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Abstract 

Dynamic scheduling refers to a class of scheduling problems in which dynamic events, such 

as delaying of a task, occur throughout execution. We develop a framework for dynamic 

resource scheduling implemented in Java with a random problem generator, a dynamic sim- 

ulator and a scheduler. The problem generator is used to generate benchmark datasets that 

are read by the simulator, whose purpose is to notify the scheduler of the dynamic events 

when they occur. We perform a case-study on the Coastwatch problem which is an over- 

subscribed dynamic resource scheduling problem in which we assign unit resources to tasks 

subject to temporal and precedence constraints. Tabu search is implemented as a uniform 

platform to test various heuristics and neighbourhoods. We evaluate their performance on 

the generated benchmark dataset and also measure schedule disruption. 

Keywords: dynamic scheduling; scheduling framework; problem generator; tabu search; 

scheduling algorithms 
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A problem worthy of attacks proves it's worth by hitting back! 

- Paul Erdos (Hungarian mathematician, 1913-1 996) 
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Chapter 1 

Introduction 

1.1 Motivation 

Scheduling is the science of allocating limited resources to  competing tasks over time [13]. 

It is a very important class of combinatorial search problems with many different real-world 

applications. In general, scheduling problems can be described as follows: Given a set of 

resources and a set of tasks, find a schedule that satisfies a set of constraints and optimizes 

some objective function. A schedule is a mapping of tasks to time intervals on resources 

[ll]. Examples of constraints include precedence constraints, which control the amount of 

time that has to elapse between the starting times of two different activities, or temporal 

constraints, which ensure that an activity is executed within a given time frame. 

A lot of research has been done in the area of scheduling. Probably the most famous 

class are job-shop scheduling problems [2:l.], in which one has to assign a set of jobs to a 

set of machines in order to minimize the time at  which the last job is completed. A real- 

world example for that would be a factory which develops a number of different products 

each day. Each product is developed by performing a sequence of tasks which are totally 

ordered and can only be executed on designated machines. The goal is to minimize the 

latest completion time among all products in order to send factory workers home as early as 

possible to minimize total wages. The drawback with job-shop and many other well-studied 

scheduling problems is that they do not account for machine failures or other events that 

might occur while tasks are being executed. Instead, everything is known ahead of time 

and nothing unpredictable will ever happen. But in the real-world there exists no such 

guarantee. The research described in this document takes a different approach: we deal 
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with so-called dynamic scheduling problems in which many different kinds of unexpected 

events will occur throughout execution of the tasks. Consequently, these problems are much 

more realistic and are closely related to scheduling problems encountered in the real-world. 

We study the Canadian CoastWatch Dynamic Resource Scheduling Problem, in short 

CoastWatch. It is an oversubscribed dynamic multi-mode scheduling problem with unit 

resources and lies in the Search & Rescue domain. Missions are composed of tasks which 

have to be executed during a specified time interval. Tasks are semi pre-emptive [12], 

meaning they can be interrupted but must be restarted completely instead of resuming the 

remaining workload. CoastWatch datasets simulate a typical day for the Canadian Coast 

Guard, where officers assign resources (planes, helicopters, ships, ...) to execute several 

different kinds of missions (patrol, transport, ...). The most important kind of missions are 

Search & Rescue when a human being needs to be rescued due to some unfortunate incidents 

experienced by a crew onboard a ship or aircraft out in the ocean. The objective of the 

CoastWatch problem is to maximize the sum of priorities of all accomplished missions. 

Unfortunately, there was no actual data available for this dynamic scheduling problem 

and consequently our first task was to generate our own datasets. We studied the scheduling 

literature in an attempt to find a dynamic problem generator that we can run in order to 

create a CoastWatch benchmark dataset. However, we were not able to find one that we 

could adapt easily for our specific dynamic scheduling problem. As a result, our research 

goal is two-fold in that we first develop a problem generator that can be used to generate 

datasets for the CoastWatch problem, in order to achieve our second research goal of testing 

various scheduling algorithms and compare their performance. 

In dynamic scheduling problems, the addition of a new mission or the occurrence of a 

dynamic event may cause a lot of disruption in the schedule. On a busy resource, it is 

very likely that a delay of a mission propagates to other missions that are assigned to be 

executed afterwards. Even worse than that, if we are dealing with time window constraints 

(as in CoastWatch), then it is possible that a mission can no longer be executed and might 

be reassigned to another resource. Although schedule disruption is not our main objective, 

we would still prefer a scheduling algorithm that minimizes this objective. In this way, the 

scheduling algorithm wouldn't completely reassign all missions to other resources every time 

a dynamic event occurs. 
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1.2 Approach 

We develop a dynamic resource scheduling framework which can be applied to many different 

kinds of dynamic resource scheduling problems. It is implemented in Java and has three 

components: a random problem generator, a dynamic simulator and a scheduler. 

The problem generator is a stand-alone component and can be used to create instances 

of the problem. It may be turned off a t  any time in order to use the framework simply 

for solving datasets and running scheduling algorithms on them. The problem generator 

provides great flexibility in generating datasets for dynamic resource scheduling problems. 

The specification of the problem and the parameters for all missions and events are passed 

into the problem generator. This makes it as general as possible in order to allow for 

generating benchmark datasets with very different kinds of characteristics. Changing a 

single parameter value for an event might cause the dynamic event to have a very different 

influence on the whole scheduling problem. By inputting the problem specification we ensure 

that the problem generator can be applied easily to different dynamic scheduling problems. 

This is achieved by simply making the appropriate changes in the specification file. 

Dynamic events that are generated by the problem generator include: 

0 resources can be either added or deleted from the problem 

new missions and tasks can be added to the problem 

tasks can be completed earlier or later than anticipated 

0 time window constraints on tasks can be altered 

A resulting dataset is parsed by the dynamic simulator, which creates all tasks and 

events at  the appropriate time. This simulator is necessary to hide all future events from the 

scheduler. Every time an event occurs, the scheduler is invoked in order to make adjustments 

to the schedule to accommodate the new event. A special feature of the simulator is its 

visualization tool that creates an animation of the scheduling problem on Google Earth. One 

can watch resources as they are moving around to execute missions and see the decisions 

made by the scheduler. 

The scheduler is a platform for scheduling algorithms and communicates with the sim- 

ulator. To test an algorithm on the generated datasets, one would simply implement the 

new algorithm in a class. The scheduler component also provides several useful methods. 
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We first run the random problem generator to create a benchmark dataset for the Coast- 

Watch problem. We use Tabu search as a uniform platform to test various scheduling heuris- 

tics on the generated problem instances, because stochastic local search algorithms are very 

well suited for hard scheduling problems [ll]. In addition to that, we experiment with dif- 

ferent search neighbourhoods. We evaluate the performance of our runs on the generated 

datasets and also measure their resulting schedule disruption. 

1.3 Contributions 

We develop a dynamic resource scheduling framework which is composed of three compo- 

nents: a random problem generator, a dynamic simulator and a scheduler. It can be applied 

to many different kinds of dynamic resource scheduling problems. 

We develop a random problem generator which generates benchmark datasets for dy- 

namic resource scheduling problems. It is very easy to add new mission types and dynamic 

events, because it only requires minor changes in its input files. The use of parameters 

provides great flexibility in changing the characteristics of the generated instances. 

We develop a dynamic simulator which is used to run dynamic scheduling datasets. 

It hides future events from the scheduler and contains a visualization tool to create an 

animation of the executing schedule on Google Earth. 

We implement Tabu search as a uniform platform to test various scheduling heuristics 

on the Coastwatch problem. Additionally, we experiment with different search neighbour- 

hoods. 

1.4 Thesis Outline 

The remainder of this thesis is outlined as follows. In Chapter 2, we give a literature 

review of topics related to our work. First, we introduce other problem generators that 

exist within the community. We then talk about several scheduling algorithms that have 

proven to be successful for similar oversubscribed problems. Chapter 3 defines a general 

model for dynamic resource scheduling problems, which acts as the basis for our framework. 

In Chapter 4, we first give an overview of our dynamic resource scheduling framework 

and then explain all the components in detail. We point out challenges that we faced 

during implementation of our framework and explain our solutions. Chapter 5 defines 
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the Coastwatch scheduling problem and lists all the different entities. We then give a 

description of various heuristics and neighbourhoods that we run on our Tabu search in 

Chapter 6. The next chapter analyzes the performance of the different variations of the 

algorithm and includes discussion of experiment results. In Chapter 8 we give concluding 

remarks and suggest possible future work. 



Chapter 2 

Literature Review 

2.1 Problem Generators 

For combinatorial problems, performing a complete evaluation of the entire search space is 

only feasible for very small and often uninteresting datasets. Typically a stochastic local 

search technique such a s  Tabu search or Iterative improvement is used instead [20] [22] 

[24]. More sophisticated so-called hybrid algorithms combine the systematic approach of 

constructive search algorithms while incorporating the heuristic guidance of local search [8] 

[19]. When deciding on a local search method to use for a combinatorial search problem, it 

is never easy to select a specific algorithm, because there are so many different local search 

methods that have been applied very successfully before. If we could understand why certain 

algorithms work very well on specific problems but not on others, then the choice would 

be much easier. This is one of the main reasons for the importance of problem generators. 

By generating datasets according to desired characteristics we would be able to characterize 

local search algorithms and determine when they should be used. Recently, Kramer et al. 

[16] have used this idea in an attempt to understand when algorithms using permutation- 

based representations perform better than schedule-based ones for oversubscribed scheduling 

problems (see Section 2.2.3 for more information). The other main motivation for developing 

problem generators comes from the fact that it can be very difficult to obtain real-world 

instances for combinatorial search problems. 

Many problem generators are written as part of a research project and are tailored 

specifically towards a studied problem. For example, Jang 1141 as well as Barbulescu et al. 

[:I.] developed their own instances for the Air Force Satellite Control Network (AFSCN) 
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problem. Both approaches analyzed existing real-world datasets in order to determine com- 

mon characteristics of the given problem. This included computing mean durations and 

time windows for missions or studying different customers and learning their preferences 

regarding what type of missions they request. Unfortunately, it is very unlikely that such a 

problem generator can be applied to a different problem with minimal effort. While there 

exist more general problem generators that can be used to generate static datasets for an 

entire class of problems (e.g. project scheduling problems [5] [15]), no-one, to the best of our 

knowledge, has tried to come up with a problem generator for dynamic scheduling problems 

until recently [23]. 

Elkhyari et al. [6] studied the class of dynamic resource constraint project scheduling 

problems (RCPSP), in particular the university timetable problem. Since there existed 

no such publicly available dynamic datasets, the authors took existing static benchmark 

datasets for the RCPSP problems. They used explanation-based constraint programming, 

where nogoodsl are derived during search when the assignment of a subset of the variables 

leads to a contradiction. Erasing these explanations when they are no longer relevant to 

the current variable assignment, guarantees polynomial space complexity. Nogoods are very 

powerful, not only do they enable Systematic Local Search [8] to have the systematicity of 

complete search methods, they also allowed Elkhyari et al. to solve the dynamic RCPSP in 

a more simplified manner. 

If an unexpected event leads to an addition or a modification of a constraint in the 

system, then the explanations allow them to identify other constraints that were responsible 

for the contradiction. As a result, the process of repairing the solution is much faster than 

scheduling the whole problem from scratch again. Repairing is achieved by removing at 

least one constraint, preferably an assignment of a variable, and adding its negation. If an 

unexpected event leads to a removal of a constraint in the system one needs to reset values 

by undoing past events with the help of the recorded explanations, and re-propagate to get 

back to a consistent state. 

Elkhyari et al. considered a large variety of different dynamic events: temporal events 

such as precedence constraints, activity events such as addition of a new activity and 

'A nogood is a set of partial assignments that are not part of any consistent solution 1:8]. 
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resource-related events such as the removal of a resource. These possible events are very simi- 

lar to  what we consider for the Coastwatch problem, however in their experiments the proba- 

bility of such events occurring was very small. In their first experiment, Elkhyari et al. picked 

one event purely at random and compared the performance of their dynamic rescheduling 

technique with scheduling the whole problem again from scratch. They claim that their 

dynamic technique always obtained better performance, while improving efficiency up to 

98.8%. In their second experiment different datasets were used and four events were created 

before their algorithm was run. For the majority of test cases their new dynamic algorithm 

performed better, although sometimes scheduling the dataset from scratch completed faster. 

2.1.1 Policella & Rasconi 

The work of Policella & Rasconi [23] deals with project scheduling problems, which are 

defined by the following components [3]: 

0 Activities: Every activity ai is defined by a processing time pi and requires a certain 

number of units, denoted reqik, of a resource for execution. Depending on the selected 

resource, the required number of units may differ. 

0 Resources: The set of resources required to execute the activities. There may exist 

different types of resources such as renewable or nonrenewable ones. 

Constraints:  The two types of constraints that exist within project scheduling prob- 

lems are resource and temporal constraints. The former limit the maximum capacity 

of each resource while the latter restrict the possible start times for an activity. It is 

also possible to impose a binary constraint between two activities, a precedence con- 

straint, in order to express the finish time of an activity in terms of another activity's 

starting time. 

Because of unexpected events, a good solution to an instance of a project scheduling 

problem doesn't necessarily turn out to be well suited for execution in real-world envi- 

ronments. Policella & Rasconi stated that a scheduling problem can be divided into two 

sub-problems: 

0 Stat ic  sub-problem: Given the problem definition, find a schedule that optimizes 

the objective function. This is equivalent to  the commonly known scheduling problem. 
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Dynamic sub-problem: Given the solution to the static sub-problem, monitor the 

execution of the schedule. Should a dynamic event invalidate the current schedule, 

then repair it while trying to maintain the quality of the current solution and continue 

execution. 

Policella & Rasconi were concerned with developing a testset generator for the dynamic 

sub-problem. A model was defined to allow for the following dynamic events: 

Delay of an activity 

Change of an activity processing time 

Change of a resource availability 

Change of the set of activities to be served 

Insertion or removal of a causal constraint between two activities 

An absolute event time is associated with each dynamic event in order to determine 

when an event occurs. Policella & Rasconi did not use relative event times because they 

claim that the use of such might lead to invalid events during execution of the dynamic 

sub-problem. A simple example was provided where the execution of one event causes the 

next event to  have an event time that lies in the past. 

A relaxed version of the scheduling problem, the so-called simple temporal problem [4], 

was applied to allow Policella & Rasconi to compute the feasible range for the starting 

times of all activities. This information can be used to guarantee valid absolute event times 

for each dynamic event. However, to ensure that the event times remain valid throughout 

execution, it is necessary to make the following restrictions to their dynamic events: 

Activity delays can only be positive. That is, it is not possible that an activity can 

be executed earlier than first anticipated (i.e. it's time window cannot be shifted 

backwards). 

Activity processing times can only increase. 

Only resource availability reductions are allowed. 

No causal constraint removals are allowed. 
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We overcome these limitations by using dynamic event times while ensuring that no 

invalid events are created. The detailed description of our approach can be found in Chap- 

ter 3. 

Finally, Policella & Rasconi also introduced several metrics that measure the difficulty 

of the sets of the generated events. A dynamic event may have enormous consequences on 

one specific schedule and little or no consequence on another schedule. In general, the closer 

two dynamic events are spaced to each other, the more critical the situation will be. Using 

absolute event times allowed them to use these metrics, since the generated event times 

were independent of the considered schedule. 

2.2 Scheduling Algorithms 

The algorithms explained in the following sections were all developed for oversubscribed 

scheduling problems. These are scheduling problems for which not all tasks can be scheduled 

and the algorithm needs to select the best subset of these tasks that can be completed while 

obeying all problem constraints. Typically, priorities are assigned to each activity and the 

objective function is used to select the best subset. 

Local search algorithms have proven to be very effective for scheduling and a wide 

range of other combinatorial optimization problems [ll]. In local search one typically starts 

with an initial solution and continuously makes adjustments to it in an attempt to find 

a better solution. The set of all possible moves during one iteration is referred to as the 

neighbourhood. After evaluation, the algorithm will select one such move to change the 

current schedule. The choice of neighbourhood can have a huge impact on the overall 

performance of an algorithm. 

2.2.1 Roberts et al. 

Roberts, Whitley, Howe & Barbulescu [24] examined the effect of neighbourhood choice 

on the performance of local search for the Air Force Satellite Control Network (AFSCN) 

scheduling problem. This problem consists of scheduling communication requests for earth 

orbiting satellites from a set of 16 antennas at  9 ground-based tracking stations. Tasks have 

time windows during which they have to be executed and the objective is to minimize the 

number of late jobs. At the beginning, the AFSCN problem is oversubscribed, but through 

negotiating relaxed task requirements, all jobs are eventually scheduled. 
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Roberts et al. examined the bias found in four variations of the shift neighbourhood 

under next-descent local search. Potential solutions were encoded using a permutation 

of all tasks and a schedule builder was used to generate solutions from the permutation. 

The permutation acts as a priority queue and each task is assigned to  the first available 

resource at the earliest possible starting time. The shift operator selects a task from the 

permutation and moves it to another position. Consequently, assuming there are n tasks 

in the permutation, the size of the complete shift neighbourhood is O(n2) which can be 

very costly depending on the chosen underlying search method. The four neighbourhood 

variations differed in two binary characteristics: size (full or restricted) and order (structured 

or unstructured). 

The first neighbourhood (Nl) was structured and full: it randomly chooses a task and 

systematically shifts it into each of the other possible positions. Should none of these posi- 

tions be acceptable, another task is selected at random. The N1 neighbourhood performed 

very poorly, because it induced a significant negative bias against improving or equal moves 

(80% of all considered moves resulted in worse evaluations). 

The second neighbourhood (N2) attempted to overcome this bias by randomly selecting 

the task as well as its new position in the permutation. This neighbourhood was full but 

unstructured, since it did not systematically explore the entire shift neighbourhood. N2 

resulted in a major performance improvement, and was competitive with the best previous 

solutions. 

Roberts et al. reported that 40% of shifts resulted in no change to the schedule in 

AFSCN. Typically, restricting the search neighbourhood to only the tasks that induce a 

change produces more efficient search. Therefore, the remaining two variations of the shift 

neighbourhood, N3 and N4, were restricted. Given a task x to be moved, the move operator 

was restricted to only tasks that interact with x. Task x is said to  interact with another task 

y, if the release or due date of task x lies within the time window of y. It is important to 

note that this measurement overestimates the actual amount of contention in the schedule, 

since it considers the entire time window of task y and disregards its duration. Additionally, 

after running the schedule builder, one of the tasks might actually end up being scheduled 

on another resource. 

Roberts et al. calculated pair-wise task interaction for all tasks to build an undirected, 

unweighted graph where vertices are the tasks and existing edges indicate interaction. This 

dramatically reduced the neighbourhood size from 0 ( n 2 )  to the average degree per vertex, 
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which ranged between 6 and 8 compared to the hundreds of tasks given in the problem. 

The N4 neigbbourhood created a random graph with the same degree per vertex as in 

the interaction graph. This was achieved by connecting an edge to two different randomly 

selected tasks. Similarly to the outcome of their experiments with full neighbourhoods, the 

unstructured neighbourhood (N4) showed no performance decrease from N3. In fact, for 

almost half of the problems N4 significantly outperformed structured restricted search. Most 

surprisingly however, the restricted neighbourhoods (N3 and N4) showed no performance 

improvement over N2. Usually reducing the search space using problem specific structure 

leads to better results, but it seems that this is not the case for the AFSCN problem. 

Similarly to the work of Roberts et al., we experiment with different neighbourhoods for 

our Tabu search algorithm. Coastwatch lies in the search & rescue domain and as a result 

it is a necessity to have a very efficient algorithm. Any time that is saved by decreasing the 

size of the chosen neigbbourhood, can be used in other parts of the algorithm. 

2.2.2 Kramer & Smith 

Kramer & Smith [18] invented a task swapping algorithm for improving schedules in over- 

subscribed problem domains. Their goal was to solve the USAF Air Mobility Command 

(AMC) mission scheduling problem [2]. It can be characterized as follows: 

A set of tasks (or missions): A task is defined by its earliest pickup time, its latest 

delivery time, a pickup location, a dropoff location, a duration and a priority. 

0 A set of resources (or air wings): A resource with capacity > 1. The resources used 

in this problem are individual planes with the capacity equaling the total number of 

planes available of that type at  a specific base. 

0 Each task is associated with a subset of feasible resources which can be assigned to 

carry out the task. Every task always requires exactly 1 unit of capacity of the selected 

resource. 

0 Each resource has a designated home location (or base) to which it has to return after 

accomplishing a mission. Therefore when a task is to be executed by a resource, the 

resource requires a positioning leg to travel to the start location of the mission and a 

de-positioning leg to travel back to the base. 
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Typically, the problem is oversubscribed and only a subset of tasks can be feasibly 

accommodated. The objective of the AMC problem is to schedule as many missions as 

possible while adhering to the global constraint that higher priority missions must take 

precedence over lower priority missions. This constraint makes the problem very unusual as 

here it is more important to schedule one high priority task rather than an infinite number 

of lower priority tasks. 

Their task swapping algorithm, called MissionSwap, starts with an initial schedule which 

is created by considering the missions from highest to lowest priority and assigning them 

to one of their candidate resources. It then considers all unassignable missions in order of 

their priority and tries to insert them one-by-one by temporarily bumping some of the tasks 

in the schedule. If the new task can be scheduled and all bumped tasks can be rescheduled 

then the schedule is accepted and the next unassignable task is considered. However, should 

it not be possible to reschedule all of the bumped tasks then MissionSwap restores the old 

schedule, since it is guaranteed from the construction of the initial schedule that these have 

higher or equal priority. Kramer & Smith used several heuristics to decide which tasks 

should be bumped. Max-flexibility estimated the flexibility for rescheduling of a task by 

looking at the size of its time window and the utilization of all its feasible resources. Min- 

conflicts measured the number of conflicts a task faces within its feasible execution interval, 

while Min-contention determined the portion of a task's time window that is in conflict. 

In their original experiments [17], Kramer & Smith were able to demonstrate the effi- 

ciency of MissionSwap for the AMC problem. Out of the three different heuristics, using the 

Max-flexibility heuristic resulted in superior performance. In their follow-up experiments 

the authors re-evaluated their design decisions and considered several variations of their al- 

gorithm. Their pruning techniques make use of the conflict set of a task and for illustration 

we will re-use one of their diagrams. Figure 2.1 shows a set of tasks assigned to a resource 

(with capacity 2) that prevent a new task from being executed. A conflict interval is defined 

as the range during which the same set of tasks is being executed on the given resource. The 

conflict set then consists of the set of all conflict intervals that exist from the earliest time a 

resource leaves its home location (earliest starting time est, - positioning time pos,,,) to the 

latest time it will return to the base (latest finish time I ft, + depositioning time depos,,,). 

Consequently, for the given example, the conflict set is {{a,b),{b,c),{d,e)). 

In their original experiments, MissionSwap retracted one task out of each conflict interval 

in order to make space for the new task. This task was chosen by their heuristic without 
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Figure 2.1: Conflict Sets in Missionswap 

considering the previous choices already made. As a result sometimes a task was retracted 

unnecessarily. For example in Figure 2.1, if task b is selected out of the first interval, the 

heuristic shouldn't have to make a choice for the second one, since one of its tasks had 

already been unscheduled. Kramer & Smith called this improvement task pruning, which 

led to a very significant increase in efficiency as well as some improvement in solution quality. 

The second pruning technique is concerned with inserting missions that have slack, that 

is, their time window is larger than the required duration. For these tasks it may not, be 

necessary to remove a task from each conflict interval, because the new task might already 

fit into the schedule after removing some of the tasks. Because Kramer & Smith make the 

assumption that all tasks were scheduled as early as possible, interval pruning retracts the 

tasks from left-to-right and stops when there is enough space for the new mission. This 

pruning technique resulted in another significant improvement in execution timc, howcvcr, 

thc max-flexibility hcuristic actually pcrformcd worsc. 

Kramer & Smith improvctl thc cficic-my of t,hoir. MissionS.wap algorithm even more by 

limiting the ma.ximum depth during the search. Their experiments showed that after 8 

to 10 recursive calls the algorithm is basically doomed to fail and therefore they stop the 

search at  that depth. All this gain in speed allowed them to experiment with techniques 

for expanding the task-swapping repair search that is performed in the hope of obtaining 

better solutions in circumstances when extended computation is possible. 
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Up to this point, the MzssionSwap algorithm considered each of the unassignable tasks 

exactly once. However, when their algorithm is successful in inserting another task, cir- 

cumstances change and it may now be possible to insert a task that didn't succeed earlier. 

Hence, their improved version of the algorithm cycles the set of unassignable tasks until 

no additional mission has been inserted for a whole iteration. Another variation of their 

algorithm added randomness to their heuristics. Instead of letting the heuristic select a task 

to be retracted, a task was retracted randomly from the set of all choices whose heuristic 

value fall within a certain percentage of the highest rated choice. In another variation, 

the probability of selecting a task was tied directly to  the difference of its heuristic value 

and those of the competing choices. The advantage of the latter version is that no task is 

ever excluded from being selected. Instead, it would just be very unlikely. This technique 

obtained the best solutions in the end. 

In Coastwatch, high-priority tasks, such as search and rescue, are added dynamically. 

Consequently some of the highest priority tasks are not known at the beginning of execution 

and the algorithm should therefore consider unscheduling lower priority tasks that have 

already been scheduled before. As a result it would be a very bad idea to only insert a 

new task if all retracted tasks were rescheduled. Regardless of this difference, MzssionSwap 

includes very good ideas that might be applicable for any other scheduling problem as well, 

such as adding randomness to deterministic heuristics. 

2.2.3 Kramer et al. 

The algorithms introduced in the two previous sections performed very well for their re- 

spective applications. The main difference between these algorithms is that MzssionSwap 

searches directly in the space of possible schedules, while the former searches in an alterna- 

tive space of permutations and uses a schedule builder to create the mapping to schedule 

space. Kramer et al. [16] state that for some problems schedule-space search methods 

outperform permutation-based search methods and for some problems the opposite holds. 

They were interested in analyzing whether problem characteristics exist under which one 

technique can be expected to dominate the other. 

Kramer et al. study two different problems, the AFSCN problem and the AMC problem. 

In the former, permutation-space scheduling algorithms dominate schedule-space methods, 

while in the latter, the opposite holds true. The main differences between these two problems 

are: 
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a Task priority: In AMC task priorities must be respected at all times and higher 

priority tasks must always be scheduled if possible. In AFSCN there is no priority 

and all tasks are considered to be of equal importance. 

a Number of tasks: The benchmark datasets for the AMC problem have more than 

twice as many tasks. 

a Resource capacity: AFSCN varies between 1 and 3 while AMC varies between 4 

and 37. 

a Slack: In AFSCN almost half of all tasks have no slack, while in AMC all tasks have 

temporal flexibility. 

Despite the differences, these problems share many commonalities: 

a A problem instance consists of n tasks. 

a Each task specifies a required processing duration. 

a There exists a set of resources that are available for executing tasks and each individual 

resource has a capacity 2 1. 

a Every task has a set of feasible resources that can be used to execute it and every task 

requires exactly one unit of resource. 

a Each of the feasible resources for a task specifies a time window during which execution 

has to happen. 

a The basic objective is to minimize the number of unassignable tasks. 

The advantage of permutation representation is that general-purpose algorithms can 

be used easily since all the problem-specific work is performed by the schedule builder. 

On the other hand, using such a technique might disconnect the search space from the 

optimal solution. The advantage of schedule representation is that usually many powerful 

heuristics, such as resource contention, are available to guide the search. However, it can 

be very challenging to find the right search operator. 

Squeaky Wheel Optimization (SWO) was implemented for the permutation-based 

method, which repeatedly iterated through a 3-step cycle until a termination condition 

was met: 
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1. The schedule builder produces an actual schedule using max-availability heuristic. 

2. The unscheduled tasks are ranked according to their contribution to the objective 

function. 

3. The schedule is modified by moving some of the unscheduled tasks forward in the 

permutation. 

The algorithm used for the schedule-based method was exactly the variation of the 

MissionSwap method explained in the previous section, where the probability of retracting 

a task was tied directly to the difference of its heuristic value and those of the competing 

choices. 

Kramer et al. defined a series of problem sets that generalized from the AFSCN problem 

and increasingly incorporated characteristics of the AMC problem. They used the AFSCN 

benchmark datasets to produce new problem instances based on several parameters: 

Problem size: Kept constant, doubled or tripled the size of the initial AFSCN 

datasets. 

Slack: A duration factor df is used to determine the durations for each new task. The 

new duration is computed by multiplying the initial duration with (1-random(O,df)), 

where random(0,df) generates a random number between 0 and df. 

Resource capacity: A capacity factor cf is used to determine the capacities for each 

resource. The new capacity is computed by adding the initial capacity to a random 

number between 0 and cf. 

0 Priority: A priority flag determines whether priorities are present or not. When the 

flag is set, task priorities are uniformly distributed from (1 ... 5). 

Kramer et al. generated 36 problem sets with 50 instances each. The first 18 problem sets 

were identical to the second set with the exception that there were no priorities associated 

with the tasks. Their experiments showed that in terms of the number of unassignable tasks 

for the datasets without priorities the two algorithms performed very similarly. The authors 

claim that there was some evidence that the performance of MissionSwap improved when 

slack was held constant and the capacity was increased. In terms of penalty scores for the 
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datasets with priority their results showed that for moderate levels of oversubscription the 

permutation-based SWO algorithm performed very similar to the other method. 

From their experiments, Kramer et al. concluded that for problems that do not incor- 

porate task priority, the search space was less constrained and since MzssionSwap performs 

more localized search than SWO, it was not as effective. For problems where every task is 

assigned a priority, the performance of the algorithm depended on the level of oversubscrip- 

tion. The permutation-based search algorithm performed very similar to the schedule-based 

method on moderately oversubscribed problems, but as problems became more oversub- 

scribed the situation was different. MissionSwap outperformed SWO, because rearrange- 

ment of task permutations became less productive. 

The study of Kramer et al. attempted to classify scheduling problems for which it is 

best to use a specific type of local search algorithm. This is very different from the usual 

approach of developing and applying an algorithm to a given problem. The Tabu search 

algorithm we selected for Coastwatch differs significantly from both studied algorithms. 

More information can be found in Chapter 6. 



Chapter 3 

Dynamic Resource Scheduling 

Model 

We describe a general model for dynamic multi-mode resource scheduling problems with 

unit resources subject to temporal and resource constraints. For a task we assume that 

there are multiple modes of execution and its duration depends on the assigned resource. 

We extend static resource scheduling problems to include dynamic events where tasks 

and resources can be added, modified and deleted from the schedule during execution thereby 

possibly interrupting some already scheduled tasks. Unlike Policella & Rasconi [23], we use 

relative event times and guarantee that by doing so no dynamic event will occur at an 

illegal event time. In the following sections, we will describe each entity in detail along 

with a simple BNF syntax that we have implemented into our dynamic resource scheduling 

framework. A supplemented reading on our data model can be found at [9]. 

3.1 Constraints 

3.1.1 Time window constraints 

Given a task t, its time window specifies the earliest possible starting time estt and the 

latest possible finish time 1 ftt. A task must not be executed earlier than the given estt nor 

later than the given 1 f t i .  
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3.1.2 Precedence Constraints 

Precedence constraints express the starting time of an activity in terms of another activity's 

starting time. They control the amount of time that has to elapse between them. Precedence 

constraints can be specified between two tasks belonging to the same mission and between a 

task and the mission itself. The syntax for specifying a precedence constraint is as follows: 

<precedence> --> precedence <varl> <var2> <offset> 

which defines the inequality: <varl> 5 <var2> - <offset> 

In other words, the start time of some task or mission, <varl >, must precede the start 

time of some other task, <var2>, by the specified offset. The value of <offset> is some 

integer. 

For example, suppose a task B must start at  least 10 minutes but at most 20 minutes 

after a task A starts. We would have two precedence constraints as follows: 

precedence A B 10 

precedence B A -20 

It is also possible to specify simple precedence constraints such as a task A cannot start 

after task B: 

precedence A B 0 

To represent a precedence constraint requiring that a task A has to start at  least 30 

minutes after the beginning of its mission MI,  we would write: 

precedence A MI 30 

3.1.3 Resource constraints 

Resources are renewable, meaning that they can serve another task as soon as their current 

task is completed. Additionally, resources are capacitated and may only execute one task at  

a time. Similarly, a task always requires just one resource for execution which will execute 

it from the very beginning to the very end. 
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3.2 Scheduling problems 

A scheduling problem contains the following entities: 

0 Bases: Bases are the home locations of resources. This includes air bases for aircrafts 

and ports for ships. 

0 Resources: Resources such as aircrafts, helicopters and ships, execute tasks and have 

a designated home base. 

0 Capabilities: A mapping of task requirements to resource capabilities. Tasks spec- 

ify the capability that is necessary to execute them and every resource has a pre- 

determined list of capabilities they can perform. 

0 Tasks: The activities that are scheduled and executed according to their time window 

and resource requirements. 

Missions: A partially ordered set of tasks that have to be completed to achieve some 

mission with specified priority. 

We propose a simple regular language in BNF to specify a dynamic resource scheduling 

problem. We "borrow" the characters '*' and '+' from regular expressions [7] to specify 

quantities. The former denotes zero or more of the preceding element while the latter 

character denotes one or more. Note that the various sections of the problem definition 

must appear in the order shown. 

<capability>* 

<base>* 

<resource>* 

problem <horizon> 

<event>* 

First we specify all capabilities, bases and resources that exist within the problem. We 

then set the scheduling horizon by providing a start time and an end time for the schedule 

followed by a list of events, which include the creation of new missions. The syntax for the 

horizon is: 
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where <start-time> and <end-time> are integers such that <start-time> 5 <end-time>. 

Typically, <start-time> = 0. We assume that time is measured in minutes but any other 

integral time unit should also be acceptable. For instance, a scheduling problem spanning 

24 hours would be specified in minutes as: 

problem (0,1440) 

3.2.1 Bases 

Bases give a physical start location for resources at the start of the scheduling horizon. 

They are defined by a unique base name and a location, which is specified by its latitude 

and longitude values. We assume that bases are at sea level. The syntax for defining a base 

is: 

<base> --> base <id> <location> 

where the location is defined as follows: 

For example, CFB Comox is an airbase on Vancouver Island, BC at latitude = N49.72052 

and longitude = W124.89249. This is expressed as: 

base CFB-Cornox (49.72052, -124.89249) 

3.2.2 Resources 

Resources are defined by a unique identifier and a resource type. They move at a pre- 

determined speed (in km/h) and are assigned a home base which is the starting location at 

the beginning of the scheduling horizon. Their syntax is: 

<resource> --> resource <resource-type> <id> <base> <speed> 

Depending on the types of resources in the scheduling problem, <resource-type> may 

be very general such as (plane, ship, ...) or very specific (F/A-18 Hornet, Boeing 747, ...). 

For example, a plane belonging to Austrian Airlines stationed at Vienna Airport might be 

described as: 

resource airbus340 OSlOOOl VIE 1030 
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3.2.3 Missions & Tasks 

We needed a general data model for dynamic resource scheduling problems that would 

provide enough flexibility to  generate datasets for problems such as Coastwatch. Activities 

in some domains are made up of a several tasks, all of which have to be executed in order 

to complete the activity. For example, in Search & Rescue (SAR), a search task has to 

be completed before the rescue task can be executed. Here, only executing the search task 

doesn't accomplish the mission of rescuing a person and the activity should not be marked as 

finished. To be able to deal with these kinds of activities, we differentiate between missions 

and tasks. 

We define a mission to be a collection of tasks that need to be executed. The mission 

is only considered accomplished if all of its tasks have been completed successfully. As a 

consequence, priorities are specified with missions rather than the tasks themselves. On 

the other hand, execution time windows are associated with tasks. This is because not 

all tasks of a mission are known at  beginning of execution and some tasks are created 

dynamically. For example, for the SAR mission, the search task can be executed right away, 

but the rescue task is not created until search has been completed successfully by finding 

the missing person. If the time window were large enough to accommodate both search and 

rescue tasks, then the scheduling algorithm may delay the search activity until the end of 

the time window and there wouldn't be enough time to execute the rescue task when it is 

created. Therefore, the dynamic creation of new tasks requires either dynamic time windows 

for missions or associating time windows with tasks instead. We chose the latter approach 

for logical reasons: dynamically adding a rescue task to the SAR mission shouldn't extend 

the time window of the search task. 

It is important to note that these definitions for missions and tasks do not exclude in 

any way activities that are only composed of one task. 

Missions 

The syntax for defining a mission is: 

<mission> --> mission <id> <priority> (<new-task> <body>) (<precedence>*) 

where <id> is a unique identifier and <priority> is a positive integer specifying the priority 

of the mission with value 1 representing the lowest possible priority. A mission must have 



CHAPTER 3. DYNAMIC RESOURCE SCHEDULING MODEL 24 

at least one "New Task" event that creates a new task. The body of a mission contains a 

set of dynamic events, possibly including more new tasks, and is executed once the mission 

is introduced into the scheduling problem. For more information, see Section 3.3. Finally, 

<precedence>* is the set of precedence constraints that must be obeyed. There may exist 

at most 1 precedence constraint between any ordered pair of tasks belonging to this mission. 

Tasks 

Each mission contains a partially ordered set of tasks that need to be executed to complete 

the mission. Tasks are defined by a unique identifier, a task type and a time window for 

execution. Their syntax is: 

<task> --> task <time-window> <task-type> <id> (<body>) (<precendence>*} 

where the body of a task is a set of dynamic events that is parsed once the execution of this 

task has started. A task is deemed to execute when the time of the simulator reaches its 

start time. Similarly to missions, there may exist at most 1 precedence constraint between 

any ordered pair of subtasks. The field <time-window> specifies the earliest start time 

(EST) and latest finish time for a task (LFT). The syntax for time windows is: 

where both fields are positive integers such that <EST> 5 <LFT>. 

Body 

In dynamic scheduling problems, unexpected events can occur during the execution of tasks. 

We model this behaviour by associating a set of statements, called the body, to tasks and 

missions. 

The <body> field defines the set of changes to the scheduling problem which can occur 

as a result of scheduling and executing a task. The syntax is as follows: 

where <event>* is the set of unexpected events. For missions, these statements are eval- 

uated when the mission is created, which may contain the creation of new tasks as well as 

mission events. For tasks, evaluation happens when the execution of the task commences 
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and possible event types include new subtasks as well as task events. These events are 

explained in detail in Section 3.3. 

3.2.4 Capabilities 

The <task-type> of a task field specifies the capability a resource requires in order to be 

able to execute it. A capability is a mapping of a task type to a set of resource types which 

are able to perform it. The syntax for this relation is the following: 

<capability> --> capability <task-type> (<resource-type>*) 

For example, a rescue task out in the ocean could be specified as follows: 

capability rescue (helicopter ship) 

For resources that have specialized capabilities, we can define subclasses by name which 

possess those capabilities. For example, for an aurora aircraft which has a specialized radar 

onboard, we can add the following resource statement: 

resource aurora-w/radar CP-140411 CFB-Comox 750 

The capability relation will now have an added line which says: 

capability surveillance-w/radar (aurora-w/radar) 

3.3 Dynamic Scheduling Events 

Static scheduling problem models are not concerned with simulating the execution of tasks in 

their schedules. The scheduling problem is given initially and the execution of the schedule 

cannot affect the problem dataset itself. This is not true for dynamic scheduling. We assume 

that executing a task at a particular time affects the world and introduces changes to the 

scheduling problem itself. 

Policella & Rasconi [23] address the needs for dynamic resource scheduling benchmark 

datasets by coming up with a similar model. They use a relaxed version of the scheduling 

problem to compute the feasible range for the starting times of all activities. This informa- 

tion can be used to guarantee valid absolute event times for each dynamic event. However, 
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to ensure that the event times remain valid throughout execution, they introduce several 

restrictions to their dynamic events. For example, it is not possible for a task that its 

time windows is shifted forward, i.e. that it can be executed earlier than first anticipated. 

Suppose there is no such restriction and an event happening at time t shifts a task's time 

window forward such that the earliest possible starting time est < t. Then, the shift spec- 

ified in the event cannot be completed, it has to be adjusted such that est = t. However, 

as a result, the schedule produced by the scheduling algorithm affects the set of dynamic 

events specified in the benchmark dataset, therefore changing the difficulty of the problem 

instance. 

Unfortunately, the restrictions on unexpected events adopted by Policella & Rasconi are 

inadequate for our purposes. For example, scheduling a SAR mission may involve an initial 

search task with an expected duration to find the target to rescue. The duration of this 

task may be reduced thus violating their restrictions. 

We propose an alternative scheme to obey causality: we differentiate between regular 

events, task events and mission events and explain our solution for each of them. 

3.3.1 Regular Events 

Regular events are events that do not directly influence tasks or missions. Examples are 

the addition or removal of a resource. For these kinds of events, obeying causality is very 

straight-forward, because we are not concerned with the schedule produced by running the 

scheduling algorithm. Removing a resource can happen anytime and under any circum- 

stances. One still has to be careful, though, because, for instance, if the same resource 

breaks down twice during the scheduling horizon, the second event should happen after the 

resource has been fixed. The syntax for regular events is as follows: 

where <event-time> is an absolute time within the scheduling horizon and <event-type> 

is a name that uniquely identifies the type of the event. This is followed by an optional set 

of additional parameters. For example, to remove a resource helil at time 500 we would 

write: 

500 remove-resource helil 
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3.3.2 Task Events 

Task events are events that directly influence a task such as the change of its duration or 

the addition of a new sub task. These events differ significantly from regular events, because 

their event time tTel is relative. We impose the restriction that 0 5 tTel 5 1 and treat the 

event time as a percentage of the task duration. For a task a, the absolute event time tabs 

can be computed by the following formula: 

tabs = start-time, + trel * duration, 

It is guaranteed that all events will occur during execution of the task since the relative 

event time is a fraction of the total task duration. When a SAR mission is being executed we 

can create the rescue task anywhere during the execution of the search task. For instance, 

an event time of 0.9 would signal that the missing person is found after completing 90% of 

the search path. Assigning various resources with various speeds to the same rescue task, 

will result in different absolute event times. However, the rescue location will always be the 

same. 

To guarantee that no invalid events will ever occur, we need to  make sure that all dynamic 

events also obey causality. In particular, we need to ensure that neither start nor end time 

of a task can shift into the past. Luckily, the use of relative event times simplifies this issue 

significantly. Suppose there is a dynamic event which lowers the duration of a task. Due to 

some unexpected circumstances, the resource is able to execute the task quicker than first 

anticipated. If the event happens at relative event time tr,l, then the delay delay, must 

obey the constraint delay, > (trel - 1). This ensures that the event obeys causality; the 

updated end time of the task cannot be in the past after execution of the event. We can 

use the same argument for any other task event: we are aware exactly how far into the 

task execution the event happens and consequently, we know the maximum shifts that are 

possible. 

Task events can be defined as follows: 

where <event-type> must be the name of a task event and <task-id> the unique identifier 

of a previously defined task. 
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3.3.3 Mission Events 

Mission events are events that influence a mission or one of its tasks. Examples include 

adjusting the mission priority or adding a new task. Additionally, delaying a task (i.e. 

shifting it's time window) should also be considered a mission task. This is because the 

delay has to happen before the start of a task, but task events only get executed once 

execution has commenced. 

For mission events, the event time tTel is also relative. But here it is relative to the 

creation of the mission and tTel doesn't represent a fraction because it is independent from 

resources. For a mission m, the absolute event time tabs can be computed by the following 

formula: 

tabs = creation-time, + t,,l. 
For instance, suppose there is a delay task event which delays the main task of a mission 

by 5 minutes and it has an event time of 10. If the mission was created 300 time units into 

the scheduling problem, then the absolute time of the event is 310 minutes. 

Obeying causality is very straight-forward for mission events. We need to ensure that 

the task doesn't start executing before the delay task event is executed. This is achieved, 

by setting t to be smaller than the task's earliest starting time est. In addition, if the delay 

d is negative, that is a task can be started earlier than first anticipated, we need to ensure 

that the event doesn't move est into the past. This can be achieved by choosing a value for 

delay during event generation such that it obeys the constraint d > ( t  - est). We can give 

a similar argument for any possible mission event. 



Chapter 4 

Dynamic Resource Scheduling 

Framework 

We develop a dynamic resource scheduling framework which can be applied to many differ- 

ent kinds of dynamic resource scheduling problems. We assume the existence of renewable 

unit resources and schedule tasks subject to temporal and resource constraints. Since this 

framework has been designed for tasks with multiple modes of execution, it can also be 

used for single-mode problems by simply specifying only one mode. Furthermore, we as- 

sume semi pre-emption [12] meaning the execution of a task may be interrupted but must 

be restarted completely. However, the framework can be easily extended to cover non- 

preemptive scheduling1 by implementing only scheduling algorithms that will not consider 

retracting a task that is currently executing. Additionally, this scheduling framework can be 

applied to oversubscribed as well as undersubscribed dynamic resource scheduling problems. 

Scheduling problems are very popular among many scientific communities because they 

have so many real-world applications. However, the drawback with most work up to this 

point is that they make the assumption that nothing unexpected will ever happen during 

execution of the schedule. In the real-world there exists no such guarantee and consequently 

there exists a need for developing scheduling algorithms that take into account future dy- 

namic events. We are interested in studying Coastwatch, a dynamic resource scheduling 

problem, but were faced with the dilemma that we had to create our own datasets. A 

detailed description of the problem can be found in Chapter 5. 

'In non-preemptive scheduling, tasks must be executed to completion and may never be interrupted. 

29 



CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 30 

The dynamic resource scheduling framework is implemented in Java and has three com- 

ponents: a random problem generator, a dynamic simulator and a scheduler. 

The random problem generator is a stand-alone component and can be used to create 

instances of the problem. It may be turned off at anytime in order to use the framework sim- 

ply for solving datasets and running scheduling algorithms on them. The problem generator 

provides great flexibility in generating datasets for dynamic resource scheduling problems. 

The specification of the problem and the parameters for all missions and events are passed 

into the problem generator. This makes it as general as possible in order to allow for gen- 

erating benchmark datasets with very different kind of characteristics. Changing a single 

parameter value for an event might cause the dynamic event to have a very different influ- 

ence on the whole scheduling problem. By inputting the problem specification we ensure 

that the problem generator can be applied easily to different dynamic scheduling problems. 

This is achieved by making the appropriate changes in the specification file. 

Dynamic events that are generated by the problem generator include: 

resources can be either added or deleted from the problem 

new missions and tasks can be added to the problem 

tasks can be completed earlier or later than anticipated 

a task can be delayed which alters the tasks time window 

The dynamic simulator parses the resulting dataset and creates all tasks and events at 

the appropriate time. This simulator is necessary to hide all future events from the scheduler. 

Every time an event occurs, the scheduler is invoked in order to make adjustments to the 

schedule to accommodate the new event. A special feature of the simulator is its visualization 

tool which creates an animation of the scheduling problem on Google Earth. One can watch 

resources as they are moving around to execute missions based on the decisions made by 

the scheduler. 

The scheduler is a platform for scheduling algorithms and it communicates with the 

simulator. To test an algorithm on the generated datasets, one would simply implement the 

new algorithm in a class. The scheduler component also provides several useful methods. 

Figure 4.1 gives an overview of the dynamic resource scheduling framework. The follow- 

ing sections explain each of the components in detail. 
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Figure 4.1: Overview of the Dynamic Resource Scheduling Framework 
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4.1 Random Problem Generator 

Many problem generators are written as part of a research project and are tailored specif- 

ically towards a studied problem. Unfortunately, it is very unlikely that such a problem 

generator can be applied to a different problem with minimal effort. While there exist 

more general problem generators that can be used to generate datasets for many different 

static scheduling problems, the same cannot be said for their dynamic counterparts. We 

address the need for such random problem generators by creating one for dynamic resource 

scheduling problems as part of a larger framework. 

4.1.1 Motivation 

Dynamic scheduling problems model real-world environments very closely because they take 

into account that the execution of a schedule will not always go as planned. The lack of 

problem generators for dynamic resource scheduling problems prompted us to develop our 

own benchmark generator. The main goal is to keep it very general to allow for adaptation 

to many different kinds of dynamic resource scheduling problems very quickly. We provide 

great flexibility by passing the specification of the problem and the parameters for all mis- 

sions and events into the problem generator. This makes it as general as possible in order to 

allow for generating benchmark datasets with very different kind of characteristics. Chang- 

ing a single parameter value for an event might cause the dynamic event to have a very 

different influence on the whole scheduling problem. Similarly, the problem generator can 

be applied to different dynamic scheduling problems, by making the appropriate changes in 

the specification file. 

We develop a random problem generator as part of the dynamic resource scheduling 

framework in order to be able to generate benchmark datasets. Such a tool can be very 

useful even if such datasets already exist for the given problem. Typically, a stochastic local 

search method is used for solving combinatorial search problems. However, it is never easy 

to select a specific algorithm, because there are so many different local search methods that 

have been applied very successfully before. If we could understand why certain algorithms 

work very well on specific problems but not on others, then the choice would be much 

easier. We could use a problem generator to develop datasets with certain characteristics 

in an attempt to understand when a given algorithm should be used. Similar research has 

been done by Kramer et al. and is discussed in Section 2.2.3. 
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4.1.2 Input Files 

The random problem generator requires two input files, the Scheduling Problem file and the 

Mission and Event file. Appendix A contains an example for each input file. 

Scheduling Problem file 

This file lists all capabilities, bases and resources that exist within the scheduling problem, 

respectively. These items have to be specified exactly as stated in the description of our 

model in the previous chapter. The following is a simple example: 

resourceTypes (helicopter plane ship) 

capability search (helicopter plane ship) 

capability rescue (helicopter ship) 

base Victoria (49.7 ,-124.9) 

base Vancouver (49.19388,-123.18444) 

resource plane plane1 Vancouver 750 

resource helicopter helil Victoria 278 

resource ship ship1 Vancouver 54 

At the beginning we add a list of all resource types that exist within the problem, since 

it allows us to catch typing errors within the two input files. A capability is described by 

its name and a list of resource types capable of performing it. For example, a search task 

may be executed by helicopters, planes and ships. A base is specified by listing its name 

and location in latitude & longitude notation. Vancouver airport might be defined using 

the city name as its identifier and setting its location to (49.19388,-123.18444). A resource 

is described by its resource type, followed by a unique identifier, its assigned home base and 

its speed (in km/h). A plane might be able to fly up to 750 km/h and have Vancouver as 

its home base. 

Mission and Event file 

This file contains all parameter values for any mission, task or dynamic event type that 

is defined in the dynamic resource scheduling problem. Changing just a single parameter 

might have a strong effect on the characteristics of the generated datasets. For instance, a 

detailed mission and event file might look as follows: 
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horizon 0 1440 

numBases 2 

numResources 3 

events 

delay probability=O. 1 time=normal(l0,4) 

tasks 

transport numStatic=poisson(0.9) numDynamic=5 

priority=random(5,10) relativeTime=normal(60,10) 

The first line specifies the scheduling horizon of the problem. Static tasks are always 

created at the given start time, while dynamic tasks are created some time before the end 

of the scheduling horizon. The next two lines determine the number of bases and resources 

that will be included in the generated dataset. Both entities are chosen randomly from the 

set defined in the scheduling problem file. 

Section 4.1.3 lists all the dynamic events that may occur during execution. Each line 

contains the parameters for one specific event type. As outlined in our model, we differen- 

tiate between regular events, task events and mission events. It is very important to note 

that all task events are considered for every single task. In other words, should a task event 

have a probability of 1 then it will be applied to every single task in the problem. Similarly 

for missions, all mission events are considered for every single mission. 

The same event might be applicable to different tasks, but with different characteristics. 

For instance, a search task is more likely to be delayed than a transport task. Therefore 

all the event parameters are merely default values. It is possible to  overwrite an event 

parameter value by specifying it as a task parameter using the following syntax: 

[name-of -event] - [name-of -parameter] =value 

Suppose there is an event which changes the duration of a task and should occur in 

approximately 10% of all tasks and delay them by at least 5 but at most 20 minutes. The 

event could be specified as follows: 

change-duration probability=O.l time=random(5,20) 

Now assume that 50% of all search tasks should change their duration. Then the prob- 

ability parameter can be overwritten using: 
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search change-duration-probability=0.5 

Similarly, setting the probability parameter of an event to 0 will result in no such dynamic 

events for tasks where this value was specified. 

The remainder of the Mission and Event file lists all the different task types that exist 

within the scheduling problem. For each task type, it lists all its parameters in one line. 

Recall that our model differentiates between missions and tasks. A mission is a collection of 

tasks that need to be executed in order to achieve some goal. It is only accomplished when 

all its tasks have been completed and only then will it contribute towards the objective 

value. Typically, missions have one main task, which may create one or more subtasks 

which in turn may create even more subtasks. 

Every task needs to specify at least two parameters: 

1. releaseDate: the amount of time that needs to elapse after the task has been created 

and before execution can begin. Suppose at lpm a transport task is created and is 

required to move some goods to another base no earlier than 2pm. Assuming that 

time is measured in minutes, the value of this parameter would be 60. 

2. relativeTime: specifies how much time needs to elapse in the execution of the parent 

task before this task is created. Recall from Section 3.3, that this parameter is treated 

as a fraction of the task duration. It will be set to 0 automatically for main tasks of 

a mission, since these tasks do not have a parent task. 

Task types which may be the main task of a mission must also specify three additional 

parameters: 

1. numstat ic :  the number of static missions of that type. A static mission is known at 

the beginning of the scheduling horizon. 

2. numDynamic: the number of dynamic missions of that type. Dynamic missions are 

created anytime throughout the simulation. 

3. priority: the mission priority specified as a positive integer with larger numbers 

representing higher priority. 

In order to provide more flexibility for the created problem instances, we allow parameter 

values to be generated using one of these common distributions: 
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Uniform distribution: This generates one uniformly distributed random integer 

within the specified lower and upper bounds. The syntax for defining such a value is: 

[parameter-name]=random(lower bound, upper bound) 

Normal distribution: This generates one normally distributed double with the spec- 

ified mean and standard deviation. A normally distributed value can be generated as 

follows: 

[parameter-namel =normal (mean, sigma) 

Poisson distribution: This generates one poisson distributed integer with the spec- 

ified lambda value. Such a value can be defined using the following syntax: 

[parameter-name] =poisson(lambda) 

This input file contains all the information that is necessary for the random problem 

generator to create benchmark datasets. In fact, by specifying no dynamic events and set- 

ting the numDynamic parameter of all task types to zero, we could use this framework for 

static resource scheduling problems. By modifying the input files, we can introduce addi- 

tional flexibility. We associate a priority with each mission and assume that the objective 

function is to maximize the sum of priorities of completed missions. This objective can 

easily be modified to maximize the number of completed missions by setting all priorities to 

1. Similarly, we can remove time window constraints from the problem by setting the time 

windows for each task to (-co, co). 

4.1.3 Dynamic Events 

In this section, we provide a detailed description of the dynamic events that have already 

been implemented into our framework. These events are very common and apply to most 

dynamic scheduling problems. 
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New Mission 

This dynamic event introduces a new mission during execution of the problem. The mission 

has a priority and must consist of at least one task that needs to be executed in order to 

achieve some goal. The syntax for defining a new mission event is as follows: 

where <event-time> is an absolute event time within the scheduling horizon and <mission> 

is the description of a mission as defined in our model. 

New Task 

The new task event adds a task to the dynamic scheduling problem. It must be created in 

the body of a mission or a task. To define a new task event, the following syntax is used: 

where <task> defines the task as described in Chapter 3. Since a new task is added to 

the problem and is initially unscheduled, the mission it belongs to will not be considered 

completed even if it all its other tasks have been executed successfully. The meaning of 

<event-time> depends on the object that created the task: 

If the object is a mission, then the new task is one of its main tasks and the event time 

specifies the number of minutes that have to elapse after the creation of the mission 

before the task will be added to the scheduling problem. This is not to be confused 

with the task parameter releaseDate, which determines the earliest possible starting 

time of the task. Typically, missions have only one main task and as a result the event 

time should be 0. It makes no sense to create a mission without specifying any task. 

If the new task event was created in the body of another task p, then it is created as 

a subtask of p belonging to the same mission. In this case, the event time is relative 

and it determines the percentage of task completion of p when the new task is added 

to the problem. Suppose the starting time of p is 100 and its duration is 50. Further 

assume the new task event appeared in the body of p and its event time is 0.8. Then 

the actual time when this event occurs is 100 + 0.8*50 = 140. 
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Add Resource 

This event dynamically adds a resource to the scheduling problem. To be consistent with 

our model, we assume that the new resource is also a renewable unit resource. Additionally, 

the type of the new resource has to  be from the set of possible resource types specified 

initially in the problem instance. The syntax for such an event is: 

<event-time> add-resource <resource> 

where <event-time> is an absolute time within the scheduling horizon and <resource> is 

the resource to be added. If the added resource has been part of the scheduling problem 

before, then it is sufficient to specify solely its unique identifier. 

Remove Resource 

This event removes a resource from the scheduling problem. If, at the moment of removal, 

the resource was currently executing a task, it will be unscheduled. Similarly, all tasks that 

were assigned to the resource to be executed in the future will also be unassigned. It is the 

task of the scheduler to reschedule them on one of the remaining resources. The remove 

resource event can be defined by: 

<event-time> remove-resource <resource-id> 

where <event-time> is an absolute time within the scheduling horizon and <resource-id> 

is the unique identifier of the resource to be removed. 

Disable Resource 

This dynamic event disables a resource for a period of time. The purpose of this event 

is to simulate that a resource encounters a mechanical problem which needs to be fixed. 

The selected resource is removed from the scheduling problem and added again after the 

specified delay. We assume the resource will remain at  the same location. As a consequence 

of the disable resource event, all the tasks that were assigned to it, will be unscheduled. 

This includes the currently executing task as well as all its future tasks. The dynamic event 

obeys the following syntax: 

<event-time> disable-resource  <resource-id> <duration> 
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where <event-time> is an absolute time within the scheduling horizon, <resource-id> is 

the unique identifier of the resource to be disabled and <duration> is a positive integer 

representing the time it takes to perform the necessary repairs. 

Delay Task 

This dynamic event shifts time window of a task by a given delay. This delay can be positive 

or negative. The syntax for this event is: 

<event-time> delay-task <task-id> <delay> 

where <event-time> is relative to the creation of the mission, <task-id> is the unique 

identifier of the task to be delayed and <delay> is some integer. 

We impose the constraint that delay <> 0, otherwise the delay task event would have 

no effect on the underlying scheduling problem. Additionally, if the given delay is negative, 

the earliest possible starting time es t  of the delayed task should not be not shifted into the 

past. Consequently, we introduce the additional constraint 

delay >. ( t i m e  - es t )  

where t i m e  is the actual time of the dynamic event. 

Change Duration 

The change duration event modifies the required execution time of a task for the assigned 

resource. The purpose of this event is to simulate unexpected events that might occur 

during execution which have an effect on the duration. For instance, a flight from Vienna to 

Vancouver might arrive an hour early because of strong tailwind. Additionally, sometimes 

it can be used instead of the disable resource event, for example when a vehicle runs out of 

gas. In such an event, we know that the problem can be resolved very quickly, and we can 

simulate the resulting delay without having to unschedule all assigned tasks. Its syntax is 

as follows: 

<event-time> change-duration <task-id> <delay> 
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where <event-time> is a relative event time, <task-id> is the unique identifier of the task 

whose duration needs to be adjusted and <delay> is the amount of change measured as the 

percentage of total duration. 

For example, the change duration event 

0.7 change-duration task1 -0.1 

will have the following meaning: After successfully completing 70% of taslcl, the duration 

is reduced by -10%. Assuming the duration of taslcl using the assigned resource is 100 

minutes, there will only be 20 minutes remaining after the event. 

To guarantee that no invalid events will ever occur, we need to make sure that the 

updated end time of the task is not shifted into the past. Similarly as before, we impose 

two constraints: 

delay <> 0 

delay >= (event-time - 1) 

The first constraint ensures that the dynamic event affects the underlying scheduling 

problem, while the second constraint limits the shift of the end time such that it cannot be 

in the past. 

4.1.4 Mission Event Times 

Suppose we were to generate event times such that the latest finish time of all tasks lies 

within the scheduling horizon. This way every task can be completed before the end of the 

scheduling horizon. Suppose further, we schedule tasks which typically require 500 minutes 

to execute and assume that the end of the scheduling horizon is set to 800. Then, all missions 

have earliest starting times 5 300 and as a result there will be 500 more minutes during 

which no additional mission is created. 

Instead, the random problem generator tries to spread out the generated tasks. We 

uniformly distribute the absolute event times for the creation of missions. As a result, there 

might be several tasks which cannot be executed completely before the simulator halts. We 

deal with that problem by considering these tasks as completed as long as the scheduling 

algorithm was able to assign them to a resource such that they can be executed within their 

respective time windows. 
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4.1.5 Time Windows 

An important consideration for dynamic resource scheduling datasets with task time win- 

dows is the size of the generated time windows. On the one hand they should be large 

enough so that they can be completed successfully. But on the other hand the generated 

problem instances become too easy if task time windows are too large. 

We require that any dataset with a single task and a single resource should be solved 

optimally. Therefore, in computing the size of the time window we need to include the time 

it takes the assigned resource to get to the starting location of the task. For a given task 

type, we differentiate between two cases: 

1. If the considered task is a subtask of some other task t, and t can be performed by 

the same resource type, we compute the time it takes to get from the end location of 

t to the start location of the considered subtask. 

2. Otherwise, we compute the positioning time of a resource from its assigned home base. 

Of course during the simulation there is no guarantee that the resource will still be 

at that location. But we cannot do any better, since the problem generator cannot 

predict what the scheduling algorithm will do. 

Initially, we set the size of task time windows to the sum of the average positioning time 

and the worst task duration. However, after investigating several runs of some generated 

datasets, we found that the scheduling algorithm interrupted a large number of tasks. Some 

of them were rescheduled up to 10 times! As a result we modified our problem generator to 

create smaller time windows. In our current version the size of the time window equals the 

sum of the best positioning time and the average duration. 

4.2 Dynamic Simulator 

This section describes the dynamic simulator component of the dynamic resource scheduling 

framework. Its main purpose is to hide all future events from the scheduling algorithm, since 

these events should occur unexpectedly as they do in the real-world. This is achieved by 

creating all missions, tasks and events at the appropriate time without ever releasing any 

information prematurely. Every time an event occurs, the scheduler is invoked in order to 

make adjustments to the schedule to accommodate the new event. A special feature of the 



CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAMEWORK 

simulator is its visualization tool which creates an animation of the scheduling problem on 

Google Earth. A supplemented reading on our simulator model can be found at [lo]. 

Traditional scheduling models assume that the scheduler has no effect on the scheduling 

problem which it solves. Tasks are scheduled and eventually executed but the original 

problem does not change. This is not true in many real-world situations where the world 

is invariably affected by the execution of tasks and therefore the subsequent scheduling 

problem altered. We model these interactions by incorporating this dynamic simulator into 

our framework. 

We define a dynamic simulator which forms a feedback loop with the underlying schedul- 

ing problem. Given a problem instance to solve, the scheduler produces a new schedule. 

The execution of this schedule produces a stream of events which are interpreted over time 

by the simulator. The results of these events are a sequence of incremental changes to the 

scheduling problem which are then iteratively re-solved by the scheduling algorithm. Each 

new schedule may produce more events in the future as scheduled tasks are being executed. 

This process is driven by a simulation clock which iterates through the scheduling horizon. 

4.2.1 Simulator Model 

An overview of the dynamic simulator model is shown in Figure 4.2.  A scheduling problem 

P is inputted into the simulator. It specifies the set of missions, tasks and resources which 

are known initially. The scheduling problem is repeatedly modified by incremental changes 

A P  to P as produced by the Event Executor. The scheduler accepts the modified problem 

P' and returns a new schedule S'. The addition, deletion or rescheduling of tasks will cause 

changes to their start and end times. The set of all changes, denoted AA, are input to the 

Start/Stop Generator. This module is responsible for creating a set of new events AE which 

will modify the start and end times accordingly. 

The Event Queue stores all future events E to be processed by the Event Executor. 

Events are added to the queue from three sources: 

1. Initially, a data-file containing one problem instance of the scheduling problem is 

parsed. In addition to missions, tasks and resources, this file contains a set of regular 

events Eo which will be executed at specified times throughout the scheduling horizon. 

2. Event changes A E  are created by the Start/Stop Generator as follows. For each 

newly scheduled task, two new events are added: one representing the start time of 



CHAPTER 4. DYNAMIC RESOURCE SCHEDULING FRAh!lEWORK 

Input T 

Figure 4.2: Dynamic simulator Model 
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the task and one representing its end time. Likewise, for an unscheduled task which 

had been scheduled before invoking the scheduler, a corresponding deletion of the start 

and end time events is added. Finally, rescheduled tasks have corresponding changes 

represented in A E. 

3. Event changes are also produced by the Activity Executor by executing the body 

of missions and tasks. A mission's body is executed when a mission is created and 

added to the scheduling problem. The body of a task is executed when the simulation 

clock has reached its starting time. In the event that a task has been completed 

or terminated abnormally, the Activity Executor is also responsible for removing the 

corresponding future events from the queue. 

The Event Executor module uses the Event Queue to organize events in temporal order 

and a simulation clock is used to advance the simulation. The simulation starts at  the 

beginning of the scheduling horizon and stops when the clock reaches the end. The Event 

Executor repeatedly removes the first event e from the queue and advances the simulation 

clock to its event time. If this event is a dynamic event which introduces a modification 

A P  to the scheduling problem (see Section 3.3), it is executed and the scheduler is invoked. 

Otherwise, e deals with the execution of a task. We define three additional types of events 

which are delegated to  the Activity Executor. The remainder of this section gives a short 

description of these events. We omit their syntax as they are created automatically by the 

framework. 

Send Resource: This dynamic event signals that the assigned resource of a task 

has initiated the positioning leg in order to execute the task. A positioning leg is an 

activity which moves the assigned resource to the starting location of the task. Hence, 

event parameters include the event time, the id of the task as well as the unique 

identifier of the resource. 

0 Start Task: The start task event signals the start of execution. Parameters for this 

event include the event time and the unique identifiers of the task. It is not necessary 

to include the id of the resource, since this information is already known from the send 

resource event. 

0 End Task: This dynamic event simulates the end of execution of a task. Event 

parameters are the event time and the id of the completed task. For same reason as 
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for the start task event, it is not necessary to include the id of the resource. Since all 

resources in the problem are renewable, the assigned resource is free to start execution 

of another task immediately. 

4.2.2 Visualization Tool 

The dynamic simulator includes a visualization tool which creates an animation of the 

scheduling problem on Google Earth. We have chosen this application, because we can make 

use of all their current features, such as changing camera angles, and additional features 

from future updates. Interfacing with this application is achieved by using KML files2 to 

display geographic data in an Earth Browser. Models for resources were obtained from 

an online database3. The animation steps through the scheduling horizon and visualizes 

the different entities. It is even possible to halt the simulation clock anytime in order to 

investigate some state in detail. The animation is made up of the following three entities: 

1. Missions: An instance of a dynamic scheduling problem might contain many missions 

and displaying all of them simultaneously might overcrowd the screen. We group the 

scheduled tasks based on the mission they belong to so that entire missions can be 

hidden at once. It is even possible to visualize a single mission only and watch the 

animation in an attempt to understand the decisions made by the scheduler. This can 

be a very useful tool for analyzing and understanding the pros and cons of a scheduling 

algorithm. 

2. Tasks: A task is visualized in Google Earth using points and paths to indicate its 

function. For instance, a search task can be visualized by drawing the reported location 

as a point and the flight path of the resource as a sequence of connected lines. Every 

task has to implement a method writeKML which is called by the scheduler at the 

end of the scheduling horizon. A task is included in the animation as soon as it has 

been added to the scheduling problem and it is removed when the simulation clock 

reaches the end of its execution window. Tasks which are completed successfully will 

be hidden the moment they finish execution, since they are no longer interesting. 

'KML - Documentation, h t t p : / / c o d e . g o o g l e . c o m / a p i s / k m l / d o c u m e ~ t m l  

3 3 ~  Warehouse, http://sketchup.google.com/3dwarehouse/ 
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3. Resources: A resource is visualized during the entire scheduling horizon and its 

location is updated every minute. Resources are hidden during time intervals in which 

they are removed from the problem due to dynamic events. We associa.te a 3D model 

with cvcry resource type so that it is very easy to differcntia.tc between thcm on the 

Earth Browser. 

Figures 4.3 and 4.4 give s a m ~ l e  screenshots of the visualization tool. 

Figure 4.3: Screenshot from Visua.lization Tool - View from top 
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Figure 4.4: Screenshot from Visualization Tool - View from other aircraft 
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4.3 Scheduler 

The scheduler is a platform for scheduling algorithms and it communicates with the simula- 

tor. It is invoked every time a dynamic event occurs which changes the underlying scheduling 

problem. To test an algorithm on the generated datasets, one would simply implement the 

new algorithm in a method called run as a subclass of Scheduler. The scheduler component 

also provides several useful methods: 

s e t u p :  This method makes a backup of the current schedule by storing the scheduling 

information for every task and resource in their respective classes. It also locks the 

Event Queue in order to guarantee that the scheduling algorithm cannot modify the 

scheduling problem. 

recordNewBest:  This method records the current schedule as the best one encoun- 

tered so far. It is important to update the best schedule found during the run of 

the scheduling algorithm, because in the end it will be used to updated the previous 

schedule. 

finish: This method restores the backup of the schedule before the scheduler was 

invoked. It then determines the changes that are necessary to obtain the best schedule 

encountered during the run and sends them to the Start/Stop Generator. 

findEST: Given a resource and a task, this method finds the earliest possible starting 

time of the task on the given resource. This method returns -oo if the task cannot 

be executed during it's time window. 

rescheduleEST: Given a resource, this method reschedules all its assigned tasks by 

scheduling them as early as possible. The tasks are considered according to the order 

in which they are scheduled before the method is called. This method can be used to 

repair a schedule that was made invalid by a dynamic event. 

Consider the Gantt chart4 in Figure 4.5 of tasks scheduled on the same resource along 

with their time windows for execution. 

Assume task TI is currently executing and its duration is increased by 5 minutes due 

to some unexpected circumstances. The rescheduleEST method would try to schedule task 

4A Gantt chart is a graphical representation of a schedule in which the horizontal axis represents time[ll].  
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Figure 4.5: Gantt chart of tasks scheduled on same resource 

T2 as early as possible and immediately recognize that there is no suitable time, since the 

execution would finish after its latest finish time. Consequently, since T3 is the next task 

to be rescheduled, it will now start at time 30. The Gantt chart of the modified schedule 

can be seen in Figure 4.6. 

I . . I 
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I I k time 

10 20 30 40 50 

Figure 4.6: Gantt chart after change duration event 

4.4 Other Issues 

4.4.1 Precedence constraints 

As defined in Section 3.1.2, precedence constraints express the starting time of an activity in 

terms of another activity's starting time. Precedence constraints can be specified between 

two tasks belonging to  the same mission and between a task and the mission itself. It  turns 

out that implementing these kinds of constraints into our dynamic scheduling framework is 

not that simple. 

It is trivial to guarantee that a precedence constraint between a mission and one of its 

tasks is obeyed. Suppose in the given scheduling problem the following precedence constraint 

exists: 
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precedence mission1 taskl d 

As a result, taskl  has to start at  least d minutes after the creation of missionl.  The 

earliest time for the creation of a task is when its mission is added to the scheduling problem. 

As long as we can guarantee that the task will not execute before d minutes are elapsed, 

the given precedence constraint is obeyed. This can be achieved by selecting a value for the 

release date rd of taskl  such that rd > d. Hence, there is no need to include this precedence 

constraint in the scheduling problem. 

However, it is not that simple for precedence constraints between two tasks. Assume 

there exists a task A which adds two subtasks to the problem instance sometime during its 

execution. We denote the subtasks of A as B and C. 

Suppose there is a precedence constraint between tasks A and B. Using the same argu- 

ment as before, we do not need to  add the precedence constraint to the problem since it can 

be enforced using the release date parameter of task B. In general, this argument holds for 

any precedence constraint between a task and one of its subtasks. However, it doesn't hold 

for a precedence constraint between B and C with delay d. 

Assume that B is created earlier than task C. After running the scheduling algorithm, 

task B might start execution right away. Eventually task C will be created, but what if 

the other task has already been executing for d or more minutes? Then the constraint has 

been violated without any fault of the scheduler. It is not possible to guarantee that this 

precedence constraint is obeyed at all times. 

Consider the following solution to the problem: Instead of adding the given precedence 

constraint to  the scheduling problem, modify the dataset by moving the task C into the 

body of task B. Setting the release date of task C to a value 2 d enforces the constraint. 

Hence, we can completely ignore the use of precedence constraints if we generate datasets 

such that they are implied automatically by the definition of our dynamic scheduling model. 

4.4.2 Rescheduling of Tasks 

Semi-preemptive scheduling problems allow interruption of tasks in order to reschedule them, 

possibly on a different resource. Our model uses the concept of bodies which contain dynamic 

events that will be put into the event queue when the execution of a task commences. 

However, what should be done with the dynamic events if a task is interrupted and scheduled 

to execute a second time? 
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Our solution is very simple: During simulation of the problem instance, we keep track of 

the dynamic events contained in task bodies and allow every event to occur only once. Any 

further execution of the body will ignore those events which have already happened. This 

is especially important for the creation of subtasks. Suppose a new task event has already 

occurred. The second time it is executed, the Event Executor will try to create another task 

with the same id and violate the problem definition since task identifiers must be unique. 

The side-effect of our solution is that if the execution of a task is delayed on a resource by 

such a large amount that it needs to be interrupted, it will not be delayed again. 



Chapter 

Case-Study: Coast Watch 

We study the Canadian CoastWatch Dynamic Resource Scheduling Problem, in short Coast- 

Watch. It is an oversubscribed dynamic multi-mode scheduling problem with unit resources. 

The task is to schedule both routine and emergency missions within a Search & Rescue 

(SAR) operational command. CoastWatch datasets simulate a typical day for the Cana- 

dian Coast Guard, where officers assign resources (planes, helicopters, ships, ...) to execute 

several different kinds of missions (patrol, transport, ...). There are more routine patrol 

missions than can be flown by the available resources. Unexpected SAR missions are of 

highest priority and must be accommodated in the schedule if possible. 

5.1 Problem definition 

CoastWatch can be defined as follows: 

Missions. M = {ml,  m2, ..., m,) is a set of missions which have to be completed. A 

mission has a priority pi and is composed of a set of tasks Ti, all of which have to be 

completed in ordcr for the mission to be considered accomplished. Every mission has 

an associated set of dynamic events called its body. These events occur at  specified 

times after the creation of the mission. 

Tasks. T = {TI, T2, ..., T,) is a set of set of tasks which have to be scheduled. T, 

contains all tasks that belong to mission 7ni. Similar to missions, every task has a body 

which contains a set of dynamic events that occur at specified times after the start of 

execution of this task. A task is characterized by the following parameters: 
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- rd: the release date of the task. It must be scheduled at this time or later 

- d d :  the due date of the task. Execution must terminate on or before this time 

in any schedule. 

- CR: the set of resources which can service the task. We also refer to them as 

capable resources. 

- type: the type of the task. This parameter determines the set of capable resources. 

- D: the set of durations containing the execution times of the task depending 

on the assigned resources. The duration may be altered during execution by 

dynamic events. 

Body. A set of dynamic events associated with a task or mission. These events, 

which may affect the underlying scheduling problem, occur at specified times after the 

creation of the mission or the execution of the task. 

Resources. R = { r l ,  r2, ..., r k )  is a set of renewable unit resources which are 

scheduled to perform tasks. C is the set of capabilities, or task types, a resource is 

able to perform. 

The scheduling problem is semi-preemptive, meaning the execution of a task may be 

interrupted and restarted from the beginning at a later time. 

5.2 Description of Tasks and Resources 

5.2.1 Tasks 

Search 

The purpose of the search task is to find a missing person. After receiving an S.O.S. signal, 

the search task is performed by starting at the reported location and spiraling around it, 

while constantly increasing the distance to the starting point. Figure 4.3 shows an example 

for such a search path. Every time it is believed that the missing person has been sighted, 

an interdiction task is generated at that location. 
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Interdiction 

The interdiction task is generated to identify whether the object that was found during the 

search task, is the missing person or not. Unfortunately, since resources fly high above sea 

level in order to have a larger area of sight, it is possible that the object turns out not to be 

the missing person. If the missing person is identified successfully, a rescue task is generated 

at the same location. Regardless of the outcome, the interdiction task is completed when 

identification of the object has completed. 

Rescue 

The rescue task is generated when the missing person has been located. The task involves 

rescuing the person and transporting him back to the nearest base. Rescuing the person may 

be very tricky and special equipment may be necessary to perform the task. Consequently, 

not every resource type is able to  perform a rescue task. 

Patrol 

The patrol task is generated when it is necessary to fly over a specific area to provide 

protection or simply to be aware of movements of other ships or aircrafts. Typically, there 

exist more such tasks that can be executed by the given resources. The pilot is given a 

sequence of points which make up the flight path. After completing a specified number of 

rounds, the task is considered accomplished. 

Transport 

The purpose of the transport task is to  transport humans and/or goods from one base to 

another. This task is the simplest and can be executed by virtually any resource. 

5.2.2 Resources 

Aurora 

An Aurora aircraft can fly up to 750 km/h and is able to perform search, interdiction, patrol 

and transport tasks. These kinds of resources are the fastest ones that are included in the 

Coastwatch problem. Figure 5.1 shows a picture of the aurora aircraft along with the model 

used in the Visualization Tool of the Dynamic Simulator. 
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Figure 5.1: Picture and model of an Aurora aircraft 

Cormorant 

A Cormorant is the helicopter typically used for Search & Rescue. It is very flexible and is 

able to perform a.ll types of tasks. The Cormorant flies a t  a speed of 278 km/h and is shown 

in Figure 5.2. 

Figure 5.2: Picture and model of a Cormorant helicopter 

Cyclone 

The Cyclone helicopter has very similar cha.racteristics compared to the Cormorant. It 

is also able to perform all task types, but moves a little faster a t  a speed of 305 km/h. 

Figure 5.3 shows a Cyclone helicopter in action and the corresponding Google Earth model. 
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Figure 5.3: Picture and model of a Cyclone helicopter 

The Eagle aircraft is an Unmanned Aerial Vehicle which flies up to 207 km/h. As the name 

implies it flies by itselF without the need for a pilot. Planes are remotely controlled and 

equipped with cameras allowing the Canadian Coast Guard to use them for finding missing 

persons. Eagle aircrafts can be used for search and interdiction tasks and are shown in 

Figure 5.4. 

Figure 5.4: Picture and model of an Eagle Unmanned Aerial Vehicle 

Frigate 

The Frigate ship is the slowest resource availa.ble in the Coastwatch dynamic resource 

scheduling problem. It travels at  a speed of 54 km/h, but can perform all types of tasks 

with the exception of tra.nsport tasks. As a consequence of its low speed, Frigates typically 
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are not involved in tasks which require a lot of tra.ve1. But they may be close to the task 

locations and act as first, responders. Figure 5.5 shows the model used in t-he Earth Browser 

as well as a. picture of a Frigate out in the ocean. 

Figure 5.5: Picture and model of a Frigate ship 

5.3 Benchmark Datasets Generation 

This section contains a listing of all parameters values that we have selected for generating 

benchmark datasets for the CoastWatch dynamic resource scheduling problem. By changing 

parameter values, generated datasets may have very different characteristics. 

Scheduling horizon: 0 to 1440. We measure time in minutes and set the size of the 

scheduling horizon to equal a whole day. 

0 numBases: 4. We define a set of 4 rea.1-world bases and include them in every 

dataset. The selected bases are CFB-Comox, CYBL-CampbellRiver, YAZ-Tofino and 

Y VR-Vancouver . 

numResources: 10. We specify 18 different resources in the schedulirlg problen~ 

file for CoastWatch: 2 Aurora aircrafts, 4 Cormorant and 4 Cyclone helicopters, 4 

Eagle Unmanned Aerial Vehicles and 4 Frigate ships. Aurora aircrafts are kept very 

scarce, since they are much faster and would otherwise dominate the other resources 

by performing most of the tasks. Every problem instances contains 1 resource for 

every type and randomly selects the remaining 5. 
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5.3.1 Dynamic Events 

Delay Task 

probability: 0.1, de lay:  random(-10,60). 

This dynamic event shifts the time window of a task by a given delay. This delay can 

be positive or negative. The latter case refers to a task that can start execution ahead of 

schedule. This event has to occur at least 1 minute ahead of the earliest possible starting 

time of a task. If the execution time window of a task starts at the time of its creation, no 

delay task will be created. 

We assume that 10% of all tasks will be delayed. However, we allow no such event for 

interdiction and rescue tasks. Additionally, the execution of search tasks should never be 

delayed. But this is already guaranteed because we set its earliest possible starting time 

to be the time at which the task was created. Additionally, we set the maximum possible 

delay to be one hour and allow a task to be started at most 10 minutes earlier than first 

anticipated. 

Change Duration 

probability: 0.2, r e l a t i v e T i m e :  random(l,99), de lay:  random(-10,25). 

The change duration event causes the current execution of a task to be delayed due to 

some unforeseen circumstances. Similarly to the delay task event, the delay can be positive 

or negative. 

20% of all tasks, excluding interdiction tasks, experience a change in its duration. The 

relative time is set to a value between 1 and 99 meaning this event can occur anywhere during 

the execution of a task. A task can be executed up to 10% faster than first anticipated, 

which equals a delay of -lo%, but its duration may be increased by up to 25%. 

Disable Resource 

n u m R e s o u r c e s :  2, t i m e :  random(30,120). 

This disable resource event temporarily removes a resource from the problem instance. 

After a specified amount of time has elapsed, the resource is added back into the scheduling 

problem. We modify the definition of this event as given in the model by adding another 

parameter which determines the number of resources that will be disabled throughout the 
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scheduling horizon. We assume that a resource cannot be disabled more than once. 

In our experiments, we simulate a typical day for the Canadian Coast Guard by assuming 

that two resources will experience technical difficulties and be temporarily disabled. We 

assume that repair will take anywhere from 30 minutes to 2 hours. 

5.3.2 Tasks 

We give a brief description of the different types of tasks that are included in our generated 

benchmark datasets. In total we generate 60 missions for each dataset: 30 patrol, 20 

transport and 10 search and rescue. Since search & rescue involves several tasks that need 

to be completed to accomplish one mission, they are the most difficult missions, but it would 

be unrealistic to generate a large number of them. We create two types of transport tasks: 

static and dynamic. We assume that half of the transport tasks are known the previous day 

and therefore should be known at the beginning of the time horizon. Their release date is 

normally distributed around the middle of the day, so that theses missions typically occur 

during day time. The other half of transport tasks are spontaneous. They are generated 

throughout the day with much their time window of execution starting within the next 2 

hours. 

numStatic: 10, numDynamic: 0, priority: random(l,lO), relativeTime: 0, releaseDate: 

norma1(800,100). 

Ten static transport missions are generated in our problem instances. They are known at  

the beginning of the scheduling horizon with their release dates being normally distributed 

around the early afternoon. 

numStatic: 0, numDynamic: 10, priority: random(l,lO), relativeTime: 0, releaseDate: 

random(O,l20). 

Dynamic transport tasks have different characteristics than static ones. They are gen- 

erated throughout the day, with their earliest possible starting time being within 2 hours of 

their creation time. All transport tasks have low priority values. 
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Patrol 

numstatic: 30, numDynamic: 0, priority: random(20,30), relativeTime: 0, releaseDate: 

norma1(0,1440), maxDistance: random(120,150), numpoints: random(5,10), numRounds: 

random(3,4). 

The patrol task is generated when it is necessary to fly over a specific area to provide 

protection or simply to be aware of movements of other ships or aircrafts. Patrol missions 

have medium priority and are all known at the beginning of the scheduling horizon. To 

execute such a mission, the pilot is given a sequence of points which make up the flight 

path. After completing a specified number of rounds, which we have chosen to be either 

3 or 4, the task is considered accomplished. We generate the sequence of points by first 

generating a starting point. The remaining 4 to 9 points are created randomly, within 120 

to 150 kilometers from the starting point. We select the closest of these points to be the 

second point along the flight path. From the remaining randomly generated points we select 

the third point to be the closest one as measure from the second point. We continue this 

process until there exists a total order of all points. 

After experimenting with different parameter values, we found that it is very important 

to limit the flexibility in length that exists for patrol missions. For instance, allowing a 

maximum distance of 50 km or less and a small number of points and rounds, we sometimes 

generated patrol tasks that took an Aurora aircraft only several minutes to execute. 

Search 

numstatic: 0, numDynamic: 10, priority: random(150,250), relativeTime: 0, releaseDate: 

0, numlnterdiction: random(l,5), radius: random(50,75). 

We generate 10 Search & Rescue missions during the course of an entire day. These have 

a very large priority because human life is involved. The search path to be flown by the 

pilot is pre-determined: starting at the reported location, the resource will spiral around 

it while constantly increasing its distance. We set the search radius to be between 50 and 

75 kilometers from the reported location. During execution of this task, 1 to 5 interdiction 

tasks may be created. 

Interdiction 

relativeTime: random(1,100), releaseDate: 0, duration: random(l,5). 
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The purpose of an interdiction task is to identify whether the object sighted during the 

search task is the missing person. The relative time is chosen such that these tasks can 

occur anywhere along the search path. They can be executed immediately and have very 

short durations. 

Rescue 

relativeTime: 100, releaseDate: 0, duration: random(3,15). 

Once it has been verified that the missing person has been found, the rescue task needs 

to be performed. Relative time is set to loo%, since the interdiction task needs to complete 

in order to know for sure whether the object is the missing person. Rescuing the human 

takes anywhere from 3 to 15 minutes, but the actual duration is much longer, because the 

person needs to be transported to the nearest base in order to get him to a hospital. 
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Algorithms 

In this chapter, we describe various scheduling algorithms that we have implemented for 

the Coastwatch Dynamic Resource Scheduling problem case-study. We use Tabu search 

as a uniform platform, because stochastic local search algorithms have been proven to be 

successful for hard scheduling problems [ll]. We use this platform to test various heuristics 

and neighbourhood strategies. 

We encode potential solutions using a permutation of the tasks and write a schedule 

builder which generates a schedule from the permutation. This approach is similar to 

Barbulescu et al. [I]. The permutation acts as a priority queue and each task is assigned to 

the first available resource at  the earliest possible starting time. 

In dynamic scheduling problems, the addition of a new mission or the occurrence of a 

dynamic event may cause a lot of disruption in the schedule. On a busy resource, it is very 

likely that a delay of a task propagates to  other tasks that are assigned to be executed 

afterwards. Even worse than that, if we are dealing with time window constraints, then it is 

possible that a task can no longer be executed and might be reassigned to  another resource. 

Although schedule disruption is not our main objective, we would still prefer a scheduling 

algorithm that minimizes this objective. 

As a result, we modify our encoding to be a set of permutations of the tasks, one for each 

resource. This is done to help minimize schedule disruption since changes made on a single 

resource should effect fewer other tasks. We can assume there exists a dummy permutation 

which contains all the tasks that are not assigned to any resource. 
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6.1 Tabu search platform 

Tabu search is a very simple stochastic local search algorithm that has been applied very suc- 

cessfully to many different kind of scheduling problems. In general, Tabu search algorithms 

work as follows [ll]: 

1. Determine initial candidate solution s  

2. While termination criterion is not satisfied 

(a) Determine set N of non-tabu neighbours of s  

(b) Choose a best improving solution s' in N 

(c) Update tabu attributes bases on s '  

(d) Set s  equal to s '  

A neighbour of the current solution is another candidate solution that can be reached 

by making a single modification to it. The set of all possible neighbours during an iter- 

ation is called neighbourhood. Tabu search remembers the selected moves because for a 

certain number of iterations, called the tabu tenure, it will disallow moves that reverse a 

previous move. Typically, an exception is made for moves which improve the best solution 

encountered during the run. 

6.2 Neighbourhoods 

In a local search strategy, the neighbourhood is defined as the set of all possible moves to 

modify the current solution. For the Coastwatch problem we experiment with different 

neighbourhoods by running them on the Tabu search platform. 

First we will explain the different move operators that we consider. Then we will give a 

brief description of the various neighbourhoods. 

Recall that we encode candidate solutions using a permutation of tasks for each resource. 

After applying the move operator a schedule builder will traverse through all resources and 

try to schedule the tasks on the given resource as early as possible. The permutations act 

as a priority queue which determines the order in which the tasks are considered. 

For our experiments we allow the following move operators: 
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a Switch Resource: switches a given task to another resource 

a Move Task: moves a task to another position within the permutation 

a Add  Task: adds a currently unscheduled task to one of the permutations 

The three neighbourhood variations we test on the Coastwatch datasets are: 

1. Full: Permits all three types of moves and exhausts all possible moves during every 

iteration. This neighbourhood is computationally expensive, however, it will provide 

the greatest flexibility since it can explore the whole search space. 

2. AddOnly: Allows only add task moves. The idea behind this neighbourhood is to 

try to insert more tasks into the schedule, while leaving scheduled tasks alone. This 

method differs from the Missionswap algorithm [17] as described in chapter 2, because 

we do not require retracted tasks to be rescheduled. 

3. Restricted: This neighbourhood combines features of both, Full and AddOnly. It 

has a parameter mas moves which limits the number of moves per iteration that 

Tabu search is allowed to consider. The neighbourhood will first consider all add 

task moves and then randomly select switch resource or move task moves until the 

maximum number of moves has been reached. 

6.3 Scheduling Heuristics 

The three possible neighbourhood moves, switch resource, move task and add task, all need 

to select new positions within the permutation. We define several scheduling heuristics 

which will decide where in the permutation the task is inserted: 

a Random: This algorithm selects the new position within the permutation purely at 

random. In the worst case, it might schedule a task such that no other assigned tasks 

of the resource may still be completed in time. Its performance won't be very good, 

but we use this strategy as a baseline. 

a Maximizeobjective:  This heuristic places the task in the permutation such that 

the given resource itself contributes as much to the objective value as possible. This 
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technique should perform very well since its optimization goal is exactly the objec- 

tive function of the scheduling problem. However, optimizing this objective on each 

resource doesn't necessarily produce the best overall results. 

0 MinimizePositioningTime: For a given task, this algorithms selects the new posi- 

tion within the permutation such that in the resulting schedule, its positioning times 

are minimized. In other words, this strategy will attempt to schedule the task such 

that the distance from the previous task and the distance to the next task are as 

small as possible. For the first task to be completed by a resource, we consider its 

positioning time from the home base, while for the last task we do not include any 

positioning leg after it has been completed. This strategy attempts to minimize the 

time that resources spend on positioning legs in order to maximize utilization. 

SpreadOutResources: This heuristic places the task in the permutation such that 

resources are spread out as much as possible during the remainder of the simulation. 

By doing so we provide more flexibility to the Canadian Coast Guard, since we ensure 

that resources are operating in very different locations. As a result, we increase the 

probability that a new task can be executed very quickly. We generate a specified 

number of absolute times spaced evenly throughout the remainder of the simulation 

and determine the position of every resource according to the current schedule. We 

sum up the square distances of the assigned resource to all others, which will give us a 

good measure of how spread out resources are during the remainder of the scheduling 

horizon. 

6.4 Discussion 

Before discussion of experimental results, we would like to give a short comparison of our 

Tabu search algorithm to the Missionswap and SWO algorithms from Kramer et al. [16]. 

Their study attempts to classify scheduling problems for which it is best to use a specific type 

of local search algorithm. The Tabu search algorithm we selected for Coastwatch differs 

significantly from either of the studied algorithms. The difference to  the studied SWO 

method is that our algorithm contains a permutation of assigned tasks for each resource. 

This is done to help minimize schedule disruption since changes made on the permutation of 

a subset of tasks should effect fewer other tasks. Additionally, after each iteration of Tabu 
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search we update the permutations to reflect the actual order that tasks will be executed 

on the different resources. This limits the explored search space since all permutations that 

lead to  the same schedule will cause an implicit jump to  the same region of the search space. 

There are two main differences between our Tabu algorithm and MissionSwap: first, we do 

not require that all retracted tasks be rescheduled when inserting a new task and secondly, 

we move through the search space by changing the permutations rather then operating on 

the schedule themselves. 



Chapter 7 

Evaluation & Experiment a1 Results 

7.1 Evaluation Criteria and Methodology 

The algorithms described in Chapter 6 were all developed for oversubscribed scheduling 

problems. These are scheduling problems for which not all tasks can be scheduled and the 

algorithm needs to select the best subset of these tasks that can be completed while obeying 

all problem constraints. 

The Coastwatch scheduling problem is such an oversubscribed scheduling problem and 

consequently, we use the problem generator to generate more missions than can be executed 

by the available resources. We estimate the value of oversubscription (ov) by dividing the 

sum of average durations of all tasks by the size of the scheduling horizon multiplied by the 

number of resources: 

-j-zT worstt+bestt 

ov = 2 

r * (tend - tstart  + 1) 

where: ov is the oversubscription value of a problem instance, T is the set of all tasks, worstt 

and bestt refer to the worst and best task durations, respectively, r equals the number of 

resources in the scheduling problem and tstaTt & tend refer to the beginning and end of the 

scheduling horizon, respectively. 

The oversubscription value estimates the number of tasks a resource has to execute 

concurrently in order to complete all tasks during the simulation of the scheduling problem. 

If ov > 1, then most likely the given problem instance is oversubscribed. Typically, the 

sum of average durations underestimates the actual time it requires resources to execute 
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the given tasks. This is because resources also need to travel to the starting location of the 

task, and the durations of these positioning legs are not included. We generate 100 datasets 

with oversubscription values between 1 and 5 and use them to test various algorithms. 

We select our objective to be to maximize the sum of priorities of all accomplished 

missions: 

obj = ct * priorityt 

where T is the set of all tasks, priorityt is the priority of task t, and ct equals 1 if the task 

has been completed within the given execution time window, and 0 otherwise. 

This objective function is a simple solution quality measurement for oversubscribed 

scheduling problems. Other objectives, such as minimizing the lateness of tasks, introduce 

some difficulties, since only a subset of the tasks will actually be executed. 

Additionally, we collect statistics about schedule disruption, because we would prefer an 

algorithm that reschedules fewer tasks. We measure disruption by comparing the schedules 

before and after running the scheduler and summing up the number of tasks that: 

have been previously been unassigned, but are now scheduled on a resource, and 

have been assigned previously, but are now assigned to a different resource, and 

have been rescheduled. We do not include tasks which have been assigned a different 

time slot or resource as a result of rescheduling some other task. In other words, we 

only count tasks that have been rescheduled because they have been selected by the 

algorithm. 

7.2 Implement at ion 

As specified in Section 3.3, we use relative event times for dynamic task events created 

during the execution of tasks. In our implementation we restrict these relative times to any 

integer i, such that 0 5 i 5 100. When the body of a task is executed we divide these event 

times by 100 to get the percentage of completed execution after which the event occurs. 

The reason for this difference in implementation is that it is more convenient to store all 

event times as integers, regardless of their types. 
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As explained in Section 4.2.1, the initial scheduling problem must be parsed by the 

dynamic simulator before the simulator can start. We achieve the same effect by inputting 

the initial problem instance as a set of events with event times equal to 0. Additionally, we do 

not implement a Start/Stop Generator module, because we provide the desired functionality 

in both Task and Resource classes. 

In our implementation of the event model, we further divide every task into a sequence 

of actions. As a consequence we are able to calculate the duration of tasks by summing up 

the durations of their actions. This minimizes the required effort to introduce new types 

of tasks. There exist only two different types of actions: Go and Wait. The Go action 

requires a resource to move from one location to another, while the Wait action instructs a 

resource to remain at a specified location. Every task can be translated into a sequence of 

these actions. 

7.3 Experimental Results 

We perform two different experiments on the generated CoastWatch datasets. Both experi- 

ments are run on a 3.0 GHz computer with 1GB of RAM. We measure run-time in seconds 

per scheduler call in order to determine how long it would take an algorithm to respond to 

the occurence of one dynamic event. Total run-time does not give much information about 

the efficiency of an algorithm since the execution of more tasks will result in more dynamic 

events, and consequently in more scheduler calls. 

In the first experiment we investigate the effect of neighbourhood choice on the studied 

dynamic scheduling problem. We exclusively use the random scheduling heuristic for this 

experiment, in order to have no bias regarding the new position in the permutation. 

The second experiment compares the performance of the various scheduling heuristics 

on the CoastWatch benchmark datasets. 

7.3.1 Experiment 1 - Neighbourhoods 

Experiment 1 compares the performance of Full, Restricted and AddOnly neighbourhoods 

on a set of oversubscribed problem instances, consisting of problems 1 to 50 from the Coast- 

Watch benchmark datasets. The random scheduling heuristic is used exclusively in this 

experiment, and hence, all results are averaged over 10 runs. Figure 7.1 shows typical run- 

time behaviour of the Tabu search algorithm on one of the datasets. In particular, it shows 
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the AddOnly neighbourhood as run on dataset #1 with 100 iterations 

0 4  
1 74 147 220 293 366 439 512 585 658 731 804 877 950 1023 1W tWIM2 1315 1388 

Time 

Figure 7.1: Runtime behaviour of AddOnly on Dataset #1 using 100 iterations 

The graph shows a steady objective increase as time progresses in the simulation. This 

1s because more and more missions are added dynamically and the objective value increases 

every time one of those missions is completed. The objectivc function is not monotonically 

increasing because sometimes subtasks are created that cannot be executed and conse- 

quently, the mission is not considered accomplished anymore. 

Table 7.1 summa.rizes the performance of the Addonly neighourhood on all 50 dstasets 

for 50, 75 and 100 iterations. Results are nearly identical: 100 iterations provide very little 

improvement over 75 iterations, which in turn performs almost identical to 50. This suggests 

that this particular neighbourhood has already rea.ched its performance level after a small 

number of iterations and further improvements are due to luck. 

Figure 7.2 shows a comparison of these runs for each dataset. All performance graphs in 

this chapter show the relative performance of the various a,lgorithms. In this type of graph, 

we use the worst performing algorithm as a baseline and plot the difference between its 

average and worst performa.nce (out of 10 runs). As a result, we can deduce the performance 
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Table 7.1: Average performance of A d d O n l y  for 50, 75 and 100 iterations 

Neighbourhood 

AddOnly 50 

variation that exists within different runs. For all other algorithms, we compare its average 

performance with the average baseline performance and visualize their difference for each 

d a t s e t .  Consequently, larger bars representer better performance. 

Add Only - 100 Iterations 

.Add Only - 75 Iterations 

Run-time 

1.21 s 

A d d  Only - 50 Iterations 

Dataset 

Objective 

2442.60 

Figure 7.2: Performance comparison of A d d O n l y  for 50, 75 and 100 iterations 

The performance graphs for the A d d O n l y  neighbourhood show nearly identical results 

w h n  tcrrriinating Tabu scarch aftcr variolls different ti~irnbcr of iterations. 100 itcratioris 

provide very little improvement over 75 iterations, which in turn performs almost identical 

to 50. This suggests that this particular neighbourhood has already reached its performance 

level after a small number of iterations and further improvements are due to luck. 

Disruption 

144.31 

Best 

11 
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Figure 7.3 shows the performance comparison of AddOnly, Restricted and fib11 neigh- 

bourhoods on the benchmark datasets for 50 iterations with average run-times of 1.21, 2.53. 

2.93 and 10.33 seconds, respectively. 

M W d  (50 moves) 
-d (60 moves) 

Figure 7.3: Performance comparison of AddOnly, Restricted and Full for 50 iterations 

The AddOnly neighbourhood dominates all other neighbourhoods after 50 iterations. 

Additionally, it seems that using neighbourhoods which allow more moves during an itera- 

tion, leads to worse results. Although we have shown in figure 7.2 that when terminating 

the Ta.bu search after more iterations, performance improvement for AddOnly is minimal, 

this may not be the case for the other neighbourhoods. We repeat the experiment using 

100 iterations and show the resulting performa.nce graphs of all three neighbourhoods in 

figure 7.4. We summarize thcir performance in Table 7.2. 

Thc relativa perforrnancc of thc different neighboiirhootls using 100 itcrahions is itlcn- 

tical to before. In an attempt to understand why these larger neighbourhoods lead to 

infcrior solution quality, wc rnodificd thc Restricted neighbourhood so that it does not try 

to reschedule tasks which are currently executing on any of the given resources. Since our 

scheduling problem is semi-preemptive, meaning that an interrupted task must be restarted 
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Dataset 

Figure 7.4: Performance comparison of AddOnly, Restricted and Full for 100 iterations 

Table 7.2: Average performa.nce of AddOnly, Restricted and Full for 100 iterations 

Neighbourhood 

AddOnly 
Restricted 
Full 

Run-time 

2.62 s 
5.30 s 
32.09 s 

Best 

37 
13 
0 

Objective 

2461.84 
2381.01 
2094.41 

Disruption 

147.45 
676.10 
859.20 
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Table 7.3: Average performance of AddOnly, Restricted and modzfied Restricted for 50 
iterations 

from the beginning, it may not be a good idea to reschedule such tasks. Figure 7.5 shows 

the resulting performance graphs, while table 7.3 summarizes their overall performance. 

Best 

29 
9 
12 

Neighbourhood 

AddOnly 
Restricted 
Modified Restricted 

Restricted 

Dataset 

Run-time 

1.21 s 
2.53 s 
1.57 s 

Figure 7.5: Performance comparison of AddOnly, Restricted and modified Restricted for 50 
iterations 

The modified Restricted neighbourhood resulted in better solution quality, however, it 

was not able to match the performance of AddOnly. This indicates that dthough reschedul- 

ing currently executing tasks contributes to the poor performa.nce of large neighbourhoods, 

it is not the only contributing factor. 

Objective 

2442.60 
2355.91 
2394.99 

Disruption 

144.31 
500.50 
563.72 
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Result Neighbourhood 1 

AddOnly 
AddOnly 
AddOnly 
modified Restricted 
modified Restricted 
Restricted 

Significant? 

YES 
YES 
YES 
YES 
YES 
YES 

Neighbourhood 2 

Restricted 
modified Restricted 
Full 
Restricted 
Full 
Full 

Table 7.4: Paired sample t-test for AddOnly, Restricted, modified Restricted and f i l l  for 50 
iterations 

To validate our results, we carry out paired sample t-test using SPSS' (Statistical Pack- 

age for the Social Sciences). This test provides evaluation of the performance difference of 

two algorithms. A resulting value < 0.05 indicates significant difference in performance. 

The signficunce tests between various neighbourhoods for 50 iterations are summarized in 

table 7.4. 

We conclude that the AddOnly neighbourhood dominates the other two neighbourhoods 

in terms of solution quality and schedule disruption. As a result, we use it exclusively in 

experiment 2 to test various scheduling heuristics. AddOnly provides the least flexibility in 

moving from one candidate solution to another, but its advantage is that it concentrates 

on scheduling tasks which are currently unscheduled and does not re-arrange tasks which 

have already been scheduled. The Full neighbourhood provides the greatest flexibility, but 

requires the largest amount of computation time and actua.11~ performed the worst. 

7.3.2 Experiment 2 - Scheduling heuristics 

Experiment 2 compares the performance of the Random, MaximizeObjective, MinimizePo- 

sitioningTzme and SpreadOutResources heuristics on the Coastwatch benchmark datasets 

which consists of 100 randomly generated oversubscribed problem instances. These dif- 

ferent strategies determine which position in the permutation a given task is assigned to. 

We exclusively use the AddOnly neighbourhood for our Tabu search algorithm because it 

outperformed all other neighbourhoods from experiment 1. We average the performance of 

Random over 10 runs for each datasct and perform only one run for all other scheduling 

'More information can be found at http://www.spss.com/spss/ 
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heuristics since they are deterministic. 

Figure 7.6 shows the performance graphs of the various scheduling heuristics on the 

Coastwatch benchmark datasets and table 7.5 summarizes their average performance. The 

resulting schedule disruption of these strategies is shown in figure 7.7. 

Dataset 

Figure 7.6: Performance comparison of Random, MadmizeObjective, MinimizePositioning- 
Time and SpreadOutResources for 100 iterations 

The results show that MaximizeObjective outperforms all other heuristics for most 

datasets and performing paired sample t-test verifies that these performance differences are 

significant. Although, SpreadOutResources leads to better overall solution quality than Min- 

imizePositioningTime, differences are minimal and insignificant. As c:xpected, all heuristics 

outperform Random in terms of objective value. MaximizeObjective and SpreadOutRe- 

sources do not lead to as much schedule disruption as MinimizePositioningTime. Similarly, 

as for solution quality, the Random heuristic performs the worst in terms of disruption. 

We conclude that MaximizeObjective outperforms all other scheduling heuristics since it 

provides superior solution qua.lity with relatively little schedule disruption. 
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Scheduling heuristic 

Random 

Table 7.5: Average performance of Random, MaximizeObjective, MznimizePositioningTime 
and SpreadOutResources for 100 iterations 

Maximize Objective 1 
Minimize Positioning Time 
Spread Out Resources 

Figure 7.7: Schedule disruption of Random, Mazim,izeObjective, MinimizePositiowingTime 
and SpreadOutResources for 100 iterations 

Run-time 

2.64 s 
7.84s 
11.57 s 
18.13 s 

Objective 

2452.47 
2543.14 
2483.47 
2502.90 

Disruption 

145.33 

Best 

4 
123.37 
130.79 
123.27 

48 
25 
26 
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Table 7.6: Average performance of Random, MaximizeObjective, MinimizePositioningTime, 
SpreadOutResources and MaxObj+MinimizeResponseTime for 100 iterations 

As a result of the superior performance of MaximizeObjective we extend our experiment 

to  include one more heuristic: we combine MaximizeObjective and a modified version of 

SpreadOutResources into one heuristic that we call MaxObj+MinimizeResponseTime. Min- 

Scheduling heuristic 

Random 
Maximize Objective 
Minimize Positioning Time 
Spread Out Resources 
MaxObi + Minimize Res~onse  Time 

imizeResponseTime differs from SpreadOutResources in that  it computes the minimum time 

Disruption 

it takes a resource to get to randomly generated points, rather than maximizing distances 

Best 1 Run-time 

2.64 s 
7.84 s 
11.57s 
18.13 s 
11.91 s 

between all resources. Since resources operate a t  different speeds, maximizing distances be- 

tween them is not enough to guarantee short response times. Additionally, the new heuristic 

computes this response time for each task type, since not all tasks can be executed by every 

resource. MaxObj+MinimizeResponseTime uses the MaximizeObjective heuristic and breaks 

ties using the new MinimizeResponseTime strategy. The performance summary of all five 

scheduling heuristics are shown in table 7.6. Although MaxObj+MinimizeResponseTime 

145.33 
123.37 
130.79 19 

123.51 

Objective 

2452.47 
2543.14 
2483.47 
2502.90 
2555.71 

results in the best overall performance in terms of solution quality, it turns out that the 

difference to MaximizeObjective is insignificant. Table 7.4 shows the results of paired sample 

t-test between the different scheduling heuristics. 
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Heuristic 1 

MaxObj+MinimizeResponseTime 
MaxObj+MinimizeResponseTime 
MaxObj+MinimizeResponseTime 
MaxObj +MinimizeResponseTime 
MaximizeObjective 
MaximizeObjective 
MaximizeObjective 
SpreadOut Resources 
SpreadOut Resources 
MinimizePositioningTime 

Heuristic 2 

MaximizeObjective 
SpreadOutResources 
MinimizePositioningTime 
Random 
SpreadOut Resources 
MinimizePositioningTime 
Random 
MinimizePositioningTime 
Random 
Random 

Result 

YES 
YES 
YES 
YES 
YES 
YES 
NO 
YES ~ 
NO 

Table 7.7: Paired sample t-test for Random, MaximizeObjective, MinimizePositioningTime, 
SprendOutResources and MaxObj+MinimizeResponseTime for 100 iterations 
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Conclusion 

In this thesis, we described a framework for dynamic resource scheduling problems with unit 

resources subject to temporal and resource constraints. It is composed of three components: 

a random problem generator, a dynamic simulator and a scheduler. We proposed a model 

for dynamic resource scheduling problems and incorporated it into our framework. We 

performed a case-study on the Coastwatch problem whose goal is to schedule both routine 

and emergency missions within a Search & Rescue operational command. We tested different 

heuristic scheduling strategies and various neighbourhoods on our Tabu search platform. 

In Section 8.1, we first summarize the approach taken by our work. Then we review 

the key contributions to the field of dynamic resource scheduling in Section 8.2. Section 8.3 

speculates on possible future research directions and Section 8.4 gives some concluding 

remarks. 

8.1 Thesis Summary 

Chapter 2 presented a survey of problem generators and scheduling algorithms for resource 

scheduling problems. Unfortunately, past research on problem generators has concentrated 

almost exclusively on static scheduling problems. Recently, Policella & Rasconi [23] devel- 

oped a problem generator model for dynamic project scheduling problems. However, their 

dynamic events were very restrictive and couldn't be used to create realistic datasets for 

our dynamic resource scheduling problem. 

Chapter 3 defined a general dynamic resource scheduling model which we incorporated 



CHAPTER 8. CONCLUSION 8 1 

into our framework. We differentiate between three different types of dynamic events: reg- 

ular events, task events and mission events. Regular events have an absolute event time 

anywhere within the scheduling horizon. The event time for mission events is relative to the 

creation of the mission. For task events, the event time is also relative, but unlike mission 

events it represents a percentage. The dynamic event is created after the assigned resource 

has completed the specified percentage of the parent task. 

We described our dynamic resource scheduling framework in Chapter 4. We explained 

all its components in detail: the random problem generator, the dynamic simulator and the 

scheduler. During development of the problem generator, we tried to  keep it as general as 

possible so that it could be applied to similar scheduling problems with very little effort. 

The dynamic simulator hides future events from the scheduling algorithm and contains a 

visualization tool which creates animations on Google Earth. We implemented a Tabu search 

platform as part of our scheduler component and used it to carry out several experiments. 

Chapter 5 describes the CoastWatch Dynamic Resource Scheduling problem. It is an 

oversubscribed dynamic multi-mode scheduling problem with unit resources and lies in the 

Search & Rescue domain. CoastWatch datasets simulate a typical day for the Canadian 

Coast Guard, where officers assign resources (planes, helicopters, ships, ...) to execute 

several different kinds of missions (patrol, transport, search & rescue). 

We described our Tabu search algorithm in Chapter 6. It was used to run various 

algorithms on CoastWatch datasets. We experimented with different scheduling strategies 

and tested different neighbourhoods. 

In Chapter 7 we stated our research goals and discussed experimental results. The ob- 

jective function for our evaluation is to maximize the sum of priorities of all accomplished 

missions. Ignoring algorithm efficiency, we expected the Full neighbourhood to achieve the 

best results, as it provides the greatest flexibility in adjusting a candidate solution. How- 

ever, our results showed that the simplest neighbourhood with the most restricted moves, 

AddOnly, resulted in superior performance. The advantage of this simple neighbourhood is 

that it concentrates on scheduling tasks that are currently unscheduled and leaves all other 

tasks alone. In another experiment, we used this neighbourhood to test various scheduling 

heuristics. The MaximizeObjective strategy, which positioned a given task in the permuta- 

tion such that the assigned resource contributes to the objective value as much as possible, 

outperformed the other techniques. Combining this heuristic with another strategy to break 

ties, resulted in insignificantly superior performance. 
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8.2 Contributions 

The main contribution of this thesis is a dynamic resource scheduling framework that can 

be applied to many different kinds of dynamic resource scheduling problems. We defined a 

model for such problems which allows a large set of unexpected dynamic events. 

Contributions in this thesis include: 

0 We developed a dynamic resource scheduling framework which is composed of three 

components: a random problem generator, a dynamic simulator and a scheduler. It 

can be applied to many different kinds of dynamic resource scheduling problems. 

We developed a random problem generator which generates benchmark datasets for 

dynamic resource scheduling problems. It is very easy to adapt to add new mission 

types and dynamic events, because it only requires minor changes in its input files. 

The use of parameters provides great flexibility in changing the characteristics of the 

generated instances. 

We developed a dynamic simulator which is used to run dynamic scheduling datasets. 

It hides future events from the scheduler and contains a visualization tool to create 

an animation of the executing schedule on Google Earth. 

We implemented Tabu search as a uniform platform to test various scheduling heuris- 

tics on the Coastwatch problem. Additionally, we experimented with different search 

neighbourhoods. 

8.3 Future Research 

Although we have tried several different variations of a Tabu search algorithm, in the future, 

we could test more algorithms to determine how good our results really are. Since we have 

implemented the algorithm using a permutation-based method, it would be very interesting 

to try a scheduling algorithm which modifies schedules directly. We might be able to adapt 

the MissionSwap algorithm so that it doesn't require that all retracted tasks be rescheduled. 

Similarly, finding other dynamic heuristics or neighbourhoods might improve our ex- 

perimental results. We could combine several heuristics into one algorithm and run them 

concurrently by selecting one heuristic at random during each iteration. Another alternative 
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would be to run two heuristics iteratively: The second heuristic restarts Tabu search from 

the best schedule found during the run using the first heuristic. 

We used the random problem generator to create problem instances for the CoastWatch 

Dynamic Resource Scheduling problem. We made these datasets publicly available in order 

to spark more interest in studying dynamic scheduling problems. Possible future work could 

include generating more datasets for the CoastWatch problem. It would be interesting to see 

if changing some of these parameters changes the outcome of our experiments significantly. 

Additionally, it would be beneficial to identify a subset of parameters that significantly 

influences the difficulty of the generated datasets. We can achieve this by trying various 

combinations of these parameters. 

Precedence constraints are a very common type of temporal constraints and are included 

in many different scheduling problems. In Chapter 4 we explained how difficult it is to obey 

precedence constraints in dynamic problem instances. Although our solution of enforcing 

such a constraint by means of generating an appropriate release date for the task, works for 

our problem, it may not be sufficient for other problems. As part of our future research, we 

could find a better solution in order to introduce more complicated precedence constraints 

to the dynamic resource scheduling framework. 

The size of the execution time windows for tasks can have a significant impact on the 

difficulty of the resulting problem instances. Consequently, we need to test several strategies 

for determining their size and analyze the resulting datasets. Currently, we generate the 

execution time window for a task by considering the positioning times and durations of the 

capable resources. However, there is a disadvantage to this approach: resources that are 

either much faster or much slower than other ones, influence the resulting size significantly. 

In the future, we could look for alternative ways such that time window sizes are not 

dependent on the available resources. 

8.4 Concluding Remarks 

As more and more researchers are working on dynamic scheduling problems, the need for 

good problem generators will only increase over time. We have taken one step towards this 

direction: developing a random problem generator that is flexible enough to be used for 

many different kinds of dynamic resource scheduling problems. 
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We have achieved the two goals that we set out before starting our research. We devel- 

oped a general random problem generator as part of a larger framework for dynamic resource 

scheduling problems and we were able to get decent results by running several variations 

of a Tabu search algorithm. In addition to that, we hope to have achieved two additional 

goals: 

1. To spark interest in other researchers to try their dynamic scheduling algorithms on 

our benchmark datasets for the Coastwatch scheduling problem. 

2. To spark interest in the scheduling community to attack even more dynamic scheduling 

problems in the future. 
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Problem Generator Input Files 

A. 1 Sample Scheduling Problem file: 

resourceTypes (aurora cormorant cyclone frigate eagle-uav) 

capability search (aurora cormorant cyclone eagle-uav frigate) 

capability interdict ion (aurora cormorant cyclone eagle-uav frigate) 

capability rescue (cormorant cyclone frigate) 

capability patrol (aurora cormorant cyclone frigate) 

capability transport-static (aurora cormorant cyclone) 

capability transport-dynamic (aurora cormorant cyclone) 

base CFB-Comox (49.72052,-124.89249) 

base CYBL-CampbellRiver (49.95054,-125.27070) 

base YVR-Vancouver (49.19388,-123.18444) 

base YAZ-Tofino (49.13106,-125.89075) 

resource aurora CP-140411 YVR-Vancouver 750 

resource aurora CP-I40412 YVR-Vancouver 750 

resource cormorant CH-I49901 CFB-Comox 278 

resource cormorant CH-149902 CYBL-CampbellRiver 278 

resource cormorant CH-I49903 YVR-Vancouver 278 

resource cormorant CH-I49904 YAZ-Tofino 278 

resource cyclone CH-I48001 CFB-Comox 305 

resource cyclone CH-I48002 CYBL-CampbellRiver 305 

resource cyclone CH-I48003 YVR-Vancouver 305 
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resource cyclone CH-148004 YAZ-Tofino 305 

resource eagle-uav CE-147001 CFB-Comox 207 

resource eagle-uav CE-147002 CYBL-CampbellRiver 207 

resource eagle-uav CE-147003 YVR-Vancouver 207 

resource eagle-uav CE-147004 YAZ-Tofino 207 

resource frigate CF-141001 YAZ-Tofino 54 

resource frigate CF-141002 YAZ-Tofino 54 

resource frigate CF-141003 YAZ-Tofino 54 

resource frigate CF-141004 YAZ-Tofino 54 

A.2 Sample Mission and Event file: 

horizon 0 1440 

numBases 4 

numResources 10 

events 

mission-task-delay 

task-change-durat ion 

disable-resource 

tasks 

transport-static 

transport -dynamic 

patrol 

search 
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rescue 

interdict ion 

releaseDate=O numhterdict ion=random(l, 5) 

priority=random(150,250) 

relat iveTime=100 releaseDate=O 

durat ion=random(3,15) 

mission~task~delay~probability=0 

releaseDate=O duration=random (1,5) 

relativeTime=randorn( 1,100) 

mission~task~delay~probability=0 

task-change-duration-probability=O 



Appendix B 

Experimental Results 

Set 

1 

Rand 

2907 

MaxObjective 

2980 

MinPosTime 

2523 

Spreadout 

2955 

MaxObj+MinResponse 

2980 
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Set 

21 

Rand 

2638 

MaxObjective 

2624 

MinPosTime 

2612 

Spreadout 

2560 

MaxObj+MinResponse 

2624 



APPENDIX B. EXPERIMENTAL RESULTS 90 

Set 

51 

Rand 

2776 

MaxObjective 

2744 

MinPosTime Spreadout MaxObj +MinResponse 

2690 2762 2744 
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Set 

, 81 

Rand 

2679 

MaxObjective 

2288 

MinPosTime 

2627 

Spreadout 

2349 

MaxObj+MinResponse I 

2720 
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