
LOW-VOLTAGE SINGLE-PHASE CLOCKED QUASI­
ADIABATIC PASS-GATE LOGIC FAMILY FOR LOW­
POWER SUBMICRON VLSI CMOS APPLICATIONS

by

Edward K. W. Loa
B.A.Sc (First Class Honors), Simon Fraser University, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School

of
Engineering Science

© Edward K. W. Loa 2007

SIMON FRASER UNIVERSITY

2007

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

Date Defended/Approved:

Edward Loo

Master of Applied Science

Low-Voltage Single-Phase Clocked Quasi-Adiabatic
Pass-Gate Logic Family for Low-Power Submicron
VLSI CMOS Applications

Dr. Faisal Beg
Assistant Professor of Engineering Science

Dr. Marek Syrzycki
Co-Senior Supervisor
Professor of Engineering Science

Dr. James B. Kuo
Co-Senior Supervisor
Adjunct Professor of Engineering Science

Dr. Rick Hobson
Examiner
Professor of Engineering Science

Wednesday, July 18, 2007

ii

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make
a digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http://ir.lib.sfu.ca/handle/1892/112>)and,withoutchangingthecontent,to
translate the thesis/project or extended essays, if technically possible, to any medium
or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of
any multimedia materials forming part of this work, may have been granted by the
author. This information may be found on the separately catalogued multimedia
material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in part,
and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC,Canada

Revised: Summer 2007

ABSTRACT

As the growing complexity of mobile electronic applications leads to

prohibitively high chip power demands, the energy efficiency of the integrated

circuit devices will become more significant. Energy recovering circuitry based

on adiabatic principles is a relatively new technique used to implement low

energy dissipating circuits. By recycling the charge stored at capacitive nodes in

the circuit, adiabatic logic families can achieve very low energy dissipation. This

thesis presents a novel low-voltage Quasi-Adiabatic Pass-Gate (QAPG) logic

family using a single power clock in 90nm CMOS technology. A comparative

analysis is performed where circuits are constructed using previously proposed

low-power single-phase clocked adiabatic logic and QAPG logic. Simulations

demonstrate that the new logic family is suitable for low voltage operation down

to O.25V and down to the 32nm CMOS technology node. QAPG dissipates

between eleven and forty percent of the total energy consumed by the previously

proposed adiabatic logic families.

Keywords: adiabatic logic; low-voltage CMOS; low-energy; energy recovery

Subject Terms: Low voltage integrated circuits; Metal oxide semiconductors,
Complementary -- Design and construction; Integrated circuits -- Very large scale
integration -- Design and construction

iii

iv

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to Dr. Marek

Syrzycki for all the generosity, advice, and guidance given to me during my

research. Your knowledge and ideas were truly helpful. Without your help, this

thesis would never have existed.

I would also like to thank Dr. James B. Kuo for pointing me in this direction

of research, for your continued support, and for being a great source of

information. I have learned a great deal from my time working with you which I

would not have learned elsewhere.

I would also like to thank Dr. Rick Hobson for his valuable advice on this

work. It was a pleasure to learn from you during my undergraduate studies.

Special thanks to Benjamin Wang for his help with my layout.

Finally, I would like to thank my family for supporting me all these years

and especially my sister who read through this for me. Also, thanks to my friends

and labmates, Harry and Henry, for making university life bearable.

v

TABLE OF CONTENTS

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Figures viii

List of Tables xi

List of Acronyms xii

Chapter 1: Introduction 1
1.1 Trends in VLSI CMOS 1
1.2 Energy Dissipation in VLSI 2
1.3 Goals of this Work 7
1.4 Organization of the Thesis 8

Chapter 2: Evolution of Adiabatic Circuitry 10
2.1 Fundamentals of Adiabatic Circuitry 10

2.1.1 Non-Adiabatic Logic 10
2.1.2 Adiabatic Logic 11
2.1.3 Classification of Adiabatic Logic 18

2.2 Multi-Phase Clocked Adiabatic Logic Families 21
2.2.1 Adiabatic Dynamic Logic 22
2.2.2 2N-2P & 2N-2N2P 23
2.2.3 Positive Feedback Adiabatic Logic 24
2.2.4 Adiabatic Differential Switch Logic 25

2.3 Single-Phase Clocked Adiabatic Logic Families 26
2.3.1 Source-Coupled Adiabatic Logic with Diode-Connected

Transistors 27
2.3.2 Clocked Adiabatic Logic 29
2.3.3 True-Single-Phase-Clocking Adiabatic Differential Cascode

Voltage Switch 30

Chapter 3: Design of the Low-Voltage Single-Phase Clocked Quasi-
Adiabatic Pass-Gate Logic 32

3.1 QAPG Gates 32
3.1.1 QAPG N-type Logic Gates 33

vi

3.1.2 QAPG P-type Logic Gates 35
3.2 QAPG Cascaded Cell Operation 37
3.3 QAPG Full-Adder Implementation .42

3.3.1 Simulation Results .43
3.4 QAPG 8-bit Carry-Lookahead Adder Implementation 55

3.4.1 Simulation Results 56

Chapter 4: Design Verification of the Low-Voltage Single-Phase
Clocked Quasi-Adiabatic Pass-Gate Logic 60

4.1 8-bit Kogge-Stone Carry-Lookahead Adder Design 60
4.2 Cell Layout Design 63
4.3 Verification and Simulation Results 68

4.3.1 Extracted Parasitic Netlist Simulations 68
4.3.2 Observations and Discussion 70

Chapter 5: Conclusion 72

Appendices 74
Appendix A: QAPG Logic Gate Schematics 74
Appendix B: QAPG 8-bit Kogge-Stone Adder Netlist.. 79
Appendix C: Sample Skill Code for a QAPG N-type XOR gate 86

Reference List 102

vii

LIST OF FIGURES

Figure 1-1:

Figure 1-2:

Figure 1-3:

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 2-6:

Figure 2-7:

Figure 2-8:

Figure 2-9:

Figure 2-10:

Figure 2-11 :

Figure 2-12:

Figure 2-13:

Figure 2-14:

Figure 2-15:

Figure 2-16:

Figure 2-17:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Sub-threshold current within a CMOS inverter 3

Dynamic energy dissipation in a CMOS inverter 5

CMOS inverter currents 5

Conventional static CMOS inverter. 11

RLC circuit 12

1N single-phase power clock generator 14

1N1P single-phase power clock generator 15

RC circuit charging example 16

Gradual charging of a capacitive node 17

Split-level charge recovery logic inverter [11] 19

SCRL pipeline and timing diagram [11] 20

Multi-phase clocking structure [20] 22

ADL inverter [17] 22

2N-2P inverter [18]. 23

2N-2N2P inverter [18] 24

PFAL inverter [19] 25

ADSL inverter [20] 26

(a) PMOS buffer & (b) NMOS buffer in SCAL-D [21] 28

CAL inverter [22] 29

(a) P-type inverter & (b) N-type inverter in TSPC ADCVS
[23]. 31

Buffer/Inverter gate implemented in N-type QAPG 33

XOR gate implemented in N-type QAPG 34

Buffer/Inverter gate implemented in P-type QAPG 36

XOR gate implemented in P-type QAPG 36

QAPG timing phases 38

QAPG P-N buffer/inverter cascade 40

viii

Figure 3-7:

Figure 3-8:

Figure 3-9:

Figure 3-10:

Figure 3-11 :

Figure 3-12:

Figure 3-13:

Figure 3-14:

Figure 3-15:

Figure 3-16:

Figure 3-17:

Figure 3-18:

Figure 3-19:

Figure 3-20:

Figure 3-21:

Figure 3-22:

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Transient analysis of nodal voltages in a QAPG P-N
buffer/inverter cascade 41

Schematic diagram of a full-adder 42

Energetics of a QAPG full-adder operating at 100 MHz .44

Energy comparison between a pipelined CMOS and a
QAPG full-adder .45

Energy dissipation versus supply voltage for a full-adder
(trapezoidal waveform) .46

Energy dissipation versus supply voltage for a full-adder
(sinusoidal waveform) .46

Energy dissipation versus frequency for a full-adder
(trapezoidal waveform) .48

Energy dissipation versus frequency for a full-adder
(sinusoidal waveform) .48

Energy dissipation versus load capacitance for a full-
adder (trapezoidal waveform) 50

Energy dissipation versus load capacitance for a full-
adder (sinusoidal waveform) 50

Expected energy dissipation versus supply voltage for a
full-adder for 90 nm, 65 nm, 45 nm, & 32 nm technology
nodes 52

Expected energy dissipation versus frequency for a full­
adder for 90 nm, 65 nm, 45 nm, & 32 nm technology
nodes 52

Expected energy dissipation versus load capacitance for a
full-adder for 90 nm, 65 nm, 45 nm, & 32 nm technology
nodes 53

8-bit Kogge-Stone lookahead adder 56

Energy dissipation versus operating frequency for 8-bit
CLAs (trapezoidal waveform) 57

Energy dissipation versus operating frequency for 8-bit
CLAs (sinusoidal waveform) 58

Propagate/generate generator 61

DOT operator 61

8-bit Kogge-Stone CLA cell-based design 62

N-type propagate/generate generator layout 64

P-type DOT operator layout 65

ix

Figure 4-6:

Figure 4-7:

Figure 4-8:

Layout of the QAPG 8-bit Kogge-Stone CLA 67

Energy dissipation of the power clock of an extracted
layout for an 8-bit Kogge-Stone CLA 68

Energy dissipation versus operating frequency of an
extracted layout for an 8-bit Kogge-Stone CLA 69

x

LIST OF TABLES

Table 1-1: Semiconductor technology roadmap 1

Table 3-1: Energy dissipation of the QAPG full-adder over process
variations 54

xi

LIST OF ACRONYMS

ADCVS Adiabatic Differential Cascode Voltage Switch

ADL Adiabatic Dynamic Logic

ADSL Adiabatic Differential Switch Logic

ASIC Application-Specific Integrated Circuit

CAL Clocked Adiabatic Logic

CLA Carry-Lookahead Adder

CMC Canadian Microelectronics Corporation

CMOS Complementary Metal Oxide Semiconductor

IC Integrated Circuit

ITRS International Technology Roadmap for Semiconductors

KVL Kirchhoff's Voltage Law

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor

MPU

PFAL

PTM

QAPG

SCAL-D

SCRL

SOC

Main Processing Unit

Positive Feedback Adiabatic Logic

Predictive Technology Model

Quasi-Adiabatic Pass-Gate Logic

Source-Coupled Adiabatic Logic with Diode-Connected Transistors

Split-Level Charge Recovery Logic

System-on-Chip

xii

TSPC

VLSI

True Single-Phase Clocking

Very-Large Scale Integration

xiii

CHAPTER 1: INTRODUCTION

1.1 Trends in VLSI CMOS

Recent trends in digital electronics are moving towards high performance,

highly functional portable consumer applications. This results in increasing clock

frequencies, downscaling of transistor sizes, and increasing transistor counts, all

of which boost energy demands in new System-on-Chip (SOC) designs. A

summary of trends in the semiconductor industry for high performance Main

Processing Units (MPU) and Application-Specific Integrated Circuits (ASIC) that

are optimized for maximum speed performance are shown below in Table 1-1

[1,2,3].

Table 1-1: Semiconductor technology roadmap

Production Year 2007 2010 2013 2016 2020

Technology Node (nm) 65 45 32 22 14

Physical Gate Length (nm) 25 18 13 9 6

Supply Voltage (V) 0.8 - 1.1 0.7 -1.0 0.6 - 0.9 0.5 - 0.8 0.5 - 0.7

Functions per chip 553 2212 4424 8848 17696
(million transistors)

On-chip local Clock (MHz) 9783 15079 22980 39683 73122

Maximum Allowable Power 189 198 198 198 198
Dissipation with heat-sink
(W)

1

Future semiconductor processes and design methodologies must be

developed to satisfy the trend of increasing clock frequencies, shorter channel

lengths, and increasing transistor counts. The predicted transistor count

presented in Table 1-1 roughly coincides with Moore's Law [4], which states that

transistor counts will double every 18 months.

Demands for additional battery life coupled with the escalation in energy

demands generate an energy dilemma for circuit designers. According to the

International Technology Roadmap for Semiconductors (ITRS) [1], the maximum

allowable power for a high-performance device when using a heat-sink will be

198 W before chip failure. As well, growing environmental awareness in energy

efficient products increases the demand to minimize energy dissipation in

electronic goods. Taking all of the above factors into account, research into low

energy circuit techniques has become a very active discipline in academia and

industry. Furthermore, the minimization of energy is now a major design

requirement in any SOC design.

1.2 Energy Dissipation in VLSI

Energy dissipation in VLSI CMOS consists of two forms: static and

dynamic energy [5]. Static energy dissipation consists of sub-threshold currents

of MOS transistors. An example shown in Figure 1-1 indicates sub-threshold

current within a CMOS inverter.

2

Vdd

Input = high

Figure 1-1:

Vdd

Input = low

Sub-threshold current within a CMOS inverter

In Figure 1-1, when the input node is at logic high, M1 is operating in the

cut-off region and M2 is operating in the saturation region. Ideally, there is no

current flowing through M1, however due to sub-threshold (leakage) current,

Isub(PMOS), there is power dissipated in the form of:

and energy dissipated in the form of:

r

E.,/alie = fp,/aI/edt.
o

The situation is similar when the input is at logic low (M1 is in saturation,

M2 is in cut-off) with M2 contributing to the sub-threshold current, ISub(NMOS)-

Dynamic energy dissipation results from the switching of the input signals

to a logic gate. In conventional CMOS logic, there are two components to

3

dynamic energy dissipation: short-circuit energy & switching energy. The

momentary short circuit between the voltage source and ground during switching

events gives rise to a short circuit current. This can be modelled by replacing Isub

with Isc, and a logic transition at the input node in Figure 1-1. This accounts for a

small percentage of dynamic energy.

The majority of dynamic energy dissipation is due to switching activity

found within a circuit. A charge of Q = CVJJ (where C is the capacitance of the

circuit node and VJJ is the operating voltage) is transferred to a node within a

CMOS circuit during a change in logic states. This involves the transferring of an

amount of energy, E = lcvJ~ to the capacitance of the node while another
2

E = lcvJ~ in energy is dissipated as heat through internal resistances during this
2

operation. During a discharge operation at this node, the energy stored at this

node is dissipated. In total, an amount of energy, E = CVJ~ , disappears from the

power supply.

Figure 1-2 shows an example of dynamic energy dissipation in CMOS

logic.

4

Vdd

Input

Figure 1-2: Dynamic energy dissipation in a CMOS inverter

Sub-threshold and switching currents of the CMOS inverter are shown in

Figure 1-3.

Sub-threshold

Current

0.2 0.4 0.6 0.8

Voltage (V)

1.0E-10 +--...,.-----r------,--~----i

o

1.0E-06 +------)'--------"..----------j

~ 1.0E-07 +------f--------Y--------j

1.0E-05

-c
~
:::l 1.0E-08 +---I----------\-------j
o

5.0E-06

4.0E-06

~ 3.0E-06-c
l!.. 2.0E-06:::l
0

1.06-06

O.OE+OO
0 0.2 0.4 0.6 0.8

Voltage (V)

Regular Scale Logarithmic Scale

Figure 1-3: CMOS inverter currents

5

Conventional methods in lowering energy dissipation include minimizing

capacitances by decreasing transistor sizes, lowering supply voltages, and

reducing switching activity [6, 7, 11]. Each of these techniques would lower the

dissipated dynamic energy as shown in the dynamic power dissipation equation:

where a is the switching factor of the node, C/oad is the capacitance at the

node, and fdk is the system clock frequency. Energy reduction using these

methods are beneficial, however each has its limit. Switching activity can only be

reduced to a certain point dependent upon the circuit. Scaling of transistors

sizes can only be minimized to a certain process limit. The downscaling of

CMOS technology nodes leads to decreasing supply voltages and decreasing

threshold voltages which will increase leakage current [8]. Voltage reduction is a

preferred method in lowering energy dissipation since a decrease in voltage

would have a quadratic reduction in energy dissipation. However, there are

many challenges associated with lowering supply voltages such as decreased

noise margins, lowered driving capabilities, and reduced switching speeds [9].

Popular techniques in reducing energy consumption include the use of

multiple threshold voltages to reduce static (leakage) energy, which is becoming

more significant as CMOS technology continues to scale down [8, 27]. Multiple

threshold voltages permit the use of higher threshold voltages to reduce leakage

in non-critical timing paths while the lower threshold voltage is used to maintain

timing performance. Multiple threshold voltages increase the number of process

6

steps which increase the cost of fabrication, but this is necessary to keep power

down to an acceptable limit. Other ways in decreasing leakage power is to

implement a body biasing technique (variable threshold voltages) to control the

leakage during circuit operation. However, this again increases costs as it

requires triple-well technology or other advanced fabrication techniques.

A different approach in reducing energy dissipation is to implement

charge-recovery circuits. Sometimes referred to as adiabatic logic from its

definition in thermodynamics [10], an adiabatic process occurs without the gain

or loss of heat. In electronics, energy/power dissipation is analogous with heat.

The goal of adiabatic computing is to obtain virtually no loss of energy within the

system. The basic idea is that the energy is sourced and then recovered from

the nodes within the circuit [12].

1.3 Goals of this Work

Low-energy and low-voltage circuits are important for many reasons.

Energy consumption of electronic devices strains the power generation

infrastructure. Heat dissipation on high-performance les is becoming more

challenging. As well, reduced energy consumption in portable devices adds to

the mobility and utility of the device.

The difference in energy and power is important. Power is energy per unit

time. The overall goal of any circuit designer is to lower the power consumption

for the device. This could be done simply by reducing its clock rate. However,

this is not acceptable, as the time required to complete a computation will

7

increase since the number of clock cycles required remains the same. Clock rate

reduction results in the same amount of energy consumed as if the computation

was done at a faster speed as the energy per computation remains the same.

The goal of a circuit is to be high-speed in addition to being low-power. In other

words, the goal of a circuit is to be low energy [11].

The goal of this work was to develop a low-energy charge-recovering logic

family based on adiabatic principles to minimize energy dissipation within each

gate. The low-voltage single-phased clocked Quasi-Adiabatic Pass-Gate Logic

(QAPG) family has been designed for low-voltage, low-energy, high-speed

operation. The single-phased clocking design requires a single power clock for

proper operation of the circuit. Designed using Canadian Microelectronics

Corporation's (CMC) 90 nm CMOS technology, HSPICE simulations were

performed on various logic gates as well as on a carry-Iookahead adder (CLA).

A comparative analysis was performed in which logic gates were constructed

using previously proposed low-power single-phase clocked adiabatic logic

families and the newly proposed QAPG logic family for the implementation of a

set of adders. A layout-based simulation was then performed to verify the

operation of the QAPG family when including parasitic components.

1.4 Organization of the Thesis

The remainder of this thesis is divided into four chapters. Chapter 2

provides a brief overview of the evolution of adiabatic logic. First, a background

into adiabatic circuitry and the importance of the power clock generator will be

8

discussed. Then the progression of multi-phase clocking families to single-phase

clocking families will be shown.

Chapter 3 presents the QAPG family. Descriptions of operation as well as

various gates and simulation results will be presented and compared against

previous proposed adiabatic logic families. A layout of an 8-bit CLA is presented

in Chapter 4 and is compared to simulation based results in Chapter 3. A

summation of the research results is offered in Chapter 5.

9

CHAPTER 2: EVOLUTION OF ADIABATIC CIRCUITRY

Adiabatic circuitry is a very attractive way of lowering energy consumption

in digital logic. Involving the recovery of charge in a circuit, adiabatic logic is a

very different method in reducing energy in comparison to more traditional

methods such as transistor scaling and supply voltage lowering. In this chapter,

we discuss the progression of adiabatic circuitry, beginning first with the

fundamentals of adiabatic circuitry and then moving on to previously proposed

adiabatic logic families.

2.1 Fundamentals of Adiabatic Circuitry

Adiabatic logic accomplishes two things when reducing energy

consumption; it recycles charge and it reduces dissipated energy through

resistive components. To recognize the savings in energy, conventional static

CMOS logic has been analyzed in order to observe its shortcomings.

2.1.1 Non-Adiabatic Logic

Conventional static CMOS logic is considered to be non-adiabatic logic

since charge is only sourced from the power supply and all the energy supplied is

dissipated within the circuit. An example of the conventional static CMOS

inverter is shown in Figure 2-1.

10

Input

Vdd

Output

Figure 2-1: Conventional static CMOS inverter

Currently, the charging of capacitive nodes is the prevailing factor in

energy dissipation of static CMOS logic. As discussed previously, during a

charging of the output node, the total energy supplied by the power source is

E =CVd: . Due to the immediate switching on of M1, a high potential drop

appears across the transistor resulting in an energy of E = ~CVd: being
2

dissipated across its on-resistance. Eventually, the capacitive output node will

be evaluated to a logic low and the energy stored in the output nodal capacitance

will be dissipated by the on-resistance of M2. The total amount of energy

sourced by the power supply is dissipated entirely.

2.1.2 Adiabatic Logic

Contrary to conventional static CMOS logic, adiabatic logic sources and

recovers energy from nodes within the logic circuits while attempting to minimize

the energy dissipated by the on-resistance of the MOSFETs. By striving to

11

minimize resistive dissipation, more energy will be available for recovery by the

power supply to be supplied again in the following clock phases. The recycling of

energy and minimization of dissipation are the two fundamental aspects of

adiabatic circuitry.

2.1.2.1 Adiabatic Charging and Recycling

The recycling of charge in an adiabatic circuit is based on resonance. An

adiabatic circuit is designed in a way such that it can be modeled as a series

RLC resonant circuit as shown below in Figure 2-2.

L R

+

Power Clock I Adiabatic rc

Figure 2-2: RLC circuit

The resonant oscillation allows the charge to travel to and from the

adiabatic circuit, performing the charging and recycling. The entire adiabatic

device can be divided into two components: the power clock, which contains the

inductor and the oscillating power supply, and the adiabatic circuitry, which is

made up of the logic circuits. The resistor, R, in Figure 2-2 represents the

transistor on-resistances and the interconnect resistances, and the capacitor, C,

12

represents the nodal and interconnect capacitances of the adiabatic circuitry.

The inductor, L, in the power clock is then chosen to tune the resonant frequency

of the circuit, which will be the operational frequency.

Using the Kirchhoff's Voltage Law (KVL) to solve this circuit in the complex

frequency domain, we obtain,

V(s)~I(sALs+R+X)=> I(s) ~ 1 Yc
s V(s) Ls + R + Cs

Solving for the transfer function for the voltage at the capacitor C, we

obtain,

VL(s) ks=---'--~-:-

V(s) Ls+R+ ks'

where I(s) = IJs) = VJs)Cs.

Upon further manipulation, we have the transfer function in the form of a

general second order equation,

VJs)
=

V(s)

Key parameters in the equation are the natural undamped frequency of

oscillation, OJn and the damping factor ratio C;. In the series RLC circuit, these

parameters are:

13

We can see that if R=O, there would be no damping and therefore no loss

within the circuit. However, this is not realistic. Due to the damping, the

resonant frequency will shift due to,

where CtJd is the damped frequency of oscillation. In adiabatic circuitry,

». »c; & c; <1, therefore,

Adiabatic power clocks have been proposed in the past [14, 15, 16] for

low-energy circuitry. These power clocks can be integrated into the same chip

as the circuitry to simplify implementation. An example of a sinusoidal power

clock generator is shown in Figure 2-3.

L r---I
I
I
I
I
I
I
I

1 1
Adiabatic Logic

Figure 2-3: 1N single-phase power clock generator

14

The 1N single-phase power clock generator is a simple power clock

generator [15] which consists of a single NMOS active device in parallel with the

adiabatic logic. The inductor, L, can be implemented on-chip or off-chip. The

NMOS device, M, is turned on in brief intervals to add energy lost in the RLC

resonant tank.

In addition, a 1N1P single-phase power clock generator [16], shown in

Figure 2-4, was proposed to generate trapezoidal ramp power clock waveforms.

The PMOS, M1, and NMOS, M2, are both turned on for brief intervals which

again add energy lost in the RLC resonant tank.

L

1 1
Adiabatic Logic

Figure 2-4: 1N1P single-phase power clock generator

By matching the resonant frequency of these types of power clock

generators to the frequency of operation of the adiabatic circuit, we can achieve

a nearly ideal charge recovery system that lowers energy consumption in digital

circuitry.

15

2.1.2.2 Resistive Energy Dissipation Minimization

The second aspect of adiabatic logic is to reduce energy dissipation due

to the on-resistance of transistors. As previously stated, in conventional CMOS

logic, the majority of the dissipated dynamic energy is due to transitions at

capacitive nodes in logic circuits. Figure 2-5 models the transition at a circuit

node.

Vdd

CN
Vdd

Figure 2-5: RC circuit charging example

The resistor in Figure 2-5 represents the resistance of the devices in the

circuit while the capacitor represents the capacitance at the nodes of the circuit.

Once the switch is closed, there is a sudden spike in current through the resistor

and the capacitor is charged to the supply voltage. There is a large potential

difference which is seen across the resistor. This results in a large amount of

dissipated energy. The energy expended by the power supply is E = CVd~.

However, only E =lCVd~ is stored in the capacitor. The resistor dissipates the
2

other half of the power. Taking the operating frequency and switching activity of

16

the node into consideration, the dynamic power dissipated at the node is given

by [5]:

2
P = aC/oad Vdd L. I

where again, a is the switching factor of the node, C/oad is the

capacitance at the node, and fclk is the system clock frequency.

If the charge is moved gradually instead of instantaneously, it would lead

to lower power dissipation when sourcing or recovering charge at circuit nodes

as seen in Figure 2-6

£:.v
Vdd

R

Figure 2-6: Gradual charging of a capacitive node

Figure 2-6 shows the previous RC circuit with a slow-changing sinusoidal

voltage supply. Instead of an instantaneous switching on of the circuit, it is

powered by a sinusoidal input. The potential difference across the resistor is

much lower compared to Figure 2-5. This leads to lower energy dissipation [21].

Assuming a constant current source delivering charge, Q=CVdd , for period T,

the improvement in energy can be shown as [12]:

17

As seen from the equations above, by increasing the period, T, of the

sinusoidal voltage supply beyond the RC constant of the circuit, one can achieve

a decrease in resistive energy dissipation. This is in contrast with conventional

CMOS, where currents regularly flow through potential differences of VJJ • In

adiabatic circuitry, the power clock transitions are intentionally slowed down to

minimize energy dissipation. This is usually accomplished by implementing a

trapezoidal or a sinusoidal power clock waveform signal. These signals can be

approximated using the resonant RLC oscillator that was discussed in the

previous section.

2.1.3 Classification of Adiabatic Logic

Adiabatic circuits can be classified into two categories: fully-adiabatic and

quasi-adiabatic. Fully-adiabatic circuits dissipate virtually zero energy by

operating at very low frequencies, which would practically eliminate resistive

dissipation. A well known fully-adiabatic logic family, split-level charge recovery

logic (SCRL) [13], is shown below in Figure 2-7.

18

<1>1

P1

---L

v; Vout

\~
internal node

<1>1

Figure 2-7: Split-level charge recovery logic inverter [11]

Fully-adiabatic logic stems from reversible computing, meaning the

previous logic states of nodes are known in order to reverse the computation to

its initial state [11]. Previous logic states must be known in order to eliminate

potential differences across transistors which would cause resistive energy

dissipation. In the split-level charge recovery logic shown in Figure 2-7, the initial

state of the nodes and d>1 & d>1 are at V» /2. During evaluation, d>1 and d>1

become V» and GND respectively, and determine the output which is passed

through the transmission gate. The transmission gate is then turned off and the

output is held while d>1 and d>1 and the internal node is reset to Vdi 2. The

output node is passed on to the following stage and then must be reset to Vdi 2

by an inverse function of the following stage as shown in Figure 2-8.

19

-,......, s 0 -.---i S 0 ----i S 0 -r-:i S Or-
F1 F2 _F3 _F4

P1 et>1 P2 et>2 P1 et>3 P2 et>4

r'- S 0 ~'-- S 0~- S 0 ~- S 0
F1-1 F -1 F -1 F

4
-1

_ 2 _ 3
P2 et>6 P1 et>7 P2 et>e P1 et>5

4>1
4>2"-
4>3
4>4/ -, / -,
4>5
4>6 / -, / -,
4>7
4>8 -, / -, /
P1
P2, / "- / "

-)

Figure 2-8: SCRL pipeline and timing diagram [11]

A pipeline of cascaded SCRL gates requires inverse functions that

increase the complexity of fully adiabatic logic families. The number of logic

gates is no less than double in order to maintain reversibility. In addition, the

sheer number of power clocks required to implement this logic family produces

many issues such as clock skewing, individualized power clock tuning and

routing difficulties. With these drawbacks in mind, fully-adiabatic logic circuits are

not a preferable solution to the energy crisis.

Alternatively, partially-adiabatic or quasi-adiabatic logic provides a

favourable solution by balancing implementation issues with energy reduction.

Quasi-adiabatic logic transfers charge across reduced potential drops as it tends

20

to operate at higher clock rates while recovering a considerable amount of nodal

charge. Furthermore, quasi-adiabatic logic is easier to implement, as there are

less power clocks to employ and it does not require inverse functions to retain

reversibility as in the case of fully-adiabatic logic. For these reasons, in recent

years researchers have mainly focused on quasi-adiabatic circuitry, although

most of them shortened the classification to simply "adiabatic circuitry". These

adiabatic logic families will be discussed in the following sections.

2.2 Multi-Phase Clocked Adiabatic Logic Families

Earlier work in adiabatic logic revolved around the use of multi-phase

clocking schemes to implement the cascading of subsequent logic blocks. This

was done to ensure that the previously evaluated logic output was still valid at

the input of the following stage of the pipeline. The clocking structure and the

required four power clocks are shown below in Figure 2-9. The trapezoidal

waveform shown here may vary in shape (i.e. triangular, sinusoidal, etc...)

dependent on the design of the adiabatic family.

21

CP1~

CP2~

CP3~

CP4~

<1>1 <1>2 <1>3 <1>4' <1>1

Figure 2-9: Multi-phase clocking structure [20]

Many multi-phase clocked adiabatic logic families were proposed and they

are discussed in the following sections.

2.2.1 Adiabatic Dynamic Logic

Adiabatic Dynamic Logic (ADL) was one of the first proposed adiabatic

logic families [17]. An ADL inverter is shown below in Figure 2-10.

..----r--..-----o Vout

I
C1>1

Figure 2-10: ADL inverter [17]

22

All the power is supplied from the triangular power clock (/j}. During the

rising edge of(/j} , the output is driven to logic high. During the falling edge of the

power clock, Vin will either cause the output to discharge to logic low, or the logic

high value to be maintained by the nodal capacitance at the output. The circuit is

cascaded with four clock stages as seen in Figure 2-9, however with a triangular

waveform instead of a trapezoidal waveform. A limitation of this logic family is

the use of the diode for precharging the output. The built-in voltage of the diode

will keep the output from fully charging. More importantly, a MOS diode adds

non-adiabatic energy dissipation due to its built-in voltage during the charging of

the output, no matter how gradual the charging of the output occurs.

2.2.2 2N-2P & 2N-2N2P

A 2N-2P inverter [18] is shown below in Figure 2-11.

<1>1

'----+---0 Vout

Figure 2-11: 2N-2P inverter [18]

23

2N-2P removes the diodes from previously proposed families (Figure

2-10) which caused large scale energy dissipation. This family utilizes a four

phase power clock to control cascades. 2N-2P also presents a balanced

capacitive load and has good speed characteristics compared to many other

families. As well, 2N-2P gates have differential outputs.

2N-2N2P [18] gates are similar to 2N-2P but contain a pair of cross­

coupled NMOS transistors shown in Figure 2-12.

<1>1

v.:

Figure 2-12: 2N-2N2P inverter [18]

The advantage of this structure is that the pair of cross-coupled NMOS

transistors results in non-floating outputs as compared to the 2N-2P logic family.

2.2.3 Positive Feedback Adiabatic Logic

Shown in Figure 2-13, positive feedback adiabatic logic (PFAL) [19] is a

modification of 2N-2N2P adiabatic logic.

24

$1

Vin~
-MN3
v.:

t---"I'----+--t----o Vout

Figure 2-13: PFAL inverter [19]

As in 2N-2N2P, PFAL contains a latch made up of cross-coupled PMOS

and NMOS transistors. It also utilizes the four phase clocking structure shown in

Figure 2-9. However, PFAL differs in that the evaluation trees (MN3 & MN4) are

placed in parallel with the cross-coupled PMOS transistors (MP1 & MP2). The

main advantage of the PFAL family is that the evaluation trees in parallel with the

PMOS transistors lower the overall resistance when charging internal nodes

thereby reducing energy dissipation.

2.2.4 Adiabatic Differential Switch Logic

Adiabatic differential switch logic (ADSL) [20] was proposed to operate at

low supply voltages. It incorporates bootstrapping transistors (MN3 & MN4) to

increase gate over-drive voltages which increase the speed of operation at low

voltages. In addition, ADSL adds cut-off (MN5 & MN6) and recovery (MN1 &

25

MN2) transistors to improve the recovery of charge at internal nodes. It is a

differential output family that requires a four phase clocking scheme. An ADSL

inverter is shown below in Figure 2-14.

$1

Figure 2-14: ADSL inverter [20]

2.3 Single-Phase Clocked Adiabatic Logic Families

The use of multi-phase clocking schemes has many drawbacks which will

severely affect the efficiency in recovering nodal charges using the resonance

circuit structure. Having multiple clocks creates the possibility of clock skew

(phase-shift), which will cause timing issues within the pipeline. Evaluation

phases may overlap and outputs may not be valid for subsequent stages in the

pipeline. Resonant tuning of each clock is more difficult due to the lack of

symmetry in capacitances when looking into the circuit from the point of view of

each clock. Furthermore, the sheer number of clocks requires complex clock

26

trees to be routed. The ability of an adiabatic logic family to operate using a

single-phase power clock is an enormous benefit in easing implementation

issues and increasing charge recovery efficiency. Previously proposed single­

phased clocking adiabatic families are explained in the following sections.

2.3.1 Source-Coupled Adiabatic Logic with Diode-Connected Transistors

Source-coupled adiabatic logic with diode-connected transistors (SeAL-D)

[21] is a true single-phase adiabatic logic family. It consists of PMOS type and

NMOS types of gates. An example of these gates is shown in Figure 2-15.

Vpc o---+"l'------4------<l_------+----J

v.:

(a)

27

Vout
Vout

Vpc o--.....-r~-__--.-----...........__----,

(b)

Figure 2-15: (a) PMOS buffer & (b) NMOS buffer in SCAL-D [21]

Pipelined cascades of this family are composed of alternating NMOS and

PMOS type gates. The PMOS type gates are in its evaluation phase during the

rising edge of the power clock while NMOS type gates are evaluating during the

falling edge. This allows for two operations to occur during a single clock cycle.

Current sources (MP7 in PMOS and MN7 in NMOS type gates) are used to

control the energy efficiency and speed of the circuit. Also, diode-connected

MOS transistors, (DN1 & DN2) are added to aid in the recovery of charge. A

drawback in this adiabatic logic family is the use of diodes which dissipate

28

energy, as was the case in adiabatic dynamic logic discussed previously. Also,

the use of analog circuits to tune the system does not allow this logic family the

possibility to be used with automatic layout generation software.

2.3.2 Clocked Adiabatic Logic

Figure 2-16 displays a clocked adiabatic logic inverter (CAL) [22]. It is an

adiabatic logic family related to the 2N-2N2P family that was modified for

operation with a single-phase power clock.

Vpc

VOUI o-----+---'T'-........ 1-------0 Voul...-...rr----+---.....,

Figure 2-16: CAL inverter [22]

The CAL inverter differs from the 2N-2N2P family in the addition of

transistors MN3 &MN4, which are controlled by an auxiliary timing control clock,

ex. In a cascaded pipeline configuration, a single power clock and two auxiliary

timing control clocks are needed. As well, due to logic evaluation occurring in

29

alternate clock cycles, CAL circuits can attain only half the throughput compared

to other single-phase clocked adiabatic families.

2.3.3 True-Single-Phase-Clocking Adiabatic Differential Cascade Voltage
Switch

True-Single-Phase-Clocking Adiabatic Differential Cascode Voltage

Switch (TSPC ADCVS) [23] is closely related to the multi-phase clocked, ADSL.

TSPC ADCVS employs the use of pass-transistors to keep logic outputs valid for

subsequent stages. It was proposed to operate at low-voltages to further reduce

energy dissipation. TSPC ADCVS inverters are shown in Figure 2-17.

v.:

Vpc

.L

MN9

(a)

30

Vpc
.L

Vout

(b)

Vpc
...L

MP10
Vout

Figure 2-17: (a) P-type inverter & (b) N-type inverter in TSPC ADCVS [23]

TSPC ADCVS operates in an N-P domino style similar to SCAL-D. Also, it

is capable of computing two operations per clock cycle. However, it can only

operate using a trapezoidal power clock, unlike its single-phase clocking

counterparts which can also operate using a sinusoidal power clock that

simplifies the implementation of the adiabatic logic family. The P-type TSPC

ADCVS gates also tend to be less able to drive capacitive loads. Additional input

boosting transistors (MN11, MN12 &MP11, MP12) are used to aid in charging

the inputs. These additional transistors increase the transistor count in more

complex logic gates and increase energy dissipation.

31

CHAPTER 3: DESIGN OF THE LOW-VOLTAGE SINGLE­
PHASE CLOCKED QUASI-ADIABATIC PASS-GATE
LOGIC

The low-voltage single-phased clocked quasi-adiabatic pass-gate logic

(QAPG) family was designed to encompass many key features of previously

proposed families. Derived from TSPC ADCVS, QAPG builds upon its existing

attributes. Its focus is on operating at low-voltages while being capable of

operating at high-clock rates, which is a significant attribute in adiabatic logic

[24]. The quasi-adiabatic charge recovery technique was chosen to balance the

performance and energy trade-off. QAPG was designed to reap the benefits of a

single phase power clock in both sinusoidal and trapezoidal waveforms while

achieving an efficient throughput of two operations per clock cycle. It was

efficiently designed to handle a range of loads while striving to minimize energy

dissipation. In this chapter, the architecture of the QAPG gates will be discussed

along with its operation. A comparative analysis will be performed on simulation

results of a full-adder and a carry-Iookahead adder (CLA) in QAPG and other

single-phase clocked adiabatic families.

3.1 QAPG Gates

QAPG logic gates are balanced load I differential output gates which are

divided into two classes: N & P-type gates. These two classes of gates facilitate

the operation of the QAPG logic family using a single-phase power clock.

32

3.1.1 QAPG N-type Logic Gates

The QAPG N-type buffer/inverter is shown in Figure 3-1 to demonstrate

the basic structure of the N-type class of logic gates. The architecture of the

QAPG N-type gate contains three main components: the bootstrapped cross-

coupled transistors, the pass-gate evaluation tree, and the non-adiabatic holding

mechanism. QAPG logic gates are based on the cross-coupled transistors (MP1

& MP2), similar to ones found in static DCVS logic circuits. The cross-coupled

structure was modified with the inclusion of bootstrap transistors (MN1 & MN2) to

increase the switching speeds when operating in the low-voltage regime [20].

The gate-source capacitance (egs) of the bootstrap transistors can cause nodes

81 & 82 to become lower than 0 V due to the capacitive coupling effect at those

nodes. This negative potential can help to overdrive the cross-coupled

transistors and assist the recovery of charge from nodes Y and Y. Also, the

overdriven transistors can increase the current while charging those nodes.

Out

Vdd

A

--_0 Vpc 0-0---

-
A

Out

Figure 3-1: Buffer/Inverter gate implemented in N-type QAPG

33

To disconnect the pass-gate evaluation tree during the energy recovery

phase of operation from the rest of the circuit, isolation transistors (MN7 & MN8)

are used. In order to perform different logic functions, various complementary

pass-gate logic trees can be added to the source electrode of MN7 & MN8.

These pass-gate trees are beneficial to low-voltage operation as they increase

nodal charging speed and noise resilience. Pass-gate evaluation trees also tend

to have transistor counts equal to or lower than conventional pull-down networks.

An example of an XOR gate implemented in N-type QAPG is shown in Figure

3-2.

----, Vpc 0-,---

Out

t--o B B~

Out

A A A A

Figure 3-2: XOR gate implemented in N-type QAPG

The non-adiabatic holding mechanism consists of transmission gates

(MP5, MN5 & MP6, MN6) and static inverters (MP3, MN3 & MP4, MN4). This

holding mechanism allows for the cascading of QAPG gates by maintaining rail­

to-rail output logic levels for subsequent stages, which was not found in TSPC

34

ADCVS, causing resistive energy losses. The supply voltage to the holding

mechanism is the same as the peak voltage of the power clock. In addition, the

non-adiabatic holding mechanism can tolerate substantially larger capacitive

loading at its outputs than in TSPC ADCVS.

The operation of the N-type gate consists of two phases: evaluate and

discharge. As the power clock (Vpc) ramps up to logic high, each N-type logic

gate enters its evaluation phase. During this phase, the pass-gate evaluation

tree determines logic value of the internal nodes (Y & Y). Whichever of these

nodes is evaluated to a logic high is charged from the power clock. This logic

value is then passed on to the non-adiabatic holding mechanism which makes

available the logic gate output for subsequent stages in the pipeline. During the

discharge phase, the power clock ramps down to logic low. The pass-gate

evaluation tree is cut off from internal nodes (Y & Y) by isolation transistors MN7

& MN8 while the transmission gates of the non-adiabatic holding mechanism

disconnects the inverters from the internal nodes. The charges stored at the

remaining nodes are then recovered through the bootstrapped cross-coupled pair

and back to the power clock, fulfilling the adiabatic function.

3.1.2 QAPG P-type Logic Gates

The structure and operation of the QAPG P-type logic gate is analogous to

the N-type logic gate. The QAPG P-type buffer/inverter is shown in Figure 3-3.

The P-type logic gate maintains the same non-adiabatic holding mechanism as in

the N-type logic gates; however the NMOS and PMOS transistors in the

35

bootstrapped cross-coupled transistors and the pass-gate evaluation tree have

been swapped. An example of an XOR gate implemented in P-type QAPG is

shown in Figure 3-4.

f-----oo Vpc 0-0----1

A
Vdd

Out

MP7
Z

MP8

Z

-
A

Vdd

Out

Figure 3-3: Bufferllnverter gate implemented in P-type QAPG

- -
A A A A

H~ j~8
Vdd

o Vpc 0

MP7 MP8

Out
Z z Out

Figure 3-4: XOR gate implemented in P-type QAPG

The QAPG P-type logic gate operates in two phases: charge and

evaluate. During the charging phase, the power clock (Vpc) ramps up to logic

36

high. This charges one of the two complementary nodes that was previously at

logic low. For example, let node Z be at logic low, and Z be at logic high, while

Vpc is at logic low. When Vpc returns to logic high, MP1 will turn off with the gate

of MN1 still at logic high due to parasitic capacitances at that node. In turn, Vpc

will charge node Z to logic high while node Z remains at logic high. Meanwhile,

the pass-gate evaluation tree is disconnected from the circuit and the non­

adiabatic holding mechanism maintains the previously evaluated logic result.

During the evaluation phase, the power clock ramps down to logic low. At

this time, the pass-gate evaluation tree computes the logic values of the internal

nodes Z and Z. The charges from one of the nodes, which is evaluated to logic

low, will be recovered to the power clock, fulfilling the adiabatic function. This

operation principle differs from the N-type gate in that during the P-type evaluate

phase, nodal charges are recovered by Vpc whereas charge is recovered during

the discharge phase of N-type gate operation.

3.2 QAPG Cascaded Cell Operation

QAPG logic circuits are constructed by cascading N-type and P-type logic

gates in an N-P domino (alternating) style. This creates a pipelining effect which

utilizes both edges of a single power clock. Enabling signals to propagate

through an N-type and P-type cell in one clock cycle effectively performs two

operations per clock cycle. Also, the use of a single power clock eliminates such

disadvantages associated with multi-phase clocking adiabatic circuits as complex

capacitive tuning and clock skewing. Lacking these drawbacks, the single-phase

37

clocking scheme can facilitate higher clock frequencies and more efficient energy

recovery. As previous discussed, N-type logic gates operate in two phases,

evaluate and discharge, while P-type logic gates operate in charge and

evaluate phases. Figure 3-5 shows these phases with respect to the power

clock waveform.

Vpc

o....L..--L--+-------+----31J.~f____1~

Vdd

N-type Evaluate Discharge

P-type Charge Evaluate

P-type N-type
Cell Ce:~lIc====I~

P-type

Ce,.::.11c.====~

Figure 3-5: QAPG timing phases

At anyone time during the operation of a QAPG circuit, either all N-type

logic gates are in the evaluate phase and all P-type logic gates are in the charge

phase, or all N-type gates are in the discharge phase and all P-type gates are in

the evaluate phase. This second phase (N-type: discharge, P-type: evaluate) is

also the phase in which charge is recovered back to the power clock.

38

A cascaded QAPG P-type buffer/inverter - N-type buffer/inverter is shown

in Figure 3-6 to demonstrate the QAPG pipeline architecture. A transient

analysis of the nodal voltages of the cascade operating at 100 MHz with a supply

voltage of 0.5 V is shown in Figure 3-7. Nodes 1 & 2 from the P-type

buffer/inverter displays the charge and evaluate phases which can be observed

when both nodes are at logic high and when they are differential. Nodes 3 & 4

display the differential output from the non-adiabatic holding mechanism.

Correspondingly, nodes 5 & 6 demonstrate the discharge and evaluate phases

while, Out and Out illustrate the outputs corresponding to inputs A and A

passing through a pipeline consisting of n=2 buffer/inverters (delayed by an n -1
2fclk

interval).

39

-----0. Vpc 0-.---

P-type.-~

@vpc
Vdd Vdd

Out

MN8

®
f------oo VpC 0-0---I

MN7

N-type Out

Figure 3-6: QAPG P-N buffer/inverter cascade

40

0.4

-- Vpc
0 2

0
0 0.5 1.5 2 2.5 3 3.5 4

x 10-8

0.6

-- node ? 0.4t-. ------;_ . . . -- f . - . ----- - - r " · - - -

----- node 8 0.2 ----- -

0 1 J
0 0.5 1.5 2 3.5 4

x 10-8

3.52 .5 321.5

0.6 'I- - -,-- - -,---- ,---- ---,---- -.-- - ---r- - - ---.--- ---,

o4LJ---- : ~ --r-·
0.2 - : - - ---- --r ..-.----.

\ , ~o • .-..il...- .L.'~__u., .JI_ '.. _1J...; -L.'-__LJ

o 0.5

--- node 1
----- node 2

--- node 3

----- node 4

0.6 ~I . •------;-------7"11 .. 'j'------"--------'t J0.4 .. . -------- - I- . : j I f' 11 I

0.2 . . n:! .• n , ' nn ' n ' .' n n n. ' .
o i :...; , t I . ~_____ I , J
o 0.5 1.5 2 2.5 3 35 4

x 10-8

3.53

I

,-----"
: , I ,
I • - \ .

: , 1
" '- -- '. , - . \:, :\

. \

1.5

,----- ...
, 1
I \; -.
I 1
I ,

. . - - I "
I , I

:\

0.5

0 .6.----,-----r----,------,----~---_--~---~

--- node 5 0.4

----- node 6 0 .2

3.532.5

::LJl

n j r--:----m-----{ l·-:---~--m--l~
o I j ,il.__~ JL..__...:. _
o 0.5 1 1.5 2 4

TIME X 10-8

-- out

----- l out

Figure 3-7: Transient analysis of nodal voltages in a QAPG P-N buffer/inverter cascade

41

3.3 QAPG Full-Adder Implementation

A QAPG full-adder logic circuit, shown in Figure 3-8, was designed and

simulated in HSPICE using 90 nm standard CMOS process parameters in order

to evaluate the energy efficiency of the QAPG logic family. Using the same

schematic, full-adders were constructed in CAL [22] and TSPC ADCVS [23] for

comparison between QAPG and previously proposed single-phase clocked

adiabatic logic families .

N-type
QAPG
logic

>-P-type
QAPG
logic

N-type
QAPG
logic

A ' ,
~7 -rD -[>- Sum

Cln--, -"[b'-
o •.-.....

/

Figure 3-8: Schematic diagram of a full-adder

Since the objective was to minimize area and energy dissipation, minimum

sizes were used for NMOS transistors in each logic family. In this case ,

transistor channels were made 120 nm wide , while the channel lengths were set

at 100 nm, according to the design rules specifications. To compensate for the

lesser driving capability of the PMOS transistors, the PMOS channel widths were

doubled to 240 nm, while maintaining the same channel lengths as in the NMOS

transistors . The QAPG and TSPC ADCVS full-adders have a latency of 1.5

42

cycles since data propagation through each pipeline stage takes half a cycle ,

while the CAL adder has a latency of 3 cycles. Buffers were used to propagate

the correct logic values through the pipeline architecture.

3.3.1 Simulation Results

Using the 90 nm CMOS process, energy dissipation measurements were

determined from the simulation outputs, by integrating the power over the period

of simulation . These calculations were made using transient analysis data from

HSPICE and with MATLAB computations. Standard threshold voltage models

were used for each simulation. Simulations assumed a lossless external

adiabatic power clock. Sinusoidal and trapezoidal power clocks were used for all

families except for TSPC ADCVS, which was not designed for sinusoidal power

clock use. The inputs to the full-adder circuit were a three bit counter, which

cycled through each possible logic pattern. Energy dissipation, being the major

figure of merit in adiabatic circuits , was examined throughout each simulation .

3.3.1.1 Energetics

The energy flow the QAPG full-adder operating at a frequency of 100 MHz

with a 0.5 V trapezoidal power clock is shown in Figure 3-9. The power clock

energy is observed to be sourcing and recovering energy. As well , static energy

contributes 14.5% of the total energy dissipated.

43

---- Power Clock Energy

-- Total Energy

3.5 4

x 10.8
3

,-----,: ,------,,----, ,
\ ,... _----,

1.5 2 2.5
Time (5)

,,
\ "'------

0.5

16

14

12

3 10
>-
e>
Q) 8c
ur
(ij
(5 6
r--

4

2

0
1

-2 1
0

Figure 3-9: Energetics of a QAPG full-adder operating at 100 MHz

Figure 3-10 below displays a comparison of total energy between a

conventional pipelined static CMOS full-adder and the QAPG full-adder. The

pipelined CMOS full-adder was implemented with identical transistor sizes and

pipelining stages as in the QAPG adder. We observe that the QAPG full-adder

dissipates approximately 30% of the total energy dissipated in an equivalent

stat ic CMOS adder.

44

X 10-14

6

--QAPG Full-Adder

----- Pipelined CMOS Full-Adder

4

2-

,------,,,,
I,- -J

I
I
I
I
I,-----.,,,

I
I

.-----~
I,
I
I,-----.,,,

I
1------1,
I
I------1I

I
I
I,

1.5 2 2.5
Time (5)

3 3.5 4
x 10-8

Figure 3-10: Energy comparison between a pipelined CMOS and a QAPG full-adder

3.3.1.2 Influence of Power Clock Voltage Scaling

Voltage scaling is an important feature in logic families as it allows more

design flexibility for circuit designers. Comparisons between CAL , TSPC

ADCVS, and QAPG logic families were performed while varying the peak-to-peak

voltage of the power clock . The minimum operational supply voltage was

observed in addition to the energy dissipated . The operating frequency was 10

MHz.

45

040 ,---- --- - - ---- - - - - ----- -,

0 35
1

1 ~ ~ ~ ~~~S I

0.30 .

::;- I
~ 0.25 ~I

~
Ql 0.20 .
Lij I .~ ~
"iij 015 l ". -:
~ . I .i>:.

010 r --,,--'--'" ..
0 05 __ - - .

~-- .
000 t - - _.,. .. - f I

0.25 0.35 04 5 0.55 065 0.75

Supply Voltage (V)

Figure 3-11: Energy dissipation versus supply voltage for a full-adder
(trapezoidal waveform)

....-

0.750.650.55

Supp ly Voltage (V)

04 5

1g040 r --QAPG

0.35 ~

..., 0.30
a.
>. 0.25
~
Ql
c:
w 0.20
IV

'0 0.15t-

0 10 .

0.05

0.00 t::==
0.25 0.35 045

Figure 3-12: Energy dissipation versus supply voltage for a full -adder
(sinusoidal waveform)

46

Figures 3-11 & 3-12 present the per addition operation (1.5 cycles) energy

dissipation of the full-adders in the three single-phase clocked adiabatic logic

families employing a trapezoidal and sinusoidal power clock waveform

respectively. When utilizing the trapezoidal waveform, QAPG dissipates down to

11% of the energy expended in CAL and down to 35% of the energy expended in

TSPC ADCVS. The most dramatic energy savings are observed at the lowest

reliable supply voltage for all families which is approximately 0.3 V. Operating

with the sinusoidal waveform, QAPG dissipates down to 10% of the energy

expended in CAL. QAPG was observed to have excellent voltage scaling

properties in this low-voltage region, with a minimum operating voltage of 0.26 V

for this full-adder.

3.3.1.3 Influence of Power Clock Frequency Scaling

The ability to operate at various frequencies while maintaining low-energy

dissipation is a desirable attribute in adiabatic circuits. Thus, comparisons

between CAL, TSPC ADCVS, and QAPG logic families were performed while

varying the operating frequency of the adiabatic power clock. The maximum

operational speed was observed in addition to the energy dissipated. The supply

voltage used in this simulation was 0.5 V.

47

OAO.-----------------------,

0.35

0.30

::;-
a. 0.25
>.
l:l
Ql 0.20
c::
w

:

300

~
- - - C'AL

. . - . - - . AOCVS

--QAPG

200 250150100

~ ::: j. -->
0.05

000 +------+----t-------'--------;-----+--------j

o 50

Frequency (MHz)

Figure 3-13: Energy dissipation versus frequency for a full-adder (trapezoidal waveform)

OAO l
0.35

/

/.,-
0.30 '".,-;-

::;- "a. 0.25 .,-

'"
.....

>.
l:l
Ql 0.20 -c::
w
"iii

0.15 ----'0
I-

0.10

0.05 I=:~I
0.00

0 50 100 150 200 250

Frequency (MHz)

Figure 3-14: Energy dissipation versus frequency for a full-adder (sinusoidal waveform)

48

Figures 3-13 & 3-14 present the total energy dissipation (for 300 ns) as a

function of operating frequency utilizing a trapezoidal and sinusoidal power clock

waveform. In the case when using a trapezoidal waveform, QAPG dissipates

approximately 15% of the energy expended in CAL and approximately 34% of

TSPC ADCVS when operating at 10 MHz. Operating with the sinusoidal

waveform at 10 MHz, QAPG dissipates down to 25% of the energy expended in

CAL. QAPG is able to operate up to 285 MHz with a trapezoidal waveform and

up to 200 MHz with a sinusoidal waveform at 0.5 V in this configuration . The

benefits of the pass-gate evaluation trees enable the maximum operating

frequency of QAPG to be more than double that of TSPC ADCVS. CAL is able

to operate at much higher frequencies when utilizing a sinusoidal waveform as it

was designed to be operated with a sinusoidal power-clock waveform

3.3.1.4 Influence of Capacitive Loading

In addition, the ability to operate with a range of capacitive loads while

maintaining low-energy dissipation is also desirable in adiabatic circuits. Thus,

comparisons between CAL, TSPC ADCVS, and QAPG logic families were

performed while steadily increasing the capacitive load at the outputs. The adder

is operating at a 0.5 V supply voltage and at a frequency of 10 MHz .

49

..... ;' ",.._...--- - ..,

..•• •••

80604020

.....

- - CAL

. .. • . .. ADCVS

----...- OAffi

0.18

0.16

0.14

., 0.12
Co

>. 0.10e'
Q)
c::
w 0.08
(ij

-0
I- 0.06 ~

0.04

0.02

000 -I
0

Load Capacitance (fF)

Figure 3-15: Energy dissipation versus load capacitance for a full-adder
(trapezoidal waveform)

0.18 ,..------------- - - - - - - - ----,

80604020

_......

0.06

0.16

0.14

I
0.04 ======:J
0.02

o.oo l~
o

6.. 0.12 r
E> 0.10 -,

~ 0.08 ... --
(ij

-0
I-

Load Capacitance (fF)

Figure 3-16: Energy dissipation versus load capacitance for a full-adder
(sinusoidal waveform)

50

Figures 3-15 & 3-16 present the total energy dissipation for every addition

operation (1.5 cycles) as a function of load capacitance at their outputs utilizing a

trapezoidal and sinusoidal power clock waveform . When using the trapezoidal

power clock waveform, QAPG dissipates 20% of the total energy expended by

CAL and 40% of the TSPC ADCVS. Using the sinusoidal power clock , QAPG

dissipates 30% of the total energy expended by CAL. Owing to the non-adiabatic

holding mechanism, the QAPG logic gates are able to dissipate lower energy

while being able to cope with larger loads.

3.3.1.5 Operation in Future CMOS Technological Nodes

Since the QAPG logic family is a newly proposed adiabatic logic family,

the ability of the family to function in the future within smaller technological nodes

is a necessity if it were to be manufactured in industry. Simulations of the QAPG

full-adder were performed using the 90 nm, 65 nm, 45 nm, and 32 nm BSI1\t14

model cards for the bulk CMOS processes in the Predictive Technology Model

(PTM) [25] . Simulations were repeated , observing the influence of voltage and

frequency scaling , and capacitive loading .

51

I
I

I
/ ,

I :
I :

/ '
/ :

I :
/ :

/ .:
/ .. I

r > I
I :

I .' I

" "" .' /
/ , . /

... .-:.- /

0 .65 0.75

Supply Voltage (V)

Figure 3-17: Expected energy dissipation versus supply voltage for a full-adder
for 90 nm, 65 nm, 45 nm, & 32 nm technology nodes

0.35
- - - - 90nm

0.30 ·· ··· "· 65nm

--45nm

0.25 - - - - - 32nm
~
a.
>. 0.20
Cl
Q;
t: ...w 0.15
iii ./
0
I- .-

0.10 ./... ...
\ -_/ . . -"
"',

0.05

20015010050

0.00 -l- - - --t--------+-----+-------!

o
Frequency (MHz)

Figure 3-18: Expected energy dissipation versus frequency for a full-adder
for 90 nm, 65 nm, 45 nm, & 32 nm technology nodes

52

0 14 r;:= = = ==;--- - - - - - - - - - - i

012

0.10
....,
C.

>. 0.08
Cl
Q;
C

w 0.06

"''0
f-

0.04

0.02

- -+- - 90nm

", . , , · 65nm

----....-45nm

_ . ~ ' - 32nm _......
....

....•..'
"

_......
......'..'

_......

-:'~" , · · · · · · i

80604020

0.00 '------+-----+-----+--------l
o

Load Capacitance (fF)

Figure 3-19: Expected energy dissipation versus load capacitance for a full-adder
for 90 nm, 65 nm, 45 nm , & 32 nm technology nodes

Figures 3-17,3-18, and 3-19 demonstrate the technological scaling

abilities of the QAPG logic family. The QAPG full-adder was fully operational at

these technology nodes and show improved energy dissipation with decreasing

channel lengths, which was anticipated . With these results , we can expect the

QAPG logic family to continue working as the bulk CMOS process evolves into

future technology nodes as planned by ITRS.

3.3.1.6 Process Corner Analysis

In order to investigate the sens itivity to process variability of the QAPG

fam ily, simulations were performed on the QAPG full-adder over the process

corners of the 90 nm CMOS process. Correct circuit operation was ver ified and

the energy dissipat ion of the circu it was observed and presented in Table 3-1.

53

The full-adder was simulated with a 0.5 V supply voltage using a trapezoidal

power clock waveform and was operating at 100 MHz.

Table 3-1: Energy dissipation of the QAPG full-adder over process variations

Process Corner Energy Dissipation (J)

TT 1.5406E-14

FF 1.5915E-14

SS 1.4858E-14

SF 1.3019E-14

FS 2.3713E-14

The energy dissipation was fairly consistent across TT, FF, and SS

corners with FF having increased dissipation due to lower threshold voltages and

SS having lower dissipation due to higher threshold voltages. The FS corner had

the largest energy dissipation as it increased the difference in driving strength

between the more capable NMOS and less capable PMOS transistors. This

uneven strength is likely to cause longer active times during dynamic switching

events. Also, as the NMOS transistors (Vth =0.24 V) already have a lower

threshold voltage compared to PMOS transistors (Vth = 0.29 V), the decrease in

the NMOS threshold voltage when operating at a low voltage of 0.5V would

significantly increase leakage.

54

3.4 QAPG 8-bit Carry-Lookahead Adder Implementation

In order to verify the block-level performance figure of merit, an 8-bit carry­

lookahead adder was implemented in QAPG to observe the energy dissipation

and operation in a larger circuit structure. A radix-2 Kogge-Stone adder [26] ,

which is a type of parallel prefix carry-Iookahead adder, was chosen as it is a fast

adder with a fairly regular structure and a reasonably consistent fan-out [5]. The

gate-level schematic of the adder design is shown in Figure 3-20. Some logic

gates which have no output connection are included as they are part of cells

created in the layout found in the next chapter.

55

a7
b7

a6
b6

a5
b5

a4
b4

a3
b3

a2
b2

a1
b1

aO
bO

v

~ I .. v

I

4::[) I I I-- ~- --~

I .. v ..
LtD- I - I I-- ~ L -- --

~ II

4::[) I I I-- ~ -- --
I .. v

4::[) I I I~-- ~--
I .. v .. ==L>-

:J ..L-b[) I I
~ -- ~

..
:J

I .. ~->-

L-b[) I I -LJ-- L~

I a>:J

4::[) I -- v-
~

cout

57

s6

55

54

53

52

51

sO

• P-lype Logic Gale

t> N·type Logic Gate

Figure 3-20: 8-bit Kogge-Stone lookahead adder

3.4.1 Simulation Results

Using simulations and analysis through HSPICE and MATLAB, energy

dissipation observations were made in CAL, TSPC ADCVS and QAPG logic

families. Trapezoidal and sinusoidal power clock waveforms were again used

and are shown in Figures 3-21 & 3-22 respectively. The energy dissipation for

an addition operation (2.5 clock cycles) was observed when operating at 1 MHz,

56

- -+- - CAL

• . . • . . • ADCVS

----.-- QAPG

10 MHz, 50 MHz, and 100 MHz. The energy consumption of the adders was

obtained using the smallest supply voltage capable for that family at that

operating frequency. The supply voltages are shown next to each data point on

the figures.

2.5E-12 \

025V..
:; 2 0E-12 ., .> ,
o ' . ,... . "-
~ ~ . ,
~ 1.550 12 -l O.25 V.~>,

s ". -.
>-. " , "
~ 1.0E-12 I ' . ,
<Il '. "-

LD " . ", 0.6 V
iii "-, 0.5V •
o 5.0E-13 0.25V •. •. " 0.3V • . . I
f- I -........01.'i7~ -- ·:.: .:.. ·_~3 V OAV

• . , V - --- -
O.OE+OO - I OA y~

1 10 100

Operating Frequency (MHz)

Figure 3-21: Energy dissipation versus operating frequency for 8-bit CLAs
(trapezoidal waveform)

57

~I

0.25 V

0.25V

...
Q)
0..

Eil 1.0E-12...
Q)

c
w 0.25 V

~ 5.0E-
13 L=

0.4 V 0.4 V

25&1 2

1
::; 2.0& 12 - 0.25 V
.g
~

& 1.5E-12
o

10

Operating Frequency (MHz)

Figure 3-22 : Energy dissipation versus operating frequency for 8-bit CLAs
(sinusoidal waveform)

From these simulations, we notice that at a lower frequency, the per-

operation energy dissipation is much higher at lower frequencies which are due

to the increased leakage observed in submicron technologies [27]. Sinusoidal

power clock waveforms tend to have slightly higher energy dissipation compared

to the trapezoidal waveform at lower frequencies and lower energy dissipation at

higher frequencies . This can attributed to the active time of the transmission

gates in the non-adiabatic holding mechanism, which transition slower during

lower frequencies . Higher supply voltages were needed at higher operating

frequencies due to the more complex gates used in the design of this adder,

mainly the Dot operator ([G,P] • [G ',P] = [G+PG ', PP]) . QAPG dissipated less

58

energy than the other two families in this series of simulations. Also, QAPG was

able to operate with the lowest supply voltage at each frequency tested.

59

CHAPTER 4: DESIGN VERIFICATION OF THE LOW­
VOLTAGE SINGLE-PHASE CLOCKED QUASI-ADIABATIC
PASS-GATE LOGIC

To verify the design of the QAPG 8-bit Kogge-Stone adder, a layout of the

adder circuit was created . Design verification through simulations of circuits with

extracted parasitics is a cost-effective way to ensure a functioning chip after

fabrication . This chapter describes the methodology in creating the circuit layout

and presents the simulation results of the extracted circuit.

4.1 8-bit Kogge-Stone Carry-Lookahead Adder Design

The 8-bit Kogge-Stone carry-Iookahead adder was designed in a cell-

based , hierarchical style consisting of lower level logic gates, and mid level logic

operator cells. The basic cells used in designing the adder were N-type

buffer/inverter, AND, AND-OR, and XOR gates as well as P-type buffer/inverter,

AND, AND-OR gates. Two types of logic operators, the propagate/generate

generator and the DOT operator, were implemented using these basic cells as

shown in Figure 4-1 and Figure 4-2.

The propagate/generate generator utilizes the N-type AND and XOR

gates since the generator was only needed for one stage of the pipeline, while

the DOT operator consists of both N-type and P-type AND and AND-OR gates.

The cell-based CLA circuit is shown in Figure 4-3.

60

PCl e PCB! .

~

A A u ill out -' pn, u
I:: PbAb Ab a.. ou tbnxor -B B

Bb Bb
""""CUI

"'- . I

A u ill ou t -' Ga.. u
I:: GbAb a.. ou bna nd -B

Bb
(",.",01/1

Figure 4-1: Propagate/generate generator

PCl . PCB! .

1

P A 0 CD out -' outp0... (.) ! outpbPb Ab 0... oulb -pond
Pp - B

P pb Bb
~ "('t'l~

'{!

- A 0 iIi out -' outg0... <» ! outgbGb Ab 0... ou b
Gp B

pando r
Gpb - Bb

C- Cb
nnn n()01

Figure 4-2: DOT operator

61

.-----U-.
~

•
li ~ .1 .1.1

'--' -"'1P-buf ~~ ~
.1.1 .I i .1

P-dol I N-dol I P-dol rIEN-pg

..--U-. ,-l..L, ~ ,-l..L,
~ ~ ~ N-xor F-

-
,...iJ......., I ~

~ '--,

~mN-pg~!J ~ P-dol I P-dol

-
li J.l - .i.iLL
~-buf J ~ P~ N-xor F-

~

J-L ..-l..L .t.t.,
~ er i ~ ~m N-pg

.----i-L. ,-l..L, .-LL ,-l..L,
P-buf N-buf..F F9. P-buf N-xor F-

~

...LL .-Ll II P-dol I~~~:J

.---LL.LL--, .-LL ,-l..L,
~ 1= : I N-buf F ~ =::l N-xor p=a

11 -
~ J.L..,

~ ~ P-dol I N-dol Rt
m N-pg~ =:::l ~ P-buf

~

_LL .Ll .L1. .ll.
P-bufj== ~ 9.P-buf....J ~ N-xor F-

~

,...iJ......., J.L.., lL
IE N-pg~ P-dol I 3 N-dol rc.:

,-- ~
~ .-----U-. J.L .Lr.,
~...J ~ ~-b~ :::j N-xor f&

~

Fn -l...LI!f1.N-buf J
f=-~ '--,

~IEl N-P9 EE§ ~ P-buf~ ~

.----i-L. -' N~~ L
1-1-

~ L.:..:...::=--. ~ ~
~ '--, II 11 11IE N-pg :::=

P-buf N-buf P-buf

Figure 4-3: 8-bit Kogge-Stone CLA cell-based design

62

4.2 Cell Layout Design

Using the SKILL scripting language and Cadence Virtuoso, the layout of

the cells used for the final adder layout was created . Since the complementary

pass-gate logic evaluation tree would vary in size, the height of each cell was left

unbounded while the width of the cells was kept at 6.84 IJm. PMOS transistors

were placed above the NMOS transistors in both the N-type and P-type gates.

An example of an N-type propagate/generate generator layout is shown in Figure

4-4, while a P-type DOT operator layout is shown in Figure 4-5 . The power rails

are routed above the N-type cells and below the P-type cells .

Transistor spacing was kept to a minimum to consume the least area and

reduce parasitics due to excessive routing. However, additional parasitics were

obtained while conforming to area requirements in meta l layers due to design

rules. Internal routing for the cells was performed in Metal 1 and Metal 2 layers.

63

P...J

Pb

b

~ rf"
I

,

~

U JIm
l_

~ w -[~ ~
~

-
I ",.e

~
~ -

~

111 ~ m "R

.li1. iii .u

w ·

.,- - - - r-- - - -
I

I
~ . . .~

lID» . "

" ~. '"

m "
..

I d S
~ . ~ ~G- - - -

11
'Ii 1i

" ..

"
". l

~
:'T If! TIT ;;H" 1:t'l

. :m3 G

H a" J. III m .w.. m
=tw il':l

Ab

A

Bb

B

vdd

god

PC'

PCB

= Active Metal 1

Metal 2

Poly ••MetaI 3

L _. !Metal4

Figure 4-4: N-type propagate/generate generator layout

64

I
111 I:N E'a

fl ;: II-i.~

I
m WI~

outpb

I
a ~ . ~ 9i .~ ~ ~ I-'" :

~

I- f ~ m
~

J oulD

~:- - f' - - -
m

m ~ if! !r:l

Id ~

iiii
,

~ ~

~
~

",
~

::~
l:j;

~
:

. . = . . >.I '

-
..".

outgb

~ - ~. t'
:

- m ~

-m- outg
-~ ~ -

~. m
. ~

m mRio

rr

~

1 ..

,

Pp

Ppb

Gp

P

Pb

Gpb

G

Gb

goo

PCI

PCB

vdd

Figure 4-5: P-type DOT operator layout

65

The final adder layout is shown in Figure 4-6 . The power rails run west to

east, supplying the cells with power. The cascaded pipeline stages can be

visually observed in the final layout. The low density of the adder layout is due to

the inverted structure of the Nand P-type cells. In order to share the same

power rails , N-type cells are located below power rails, while the P-type cells are

above the rails. Empty spaces can be found due to the varying heights of the

cells . Routing between cells was accomplished using a horizontal Metal 3 layer

and a vertical Metal 4 layer.

66

Figure 4-6: Layout of the QAPG 8-bit Kogge-Stone CLA

67

4.3 Verification and Simulation Results

4.3.1 Extracted Parasitic Netlist Simulations

Design rule checking and layout versus schematic checking was

performed to physically verify the layout of the adder. Parasitic components

found in the layout were then extracted and HSPICE simulations were performed

to verify the correct operation of the adder. The power clock energy of the QAPG

CLA is shown below in Figure 4-7 utilizing a sinusoidal and square power clock

waveform operating at 0.5 V with a frequency of 100 MHz.

-- Sinusodial
----- Trapezoidal

0.8

.-,
: \ .I·'" : ,---'

I I ,

, "--',.-, I
: I I

r-' : l_J
I , I
I t_-',,-, :

\ I__ J

0.4 0.6
Time (5)

x 10.13

6

5

4
2-
>.
E!!

3Q)
c
W

-""
<.J
0
U 2
v
?;
0
0.. 1 .

l-=--1
0 0.2

Figure 4-7: Energy dissipation of the power clock of an extracted layout
for an 8-bit Kogge-Stone CLA

68

The energy plot demonstrates the sourcing and recovery of energy in the

power clock. This figure resembles the shape of the power clock energy plot

found in Figure 3-9, which indicate that parasitic components have a small effect

on the recycling of energy in the QAPG family, however the added parasitics

increase the energy dissipation of the power clock by approximately three times .

The total energy dissipation per addition operation of the extracted QAPG CLA

layout was analyzed and is shown in Figure 4-8. The energy dissipation was

observed at 1 MHz, 10 MHz, 50 MHz, and 100 MHz using the minimum supply

voltage capable of operation at the specific frequency. The supply voltages are

shown next to each data point on the figure.

---:lI­
I

I
I

"0.4 V /_ _ 0.5V

OAV

0.3V

0.3 V

:::;- 1.0E-1 2

1.2E-12 ~,--- ----

c
.2
~ 8.0E-13
CI>
Q. 0.25 Vo
Q; 6.0E-13 If.. __

1'0&13[10r-.

2

_

5

_

V

----. - - - - - • - - -

~ 2.0E- 13 ----+-- Sinusodial

- - Trapezoidal

10 100

Operating Frequency (MHz)

Figure 4-8: Energy dissipation versus operating frequency of an extracted layout
for an 8-bit Kogge-Stone CLA

69

The total energy per addition operation was found to be 1.2 to 7.8 times

higher than in Figure 3-21 and Figure 3-22, where parasitics were not included in

the simulations. This is due to in part by the parasitic components, as well as the

need to increase the supply voltage at certain frequencies. Observed again is

the QAPG adder operating with a sinusoidal power clock dissipating less energy

than with a trapezoidal power clock at higher 'frequencies. Also observed is that

static energy contributes approximately 25% of the total energy dissipated.

4.3.2 Observations and Discussion

A difference found between the QAPG full-adder and CLA simulations are

the minimum supply voltages at which the circuit can operate at. This is due to

the pass-gate evaluation tree height, as a larger supply voltage is needed for

larger trees. The largest tree height found in the full-adder was two transistors,

while the CLA had three transistors. Also, as expected, the supply voltage

dictates the maximum operating frequency.

Static energy was much more prominent in the extracted layout

simulations. An 11% increase in static energy contribution to the total energy

was observed in the post-layout simulations. This increase in leakage can be

partly attributed to the shallow trench isolation induced stress phenomena

documented by STMicroelectronics [28]. Threshold voltages are affected by the

distance between the edge of the polysilicon gate and the edge of the active

region due to the difference in thermal coefficients and mechanical properties

between the Si and Si02 interface. An increasing distance between the

polysilicon and active edges will lower the threshold voltage in both NMOS and

70

PMOS transistors, which will increase the static energy of the QAPG circuits. In

the QAPG CLA layout, the distance between the edge of the polysilicon gate and

active edge is slightly larger than the minimum size, leading to a lower threshold

voltage and increased leakage.

71

CHAPTER 5: CONCLUSION

The adiabatic approach to VLSI circuit design is an attractive method in

designing low energy dissipating digital applications. By recycling the energy

stored in capacitances throughout the circuit, extremely low energy dissipation

can be achieved. Previously proposed adiabatic logic families use multi-phase

clocking structures which were difficult to implement into the adiabatic system

and would result in inefficient charge recovery. Adiabatic families using single­

phase clocking structures were also previously proposed which attempted to

eliminate these drawbacks. However, these families were not designed for low­

voltage applications, which would help to further decrease energy dissipation.

This thesis presents a low-voltage, high-speed quasi-adiabatic logic family

utilizing a single-phase sinusoidal or trapezoidal clocking scheme. A full-adder

and CLA were designed in the 90 nm standard CMOS process to verify the

circuit operation and evaluate the energy efficiency of the adiabatic logic family.

HSPICE simulations were performed, analyzing energy dissipation across

varying supply voltages, operational frequencies, load capacitances, process

corners, and technology nodes. Also, post-layout simulations were performed to

verify correct operation of the QAPG CLA when extracted parasitics are included.

QAPG is able to obtain substantial energy reduction at low supply voltages in

comparison with other single-phase clocked adiabatic logic families. QAPG can

dissipate between 11% and 40% of the energy consumed by other previously

72

proposed adiabatic logic families across a range of supply voltages, power clock

frequencies, and capacitive loads.

Future research in the QAPG logic would include an investigation into the

effect of routing and transistor placement in layouts to minimize the effects of

parasitics and leakage from the shallow trench isolation induced stress

phenomena. Also, to utilize the die area more efficiently, QAPG cells can be

designed to eliminate the empty portions of the die. Creation of a QAPG

standard cell library for automated layout generation would be useful in designing

larger and more complex circuitry. Also, an efficient adiabatic power clock

generator can be investigated that can be placed on the same die as the

adiabatic circuit to increase the efficiency of the charge recovery. High and low

threshold voltages available in the 90 nm CMOS process can be analyzed to

further optimize QAPG logic gates.

73

APPENDICES

Appendix A: QAPG Logic Gate Schematics

Vdd

Out Out

, Vpc 0

- --
A - -

A

N-type Buffer/Inverter gate

-
Vdd

A A
Vdd

• Vpc 0

MP7 MP8

Out Out

P-type Buffer/Inverter gate

74

Out

f-----oo Vpc 0-0------i

B-1 ~B B-1 ~B

- -B A B A

N-type AND gate

- -B A B A

B-1 ~B B-1 ~B
Vdd

Vdd

o Vpc 0

MP7

Out Out

Out

Vpc

P-type AND gate

75

Out

Vdd

---_0 VpC 0-0------,

Out

B-1 ~B B-1 ~B

A B - -B A

N-type OR gate

A B

B-1 ~B B-1 ~B
Vdd

Vdd

o Vpc 0

MP7 MP8

Out Out

Vpc

P-type OR gate

76

Out

Vdd

-
A A

A A

---...." VpC 0-,---

N-type XOR gate

----00 Vpc 0-,------"

P-type XOR gate

77

-
A A

-A A

Vdd

Out

Out

Out

A~

B~

----0, Vpc 0-,---

Out

C B
- -
C A

N-type AND-OR gate

B C
- -
C A

Out

Vdd

----0, vpc 0-0------..1

P-type AND-OR gate

78

~B
Vdd

Out

Appendix B: QAPG 8-bit Kogge-Stone Adder Netlist

QAPG 8bit Kogge-Stone Adder

*declare widths of transistors (abx 0.2)
.pararn widn='l*lrn#'
.pararn widp='2*lrn#'
.pararn widbn=' l*lrn# ,
.pararn widbp='2*lrn#'
.pararn widt='l*lrn#'

.subckt QAPGXOR2p pc pcbar ina inab inb inbb static out a outbara
xM8P1 81 pc out vdd pt svt w=widbp
xM8P2 82 pc outbar vdd pt svt w=widbp
xMN1 outbar 81 pc gnd nt_svt w=widn
xMN2 out 82 pc gnd nt_svt w=widn
xMP1 outbar pc a vdd pt_svt w=widp
xMP2 out pc ab vdd pt svt w=widp
xMP15 ab ina inb vdd pt_svt w=widn
xMP16 ab inab inbb vdd pt_svt w=widn
xMP17 a inab inb vdd pt_svt w=widn
xMP18 a ina inbb vdd pt_svt w=widn
xMPt out pc outt vdd pt svt w=widp
xMNtb out pcbar outt gnd nt svt w=widn
xMPbt outbar pc outbart vdd pt_svt w=widp
xMNbtb outbar pcbar outbart gnd nt_svt w=widn
xMP01 outa outbart static static pt_svt w=widp
xMN01 outa outbart gnd gnd nt_svt w=widt
xMP02 outbara outt static static pt svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPGXOR2n pc pcbar ina inab inb inbb static outa outbara
xM8N1 81 pc out gnd nt svt w=widbn
xM8N2 82 pc outbar gnd nt_svt w=widbn
xMP1 outbar 81 pc pc pt svt w=widp
xMP2 out 82 pc pc pt_svt w=widp
xMN1 outbar pc a gnd nt_svt w=widn
xMN2 out pc ab gnd nt svt w=widn
xMN15 ab inbb ina gnd nt_svt w=widn
xMN16 ab inb inab gnd nt_svt w=widn
xMN17 a inb ina gnd nt_svt w=widn
xMN18 a inbb inab gnd nt_svt w=widn
xMNt out pc outt gnd nt svt w=widn
xMNtb out pcbar outt vdd pt_svt w=widp
xMNbt outbar pc outbart gnd nt_svt w=widn
xMNbtb outbar pcbar outbart vdd pt svt w=widp
xMP01 outa outbart static static pt_svt w=widp
xMN01 outa outbart gnd gnd nt_svt w=widt
xMP02 outbara outt static static pt_svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPGAND2n pc pcbar ina inab inb inbb static outa outbara
xM8N3 83 pc out1 gnd nt svt w=widbn

79

xM8N4 84 pc outbarl gnd nt_svt w=widbn
xMP3 outbarl 83 pc pc pt svt w=widp
xMP4 outl 84 pc pc pt_svt w=widp
xMNll outbarl pc c gnd nt svt w=widn
xMN12 outl pc cb gnd nt_svt w=widn
xMN15 c inb inab gnd nt_svt w=widn
xMN16 c inbb inbb gnd nt_svt w=widn
xMN17 cb inbb inb gnd nt_svt w=widn
xMN18 cb inb ina gnd nt svt w=widn
xMNlt outl pc outt gnd nt_svt w=widn
xMNltb outl pcbar outt vdd pt_svt w=widp
xMNlbt outbarl pc outbart gnd nt_svt w=widn
xMNlbtb outbarl pcbar outbart vdd pt_svt w=widp
xMPOl outa outbart static static pt svt w=widp
xMNOl outa outbart gnd gnd nt svt w=widt
xMP02 outbara outt static static pt svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPGAND2p pc pcbar ina inab inb inbb static outa outbara
xM8P3 83 pc outl vdd pt_svt w=widbp
xM8P4 84 pc outbarl vdd pt_svt w=widbp
xMN3 outbarl 83 pc gnd nt_svt w=widn
xMN4 outl 84 pc gnd nt_svt w=widn
xMPll outbarl pc c gnd pt svt w=widp
xMP12 outl pc cb gnd pt_svt w=widp
xMP15 c inb inbb vdd pt_svt w=widp
xMP16 c inbb inab vdd pt_svt w=widp
xMP17 cb inbb ina vdd pt_svt w=widp
xMP18 cb inb inb vdd pt_svt w=widp
xMPlt outl pc outt vdd pt_svt w=widp
xMNltb outl pcbar outt gnd nt svt w=widn
xMPlbt outbarl pc outbart vdd pt svt w=widp
xMNlbtb outbarl pcbar outbart gnd nt_svt w=widn
xMPOl outa outbart static static pt svt w=widp
xMNOl outa outbart gnd gnd nt svt w=widt
xMP02 outbara outt static static pt svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPGOR2n pc pcbar ina inab inb inbb static outa outbara
xM8N3 83 pc outl gnd nt svt w=widbn
xM8N4 84 pc outbarl gnd nt svt w=widbn
xMP3 outbarl 83 pc pc pt_svt w=widp
xMP4 outl 84 pc pc pt svt w=widp
xMNll outbarl pc c gnd nt_svt w=widn
xMN12 outl pc cb gnd nt_svt w=widn
xMN15 c inb inbb gnd nt_svt w=widn
xMN16 c inbb inab gnd nt_svt w=widn
xMN17 cb inbb ina gnd nt_svt w=widn
xMN18 cb inb inb gnd nt_svt w=widn
xMNlt outl pc outt gnd nt_svt w=widn
xMNltb outl pcbar outt vdd pt svt w=widp
xMNlbt outbarl pc outbart gnd nt_svt w=widn
xMNlbtb outbarl pcbar outbart vdd pt_svt w=widp
xMPOl outa outbart static static pt_svt w=widp
xMNOl outa outbart gnd gnd nt svt w=widt
xMP02 outbara outt static static pt_svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt

80

.ends

.subckt QAPG8UFp pc pcbar ina inab static outa outbara
xM8P1 81 pc out vdd pt_svt w=widbp
xM8P2 82 pc outbar vdd pt_svt w=widbp
xMN1 outbar 81 pc gnd nt_svt w=widn
xMN2 out 82 pc gnd nt_svt w=widn
xMP1 outbar pc inab vdd pt svt w=widp
xMP2 out pc ina vdd pt svt w=widp
xMPt out pc outt vdd pt svt w=widp
xMNtb out pcbar outt gnd nt svt w=widn
xMPbt outbar pc outbart vdd pt_svt w=widp
xMNbtb outbar pcbar outbart gnd nt_svt w=widn
xMP01 outa outbart static static pt_svt w=widp
xMN01 outa outbart gnd gnd nt_svt w=widt
xMP02 outbara outt static static pt svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPG8UFn pc pcbar ina inab static outa outbara
xM8N1 81 pc out gnd nt_svt w=widbn
xM8N2 82 pc outbar gnd nt svt w=widbn
xMP1 out bar 81 pc pc pt svt w=widp
xMP2 out 82 pc pc pt svt w=widp
xMN1 outbar pc inab gnd nt_svt w=widn
xMN2 out pc ina gnd nt_svt w=widn
xMNt out pc outt gnd nt_svt w=widn
xMNtb out pcbar outt vdd pt svt w=widp
xMNbt outbar pc outbart gnd nt_svt w=widn
xMNbtb outbar pcbar outbart vdd pt svt w=widp
xMP01 outa outbart static static pt svt w=widp
xMN01 outa outbart gnd gnd nt svt w=widt
xMP02 outbara outt static static pt_svt w=widp
xMN02 outbara outt gnd gnd nt svt w=widt
.ends
.subckt QAPGpgn pc pcbar ina inab inb inbb static outg outbarg outp
outbarp
xM8N1 81 pc out gnd nt_svt w=widbn
xM8N2 82 pc outbar gnd nt_svt w=widbn
xMP1 outbar 81 pc pc pt svt w=widp
xMP2 out 82 pc pc pt svt w=widp
xMN1 outbar pc a gnd nt svt w=widn
xMN2 out pc ab gnd nt_svt w=widn
xMNS ab inbb ina gnd nt_svt w=widn
xMN6 ab inb inab gnd nt_svt w=widn
xMN7 a inb ina gnd nt_svt w=widn
xMNB a inbb inab gnd nt svt w=widn
xMNt out pc outt gnd nt svt w=widn
xMNtb out pcbar outt vdd pt_svt w=widp
xMNbt outbar pc outbart gnd nt_svt w=widn
xMNbtb outbar pcbar outbart vdd pt svt w=widp
xMP01 outp outbart static static pt_svt w=widp
xMN01 outp outbart gnd gnd nt svt w=widt
xMP02 outbarp outt static static pt_svt w=widp
xMN02 outbarp outt gnd gnd nt svt w=widt

xM8N3 83 pc out1 gnd nt_svt w=widbn
xM8N4 84 pc outbar1 gnd nt_svt w=widbn
xMP3 outbar1 83 pc pc pt svt w=widp

81

xMP4 out1 84 pc pc pt svt w=widp
xMN11 outbar1 pc c gnd nt_svt w=widn
xMN12 out1 pc cb gnd nt_svt w=widn
xMN15 c inb inab gnd nt_svt w=widn
xMN16 c inbb inbb gnd nt_svt w=widn
xMN17 cb inbb inb gnd nt_svt w=widn
xMN18 cb inb ina gnd nt_svt w=widn
xMN1t out1 pc out1t gnd nt_svt w=widn
xMN1tb out1 pcbar out1t vdd pt svt w=widp
xMN1bt outbar1 pc outbar1t gnd nt_svt w=widn
xMN1btb outbar1 pcbar outbar1t vdd pt_svt w=widp
xMP101 outg outbar1t static static pt_svt w=widp
xMN101 outg outbar1t gnd gnd nt_svt w=widt
xMP102 outbarg out1t static static pt_svt w=widp
xMN102 outbarg out1t gnd gnd nt svt w=widt
.ends

.subckt QAPGcopn pc pcbar ina inab inb inbb inc incb ind indb static
outg outbarg outp outbarp
xM8N1 81 pc out1 gnd nt_svt w=widbn
xM8N2 82 pc outbar1 gnd nt_svt w=widbn
xMP1 outbar1 81 pc pc pt_svt w=widp
xMP2 out1 82 pc pc pt_svt w=widp
xMN1 outbar1 pc ab gnd nt_svt w=widn
xMN2 out1 pc a gnd nt_svt w=widn
xMN3 a ina ina gnd nt_svt w=widn
xMN4 a inab b gnd nt_svt w=widn
xMN5 b inb inc gnd nt_svt w=widn
xMN6 b inbb inb gnd nt_svt w=widn
xMN7 ab inbb inab gnd nt_svt w=widn
xMN8 ab inb bb gnd nt_svt w=widn
xMN9 bb inab incb gnd nt_svt w=widn
xMN10 bb ina inab gnd nt_svt w=widn
xMN1t out1 pc out1t gnd nt_svt w=widn
xMN1tb out1 pcbar out1t vdd pt_svt w=widp
xMN1bt outbar1 pc outbar1t gnd nt svt w=widn
xMN1btb outbar1 pcbar outbar1t vdd pt_svt w=widp
xMP101 outg outbar1t static static pt_svt w=widp
xMN101 outg outbar1t gnd gnd nt_svt w=widt
xMP102 outbarg out1t static static pt_svt w=widp
xMN102 outbarg out1t gnd gnd nt svt w=widt

xM8N3 83 pc out gnd nt_svt w=widbn
xM8N4 84 pc outbar gnd nt_svt w=widbn
xMP3 outbar 83 pc pc pt svt w=widp
xMP4 out 84 pc pc pt_svt w=widp
xMN11 outbar pc c gnd nt svt w=widn
xMN12 out pc cb gnd nt_svt w=widn
xMN15 c inb indb gnd nt_svt w=widn
xMN16 c inbb inbb gnd nt_svt w=widn
xMN17 cb inbb inb gnd nt_svt w=widn
xMN18 cb inb ind gnd nt svt w=widn
xMNt out pc outt gnd nt_svt w=widn
xMNtb out pcbar outt vdd pt_svt w=widp
xMNbt outbar pc outbart gnd nt_svt w=widn
xMNbtb outbar pcbar outbart vdd pt_svt w=widp
xMP01 outp outbart static static pt svt w=widp

82

xMNOl outp outbart gnd gnd nt svt w=widt
xMP02 outbarp outt static static pt_svt w=widp
xMN02 outbarp outt gnd gnd nt svt w=widt
.ends

.subckt QAPGcopp pc pcbar ina inab inb inbb inc incb ind indb static
outg outbarg outp outbarp
xMBPl 81 pc out vdd pt svt w=widbp
xMBP2 82 pc outbar vdd pt_svt w=widbp
xMNl outbar 81 pc gnd nt_svt w=widn
xMN2 out B2 pc gnd nt_svt w=widn
xMPl outbar pc ab vdd pt svt w=widp
xMP2 out pc a vdd pt_svt w=widp
xMP5 a inab ina vdd pt svt w=widp
xMP6 a ina b vdd pt_svt w=widp
xMP7 b inb inb vdd pt_svt w=widp
xMP8 b inbb inc vdd pt_svt w=widp
xMP9 ab inb inab vdd pt_svt w=widp
xMP10 ab inbb bb vdd pt_svt w=widp
xMPll bb ina incb vdd pt_svt w=widp
xMP12 bb inab inab vdd pt svt w=widp
xMPt out pc outt vdd pt svt w=widp
xMNtb out pcbar outt gnd nt_svt w=widn
xMPbt outbar pc outbart vdd pt_svt w=widp
xMNbtb outbar pcbar outbart gnd nt_svt w=widn
xMPOl outg outbart static static pt_svt w=widp
xMNOl outg outbart gnd gnd nt_svt w=widt
xMP02 outbarg outt static static pt_svt w=widp
xMN02 outbarg outt gnd gnd nt svt w=widt

xMBP3 83 pc outl vdd pt_svt w=widbp
xM8P4 84 pc outbarl vdd pt_svt w=widbp
xMN3 outbarl 83 pc gnd nt_svt w=widn
xMN4 outl 84 pc gnd nt_svt w=widn
xMP19 outbarl pc c gnd pt svt w=widp
xMP20 outl pc cb gnd pt svt w=widp
xMP15 c inb inbb vdd pt_svt w=widp
xMP16 c inbb indb vdd pt_svt w=widp
xMP17 cb inbb ind vdd pt_svt w=widp
xMP18 cb inb inb vdd pt_svt w=widp
xMPlt outl pc outlt vdd pt_svt w=widp
xMNltb outl pcbar outlt gnd nt_svt w=widn
xMPlbt outbarl pc outbarlt vdd pt_svt w=widp
xMNlbtb outbarl pcbar outbarlt gnd nt svt w=widn
xMP10l outp outbarlt static static pt_svt w=widp
xMN10l outp outbarlt gnd gnd nt svt w=widt
xMP102 outbarp outlt static static pt_svt w=widp
xMN102 outbarp outlt gnd gnd nt svt w=widt
.ends

*logic START
*define Power Clock

vpc pc gnd SIN ('vdd/2' 'vdd/2' 'l/tperiod')
vpcbar pcbar gnd SIN ('vdd/2' 'vdd/2' 'l/tperiod' 00180)

vnn n gnd vdd

83

vpp p gnd vdd

xO PC PCBar aO aOb bO bOb n GOO GOOb POO POOb QAPGPGn
xbppOO PC PCBar POO POOb P P10 P10b QAPGBUFp
xbgpOO PC PCBar GOO GOOb P G10 GlOb QAPGBUFp
xbpnlO PC PCBar P10 P10b n P20 P20b QAPGBUFn
xbgnlO PC PCBar G10 GlOb n G20 G20b QAPGBUFn
xbpp20 PC PCBar P20 P20b P P30 P30b QAPGBUFp
xbgp20 PC PCBar G20 G20b P G30 G30b QAPGBUFp
xbnp30 PC PCBar P30 P30b n ZO ZOb QAPGBUFn

xl PC PCBar al alb bl blb n GOl GOlb POl POlb QAPGPGn
xbppOl PC PCBar POl POlb P bPll bPllb QAPGBUFp
xypOl PC PCBar GOl GOlb POl POlb GOO GOOb POO POOb P Gll Gllb Pll Pllb
QAPGCOPp
xbpnll PC PCBar Pll Pllb n P2l P2lb QAPGBUFn
xbgnll PC PCBar Gll Gllb n G2l G2lb QAPGBUFn
xbbpll PC PCBar bPll bPllb n bp2l bP2lb QAPGBUFn
xbgp2l PC PCBar G2l G2lb P G3l G3lb QAPGBUFp
xbbp2l PC PCBar bP2l bP2lb P bP3l bP3lb QAPGBUFp
xxornl PC PCBar bP3l bP3lb G30 G30b n Zl Zlb QAPGXOR2n

x2 PC PCBar a2 a2b b2 b2b n G02 G02b P02 P02b QAPGPGn
xbpp02 PC PCBar P02 P02b P bP12 bP12b QAPGBUFp
xyp02 PC PCBar G02 G02b P02 P02b GOl GOlb POl POlb P G12 G12b P12 P12b
QAPGCOPp
xbpp12 PC PCBar bP12 bP12b n bP22 bP22b QAPGBUFn
xyn12 PC PCBar G12 G12b P12 P12b G10 GlOb P10 P10b n G22 G22b P22 P22b
QAPGCOPn
xbgp22 PC PCBar G22 G22b P G32 G32b QAPGBUFp
xbbp22 PC PCBar bP22 bP22b P bP32 bP32b QAPGBUFp
xxorn2 PC PCBar bP32 bP32b G3l G3lb n Z2 Z2b QAPGXOR2n

x3 PC PCBar a3 a3b b3 b3b n G03 G03b P03 P03b QAPGPGn
xbpp03 PC PCBar P03 P03b P bP13 bP13b QAPGBUFp
xyp03 PC PCBar G03 G03b P03 P03b G02 G02b P02 P02b P G13 G13b P13 P13b
QAPGCOPp
xbpp13 PC PCBar bP13 bP13b n bP23 bP23b QAPGBUFn
xyn13 PC PCBar G13 G13b P13 P13b Gll Gllb Pll Pllb n G23 G23b P23 P23b
QAPGCOPn
xbgp23 PC PCBar G23 G23b P G33 G33b QAPGBUFp
xbbp23 PC PCBar bP23 bP23b P bP33 bP33b QAPGBUFp
xxorn3 PC PCBar bP33 bP33b G32 G32b n Z3 Z3b QAPGXOR2n

x4 PC PCBar a4 a4b b4 b4b n G04 G04b P04 P04b QAPGPGn
xbpp04 PC PCBar P04 P04b P bP14 bP14b QAPGBUFp
xyp04 PC PCBar G04 G04b P04 P04b G03 G03b P03 P03b P G14 G14b P14 P14b
QAPGCOPp
xbpp14 PC PCBar bP14 bP14b n bP24 bP24b QAPGBUFn
xyn14 PC PCBar G14 G14b P14 P14b G12 G12b P12 P12b n G24 G24b P24 P24b
QAPGCOPn
xbpp24 PC PCBar bP24 bP24b P bP34 bP34b QAPGBUFp
xyp24 PC PCBar G24 G24b P24 P24b G20 G20b P20 P20b P G34 G34b P34 P34b
QAPGCOPp
xxorn4 PC PCBar bP34 bP34b G33 G33b n Z4 Z4b QAPGXOR2n

84

x5 PC PCBar a5 a5b b5 b5b n G05 G05b P05 P05b QAPGPGn
xbpp05 PC PCBar P05 P05b P bP15 bP15b QAPGBUFp
xyp05 PC PCBar G05 G05b P05 P05b G04 G04b P04 P04b P G15 G15b P15 P15b
QAPGCOPp
xbpp15 PC PCBar bP15 bP15b n bP25 bP25b QAPGBUFn
xyn15 PC PCBar G15 G15b P15 P15b G13 G13b P13 P13b n G25 G25b P25 P25b
QAPGCOPn
xbpp25 PC PCBar bP25 bP25b P bP35 bP35b QAPGBUFp
xyp25 PC PCBar G25 G25b P25 P25b G2I G2Ib P2I P2Ib P G35 G35b P35 P35b
QAPGCOPp
xxorn5 PC PCBar bP35 bP35b G34 G34b n 25 25b QAPGXOR2n

x6 PC PCBar a6 a6b b6 b6b n G06 G06b P06 P06b QAPGPGn
xbpp06 PC PCBar P06 P06b P bP16 bP16b QAPGBUFp
xyp06 PC PCBar G06 G06b P06 P06b G05 G05b P05 P05b P G16 G16b P16 P16b
QAPGCOPp
xbpp16 PC PCBar bP16 bP16b n bP26 bP26b QAPGBUFn
xyn16 PC PCBar G16 G16b P16 P16b G14 G14b P14 P14b n G26 G26b P26 P26b
QAPGCOPn
xbpp26 PC PCBar bP26 bP26b p bP36 bP36b QAPGBUFp
xyp26 PC PCBar G26 G26b P26 P26b G22 G22b P22 P22b P G36 G36b P36 P36b
QAPGCOPp
xxorn6 PC PCBar bP36 bP36b G35 G35b n 26 26b QAPGXOR2n

x7 PC PCBar a7 a7b b7 b7b n G07 G07b P07 P07b QAPGPGn
xbpp07 PC PCBar P07 P07b P bP17 bP17b QAPGBUFp
xyp07 PC PCBar G07 G07b P07 P07b G06 G06b P06 P06b P G17 G17b P17 P17b
QAPGCOPp
xbpp17 PC PCBar bP17 bP17b n bP27 bP27b QAPGBUFn
xyn17 PC PCBar G17 G17b P17 P17b G15 G15b P15 P15b n G27 G27b P27 P27b
QAPGCOPn
xbpp27 PC PCBar bP27 bP27b p bP37 bP37b QAPGBUFp
xyp27 PC PCBar G27 G27b P27 P27b G23 G23b P23 P23b P G37 G37b P37 P37b
QAPGCOPp
xxorn7 PC PCBar bP37 bP37b G36 G36b n 27 27b QAPGXOR2n

xbnp38 PC PCBar P37 P37b n 28 28b QAPGBUFn

.end

85

Appendix C: Sample Skill Code for a QAPG N-type XOR gate

File Name: nxor2.il
Written by: Edward Loo
Date: june 8 2007
Last Update: N/A
Cell: nxor
version: 1

Height: um
Width: um

Input: A Ab B Bb
Output: out outb
InputOutput: pc! pcb!

library="qapg90"

;---

;---
procedure (nxor()
let((cnm nxor cvw ma cvw mal cvw mp cvw mpl cvw mplx cvw m2ml cvw
m2mlx cvw m3m2 cvw

west south pex
wn wp ods ods2 mint cod3 prow nrowl nrow2

cnm = "nxor"

nxor cvw = dbOpenCellViewByType (library cnm "layout" "maskLayout" "w")
printf("Cellname: %s" cnm)

;--
; Open db objects
;--
ma cvw = dbOpenCellViewByType(library "ma" "layout" "maskLayout" "r")
mal_cvw = dbOpenCellViewByType(library "mal" "layout" "maskLayout" "r")
mp_cvw = dbOpenCellViewByType(library "mp" "layout" "maskLayout" "r")
mpl_cvw = dbOpenCellViewByType(library "mpl" "layout" "maskLayout" "r")
mplx cvw dbOpenCellViewByType(library "mplx" "layout" "maskLayout"
"r")
m2ml cvw dbOpenCellViewByType(library "M2Ml" "layout" "maskLayout"
Urn)

m2mlx cvw = dbOpenCellViewByType(library "M2Mlx" "layout" "maskLayout"
Urn)

m3m2 cvw = dbOpenCellViewByType(library "M3M2" "layout" "maskLayout"
"r")

._---------------------------------------,
; local parameters to define coordinates
;--

86

south = 0
west = 0

wn = 0.12
wp = 0.24
ods = 0.14
ods2 = 0.07
pex = 0.08
;bottom of PMOS active
prow = south + 0.44 + pex
;bottom of NMOS active
nrow1= south-0.22-R->Abx2-wn/2-0.04
nrow2= south-0.44-R->Abx-R->Abx2-wn-ods-0.04
mint = R->Abx + 2*R->GMacc
;distance of CO on PO to 00
cod3 = 0.1

;--
; PMOS
;--
;nwell contact
dbCreatelnst(nxor cvw mal cvw nil list(west-3*(ods+mint)-mint
prow+wp/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-3*(ods+mint)-mint­
0.15:prow+wp/2 west-3*(ods+mint)-mint+0.15:prow+wp/2) R->Abx)
dbCreatePath(nxor_cvw list("NP" "drawing") list(west-3*(ods+mint)-mint­
0.26:prow+wp/2 west-3*(ods+mint)-mint+0.26:prow+wp/2) R->Abx+0.04)

;M10
dbCreatelnst(nxor_cvw ma cvw nil list(west-2*(ods+mint)-ods2-mint/2-R­
>GMacc prow+wp/2) "RO")
dbCreatelnst(nxor_cvw ma cvw nil list(west-2*(ods+mint)-ods2-mint/2+R­
>GMacc prow+wp/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-2*(ods+mint)­
ods2:prow+wp/2 west-2*(ods+mint)-ods2-mint:prow+wp/2) wp)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-2*(ods+mint)-ods2­
mint/2:prow+wp+R->GAov west-2*(ods+mint)-ods2-mint/2:prow-R->GAov) R­
>Pwd)

;M8
dbCreatelnst(nxor cvw ma cvw nil list(west-ods-mint-ods2-mint/2-R­
>GMacc prow+wp/2) "R90")
dbCreatelnst(nxor_cvw ma_cvw nil list(west-ods-mint-ods2-mint/2+R­
>GMacc prow+wp/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods-mint­
ods2:prow+wp/2 west-ods-mint-ods2-mint:prow+wp/2) wp)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-ods-mint-ods2­
mint/2:prow+wp+R->GAov west-ods-mint-ods2-mint/2:prow-R->GAov) R->Pwd)

;M3
dbCreatelnst(nxor cvw ma cvw nil list(west-ods2-mint/2-R->GMacc
prow+wp/2) "R90")
dbCreatelnst(nxor cvw ma cvw nil list(west-ods2-mint/2+R->GMacc
prow+wp/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods2:prow+wp/2
west-ods2-mint:prow+wp/2) wp)

87

dbCreatePath(nxor cvw list("PO" "drawing") list(west-ods2­
mint/2:prow+wp+R->GAov west-ods2-mint/2:prow-R->GAov) R->Pwd)

;M2
dbCreatelnst(nxor cvw ma cvw nil list(west+ods2+mint/2-R->GMacc
prow+wp/2) "R90")
dbCreatelnst(nxor cvw ma cvw nil list(west+ods2+mint/2+R->GMacc
prow+wp/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west+ods2:prow+wp/2
west+ods2+mint:prow+wp/2) wp)
dbCreatePath(nxor_cvw list("PO" "drawing")
list (west+ods2+mint/2:prow+wp+R->GAov west+ods2+mint/2:prow-R->GAov) R­
>Pwd)

;M9
dbCreatelnst(nxor cvw ma cvw nil list(west+ods+mint+ods2+mint/2-R­
>GMacc prow+wp/2) "RO")
dbCreatelnst(nxor cvw ma cvw nil list(west+ods+mint+ods2+mint/2+R­
>GMacc prow+wp/2) "RO")
dbCreatePath(nxor cvw list("OD" "drawing")
list (west+ods+mint+ods2:prow+wp/2 west+ods+mint+ods2+mint:prow+wp/2)
wp)
dbCreatePath(nxor cvw list("PO" "drawing")
list (west+ods+mint+ods2+mint/2:prow+wp+R->GAov
west+ods+mint+ods2+mint/2:prow-R->GAov) R->Pwd)

;Mll
dbCreatelnst(nxor cvw ma cvw nil list(west+2*(ods+mint)+ods2+mint/2-R­
>GMacc prow+wp/2) "RO")
dbCreatelnst(nxor_cvw ma cvw nil list(west+2*(ods+mint)+ods2+mint/2+R­
>GMacc prow+wp/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing")
list(west+2*(ods+mint)+ods2:prow+wp/2
west+2*(ods+mint)+ods2+mint:prow+wp/2) wp)
dbCreatePath(nxor_cvw list("PO" "drawing")
list(west+2*(ods+mint)+ods2+mint/2:prow+wp+R->GAov
west+2*(ods+mint)+ods2+mint/2:prow-R->GAov) R->Pwd)

;--
; NMOS
;--
;substrate contact
dbCreatelnst(nxor cvw mal cvw nil list(west-3*(ods+mint)-mint
nrowl+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-3*(ods+mint)-mint­
O.15:nrowl+wn/2 west-3*(ods+mint)-mint+O.15:nrowl+wn/2) R->Abx)
dbCreatePath(nxor cvw list("PP" "drawing") list(west-3*(ods+mint)-mint­
O.26:nrowl+wn/2 west-3*(ods+mint)-mint+O.26:nrowl+wn/2) R->Abx+O.04)

;M13
dbCreatelnst(nxor cvw ma cvw nil list(west-2*(ods+mint)-ods2-mint/2-R­
>GMacc nrowl+wn/2) "RO")
dbCreatelnst(nxor_cvw ma_cvw nil list(west-2*(ods+mint)-ods2-mint/2+R­
>GMacc nrowl+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-2*(ods+mint)­
ods2:nrowl+wn/2 west-2*(ods+mint)-ods2-mint:nrowl+wn/2) wn)

88

dbCreatePath(nxor_cvw list("PO" "drawing") list(west-2*(ods+rnint)-ods2­
rnint/2:nrowl+wn+R->GAov west-2*(ods+rnint)-ods2-rnint/2:nrowl-R->GAov) R­
>Pwd)

;M7
dbCreatelnst(nxor cvw rna cvw nil list(west-ods-rnint-ods2-rnint/2-R­
>GMacc nrowl+wn/2) "R90")
dbCreatelnst(nxor_cvw rna_cvw nil list(west-ods-rnint-ods2-rnint/2+R­
>GMacc nrowl+wn/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods-rnint­
ods2:nrowl+wn/2 west-ods-rnint-ods2-rnint:nrowl+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-ods-rnint-ods2­
rnint/2:nrowl+wn+R->GAov west-ods-rnint-ods2-rnint/2:nrowl-R->GAov) R­
>Pwd)

; MO
dbCreatelnst(nxor cvw rna cvw nil list(west-ods2-rnint/2-R->GMacc
nrowl+wn/2) "R90")
dbCreatelnst(nxor_cvw rna cvw nil list(west-ods2-rnint/2+R->GMacc
nrowl+wn/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods2:nrowl+wn/2
west-ods2-rnint:nrowl+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-ods2­
rnint/2:nrowl+wn+R->GAov west-ods2-rnint/2:nrowl-R->GAov) R->Pwd)

;Ml
dbCreatelnst(nxor_cvw rna cvw nil list(west+ods2+rnint/2-R->GMacc
nrowl+wn/2) "R90")
dbCreatelnst(nxor_cvw rna cvw nil list(west+ods2+rnint/2+R->GMacc
nrowl+wn/2) "R90")
dbCreatePath(nxor cvw list("OD" "drawing") list(west+ods2:nrowl+wn/2
west+ods2+rnint:nrowl+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing")
list (west+ods2+rnint/2:nrowl+wn+R->GAov west+ods2+rnint/2:nrowl-R->GAov)
R->Pwd)

;M6
dbCreatelnst(nxor cvw rna cvw nil list(west+ods+rnint+ods2+rnint/2-R­
>GMacc nrowl+wn/2) "RO")
dbCreatelnst(nxor_cvw rna_cvw nil list(west+ods+rnint+ods2+rnint/2+R­
>GMacc nrowl+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing")
list(west+ods+rnint+ods2:nrowl+wn/2 west+ods+rnint+ods2+rnint:nrowl+wn/2)
wn)
dbCreatePath(nxor cvw list("PO" "drawing")
list (west+ods+rnint+ods2+rnint/2:nrowl+wn+R->GAov
west+ods+rnint+ods2+rnint/2:nrowl-R->GAov) R->Pwd)

;M12
dbCreatelnst(nxor cvw rna cvw nil list(west+2*(ods+rnint)+ods2+rnint/2-R­
>GMacc nrowl+wn/2) "RO")
dbCreatelnst(nxor_cvw rna_cvw nil list(west+2*(ods+rnint)+ods2+rnint/2+R­
>GMacc nrowl+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing")
list(west+2*(ods+rnint)+ods2:nrowl+wn/2
west+2*(ods+rnint)+ods2+rnint:nrowl+wn/2) wn)

89

dbCreatePath(nxor_cvw list("PO" "drawing")
list(west+2*(ods+rnint)+ods2+rnint/2:nrowl+wn+R->GAov
west+2*(ods+rnint)+ods2+rnint/2:nrowl-R->GAov) R->Pwd)

;M5
dbCreatelnst(nxor cvw rna cvw nil list(west-ods2-rnint/2-R->GMacc
nrow2+wn/2) "R90")
dbCreatelnst(nxor_cvw rna cvw nil list(west-ods2-rnint/2+R->GMacc
nrow2+wn/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods2:nrow2+wn/2
west-ods2-rnint:nrow2+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-ods2­
rnint/2:nrow2+wn+R->GAov west-ods2-rnint/2:nrow2-R->GAov) R->Pwd)

;M4
dbCreatelnst(nxor cvw rna cvw nil list(west+ods2+rnint/2-R->GMacc
nrow2+wn/2) "R90")
dbCreatelnst(nxor_cvw rna cvw nil list(west+ods2+rnint/2+R->GMacc
nrow2+wn/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west+ods2:nrow2+wn/2
west+ods2+rnint:nrow2+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing")
list (west+ods2+rnint/2:nrow2+wn+R->GAov west+ods2+rnint/2:nrow2-R->GAov)
R->Pwd)

;M14
dbCreatelnst(nxor cvw rna cvw nil list(west+ods+rnint+ods2+rnint/2-R­
>GMacc nrow2+wn/2) "RO")
dbCreatelnst(nxor_cvw rna_cvw nil list (west+ods+rnint+ods2+rnint/2+R­
>GMacc nrow2+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing")
list (west+ods+rnint+ods2:nrow2+wn/2 west+ods+rnint+ods2+rnint:nrow2+wn/2)
wn)
dbCreatePath(nxor_cvw list("PO" "drawing")
list (west+ods+rnint+ods2+rnint/2:nrow2+wn+R->GAov
west+ods+rnint+ods2+rnint/2:nrow2+nrowl-2*R->GAov) R->Pwd)

;M15
dbCreatelnst(nxor cvw rna cvw nil list(west+2*(ods+rnint)+ods2+rnint/2-R­
>GMacc nrow2+wn/2) "RO")
dbCreatelnst(nxor_cvw rna_cvw nil list(west+2*(ods+rnint)+ods2+rnint/2+R­
>GMacc nrow2+wn/2) "RO")
dbCreatePath(nxor_cvw list("OD" "drawing")
list(west+2*(ods+rnint)+ods2:nrow2+wn/2
west+2*(ods+rnint)+ods2+rnint:nrow2+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing")
list(west+2*(ods+rnint)+ods2+rnint/2:nrow2+wn+R->GAov
west+2*(ods+rnint)+ods2+rnint/2:nrow2+nrowl-2*R->GAov) R->Pwd)

;M16
dbCreatelnst(nxor cvw rna cvw nil list(west-ods-rnint-ods2-rnint/2-R­
>GMacc nrow2+wn/2) "R90")
dbCreatelnst(nxor_cvw rna_cvw nil list(west-ods-rnint-ods2-rnint/2+R­
>GMacc nrow2+wn/2) "R90")
dbCreatePath(nxor_cvw list("OD" "drawing") list(west-ods-rnint­
ods2:nrow2+wn/2 west-ods-rnint-ods2-rnint:nrow2+wn/2) wn)

90

dbCreatePath(nxor cvw list("PO" "drawing") list(west-ods-mint-ods2­
mint/2:nrow2+wn+R->GAov west-ods-mint-ods2-mint/2:nrow2+nrowl-2*R­
>GAov) R->Pwd)

;M17

dbCreatelnst(nxor cvw ma cvw nil list(west-2*(ods+mint)-ods2-mint/2-R­
>GMacc nrow2+wn/2) "RO")
dbCreatelnst(nxor_cvw ma_cvw nil list(west-2*(ods+mint)-ods2-mint/2+R­
>GMacc nrow2+wn/2) "RO")
dbCreatePath(nxor cvw list("OD" "drawing") list(west-2*(ods+mint)­
ods2:nrow2+wn/2 west-2*(ods+mint)-ods2-mint:nrow2+wn/2) wn)
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-2*(ods+mint)-ods2­
mint/2:nrow2+wn+R->GAov west-2*(ods+mint)-ods2-mint/2:nrow2+nrowl-2*R­
>GAov) R->Pwd)

---,
; Mp contact
i--

;M8
dbCreatelnst(nxor_cvw mpl cvw nil list(west-ods-mint-ods2-mint/2
prow+pex+wp+cod3+R->Cbx2) "R90")
;M3
dbCreatelnst(nxor cvw mpl cvw nil list (west-ods2-mint/2 prow-pex-cod3­
R->Cbx2) "R90")
; M2
dbCreatelnst(nxor cvw mpl cvw nil list (west+ods2+mint/2 prow-pex-cod3­
R->Cbx2) "R90")
;M9
dbCreatelnst(nxor cvw mpl cvw nil list(west+ods+mint+ods2+mint/2
prow+pex+wp+cod3+R->Cbx2) "R90")
;M7
dbCreatelnst(nxor_cvw mpl cvw nil list(west-ods-mint-ods2-mint/2
nrowl+R->Abx+R->GAov+O.03) "RO")
;MO
dbCreatelnst(nxor cvw mpl cvw nil list (west-ods2-mint/2+0.06 nrowl+R­
>Abx+R->GAov) "R90")
;Ml
dbCreatelnst(nxor cvw mpl cvw nil list (west+ods2+mint/2-0.06 nrowl+R­
>Abx+R->GAov) "R90")
;M6
dbCreatelnst(nxor_cvw mpl_cvw nil list(west+ods+mint+ods2+mint/2
nrowl+R->Abx+R->GAov+O.03) "RO")
;MIO-13
dbCreatelnst(nxor_cvw mp cvw nil list(west-2*(ods+mint)-ods2-mint/2+R­
>Pwd2 (nrowl+wn+prow)/2) "RO")
;Mll-12
dbCreatelnst(nxor_cvw mp cvw nil list(west+2*(ods+mint)+ods2+mint/2-R­
>Pwd2 (nrowl+wn+prow)/2) "RO")
; M14
dbCreatelnst(nxor_cvw mp cvw nil list(west+ods+mint+ods2+mint/2
nrow2+nrowl-2*R->GAov) "RO")
;M15
dbCreatelnst(nxor_cvw mpl_cvw nil list(west+2*(ods+mint)+ods2+mint/2
nrow2+nrowl-2*R->GAov) "RO")
;M16
dbCreatelnst(nxor_cvw mpl_cvw nil list(west-ods-mint-ods2-mint/2
nrow2+nrowl-2*R->GAov) "RO")

91

;M17
dbCreateInst(nxor cvw mp cvw nil list(west-2*(ods+mint)-ods2-mint/2
nrow2+nrowl-2*R->GAov) "RO")
;pc
dbCreatePath(nxor_cvw list("M1" "drawing") list(west:nrow1+R->Abx+R­
>GAov+0.03 west:prow+wp/2) R->Mwd)

;--
; Poly (PO)
;--

;10-13
dbCreatePath(nxor_cvw list("PO" "drawing") 1ist(west-2*(ods+mint)-ods2­
mint/2:nrow1+wn+R->GAov west-2*(ods+mint)-ods2-mint/2:prow-R->GAov) R­
>Pwd)
; 11-12
dbCreatePath(nxor cvw list("PO" "drawing")
list(west+2*(ods+mint)+ods2+mint/2:nrow1+wn+R->GAov
west+2*(ods+mint)+ods2+mint/2:prow-R->GAov) R->Pwd)
;0-5
dbCreatePath(nxor_cvw list("PO" "drawing") list(west-ods2-mint/2:nrow1­
R->GAov west-ods2-mint/2:nrow2+wn+R->GAov) R->Pwd)
;1-4
dbCreatePath(nxor cvw list("PO" "drawing") list(west+ods2+mint/2:nrow1­
R->GAov west+ods2+mint/2:nrow2+wn+R->GAov) R->Pwd)

;--
; M1
;--
;3-8
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods2-mint/2-R­
>GMacc:prow+wp/2 west-ods-mint-ods2-mint/2+R->GMacc:prow+wp/2) R->Mwd)
; 3-2
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods2-mint/2+R­
>GMacc:prow+wp/2 west+ods2+mint/2-R->GMacc:prow+wp/2) R->Mbx)
;2-9
dbCreatePath(nxor_cvw list("M1" "drawing") list(west+ods2+mint/2+R­
>GMacc:prow+wp/2 west+ods+mint+ods2+mint/2-R->GMacc:prow+wp/2) R->Mwd)
; 10-13
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc:prow+wp/2 west-2*(ods+mint)-ods2-mint/2-R­
>GMacc:nrow1+wn/2) R->Mwd)
; 11-12
dbCreatePath(nxor_cvw list("M1" "drawing")
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc:prow+wp/2
west+2*(ods+mint)+ods2+mint/2+R->GMacc:nrow1+wn/2) R->Mwd)
;8-7
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods-mint-ods2­
mint/2-R->GMacc:nrowl+wn/2 west-ods-mint-ods2-mint/2-R­
>GMacc:prow+wp/2) R->Mwd)
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods-mint-ods2­
mint/2+R->GMacc:nrow1+wn/2 west-ods-mint-ods2-mint/2+R­
>GMacc:prow+wp/2) R->Mwd)
; 9-6
dbCreatePath(nxor cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2-R->GMacc:nrow1+wn/2
west+ods+mint+ods2+mint/2-R->GMacc:prow+wp/2) R->Mwd)

92

dbCreatePath(nxor cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2+R->GMacc:nrow1+wn/2
west+ods+mint+ods2+mint/2+R->GMacc:prow+wp/2) R->Mwd)
;3-0
dbCreatePathlnxor cvw list("M1" "drawing") list(west-ods2-mint/2:prow­
pex-cod3-R->Cbx2 west-ods2-mint/2-R->GMacc:prow-pex-cod3-R->Cbx2 west­
ods2-mint/2-R->GMacc:nrow1+wn/2) R->Mwd)
;2-1
dbCreatePath(nxor cvw list("M1" "drawing") list(west+ods2+mint/2:prow­
pex-cod3-R->Cbx2 west+ods2+mint/2+R->GMacc:prow-pex-cod3-R->Cbx2
west+ods2+mint/2+R->GMacc:nrow1+wn/2) R->Mwd)
;8-9
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods-mint-ods2­
mint/2:prow+pex+wp+cod3+R->Cbx2
west+ods+mint+ods2+mint/2:prow+pex+wp+cod3+R->Cbx2) R->Mwd)
;8-10
dbCreatePath(nxor_cvw 1ist("M1" "drawing") list(west-ods-mint-ods2­
mint/2-R->GMacc: (nrow1+wn+prow)/2 west-2*lods+mint)-ods2-mint/2+R­
>Pwd2: (nrow1+wn+prow)/2) R->Mwd)
;9-11
dbCreatePath(nxor_cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2+R->GMacc: (nrow1+wn+prow)/2
west+2*(ods+mint)+ods2+mint/2-R->Pwd2: (nrow1+wn+prow)/2) R->Mwd)
;0-4-6
dbCreatePath(nxor cvw list("M1" "drawing") list(west-ods2-mint/2+R­
>GMacc:nrow1+wn/2 west-ods2-mint/2+R->GMacc: (nrow1+wn+nrow2)/2-0.015
west+ods2+mint/2-R->GMacc: (nrow1+wn+nrow2)/2-0.015 west+ods2+mint/2-R­
>GMacc:nrow2+wn/2) R->Mwd)
dbCreatePath(nxor_cvw list("M1" "drawing") list(west+ods2+mint/2-R­
>GMacc: (nrow1+wn+nrow2)/2-0.015 west+ods+mint+ods2+mint/2-R­
>GMacc: (nrow1+wn+nrow2)/2-0.015 west+ods+mint+ods2+mint/2-R­
>GMacc:nrow1+wn/2) R->Mwd)
;16-17
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-ods-mint-ods2­
mint/2+R->GMacc:nrow2+wn/2 west-ods-mint-ods2-mint/2+R-
>GMacc: (nrow1+wn+nrow2)/2-0.015 west-2*(ods+mint)-ods2-mint/2+R­
>GMacc: (nrow1+wn+nrow2)/2-0.015 west-2*(ods+mint)-ods2-mint/2+R­
>GMacc:nrow2+wn/2) R->Mwd)
;5-16
dbCreatePath(nxor cvw list("M1" "drawing") list(west-ods2-mint/2-R­
>GMacc:nrow2+wn/2 west-ods-mint-ods2-mint/2+R->GMacc:nrow2+wn/2) R­
>Mwd)
;4-14
dbCreatePath(nxor cvw listl"M1" "drawing") list(west+ods2+mint/2+R­
>GMacc:nrow2+wn/2 west+ods+mint+ods2+mint/2-R->GMacc:nrow2+wn/2) R­
>Mwd)
;14-15
dbCreatePath(nxor cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2-R->GMacc:nrow2+wn/2
west+ods+mint+ods2+mint/2-R->GMacc:nrow2-3*wn
west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow2-3*wn
west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow2+wn/2) R->Mwd)
;16-14
dbCreatePath(nxor_cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2:nrow2+nrowl-2*R->GAov west-ods-mint­
ods2-mint/2:nrow2+nrowl-2*R->GAov) R->Mwd)
;15

93

dbCreatePath(nxor cvw listl"Ml" "drawing")
listlwest+2*lods+mint)+ods2+mint/2+R->GMacc:nrow2+wn/2
west+2*lods+mintl+ods2+mint/2+R->GMacc:nrow2-3*wn I R->Mwd)
;16
dbCreatePath(nxor cvw list("Ml" "drawing") list(west-ods-mint-ods2­
mint/2-R->GMacc:nrow2+wn/2 west-ods-mint-ods2-mint/2-R->GMacc:nrow2­
3*wn) R->Mwd)

;16poly
dbCreatePath(nxor cvw list("Ml" "drawing") list(west-ods-mint-ods2­
mint/2:nrow2+nrowl-2*R->GAov west-ods-mint-ods2-mint/2:nrow2+2*nrowl­
2*R->GAov) R->Mwd)

;DRC Ml area requirements
;nwell
dbCreatePath(nxor_cvw list("Ml" "drawing") list(west-3*(ods+mint)­
mint:prow+wp/2 west-3*(ods+mint)-mint:prow+wp/2-0.42) R->M2wd)
;sub
dbCreatePath(nxor_cvw list("Ml" "drawing") list(west-3*(ods+mint)­
mint:nrowl+wn/2 west-3*(ods+mint)-mint:nrow1+wn/2-0.42) R->M2wd)
;10i
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc:prow+wp/2 west-2*(ods+mint)-ods2-mint/2+R­
>GMacc:prow+wp/2+0.42) R->M2wd)
;13i
dbCreatePath(nxor_cvw listl"M1" "drawing") list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc:nrow1+wn/2 west-2*(ods+mint)-ods2-mint/2+R->GMacc­
0.265:nrow1+wn/2) R->Mbx)
;7poly
dbCreatePath(nxor cvw list("M1" "drawing") list(west-ods-mint-ods2­
mint/2:nrow1+wn+R->GAov west-ods-mint-ods2-mint/2:nrow1+wn+R­
>GAov+0.42) R->M2wd)
;Opoly
dbCreateRect(nxor_cvw list("M1" "drawing") list(west-ods2-mint/2+0.06­
0.13:nrow1+R->Abx+R->GAov-0.08 west-ods2-mint/2+0.06+0.17:nrow1+R­
>Abx+R->GAov+0.12))
;lpoly
dbCreateRect(nxor_cvw list("M1" "drawing") list(west+ods2+mint/2­
0.06+0.13:nrow1+R->Abx+R->GAov-0.08 west+ods2+mint/2-0.06-0.17:nrow1+R­
>Abx+R->GAov+0.12))
;li
dbCreatePath(nxor cvw list("M1" "drawing") list(west+ods2+mint/2-R­
>GMacc:nrow1+wn/2 west+ods2+mint/2-R->GMacc+0.265:nrow1+wn/2) R->Mbx)
;6p
dbCreatePath(nxor cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2:nrow1+wn+R->GAov
west+ods+mint+ods2+mint/2:nrow1+wn+R->GAov+0.42) R->M2wd)
;lli
dbCreatePath(nxor_cvw list("M1" "drawing")
list(west+2*(ods+mint)+ods2+mint/2-R->GMacc:prow+wp/2
west+2*(ods+mint)+ods2+mint/2-R->GMacc:prow+wp/2+0.42) R->M2wd)
;12i
dbCreatePath(nxor cvw list("M1" "drawing")
list (west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow1+wn/2
west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow1+wn/2-0.265) R->Mbx)
;5i

94

dbCreatePath(nxor cvw list("M1" "drawing") list(west-ods2-mint/2+R­
>GMacc:nrow2+wn/2 west-ods2-mint/2+R->GMacc:nrow2+wn/2-0.42) R->M2wd)
; 140
dbCreatePath(nxor cvw list("M1" "drawing")
list (west+ods+mint+ods2+mint/2+R->GMacc:nrow2+wn/2
west+ods+mint+ods2+mint/2+R->GMacc:nrow2+wn/2+0.265) R->Mbx)
;170
dbCreatePath(nxor_cvw list("Ml" "drawing") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc:nrow2+wn/2 west-2*(ods+mint)-ods2-mint/2-R­
>GMacc:nrow2+wn/2-0.5) R->M2wd)
;17p
dbCreatePath(nxor_cvw list("M1" "drawing") list(west-2*(ods+mint)-ods2­
mint/2:nrow2+nrowl-2*R->GAov west-2*(ods+mint)-ods2-mint/2:nrow2+nrow1­
2*R->GAov-0.5) R->M2wd)
;15p
dbCreatePath(nxor_cvw list("M1" "drawing")
list(west+2*(ods+mint)+ods2+mint/2:nrow2+nrowl-2*R->GAov
west+2*(ods+mint)+ods2+mint/2:nrow2+nrowl-2*R->GAov-0.5) R->M2wd)

;--
; M1M2
~--,
;7poly
dbCreatelnst(nxor_cvw m2m1x_cvw nil list(west-ods-mint-ods2-mint/2
nrow1+R->Abx+R->GAov+0. 03) "R90")
; 7
dbCreatelnst(nxor_cvw m2m1 cvw nil list(west-ods-mint-ods2-mint/2+R­
>GMacc nrow1+wn/2-0.03) "RO")
; 0
dbCreatelnst(nxor_cvw m2m1 cvw nil list (west-ods2-mint/2+0.06 nrowl+R­
>Abx+R->GAov+0.03) "R90")
; 1
dbCreatelnst(nxor cvw m2ml cvw nil list (west+ods2+mint/2-0.06 nrow1+R­
>Abx+R->GAov+0.03) "R90")
; 6
dbCreatelnst(nxor_cvw m2m1x cvw nil list(west+ods+mint+ods2+mint/2
nrow1+R->Abx+R->GAov+0. 03) "R90")
; 5
dbCreatelnst(nxor cvw m2m1 cvw nil list(west-ods2-mint/2+R->GMacc
nrow2+wn/2) "RO")
; 1
dbCreatelnst(nxor cvw m2m1 cvw nil list(west+ods2+mint/2-R->GMacc
nrow1+wn/2-0.03) "RO")
;pc
dbCreatelnst(nxor cvw m2m1x cvw nil list(west nrow1+R->Abx+R­
>GAov+0.03) "R90")
;pcb
dbCreatelnst(nxor_cvw m2mlx cvw nil list(west+ods2+mint/2+R->GMacc
prow+wp+pex+cod3+R->Cbx2) "RO")
;out
dbCreatelnst(nxor_cvw m2m1 cvw nil
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc (nrow1+wn+prow)/2) "RO")
;outb
dbCreatelnst(nxor_cvw m2m1_cvw nil list(west-2*(ods+mint)-ods2-mint/2­
R->GMacc (nrow1+wn+prow)/2) "RO")
;16poly

95

dbCreateInst(nxor_cvw m2m1x_cvw nil list(west-ods-mint-ods2-mint/2
nrow2+2*nrowl-2*R->GAov) "R90")
; 15
dbCreateInst(nxor cvw m2m1x cvw nil- -
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc nrow2-3*wn "R90")
;16pin
dbCreateInst(nxor cvw m2m1 cvw nil list(west-ods-mint-ods2-mint/2-R­
>GMacc nrow2-3*wn) "RO")
;15poly
dbCreateInst(nxor cvw m2m1x cvw nil list(west+2*(ods+mint)+ods2+mint/2
nrow2+nrowl-2*R->GAov "R90")
;M17
dbCreateInst(nxor_cvw m2m1 cvw nil list(west-2*(ods+mint)-ods2-mint/2
nrow2+nrowl-2*R->GAov) "RO")
;M17pin
dbCreateInst(nxor_cvw m2m1 cvw nil list(west-2*(ods+mint)-ods2-mint/2­
R->GMacc nrow2+wn/2) "RO")
; M14pin
dbCreateInst(nxor_cvw m2m1 cvw nil list(west+ods+mint+ods2+mint/2+R­
>GMacc nrow2+wn/2) "RO")
;10
dbCreateInst(nxor_cvw m2m1 cvw nil list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc prow+wp/2) "RO")
;11
dbCreateInst(nxor_cvw m2m1 cvw nil list(west+2*(ods+mint)+ods2+mint/2­
R->GMacc prow+wp/2) "RO")
;nwe1l
dbCreateInst(nxor cvw m2m1 cvw nil list(west-3*(ods+mint)-mint
prow+wp/2) "RO")
;13
dbCreateInst(nxor cvw m2m1_cvw nil list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc nrow1+wn/2) "RO")
; 12
dbCreateInst(nxor_cvw m2m1 cvw nil list(west+2*(ods+mint)+ods2+mint/2­
R->GMacc nrow1+wn/2) "RO")
;sub
dbCreateInst(nxor cvw m2m1 cvw nil list(west-3*(ods+mint)-mint
nrow1+wn/2) "RO")

---,
; M2
;--
;7-0-1-6
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-ods-mint-ods2­
mint/2:nrow1+R->Abx+R->GAov+0.03 west+ods+mint+ods2+mint/2:nrow1+R­
>Abx+R->GAov+0.03) R->M2wd)
;7-5-1
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-ods-mint-ods2­
mint/2+R->GMacc:nrow1+wn/2-0.03 west-ods-mint-ods2-mint/2+R-
>GMacc: (nrow1+wn+nrow2)/2 west-ods2-mint/2+R->GMacc: (nrow1+wn+nrow2)/2
west-ods2-mint/2+R->GMacc:nrow2+wn/2) R->M2wd)
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-ods2-mint/2+R­
>GMacc: (nrow1+wn+nrow2)/2 west+ods2+mint/2-R->GMacc: (nrow1+wn+nrow2)/2
west+ods2+mint/2-R->GMacc:nrow1+wn/2) R->M2wd)
;16-15

96

dbCreatePath(nxor_cvw list("M2" "drawing") list(west-ods-mint-ods2­
mint/2-R->GMacc:nrow2-3*wn west+2*(ods+mint)+ods2+mint/2+R­
>GMacc:nrow2-3*wn) R->M2wd)
i17-15
idbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)­
ods2-mint/2:nrow2+nrowl-2*R->GAov west+2*(ods+mint)+ods2+mint/2:nrow2­
3*wn) R->M2wd)

iDRC M2 area requirements
inwell
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-3*(ods+mint)­
mint:prow+wp/2 west-3*(ods+mint)-mint:prow+wp/2-0.5) R->M2wd)
isub
dbCreatePath(nxor cvw list("M2" "drawing") list(west-3*(ods+mint)­
mint:nrow1+wn/2 west-3*(ods+mint)-mint:nrow1+wn/2-0.5) R->M2wd)
i10i
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc:prow+wp/2 west-2*(ods+mint)-ods2-mint/2+R­
>GMacc:prow+wp/2+0.5) R->M2wd)
i13i
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc:nrow1+wn/2 west-2*(ods+mint)-ods2-mint/2+R­
>GMacc:nrow1+wn/2-0.5) R->M2wd)
i11i
dbCreatePath(nxor_cvw list("M2" "drawing")
list(west+2*(ods+mint)+ods2+mint/2-R->GMacc:prow+wp/2
west+2*(ods+mint)+ods2+mint/2-R->GMacc:prow+wp/2+0.5) R->M2wd)
i12i
dbCreatePath(nxor_cvw list("M2" "drawing")
list(west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow1+wn/2
west+2*(ods+mint)+ods2+mint/2-R->GMacc:nrow1+wn/2-0.5) R->M2wd)
ill-12
dbCreatePath(nxor_cvw list("M2" "drawing")
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc: (nrow1+wn+prow)/2
west+2*(ods+mint)+ods2+mint/2+R->GMacc: (nrow1+wn+prow)/2-0.5) R->M2wd)
;10-13
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc: (nrow1+wn+prow)/2 west-2*(ods+mint)-ods2-mint/2-R­
>GMacc: (nrow1+wn+prow)/2-0.5) R->M2wd)
;pcb
dbCreatePath(nxor_cvw list("M2" "drawing") list(west+ods2+mint/2+R­
>GMacc:prow+wp+pex+cod3+R->Cbx2 west+ods2+mint/2+R­
>GMacc:prow+wp+pex+cod3+R->Cbx2-0.5) R->M2wd)
i140
dbCreatePath(nxor_cvw list("M2" "drawing")
list (west+ods+mint+ods2+mint/2+R->GMacc:nrow2+wn/2
west+ods+mint+ods2+mint/2+R->GMacc:nrow2+wn/2+0.5) R->M2wd)
;170
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc:nrow2+wn/2 west-2*(ods+mint)-ods2-mint/2-R­
>GMacc:nrow2+wn/2-0.5) R->M2wd)
;17p
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-2*(ods+mint)-ods2­
mint/2:nrow2+nrowl-2*R->GAov west-2*(ods+mint)-ods2-mint/2:nrow2+nrow1­
2*R->GAov-0.5) R->M2wd)
;15p

97

dbCreatePath(nxor_cvw list("M2" "drawing")
list(west+2*(ods+mint)+ods2+mint/2:nrow2+nrowl-2*R->GAov
west+2*(ods+mint)+ods2+mint/2:nrow2+nrowl-2*R->GAov-0.5) R->M2wd)
;8
dbCreatePath(nxor_cvw list("M2" "drawing") list(west-ods-mint-ods2­
mint/2:nrow2+2*nrowl-2*R->GAov west-ods-mint-ods2-mint/2:nrow2+2*nrow1­
2*R->GAov+0.5) R->M2wd)

;--
; M2M3
;--
; 9
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west-2*(ods+mint)-ods2­
mint/2+R->GMacc prow+wp/2) "RO")
; 8
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west+2*(ods+mint)+ods2+mint/2­
R->GMacc prow+wp/2) "RO")
;nwell
dbCreatelnst(nxor cvw m3m2 cvw nil list(west-3*(ods+mint)-mint
prow+wp/2) "RO")
;11
dbCreatelnst(nxor cvw m3m2_cvw nil list (west-2* (ods+mint)-ods2­
mint/2+R->GMacc nrow1+wn/2) "RO")
;10
dbCreatelnst(nxor cvw m3m2 cvw nil 1ist(west+2*(ods+mint)+ods2+mint/2­
R->GMacc nrow1+wn/2) "RO")
;sub
dbCreatelnst(nxor cvw m3m2 cvw nil list(west-3*(ods+mint)-mint
nrow1+wn/2) "RO")
;15poly
dbCreatelnst(nxor cvw m3m2 cvw nil list (west+2* (ods+mint)+ods2+mint/2
nrow2+nrowl-2*R->GAov "RO")
;pc
dbCreatelnst(nxor_cvw m3m2_cvw nil list(west+ods+mint+ods2+mint/2
nrow1+R->Abx+R->GAov+0.03) "RO")
;pcb
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west+ods2+mint/2+R->GMacc
prow+wp+pex+cod3+R->Cbx2) "RO")
;out
dbCreatelnst(nxor_cvw m3m2 cvw nil
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc (nrow1+wn+prow)/2) "RO")
;outb
dbCreatelnst(nxor_cvw m3m2_cvw nil list(west-2*(ods+mint)-ods2-mint/2­
R->GMacc (nrow1+wn+prow)/2) "RO")
;M17pin
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west-2*(ods+mint)-ods2-mint/2­
R->GMacc nrow2+wn/2) "RO")
;M14pin
dbCreatelnst(nxor_cvw m3m2 cvw nil list (west+ods+mint+ods2+mint/2+R­
>GMacc nrow2+wn/2) "RO")
;8
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west-ods-mint-ods2-mint/2
nrow2+2*nrowl-2*R->GAov) "RO")
; 8b
dbCreatelnst(nxor_cvw m3m2 cvw nil list(west-2*(ods+mint)-ods2-mint/2
nrow2+nrowl-2*R->GAov "RO")
;Ab

98

dbCreatelnst(nxor_cvw m3m2 cvw nil list(west-ods-mint-ods2-mint!2-R­
>GMacc nrow2-3*wn) "RO")

e _,
; M3
e _,
;A
dbCreatePath(nxor_cvw list("M3" "drawing") list(west-2*(ods+mint)-ods2­
mint!2-R->GMacc:nrow2+wn!2 west+ods+mint+ods2+mint!2+R­
>GMacc:nrow2+wn!2) R->M2wd)
;vdd
dbCreatePath(nxor_cvw list("M3" "drawing") list(west-3*(ods+mint)­
mint:prow+wp!2 west+2*(ods+mint)+ods2+mint!2-R->GMacc:prow+wp!2) R­
>M2wd)
;gnd
dbCreatePath(nxor cvw list("M3" "drawing") list(west-3*(ods+mint)­
mint:nrow1+wn!2 west+2*(ods+mint)+ods2+mint!2-R->GMacc:nrow1+wn!2) R­
>M2wd)
; Bb
dbCreatePath(nxor cvw list("M3" "drawing") list(west-2*(ods+mint)-ods2­
mint!2:nrow2+nrowl-2*R->GAov west+2*(ods+mint)+ods2+mint!2:nrow2+nrow1­
2*R->GAov) R->M2wd)

;DRC M3 area requirements

;out
dbCreatePath(nxor cvw list("M3" "drawing")
list(west+2*(ods+mint)+ods2+mint!2+R->GMacc: (nrow1+wn+prow)!2
west+2*(ods+mint)+ods2+mint!2+R->GMacc-0.5: (nrow1+wn+prow)!2) R->M2wd)
;outb
dbCreatePath(nxor_cvw list("M3" "drawing") list(west-2*(ods+mint)-ods2­
mint!2-R->GMacc: (nrow1+wn+prow)!2 west-2*(ods+mint)-ods2-mint!2-R­
>GMacc+0.5: (nrow1+wn+prow)!2) R->M2wd)
;pc
dbCreatePath(nxor_cvw list("M3" "drawing")
list (west+ods+mint+ods2+mint!2:nrow1+R->Abx+R->GAov+0. 03
west+ods+mint+ods2+mint!2-0.5:nrow1+R->Abx+R->GAov+0.03) R->M2wd)
;pcb
dbCreatePath(nxor_cvw list("M3" "drawing") list(west+ods2+mint!2+R­
>GMacc:prow+wp+pex+cod3+R->Cbx2 west+ods2+mint!2+R->GMacc­
O.5:prow+wp+pex+cod3+R->Cbx2) R->M2wd)
;16 Ab
dbCreatePath(nxor_cvw list("M3" "drawing") list(west-ods-mint-ods2­
mint!2-R->GMacc:nrow2-3*wn west-ods-mint-ods2-mint!2-R­
>GMacc+0.5:nrow2-3*wn) R->M2wd)
;B
dbCreatePath(nxor_cvw list("M3" "drawing") list(west-ods-mint-ods2­
mint!2:nrow2+2*nrowl-2*R->GAov west-ods-mint-ods2­
mint!2+0.5:nrow2+2*nrowl-2*R->GAov) R->M2wd)

e _

r

; NPlus (NP)
e _,
;substrate
dbCreatePolygon(nxor_cvw list("NP" "drawing")

list(west-3*(ods+mint)-ods2-mint-2*R->WAov:nrow2-R-
>WAov-O.14-0.69

99

west-2*(ods+mint)-ods2-mint-R->WAov:nrow2-R-
>WAov-O.14-0.69

west-2*(ods+mint)-ods2-mint-R->WAov:south
west-3*(ods+mint)-mint+O.26:south
west-3*(ods+mint)-mint+O.26:nrowl+wn/2-0.12
west-3*(ods+mint)-mint-O.26:nrowl+wn/2-0.12
west-3*(ods+mint)-mint-O.26:nrowl+wn/2+0.12
west-3*(ods+mint)-mint+O.26:nrowl+wn/2+0.12
west-3*(ods+mint)-mint+O.26:south
west-3*(ods+mint)-ods2-mint-2*R->WAov:south
west-3*(ods+mint)-ods2-mint-2*R->WAov:nrow2-R-

>WAov-O.14-0.69))

;nmos
dbCreateRect(nxor cvw list("NP" "drawing") list(west-2*(ods+mint)-ods2­
mint-R->WAov:nrow2-R->WAov-O.14-0.69 west+2*(ods+mint)+ods2+mint+R­
>WAov:south))

*--,
; PPlus (PP)
._---------------------------------------,
;nwell
dbCreatePolygon(nxor cvw list("PP" "drawing")

list(west-3*(ods+mint)-ods2-mint-2*R->WAov:south
west-2*(ods+mint)-ods2-mint-R->WAov:south
west-2*(ods+mint)-ods2-mint-R­

>WAov:prow+2*pex+wp+R->WAov+O.14
west-3*(ods+mint)-mint+O.26:prow+2*pex+wp+R-

>WAov+O.14
west-3*(ods+mint)-mint+O.26:prow+wp/2-0.12
west-3*(ods+mint)-mint-O.26:prow+wp/2-0.12
west-3*(ods+mint)-mint-O.26:prow+wp/2+0.12
west-3*(ods+mint)-mint+O.26:prow+wp/2+0.12
west-3*(ods+mint)-mint+O.26:prow+wp+2*pex+R-

>WAov+O.14
west-3*(ods+mint)-ods2-mint-2*R­

>WAov:prow+wp+2*pex+R->WAov+O.14
west-3*(ods+mint)-ods2-mint-2*R->WAov:south))

;pmos
dbCreateRect(nxor_cvw list("PP" "drawing") list(west-2*(ods+mint)-ods2­
mint-R->WAov:south west+2*(ods+mint)+ods2+mint+R->WAov:prow+wp+2*pex+R­
>WAov+O.14))

._---------------------------------------,
; N-Well (NW)
*--,
dbCreateRect(nxor_cvw list("NW" "drawing") list(west-3*(ods+mint)-ods2­
mint-3*R->WAov:south west+2*(ods+mint)+ods2+mint+2*R­
>WAov:prow+wp+2*pex+R->WAov+O.14))

._--,
; Create Pin
._--,
dbCreateLabel(nxor cvw list("M3" "pin") list(west-ods-mint-ods2-
mint/2 nrow2+2*nrowl-2*R->GAov "8" "centerCenter" "RO" "stick" R-
>Cbx)

100

dbCreateLabel(nxor_cvw list("M3" "pin") list(west-2*(ods+mint)­
ods2-mint/2 nrow2+nrowl-2*R->GAov) "Bb" "centerCenter" "RO" "stick" R­
>Cbx)

dbCreateLabel(nxor_cvw list("M3" "pin") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc nrow2+wn/2) "A" "centerCenter" "RO" "stick" R->Cbx)
dbCreateLabel(nxor_cvw list("M3" "pin") list(west-ods-mint-ods2­
mint/2-R->GMacc nrow2-3*wn) "Ab" "centerCenter" "RO" "stick" R->Cbx

dbCreateLabel(nxor cvw list("M3" "pin")
list(west+2*(ods+mint)+ods2+mint/2+R->GMacc (nrowl+wn+prow)/2) "out"
"centerCenter" "RO" "stick" R->Cbx)
dbCreateLabel(nxor_cvw list("M3" "pin") list(west-2*(ods+mint)-ods2­
mint/2-R->GMacc (nrowl+wn+prow)/2) "outb" "centerCenter" "RO" "stick"
R->Cbx)

dbCreateLabel(nxor_cvw list("M3" "pin") list(west-3*(ods+mint)-mint
prow+wp/2) "vdd!" "centerCenter" "RO" "stick" R->Cbx)
dbCreateLabel(nxor_cvw list("M3" "pin") list(west-3*(ods+mint)-mint
nrowl+wn/2) "gnd!" "centerCenter" "RO" "stick" R->Cbx)

dbCreateLabel(nxor_cvw list("M3" "pin")
list (west+ods+mint+ods2+mint/2 nrowl+R->Abx+R->GAov+O.03 "PC!"
"centerCenter" "RO" "stick" R->Cbx)
dbCreateLabel(nxor cvw list("M3" "pin" list (west+ods2+mint/2+R­
>GMacc prow+wp+pex+cod3+R->Cbx2) "PCB!" "centerCenter" "RO" "stick" R­
>Cbx)

;--
; prBoundary
._---,
xl west-3*(ods+mint)-ods2-mint-2*R->WAov
x2 west+2*(ods+mint)+ods2+mint+R->WAov
yl nrow2-R->WAov-O.1
y2 prow+wp+R->WAov+pex
d_rect = dbCreateRect(nxor_cvw list ("prBoundary" "drawing")

list(xl:yl x2:y2))
rod obj = rodNameShape(?name "rod_nxor"

?shapeld d_rect)

;--
; Close all db objects
---,
dbClose(ma_cvw)
dbClose(mal_cvw)
dbClose(mp cvw)
dbClose(mpl cvw)
dbClose(mplx_cvw)
dbClose(m2ml_cvw)
dbClose(m2mlx_cvw)
dbClose(m3m2 cvw)

dbSave(nxor_cvw)
;dbClose(nxor cvw)

) ; let
) ; procedure

101

REFERENCE LIST

('I] ITRS, "The International Technology Roadmap for Semiconductors,"
http://www.itrs.neULinks/2006Update/2006UpdateFinal.htm. Accessed on
March 16,2007.

[2] ITRS, "International Technology Roadmap for Semiconductors (ITRS) 2004
Update - Overall Roadmap Technology Characteristics,"
http://www.itrs.neUCornmon/2004Update/2004_000_0RTC.pdf, Accessed
on March 16, 2007.

[3] ITRS, "The International Technology Roadmap for Semiconductors 2005
Edition - Executive Summary,"
http://www. itrs.neULinks/2005ITRS/ExecSum2005.pdf, Accessed on
March 16,2007.

[4] G.E. Moore, "Progress in Digital Integrated Electronics," International Electron
Devices Meeting, Vol. 21, pp. 11-13, 1975.

[5] J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits," Pearson
Education International, New Jersey, 2003.

[6] K. Shimohigashi and K. Seki, "Low-Voltage ULSI Design," IEEE Journal of
Solid State Circuits., Vol. 28 No.4, pp. 408-413, 1993.

[7] J.B. Kuo, J. Lou, "Low-Voltage CMOS VLSI Circuits," Wiley, New York, 1999.

[8] H.1. Chen, E.K. Loo, J.B. Kuo and M. Syrzycki, "Triple-Threshold Static Power
Minimization Technique in High-Level Synthesis for Designing High-Speed
Low-Power SOC Applications Using 90nm MTCMOS Technology,"
Canadian Conference on Electrical and Computer Engineering,
Vancouver, BC

[9] J.B. Kuo, "CMOS DigitaIIC," McGraw-Hili, 1996.

[10] G. Carrington, "Basic Thermodynamics," Oxford Science, 1994.

[11] J.S. Denker, "A review of adiabatic computing," Proc. of the 1994
Symposium of Low Power Electronics/Digest of Technical Papers, pp. 94­
97, October 1994.

[12] W.C. Athas, L.J. Svensson, J.G. Koller, N. Tzartzanis, and Y. Chou, "Low­
power digital systems base on adiabatic-switching principles," IEEE Trans.
on VLSI Systems, Vol. 2, No.4, pp. 398-406, December 1994.

102

[13] S. Younis and T. Knight, "Asymptotically zero energy split-level charge
recovery logic," Technical Report AITR-1500, MIT AI Laboratory, June
1994.

[14] S. Younis and T. Kni~ht, "Non-dissipative rail drivers for adiabatic circuits,"
Proceedings of 16t Conference on Advanced Research in VLSI, Mar.
1995, pp.404-414.

[15] D. Maksimovic and V. Oklobdzija, "Integrated power clock generators for low
energy logic," Proceedings of IEEE Power Electronics Specialists
Conference, June 1995, pp. 61-67.

[16] D. Maksimovic, "A MOS gate drive with resonant transitions," IEEE PESC,
1991, pp. 527-532.

[17] A. Dickinson and J. Denker, "Adiabatic Dynamic Logic," IEEE Journal of
Solid-Sate Circuits, Vol. 30, No.3, March 1995.

[18] A. Kramer, J. Denker, B. Flower, and J. Moroney, "2nd order adiabatic
computation with 2N-2P and 2N-2N2P logic circuits," Proceedings of 1995
International Symposium on Low power design, pp. 191-196, 1995.

[19] A. Blotti and R. Saletti, "Ultra low-power adiabatic circuit semi-custom
design," IEEE transactions on VLSI systems, Vol. 12, No. 11, November
2004.

[20] Y. Zhang, H. Chen, J. Kuo, "0.8V CMOS adiabatic differential switch logic
circuit using bootstrap technique of low-power VLSI," Electronic Letters,
Vol. 38, No.24, November 2002.

[21] S. Kim, "True single-phase adiabatic circuitry for high-performance, low­
energy VLSI," Doctor of Philosophy Dissertation, University of Michigan,
2001.

[22] D. Maksimovic, V Oklobdzija, B. Nikolic, and K. Current, "Clocked CMOS
adiabatic logic with integrated single-phase power-clock supply," IEEE
Transactions on VLSI Systems, Vol. 8, No.4, pp.460-463, August 2000.

[23] H. Chen and J. Kuo, "A 0.8V CMOS TSPC adiabatic DCVS logic circuit with
the bootstra~ technique for low-voltage low-power VLSI," Proceedings of
the 2004 11 h IEEE International Conference on Electronics, Circuits and
Systems, pp. 175-178, December 2004.

[24] E.K. Loo, H.1. Chen, J.B. Kuo and M. Syrzycki, "Low-Voltage Single-Phase
Clocked Quasi-Adiabatic Pass-Gate Logic," Canadian Conference on
Electrical and Computer Engineering, Vancouver, BC, April 2007.

[25] W. Zhao and Y. Cao, "New generation of predictive technology model for
sub-45 nm design exploration," Proceedings of the 2006 IEEE
International Symposium on Quality Electronic Design, pp.585-590,
February 2006.

103

[26] P.M. Kogge and H.S. Stone, "A parallel algorithm for the efficient solution of
a general class of recurrence equations," IEEE Transactions on
Computers, vol. C-22, pp. 786-793, August 1973.

[27] N.S. Kim, 1. Austin, D. Baauw, 1. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M.
Kandemir, and V. Narayanan, "Leakage current: Moore's law meets static
power," IEEE Computer, Vol. 36, No. 12, pp. 68-75, December 2003.

[28] P. Fantini, G. Giuga, S. Schippers, A. Marmiroli, and G. Ferrair, "Modeling of
STI-induced stress phenomena in CMOS 90nm flash technology,"
Proceedings of 34th European Solid-State Device Research Conference,
pp. 401-404, September 2004.

104

