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Abstract 

We propose a technique to cluster actions of humans and animals. We use domain specific 

motion features and employ spectral clustering on them to cluster activities. For humans, 

we use existing optical flow features. For animals, we cluster behaviors of a grasshopper. 

We track it in 3D and construct features using 3D object movement which discriminate 

between different classes of actions. We employ spectral clustering on the extracted features 

for each domain. Due to the large amount of data we use the Nystrom extension which 

samples from the data and computes the eigenvalues and eigenvectors of affinities between 

them and extends it to the eigenvectors of the full affinity matrix. We use the K-means 

algorithm to do the final clustering. We experimented with our method on the KTH data 

set and videos of one grasshopper. We create a summary visualization of our results using 

an extension of an existing framework. 
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Chapter 1 

Introduction 

One of the challenging problems in the area of computer vision is recognizing actions where 

objects can be either people or animals. In this problem, we are given a video including one 

object or more and we would like to know what those objects are doing at each time. 

Building a system that could do action recognition for people will save a lot of time 

and have many applications in video surveillance. In this application we would like to 

have one or more cameras monitoring people a~t~ivities and generate a signal if there is an 

unusual behavior. To detect the unusual activity we first need to classify actions. Another 

application is in sport videos for the analysis of matches. We try to develop algorithms t,hat 

could be used for these applications in future. 

In t,he field of biology, recognizing actions and interactions between animals is very 

interesting and useful for the biologists. For analyzing animal behaviors they do experiments 

that require a lot of dat,a and recording a video is one way of getting it. For these kinds 

of experiments they put animals in a cage or in a separate environment and monitor their 

activities for several days in order to find the factors that could affect t,heir actions. In 

particular, they are interested in studying behavior of individual or colonies of insects under 

variation of environmental variables like temperature or illumination during hours of video. 

Obviously processing and labeling each frame for hours of video manually is a very time 

consuming task either for human actions or animals. Therefore, we need an automatic 

system to do this task in a reasonable amount of time. The result of an recognition system 

is labeled frames with their actions. In these methods, the frames are labeled with their 

actions. This means that we mark a portion of the frames or some sequences with a label 

of the actions performed manually to be able to label the input frames later. This will be 
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hard when there are many different classes of actions and it could take a lot of time. These 

types of action classification methods are called supervised techniques. 

The other alternative is to have a completely unsupervised algorithm that takes a se- 

quence of frames and gives us some clusters. In the ideal case, each of them contains a 

separate action. This problem is more challenging and harder compared to supervised tech- 

niques because of no human supervision. Our technique is in the second category and it is 

completely unsupervised which is actually called clustering. This clustering could be used 

for action recognition purposes because instead of having many frames we have some clus- 

ters that contains similar actions and they could be labeled with the actions by watching 

some frames from each cluster. 

In this thesis, we are interested in clustering actions of humans and insects. We cluster 

the behavior of insects called grasshopper where behavior consists of different movement of 

the object with different speed like walking, jumping and standing still. We present a novel 

method in the area of computer vision to solve the problem and cluster actions of human 

and insects. After clustering actions, we employ a visualization technique based on [22] to 

make a long video short for visualizing our results. 

1.1 Approach 

Our approach to solve the action clustering problem which could lead to a solution for the 

action recognition consists of several steps. Our method is based on the track or location 

of the object. First, we need to know the location of the object in each frame. Using this 

track we extract features either from the track or from the object pixels depending on the 

application type. These features are intended to discriminate between different classes of 

actions and be similar for the same action. 

In this thesis we use two different features for the grasshopper and humans. For people 

we extract features based on optical flow or image velocity. These descriptors are vectors 

showing the motion of the person in all body parts in horizontal and vertical directions. For 

each pixel we have a flow value so pixels that move a lot have a higher flow. 

Our features for the grasshopper are magnitude of differences of its 3D track in a window 

of frames which is a vector showing the velocity of the grasshopper within a couple of frames. 

Given these features for each frame we would like to put the frames with the same action 

in the same cluster. So the next step is to employ a clustering algorithm that could group 
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Figure 1.1: Experimental Environment for the grasshopper, two cameras are used for 3D 
tracking. 

frames based on these features. The clustering method that we use here is called spectral 

clustering. This clustering technique uses the similarity between each pair of features and 

employs eigenvalues of the similarity matrix to cluster the data points. As mentioned in 

the introduction we are dealing with hours of video which means many frames considering a 

typical frame rate which is 30 frames per second. For example we use 80000 frames for one of 

the grasshopper experinients which is less than 44 minutes but the size of similarity matrix 

will be 80000 by 80000 and computing the eigenvectors of that is not efficient. To solve this 

problem our method employs a sampling technique called the Nystrom extension [21] which 

makes the algorithm work very efficiently. After running the clustering technique, there will 

be unlabeled clusters of frames which experiments show to correspond well to clusters of 

frames with the same actions so they could be easily labeled manually. In this section we 

present a brief overview of each step. 

1.1.1 Motion Features 

The inputs to these parts are sequences of frames. The first step is to track the object of 

interest because given the track we are able to extract temporal and spatial information 



CHAPTER I .  INTRODUCTION 4 

around the object in the image. 

For each frame of human video we extract the area around the person and generate a 

figure centric image. This is done by using the tracker by Sabzmeydani and Mori [23]. We 

want to extract our features from these figure centric images that have the person in the 

center. The reason for using figure centric frames not the whole image is that our features 

are based on the relative motion of body parts and if there are any camera motions we 

cannot compute the features correctly. 

In the case of the grasshopper, we track it in 3D. The reason for 3D tracking is to have 

the location of the object and its motion in 3D. In a 2D image we can only find motion in 

horizontal,X, and vertical direction ,Y, but we also need to find the motion along Z direction 

which cannot be computed using a single 2D image. Hence, we need at least two cameras to 

track the object in 3D. We use background subtraction as our tracking technique. Object 

pixels can be obtained by subtracting each frame from a background image and thresllolding 

the difference image. Then, we create a 3D track of the insect, via 2D tracking in videos from 

each of the cameras that we know their parameters [6]. Figure 1.1 shows our experimental 

environment and indicates how we set up two cameras. 

In the following we explain the motion features that we use for each class of problem. 

Motion Features for Human 

Given figure centric images described above, we extract motion features called optical flow. 

Optical flow is a vector field showing the motion of pixels. It  is calculated as the motion 

between two image frames which are taken at times t and t + bt. 

F'rom the optical flow of an image we can identify moving parts of it. The reason for 

using this feature is that optical flow has higher values in body parts that have more motion. 

For example when a person walks he has more motions in his legs and when he does hand 

waving or hand clapping the rnotions are mostly around the hand of a person. Also, optical 

flow is invariant to appearance for example clothing and background of a person. Therefore, 

the features are still similar if we have persons with different clothes but performing the 

same action. 

Figure 1.2 shows optical flow for walking, boxing and hand clapping.The optical flow 

values are shown as arrows. The length of arrows shows the magnitude of the optical flow. 

The flow is higher in the motion regions. 

Esti~nating optical flow has applications in computer vision for recognition purposes, 
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Figure 1.2: Optical flow features for different class of actions. Right to left , walking flow 
around the hand and the legs, boxing flow around the hands, hand clapping flow around 
the hands. 

robotics for robot navigation and 3D reconstruction. In this thesis, we use the approach 

given by Lucas-Kanade 1151 to compute optical flow. 

Motion Features for Insect 

Since we want to know when a grasshopper walks or jumps or stands still we develop features 

from its 3D track. Our features need to describe the movement of the object in a 3D space. 

Then from those features we can identify different speed and cluster similar actions to the 

same group. 

Figure 1.3 is one frame from one camera. As it can be seen in this picture, the object is 

very small and it is really hard to be seen in detail. For this experiment we should have the 

full view of the cage in the frame to be able to see all the movements of the object inside 

of it. Considering all these limitations typical features usually used for human can not be 

extracted for the grasshopper. 

Given the 3D track of the grasshopper in a long video sequence, we extract features 

which show the movement of the object between frames. Our goal is to develop these 

feature vectors to get high values when the insect jumps and low values for standing still. 
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Figure 1.3: Grasshopper study environment. Box around the object is the tracker result. 

We compute feature vectors that are magnitude of differences between 3D coordinates. Our 

experiments show that these features discrimiriate between different actions and lead to 

correct clustering. 

1.1.2 Clustering Motion Features 

After constructing motion features for each domain for each video segment in the case of 

the grasshopper and for each frame in the case of the human subject we have a vector that 

describes the corresponding action. We would like these vectors be different for different 

actions. Now we need an automatic technique to group these features into clusters which 

in the ideal case each cluster should include one or similar actions. 

There are different clustering methods and classifier the technique that we use here 

is called spectral clustering. Spectral clustering is a clustering method used for image 

segmentation, and recently action recognition and clustering [19,35]. In spectral clustering 

a similarity matrix is constructed between each pair of the data. Then, the dominant 

eigenvectors of this matrix are used to cluster the data. 
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Compute optical 
on motion features 

Figure 1.4: Overveiw of the techniques used for people. 

Track human Figure centric 
images ) 

Figure 1.5: Overview of the technique used for the insect. 

. 
Track the insect 

Here, we define a similarity between groups of frames based upon a motion cue. For 

humans, we use the opt,ical flow vect,ors as the data points. We employ a measure called 

normalized correlation between normalized optical flows of each frame. As mentioned optical 

flow can be seen as a vector field so at each pixel we have a vector. Computing normalized 

correlation is similar to the scalar product or dot product of two vectors so when the vectors 

are aligned perfectly the dot product will get its maximum value. 

For the grasshopper, we use mag~iit~ude of differences between 3D position which shows 

motion of the insect as features and the dat,a points. For computing the similarity we use 

the exponential function of negative euclidean distance between them which is a typical 

measure for computing the affinities in spectral clustering. 

When we are dealing with hours of video, t,he amount of data will be very large and 

computing the eigenvectors and eigenvalues of the similarity matrix will be ~omputat~ionally 

expensive. To avoid this problem, we employ the Nystroni extension [lo, 211, a sampling 

technique t,hat can be used in computing eigen~ect~ors for spectral clustering. Our contribu- 

tion is to develop a fast and accurate action clustering in long video sequences with use of 

spectral clustering, and a particular method of sampling, Nystrom extension, to cope with 

rare actions. Figures 1.4 and 1.5 show the overview of our t,echnique for human and insect. 

1.1.3 Visualizing Results 

) 

Watching hours of video either for analyzing animal activity or for monitoring people act,ions 

needs a lot of time. It makes people bored watching videos in which nothing happens. In this 

work we use the existing visualization framework of Rav-Acha et al. [22] t,hat surnnlarizes 

hours of video and makes a very short video called a synopsis. Depending on the application 

Compute motion 
features using 
3D track 

b 
Perform spectral 
clustering 
on motion features 
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this shorter version of the video could include all the frames and objects in the original video 

or not, but more importantly it is much shorter and more interesting to be watched. We use 

their technique for visualizing the activities in each cluster separately but in a very shorter 

time. To summarize either the original video of grasshopper or merging different sequences 

of human action we put multiple instances of the object in one frame using the 2D track 

information of the object and minimizing the overlap cost between objects. By applying 

these techniques we not only have a much shorter video that includes all the actions but 

also we could evaluate the correctness and performance of action clustering results just by 

looking at the summarized version. 

1.2 Contributions 

The contributions of this thesis are introducing a new algorithm for action clustering that 

is employed for both humans and animals. Our technique is based on extracting previously 

developed motion features for humans. For insects we give novel features based on the 

movement of the animal. 

Given features we employ spectral clustering to cluster these features which correspond 

to frames of video. We also use the previously developed sampling extension called Nystronl 

method for spectral clustering but for the first time for action clustering. The Nystronl 

method makes it more efficient and improves the performance by computing the eigenvectors 

of similarities between samples and extending it to the eigenvectors of the full similarity 

matrix. This is an important issue in processing hours of video either for surveillance 

purposes or biological studies where both the inputs are hours of video. 

The other important benefit is that our technique is completely unsupervised which 

means that nothing is done manually to process the input and there is no need for manually 

labeling the data for training like supervised techniques. There are other unsupervised 

techniques but our method handles large data as well as being unsupervised. 

The last contribution is that we employ the result of our action clustering method in 

an existing visualization framework. We visualize the result, of each cluster in a separate 

video which is much shorter than the input video and include all the information. Doing 

this helps us to observe all the activities for a long video in a very short version also we 

could evaluate how good our technique is by looking at the actions from each cluster in a 

shorter amount of time. 



CHAPTER 1. INTRODUCTION 

1.3 Outline 

The rest of the thesis is organized as follows: we explain the previous work rnostly in area 

of action recognition in Chapter 2. In Chapter 3, the preprocessing and tracking that is 

required for each class of problem will be discussed. Chapter 4 describes the action features 

in details and spectral clustering technique. In Chapter 5, we will discuss the visualization 

technique used to make a short video of clustered action sequences. Chapter 6 presents the 

results of our technique for both humans and the grasshopper. Finally we conclude this 

thesis and discuss future works in Chapter 7. 



Chapter 2 

Previous Work 

The problem of action recognition has always been one of the main challenges in the area 

of computer vision. Many efforts have been done in this area to develop and improve recog- 

nition algorithms. Gavrila [ll] analyzed a lot of algorithms in human tracking and action 

recognition. The survey paper by Forsyth et al. [9] is about existing tracking algorithms mo- 

tion synthesis for human. Moeslund and Granum [17] reviewed methods in human tracking, 

pose estimation and action recognition. 

In this section, we mainly present some of the previous works that are discussed. Since 

our method includes different phases and preprocessing, the previous work in each of areas 

need to be mentioned separately. The topics we refer to as related works can be outlined 

as: 

Tracking 

Action Recognition 

Spectral clustering 

Visualization 

In the following sections we will present some of the existing algorithms. 

2.1 Tracking 

As mentioned before, first we need to find the object in the image. The object track provides 

useful information that can be used in recognizing actions. The object tracking problem 
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has received a lot of attention in literature. There is a survey paper by Lepetit and Fua [14] 

on tracking literature. 

There are advanced approaches in tracking animals like using particle filters by Khan et 

al. [12,13]. They use both appearance and location of the object in particle filters to track 

bees. In particle filtering each particle represents the probabilistic location of the object. 

These particles are weighted according to their probability to be the object. In each time 

a particle is chosen randomly and based on its weight. Then it is moved using the motion 

model and weighted again using its new appearance. Since employing particle filters need a 

motion model and the grasshopper movement is very unpredictable and with very different 

speeds we cannot use particle filters to track it. 

Another set of the methods that is simple and widely used for tracking objects is back- 

ground subtraction [27,32]. The basic idea is to detect foreground by taking the difference 

between current frame and background. If there are slight changes in background or there 

is some camera motion the technique will fail. In Toyorna et al. [27], some background 

maintenance techniques are presented which could improve the performance of background 

subtraction. This paper proposes technique to update the background at different level 

which are: 

Pixel Level: The pixel-level algorithm makes a probabilistic prediction value for every 

pixel at each time. It uses the past values up to time t to predict the value of the 

pixel at time t.  Then the difference between a predicted value and its real value is 

computed and if it is large the pixel is considered as a foreground. Hence, if there 

are frequently changing pixels this value is low and it is high for sudden changes that 

correspond to the foreground. 

Region Level: The region level considers relationships between pixels and works in 

such a way that instead of isolated pixels there will be regions and segments of the 

object. 

Frarne Level: It is for adapting to sudden changes in the background. Multiple models 

were used for the background. The system switches between models if necessary. For 

example if there is a sudden change in the lighting the background model will be 

changed for all pixels. 

Another approach is to use a mixture of Gaussian distribution to model the values of 
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a particular pixel as a mixture of Gaussians. This model helps to take care of multiple 

background objects that are changing a lot. For example leaves of a tree around a building 

that are moving but they are parts of background. Stauffer and Grimson in [26] use this 

probabilistic model for each pixel value x at time t .  A Gaussian density function is shown 

in Eq. 2.1. p and C are the mean and co-variance of the Gaussian. The weighted mixture 

of these functions is presented in Eq. 2.2. 

In this equation K is the number of Gaussian distributions. w is the weight function. 

Each of this Gaussian function represent a model at  each pixel and is weighted in the whole 

model. 

In Wren et. al. [32] a Gaussian average of the frames is taken and set as the background. 

Which means at each time a new Gaussian mean or average is computed and used to find 

the foreground from background. The average pt is : 

It is the current frame and the trade off between stability and quick update defines a. 

The standard deviation of Gaussian function, o, is used to find the foreground. Pixels that 

satisfy Eq. 2.4 are classified as the foreground. 

Since we are using a static background for the grasshopper and we want to have a robust 

background subtraction we employ this technique to track the grasshopper which could take 

care of slight changes in the background. 

2.2 Action Recognition 

Recognizing actions of humans or animals is one of the challenging areas of computer vision. 

There have been a lot of works in this area specially for people due to applications in 
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Figure 2.1: Data flow for Efros et al. algorithm. Starting with a stabilized figure-centric 
motion sequence? they compute the spatio-temporal motion descriptor centered at  each 
frame. The descriptors are then matched to a database of pre-classified actions using the 
k-nearest-neighbor framework. The retrieved matches can be used to obtain the correct 
classification label, as well as other associated information. (Figure and caption from [8] 
0 2 0 0 3  IEEE, by permission ) 

surveillance, sports and human computer interaction. In this section, we will discuss some 

of these works. 

Some of the approaches for action recognition use optical flow or image motion. There 

are different algorithms to compute optical flow for images in a sequence. In a paper by 

Barron et al. [2] different algorithms for computing the optical flow are compared. 

Efros et al. [8], use optical flow as the motion descriptor for each frame of the sequence. 

We used the idea of this work in this thesis. The flow of their algorithm is shown in Figure 

2.1. They use figure centric images to eliminate camera motion and compute the optical 

flow for each of these figures. The optical flow is separated into four different channels 

corresponding to motion in four different directions. Figure 2.2 shows each of the channels 

for a football player. Channels are blurred to remove the noise. After obtaining these motion 

descriptors, the similarity between them is computed using normalized correlation. To have 

similarity between motions that are similar but occur at different rates, the similarity is 

blurred with a blurry identity matrix which is sum of rotated identity matrices as shown in 

Figure 2.3. A typical frame to frame similarity matrix before and after blurring is shown 

in Figure 2.3. Given this matrix, nearest neighbor technique is used to find frames with 

similar actions. They also use these motion descriptors to do action synthesis. 

Another approach using optical flow is given by Zhu et a1 [36]. They present a technique 

to recognize tennis player actions in a video. Histograms of optical flow and Support Vector 

Machines (SVM) classifier [29] were used to classify different actions. 



CHAPTER 2. PREVIOUS WORK 

(a) original ilnugc ( h )  oplical Ilow F,..,, 

Figure 2.2: C,onstructing the motion descriptor (a) original Image, (b) Optical Flow, (c) 
Separating x and y component, (d) half wave rectifation of each component to produce 4 
separate channels, (e) Final Blurry motion channels. (Figure and caption from [8] 02003 
IEEE, by permission ) 

Figure 2.3: (a) A typical frame-to-frame similarity matrix S f f  for running, (b) the Blurry I 
kernel K (not shown to scale) used for aggregating temporal information within the similarity 
matrix, (c) the resulting motion-to-motion similarity matrix S. (Figure and caption from [8] 
02003 IEEE, by permission ) 
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KeyFrame ME1 MHI 

Move 2 

Move 4 

Figure 2.4: Comparison of ME1 and MHI. Under an ME1 description moves 4 and 17 
are easily confused; under the MHI, moves 2 and 4 are similar. Because the global shape 
descriptions are weighted by t,he pixel values, having both images yields more discrimination 
power. (Figure and caption from [5] 02001 IEEE, by permission) 
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Figure 2.5: Space-time shapes of jumping-jack, walking and running actions. (Figure and 
caption from [4] 02005 IEEE, by permission) 

Bobick and Davis in [5] develop an algorithm based on templates. Two different tem- 

plates are computed that are based on the silhouette of the object using background sub- 

tracted images. For matching the object movement to a template, a motion energy image 

(MEI) and a rnotion history image is computed (MHI). The ME1 is the sum of background 

subtracted images over time, and in the MHI intensities of pixels are function of motion 

during time. Hence, brighter pixels in MHI have moved recently. Figure 2.4 shows the MHI 

and ME1 for various moves of person. They try to find t,he best matches between input 

frames and templates using ME1 and MHI. 

Blank et al. [4] present a technique that is based on computing a space-time shape of the 

object. The space time shape includes a lot of spat(ia1 information at each time step. The 

space time shape is shown in Figure 2.5. They solve an equation using space tinie shape 

of a person arid extract saliency features and ~rient~at~ion of body parts. Then, the authors 

employ nearest neighbor technique using these feat,ures t,o evaluate these features 

Wang et al. [31] present an algorithm for ~lust~ering act,ions in still images using de- 

formable shape matching and spectral clustering. To avoid computing a very large simi- 

larity matrix, a fast pruning based on a descriptor called a shape context [18] is done to 

keep only a set of promising candidates. Then, deformable shape matching cost is employed 

for computing the affinities for spectral clustering. This is done by sampling points from 

the edges and finding an optimal assignment matching cost between them. They test their 

approach on sport data sets. 

Dollar et al. [7] and Belongie et al. [3] analyze actions by first tracking and then com- 

put,ing spatio-temporal patch features. The authors use an approach based on detecting 
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interest points by filtering in space time domain. Interest points around a local maxima of 

the response are extracted and called cuboids. After extracting a local space time volume, 

different types of features such as normalized pixel values, brightness gradient, or optical 

flow is computed as the features. K-means clustering is used to create library of cuboid 

prototypes. Therefore, it is expected that similar cuboids should be on the same prototype. 

Histograms of cuboid types used as descriptors and for comparing the test cuboid to the 

prototypes. This work is similar to its previous work by Shuldt et al. [24] but it uses slightly 

different features. 

Other works on automatically analyzing the behavior of animals include Balch et al. [I], 

who have developed methods for tracking multiple ants, and suggest the use of Hidden 

Markov Models for analyzing their behaviors. 

Zhong et al. [35] build a co-occurance matrix over vector quantized spatial motion feature 

and video segments. They use spectral clustering to cluster actions. In their case, the co- 

occurance matrix is sparse, and eigensolving is efficient. 

2.3 Spectral Clustering 

Clustering has always been a difficult task when the data dimension is high or it is very 

large and has a complex distribution. Recently spectral clustering has received a lot of 

attention and used in different areas like image segmentation [10,25] and action recognition 

[4,19,31,35]. This method is based on constructing a similarity or affinity matrix and using 

dominant eigenvalues of this matrix to cluster the data points. Verma and Meila in [30] 

compare different spectral clustering approaches. Ng et al. in [20], present a simple spectral 

clustering algorithm. The affinities in their method is exponential function of negative of 

euclidean distance between points. A diagonal matrix constructed which has the sum of rows 

of affinity matrix in its diagonal. These two matrices are multiplied. Then the K dominant 

eigenvectors of the result matrix are used as the embedding coordinates in a k dimensional 

space and the K-means clustering used to cluster these points instead of original points. 

Shi and Malik in [25] use the spectral clustering for image segmentation. The image 

segmentation problem is phrased as a weighted graph partitioning problem. The weights 

shows the similarity between pixels. Then, normalized cut is used to  partition this graph. 

Finding the min cut of a graph G means partitioning the vertices of graph into two sets such 

that the sum of the weight of the edges between these two sets is minimized. Normalized 
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Figure 2.6: The input video shows a walking person, and after a period of inactivity displays 
a flying bird. A compact video synopsis can be produced by playing the bird and the person 
simultaneously. (Figure and caption from [22] 0 2 0 0 6  IEEE, by permission) 

cut is similar but instead of minimizing the sum of edge weight the cut cost is computed by 

finding the fraction of total edge connections to all vertices in the graph. 

Minimizing the normalized cut is NP complete but Shi and Malik [25] show that this 

problem can be relaxed to a generalized eigenvalue problem. They used their algorithm for 

image segmentation. The second eigenvector of the similarity matrix is recursively used to 

bipartition the points which in this case are image pixels. 

Fowlkes et al. [lo] used a technique called Nystrom extension for solving the eigenvalue 

problem by sampling from points and finding an approximation for the eigenvectors. They 

suggest how to apply this extension to the Normalized Cut. This technique can be very 

useful when we want to process large data and it will highly improve the performance. They 

use their algorithm for image segmentation. We will use it for action clustering. 

Zelnik-Manor and Perona [33] discuss some important issues in spectral clustering like 

scale, a ,  in the Gaussian function usually used for similarity computation. We use their 

approach for computing the similarity between features used for the grasshopper. 

2.4 Visualization 

In this work, we are dealing with processing hours of video. Watching them either for video 

surveillance, sports or biology purposes need spending a lot of analyst time. Therefore, if 
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we visualize and summarize what happened in the long video in a very short version we 

save a lot of time. 

We use a technique similar to work in [22] to visualize classified actions. Rav-Acha et 

al. in [22] present a very interesting technique that can help summarizing a long video to 

a very short version. Figure 2.6 shows schematic space time volume for the original and 

synopsis which the shortened sequence. The original video includes a walking person and 

flying birds at  different times but the synopsis video has both of these simultaneously. 

Summarizing is done by dividing video into segments and minimizing a cost function for 

a time shift llf and a subset selection of segments B. The cost function includes: 

Eo : Occlusion cost between objects pixels in two frames. The occlusion cost is 

computed between each pair of segments. 

Ea : Activity loss which is the difference between the number of active pixels or object 

pixels in the original and synopsis video. 

El: The length cost of the synopsis video. 

The cost function is shown in Eq. (2.5) [22]. 

They use simulated annealing to minimize the objective function and obtain the segments 

in the shortened video. They also presented how to apply this technique for lossless synopsis 

video. A lossless synopsis is a shorter version that includes all the video segments in the 

original video and its main application is in the video surveillance where we want to observe 

all the activities. One of the result frame of a lossless video synopsis is shown in Figure 

2.7. We use this idea and employ it to visualize our action clustering results, and generate 

synopsis for insect and people datasets. 
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Figure 2.7: An example when a short synopsis can describe a longer sequence with no loss 
of activity. Three objects can be time shifted to play simultaneously. (a) The schematic 
space-time diagram of the original video (top) and the video synopsis (bottom). (b) Three 
frames from original video. (c) One frame from the synopsis video. (Figure and caption 
from [22] 02006 IEEE, by permission) 



Chapter 3 

Camera Calibration and Tracking 

The first step is to track the object since its track gives us a lot of spatial and temporal 

information that we can use for extracting motion features. The input to this step is a 

sequence of frames and the output is either the figure centric frames for humans or the 3D 

track for the insect. 

For humans we simply run a tracker by Sabzmeydani and Mori [23] which is based on 

edge features and Adaboost learning. Since the dat,a set we use has only one person at each 

frame, tracking is easy and the track output is reliable. After that, we extract the figure 

centric image which is a window around each person and no preprocessing of the input for 

humans is necessary. 

For the grasshopper we are interested in the 3D track of the object to be able to say 

where it is at each time step and compute its movement.In this sect,ion we will discuss these 

steps for the grasshopper since the 3D tracking of the grasshopper need some preprocessing. 

Our approach is based on separate 2D tracking and then generating the 3D track from two 

2D tracks. To do this, some preprocessing is necessary to find the camera parameters. In 

the following section we will discuss the preprocessirig and 3D tracking of the grasshopper. 

3.1 Camera Calibration 

We need to find the 3D track for the insect. Using one camera enables us to extract only 

the 2D track of the object,. We need at least two cameras t,o be able find the 3D track and 

to be able to project between 2D arid 3D we need to find their parameters. The process of 

finding a camera optical and geometrical parameters is called calibration. 
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Each camera has a set of optical or intrinsic parameters. Camera intrinsic parameters 

are: 

Focal length: The focal length, f,, f y .  

Principal point: The center of the image, c,, cy. 

Skew coefficient: The cosine of angle between x and y axis, a 

Distortions: The radial and tangential distortions. 

Each camera also has a set of geometrical or extrinsic parameters which are used to 

transform between a known world reference frame and unknown camera reference frame. 

Camera extrinsic parameters are: 

Rotation: R rotation matrix between camera frarne and world reference frame. 

Translation: T translation matrix between camera frame and world reference frame. 

The relation between a 2D point in an image and its 3D coordinate in world reference 

frame is given by Equation 3.1 : 

Where m=[x,y,l] and M=[X,Y ,Z,1] are the homogeneous coordinates for the corre- 

sponding 2D point in the image and its 3D world coordinate. P is t,he projection matrix 

P = K[RIT] where K is 3 by 3 matrix containing intrinsic parameters of a camera: 

R and T are the rotation and translation between the world and camera reference frame. 

To find the camera parameters we use Bouguet's camera calibration toolbox in Matlab. 

In this technique, a calibration pattern, for example a checkerboard which is shown in 3.1 

is used. The checkerboard is printed and attached onto a planar surface. We have to show 

this pattern from different angles to the camera. The details of the proper angle between 

the image plane and the pattern for obtaining good calibration results is analyzed in [34]. 
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Figure 3.1: Calibration Pattern. 

The whole pattern should be seen in both cameras. For each view we have to click on four 

corners manually. After having enough images of the checkerboard the toolbox can find 

the parameters in K. Details of solving the method and the number of planes required 

is discussed in [34]. For each shot the toolbox computes the corners of checker board by 

searching the image and using camera parameters. Minimization of mean square error 

between them used to compute more accurate intrinsic parameters. 

Given two 2D tracks which is the output of background subtraction technique in section 

3.2 we find the 3D track by employing the triangulation procedure which exists in the same 

toolbox. Equation 3.1 does not have an inverse which means that given a 2D coordinate 

we cannot find the 3D coordinate that corresponds to it. That is because each point in 

2D correspond to a line in 3D which means infinite number of points. Therefore, the 3D 

position (X,Y,Z) of a point P30, can be reconstructed from the projection of P3D on the 

image planes of at least two cameras, given the relative position and orientation of them. 

So we need at least two calibrated cameras. Calibrating two cameras and finding the 

relative translation and rotation between them is called stereo calibration. To do this we first 

calibrate each of the cameras separately by the process explained on top then the toolbox 

is able to recompute the camera parameters by doing stereo calibration. The important 

issue here is that having the cameras synchronized. Because the views used for calibrating 

cameras should be the same to be able to do stereo calibration. For synchronization we use 

a digital clock in the beginning of recording our video. 
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Extrinsic parameters 

Figure 3.2: Extrinsic Parameters of cameras including different views of the checkerboard 
used for calibration. 
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Figure 3.3: Projecting from 2D to 3D. 

We set up two cameras as shown in Figure 1.1 and calibrate them by employing the 

toolbox. We use 15 different views of the checkerboard and show it to the cameras under 

different orientations. The toolbox finds the focal length, principle point, skew, distortion 

also the translation and rotation between the cameras. The extrinsic parameters given by 

the toolbox is shown Figure 3.2. 

Figure 3.3 shows how we back-project from two 2D points to a 3D point. In this figure 

C1 and Cz are the camera principle points. Pl and Pz are image of one P3D point.. We 

can find the 3D coordinate by taking the intersections of two lines that pass through the 

2D coordinates and camera principle points. Due to error in calibration the lines usually 

do not intersect. In that case, the 3D location will be the point between lines that has 

minimum distance frorn both of the lines. By doing stereo triangulation we can compute 

the 3D location of the object given two 2D tracks. 

3.2 Stereo Tracking 

Tracking this insect is difficult due to its very small size and its color changes as it is walking. 

In addition, the insect makes occasional jumps which are so fast that sometimes it is very 

hard to be seen, for example a 50 cm jump only occurs at  10 frames considering 30 frames 

per second. To overcome these difficulties, we used a fixed painted background and image 

differencing to detect the object, instead of tracking algorithm based on color histogram or 

motion models of the target, which tend to oversmooth the jumps. 
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Figure 3.4: Difference image before smoothing. 

Figure 3.5: Difference image after smoothing. 

We employ a background subtraction technique to track the object. We smooth the 

difference image Id using a Gaussian filter. We take the pixel of maximum sum of red, green 

and blue values as center of the location of the insect as shown in Eq. 3.2. 

xo = arg(max(Ii(x) + I i ( x )  + I;(X))) 
x E I ~  

(3.2) 

In this equation, x, is the grasshopper center, Id(x) is the difference image, and I i (x ) ,  

Iz(x) and I:(X) are the red, green, and blue values of each pixel. The difference image is 

shown before and after smoothing in Figure 3.4 and Figure 3.5. The noise is mainly because 

of presence of slight changes in the background, for example in the border of the cage. 

Our background image is set to be the average of all the frames up to  time t to make the 

algorithm more robust to slight changes in illumination or other variations in background 

image [32]. Employing these techniques we track the object in each of the cameras separately 

and obtain the 3D track by performing the stereo triangulation procedure explained above. 



Chapter 4 

Action Clustering 

In this chapter we will discuss the core of our action clustering algorithm. We start with 

either figure centric images around the person or the track of the grasshopper. We are 

interested in clustering different actions for both cases. The first step is to construct features 

that could discriminate between different classes of actions. We will describe our novel 

features for grasshopper and the existing optical flow vector field features for human in 

separate sections. Given these features for frames we need a clustering algorithm to put 

the same actions into a same cluster. In this thesis we discuss how to employ the spectral 

clustering technique using the Nystrom extension on the features to cluster different actions. 

4.1 Action Features 

Given the figure centric image or track of the object we first need to extract features from 

them that could describe actions in the frames. Since features depend on the domain of the 

problem they are different for video of humans or a video of one grasshopper. We are using 

two different motion features, one for each class of problem. In the following subsections, 

the details of features for each case are discussed. 

4.1.1 Motion Features for Human 

In this section, we introduce the motion features that we use for human. Our motion 

features are based on the optical flow or image velocity. As mentioned before, optical flow is 

a descriptor that shows the motion of the image. There are different algorithms to compute 
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optical flow which were discussed in Barron et al. [2]. The motivation behind optical flow is 

that it shows the motion regions for a human body which is different for different actions, 

also it is invariant to appearance. So a person action is described by the optical flow features. 

In this thesis, we use the algorithm by Lucas and Kanade [15,16] to compute optical flow 

for each frame. The Lucas Kanade method is one of the popular methods for computing 

optical flow using derivatives in space and time. The first assumption is the image brightness 

constancy constraint which means that the appearance of the object does not change as it 

moves. Hence, we have [28] : 

Therefore, for every point (x, y) in image I that moves by (dx, dy), we can write: 

Fx and Fy are the x and y component of optical flow and V is the partial derivatives 

of I with respect to x and y. Assuming that the flow is constant in a small window, the 

solution to this problem can be found by solving a linear system of equations. 

Since we want to represent the motion in four possible directions(up, down, right, left) 

which are non-negative, we half wave rectify x and y channels of optical flow to four non- 

negative channels. This is same as Efros et al. [8]. 

Next, we blur each of these channels using a Gaussian filter. The blurring is done to 

remove the noise in the flow computation for example location of the arm while boxing 
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(b) Blurred flow channels. F: ,F[ ,F$ ,F; (clockwise) 

Figure 4.1: Optical flow for a boxing person.(a)Original image,(b)Four blurred optical flow 
channels showing motion in four directions. Flow values changes from high to low in range 
of colors from red to blue. There is a high flow around the right hand of the person in F; 
and Fg-. 
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time 

Figure 4.2: Feature vectors based on movement of the object. 

might vary. Then, we normalize these vectors for each image to be able to compare them 

later. For normalization we normalize each flow channel separately so the sum of flow values 

for each flow channel over the image is one. The flow for a boxing person from KTH data 

set is shown in Figure 4.1. 

4.1.2 Motion Features for Grasshopper 

We track the object in 3D and specify the location of it at each frame. The next and more 

challenging step is to cluster different actions of the insect such as jumping, walking and 

standing still using its movements between frames. Although the tracker always points to 

the object, the location information is noisy. This noise is more when the object is not 

moving which makes the clustering task more difficult. 

We define a set of motion features based upon this tracker output which we will use to 

describe grasshopper tracks. The motion features will be clustered using spectral clustering. 

Obtaining a good motion feature is a critical task that impacts the quality of clustering. The 

word 'good' means that the feature should be as different as possible between the actions 

which are in two separate classes, and as similar as possible between actions within a same 

class. The classes of actions we are considering for grasshopper is jumping, walking, and 

standing still. 

Constructing the motion feature is a crucial part and since we are using only the 3D 

position we smooth that using a Gaussian filter Eq. 4.10 to remove the noise in the tracker 

output. 
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Figure 4.3: ID track of the object and a sample feature vector for each action during the 
track. 

Then for each non-overlapping window of size W of 3D position of the object we compute 

the difference between xs(t) (location of grasshopper in 3D at time t )  and xs(t + dt) for each 

of the frames in this window. This feature is illustrated in Figure 4.2. So our feature vector 

& for window of size W of 3D coordinates sequence in time will be: 

& = (Ixs(t)-xs(t+6t)I, IxS(t+1)-xs(t+1+6t)I , .  . .  , Ixs(t+W)-xs(t+W+6t)I)  (4.12) 

We will perform clustering on these W-dimensional feature vectors. The motivation for 
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Figure 4.4: In spectral clustering data points are the nodes and affinities between them are 
weighted edges of a complete graph. The thickness of the lines shows the edges weight. (for 
clarity some of the edges are removed) 

employing these features instead of the gradient of x, is to eliminate noises in the tracker by 

using dt frames instead of 1 frame used for gradient computation. So when the grasshopper 

is standing still but the tracker is noisy, this feature is designed to smooth the gradient 

computation. The 1D track of the object for different actions and a sample feature for that 

action is shown in Figure 4.3. 

4.2 Spectral Clustering 

Until now we have some features that correspond to one or more frames. We want to cluster 

these features into classes that each of them in ideal case should represent an action. There 

are different approaches for clustering, we have chosen spectral clustering. Spectral cluster- 

ing is a clustering method that uses the eigenvalues and eigenvectors of a similarity matrix 

between data points to cluster them. In spectral clustering, an affinity or similarity matrix 

W that indicates the similarity between each pair of data points is constructed. Therefore, 

in two dimensional case, data points and similarity between them can be illustrated as a 

weighted complete graph as shown in 4.4. Wij of this matrix stores the similarity between 

nodes i and j .  In our work, nodes i and j are motion features corresponding to frames. The 

data is clustered by analyzing the eigenvalues and eigenvectors of this matrix. We compute 
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eigenvectors of W and use the dominant eigenvectors. Then, we cluster data points using 

k-means in the embedding space given by these eigenvectors. 

Computing the right affinities plays a key role in clustering result. The measure used 

to compute affinities is very important and should be different depending on the problem 

domain. In ideal case, W is strictly block diagonal under a permutation of its rows and 

columns. It means W is nonzero between similar actions and zero between different classes 

of actions. In the following sections, we will describe the affinities that we use for our 

clustering techniques. 

4.2.1 Computing Similarity Matrix 

In this section, we discuss different measures that we use for human and grasshopper to 

compute the affinity or similarity between motion features. 

Similarity for Human Features 

As suggested in [8], we use normalized correlation to compute the similarity between four 

channels of optical flow that correspond to motion in four different directions. Since each 

of these channels is normalized the correlation between them is a normalized correlation. 

Consider frames i and j of sequences A and B. We have four channels of flow : a;, a;, a:, a:, 

b,, b,, b i ,  b, for frame i in sequence A and frame j in sequence B. There are blurred and 

normalized flow channels in four directions. To normalize them we treat each channel of 

flow for each n by m frame as n by m victor and divide the flow of each pixel by magnitude 

of that. Then, We compute the affinities between them using [8]: 

This is used since optical flow is a vector field and this is similar to computing the dot 

product of vectors from each image which is reasonable measure for computing the similarity 

between two vectors. T and I are the temporal and spatial windows. The last two sums 

can be calculated using the formula given by Efros et al. [8] in Eq. 4.14 where columns of 

Ai and Bi includes the flows for channel i for each frame which are reshaped as vectors. For 

example if sequence A has k frames of size n by m the size of matrix Ai for each i is nm by 

k. 
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This formula only uses the spatial window and it is equal to Eq. 4.15. Which is part of 

the whole correlation formula. 

We have to sum W f f  over a temporal window by taking the convolution of W f f  and a 

blurry identity Kernel It to compute the final motion to motion similarity [8]. The reason for 

this blurry I kernel is to have higher similarity between motions that are similar but occur 

at  slightly different rate. The affinities for our human data set before and after blurring for 

different action classes are shown in Figure 4.5. 

Similarity for Grasshopper Features 

After constructing the features in Section 3.2, we compute the distance d i j  between features 

i and j using Euclidean distance. For computing the weight we use negative of this distance 

and Eq. 4.16. 

We apply local scaling or local a,  instead of a fixed sigma [33]. This means that each 

point has its own a and we use that to compute the affinity between that point and all 

other points instead of using a fixed sigma. The reason for not using the simple Gaussian 

function which has a fixed a is that the distances between clusters are not the same. For 

example, if we have a tight cluster within a background cluster and use a constant scale, it 

leads to weights that may not describe the real similarity between features. 

This problem is illustrated in Figure 4.6. It is shown that using a local a instead of a 

fixed one can lead to better affinities between data points. 

In this method, the scaling factor a is a function of distance between nodes. Our choice 

for a is : 
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Box Hclap Hwave Jog & Run & Walk 
---< > 

(a)  Unblurred frame t,o frame affinity. 

(b) Blurred motion t o  motion affinity with blurry I kernel. 

Figure 4.5: Affinities between frames using normalized correlation for all six classes of actions 
in KTH data set. Similarity changes from high to low in range of colors from red to blue. 
The sirnilarity between walking and jogging and running is high. 
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Figure 4.6: Affinities between points using (a) Fixed a,  and (b) Local a. Thickness of lines 
corresponds to the magnitude of affinity.(Similar to [33]) 
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Jump 
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Figure 4.7: Reordered affinity matrix for grasshopper jumping, walking and standing still. 

where Vk is the kth neighbor of node i. k in this formula should not be very large or 

small. If it is large, weights between all the points become large. On the other hand, most 

of the nodes get a low similarity if k is small. In our experiments, k is set to 10. 

The reordered affinity matrix for different class of actions has been shown in Figure 4.7. 

As it is clear from this picture, the number of jumping frames are much lower than standing 

still and walking frames so jumping is considered a rare action. 

4.2.2 Spectral Nystrom 

When dealing with large amount of data, computing eigenvalues and eigenvectors of a large 

matrix is an expensive task. For our application, there will be thousands of nodes; so, 

constructing, storing, and computing the eigenvectors of the matrix W will be intractable. 

To overcome this limitation, we apply the Nystrom extension [lo, 211 which provides a 

method for extrapolating eigenvectors computed on a portion of W to the entire matrix. 

To the best of our knowledge there is no probabilistic guarantee on the accuarcy of the 

eigenvectors and eigenvalues given by the Nystrom method but experiments show that it 
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works for our data sets and for the clustering. Following the notation in Fowlkes et al. [lo], 

given an N by N affinity matrix W,  

where A is an n by n sub-matrix of W containing a set of randomly chosen sample points. 

If n << N ,  eigenvectors U of A can be computed efficiently, and then extended as u to the 

entire matrix W by: 

where A is the diagonal matrix of eigenvalues of A. 

An important point is that if rare activities exist, and are not randomly chosen in matrix 

A, the extended eigenvectors given by Eq. 4.19 will not be accurate. 

For the grasshopper as mentioned the number of jumping frames is much smaller than 

the number of standing still and walking frames. Therefore, we augment the set of random 

data samples with a fixed number r of data points which are jump features. Clustering 

experimental results show that augmenting the Nystrom samples with jump samples does 

not effect the Nystorm extension in eigenvector computation. These points are chosen based 

upon affinities in B, finding samples which are furthest away from the originally randomly 

chosen samples. In our experiments, we found the results to be insensitive to the setting of 

this parameter r .  

We then compute eigenvectors and eigenvalues for this augmented matrix A, and use 

the Nystrom extension to extend these eigenvectors to the entire matrix W. Finally, we 

perform k-means clustering on the resulting embedding coordinates. 

We summarize our action clu~t~ering algorithm for humans and grasshopper in the fol- 

lowing tables. The summaries for both methods are similar but for humans it needs fewer 

steps since we do not have rare activities for human data set. 

Using these algorithms we did action clustering for humans and the grasshopper. We 

will use the previously developed visualization technique to visualize the results in a shorter 

version that includes all the actions. 
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Table 4.1 : Action clustering algorithm for humans. 

1. Construct the spectral graph using features in section 4.1.1. 

2. Sample from the nodes randomly. 

3. Compute affinities A, the between samples matrix using Eq. 4.13. 

4. Compute affinities B between samples and rest of the nodes matrix using Eq. 4.13. 

5. Compute the eigenvalues of affinities using one shot technique in [lo]. 

6. Use the K largest eigenvectors E = [El E2.. .Ek].  

7. Cluster rows of matrix E which are the embedding coordinate in K-dimensional 
embedding space using K-means algorithm. 
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Table 4.2: Action clustering algorithm for a grasshopper. 

1. Construct the spectral graph using features in Section 4.1.2. 

2. Sample from the nodes randomly. 

3. Augment these samples with the r = 4 furthest nodes from these samples. 

4. Compute distance between samples D & ~ ~ ~ ~ ~ ~ ~ ~ ~  using L2 distance. 

5. Compute distance between samples and rest of the nodes D ~ ~ , ~ ~ ~ , , , ,  using L2 distance. 

6. Sort rows of D A  matrix and choose the jth column as U A  compute affinities A, between 
samples matrix using Eq. 4.16. 

7. Sort columns of DB matrix and choose the jth row as ag compute affinities B ,  between 
samples and rest of the nodes Matrix using Eq. 4.16. 

8. Compute the eigenvalues of affinities using one shot technique in [lo].  

9. Use the K largest eigenvectors E = [EIE 2...Elc]. 

10. Cluster rows of matrix E which are the embedding coordinate in K-dimensional 
embedding space using K-means algorithm. 
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Visualization 

In the previous chapters, we developed a novel method to cluster different actions of humans 

and animals. Now, we want to find a way to show the classified actions of the object to the 

user. Since the original video is very long, we need to summarize it into a short video to 

present classified actions in a reasonable amount of time. Also, we want to separate different 

action classes in the output video to make the clustering results visible. In this chapter, we 

develop a method to visualize our clustering results in a short video. We first present the 

overview of our method; then, we describe steps of our algorithm in details. 

5.1 Overview 

Given the original video of the object, we want to make a synopsis video by moving different 

parts of video in time and put them together a5 a single video. In this case, we have several 

copies of the same object in our visualization. Figure 5.1 illustrates the formation of the 

synopsis video. This approach is based on [22]. 

Let V be the original video, V(x, y , t )  is the value of pixel located at position (x, y) in 

the frame at time t. We first classify the action happening at each frame using our action 

clustering method. We extract the video segments as a set of consecutive frames belonging 

to the same action class. In the next step, we reorganize the segments arid move them in 

time to make a shorter video while keeping similar actions together. Finally, we generate 

the synopsis video, S(x,  y, t ) ,  using these segments. 
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Figure 5.1: Overview of sy 
is the time. This could be 
have multiple instances of 
top. (Similar to [22]) 

,nopsis approach. Horizontal axis is the position and vertical axis 
1D track of one object and in the shorter version on bottom we 

this object from different video segments of the original video on 

5.2 Video Segmentation 

In this section, we describe how we produce video segments from the original video V(x, y, t )  

and clustering results. In video segmentation, we break V into smaller video sequences. 

We should define the appropriate segmentation of video V. Let c(t) be the cluster label 

corresponding to the action of object performed at time t. An appropriate segmentation 

is a set A = {a l , .  . . ,a,) of segments. Let T(a,) be the time segment a, starts. We are 

interested in building A such that all frames in the segment a, belong to the same cluster. 

We start by traversing all frames in the video sequence and crop the sequence of frames 

with the same action label. In particular, we start by A = {al) and T(al )  = 1 and do the 

following: We pick a frame at time t in V and verify if c(t) = c(t - 1). If so, we proceed to 

the next frame t + 1. Otherwise, we add a new segment a, to A with T(a,) = t .  

In real applications, some objects may continue doing the same action for several minutes. 

In this case, the generated segment is too long. As we will describe our repositioning 

technique in the next section, long segments limit the length of synopsis video more than 

smaller segments. This is due to the fact that smaller segments can be rearranged with 

more freedom, and we can have more video segments at each time instance. To limit 

the video segment length, we define I,,, to be the maximum segment size, and maintain 
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li 5 I,,,, 1 5 i 5 n during the segmentation where li is the length of segment ai. 

On t,he other hand, in some cases the number of frames in a segment is less t,han a 

minimum segment size, lmin, since t,hey are very short and sometimes labels are not right 

and caused by the noise. So, we merge the segment with the previous or the next segment 

with the following constraint, if the segments whose length is less than Imin and its neighbors 

are not rare actions we could apply merging to them. The action is called rare if we know 

that the object has such a rare behavior or if there is a cluster which is rnuch smaller than 

other clusters. We take care of that action and its cluster by not merging it to its neighboring 

segment. For example, for visualizing grasshopper results, we can merge two segments if 

they are sequences of walking and standing still. However, we can not merge jumping and 

walking or standing still since jumping is a rare action. We find the jumping cluster by 

finding the cluster that has minimum size since jumping is very rare. For visualizing human 

videos, we do not have any rare action. 

5.3 Segment Repositioning 

In the next step, we want to move each video segment in time t,o achieve two objectives: 

(i) the segments have the least overlap, (ii) the final video is as short as possible. We also 

maintain all video segments in the synopsis video. Given a set of video segments, A, our 

goal is to find mapping T where Tt(ai) is the time segment ai appears in the synopsis video 

S. 

To minimize the overlap between video segments, we first define the occlusion between 

two segments i and j based on [22] as : 

c ( i , j ) =  C X i ( x , ~ , t ) . X j ( x , ~ , t )  (5.1) 
x , Y , ~ E S  

where Xi(x, y, t )  is 1 if there is an object at  pixel (x, y) at  time t of synopsis video in 

segment i .  The total occlusion cost for mapping T' defined as [22]: 

Note that C ( T )  = 0 because there are no video segments with a common frame. There- 

fore, C(i ,  j) = 0 for all pair of i and j, i # j .  Now, our objective is to find T' that minimizes 

C(T'). We fix the length of S to 1. In particular, we do the following: 
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We add segments one by one at random to the synopsis video. For each segment ai being 

added, we set the value of Tf(ai):  For all values of Tf(ai)  between 1 and 1 we compute C ( T f )  

and we pick the one making C ( T f )  minimum. In other words, the we try all the different 

time shifts for segment ai in the synopsis video to obtain the least occlusion with previously 

added segmnets. We fix the value of Tf(ai)  and proceed with adding the next segment to 

S. 

As mentioned before, we want to present same actions together. Therefore, we do the 

video segmentation separately for each action and create a separate synopsis video. 

5.4 Generating Output 

After finding the optimal T', we generate output frames one by one. We first find a set of 

segments, R,  that are rendered at time t .  Next, for each segment in R we find the object 

pixels area using the track of the object. We copy the object pixels from V to S. 

Now we describe how to find R for each frame and copy objects into generated frame. 

For each frame at time t ,  1 5 t 5 1, R is obtained by finding segments which satisfy: 

Next, we generate frame t of the synopsis video. At the beginning, it only consists of 

the empty background. Then, for each ai E R, we copy the object pixels from V to S. We 

proceed to frame t + 1 and do the same. 

5.5 Experimental Results 

In this section, we present the visualization results of our algorithm. We ran the algorithm 

for both humans and grasshopper. Since the KTH data set is not consistent in backgrounds 

and camera position and there are a lot of scale and lighting variations, we could not produce 

a good output. We ran our algorithm over 45 minutes of a single grasshopper video and 

produced a 2-minute synopsis video. 

We ran the synopsis for each cluster separately and generated one video for each cluster 

one for walking, one for standing still, and one for jumping. We present a sarnple output 

frame in Figure 5.2. As you can see in the figure, 11 grasshoppers were rendered into the 
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Figure 5.2: A grasshopper synopsis video frame when it walked up the wall. 11 grasshoppers 
in the figure are the one grasshopper in the original video at different times. 

same frame although there is only one grasshopper in the original video. These are the 

copies of one grasshopper in different times when it walk up the wall of the cage. 
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Experiments 

In this chapter we present our experiment results for humans and the grasshopper. In the 

first section we give the results for humans. Next, we present results for the grasshopper. 

6.1 Humans 

In this section we evaluate our experimental results for clustering human actions. We use 

the KTH data set. This data set includes 6 different actions performed by 25 different 

persons 4 times changing different variables. There are a lot of variations in its videos in 

scales, clothing, and lighting. This six actions are boxing, hand clapping, hand waving, 

jogging, walking and running. One frame from each action is shown in Figure 6.1 

Due to the huge size of the data set we experimented our method on 764 sequences, 

and choose 10 frames from each sequence. Therefore, the total number frames is 7640. In 

Figure 6.2 the performance of our algorithm versus different number of clusters is shown. 

Although we are considering only four distinct actions by putting together walking, jogging 

and running we did experiments with more number of clusters than 4. The reason for that is 

the fact that there are always variations in the data which leads to have better performance 

using more number of clusters than the action classes. For example all the walking, jogging 

and running in different directions are put in separate clusters. Therefore having more 

clusters improves the performance. For manual labeling of the clusters, watching some of 

the frames for 5 to 10 clusters including similar actions is much easier than watching all 

the frames of the video and by increasing the number of clusters by a small number we get 

better clusters which makes the labellings task easier. 
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Figure 6.1: KTH data set sample frames for boxing, hand clapping, hand waving, jogging , 
running, walking. 
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Figure 6.2: Impact of number of clusters on the performance of human action clustering for 
KTH data set. 

Number of Samples 

Figure 6.3: Impact of number of samples on the performance of human action clustering for 
KTH data set. 
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Figure 6.4: Standard deviation of overall performance for 100 runs of the code versus dif- 
ferent number of clusters for KTH data set. 

Correctness of clustering is measured by the purity of each cluster. To compute the 

correctness, in each round we find the number of frames for each action that has been fallen 

to each cluster. Then clusters are labeled with the action that has maximunl number of 

frames in them. We do it for each cluster then add the number of frames of an action in 

cllisters that are labeled with the same label and divide this sum by the total number of 

frames of each action 6.1. This number will be the fraction of actions that are correctly 

classified. 

In this equation Ic shows the index for each class of action and gt(k) is the number of 

ground truth frames which are fallen into cluster ci and they are the majority of cluster ci. 

GT(Ic) is the total number of ground truth frames for each action in this experiments we 

had the ground truth for all 7640 frames of KTH data set. 

Since optical flow features are very similar for walking, running, and jogging, our tech- 

nique put them in the same cluster but it does not confuse these actions with boxing, hand 

clapping, and hand waving because the flow for them is different. In this experiment we 

used 100 samples from 7640 for the Nystrom extension. We ran the code 100 times and 

compute the average of correctness. 
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Figure 6.5: Standard deviation of overall performance for 100 rounds of the code versus 
different number of samples for KTH data set. 

Table 6.1: Confusion table for approach [24]. There is confusion between jogging and 
running also hand clapping and hand waving with boxing. 

In Figure 6.4, the standard deviation of overall performance is plotted versus different 

number of clusters. As it is illustrated in this graph the standard deviation running the 

code 100 times is less than 0.06. The bars at each cluster number is the overall average 

correctness plus and minus the standard deviation. 

We also performed another experiments to consider effect of number of samples on the 

correctness. The result is shown in Figure 6.3. Although there is slight changes in the 

performance using different number of samples for different clusters the overall performance 

is smooth. Again we ran the code 100 times and compute the average correctness. For 

this experiment we fixed the number of clusters to 6. The standard deviation for overall 

performance is shown in Figure 6.5 which is small. 
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Table 6.2: Confusion table for approach [7]. The most of the confusion is between jogging 
and walking or running, and between boxing and hand clapping 

Table 6.3: Confusion table for our clustering technique. 

Optical flow features are not view invariant which means that when a person walks 

toward different directions, the optical flow features have different values in different direc- 

tions. Therefore, the similarity between walking right and left is lower than the similarity 

between walking in the same directions, and as it can be seen in Figure 6.2 when we are 

using 4 clusters the correctness for walking, jogging and running is 0.75 but when more than 

5 clusters is used it is 0.85 and starts monotonically increasing with using more number of 

Walk, Jog, Run 
Box 

Hand Clap 
Hand Wave 

clusters. That is because we are having walking, jogging and running toward left and right 

in our data set which have different flows. We experimented between walking, jogging and 

running toward right and left using 5 clusters. We observed that always two clusters are 

labeled with this group of actions and each of them include up to 60 percent of these actions 

but in the left or right direction. 

Our method is completely unsupervised compared to [7,24] which are supervised tech- 

niques. In both of these approaches actions are analyzed by computing spatio-temporal 

Walk, Jog, Run 
75.0 
3.0 
7.4 
5.8 

patch features and using them for training and testing. We do not do any manual labellings 

to cluster the data. In Table 6.2 the confusion table from [7] and in Table 6.1 confusion 

table for [24] are shown. In both of these tables the column is the ground truth for the 

specified actions and each element aij of these matrix shows the percentage of action i that 

is classified as action j. As it can be seen in both of these tables, there is a confusion 

Box 
4.0 

66.14 
20.8 
32.3 

Hand Clap 
17.2 
2.0 
55.3 
11.6 

Hand Wave 
3.0 
28.1 
16.2 
50.2 
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between walking, jogging, and running since their features are similar. In 6.3 the confusion 

table for our technique using 4 clusters is shown. We run the code 100 times and for each 

round we computed a confusion table then we took the average which is the table 6.3. 

Although they have better performance over our methods in clustering walking and 

running and jogging but our method is completely unsupervised and handles large data and 

comparing an unsupervised method and a supervised technique is not a fair comparison. To 

the best of our knowledge other than our method, there is no unsupervised technique using 

KTH dataset. 

6.2 Grasshopper 

Since we have to manually label the frames for evaluating the method we tested our algo- 

rithm on 3530 frames of a video of one grasshopper for the graphs in this section but we also 

did experiment on 80000 frames of the grasshopper video and used the clustering results 

for the visualization framework. The videos show that the clustering put different actions 

in separate clusters. Figure 1.1 shows how we set up the cameras for our experiments. We 

use two cameras and calibrate them by the calibration toolbox in Matlab [6]. Then, we 

apply the background subtraction technique to get the 2D track in each camera separately 

and get the 3D coordinate using the triangulation procedure in this toolbox. We smooth 

this track by a Gaussian filter and divide the track into non overlapping windows of size 5, 

W = 5. For each frame in this window, we compute the difference between 3D position of 

x and that is the feature vector or nodes of the graph. We also set dt in section 4.1.2 to 5 

for our experiments. 

We manually supply ground truth labeling of these frames into 3 classes of distinct 

actions - standing still, walking and jumping. We ran our code 200 times for each value 

of number of clusters and report the average value in the plots. The reason for this is the 

randomness in sampling of Nystrom method and initialization of K-means algorithm. The 

number of samples is 100. We compute the correctness similar to the way we did for humans 

and each cluster is a cluster of the action that has maximum number of frames in it. The 

number of ground truth frames for standing still is 1030, for walking is 2440 and for jumping 

is 60 which is almost all the jump frames. 

The average of the correctness is shown for each of them in Figure 6.6 with respect to 

number of clusters. The plot shows this fraction for each action and for all of them together. 
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Figure 6.6: Impact of number of clusters on performance of our algorithm. 

As it is shown in this figure our overall performance is above 80 percent and the graph is 

almost smooth for k > 5. 

Figure 6.7 shows the importance of having samples from rare activities. In our experi- 

ments jump frames are rare and their features are very different from walking and standing 

still. We tested in our experiments whether the jumps are sampled or not and plotted the 

correctness of clustered jump frames in both cases. As it is shown in Figure 6.7, there is a 

big change if we do not sample jump frames. In this case, the computed eigenvectors which 

are the embedding coordinate will not lead to a good clustering because we estimate the 

eigenvectors of the whole affinity using them and if there were no samples of the unusual 

actions the Nystrorn extension will not accurately reconstruct the eigenvectors. 

We also analyze the effect of r which is the number of added jump samples on the 

performance of the algorithm. For each value of r ,  we plot the correctness of the output. As 

it can be seen in Figure 6.8, having more samples could result in a slightly better performance 

but the method is relatively stable for different values. More importantly, if we do not have 

any samples from the rare actions we cannot cluster them correctly. 

Finally, we present the eigenvalues for 3D dominant eigenvectors in Figure 6.9. In this 

figure, components of the first three dominant eigenvectors are shown for each frame of the 

ground truth. As you can see these components get different signs for different classes of 

actions. For example if we consider for each frame a 3D vector that includes component of 
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Figure 6.7: Impact of sampling from jumps on the performance. Curves show correctness 
of frames labeled as jumping with and without samples from this class. 
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Figure 6.8: Effect of number of added jurnp samples on performance of detecting jurnp 
actions. 
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Figure 6.9: Dominant eigenvectors component values versus features for each class of action. 

these eigenvector they will be different for each class of actions. For example the components 

of the first eigenvector are almost positive for different activities. The second eigenvector 

get non-zero values only for the jumps and zero otherwise. The third eigenvector is negative 

for nodes that correspond to walking and positive for standing still. However, this does not 

always hold due to the similarity between walking and standing still sequences. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this thesis we have developed an algorithm for clustering actions of humans and animals. 

We experimented with our method in one data set from each domain. For humans we 

compute optical flow or image motion vectors as features for each figure centric image. We 

conipute the similarity between features using normalized correlation. For the grasshopper 

we have developed novel features for each video segment based on the movement of the object 

in 3D and compute the similarity using exponential of negative of Euclidean distance. The 

similarity between features either for frames or video segments is the input similarity matrix 

for the spectral clustering. 

We employed spectral clustering to cluster frames or video segments using the corre- 

sponding features. We also embedd the Nystrom extension to the spectral clustering which 

highly improves the performance. This is done by sampling from the original data and 

extending the eigenvectors of the affinity between samples to the eigenvectors of the whole 

affinity matrix. Using the Nystrom exterision for spectral clustering for action grouping is 

new and it is useful because usually input videos in this field are hours of video which means 

many number of frames. Our experimental results showed that each of the result clusters 

correspond to a separate class of actions or similar actions. 

Although randomness in Nystrom sampling and K-means initialization might change the 

results running the code different times and the correctness changes for different actions. 

This is the reason that we run the experiments many times. Also for humans if unusual 

activities present and there is no sample from them in Nystrom sampling they might not be 
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clustered very well. Hence, we have to add some samples from them to get good clustering 

for them. 

For the clustering we choose the number of clusters manually and sometimes we might 

have less number of clusters than actions and sometimes it causes over fitting if the number 

of clusters is larger than action classes. Therefore, it is better to employ techniques that 

choose the number of clusters automatically depending on the data distribution. 

Our technique is completely unsupervised which means that no manual labellings is 

necessary like supervised techniques during performing grouping. Although in some cases 

it might be desirable to have clusters labeled. There are other unsupervised techniques but 

our method handles large data as well as being unsupervised. 

We employed an existing visualization technique for visualizing the result of each cluster 

in a very shorter version of the original video. We visualize the result of each cluster in a 

separate video which is much shorter than the input video and includes all the frames in 

the original one. Again since the action recognition videos are large if we use this technique 

to visualize all the actions and frames in a very short version it helps us to observe all the 

activities in a long video in a very short version of it. 

7.2 Future Work 

In different phases of our algorithm we could have improvements and have a better perfor- 

mance specially for humans action clustering. 

Features: In the features section for humans we used optical flow but spectral clus- 

tering with the Nystrom extension could be experimented on any other developed 

features for humans. 

0 Similarity matrix: For humans data set we compute a frame to frame similarity matrix 

and convolve it with a temporal window. Instead of that we could compute the frame 

to frame matrix and sum all of its elements between each sequences and obtain a 

scalar value that shows the total similarity between two sequences. Therefore, if the 

size of the frame to frame similarity matrix is n by n where n is the number of frames 

we could have a much smaller similarity which is f by f where k is the size of the 

sequences and it is equal to the sum of all the k by k matrices between two sequences. 

This will highly reduce the size of the similarity and reduce the cost of computing 



CHAPTER 7. CONCLUSION AND FUTURE W0R.K 58 

eigenvectors. Then we could employ the Nystrom extension on top of that and use 

this for even larger data sets and this enables us to run experiments for many times 

in shorter amount of time. 

V.isval.ization: We could also use the same visualization technique and visualize all 

the clusters actions in one video but giving some priority to some actions and do 

not visualize repetitive activities and make the video even shorter. We could also 

detect unusual activities and only visualize them which is useful in monitoring human 

activities. 

We would like to experiment with our method on very long video of human actions using 

a stationary camera and employ the results of that for the visualization frame work. 
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