
A DYNAMIC RESOURCE SCHEDULING FRAMEWORK

APPLIED TO RANDOM DATASETS IN THE

SEARCH AND RESCUE DOMAIN

Wolfgang Haas

B.Sc., Brock University, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

MASTER OF SCIENCE

in t h e School

of

Computing Science

@ Wolfgang Haas 2007

SIMON FRASER UNIVERSITY

Fall 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Wolfgang Haas

Master of Science

A Dynamic Resource Scheduling Framework applied to Ran-

dom Datasets in the Search and Rescue Domain

Examining Committee: Dr. David Mitchell, Professor, Computing Science

Simon Fraser University

Chair

Dr. Bill Havens, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Fred Popowich, Professor, Computing Science

Simon Fraser University

Supervisor

Date Approved:

Dr. Dirk Beyer, Professor, Computing Science

Simon Fraser University

SFU Examiner

September 13, 2007

11

S I M O N FRASER U N I V E R S I T Y
L I B R A R Y

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the tile page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/l892/112>) and, without changing
the content, to translate the thesidproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007

Abstract

Dynamic scheduling refers to a class of scheduling problems in which dynamic events, such

as delaying of a task, occur throughout execution. We develop a framework for dynamic

resource scheduling implemented in Java with a random problem generator, a dynamic sim-

ulator and a scheduler. The problem generator is used to generate benchmark datasets that

are read by the simulator, whose purpose is to notify the scheduler of the dynamic events

when they occur. We perform a case-study on the Coastwatch problem which is an over-

subscribed dynamic resource scheduling problem in which we assign unit resources to tasks

subject to temporal and precedence constraints. Tabu search is implemented as a uniform

platform to test various heuristics and neighbourhoods. We evaluate their performance on

the generated benchmark dataset and also measure schedule disruption.

Keywords: dynamic scheduling; scheduling framework; problem generator; tabu search;

scheduling algorithms

To my family

A problem worthy of attacks proves it's worth by hitting back!

- Paul Erdos (Hungarian mathematician, 1913-1 996)

Acknowledgments

I would like to thank my Senior Supervisor Dr. Bill Havens for introducing me to the world of

scheduling and constraint programming by teaching such a fun and challenging course. I am

also grateful to him for allowing me to work on the Coastwatch project and his assistance

and encouragement throughout the whole thesis process.

I would like to thank my Supervisor, Dr. Fred Popowich, for his numerous insights and

my Examiner, Dr. Dirk Beyer, for agreeing to examine my thesis. I would like to thank

the members of the Intelligent Systems Laboratory, especially Saba Sajjadian, and the

members of the Natural Language Laboratory for fruitful discussions. I am also grateful to

the Computing Science department for forcing me to attend seminars of the different labs,

which helped me tremendously in finding the right area of research for myself.

I would like to thank the Natural Sciences and Engineering Research Council of Canada

(NSERC) for the generous financial support they have provided in the form of Undergrad-

uate and Postgraduate Scholarships.

I would like to thank the Computer Science department a t Brock University for pro-

viding such a wonderful undergraduate education. I am especially grateful to Dr. Sheridan

Houghten for seeing potential in me and letting me work as a research assistant. I am also

grateful to Dr. Brian Ross and Dr. Tom Jenkyns for their excellent teaching and encourage-

ment to undertake graduate studies.

Last but definitely not least, I would like to thank my family and friends. I am very

grateful to my parents Edith and Helmuth and my siblings Claudia, Elisabeth, Christian,

Michael and Alexander for their endless love, support and encouragement. I am very grateful

to Wendy for her continuous love and support throughout my graduate studies and for many

more years to come.

Contents

Approval

Abstract iii

Dedication

Quotation v

Acknowledgments vi

Contents

List of Tables

List of Figures

vii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Contributions . 4

1.4 Thesis Outline . 4

2 Literature Review 6

2.1 Problem Generators . 6

2.1.1 Policella & Rasconi . 8

2.2 Scheduling Algorithms . 10

2.2.1 Roberts et al. 10

vii

. 2.2.2 Kramer & Smith 12

. 2.2.3 Kramer et a1 15

3 Dynamic Resource Scheduling Model

. 3.1 Constraints

. 3.1.1 Time window constraints

. 3.1.2 Precedence Constraints

. 3.1.3 Resource constraints

. 3.2 Scheduling problems

3.2.1 Bases .
3.2.2 Resources .

. 3.2.3 Missions & Tasks

. 3.2.4 Capabilities

. 3.3 Dynamic Scheduling Events

. 3.3.1 Regular Events

. 3.3.2 Task Events

. 3.3.3 Mission Events

4 Dynamic Resource Scheduling Framework

. 4.1 Random Problem Generator

4.1.1 Motivation .
4.1.2 Input Files .

. 4.1.3 Dynamic Events

. 4.1.4 Mission Event Times

. 4.1.5 Time Windows

. 4.2 Dynamic Simulator

. 4.2.1 Simulator Model

. 4.2.2 Visualization Tool

4.3 Scheduler .
. 4.4 Other Issues

. 4.4.1 Precedence constraints

. 4.4.2 Rescheduling of Tasks

5 Case-Study: Coastwatch 5 2

. 5.1 Problem definition 52

. 5.2 Description of Tasks and Resources 53

5.2.1 Tasks . 53

. 5.2.2 Resources 54

. 5.3 Benchmark Datasets Generation 57

. 5.3.1 Dynamic Events 58

5.3.2 Tasks . 59

6 Algorithms 62

. 6.1 Tabu search platform 63

. 6.2 Neighbourhoods 63
. 6.3 Scheduling Heuristics 64

. 6.4 Discussion 65

7 Evaluation & Experimental Results 67

. 7.1 Evaluation Criteria and Methodology 67

. 7.2 Implementation 68

. 7.3 Experimental Results 69

. 7.3.1 Experiment 1 - Neighbourhoods 69

. 7.3.2 Experiment 2 . Scheduling heuristics 75

8 Conclusion 80
. 8.1 Thesis Summary 80

. 8.2 Contributions 82
. 8.3 Future Research 82

. 8.4 Concluding Remarks 83

A Problem Generator Input Files 85

. A . l Sample Scheduling Problem file: 85

. A.2 Sample Mission and Event file: 86

B Experimental Results 88

Bibliography 9 2

List of Tables

Average performance of AddOnly for 50, 75 and 100 iterations. 71

Average performance of AddOnly, Restricted and Full for 100 iterations . . . 73

Average performance of AddOnly, Restricted and modified Restricted for 50

iterations . 74

Paired sample t-test for AddOnly, Restricted, modified Restricted and Full for

. 50 iterations. 75

Average performance of Random, MaximizeObjective, MinimizePositioning-

Time and SpreadOutResources for 100 iterations 77

Average performance of Random, MaximizeObjective, MinimizePositioning-

Time, SpreadOutResources and MaxObj+MinimizeResponseTime for 100 it-

erations . 78

Paired sample t-test for Random, MaximizeObjective, MinimizePositioning-

Time, SpreadOutResources and MaxObj+MinimizeResponseTime for 100 it-

erations . 79

List of Figures

2.1 Conflict Sets in MissionSwap . 14

4.1 Overview of the Dynamic Resource Scheduling Framework 31

4.2 Dynamic simulator Model . 43

4.3 Screenshot from Visualization Tool - View from top 46

4.4 Screenshot from Visualization Tool . View from other aircraft 47

4.5 Gantt chart of tasks scheduled on same resource 49

4.6 Gantt chart after change duration event . 49

5.1 Picture and model of an Aurora aircraft . 55

5.2 Picture and model of a Cormorant helicopter 55

5.3 Picture and model of a Cyclone helicopter . 56

5.4 Picture and model of an Eagle Unmanned Aerial Vehicle 56

5.5 Picture and model of a Frigate ship . 57

7.1 Runtime behaviour of AddOnly on Dataset #1 using 100 iterations 70

7.2 Performance comparison of AddOnly for 50. 75 and 100 iterations 71

7.3 Performance comparison of AddOnly. Restricted and Full for 50 iterations . . 72

7.4 Performance comparison of AddOnly. Restricted and Full for 100 iterations . 73

7.5 Performance comparison of AddOnly. Restricted and modified Restricted for

50 iterations . 74

7.6 Performance comparison of Random. MaximizeObjective. MinimizePosition-

ingTime and SpreadOutResources for 100 iterations 76

7.7 Schedule disruption of Random. Maximizeobjective. MinimizePositioning-

Time and SpreadOutResources for 100 iterations 77

Chapter 1

Introduction

1.1 Motivation

Scheduling is the science of allocating limited resources to competing tasks over time [13].

It is a very important class of combinatorial search problems with many different real-world

applications. In general, scheduling problems can be described as follows: Given a set of

resources and a set of tasks, find a schedule that satisfies a set of constraints and optimizes

some objective function. A schedule is a mapping of tasks to time intervals on resources

[ll]. Examples of constraints include precedence constraints, which control the amount of

time that has to elapse between the starting times of two different activities, or temporal

constraints, which ensure that an activity is executed within a given time frame.

A lot of research has been done in the area of scheduling. Probably the most famous

class are job-shop scheduling problems [2:l.], in which one has to assign a set of jobs to a

set of machines in order to minimize the time at which the last job is completed. A real-

world example for that would be a factory which develops a number of different products

each day. Each product is developed by performing a sequence of tasks which are totally

ordered and can only be executed on designated machines. The goal is to minimize the

latest completion time among all products in order to send factory workers home as early as

possible to minimize total wages. The drawback with job-shop and many other well-studied

scheduling problems is that they do not account for machine failures or other events that

might occur while tasks are being executed. Instead, everything is known ahead of time

and nothing unpredictable will ever happen. But in the real-world there exists no such

guarantee. The research described in this document takes a different approach: we deal

CHAPTER 1. INTRODUCTION 2

with so-called dynamic scheduling problems in which many different kinds of unexpected

events will occur throughout execution of the tasks. Consequently, these problems are much

more realistic and are closely related to scheduling problems encountered in the real-world.

We study the Canadian CoastWatch Dynamic Resource Scheduling Problem, in short

CoastWatch. It is an oversubscribed dynamic multi-mode scheduling problem with unit

resources and lies in the Search & Rescue domain. Missions are composed of tasks which

have to be executed during a specified time interval. Tasks are semi pre-emptive [12],

meaning they can be interrupted but must be restarted completely instead of resuming the

remaining workload. CoastWatch datasets simulate a typical day for the Canadian Coast

Guard, where officers assign resources (planes, helicopters, ships, ...) to execute several

different kinds of missions (patrol, transport, ...). The most important kind of missions are

Search & Rescue when a human being needs to be rescued due to some unfortunate incidents

experienced by a crew onboard a ship or aircraft out in the ocean. The objective of the

CoastWatch problem is to maximize the sum of priorities of all accomplished missions.

Unfortunately, there was no actual data available for this dynamic scheduling problem

and consequently our first task was to generate our own datasets. We studied the scheduling

literature in an attempt to find a dynamic problem generator that we can run in order to

create a CoastWatch benchmark dataset. However, we were not able to find one that we

could adapt easily for our specific dynamic scheduling problem. As a result, our research

goal is two-fold in that we first develop a problem generator that can be used to generate

datasets for the CoastWatch problem, in order to achieve our second research goal of testing

various scheduling algorithms and compare their performance.

In dynamic scheduling problems, the addition of a new mission or the occurrence of a

dynamic event may cause a lot of disruption in the schedule. On a busy resource, it is

very likely that a delay of a mission propagates to other missions that are assigned to be

executed afterwards. Even worse than that, if we are dealing with time window constraints

(as in CoastWatch), then it is possible that a mission can no longer be executed and might

be reassigned to another resource. Although schedule disruption is not our main objective,

we would still prefer a scheduling algorithm that minimizes this objective. In this way, the

scheduling algorithm wouldn't completely reassign all missions to other resources every time

a dynamic event occurs.

CHAPTER 1. INTRODUCTION

1.2 Approach

We develop a dynamic resource scheduling framework which can be applied to many different

kinds of dynamic resource scheduling problems. It is implemented in Java and has three

components: a random problem generator, a dynamic simulator and a scheduler.

The problem generator is a stand-alone component and can be used to create instances

of the problem. It may be turned off a t any time in order to use the framework simply

for solving datasets and running scheduling algorithms on them. The problem generator

provides great flexibility in generating datasets for dynamic resource scheduling problems.

The specification of the problem and the parameters for all missions and events are passed

into the problem generator. This makes it as general as possible in order to allow for

generating benchmark datasets with very different kinds of characteristics. Changing a

single parameter value for an event might cause the dynamic event to have a very different

influence on the whole scheduling problem. By inputting the problem specification we ensure

that the problem generator can be applied easily to different dynamic scheduling problems.

This is achieved by simply making the appropriate changes in the specification file.

Dynamic events that are generated by the problem generator include:

0 resources can be either added or deleted from the problem

new missions and tasks can be added to the problem

tasks can be completed earlier or later than anticipated

0 time window constraints on tasks can be altered

A resulting dataset is parsed by the dynamic simulator, which creates all tasks and

events at the appropriate time. This simulator is necessary to hide all future events from the

scheduler. Every time an event occurs, the scheduler is invoked in order to make adjustments

to the schedule to accommodate the new event. A special feature of the simulator is its

visualization tool that creates an animation of the scheduling problem on Google Earth. One

can watch resources as they are moving around to execute missions and see the decisions

made by the scheduler.

The scheduler is a platform for scheduling algorithms and communicates with the sim-

ulator. To test an algorithm on the generated datasets, one would simply implement the

new algorithm in a class. The scheduler component also provides several useful methods.

CHAPTER 1. INTRODUCTION 4

We first run the random problem generator to create a benchmark dataset for the Coast-

Watch problem. We use Tabu search as a uniform platform to test various scheduling heuris-

tics on the generated problem instances, because stochastic local search algorithms are very

well suited for hard scheduling problems [ll]. In addition to that, we experiment with dif-

ferent search neighbourhoods. We evaluate the performance of our runs on the generated

datasets and also measure their resulting schedule disruption.

1.3 Contributions

We develop a dynamic resource scheduling framework which is composed of three compo-

nents: a random problem generator, a dynamic simulator and a scheduler. It can be applied

to many different kinds of dynamic resource scheduling problems.

We develop a random problem generator which generates benchmark datasets for dy-

namic resource scheduling problems. It is very easy to add new mission types and dynamic

events, because it only requires minor changes in its input files. The use of parameters

provides great flexibility in changing the characteristics of the generated instances.

We develop a dynamic simulator which is used to run dynamic scheduling datasets.

It hides future events from the scheduler and contains a visualization tool to create an

animation of the executing schedule on Google Earth.

We implement Tabu search as a uniform platform to test various scheduling heuristics

on the Coastwatch problem. Additionally, we experiment with different search neighbour-

hoods.

1.4 Thesis Outline

The remainder of this thesis is outlined as follows. In Chapter 2, we give a literature

review of topics related to our work. First, we introduce other problem generators that

exist within the community. We then talk about several scheduling algorithms that have

proven to be successful for similar oversubscribed problems. Chapter 3 defines a general

model for dynamic resource scheduling problems, which acts as the basis for our framework.

In Chapter 4, we first give an overview of our dynamic resource scheduling framework

and then explain all the components in detail. We point out challenges that we faced

during implementation of our framework and explain our solutions. Chapter 5 defines

CHAPTER 1. INTRODUCTION 5

the Coastwatch scheduling problem and lists all the different entities. We then give a

description of various heuristics and neighbourhoods that we run on our Tabu search in

Chapter 6. The next chapter analyzes the performance of the different variations of the

algorithm and includes discussion of experiment results. In Chapter 8 we give concluding

remarks and suggest possible future work.

Chapter 2

Literature Review

2.1 Problem Generators

For combinatorial problems, performing a complete evaluation of the entire search space is

only feasible for very small and often uninteresting datasets. Typically a stochastic local

search technique such a s Tabu search or Iterative improvement is used instead [20] [22]

[24]. More sophisticated so-called hybrid algorithms combine the systematic approach of

constructive search algorithms while incorporating the heuristic guidance of local search [8]

[19]. When deciding on a local search method to use for a combinatorial search problem, it

is never easy to select a specific algorithm, because there are so many different local search

methods that have been applied very successfully before. If we could understand why certain

algorithms work very well on specific problems but not on others, then the choice would

be much easier. This is one of the main reasons for the importance of problem generators.

By generating datasets according to desired characteristics we would be able to characterize

local search algorithms and determine when they should be used. Recently, Kramer et al.

[16] have used this idea in an attempt to understand when algorithms using permutation-

based representations perform better than schedule-based ones for oversubscribed scheduling

problems (see Section 2.2.3 for more information). The other main motivation for developing

problem generators comes from the fact that it can be very difficult to obtain real-world

instances for combinatorial search problems.

Many problem generators are written as part of a research project and are tailored

specifically towards a studied problem. For example, Jang 1141 as well as Barbulescu et al.

[:I.] developed their own instances for the Air Force Satellite Control Network (AFSCN)

CHAPTER 2. LITERATURE REVIEW 7

problem. Both approaches analyzed existing real-world datasets in order to determine com-

mon characteristics of the given problem. This included computing mean durations and

time windows for missions or studying different customers and learning their preferences

regarding what type of missions they request. Unfortunately, it is very unlikely that such a

problem generator can be applied to a different problem with minimal effort. While there

exist more general problem generators that can be used to generate static datasets for an

entire class of problems (e.g. project scheduling problems [5] [15]), no-one, to the best of our

knowledge, has tried to come up with a problem generator for dynamic scheduling problems

until recently [23].

Elkhyari et al. [6] studied the class of dynamic resource constraint project scheduling

problems (RCPSP), in particular the university timetable problem. Since there existed

no such publicly available dynamic datasets, the authors took existing static benchmark

datasets for the RCPSP problems. They used explanation-based constraint programming,

where nogoodsl are derived during search when the assignment of a subset of the variables

leads to a contradiction. Erasing these explanations when they are no longer relevant to

the current variable assignment, guarantees polynomial space complexity. Nogoods are very

powerful, not only do they enable Systematic Local Search [8] to have the systematicity of

complete search methods, they also allowed Elkhyari et al. to solve the dynamic RCPSP in

a more simplified manner.

If an unexpected event leads to an addition or a modification of a constraint in the

system, then the explanations allow them to identify other constraints that were responsible

for the contradiction. As a result, the process of repairing the solution is much faster than

scheduling the whole problem from scratch again. Repairing is achieved by removing at

least one constraint, preferably an assignment of a variable, and adding its negation. If an

unexpected event leads to a removal of a constraint in the system one needs to reset values

by undoing past events with the help of the recorded explanations, and re-propagate to get

back to a consistent state.

Elkhyari et al. considered a large variety of different dynamic events: temporal events

such as precedence constraints, activity events such as addition of a new activity and

'A nogood is a set of partial assignments that are not part of any consistent solution 1:8].

CHAPTER 2. LITERATURE REVIEW 8

resource-related events such as the removal of a resource. These possible events are very simi-

lar to what we consider for the Coastwatch problem, however in their experiments the proba-

bility of such events occurring was very small. In their first experiment, Elkhyari et al. picked

one event purely at random and compared the performance of their dynamic rescheduling

technique with scheduling the whole problem again from scratch. They claim that their

dynamic technique always obtained better performance, while improving efficiency up to

98.8%. In their second experiment different datasets were used and four events were created

before their algorithm was run. For the majority of test cases their new dynamic algorithm

performed better, although sometimes scheduling the dataset from scratch completed faster.

2.1.1 Policella & Rasconi

The work of Policella & Rasconi [23] deals with project scheduling problems, which are

defined by the following components [3]:

0 Activities: Every activity ai is defined by a processing time pi and requires a certain

number of units, denoted reqik, of a resource for execution. Depending on the selected

resource, the required number of units may differ.

0 Resources: The set of resources required to execute the activities. There may exist

different types of resources such as renewable or nonrenewable ones.

Constraints: The two types of constraints that exist within project scheduling prob-

lems are resource and temporal constraints. The former limit the maximum capacity

of each resource while the latter restrict the possible start times for an activity. It is

also possible to impose a binary constraint between two activities, a precedence con-

straint, in order to express the finish time of an activity in terms of another activity's

starting time.

Because of unexpected events, a good solution to an instance of a project scheduling

problem doesn't necessarily turn out to be well suited for execution in real-world envi-

ronments. Policella & Rasconi stated that a scheduling problem can be divided into two

sub-problems:

0 Stat ic sub-problem: Given the problem definition, find a schedule that optimizes

the objective function. This is equivalent to the commonly known scheduling problem.

CHAPTER 2. LITERATURE REVIEW 9

Dynamic sub-problem: Given the solution to the static sub-problem, monitor the

execution of the schedule. Should a dynamic event invalidate the current schedule,

then repair it while trying to maintain the quality of the current solution and continue

execution.

Policella & Rasconi were concerned with developing a testset generator for the dynamic

sub-problem. A model was defined to allow for the following dynamic events:

Delay of an activity

Change of an activity processing time

Change of a resource availability

Change of the set of activities to be served

Insertion or removal of a causal constraint between two activities

An absolute event time is associated with each dynamic event in order to determine

when an event occurs. Policella & Rasconi did not use relative event times because they

claim that the use of such might lead to invalid events during execution of the dynamic

sub-problem. A simple example was provided where the execution of one event causes the

next event to have an event time that lies in the past.

A relaxed version of the scheduling problem, the so-called simple temporal problem [4],

was applied to allow Policella & Rasconi to compute the feasible range for the starting

times of all activities. This information can be used to guarantee valid absolute event times

for each dynamic event. However, to ensure that the event times remain valid throughout

execution, it is necessary to make the following restrictions to their dynamic events:

Activity delays can only be positive. That is, it is not possible that an activity can

be executed earlier than first anticipated (i.e. it's time window cannot be shifted

backwards).

Activity processing times can only increase.

Only resource availability reductions are allowed.

No causal constraint removals are allowed.

CHAPTER 2. LITERATURE REVIEW 10

We overcome these limitations by using dynamic event times while ensuring that no

invalid events are created. The detailed description of our approach can be found in Chap-

ter 3.

Finally, Policella & Rasconi also introduced several metrics that measure the difficulty

of the sets of the generated events. A dynamic event may have enormous consequences on

one specific schedule and little or no consequence on another schedule. In general, the closer

two dynamic events are spaced to each other, the more critical the situation will be. Using

absolute event times allowed them to use these metrics, since the generated event times

were independent of the considered schedule.

2.2 Scheduling Algorithms

The algorithms explained in the following sections were all developed for oversubscribed

scheduling problems. These are scheduling problems for which not all tasks can be scheduled

and the algorithm needs to select the best subset of these tasks that can be completed while

obeying all problem constraints. Typically, priorities are assigned to each activity and the

objective function is used to select the best subset.

Local search algorithms have proven to be very effective for scheduling and a wide

range of other combinatorial optimization problems [ll]. In local search one typically starts

with an initial solution and continuously makes adjustments to it in an attempt to find

a better solution. The set of all possible moves during one iteration is referred to as the

neighbourhood. After evaluation, the algorithm will select one such move to change the

current schedule. The choice of neighbourhood can have a huge impact on the overall

performance of an algorithm.

2.2.1 Roberts et al.

Roberts, Whitley, Howe & Barbulescu [24] examined the effect of neighbourhood choice

on the performance of local search for the Air Force Satellite Control Network (AFSCN)

scheduling problem. This problem consists of scheduling communication requests for earth

orbiting satellites from a set of 16 antennas at 9 ground-based tracking stations. Tasks have

time windows during which they have to be executed and the objective is to minimize the

number of late jobs. At the beginning, the AFSCN problem is oversubscribed, but through

negotiating relaxed task requirements, all jobs are eventually scheduled.

CHAPTER 2. LITERATURE REVIEW 11

Roberts et al. examined the bias found in four variations of the shift neighbourhood

under next-descent local search. Potential solutions were encoded using a permutation

of all tasks and a schedule builder was used to generate solutions from the permutation.

The permutation acts as a priority queue and each task is assigned to the first available

resource at the earliest possible starting time. The shift operator selects a task from the

permutation and moves it to another position. Consequently, assuming there are n tasks

in the permutation, the size of the complete shift neighbourhood is O(n2) which can be

very costly depending on the chosen underlying search method. The four neighbourhood

variations differed in two binary characteristics: size (full or restricted) and order (structured

or unstructured).

The first neighbourhood (Nl) was structured and full: it randomly chooses a task and

systematically shifts it into each of the other possible positions. Should none of these posi-

tions be acceptable, another task is selected at random. The N1 neighbourhood performed

very poorly, because it induced a significant negative bias against improving or equal moves

(80% of all considered moves resulted in worse evaluations).

The second neighbourhood (N2) attempted to overcome this bias by randomly selecting

the task as well as its new position in the permutation. This neighbourhood was full but

unstructured, since it did not systematically explore the entire shift neighbourhood. N2

resulted in a major performance improvement, and was competitive with the best previous

solutions.

Roberts et al. reported that 40% of shifts resulted in no change to the schedule in

AFSCN. Typically, restricting the search neighbourhood to only the tasks that induce a

change produces more efficient search. Therefore, the remaining two variations of the shift

neighbourhood, N3 and N4, were restricted. Given a task x to be moved, the move operator

was restricted to only tasks that interact with x. Task x is said to interact with another task

y, if the release or due date of task x lies within the time window of y. It is important to

note that this measurement overestimates the actual amount of contention in the schedule,

since it considers the entire time window of task y and disregards its duration. Additionally,

after running the schedule builder, one of the tasks might actually end up being scheduled

on another resource.

Roberts et al. calculated pair-wise task interaction for all tasks to build an undirected,

unweighted graph where vertices are the tasks and existing edges indicate interaction. This

dramatically reduced the neighbourhood size from 0 (n 2) to the average degree per vertex,

CHAPTER 2. LITERATURE REVIEW 12

which ranged between 6 and 8 compared to the hundreds of tasks given in the problem.

The N4 neigbbourhood created a random graph with the same degree per vertex as in

the interaction graph. This was achieved by connecting an edge to two different randomly

selected tasks. Similarly to the outcome of their experiments with full neighbourhoods, the

unstructured neighbourhood (N4) showed no performance decrease from N3. In fact, for

almost half of the problems N4 significantly outperformed structured restricted search. Most

surprisingly however, the restricted neighbourhoods (N3 and N4) showed no performance

improvement over N2. Usually reducing the search space using problem specific structure

leads to better results, but it seems that this is not the case for the AFSCN problem.

Similarly to the work of Roberts et al., we experiment with different neighbourhoods for

our Tabu search algorithm. Coastwatch lies in the search & rescue domain and as a result

it is a necessity to have a very efficient algorithm. Any time that is saved by decreasing the

size of the chosen neigbbourhood, can be used in other parts of the algorithm.

2.2.2 Kramer & Smith

Kramer & Smith [18] invented a task swapping algorithm for improving schedules in over-

subscribed problem domains. Their goal was to solve the USAF Air Mobility Command

(AMC) mission scheduling problem [2]. It can be characterized as follows:

A set of tasks (or missions): A task is defined by its earliest pickup time, its latest

delivery time, a pickup location, a dropoff location, a duration and a priority.

0 A set of resources (or air wings): A resource with capacity > 1. The resources used

in this problem are individual planes with the capacity equaling the total number of

planes available of that type at a specific base.

0 Each task is associated with a subset of feasible resources which can be assigned to

carry out the task. Every task always requires exactly 1 unit of capacity of the selected

resource.

0 Each resource has a designated home location (or base) to which it has to return after

accomplishing a mission. Therefore when a task is to be executed by a resource, the

resource requires a positioning leg to travel to the start location of the mission and a

de-positioning leg to travel back to the base.

CHAPTER 2. LITERATURE REVIEW 13

Typically, the problem is oversubscribed and only a subset of tasks can be feasibly

accommodated. The objective of the AMC problem is to schedule as many missions as

possible while adhering to the global constraint that higher priority missions must take

precedence over lower priority missions. This constraint makes the problem very unusual as

here it is more important to schedule one high priority task rather than an infinite number

of lower priority tasks.

Their task swapping algorithm, called MissionSwap, starts with an initial schedule which

is created by considering the missions from highest to lowest priority and assigning them

to one of their candidate resources. It then considers all unassignable missions in order of

their priority and tries to insert them one-by-one by temporarily bumping some of the tasks

in the schedule. If the new task can be scheduled and all bumped tasks can be rescheduled

then the schedule is accepted and the next unassignable task is considered. However, should

it not be possible to reschedule all of the bumped tasks then MissionSwap restores the old

schedule, since it is guaranteed from the construction of the initial schedule that these have

higher or equal priority. Kramer & Smith used several heuristics to decide which tasks

should be bumped. Max-flexibility estimated the flexibility for rescheduling of a task by

looking at the size of its time window and the utilization of all its feasible resources. Min-

conflicts measured the number of conflicts a task faces within its feasible execution interval,

while Min-contention determined the portion of a task's time window that is in conflict.

In their original experiments [17], Kramer & Smith were able to demonstrate the effi-

ciency of MissionSwap for the AMC problem. Out of the three different heuristics, using the

Max-flexibility heuristic resulted in superior performance. In their follow-up experiments

the authors re-evaluated their design decisions and considered several variations of their al-

gorithm. Their pruning techniques make use of the conflict set of a task and for illustration

we will re-use one of their diagrams. Figure 2.1 shows a set of tasks assigned to a resource

(with capacity 2) that prevent a new task from being executed. A conflict interval is defined

as the range during which the same set of tasks is being executed on the given resource. The

conflict set then consists of the set of all conflict intervals that exist from the earliest time a

resource leaves its home location (earliest starting time est, - positioning time pos,,,) to the

latest time it will return to the base (latest finish time I ft, + depositioning time depos,,,).

Consequently, for the given example, the conflict set is {{a,b),{b,c),{d,e)).

In their original experiments, MissionSwap retracted one task out of each conflict interval

in order to make space for the new task. This task was chosen by their heuristic without

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Conflict Sets in Missionswap

considering the previous choices already made. As a result sometimes a task was retracted

unnecessarily. For example in Figure 2.1, if task b is selected out of the first interval, the

heuristic shouldn't have to make a choice for the second one, since one of its tasks had

already been unscheduled. Kramer & Smith called this improvement task pruning, which

led to a very significant increase in efficiency as well as some improvement in solution quality.

The second pruning technique is concerned with inserting missions that have slack, that

is, their time window is larger than the required duration. For these tasks it may not, be

necessary to remove a task from each conflict interval, because the new task might already

fit into the schedule after removing some of the tasks. Because Kramer & Smith make the

assumption that all tasks were scheduled as early as possible, interval pruning retracts the

tasks from left-to-right and stops when there is enough space for the new mission. This

pruning technique resulted in another significant improvement in execution timc, howcvcr,

thc max-flexibility hcuristic actually pcrformcd worsc.

Kramer & Smith improvctl thc cficic-my of t,hoir. MissionS.wap algorithm even more by

limiting the ma.ximum depth during the search. Their experiments showed that after 8

to 10 recursive calls the algorithm is basically doomed to fail and therefore they stop the

search at that depth. All this gain in speed allowed them to experiment with techniques

for expanding the task-swapping repair search that is performed in the hope of obtaining

better solutions in circumstances when extended computation is possible.

CHAPTER 2. LITERATURE REVIEW 15

Up to this point, the MzssionSwap algorithm considered each of the unassignable tasks

exactly once. However, when their algorithm is successful in inserting another task, cir-

cumstances change and it may now be possible to insert a task that didn't succeed earlier.

Hence, their improved version of the algorithm cycles the set of unassignable tasks until

no additional mission has been inserted for a whole iteration. Another variation of their

algorithm added randomness to their heuristics. Instead of letting the heuristic select a task

to be retracted, a task was retracted randomly from the set of all choices whose heuristic

value fall within a certain percentage of the highest rated choice. In another variation,

the probability of selecting a task was tied directly to the difference of its heuristic value

and those of the competing choices. The advantage of the latter version is that no task is

ever excluded from being selected. Instead, it would just be very unlikely. This technique

obtained the best solutions in the end.

In Coastwatch, high-priority tasks, such as search and rescue, are added dynamically.

Consequently some of the highest priority tasks are not known at the beginning of execution

and the algorithm should therefore consider unscheduling lower priority tasks that have

already been scheduled before. As a result it would be a very bad idea to only insert a

new task if all retracted tasks were rescheduled. Regardless of this difference, MzssionSwap

includes very good ideas that might be applicable for any other scheduling problem as well,

such as adding randomness to deterministic heuristics.

2.2.3 Kramer et al.

The algorithms introduced in the two previous sections performed very well for their re-

spective applications. The main difference between these algorithms is that MzssionSwap

searches directly in the space of possible schedules, while the former searches in an alterna-

tive space of permutations and uses a schedule builder to create the mapping to schedule

space. Kramer et al. [16] state that for some problems schedule-space search methods

outperform permutation-based search methods and for some problems the opposite holds.

They were interested in analyzing whether problem characteristics exist under which one

technique can be expected to dominate the other.

Kramer et al. study two different problems, the AFSCN problem and the AMC problem.

In the former, permutation-space scheduling algorithms dominate schedule-space methods,

while in the latter, the opposite holds true. The main differences between these two problems

are:

CHAPTER 2. LITERATURE REVIEW 16

a Task priority: In AMC task priorities must be respected at all times and higher

priority tasks must always be scheduled if possible. In AFSCN there is no priority

and all tasks are considered to be of equal importance.

a Number of tasks: The benchmark datasets for the AMC problem have more than

twice as many tasks.

a Resource capacity: AFSCN varies between 1 and 3 while AMC varies between 4

and 37.

a Slack: In AFSCN almost half of all tasks have no slack, while in AMC all tasks have

temporal flexibility.

Despite the differences, these problems share many commonalities:

a A problem instance consists of n tasks.

a Each task specifies a required processing duration.

a There exists a set of resources that are available for executing tasks and each individual

resource has a capacity 2 1.

a Every task has a set of feasible resources that can be used to execute it and every task

requires exactly one unit of resource.

a Each of the feasible resources for a task specifies a time window during which execution

has to happen.

a The basic objective is to minimize the number of unassignable tasks.

The advantage of permutation representation is that general-purpose algorithms can

be used easily since all the problem-specific work is performed by the schedule builder.

On the other hand, using such a technique might disconnect the search space from the

optimal solution. The advantage of schedule representation is that usually many powerful

heuristics, such as resource contention, are available to guide the search. However, it can

be very challenging to find the right search operator.

Squeaky Wheel Optimization (SWO) was implemented for the permutation-based

method, which repeatedly iterated through a 3-step cycle until a termination condition

was met:

CHAPTER 2. LITERATURE REVIEW 17

1. The schedule builder produces an actual schedule using max-availability heuristic.

2. The unscheduled tasks are ranked according to their contribution to the objective

function.

3. The schedule is modified by moving some of the unscheduled tasks forward in the

permutation.

The algorithm used for the schedule-based method was exactly the variation of the

MissionSwap method explained in the previous section, where the probability of retracting

a task was tied directly to the difference of its heuristic value and those of the competing

choices.

Kramer et al. defined a series of problem sets that generalized from the AFSCN problem

and increasingly incorporated characteristics of the AMC problem. They used the AFSCN

benchmark datasets to produce new problem instances based on several parameters:

Problem size: Kept constant, doubled or tripled the size of the initial AFSCN

datasets.

Slack: A duration factor df is used to determine the durations for each new task. The

new duration is computed by multiplying the initial duration with (1-random(O,df)),

where random(0,df) generates a random number between 0 and df.

Resource capacity: A capacity factor cf is used to determine the capacities for each

resource. The new capacity is computed by adding the initial capacity to a random

number between 0 and cf.

0 Priority: A priority flag determines whether priorities are present or not. When the

flag is set, task priorities are uniformly distributed from (1 ... 5).

Kramer et al. generated 36 problem sets with 50 instances each. The first 18 problem sets

were identical to the second set with the exception that there were no priorities associated

with the tasks. Their experiments showed that in terms of the number of unassignable tasks

for the datasets without priorities the two algorithms performed very similarly. The authors

claim that there was some evidence that the performance of MissionSwap improved when

slack was held constant and the capacity was increased. In terms of penalty scores for the

CHAPTER 2. LITERATURE REVIEW 18

datasets with priority their results showed that for moderate levels of oversubscription the

permutation-based SWO algorithm performed very similar to the other method.

From their experiments, Kramer et al. concluded that for problems that do not incor-

porate task priority, the search space was less constrained and since MzssionSwap performs

more localized search than SWO, it was not as effective. For problems where every task is

assigned a priority, the performance of the algorithm depended on the level of oversubscrip-

tion. The permutation-based search algorithm performed very similar to the schedule-based

method on moderately oversubscribed problems, but as problems became more oversub-

scribed the situation was different. MissionSwap outperformed SWO, because rearrange-

ment of task permutations became less productive.

The study of Kramer et al. attempted to classify scheduling problems for which it is

best to use a specific type of local search algorithm. This is very different from the usual

approach of developing and applying an algorithm to a given problem. The Tabu search

algorithm we selected for Coastwatch differs significantly from both studied algorithms.

More information can be found in Chapter 6.

Chapter 3

Dynamic Resource Scheduling

Model

We describe a general model for dynamic multi-mode resource scheduling problems with

unit resources subject to temporal and resource constraints. For a task we assume that

there are multiple modes of execution and its duration depends on the assigned resource.

We extend static resource scheduling problems to include dynamic events where tasks

and resources can be added, modified and deleted from the schedule during execution thereby

possibly interrupting some already scheduled tasks. Unlike Policella & Rasconi [23], we use

relative event times and guarantee that by doing so no dynamic event will occur at an

illegal event time. In the following sections, we will describe each entity in detail along

with a simple BNF syntax that we have implemented into our dynamic resource scheduling

framework. A supplemented reading on our data model can be found at [9].

3.1 Constraints

3.1.1 Time window constraints

Given a task t, its time window specifies the earliest possible starting time estt and the

latest possible finish time 1 ftt. A task must not be executed earlier than the given estt nor

later than the given 1 f t i .

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 20

3.1.2 Precedence Constraints

Precedence constraints express the starting time of an activity in terms of another activity's

starting time. They control the amount of time that has to elapse between them. Precedence

constraints can be specified between two tasks belonging to the same mission and between a

task and the mission itself. The syntax for specifying a precedence constraint is as follows:

<precedence> --> precedence <varl> <var2> <offset>

which defines the inequality: <varl> 5 <var2> - <offset>

In other words, the start time of some task or mission, <varl >, must precede the start

time of some other task, <var2>, by the specified offset. The value of <offset> is some

integer.

For example, suppose a task B must start at least 10 minutes but at most 20 minutes

after a task A starts. We would have two precedence constraints as follows:

precedence A B 10

precedence B A -20

It is also possible to specify simple precedence constraints such as a task A cannot start

after task B:

precedence A B 0

To represent a precedence constraint requiring that a task A has to start at least 30

minutes after the beginning of its mission MI, we would write:

precedence A MI 30

3.1.3 Resource constraints

Resources are renewable, meaning that they can serve another task as soon as their current

task is completed. Additionally, resources are capacitated and may only execute one task at

a time. Similarly, a task always requires just one resource for execution which will execute

it from the very beginning to the very end.

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL

3.2 Scheduling problems

A scheduling problem contains the following entities:

0 Bases: Bases are the home locations of resources. This includes air bases for aircrafts

and ports for ships.

0 Resources: Resources such as aircrafts, helicopters and ships, execute tasks and have

a designated home base.

0 Capabilities: A mapping of task requirements to resource capabilities. Tasks spec-

ify the capability that is necessary to execute them and every resource has a pre-

determined list of capabilities they can perform.

0 Tasks: The activities that are scheduled and executed according to their time window

and resource requirements.

Missions: A partially ordered set of tasks that have to be completed to achieve some

mission with specified priority.

We propose a simple regular language in BNF to specify a dynamic resource scheduling

problem. We "borrow" the characters '*' and '+' from regular expressions [7] to specify

quantities. The former denotes zero or more of the preceding element while the latter

character denotes one or more. Note that the various sections of the problem definition

must appear in the order shown.

<capability>*

<base>*

<resource>*

problem <horizon>

<event>*

First we specify all capabilities, bases and resources that exist within the problem. We

then set the scheduling horizon by providing a start time and an end time for the schedule

followed by a list of events, which include the creation of new missions. The syntax for the

horizon is:

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 2 2

where <start-time> and <end-time> are integers such that <start-time> 5 <end-time>.

Typically, <start-time> = 0. We assume that time is measured in minutes but any other

integral time unit should also be acceptable. For instance, a scheduling problem spanning

24 hours would be specified in minutes as:

problem (0,1440)

3.2.1 Bases

Bases give a physical start location for resources at the start of the scheduling horizon.

They are defined by a unique base name and a location, which is specified by its latitude

and longitude values. We assume that bases are at sea level. The syntax for defining a base

is:

<base> --> base <id> <location>

where the location is defined as follows:

For example, CFB Comox is an airbase on Vancouver Island, BC at latitude = N49.72052

and longitude = W124.89249. This is expressed as:

base CFB-Cornox (49.72052, -124.89249)

3.2.2 Resources

Resources are defined by a unique identifier and a resource type. They move at a pre-

determined speed (in km/h) and are assigned a home base which is the starting location at

the beginning of the scheduling horizon. Their syntax is:

<resource> --> resource <resource-type> <id> <base> <speed>

Depending on the types of resources in the scheduling problem, <resource-type> may

be very general such as (plane, ship, ...) or very specific (F/A-18 Hornet, Boeing 747, ...).

For example, a plane belonging to Austrian Airlines stationed at Vienna Airport might be

described as:

resource airbus340 OSlOOOl VIE 1030

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 23

3.2.3 Missions & Tasks

We needed a general data model for dynamic resource scheduling problems that would

provide enough flexibility to generate datasets for problems such as Coastwatch. Activities

in some domains are made up of a several tasks, all of which have to be executed in order

to complete the activity. For example, in Search & Rescue (SAR), a search task has to

be completed before the rescue task can be executed. Here, only executing the search task

doesn't accomplish the mission of rescuing a person and the activity should not be marked as

finished. To be able to deal with these kinds of activities, we differentiate between missions

and tasks.

We define a mission to be a collection of tasks that need to be executed. The mission

is only considered accomplished if all of its tasks have been completed successfully. As a

consequence, priorities are specified with missions rather than the tasks themselves. On

the other hand, execution time windows are associated with tasks. This is because not

all tasks of a mission are known at beginning of execution and some tasks are created

dynamically. For example, for the SAR mission, the search task can be executed right away,

but the rescue task is not created until search has been completed successfully by finding

the missing person. If the time window were large enough to accommodate both search and

rescue tasks, then the scheduling algorithm may delay the search activity until the end of

the time window and there wouldn't be enough time to execute the rescue task when it is

created. Therefore, the dynamic creation of new tasks requires either dynamic time windows

for missions or associating time windows with tasks instead. We chose the latter approach

for logical reasons: dynamically adding a rescue task to the SAR mission shouldn't extend

the time window of the search task.

It is important to note that these definitions for missions and tasks do not exclude in

any way activities that are only composed of one task.

Missions

The syntax for defining a mission is:

<mission> --> mission <id> <priority> (<new-task> <body>) (<precedence>*)

where <id> is a unique identifier and <priority> is a positive integer specifying the priority

of the mission with value 1 representing the lowest possible priority. A mission must have

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 24

at least one "New Task" event that creates a new task. The body of a mission contains a

set of dynamic events, possibly including more new tasks, and is executed once the mission

is introduced into the scheduling problem. For more information, see Section 3.3. Finally,

<precedence>* is the set of precedence constraints that must be obeyed. There may exist

at most 1 precedence constraint between any ordered pair of tasks belonging to this mission.

Tasks

Each mission contains a partially ordered set of tasks that need to be executed to complete

the mission. Tasks are defined by a unique identifier, a task type and a time window for

execution. Their syntax is:

<task> --> task <time-window> <task-type> <id> (<body>) (<precendence>*}

where the body of a task is a set of dynamic events that is parsed once the execution of this

task has started. A task is deemed to execute when the time of the simulator reaches its

start time. Similarly to missions, there may exist at most 1 precedence constraint between

any ordered pair of subtasks. The field <time-window> specifies the earliest start time

(EST) and latest finish time for a task (LFT). The syntax for time windows is:

where both fields are positive integers such that <EST> 5 <LFT>.

Body

In dynamic scheduling problems, unexpected events can occur during the execution of tasks.

We model this behaviour by associating a set of statements, called the body, to tasks and

missions.

The <body> field defines the set of changes to the scheduling problem which can occur

as a result of scheduling and executing a task. The syntax is as follows:

where <event>* is the set of unexpected events. For missions, these statements are eval-

uated when the mission is created, which may contain the creation of new tasks as well as

mission events. For tasks, evaluation happens when the execution of the task commences

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 2 5

and possible event types include new subtasks as well as task events. These events are

explained in detail in Section 3.3.

3.2.4 Capabilities

The <task-type> of a task field specifies the capability a resource requires in order to be

able to execute it. A capability is a mapping of a task type to a set of resource types which

are able to perform it. The syntax for this relation is the following:

<capability> --> capability <task-type> (<resource-type>*)

For example, a rescue task out in the ocean could be specified as follows:

capability rescue (helicopter ship)

For resources that have specialized capabilities, we can define subclasses by name which

possess those capabilities. For example, for an aurora aircraft which has a specialized radar

onboard, we can add the following resource statement:

resource aurora-w/radar CP-140411 CFB-Comox 750

The capability relation will now have an added line which says:

capability surveillance-w/radar (aurora-w/radar)

3.3 Dynamic Scheduling Events

Static scheduling problem models are not concerned with simulating the execution of tasks in

their schedules. The scheduling problem is given initially and the execution of the schedule

cannot affect the problem dataset itself. This is not true for dynamic scheduling. We assume

that executing a task at a particular time affects the world and introduces changes to the

scheduling problem itself.

Policella & Rasconi [23] address the needs for dynamic resource scheduling benchmark

datasets by coming up with a similar model. They use a relaxed version of the scheduling

problem to compute the feasible range for the starting times of all activities. This informa-

tion can be used to guarantee valid absolute event times for each dynamic event. However,

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 26

to ensure that the event times remain valid throughout execution, they introduce several

restrictions to their dynamic events. For example, it is not possible for a task that its

time windows is shifted forward, i.e. that it can be executed earlier than first anticipated.

Suppose there is no such restriction and an event happening at time t shifts a task's time

window forward such that the earliest possible starting time est < t. Then, the shift spec-

ified in the event cannot be completed, it has to be adjusted such that est = t. However,

as a result, the schedule produced by the scheduling algorithm affects the set of dynamic

events specified in the benchmark dataset, therefore changing the difficulty of the problem

instance.

Unfortunately, the restrictions on unexpected events adopted by Policella & Rasconi are

inadequate for our purposes. For example, scheduling a SAR mission may involve an initial

search task with an expected duration to find the target to rescue. The duration of this

task may be reduced thus violating their restrictions.

We propose an alternative scheme to obey causality: we differentiate between regular

events, task events and mission events and explain our solution for each of them.

3.3.1 Regular Events

Regular events are events that do not directly influence tasks or missions. Examples are

the addition or removal of a resource. For these kinds of events, obeying causality is very

straight-forward, because we are not concerned with the schedule produced by running the

scheduling algorithm. Removing a resource can happen anytime and under any circum-

stances. One still has to be careful, though, because, for instance, if the same resource

breaks down twice during the scheduling horizon, the second event should happen after the

resource has been fixed. The syntax for regular events is as follows:

where <event-time> is an absolute time within the scheduling horizon and <event-type>

is a name that uniquely identifies the type of the event. This is followed by an optional set

of additional parameters. For example, to remove a resource helil at time 500 we would

write:

500 remove-resource helil

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 2 7

3.3.2 Task Events

Task events are events that directly influence a task such as the change of its duration or

the addition of a new sub task. These events differ significantly from regular events, because

their event time tTel is relative. We impose the restriction that 0 5 tTel 5 1 and treat the

event time as a percentage of the task duration. For a task a, the absolute event time tabs

can be computed by the following formula:

tabs = start-time, + trel * duration,

It is guaranteed that all events will occur during execution of the task since the relative

event time is a fraction of the total task duration. When a SAR mission is being executed we

can create the rescue task anywhere during the execution of the search task. For instance,

an event time of 0.9 would signal that the missing person is found after completing 90% of

the search path. Assigning various resources with various speeds to the same rescue task,

will result in different absolute event times. However, the rescue location will always be the

same.

To guarantee that no invalid events will ever occur, we need to make sure that all dynamic

events also obey causality. In particular, we need to ensure that neither start nor end time

of a task can shift into the past. Luckily, the use of relative event times simplifies this issue

significantly. Suppose there is a dynamic event which lowers the duration of a task. Due to

some unexpected circumstances, the resource is able to execute the task quicker than first

anticipated. If the event happens at relative event time tr,l, then the delay delay, must

obey the constraint delay, > (trel - 1). This ensures that the event obeys causality; the

updated end time of the task cannot be in the past after execution of the event. We can

use the same argument for any other task event: we are aware exactly how far into the

task execution the event happens and consequently, we know the maximum shifts that are

possible.

Task events can be defined as follows:

where <event-type> must be the name of a task event and <task-id> the unique identifier

of a previously defined task.

CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 28

3.3.3 Mission Events

Mission events are events that influence a mission or one of its tasks. Examples include

adjusting the mission priority or adding a new task. Additionally, delaying a task (i.e.

shifting it's time window) should also be considered a mission task. This is because the

delay has to happen before the start of a task, but task events only get executed once

execution has commenced.

For mission events, the event time tTel is also relative. But here it is relative to the

creation of the mission and tTel doesn't represent a fraction because it is independent from

resources. For a mission m, the absolute event time tabs can be computed by the following

formula:

tabs = creation-time, + t,,l.
For instance, suppose there is a delay task event which delays the main task of a mission

by 5 minutes and it has an event time of 10. If the mission was created 300 time units into

the scheduling problem, then the absolute time of the event is 310 minutes.

Obeying causality is very straight-forward for mission events. We need to ensure that

the task doesn't start executing before the delay task event is executed. This is achieved,

by setting t to be smaller than the task's earliest starting time est. In addition, if the delay

d is negative, that is a task can be started earlier than first anticipated, we need to ensure

that the event doesn't move est into the past. This can be achieved by choosing a value for

delay during event generation such that it obeys the constraint d > (t - est). We can give

a similar argument for any possible mission event.

Chapter 4

Dynamic Resource Scheduling

Framework

We develop a dynamic resource scheduling framework which can be applied to many differ-

ent kinds of dynamic resource scheduling problems. We assume the existence of renewable

unit resources and schedule tasks subject to temporal and resource constraints. Since this

framework has been designed for tasks with multiple modes of execution, it can also be

used for single-mode problems by simply specifying only one mode. Furthermore, we as-

sume semi pre-emption [12] meaning the execution of a task may be interrupted but must

be restarted completely. However, the framework can be easily extended to cover non-

preemptive scheduling1 by implementing only scheduling algorithms that will not consider

retracting a task that is currently executing. Additionally, this scheduling framework can be

applied to oversubscribed as well as undersubscribed dynamic resource scheduling problems.

Scheduling problems are very popular among many scientific communities because they

have so many real-world applications. However, the drawback with most work up to this

point is that they make the assumption that nothing unexpected will ever happen during

execution of the schedule. In the real-world there exists no such guarantee and consequently

there exists a need for developing scheduling algorithms that take into account future dy-

namic events. We are interested in studying Coastwatch, a dynamic resource scheduling

problem, but were faced with the dilemma that we had to create our own datasets. A

detailed description of the problem can be found in Chapter 5.

'In non-preemptive scheduling, tasks must be executed to completion and may never be interrupted.

29

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 30

The dynamic resource scheduling framework is implemented in Java and has three com-

ponents: a random problem generator, a dynamic simulator and a scheduler.

The random problem generator is a stand-alone component and can be used to create

instances of the problem. It may be turned off at anytime in order to use the framework sim-

ply for solving datasets and running scheduling algorithms on them. The problem generator

provides great flexibility in generating datasets for dynamic resource scheduling problems.

The specification of the problem and the parameters for all missions and events are passed

into the problem generator. This makes it as general as possible in order to allow for gen-

erating benchmark datasets with very different kind of characteristics. Changing a single

parameter value for an event might cause the dynamic event to have a very different influ-

ence on the whole scheduling problem. By inputting the problem specification we ensure

that the problem generator can be applied easily to different dynamic scheduling problems.

This is achieved by making the appropriate changes in the specification file.

Dynamic events that are generated by the problem generator include:

resources can be either added or deleted from the problem

new missions and tasks can be added to the problem

tasks can be completed earlier or later than anticipated

a task can be delayed which alters the tasks time window

The dynamic simulator parses the resulting dataset and creates all tasks and events at

the appropriate time. This simulator is necessary to hide all future events from the scheduler.

Every time an event occurs, the scheduler is invoked in order to make adjustments to the

schedule to accommodate the new event. A special feature of the simulator is its visualization

tool which creates an animation of the scheduling problem on Google Earth. One can watch

resources as they are moving around to execute missions based on the decisions made by

the scheduler.

The scheduler is a platform for scheduling algorithms and it communicates with the

simulator. To test an algorithm on the generated datasets, one would simply implement the

new algorithm in a class. The scheduler component also provides several useful methods.

Figure 4.1 gives an overview of the dynamic resource scheduling framework. The follow-

ing sections explain each of the components in detail.

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

Random
Problem

Generator

b o o g l e Earth I

L resources

Figure 4.1: Overview of the Dynamic Resource Scheduling Framework

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

4.1 Random Problem Generator

Many problem generators are written as part of a research project and are tailored specif-

ically towards a studied problem. Unfortunately, it is very unlikely that such a problem

generator can be applied to a different problem with minimal effort. While there exist

more general problem generators that can be used to generate datasets for many different

static scheduling problems, the same cannot be said for their dynamic counterparts. We

address the need for such random problem generators by creating one for dynamic resource

scheduling problems as part of a larger framework.

4.1.1 Motivation

Dynamic scheduling problems model real-world environments very closely because they take

into account that the execution of a schedule will not always go as planned. The lack of

problem generators for dynamic resource scheduling problems prompted us to develop our

own benchmark generator. The main goal is to keep it very general to allow for adaptation

to many different kinds of dynamic resource scheduling problems very quickly. We provide

great flexibility by passing the specification of the problem and the parameters for all mis-

sions and events into the problem generator. This makes it as general as possible in order to

allow for generating benchmark datasets with very different kind of characteristics. Chang-

ing a single parameter value for an event might cause the dynamic event to have a very

different influence on the whole scheduling problem. Similarly, the problem generator can

be applied to different dynamic scheduling problems, by making the appropriate changes in

the specification file.

We develop a random problem generator as part of the dynamic resource scheduling

framework in order to be able to generate benchmark datasets. Such a tool can be very

useful even if such datasets already exist for the given problem. Typically, a stochastic local

search method is used for solving combinatorial search problems. However, it is never easy

to select a specific algorithm, because there are so many different local search methods that

have been applied very successfully before. If we could understand why certain algorithms

work very well on specific problems but not on others, then the choice would be much

easier. We could use a problem generator to develop datasets with certain characteristics

in an attempt to understand when a given algorithm should be used. Similar research has

been done by Kramer et al. and is discussed in Section 2.2.3.

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 33

4.1.2 Input Files

The random problem generator requires two input files, the Scheduling Problem file and the

Mission and Event file. Appendix A contains an example for each input file.

Scheduling Problem file

This file lists all capabilities, bases and resources that exist within the scheduling problem,

respectively. These items have to be specified exactly as stated in the description of our

model in the previous chapter. The following is a simple example:

resourceTypes (helicopter plane ship)

capability search (helicopter plane ship)

capability rescue (helicopter ship)

base Victoria (49.7 ,-124.9)

base Vancouver (49.19388,-123.18444)

resource plane plane1 Vancouver 750

resource helicopter helil Victoria 278

resource ship ship1 Vancouver 54

At the beginning we add a list of all resource types that exist within the problem, since

it allows us to catch typing errors within the two input files. A capability is described by

its name and a list of resource types capable of performing it. For example, a search task

may be executed by helicopters, planes and ships. A base is specified by listing its name

and location in latitude & longitude notation. Vancouver airport might be defined using

the city name as its identifier and setting its location to (49.19388,-123.18444). A resource

is described by its resource type, followed by a unique identifier, its assigned home base and

its speed (in km/h). A plane might be able to fly up to 750 km/h and have Vancouver as

its home base.

Mission and Event file

This file contains all parameter values for any mission, task or dynamic event type that

is defined in the dynamic resource scheduling problem. Changing just a single parameter

might have a strong effect on the characteristics of the generated datasets. For instance, a

detailed mission and event file might look as follows:

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAME WORK

horizon 0 1440

numBases 2

numResources 3

events

delay probability=O. 1 time=normal(l0,4)

tasks

transport numStatic=poisson(0.9) numDynamic=5

priority=random(5,10) relativeTime=normal(60,10)

The first line specifies the scheduling horizon of the problem. Static tasks are always

created at the given start time, while dynamic tasks are created some time before the end

of the scheduling horizon. The next two lines determine the number of bases and resources

that will be included in the generated dataset. Both entities are chosen randomly from the

set defined in the scheduling problem file.

Section 4.1.3 lists all the dynamic events that may occur during execution. Each line

contains the parameters for one specific event type. As outlined in our model, we differen-

tiate between regular events, task events and mission events. It is very important to note

that all task events are considered for every single task. In other words, should a task event

have a probability of 1 then it will be applied to every single task in the problem. Similarly

for missions, all mission events are considered for every single mission.

The same event might be applicable to different tasks, but with different characteristics.

For instance, a search task is more likely to be delayed than a transport task. Therefore

all the event parameters are merely default values. It is possible to overwrite an event

parameter value by specifying it as a task parameter using the following syntax:

[name-of -event] - [name-of -parameter] =value

Suppose there is an event which changes the duration of a task and should occur in

approximately 10% of all tasks and delay them by at least 5 but at most 20 minutes. The

event could be specified as follows:

change-duration probability=O.l time=random(5,20)

Now assume that 50% of all search tasks should change their duration. Then the prob-

ability parameter can be overwritten using:

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAkIEWORK 35

search change-duration-probability=0.5

Similarly, setting the probability parameter of an event to 0 will result in no such dynamic

events for tasks where this value was specified.

The remainder of the Mission and Event file lists all the different task types that exist

within the scheduling problem. For each task type, it lists all its parameters in one line.

Recall that our model differentiates between missions and tasks. A mission is a collection of

tasks that need to be executed in order to achieve some goal. It is only accomplished when

all its tasks have been completed and only then will it contribute towards the objective

value. Typically, missions have one main task, which may create one or more subtasks

which in turn may create even more subtasks.

Every task needs to specify at least two parameters:

1. releaseDate: the amount of time that needs to elapse after the task has been created

and before execution can begin. Suppose at lpm a transport task is created and is

required to move some goods to another base no earlier than 2pm. Assuming that

time is measured in minutes, the value of this parameter would be 60.

2. relativeTime: specifies how much time needs to elapse in the execution of the parent

task before this task is created. Recall from Section 3.3, that this parameter is treated

as a fraction of the task duration. It will be set to 0 automatically for main tasks of

a mission, since these tasks do not have a parent task.

Task types which may be the main task of a mission must also specify three additional

parameters:

1. numstat ic : the number of static missions of that type. A static mission is known at

the beginning of the scheduling horizon.

2. numDynamic: the number of dynamic missions of that type. Dynamic missions are

created anytime throughout the simulation.

3. priority: the mission priority specified as a positive integer with larger numbers

representing higher priority.

In order to provide more flexibility for the created problem instances, we allow parameter

values to be generated using one of these common distributions:

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 36

Uniform distribution: This generates one uniformly distributed random integer

within the specified lower and upper bounds. The syntax for defining such a value is:

[parameter-name]=random(lower bound, upper bound)

Normal distribution: This generates one normally distributed double with the spec-

ified mean and standard deviation. A normally distributed value can be generated as

follows:

[parameter-namel =normal (mean, sigma)

Poisson distribution: This generates one poisson distributed integer with the spec-

ified lambda value. Such a value can be defined using the following syntax:

[parameter-name] =poisson(lambda)

This input file contains all the information that is necessary for the random problem

generator to create benchmark datasets. In fact, by specifying no dynamic events and set-

ting the numDynamic parameter of all task types to zero, we could use this framework for

static resource scheduling problems. By modifying the input files, we can introduce addi-

tional flexibility. We associate a priority with each mission and assume that the objective

function is to maximize the sum of priorities of completed missions. This objective can

easily be modified to maximize the number of completed missions by setting all priorities to

1. Similarly, we can remove time window constraints from the problem by setting the time

windows for each task to (-co, co).

4.1.3 Dynamic Events

In this section, we provide a detailed description of the dynamic events that have already

been implemented into our framework. These events are very common and apply to most

dynamic scheduling problems.

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAME W O R K 37

New Mission

This dynamic event introduces a new mission during execution of the problem. The mission

has a priority and must consist of at least one task that needs to be executed in order to

achieve some goal. The syntax for defining a new mission event is as follows:

where <event-time> is an absolute event time within the scheduling horizon and <mission>

is the description of a mission as defined in our model.

New Task

The new task event adds a task to the dynamic scheduling problem. It must be created in

the body of a mission or a task. To define a new task event, the following syntax is used:

where <task> defines the task as described in Chapter 3. Since a new task is added to

the problem and is initially unscheduled, the mission it belongs to will not be considered

completed even if it all its other tasks have been executed successfully. The meaning of

<event-time> depends on the object that created the task:

If the object is a mission, then the new task is one of its main tasks and the event time

specifies the number of minutes that have to elapse after the creation of the mission

before the task will be added to the scheduling problem. This is not to be confused

with the task parameter releaseDate, which determines the earliest possible starting

time of the task. Typically, missions have only one main task and as a result the event

time should be 0. It makes no sense to create a mission without specifying any task.

If the new task event was created in the body of another task p, then it is created as

a subtask of p belonging to the same mission. In this case, the event time is relative

and it determines the percentage of task completion of p when the new task is added

to the problem. Suppose the starting time of p is 100 and its duration is 50. Further

assume the new task event appeared in the body of p and its event time is 0.8. Then

the actual time when this event occurs is 100 + 0.8*50 = 140.

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 38

Add Resource

This event dynamically adds a resource to the scheduling problem. To be consistent with

our model, we assume that the new resource is also a renewable unit resource. Additionally,

the type of the new resource has to be from the set of possible resource types specified

initially in the problem instance. The syntax for such an event is:

<event-time> add-resource <resource>

where <event-time> is an absolute time within the scheduling horizon and <resource> is

the resource to be added. If the added resource has been part of the scheduling problem

before, then it is sufficient to specify solely its unique identifier.

Remove Resource

This event removes a resource from the scheduling problem. If, at the moment of removal,

the resource was currently executing a task, it will be unscheduled. Similarly, all tasks that

were assigned to the resource to be executed in the future will also be unassigned. It is the

task of the scheduler to reschedule them on one of the remaining resources. The remove

resource event can be defined by:

<event-time> remove-resource <resource-id>

where <event-time> is an absolute time within the scheduling horizon and <resource-id>

is the unique identifier of the resource to be removed.

Disable Resource

This dynamic event disables a resource for a period of time. The purpose of this event

is to simulate that a resource encounters a mechanical problem which needs to be fixed.

The selected resource is removed from the scheduling problem and added again after the

specified delay. We assume the resource will remain at the same location. As a consequence

of the disable resource event, all the tasks that were assigned to it, will be unscheduled.

This includes the currently executing task as well as all its future tasks. The dynamic event

obeys the following syntax:

<event-time> disable-resource <resource-id> <duration>

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 39

where <event-time> is an absolute time within the scheduling horizon, <resource-id> is

the unique identifier of the resource to be disabled and <duration> is a positive integer

representing the time it takes to perform the necessary repairs.

Delay Task

This dynamic event shifts time window of a task by a given delay. This delay can be positive

or negative. The syntax for this event is:

<event-time> delay-task <task-id> <delay>

where <event-time> is relative to the creation of the mission, <task-id> is the unique

identifier of the task to be delayed and <delay> is some integer.

We impose the constraint that delay <> 0, otherwise the delay task event would have

no effect on the underlying scheduling problem. Additionally, if the given delay is negative,

the earliest possible starting time es t of the delayed task should not be not shifted into the

past. Consequently, we introduce the additional constraint

delay >. (t i m e - es t)

where t i m e is the actual time of the dynamic event.

Change Duration

The change duration event modifies the required execution time of a task for the assigned

resource. The purpose of this event is to simulate unexpected events that might occur

during execution which have an effect on the duration. For instance, a flight from Vienna to

Vancouver might arrive an hour early because of strong tailwind. Additionally, sometimes

it can be used instead of the disable resource event, for example when a vehicle runs out of

gas. In such an event, we know that the problem can be resolved very quickly, and we can

simulate the resulting delay without having to unschedule all assigned tasks. Its syntax is

as follows:

<event-time> change-duration <task-id> <delay>

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 40

where <event-time> is a relative event time, <task-id> is the unique identifier of the task

whose duration needs to be adjusted and <delay> is the amount of change measured as the

percentage of total duration.

For example, the change duration event

0.7 change-duration task1 -0.1

will have the following meaning: After successfully completing 70% of taslcl, the duration

is reduced by -10%. Assuming the duration of taslcl using the assigned resource is 100

minutes, there will only be 20 minutes remaining after the event.

To guarantee that no invalid events will ever occur, we need to make sure that the

updated end time of the task is not shifted into the past. Similarly as before, we impose

two constraints:

delay <> 0

delay >= (event-time - 1)

The first constraint ensures that the dynamic event affects the underlying scheduling

problem, while the second constraint limits the shift of the end time such that it cannot be

in the past.

4.1.4 Mission Event Times

Suppose we were to generate event times such that the latest finish time of all tasks lies

within the scheduling horizon. This way every task can be completed before the end of the

scheduling horizon. Suppose further, we schedule tasks which typically require 500 minutes

to execute and assume that the end of the scheduling horizon is set to 800. Then, all missions

have earliest starting times 5 300 and as a result there will be 500 more minutes during

which no additional mission is created.

Instead, the random problem generator tries to spread out the generated tasks. We

uniformly distribute the absolute event times for the creation of missions. As a result, there

might be several tasks which cannot be executed completely before the simulator halts. We

deal with that problem by considering these tasks as completed as long as the scheduling

algorithm was able to assign them to a resource such that they can be executed within their

respective time windows.

C H A P T E R 4. DYNAMIC RESOURCE SCHEDULING FRAME W O R K 4 1

4.1.5 Time Windows

An important consideration for dynamic resource scheduling datasets with task time win-

dows is the size of the generated time windows. On the one hand they should be large

enough so that they can be completed successfully. But on the other hand the generated

problem instances become too easy if task time windows are too large.

We require that any dataset with a single task and a single resource should be solved

optimally. Therefore, in computing the size of the time window we need to include the time

it takes the assigned resource to get to the starting location of the task. For a given task

type, we differentiate between two cases:

1. If the considered task is a subtask of some other task t, and t can be performed by

the same resource type, we compute the time it takes to get from the end location of

t to the start location of the considered subtask.

2. Otherwise, we compute the positioning time of a resource from its assigned home base.

Of course during the simulation there is no guarantee that the resource will still be

at that location. But we cannot do any better, since the problem generator cannot

predict what the scheduling algorithm will do.

Initially, we set the size of task time windows to the sum of the average positioning time

and the worst task duration. However, after investigating several runs of some generated

datasets, we found that the scheduling algorithm interrupted a large number of tasks. Some

of them were rescheduled up to 10 times! As a result we modified our problem generator to

create smaller time windows. In our current version the size of the time window equals the

sum of the best positioning time and the average duration.

4.2 Dynamic Simulator

This section describes the dynamic simulator component of the dynamic resource scheduling

framework. Its main purpose is to hide all future events from the scheduling algorithm, since

these events should occur unexpectedly as they do in the real-world. This is achieved by

creating all missions, tasks and events at the appropriate time without ever releasing any

information prematurely. Every time an event occurs, the scheduler is invoked in order to

make adjustments to the schedule to accommodate the new event. A special feature of the

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

simulator is its visualization tool which creates an animation of the scheduling problem on

Google Earth. A supplemented reading on our simulator model can be found at [lo].

Traditional scheduling models assume that the scheduler has no effect on the scheduling

problem which it solves. Tasks are scheduled and eventually executed but the original

problem does not change. This is not true in many real-world situations where the world

is invariably affected by the execution of tasks and therefore the subsequent scheduling

problem altered. We model these interactions by incorporating this dynamic simulator into

our framework.

We define a dynamic simulator which forms a feedback loop with the underlying schedul-

ing problem. Given a problem instance to solve, the scheduler produces a new schedule.

The execution of this schedule produces a stream of events which are interpreted over time

by the simulator. The results of these events are a sequence of incremental changes to the

scheduling problem which are then iteratively re-solved by the scheduling algorithm. Each

new schedule may produce more events in the future as scheduled tasks are being executed.

This process is driven by a simulation clock which iterates through the scheduling horizon.

4.2.1 Simulator Model

An overview of the dynamic simulator model is shown in Figure 4.2. A scheduling problem

P is inputted into the simulator. It specifies the set of missions, tasks and resources which

are known initially. The scheduling problem is repeatedly modified by incremental changes

A P to P as produced by the Event Executor. The scheduler accepts the modified problem

P' and returns a new schedule S'. The addition, deletion or rescheduling of tasks will cause

changes to their start and end times. The set of all changes, denoted AA, are input to the

Start/Stop Generator. This module is responsible for creating a set of new events AE which

will modify the start and end times accordingly.

The Event Queue stores all future events E to be processed by the Event Executor.

Events are added to the queue from three sources:

1. Initially, a data-file containing one problem instance of the scheduling problem is

parsed. In addition to missions, tasks and resources, this file contains a set of regular

events Eo which will be executed at specified times throughout the scheduling horizon.

2. Event changes A E are created by the Start/Stop Generator as follows. For each

newly scheduled task, two new events are added: one representing the start time of

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAh!lEWORK

Input T

Figure 4.2: Dynamic simulator Model

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 44

the task and one representing its end time. Likewise, for an unscheduled task which

had been scheduled before invoking the scheduler, a corresponding deletion of the start

and end time events is added. Finally, rescheduled tasks have corresponding changes

represented in A E.

3. Event changes are also produced by the Activity Executor by executing the body

of missions and tasks. A mission's body is executed when a mission is created and

added to the scheduling problem. The body of a task is executed when the simulation

clock has reached its starting time. In the event that a task has been completed

or terminated abnormally, the Activity Executor is also responsible for removing the

corresponding future events from the queue.

The Event Executor module uses the Event Queue to organize events in temporal order

and a simulation clock is used to advance the simulation. The simulation starts at the

beginning of the scheduling horizon and stops when the clock reaches the end. The Event

Executor repeatedly removes the first event e from the queue and advances the simulation

clock to its event time. If this event is a dynamic event which introduces a modification

A P to the scheduling problem (see Section 3.3), it is executed and the scheduler is invoked.

Otherwise, e deals with the execution of a task. We define three additional types of events

which are delegated to the Activity Executor. The remainder of this section gives a short

description of these events. We omit their syntax as they are created automatically by the

framework.

Send Resource: This dynamic event signals that the assigned resource of a task

has initiated the positioning leg in order to execute the task. A positioning leg is an

activity which moves the assigned resource to the starting location of the task. Hence,

event parameters include the event time, the id of the task as well as the unique

identifier of the resource.

0 Start Task: The start task event signals the start of execution. Parameters for this

event include the event time and the unique identifiers of the task. It is not necessary

to include the id of the resource, since this information is already known from the send

resource event.

0 End Task: This dynamic event simulates the end of execution of a task. Event

parameters are the event time and the id of the completed task. For same reason as

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAME W O R K 45

for the start task event, it is not necessary to include the id of the resource. Since all

resources in the problem are renewable, the assigned resource is free to start execution

of another task immediately.

4.2.2 Visualization Tool

The dynamic simulator includes a visualization tool which creates an animation of the

scheduling problem on Google Earth. We have chosen this application, because we can make

use of all their current features, such as changing camera angles, and additional features

from future updates. Interfacing with this application is achieved by using KML files2 to

display geographic data in an Earth Browser. Models for resources were obtained from

an online database3. The animation steps through the scheduling horizon and visualizes

the different entities. It is even possible to halt the simulation clock anytime in order to

investigate some state in detail. The animation is made up of the following three entities:

1. Missions: An instance of a dynamic scheduling problem might contain many missions

and displaying all of them simultaneously might overcrowd the screen. We group the

scheduled tasks based on the mission they belong to so that entire missions can be

hidden at once. It is even possible to visualize a single mission only and watch the

animation in an attempt to understand the decisions made by the scheduler. This can

be a very useful tool for analyzing and understanding the pros and cons of a scheduling

algorithm.

2. Tasks: A task is visualized in Google Earth using points and paths to indicate its

function. For instance, a search task can be visualized by drawing the reported location

as a point and the flight path of the resource as a sequence of connected lines. Every

task has to implement a method writeKML which is called by the scheduler at the

end of the scheduling horizon. A task is included in the animation as soon as it has

been added to the scheduling problem and it is removed when the simulation clock

reaches the end of its execution window. Tasks which are completed successfully will

be hidden the moment they finish execution, since they are no longer interesting.

'KML - Documentation, h t t p : / / c o d e . g o o g l e . c o m / a p i s / k m l / d o c u m e ~ t m l

3 3 ~ Warehouse, http://sketchup.google.com/3dwarehouse/

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

3. Resources: A resource is visualized during the entire scheduling horizon and its

location is updated every minute. Resources are hidden during time intervals in which

they are removed from the problem due to dynamic events. We associa.te a 3D model

with cvcry resource type so that it is very easy to differcntia.tc between thcm on the

Earth Browser.

Figures 4.3 and 4.4 give s a m ~ l e screenshots of the visualization tool.

Figure 4.3: Screenshot from Visua.lization Tool - View from top

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

-

Figure 4.4: Screenshot from Visualization Tool - View from other aircraft

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAME WORK 48

4.3 Scheduler

The scheduler is a platform for scheduling algorithms and it communicates with the simula-

tor. It is invoked every time a dynamic event occurs which changes the underlying scheduling

problem. To test an algorithm on the generated datasets, one would simply implement the

new algorithm in a method called run as a subclass of Scheduler. The scheduler component

also provides several useful methods:

s e t u p : This method makes a backup of the current schedule by storing the scheduling

information for every task and resource in their respective classes. It also locks the

Event Queue in order to guarantee that the scheduling algorithm cannot modify the

scheduling problem.

recordNewBest: This method records the current schedule as the best one encoun-

tered so far. It is important to update the best schedule found during the run of

the scheduling algorithm, because in the end it will be used to updated the previous

schedule.

finish: This method restores the backup of the schedule before the scheduler was

invoked. It then determines the changes that are necessary to obtain the best schedule

encountered during the run and sends them to the Start/Stop Generator.

findEST: Given a resource and a task, this method finds the earliest possible starting

time of the task on the given resource. This method returns -oo if the task cannot

be executed during it's time window.

rescheduleEST: Given a resource, this method reschedules all its assigned tasks by

scheduling them as early as possible. The tasks are considered according to the order

in which they are scheduled before the method is called. This method can be used to

repair a schedule that was made invalid by a dynamic event.

Consider the Gantt chart4 in Figure 4.5 of tasks scheduled on the same resource along

with their time windows for execution.

Assume task TI is currently executing and its duration is increased by 5 minutes due

to some unexpected circumstances. The rescheduleEST method would try to schedule task

4A Gantt chart is a graphical representation of a schedule in which the horizontal axis represents time[ll].

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

4 I I I I I
I time

10 20 30 40 50

Figure 4.5: Gantt chart of tasks scheduled on same resource

T2 as early as possible and immediately recognize that there is no suitable time, since the

execution would finish after its latest finish time. Consequently, since T3 is the next task

to be rescheduled, it will now start at time 30. The Gantt chart of the modified schedule

can be seen in Figure 4.6.

I . . I

4 I I I I I
I I k time

10 20 30 40 50

Figure 4.6: Gantt chart after change duration event

4.4 Other Issues

4.4.1 Precedence constraints

As defined in Section 3.1.2, precedence constraints express the starting time of an activity in

terms of another activity's starting time. Precedence constraints can be specified between

two tasks belonging to the same mission and between a task and the mission itself. It turns

out that implementing these kinds of constraints into our dynamic scheduling framework is

not that simple.

It is trivial to guarantee that a precedence constraint between a mission and one of its

tasks is obeyed. Suppose in the given scheduling problem the following precedence constraint

exists:

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK

precedence mission1 taskl d

As a result, taskl has to start at least d minutes after the creation of missionl. The

earliest time for the creation of a task is when its mission is added to the scheduling problem.

As long as we can guarantee that the task will not execute before d minutes are elapsed,

the given precedence constraint is obeyed. This can be achieved by selecting a value for the

release date rd of taskl such that rd > d. Hence, there is no need to include this precedence

constraint in the scheduling problem.

However, it is not that simple for precedence constraints between two tasks. Assume

there exists a task A which adds two subtasks to the problem instance sometime during its

execution. We denote the subtasks of A as B and C.

Suppose there is a precedence constraint between tasks A and B. Using the same argu-

ment as before, we do not need to add the precedence constraint to the problem since it can

be enforced using the release date parameter of task B. In general, this argument holds for

any precedence constraint between a task and one of its subtasks. However, it doesn't hold

for a precedence constraint between B and C with delay d.

Assume that B is created earlier than task C. After running the scheduling algorithm,

task B might start execution right away. Eventually task C will be created, but what if

the other task has already been executing for d or more minutes? Then the constraint has

been violated without any fault of the scheduler. It is not possible to guarantee that this

precedence constraint is obeyed at all times.

Consider the following solution to the problem: Instead of adding the given precedence

constraint to the scheduling problem, modify the dataset by moving the task C into the

body of task B. Setting the release date of task C to a value 2 d enforces the constraint.

Hence, we can completely ignore the use of precedence constraints if we generate datasets

such that they are implied automatically by the definition of our dynamic scheduling model.

4.4.2 Rescheduling of Tasks

Semi-preemptive scheduling problems allow interruption of tasks in order to reschedule them,

possibly on a different resource. Our model uses the concept of bodies which contain dynamic

events that will be put into the event queue when the execution of a task commences.

However, what should be done with the dynamic events if a task is interrupted and scheduled

to execute a second time?

CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 5 1

Our solution is very simple: During simulation of the problem instance, we keep track of

the dynamic events contained in task bodies and allow every event to occur only once. Any

further execution of the body will ignore those events which have already happened. This

is especially important for the creation of subtasks. Suppose a new task event has already

occurred. The second time it is executed, the Event Executor will try to create another task

with the same id and violate the problem definition since task identifiers must be unique.

The side-effect of our solution is that if the execution of a task is delayed on a resource by

such a large amount that it needs to be interrupted, it will not be delayed again.

Chapter

Case-Study: Coast Watch

We study the Canadian CoastWatch Dynamic Resource Scheduling Problem, in short Coast-

Watch. It is an oversubscribed dynamic multi-mode scheduling problem with unit resources.

The task is to schedule both routine and emergency missions within a Search & Rescue

(SAR) operational command. CoastWatch datasets simulate a typical day for the Cana-

dian Coast Guard, where officers assign resources (planes, helicopters, ships, ...) to execute

several different kinds of missions (patrol, transport, ...). There are more routine patrol

missions than can be flown by the available resources. Unexpected SAR missions are of

highest priority and must be accommodated in the schedule if possible.

5.1 Problem definition

CoastWatch can be defined as follows:

Missions. M = {ml, m2, ..., m,) is a set of missions which have to be completed. A

mission has a priority pi and is composed of a set of tasks Ti, all of which have to be

completed in ordcr for the mission to be considered accomplished. Every mission has

an associated set of dynamic events called its body. These events occur at specified

times after the creation of the mission.

Tasks. T = {TI, T2, ..., T,) is a set of set of tasks which have to be scheduled. T,

contains all tasks that belong to mission 7ni. Similar to missions, every task has a body

which contains a set of dynamic events that occur at specified times after the start of

execution of this task. A task is characterized by the following parameters:

CHAPTER 5. CASE-STUDY: COASTWATCH 53

- rd: the release date of the task. It must be scheduled at this time or later

- d d : the due date of the task. Execution must terminate on or before this time

in any schedule.

- CR: the set of resources which can service the task. We also refer to them as

capable resources.

- type: the type of the task. This parameter determines the set of capable resources.

- D: the set of durations containing the execution times of the task depending

on the assigned resources. The duration may be altered during execution by

dynamic events.

Body. A set of dynamic events associated with a task or mission. These events,

which may affect the underlying scheduling problem, occur at specified times after the

creation of the mission or the execution of the task.

Resources. R = { r l , r2, ..., r k) is a set of renewable unit resources which are

scheduled to perform tasks. C is the set of capabilities, or task types, a resource is

able to perform.

The scheduling problem is semi-preemptive, meaning the execution of a task may be

interrupted and restarted from the beginning at a later time.

5.2 Description of Tasks and Resources

5.2.1 Tasks

Search

The purpose of the search task is to find a missing person. After receiving an S.O.S. signal,

the search task is performed by starting at the reported location and spiraling around it,

while constantly increasing the distance to the starting point. Figure 4.3 shows an example

for such a search path. Every time it is believed that the missing person has been sighted,

an interdiction task is generated at that location.

CHAPTER 5. CASE-STUDY: COASTWATCH 54

Interdiction

The interdiction task is generated to identify whether the object that was found during the

search task, is the missing person or not. Unfortunately, since resources fly high above sea

level in order to have a larger area of sight, it is possible that the object turns out not to be

the missing person. If the missing person is identified successfully, a rescue task is generated

at the same location. Regardless of the outcome, the interdiction task is completed when

identification of the object has completed.

Rescue

The rescue task is generated when the missing person has been located. The task involves

rescuing the person and transporting him back to the nearest base. Rescuing the person may

be very tricky and special equipment may be necessary to perform the task. Consequently,

not every resource type is able to perform a rescue task.

Patrol

The patrol task is generated when it is necessary to fly over a specific area to provide

protection or simply to be aware of movements of other ships or aircrafts. Typically, there

exist more such tasks that can be executed by the given resources. The pilot is given a

sequence of points which make up the flight path. After completing a specified number of

rounds, the task is considered accomplished.

Transport

The purpose of the transport task is to transport humans and/or goods from one base to

another. This task is the simplest and can be executed by virtually any resource.

5.2.2 Resources

Aurora

An Aurora aircraft can fly up to 750 km/h and is able to perform search, interdiction, patrol

and transport tasks. These kinds of resources are the fastest ones that are included in the

Coastwatch problem. Figure 5.1 shows a picture of the aurora aircraft along with the model

used in the Visualization Tool of the Dynamic Simulator.

CHAPTER 5. CASE-STUDY: COASTWATCH

Figure 5.1: Picture and model of an Aurora aircraft

Cormorant

A Cormorant is the helicopter typically used for Search & Rescue. It is very flexible and is

able to perform a.ll types of tasks. The Cormorant flies a t a speed of 278 km/h and is shown

in Figure 5.2.

Figure 5.2: Picture and model of a Cormorant helicopter

Cyclone

The Cyclone helicopter has very similar cha.racteristics compared to the Cormorant. It

is also able to perform all task types, but moves a little faster a t a speed of 305 km/h.

Figure 5.3 shows a Cyclone helicopter in action and the corresponding Google Earth model.

CHAPTER 5. CASE-STUDY: COASTWATCH

Figure 5.3: Picture and model of a Cyclone helicopter

The Eagle aircraft is an Unmanned Aerial Vehicle which flies up to 207 km/h. As the name

implies it flies by itselF without the need for a pilot. Planes are remotely controlled and

equipped with cameras allowing the Canadian Coast Guard to use them for finding missing

persons. Eagle aircrafts can be used for search and interdiction tasks and are shown in

Figure 5.4.

Figure 5.4: Picture and model of an Eagle Unmanned Aerial Vehicle

Frigate

The Frigate ship is the slowest resource availa.ble in the Coastwatch dynamic resource

scheduling problem. It travels at a speed of 54 km/h, but can perform all types of tasks

with the exception of tra.nsport tasks. As a consequence of its low speed, Frigates typically

CHAPTER 5. CASE-STUDY: COASTWATCH

are not involved in tasks which require a lot of tra.ve1. But they may be close to the task

locations and act as first, responders. Figure 5.5 shows the model used in t-he Earth Browser

as well as a. picture of a Frigate out in the ocean.

Figure 5.5: Picture and model of a Frigate ship

5.3 Benchmark Datasets Generation

This section contains a listing of all parameters values that we have selected for generating

benchmark datasets for the CoastWatch dynamic resource scheduling problem. By changing

parameter values, generated datasets may have very different characteristics.

Scheduling horizon: 0 to 1440. We measure time in minutes and set the size of the

scheduling horizon to equal a whole day.

0 numBases: 4. We define a set of 4 rea.1-world bases and include them in every

dataset. The selected bases are CFB-Comox, CYBL-CampbellRiver, YAZ-Tofino and

Y VR-Vancouver .

numResources: 10. We specify 18 different resources in the schedulirlg problen~

file for CoastWatch: 2 Aurora aircrafts, 4 Cormorant and 4 Cyclone helicopters, 4

Eagle Unmanned Aerial Vehicles and 4 Frigate ships. Aurora aircrafts are kept very

scarce, since they are much faster and would otherwise dominate the other resources

by performing most of the tasks. Every problem instances contains 1 resource for

every type and randomly selects the remaining 5.

CHAPTER 5. CASE-STUDY: COASTWATCH

5.3.1 Dynamic Events

Delay Task

probability: 0.1, de lay: random(-10,60).

This dynamic event shifts the time window of a task by a given delay. This delay can

be positive or negative. The latter case refers to a task that can start execution ahead of

schedule. This event has to occur at least 1 minute ahead of the earliest possible starting

time of a task. If the execution time window of a task starts at the time of its creation, no

delay task will be created.

We assume that 10% of all tasks will be delayed. However, we allow no such event for

interdiction and rescue tasks. Additionally, the execution of search tasks should never be

delayed. But this is already guaranteed because we set its earliest possible starting time

to be the time at which the task was created. Additionally, we set the maximum possible

delay to be one hour and allow a task to be started at most 10 minutes earlier than first

anticipated.

Change Duration

probability: 0.2, r e l a t i v e T i m e : random(l,99), de lay: random(-10,25).

The change duration event causes the current execution of a task to be delayed due to

some unforeseen circumstances. Similarly to the delay task event, the delay can be positive

or negative.

20% of all tasks, excluding interdiction tasks, experience a change in its duration. The

relative time is set to a value between 1 and 99 meaning this event can occur anywhere during

the execution of a task. A task can be executed up to 10% faster than first anticipated,

which equals a delay of -lo%, but its duration may be increased by up to 25%.

Disable Resource

n u m R e s o u r c e s : 2, t i m e : random(30,120).

This disable resource event temporarily removes a resource from the problem instance.

After a specified amount of time has elapsed, the resource is added back into the scheduling

problem. We modify the definition of this event as given in the model by adding another

parameter which determines the number of resources that will be disabled throughout the

CHAPTER 5. CASE-STUDY: COASTWATCH 59

scheduling horizon. We assume that a resource cannot be disabled more than once.

In our experiments, we simulate a typical day for the Canadian Coast Guard by assuming

that two resources will experience technical difficulties and be temporarily disabled. We

assume that repair will take anywhere from 30 minutes to 2 hours.

5.3.2 Tasks

We give a brief description of the different types of tasks that are included in our generated

benchmark datasets. In total we generate 60 missions for each dataset: 30 patrol, 20

transport and 10 search and rescue. Since search & rescue involves several tasks that need

to be completed to accomplish one mission, they are the most difficult missions, but it would

be unrealistic to generate a large number of them. We create two types of transport tasks:

static and dynamic. We assume that half of the transport tasks are known the previous day

and therefore should be known at the beginning of the time horizon. Their release date is

normally distributed around the middle of the day, so that theses missions typically occur

during day time. The other half of transport tasks are spontaneous. They are generated

throughout the day with much their time window of execution starting within the next 2

hours.

numStatic: 10, numDynamic: 0, priority: random(l,lO), relativeTime: 0, releaseDate:

norma1(800,100).

Ten static transport missions are generated in our problem instances. They are known at

the beginning of the scheduling horizon with their release dates being normally distributed

around the early afternoon.

numStatic: 0, numDynamic: 10, priority: random(l,lO), relativeTime: 0, releaseDate:

random(O,l20).

Dynamic transport tasks have different characteristics than static ones. They are gen-

erated throughout the day, with their earliest possible starting time being within 2 hours of

their creation time. All transport tasks have low priority values.

CHAPTER 5. CASE-STUDY: COASTWATCH 60

Patrol

numstatic: 30, numDynamic: 0, priority: random(20,30), relativeTime: 0, releaseDate:

norma1(0,1440), maxDistance: random(120,150), numpoints: random(5,10), numRounds:

random(3,4).

The patrol task is generated when it is necessary to fly over a specific area to provide

protection or simply to be aware of movements of other ships or aircrafts. Patrol missions

have medium priority and are all known at the beginning of the scheduling horizon. To

execute such a mission, the pilot is given a sequence of points which make up the flight

path. After completing a specified number of rounds, which we have chosen to be either

3 or 4, the task is considered accomplished. We generate the sequence of points by first

generating a starting point. The remaining 4 to 9 points are created randomly, within 120

to 150 kilometers from the starting point. We select the closest of these points to be the

second point along the flight path. From the remaining randomly generated points we select

the third point to be the closest one as measure from the second point. We continue this

process until there exists a total order of all points.

After experimenting with different parameter values, we found that it is very important

to limit the flexibility in length that exists for patrol missions. For instance, allowing a

maximum distance of 50 km or less and a small number of points and rounds, we sometimes

generated patrol tasks that took an Aurora aircraft only several minutes to execute.

Search

numstatic: 0, numDynamic: 10, priority: random(150,250), relativeTime: 0, releaseDate:

0, numlnterdiction: random(l,5), radius: random(50,75).

We generate 10 Search & Rescue missions during the course of an entire day. These have

a very large priority because human life is involved. The search path to be flown by the

pilot is pre-determined: starting at the reported location, the resource will spiral around

it while constantly increasing its distance. We set the search radius to be between 50 and

75 kilometers from the reported location. During execution of this task, 1 to 5 interdiction

tasks may be created.

Interdiction

relativeTime: random(1,100), releaseDate: 0, duration: random(l,5).

CHAPTER 5. CASESTUDY: COASTWATCH 6 1

The purpose of an interdiction task is to identify whether the object sighted during the

search task is the missing person. The relative time is chosen such that these tasks can

occur anywhere along the search path. They can be executed immediately and have very

short durations.

Rescue

relativeTime: 100, releaseDate: 0, duration: random(3,15).

Once it has been verified that the missing person has been found, the rescue task needs

to be performed. Relative time is set to loo%, since the interdiction task needs to complete

in order to know for sure whether the object is the missing person. Rescuing the human

takes anywhere from 3 to 15 minutes, but the actual duration is much longer, because the

person needs to be transported to the nearest base in order to get him to a hospital.

Chapter 6

Algorithms

In this chapter, we describe various scheduling algorithms that we have implemented for

the Coastwatch Dynamic Resource Scheduling problem case-study. We use Tabu search

as a uniform platform, because stochastic local search algorithms have been proven to be

successful for hard scheduling problems [ll]. We use this platform to test various heuristics

and neighbourhood strategies.

We encode potential solutions using a permutation of the tasks and write a schedule

builder which generates a schedule from the permutation. This approach is similar to

Barbulescu et al. [I]. The permutation acts as a priority queue and each task is assigned to

the first available resource at the earliest possible starting time.

In dynamic scheduling problems, the addition of a new mission or the occurrence of a

dynamic event may cause a lot of disruption in the schedule. On a busy resource, it is very

likely that a delay of a task propagates to other tasks that are assigned to be executed

afterwards. Even worse than that, if we are dealing with time window constraints, then it is

possible that a task can no longer be executed and might be reassigned to another resource.

Although schedule disruption is not our main objective, we would still prefer a scheduling

algorithm that minimizes this objective.

As a result, we modify our encoding to be a set of permutations of the tasks, one for each

resource. This is done to help minimize schedule disruption since changes made on a single

resource should effect fewer other tasks. We can assume there exists a dummy permutation

which contains all the tasks that are not assigned to any resource.

CHAPTER 6. ALGORITHMS

6.1 Tabu search platform

Tabu search is a very simple stochastic local search algorithm that has been applied very suc-

cessfully to many different kind of scheduling problems. In general, Tabu search algorithms

work as follows [ll]:

1. Determine initial candidate solution s

2. While termination criterion is not satisfied

(a) Determine set N of non-tabu neighbours of s

(b) Choose a best improving solution s' in N

(c) Update tabu attributes bases on s '

(d) Set s equal to s '

A neighbour of the current solution is another candidate solution that can be reached

by making a single modification to it. The set of all possible neighbours during an iter-

ation is called neighbourhood. Tabu search remembers the selected moves because for a

certain number of iterations, called the tabu tenure, it will disallow moves that reverse a

previous move. Typically, an exception is made for moves which improve the best solution

encountered during the run.

6.2 Neighbourhoods

In a local search strategy, the neighbourhood is defined as the set of all possible moves to

modify the current solution. For the Coastwatch problem we experiment with different

neighbourhoods by running them on the Tabu search platform.

First we will explain the different move operators that we consider. Then we will give a

brief description of the various neighbourhoods.

Recall that we encode candidate solutions using a permutation of tasks for each resource.

After applying the move operator a schedule builder will traverse through all resources and

try to schedule the tasks on the given resource as early as possible. The permutations act

as a priority queue which determines the order in which the tasks are considered.

For our experiments we allow the following move operators:

CHAPTER 6. ALGORITHMS

a Switch Resource: switches a given task to another resource

a Move Task: moves a task to another position within the permutation

a Add Task: adds a currently unscheduled task to one of the permutations

The three neighbourhood variations we test on the Coastwatch datasets are:

1. Full: Permits all three types of moves and exhausts all possible moves during every

iteration. This neighbourhood is computationally expensive, however, it will provide

the greatest flexibility since it can explore the whole search space.

2. AddOnly: Allows only add task moves. The idea behind this neighbourhood is to

try to insert more tasks into the schedule, while leaving scheduled tasks alone. This

method differs from the Missionswap algorithm [17] as described in chapter 2, because

we do not require retracted tasks to be rescheduled.

3. Restricted: This neighbourhood combines features of both, Full and AddOnly. It

has a parameter mas moves which limits the number of moves per iteration that

Tabu search is allowed to consider. The neighbourhood will first consider all add

task moves and then randomly select switch resource or move task moves until the

maximum number of moves has been reached.

6.3 Scheduling Heuristics

The three possible neighbourhood moves, switch resource, move task and add task, all need

to select new positions within the permutation. We define several scheduling heuristics

which will decide where in the permutation the task is inserted:

a Random: This algorithm selects the new position within the permutation purely at

random. In the worst case, it might schedule a task such that no other assigned tasks

of the resource may still be completed in time. Its performance won't be very good,

but we use this strategy as a baseline.

a Maximizeobjective: This heuristic places the task in the permutation such that

the given resource itself contributes as much to the objective value as possible. This

C H A P T E R 6. ALGORITHMS 65

technique should perform very well since its optimization goal is exactly the objec-

tive function of the scheduling problem. However, optimizing this objective on each

resource doesn't necessarily produce the best overall results.

0 MinimizePositioningTime: For a given task, this algorithms selects the new posi-

tion within the permutation such that in the resulting schedule, its positioning times

are minimized. In other words, this strategy will attempt to schedule the task such

that the distance from the previous task and the distance to the next task are as

small as possible. For the first task to be completed by a resource, we consider its

positioning time from the home base, while for the last task we do not include any

positioning leg after it has been completed. This strategy attempts to minimize the

time that resources spend on positioning legs in order to maximize utilization.

SpreadOutResources: This heuristic places the task in the permutation such that

resources are spread out as much as possible during the remainder of the simulation.

By doing so we provide more flexibility to the Canadian Coast Guard, since we ensure

that resources are operating in very different locations. As a result, we increase the

probability that a new task can be executed very quickly. We generate a specified

number of absolute times spaced evenly throughout the remainder of the simulation

and determine the position of every resource according to the current schedule. We

sum up the square distances of the assigned resource to all others, which will give us a

good measure of how spread out resources are during the remainder of the scheduling

horizon.

6.4 Discussion

Before discussion of experimental results, we would like to give a short comparison of our

Tabu search algorithm to the Missionswap and SWO algorithms from Kramer et al. [16].

Their study attempts to classify scheduling problems for which it is best to use a specific type

of local search algorithm. The Tabu search algorithm we selected for Coastwatch differs

significantly from either of the studied algorithms. The difference to the studied SWO

method is that our algorithm contains a permutation of assigned tasks for each resource.

This is done to help minimize schedule disruption since changes made on the permutation of

a subset of tasks should effect fewer other tasks. Additionally, after each iteration of Tabu

CHAPTER 6. ALGORITHMS 66

search we update the permutations to reflect the actual order that tasks will be executed

on the different resources. This limits the explored search space since all permutations that

lead to the same schedule will cause an implicit jump to the same region of the search space.

There are two main differences between our Tabu algorithm and MissionSwap: first, we do

not require that all retracted tasks be rescheduled when inserting a new task and secondly,

we move through the search space by changing the permutations rather then operating on

the schedule themselves.

Chapter 7

Evaluation & Experiment a1 Results

7.1 Evaluation Criteria and Methodology

The algorithms described in Chapter 6 were all developed for oversubscribed scheduling

problems. These are scheduling problems for which not all tasks can be scheduled and the

algorithm needs to select the best subset of these tasks that can be completed while obeying

all problem constraints.

The Coastwatch scheduling problem is such an oversubscribed scheduling problem and

consequently, we use the problem generator to generate more missions than can be executed

by the available resources. We estimate the value of oversubscription (ov) by dividing the

sum of average durations of all tasks by the size of the scheduling horizon multiplied by the

number of resources:

-j-zT worstt+bestt

ov = 2

r * (tend - tstart + 1)

where: ov is the oversubscription value of a problem instance, T is the set of all tasks, worstt

and bestt refer to the worst and best task durations, respectively, r equals the number of

resources in the scheduling problem and tstaTt & tend refer to the beginning and end of the

scheduling horizon, respectively.

The oversubscription value estimates the number of tasks a resource has to execute

concurrently in order to complete all tasks during the simulation of the scheduling problem.

If ov > 1, then most likely the given problem instance is oversubscribed. Typically, the

sum of average durations underestimates the actual time it requires resources to execute

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

the given tasks. This is because resources also need to travel to the starting location of the

task, and the durations of these positioning legs are not included. We generate 100 datasets

with oversubscription values between 1 and 5 and use them to test various algorithms.

We select our objective to be to maximize the sum of priorities of all accomplished

missions:

obj = ct * priorityt

where T is the set of all tasks, priorityt is the priority of task t, and ct equals 1 if the task

has been completed within the given execution time window, and 0 otherwise.

This objective function is a simple solution quality measurement for oversubscribed

scheduling problems. Other objectives, such as minimizing the lateness of tasks, introduce

some difficulties, since only a subset of the tasks will actually be executed.

Additionally, we collect statistics about schedule disruption, because we would prefer an

algorithm that reschedules fewer tasks. We measure disruption by comparing the schedules

before and after running the scheduler and summing up the number of tasks that:

have been previously been unassigned, but are now scheduled on a resource, and

have been assigned previously, but are now assigned to a different resource, and

have been rescheduled. We do not include tasks which have been assigned a different

time slot or resource as a result of rescheduling some other task. In other words, we

only count tasks that have been rescheduled because they have been selected by the

algorithm.

7.2 Implement at ion

As specified in Section 3.3, we use relative event times for dynamic task events created

during the execution of tasks. In our implementation we restrict these relative times to any

integer i, such that 0 5 i 5 100. When the body of a task is executed we divide these event

times by 100 to get the percentage of completed execution after which the event occurs.

The reason for this difference in implementation is that it is more convenient to store all

event times as integers, regardless of their types.

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS 69

As explained in Section 4.2.1, the initial scheduling problem must be parsed by the

dynamic simulator before the simulator can start. We achieve the same effect by inputting

the initial problem instance as a set of events with event times equal to 0. Additionally, we do

not implement a Start/Stop Generator module, because we provide the desired functionality

in both Task and Resource classes.

In our implementation of the event model, we further divide every task into a sequence

of actions. As a consequence we are able to calculate the duration of tasks by summing up

the durations of their actions. This minimizes the required effort to introduce new types

of tasks. There exist only two different types of actions: Go and Wait. The Go action

requires a resource to move from one location to another, while the Wait action instructs a

resource to remain at a specified location. Every task can be translated into a sequence of

these actions.

7.3 Experimental Results

We perform two different experiments on the generated CoastWatch datasets. Both experi-

ments are run on a 3.0 GHz computer with 1GB of RAM. We measure run-time in seconds

per scheduler call in order to determine how long it would take an algorithm to respond to

the occurence of one dynamic event. Total run-time does not give much information about

the efficiency of an algorithm since the execution of more tasks will result in more dynamic

events, and consequently in more scheduler calls.

In the first experiment we investigate the effect of neighbourhood choice on the studied

dynamic scheduling problem. We exclusively use the random scheduling heuristic for this

experiment, in order to have no bias regarding the new position in the permutation.

The second experiment compares the performance of the various scheduling heuristics

on the CoastWatch benchmark datasets.

7.3.1 Experiment 1 - Neighbourhoods

Experiment 1 compares the performance of Full, Restricted and AddOnly neighbourhoods

on a set of oversubscribed problem instances, consisting of problems 1 to 50 from the Coast-

Watch benchmark datasets. The random scheduling heuristic is used exclusively in this

experiment, and hence, all results are averaged over 10 runs. Figure 7.1 shows typical run-

time behaviour of the Tabu search algorithm on one of the datasets. In particular, it shows

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

the AddOnly neighbourhood as run on dataset #1 with 100 iterations

0 4
1 74 147 220 293 366 439 512 585 658 731 804 877 950 1023 1W tWIM2 1315 1388

Time

Figure 7.1: Runtime behaviour of AddOnly on Dataset #1 using 100 iterations

The graph shows a steady objective increase as time progresses in the simulation. This

1s because more and more missions are added dynamically and the objective value increases

every time one of those missions is completed. The objectivc function is not monotonically

increasing because sometimes subtasks are created that cannot be executed and conse-

quently, the mission is not considered accomplished anymore.

Table 7.1 summa.rizes the performance of the Addonly neighourhood on all 50 dstasets

for 50, 75 and 100 iterations. Results are nearly identical: 100 iterations provide very little

improvement over 75 iterations, which in turn performs almost identical to 50. This suggests

that this particular neighbourhood has already rea.ched its performance level after a small

number of iterations and further improvements are due to luck.

Figure 7.2 shows a comparison of these runs for each dataset. All performance graphs in

this chapter show the relative performance of the various a,lgorithms. In this type of graph,

we use the worst performing algorithm as a baseline and plot the difference between its

average and worst performa.nce (out of 10 runs). As a result, we can deduce the performance

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Table 7.1: Average performance of A d d O n l y for 50, 75 and 100 iterations

Neighbourhood

AddOnly 50

variation that exists within different runs. For all other algorithms, we compare its average

performance with the average baseline performance and visualize their difference for each

d a t s e t . Consequently, larger bars representer better performance.

Add Only - 100 Iterations

.Add Only - 75 Iterations

Run-time

1.21 s

A d d Only - 50 Iterations

Dataset

Objective

2442.60

Figure 7.2: Performance comparison of A d d O n l y for 50, 75 and 100 iterations

The performance graphs for the A d d O n l y neighbourhood show nearly identical results

w h n tcrrriinating Tabu scarch aftcr variolls different ti~irnbcr of iterations. 100 itcratioris

provide very little improvement over 75 iterations, which in turn performs almost identical

to 50. This suggests that this particular neighbourhood has already reached its performance

level after a small number of iterations and further improvements are due to luck.

Disruption

144.31

Best

11

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Figure 7.3 shows the performance comparison of AddOnly, Restricted and fib11 neigh-

bourhoods on the benchmark datasets for 50 iterations with average run-times of 1.21, 2.53.

2.93 and 10.33 seconds, respectively.

M W d (50 moves)
-d (60 moves)

Figure 7.3: Performance comparison of AddOnly, Restricted and Full for 50 iterations

The AddOnly neighbourhood dominates all other neighbourhoods after 50 iterations.

Additionally, it seems that using neighbourhoods which allow more moves during an itera-

tion, leads to worse results. Although we have shown in figure 7.2 that when terminating

the Ta.bu search after more iterations, performance improvement for AddOnly is minimal,

this may not be the case for the other neighbourhoods. We repeat the experiment using

100 iterations and show the resulting performa.nce graphs of all three neighbourhoods in

figure 7.4. We summarize thcir performance in Table 7.2.

Thc relativa perforrnancc of thc different neighboiirhootls using 100 itcrahions is itlcn-

tical to before. In an attempt to understand why these larger neighbourhoods lead to

infcrior solution quality, wc rnodificd thc Restricted neighbourhood so that it does not try

to reschedule tasks which are currently executing on any of the given resources. Since our

scheduling problem is semi-preemptive, meaning that an interrupted task must be restarted

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Dataset

Figure 7.4: Performance comparison of AddOnly, Restricted and Full for 100 iterations

Table 7.2: Average performa.nce of AddOnly, Restricted and Full for 100 iterations

Neighbourhood

AddOnly
Restricted
Full

Run-time

2.62 s
5.30 s
32.09 s

Best

37
13
0

Objective

2461.84
2381.01
2094.41

Disruption

147.45
676.10
859.20

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Table 7.3: Average performance of AddOnly, Restricted and modzfied Restricted for 50
iterations

from the beginning, it may not be a good idea to reschedule such tasks. Figure 7.5 shows

the resulting performance graphs, while table 7.3 summarizes their overall performance.

Best

29
9
12

Neighbourhood

AddOnly
Restricted
Modified Restricted

Restricted

Dataset

Run-time

1.21 s
2.53 s
1.57 s

Figure 7.5: Performance comparison of AddOnly, Restricted and modified Restricted for 50
iterations

The modified Restricted neighbourhood resulted in better solution quality, however, it

was not able to match the performance of AddOnly. This indicates that dthough reschedul-

ing currently executing tasks contributes to the poor performa.nce of large neighbourhoods,

it is not the only contributing factor.

Objective

2442.60
2355.91
2394.99

Disruption

144.31
500.50
563.72

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Result Neighbourhood 1

AddOnly
AddOnly
AddOnly
modified Restricted
modified Restricted
Restricted

Significant?

YES
YES
YES
YES
YES
YES

Neighbourhood 2

Restricted
modified Restricted
Full
Restricted
Full
Full

Table 7.4: Paired sample t-test for AddOnly, Restricted, modified Restricted and f i l l for 50
iterations

To validate our results, we carry out paired sample t-test using SPSS' (Statistical Pack-

age for the Social Sciences). This test provides evaluation of the performance difference of

two algorithms. A resulting value < 0.05 indicates significant difference in performance.

The signficunce tests between various neighbourhoods for 50 iterations are summarized in

table 7.4.

We conclude that the AddOnly neighbourhood dominates the other two neighbourhoods

in terms of solution quality and schedule disruption. As a result, we use it exclusively in

experiment 2 to test various scheduling heuristics. AddOnly provides the least flexibility in

moving from one candidate solution to another, but its advantage is that it concentrates

on scheduling tasks which are currently unscheduled and does not re-arrange tasks which

have already been scheduled. The Full neighbourhood provides the greatest flexibility, but

requires the largest amount of computation time and actua.11~ performed the worst.

7.3.2 Experiment 2 - Scheduling heuristics

Experiment 2 compares the performance of the Random, MaximizeObjective, MinimizePo-

sitioningTzme and SpreadOutResources heuristics on the Coastwatch benchmark datasets

which consists of 100 randomly generated oversubscribed problem instances. These dif-

ferent strategies determine which position in the permutation a given task is assigned to.

We exclusively use the AddOnly neighbourhood for our Tabu search algorithm because it

outperformed all other neighbourhoods from experiment 1. We average the performance of

Random over 10 runs for each datasct and perform only one run for all other scheduling

'More information can be found at http://www.spss.com/spss/

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

heuristics since they are deterministic.

Figure 7.6 shows the performance graphs of the various scheduling heuristics on the

Coastwatch benchmark datasets and table 7.5 summarizes their average performance. The

resulting schedule disruption of these strategies is shown in figure 7.7.

Dataset

Figure 7.6: Performance comparison of Random, MadmizeObjective, MinimizePositioning-
Time and SpreadOutResources for 100 iterations

The results show that MaximizeObjective outperforms all other heuristics for most

datasets and performing paired sample t-test verifies that these performance differences are

significant. Although, SpreadOutResources leads to better overall solution quality than Min-

imizePositioningTime, differences are minimal and insignificant. As c:xpected, all heuristics

outperform Random in terms of objective value. MaximizeObjective and SpreadOutRe-

sources do not lead to as much schedule disruption as MinimizePositioningTime. Similarly,

as for solution quality, the Random heuristic performs the worst in terms of disruption.

We conclude that MaximizeObjective outperforms all other scheduling heuristics since it

provides superior solution qua.lity with relatively little schedule disruption.

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Scheduling heuristic

Random

Table 7.5: Average performance of Random, MaximizeObjective, MznimizePositioningTime
and SpreadOutResources for 100 iterations

Maximize Objective 1
Minimize Positioning Time
Spread Out Resources

Figure 7.7: Schedule disruption of Random, Mazim,izeObjective, MinimizePositiowingTime
and SpreadOutResources for 100 iterations

Run-time

2.64 s
7.84s
11.57 s
18.13 s

Objective

2452.47
2543.14
2483.47
2502.90

Disruption

145.33

Best

4
123.37
130.79
123.27

48
25
26

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS 78

Table 7.6: Average performance of Random, MaximizeObjective, MinimizePositioningTime,
SpreadOutResources and MaxObj+MinimizeResponseTime for 100 iterations

As a result of the superior performance of MaximizeObjective we extend our experiment

to include one more heuristic: we combine MaximizeObjective and a modified version of

SpreadOutResources into one heuristic that we call MaxObj+MinimizeResponseTime. Min-

Scheduling heuristic

Random
Maximize Objective
Minimize Positioning Time
Spread Out Resources
MaxObi + Minimize Res~onse Time

imizeResponseTime differs from SpreadOutResources in that it computes the minimum time

Disruption

it takes a resource to get to randomly generated points, rather than maximizing distances

Best 1 Run-time

2.64 s
7.84 s
11.57s
18.13 s
11.91 s

between all resources. Since resources operate a t different speeds, maximizing distances be-

tween them is not enough to guarantee short response times. Additionally, the new heuristic

computes this response time for each task type, since not all tasks can be executed by every

resource. MaxObj+MinimizeResponseTime uses the MaximizeObjective heuristic and breaks

ties using the new MinimizeResponseTime strategy. The performance summary of all five

scheduling heuristics are shown in table 7.6. Although MaxObj+MinimizeResponseTime

145.33
123.37
130.79 19

123.51

Objective

2452.47
2543.14
2483.47
2502.90
2555.71

results in the best overall performance in terms of solution quality, it turns out that the

difference to MaximizeObjective is insignificant. Table 7.4 shows the results of paired sample

t-test between the different scheduling heuristics.

CHAPTER 7. EVALUATION & EXPERIMENTAL RESULTS

Heuristic 1

MaxObj+MinimizeResponseTime
MaxObj+MinimizeResponseTime
MaxObj+MinimizeResponseTime
MaxObj +MinimizeResponseTime
MaximizeObjective
MaximizeObjective
MaximizeObjective
SpreadOut Resources
SpreadOut Resources
MinimizePositioningTime

Heuristic 2

MaximizeObjective
SpreadOutResources
MinimizePositioningTime
Random
SpreadOut Resources
MinimizePositioningTime
Random
MinimizePositioningTime
Random
Random

Result

YES
YES
YES
YES
YES
YES
NO
YES ~
NO

Table 7.7: Paired sample t-test for Random, MaximizeObjective, MinimizePositioningTime,
SprendOutResources and MaxObj+MinimizeResponseTime for 100 iterations

Chapter 8

Conclusion

In this thesis, we described a framework for dynamic resource scheduling problems with unit

resources subject to temporal and resource constraints. It is composed of three components:

a random problem generator, a dynamic simulator and a scheduler. We proposed a model

for dynamic resource scheduling problems and incorporated it into our framework. We

performed a case-study on the Coastwatch problem whose goal is to schedule both routine

and emergency missions within a Search & Rescue operational command. We tested different

heuristic scheduling strategies and various neighbourhoods on our Tabu search platform.

In Section 8.1, we first summarize the approach taken by our work. Then we review

the key contributions to the field of dynamic resource scheduling in Section 8.2. Section 8.3

speculates on possible future research directions and Section 8.4 gives some concluding

remarks.

8.1 Thesis Summary

Chapter 2 presented a survey of problem generators and scheduling algorithms for resource

scheduling problems. Unfortunately, past research on problem generators has concentrated

almost exclusively on static scheduling problems. Recently, Policella & Rasconi [23] devel-

oped a problem generator model for dynamic project scheduling problems. However, their

dynamic events were very restrictive and couldn't be used to create realistic datasets for

our dynamic resource scheduling problem.

Chapter 3 defined a general dynamic resource scheduling model which we incorporated

CHAPTER 8. CONCLUSION 8 1

into our framework. We differentiate between three different types of dynamic events: reg-

ular events, task events and mission events. Regular events have an absolute event time

anywhere within the scheduling horizon. The event time for mission events is relative to the

creation of the mission. For task events, the event time is also relative, but unlike mission

events it represents a percentage. The dynamic event is created after the assigned resource

has completed the specified percentage of the parent task.

We described our dynamic resource scheduling framework in Chapter 4. We explained

all its components in detail: the random problem generator, the dynamic simulator and the

scheduler. During development of the problem generator, we tried to keep it as general as

possible so that it could be applied to similar scheduling problems with very little effort.

The dynamic simulator hides future events from the scheduling algorithm and contains a

visualization tool which creates animations on Google Earth. We implemented a Tabu search

platform as part of our scheduler component and used it to carry out several experiments.

Chapter 5 describes the CoastWatch Dynamic Resource Scheduling problem. It is an

oversubscribed dynamic multi-mode scheduling problem with unit resources and lies in the

Search & Rescue domain. CoastWatch datasets simulate a typical day for the Canadian

Coast Guard, where officers assign resources (planes, helicopters, ships, ...) to execute

several different kinds of missions (patrol, transport, search & rescue).

We described our Tabu search algorithm in Chapter 6. It was used to run various

algorithms on CoastWatch datasets. We experimented with different scheduling strategies

and tested different neighbourhoods.

In Chapter 7 we stated our research goals and discussed experimental results. The ob-

jective function for our evaluation is to maximize the sum of priorities of all accomplished

missions. Ignoring algorithm efficiency, we expected the Full neighbourhood to achieve the

best results, as it provides the greatest flexibility in adjusting a candidate solution. How-

ever, our results showed that the simplest neighbourhood with the most restricted moves,

AddOnly, resulted in superior performance. The advantage of this simple neighbourhood is

that it concentrates on scheduling tasks that are currently unscheduled and leaves all other

tasks alone. In another experiment, we used this neighbourhood to test various scheduling

heuristics. The MaximizeObjective strategy, which positioned a given task in the permuta-

tion such that the assigned resource contributes to the objective value as much as possible,

outperformed the other techniques. Combining this heuristic with another strategy to break

ties, resulted in insignificantly superior performance.

CHAPTER 8. CONCLUSION

8.2 Contributions

The main contribution of this thesis is a dynamic resource scheduling framework that can

be applied to many different kinds of dynamic resource scheduling problems. We defined a

model for such problems which allows a large set of unexpected dynamic events.

Contributions in this thesis include:

0 We developed a dynamic resource scheduling framework which is composed of three

components: a random problem generator, a dynamic simulator and a scheduler. It

can be applied to many different kinds of dynamic resource scheduling problems.

We developed a random problem generator which generates benchmark datasets for

dynamic resource scheduling problems. It is very easy to adapt to add new mission

types and dynamic events, because it only requires minor changes in its input files.

The use of parameters provides great flexibility in changing the characteristics of the

generated instances.

We developed a dynamic simulator which is used to run dynamic scheduling datasets.

It hides future events from the scheduler and contains a visualization tool to create

an animation of the executing schedule on Google Earth.

We implemented Tabu search as a uniform platform to test various scheduling heuris-

tics on the Coastwatch problem. Additionally, we experimented with different search

neighbourhoods.

8.3 Future Research

Although we have tried several different variations of a Tabu search algorithm, in the future,

we could test more algorithms to determine how good our results really are. Since we have

implemented the algorithm using a permutation-based method, it would be very interesting

to try a scheduling algorithm which modifies schedules directly. We might be able to adapt

the MissionSwap algorithm so that it doesn't require that all retracted tasks be rescheduled.

Similarly, finding other dynamic heuristics or neighbourhoods might improve our ex-

perimental results. We could combine several heuristics into one algorithm and run them

concurrently by selecting one heuristic at random during each iteration. Another alternative

CHAPTER 8. CONCLUSION 83

would be to run two heuristics iteratively: The second heuristic restarts Tabu search from

the best schedule found during the run using the first heuristic.

We used the random problem generator to create problem instances for the CoastWatch

Dynamic Resource Scheduling problem. We made these datasets publicly available in order

to spark more interest in studying dynamic scheduling problems. Possible future work could

include generating more datasets for the CoastWatch problem. It would be interesting to see

if changing some of these parameters changes the outcome of our experiments significantly.

Additionally, it would be beneficial to identify a subset of parameters that significantly

influences the difficulty of the generated datasets. We can achieve this by trying various

combinations of these parameters.

Precedence constraints are a very common type of temporal constraints and are included

in many different scheduling problems. In Chapter 4 we explained how difficult it is to obey

precedence constraints in dynamic problem instances. Although our solution of enforcing

such a constraint by means of generating an appropriate release date for the task, works for

our problem, it may not be sufficient for other problems. As part of our future research, we

could find a better solution in order to introduce more complicated precedence constraints

to the dynamic resource scheduling framework.

The size of the execution time windows for tasks can have a significant impact on the

difficulty of the resulting problem instances. Consequently, we need to test several strategies

for determining their size and analyze the resulting datasets. Currently, we generate the

execution time window for a task by considering the positioning times and durations of the

capable resources. However, there is a disadvantage to this approach: resources that are

either much faster or much slower than other ones, influence the resulting size significantly.

In the future, we could look for alternative ways such that time window sizes are not

dependent on the available resources.

8.4 Concluding Remarks

As more and more researchers are working on dynamic scheduling problems, the need for

good problem generators will only increase over time. We have taken one step towards this

direction: developing a random problem generator that is flexible enough to be used for

many different kinds of dynamic resource scheduling problems.

CHAPTER 8. CONCLUSION 84

We have achieved the two goals that we set out before starting our research. We devel-

oped a general random problem generator as part of a larger framework for dynamic resource

scheduling problems and we were able to get decent results by running several variations

of a Tabu search algorithm. In addition to that, we hope to have achieved two additional

goals:

1. To spark interest in other researchers to try their dynamic scheduling algorithms on

our benchmark datasets for the Coastwatch scheduling problem.

2. To spark interest in the scheduling community to attack even more dynamic scheduling

problems in the future.

Appendix A

Problem Generator Input Files

A. 1 Sample Scheduling Problem file:

resourceTypes (aurora cormorant cyclone frigate eagle-uav)

capability search (aurora cormorant cyclone eagle-uav frigate)

capability interdict ion (aurora cormorant cyclone eagle-uav frigate)

capability rescue (cormorant cyclone frigate)

capability patrol (aurora cormorant cyclone frigate)

capability transport-static (aurora cormorant cyclone)

capability transport-dynamic (aurora cormorant cyclone)

base CFB-Comox (49.72052,-124.89249)

base CYBL-CampbellRiver (49.95054,-125.27070)

base YVR-Vancouver (49.19388,-123.18444)

base YAZ-Tofino (49.13106,-125.89075)

resource aurora CP-140411 YVR-Vancouver 750

resource aurora CP-I40412 YVR-Vancouver 750

resource cormorant CH-I49901 CFB-Comox 278

resource cormorant CH-149902 CYBL-CampbellRiver 278

resource cormorant CH-I49903 YVR-Vancouver 278

resource cormorant CH-I49904 YAZ-Tofino 278

resource cyclone CH-I48001 CFB-Comox 305

resource cyclone CH-I48002 CYBL-CampbellRiver 305

resource cyclone CH-I48003 YVR-Vancouver 305

APPENDIX A . PROBLEM GENERATOR INPUT FILES

resource cyclone CH-148004 YAZ-Tofino 305

resource eagle-uav CE-147001 CFB-Comox 207

resource eagle-uav CE-147002 CYBL-CampbellRiver 207

resource eagle-uav CE-147003 YVR-Vancouver 207

resource eagle-uav CE-147004 YAZ-Tofino 207

resource frigate CF-141001 YAZ-Tofino 54

resource frigate CF-141002 YAZ-Tofino 54

resource frigate CF-141003 YAZ-Tofino 54

resource frigate CF-141004 YAZ-Tofino 54

A.2 Sample Mission and Event file:

horizon 0 1440

numBases 4

numResources 10

events

mission-task-delay

task-change-durat ion

disable-resource

tasks

transport-static

transport -dynamic

patrol

search

APPENDIX A. PROBLEM GENERATOR INPUT FILES 87

rescue

interdict ion

releaseDate=O numhterdict ion=random(l, 5)

priority=random(150,250)

relat iveTime=100 releaseDate=O

durat ion=random(3,15)

mission~task~delay~probability=0

releaseDate=O duration=random (1,5)

relativeTime=randorn(1,100)

mission~task~delay~probability=0

task-change-duration-probability=O

Appendix B

Experimental Results

Set

1

Rand

2907

MaxObjective

2980

MinPosTime

2523

Spreadout

2955

MaxObj+MinResponse

2980

APPENDIX B. EXPERIMENTAL RESULTS

Set

21

Rand

2638

MaxObjective

2624

MinPosTime

2612

Spreadout

2560

MaxObj+MinResponse

2624

APPENDIX B. EXPERIMENTAL RESULTS 90

Set

51

Rand

2776

MaxObjective

2744

MinPosTime Spreadout MaxObj +MinResponse

2690 2762 2744

APPENDIX B. EXPERIMENTAL RESULTS

Set

, 81

Rand

2679

MaxObjective

2288

MinPosTime

2627

Spreadout

2349

MaxObj+MinResponse I

2720

Bibliography

[I] Laura Barbulescu, Jean-Paul Watson, L. Darrell Whitley, and Adele E. Howe. Schedul-
ing spaceground communications for the air force satellite control network. J . of
Scheduling, 7(1):7-34, 2004.

[2] Marcel Becker and Stephen Smith. Mixed-initiative resource management: The amc
barrel allocator. In Proceedings 5th International Conference on AI Planning and
Scheduling, April 2000.

[3] Peter Brucker, Andreas Drexl, Rolf Mohring, Klaus Neumann, and Erwin Pesch.
Resource-constrained project scheduling: Notation, classification, models, and meth-
ods. European Journal of Operational Research, 112:3-41 30 31 32 33 34, January
1999.

[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. In R. J .
Brachman, H. J. Levesque, and R. Reiter, editors, Knowledge Representation, pages
61-95. MIT Press, London, 1991.

[5] Andreas Drexl, Ruediger Nissen, James H. Patterson, and F'rank Salewski. Progenlpix
- an instance generator for resource-constrained project scheduling problems with par-
tially renewable resources and further extensions. European Journal of Operational
Research, 125:59-72(14), 2000.

[6] Abdallah Elkhyari, Christelle Gukret, and Narendra Jussien. Solving dynamic resource
constraint project scheduling problems using new constraint programming tools. In
PATAT, pages 39-62, 2002.

[7] Jeffrey E. F. F'riedl. Mastering Regular Expressions. OIReilly & Associates, Inc., Se-
bastopol, CA, USA, 2002.

[8] William S. Havens and Bistra N. Dilkina. A hybrid schema for systematic local search.
In Canadian Conference on AI, pages 248-260, 2004.

[9] William S. Havens and Wolfgang Haas. Coastwatch benchmark datasets. Technical
report, Simon F'raser University, 2007.

[lo] William S. Havens and Wolfgang Haas. Coastwatch scheduling simulator event model.
Technical report, Simon F'raser University, 2007.

BIBLIOGRAPHY 93

[ll] Holger Hoos and Thomas Stuetzle. Stochastic Local Search: Foundations 0 Applica-
tions. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[12] Shaoxiong Hua and Gang Qu. A new quality of service metric for hard/soft real-time
applications. In ITCC '03: Proceedings of the International Conference on Information
Technology: Computers and Communications, page 347, Washington, DC, USA, 2003.
IEEE Computer Society.

[13] Laura E. Jackson and George N. Rouskas. Deterministic preemptive scheduling of
real-time tasks. Computer, 35(5) :72-79, 2002.

[14] Kwangho Jang. The capacity of the air force satellite control network. Master's thesis,
Air Force Insititute of Technology, 1996.

[15] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation
of a general class of resource-constrained project scheduling problems. Manage. Sci.,
41(10):1693-1703, 1995.

[16] Laurence Kramer, Laura Barbulescu, and Stephen Smith. Understanding performance
tradeoffs in algorithms for solving oversubscribed scheduling. In Proceedings 22nd Con-
ference on Artificial Intelligence (AAAI-O7), July 2007.

[17] Laurence Kramer and Stephen Smith. Maximizing flexibility: A retraction heuristic
for oversubscribed scheduling problems. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, August 2003.

[18] Laurence Kramer and Stephen Smith. Task swapping for schedule improvement: A
broader analysis. In Proceedings 14th International Conference on Automated Planning
and Scheduling, June 2004.

[19] Helena R. Lorenco, Olivier Martin, and Thomas Sttzle. Iterated local search. ISORMS,
57:321, 2002.

[20] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing
conflicts: A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58(1-3):161-205, 1992.

[23.] John F. Muth and Gerald L. Thompson. Industrial scheduling. Prentice-Hall, 1963.

1221 Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for the job
shop problem. Management Science, 42(6) :797-813, 1996.

[23] Nicola Policella and Riccardo Rasconi. Designing a testset generator for reactive
scheduling. Intelligenza Artificiale, 3:29-36, 2005.

[24] Mark Roberts, L. Darrell Whitley, Adele E. Howe, and Laura Barbulescu. Random
walks and neighborhood bias in oversubscribed scheduling. In Multidisciplinary Inter-
national Conference on Scheduling (MISTA-05), 2005.

