
CONTINUOUS DATA COLLECTION IN WIRELESS

SENSOR NETWORKS

by

Dan Wang

B.S. Peking University, 2000

M.S. Case Western Reserve University, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

© Dan Wang 2007

SIMON FRASER UNIVERSITY

2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Narne: Dan Wang

Degree: Doctor of Philosophy

Title of thesis: Continuous Data Collection in Wireless Sensor Networks

Examining Committee: Dr. Petra Berenbrink,

Chair

Dr. Funda Ergun, Senior Supervisor,

School of Computing Science,

Simon Fraser University

Dr. Jiangchuan Liu, Supervisor,

School of Computing Science,

Simon Fraser University

Dr. Jian Pei, SFU Examiner,

School of Computing Science,

Simon Fraser University

Dr. Ben Liang, External Examiner,

Department of Electrical and Computer Engineering,

University of Toronto

Date Approved:

ii

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make
a digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http://ir.lib.sfu.ca/handle/1892/112>)and,withoutchangingthecontent,to
translate the thesis/project or extended essays, if technically possible, to any medium
or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of
any multimedia materials forming part of this work, may have been granted by the
author. This information may be found on the separately catalogued multimedia
material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in part,
and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC,Canada

Revised: Summer 2007

Abstract

Recently, it has come to be generally believed by academia and industry alike that the sensor

network will have a key role to extend the reachability of the next generation Internet. A key

characteristic of this network is that there is no single node in the network that is powerful

enough to perform the assigned tasks. An application should be served via the cooperation

of several nodes or even the entire network. The network serves as an information base, and

is data driven, as opposed to a provider for the point-to-point connection.

The main challenge of this network is huge information organization, including informa­

tion storage, searching and retrieval, especially in a continuous way. There are many specific

and interrelated problems. We list a few examples. First, data accuracy: the correctness of

the sensor network to represent the properties of the sensor field. Second, data search and

retrieval delay; while low delay is always preferred, various applications have different delay

constraints. Third, overhead; low transmission overhead is often the main consideration

in system design, as it is directly related to the usage of energy, the most severely limited

resource for sensors.

In this thesis, we first discuss load balanced sensor coverage, which provides a lower layer

support for long run sensor data collection. We then concentrate on how to balance the

parameters in data collection of the sensor networks, so that the user queries and applications

can be satisfied with reasonable delay and low overhead. Based on different application

specifics, we try to use a smaller number of sensors, less number of transmissions by exploring

historical and topological information, coding techniques and data distribution information.

Our analysis and experimental results show that our architecture and algorithms provide

both theoretical and practical insights for sensor network design and deployment.

iii

iv

To my parents

Acknowledgments

I would first like to thank my senior supervisor Prof. Funda Ergun. What I learned from

her is enormous. Her attitude towards research has greatly influenced me. Her support and

encourage during all the past years are invaluable for the success of my Ph.D studies.

I want to thank Prof. Jiangchuan Liu. His support has made the road to completing

this thesis smoother. Prof. Qian Zhang and Prof. Jianliang Xu have provided constant

support and encourage during my research. The collaborations with them are precious. I

also want to thank Prof. Jian Pei and Prof. Ben Liang for serving as my thesis examiners.

Their suggestions have substantially enriched this thesis.

Many colleagues of mine not only provided help in my studies but also in my everyday

life. The time with them is unforgettable.

Finally, nothing would happen without you, my parents. I love you.

v

Contents

Approval

Abstract

Dedication

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction

1.1 An Overview of Sensor Network Architecture

1.2 Sensor Coverage .

1.3 Continuous Data Collection in Sensor Networks

1.3.1 Queries and Aggregation.

1.3.2 A Data Driven Network .

1.3.3 Underlying Routing Support

1.3.4 Continuous Queries

1.4 Motivations and Research Challenges.

1.4.1 Sensor Coverage

1.4.2 Continuous Data Collection

1.5 Related Work

1.5.1 Coverage in Sensor Networks

vi

ii

iii

iv

v

vi

ix

x

1

4

5

6

6

7

7

8

8

9

10

11

11

1.5.2 Data Routing and Aggregation

1.5.3 Network Coding ..

1.6 Contributions of this Thesis

2 Coverage in Sensor Networks

2.1 Architecture Overview

2.1.1 Hybrid Network Model

2.1.2 Performance Measurements

2.1.3 Working and Moving Models

2.2 Coverage Contributions from Static and Mobile Sensors

2.3 A Random Walk Model for Mobile Sensors

2.3.1 Random Walk Model.

2.3.2 Boosting Movement .

2.3.3 The Wall Effect and Solutions.

2.4 Sensor Collaborations .

2.5 Performance Evaluation

2.5.1 Contribution of Mobile Sensors

2.5.2 Convergence Time .

2.5.3 Aggressive Movement in Event Detection

2.6 Generalizing Grid Structure

2.7 Conclusion .

3 Delay Sensitive Applications

3.1 System Architecture

3.1.1 Preliminaries

3.1.2 Network Construction

3.1.3 Specifying the Structure of the Layers

3.1.4 Data Collection and Aggregation ...

3.2 Evaluation of the Accuracy and the Latency.

3.2.1 MAX and MIN Queries

3.2.2 QUANTILE Queries ..

3.2.3 AVERAGE and SUM Queries.

3.2.4 The Effect of Promotion Probability p

3.3 Energy Consumption .

vii

12

13

14

16

17

17

18

19

20

23

23

25

26

28

30

31

33

36

36

38

39

40

40

40

42

42

43

44

44

46

51

52

3.4 Numerical Results ...

3.4.1 System Settings.

3.4.2 The Relationship Between Layer and Accuracy

3.4.3 Energy Consumption Evaluation

3.5 Conclusion .

53

53

53

57

60

4 Data Collection in Extreme Environments 61

4.1 Preliminaries 64

4.1.1 Model and Notations. 64

4.1.2 Network Coding based Collection: Pros and Cons 65

4.2 Partial Network Coding based Data Storage and Replacement. 66

4.2.1 Overview of Partial Network Coding . . 66

4.2.2 Data Storage and Replacement in PNC 67

4.2.3 Performance Analysis of PNC and Enhancements. 70

4.3 Protocol Design and Practical Issues 74

4.3.1 Computation and Communication Overheads 74

4.3.2 Multiple Data Patterns 75

4.3.3 Collaborative and Distributed Implementation 76

4.4 Performance Evaluation . . 77

4.4.1 Simulation Settings. 77

4.4.2 Energy Consumption. 77

4.4.3 Performance of PNC 78

4.4.4 Effect of Clustering. 81

4.4.5 Impact of Multiple Patterns. 82

4.5 Conclusion 82

5 Future Work 83

5.1 Data Filters in Sensor Networks. 83

5.2 Network Coding 84

5.3 Cross Layer Interaction of Sensor Coverage and Sensor Data Collection 84

Bibliography 85

viii

List of Tables

2.1 List of Notations for Chapter 2. .. 20

4.1 List of Notations for Chapter 4. 65

4.2 Success ratio of the naive scheme (W = N, B = 1) 65

4.3 Probability of Linear Independency as a Function of Finite Field Size (q). 65

ix

List of Figures

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

A small sensor network with mica sensors from Crossbow Inc.

Components of a mica-2 sensor network.

Protocol stack of a sensor network

Tree construction by levels.

Field covered by a hybrid static and mobile sensor network, circles represent-

ing static sensors and stars representing mobile sensors. .

The movement of a mobile sensor. The probabilities for moving to or staying

in a grid are determined according to the network configuration. .

Coverage contributions from static and mobile sensors. Coverage requirement

is r5 = 0.8, and activation probability of static sensors is p = 0.5 ..

Algorithm CalcContributionO

Markov chain for the random walk model.

Wall effect. Darker grids have denser static sensors.

Node Collaboration Protocol. .

Residual energy after the death of the first sensor.

System lifetime as a function of additional sensors.

System lifetime improvement with or without collaborations.

System lifetime for uniform and biased distributions of static sensors..

Coverage ratio as a function of running time for varying movement patterns.

Coverage ratio as functions of running time with partitioning.

Duration to detect all abnormal events. .

Abnormal event detection. SS: Detected by static sensors only; MS: Detected

by mobile sensors only; Both: Detected by both.

Different underlying structure. .

x

2

2

4

8

17

18

21

22

24

27

29

31

31

32

33

33

34

34

35

37

3.1 A layered sensor network; a link is presented whenever the sensor nodes in a

certain layer are within transmission range. 41

3.2 Temperature changes in ,6.t time where ,6.t = [2am, 12pm] 47

3.3 Temperature changes in ,6.t time where ,6.t = [12pm, 8pm] 47

3.4 Calculating the second stage error bound according to a normal distribution. 49

3.5 Algorithm Query Average 50

3.6 Algorithm Test Average . 50

3.7 Numerical results for QUANTILE Queries. 54

3.8 Numerical results for AVERAGE Queries. . 55

3.9 AVERAGE Queries with different 01 values; no Test: QueryAvg only with 0

and Eo •• . • • • • • 58

3.10 Effect of the standard deviation (a) of the normal distribution. 59

3.11 Energy consumption with and without reconstructions 59

4.1 An example of the problems for blind access. 62

4.2 An example of PNC for N = 4. 66

4.3 Comparison of Non-NC, NC and PNC. . 68

4.4 Data Replacement Algorithm. 69

4.5 Success ratio as a function of N (in default values M = Nand B = 1). . 72

4.6 Cardinality extension and buffer storage in PNC. 73

4.7 A snapshot of the buffer at a sensor in PNC. .. 73

4.8 Probability of linear independency as a function of the number of data segments. 75

4.9 Energy consumption as a function of N for different cluster radiuses. 77

4.10 Success ratio as a function of W for PNC and Non-NC. . 78

4.11 Success ratio as a function of W with different buffer size. 79

4.12 Number of communication needed (W) to successfully decode N original data

segments. N = 50 and N + VN = 57. 80

4.13 Success ratio as a function of >. = ~. . 80

4.14 Success ratio as a function of cardinality for different cluster radiuses. 81

4.15 Success ratio as a function of W for multiple patterns. 81

xi

Chapter 1

Introduction

With the advances in electrical engineering and embedded systems, micro sensors and re­

liable communication between them have become a reality, leading to the emergence of

large sensor networks. A sensor network is a network consisting of a large number of small

computing nodes called sensors and is connected to the outside world via more powerful

nodes call base stations. A sensor typically consists of a data processing module, a sensing

module, a transmission module and a power module and can be used for computation, data

collection, storage and routing.

A Sensor Network Example: There are many different types of sensors, such as the tiny

Berkeley mote and larger but more powerful UCLA WINS, etc., or even mobile sensors.

In Fig. 1.1, we show an example sensor network consisting of a popular type of sensor

nodes, the mica-2 series from Crossbow Inc. Fig. 1.2 (a) and (b) show the mica-2 node

and mica-2 dot node respectively. In Fig. 1.2 (c) a mica-2 node is plugged in a base board,

which is connected to the Internet. This node can be considered as a base station! for

inter-connectivity between the sensor network and the outside world.

Sensor networks are usually deployed in an environment where traditional wired or wire­

less networks are not available/appropriate, so as to extend the reachability of the current

infrastructured computer networks. The main duties for a sensor network are data collec­

tion and management. The intended uses of a sensor network include terrain monitoring,

I We sometimes call it a server. Both base station and server are inter-connection points between the
sensor network and the outside world. A slight difference is that in our following chapters, base station is an
anchor point with all-time connection to the sensor network; while a server may travel to the sensor network
and the connection between the server and sensor network is intermittent.

1

CHAPTER 1. INTRODUCTION

Fi gur e 1.1: A small sensor network with mica sensors from Crossbow Inc.

2

(a) A mica-2 sensor (b) A mica-2 dot sensor (c) A base board with a mica-2
sensor; connecting to the

Internet

Figure 1.2: Components of a mica-2 senso r network.

CHAPTER 1. INTRODUCTION 3

surveillance, and discovery [30] with a large number of applications such as geological tasks,

military surveillance, search and rescue operations, building safety monitoring, and biolog­

ical systems.

The major difference between a sensor network and the traditional network is that

sensors are typically extremely small, low cost devices and sensors are tightly resource

constrained. They not only lack long lifespan due to their limited battery resource but

also possess little computational power and memory storage [2]. For example, a current

mica-2 sensor has a programmable memory size of 128KB, a transmission bandwidth of

38.4Kbps and power support of two SA batteries. As a result, one sensor can only collect

a small amount of data from its adjacent environment and carry out a limited number of

computations. In addition, sensors are less reliable devices both in packet transmission and

survivability compared to the computers in the Internet. As a solution to these shortcomings,

a single sensor is generally expected to work in cooperation with other sensors to provide

service. The sensors are redundantly deployed in very large quantities and a sensor network

usually consists of thousands or even tens of thousands of nodes.

Power conservation is the main focus of the current sensor network design as it is difficult

and cost ineffective to recharge the sensor batteries. Main energy consumption in sensor

networks is caused by packet transmission, both in sending and receiving. The energy cost

is proportional to the payload of the transmission. It is also significantly affected by the

length of the transmission. In [81.], it is measured that e = dr where e is the energy, d is the

distance between two sensors and r is a constant in [2, 6].

Data accuracy is also an important design parameter. Inaccuracy either comes from

statistical error or systematic error. The former is primarily caused if the sensor network

can not fully cover the sensor field and thus fail to represent the properties of the sensor

field. The latter is mainly due to system design considerations, e.g., a result of trade-offs of

different system parameters.

Delay is another important design concern. As the scale of a sensor network can reach

thousands of nodes, and the requested service is expected to be answered cooperatively by a

significant part or even the whole network, operations in a sensor network usually introduce

a long delay.

Based on their unique features and capabilities, immense research activities have been

undertaken in sensor networks. In this thesis, we are interested in a series of problems

related to continuous data collection in sensor networks for a long period of time; the

CHAPTER 1. INTRODUCTION 4

MAC Layer

Routing Layer

I Application Layer

t=- Physical Layer

I Topological Control Layer

Figure 1.3: Protocol stack of a sensor network

demands, challenges and solutions.

1.1 An Overview of Sensor Network Architecture

Although there is no consensus of the protocol stack of the sensor network, a possible

classification is given in Fig. 1.3.

The physical layer and MAC layer provide reliable transmission between sensors. The

widely used MAC protocol currently is the short range 802.15.4; whereas longer transmission

range is under active research and development [59].

Topological control layer is an important layer to sensor networks. This layer provides

topological services such as coverage, connectivity, location, etc. A sensor has a transmission

range and a sensing range. It functions not only as a node sending and receiving packets,

but also as a sensing device, which collects readings from the surrounding environment.

For the successful operation of a sensor network, at least two objectives should be achieved

in topological control layer, i.e., high quality coverage and network-wide connectivity. For

location aware applications, a sensor should also be able to estimate the its position in the

sensor network.

The routing layer is closely related to application specifics. Some applications require

point-to-point communication; and protocols like GPSR [43] are used. Some applications

require in-network operation and process; and tree like topology may be used so that data

from multiple children can be processed in the parent. Other routing algorithms such

as clustering routing, multi-path routing, etc., are also related with different application

CHAPTER 1. INTRODUCTION 5

scenarios. It is unclear whether a general and unique routing layer suitable to all applications

exists. Therefore, one may need to consider the routing layer and application layer together.

To build an efficient sensor network, one may take a bottom up approach. For example,

one can start off by building an efficient and robust physical layer. Then he can select

suitable protocols for MAC layer and high quality topology control schemes. Finally, he

can work on efficient routing algorithms. One may also take a top down approach. For

example, based on application specifics, he can find trade-offs of using fewer sensors and

fewer transmissions. Then he can develop routing and topological control schemes to fa­

cilitate the architecture. Based on our experience, the sensor network is tightly coupled

with application specifics. Sometimes even the sensor node is manufactured subject to ap­

plication requirements. Thus, in this thesis, we first consider the requirements for different

applications and then build the sensor network accordingly.

1.2 Sensor Coverage

A sensor application can hardly achieve its purpose without satisfiable coverage of the sensor

field and an efficient sensor coverage is very important for a sensor network to function for

a long period of time. A point in a sensor field is said to be covered at a time if this point is

within the sensing range of an active sensor. The k-coverage is a common criterion, where

any point in the sensor field should be covered by k sensors [72]. For many applications,

it finds out that a deterministic k-coverage is too expensive and not necessary. Therefore,

probabilistic coverage can be used and a point may not always be covered. Formally, for a

point within the range of a few sensors, this point is covered with probability p if, at any

certain time, the probability of at least one of the sensors is active is p. A user can specify

a threshold of coverage ratio from [0, 1], which tunes the coverage quality of each point in

the sensor field and sensors may switch between 'sleep' and 'active' states to save energy.

The coverage of sensor network is also related to the deployment methods of the sensor

network. If the sensors are deployed manually, the coverage quality is easier to control. This

is sometimes not cost-effective or, worse, impossible in many situations. A random deploy­

ment (e.g., from the air) is thus considered more feasible. Unfortunately, the unpredictable

nature of the random deployment may lead to unfavorable distributions of the sensors and

can hardly be compensated by static sensors only. Thus, mobile sensors are recently consid­

ered for sensor coverage problems. The advances in system designs have made this possible.

CHAPTER 1. INTRODUCTION 6

Mobile sensors, such as Robomote [71] and Khapera [60J can continuously function for 30

- 60 minutes with a moving speed of 20 - 100 cui]». Unlike the static sensors, which are

tightly constrained by the energy supplies, their batteries are easier to get recharged. Recent

work also suggests that much longer working time and shorter recharging time can soon be

expected in the near future [41J.

The quality of sensor coverage is directly related to the quality of representation of the

sensor network for the sensor field. Providing high quality of sensor coverage, as well as an

energy efficient one, is thus a fundamental problem in this thesis.

1.3 Continuous Data Collection in Sensor Networks

1.3.1 Queries and Aggregation

One major use of the sensor networks is data collection and information retrieval. Each

sensor collects data from its surroundings, stores the data if necessary, and forwards it to

the base station. The interaction between sensors and the base station is usually done via

queries. A simple query can have an SQL form as follows.

SELECT temp

FROM sensors

HAVING light> 50

where temp and light are the readings of temperature and light strength of a certain sensor.

Apart from collection raw readings from each individual sensor, queries can be used to

collected aggregated information, such as MAXIMUM, MINIMUM, AVERAGE, QUAN­

TILE, SUM [52][53], etc. An typical example is as follows [52]

SELECT TRUNC (temp / 10) AVERAGE temp

FROM sensors

GROUP BY TRUNC (temp / 10)

HAVING AVERAGE (light) > 50

When replies are sent from the sensors to the base station, each intermediate sensor

can perform some in-network processes to evaluate the data. For example, in a MAXIMUM

query, an intermediate sensor can compare the data it received from the downstream sensors

as well as its own; and only submit the maximum one upstream. This will reduce the

CHAPTER 1. INTRODUCTION 7

payload and consequently save on valuable transmission energy. We call this in-network

process aggregation.

If the overall evaluation of the queries can not be answered accurately, these queries are

called approximate queries. For applications that are more interested in the overall picture

of the sensor field or the changing pattern of the data than specific data values of individual

sensors, approximate queries are widely acceptable.

1.3.2 A Data Driven Network

The current Internet serves as a point-to-point provider and the architecture is client-server

based. To search data or perform certain operation, a client will first locate a server by the

server's address. Requests or commands are then sent to the server and the responses will

be sent back to the client.

An implicit assumption for this client and server architecture is that the client knows a

server which is capable to complete the client requests. The search for the server is address

based. In contrast to this model, sensor network is data driven (also called data centric)

due to the resource and power limitation of each individual sensor. Requests (for data) will

be sent to the sensor network and the sensors will perform tasks depending on data values

or data types. In [21] data centric routing is introduced to reduce energy consumption. The

user request is first broadcast to each sensor in the sensor network. The routing of the replies

(data) is performed where aggregation can be maximized according to the data values to

reduce the payload. Data centric storage is introduced in [69] where the data will be sent

to storage sensors according to the data types after they are collected. The data are thus

stored in clusters. The queries from the base station can be forwarded to the sensors in an

area concentrated with certain data type. The number of broadcasting messages can thus

be reduced. Numerous studies have shown that the data centric paradigm is very suitable

for the resource constrained sensor network in data collection.

1.3.3 Underlying Routing Support

For different applications and queries, the underlying routing architecture can be different.

In certain scenarios, the base station can directly contact specific sensors. In other scenarios,

multi-hop routing schemes are used. One popular routing scheme to assist data collection

is the tree structure. During transmission, a parent node can aggregate the data it received

CHAPTER 1. INTRODUCTION

Figure 1.4: Tree construction by levels.

8

from its children to reduce the payload. A simple tree construction algorithm can be done

by broadcasting from the base station [62]. The base station sets itself as the level zero

node and broadcast a build tree message with its own level plus one. Each sensor will set

its level to the smallest level it received. The build tree message will be recursively sent to

all the nodes in the network. An example of this tree construction scheme is shown in Fig.

1.4.

1.3.4 Continuous Queries

Rather than obtaining a snapshot of the sensor field, most sensor applications are more

interested in the data of the sensor field for a long period of time. Therefore, data need to

be collected continuously. To handle it simply, continuous data collection can be achieved by

a series of single data collection process. In this thesis, we obtain better results from different

aspects in continuous data collection. A key technique (which makes a lot of intuitive sense)

is to use previous/history information to assist future data evaluation.

1.4 Motivations and Research Challenges

In this thesis, we are interested in various aspects of data collection from a sensor field

for a long period of time. From the architecture point of view, this requires network­

wide collaboration. We consider efficient designs in the application layer, routing layer and

topology control layer which concentrate on network level construction and optimization.

From the technique point of view, we study several general methods that can be adopted

CHAPTER 1. INTRODUCTION 9

to control the system performance, e.g., load balancing between different sensors; using

a subset of sensors if possible; and redundancy/load reduction whenever suitable. These

techniques are applicable for different layers.

In this thesis, we first study the design of load balanced high quality sensor coverage.

This provides the basis for efficient data collection for a long period of time. We then extend

our focus on different aspects for efficient data collection based on application specifics. In

this section, we outline some research challenges for both coverage and continuous data

collection in sensor networks.

1.4.1 Sensor Coverage

In most studies on sensor coverage, only static sensors are used. The quality of coverage

is noticeably affected by the initial deployment of the static sensors. For uneven sensor

distributions, the sensors in a sparse area may have to stay active longer to ensure the

coverage quality. The batteries of these sensors will be depleted earlier, making the area

even sparser. In the extreme case, an area will become uncovered by any sensor, leaving

a hole in the field. Unfortunately, such unfavorable sensor distributions are inevitable in

many applications where a well-controlled or manual deployment is not practical.

Mobile sensors have the sensing capability as static sensors, but are able to move in a

field, and their batteries are generally rechargeable. In other words, their lifetime is not

bounded by the limited battery. While fully mobile sensor networks remain expensive and

are complicated by information distribution between the mobile sensors, we envision that a

hybrid network with both static and mobile nodes can be a cost-effective tool for coverage

with unevenly distributed sensors. A related design was presented in [78], which suggested

a one-time reposition of the mobile sensors after the initial deployment. This, however, does

not fully utilize the movement capability of the mobile sensors.

For high quality and load balanced sensor coverage, we notice that several issues should

be resolved. First, we need a better understanding of how the mobile sensors should be

used; second, for a hybrid architecture, a clear division of the responsibilities between static

and mobile sensors is needed; and third, the interaction between these two types of sensors

should be defined.

CHAPTER 1. INTRODUCTION

1.4.2 Continuous Data Collection

10

Delay Sensitive Applications: Many sensor networks are redundant to compensate for

the low reliability of the sensors and the environmental conditions. Since data from a sensor

network is the aggregation of the data from individual sensors, the number of sensors in

a network has a direct impact on the delay incurred in answering a query. In addition,

significant delay is introduced by in-network aggregation [371 [451 [54], where intermediate

nodes have to wait for the data values collected from their children before they can aggregate

them with their own data.

A long delay is highly undesirable for time-sensitive applications such as critical condition

monitoring and security surveillance [9]. As a result, there is increasing interest in research

dealing with the delay problem [3:1[9][88][89].

In continuous data collection, the lifetime of the sensor network is long, i.e., the appli­

cation is in favor of a large number of data collections. Each individual collection, however,

may still be delay sensitive, e.g., for data collection in dangerous areas. We will illustrate

more examples in the following sections.

Data Collection in Extreme Environments: Many recent studies have investigated

data collection from harsh and extreme environments [20] [80]. In these environments, the

communications between sensors and the server (base station) can be expensive and scarce,

and the data are collected occasionally. In each data collection, a fast data retrieval is

usually desired [20J. Typical examples include the habitat monitoring system in Great

Duck Island [55J; where some birds are notoriously sensitive to human intervention, and

thus, data collection are done occasionally. In each collection, the presence of a human

being should be minimized and, hopefully, far away from the habitat center to avoid direct

impact on the birds. Applications of monitoring systems in chemical plants also share

similar properties, where technicians occasionally approach the sensing area to collect data

and each data collection should be performed quickly for safety purposes.

For these applications, the current popular tree based data collection and aggregation

technique is not suitable. First, this technique can introduce a long delay in each data

collection due to data searching and aggregation [45][76J. Second, this technique is beneficial

if data can be aggregated so that the payload will be reduced in the intermediate nodes. If

raw data are required, then the sensors close to the server will be burdened by uploading

all data from the sensor network to the server. Third, in many situations, some part of

CHAPTER 1. INTRODUCTION 11

the sensor network may not be accessible due to failures. A better understanding of data

collection, especially a continuous data collection, as well as the underlying routing support

in these applications are greatly needed.

1.5 Related Work

Wireless sensor networks have received a lot of recent attention. A pioneer work discussing

the challenges of sensor networks can be found in [21]. A general overview and a survey

focusing on the routing protocols can be found in [2J and [3], respectively.

1.5.1 Coverage in Sensor Networks

In many sensor network applications, providing the desired field coverage or object protec­

tion is a key design objective. A typical coverage criterion is that every point of the field

should be k-covered, which is studied in [72]. The k-coverage problem is further examined

in [47]' which proposes a sleeping/active schedule to minimize energy consumption. In [46],

barrier coverage is considered, where the sensor networks can be used as barriers of, say,

international borders. The problem is formulated as a k-multi-path problem and solved op­

timally if the sensors are centrally controlled. Distributed algorithms are also discussed in

their work. Coverage of individual objects is studied in [13], which shows that the problem

is NP-complete and heuristics are developed. Other related work include target tracing for

mobile objects [90] and variable-quality of coverage [28J. Besides these theoretical studies,

practical surveillance systems are also under active development; see for examples [29) [86].

A closely related and yet orthogonal research direction is to find breach paths in a sensor

protected area. A representative example is the maximal breach path [58J. Intuitively, the

maximal breach path is a path traveling through the sensor network that has the least

probability of being detected. The weight of maximal breach path shows the coverage

quality of the sensor area. It is followed by minimal and maximal exposure paths [57J [75]

that focus on the paths with the least and most expected coverage.

In addition to coverage quality, network connectivity is also an important factor for

successful operation of a multi-hop sensor network. The relation between coverage and

connectivity is studied in [78], which suggests that if the transmission range of a sensor is

twice of the sensing range, then the sensor network is connected if the area is covered in a

convex region. Additional work in this direction can be found in [681 [93J.

CHAPTER 1. INTRODUCTION 12

Many studies propose grouping the sensors into grids [28:1 [84:1 [85J, where all sensors in

a grid are equivalent in their functionality, such as coverage capability. The surveillance

systems in [28:1 [86] further suggest that the sensors can be redundantly deployed and work

in turn to extend the lifetime of the system.

Mobile sensors are recently used to assist coverage quality. In [50] the coverage is eval­

uated as the fraction of the covered area at a time instance. The authors conclude that,

compared to using uniformly distributed static sensors, it is more beneficial if all sensors

are mobile and are traveling in a random walk fashion.

A hybrid sensor network consisting of both static and mobile sensors is presented in

[78], which compensates poor initial sensor distributions by strategically repositioning some

mobile sensors. Similar work of the one-time reposition schemes can be found in [35] [36] [92J.

These studies have given very solid understanding of high quality sensor coverage and

provided ground for our study.

1.5.2 Data Routing and Aggregation

Data routing in sensor networks can be classified as flat routing and hierarchical routing. In

flat routing, SPIN [31] is the first data centric protocol which uses flooding; directed diffusion

[38] is proposed to select more efficient paths. Several variations and related protocols with

similar concepts can be found in [WI [1tl [66].

As an alternative, hierarchical routing has also been proposed for sensor networks. In

LEACH [30]' heads are selected for clusters of sensors; they periodically obtain data from

their clusters. When a query is received, a head reports its most recent data value. An

enhancement over LEACH can be found in [49]. In [88], energy is focused in a more refined

way where a secondary parameter such as node proximity or node degree is included. Clus­

tering techniques are studied in a different fashion in several papers, where [44] focuses on

non-homogeneously dispersed nodes and [5] considers spanning tree structures.

In-network data aggregation is a widely used technique in sensor networks. Studies of

MAX, MIN, AVERAGE, SUM can be found in [54][53][87]. Ordered properties such as

QUANTILE are studied in [27]. A recent result in [12] considers power-aware routing and

aggregation query processing together, building energy-efficient routing trees explicitly for

aggregation queries.

Delay issues in sensor networks are mentioned in [45] [54] where aggregation introduces

high delay since each intermediate node and the source have to wait for the data values

CHAPTER 1. INTRODUCTION 13

from the leaves of the tree, as confirmed by [89]. In [37], where a modified direct diffusion

is proposed, a timer is set up for intermediate nodes to flush data back to the source if the

data from their children have not been received within a time threshold. In case of energy­

delay tradeoffs, [89] formulates delay-constraint trees. A new protocol is proposed in [9J for

delay critical applications where energy consumption is of secondary importance. In these

algorithms, all of the sensors in the network are queried, resulting in 8(N) processing time,

where N denotes the number of sensors in the network, and incurs long delay. Embedding

hierarchical architectures into the network where a small set of "head" sensors collect data

periodically from their children/clusters and submit the results when queried [30][49][88]

provides a very useful abstraction, where the length of the period is crucial for the tradeoff

between the freshness of the data and the overhead.

The aggregation scheme works well if the data can be managed in the intermediate

sensors to reduce the overall payload [30][38J. In some applications, one is interested in

collecting the up-to-date raw data from the sensor network. These applications call for

different solutions.

1.5.3 Network Coding

Many sensor networks are closely related to the delay tolerant network (DTN) or extreme

network architecture [14][22][39]. A typical example is the ZebraNet in Africa [40], where

researchers have to travel to the sensor network in person to collect data. Other recent

examples can be found in [20][32][79][80]. One important feature of these networks is that

each node needs to store data temporarily and submits data when the server approaches.

These applications are failure prone and call for data redundancy and error control.

Coding is a powerful tool for redundancy management and error correction. It has been

used in a large number of areas such as randomized data storage and packet transmission.

Different kinds of coding techniques are also applied in sensor networks.

A typical coding scheme is erasure codes [8][48], in which a centralized server gathers all

N data segments and builds C coded segments, C ~ N. If any N out of C coded segments

are collected, the original data segments can be decoded [23][51J. A practical investigation

of these codes can be found in [64]. These centralized operations are sometimes not suitable

for application environment that involves a large quantity of tiny sensors. An alternative is

network coding [1][91]' which distributes the encoding operations to multiple nodes.

Network coding is first introduced in [1] to improve multicast throughput. As opposed

CHAPTER 1. INTRODUCTION 14

to erasure codes, where only the source can perform coding operation to the data packets,

network coding allows each node in the network to combine data packets and construct

codes. To maximize the benefit of network coding, linear network codes are constructed

carefully such that the codes at each destination are decodable. Randomized network coding

is introduced in [33], which adopts randomly generated coefficient vectors, and makes the

calculation of linear network codes decentralized.

There are numerous recent studies applying conventional network coding and/or random

linear coding in practical systems. Examples include network diagnosis [82], router buffer

management [7]' energy improvement in wireless networks [83]' data gossiping [18]' and in

peer-to-peer networks [26].

Recently, network coding and its related extensions have been introduced in wireless

sensor networks for ubiquitous data collection [201 [80]. In these studies, the data segments

to be collected are static and fixed. For continuous data collection, the sensor needs to

remove obsolete data from a limited buffer to accommodate new ones. This is challenging

if the data segments are coded together.

While many of the studies have encountered the problem of continuous data manage­

ment, e.g., in [71[16][801[82], their common solution is to cut the data flow in generations,

i.e., time periods, and combine all the original data segments in one generation. The length

of a generation depends on the application and the choice is often experience based.

1.6 Contributions of this Thesis

The primary contributions of this thesis are listed as follows:

• We study a load balanced sensor coverage with a hybrid network consisting of both

static and mobile sensors. Compared to previous studies, we fully utilize the movement

capability of the mobile sensors. We design a protocol which optimally calculates the

coverage contributions from the two types of sensors. We then propose the mobility

model of the mobile sensors with random walk. Our experiment results show that our

new hybrid network can significantly improve the lifetime of the sensor network with

a small set of mobile sensors.

• We propose a layer architecture for delay sensitive applications in sensor networks. We

trade-off delay with accuracy and obtain approximate queries with provable accuracy

CHAPTER 1. INTRODUCTION 15

guarantees. We show how to use history information to further reduce the delay for

a series of queries. In addition, we optimize the structure of our system so that the

energy consumption can be evenly distributed among each sensor.

• We develop partial network coding (PNC) for continuous data collection in an extreme

network environment. PNC generalizes the existing network coding (NC) paradigm,

an elegant solution for ubiquitous data distribution and collection. Yet, PNC allows

efficient storage replacement for continuous data, where the conventional NC is not

able achieve. We prove that the performance of PNC is quite close to NC, except for a

sublinear overhead on storage and communications. We also address a set of practical

concerns toward PNC-based continuous sensor data collection.

Chapter 2

Coverage in Sensor Networks

For a field with unevenly distributed static sensors, a quality coverage with acceptable

network lifetime is often difficult to achieve. Recent advances in sensor technology have

made it possible to deploy mobile sensors in the field. Exploring this possibility, a number of

researchers have suggested a one time repositioning of the sensors after the initial deployment

as a partial solution to the coverage problem. This solution, however, proves inadequate

for balancing the sensor area and load in many applications. In this chapter we propose a

hybrid sensor network with both static and mobile sensors, and fully exploit the movement

capability of the mobile sensors. In our solution, the mobile sensors are always in motion

to assist the static sensors; the occurrence probability of the mobile sensors in each grid, or

their contribution for covering the grid, is adaptively determined according to the network

configuration. From a statistical point of view, the overall coverage is enhanced, and energy

consumption of the static sensors is more balanced.

We show the motivation of our idea in an example. Consider Fig. 2.1, where there are a

number of static sensors and three mobile sensors to cover a field. Each sensor can cover its

associated grid. If there are no mobile sensors, grid 6 will never be covered. If only one-time

repositioning for the mobile sensors is employed, the coverage can be enhanced, but there

will still remain grids with permanently fewer sensors than others.

The main challenges in designing such a hybrid network are; first, to clarify the necessary

coverage contributions from the static and mobile sensors; and second, to find a mobility

model for the mobile sensors to achieve the desired coverage contribution. In this chapter,

we for the first time offer an analytical study on the above problems, with the results leading

to a practical system design. Our model is general enough to match the moving capability

16

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 17

o

0
30

o

o
5

Figure 2.1: Field covered by a hybrid static and mobile sensor network, circles representing
static sensors and stars representing mobile sensors.

of different mobile sensors and the demands from diverse applications.

2.1 Architecture Overview

2.1.1 Hybrid Network Model

The hybrid network in our study consists of both static and mobile sensor nodes, which

collectively monitor a field of interest. As in previous studies [24][43][85]' we assume that

the field is divided into n 2 virtual grids, indexed from 0 to n 2 - 11. This virtual grid

structure is not special, and we will show in Section 2.6 that our analysis and algorithms

can be easily extended to hexagon or other virtual structures. Through GPS or available

positioning services [4][11], the sensors are aware of their location information and, hence,

their associated grids. The size of each grid is 4-R x 4- R, where R is the sensing range of

a static sensor. As such, any active sensor in a grid can cover the whole grid. The sensing

range of a mobile sensor can be smaller, e.g., ~, as it can reposition itself to the center of

its grid. An example of the grid structure is shown in Fig. 2.1.

Given that the static sensors in one grid are equivalent in coverage, they do not have to

be active simultaneously, so as to save energy. Unfortunately, the deployment of the static

sensors is often nonuniform; and even worse, holes (grids with no static sensors) can exist,

1 In this paper, we use the grids to denote a grid of n 2 cells.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

0 1 2

t

3 ~
r

f£4 2 ~ 5

39o/~n,

+
6 7 8

18

Figure 2.2: The movement of a mobile sensor. The probabilities for moving to or staying in
a grid are determined according to the network configuration.

creating permanently uncovered regionsr. The situation is very common when the sensors

are distributed automatically through air crafts or vehicles in complex terrains.

Our hybrid network addresses this problem by allowing assistance from the mobile sen­

sors. The mobile sensors are always active, and can stay in a grid or move to neighboring

grids, as shown in Fig. 2.2. This feature can therefore help with the covering of the holes

in the field and reducing the load of the existing static sensors.

2.1.2 Performance Measurements

Since our main goal is covering related, we define a measure of how well a location is covered.

Similar measurement is also used in [84].

Definition 2.1.1 A sensor field is said to be 15-covered if, at any point in time, at least an

expected 8 E (0,1) fraction of the whole area is covered by one or more sensors.

Assume that 8 is the minimum coverage ratio required by the user, our objective is to

ensure this quality, while maximizing the lifetime of the network.

It is worth noting that the battery of state-of-the-art mobile sensors is rechargeable [41];

hence, the lifetime of the whole network is bounded by that of the static sensors. We use

the lifetime of the first dying out sensor as a measure for the system lifetime. This definition

has been widely used in existing studies [15][88], and essentially suggests a load-balanced

ZEven if the deployment is a globally uniform distribution, local fluctuations still would occur, resulting
in uneven numbers of sensors in different grids.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 19

operation for the static sensors. The effectiveness of this definition has been validated by

our simulation results in Section 2.5. From a functional point of view, once the first static

sensor dies, its grid needs additional assistance from the mobile/static sensors, which in

turn increases the workload of other static sensors, resulting in a domino effect that quickly

drains the power of the whole network. Thus, the death of the first sensor serves as a good

signal to the end of the steady-state operation.

In summary, given a coverage requirement, the network lifetime depends on the activa­

tion models of the static sensors, which further depend on the sensor distribution and the

potential contributions from the mobile sensors.

2.1.3 Working and Moving Models

Given the system model and the performance measures, a natural question is what kind

of working and moving models of the sensors can achieve the coverage objective. In our

basic framework, we adopt a random activation scheduling for the static sensors, and a

random walk model for the mobile sensors. More specifically, our hybrid sensor network

goes through the following stages:

1) Parameter Initialization: After deployment, one or more mobile sensors travel around

the field and collect the distribution information of the static senors in all grids. The mobile

sensors determine the movements of themselves as well as the activation probability of

the static sensors. The mobile sensors then notify the static sensors of their activation

probability.

2) Field Monitoring: Assume the time slots are discrete. In each time slot, a static sensor

independently activates itself with the activation probability obtained in the initialization

stage and then monitors its grid. Each mobile sensor independently decides to move into

one neighboring grid or to stay in the current grid, and then monitors the grid where it

resides.

The advantages of using a probabilistic operation over a deterministic one are many.

First, our technique is easier to implement because it involves simple optimization in the

initial stage for the sensors. Second, the behavior of each type of the sensors are statistically

identical. This is useful especially for recharging or replacement of mobile sensors. The

substitute mobile sensor can easily follow the mobility model and continue to monitor the

sensor field, regardless of the current state of other sensors; whereas a deterministic scheme

may involve re-optimization. Third, a probabilistic coverage is generally more resistent to

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

Notation Definition
n Grid dimension
N Total number of grids, i.e., n2

p Activation probability for static sensors
R Sensing range of a static sensor
c5 Required coverage ratio for the sensor field

d(i) Density of the static sensors for grid i

t. The index of grid with density rank i
M Number of mobile sensors
Pi j Probability that a mobile sensor moves from grid i to j
'Trj Coverage ratio by a mobile sensor for grid j
'Tr Vector of 'Tri

mi Mobile sensor i

Si Static sensor i

Table 2.1: List of Notations for Chapter 2.

20

intruders that try to learn the sensor behavior.

Our hybrid architecture offers achievable and reasonably good solutions to the problem of

the uneven distribution of static sensors. It is, however, worth emphasizing that the above

framework provides only a flexible baseline for further design of hybrid systems. Many

practical enhancements could be added to this basic framework, and we will discuss some

of them as well.

For ease of exposition, we list the notations used throughout this chapter in Table 2.1.

2.2 Coverage Contributions from Static and Mobile Sensors

In our hybrid network, the coverage of a grid is achieved by the combined efforts of static

and mobile sensors. A grid is said to be covered at time t if either a static sensor in this

grid is active or a mobile sensor resides in the grid at time t. To balance the workload,

it is desirable to assign the static sensors with an identical activation probability p. An

illustrative example of coverage is shown in Fig. 2.3 (refer to Fig. 2.1 for the distribution

of the sensors for this example).

We now identify the necessary long-term coverage contributions from the two types of

sensors. Clearly, for grid i, i = 0,1, ... , n2 - 1, the contribution from a mobile sensor

depends on the fraction of time that the mobile sensor will be present in this grid; in other

words, the probability that it travels to the grid. We denote this probability by 'Tri. The

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 21

0.8

~ 0.6
a:

,<If.~ 0.4

0.2

o
o 2 3 4 5

Grid Id

6 7 8

Figure 2.3: Coverage contributions from static and mobile sensors. Coverage requirement
is 0 = 0.8, and activation probability of static sensors is p = 0.5.

contribution from a static sensor in the grid is equal to its activation probability: the higher

this probability, the better the coverage will be.

We now focus on the optimal values of p and 'Tr = ['TrQ, 'Trl, ... , 'TrnLIJ . In the next section,

we will present a random walk model that achieves tt .

To facilitate our discussion, we use d(i) to represent the density of grid i, i.e., the number

of static sensors in this grid. Let M be the number of mobile sensors in the network. Given

coverage requirement 0, the following formulation maximizes the network lifetime:

minimize p

(2.1)

(2.2)

(2.3)

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 22

(2.4)

where Equation. (2.1) gives the contribution constraint of each mobile sensor, and Equa­

tions. (2.2) - (2.4) ensure the coverage ratio of all the grids.

Algorithm CalcContributionO
1 Sort.Cridf);

2 for (K. = 0; K. < n 2; K.++)
/ * (1 - p)d(l,d ::::; 1 - s * /

3 p=1- d(l~;

4 for (i = 0; i < K.; i++)
/ * (1 - p)d(l;J x (1 - 7rtJM ::::; 1 - b * /

5 7r - 1 M/ 1-0 .t, - - V (l_p)d(li) ,

6 if (L:~~ol 7rli > 1)
7 break;

8 Adapt.P{);

Figure 2.4: Algorithm CalcContributionO

We present algorithm CalcContributionO that solves this optimization problem (see

Fig. 2.4). In CalcContributionf}, we first invoke subroutine SortGridO to sort the grids in

ascending order of their densities. Let li represent the index of the grid with rank i after

sorting, i.e., d(lo) ::::; d(lt) ::::; '" ::::; d(ln2-1)' We then search for K., the rank after which

the grids are dense enough to be covered by the static sensors only. We start searching for

K. from 0, and evaluate the p for the current setting of K.. If we can find a valid p and

7rli, then we increase K., until L:~~ol 7rli > 1 (intuitively, this says that the potential of the

mobile sensors is fully exploited) or K. reaches n 2 . In this process, p is decreasing because

additional assistance from the mobile sensors is introduced after each iteration.

Note that p is a real number but K. is discrete. Hence, after the above process terminates,

we in fact have an upper-bound on p corresponding to K. - 1, and a lower-bound on p

corresponding K.. To find the optimal and practical p, we invoke a subroutine Adapt.P{),

which performs a binary search for the p and adjusts 7rli accordingly. The termination of

this subroutine depends on the precision of p, which is usually a predefined value. In our

experiments, the depth of the binary search is always smaller than a constant factor of four.

The complexity of this algorithm is N2 where N represents the total number of grids;

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 23

and it does not depend on the number of sensors. In practice, if the field is very large and

there are too many grids, it may take a long time for a single mobile sensor to collect all

the field information. In this case, we can first do a simple uniform partition of the field

according to the number of mobile sensors and let each mobile sensor be responsible for

the information collection in a subfield. As such, the initialization phase can be remarkably

shortened.

2.3 A Random Walk Model for Mobile Sensors

In the previous section, we obtained 1r, the long-term coverage contribution by the mobile

sensors to the grids. It remains to show a concrete mobility model that can achieve this

distribution. To this end, we demonstrate a viable and yet simple random walk model in

this section.

2.3.1 Random Walk Model

In the random walk model, a mobile sensor will either stay in a grid, or move into an adjacent

grid along four directions.f as shown in Fig. 2.2. We consider decisions depending only on

the current grid where a mobile sensor resides. This results in a Markov chain where each

grid is a state. We use Pi j to denote the transition probability from grid i to grid j. See

Fig. 2.5 for an illustration. Given the long-run distribution 1r, this Markov chain obeys the

following balance equations,

n 2 _ 1

1rj = L 1rkPkj, j = 0,1, ... , n 2
- 1

k=O

n 2 _ 1

L Pk j = 1, Vk E [0,n 2
- 1]

j=O

0::; Pi j S 1, Vi,j

3For a mobile sensor in a boundary grid, it might have 3 or 2 directions to move only.

(2.5)

(2.6)

(2.7)

(2.8)

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

Figure 2.5: Markov chain for the random walk model.

Pi j = 0, Vi,i, grids i, j not adjacent

24

(2.9)

where the first four equations are standard steady-state constraints for Markov chains [42],

and Equation (2.9) suggests that no transition is possible for two non-adjacent grids.

Our problem now is to determine the transition probabilities Pi j in this system of equa­

tions to reach the stationary distribution tt . This is the inverse of the traditional "given

transition probability, find stationary distribution" problem in a Markov chain.

First of all, we need to ensure that the Pi j obtained can guarantee a limiting distribution

1r. By ergodic theorem [65], a Markov chain that is aperiodic, irreducible and positive

recurrent has a limiting distribution", Since there are only a finite number of states in our

system, if our Markov chain is irreducible, it is positive recurrent. As such, if we ensure that

the Markov chain is aperiodic and irreducible, it is sufficient to guarantee this 1r exists. For

ease of discussion, we now assume that 1rk > 0 for k = 0,1, ... , n 2 - 1. We will generalize

the solution later.

To ensure aperiodicity, we can set all the J{i to be strictly positive. To ensure irre­

ducibility, the mobile sensors cannot be trapped in a grid or a group of grids; hence, we

4 Aperiodic means that P« > O. Irreducible means that all states are reachable from all other states.
Positive recurrent means that the sensor will return to a state within finite time.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

have an additional set of constraints:

Vi, 0 < Pii < 1,

25

(2.10)

which indicates that whenever a mobile sensor moves into a grid, the probability that it will

stay in this grid should be strictly less than 1. A stronger condition is

Pij > 0, Vi,j, grids i,j are adjacent, (2.11)

which ensures that the mobile sensor always has chance to move into a neighboring grid.

Equation. (2.8) can then be replaced by

0< Pij < 1, Vi,j that are adjacent (2.12)

It is not difficult to see that the above set of equations have multiple solutions. We

now illustrate one solution set. Our strategy is to first find a set of solution to Equation.

(2.5) and Equation. (2.6) and then try to satisfy all others. Notice that if 7fkPkj = 7fjPj k,

Equation. (2.5) can be satisfied. We set P kj = 7fj and Pjk = 7fi for all Pjk t= 0 and

P kj t= O. This can always be achieved because either P kj and Pjk are both strictly positive,

or Pkj = Pjk = O. We then set P i i = 1 - 2:j:Ol P i j, and it is easy to verify that P i i > O.

Therefore, Equations. (2.5), (2.6) and (2.7), (2.9) are satisfied. Since 7fk,7fj t= 0,1 we have

P j k, P kj t= 0, 1, and Equations. (2.10), (2.12) are satisfied.

In summary, the solution set is

Vj t= k and i, k are adjacent;

Vj t= k and j, k are not adjacent;
(2.13)

n 2 - 1

P j j = 1 - L P j k Vj (2.14)
k=O

Here we emphasize again that we assume 7fk > 0 for k = 0, 1, ... ,n2 -1. In Section 2.3.3, we

will investigate an interesting impact of 7fk = 0, where certain grids do not need assistance

from the mobile sensors.

2.3.2 Boosting Movement

It is worth noting that the definition of coverage quality (Definition 2.1.1 in Section 2.1.2)

does not account for the moving frequency of the mobile sensors, nor the convergence time

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 26

of the system. A lazy movement thus would achieve the same coverage requirement. An

extreme example is one-time repositioning of the mobile sensors: a higher fraction of the

sensor field can be covered, but the coverage could still be unbalanced or even with holes if

the number of mobile sensors is not enough.

Our random walk model can effectively solve this problem by adaptively setting the

transition probabilities, allowing a wide range of movement frequencies. The strategy is

to adjust the existing solution within the constraints to obtain another viable solution set.

Specifically, to satisfy Equation. (2.5), we only need to have 7fkPkj = 7fjPj k; thus setting

Pkj = a7fj and Pjk = a7fk also works given a > O. Let ai, au, an ad denote the adjustment

factors for the four directions. To achieve a higher moving frequency, we can increase

ai, au, a r , ad, and the constraints will still be satisfied as long as the sum of the outgoing

probabilities in a grid is less than 1. In our experiments, we set a threshold for P;i: if a Piiis

greater than the threshold, we increase the a's until all P;;'s are less than the threshold,

or there is no possible further reduction. We call the movement scheme after adjustment

aggressive movement.

2.3.3 The Wall Effect and Solutions

We have assumed that 7fi is non-zero in the previous Markov chain calculation. In practice, 7fi

can be zero for dense grids, i.e., those ranked higher than K in algorithm CalcContributionf).

These grids will not get assistance from the mobile sensors and can simply be ignored in

forming the Markov chain, if they are sparsely distributed. However, if a collection of such

grids are connected, a wall can be formed, which partitions the field into two or more disjoint

subfields. Given the presence of a wall (or multiple walls), a mobile sensor can not move

freely in the whole field, and the expected distribution is no longer achievable. An example

of this wall effect is shown in Fig. 2.6 where grids 3, 6, 9, 13 have dense static sensors and

thus form a wall, splitting the fields into two subfields. Grid 0 and 4 also have dense static

sensors. Compared to the wall grids, they still need some assist from mobile sensors. We call

them semi-walls as these grids make traveling in subfield (0, 1, 2, 4, 5, 8, 12) difficult, i.e.,

it may take a long time for the mobile sensors in grids 1, 2, 5 to reach grid 8, 12. As such,

the coverage of the non-wall grids strongly depends on the initial placement of the mobile

sensors, and a strategic allocation of the mobile sensors to the subfields is thus necessary.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 27

o

4

8

12

Figure 2.6: Wall effect. Dark er grids have denser static sensors .

Mobile Sensor Allocation for Subfields: Assume th at, afte r invoking algori th m Calc ­

Contribution() in th e init ial stage, the sensor fi eld is divided into C subfields by walls. I t is

easy to see that th e number of mobile sensors needed in each sub-field (excluding the wall

grids) is ind ependent of other subfields. We thu s focus on a part icular subfield, e.g., the k th

one . Assume thi s subfield includes C k grid s, and similar to th e notations used previously, let

grid If be th e i t h rank in thi s sub field aft er sort ing in ascending order of th e densities, i.e.,

d(l~) ::::; d(l }) ::::; . . . ::::; d(l~k _l) ' Let A1k be the number of mobile sensors to be assig ned to

this subfield . Our objec tive is to find the minimum !V[k th a t provides th e desired coverage

for th is subfield. This problem can be form ulated as follows:

minimize M k

(2.15)

(2.16)

(2.17)

(2.18)

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 28

where Pmin is the optimal value of P obtained in CalcContribution. To maximize the ex­

pected network lifetime, this value should still be identical for all the static sensors, even in

the presence of subfields.

We can iteratively reduce Mk starting from M - Z=;~6 u«. We allocate mobile sensors

to each subfield one by one and, for the kth subfield, we start with the remaining mobile

sensors after assigning all k - 1 subfields. We then calculate the the corresponding 1r17 in

each iteration. We stop until Equation. (2.15) is violated, (intuitively, this means that fewer

sensors cannot provide necessary coverage). We thus obtain optimal M k and 1rl7. Since the

grids within the subfield all have 1r17 > 0, we can set the transition probabilities as before.

The transition probabilities also guarantee that a mobile sensor will remain in its subfield

during the random walk.

It is worth noting that after we calculate each M k individually, it is possible that

z=r=o M k > M. This is because a sensor cannot be allocated fractionally. Given this nega­

tive impact of the walls, we need to increase Pmin by decreasing K; the contribution from the

static sensors is thus increased. We continue until a K is found such that z=r=o M k ::; M.

Subfield Partitioning: Besides the wall grids, other dense grids may have a very small

1ri, implying that the mobile sensors should seldom visit them. Two examples are the grids

oand 4 in Fig. 2.6. These two grids make a smooth walking in subfield (0, 1, 2, 4, 5, 8, 12)

difficult and will significantly increase the convergence time of the system.

In the presence of semi-walls, we can further partition the subfields to balance the move­

ment of the mobile sensors. Again, since the mobile sensors cannot be allocated fractionally,

we have to strike a balance between the coverage and convergency. In our experiment, we

set a threshold for the grids of semi-walls and show that the convergence time improves

noticeably.

2.4 Sensor Collaborations

So far we have established the respective contributions from static and mobile sensors, and

the activation and movement strategies for them. This framework is easy to implement as

it involves node interactions in the initial period only, and all the remaining operations are

randomly and independently performed in a distributed fashion. Within this basic frame­

work, various node interactions/collaborations could be introduced to further enhance the

baseline performance. To show this, we now outline a simple yet effective node collaboration

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

Time slots [0,Tl], [Tl' T2], ... , [Ti , Ti+!], ...
Slot length T(» t); contention interval lTi - t, Ti + tJ;

Mobile sensor mj

mj at time Ti - t
mj randomly picks a number tj E [0, t].
determines next grid I to move in (could be unchanged)

mj at time Ii - tj

broadcasts Probe Message to sensors in grid I

mj upon receiving Probe Message from mk in [Ti - t, Ti]

if mj will stay in I in [Ii+! ,Ti+2],
replies with Reject Message

else if mj received probe messages from other mk',
replies with Reject Message

else records node tru; (as mk' in the next round)

mj at time T;
if no reject message received, enters grid I

mj upon receiving Probe Message from Sk in [Ti , T, + t]
replies with Reject Message

Static sensor Sj in grid I

Sj upon receiving Probe Message from mk in [Ti - t, Ti]

if Sj received other probe messages,
replies with Reject Message

else records node mk

Sj at time t:
Sj randomly picks a number tj E [0, t]

determines activation with p

Sj at time T; + tj

if succeeded in activation,
broadcasts Probe Message to sensors in grid I

if no reject message, turns active

Sj upon receiving Probe Message from Sk in [Ti , T; + t]
replies with Reject Message

Figure 2.7: Node Collaboration Protocol.

29

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 30

scheme.

The key idea here is to prevent overlapping coverage of a grid by multiple sensors. To this

end, we introduce a sensor collaboration protocol with two contention phases (The pseudo­

code for the collaboration scheme can be found in Fig. 2.7.). Without loss of generality,

we consider a time slot starting at Ti of length T. The first phase [Ti - t, Ti] is used for

contention between mobile sensors to enter one certain grid; the second phase [Ti , Ii + t] is

used for suppressing multiple activation of the static sensors. Here, t is a fixed parameter

such that t « T.

In m- t, Til, mobile sensor mj first decides which grid it will enter in the next time

slot. Then, mj randomly generates a number tj E [0, t] and, at time T; - tj, sends a probe

message to the sensors in the selected grid. If the grid has a mobile sensor or an active

static sensor, it will allow mj to enter in the next slot only if mj is the first one sending

the probe message. In [Ti , Ti + t], each static sensor also generates tj E [0, t], and, at time

T; + tj, activates itself with probability p and broadcasts a probe message to its neighbors

in the same grid. If a neighbor is a mobile or an already activated static sensor, it will reply

by a reject message; The newly activated sensor thus has to deactivate itself to save energy.

It is easy to show that the power consumption and coverage quality with this sensor

collaboration protocol are no worse than that of the basic framework.

2.5 Performance Evaluation

In this section, we evaluate the performance of the hybrid sensor network in field coverage

through simulations. We developed an event driven simulator and focus on the following

typical measures: coverage quality, network lifetime, and convergence time.

In our simulation, deployed 1000 static sensors in a field of 140m x 140m and the

sensor field was partitioned into 100 virtual grids. The battery power for each sensor was

10000mAh, and can last for one day with persistent activation. We neglected the energy

cost during dormant states.

We have examined the energy consumption status of the static sensors in our system.

Fig. 2.8 shows the cumulative distribution curve of the residual energy after the death of

the first sensor. We can see that at this time more than 70% of the sensors has residual

energy less than 1000mAh (10% of the total energy reserve). It implies that the remaining

operation time of the system is very limited, and the lifetime of the first dead sensor thus

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

0.9

0.8

0.7

.. 0.6
~
~ 0.5
~
0.. 0.40.3L

0.2

0.1

o _~ ~__,~__---.J

o 2000 4000 6000 8000 10000
Residual Energy (mAh)

Figure 2.8: Residual energy after the death of the first sensor.

10 ro--,----.--r--.--,----,--,---,--,

31

8

6

4

wI MS. wIC--+--
wI MS, w/oC ,
wlo MS, wI C ---+-:::.~_,_~' ."

wlo MS, wlo C; ..•...-n'
.,.•..__ ..._. .f-"----

•. --1•._'-'---'."-+

OL...L_--'---_L---'-_--'---_-'-----'-_.....L_.J.....J
M ~ ~ ~ 40 ~ ~ ~ M

Number of Mobile Sensors

Figure 2.9: System lifetime as a function of additional sensors.

serves as a legible measure for the system lifetime.

Unless otherwise specified, the following default parameters were used in our simulation:

The expected coverage quality was 0 = 0.85, and the length of each time slot was 1 minutes.

Each point in our figures was the average of 100 independent experiments.

2.5.1 Contribution of Mobile Sensors

In first set of experiments, we deployed different number of mobile sensors in the field to

observe their effectiveness. In Fig. 2.9, we show the network lifetime as a function of

the number of mobile sensors. The number of mobile sensors varies from 20 to 60, which

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 32

0.8

~ 0.7
c:
'" 0.6E
'"e 0.5
a.
E 0.4
'".§

0.3
~
E 0.2
s
en 0.1>-en

0

wi MS, wi C """ceLl
wloMS, w/C c,

,

"1 , f:]
/j

'. . ,

~! ,j
"

:.J"

'.1
y " ,

-:
c >

"
t- ,

~ ~ W ~ ~ ~ W ~ M
Number of Mobile Sensors

Figure 2.10: System lifetime improvement with or without collaborations.

accounts for only a small portion of all the sensors. For comparison, we also plot the result

with static sensors only; to ensure fairness, in this case, we deployed additional static sensors

(the same amount as mobile sensors), which are equipped with extra-batteries to remain

active throughout the experiments. In our figures, we use wi MS, w/o MS to denote the

experiments with or without mobile sensors; wi c, wi0 C to denote the experiments with

or without using the sensor collaboration protocol.

We observe that the use of mobile sensors substantially increases the network lifetime,

For example, consider the case where there are 50 mobile sensors, the lifetime (wi MS,

w/o C) is three times longer than without mobile sensors (w/o MS, w/o C). In addition,

we see that the lifetime improves steadily when more mobile sensors are deployed. On

the contrary, by adding a few static sensors only, there is no clear improvement of the

system lifetime. Node collaboration also improves the life time for both cases, but more

substantially if mobile sensors are used. The improvement percentage is plotted in Fig.

2.10. We can see that without mobile sensor (w/o MS, w] C), there is a 10% to 20%

lifetime improvement with sensor collaboration compared to without collaboration. If mobile

sensors are used, this effect is much pronounced. This is because without mobile sensors,

the lifetime is constrained by the grids with fewer sensors, resulting in smaller chance of

suppressing redundant activations. Since node collaboration substantially improves the

system performance, for the rest of our experiments, we will focus on the performance of

the system with collaboration only.

We next consider the effect of two different distributions of the static sensors. First, we

deployed the static sensors randomly and uniformly. Second, we added some bias on the

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

10 r-r---.--.,-----r----r---,---,---,------,-,

33

8

6

4

wi MS, Random -~­

wlo MS, Random
wi MS, Biased --->f-:-~_ .. _

wlo MS, B~a~lld-""-,c

'-3----- -I::J- ~. J -,::j-- - ---. "- - - [.

OL....L---'----'----L-----'----'----'-----'-----'---'
m ~ ~ ~ ~ ~ W ~ 00

Number of Mobile Sensors

Figure 2.11: System lifetime for uniform and biased distributions of static sensors.

0.9

.Q
m 0.8a:
<Il
0>
~
<Il 0.7>
0o

Aggressive Move
lazy Move

Static --->f--

o 200 400

Time

600 800 1000

Figure 2.12: Coverage ratio as a function of running time for varying movement patterns.

distribution, where the right side of the sensor field was two times denser than the left side

of the sensor field. Fig. 2.11 shows the comparison results. Not surprisingly, the lifetime

has reduced in biased distribution since the system is more stressed. With assistance from

mobile sensors, however, the situation improves fast; for example, with 20 mobile sensors,

the lifetime is only marginally better than with no mobile sensors at all, whereas with 60

mobile sensors, the lifetime is less significantly affected by the bias of the distribution. This

clearly shows the inherent adjustment capability of using mobile sensors.

2.5.2 Convergence Time

We now consider the convergence time of the network, in particular, the effect of moving

speed of the mobile sensors. We simulated 50 mobile sensors and 1000 static sensors in the

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 34

0,9

0

~ 0,8a:

'"'"l!!
'" 0.7>
0
0

0.6 Aggressive
Lazy

Aggressive. Extra Partition ----+---­
Lazy, Extra Partition ~I'

o 200 400 600
Time

800 1000

Figure 2.13: Coverage ratio as functions of running time with partitioning.

1210864

Static =
Lazy

Aggressive _

'" 5,--,------,-------,,---,-----,---,
E
~
w

~ 4
o
c:
~ 3

~

~ 2
~
s
,§ 1

~
::J
Q 0 Ll.'2'--'--'""__--'--"-'-"

Number of Abnormal Events

Figure 2.14: Duration to detect all abnormal events.

sensor field. In initialization, the whole sensor field was partitioned into subfields by walls.

All mobile sensors belonging to the same subfield were dispatched to the grid with the highest

index in this subfield. Fig. 2.12 shows the coverage quality over time for both aggressive

and lazy movements. We see that if there are high transition probabilities between adjacent

grids, the convergence time is much smaller. For example, with aggressive movement, the

system reaches 85% coverage after 200 minutes, while lazy movement has yet to reach this

ratio after 1000 minutes. We can also see from Fig. 2.12, that the coverage ratio with static

sensors only is only around 70%.

We consider the effect of finer partitioning of the subfields. From Fig. 2.13, we see that

finer partition improves the convergence time with both aggressive and lazy movements.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 35

12

12

4

4

MS ,,,,,,,,,J
SS

Both_

6 8 10

Number of Abnormal Events

(a) Mobile sensors with lazy movement.
0.8 .---,----,----,---,----,------,

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o
6 8 10

Number of Abnormal Events

(b) Mobile sensors with aggressive movement.

"tJ 0.8
~ MS~

* 0.7 SS :

0 Both -J!l 0.6
<::
Q)
> 0.5UJ
iii ,
E 0.4
0
<::

D 0.3«
.E 0.2Q)
Ol

~ 0.1
~
Q)

0c,

al

J
J!l
<::
Q)
>
UJ
n;
E
o
<::

~

Figure 2.15: Abnormal event detection. SS: Detected by static sensors only; MS: Detected
by mobile sensors only; Both: Detected by both.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS 36

These experiments clearly show that the walls and semi-walls in the field would remark­

ably affect the convergence of the system, and our allocation algorithms for the mobile

sensors can effectively solve this problem.

2.5.3 Aggressive Movement in Event Detection

While finer partitioning makes the the convergence time of lazy movement close to that of

aggressive movement, we argue that aggressive movement can be much more effective than

lazy movement in abnormal event detection.

We randomly generated abnormal events in the sensor field. In Fig. 2.14, we show the

time needed to detect all these events for three strategies, namely, aggressive movement,

lazy movement and without mobile sensors. Not surprisingly, the more abnormal events

there are, the longer it takes to find all of them. We see that with aggressive movement, the

detection time is not only shorter than the other two, but also increases more slowly when

the number of abnormal events increases. The gain obtained from aggressive movement

compared to lazy movement is around 5% to 15%. Notice that this is achieved neither by

increasing the number of the mobile sensors nor by increasing their physical speeds, but

simply by improving the transition probabilities between the grids. Finally, note that the

detection time of using static sensors only is remarkably longer than the other two. In fact,

in some tests, the events can never be fully detected if the grids has no any static sensor; we

set an expiration time of 20 in such cases, which explains the high average detection time.

To further understand the contributions from static and mobile sensors, we show in Fig.

2.15 the ratio of the abnormal events detected by different types of sensors, namely, static,

mobile, or both. We see that the static sensors are still the main source in coverage, detecting

55% to 60% of the abnormal events alone. The mobile sensors detect around 20% and for the

other 20% cases, static and mobile sensors observe the abnormal events simultaneously. Fig.

2.15 (a) and (b) demonstrate the scenario where the mobile sensors adopt lazy movement and

aggressive movement strategies. We can also see that, if aggressive movement is adopted,

the mobile sensors become more effective in detecting abnormal events.

2.6 Generalizing Grid Structure

We have assumed a square grid structure for the field in our study, which has also been

widely adopted in this research area. A limitation of the square grid structure is its inflexible

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

(a) Square grid structure.

(b) Hexagon structure.

Figure 2.16: Different underlying structure.

37

moving directions. We show an example in Fig. 2.16. In Fig. 2.16, abnormal event is shown

as a cross. Consider an abnormal event is R m + d away from a mobile sensor, where Rm is

the sensing range of a mobile sensor and d is a small distance. If the event happens in the

upper-right direction (see Fig. 2.16 (a)), then because the two grids are not adjacent, the

mobile sensor will detect it after moving at least twice. A hexagon structure, like that in

the cellular network, will perform better in this case. As shown in Fig. 2.16 (b), only if the

abnormal event is more than 2Rm away from the mobile sensor can it avoid being possibly

detected in the next sensor movement.

Our hybrid network and mobility models are not restricted to the square grid structure.

They can easily accommodate the hexagon or even more general polygon structures. In fact,

algorithm CalcContributionO does not depend on the grid structure. Only some transitions

are to be added in the Markov chain, e.g., for the hexagon structure, six transitions are

needed against the four for the square grid case, and other calculations remain unchanged.

CHAPTER 2. COVERAGE IN SENSOR NETWORKS

2.7 Conclusion

38

In this chapter, we proposed a hybrid sensor network model with static and mobile sensors.

We offered an optimal algorithm for calculating the coverage contributions from each type

of sensors to maximize the network lifetime. We further showed how the contributions can

be achieved, as well as enhancements based on collaborations among sensors. The results

from our simulations demonstrate that a small set of mobile sensors can noticeably improve

the coverage quality and extend the network lifetime.

Chapter 3

Delay Sensitive Applications

Limiting the query delay in a sensor network is crucial, yet difficult for many sensor ap­

plications. While most of the known techniques that deal with delay-related issues focus

on delay-energy efficiencies, they lack provable guarantees for the accuracy of their results.

In this chapter, we provide trade-off between delay and accuracy. We propose an architec­

ture which provides provable guarantees. We make a key observation that the fewer nodes

queried, the smaller the delay is; but also accuracy gets worse.

Our architecture consists of layers, where each layer contains a subset of the sensor nodes

chosen uniformly at random from the whole set, and lower layers contain a superset of the

higher layers. In this model, data collection is done by broadcasting a query to a particular

layer. Only sensors in that layer will reply the query, resulting in an aggregation tree with

fewer hops, and thus smaller delay.

The key difference between our layered architecture and hierarchical architectures is that

each sensor in our network only represents itself and submits its own data for each query,

without the need to act as a "head" of a cluster of sensors. Therefore, when queried, a

sensor will always submit fresh data. Unfortunately, the reduction in delay comes with a

price tag; since only a subset of the sensors submit their data, the accuracy of the answer

to the query is compromised.

We perform our study in the context of five key "properties" of the network, MAX, MIN,

QUANTILE, AVERAGE and SUM. We analyze, given a user-defined accuracy level, what

layer of the network should be queried for these properties. We show that different queries

do show distinct characteristics which affect the delay/accuracy tradeoff. We also show that

for certain types of queries such as AVERAGE and SUM, additional statistical information

39

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 40

obtained from the history of the environment can help further reduce the number of sensors

involved in answering a query, and explore the new trade-offs implied.

The algorithm that we propose for our architecture is fully distributed; there is no need

for the sensors to keep information about other sensors. Using the fact that each sensor

is independent of others, we show how to balance the power consumption at each node

by reconstructing the layered structure periodically. This results in an increase in the life

expectancy of the whole network.

3.1 System Architecture

3.1.1 Preliminaries

We assume our network consists of N sensors, denoted 81,82, ... , 8 N, deployed uniformly in

a square area with side length D. A base station acts as an interface between the sensor

network and the users, receiving queries which follow a poisson distribution with mean

interval length A.
We embed a layered structure on our network, with L layers, numbered 0, 1, 2, ... ,

L - 1. We use r(l) to denote the transmission range used on layer l: during a transmission

taking place on layer l, all sensors on layer l communicate using r(l) and can reach one

another, in one or multiple hops. We use R to denote the maximum transmission range of

the sensors. Let e(l) be the energy needed to transmit for layer l. The energy spent per

sensor for a transmission is e(l) = r(l)Q where 2 ::::: a ::::: 6 [81]. Initially, each sensor has B

units of energy, which decreases with each transmission.

3.1.2 Network Construction

We now expound on how this structure is constructed. In our scheme, each sensor decides,

without communicating with the outside world, to which layer(s) it will belong. We assume

that all the sensors have access to a value 0 < P < 1 and L the value of which will be

present shortly (these values may be hardwired into the sensors). Let us consider the

decision process that a generic sensor s, undergoes. All sensors, including 8i, exist in the

base layer O. Inductively, if 8i exists on some layer l, it will, with probability p, promote

itself to layer l + 1, which means that s, will exist on layer l + 1 in addition to all the lower

layers l, l-I" .. . , O. If on some layer l', s, makes the decision not to promote itself to layer

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 41

Figure 3.1: A layered sensor network; a link is presented whenever the sensor nodes in a
certain layer are within transmission range

[I + 1, 8i stops the randomized procedure and does not exist on any higher layers. If 8i

promotes itself to the highest layer L - 1, it stops the promotion procedure since no sensor

is allowed to exist beyond layer L - 1. Thus, any sensor will exist on layers 0,1, ... ,k for

some 0 :S k :S L - 1. Fig. 3.1 shows the architecture of a sensor network with three layers.

Our layered architecture have the following properties as follows:

a) The layers are numbered 0 through L - 1, with the base layer labeled O.

b) The base layer contains all sensors 81, ... ,8N.

c) The sensors on layer l form a subset of those on layer l - 1, for 1 :S l :S L - 1.

d) The expected number of sensors on each layer drops exponentially with the layer

number.

Since our construction does not assume the existence of any mechanism of synchroniza­

tion, it is possible that some sensors may be late in completing its procedure for promoting

itself up the layers. Since the construction scheme works in a distributed fashion, this is

not a problem - the late sensor can simply promote itself using probability p and join its

related layers in its own time. In addition, if new sensors join the sensor network, they can

perform the same operations. In general, this scheme can be updated without touching the

existing structure.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 42

Whenever the base station has a query, the query is sent to a specific Layer. Those and

only those sensors existing on this layer are expected to take place in the communication.

This can be achieved by reserving a small field (of log log N bits) in the transmission packet

for the layer number. Once l is specified by the base station (the method for which will

be explained later), all of the sensors on layer l communicate using transmission range r(l).

The transmission range can be determined by the expected distance of two neighboring

sensors on layer l, i.e. r(l) = J D l' and can be enlarged a little further to ensure higher
N/2

chances of connectivity.

3.1.3 Specifying the Structure of the Layers

Note that in the construction of the layers, the sensors do not promote themselves indefi­

nitely; this is because if there are too few sensors on a layer, the inter-sensor distance will

exceed the maximum transmission range R. Rather, we "cut off" the top of the layered

structure, not allowing more than L layers where L = e (lOg (#~1)2).
In what follows, we assume that the promotion probability p = 1. We analyze the effect

of varying p when appropriate and in our simulations.

3.1.4 Data Collection and Aggregation

Given a layered sensor network constructed as above, we now focus on how a query is

injected into the network and an answer is returned.

When the base station has a query to make, it first determines which layer is to be

used for this query. Let this layer be l. The base station then broadcasts the query using

communication range r(l) for this layer. In this message, the base station specifies the

layer number l and the query type (in this chapter, we study MAX, MIN, QUANTILE,

AVERAGE and SUM). Any sensor on layer l that hears this message will relay information

using communication range r(l); those sensors not on layer l will simply ignore this message.

After the query is received by all the sensors on layer l, a routing tree rooted at the base

station is formed. Each leaf node then collects its data and sends it to its parent, which

then aggregates its own data with the data from its children, relaying it up to its parent.

Once the root has the aggregated information, it can obtain the answer to the query.

Note that our schemes are independent of the routing and aggregation algorithms used

in the network. Our goal is to specify the layer number l which will reduce the number

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 43

of sensors, as well as the number of messages, used in responding to a query. Once l is

determined, the distribution of the query and the collection of the data can be performed

in a number of ways, such as that proposed in [12]. In fact, once the layer to be used for

a particular query has been identified, the particular routing/aggregation algorithm to be

used is transparent to our algorithm.

3.2 Evaluation of the Accuracy and the Latency

In this section we explore how the accuracy of the answers to queries and the latency relate

to the layer which is being queried.

In general, we would like to be able to obtain the answers to the queries with as little

delay as possible. The delay is a function of the number of sensors whose data are being

utilized for a particular query. Thus, the delay is reflected by the layer to which the query is

sent. Obviously we would like to get as accurate answers to our queries as possible. When

a query utilizes data from all the sensors, the answer is accurate; however, when readings

from only a subset of the sensors are used, errors are introduced. We now analyze how these

concerns of delay and accuracy relate to the number of sensors queried, and thus to the

layer used.

We measure accuracy in terms of the absolute deviation of the computed answer a to

a query from the exact answer a", The accuracy requirement stipulates that this deviation

not exceed Ein most cases. More precisely, we would like to have Pr[/a - a*1 2: E] ~ 0, for

some given 0 ~ E, 0 ~ 1. Here we refer to E as the accuracy parameter (or error bound) and

oas the confidence parameter.

To explore the relation between the layer l to which a query has been sent and the

accuracy of a answer, we represents the number of sensors on each layer as a random

variable. In the next lemma, we investigate which layer must be queried if one would like

to have input from at least k sensors.

Lemma 3.2.1 Let l < log N - log (k + In! + Jln!(2k + In!)), where k ~ the expected

number of sensors on layer l. Then, the probability that there are fewer than k sensors on

layer l is less than o.

Proof: Define random variable Y; for i = 1, ... ,N as follows. Y; = 1 if s, is promoted

to layer l; and Y; = 0 otherwise. Clearly, Y1 , ... , YN are independent. Pr[Y; = 1] = 1/21,

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 44

and Pr[Yi = 0] = 1 - 1/21. On layer I there are Y = I:[:,l Yi sensors. Therefore, Pr[Y <
k] = Pr[Y < EryJE[YJ] < e-(1-elVr)2 E

[Y J/2 by Chernoff's inequality. Since ElY] = N/21, to

have e-(1-elVr)2
E

[YJ/ 2 < 15, we must have 1< logN -log (k + lni + /ln~(2k + ln~)) 0

In what follows, we analyze the accuracy and the latency in the context of certain types

of queries.

3.2.1 MAX and MIN Queries

In general, exact answers to maximum or minimum queries cannot be obtained unless all

sensors in the network contribute to the answer, since any missed sensor might contain an

arbitrarily high or low data value. The following theorem is immediate.

Theorem 3.2.2 The queries for MAX and MIN must be sent to the base layer to avoid

arbitrarily high error.

3.2.2 QUANTILE Queries

Due to similar reasons as the MAX and MIN queries, we cannot obtain an exact quantile by

querying a proper subset of the sensors in the network. Thus, we introduce an approximate

notion of quantile.

Definition 3.2.1 The </>-quantile (</> E (0,1]) of an ordered sequence 5 is the element whose

rank in 5 is </>151.

Definition 3.2.2 An element of an ordered sequence 5 is the E-approximation </>-quantile

of 5 if its rank in 5 is between (</> - E)151 and (</> + E)151.

The following lemma shows that a large enough subset of 5 has similar quantiles to 5.

Lemma 3.2.3 Let Q ~ 5 be picked at random from the set of subsets of size k of 5.

Given error bound E and confidence parameter 15, if k 2: ~, the </>-quantile of Q is an

E-approximation </>-quantile of 5 with probability at least 1 - 15.

Proof: The element with rank </>IQI in Q1 does not have rank within (</> ± E)151 in 5
if and only if either of the following holds: a) More than </>IQI elements in Q have rank

1 Wherever rank in a set is mentioned, it should be understood that this rank is over a sequence obtained
by sorting the elements of the set.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 45

less than (¢ - <IIS I in S, or b) more than (1 - ¢) IQ I elements in Q have rank greater than

(¢ + E)ISI in S.

Since IQI = k, the distribution of elements in Q is identical to the distribution where

k elements are picked uniformly at random without replacement from S. This is due to

the fact that any element of S is as likely to be included in Q as any other element in

either scheme, and both schemes include k elements in Q. Consequently, we can think of

the construction of Q as k random draws without replacement from a 0-1 box that contains

lSI items, of which those with rank less than (¢ - E)ISI are labelled "1" and the rest are

labelled "0". For i = 1, ... , k, let Xi be the random variable for the label of the ith element

in Q. Then X = L:f=l Xi is the number of elements in Q that have rank less than (¢ - E) IS I

in S. Clearly, E[X] = (¢ - E)k. Hence Pr[X ~ ¢k] = Pr[X - E[X] ~ ¢k - (¢ - E)k] =
Pr[X -E[X] ~ 10k] = Pr[f -E[f] ~ s]. This is at most e-2

€2
k , by Hoeffding's Inequality/.

Similarly, it can be shown that the probability that more than (1- ¢)IQI elements in Q

have rank greater than (¢ + (0)/81 in 8 is also at most e-2
€2 k . Setting 2e-2€2 k :s; 15, we have

k > ln~.
-~ 0

We now show which layer we must use for given error and confidence bounds.

(
In

4
2 2 In

4
)Theorem 3.2.4 Let l be a layer such that l < log N -log it + In-S + In-S(2it + ln~) ,

then the probability of the ¢-quantile of this layer is a e-opproxitnation ¢-quantile of the whole

network is at least 1 - J.

Proof: The probability that layer l < log N -log (k + ln~ + Jln~ (2k + ln~)) has fewer

than k sensors is less than ~, according to lemma 3.2.1. By lemma 3.2.3, if the number of

sensor nodes on layer l is at least In;€~~) = ~, the probability that the ¢-quantile on layer

l is e-approximation ¢-quantile of the sensor network is at least 1 - ~. Hence the answer

returned by layer l < logN -log (~+ ln~ + In~(2~ + ln~)) is e-approximation d»

quantile of the sensor network with probability at least 1 - J. 0

2Note that Hoeffding's Inequality applies to random samples chosen without replacement from a finite
population, as shown in Section 6 of Hoeffding's original paper [34], without the need for independence of
the samples.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS

3.2.3 AVERAGE and SUM Queries

46

AVERAGE and SUM queries are tightly correlated queries; the AVERAGE is just SUM/No

Since we know the number of the sensors in advance, we just analyze the AVERAGE queries

in this section and do not explicitly explain the SUM queries.

We now consider approximating the average data value over the whole sensor network by

querying a particular layer. The below lemma indicates that the expectation of the average

data value of an arbitrary layer is the same as the average of the base layer, which is the

exact average of the sensor network.

Lemma 3.2.5 Let ai, a2, ... , aN be the data values collected by the nodes sj , S2,.'" SN of

the sensor network. Let k be the number of sensors on layer l. Let Xl, X 2, ... , X k be the

random variables representing the values collected by these k sensors. Let X = i ~~=l Xi.
- I N

Then E[X] = N ~i=l ai·

Proof: Since during the construction of the layers, each sensor independently pro­

motes itself to layer l with the same probability, Pr[Xi = «i] = Pr[Xi = a2] = ... =
Pr[Xi = aN] = il, for i = 1,2,,,,, k. Then E[Xi] = il(al + a2 + ... + aN). Hence

E[X] = E[i ~~l Xi] = i ~~=l E[Xi] = i ;"(al + a2 + ... + aN) = il ~;:l ai· 0

We thus propose that the average returned by the queried layer be output as the average

of the whole network. The next theorem shows that, given the appropriate layer, this

constitutes an e-approximation to the actual average with probability at least 1 - (j.

Theorem 3.2.6 Assume the data value at each sensor come from the interval [a, b], and

(

(b-a)2Ini 2 2 (b-a)2lni 2)
let l be such that l < log N - log 2,2 Q + In"8 + In"8(2 2,2 Q + In"8) , then the

probability that the average of the data values on layer l deviates from the exact average by

more than E is less than (j.

Proof: Let k be the number of sensors on layer l. As we have explained in lemma 3.2.3,

these k sensors can be considered as random samples drawn without replacement from all

N sensors. Let Xl, X 2 , •.. , X k be the random variables describing the data values of the k

sensors on layer l. Then a < Xi ~ b for i = 1,2"", k. Let X = i ~~=l Xi. By lemma 3.2.5,

E[X] is the exact average over the entire sensor network. For any E > 0, Pr[lX - E[X]I 2:
_2k,2 _2k,2 b 2l 4

E] ~ 2e (b-a)2, by Hoeffding's Inequality. Setting 2e (b_a)2 ~ s/2, we have k 2: (-~~2 nJ. By

Lemma 3.2.1, the probability that layer l < log N - log (k + ln~ + Jln~ (2k + ln~») has

CHAPTER 3. DELAY SENSITIVE APPLICATIONS

0.1

0.08

0.06

P
0.04

0.02

0.1

0.08

47

o 5 10 15 20 25 -20 -15 -10 -5 0 5 10

Figure 3.2: Temperature changes in b..t
time where b..t = [2am, 12pm]

Figure 3.3: Temperature changes in b..t
time where b..t = [12pm, 8pm]

fewer than k sensors is less than ~. Thus, if we send an AVERAGE Query to layer I <

(

(b- a f ln 1 2 2 (b-a)21n1 2)
log N -log 2,2 J + lnJ + lnJ (2 2,2 J + InJ) ,the probability that the estimated

average deviates from the exact average by more than f is less than ~ + ~ = 6. 0

Utilizing Statistical Information about the Behavior of Data: It is possible to reduce

the delay further given the access to additional information regarding the characteristics of

the objects that the sensor network is monitoring. In what follows, we show that if we have

the knowledge of the change in data values over time, it can be used to improve the quality

of our estimates in continuous data collection.

To make use of the statistical information regarding the change in the value, we adopt

a history-based approach, where we assume that we know the distribution of the change

of the environment to be a normal distribution with mean f-L. Formally, let dt be the data

value at time t, then dt:.t = dt+t:. t - d t is distributed according to normal distribution with

mean f-L (See Fig. 3.2, 3.3 for examples of the temperature rises from 2am to 12pm and falls

from 12pm to 8pm in a day, and follow normal distribution). The change in the average

temperature of all the sensors also follows a normal distribution since the sum of normal

distributions is still a normal distribution with mean and variance equal to the sum of the

individual means and variances.

The intuition behind our strategy is as follows. First we obtain an initial estimate avg

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 48

of the average data value in the network, which, by our computations above, is likely to

be close to the true average. After one unit of time, the true average is likely to have

changed by some value close to u: Thus, avg + fL is likely to be a good estimate for the

average for that point in time. However, errors have been introduced into our estimate.

One cause for possible error is the fact that only a subset of the sensors have been queried.

The other contribution to the error comes from our inability to know the exact change in

the data value; we only know from the normal distribution that the change is "likely" to

be "around" u, Since the quantity of the error, as well as its likelihood increases with each

step of this procedure, we need to make sure that our error bound and confidence parameter

remain at acceptable levels.

To ensure low error, we adopt a multi-stage approach to our estimation of the average.

In the first stage, which we call Query Average, we query a relatively large subset of the

sensors - more precisely, we query a low enough layer to obtain an error of £1 < £ with

confidence level 61 < 6. This high guarantee will leave some room for extra error to be

incurred in the following stages.

In the following stage (after one time unit has elapsed), which we call Test Average, and

the subsequent stages, we will query higher layers, involving a smaller number of sensors, to

see whether the expected change pattern is followed. The result of doing this is that either

(a) we will see something that falls within our expectation, and boost the confidence to an

acceptable level or (b) we will observe an "anomaly", that is, a deviation from expected

behavior, which we will attempt to resolve by querying a lower layer with a larger number

of sensors. In case of (a), we will have obtained a fast and acceptable answer by querying

only a very small number of sensors. Case (b) on the other hand is, by definition of the

normal distribution, an anomaly that will not happen often. In the unlikely event of an

"accident", in the form of an atypical value, our system will experience a longer query time

for the sake of accuracy. In the long run, we will see more "expected" cases and will observe

a lower average query time.

Before we go into the specifics of the algorithm, we present an example (Fig. 3.4).

Suppose the possible change for temperature after a time unit follows a normal distribution

with fL = 10 and a = 4. Suppose £ = 8 and 6 = 0.2. In the first stage, we see that we get the

average data value avg1 = 60°F by using error bound, say £1 = 2 and a confidence level, say

0.9, (i.e., confidence parameter 61 = 0.1). After 10 hours, we expect that the temperature

changes to avg1 + fL = 70°F. Let Eand J denote the confidence interval and confidence level

CHAPTER 3. DELAY SENSITIVE APPLICATIONS

Temperature Change

49

----error bound-----
0.12

0.1

0.08

P 0.06

0.04

0.02

0 5 10 15 20 25

Figure 3.4: Calculating the second stage error bound according to a normal distribution.

of the normal distribution. To ensure an error within the user specified bound of 8, then

E ::; 6, as shown in Fig. 3.4, resulting a confidence level of J = 0.8. Therefore, after this

period of time, the overall confidence level is 0.8 x 0.9 = 0.72, i.e., the error probability is

larger than the 0.2 specified as acceptable. To boost the confidence level to 0.8, we need to

query a few more sensors with an error bound of 102 = 8 and a much looser error probability

of <52 = 1~0272 = 0.714. If the returned value of Test Average is 70, we will return this value.

Otherwise, if the returned value falls outside of 70 ± 8, this indicates that an anomaly might

be present.i' in which case we perform Query Average to determine the new temperature

value. If the returned value falls within 70 ± 8, to ensure the error bound, we perform Test

Average with a more stringent error bound until an anomaly is found or the new average

value is confirmed.

Below we explain our algorithm in higher detail and analyze its properties mathemati­

cally. Fig. 3.5 shows Algorithm Query Average. It takes as input the error and confidence

parameters 10,<5. We assume that Query(l) returns the average data value for sensors on

layer l.

Our next algorithm (Fig. 3.6) shows how to perform Test Average given Query Average.

It takes as input error and confidence parameters 10, <5, as well as the mean It and standard

3Here we use the word anomaly to indicate a situation whose likelihood is small according to the given
normal distribution.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 50

Algorithm QueryAvg (E,6)
1 Select El < E and 61 < 6.

(

(b-a)2ln.i.
2 II = log N - log 2 2 61 + lnt- +

<I I

3 avgl =Query(lI).
4 return avgl

Figure 3.5: Algorithm Query Average

9

7

8

Algorithm TestAvg (i, E, 6, fl., a, avgl, El, (1)

1£=E-El·
2 Calculate J = Pr(fl. - En < X < fl. + En) by Normal Distribution.
3 if 1 - J x (1 - 6I) < 6,
4 avgi = avm + fl., return avgi
5 else

6 k = 0, 6i = l-axtl-'lI)
repeat

Ek = E- k, Ei = Ek

(

(b-a)2ln.i.
li = log N - log 2<~ 6

j + ln i: +
if (Query(li) :::; avgl + fl. + k)

and (Query(li) 2: avgl + fl. - k)
then avgi = avgl + fl., return auq,
else k = k + 1
if k 2: E, Goto QueryAvg

10
11
12

Figure 3.6: Algorithm Test Average

deviation a of the distribution of the change in the data value. It also takes avgl which is

the average obtained from Query Average and the round number i.

In Line 2 of Algorithm Test Average, we calculate the probability that the change will

fall within interval £. In Lines 1-5, if the Query Average has already guaranteed the error

probability, we do not perform any further queries. This might occur when the number of

sensors queried in Query Average is large enough. Line 12 displays the threshold where we

should initiate a new QueryAvg query.

Theorem 3.2.7 Assume the data value collected by each sensor is bounded by [a, b] and the

change in the average of the values at all sensors follows a normal distribution with mean fl.

and standard deviation a. The probability that algorithm QueryAvg and TestAvg will deviate

from the exact average by more than E is less than 6.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 51

Proof: Let us first consider QueryAvg. Choose any El,<51 such that <i < E and <51 < <5.

By Theorem 3.2.6, we can obtain the desired accuracy by sending queries to any layer 11

(

(b-a)21nlj 2 2 (b-a)2 1nlj 2)
where II < log N - log 2 2 + In6" + In6"(2 2 2 + In6") .

fIll £1 1

For TestAvg, let Y i denote the average value over all the sensors at round i. Define

~i = Y i - Y 1· We know a priori that the probability distribution for each ~i is a normal

distribution with mean J1i and variance ai.
In round i, E = E - E1 is the confidence interval for normal distribution, hence J is

probability that the change in the value of the average will not exceed E.

Therefore with probability 1-J x (l-<5I), we can guarantee an error bound of El +E < E. If

1-J X (1-<51) < <5 then our query satisfies both bounds Eand <5, and we can compute the value

to be returned from the value in the previous round and the expected change. Otherwise,

we choose <5i = .5 ~ 8) which ensures that the confidence level <5 will be bounded in the
1- x 1- 1

ith round. For error bound Ei in the ith round, since we don't know the returned value, we

can use all Ei = Ek where E2 Ek 20 as long as the returned value avgi ± (Ek) is bounded by

(avg1 + J1) ±E. If that happens, the change is confirmed. Otherwise, to bound Eand <5, a new

QueryAvg must be performed. In our algorithm, we reduce Ei iteratively from E to 0, and

(
(b-a) 2 1n~ G (b-a)2ln ..!)

use Ei and <5i to query layer Ii < log N -log 2,~ ", + lnt; + Vlnt (2 2,~ "j + lnt)

so that the number of sensors in TestAvg increases little by little and the process stops as

early as possible. 0

3.2.4 The Effect of Promotion Probability p

The promotion probability p will only affect the logarithmic base of the system. Thus, we

present comparable theorems without detailing the proofs.

(
In 4 ln

4
)Theorem 3.2.8 Let I be a layer such that I < log~ N -log~ ~ + lnt + Int(2~ + lnt) ,

then the probability of the ¢-quantile of this layer is a E-approximation ¢-quantile of the whole

network is at least (1 - <5).

Theorem 3.2.9 Assume the data value at each sensor come from the interval [a, bJ, and

(

(b-a)21n:! 2 2 (b-a)21 n:! 2)
let I be such that I < log~ N - log~ 2,2 6 + In;S + In;S(2 2,2 6 + In;S) ,then the

probability that the average of the data values on layer I deviates from the exact average by

more than E is less than <5.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 52

The algorithms of QueryAvg and TestAvg can be adjusted where the queries are sent

to layer respected to theorem 3.2.8 and 3.2.9 and theorem 3.2.7 also follows.

3.3 Energy Consumption

It can be readily observed that in our system higher layer sensors will be transmitting at

longer ranges than their lower layer counterparts. Given that any high layer sensor is also

present in all the lower layers, if nothing is done to balance out the energy consumption, the

higher layer sensors will get depleted much faster than the lower layer ones. To balance out

the energy consumption, our system reconstructs the layered network periodically by decid­

ing each layer from scratch, so that the top layer sensors change over time. An appropriate

timing scheme for the reconstruction will lead to relatively uniform energy consumption

across the sensors in the network. Note that the frequency of reconstructions has no ex­

pected effect on accuracy, since we are as likely to be stuck with a "good" sample of sensors

(in which case reconstruction is likely to give us a worse sample) as with a "bad" one. Given

the above and the overhead of building a new aggregation tree for each new construction,

we would like to infrequently repeat this procedure to make the energy consumption more

even across the network.

Let the lifetime of the network be defined as the time between its initial construction and

the first time that a sensor runs out of power [88]. We investigate the relationship between

the timing of the reconstructions and the expected lifetime of our system in our simulations.

In this section, we analyze our system assuming that each sensor has sufficient power to let it

undergo several reconstructions, and that we run sufficiently many reconstructions. Ideally,

we have a totally symmetric scenario where the service that each sensor has performed on

each layer is identical across sensors. Since the layers are chosen in a randomized fashion,

given a large enough number of reconstructions one expects to see that most sensors have

served on most layers.

The energy spent by each sensor for a query directly depends on the distance between

the sensor and its neighbors. Recall that since there are an expected (N/21) nodes on layer

I, the transmission range is set to be r(l) = VD r Therefore, the energy spent by each
N/2

sensor for each query on layer 1 is e(l) = (V~/2!) <>, which is what we will use below to

estimate the overall system lifetime.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 53

Overall Lifetime of the System: We assume that the queries are uniformly distributed

across different layers due to the error bounds and confidence levels coming independently

from the users.

We now present a theorem which estimates the expected lifetime of our system depending

on the network parameters.

Theorem 3.3.1 In a setting where each level is equally likely to be queried, the expected
. . . _ BL(v'N)O(1-(V2)O-2)
lifet~me of our system is E(t) - .\DO(1_(V2)L(o-2»)

Proof: We assume that each layer has the same probability ±of being queried. The

probability that a sensor s exists on layer l is ~, therefore, the energy consumption for s is

'£f=c} ~ e(l) ±. Let the life expectancy of s be t. Recall that B is the battery power, A is the

incoming query interval following (assumed) Poisson distribution, and e(l) = (y'~/2!) C>

We have '£f~(/ ~e(l)±At = B. Therefore, the expected lifetime of the system is E(t)
BL(v'N)a (1-(V2)a-2)

.\Da(1-(V2)L(a-2») 0

3.4 Numerical Results

We use numerical simulations to test the performance of our system, as well as to observe

the effects of the parameters of the algorithm and the re-election time on the performance.

3.4.1 System Settings

We set the default number of sensors to be N = 10000. The default promotion probability

is p = !. We focus on QUANTILE and AVERAGE queries in our simulations.

3.4.2 The Relationship Between Layer and Accuracy

We first evaluate the relationship between the layer answering a query and parameters

relating to the quality of the answer to the query".

QUANTILE Queries: We first study QUANTILE Queries in Fig. 3.7. It can be seen

clearly that, as the error bound E and confidence parameter b increase, the layer that the

4It should be understood that the actually layer queried should be rounded by floor of the value shown
in the figure.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS

12 r----,-----..,-------,--------r-,

54

10

8

4

2
epsilon ~ 0.2 ._--+--
epsilon ::;;; 0 4 :-
epsilon ~ 0.6 -­
epsilon ~ 0.8

5 10 15

delta(%)

(a) Layer as a function of Ii

20

12 ,---..,-------r---,---..,-------r-,

10

6

4

2

0
0

12

10

8

Q;
>- 6
'"...J

4

2

0
0

delta ~ 0.05
(leila 0.1

delta e utS ____
della ~ 0.2

20 40 60 60 100

epsilon(%)

(b) Layer as a function of E

p ~ 0.1
p 0.3
p=0.5 --

20 40 60 80 100

epsilon(%)

(c) Layer as a function of p

Figure 3.7: Numerical results for QUANTILE Queries.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 55

20

r--- ,..... 0,("'

15

delta =0.05
li{~ltn ::-: 0.1

delta=0.15 __
delta = 0 2

r v' _(). ~\')0 ,,>- A

5

5 10 15 20

delta(%)

(a) Layer as a function of <5

epsilon =0.2 -,-
epsilon OA ::;.:
epsilon = 0.6 -­
epsilon = 0.8

10

epsilon

(b) Layer as a function of E

10

8

6
iii
>.

'"..J
4

2

0
0

10

8

6
iii
>.

'"..J
4

2

10 ,----,----.,--------,-------,--,

8

6

p =0.1
pc 0 J
p e 0.5 ---;<-

4

2

5 10 15 20

epsilon

(c) Layer as a function of p

Figure 3.8: Numerical results for AVERAGE Queries.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 56

query should be sent to also increases, as confirmed by our computations. Here it can be

observed that even though the layer number monotonically increases with both parameters,

£ has more impact on it than 6 as can be seen from Fig. 3.7 (a) and (b). This is because

the confidence parameter 6 can easily be improved using standard boosting techniques from

probability theory and randomized algorithms. In fact, repeating the algorithm O(log k)

times and returning the median answer will improve 6 to 6/k, since the probability of getting

an incorrect answer (log k) /2 times is at most 610g k, which is 0 (6/k). On the other hand,

to reduce e by a constant factor k, O(k) repetitions of the experiment are needed. Fig. 3.7

(c) shows the relationship between the promotion probability p and the layer number. As

p increases, the variation in the layer number for the same query is more obvious. This is

because there are fewer layers for smaller p and the choice of layer is more coarse-grained

than for larger p.

AVERAGE Queries: We show the relationship of the layer number with the confidence

parameter 6, error bound £ and promotion probability p for average queries in Fig. 3.8. We

observe the same effect as with the QUANTILE queries, i.e., £ has a larger impact than

6, for the same reason. This gives us hints for building test queries as we have additional

statistical information.

To investigate the question of how to choose the parameters introduced in our algorithms

for QueryAvg and TestAvg, we fix the following parameters and vary the others. The upper

and lower bounds of the data values are a = 20 and b = 100. We set the error bound and

confidence parameter to be £ = 15.1 and 6 = 0.25 respectively. The mean and standard

deviation for the normal distribution are set to J.L = 20 and (J = 8. We choose £1 in the

range [6, 15], and use two different 61, 0.05 and 0.2. We compare the combined algorithm

of QueryAvg and TestAvg with QueryAvg only, i.e., using £ and 6 directly.

Note that, when p = 0.5, the expected number of sensors in each layer increases by 2 as

we go down each layer. To reduce the overall delay, every query performed on some layer

i-I rather than layer i must be compensated by 2 or more runs of TestAvg performed

on layer i + 1 rather than layer i, or 1 or more on i + 2 rather than i + 1, etc. Thus, the

combination of QueryAvg and TestAvg is more profitable when the change in the data is

highly predictable. Thus, QueryAvg and TestAvg can be used for emergency monitoring

applications in stable environments whereas QueryAvg alone can be used in applications of

data acquisition in changing environments.

Fig. 3.9 (a) shows the effect of £1 and 61 on QueryAvg. Fig. 3.9 (b) shows the effect

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 57

of E1 and 81 on TestAvg. In our simulations we see that regardless of the choice of E1

and 81, the QueryAvg procedure will query a larger number of sensors and the TestAvg

procedure will query a smaller number of sensors, comparing to using QueryAvg only. In

QueryAvg, however, varying 81 has relatively larger effect. We also note that E1 changes

more for QueryAvg than for TestAvg. As a result we suggest choosing a larger E1 and 81

for QueryAvg so that we can save more for QueryAvg and pay less in TestAvg.

The effect of TestAvg also depends on the readings of the second phase, (or ith query of

TestAvg from the QueryAvg). If the ith query is far from the expected value, then we have

to narrow down Ei to investigate the sensor network with higher accuracy. For example, let

r denote the output of TestAvg, in our algorithm, if the answer of r ± Ei is out of the range

of avg1 + J-l ± E then we set Ei more stringently. This, however, leads to possibly involving a

larger number of sensors for this query. In theory, we stop at Ei = 0, however, in practice,

we can stop earlier and move to QueryAvg for efficiency reasons. We observe this effect

in Fig. 3.9 (c) where we set E1 = 13 and 81 = 0.2. We see that in this setting, there are

reasonable chances that we will stop with gains since when the results from TestAvg fall

within avg1 +J-l±5, fewer sensors are queried. This also confirms that E has a greater impact

than 8 for our architecture.

Next, we study the effect of a, the standard deviation of the normal distribution. a

represents the rate of change in the data. One can see in Fig. 3.10 that a has a big

influence on efficiency. The discontinuity of the lines in Fig. 3.10 (a) and (b) indicates that

QueryAvg has tested more sensors than required, making some of the following rounds of

TestAvg unnecessary.

3.4.3 Energy Consumption Evaluation

In this section we consider the effect of our algorithms on the energy consumption. We

assume that our sensor network occupies an area of 100 x 100, with uniformly distributed

positions, and each sensor has 5000 units of energy. We also assume that the queries are

generated according to Poisson distribution with mean value oX = 20. The data queries

are generated uniformly from the set {MAX, MIN, QUANTILE, AVERAGE}. The query

parameters are assumed to be uniformly generated within the bounds a < 8 < 0.5, and

0< E < 0.5 for QUANTILE. For AVERAGE, E is proportional to the bounds a, b which we

set to be 20 and 100.

In our experiments, we use the simplest data gathering technique, flooding, where the

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 58

8

7.5

7

6.5

iii
>- 6..

..J

5.5

5

4.5

4

./ delta 1 =0.05,-
dr.~,'ta1 0.2

no Test ... _.)l--

6 8 10 12 14

epsilon1

(a) Layer as a function of El

10 ,.....,---....-----~---~--__,_-___,

9.5

delta1 =0.05 ~.
delta1 .= 02

no Test .~

9

iii
e-, 8.5..

..J

8

7.5 * * ~ ~ * ---'A<--- * ~ *

7
6 8 10 12 14

epsilon 1

(b) Layer as a function of El

9

8.5

8

iii
>- 7.5..

..J

7

6.5

6
7

delta1 = 0.05
della 1 = 0 2 <

no Test --..­
1

8 9 10 11 12 13 14 15

epsilon(i)

(c) Layer as a function of Ei

Figure 3.9: AVERAGE Queries with different 61 values; no Test: QueryAvg only with 6
and E.

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 59

sigma=8 ~--

siqrna :..-: 6 >-

sigma =4 --lI<--

>~~;":''''
{ ---{:~~

8 10 12 14

epsilonl

(a) Layer as a function of tl

10

9.5

9

~ 8.5j

8

7.5

7
6

10 r--r---,....----.------,--------r------,

9.5

9

~ 85j .

sigma = 8
sigma G
sigma = 4 -¥--

~~;;::;,"":"-.
8

7.5 j. -------+- ---+----

7L..L__----''---__L.-__L-__-L-_---.J

6 8 10 12 14

epsllont

(b) Layer as a function of tl

Figure 3.10: Effect of the standard deviation (a) of the normal distribution.

No Reconstruction czr"",~

Reconstruction

···1 ; .. I"j ·---1o
40 50 60 70 80 90 100 110 120 130

Number of Sensors (xl00)

180

160

a 140
a
~ 120
III
E 100
i=
0:: 80::J
E 60

*>- 40(/)

20

Figure 3.11: Energy consumption with and without reconstructions

CHAPTER 3. DELAY SENSITIVE APPLICATIONS 60

source and all the intermediate sensors in the same layer just broadcast the query within

their transmission range and collect the answers in a reverse fashion. Every data point

presented in the figures is the average of 100 random experiments.

We consider the effect of the reconstruction of the layers in Fig. 3.11. Clearly, without

reconstruction, the sensor network depletes significantly faster, usually less than 10% of the

lifetime of the system with reconstructions. As the number of sensor nodes increases, the

lifetime of the system also increases, since the distances between sensors are smaller, leading

to less energy usage.

3.5 Conclusion

In this chapter we build a layered architecture for a sensor network where a small fraction

of the sensors can be used for answering queries, so as to reduce the processing delay. We

sacrifice the accuracy, however. We give provable bounds on the number of sensors queried

and the overall precision of the queries for five different types of queries.

Chapter 4

Data Collection in Extreme

Environments

For applications in extreme environments, the demands on the network are different from

simple field monitoring sensor systems. First, the delay requirement may be more restrictive.

Second, as the data harvest is only performed occasionally, sensor nodes need to store the

data temporarily when the server is absent. In contrast to aggregated values, raw data

are more precious in the extreme environments as the raw data can be evaluated by the

server in more refined way for multiple properties of the sensor network after collection. In

this setting, the tree based routing structure is not suitable since without aggregation, the

payload will not be reduced and the sensors close to the root of the tree will be heavily

burdened. A ubiquitous access is thus suggested in [20]. In this solution, the server just

randomly contacts a few sensor nodes to retrieve data. This server accessing (also known as

blind access) is easy to implement. It inherently distributes the communication cost from

the root sensor to multiple sensor nodes, and balances the load.

In this scheme, if the data can be retrieved accurately, it is also much faster. Unfor­

tunately this straightforward approach may introduce large replication due to difficulties

in cooperation of the sensors in data storage and scheduling in data retrieval. We see an

example in Fig. 4.1. There are four different data segments distributed in the network.

Each sensor (represented by a small circle) can store only one data segment (represented

by the texture). The server randomly contacts several sensors to upload data. We see from

Fig. 4.1 (b), server collection of right data segments is not always easy. In this example, the

61

'cHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

(/ ~

'\ c~

(a) Server is absent.

(b) Server access.

Figure 4.1: An example of the problems for blind access.

62

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 63

server contacts four sensors, and unfortunately obtains only three different data segments.

Replication and redundancy management of similar problems have been studied by

known coding algorithms, e.g., different types of erasure codes [8]. Most of these codes

are generated at a central entity and then distributed to different storage locations. This

is not realistic in our application, because no sensor is capable of storing all the data, let

alone performing complicated encoding operations. A potential solution rises from random

network coding [20][56][80], which distributively manipulates the data in each node. Such

operations combine all (say, N) data segments, making the coded data segments equivalent

to each other in decodeability, i.e., different combined data segments have no advantage to

each other for decoding operations. A fast and load-balanced data collection is then realized.

A key deficiency of conventional network coding is the lack of support for removing

obsolete data. In harsh environments, where the server may only approach the sensor

network occasionally, the data is temporarily stored in each node. The sensors then have to

remove obsolete data segments to be able to accommodate newly collected ones. To achieve

this, conventional network coding has to first decode and then re-encode the combined data,

which is time and resource-consuming [26J. Even worse, given that a sensor can only store

a partial set of the combined data, it is impossible to carry out decoding operations in each

individual sensor.

In this chapter, we present Partial Network Coding (PNC), which effectively solves the

above problems. PNC inherits the blind access capability of NC, and yet achieves the

following salient features: 1) it allows a higher degree of freedom in coded data management,

in particular, decoding-free data removal; 2) its computation overhead for encoding and

decoding is almost identical to the conventional network coding; and 3) we prove that its

performance is quite close to that of the conventional network coding, except for a sub­

linear overhead on storage and communications. We also address a set of practical concerns

toward building and maintaining a PNC-based sensor network for continuous data collection

and replacement. The feasibility and superiority of PNC are further demonstrated through

simulation results.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

4.1 Preliminaries

4.1.1 Model and Notations

64

We now give the a formal description of PNC. We assume that the total number of up-to­

date events to be recorded in the whole system is N. Each event (e.g., that temperature goes

beyond lOO°F), upon its occurrence, is recorded by all the sensors in the sensor network.

The event is represented by one data segment, denoted by Cj, and cj' is fresher than Cj if

j' > j. Similar to existing studies on linear network coding, we use Z=f=c/ (3j x Cj to generate

a coded data segment Ii, where (3 = ((30,(31,··· , (3N-l) is a coefficient vector, each item of

which is randomly generated from a finite field Fq , where q is the size of this finite field.

Since the coding can be viewed as a combination process, Ii is also referred to as a combined

data segment, and Cj as an original data segment. Notice that the size of Ii remains equal

to Cj. We define the cardinality of Ii to be the number of original data segments it contains,

and the full cardinality of the system is the highest possible number, i.e., N. Each sensor

in our network has a buffer of size B(< N) for storing the data segments. For each server

access, W sensors are to be contacted and, without loss of generality, each sensor will upload

one data segment from its buffer. A summary of the notations can be found in Table 4.1.

Clearly, to obtain all the N original data segments, we must have W 2: N, and even so,

not all the segments are necessarily obtained in one access. Consider a naive data storage

and collection scheme with no coding. Assume that B segments (out of the N up-to-date

original segments) are stored in each sensor's buffer and the distribution is uniform. Then

the success ratio for this naive scheme is given by nt:01 ~. Here, the success ratio serves

as the major evaluation criterion in our study, and is defined as follows:

Definition 4.1.1 (Success Ratio) The success ratio is the probability that a scheme suc­

cessfully collects all the N original data segments. The default settings of Wand Bare

W = Nand B = 1, which are their lower bounds for valid schemes.

For the naive scheme, the success ratio is a decreasing function of N. As shown in Table

4.2, even for N = 2, the probability is barely 50%, and the performance is extremely poor

for larger N.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

Notation Definition
N Number of original data segments to be collected
B Buffer size of each sensor
Cj Original data segment with index j

{3j Coding coefficient for Cj

Ii Combined data segment with index i

H Ii, with the oldest original segment k
k Cardinality of the combined data segments

W Number of sensors queried by the server for each access
q Size of finite field for coefficients

Table 4.1: List of Notations for Chapter 4.

lIE] Success Ratio:JI:EJ Success Ratio ~

I 2 0.5 6 0.0154321
3 0.222222 7 0.0061199
4 0.09375 8 0.00240326
5 0.0384 9 0.000936657

Table 4.2: Success ratio of the naive scheme (W = N, B = 1)

4.1.2 Network Coding based Collection: Pros and Cons

65

We now show that network coding can significantly increase the success ratio. With network

coding, all data segments are stored in a combined fashion, and the N original data seg­

ments can be decoded by solving a set of linear equations after collecting any N combined

data segments. A necessary condition here is that the coefficient vectors must be linearly

independent. This is generally true for a large enough field size q [56]. As shown in Table

4.3, the probability of linear independency is over 99.6% for q = 28 , and this is almost in­

dependent of N. As such, for the network coding based data storage and collection scheme,

the success ratio with W = Nand B = 1 is close to 100%.

W Probability lI!iJ.::.!jobability [[LI Probability I]
21 0.288788 25 0.967773 2~ 0.998043
2:l 0.688538 2° 0.984131 21U 0.999022
2J 0.859406 27 0.992126 211 0.999511
24 0.933595 2~ 0.996078 212 0.999756

Table 4.3: Probability of Linear Independency as a Function of Finite Field Size (q).

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 66

[C3, C2, cj , co]

[C3, C2, cd
[C3, C2]

[C3]

Figure 4.2: An example of PNC for N = 4.

So far we have focused on static data only. In network coding, it is easy to combine

new data segments to existing data segments, which increases the cardinality. The reverse

operation is difficult, however. Specifically, to remove a data segment, we have to first

decode the data segments, delete the obsolete data segment, and combine the remaining

data segments to a new one. This is time and resource-consuming for power limited sensors.

Even worse, it is often impossible for B < N, because decoding requires N combined data

segments. On the other hand, for continuously arriving data, if we keep obsolete data

segments in the system, we have to upload more data segments than necessary to the server

for a successful decoding of N needed data segments. Eventually, the buffer will overflow,

and the system will simply crash. This becomes a key deficiency for applying network coding

in continuous data collection.

4.2 Partial Network Coding based Data Storage and Re­

placement

In this section, we show a new coding scheme that conveniently solve the problem of data

removal, thus facilitating continuous data management. Our coding scheme allows the

combination of only part of the original data segments, and we refer to it as Partial Network

Coding (PNC) , cf. network coding (NC) and no network coding at all (Non-NC).

4.2.1 Overview of Partial Network Coding

In PNC, instead of having full cardinality of each combined data segment, we have varied

cardinalities from 1 to N. Formally, for original data segments CO, cj , ... ,CN-l, we have a

coding base B = {fk Ifk = 2:.f=--,,.t j3j x Cj, k E [0, ... , N - 1], j3j E Fq } . We omit j3j in this

chapter and use r = [CN-l,CN-2, ... ,Ck] for ease of exposition. Notice that if k denote

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 67

the cardinality of a combined data segment, then the cardinality of fk can be calculated by

k = N - k. The coding base for N = 4 is illustrated in Fig. 4.2. We may further drop the

superscript k if the cardinality of the combined data segment is clear in its context.

In our application scenario, each sensor stores only a subset of these combined data

segments given buffer size B < N. The storage for each sensor is S = UiklH E l3,0 :::; i :::;

B-1}. We use Ji provided that k is clear in the context to represent the ith combined data

segment in this sensor. An illustrative example is shown in Fig. 4.3, which also includes

the corresponding NC and Non-NC. In this example, data is distributed in a network of 6

sensors (so through S5) and each sensor has two units of storage. From Fig. 4.3 (c), we

notice that, when a new C4 is generated and Co becomes obsolete, sensors So and S4 can

simply drop the longest combined data fa in their respective buffers. The buffers of So and

S4 then become Uo = [C41 C3, C2],!I = [C4]} and Uo = [C4' C3],!I = [C4]} , respectively. This

simple example demonstrates the salient feature of PNC, that is, removing the obsolete data

without decoding.

4.2.2 Data Storage and Replacement in PNC

Distribution of Cardinality: Partial network coding intrinsically manages the shape (i.e.,

cardinality) of the combined data segments. It is not difficult to see that, for a server data

collection, if the contacted sensors provide combined data segments with high cardinalities,

then the success ratio will be higher. We summarize this in the following two observations.

Observation 4.2.1 The success ratio is maximized if every sensor provides the server the

combined data segment with the highest cardinality from its buffer.

Observation 4.2.2 Consider time instances tl and t2. If at tl l the probability for each

sensor to provide high cardinality data segments is greater than t2l then success ratio for a

data collection at tl is higher than that at t2.

Generally speaking, in each particular time instance, it is ideal for the system to have

combined data segments of cardinalities as high as possible. In an extreme case, if all the

combined data segments in the system have cardinality N, the success ratio is 100% and the

system is essentially reduced to the conventional network coding based. Once a new data

segment arrives, however, all the combined data segments will have to be deleted to make

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

80: {C3,cd, 81: {Cl,CO}

82 : {C3, CO}, 83: {C3, Cd

84: {C3,C2}, 85: {C2,ea}

(a) Non-NC

80: {fa = 5C3 + 2C2 + 3Cl + 4co, h = 7C3 + 2C2 + 3Cl + 4co}

81 : {fa = 3C3 + 2C2 + lOCI + Co, h = lOc3 + 2C2 + 5Cl + Co}

82 : {fa = 2C3 + 5C2 + 2Cl + 4ea, h = c3 + 15c2 + 6Cl + 3co}

83 : {fa = c3 + 18c2 + gCl + 4co, h = c3 + 8C2 + gCl + 14co}

84: {fa = 5C3 + 2C2 + 3Cl + 4co, h = 2C3 + 6C2 + 3CI + 4co}

85 : {fa = 7C3 + 7C2 + gCl + 5ea, h = 8C3 + 8C2 + 8Cl + 4co}

(b) NC

80 {fa = [C3, c2, CI, co], h = [C3, C2]}

81 {fa = [C3, C2, Cl], h = [C3]}

82 {fa = [C3, C2, Cll, h = [C3, C2]}

83 {fa = [C3, C2l, h =h]}
84 {fa = [C3, C2, CI, co], h = [C3]}

85 {fa = [C3, C2, Cl], h = [C3, C2]}

(c) PNC

Figure 4.3: Comparison of Non-NC, NC and PNC.

68

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

Algorithm Data Repiacementfcs]
cn : newly recorded data
for i = 1 ... B

if cardinality(j;) < N,
j; = f3n cn + fi

else

j; = f3n cn

Figure 4.4: Data Replacement Algorithm.

69

room for the new segment. For subsequent data retrievals, no data segment but the newest

one can be answered.

Since the data arrival and server collection times are not known in advance, an optimal

choice of the cardinality distribution thus depends on the requirement of each particular

application and how the overall profit function is defined. We now consider the performance

of PNC with a uniform cardinality distribution throughout the lifetime of the system. This

distribution does not favor data arrivals or server collection at any particular time, and is

thus applicable to a broad spectrum of applications that have no specific arrival/retrieval

patterns. It also serves as a baseline for further application-specific optimizations.

Data Replacement in PNC: In a uniform cardinality distribution, for each collected data

segment, the probability of encountering any cardinality is 1;;. However, a sensor does not

have data segments of all the different cardinalities in its limited buffer. For example, as

shown in Fig. 4.2, a sensor with a buffer size of two segments will never see all the four

possible data segments. More importantly, it is impossible for the sensors to know exactly

what other sensors store. As such, maintaining the uniformity of cardinalities becomes a

great challenge in partial network coding.

We solve this problem by a Data Replacement algorithm locally executed at each sensor

(Fig. 4.4). It translates the uniformity maintenance problem to a uniform configuration for

the initial distribution; the latter is much easier to achieve.

Theorem 4.2.3 If the cardinality is uniformly distributed, then after executing the Data

Replacement algorithm (Fig. 4.4), the distribution of the cardinality remains uniform.

Proof: If the distribution of the cardinality is uniform, then the probability that a combined

data has cardinality k is 1;; for all k = 1 ... N. After executing Data Replacement, the

probability that a combined data segment has cardinality k is equal to the probability that

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 70

this segment previously has cardinality k - 1 k 1 ... N - 1, and the probability for

a combined data segment has cardinality 1 is equal to the probability it previously has

cardinality N . Hence, the probability is still tt, and the distribution remains uniform. 0

The above theorem suggests that a uniformity is inherently maintained in data replace­

ment, and the algorithm is fully distributed and localized. Therefore, before network de­

ployment, we can uniformly assign the cardinalities to the sensors. Assume B = 1; after the

deployment, the sensor assigned with cardinality k can wait for N - k events and record and

combine the k following events only. The initial cardinality distribution of the combined

data in the sensors is then uniform. The above configuration can be easily generalized to

larger buffer sizes.

4.2.3 Performance Analysis of PNC and Enhancements

We now analyze the performance of PNC, and identify its weakness. We then present two

effective enhancements to improve its performance.

With the uniform distribution, we can focus on the success ratio of a single server data

collection. Since the cardinality of each data segment is not necessarily N in PNC, it is

possible that the success ratio is less than 100%. Let B = 1 for each node and the success

ratio for obtaining i data segments by collecting i data segments using partial network

coding be F(i). Define F(O) = 1, we quantify the success ratio in this scenario as follows:

Theorem 4.2.4 ThesuccessratioF(N)=(*)NL~ol(N.) F(i)ii.
N -2

Proof: The basic idea of our proof is to find the sets of combined data segments that are

decode-able, referred to as valid sets. For example, a set of combined data segments with

cardinality 1 through N is decode-able, and the set of combined data segments with all

cardinality being 1 is not decode-able. The success ratio is given by the number of valid

sets over the total number of possible sets of combined data segments; the latter is N N.

A valid set can be constructed as as follows: pick N - i combined data segments of

cardinality Nand i combined data segments with cardinality less or equal to i. These i

combined data segments should be a valid set (decode-able) in terms of i. For example,

if N = 4, a valid set may consist of two combined data segments of cardinality 4 and

two combined data segments with cardinality less than or equal to 2. The number of the

latter is F(i)ii. Since the retrieval can be of any sequence,we need to fit all these combined

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 71

data segments into N pickup sequences. For those N - i combined data segments with

cardinality N, there are (N.) locations to fit in. Notice that we do not need to shuffle
N -l

the i combined data segments with smaller cardinalities as F(iW has already contained all

possible shuffles. Therefore, the total number of valid sets is l:[:"(/ (N.) F(iW after
N -l

summing up all i E [0,N - 1], and the theorem follows. 0

We further derive an upper bound and lower bound for PNC.

Theorem 4.2.5 The upper and lower bounds of the success ratio are 1 - (Ni/)N and

m~ol N;;i respectively.

Proof: The success ratio is upper bounded by successfully obtaining the combined data

segments with the highest cardinality. This probability is 1:i due to the uniform distribution.

The probability of not getting it in N picks is (N;;i)N, giving an upper bound 1- (!!.;?-)N.

The success ratio of getting a set of combined data segment with cardinality 1 through

N is (1:i)NN!, which is equal to rr~ol N;;i. This is clearly a lower bound. 0

As discussed before, the success ratio of Non-NC is:

Observation 4.2.6 If the distribution of the data segments is uniform, the success ratio

for obtaining all N data segments by randomly collecting N data segments (Non-NC) is

rrN-1N-i
.=0 N'

We can see from Theorem 4.2.5 that the lower bound of the success ratio of PNC is

the same as the success ratio of Non-NC. A preliminary comparison of the success ratio

can be founded in Fig. 4.5 where we can see that PNC always perform better than Non­

NC. Detailed comparison as well as practical enhancements which substantially improve the

success ratio will be presented in the following sections.

It is also worth noting that, when the buffer size of a sensor increases, it can upload a

data segment of higher cardinality when queried. The success ratio of PNC will thus be

improved. On the contrary, for Non-NC, since each sensor can only randomly picks the data

segment from its buffer for uploading, its performance remains unchanged.

We go on to compare PNC and NC. We know that, by ignoring the linear dependency

of coefficients and data removal, NC achieves 100% success ratio when W = N combined

data segments are collected. An interesting question is thus whether PNC can achieve the

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

0.8
Non-NC ---r--

0.7 PNC

0.6
.Q

0.510
a:
'" 0.4'"CD

8 0.3~en
0.2

0.1

0
2 3 4 5 6 7 8 9 10

N

Figure 4.5: Success ratio as a function of N (in default values M = Nand B = 1).

72

same performance, or, if not, how can we improve the performance. To give some intuition,

we see that in PNC, the chances for encountering CN-l and Co are not identical: the most

up-to-date data segment CN-l is easier to collect because every combined data segment

contains CN-l; on the contrary, the oldest data segment Co (but not obsolete) exists in the

combined data segment with cardinality of N only. As such, the decoding ratio with PNC

after blindly accessing a subset of sensors could be lower than that with NC.

To address the above problem, we make two enhancements to the original PNC scheme.

First, we extend the cardinality of the system from N to N + ..fN; that is, in addition

to N required data segments, we store another ..fN obsolete data segments in the system.

These obsolete data segments makes the originally oldest data segment relatively "younger"

and therefore more likely to be collected. Second, we expand the buffer size of a sensor to

B = ..fN + 1, which facilitates the first enhancement. We see an illustration in Fig. 4.6;

on the left hand side, the inner grey triangle denotes the original PNC with no extension.

After extension, PNC-ext becomes the outer white triangle, with cardinality N +..fN. Given

buffer size ..fN+ 1 for each sensor, one data segment is picked in every ..fN interval as shown

by the lines. With these two modifications, the following lemma shows that there is a scheme

such that each sensor can upload a data segment with cardinality at least N when queried.

Lemma 4.2.7 By extending the cardinality of the system to N + ..fN and the buffer size

to ..fN + 1, each sensor can have a combined data segment with cardinality at least N in its

buffer.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

N IN

73

IN N

IN
'---------0,<-----;/

IN

IN

Figure 4.6: Cardinality extension and buffer storage in PNC.

fa = [CN-I"",cN_-IN_I"",c2-1N_I,···,ca"",c_-IN]

it [CN-I"",cN_-IN_I"",c2-1N_I""'CO]

12 [CN-I, ... ,cN--IN-I"'" c2VN- I]

Figure 4.7: A snapshot of the buffer at a sensor in PNC.

Proof: Consider the following storage scheme for each sensor: A sensor picks a ran­

dom number k E [-.IN,O] (we use a negative index to denote an obsolete data seg­

ment) and stores combined data segments fa = [CN-I, ... , Ck], it = [CN-I, ... , ck+-IN],

12 = [CN-I, . . . , ck+2-1N], ... , f -IN = [CN-I, . . . , cN--IN-k]' The difference of the cardinality

between fi and fi+1 is .IN for all 0 ~ i ~ (B - 1). The buffer requirement of this scheme

is .IN + 1, and for any k the sensor chooses, the cardinality of fa is greater than N. In

addition, after executing the Data Replacement algorithm, the cardinality of fa remains

greater than N until it is discarded upon the arrivals of.JN new data segments. After that,

the cardinality of f1 will be greater than N, and the iteration continues. 0

A concrete example is shown in Fig. 4.7, where we denote the y'N obsolete data with

negative indices. We can see that fa has a cardinality of N + .IN (with y'N obsolete

data segments combined). When a new CN is generated, according to Data Replacement

algorithm, it will be combined to all Ii, and fa will be discarded. it however will have a

cardinality of N + 1 (combined with one obsolete data segment co). We can guarantee that,

at any given time, each sensor will have a data segment of cardinality at least N. We then

have the following observation on the performance of PNC as compared to NC.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 74

Theorem 4.2.8 The success ratio of PNC with B = ffi + 1 and W = N + ffi is 100%

(neglecting linear dependency of the coefficients).

Proof: From lemma 4.2.7, the server can collect ffi + N combined data segments with

cardinality at least N. For decoding, we are trying to solve a set of linear equations, of

which the coefficients form a (N + ffi) x (N + ffi) matrix. Since the cardinality of each

coefficient vector is at least N, then the rank of this matrix is at least N. Therefore, we can

solve the first N variables (which contributes to the rank). D

Corollary 4.2.9 The success ratio of PNC with B = ffi+1 and W = N +ffi is identical

to the success ratio of NC with B = 1 and W = N.

In other words, after sacrificing a sublinear buffer overhead (ffi) at each sensor and a

sublinear communication overhead (ffi), the PNC will be able to decode all the N original

data segments in a blind access as NC does.

4.3 Protocol Design and Practical Issues

In this section, we address some major practical concerns, and present a collaborative and

distributed protocol for continuous data collection with PNC.

4.3.1 Computation and Communication Overheads

Since the sensors are small and power constrained entities, the PNC operations must be

light-weighted. It is known that the computational overhead [or network coding lies mainly

in the decoding process. This is however performed in the powerful servers. Each sensor

just needs to randomly generate a set of coefficients, combine newly arrived data with those

in the buffer, or remove an obsolete data segment. All of these operations are relatively

simple with low costs. Another overhead is the transmission cost. For network coding

based application, besides the combined data, the coefficient vectors have to be uploaded

for decoding. Such overheads are generally much lower than the data volume, and our

simulation results have shown that the benefits of PNC generally overcome these overheads.

An alternative way to reduce the computation overhead is using polynomial interpolation

[73J. We change the coding base as 13 = {fklfk = Lf=i/ (3i x Cj, k E [0, ... , N -1]' (3 E Fq } .

Notice that the major difference in this setting is that an integer (3 is chosen and the

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

1 ,~-~~-:lIE--'¥--~_'__----'~'~"""~~
~

0.8

0.6
Q.

75

"OA -,

'<

0,2 '<

"
0

"'I-."-"'t_ --1-

20 30 40 50

N

q =256
q 0 4096

q = 65536 ----

60 70

Figure 4.8: Probability of linear independency as a function of the number of data segments.

coefficient vector is (1, (3,(32, ... , (3N-1) (for a combined data segment of cardinality N).

Therefore, only (3, a constant in respect to N, is needed to be uploaded. If all (3 uploaded

are different from each other, then the coefficient vectors arc guaranteed to be linearly

independent [73J. Therefore, the overhead is reduced substantially. This, however, does not

come for free. If two sensors choose the same (3, then these two combined data segments are

linear dependent. The linear dependency is thus higher than the case where all items of the

coefficient vectors are chosen randomly. Formally, the linear independency probability is

p = TI~o1 ~, where q is the size of the finite field Fq• Fig. 4.8 illustrates the relationship

of p, Nand q. To migrate this effect, we can use larger finite field Fq . Comparing q = 28 and

q = 216 , the probability of linear independency has been remarkably improved. For different

applications, this is worthwhile as the increase of Fq costs only logarithmic additional bits.

4.3.2 Multiple Data Patterns

In many applications, the sensor network is required to collect multiple data ranges or

patterns. For example, the sensor network may need to track the temperature of multiple

critical levels. Therefore, the sensors need to be invoked at different times to record different

data sets. The problem here is whether to use a mixed storage with each sensor splitting its

buffer to store different temperature levels, or just assign different subset of sensors to record

different levels. The tradeoff is obvious: the former might record certain temperature levels

incompletely if the buffer is too small, i.e., smaller than N; the latter, while fully recording

certain levels of temperature, will risk the incapability of decoding an entire level.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 76

The above all or nothing effect is also considered in [16]. Yet, for PNC based collection,

we can see that a larger buffer might provide data with higher cardinalities, and it is easy

to add an importance parameter in our system. That is, for important data patterns, we

can use more sensors to maintain them, and thus have higher probability to successfully

collect them. We will further investigate the impact of the importance parameter in the

next section through simulations.

4.3.3 Collaborative and Distributed Implementation

To guarantee success, our PNC suffers only a sublinear overhead (VN) in buffer storage

and communication cost. In practice, if N is too big, even a buffer of size VN+ 1 might

not be available at a tiny sensor. In addition, the buffer sizes of the sensors might not

be identical. To overcome these problems, the sensors can work collaboratively to provide

combined data segments when queried. Specifically, they can form clusters in advance,

where the members of a cluster maintain different cardinalities. A cluster can then upload

one highest cardinality data segment upon accessing.

We thus suggest the following collaborative and distributed implementation. We assume

that the server is interested in m data patterns and, for each pattern, N, recent data

segments, 1 ~ i ~ m. After deployment, each sensor will send a probe message to its

surrounding area to form a cluster, where the number of sensors in this cluster, n, is greater

than L:~1 N i · Presumably, the sensors in one cluster can reside in 1 or 2 hops from each

other. If n is too large, a two tier structure can be built, where each cluster in the first

tier stores the data for a single pattern. A cluster head is then selected for each cluster,

which distributes a storage schedule to the sensors in its cluster. When a sensor receives

a server query, it first forwards this message to the cluster head; the cluster head checks

whether this query is to search a data pattern associated with its own cluster. If so, the

head will notify the sensor that currently has the combined data segment of the highest

cardinality to upload the data; otherwise, it will forward the query to an appropriate head

that is associated with the pattern for further processing.

Non NC
PNC (no cluster)

PNC (2 hops) --..­
PNC (3 hops)

bHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

500 r-r-.---,.---,--,---,.--.,--,---,.-,

450

400
_ 350

§ 300

~ 250
1;;
:;; 200

&j 150

100

50
O'--"'-----L.-_L---'-_---L.-_L---'-_-'---_L..J

10 20 30 40 50 60 70 80 90
Number of Required Data (N)

Figure 4.9: Energy consumption as a function of N for different cluster radiuses.

4.4 Performance Evaluation

4.4.1 Simulation Settings

77

In this section, we present our simulation results for PNC-based sensor data collection. We

deploy 1000 sensors randomly into a field of 10m x 10m. The distance between the server

and the sensor nodes is much larger than the distance between thc sensors, and, as suggested

in [49], we assume that there is a lO-fold difference. The server can thus access the data

without necessarily entering deep into the sensor field, which is useful for data collection

from a dangerous area. The default number of data segments that the server collects is thc

most recent 50 data segments (N = 50) and the default buffer size B is 1. We examine

other possible values in our simulation as well. The linear equations in network coding are

solved using the Gaussian Elimination [25], and the coefficient field is q = 28
, which can

be efficiently implemented in a 8-bit or more advanced microprocessor [80J. To mitigate

randomness, each data point in a figure is an average of 1000 independent experiments.

4.4.2 Energy Consumption

Since NC does not have the capability of data removal, it will eventually lead to a crash of

the system in continuous data collection. Therefore, in our simulations, we only study the

performance of PNC and compare PNC with Non-NC.

We first compare the energy consumption of PNC with Non-NC. We use an energy

consumption model of E = d4 [81], where d is the transmission range. The field will

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

___-1

0.8
.2
1;;

~ 0.6

§
cil 0.4

78

0.2 .<
PNC

'"Non-NC

60 80 100 120 140 160 180 200

Number of Data Coliections(W)

Figure 4.10: Success ratio as a function of W for PNC and Non-NC.

generate events which are of interest in an hourly basis and the sensors will record these

events. Server will randomly and occasionally approach with an expected interval of 20

hours. The server is interested in the most recent N = 50 data pieces. It will first randomly

collect 50 data segments and if some original data segments are missing (for Non-NC) or the

combined data segments can not be decoded (for PNC), then the server will send additional

requests one by one, until all 50 data segments are obtained.

The results of the experiments are shown in Fig. 4.9. It is clear that PNC performs

better than Non-NC for different N. It can be seen that the energy consumptions are linear

with respect to the number of required data (N), but the slope for PNC is much smaller.

As a result, when N is greater than 50, the energy consumption with Non-NC is 3 to 4

times higher than that with PNC. The energy consumption with PNC is further reduced

when clusters are employed (the cluster radius is set to 2 or 3 hops, respectively), because

data segments with higher cardinalities could be uploaded from a larger aggregated buffer.

4.4.3 Performance of PNC

In our applications, when server approaches, a fast data collection is always desired. There­

fore, it is better for the server to estimate the number of sensors it should query and send

the query simultaneously, instead of in an incrementally fashion as previous section. Success

ratio is thus a good indicator of how many sensors should be queried at once. Therefore,

we use success ratio to evaluate the performance of PNC starting from this section.

PNC vs Non-NC: We revisit the performance of PNC and Non-NC using success ratio.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 79

0.8

~
a: 0.6
'"'"Ql
u
U
::l 0.4en

0.2

0
50

B =1
B 2 •
B = 3 -----lO"--

60 70 80 90 100 110 120

Number of Data Coliections(W)

Figure 4.11: Success ratio as a function of W with different buffer size.

Fig. 4.10 shows the success ratio as a function of the number of data segments collected

(W). Not surprisingly, the success ratio increases when W increases for both PNC and

Non-NC, but the improvement PNC is more substantial. For example, if 100 data segments

are collected, the success ratio is about 80% for PNC; for Non-NC, after collecting 200 data

segments, the success ratio is still 40% only.

Effect of Buffer Size: We then increase the buffer size from B = 1 to 2 and 3 to investigate

its impact. We require the sensors to upload the data segment of the highest cardinality

for each server access. The results are shown in Fig. 4.11, where a buffer increase from 1

to 2 has a notice improvement in success ratio, and a buffer of 3 segments delivers almost

optimal performance. This is not surprising because there is a higher degree of freedom for

storing and uploading data in a larger buffer space.

In our analysis, we show that given W = N + VN, and B = VN + 1 the system

guaranteed to decode N original data segments (ignoring linear dependency). In this case,

the server has to decode N + VN data segments, among which VN are obsolete. An

interesting question is thus: Can we reduce the overhead for W but still guarantee an optimal

success ratio? Unfortunately, from Fig. 4.12, we can see that this unlikely happens. Among

the 1000 experiments, only in 4 experiments the server successfully decodes before collecting

all the N + VN data segments. We conjecture that VN could be a lower bound of the

overhead, though it has yet to be proved.

The above two sets of results suggest that PNC works quite well for a reasonable buffer

size even without extension to include obsolete data segments. Therefore, unless a guarantee

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 80

Experiment No. ---+---~

1

57.5

~
" 57'"}j
'0o
g 56.5
'"0
15
i;;
.0 56E
:>z

55.5
o 200 400 600

Experiments No.

800 1000

Figure 4.12: Number of communication needed (W) to successfully decode N original data
segments. N = 50 and N +,;N = 57.

0.8
0
fa
cr 0.6CIl
CIl

'"s
:> 0.4Ul

0.2

0

N = 20
N 50

N = 100 -____

1 1.5 2 2.5 3 3.5 4

Ratio between Number of Collections and Cardinality

Figure 4.13: Success ratio as a function of A = ~.

is desired, the straightforward PNC is enough for most applications.

Impact of N: We then explore the impact of the cardinality N. In Fig. 4.13, we depict the

decoding ratio for different number of original data segments (N=20, 50, and 100). The x­

axis denotes the ratio between the number of data collected and the cardinality, i.e. A = ~.

We can see from Fig. 4.13 that their differences are insignificant, and general reduce when

W increases. Recall that, the performance of Non-NC decreases sharply when N increases,

as shown in Table 4.2, while NC is marginally affected by N only. These simulation results

thus reaffirm that PNC inherits the good scalability of NC.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS 81

0.8 A

No Delay
1 Hop away

2 Hops away - .)f­

3 Hops away

50 60 70 80 90 100
Cardinalily(N)

~a: 0.6II)
II)

"cs 0.4(JJ

0.2
1-.,--..

0
20 30 40

Figure 4.14: Success ratio as a function of cardinality for different cluster radiuses.

0.8

~a: 0.6II)
II)

so
0.4:J

(JJ

0.2

O'--*-_-~==-'----'----'-_..-L---.L-..----'.....l

200 250 300 350 400 450 500 550 600
Number of Data couecnonstw)

Figure 4.15: Success ratio as a function of W for multiple patterns.

4.4.4 Effect of Clustering

As discussed in section 4.3, to surpass the limited buffer size, the sensors can form clusters

to achieve a larger aggregated buffer space. In Fig. 4.14, we show the success ratio for

a buffer limited sensor network with different cluster radiuses, i.e., the number of hops to

reach the farthest sensors, ranging from 0 to 3. When the radius is 0, there is basically no

cluster and a contacted sensor has to respond to the server immediately using data from

its local buffer. We can see that the success ratio significantly increase when the clustering

algorithm is enabled. For a cluster radius of 2, it is already quite close to 100%.

CHAPTER 4. DATA COLLECTION IN EXTREME ENVIRONMENTS

4.4.5 Impact of Multiple Patterns

82

We next investigate the impact of requiring the sensor network to maintain multiple data

patterns, e.g., to record more than one event of interest. Fig. 4.15 shows the success ratio

for a 4-pattern scenario. To differentiate the importance of the patterns, we have assigned

different number of sensors to each pattern (in this example, 12.5%, 12.5%, 25%, and 50%

of the total number of sensors).

Not surprisingly, the success ratio favors data pattern with more sensors assigned. An

interesting observation is that the improvement is not uniform for all the four patterns,

either. It favors first for the data pattern with the largest number of assigned sensors

(50%), then the pattern with the second largest number of assigned sensors (25%), and so

forth. This is clearly desirable given that we want to differentiate the patterns.

4.5 Conclusion

In this chapter, we developed partial network coding (PNC), for continuous data collection

in an extreme network environment. PNC allows efficient storage replacement for contin­

uous data, where the conventional network coding is not able achieve. We proved that

the performance of PNC is quite close to NC, except for a sublinear overhead on storage

and communications. We also addressed a set of practical concerns toward PNC-based

continuous sensor data collection.

In network coding research, it is known that the higher the cardinality is, the more the

benefits we could expect. Therefore, many existing schemes have focused on achieving a

full cardinality in data combination; For example, the proposals in [18] [20] [26] [56] generally

increase the cardinality by combining as much data as possible in intermediate nodes and

then forward to others. Our work on partial network coding (PNC), however, shows that

the opposite direction is worth consideration as well.

Chapter 5

Future Work

The area of wireless sensor networks is new and growing fast. There are diverse applications

with numerous challenges and opportunities. We consider the following areas for our future

efforts.

5.1 Data Filters in Sensor Networks

Many sensor applications require long term data collection but may tolerate approximate

results. We will further explore the possible transmission reduction and energy saving

techniques by using historical information (e.g., in previous rounds). We would like to

design an adaptive filtering scheme that can provide a trade-off between system lifetime and

precision guarantees. In contrast to chapter two where we use fewer sensors, the adaptive

filters mainly try to reduce the number of transmissions by exploring the "similarities" of the

current data value and previous data value. The data value with small enough changes will

be filtered out. We will further illustrate the impact of different underlying data routing

architecture. For a better understanding of our scheme, we will also validate our data

filtering schemes by real world sensor deployment on mica-2 sensors. We will then draw

an abstraction of our adaptive filtering scheme and build it as a separate sub-layer that is

uniformly applicable to a wide range of applications with continuous queries.

83

CHAPTER 5. FUTURE WORK

5.2 Network Coding

84

Network coding is a new and rapidly developing field, with numerous theoretical and prac­

tical unsolved questions. Our work on network coding provides a new coding paradigm; yet

better understanding is needed. Beyond the practical issues toward implementing a real

PNC-based sensor network, we are interested in the following two questions: First, based

on our simulations, we observe that the performance of PNC is very close to NC. We there­

fore suspect whether the overhead of -IN reaches the potential limit of PNC. Second, our

PNC is only used for data collection. We expect that an enhancement could facilitate more

complicated queries, such as Max/Min, Quantile, and Average/Summation. Given its flexi­

bility in data management, we believe that PNC can be applied in many other applications,

especially considering the recent advances of data streaming in numerous fields.

5.3 Cross Layer Interaction of Sensor Coverage and Sensor

Data Collection

Sensors can provide quality coverage of the sensor field as well as valuable topological in­

formation of the sensors. We expect to explore the correlation of the sensor data in a close

neighborhood. The first step will be a study of the impact of the correlation of the readings

on the reduction of the number of data packets submitted. A cross layer optimization of

the topological control layer and application layer is then expected; where the interaction

between the two layers will be carefully designed and engineered.

Bibliography

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Transac­
tions on Information Theory, 46(4), July 2000.

[2] 1. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102-114, August 2002.

[3] J. Al-Karaki and A. Kamal. Routing techniques in wireless sensor networks: A survey.
IEEE Wireless Communications, 11(6):6-28, December 2004.

[4] J. Albowitz, A. Chen, and 1. Zhang. Recursive position estimation in sensor networks.
In Proc. IEEE ICNP'Ol, Riverside, CA, November 200l.

[5] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-hop
wireless networks. In Proc. IEEE INFOCOM'Ol, Anchorage, AK, April 200l.

[6] 1. Beichl and F. Sullivan. The metropolis algorithm. Computing in Science and Engi­
neering, 2(1):65-69, 2000.

[7] S. Bhadra and S. Shakkottai. Looking at large networks: Coding vs queueing. In Proc.
IEEE INFOCOM'06, Bacellona, Spain, April 2006.

[8] R. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, Reading,
MA,1983.

[9] A. Boukerche, R. Pazzi, and R. Araujo. A fast and reliable protocol for wireless sensor
networks in critical conditions monitoring applications. In Proc. ACM MSWiM'04,
Venice, Italy, October 2004.

[10] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proc.
WSNA '02, Atlanta, GA, September 2002.

[11] N. Bulusu, J. Heidemann, and D. Estrin. Cps-less low cost outdoor localization for very
small devices. IEEE Personal Communications Magazine, 7(5):28-34, October 2000.

[12] C. Buragohain, D. Agrawal, and S. Suri. Power aware routing for sensor databases. In
Proc. IEEE INFOCOM'05, Miami, FL, March 2005.

85

BIBLIOGRAPHY 86

[13] M. Cardei, M. Thai, Y. Li, and W. Wu. Energy-efficient target coverage in wireless
sensor networks. In Proc. IEEE INFOCOM'05, Miami, FL, March 2005.

[14] V. Cerf et al. Delay tolerant network architecture. Internet draft,
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt, July 2004.

[15J J. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc networks. In
Proc. IEEE INFOCOM'OO, Tel-Aviv, Israel, March 2000.

[16] P. Chou, Y. Wu, and K. Jain. Practical network coding. In Proc. Allerton Conference
on Communication, Control and Computing '03, Monticello, IL, October 2003.

[17] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying
and routing for ad hoc heterogeneous sensor networks. International Journal of High
Performance Computing Applications, 16(3):293~313, August 2002.

[18J S. Deb and M. Medard. Algebraic gossip: A network coding approach to optimal
multiple rumor mongering. In Proc. Allerton Conference on Communication, Control
and Computing 2004, Urbana, IL, October 2004.

[19] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical in-network data ag­
gregation with quality guarantees. In Proc. 9th International Conference on Extending
DataBase Technology (EDB T '04), Heraklion-Grete, Greece, March 2004.

[20] A. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous access to distributed
data in large-scale sensor networks through decentralized erasure codes. In Proc.
IPSN'05, Los Angeles, CA, April 2005.

[21] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scal­
able coordination in sensor networks. In Proc. ACM MOBICOM'99, Seattle, WA,
August 1999.

[22] K. Fall. A delay-tolerant network architecture for challenged internets. In Proc. ACM
SIGCOMM'03, Karlsruhe, Germany, August 2003.

[23J R. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

[24J J. Gao, L. Guibas, J. Hershburger, L. Zhang, and A. Zhu. Geometric spanner for
routing in mobile networks. In Proc. ACM MOBIHOC'Ol, Long Beach, CA, October
2001.

[25] J. Gentle. Numerical Linear Algebra for Applications in Statistics. Springer, 1998.

[26J C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution.
In Proc. IEEE INFOCOM'05, Miami, FL, March 2005.

[27] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over
sensor networks. In Proc. ACM PODS'04, Paris, France, June 2004.

BIBLIOGRAPHY 87

[28] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target
tracking sensor networks. In Proc, ACM MOBICOM'04, Philadelphia, PA, September
2004.

[29] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Van,
L. Gu, J. Hui, and B. Krogh. Energy-efficient surveillance system using wireless sensor
networks. In Proc. ACM MOBISYS'04, Boston, MA, June 2004.

[30] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi­
cation protocol for wireless microsensor networks. In Proc. Hawaaian International
Conference on Systems Science (HICSS'oo), Wailea Maui, HI, January 2000.

[31] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information
dissemination in wireless sensor networks. In Proc. ACM MOBICOM'99, Seattle, WA,
August 1999.

[32] M. Ho and K. Fall. Poster: Delay tolerant networking for sensor networks. In Proc.
IEEE SECON'04, Santa Clara, CA, October 2004.

[33] T. Ho, M. Medard, J. Shi, M. Effros, and D. Karger. On randomized network coding. In
Proc. 41st Allerton Annual Conference on Communication, Control, and Computing,
Monticello, IL, October 2003.

[34] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13-30, 1963.

[35] A. Howard, M. Mataric, and G. Sukhatme. An incremental self-deployment algorithm
for mobile sensor networks. Autonomous Robots Special Issue on Intelligent Embedded
Systems, 13(2):113-126,2002.

[36] A. Howard, M. Mataric, and G. Sukhatme. Mobile sensor network deployment using
potential field: a distributed scalable solution to the area coverage problem. In Proc.
DARS'02, Fukuoka, Japan, June 2002.

[37] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network
density on data aggregation in wireless sensor networks. In Proc. IEEE ICDCS'02,
Vienna, Austria, July 2002.

[38] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In Proc. ACM MOBICOM'oo,
Boston, MA, August 2000.

[39] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In Proc. ACM
SIGCOMM'04, Portland, OR, August 2004.

[40] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-efficient
computing for wildlife tracking: Design tradeoffs and early experiences with zebranet.
In Proc. ACM A SPL OS '02, San Jose, CA, October 2002.

BIBLIOGRAPHY 88

[41] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin. Intelligent fluid
infrustructure for embedded networks. In Proc. ACM MOBIS YS '04, Boston, MA,
June 2004.

[42] S. Karlin and H. Taylor. An Introduction to Stochastic Modeling. Academic Press,
Orlando, FL, third edition, 1998.

[43] B. Karp and H. Kung. Greedy perimeter stateless routing for wireless networks. In
Proc. ACM MOBICOM'OO, Boston, MA, August 2000.

[44] V. Kawadia and P. Kumar. the power control and clustering in ad-hoc networks. In
Proc. IEEE INFOCOM'03, San Francisco, CA, March 2003.

[45] B. Krishnamachari, D. Estrin, and S. Wicker. the impact of data aggregation in wireless
sensor networks. In Proc. IEEE ICDCS Workshop on Distributed Event-based System
(DEBS'02), Vienna, Austria, July 2002.

[46] S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors. In Proc. ACM
MOBICOM'05, Cologne, Germany, August 2005.

[47] S. Kumar, T. Lai, and J. Balogh. On k-coverage in a mostly sleeping sensor network.
In Proc. ACM MOBICOM'04, Philadelphia, PA, September 2004.

[48] S. Lin and D. Costello. Error Control Coding: Fundamentals and Applications. Printice
Hall, Upper Saddle River, NJ, 2004.

[49] S. Lindsey and C. Raghavendra. Pegasis: Power-efficient gathering in sensor networks.
In IEEE Aerospace Conference Proceedings, volume 3, pages 1125-1130, 2002.

[50] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley. Mobility improves coverage of
sensor networks. In Proc. ACM MOBIHOC'05, Urbana-Champaign, IL, May 2005.

[51] M. Luby. Lt codes. In Proc. IEEE FOCS'02, Vancouver, Canada, November 2002.

[52] S. Madden and M. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proc. IEEE ICDE'02, San Jose, California, February 2002.

[53] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation service
for ad hoc sensor networks. In Proc. USENIX OSDI'02, Boston, MA, December 2002.

[54] S. Madden, R. Szewczyk, M. Franklin, and W. Hong. Supporting aggregate queries
over ad-hoc wireless sensor networks. In Proc. IEEE International Workshop on Mobile
Computing Systems and Application (WMCSA '02), Callicon, NY, June 2002.

[55] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor
networks for habitat monitoring. In Proc. ACM WSNA '02, Atlanta, GA, September
2002.

BIBLIOGRAPHY 89

[56] M. Medard, S. Acedanski, S. Deb, and R. Koetter. How good is random linear coding
based distributed networked storage? In Proc. NETCOD '05, Riva del Garda, Italy,
April 2005.

[57] S. Meguerdichian, F. Koushanfar, G. Gu, and M. Potkonjak. Exposure in wireless
ad-hoc sensor networks. In Proc. ACM MOBICOM'Ol, Rome, Italy, July 2001.

[58] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. Coverage problems
in wireless ad-hoc sensor networks. In Proc. IEEE INFOCOM'01, Anchorage, AK, April
2001.

[59] E. Miluzzo, N. Lane, and A. Campbell. Virtual sensing range. In Proc. ACM Sensys'06,
Boulder, CO, November 2006.

[60] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturisation: a tool for investi­
gation in control algorithms.

[61] et al N. Metropolis. Equation of state calculations by fast computing machines. Journal
of Chemical Physics, 21:1087-1092, 1953.

[62] S. Nath, H. Yu, P. Gibbons, and S. Seshan. Synopsis diffusion for robust aggregation
in sensor networks. In Proc. ACM SENSYS'04, Baltimore, Maryland, November 2004.

[63] C. alston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over dis­
tributed data streams. In Proc. ACM SIGMOD'03, San Diego, CA, June 2003.

[64] J. Plank and M. Thomason. A practical analysis of low-density parity-check erasure
codes for wide area storage applications. In Proc. International Conference on Depend­
able Systems and Networks (DSN) '04, Florence, Italy, June 2004.

[65] S. Ross. Introduction to Probability Models. Academic Press, Boston MA, fourth edition,
1989.

[66] N. Sadagopan, B. Krishnamachari, and A. Helmy. the acquire mechanism mechanism
for efficient querying in sensor networks. In Proc. the IEEE International Workshop
on Sensor Network Protocol and Applications (SNPA '03), Seattle, WA, May 2003.

[67] C. Schindelhauer. Mobility in wireless networks. In invited talk of SOFSEM'06, Merin,
Czech Republic, January 2006.

[68] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connectivity
and diameter. In Proc. IEEE INFOCOM'03, San Francisco, CA, March 2003.

[69] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric storage
in sensornets. In Proc. ACM HotNets'02, Princeton, NJ, October 2002.

BIBLIOGRAPHY 90

[70] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New
aggregation techniques for sensor networks. In Proc. ACM SENS YS '04, Baltimore,
MD, November 2004.

[71.] G. Sibley, M. Rahimi, and G. Sukhatme. Robomote: A tiny mobile robot platform for
large-scale sensor networks. In Proc. IEEE ICRA '02, Washington DC, May 2002.

[72] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless sensor net­
works. In Proc. IEEE ICC'Ol, Helsinki, Finland, June 200l.

[73] E. Suli and D. Mayers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

[74] X. Tang and J. Xu. Extending network lifetime for precision-constrained data aggre­
gation in wireless sensor networks. In Proc. IEEE INFOCOM'06, Barcelona, Spain,
April 2006.

[75] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak. Minimal and maximal exposure path
algorithms for wireless embedded sensor networks. In Proc. ACM SENSYS'03, Los
Angeles, CA, November 2003.

[76] D. Wang, Y. Long, and F. Ergun. A layered architecture for delay sensitive sensor
networks. In Proc. IEEE SECON'OS, Santa Clara, CA, September 2005.

[77J D. Wang, Q. Zhang, and J. Liu. Partial network coding: Theory and application in
continuous sensor data collection. In Proc. IEEE IWQoS'06, New Haven, CT, June
2006.

[78] G. Wang, G. Cao, and T. LaPorta. A bidding protocol for deploying mobile sensors.
In Proc. IEEE ICNP'03, Atlanta, GA, November 2003.

[79] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-coding based routing for oppor­
tunistic networks. In Proc. ACM SIGCOMM Workshop WTDN'OS, Philadelphia, PN,
August 2005.

[80] J. Widmer and J. Boudec. Network coding for efficient communication in extreme
networks. In Proc. ACM SIGCOMM WorkShop WTDN'OS, Philadelphia, PN, August
2005.

[81J J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-efficient
broadcast and multicast trees in wireless networks. In Proc. IEEE INFO COM'00,
Tel-Aviv, Israel, March 2000.

[82] C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis with network coding. In
Proc. IEEE IWQoS'06, New Haven, CT, June 2006.

BIBLIOGRAPHY 91

[83] Y. Wu, P. Chou, and S.-Y. Kung. Minimum-energy multicast in mobile ad hoc net­
works using network coding. IEEE Transactions on Communications, 53(11):1906­
1918, November 2005.

[84] G. Xing, C. Lu, R. Pless, and J. O'Sullivan. Co-grid: an efficient coverage maintenance
protocol for distributed sensor networks. In Proc. ACM IPSN'04, Berkeley, CA, April
2004.

[85] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for
ad-hoc routing. In Proc. ACM MOBICOM'Ol, Rome, Italy, July 2001.

[86] T. Yan, T. He, and J. Stankovic. Differentiated surveillance of sensor networks. In
Proc. ACM SENSYS'03, Los Angeles, CA, November 2003.

[87] Y. Yao and J. Gehrke. Query processing for sensor networks. In Proc. CIDR '03,
Asilomar, CA, January 2003.

[88J O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. In Proc. IEEE INFO COM'04, Hong Kong, China, March
2004.

[89J Y. Yu, B. Krishnamachari, and V. Prasanna, Energy-latency tradeoffs for data gath­
ering in wireless sensor networks. In Proc. IEEE INFOCOM'04, Hong Kong, China,
March 2004.

[90] W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking in
sensor networks. In Proc. IEEE INFOCOM'04, Hong Kong, China, March 2004.

[91J Y. Zhu, B. Li, and J. Guo. Multicast with network coding in application layer overlay
networks. IEEE Journal on Selected Areas in Communications, 22(1):107-120, January
2004.

[92J Y. Zou and K. Chakrabarty. Sensor deployment and target localizatoin based on virtual
forces. In Proc. IEEE INFOCOM'03, San Francisco, CA, March 2003.

[93] Y. Zou and K. Chakrabarty. A distributed coverage- and connectivity-centric technique
for selecting active nodes in wireless sensor networks. IEEE Transactions on Computer,
(8):978-991, August 2005.

