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ABSTRACT 

Guaranteed Annuity Options (GAOs) are options available to holders of certain 

pension policies. Under these contracts, policyholders contribute premiums into a fund 

managed by the insurer. At retirement, the policyholders buy life annuities at a 

guaranteed rate provided by the original insurer, or annuitize with another insurer. Tf the 

guaranteed annuity rates are better than the prevailing rates in the market, the insurer has 

to make up the difference. GAOs can be viewed as interest rate options, since retiring 

policyholders can choose to use the higher of the guaranteed annuity rate and the 

prevailing market rate. We study GAOs using two models for the interest rate; the 

Vasicek and the Cox-Ingersoll-Ross models. An actuarial approach is used to value the 

GAOs and compared with the value of a replicating portfolio. 
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INTRODUCTION 

1.1 Guaranteed annuity options (GAOs) 

Guaranteed Annuity Options (GAOs) are options available to holders of certain 

pension policies. Under these contracts, policyholders contribute either single or regular 

premiums into a fund managed by the insurer. At retirement, the policyholders have the 

option to convert the maturity policy proceeds into life annuities at a guaranteed rate 

provided by the original insurer, or annuitize with another insurer. Tf the guaranteed 

annuity rates are more beneficial to the policyholders than the prevailing rates in the 

market, the insurer has to make up the difference. GAOs can be viewed as interest rate 

options, since retiring policyholders can choose to use the higher of the guaranteed 

annuity rate and the prevailing market rate. 

GAOs have been designed to make the pension contract more attractive since the 

policyholder could count on a minimum annuitization rate. There is evidence of GAOs 

being issued in 1839 (Historic Records Working Party (1972)). Today, GAO has become 

a common feature for many US tax sheltered insurance products. A survey conducted by 

the Government Actuary's Department in 1998 on life insurance companies' exposure to 

GAOs indicated that: the exposure to GAOs was relatively widespread within the 

industry and had the potential to have a significant financial effect on a number of 



companies (Treasury (1998)). However, i t  is the GAOs of UK retirement savings 

contracts sold in the 1970s and 1980s that drew most of the attention. 

Guaranteed Annuity Options began to be included in some UK pension policies in 

the 1950's and became very popular in the 1970's and 1980's when long-term interest 

rates were high. At that time, the GAOs were set very far out-of-the-money and insurance 

companies apparently assumed that interest rates would remain above the implicit 

guaranteed rates and consequently that the guarantee would be a cost-free benefit to make 

policyholders feel more secure. 

Tn the 1970s and 1980s' the most popular guaranteed rate for a male aged sixty 

five was •’1 1 1 annuity per annum per •’1 000 of maturity proceeds or an annuity cash 

value ratio of 1:9. Tf the prevailing annuity rate provides an annual payment higher than 

•’1 1 1 per •’1 000, a rational policyholder would choose the prevailing market rate. During 

these two decades, the average UK long-term interest rate was around 11% p.a. The 

break-even interest rate implicit in the GAOs based on the mortality basis used in the 

original calculations was in the region of 5%-6% p.a. (see Boyle & Hardy (2003)). 

Obviously, the GAOs were far out-of-the-money. However, in the 1990's, as long-term 

interest rates fell, these GAOs began to move into the money. The inclusion of GAOs 

was discontinued in the UK by the end of 1980's. Unfortunately, the long-term nature of 

these pension policies still made GAO a significant risk management challenge for the 

life assurance industry and threatened the solvency of some UK insurance companies. 

The emerging liabilities under GAOs (near •’2.6 billion) forced Equitable life (UK), the 

world's oldest mutual insurance company, to stop issuing new business in 2000. 



When these GAOs were written in the 1970s and 1980s, although most actuaries 

believed that long-term interest rates would hardly fall below the break-even points, it is 

quite possible that actuaries were aware of a distant tail risk. At that time, the insurers 

were sitting on huge reserves of "free assets" known as the estate. The ratio of assets to 

statutory liabilities was usually greater than 150 percent, and this gave the insurer a 

financial position deemed safe enough to handle the tail risk. Unfortunately, the political 

climate changed in the late 1980s. The excess assets of insurers were viewed as cross- 

generational subsidy which was inequitable and had to be distributed to policyholders. 

The company that most dramatically and openly championed the minimal estate approach 

was Equitable Life (UK). 

Tn 1995, when Equitable Life realized that the guaranteed annuity options were 

moving into the money, they sought to recover the cost of meeting the annuity 

guarantees, where claimed, by reducing what would otherwise have been the 

policyholder's final bonus (Report of the Equitable Life Enquiry (2004)). They believed 

that the life insurance company had a wide discretion as to how to set future discretionary 

bonuses. The policyholder's right to convert the proceeds of his policy on maturity into 

an annuity at a pre-determined rate was a contractual right that could not be denied, but 

the actual amount of the proceeds at maturity depended on how the company used its 

discretion under the discretionary proti t. However, Equitable Life's use of its discretion 

in this way was litigated through the UK court system and ultimately reached the highest 

court in the UK, the House of Lords. At the level of junior courts, Equitable Life found 

some support for their view, but when the court reached the House of Lords the judges 



unanimously held that Equitable Life's discretion in setting terminal bonus was not 

unfettered. It needed to be exercised fairly and for a proper purpose. Using that discretion 

to defeat the purpose of another contractual term, the guaranteed annuity option, was not 

a proper purpose. The House of Lords ruled that Equitable Life had to meet its 

obligations to its policyholders with annuity guarantees. The cost of this decision 

sufficiently undermined the Equitable Life's financial position that the mutual had to put 

itself for sale in July 2000. After failing to find a buyer, Equitable Life closed its doors to 

new business in December 2000. 

Besides the decline in long-term interest rate, two other factors also contributed to 

the dramatic increase in the liabilities associated with these guarantees. First, strong stock 

market performance during the last two decades of the twentieth century meant that the 

amounts to which the guarantee applied increased significantly. Between 1980 and 2000, 

the annualized rate of growth on the major UK stock index was around 18 percent per 

year. Second, the mortality assumption implicit in the guarantee did not anticipate the 

significant improvement in mortality which occurred during that period. Comparing the 

mortality tables used during the 1970s to the current ones, it is evident that mortality 

improvements in the UK have increased the life expectancy of a 65-year-old man by 

about five years. Clearly, additional life expectancy increases the value of the life annuity 

for any given interest rate. 



1.2 Literature review 

Guaranteed annuity options have drawn considerable publicity in recent years. 

Bolton et al. (1997) described the origin and nature of these guarantees. Boyle (2003) 

analyzed their pricing and risk management. O'Brien (2001) discussed issues arising 

from GAOs in pension policies issued by U.K. life assurance companies and highlighted 

the impact of improving mortality. Many researchers have applied either actuarial 

methods or no-arbitrage pricing theory to calculate the value of GAOs embedded in 

deferred annuity pension policies. In Pelsser (2002)' a market value for GAO was derived 

using martingale modelling techniques and a static replicating portfolio of vanilla interest 

rate swaptions that replicates the GAO was constructed. The replicating portfolio would 

have been extremely effective and fairly cheap as a hedge against the interest rate risk 

involved in the GAO based on the UK interest rate data from 1980 until 2000. Chu & 

Kwok (2007) proposed three analytical approximation methods for the numerical 

valuation of GAOs: stochastic duration approach, Edgeworth expansion and analytic 

approximation in affine diffusions. In Chu & Kwok's work, a two-factor afiine interest 

rate term structure model was used. Ballotta and Haberman (2003) applied the one-factor 

Heath-Jarrow-Morton model to price GAOs in unit-linked deferred annuity contracts with 

a single premium. In Boyle & Hardy (2003) a simple one-factor interest rate model was 

used and the market price of the GAOs were obtained by option pricing approach. Boyle 

and Hardy also examined a number of conceptual and practical issues involved in 

dynamic hedging of the interest rate risk. Wilkie et al. (2003) worked on unit-linked 

contracts and investigated two approaches to reserving and pricing. Their first approach 

is traditional actuarial approach: quantile, conditional tail expectation and reserves. The 



second approach is to use option pricing methodology to dynamically hedge a guaranteed 

annuity option. The 1984 and 1995 Wilkie models were used to depict the yield curve. 

1.3 Outline of the project 

The work presented in this project is based on Boyle & Hardy (2003) and Wilkie 

et al. (2003). However, instead of the Wilkie models, the interest rate dynamics are 

modelled by Vasicek and Cox-Ingersoll-Ross (CIR) models. The rest of the project is 

organized as follows. In the next section, the model setup of the GAO is presented. 

Vasicek and CIR models are introduced and estimated in Section 3. Maximum likelihood 

estimator is applied for the Vasicek model while approximated and exact Gaussian 

estimations are used for the CTR model. The validity of these estimation methods is also 

examined in Section 3. Tn Section 4, the actuarial approach to value the GAOs is 

investigated. Monte Carlo simulation is used to derive the distribution of the guaranteed 

annuity options and the percentiles as well as VaRs (value at risk) are thus determined. 

The option pricing and hedging approach is studied in Section 5. A replicating portfolio 

consisting of equities and zero-coupon bonds is constructed to replicate the GAO and 

simulation results of delta hedging are presented. The sensitivity of the value of the 

guaranteed annuity option with respect to different parameters in the pricing model is 

also investigated. Conclusions and areas of future work are given in section 6. 



2 MODEL SETUP OF THE GAO 

For simplicity, only single premium equity-linked policies are considered in this 

project. Like in Boyle & Hardy's paper (Boyle & Hardy (2003)), standard actuarial 

notations are used in setting up the GAO model. Assume a male purchases a single- 

premium equity-linked contact and pays the premium at time 0. The contract will mature 

at time T, say, at which date the policyholder will reach age 65. The premium is invested 

in an equity account with market value S(t) at time t, where S(t) is a random process. S(t) 

is derived from the value of shares, with dividends reinvested. Thus, at time T, the 

policyholder will have maturity proceeds of S(T). 

At maturity, the market cost of a life annuity of $1 per annum for a male aged 65 

is denoted by a,j (T) . Note that a,, (T) is also a random process and is determined by the 

mortality assumption, the expense assumption and the interest rate dynamics at time T. 

Therefore, if the policyholder purchases an annuity at market rates, the annuity that could 

be received is S(T)/a,,(T) per annum, and the market value of this annuity is just 

S(T)/a,, (TI x a,, (TI = SVI 

The policy offers a guaranteed annuity rate of g = 9 ,  that is, $ 1  of lump sum 

maturity value purchases $l/g of annuity per annum. With S(T) maturity proceeds, the 

policyholder is able to purchase an annuity of S(T)Ig , which has a market value of 



( s (T) /~ )x  a,, (T) . A rational policyholder will choose 

m a x ( ~ ( ~ ) / ~  x a,,(T), s(T)) . The insurer will cover the 

whichever is higher: i.e. 

excess of the annuity cost 

over the maturity proceeds: 

a,,(T) is the market value of a life annuity of $1 payable annually in arrear starting at 

time T for a male aged 65. Tt depends on the prevailing long-term interest rates, the 

mortality assumption, and the expense assumption. In the project, the expenses are 

ignored and the mortality risk is assumed to be fully diversified. The value of a,,(T) is 

given by 

where ,, yr  is the probability that a life aged I .  survives n years and D,+,,(T) denotes the 

market value at time T of the unit par default-free zero-coupon bond with maturity date 

T+n. The limiting age of the policyholder is denoted by (0. 

The policyholder's death may occur between time 0 and time T. It is assumed that 

on death the only benefit is a return of the value of the fund, S(t). As a result, a proportion 



of only , p,,-, policies, where , p,,-, is calculated using an appropriate mortality table, 

survives to maturity. Since only those who survive to age 65 can receive the annuity, the 

value of the GAO per initial life is reduced to , p,-, x S ( T )  x  ma^(^^, ( T ) / ~  - 1, 

Let 

be the value of the GAO per initial life at maturity time T. The GAO valuation problem 

thus becomes to find V(t), the discounted value of V(T) at time t, 0 I t I T  . 

It must be noted that a few assumptions have been made in the project: 

1. The expenses are ignored when calculating a,, ( T )  . 

2. The premiums are invested and the annuities are purchased in US market. 

3. The equity and bonds are uncorrelated. 

4. The mortality risk has been hl ly  diversified and is independent of the financial risk. 



3 INTEREST MODELS AND THEIR ESTIMATIONS 

The value of the GAO at maturity is given by equation (2.1). From this equation, 

it can be observed, that two stochastic processes S(T) and a,5(T) determine the market 

value of the GAO. 

In addition, under the assumptions of no expense and fully diversitied mortality 

risk, a,, (T) is solely determined by the prevailing mortality rates and interest rates. 

Thus, the first step in a GAO valuation is to find appropriate interest rate models 

and estimate their parameters using historical interest rate data. The interest rate models 

employed in the project are the Vasicek model and the Cox-Tngersoll-Ross (CTR) model. 

Both models are continuous-time one-factor short-rate models. 

Studies found that multifactor models generally outperform one-factor ones over 

longer forecast horizons. However, as suggested by Hull (2002), relatively simple one- 

factor models usually give reasonable prices for instruments if used carehlly. Moreover, 

compared to multi-factor models, one-factor models lead to more straightforward closed- 

form formula for the GAO. 



3.1 Vasicek model 

The Vasicek model is one of the earliest stochastic term structure models 

(Vasicek (1977)). Tt can be formulated in terms of a linear stochastic differential equation 

of its short-term interest rate r(t): 

where y P  is a standard Brownian motion (or Wiener process) under the real-world 

measure P and K, p, and a are unknown system parameters. Under the Vasicek model, 

r(t) reverts towards the unconditional mean p, K measures the speed of mean reversion 

(the larger K, the faster the speed of mean reversion), and a i s  the instantaneous volatility 

of the short-rate r(t). Tf r(t) is above the mean (r( t)  > p ) ,  then the coefficient K (>0) 

makes the drift become negative so that the rate will be pulled down in the direction of p. 

Likewise, if the rate is below the mean, the coefficient K (>O) makes the drift become 

positive and the rate is pulled up in the direction of p. This stochastic process is also 

known as the Ornstein-Uhlenbeck process. 

Under the risk-neutral measure Q, the short-rate r(t) evolves according to the SDE 

where 6 = p - A a / ~  is the risk-neutral mean and W: is a Brownian motion under the 

risk-neutral measure Q. The solution to the SDE (3.1.2) can be written as 



-K(I -3)  + e(1 - e - ~ ( l - 3 )  or, for s<t, r(t) = r(s)e ) + a f e-"'I-"d W? 
J 

Thus, r(t) is Gaussian at each t, with expectation: 

EQ [r(t)] = r(0)e-* + @(I- e-") 

and variance 

It can be observed from equation (3.1.5) that the conditional expectation of the short-rate 

r(t) given r(s) is a weighted average of r(s) and its long-term mean. 

In the Vasicek model the risk is captured by assuming that the market price of 

interest rate risk, (p- r) /a = A ,  is constant across the term structure. This assumption is 

essentially the same as the no-arbitagelequivalent martingale assumption and permits 

pricing in a risk-neural framework. 

The price of a $1 face value zero-coupon bond at time t with maturity date T is 

(see Cairns (2004)) 



1 - e-K( T - 0  

where B(t, T) = (3.1.7) 
K 

The Vasicek model has several weaknesses. As a simple one-factor model, the 

Vasicek model cannot capture the more complex term structure shifts that occur. For s<t, 

r(C) given v(s) is normally distributed with mean v(~)e-~"-" + p(l - e - w v )  and variance 

6- - - e - 2 ~ ( t - S )  ) under the real-world measure P. Therefore, if r(s) is small, it is possible 
2~ 

for the short-rate v(t) to become negative. Moreover, all short-rates have the same 

volatility a. These are undesirable in real world applications. 

3.2 CIR model 

The CTR model for interest rates was proposed in 1985 (see Cox et al. (1985)). 

Since then it has been, and still is, the object of many studies and extensions. As a 

popular one-factor model, the CIR model has many desirable features such as supporting 

empirical evidence, positivity of the interest rates under certain conditions (see Cox et al. 

(1985)), uncomplicated fitting to data, mean reversion, interest rate dependent volatility 

and availability of closed-form pricing formula (Maghsoodi (2000)). 

The CIR model is a particular case of afiine models. Under the CIR model, the 

short-rate r(t) evolves according the SDE 



Tn SDE (3.2. I), the drift factor, K(,U - r(t)) , is exactly the same as in the Vasicek model. 

It ensures mean reversion of the interest rate towards the long run value p, with speed of 

adjustment governed by the strictly positive parameter K. The diffusion factor, a Jr(t) , 

corrects the main drawback of Vasicek's model, ensuring that the interest rate cannot 

become negative. Thus, at low values of the interest rate, the standard deviation becomes 

close to zero, cancelling the effect of the random shock on the interest rate. 

Consequently, when the interest rate gets close to zero, its evolution becomes dominated 

by the drift factor, which pushes the rate upward towards equilibrium. 

Tt must be noted that the short-rate r(t) in the CTR model has a non-central chi- 

square transition density, while the Vasicek model has a Gaussian one. The expectation 

and variance of r(t) given r(0) are as follows: 

Tn CTR, the market price of risk is specified as d(r(t)) = d m l o .  The scaling by a is 

done only to simplify the subsequent derivations. Let r = T - t ,  once again, the bond- 

pricing formula takes the exponential-affine form 

with B(d and A(r)  being defined as follows (see Cairns (2004)): 



Both the Vasicek and CIR models are mean-reverting processes. They differ in 

the diffbsion term, where a m  gives the CIR model a 'level effect'. Indeed, 

empirically i t  is observed that volatility increases with the level of interest rates. 

Different methods can be used for estimating the Vasicek and CTR models. For 

example, the covariance equivalence principle can be used to establish relationships 

between the parameters of continuous processes and those of their discrete 

representations. For an application of this method, see Parker (1995). 

The estimation methods used for this project are described in the next two 

sections. 

3.3 Maximum likelihood estimation for Vasicek model 

The Vasicek model can be specified by either real-world parameters K, p, a, A, or 

risk-neutral parameters K, 8, a. In this project, K, p,  and a  are estimated using maximum 

likelihood methods with time-series data and A is estimated by least square method using 

cross-sectional data. As the short-rate, r(t),  of the Vasicek model evolves according to 

SDE (3.1.1 ), the corresponding exact discrete model then has the form 



where q(t) has the conditional distribution q(t) 1 F,-, - N - e-'K3) . That is, the 1 
short-rate r(t) given r(t-A) is normally distributed and the parameters K, ,u, and a can be 

estimated using maximum likelihood method. 

Let { r ,  be equally spaced samples of the short-rate r(t), and ro = r(to) , 

ri+, = r(ti+, ) = r(ti + A) . If yearly samples are collected, A is 1. For monthly, weekly, and 

daily samples, A equals to 1/12, 1/52, and 11250 respectively. The likelihood function of 

the Vasicek model and the corresponding log-likelihood can thus be written as 

Using Nowman's notation (Nowrnan (1 997)) 

and the transition log-probability is 

Therefore, the log-likelihood hnction for the Vasicek model is 



where mii2 is given in equation (3.3.2). The parameters K, p, and a are then found by 

maximizing the log-likelihood (3.3.3). The market price of risk A is identified by the 

least square method for cross-sectional data. In our experiments, US long-term interest 

rates (10-year and 20-year rates) are used to calculate the historical prices of the 

corresponding $ 1  face value zero-coupon bonds, P(0,lO) and P(0,20). Our estimate for d 

is the value that minimizes the square error between these historical bond prices and the 

bond prices given by equation (3.1.7) with the MLE for K, p, and a. 

Note that the maximum likelihood here is not a true maximum likelihood but a 

"discretized maximum likelihood". As A + 0 , the sample paths of the discretization 

(3.3.1) converge to the continuous path (3.1 .I). However, as the data r(t) can only be 

recorded with certain minimum intervals, the "discretized maximum likelihood 

estimator" for K, 0, and a will not be consistent (Miscia (2004)). 

To test the validity and evaluate the finite sample performance of the estimation 

method with finite samples, a small Monte Carlo study similar to Yu & Philips's (Yu & 

Philips (2001)) is conducted. The SDE (3.1.1) of the interest rate r(t) is rewritten as 

Obviously, a=up and /? = -K . Given a = 6.0, /? = -1 .O, a = 0.25, and initial value 

r,, = 7.0, 2000 daily rates are generated using equation (3.3.1). It must be noted that it is 



the discrete model (3.3.1) (not the continuous model) that is tested. The Vasicek model is 

fitted to the simulated sequence by the maximum likelihood method described above. 

The experiments are repeated for 1000 times and the means and variances of the resultant 

estimates are given in Table 3.1. 

Table 1 : Monte Carlo study of maximum likelihood estimation method for daily data 

The means of the estimates for a! and Pare 7.325675 and -1.2 15805 respectively, 

They are different from the parameters' true values. However, the estimated long-term 

Mean 

variance 

a! 
mean p = -- has a value of 6.02, which is very close to the true value of 6.0. The mean 

P 

of the estimates for o is 0.2497247, slightly below the true value 0.25. The variance of 

the estimates for o is very small: 1.555029e-05. This indicates that the maximum 

likelihood method is able to produce very good estimates of oand the long-term mean, p. 

When i t  comes to the estimates of a! and P, however, the results are relatively poor. 

a 

7.325675 

6.1 05208 

Table 2 gives the corresponding results for weekly data. The sample size of 

weekly data is 1000. For weekly data, the maximum likelihood method still gives very 

good estimate of o, pretty good estimate of the long-term mean, and reasonable estimates 

of a and P. Comparing Tables 1 and 2, it can be observed that all the results in Table 1 

are better than those of Table 2. The results verify that as A + 0 ,  the sample paths of the 

P 
-1.21 5805 

0.1 597621 

G 

0.2497247 

1 S55029e-05 



discretization converge to the continuous path, the discretized maximum likelihood 

estimators tend to be consistent. 

Table 2: Monte Carlo study of maximum likelihood estimation method for weekly data 

The short-rate r(t), when observed at the daily, weekly and even monthly 

frequencies, tends to have large autoregressive coefficients. The autocorrelation 

properties of the sequence {ri) are determined by the parameter P. It is well known that 

the ML estimate of the autocorrelation parameter for a sequence that almost has a "unit 

root" is downward biased (Andrews (1993)). Therefore, the ML estimate of Pwill have a 

Mean 

variance 

downward bias which will result in an upward bias in the estimate of a. This is consistent 

with the numbers in Tables 1 and 2. 

3.4 Approximated Gaussian estimation for CIR model 

a 

7.82823 

10.82493 

The SDE as given in equation (3.2.1) shows that the absolute variance of the 

interest rate in the CTR model increases when the interest rate itself increases. As a result, 

the transition density of r, given I . , - ,  is not Gaussian. To find a Gaussian approximation, 

equation (3.2.1) is approximated by the following SDE in Nowman's paper (Nowman 

(1 997)). 

P 
- 1.293266 

0.2735813 

0 

0.2499380 

3.001517e-05 



where t'-I corresponds to the largest sample point less than t. That is, with sample data 

{rO = r(tO), r1 = r(tl), .. . , ri = rftJ, ri+1 = r(t,+l), . . . , r, = r(t,J) and ti < t < ti+!, 

we have t '-1 = ti and r(t'-I) = ri. By using the above approximation, it is assumed that the 

volatility of the interest rate changes at the beginning of the observation period and then 

remains constant. The short-rate r(t) then satisfies the following stochastic integral 

equation 

for all t in (ti, ti+,]. From Bergstrom's Theorem 2 (Bergstrom, 1982), the discrete model 

corresponding to equation (3.4.1) is given by 

where 17j (i  = 1, . . . , n) satisfies the conditions E(qi 17i) = 0 (i # j)  and 

Here, q is approximated by a normal distribution with mean 0 and variance mi?. The log- 

likelihood function of the CIR model can be approximated by the following Gaussian 

log-likelihood function 



where rn,? is given in equation (3.4.3). The above estimation method was introduced by 

Nowman and therefore will be called the Nowman method in this project. 

The Nowman method can be understood as using the Euler method to 

approximate the difhsion term over the interval. Compared with the discretization 

method where the Euler method is applied to both the drift and diffusion terms in the 

diffusion process, the Nowrnan method can be expected to reduce some of the temporal 

aggregation bias. Strictly speaking, the method is a form of quasi-maximum method since 

(3.4.2) is not a true discrete model corresponding to equation (3.2.1) but is merely a 

conditional Gaussian approximation (Yu & Phil ips (200 1 )). 

Once we have the log-likehood function, estimates for parameters K, p, and o are 

found by maximizing (3.4.4). The market price of risk, 2, is estimated by the least square 

method using cross-sectional data as explained in the previous section. 

A Monte Carlo study similar to Yu & Philips's is conducted to test the validity of 

the approximated Gaussian estimation method. The SDE (3.2.1) of the interest rate r(t) is 

rewritten as 

Given a = 6.0, ,8 = -1 .O, a = 0.25, and initial value r, = 7.0, 2000 daily data 

ri's are simulated using equation (3.4.2). Note that the discrete model (3.4.2) instead of 

the continuous model (3.2.1) is used in the simulation. The discrete version of the CLR 

model is iitted to the simulated sequence by the approximated Gaussian estimation 



method described above. The experiment is repeated for 1000 times and the results 

(which are very similar to those of Yu & Philips's) are given in Table 3. 

Table 3: Monte Carlo study of estimated Gaussian method for weekly data 

The experiment results show that the Nowman (or approximated Gaussian) 

method can give a quite accurate estimate of the parameter o. Like the ML estimates, the 

estimate for a! is upward biased and the estimate for phas  a downward bias. 

Mean 

variance 

3.5 Exact Gaussian estimation for CIR model 

Yu & Philips (2001) developed an exact Gaussian estimation for the CTR model 

by applying Dambis, Dubins-Schwarz theorem (hereafter DDB theorem) (Revuz & Yor 

(1999)). The approach is based on the idea that any continuous time martingale can be 

written as a Brownian motion after a suitable time change. 

Lemma (DDB Theorem) Let M be a (F,, P) - continuous local martingale vanishing at 

0 with quadratic variation process [MI1 such that [MI, = az Set 

a 

8.87902 

16.87403 

then, B, = MT is a (FT ) - Brownian inotion and M, = B ,,,,, . 

P 
- 1.466654 

0.4347623 

CT 

0.2555942 

0.0275213 1 



The process B, is referred to as the DDB Brownian motion of M. According to 

this result, when the chronological time in the local martingale M is adjusted to time Tt, 

the process is transformed to a Brownian motion. 

From the SDE (3.2. l), the solution for r(t+h) for any I? > 0 given r(t) is 

Let M(h) = a ~ ~ - K ' ~ - ' ' , / ~ ~ w ; P  . M(h) is a continuous martingale with quadratic 
0 

variation 

The time transform in the lemma is used to construct a DDB Brownian motion to 

represent the process M(h). To do so, a sequence of positive numbers {hi]. that produces 

the required time changes is introduced. For any fixed constant a > 0, let 

1 [ M , ] ,  2 a )  = inf{s la' 1 e-""-')r(t, + r)dr 2 o }  (3.5.3) 

and construct a sequence of time points {t,} using the iterations t,,, = t j  + h,,, with I ,  

assumed to be 0. Evaluating equation (3.5.1) at I t , ) ,  one gets 

According to the lemma, M(h,, ) - N(0, a). Hence, equation (3.5.4) is an exact discrete 

model with Gaussian noises that can be estimated directly by maximum likelihood using 

23 



Tt must be noted that the sequence { t j )  is determined by the parameters oand Kor P i f  the 

SDE (3.2.1) is written in the form 

Since interest rates are always observed at discrete time intervals in practice, the time- 

change formula (3.5.3) cannot be applied directly. Instead, the following discrete time 

approximation is used: 

To use the exact Gaussian method, a value for a must be selected. Asymptotically, 

the choice of a should not matter as long as a is finite, but the same is not true in finite 

samples. If a is chosen too large, then the effective sample size will be too small. If a is 

too small, every data point will be selected and the time-change procedure becomes 

useless. Yu & Philips (2001) suggested to use the ML estimate, say ci , of the 

unconditional volatility of the error term of the following model 



with E, - N(0, a). However, studies show that the residual error terms are very small and 

cannot be used as an estimate for a. A value is selected for a in our experiments by trial 

and error. 

Implementation of the exact Gaussian method thus proceeds as follows: 

(1 ) select a value for a by trial and error; 

(2) perform the Nowman (approximated Gaussian) estimation to obtain 8 , p , and d ; 

(3) set o t o  6- since the Nowman estimate of o i s  quite good in finite samples; 

(4) start with a and ,4 set to & and ,6 respectively and modify them in the subsequent 

steps; 

(5) choose {hi) according to the time change formula (3.5.6); 

(6) find the values of a and p which maximize the likelihood function (3.5.5), modify a 

and p, go back to step (5) until the termination condition is reached. 

Monte Carlo studies are carried out to validate the exact Gaussian estimation 

method. 2000 simulated daily interest rates are generated by using equation (3.4.2) and 

the CIR model is fitted. Parameter values of a = 6.0, ,4 = -1.0, a = 0.25, and initial 

value r, = 7.0 are arbitrarily chosen. The experiment is repeated 1000 times and the final 

results are tabulated in Table 4. 



Table 4: Monte Carlo study comparing Nowman's method and the exact Gaussian method for daily 
data 

I I Nowman's method I Exact Gaussian method I 

From Table 4, it can be observed that the upward and downward biases for a and 

p a r e  still present in the exact Gaussian estimates. However, the biases are smaller than 

those of Nowman's method. Similar improvements can also be found when weekly and 

monthly data are used. This suggests the efficiency of the exact Gaussian estimation 

method. In the following section, the models and approximations described in the above 

sections are employed and their estimates using US treasury rates are presented. 

Mean 

Variance 

3.6 Model estimations using historical interest rate data 

Both the Vasicek and CIR models are formulated in terms of SDEs of their short- 

rates. As the short-rate r(t) is unobservable in the market, a proxy has to be used. Short- 

term interest rates are frequently used as a proxy. For example, Anderson and Lund 

(1997) and Stanton (1997) used the yield on a three-month Treasury bill as a proxy for 

the short-rate, while Chan et al. (1 992) use the yield on one-month Treasury bill. 

Chapman et al. (1 999) analyzed the impact of using one- or three-month yields as proxies 

and found that for single-factor affine models in general, the economic significance of the 

parameter estimate errors and the resulting bond price errors are generally negligible. 

a 

8.87902 

16.87403 

a 

8.692365 

16.89037 

P 
-1.466654 

0.4347623 

CT 

0.2555942 

0.0275213 1 

P 
-1.446294 

0.4491 793 

0 

0.2555942 

0.02752 13 1 



Tn the project, two series of short-term interest rates are considered. They are one- 

month and three-month US treasury constant maturity yields, obtained from Federal 

Reserve Statistical Release (http://www.federalreserve.~ov/Release/h 1 S/data.htm#h 10). 

The one-month US treasury rate series contains 1336 daily observations over the period 

from 3 1/07/2001 to 05/12/2006 which are shown in Figure 1. 

Figure I : One-month US treasury constant maturity yields 

one-month US treasury constant maturity 

time 

From the introductions in sections 3.1 and 3.2, we know that both the Vasicek and 

CIR models have long-term means and exhibit mean-reversion characteristics. In figure 

1, however, no long-term mean can be observed. The interest rate first goes down and 

then goes up to a record high in December 2006. When fitting the Vasciek model, the ML 

estimation gave a bizarre result of p = 0.094445505. With P being positive, the process is 

not converging but diverging. This is obviously unacceptable. Thus, it can be concluded 



that the one-month US treasury data set (from 3 1/07/2001 to 05/12/2006) should not be 

used for the estimation. 

The three-month US treasury rate data collected covers the period from 

04/01/1982 to 05/12/2006. It contains 6231 daily observations that are graphed in Figure 

2. 

Figure 2: Three-month US treasury constant maturity yields 
- 
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It can be observed from the figure that the interest rate went down from about 

15% in 1982 to 6% in 1987 and oscillates around 4% since the 1990s. Therefore, it seems 

reasonable to assume that a long-term mean exists and that the interest rate oscillates 

around this long-term mean. This suggests that the Vasicek and CIR model might be 

appropriate. The estimation results for the Vasicek and CIR models are presented in 

Table 5. 



Table 5: Estimation results using three-month US treasury constant maturity rates 

ML estimation for the 

Vasicek model 

Approximated 

Gaussian estimation for 

estimation for the CIR I I I I I I 

0.0 10475 132 

the CTR model 

Exact Gaussian 

model 

0.004617486 

The estimates for K and ,u are obtained by: K = -P, ,u = a lP. The exact Gaussian 

estimation method produces estimate of o which is similar to that of Nowman's, but 

leads to larger estimates of a and P. The long-term mean and the speed of reversion of 

the Vasicek model estimated by the maximum likelihood method are 4.29% and 

0.239628 respectively. The Nowman method provides an estimate of the unconditional 

mean of 3.42%, while the exact Gaussian method gives a 2.97% estimate. The value of a 

used in the exact Gaussian estimation method is 0.00 13. By choosing different values for 

a, different sample sequences are obtained. However, the estimates are quite similar, as 

shown in Table 6. This observation confirms that the selection of parameter a, in an 

acceptable range (not too big, not too small), will not have a considerable effect on the 

estimation results. The last column of Table 6 gives the number of sample data selected 

out of the 6231 observations. By setting a to 0.0013, the sample size is reduced to one 

tenth of its original size. 

-0.239268 

0.005257795 

-0.1351216 

0.01157835 

-0.1768168 

0.04673768 

0.239268 

0.04673768 

0.04287734 

0.1351216 0.03417282 

0.17681 68 0.02973589- 



Table 6: The exact Gaussian estimation results with different values of a 

Figures 3 and 4 show the sample selection resulting from the time transformation 

of the exact Gaussian method. The grey areas at the bottom of the graphs represent the 

interest rate, while the black vertical lines indicate the sample selected. 

a 

0.0015 

0.0014 

0.0013 

0.001 1 

0.00087 

Figure 3: Time transformations for the 3-month US rates (04/01/1982 to 31/12/1985) with a = 0.0013 

a 

0.00597741 

0.005 1333 1 

0.00525780 

0.005 15702 

0.00558760 

P 
-0.19542 

-0.1 7503 

-0.17682 

-0.17294 

-0.1 8343 

K 

0.19542 

0.17503 

0.17682 

0.17294 

0.1 8343 

P 

0.030587 

0.029328 

0.029736 

0.029820 

0.030462 

# samples selected 

456 

488 

530 

63 3 

777 



Figure 4: Time transformations for the 3-month US rates (01/01/1990 to 31/12/1995) with a = 0.0013 

From the graphs, it can be easily observed that the sample selection frequency is higher in 

high interest rate regions. 

Once the estimates of a, p and a a r e  obtained, the parameter is calculated using 

the least square error method on cross-sectional data. The results are summarized in 

Table 7. The estimates in Table 7 will be used in the actuarial and financial valuations of 

the GAOs, which are presented in the following chapters. 



Table 7: Estimation results for the Vasicek and CIR models 

Vasicek model 

CIR model (Exact 

Gaussian) 

K 

0.239268 

0.1768168 

P 

0.04287734 

0.02973582 

0- 

0.01257835 

0.04673768 

h 

-0.58025 

-0.12269 



4 ACTUARIAL VALUATION OF' GUARANTEED 
ANNUITY OPTIONS 

Before going into the actuarial valuation of the guaranteed annuity options, the 

historical cost of the GAOs are investigated. 

4.1 Historical cost of GAOs 

The cost of the GAO at maturity for a male aged 65 is formulated as equations 

(2.1) and (2.2) in Chapter 2. With the assumptions of no expense and fully diversified 

mortality, the cost of a GAO can be calculated once the mortality table is selected and the 

interest rates at the time of maturity are known. To find the historical cost of GAOs, the 

30-year US treasury constant maturity yield is used. This is the longest rate available on 

the market. The reason for using the 30-year rate instead of different rates for different 

maturities is that not all the rates are observable on the market. As the annuities are long- 

term liabilities to the insurance company, the use of constant 30-year treasury rates seems 

appropriate. 

Figure 5 gives the time series of 3-month and 30-year US treasury constant 

maturity rates. Note the gap between 18/02/2002 and 09/02/2006 on the 30-year US rate 

which is due to a lack of data. Tn this project, the 3-month US treasury rate is used as a 

proxy of the short-rate r(t). 



Figure 5: Time series of short-term and long-term US interest rates 

short- vs long-ten rate 

/ 

1976-8-28 1982-2-1 8 1987-8-1 1 1993-1-31 1998-7-24 2004-1-14 2009-7-6 

time 

"three-month US 
treasury rate" 

"30-year US 
treasury rate" 

From the figure, it can be observed that the term structure of the interest rate is 

quite complicated. Most of the time, the long-term rate is above the short-term rate. 

However, at some points in time, e.g. January 1982, March 1989 and October 2000, the 

long-term interest rate is below the short-term interest rate. When the long-term rate 

outperforms the short-term rate, the level of superiority is quite different from time to 

time. For example, the short-term interest rate in 2006 increases to about the same level 

as in 1997. However, the long-term interest rate in 2006 is about 5%, which is much 

lower than the 7% of year 1997. Therefore, it is quite natural for one to question whether 

the one-factor Vasicek and CIR models are capable of modelling such a complicated term 

structure. Discussions on this can be found in sections 4.2 and 4.3. 



i 

Four different mortality tables are considered when studying the cost of the 

guarantee: 

(1) 1971 Group Annuity Mortality sex-distinct table (GAM71). It was developed 

specifically for use in the valuation of pension plans before the GAM83 tables were 

introduced in August 1983. Life expectancy under GAM71 for a male aged 65 is 14.6 

years. 

(2) 1 983 Group Annuity Mortality Table (GAM 83). GAM83 is based on group annuitant 

experience fiom 1964 to 1968. GAM83 is probably the most common mortality table 

used by pension actuaries; 75% of the plans in a 2003 Watson Wyatt survey of 

actuarial assumptions and hnding used GAM83 for hnding calculations. Under 

GAM83, the life expectancy for a male aged 65 is 16.2 years. 

(3) The 1994 Uninsured Pensioner Mortality Table (UP94). The UP94 table is based on 

uninsured pensioner experience projected to 1994. It was developed based on a study 

of 1985 to 1989 mortality experiences of 29 retirement systems. UP94 is one of the 

first mortality table to factor in generational mortality, which recognizes the trend of 

mortality improvement and dynamically projects and incorporates those 

improvements. Under UP94, the life expectancy for a male aged 65 is 16.76 years. 

(4) The Retired Pensioners Mortality Tale (RP2000). The RP2000 table is based on the 

mortality experience from 1990 to 1994, which is then projected to 2000. Tt is the 

only table whose underlying rates are based solely on retirement plan mortality 



experience. It was developed by the SOA specifically for current liability 

calculations. Under RP2000, the life expectancy for a male aged 65 is 17.1 years 

The survival probabilities of a male aged 65 under the above four mortality tables 

are graphed in Figure 6. 

Figure 6: Survival probabilities of a male aged 65 using four different mortality tables 
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Figure 7 gives the relative improvement (in percentage) of GAM83, UP94, and 

RP2000 over the GAM71 table. From the graphs, it can be easily observed that there 

have been substantial improvements in male mortality since the publication of the 

GAM71 table. The increase in longevity is quite dramatic over the period covered by 

these four tables. The expectations of life for a male aged 65 are 14.6, 16.2, 16.76, and 

17.1 years using GAM71, GAM83, UP94, and RP2000 respectively. Thus the expected 

future lifetime of a male aged 65 increased by 2.5 years from the GAM71 table to the 

RP2000 table. 



Figure 7: Mortality improvements 
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As a result of the mortality improvement and the impact of falling long-term 

interest rate (as shown in Figure 5), the cost of the GAO at maturity increased 

significantly over the last decade. The evolution of the emerging liability under the GAO 

is graphed in Figure 8 using four different mortality tables and the historical interest 

rates. Tt must be noted that at this stage no option pricing formula or stochastic analysis is 

involved when calculating the cost of the GAO at maturity. The policy proceeds at 

maturity are assumed to be held constant at $100 and the cost reported is thus the cost as 

a percentage of the policy maturity cash value. By applying equation (2.2), with S(T) 

fixed at 100, a,5 (T) is calculated using the appropriate mortality table and the long-term 

interest rate series (shown in Figure 5). Tn addition, the life annuity is assumed to be paid 

annually in arrear. 



Figure 8: Historical cost of GAO per $100 maturity proceedings 
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From the graph, it can be observed that there is no liability on maturing contracts 

until the late 1990's when the GAM71 table is used. When other mortality tables are 

used, however, the liability increases substantially. Under the GAM7 1, the break-even 

interest rate for a life annuity is 5.6%. That is, a lump sum of $1000 will purchase an 

annuity of $I I I at an interest rate of 5.6% p.a. The guarantee will be in-the-money if the 

long-term interest rate is less than 5.6%. Under the GAM83 table, the break-even interest 

rate is around 6.53%; under the UP94 table, the break-even interest rate is 6.8%, and 

under the UP2000 table, the break-even interest rate is about 7.04%. 



4.2 Cost of GAO using the estimated Vasicek model 

In this section, the estimated Vasicek model (as described in Section 3.3) together 

with the historical short-term interest rates are used to calculate the cost of the GAO at 

maturity. 

From the discussion in Section 3.3, one knows that the maximum likelihood 

method produces an upward-biased estimate for parameter K. Therefore, it is quite 

possible that the estimates we derived in Section 3.6 are not the true values of the model. 

To test the validity of the ML estimates, a comparison is made between the historical 

long-term interest rates and the long-tem rates which are calculated by using the 

estimated Vasicek model and the historical short-term interest rates. 

As the ML estimate of parameter K is usually upward biased, the value of K is 

adjusted downward by certain percentages, and the results are examined. Once an 

acceptable value for parameter K is found, the corresponding long-term rates are then 

used to compute the cost of GAOs for a typical contract under four different mortality 

assumptions. It must be noted that the ML estimated values for the parameters p and a are 

kept unchanged since they proved to be quite accurate in our simulation results (see 

Section 3.3). 

Different values of parameter ,I are calculated by using the least square method 

for different K, as given in Table 8. The percentages in the first column indicate by how 

much the value of K is adjusted (upward or downward) on the basis of its ML estimate. 



Table 8: LSE estimates of 1 for different values of K (with p = 0.04287734 and F 0.01257835) 

The calculated long-term interest rate series using the estimated Vasicek model 

(with different u) and the historical short-term interest rates are shown in Figure 9. 

Figure 9: Long-term interest rates calculated by using the historical short-term interest rates and 
the Vasicek model 
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The historical long-term interest rate is drawn in blue. The long-term rate 

calculated using the ML estimate of K is drawn in brown. Compared to the historical 

rates, the rates using ML estimate of K is smoother. As K decreases, the long-term rates 

become more volatile and give a better match of the historical data. 

From equation (3.1.7), it can be derived that as K approaches 0, B(t, T )  approaches 

(T-t) and InA(t,T) tends to a value which is determined by (T-t) and a. Therefore, with 

(T-t) =30 and a fixed, the 30-year interest rate tends to r(t) times a constant when K is 

approaching 0. From Figure 5, i t  can be observed that the movements of the short-term 

and long-term interest rates are quite consistent most of the time. Long-term interest rate 

usually moves in the same direction as the short-term rate. As a result, it is not surprising 

that the long-term rates generated by smaller values of K better match the historical data, 

as shown in Figure 10. 

Figure 10: Long-term interest rate comparison 
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However, the mean-reversion speed is determined by K, and a model with small ic 

behaves like a random walk process. This obviously contradicts the empirical observation 

that a long-term mean exists for the interest rate. Therefore, K cannot be too small. In this 

project, K is set to 0.047854 and the corresponding I is -0.23891. Under such a parameter 

setting, the calculated cost of the GAO has a similar magnitude as that of its historical 

cost, as shown in Figure 1 1. 

Figure I I: Cost of CAO per $100 maturity proceedings calculated by using the Vasicek model with 
adjusted parameters and the historical short-term rates 
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Figure 12 gives the costs of GAO which are calculated using the ML estimates of 

the Vasicek model. The liabilities are much lower than the historical ones. With mortality 

assumptions 1971 GAM and 1983 GAM, the calculated costs of GAO are zero under 

most of the situations. 



Figure 12: Cost of GAO per $100 maturity proceedings calculated by using the Vasicek model with 
ML estimates and the historical short-term rates 
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4.3 Cost of GAOs using the estimated CIR models 

In this section, a similar analysis is performed with the CIR model. The GAO cost 

calculated by using the CIR model (estimated by the exact Gaussian method) and the 

historical short-term rate is graphed in Figure 13. 

Comparing Figure 13 and Figure 8, one can notice that the cost calculated by the 

CIR model has a similar shape as the historical cost but at a smaller scale. Trial and error 

shows that with K being 0.1 326 13 and A being -0.10054, reasonable long-term interest 

rates are obtained (as shown in Figure 14) and hence GAO costs that are comparable to 

the historical ones can be derived (as shown in Figure 1 5). 



Figure 13: The GAO cost per %I00 maturity proceedings calculated by using the CIR model with 
exact Gaussian estimates and the historical short-rates 
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Figure 14: Long-term interest rates calculated using the CIR model and the historical short-rates 
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Figure 15: The cost of GAO per $100 maturity proceedings using the CIR model with adjusted 
parameters and the historical short-rates 
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4.4 Actuarial valuation 

Assume a male aged 65-T purchased a GAO contract at time 0. At maturity time T, 

the value of the GAO is V(T) = ,p,, x ~ ( n x r n a x ( a ~ , ( ~ / ~ - l ,  0 per initial life as 

discussed in Chapter 2. The valuation problem of GAOs thus becomes to find the 

discounted value of V(T) at time 0, V(0). From equation (2.3), it can be observed that if a 

premium of , p,,-, x S(0) x max(a,, (T)/g - 1, 0 is collected at time 0 and 100% of 1 
the premium is invested in a share portfolio which has market value S(0 at time t, then 

the accumulated value of the investment at maturity (or time 7') will be 



which is exactly the same as the maturity cost of the GAO per initial life. Therefore, the 

value of the GAO when the contract is issued at time 0 is 

At time 0, g is given, S(0) is the market value of the share portfolio and is known. 

With the assumptions of fully diversified mortality and no mortality improvement over 

the lifetimes of the pensioners, the survival probability ip, can be considered as fixed. 

From equation (2.2), the value of a,,(T) is then determined by the market values of the 

unit par default-free zero-coupon bonds at time T. However, the time T value of a zero- 

coupon bond is unknown at time 0. Tt has a distribution that depends on the movement of 

interest rates between time 0 and T. Therefore, at time 0, a,,(T) is a random variable 

with a complicated distribution which is determined by the interest rate dynamics. 

Like in Wilkie's paper, simulation technique is employed to find the distribution 

of V(0). Given r(O), the short-rate at time 0, 10,000 values of r(T) are simulated by using 

the Vasicek or CTR model estimated in the previous sections. The market prices of the 

unit par zero-coupon bonds are calculated by equation (3.1.7) and the value of a,,(T) is 

then derived for each simulation. Consequently, 10,000 values of V(O) are obtained. The 

distribution of V(0) can be approximated by the histogram of these V(0) values. Sorting 

the value of V(0) into an increasing sequence, so that V(Ojjml < V(0)j, the percentiles of 

V(0) are estimated by the corresponding V(0) values. As in Wilkie et al. (2003), the 99th 

percentile is V(0)9gO1 and the 99.9th percentile is V(0)99g1 . Tf the 99th percentile is chosen 



as the desired reserve, there is a chance of 1 in 100 that the reserve will be insufficient to 

cover the actual cost. 

Table 9: Present value and quantiles of cost of GAO per $100 single premium: Vasicek model, 
mortality RP2000, r(0) = SO/O 

Term to 
Maturity Mean 911 Qq j Q97.5 99 Q99.j 4 9 9 . 9  

Simulation results are shown in Tables 9 to 14. Table 9 is based on the Vasicek 

model estimated in the previous sections. That is, the present value of cost of GAO is 

calculated with initial conditions as at the end of December 2006. The initial short-rate 

r(0) is 5%, and p = 4.2877%, K = 0.047854, a = 1.258%, A = -0.23891 in the Vasicek 

model. The mortality table used is RP2000. Policy terms of 10, 15, 20, 25, 30, 35, and 40 

are assumed. The quantiles for 90%, 95%, 97.5%. 99%, 99.5%, and 99.9%, are denoted 

Table 10: Present value and quantiles of cost of GAO per $100 single premium: CIR model, mortality 
RP2000, r(0) = 5% 

Term to 
Maturity Mean Q9o Qss Q97.5 Q99 Qs9.s Q99.9 



Table 10 is based on the CTR model estimated in the previous sections. The initial 

short-rate rate r(0) is 5%, and p = 2.974%, K = 0.13261 3, a = 4.674%, 1 = -0.10054 in the 

CIR model. From Tables 9 and 10, it can be observed that the discounted present values 

of the cost of GAOs are not negligible with an initial interest rate of 5%. In addition, the 

quantiles are quite substantial. There are cases where the quantiles are even higher than 

the $100 single premium. The mean values of the present value of GAO costs are 

generally higher when the CIR model is used. A possible reason is that the CIR model 

has a lower long-term mean than the Vasicek model. The quantiles, however, are another 

story. All the quantiles obtained by the Vasicek model, except QgO, Qg5 with T =I 0 and 

QYU with T =15 and 20, are larger than those obtained by the CTR model. The higher the 

quantile, the bigger is the difference. This indicates that the estimated Vasicek model is 

more volatile than the estimated CTR model. 

From the figures, it can also be observed that as the term to maturity increases, the 

cost of the GAO becomes higher. However, this is not always true. When the initial 

interest rate is high the cost increases with the term; when the initial interest rate is low, 

the cost may reduce with the term, or reduce first and increase later, as shown in Tables 

11 and 12. When the initial interest rate r(0) is low, there is a greater chance that the 

interest rate in the short term will also be low, and thus the discounted present value of 

the cost of GAO will be higher. Comparing Table 9 with Table I I and Table 10 with 

Table 12, one can notice that the GAO cost for shorter terms varies much more than that 

of longer terms when the initial interest rate changes. 



Table 11: Present value and quantiles of cost of GAO per $100 single premium: Vasicek model, 
mortality RP2000, r(0) = 2% 

The quantiles calculated above are also commonly known as "Value at Risk' or 

Term to 
Maturity 
10 
I5 
20 
25 
3 0 
35 
40 

Table 12: Present value and quantiles of cost of GAO per $100 single premium: CIR model, mortality 
RP2000, r(0) = 20h 

VaR in its abbreviated form. VaR has, however, been criticised for being 'incoherent'. Tt 

is possible for a high quantile (e.g. 701h or 9oth) to be smaller than the mean value of a 

Mean 
22.640 
22.1 62 
2 1.187 
30.608 
20.321 
20.841 
20.405 

risk. This is unsatisfactory. Another problem is that, when risks are combined into a 

9 9 0  

39.913 
39.580 
39.267 
39.473 
39.876 
40.174 
40.344 

Term to 
Maturity 
10 
15 
20 
25 
30 
35 
40 

portfolio, it is possible for the quantile for the portfolio to be greater than the sum of the 

9 9 0  

46.8 19 
49.999 
50.505 
50.723 
5 1.462 
54.097 
53.669 

Qgj 

42.061 
41 .905 
41.559 
41.743 
42.168 
42.597 
42.754 

Mean 
28.126 
27.51 9 
27.076 
26.942 
27.018 
27.381 
27.287 

corresponding quantiles for the individual risks (Wilkie et al. (2003)). 

Q99.5 

46.001 
45.799 
46.079 
46.035 
46.617 
46.912 
47.383 

To solve this problem, 'conditional tail expectation' (CTE) can be used. As the a" 

Q9j 

56.426 
60.590 
6 1.676 
63.806 
65.456 
69.069 
68.978 

497.5 

43.654 
43.535 
43.268 
43.696 
44.044 
44.226 
44.444 

Q99.9 

47.165 
47.207 
47.204 
47.540 
47.986 
48.587 
48.966 

quantile Q, of a risk X i s  defined as Pr(X < Q,) = a%, the CTE at level a (denoted by Ta) 

Q99 

45.072 
44.896 
45.060 
45.027 
45.759 
46.010 
46.1 89 

is defined as T, = E[X I X 2  Q,]. It is easily calculated during the simulations. For the 

4 9 7  5 

66.049 
69.845 
74.453 
76.002 
77.921 
83.790 
84.621 

Q99 

76.5 18 
82.921 
88.91 1 
91.375 
94.544 
100.261 
101.490 

Q99.5 

84.405 
94.151 
97.95 1 
102.677 
108.357 
114.777 
1 16.875 

Q99.9 

102.468 
1 15.953 
1 18.237 
130.136 
137.301 
144.632 
147.089 



sorted 10,000 simulation results of V(O), the CTE at level 99% equals the average of the 

100 largest values of V(O), from V(0)~ul to V(0)louoo inclusive. The CTEs of the cost of a 

GAO by using the Vasicek and CIR model are presented in Tables 13 and 14 respectively. 

Table 13: Present value and CTEs of cost of GAO per $100 single premium: Vasicek model, 
mortality RP2000, r(0) = 5% 

I Term to I I I I I I I I 

Table 14: Present value and CTEs of cost of GAO per $100 single premium: CIR model, mortality 
RP2000, r(0) = 5% 

1 40 1 27.299 1 43.216 1 44.921 1 46.184 1 47.425 1 48.145 1 49.379 

Maturity 
10 

From the tables, it can be observed that the CTE values are always greater than 

the corresponding quantiles, since T, = E[X I X >  Q,] 2 Q,. Besides, the value of any CTE 

is larger than the mean, since Qu is itself equal to the mean, and Q, > QD if a > P. It is also 

shown (Artmer, 1998) that, when risks are combined into a portfolio, the portfolio CTE 

cannot be greater than the sum of the individual CTEs. 

Mean 
11.616 

T90 
41.155 

T95 
48.592 

T97.5 
55.493 

T99 
64.166 

T99.5 1 T99.9 
70.009 1 82.380 



Once the distribution of V(0) is found, various premium calculating principles and 

reserving techniques can be applied. Pricing and reserving for the GAO are not discussed 

in this project. 



5 FINANCIAL PRICING AND HEDGING OF 
GUARANTEED ANNUITY OPTIONS 

The similarities between the guaranteed annuity options and other types of 

financial option have been pointed out by many researchers. Among them are: Wilkie et 

al. (2003), Boyle & Hardy (2003), Bolton et al. (1997), and Pelsser (2002). The work 

presented in the project is mainly based on Boyle & Hardy (2003), in which modem 

option pricing and dynamic hedging techniques are used. 

5.1 Option pricing 

The value of a GAO at maturity time T is S(T) x max a,, (T)/g - 1, 0 

0-65 

a,, (T) = p,, x D,,,, (T) (as given by equations (2.1) and (2.2)). From the formula, it 

is quite obvious that a GAO is similar to a call option on a coupon bond with the annuity 

payments and survival probabilities being incorporated in the notional coupons. 

The price at maturity time T of a zero-coupon bond with unit maturity value, 

maturing at T+n (n 2 1) is denoted as DT+,,(T) or P(T,T+n). The value of DT+,(T) at time 

T depends on the term structure which is assumed to be known at time T. At time t < T, 

however, DT+,(T) is a random variable driven by a stochastic interest rate model. By the 

no-arbitrage theorem described in Chapter 4 of Caims (2004), the value of a risk at time t 

( t  < 71 which has payoff V ( 0  at time T is 

5 2 



where QT is a new probability measure (distribution), the so-calledforu?ard-risk adjusted 

measure. This technique was introduced in the fixed-income literature by Jamshidian 

(1991). As a result, under the hl ly diversified mortality assumption, the value of a GAO 

at time 0 is 

The market value of the share portfolio S(T) is also a random variable and is 

assumed to be independent of interest rates. Note this may be a very strong assumption 

but it simplifies the analysis. The value of the GAO at time 0 thus becomes: 

The last line follows since S(0) = P(O,T)EVTIS(T)] under the no-arbitrage 

theorem. Inserting the expression for ar;j(T) from (2.2)' we have 

The expression inside the expectation on the right hand side corresponds to a call 

option on a coupon paying bond where the 'coupon' payment at time (T+n) is @65 and 

the expiration date is time T. This 'coupon bond' has value at time T: 



The market value at time t of this coupon bond is 

So P(t) is the value of a deferred annuity, but without allowance for mortality 

before retirement. With the notation P(t), equation (5.1.4) becomes 

Jamshidian (1989) showed that if the interest rate follows a one-factor process, 

then the market price of the option on the coupon bond with strike price g is equal to the 

price of a portfolio of options on the individual zero-coupon bonds with strike prices K,,, 

where {K,,) are equal to the notional zero-coupon bond prices to give an annuity acis(T) 

with market price g at T. That is, let r ;  denote the value of the short-rate at time T for 

which 

where the asterisk is used to indicate that each zero-coupon bond is evaluated using the 

short-rate YT*. Kn is then set to K,, = Dg(T,~+n). The call option with strike g and 

expiration date Ton the coupon bond P(t) can be valued as 



where c[P(~, T + n), K,, ,t] is the price at time t of a call option on the zero-coupon bond 

with maturity (T+n), strike price K,, and expiration date T. Under the forward-risk 

measure, 

Thus 

and by equation (5.1.5), we have 

Two interest rate models have been estimated and studied in the previous 

chapters. They are the Vasicek model and the CIR model. Experimental results show that 

with proper parameter settings, both models can generate reasonable cost of GAOs. 

However, as the closed-form solution for the option price is very complicated under the 

CIR model, only the Vasicek model is considered in this chapter. 



Under the Vasicek model (see Section 3. l), the price at time t of a call option on a 

zero-coupon bond with strike price g, maturity date T+n, and expiration date T is given 

by equation (5.1.10) (see Boyle & Hardy ( 2003)).  

where 

In P(t,  T + n )  - In P(t ,  T) - In K,, a, ( n ,  I )  h, ( n ,  t )  = + 
2 0, (n ,  0 

7 

(5.1.11) 
In P ( t ,  T + n )  - In P ( t ,  T )  - In K,, a , ( n ,  t )  h, ( n ,  t )  = - 

2 
= h, (n ,  t )  - a, ( n ,  t )  

up(n3 I )  

and 

( 1  - e-"") 
a, (n ,  t )  = a 

K 

Table 15: The cost of GAO at time 0 obtained by option pricing with r(0) = 0.05 

The parameters of the Vasicek model are set to: r(0) = 5%, p = 4.2877%, K = 

0.047854, a = 1.258%, and 1 = -0.23891. The prices of the zero-coupon bonds with 

different maturities can be calculated by using equation (3.1.7).  After that, the price of a 

call option on the zero-coupon bond can be calculated by (5.1.1 0 )  and the resultant value 



of the GAO at time 0 is obtained by (5.1.9). Table 15 shows, for terms of 10, 15, 20, 25, 

30, 35 and 40 years, the initial values of the GAO per $100 single premium, using 

mortality table RP2000. 

Compared with Table 9, it can be observed that the option pricing costs are 

smaller for all terms than the mean costs calculated using the actuarial method. Under the 

actuarial method described in Section 4, all the premiums are invested into an equity 

account. With the option pricing method, however, the premiums are invested into 

equities and bonds with different maturities according to certain proportions. As a result, 

the maturity values of GAOs should be discounted back with different rates and hence the 

V(0) values are different for these two methods as shown in Table 9 and Table 15. Note 

that in Table 9, the values all increase considerably with the term. Tn Table 15, the values 

of longer terms are not much greater than those of shorter terms. Of course with different 

parameters different results might be obtained. 

The results for various initial conditions are given in Table 16. The first row gives 

the values of V(0) when K is doubled. Comparing them to Table 15, one can observe that 

V(0) increases for T = 10 but decreases for all the other terms when ic is doubled. The 

effect of doubling ic is more obvious for longer terms. 

The results for doubling the volatility a are tabulated in the second row. As the 

interest rates become more volatile, the probability that the insurer has to pay for the 

GAO becomes larger and the cost of the GAO becomes higher, as shown in Table 16. 



The last two rows of the table give the effect of changing the initial interest rate 

r(0). When r(0) is lower, the chance that r(t) will remain low becomes higher, and the 

value of V(0) will thus be larger. 

Table 16: The cost of GAO at time 0, V(O), calculated with different parameter settings 

5.2 Dynamic hedging 

Tn order for the above theoretical option price (5.1.9) to be taken as the true or 

'fair' value of the GAO, a hedging strategy must exist such that the results of the 

investments according to the hedging strategy replicate the desired payoff of the GAO. 

To hedge the GAO against both the equity and interest risks, we would need to invest in 

the following securities: an equity index with market value S(t) at time t, zero-coupon 

bond maturing at time T, and zero-coupon bonds maturing at time T+n (n = 1, . . ., (-65).  



A delta hedging strategy is employed here. The hedging ratios are thus the partial 

derivatives of V(t) over the corresponding underlying securities. The number of units 

invested in the index at time t is denoted by Hs(t) and is equal to 

where h ,(n, t) and h2(n, t) are given by equations (5.1.1 1 ) and (5.1.12). 

The second consists of an investment at time t of Ho(t) units of the zero-coupon 

bond which matures at time T, where 

The replicating portfolio also consists of investments of H,(t) units of the zero- 

coupon bonds which matures at time T+n (n = 1, . . . , e 6 5 ) ,  where 

Tf the limiting age of the policyholder is 1 10, we have to invest at all times in the 

47 securities according to the above hedging proportions. Note that the value of the initial 

hedge is 



which is equal to the value of the GAO at time 0. At maturity time T, P(T,T) = 1, 

cp(n,T) = 0, hl(n,T) = hz(n,T) = +a, N(hl(n,T)) = N(h2(n,T)) = I ,  and hence the value of 

the hedge portfolio is 

That is, the result of the investment process matches exactly the required payoff of the 

GAO at maturity time T. Suppose the hedge is to be rebalanced at time t+h. Just before 

rebalancing, the value of the hedge portfolio is 



where S(t+h), P(t+h,T), and P(t+h,T+n) denote the market prices at time t+h of the hedge 

assets. The new hedging weights Hs(t+h), Ho(t+h), and H,(t+h) are computed based on 

these new asset prices and the value of the revised hedge is 

Note, the value of the hedge portfolio at time t is denoted by G(t). 

If the 'real world' model is the same as the model used for option pricing, and if 

hedging is carried out continuously, free of transaction costs, then the hedge portfolio is 

self-financing since the hedging proportions are actually the partial derivatives of G(t) 

over the corresponding assets. However, the rebalancing is done discretely in practice. In 

addition, there are transactions costs and the market movements can deviate significantly 

from those implied by the model. All these can lead to considerable hedging errors. 

From the above discussion, i t  can be concluded that the value of the replicating 

portfolio, G(t), will almost certainly not exactly match the value of V(t). The following 

investment strategy is then considered: invest the correct amounts in the portfolio, and 

invest the balance if there's any in the zero-coupon bond, or borrow the shortage by 

shorting the zero-coupon bond. The assumption implied in the above investment strategy 

is that we can borrow or lend at the risk-free rate, which is of course not true in the real 

world. 



The hedging results of 10,000 simulations with h=1/250 (daily rebalancing) are 

tabulated in Table 17. The hedging is carried out according to the investment strategy 

described in the previous paragraphs. S(t) is assumed to follow the stochastic equation 

dS(t) = p,<S(t)dt + u , ~ S ( ~ ) ~ W ~ ,  where p ,  = 0.1, a, = 0.2, and W, is the standard Brownian 

motion. Note that S(t) is independent of r(t) by assumption, S(0) is $100, and r(0) is 5%. 

Table 17: Investments in equity and bonds of the replicating portfolio in the 10,000 simulations 

t= 

Mean - 
6.5852 

-46.01 80 

4.1 620 

3.9349 

3.705 1 

3.4748 

3.2458 

3 .O 197 

2.7978 

2.5810 

2.3700 

2.1655 

1.9683 

1.7790 

1.5984 

1.4269 

1.2650 

1.1 129 

0.9704 

0.8379 

0.7158 

0.6044 

0.5038 

variance 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

mean - 
16.4778 

- 1.0390 

9.25 14 

8.7687 

8.2767 

7.7805 

7.2844 

6.7921 

6.3065 

5.8298 

5.3639 

4.9 106 

4.4717 

4.0490 

3.6441 

3.2587 

2.8935 

2.5495 

2.2263 

1.925 1 

1.6468 

1.3923 

1.1621 

62 

:5 

variance 

3 15.6496 

6226.1250 

44.4455 

40.5846 

36.7417 

32.9813 

29.3561 

25.9075 

22.6644 

19.6455 

16.863 1 

14.3251 

12.0350 

9.9929 

8.1947 

6.63 1 1 

5.2887 

4.1520 

3.2002 

2.4 176 

1.7869 

1.2896 

0.9069 

mean - 
45.4460 

-2.4508 

21.2216 

20.2033 

19.1517 

18.0785 

16.9940 

15.9074 

14.8259 
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12.7009 

1 1.6672 

10.6593 

9.6822 

8.7409 

7.8393 
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6.1676 

5.3999 

4.6809 

4.0139 

3.4016 

2.8456 

:10 

Variance 

5997.6140 

76179.8500 

541.0267 

492.2916 

444.7861 

399.0195 

355.3937 

3 14.2068 

275.6496 

239.8252 

206.7922 

176.5880 

149.2239 

124.6918 

102.9488 

83.9013 

67.4 144 

53.3316 

41.4292 

3 1 S472 

23.5047 

17.1012 

12.1228 



t= 

Mean 

0.4141 

0.3351 

0.2665 

0.2079 

0.1588 

0.1 189 

0.0871 

0.0624 

0.0437 

0.0299 

0.0200 

0.0131 

0.0084 

0.0052 

0.0032 

0.0019 

0.00 1 1 

0.0006 

0.0004 

0.0002 

0.0001 

0.0001 

0.0000 

0.0000 

variance 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

mean 

0.9564 

0.7748 

0.6 169 

0.48 18 

0.3684 

0.2760 

0.2024 

0.1451 

0.1017 

0.0697 

0.0466 

0.0305 

0.0 195 

0.0 122 

0.0075 

0.0045 

0.0026 

0.0015 

0.0009 

0.0005 

0.0003 

0.0002 

0.000 1 

0.0000 

:5 

variance 

0.6197 

0.4102 

0.2622 

0.1612 

0.0950 

0.0537 

0.0291 

0.0151 

0.0074 

0.0035 

0.0016 

0.0007 

0.0003 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

mean 

2.3469 

1 .go52 

1.5199 

1.1892 

0.91 12 

0.6838 

0.5022 

0.3607 

0.2532 

0.1737 

0.1 164 

0.0763 

0.0489 

0.0306 

0.0188 

0.01 13 

0.0066 

0.0038 

0.0022 

0.00 12 

0.0007 

0.0004 

0.0002 

0.0001 

.lo 

Variance 

8.3508 

5.5724 

3.5896 

2.2242 

1.3210 

0.7525 

0.4 104 

0.2140 

0.1065 

0.0506 

0.0230 

0.0100 

0.004 1 

0.0016 

0.0006 

0.0002 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

From Table 17, it can be observed that the amounts invested into equity and 

bonds are known with certainty at time 0. As t approaches maturity time T = 10, higher 

variances are exhibited. The summation of the first column equals 6.58, which is exactly 

the GAO value for T=lO in Table 15. This proves that the value of the replicating 

portfolio at time 0 is the value of the GAO, V(0). 



To investigate whether the value of the replicating portfolio at maturity time T, 

G(T), matches the payoff V(T) required by the GAO, another 10,000 hedging simulations 

are performed. The parameters of the interest rate model and the equity model are the 

same. The initial short-rate r(0) varies between 3% and 20% in these 10,000 simulations. 

The simulation results are graphed in Figure 16. 

Figure 16: Hedging results of 10,000 simulations (daily rebalancing) (a) plots in normal scale; (b) 
partial view 

Dynamic Hedging results (daily rebalancing) 
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In Figure 16, the values of G(T), the investment proceeds at maturity time T, are 

plotted against the values of V(T), the amount required to pay off the option at maturity. 

One can see that in general the investment proceeds correspond with the amounts 

required very closely. Surpluses at maturity (although not significant) can be observed 

when the hedging strategy was followed. 

Figures 17 and 18 show the simulation results with the same variables but 

hedging weekly and monthly respectively. From these figures, i t  can be observed that 

64 



although the investment results cluster around the 45-degree line, the correspondence 

between the V(t)  and G(T) is by no means perfect. Proportionately large profits and 

deficits can be observed especially with monthly rebalancing. 

Figure 17: Hedging results of 10,000 simulations (weekly rebalancing) (a) plots in normal scale; (b) 
partial view 
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Figure 18: Hedging results of 10,000 simulations (monthly rebalancing) (a) plots in normal scale; (b) 
partial view 
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As the results depend strongly on the value of S(q, the effect of changing the 

volatility ns is investigated and presented in Figures 19 and 20. 

Figure 19: Hedging results of 10,000 simulations (weekly rebalancing, u, = 0.3) (a) plots in normal 
scale; (b) partial view 
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Figure 20: Hedging results of 10,000 simulations (weekly rebalancing, a, = 0.4) (a) plots in normal 
scale; (b) partial view 
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One can see that as the S(t) process becomes more volatile, the correspondence 

between G(t) and V(t) becomes less close. The extreme values are far more extreme when 

4, = 0.4 than when 4,. = 0.2. 

The results demonstrate that the investment strategy we have described above, if 

hedging is sufficiently frequent, and if the real-world model is as assumed, does give 

results that correspond with the required payoff quite closely. This validates that the 

option and hedging formula (5.1.9) is appropriate for the guaranteed annuity options. In 

the project, it is assumed that the real-world interest rates in fact behave in accordance 

with the Vasicek model that has been defined and used for the calculation of option 

values and hedging quantities. The true behaviour of the real-world interest rates may 

actually be very different. Tn addition, S(t) is assumed to have a log-normal distribution 

while i t  is now well established in the empirical literature that equity prices do not follow 

a simple lognormal process (Boyle & Hardy (2003)). All these and many other frictional 

factors, such as transaction costs which are not considered in the project, will almost 

certainly widen the hedging errors in real-world applications. 



CONCLUSIONS 

In this work, the value of Guaranteed Annuity Options (GAOs) is investigated in 

an environment of stochastic interest rates. The maturity value of a GAO at time T is 

modelled by a mathematical model and its discounted value at time t is calculated under 

the following assumptions: I) fully diversified mortality; 2) no mortality improvement; 3) 

no expense; 4) US market; 5) mortality risk independent of the financial risk and 6) 

uncorrelated equities and bonds. 

Two methods are employed to find the discounted value of GAO at time t. They 

are the so-called actuarial method and the financial pricing method. With the actuarial 

method, all premiums are invested into an equity account and the discounted value of 

GAO at time 0 can be modelled by an option on the deferred annuity a,, (T) . To find the 

value of a,,(T) , two one-factor stochastic interest rate models are introduced: the 

Vasicek model and the CIR model. Methods for their estimation are described and tested 

with simulated data. The experiment results suggest that the risk-neutral long-term mean 

and the volatility can be estimated quite accurately while the estimate of the mean- 

reversion rate is upward biased. The estimated Vasicek and CTR models are then 

calibrated using cross sectional data. The maturity costs of the GAOs are calculated using 

the calibrated models and are compared against the costs calculated using the historical 

long-term interest rates. Experimental results show that these calibrated models can give 



reasonable results and thus can be used to find the discounted value of the GAO at time 0, 

V(0). Means, variances, percentiles, and conditional tail expectations of V(O), for different 

maturities, are found by Monte Carlo simulation. 

The second method is the financial pricing method. Under this method, the value 

of V(0) can be calculated using the option pricing formulas. Only the Vasicek model is 

employed as it is difficult to find a closed-form option price solution for the CIR model. 

The values of V(0) for different maturities are calculated and presented. A replicating 

portfolio is constructed and a delta hedging strategy is employed to make sure that the 

results of the investments replicate the desired payoff of the GAO. The experiment results 

demonstrate that, if rebalancing is sufficiently fi-equent, the investment strategy matches 

with the required payoff qui te closely. 

This work shows that both the actuarial and financial methods are able to give 

reasonable valuations of the GAOs under proper assumptions. However, the results 

obtained by these two methods are not the same as V(0) is invested and discounted 

differently. Therefore, a possible direction for future work would be to analyze the 

relationships between these two sets of results. Delta hedging strategy is employed in this 

work. When the volatility is high, however, other hedging strategies such as delta-gamma 

hedging might be more appropriate. Moreover, no mortality improvement is considered 

in this work. This is obviously not the case in real world. The valuation models can thus 

be made more realistic by including mortality improvements. Finally, a more challenging 

problem would be to study GAOs when the mortality risk is not fully diversified. 
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