control bands. Conversely, 

significantly more females but not more males were present in bands baited with 100 NSB. 

In experiments 54-58, when almost all nymphs had become adults, bands baited with 10 NSB 

had no significant effect on females or males. However, all baits containing benzoquinones 

attractedlarrested significantly more females and more males than did control bands. 

3.4 Discussion 

My data support the conclusion that the aggregation pheromone of the EEW is indeed 

complex. Seven groups of organic compounds (benzoquinones, ethylhydroquinone, fatty 

acids, vanillin, aldehydes, ketones, acetal) from one or more of five sources (headspace 

volatiles of aggregating insects, fecal excreta, tibia1 and abdominal glands, integument) 

appeared to contribute to the behavioral activity of the synthetic blend. However, whether 

each compound in each group, such as each of the 16 benzoquinones or each of the four 

saturated acids, is part of the pheromone blend will have to be determined in additional 

bioassays. 

The presence or absence of compounds in various sources is to be interpreted with 

caution. For example, 2-methyl- l,4-benzoquinone and 2-ethyl- l,4-benzoquinone were 

detected in all sources, but due to their abundance in headspace volatiles may have 

"contaminated" some sources rather than originated from them. Conversely, fatty acids were 

not detected in headspace volatiles likely not because they were absent but because they tend 

to gas chromatograph poorly, rendering small quantities undetectable. 

The role of the 1,4-benzoquinones in the EEW communication system seems to be 

amount- and context-specific. 2-Methyl-l,4-benzoquinone and 2-ethyl-1 4-benzoquinone are 



reported as defense compounds (Schildknecht and Weis, 1960). Release of these components 

in my study could be provoked simply by exposing EEWs to an air current, even as faint as 

that required for Porapak capture of headspace volatiles. However, these benzoquinones and 

others (Table 3.1) were also present in SPME-acquired volatiles of EEWs that aggregated in 

enclosed shelters with no apparent disturbance. Moreover, synthetic blends lacking any 

benzoquinones failed to elicit: ( I )  consistent significant responses from females in three- 

chamber olfactometer experiments 3, 20,28 and 36; (2) any significant responses from males 

and females in arena olfactometer experiments 42 and 44; and (3) consistent significant 

responses from females and males in field experiments 48-53. In contrast, all baits emitting 

benzoquinones in field experiments 54-58 (Tables 3.2, 3.3) were significantly more 

attractivelarrestant to females and males than were their corresponding controls. The one bait 

lacking benzoquinones in experiment 55 had no significant effect on females or males 

(Tables 3.2, 3.3). All this evidence suggests that benzoquinones are components of the 

aggregation pheromone that is attractivelarrestant to adult females and males. Whether their 

behavioral activity is attributable to moderate (instead of large) amounts of the defense 

compounds 2-methyl-l,4-benzoquinone and 2-ethyl- l,4-benzoquinone or to one or more of 

the other 14 benzoquinones is yet to be determined. At least 2-methyl-I ,4-benzoquinone 

could be absent from a synthetic lure without affecting its behavioral activity (Table 3.3, 

experiment 57, 58). 

The fact that benzoquinones are components of the EEW aggregation pheromone is 

not that surprising in light of prior findings of benzoquinones as pheromones. Gentisyl 

quinone isovalerate is the female-produced sex pheromone of the German cockroach, 

Blattella germanica (Nojima et al., 2005), and 1,4-benzoquinone is a sex pheromone 

produced by females of the forest cockchafer beetle Melolontha hippocastani which 



enhances the attraction of males to plant volatiles induced by feeding females (Ruther et al., 

2000; 2001). 

Females, males and nymphs have been shown to produce and respond to aggregation 

pheromone (Chapter 2). In this chapter, I provide evidence that there could be nymph- and 

adult-specific pheromone blends. Unlike adult females and males, nymphs responded well in 

all laboratory experiments and in field experiments 48-53 to synthetic blends lacking 

benzoquinones. That they were not repelled by blends containing benzoquinones at a 

moderate dose (Figure 3.3, experiment 18) may allow them to co-inhabit shelters with adult 

females and males that seem to require benzoquinones as pheromone components. Stage- 

specific pheromonal communication has also been reported in the common bed bug, Cimex 

lectularius, where nymphs respond to nymph-produced contact aggregation pheromone and 

females and males respond to male-produced contact aggregation pheromone (Siljander et 

al., 2007). If EEWs indeed deploy stage-specific aggregation pheromones, this could 

explain, in part, why Sauphanor (1992) who bioassayed nymphs, and Walker et al. (1993) 

who bioassayed adults, arrived at different conclusions as to what constitutes the source of 

the aggregation pheromone. 

In conclusion, this Chapter provides evidence that EEWs may have nymph- and 

adult-specific aggregation pheromones. As predicted (Sauphanor and Sureau, 1993), the 

pheromone(s) appears to be very complex, although many more laboratory and field 

experiments are needed to determine all essential components. The complexity of the 

"essential-component blend" will determine whether commercial lures will be affordable to 

trap EEWs or enhance their predatory role (Albouy and Caussanel, 199 1). 
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Table 3.3 Stimuli tested and number of females, males, and nymphs responding to 
treatment and control stimuli in field experiments 45-58. 

Date 
Exp'# (2006) 

N Stimuli (S) testeda1b7cqd Number of insects respondingd 

Females Males Nymphs All 

S: C S: C S: C S: C 

July16 15 1 NSB(S1) 5: 10 5: 8 11: 8 21:26 

July 16 15 lONSB(S2) 5: 6 3: 3 12: 7 20: 16 

July 16 15 lOONSB(S3) 13: 8 9: 1 16: 9 38:18* 
- 

July 30 16 1 NSB (Sl) 24: 12* 13: 10 126: 55* 163:77* 

July 30 16 10 NSB (S2) 20: 7 24: 8 136: 65* 180: 80* 

July 30 16 100 NSB (S3) 18: 8 15: 6 119: 74 152: 88** 

July 30 16 lOOONSB(S4) 29: 13 16: 8 70: 51 115:72 

Aug. 6 31 10 NSB (S2) 27: 17 24: 6* 55: 25* 106:48** 

Aug. 6 31 100 NSB (S3) 36: 16* 16: 15 53: 29 * 105:60* 

54 Aug. 18 30 

5 5 Aug. 

5 6 Aug. 

5 7 Aug. 

10 SB with BQ 
36: 11** 28: 8* 1: 0 65: 19*** 

at 10% (S5) 

18 30 10 SBwith BQat 10% 52: 16* 40: 12** 2: 1 94: 29** 
minus MBQ (S7) 

58 Aug. 18 30 10 SB minus MBQ (S8) 57: 21** 51: 37** 0: 3 108: 61* 

'SB = Synthetic blend (see Table 3.1) 
~ S B  = SB minus benzoquinones (BQ) 
cComposition of treatment (T) stimuli 1-8 as listed in Table 2 
d ~ h e  equivalent amount of solvent served as control stimulus in all experiments 
'Most nymphs had become adults in experiments 54-58 
f P <0.05; **P <O.O 1 ; ***P <O.OO 1 



3.7 Figures 

Figure 3.1 Flame ionization detector (FID) and electroantennographic detector (EAD: 
female F. auricularia antenna) responses to aliquots of body washes of male 
and female F. auricularia. Chromatography: Hewlett Packard 5890A gas 
chromatograph equipped with a DB-5 coated column (30 m x 0.25 mm ID); 
linear flow velocity of carrier gas: 35 cmlsec; injector and FID temperature: 
220•‹C; temperature program: 2 min at 50•‹C, 1O0C/min to 280•‹C. Numbers of 
components in the FID trace refer to compounds listed in Table 3.1. 



Retention time (rnin) 



Figure 3.2 Number of female and nymph F. auricularia responding in three-chamber 
olfactometers to a synthetic blend (SB; see Table 3.1) or to SBs from which 
specific groups of organic compounds had been deleted. An asterisk (*) indicates 
a significant preference for a particular test stimulus (x2-test; *P < 0.05). 
Number in brackets indicate number of nonresponding insects. 
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Figure 3.3 Number of nymph F. auricularia responding in three-chamber olfactometers to a 
synthetic blend (SB; see Table 3.1) with benzoquinones absent, at reduced 
amount or altered ratio. An asterisk (*) indicates a significant preference for a 
particular test stimulus (x2-test; *P < 0.05). Numbers in brackets indicate 
numbers of nonresponding insects. 
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Figure 3.4 Number of female and nymph F. auricularia responding to a new synthetic 
blend WSB = SB (see Table 3.1) minus benzoquinones] or NSBs lacking one of 
the three ketones. An asterisk (*) indicates a significant preference for a 
particular test stimulus (x2-test; *P < 0.05). Numbers in brackets indicate 
numbers of nonresponding insects. 
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Figure 3.5 Number of female and nymph F. auricularia responding in three-chamber 
olfactometers to a new synthetic blend [NSB = SB (see Table 3.1) minus 
benzoquinones] or IVSBs lacking one of the three aldehydes. An asterisk (*) 
indicates a significant preference for a particular test stimulus (x2-test; *P < 
0.05). Numbers in brackets indicate numbers of nonresponding insects. 
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Figure 3.6 Number of female and nymph F. auricularia responding in three-chamber 
olfactometers to a new synthetic blend [NSB = SB (see Table 3.1) minus 
benzoquinones] or NSBs lacking the four saturated acids or the unsaturated acid 
(2)-9-hexadecenoic acid. An asterisk (*) indicates a significant preference for a 
particular test stimulus (x2-test; *P < 0.05). Numbers in brackets indicate 
numbers of nonresponding insects. 
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Treatment Number of females Number of nymphs 
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Figure 3.7 Number of adult female, adult male and nymph F. auricularia responding in 
arena olfactometers to a new synthetic blend WSB = SB (see Table 3.1) minus 
benzoquinones minus 3,5,6-trimethyl-2-cyclohexen-1-one]. The asterisks (**) 
indicate a significant preference (x2-test; * P  <0.01) for the test stimulus. 
Numbers in brackets indicate the numbers of nonresponding insects. 
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Chapter 4 
Concluding Summary 

European earwigs reportedly use an aggregation pheromone but there is controversy about its 

source and which are its constituents. Hence, I investigated whether each developmental 

stage and sex produce and respond to this pheromone and analyzed its chemical constituents. 

Based on these laboratory analyses, and laboratory and field experiments the following 

conclusions can be drawn: 

1) Dual-choice still-air olfactometer experiments revealed that females, males and nymphs 

produce and respond to an aggregation pheromone. 

2) The aggregation pheromone is airborne and perceived by olfaction. 

3) Neither frass nor cuticle are the source of the aggregation pheromone. 

4) Because of uncertainty and controversy as to what constitutes the source of the 

aggregation pheromone, candidate pheromone components were obtained from all 

potential sources, including headspace volatiles (collected by Porapak Q capture and 

solid phase microextraction), extracts of abdominal and tibia1 glands, and of frass as 

well as washes of the insects' integument. 

5 )  Aliquots of all extracts were analyzed by gas chromatographic-electroantennographic 

detection (GC-EAD) and GC-mass spectrometry. 

6) A complex synthetic blend (SB) of 30 candidate pheromone components, including 16 

benzoquinones, four saturated acids, one unsaturated acid, one hydroquinone, vanillin, 

65 



three aldehydes, three ketones and one acetal significantly attractedlarrested females and 

nymphs in still-air dual-choice three-chamber olfactometer experiments. 

7)  To determine the essential compounds in the SB, SBs that lacked a specific group of 

organic chemicals, such as acids or aldehydes, were tested in three-chamber 

olfactometers. 

8) The SB lacking benzoquinones still elicited significant behavioral responses from 

nymphs in three-chamber and arena olfactometers experiments as well as field 

experiments. 

9) SBs lacking benzoquinones elicited inconsistent responses from females in three- 

chamber olfactometers, no responses from females and males in arena olfactometers, 

and inconsistent or no responses from females and males in field experiments. 

10) Results described under points 8 and 9 suggest that nymphs and adults may use different 

aggregation pheromones and that one or more benzoquinones are constituents only of 

the adult-specific aggregation pheromone. 

1 1 )  Additional elaborate experiments are required to determine the essential components of 

the aggregation pheromone deployed by nymphs and adults. Results of these 

experiments will determine whether a synthetic blend may become commercially viable 

as a trap bait to help control earwig populations or to enhance their predatory role as 

biological control agents. 


