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ABSTRACT

As CMOS System-on-Chips approach the limits of power dissipation, static
power has become dominant in a circuit’s total power dissipation. The static power is
increasing exponentially as technology nodes shrink and is projected to exceed the
dynamic power within the near future. Techniques that use the multi-threshold CMOS
(MTCMOS) technology have been developed to reduce static power effectively. In this
thesis, a novel triple-threshold static power minimization technique in high-level
synthesis has been developed using the 90nm MTCMOS technology. Using static timing
analysis, the optimal partitioning of gates with three different threshold voltages is
determined via iterative analysis. The proposed triple-threshold technique has been
applied to optimize several benchmark circuits, and the results show an average saving in
static power close to 90% compared to un-optimized LVT designs. For all designs tested,
the triple-threshold technique has produced designs with lower static power compared to

a dual-threshold technique.

Keywords: multi-threshold; triple-threshold; static power reduction; low power; high-
level synthesis: digital CMOS VLSI

Subject Terms: Electric Leakage Prevention; Metal oxide semiconductors,
Complementary -- Design and construction; Integrated circuits -- Design and
construction; Digital integrated circuits
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1 INTRODUCTION

1.1 CMOS Development Trends

The CMOS technology development has been progressing steadily and rapidly
over the past few decades. Transistor sizes have been scaled down at an exponential rate
(Figure 1-1), allowing designers to integrate more transistors onto a chip. As the
transistor density increases, the power density also increases. Designers no longer have
to achieve just the simple goals of optimizing for speed and area, but to strive for a

balance between speed, area and power dissipation.
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Traditionally, integrated circuits (IC) have been driven by high supply voltages.
e.g. SV for standard transistor-transistor logic (TTL). The use of standardized high
supply voltages ensures compatibility between devices and provides large load-driving
capabilities. However, as transistor sizes are scaled down, the load capacitance for each
transistor in an IC decreases, and high load-driving capabilities are no longer necessary.
Lowering the supply voltage to reduce the power dissipation becomes a viable option for

designers.

Another factor leading to supply voltage reductions is associated with
increasingly high internal electric fields in CMOS transistors. Reducing the channel
length of a transistor while keeping constant the voltage drops over the gate oxide and the
channel increases the electric field across the channel, which causes long-term reliability
concerns due to impact ionization and hot carrier effects [2]. Reducing the supply

voltage to relieve stress from high internal electric fields becomes necessary.

The total power dissipation of a CMOS circuit consists of dynamic power and
static power. Dynamic power is the power dissipated due to a change in the input; static
power is the power dissipated when the circuit is inactive. Typically, the main
component of power dissipation in a CMOS circuit is the dynamic power, which can be

estimated using Eq. .1 [3]:
P(/,\'mnm’(’ = aC/om/ llz/fl Afrll\ + ’v I/:h/]c(x/.r//\ * (] . ] )

where a is the circuit’s switching activity, Cieq is the load capacitance, Vyq is the supply
voltage, o is the clock frequency, ty is the short-circuit time per clock cycle, and Iy is

the short-circuit current. The first term in the equation describes the switching power; the



second term describes the short-circuit power. Because of the quadratic relationship
between dynamic power and the supply voltage, a linear reduction in the supply voltage

results in a quadratic reduction in the dynamic power dissipation.

Although reducing the supply voltage results in large reductions in the power
dissipation, the circuit’s switching speed is compromised. For an NMOS transistor

operating in the saturation region, the drain current can be expressed as [4]:

_ Wlun C 0x (

I
P 2L

Ves - Vi) (1.2

As the supply voltage drops, Vs decreases and the drain current decreases in a quadratic
fashion, resulting in lower switching speeds. To counter this side effect, designers lower
the threshold voltage to increase the speed. Figure 1-2 shows the trend in scaling the
supply voltage and threshold voltage as projected by the International Technology

Roadmap for Semiconductors (ITRS) in 2001.
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Lowering the threshold voltage introduces new problems as CMOS technology
progresses towards the nanometre regime. For an MOS transistor operating in weak
inversion mode, the minority carriers diffuse across the channel, resulting in leakage
currents. [deally when the gate potential is zero, the transistors should be cut off and the
off-current should be zero. In practice, the subthreshold current depends exponentially

on the gate potential and is non-zero at a zero gate potential [2]:

Ves

I, @e"T, (1.3)

Plotting the drain current in logarithmic scale against the gate voltage produces a linear
plot, and the slope of this line is known as the “subthreshold slope.” Adjusting the
threshold voltage of an MOS transistor shifts the plot horizontally, thereby shifting the y-
intercept (representing the off-current) vertically. But because of the exponential scale

on the vertical axis, the magnitude of the off-current changes exponentially.

Figure 1-3 shows the drain current simulation in HSPICE of three 90nm
minimum-size transistors with different threshold voltages. The subthreshold leakage
current at Vgs = 0 is increased by an order of magnitude when the threshold voltage is
decreased by 0.08V. The exponential increase in the leakage current is undesirable and

results in the exponential increase in the static power of the circuit.
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Figure 1-3. Subthreshold current for transistors with different threshold voltages

As CMOS technology development continues, the static power becomes
increasingly more dominant in the total power dissipation envelope. Figure 1-4 shows

the power trend for the past few decades as reported by Intel [S].
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Traditionally, the dynamic power has been the dominant factor in the total power,
and the static power has always been negligible. In recent years, however, the static
power has become increasingly more dominant. [f the current trend continues, the static
power is predicted to contribute to most of the power in a CMOS very-large-scale
integration (VLSI) system, even surpassing the dynamic power. Figure 1-5 shows the
projected power dissipation per gate in future CMOS development {6]. The dynamic
power dissipation per gate can be reduced by lowering the supply voltage. Nevertheless,

the leakage power per gate continues to increase as the threshold voltage is reduced.
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Figure 1-5. Predicted power trend in future CMOS development [6]

Faced with the new problem of having increased static power dissipations in a
circuit, designers must investigate ways to reduce the static power. Some areas of

research currently being pursued are:

e Research new materials for low-leakage transistors.



¢ Design transistors with variable body-bias for dynamic threshold-voltage

adjustments.
e Utilize multi-threshold CMOS (MTCMOS) technology.

The MTCMOS technology utilizes transistors with different threshold voltages to
reduce static power. Combining the strengths of slow and less leaky high threshold-
voltage (HVT) transistors with fast but leaky low threshold-voltage (LVT) transistors, the
MTCMOS approach may be the most cost-effective technique. Manufacturers of the
nanometre CMOS technology usually provide transistor models with a predetermined set
of threshold voltages. HVT transistors can be placed in designs where timing
requirements are less stringent, thus saving static power; transistors with the standard
threshold voltage (SVT) can be used for typical applications; and LVT transistors can be
used for high-speed applications at the expense of dissipating more static power. To fully
exploit the MTCMOS technology, it is possible to reduce the static power by placing
HVT transistors in slower timing paths while placing LVT transistors in high-speed

paths.

Several different categories of MTCMOS techniques exist in the literature, and
the results have been promising. The MTCMOS approach can use existing technology as
well as preserve the high-level circuit designs, making it a practical and efficient
approach for reducing static power. This research project is focused on the MTCMOS
approach, and a new triple-threshold methodology for static power minimization is

presented.



1.2 Research Goals

In the current highly competitive [C industry, designing for low-cost, low-power
and high-speed applications with the shortest time-to-market is important. Given these
criteria for 1C designs, the MTCMOS approach may be the most cost-eftective way to
minimize the static power dissipation of a circuit. To ensure fast time-to-market, using
MTCMOS techniques in high-level synthesis is ideal. Numerous dual-threshold
MTCMOS techniques have been published in literature. However, publications on using
the triple-threshold technology are scarce. To expand the research in this area, this

research focuses on developing a high-level triple-threshold optimization technique.
The research goals are as follows:
e To investigate current MTCMOS techniques.

e To develop a 16-bit multiplier circuit as a test vehicle for analyzing the

static power dissipation.

e To propose a new methodology using the 90nm triple-threshold

technology.

e To evaluate the effectiveness of the new methodology and compare with
current methodologies using the 16-bit multiplier as well as other

benchmark circuits if available.
The proposed technique should also meet the following criteria:

e The technique should be applicable for optimizing existing as well as

future gate-level netlists.



e [t should provide savings in the static power dissipation that are

comparable or better than current techniques.

e The circuit’s operating clock speed should not be compromised while the

static power is minimized.

e The circuit’s area should not be significantly increased.

¢ The optimization run-time should be reasonable and comparable to

existing techniques.

The final deliverable is a high-level triple-threshold static power reduction
methodology that is suitable for designing low-power high-speed digital CMOS VLSI

designs.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses prior work on MTCMOS
static power reduction techniques. Different approaches and algorithms will be presented
and analyzed. Chapter 3 describes the simulation tools used in the experiments. Chapter
4 describes the proposed triple-threshold technique, and the simulation results are

presented and analyzed in Chapter 5. Chapter 6 concludes this thesis.



2 RELATED WORK ON MTCMOS TECHNIQUES

This chapter presents an overview of MTCMOS circuit design techniques for
reducing static power. Benefits and drawbacks for each technique will be presented.
This work utilizes the MTCMOS gate partitioning technique, and thus gate partitioning
algorithms will be described in more detail. Most gate partitioning algorithms utilize the
dual-threshold technology. Nevertheless, the relative efficiency and effectiveness of each

algorithm can be applied to triple-threshold algorithms.

2.1 MTCMOS Technique Overview

The MTCMOS technique relies on the use of transistors with different threshold
voltages to reduce the leakage current in a circuit. HVT transistors have low
subthreshold leakage currents and slow switching speeds; LVT transistors have fast
switching speeds and high leakage currents. To combine the strengths of both HVT and
LVT transistors in an MTCMOS circuit, several circuit design techniques have been

developed:

. Source/body biasing: A bias voltage is applied to the source or body of an
“off” device to increase the threshold voltage due to body effect. The

subthreshold leakage current is reduced as a result.

2. Virtual supply rails: LVT circuits are isolated from the power and ground rails
by placing HVT sleep transistors in series with Vpp and/or ground to provide

virtual supply rails.

10



3. Gate Partitioning: LVT gates are placed in timing-critical paths and HVT
gates are placed in non-critical paths to reduce the overall static power

dissipation.

2.1.1 Source/Body Biasing
The source or body biasing technique uses a biasing voltage for the source or
substrate when a transistor is in the “off” state. For an NMOS transistor, the threshold

voltage can be expressed as follows [2]:

VT:VTO+7(\/VSB-2¢{-\/3¢7)' 2.1

When a positive biasing voltage Vgg is applied, the threshold voltage is increased.

The biasing voltage Vsp can be controlled by biasing the body potential [19][20]
or by biasing the source terminal [21]{22], as shown in Figure 2-1. During normal
operations, Vsp is kept at zero to maintain the nominal threshold voltage. In sleep mode,
Vgg is increased, which increases the threshold voltage and lowers the subthreshold
leakage current. A side effect, though, is an increase in the reverse PN-junction leakage

current from the source to substrate.

The biasing techniques require extra circuitry to implement the biasing voltage.
As a result, the circuit area is larger, especially for body biasing since each transistor
requires a separate well. The biasing techniques also require custom layouts for each

gate, which increases the design cost and complexity.

11



Figure 2-1. Reducing subthreshold leakage current by adjusting V,or V,,

2.1.2  Virtual Supply Rail

For mobile applications with long idle times, devices can be put into sleep mode
to reduce power. The power supply and ground rails are isolated with HVT sleep
transistors to provide virtual supply rails for the logic blocks, as shown in Figure 2-2.
Although the figure shows that both the power and ground rails are gated with sleep
transistors, only one polarity sleep transistor is required if the logic block is purely
combinational [8]. During normal operations, the sleep transistors are turned on and the
logic blocks can operate at fast speeds with the LVT transistors. In standby mode, the
supply rails are switched off and the subthreshold leakage currents are reduced with the

use of the HVT sleep transistors [7][9][10][ I 1].

Implementation of virtual supply rails can vary. The most basic design method is
to add a sleep transistor for each logic gate. The standard cell libraries provided by
manufacturers cannot be used with this method, and custom designs for each gate is
required, which costs considerable design time. The area penalty is very large due to the
large number of sleep transistors being used, and extra complexity is introduced to the

routing and buffering of the global sleep signal.

12



;

Sleep -] HVT
Virtual Vdd

LVT
Logic

Virtual Gnd
Sleep { HVT

L

Figure 2-2. Virtual power/ground rails isolated by HVT sleep transistors

Instead of using a sleep transistor for every logic gate, the other extreme design
method is to use one very large sleep transistor to provide a virtual rail for a large block
of gates. Standard cell libraries can be used to implement the logic block, and the area
penalty is minimal. However, due to the large parasitic capacitances in the virtual rails,
the switching speed is penalized when changing between the sleep and active modes.
The sleep transistor may also be larger than necessary. since not all transistors may be

switching at the same time.

More fine-grained approaches have been proposed to cluster gates together based
on discharge current patterns [12]{13][14]{15]. Gates that have mutually-exclusive
discharge current patterns can share the same sleep transistor without having to increase
the sleep transistor size; gates with discharge currents that do not exceed a set limit can
also be clustered. The fine-grained algorithms for transistor sizing require more
optimization run time. With the advance of computer technology, however, the design

cost diminishes.

13



Regardless of the implementation, an inherent problem for virtual supply rails is
the inability to retain state information during sleep mode. Special sequential circuits are
required for state retention [16]. For some circuits where MTCMOS gates are connected
to standard CMOS gates, sneak leakage paths may also exist. Extra effort is necessary to

eliminate the leakage paths [16][17][18].

The virtual supply rail technique is a common technique to reduce power in
mobile applications during standby mode. However, the technique cannot be used to
reduce leakage power during the active mode. In fact, the power dissipation may
increase slightly during the active mode because of the extra sleep transistors. For
applications that are active most of the time, the virtual supply rail technique is

ineffective in reducing static power.

2.1.3 Dual-Threshold Transistor/Gate Partitioning

The dual-threshold partitioning techniques place LVT devices in timing-critical
paths and HVT devices in non timing-critical paths. Since the subthreshold leakage
current depends exponentially on the threshold voltage, changing transistors from LVT to

HVT can result in leakage current reductions by a few orders of magnitude [8].

To partition a circuit into HVT and LVT transistors, the circuit’s critical paths
must be identified. For optimal partitioning, a transistor in the non-critical path should
only be replaced by a transistor of higher threshold voltage if the leakage power reduction
is maximal and the delay penalty is minimal. ldentifying which transistors or gates to be
replaced is known to be a non-deterministic polynomial-time hard (NP-hard) problem

[23][24], i.e. the complexity is at least as hard as a polynomial-time problem. In the
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worst-case scenario, solving the problem requires run times that depend exponentially on
the circuit size. To achieve acceptable run times, heuristic algorithms have been
developed for near-optimal partitioning. More details on these algorithms will be

covered in the following sections.

A drawback of the dual-threshold partitioning technique is the requirement of
extra masks during the manufacturing process. Also, for designs with many critical
paths, partitioning may be ineffective. However, the partitioning technique can reduce
leakage currents during both active and sleep modes, and standard cell libraries can be
used. Compared to the biasing or virtual supply rail techniques, gate partitioning requires
less circuit design time, does not require extra circuitry, and can provide leakage power
reductions at all times. Gate partitioning is therefore a more attractive method for
reducing leakage power for general applications. For mobile applications, partitioning
may also be used in conjunction with the virtual rail technique to further reduce power in

sleep mode [30}{31].

2.2 Dual-Threshold Partitioning Algorithms

The dual-threshold algorithms can be separated into two broad categories. The
LVT to HVT algorithms start with an LVT circuit and selectively replace gates in the
non-critical paths from LVT to HVT. The HVT to LVT algorithms start with an HVT
circuit and selectively replace gates in the critical paths from HVT to LVT. Depending
on the circuits and the availability of computer-aided design (CAD) tools, both types of

algorithms may be similarly effective in reducing static power.
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221 LVT to HVT Algorithms

The LVT to HVT algorithms initialize a design with LVT gates. LVT gates in the
non-critical paths are replaced by HVT gates based on different criteria. Some proposed
algorithms are: breadth-first search (BFS) [25], levelized back-tracing [26], levelized
maximum cut [27], maximum independent set [28][29], and solving specific delay

fictitious-buffers (SDF) as an integer linear programming (ILP) problem [24].

2.2.1.1 Breadth-First Search

The BFS algorithm [25] traces gates backwards from the primary outputs. The
delay time of each gate is calculated and recorded. The maximum amount of time that a
gate’s delay can be increased without affecting the circuit’s overall performance is
recorded as the slack time. During the back-tracing search, if the slack of a gate is
positive and changing the gate’s threshold to HVT does not result in a negative slack, the
gate is changed to HVT. The algorithm continues the back-tracing search for one
primary output until all gates have been back-traced, and the algorithm continues to back-

trace from the next primary output until all primary outputs have been back-traced.

The BFS algorithm is a fast algorithm but may not result in the most optimal
designs, since the replacement of gates does not depend on the weight of the delay or
power, but rather on the order in which gates are visited. An algorithm that prioritizes the
replacement of gates based on a weight of the amount of power saved vs. the time delay
increase may be more effective in partitioning the gates. Also, back-tracing from a fixed
primary output may affect the path slacks for other primary outputs. A levelized
approach where gates in the same level are replaced before gates in the next level are

replaced may produce better results.
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2.2.1.2 Levelized Search

A levelized search algorithm assigns a level number to every gate in the circuit.
The algorithm starts from assigning a level number zero to each primary input. Then. all
gates are assigned a level number that is one greater than the maximum level number of
the immediate fan-in gates. The levelized back-tracing (LBT) algorithm [26] is similar to
the BFS algorithm, except that gates in the same level are replaced before gates in the
next traversed level are replaced. The algorithm traces from the maximum level back
towards the primary inputs. For all gates in each level, if replacing a gate with a high
threshold does not result in a negative slack, the gate is assigned a high threshold voltage.

The back-tracing continues until level zero is reached.

The LBT algorithm improves upon the BFS algorithm by prioritizing the
assignment of gates in the same level to HVT. Results of optimizing benchmark circuits
show that the LBT algorithm produces circuits with lower leakage power than BFS for all
the circuits tested [26]. The LBT algorithm, however, still does not assign weights to the
gates or levels, and thus more power reductions may be possible with a weighted search

algorithm.

2.2.1.3 Maximum Cut

A gate-level circuit can be represented as a directed acyclic graph, where each
gate is represented as a node, and each fan-in or fan-out connection is represented as a
directed edge. A cut of a directed acyclic graph is a partition of the nodes into two
disjoint sets. The levelized maximum cut algorithm in {27] solves the gate partitioning
problem by iteratively finding cuts with the maximum weight in a circuit. The weight is

defined as the power saving of each node by replacing the LVT gate with an HVT gate.
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To reduce the complexity for finding ali possible cuts in the graph, the levelized approach
assigns a level number for each gate, and cuts are only made at the boundary between
each level (Figure 2-3). Gates in the level with the maximum total weight are selected
for replacement in each iteration process. The algorithm continues until no more levels

can be selected without causing a negative slack.

jit]
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level i-1 cut level i+1 cut
level i cut

Figure 2-3. Levelized maximum cut for a circuit represented as an acyclic graph [27)

The levelized maximum cut algorithm replaces gates with larger reductions in
static power first. Compared to BFS and LBT, the levelized maximum cut algorithm

produces designs with lower static power.

2.2.1.4 Maximum Independent Set
The maximum independent set algorithms solve the gate partitioning problem by
finding the maximum set of gates that can be changed to HVT without degrading

performance.

The maximum independent-set-based slack assignment (MISA) algorithm in [28]

weighs each node based on the effective power saving, the change in the slack, and the
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likelihood that an adjacent node is also an HVT node (for manufacturing yield
considerations). All nodes that may be changed to HVT without causing a negative slack
are placed in a candidate list. The greedy algorithm, i.e. an algorithm that selects the
locally optimum choices at each stage with the hope of finding the globally optimum
solution, is used to iteratively select the node with the maximum weight and determine if

the node can be changed to HVT without causing a negative slack.

The algorithm in [29] is similar to [28], but weighs nodes based on the effective
power saving only. The greedy approach is also used to iteratively select and replace the

nodes with the maximum weight while keeping the slack non-negative.

The MISA algorithm in [28] is the most computationally intensive approach. For
large applications, the efficiency may be lower compared to algorithms in [27] and [29].
The algorithm also considers placing HVT nodes adjacent to each other to improve yield,
which may result in suboptimal placement for reducing static power. However, since
slack is also being weighted and gates with smaller impacts on the slack are replaced
first, the algorithm in [28] may potentially be able to replace more LVT gates to HVT

than the algorithm in [27] or [29].

Algorithms in [27], [28] and [29] are all greedy algorithms. The levelized
approach in [27] is not as fine-grained as in [29]. However, as with all greedy
algorithms, unique worst-case scenarios may exist where the greedy algorithms are
suboptimal [32]. Hence, in some cases the algorithm in [27] may produce better results

than the algorithm in [29], and vice versa.
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2.2.1.5 Integer Linear Programming

The ILP algorithm in [24] inserts buffers into a circuit for delay balancing. The
delay buffers are fictitious entities that are used solely for the purpose of modelling the
slack in a circuit. The selection of gates is solved as an ILP problem to minimize the
total static power. After selecting and replacing the gates, the threshold voltage for the

HVT gates that results in the lowest static power is determined.

Compared to other LVT to HVT algorithms, the ILP algorithm generates designs
with the lowest static power. However, the ILP algorithm is also significantly more

computationally intensive, and thus it is unsuitable for large designs.

2.2.2 HVT to LVT Algorithms

The HVT to LVT algorithms initialize a design with HVT gates. An HVT circuit
is slower than an LVT circuit, and thus the slow HVT gates in critical paths need to be
replaced with fast LVT gates to improve the performance. Algorithms that have been
proposed for HVT to LVT replacement are: breadth-first search (BFS) [33], minimum cut

[34], maximum cut |34], and maximum independent set [35][36][37].

2.2.2.1 Breadth-First Search

The BES algorithm in [33] is similar to the BFS algorithm in [25], except that
weights have been assigned to the gates to improve the optimization process. The
algorithm traverses backwards from the primary outputs, and in each iteration run, the
gate with the maximum timing delay reduction is changed to LVT. Timing information

is updated and new critical paths are selected after each gate replacement. This algorithm
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combines BFS with the maximum independent set approach, and the results have been

shown to be better than algorithms in [24] and [25].

2.2.2.2 Minimum Cut

The minimum cut algorithm in [34] assigns weights to each node based on the
increase in the static power and the reduction in the time delay when a node is changed
from HVT to LVT. The algorithm searches for cuts that have the minimum total weight
in each iteration process, i.e. cuts where gates can be changed to LVT with the least
increase in the static power and the most time delay reduction. Gates that are not in the

critical path are assigned a weight of infinity.

Finding the minimum cut of a weighted graph has been studied extensively. The
well-known solution to the minimum cut problem is the max-flow-min-cut algorithm
[38]. The fastest algorithm is the preflow-push algorithm [39] and is the algorithm

implemented in [34].

In {34], the minimum cut algorithm is shown to be less effective than the
maximum cut algorithm in [27] (presented in Section 2.2.1.3). The main reason is that
the assignment of infinite weights to the gates in non-critical paths misleads the algorithm
to a suboptimal solution [34]. The maximum cut algorithms do not require the
assignment of infinite weights and thus are more effective than the minimum cut

algorithm.

2.2.2.3 Maximum Cut I1
The maximum cut I algorithm in [34] initializes a design with HVT gates, but all

gates in the critical paths are replaced with LVT gates. For the subset of LVT gates in
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the circuit, the maximum cut algorithm in [27] is used to search for and replace gates

back to HVT, as shown in Figure 2-4.

/ HVT
/ Y
/ }
I T T l
I |
I " /
\ Critical /
‘,\ | Subcircuit /
S, | \A‘\\.\ | )
“~ ]
— e
Figure 2-4.

The maximum cut II algorithm flow diagram |34]

Both the maximum cut and maximum cut Il algorithms have similar results in
static power reductions and are shown to be more effective than the minimum cut
algorithm [34]. However, the maximum cut 11 algorithm only needs to process a smaller

subset of the circuit and is therefore a more efficient algorithm than the maximum cut

algorithm in [27].
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2.2.2.4 Maximum Independent Set

The maximum independent set algorithms in [35] and [36] initialize designs using
HVT gates. Each gate is assigned a weight, and in each iteration run the gate with the
maximum weight is selected and replaced by an LVT gate to reduce the timing delay. In
[35], the weight of a gate is defined as the maximum delay time reduction when the gate
is changed from HVT to LVT. In [36] and [37], the weight of a gate is defined as the

number of critical paths passing through the gate.

The algorithm in [35] replaces gates with the maximum time delay reduction.
However, the gate being replaced may be in a critical path where only a slight decrease in
the time delay is necessary to meet the timing constraint. Replacing a gate with the
maximum time delay reduction when unnecessary may result in larger static power, and

therefore the algorithm in {35] may be suboptimal.

The algorithm in [36] addresses this problem by selecting gates where most
critical paths pass through. By replacing these bottleneck gates first with LVT gates, the
time delays for the most number of critical paths can be reduced at once. This algorithm
is therefore potentially more effective than other weighted algorithms. It will be used for

comparison purposes to evaluate the performances of dual-threshold and triple-threshold

algorithms.

2.2.3 Transistor-Level vs. Gate-Level

Transistor-level circuits are typically modelled with tools such as HSPICE. which
provides accurate simulations on the transistor currents and timing delays. In gate-level
modelling, each gate is characterized with a set of parameters for the area, timing and
power. In general, simulations at the transistor-level are computationally more intensive
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than gate-level simulations, and for large designs, gate-level simulations are more

efficient.

A drawback of gate-level simulations is that transistors within a gate must be
either all LVT or all HVT. Since not all inputs of a gate may be part of a critical path, the
transistors connected to inputs in the non-critical path can be assigned to HVT while
transistors connected to inputs in the critical path can be assigned to LVT. Algorithms
for transistor-level MTCMOS assignments have been proposed [40][41][42].
Nevertheless, given the trend of a growing number of gates being integrated into a chip,
these transistor-level optimization techniques may be unsuitable for current and future

designs.

2.3 Prior Triple-Threshold Techniques

The triple-threshold techniques utilize three different threshold voltages on a chip
to provide more fine-grained control on transistor leakage currents. Prior work using the
triple-threshold technology has been very limited — the triple-threshold technology has
just become a possibility in the 90nm CMOS technology node. A triple-threshold
technique that combines the use of the virtual rail technique and the partitioning

technique has been proposed, as shown in Figure 2-5 [30][31].
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Figure 2-5. Triple-threshold technique that combines the virtual rail technique and the dual-
threshold gate partitioning technique [30][{31]

The prior triple-threshold technique uses HVT transistors to implement the sleep
function. In the logic blocks, the threshold voltages are assigned to gates using a dual-
threshold technique. The manufacturing technology requires two more masks than
conventional CMOS manufacturing. The ion implantation for HVT transistors is
implemented using both masks for the SVT and LVT implantation, and the ion
implantation concentration for HVT transistors is the sum of the ion implantation

concentrations for SVT and LVT.

The technique combines the benefits of the virtual rail technique and the gate
partitioning technique. The static power has been reduced during both standby and active
modes while not compromising the circuit speed. However, SVT and LVT gate have
been used inside logic blocks for speed considerations. Because SVT transistors have
larger subthreshold leakage currents than HV'T transistors, the static power may be higher

compared to HVT+LVT dual-threshold circuits during the active mode. Further static

25



power reduction may be possible with a more fine-grained approach by using HVT gates

inside the logic blocks in addition to the SVT and LVT gates.

2.4 Summary

This chapter has presented an overview on MTCMOS techniques for static power
reduction. The biasing, virtual supply rail and gate partitioning techniques have been
presented and compared. The gate partitioning technique is a better approach in terms of
design cost and silicon area, and algorithms for dual-threshold partitioning have been
presented. Prior triple-threshold techniques have also been presented in this chapter.
Previous publications using the triple-threshold technology have been scarce. The only
prior work found has not fully exploited the capabilities of the triple-threshold
technology, and more fine-grained optimization may be possible. Based on prior work
information, more static power reductions may be achieved with a fine-grained triple-

threshold gate partitioning technique.
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3 SIMULATION TOOLS

This chapter describes the simulation tools used for the experiments. The tools
chosen for this thesis are Synopsys Design Compiler™ and PrimeTime™, both made
available by the Canadian Microelectronics Corporation (CMC). Synopsys Design
Compiler™ is a convenient tool for high-level synthesis, while PrimeTime™ provides
accurate static timing analysis and extraction of critical paths. Both tools include the
support of scripting using the tool command language (TCL), which enables fast

development and testing of optimization algorithms.

3.1 Support for TCL Scripting in Synopsys Tools

A major advantage of using Synopsys tools is the integrated support for TCL
scripts. The TCL language provides basic programming constructs such as variables,
loops, and procedures. Scripts can be written to process return values from Synopsys
commands and iteratively perform optimization steps. TCL is a scripting language and
thus scripts do not need to be compiled into a machine language before execution, which

allows for rapid script development and debugging.

Synopsys Design Compiler™ supports two modes of operation. The legacy mode
can be started using the dc_shell command, while TCL mode is started with the dc_shell-
t command. PrimeTime™ only runs in one mode with integrated TCL support. To

invoke PrimeTime™, the pt shell command is used.
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3.2 Synopsys Design Compiler™
Design Compiler™ is a tool for fast synthesis of register transfer level (RTL)
circuits. In this work, Design Compiler™ is used for circuit synthesis, power dissipation

estimation, and cell usage report.

3.2.1 Circuit Synthesis

A typical synthesis flow consists of the following steps:

1. Read in a high-level or gate-level RTL design written in the VHDL or

verilog language.
2. Set a timing constraint for the circuit to specify a target clock period.

3. Load logical and physical standard cell libraries, which contain area,

timing, power, and layout information for each logic gate.

4. Generate a netlist of gates that perform functions specified in the RTL

design. The design may be optimized for area, speed, or power.
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Figure 3-1. Flowchart of a typical circuit synthesis process
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The following is a sample TCL code listing for synthesizing a circuit in VHDL to

generate a verilog netlist.

# set up library
set target library { target library }
set link library { link library }

# read in VHDL
read _vhdl circuit.vhdl

# set current design
current_design design name

# link design to library
link

# synthesize the circuit
compile

# flatten design (optional)
Ungroup -all flatten

# write netlist
write -format verilog -output netlist.v

3.2.2 Power Dissipation Report

The power dissipation of a design can be obtained using the report_power
command in Design Compiler™. The report _power command reports the total dynamic
and leakage power of a design. The dynamic power is broken down into the cell internal
power, which is the short circuit power plus the charging and discharging of any internal
capacitances within a gate, and the net switching power, which is the power dissipated by
charging and discharging of the output load capacitances at each gate. The report further
breaks down the total internal power into the internal power dissipated by all
combinational circuits and the internal power dissipated by all sequential circuits. The

combinational and sequential gate counts are also given in the report.
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The following is a sample TCL code listing for generating a power dissipation

report.

# set up library
set target library { target library |}
set link library { link library }

# read in netlist
read verilog netlist.v

# set current design
current design design name

# link design to library
link

# define clock constraint
create clock -period clock_period in ns -name clock name ([get_ports
clock_name]

# generate power report
report power -analysis effor high -verbose -nosplit

3.2.3 Cell Usage Report

Design Compiler™ can generate a report on the gate composition of a circuit

using the report_reference command. The following is a sample TCL code listing for

generating a cell reference report.

# set up library
set target library { target library }
set link library { link library )}

# read in netlist
read verilog netlist.v

# list all cells in the design
report_reference -nosplit

The report lists the names of all logic gates used to synthesize the design, the

source library of each gate, the corresponding area, and the count of each gate.

30




3.3 Synopsys PrimeTime™

Synopsys PrimeTime™ is a tool for performing static timing analysis (STA),
which is a method of computing a circuit’s timing performance by checking all possible
paths in the design {43]. The worst-case timing delay for the circuit determines the

overall circuit performance.

An alternative timing analysis method is to perform dynamic simulation, which
determines the behaviour of a circuit for a given set of input vector. Dynamic simulation
checks for the logical functionality of a circuit, and the timing is sensitized by the test
vector. Compared with dynamic simulation, STA is faster to perform because functional
verifications are not required. In addition, the timing analysis in STA is more thorough
because it checks for all timing paths in the design and not just the timing delays that are

sensitized by a particular set of input vectors.

3.3.1 Timing Report
A timing report can be obtained using the report_timing command in

PrimeTime™. The following is a sample TCL code listing for generating a timing report.
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# set up library
set target library { target library }
set link library { link library }

# read in netlist
read verilog netlist.v

# set current design
current design design name

# 1link design to library
link

# define clock constraint
create clock -period clock_period_in ns -name clock_name [get ports
clock_name]

# generate timing report
report timing

3.3.2 Timing Path Selection

To select timing paths in a design in PrimeTime™, the get timing paths
command can be used. The command selects all timing paths in the design by default,
but several options are available to limit the selection of the timing paths. In particular,
the -slack_lesser than option is useful for selecting only the paths that violate the timing

constraints.

The following is the TCL code to obtain a maximum number of 5000 timing paths

that have a negative slack.

get timing path -slack lesser than 0 -max paths 5000

3.3.3 Cell Replacement

After loading a design into PrimeTime™ and linking the design to a library, each

individual cell can be swapped to another type of cell with equivalent pinouts using the
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swap_cell command. This command is used to replace an HVT cell by an SVT or LVT

cell during the gate partitioning optimization process.

The following is a sample TCL code to swap a cell.

swap _cell cell list replacement cell

After swapping in a new cell, PrimeTime™ implicitly re-links the part of the
design that has been changed. The original design itself, however, remains unchanged in
the memory. PrimeTime™ records changes to the netlist in a separate change list, which

can be exported using the write _changes command, as shown below.

write changes -format text -output change list.txt

3.4 Modelling of Timing Delays and Power

In high-level synthesis, a circuit is modelled as a netlist of gates. Each gate has
been characterized by its area, load capacitances, power, and timing information. A
synthesis tool obtains the information from the standard cell libraries and predicts the
timing delays and power dissipations of a circuit in a hierarchical manner, thereby
reducing the analysis time. The following sections will describe the timing and power

models in the Synopsys tools.

3.4.1 Timing Model
In PrimeTime™, a design is divided into a set of timing paths. The signal

propagation delays along each path are calculated and checked against timing violations.
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A timing path has a start point and an endpoint. A start point is a clock pin of a
sequential logic or an input port of the design; an endpoint is an output port of the design
where output data is captured. The total delay of a path is calculated by summing all cell

and net delays in the path.

The cell delay is the timing delay from the input to the output of a gate. The
standard cell libraries contain timing delay tables that list the gate delay as a function of
several variables, such as the input state, the input transition time, and the output load
capacitance. Since it is not possible to list the timing delay under all possible conditions,
PrimeTime™ uses interpolation or extrapolation methods to estimate the timing delay of

a cell when a condition is not listed in the table.

The net delay is the timing delay from the output of a cell to the input of the next
cell in the timing path. The net delay is dependent upon the parasitic capacitances and
resistances between cells as well as the output drive strength of the cells. During the
synthesis step, layout information is usually not available. Instead of determining the
actual capacitance and resistance values, PrimeTime™ estimates the net delay using

statistical wire load models in the standard cell libraries.

Having determined the timing delays of each cell and each net. the total path

delay can be calculated as follows:
Path Delay = Dclk + Dclk_ne( + EDccll + XDjer, (3])

where D« is the clock source delay, Dek net is the clock network delay, Deen is the cell

delay, and Dy, is the network delay.
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The path delay is compared with the timing constraint to determine the path slack
time. The path slack time is calculated as the difference between the path delay time and

the path required time:
Slack = Required Time — Path Delay. (3.2)

A positive slack indicates that the path has met the timing constraint, and a negative slack

indicates a timing violation in the design.
The path required time is calculated as follows:
ReqUired Time = Tclk + Dclk + Dclk;nel - Tclkiuncertalnty - Tsetups (33)

where T is the clock period, Dei is the clock source delay, Deik nec is the clock network

delay, Teik_uncerainty 1S the clock uncertainty, and Ty, is the register setup time.

3.4.2 Power Model

Design Compiler™ reports the internal power, switching power, and leakage
power of a design. Transistor-level modelling of the design is not performed; rather, each
gate is modelled as a black box with pre-determined parameters for estimating power

dissipations.

The cell internal power is the power dissipated within the boundaries of a cell,
which consists of the short circuit power plus the charging and discharging of any
internal capacitances within a gate. The internal power is a function of the input
transition time and the capacitances of a cell. An internal power lookup table for each
logic gate is available in the standard cell library. Similar to timing delay calculations,
Design Compiler™ uses interpolation or extrapolation methods to estimate the internal

power of a cell.
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The switching power of a cell is the power dissipated when charging or
discharging the output load capacitances and is a function of the load capacitance and the
switching activity. The output load capacitance is the sum of the input capacitance of the
fanout gates plus the parasitic capacitances in the routing network, which can be
estimated using the statistical wire load model. The switching activity can be determined
during functional simulations. When no simulation data is available, Design Compiler™
calculates a default switching activity. The probability that the state of each primary
input is at logic | is set to 0.5 by default, and the default toggle rate is also set to 0.5.
indicating that an input toggles once per two clock cycles. The logic states and toggle
rates are propagated from the primary inputs throughout the rest of the design, and the
switching activity of each cell is determined. After determining the switching activity

and the load capacitances, the switching power can be calculated using Eq. 3.4.

= aCIoad ded fclk . (3.4)

switching

The leakage power of a cell is dependent on the input states. For each input state.
a corresponding leakage power value can be obtained from the standard cell library for
each logic gate. Design Compiler™ calculates the static power of a circuit by
multiplying the static power value for each state by the percentage of the total simulation
time at that state. When no functional simulations are performed, the default states are

determined for each gate as described above.

3.5 Summary
This chapter has described the simulation tools used in this thesis. The basic

functionalities and usages have been presented as well as the sample TCL codes
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corresponding to each function. The timing and power models in Synopsys tools have

also been described.
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4 PROPOSED TRIPLE-THRESHOLD STATIC POWER
REDUCTION TECHNIQUE

This chapter presents the novel triple-threshold technique proposed in this thesis.
Parts of this work have been presented in {44] and [45]. The triple-threshold standard
cell libraries available from CMC have been characterized with the relative performance
and leakage power. Given the cell library characterization information, a new
methodology for a fine-grained triple-threshold gate partitioning technique is proposed to

fully utilize the benefits of the triple-threshold technology.

4.1 Characterization of Standard Cell Libraries

The threshold voltages of the 90nm standard cell libraries are listed in Table 4-1.
These threshold voltage values are the nominal values given in the 90nm design rule
manual. However, since the standard cells provided by CMC are black boxes without
any layout information. the actual threshold voltages may differ from the nominal values

depending on the layouts of each cell.

Table 4-1. Threshold voltages of the 90nm HVT, SVT and LVT standard cell libraries

Cell Library | NMOS Vg [V] PMOS Vr [V]

HVT 0.32 -0.36
SVT 0.24 -0.29
LVT 0.18 -0.24
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To compare the performance and static power dissipation of designs synthesized
with the three different standard cell libraries, a 16-bit Wallace tree multiplier with a
carry look-ahead adder has been developed as a test vehicle. The 16-bit multiplier is
synthesized in Synopsys Design Compiler™ to generate a netlist of 1123 cells. The
design has been synthesized three times: with the HVT library only, with the SVT library
only, and with the LVT library only. The static power dissipation reported by Design
Compiler™ for each synthesized design is recorded, and STA is performed in
PrimeTime™ for each design to determine the timing delay of the longest critical path.

The results are shown in Table 4-2.

Table 4-2. Performance comparison of a 16-bit Wallace tree multiplier synthesized using the HVT,
SVT and LVT standard cell libraries

Cell Library | Longest Path Delay | Max. Clock Frequency Static Power
[ns] [MHz] [nW]
HVT 3.4 2941 0.75506
SVT 2.6 384.6 14.4600
LVT 2.1 476.2 270.7120

The 90nm standard cell libraries have been designed such that an HVT gate
would occupy the same area as an SVT or an LVT gate. Therefore all three synthesized

designs occupy the same die area.

The simulation results of the 16-bit multiplier indicate that the SVT synthesized
design dissipates static power that is about 20 times larger than the HVT synthesized

design, and the LVT design dissipates about 20 times larger static power than the SVT
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design. Performance-wise, the LVT design is 24% faster than the SVT design and 62%
faster than the HVT design. To fully utilize the triple-threshold technology, SVT and
LVT cells must be placed in critical paths of a design to increase the clock frequency,
while the number of SVT and LVT cells must be minimized due to the large penalty in
the static power. The next section presents the proposed fine-grained triple-threshold

gate partitioning methodology for minimizing static power while maximizing speed.

4.2 Methodology

Simulations of the 16-bit multiplier indicate that replacing an HVT cell by an
SVT cell would result in a 20 times increase in the static power, and replacing an SVT
cell by an LVT cell also results in a 20 times increase in the static power. Therefore only
the minimum number of SVT and LVT cells should be used in a design to reduce timing

delays.

The proposed methodology is an MISA-type HVT to LVT algorithm similar to
the algorithm presented in [36] where it has been applied to the dual-threshold
technology. As previously stated in Section 2.2.2.4, by assigning the number of critical
paths passing through a gate as the weight of the gate, the algorithm may be more
effective in reducing the number of critical paths with fewer cell replacements. The
MISA algorithm is also less computationally intensive compared with some other
algorithms and is therefore chosen as the basis for developing the proposed triple-

threshold algorithm.
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The TCL code used to implement the dual-threshold algorithm in [36] has been

provided by Benjamin Chung at PMC Sierra. The code has been moditied to work with

the 90nm standard cell libraries at SFU.

To extend the dual-threshold algorithm for use with the triple-threshold

technology, the usage of cells in the triple-threshold standard cell libraries must be

prioritized. The priority of HVT cells is higher than SVT cells due to the lower static

power dissipation, and the priority of LVT cells is the lowest because of the enormous

increase in the static power. The proposed triple-threshold algorithm involves the

following steps:

l.

Initial Synthesis: The RTL design is synthesized using the HVT standard

cell library to produce an HVT netlist.

Incremental Replacement of SVT Cells: STA is performed for the HVT
netlist to determine the timing-critical paths in the design. A weight (or
cost) is assigned to each cell in the critical paths to indicate the number of
critical paths passing through the cell. The cell with the highest cost is
replaced by the equivalent SVT cell. This step is repeated until the timing
constraint has been met or all the HVT cells in the critical paths have been

replaced with SVT cells.

. Incremental Replacement of LVT Cells: Ifall HVT cells in the critical

paths have been replaced by SVT cells and the design still violates the
timing constraint, STA is performed to select critical paths, and the
highest cost cells are replaced with the equivalent LVT cells. The LVT

cell replacement is repeated until the timing requirement has been met.
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The proposed algorithm prioritizes using HVT cells in a design first and LVT
cells last, ensuring that the leakiest cells are only used it necessary while optimizing a
design to meet timing requirements. Figure 4-1 shows a flowchart of the proposed triple-

threshold algorithm.
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Figure 4-1. Flowchart of the proposed triple-threshold algorithm

4.2.1 Implementation Limitations

Due to the NP-hard nature of the problem, selecting all critical paths at once is
impractical. For example, the total number of critical paths in the 16-bit multiplier well
exceeds seven figures. On the other hand, PrimeTime™ is only capable of selecting
around 500,000 paths using the get timing paths command due to memory addressing
constraints on a 32-bit Sun workstation. Selecting all paths may be possible on a 64-bit
workstation; however. the run time required is also exponentially large. A modification

in the algorithm is necessary to address the practical limitations.
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The proposed algorithm in the previous section selects the global highest-cost
cells to be replaced by cells with a higher threshold voltage. Since only a limited number
of paths can be selected, the local highest-cost cells within the selected paths are selected
for replacement instead. Starting with an HVT netlist, the modified algorithm selects a
number of critical paths from the design. [f all local highest-cost cells have been replaced
by SVT cells and the paths are still identified by PrimeTime™ as critical cells, one local
highest-cost SVT cell is replaced by its counterpart LVT cell. The LVT cell replacement
may have changed the timing delays in the design, and running STA again may result in
PrimeTime™ selecting new critical paths that contain HVT cells. The algorithm must
then return to the state for incremental replacement of SVT celis. Figure 4-2 shows the

modified flowchart with the changes shaded in gray.

The max_paths variable can be set in PrimeTime™ to indicate the maximum
number of timing paths to obtain during STA. This variable increases the run time
significantly when set to a large number exceeding 1000 and for a large design exceeding
1000 gates. However, this variable has no direct correlation to the reductions in the static
power. When max_paths is set to a number lower than 50, the run time may be very fast,
but the resulting design may be suboptimal. Setting the max_paths variable to a number
between 100 and 1000 results in circuits that vary slightly in the static power reduction,
but the optimal number must be determined empirically for each circuit to be optimized.
In general, however, the variation in the static power reduction is little and does not

warrant performing extra experiments to determine the best value for max_paths.
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Figure 4-2. Flowchart of the modified triple-threshold algorithm

4.3 Summary

This chapter has presented the simulation results of the 16-bit multiplier as a test
vehicle for characterizing the triple-threshold standard cell libraries. The results lead to
the priority of using cells with a higher threshold voltage first. A suitable fine-grained
triple-threshold static power minimization methodology is proposed and described. Due

to practical limitations. a modified algorithm has been developed.
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5 SIMULATION RESULTS

This chapter presents the experimental results of optimizing designs using the
proposed triple-threshold methodology. Simulations of the 16-bit multiplier are
presented in more detail. For comparison with the dual-threshold technique [36], two
sets of benchmark circuit suites have been optimized. The VHDL source code of the
1995 high-level synthesis benchmark circuits is obtained from

http://www.ece.vt.edu/mhsiao/hlsyn.html, and the I'TC 99 benchmark suite VHDL code

is obtained from http://www.ite.tul.cz/asic/iscas/index.html.

5.1 16-Bit Wallace Tree Multiplier

A 16-bit Wallace tree multiplier has been implemented as a test vehicle for
experiments conducted in this thesis. The goal is to choose a common circuit that has
considerable complexity and size. Since the multiplier is a fundamental circuit in
processor designs, the 16-bit Wallace tree multiplier architecture is chosen for

implementation.

5.1.1 Multiplier Circuit Overview
A typical multiplier circuit consists of three stages: partial product generation,
partial product accumulation, and final addition [3]. The first stage generates partial

products by taking the logical AND operation of the two multiplicands. For a 16-bit

multiplication calculation, 16 partial products are generated, as shown in Figure 5-1. The

number of partial products may be reduced using the modified Booth’s recoding scheme
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[46]. However, since the focus of this thesis is not on optimizing the multiplier
architecture, the modified Booth’s recoding is not implemented in the 16-bit multiplier.

Partial products are generated using simple logical AND operations in the

implementation.
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Figure 5-1. Partial products in a 16-bit multiplication

The second stage in the multiplication process is to sum the 16 partial products
and simplify into two final partial products. The Wallace tree structure [47] is a simple
yet fundamental architecture for implementing a fast multiplier. Using 3-2 carry-save
adders, the accumulation of the partial products can be performed in a few stages without
ripple delays. The block diagram of the implemented Wallace tree structure is shown in

Figure 5-2.
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The final stage of the multiplier consists of an adder to add the two final

accumulated partial products. A simple ripple adder is too slow to be considered in a

multiplier architecture, while the Kogge-Stone carry-lookahead adder may add

unnecessary complexity to the implementation. The monolithic carry-lookahead adder is

therefore chosen for the 16-bit multiplier implementation.

The 16-bit multiplier VHDL code is listed in Appendix B.
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5.1.2 Simulation Results

Table 4-2 has been duplicated below for reference. As shown in the table, the

HVT multiplier has a longest path delay of 3.4 ns, whereas the LVT multiplier has a

longest path delay of 2.1 ns. To generate an optimized netlist using the triple-threshold

methodology, the clock constraint is set to 2.1 ns, which is the shortest path delay in the

LVT design. The triple-threshold optimized netlist is compared to the dual-threshold

optimized design [36]. The original netlist consists of 1123 cells; the dual-threshold

optimized design consists of 897 HVT cells and 226 LVT cells; the triple-threshold

optimized netlist consists of 833 HVT cells, 196 SVT cells, and 94 LVT cells.

Table 5-1. Performance comparison of a 16-bit Wallace tree multiplier synthesized using the HVT,
SVT and LVT standard cell libraries

Cell Library | Longest Path Delay | Max. Clock Frequency Static Power
[ns] [MHz] (W]
HVT 3.4 294.1 0.75506
SVT 2.6 384.6 14.4600
LVT 2.1 476.2 270.7120

Table 5-2. Static power comparison of the LVT, dual-threshold and triple-threshold designs

Multiplier Design | # HVT | #SVT | #LVT | % LVT | Static Power [pW]
LVT 0 0 1123 100% 270.71
Dual-Threshold 897 0 226 20% 59.89
Triple-Threshold 833 196 94 8.4% 27.40
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By using 91.6% fewer LVT gates in the design, the triple-threshold multiplier has
reduced the static power by 90% compared to the LVT multiplier. Compared to the dual-
threshold multiplier, the triple-threshold multiplier contains 58.4% fewer LVT gates, and
the static power dissipation is 54% less. Since LVT gates dissipate significantly more
static power than HVT and SVT gates, the triple-threshold methodology has
demonstrated its effectiveness in reducing the static power by minimizing the use of LVT

gates in a design.

An arbitrary path from input x7 to output P3; is selected to analyze the difference
in static power between the dual-threshold design and the triple-threshold design. Figure
5-3 shows the path in (a) the dual-threshold optimized design and (b) the triple-threshold

optimized design.

The dual-threshold path contains 9 HVT cells (shaded in gray) and 23 LVT cells
(in black outline), while the triple-threshold path contains 7 HVT cells, 8 SVT cells
(shaded in gray stripes), and 17 LVT cells. Comparing the two paths, nine cells have
been assigned with different threshold voltages. The delay and static power for the nine

cells are presented in Table 5-3.
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Table 5-3. Timing delay and static power of selected gates in the dual-threshold and triple-threshold

paths

Dual-V, Path Static Power | Tri-V, Path Path Static Power

Path Cell | Delay [ns] [hW] Cell Delay [ns] (WW]
FD2QLVT 0.10 478.8098 | FD2QSVT 0.13 24.34833
EOHVT 0.10 0.855517 EOSVT 0.08 17.25491
AO2NHVT 0.09 0.545157 | AO2NSVT 0.07 10.10962
EOLVT 0.05 325.1559 EOSVT 0.06 17.5569
AO2NLVT 0.06 188.8806 | AO2NSVT 0.07 10.09687
EOLVT 0.05 327.8204 EOHVT 0.08 0.898775
AO2NLVT 0.06 189.5429 | AO2NSVT 0.07 10.13421
EOHVT 0.10 0.925426 EOSVT 0.08 17.96629
EOLVT 0.02 335.4581 EOSVT 0.03 18.09893
Total 0.63 1847.994 Total 0.68 126.4648

Compared to the dual-threshold path, the tripie-threshold path has 6 fewer LVT

cells and 8 additional SVT cells. The use of fewer LVT cells results in an increased

delay of 0.05 ns. Referring to Figure 5-3, the total path delays for the dual-threshold and

triple-threshold paths are 2.00 ns and 2.05 ns, respectively. Both optimized paths still

meet the 2.1 ns timing constraint. Note that 0.05 ns of setup time is required; therefore

the triple-threshold path has zero slack time atter the optimization and the dual-threshold

path has 0.05 ns of slack time. For comparison, the same path in the HVT multiplier has

a total path delay of 2.79 ns. The use of LVT cells in the optimized paths has effectively

reduced the circuit delay time to meet the timing constraint. Compared to the dual-

threshold path, the total static power for the nine cells in the triple-threshold path is
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93.2% lower. This demonstrates the effectiveness of the triple-threshold technique in

reducing static power.

The triple-threshold optimized multiplier design is capable of running at the same
speed as the pure LVT design, while dissipating 90% less static power. However, not all
designs need to be run at the fastest possible speed. Figure 5-4 shows the static power
dissipation of the same multiplier optimized with different clock constraints. At the
highest clock speed (lowest clock period), the static power reduction is 90% as previously
presented. As the clock speed requirement is lowered, fewer LVT gates are required in
the design to meet the timing requirement, and therefore the static power dissipation is
even lower. Using the triple-threshold technique, the 90% reduction in static power is the
minimum reduction that can be achieved in the 16-bit multiplier design. At lower target

clock frequencies, more than 95% static power reduction can be achieved.

The proposed triple-threshold technique not only allows designers to maximize a
circuit’s clock speed while minimizing static power, but also to make trade-off decisions

to obtain more static power reductions by reducing speed requirements.
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Figure 5-4. Static power dissipation of designs optimized with different clock constraints

5.2 1995 High-Level Synthesis Benchmark Circuit Suite

The 1995 high-level synthesis benchmark circuit suite consists of eight circuits.
Table 5-4 summarizes the functions of each circuit. The eight circuits are optimized
using the dual-threshold and triple-threshold algorithms on a Sun Ultra 45 workstation.
Table 5-5 shows the static power reductions in the dual-threshold and triple-threshold

optimized designs, and Table 5-6 shows the run times for optimizing the circuits.

The optimization run time for the triple-threshold algorithm is up to twice as long
as the dual-threshold algorithm for small designs, but as circuit complexity increases, the

triple-threshold optimization run time is comparable to the dual-threshold run time.

On average, the triple-threshold optimized designs have 89.3% reduction in static

power compared to the LVT designs. Compared to the dual-threshold optimized designs,
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the average reduction in static power is 41%. In all circuits tested, the triple-threshold

algorithm has generated circuits with the lowest static power dissipation.

In Table 5-5, the clock period of each circuit is set to the longest critical path

delay of the LVT circuit, which is the fastest clock possible for each design. As

previously established, for lower clock speed requirements, more static power reductions

may be achieved. Therefore the reported reduction in static power is the minimum

reduction that can be achieved for each circuit.

Table 5-4. Functions of circuits in the 1995 high-level synthesis benchmark suite

Circuit Function
am2910 Microprogram address sequencer
barcode Barcode reader design
dhre Differential heat release computation circuit
diffeq Solves a particular differential equation
ged Computes the greatest common divisor of two numbers
kalman An implementation of the Kalman filter
fru Part of a cache controller circuit that finds the least recently used item in the
cache
prawn A simple 8-bit microprocessor
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Table 5-5. Static power reductions in dual-V, and triple-V, optimized designs

Circuit # Clock Static Power [pW] % Saving vs. | Tri-V, %
Gates | Period LVT Saving
[ns] vs. Dual-
LVT 2-V, 3-V, 2-V, 3-V, Vit
am2910 601 1.38 | 160.0487 | 14.1046 7.1088 91.2 95.6 49.6
barcode 204 0.81 | 57.2719 8.6383 4.6698 84.9 91.8 45.9
dhrc 1378 2.82 | 334.9089 | 429717 | 25.0963 87.2 925 41.6
diffeq 5465 5.00 1478.4 | 337.0328 | 181.4167 77.2 87.7 46.2
ged 451 2.80 | 943967 | 27.0290 | 21.0709 71.4 77.7 22.0
kalman 2275 2.19 | 485.6676 | 423875 | 25.9261 91.3 94.7 38.8
Iru 476 0.99 [ 101.4512 | 17.5919 | 10.8594 82.7 89.3 383
prawn 733 1.12 | 133.3684 | 38.0656 | 19.9524 71.5 85.0 47.6
Avg. 82.2 89.3 413
Table 5-6. Composition of gates and optimization run time
Circuit Dual-V, Tri-V, Run Time (h:mm:ss)
#HVT | #LVT | #HVT | #SVT | #LVT Dual-V, Tri-V,
am2910 541 60 513 65 23 0:00:34 0:00:59
barcode 168 36 147 40 17 0:00:13 0:00:27
dhre 1214 164 1136 171 71 0:02:23 0:02:37
ditfeq 4558 907 4218 836 411 0:52:40 1:19:17
ged 347 104 304 68 79 0:02:17 0:04:25
kalman 2097 178 2035 139 101 0:03:50 0:07:47
Iru 387 89 375 44 57 0:00:44 0:01:15
prawn 538 195 429 203 101 0:03:09 0:06:25
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5.3 1ITC’99 Benchmark Circuit Suite

The ITC 99 benchmark suite [51] has been developed as an update to the
ISCAS’85 [49] and ISCAS’89 [50] gate-level benchmark circuits to reflect modern
circuit designs. The functions of each circuit in the ITC’99 benchmark suite and
simulation results of the dual-threshold and triple-threshold optimized designs are shown

in Appendix A.

The smallest circuit BO2 is selected to illustrate how gates of different threshold
voltages are placed in the dual-threshold and triple-threshold optimized designs, as shown
in Figure 5-5. The dual-threshold circuit contains 11 HVT cells and 7 LVT cells; the
triple-threshold circuit contains 7 HVT cells, 7 SVT cells, and 4 LVT cells. The triple-
threshold circuit dissipates 30.17% less static power compared to the dual-threshold

circuit due to the use of fewer LVT cells.
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Figure 5-5. Circuit B02 optimized with (a) dual-threshold technique and (b) triple-threshold
technique
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Figure 5-6 and Figure 5-7 show the static power dissipations and number of LVT
cells in the LVT, dual-threshold and triple-threshold designs. Comparing the two figures,
it is evident that the static power dissipation follows the same trend as the number of
LVT cells in a design. A direct relation between static power and the number of LVT

cells can be implied.
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Figure 5-6. Static power of the LVT, dual-threshold, and triple-threshold designs
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Figure 5-7. Number of LVT cells in the LVT, dual-threshold, and triple-threshold designs
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Figure 5-8 plots the static power vs. the number of LVT cells. Since LVT cells
are the dominant contributors to the total static power in a circuit, a linear trend can be
established where static power increases directly as the number of LVT cells in a design.
For each decade increase in the number of LVT cells used in a design, the static power of
the design also increases by one decade, regardless of the number of HVT or SVT cells in

the design. The static power can be estimated using Eq. 5.1:

P =a N, . (5.1)

static

where a is a technology dependent parameter and equals 0.247 nW/gate for the 90nm

technology provided by CMC.
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Figure 5-8. Static power vs. number of LVT cells
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5.4 Summary

This chapter has presented the simulation results in this work. A 16-bit Wallace
tree has been implemented as a test vehicle for synthesis with the triple-threshold
standard cell libraries. A comparison has been made for the relative clock speed and
static power dissipation between cells of different threshold voltages, and a 20 times
difference in static power has been observed between HVT and SVT cells and between
SVT and LVT cells. Based on a dual-threshold MISA gate partitioning algorithm, a
suitable triple-threshold static power minimization for the 90nm technology has been
proposed and implemented. A minimum static power reduction of 90% has been
achieved using the proposed triple-threshold technique to optimize the 16-bit multiplier.
As clock speed requirements become lower, more static power reductions can be
achieved. The triple-threshold technique has also been compared to the dual-threshold
technique using two sets of benchmark circuits. The optimization run time of the triple-
threshold technique may be up to twice as long as the dual-threshold technique for small
designs, but the difference in run time diminishes for large designs. A linear relationship
has been observed between the static power dissipation in a design and the number of
LVT cells being used. This observation shows that placing higher priority on using HVT
cells and lower priority on SVT and LVT cells contributes to the effectiveness of the
proposed triple-threshold methodology. In all benchmark circuits tested, designs

optimized with the triple-threshold technique have the lowest static power dissipations.
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6 CONCLUSIONS

As CMOS technology development progresses towards the nanometre regime,
power management becomes a problem as more devices are integrated in a system-on-
chip. With the continual scale down of power supply voltages and threshold voltages, the
static power increases exponentially and becomes dominant in the total power envelope.
To combat the increase in static power, extensive research has been done over the past

two decades in various areas.

One of the research areas has been to utilize the MTCMOS technology and take
advantage of the difference in speed and leakage current of transistors with different
threshold voltages. In Chapter 2, three main topics of circuit design techniques using the
MTCMOS technology have been presented, i.e. the source/body biasing, virtual supply
rails, and gate partitioning techniques. The gate partitioning technique requires less
design costs and provides more fine-grained control for reducing static power compared
to the other techniques. Previously proposed gate partitioning techniques utilize the dual-
threshold technology, and several LVT to HVT and HVT to LVT algorithms have been
presented and compared. By extending the MISA-based HVT to LVT algorithm to
utilize the triple-threshold CMOS technology, more fine-grained static power reduction

may be possible compared to previous techniques.

Chapter 3 presents the simulation tools used in this thesis. The Synopsys tools

have been used for synthesis of test circuits and generation of timing and power reports.

Sample TCL scripts have also been presented.
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Chapter 4 describes the proposed novel triple-threshold static power minimization
methodology. The MISA-based algorithm has been adapted for use with the triple-
threshold standard cell libraries. Based on the characterization of the cell libraries, a
priority scheme has been set for the usage of HVT, SVT, and LVT cells. A suitable
algorithm has been developed and presented. To work around limitations of the tools, a

modified algorithm is used.

Benchmark circuit suites have been used to determine the effectiveness of the
proposed triple-threshold algorithm. The circuits have been optimized using the
proposed technique, and compared with circuits optimized with the dual-threshold
technique. The simulation results have been presented in Chapter 5. For the 16-bit
Wallace tree multiplier, a minimum reduction in static power of 90% has been achieved.
The proposed technique allows designers to trade off clock speed with static power
reduction. The optimization run times for the triple-threshold technique is comparable to
the dual-threshold technique for large designs. For all circuits tested, the proposed triple-

threshold technique is shown to optimize circuits with the lowest static power dissipation.

In conclusion, a novel triple-threshold static power minimization technique in
high-level synthesis has been proposed. The proposed technique can be included in
standard design flows with relatively low design costs, while achieving the most static

power reductions compared to other gate partitioning techniques.
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APPENDICES

APPENDIX A: ITC’99 BENCHMARK SUITE SIMULATION
RESULTS

Table A-1. Functions of circuits in the ITC’99 benchmark suite |S1)

Circuit Function
BO1 Finite state machine (FSM) comparing serial flows
B02 FSM that recognizes BCD numbers
B0O3 Resource arbiter
B04 Computes min and max
BO05 Elaborates the contents of a memory
BO6 Interrupt handler9
BO7 Counts points on a straight line
BO8 Find inclusions in sequences of numbers
B09 Serial to serial converter
B10 Voting system
Bll Scramble string with variable cipher
B2 One-player game for guessing a sequence
B13 Interface to meteo sensors
B14 Subset of the Viper processor
B15 Subset of the 80386 processor
Bl6 Parametric hard-to-initialize circuit
B17 Three copies of B15
B18 Two copies of B14 and two copies of B17
B19 Two copies of B18
B20 A copy of Bi4 and a modified version of B14
B21 Two copies of B14
B22 A copy of B14 and two modified versions of B14
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Table A-2. Static power reductions in dual-V, and triple-V, optimized designs

Circuit # Clock Static Power [pW| % Saving vs. Tri-V, %
Gates | Period LVT Saving vs.
[ns| vt | 2v, | 3v, | 2v, | 3w, | DRV
B02 18 0.28 3.164 1.591 1.111 49.7 64.9 30.2
BO1 29| 0.38 4.997 2.060 1.838 | 38.8 63.2 10.8
B06 41 0.43 7.972 2.945 1.893 ] 63.1 76.3 35.7
B09 87 0.65 22.071 10.427 4.754 52.8 78.5 544
B03 90 0.77 24.049 5.766 2.890 ] 76.0 88.0 49.9
B08 91 0.83 20.861 4.763 2707 | 77.2 87.0 43.2
B10 109 0.68 20.680 4.854 3.532 1 765 82.9 27.2
BI3 175 0.53 45.712 9.004 6.457 | 80.3 85.9 28.3
BO7 189 0.89 43718 | 10.603 6.052 | 75.8 86.2 429
Bl1l 211 1.39 45.003 15.803 8.695 | 649 80.7 45.0
B04 310 0.83 62.347 20.590 12.880 | 67.0 79.3 374
BOS 334 1.36 55.328 16.042 12325 | 71.0 77.7 23.2
B12 636 1.17 131.733 7.240 3.488 | 945 97.4 51.8
B14 3125 427 846.744 98.073 48.893 88.4 94.2 50.2
B15 3269 5.60 618.743 75.076 | 61.863 879 90.0 17.6
B21 6509 4.29 1759.100 | 208.238 74.567 | 88.2 95.8 64.2
B20 6556 | 4.33 1763.200 | 206.720 | 59.766 | 88.3 96.6 71.1
B22 9826 436 2679.900 | 317.651 82.446 | 88.1 96.9 74.1
B17 10081 5.67 1956.900 | 214.189 | 184.386 | 89.1 90.6 13.9
B18 29202 5.78 6314.900 | 486.794 | 380.093 | 92.3 94.0 21.9
B19 59182 5.95 12781.70 | 930.340 | 734.723 { 92.7 943 21.0
Avg. 773 85.7 38.8
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Table A-3. Composition of gates in the optimized designs

Circuit Total # of Dual-V, Tri-V,
Gates #HVT #LVT #HVT #SVT # LVT
B02 18 11 7 7 7 4 4
BOI 29 19 10 12 8 9
B06 41 29 12 18 15 8
B09 87 49 37 54 14 19
BO3 90 69 21 45 32 13
B08 91 68 23 66 10 15
B10 109 76 33 46 40 23
B13 175 142 33 119 35 21
BO7 189 152 37 123 49 17
Bl1 211 141 70 115 S8 38
B04 310 222 88 183 75 52
BOS 334 265 69 251 34 49
Bi12 636 594 42 551 66 19
B14 3125 2826 299 2541 436 148
B15 3269 2961 308 2697 374 198
B21 6509 5883 626 5280 995 234
B20 6556 5921 635 5388 974 194
B22 9826 8856 970 8049 1513 261
B17 10081 9173 908 8362 1141 578
B18 29202 27104 2098 25660 2312 1230
BI19 59182 55352 3830 53513 3237 2432
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APPENDIX B: 16-BIT WALLACE TREE MULTIPLIER
VHDL CODE LISTING

This section presents the code listing of the 16-bit Wallace tree multiplier. The
code has been developed without realizing that the “generate” statement could be used to
make the code more compact. For example, the following section of code could be

replaced with a more compact generate statement.

u2:ubfa port map (inl(2), in2(2), in3(2), c(3), s(2));
u3:ubfa port map (inl(3), in2(3), in3(3), c(4), s(3));
u4:ubfa port map (inl(4), in2(4), in3(4), c(5), s(4));
uS:ubfa port map (inl(5), in2(5), in3(5), c(6), s(5));
u6:ubfa port map (inl(6), in2(é6), in3(6), c(7), s{6));
u7:ubfa port map (inl(7), in2(7), in3(7), c(8), s(7));
u8:ubfa port map (inl(8), in2(8), in3(8), c(9), s(8));
u9:ubfa port map (inl(9), in2(9), in3(9), c(10), s(9));

The following code is the equivalent generate statement for the above code.

gl : for i in 2 to 9 generate
fa : ubfa port map (inl (i), in2(i), in3 (i), c(i+1), s(i));

Using generate statements can reduce a large portion of the code size. However,
changes to the input or output ports of some entities may be necessary in order to use the
generate statement. Therefore, the code presented listing below has not been updated

with generate statements.
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-- 1l6-bit Wallace tree multiplier

-- by: Harry Chen

library ieee;
use 1leee.std logic_1164.all;

entity multiplier

reset
clk
inl
in2
dout

in
in
in
in
out

end multiplier;

is port (
std legic;
std logic;
std_logic_vector({l
std_logic_vector (1
std logic_vector(3

5
5
1

downto
downto
downto

architecture structure of multiplier is
component regl

reset
clk
din
dout

in
in
in
out

end component;

port (

std logic;
std logic;
std_logic;
std_logic)

component reglé port (

reset
clk
din
dout

in
in
in

std_logic;
std_logic;
std_logic_vector (1l

5

out std logic_vector{15
end component ;

component reg32 port({

reset
clk
din
dout

component

inl
in2
ppo
ppl
pp2
pp3
pp4
pp5
ppé
pp7
pp8
pp?2
ppl0
ppll
ppl2
ppl3
ppléd
ppl5

P

in
in
in

std logic;
std logic;
std logic_vector (3

1

out std logic vector (31
end component ;

pg port (

in

in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

std_logic vector(
std logic vector({
std logic _vector |
std logic_vector (
std_logic vector (1l
std logic vector(
std_logic vector(
std logic_vector(
std logic_vector/{
std logic_vector|
std_logic vector(
std_logic vector/{
std logic_ vector(
std_logic_vector(2
std logic_vector(
std_logic_vector(
std logic vector(
std logic_vector(

1
1
1
1
1
1
2
2
2
2
2
2

2
2
2
3

5
5
5
6
7
8
9
0
1
2
3
4

5
6
7
8
9
0
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downto
downto

downto
downto

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0)
Q)
Q)
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end component ;

component wallace port (

ppoO
ppl
pp2
pp3
pp4
pp5
pp6
pp7
pp8
pp9
ppl0
ppll
ppl2
ppl3
ppl4d

ppl5
wlcc

wlcs

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
out
out

end component ;

std_logic_ vector
std logic_vector
std_logic_vector
std logic vector
std_logic_vector
std logic_ vector
std_logic_ vector
std_logic_vector
std logic_vector
std_logic_vector
std logic vector
std_logic_vector
std_logic_ vector
std logic vector
std_logic_vector
std logic_vector
std_logic vector
std_logic_vector

component cla port (
std logic_vector { 31 downto 0 );
31 downto 7 );
31 downto 0 ));

X

Y
s

in
in
out

end component ;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

begin
ureginl
uregin2

binl
bin2
bdou
ppO
ppl
pp2
pp3
pp4
pp5
pp6
pp7
pp8
ppo
ppl0
ppll
ppl2
ppl3
ppl4d

ppl5
wlcs

wlcc

o re
: Tre

t

gle
gle

uppg: ppg port

binl

, bi

n2,

std _logic_vector
std _logic_vector

std logic_vector
std _logic vector
std logic vector
std logic_vector
std_logic_vector
std _logic_vector
std logic vector
std logic_vector
std logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std logic_ vector
std logic vector
std_logic_vector
std_logic_vector
std logic_vector
std_logic_vector
std logic_vector
std logic_vector

port map (reset,
port map (reset,

map

(15
(16
(17
(18
(19
(20
(21
(22
(23
(24
(25
(26
(27
(28
(29
(30
(31
(31
{
(

(15
(15
(31
(15
(16
(17
(18
(19
(20
(21
(22
(23
(24
(25
(26
(27
(28
(29
(30
(31
(31

cl

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

k, inl,

clk, in2,
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ppC, ppl, pp2, pp3, pp4, pp5, pPp6, pp7,
pp8, pp9, ppl0, ppll, pplz, ppl3, ppl4,

uwallace: wallace port map (

pp0, ppl, pp2, pp3, pp4, PpP5, pPpP6, PP7,
pp8. ppS%, ppl0, ppll, ppl2, ppl3, ppl4,

wlce, wlcs);

ucla: cla port map (wlcs, wlcc, bdout);

ppls) ;

ppl5,

uregdout: reg32 port map (reset, clk, bdout,

end structure;
library ieee;
use leee.std logic 1164.all;

library work;
use work.constants.all;

entity regl6 is port (

reset : in std_logic;
clk : in  std_logic;
din : in std logic_vector (15 downto 0);
dout : out std logic vector (15 downto 0))
end reglé;
architecture behavior of reglé6 is
begin
synch output data : process(reset, clk)
begin
if ( reset = '0' ) then
dout <= ( others => ? ?2 );
elsif ( rising edge( clk ) ) then
dout <= din;
end if;
end process;
end behavior;
library ieee;
use ieee.std _logic_1164.all;
library work;
use work.constants.all;
entity reg32 is port
reset : in std _logic;
clk : in  std_logic;
din : in std _logic_vector (31 downto 0);
dout : out std logic vector (21 downto 0))
end reg32;

architecture behavior of reg32 is
begin
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synch_output_data : process(reset, clk)

begin
if ( reset = '0' ) then
dout <= ( others => 2 ?
elsif ( rising_edge{ clk )
dout <= din;
end if;
end process;
end behavior;
library ieee;
use leee.std logic 1164.all;
entity ppg is port (
inl : in std _logic_vector(1l5
in2 : in std _logic vector (15
ppo : out std _logic vector (15
ppl : out std logic_vector (16
pp2 : out std_logic_vector (17
pp3 : out std logic vector (18
pp4 : out std_logic_vector(19
pPpPS5 : out std_logic_vector(20
pp6 : out std_logic_vector (21
pp7 : out std_logic_vector (22
pp8 : out std logic_vector (23
pp9o : out std logic_vector (24
ppl0 : out std logic_vector (25
ppll : out std logic_vector (26
ppl2 : out std logic_vector (27
ppl3 : out std logic vector (28
ppl4 : out std _logic vector(29
ppl5 : out std_logic_vector{30
end ppg;

architecture structure of ppg is
component ppglé port(

)i
} then

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto 9) ;
downto 10) ;
downto 11)
downto 12)
downto 13) ;
)
)

W o0 U WNEPE O OO

downto 14) ;
downto 15)) ;

inl : in std logic_vector (15 downto 0);
in2 : in  std_logic;
PPg : out std_logic_vector{1l5 downto 0))};
end component;
begin

u0:ppglé port map (
ul :ppglé port map
u2:ppglé port map (
u3:ppglé port map (
u4:ppglé port map |
u5:ppglé port map (inl, in2
u6:ppglé port map (i
u7:ppglé port map (
u8:ppglé port map |
u9:ppglé port map (
ul0:ppglé port map (inl, in
ull:ppglé6 port map {inl, in
ul2:ppglé port map (inl, in



ul3:ppglé

ul4d :ppglé

uls5:ppglé
end structure

library ieee;
use ieee.std_

entity ppglé

port map (inl, in2(13),
port map (inl, in2(14),
port map (inl, in2(15),

’

logic 1164.all;

is port (

ppl3) ;
ppl4) ;
ppl5};

inl : in  std logic_vector (15 downto 0);
in2 : in std_logic;
pPpg : out std logic vector (15 downto 0));

end ppgls;

architecture behav of ppglé is

begin
ppg (0) <= inl(0) and in2;
ppg(l) <= 1inl{(l) and in2;
ppg(2) <= inl(2) and in2;
ppg(3) <= inl(3) and in2;
ppg(4) <= inl(4) and in2;
ppg(5) <= inl{(s) and in2;
ppg (6) <= inl(6) and in2;
ppg(7) <= inl(7) and in2;
ppg(8) <= inl(8) and in2;
ppg(9) <= inl(9) and in2;
ppg(10) <= inl(10) and in2;
ppg(11l) <= inl(11l) and in2;
ppg(12) <= inl(12) and in2;
ppg(13) <= inl(13) and in2;
ppg(l4) <= inl(14) and in2;
ppg(15) <= inl(15) and in2;

end behav;

library ieee;

use ieee.std logic_1164.all;

entity wallace is

ppo
ppl
pp2
pp3
pp4
pPpS
pp6
pp7
pp8
pp2
ppl0
ppll
ppl2
pp1l3
ppl4
pPpls
wlcc

port (
in std logic_vector
in std logic_vector
in std logic_vector
in std logic_vector
in std logic_vector
in std logic_vector
in std_logic vector
in std logic_vector
in std_logic_vector
in std logic_vector
in std_logic_vector
in std_logic vector
in std logic_vector
in std logic vector
in std logic_vector
in std _logic_vector
out std_logic vector

(15
(16
(17
(18
(19
(20
(21
(22
(23
(24
(25

(26
(27
(28

(29
(30
(31
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wlcs : out
end wallace;

std _logic vector (31

architecture structure of wallace is
component csa_ 15 0_16 1 17 2 port{

inl : in
in2 : in
in3 : 1in
(e} : out
S : out

end component ;

std loq1c vector (15
std logic vector(lé
std_logic_vector (17
std logic_vector (17
std logic_vector (17

component csa 19 4 20 5 21 6 port

inl : 1n
in2 : in
in3 : 1n
(e} : out
S : out

end component ;

component csa 23 8 24 9 25 10 port (

inl : in
in2 : in
in3 : in
c : out
S : out

end component ;

std loq1c vector(19
std logic_vector(2

std_logicmvector(zl
std_logic vector (21
std _logic_vector (21l

std loglc vector (23
std_loglc_vector(

std logic_vector (25
std logic_vector (25
std logic_vector (25

downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

component csa 27 12 28 13 29 14 port(

inl : in
in2 : in
in3 : in
(e} : out
s ;. out

end component;

std loglc vector(
std_logic_vector(2
sthlogic_vector(
std logic_vector ({29
std logic_vector (29

component csa 17_0_17 2 18 3 port(

inl : in
in2 : in
in3 : in
(e} : out
s : out

end component ;

std_ loglc vector (17
std_logic_vector (17
std logic_vector(18
std_logic_vector(18
std logic vector (18

component csa 21 4 21 6 22 7 port(

inl : in
in2 : in
in3 : in
c : out
s ;. out

end component;

std loglc vector(21
std_loglc_vector(21
std_logic_vector(22
std_logic_vector (22
std logic vector(22

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

component csa 25 8 25 10 26 11 port (

inl : 1in
in2 : in
in3 : in
(e} . out

std_ loglc vector (25
std logic_vector (25
std_logic vector (26
std logic_vector (26
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s : out std _logic vector (26 downto

end component ;

component csa 29 12 29 14 30 15 port(

inl : in
in2 : 1n
in3 : in
o] : out
s : out

end component ;

std loglc vector (2
std _logic_vector (29
std logic vector (30
std logic_vector(30
std logic vector (30

component csa_ 18 0 18 3 22 7 port(

inl : in
in2 : in
in3 : in
C : out
S . out

end component;

std_logic_vector({1ls
std_logic_vector (18
std_logic_vector (22
std logic vector (19
std_logic_vector (22

component csa 19 4 22 0 22 4 port(

inl : in
in2 : in
in3 : in
C : out
S :out

end component ;

std_ loglc vector (19
std_logic_vector(22

std logic vector (22
std_logic_ vector {23
std_logic _vector (22

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

component csa 26 _8_26 11 30_15 port |

inl : in
in2 : in
in3 : in
C : out
s : out

end component ;

std loglc _vector (26
std _logic_vector(26

std_logic_vector (30
std logic vector (27
std logic_vector (30

downto
downto
downto
downto
downto

component csa 27 12 30 8 30 12 port(

inl : in
in2 : in
in3 : in
c : out
s : out

end component ;

component csa_22_ 0 23 5 31 13 port({

inl : in
in2 : in
in3 : in
C ¢ out
s : out

end component ;

std loglc “vector (27
std _logic vector (30

std_logic_vector (30
std_logic vector (31l
std logic_vector (30

std_ loglc vector (22
std logic_vector (23
std_logicvvector(3l
std_logic vector (24

std _logic vector(31

component csa_24_6_30 8 31 0 port(

inl : in
in2 : in
in3 : in
C : out
s : out

std loglc vector (24
std logic vector (30
std_logic vector(31l
std logic vector(3l
std logic_vector (31
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end component ;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
begin
ud:csa_

cO
sO
cl
sl
c2
s2
c3
s3
c4
s4
ch
s5
cé6
s6
c’7
s7
c8
s8
c9
s9

s10
cll
sll
clz
sl2

15 0_16_1 17 2 port map
ul:csa 19 4 20_5 21 6 port map
u2:csa 23 8 24 5 25 10 port map

cl0

std logic_vector
std logic_vector
std logic_vector
std logic vector
std logic_vector
std logic_vector
std logic_vector
std_logic_vector
std_logic_vector
std logic_vector
std logic_vector
std logic_vector
std logic_vector
std logic_vector
std_logic_vector
std logic_vector
std logic_vector
std logic_vector
std logic_vector
std_logic_vector
std_logic_vector
std logic_vector
std logic_vector
std_legic_vector
std_logic_vector
std logic_vector

N T N e T

P e e

17
17
21
21
25
25
29
29
18
18
22
22
26
26
30
30
19
22
23
22
27
30
31
30
24
31

(p
{(p
(

ud:csa 27 12 28 13 29 14 port map

ud:csa 17 0 17 2 18 3 port map
ub:csa_21 4 21 _6_22_ 7 port map

(s
(s

ué:csa_ 25 8 25 10 26 11 port map {
u7:csa_ 29 12 29 14 30 15 port map

ug:csa_18_0 18 3 22 7 port map
ug:csa 19 4 22 0 22 4 port map

(s
( c

ulO:csa_26_8 26_11 30_15 port map
ull:csa_27_12 30_8 30_12 port map

ul2:csa_22_0_23 5 31 13 port map (

ul3d:csa 24 _6_30 8 31 0 port map
end structure;

library ie

ee;

use ieee.std logic 1164.all;

entity csa_15_0_16_1 17 2 is port

inl :
in2

in3

c

in
in
in

std logic_vector (15

std_logic_vector
std logic_vector

out std logic vector

(16
(17
(17

(

(
do
do
do
do
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downto
downto
downto
downto
downto
downto
downto
downto
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downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

p0, ppl
P4, PpP5
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pp8, pp9o,

( ppl2,

0, co,
1, c1,
s2, C2

'

pp3,
pp7,

( s3, c3,

4, c4,
8, s8,

( clo0,

s9, c9
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pp2,
pp6,

c0, sO0
cl, si

ppl0, c2,

ppl3,

ppll,

ppl4,

c4, s4 );
c5, s5 )

c6, s

ppl5, c7,

c5, c8,
s5, c9,
( s6, cé6,

s10,

’

cl2, slli,

wnto
wnto
wnto
wnto

NN PO

c7,

cll,
sl2,

s8 );
s9 );
clo, s

s7, cll,

clz, s
wlcc,

) ;

)
s2 );
c3, 83

6 );
s7 );

10 )

sll );

12 ),
wlcs

)i
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S : out std logic vector (17 downto 0));

end csa_15_0_16_1_ 17_2;

architecture
component ubha port(
x : in std logic;
y : in std_logic;
c : out std logic;
s out std logic);
end component;

component ubfa port(
x : in std logic;
Yy in std logic;
z in std_logic;
c out std logic;
s out std logic) ;

end component

begin
s(0) <= 1nl(0);
ul:ubha port map (in1(1), in2(1), c(2),
u2:ubfa port map (inl(2), in2(2), 1in3(2)
u3d:ubfa port map (inl(3), in2(3), in3(3)
u4 :ubfa port map (inl(4), in2(4), in3(4)
ub5:ubfa port map (inl(5), in2(5), in3(5)
u6:ubfa port map (inl(é), in2(6), in3(6)
u7:ubfa port map (inl(7), in2(7), in3(7)
ug:ubfa port map (inl(8), in2(8), in3(8)
u9:ubfa port map (inl(9), in2(9), in3(9)
ulO:ubfa port map (inl{10), in2(10), in3
ull:ubfa port map (inl1(11l), in2(11), in3
ul2:ubfa port map (inl(12), in2(12), in3
ul3:ubfa port map (inl(13), in2(13), in3
ul4:ubfa port map (inl{(14), in2(14), in3
uls5:ubfa port map (inl(15), in2(15), in3
ulé:ubha port map (in2{(16), in3(16), c(1
s(17) <= 1in3(17);

end structure;

library ieee;

use ieee.std logic 1164.all;

entity csa 17 0 17 2 18 3 is port (
inl . in std loglc vector ({17 downto 0
in2 : in std _logic_vector (17 downto 2
in3 : In std _logic_vector (18 downto 3
c : out std logic vector (18 downto 3
s : out std logic vector(18 downto 0

end csa_ 17 0 17 2 18 3;

structure of csa 15 0 16 1 17 2 is

e e e e e o~ —

architecture structure of csa 17 _0_17_2_18 3 is

component ubha port(

x : in std logic;
y : in std_logic;
¢ : out std logic;
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component

begin
s (0
s(1
uz
u3
ué
ub
u6é6
u7:
us8:
u9

ulO:
ull:

ul?2

ul3:
ul4d:
ulS:
ulé6:
ul7:

s(1

S

X

n o N

) <=
) <=

:ubha
:ubfa
:ubfa
:ubfa
:ubfa

ubfa
ubfa

:ubfa

ubf
ubf
:ubf
ubf
ubf
ubf
ubf
ubf
8) <

out std logic);
end component ;

ubfa port(

in std_logic;
in std _logic;
in std _logic;

out
out

inl{0);

inl(
port
port
port
port
port
port
port
port

a port
a port
a port
a port
a port
a port
a port
a port

= 1in3

end structure;

library ieee;
use ieee.std logic_1l64.all;

1);
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
(18) ;

std logic;
: std logic);
end component ;

entity csa 18 0 18 3 22 7 1is port

inl
in2
in3
c
S

architecture structure of csa 18 0 18 3 22 7 is

in
in
in
out
out

std loglc vector(18
std_logic_vector

std_logic_vector 22

(1
{
std_logic_vector (1l
(2

std logic_vector
end csa_ 18 0_18_3 22 7;

component ubha port (

b4
Y
c
S

in
in

std logic;
std logic;

out std logic;

out std logic)

end component ;

component ubfa port(

X

Y
z

in std logic;
in std_logic;
in std logic;

2), in2(2), c(3),
3), 1n2{(3), in3(3
4), 1n2(4), in3 (4
S), 1n2(5), in3(S
6), 1n2(6), in3(6
7), in2(7), in3(7
8), 1in2(8), 1in3(8
9), 1n2(9), 1in3(9
(10), in2(10), 1in
(11), in2(11), in
(12), in2(12), in
(13), in2(13), in
(14), in2(14), 1in
(15), in2(15), in
(16), in2(16), in
(17), in2(17), in
(
downto
downto
downto
19 downto
downto
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()
s

out std logic;
out std logic);
end component ;

mnnnnnnonn~—-
[ e
® U W N O

begin
s(0) <= 1nl(0);
s(1) <= 1inl(1);
s(2) <= inl(2);
u3:ubha port map (inl(3), in2(3), c(4), s(3)
u4:ubha port map (inl(4), in2(4), c(5), s(4)
uS:ubha port map (inl(5), in2(5), c(6), s(5)
u6:ubha port map (inl(6), in2(6), c(7), s(6)
u7:ubfa port map (inl(7), in2(7), in3(7), c!{
u8:ubfa port map (inl(8), in2(8), in3(8), c(
u9:ubfa port map (inl(9), in2(9), in3(9), c(
ul0:ubfa port map (inl(10), in2(10), in3(10)
ull:ubfa port map (inl(11), in2(11), in3(11)
ul2:ubfa port map (inl(12), in2(12), in3(12)
ul3:ubfa port map (inl(13), in2(13), in3(13)
ul4:ubfa port map (inl(14), in2(14), in3(14)
ul5:ubfa port map (inl(15), in2(15), in3(15)
ulé6:ubfa port map (inl(16), in2(16), in3(16)
ul7:ubfa port map (inl(17), in2(17), in3(17)
ul8:ubfa port map {(inl(18), in2(18), in3({18)
s(19) <= in3(19);
5(20) <= 1in3{20);
s(21) <= 1n3(21);
s(22) <= 1in3(22);

end structure;

library ieee;

use ileee.std logic_1164.all;

entity csa_19 4 20 5 21 6 is port ¢
inl in std loglc vector (19 downto 4);
in2 in std logic vector (20 downto 5);
in3 in std_logic vector (21l downto 6);
c out std logic_vector (21 downto 6);
s out std logic_vector (21 downto 4)) ;

end csa_ 19 4 20 5 21_6;

architecture structure of csa 19 4 20_5 21_6 is

component ubha port (

X in std logic;
Yy in std logic;
c out std logic;
s out std_logic);

end component ;

component ubfa port (

end component ;

ble in std _logic;
Yy in std logic;
z in std logic;
c out std logic;
<] out std logic);
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begin
s (4)
u5:u
u6:u
u7:u
us8:u
u9:u
ulQO:
ull:
ulz:
ul3:
ul4:
uls:
ulé:
ul7:
uls:
ulo:
u20:
s(21

< =
bha
bfa
bfa
bfa
bfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubfa
ubha

) <=

inl{4);

port map (inl(5), in2(5

port map (inl(6), 1in2(6

port map (inl(7), in2({7

port map (inl(8), in2(8

port map (inl1{(9), in2(9
port map (inl(10), in2
port map (inl(11), in2
port map (inl(12), in2
port map (inl(13), in2
port map (inl(14), in2
port map (inl(15), in2
port map (inl(16), in2
port map (inl(17), in2
port map (inl(18), in2
port map (inl(19), 1in2
port map {(in2(20), in3
in3(21);

end structure;

library ieee;
use ieee.std logic_1164.all;

entity csa_19 4 22 0 22 4 is port (

inl
in2
in3
c
S

in
in
in
out
out

std_logic_vector (19
std logic_vector (22
std_logic_vector(22
std logic_vector(23
std logic_vector (22

end csa 19 4 22 0 22 4;

downto
downto
downto
downto
downto

O WU O

vMOO QOO o000 —-

architecture structure of csa 19 4 22 0 22 4 is
component ubha port (

X

Y
c
s

i
i

n S

td logic;

n std logic;
out std_logic;
out std logic) ;
end component ;

component ubfa port (

td_logic;

n std _logic;
n std_logic;

X : in s
Yy i
z i
C out s
S out s

end component;

in2 {
in2 (
in2 (
in2 {

td logic;
td logic) ;

Q) ;
1);
2);

'

3);

port map (inl(4), in2(4), in3(4),
map (inl(5), in2(5), in3(5),

port
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s(7));
s(8));
s(9))
11), s
12), s
13), s
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15), s
16), s
17), s
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s(4));
s(5));
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ué6:ubfa port map (inl(6), in2(6), in3(6), c(7), s
u7:ubfa port map (inl(7), in2(7), 1in3 (7}, c(8), s
u8:ubfa port map (inl(8), in2(8), in3(8), c(9), s
ug9:ubfa port map (inl (%), in2(9), in3(9), c(10),
ul0:ubfa port map (inl(10), in2(10), in3(10), c{1l
ull:ubfa port map {(inl(11), in2(11), in3(11), c(1
ul2:ubfa port map (inl(12), in2(12), in3(12), c(1
ul3:ubfa port map (inl(13), in2(13), in3(13), c(1
ul4:ubfa port map (inl(14), in2(14), in3(14), c(1
ul5:ubfa port map (inl(15), in2(15), in3(15), c{(1
ulé6:ubfa port map (inl(16), in2(16), in3(16), c(1
ul7:ubfa port map (inl(17), in2(17), in3(17), c(1
ul8:ubfa port map (inl(18), in2(18}), in3(18), c(1
ul%:ubfa port map (inl(19), in2(19), in3(19), c(2
u20:ubha port map (in2(20), in3(20), c(21), s(20)
u2l:ubha port map (in2(21), in3(21), c(22), s(21)
u22:ubha port map (in2(22), in3(22), c(23), s(22)
end structure;
library ieee;
use ieee.std logic 1164.all;
entity csa 21 4 21 6 22 7 is port (
inl . in std loglc vector (21 downto 4);
in2 : in std _logic_vector (21 downto 6);
in3 : in std_logic_vector{22 downto 7);
c : out std logic_vector (22 downto 7);
s : out std logic_vector (22 downto 4));
end csa 21 4 21 6 22 7;
architecture structure of csa 21 4 21 6 22 7 is
component ubha port {
x : in std logic;
y : in std _logic;
¢ : out std logic;
s out std leogic);
end component ;
compornent ubfa port (
X : in std logic;
Y in std logic;
z in std logic;
c out std _logic;
s out std logic);
end component
begin
s(4) <= inl(4);
s(5) <= 1in1(5);
u6:ubha port map (inl(6), in2(6), c(7), s(6));
u7:ubfa port map (inl(7), in2(7), in3(7), c(8), s
u8:ubfa port map (inl(8), in2(8), in3(8), c(9), s
u9:ubfa port map (inl(9), in2(9), in3(9), c(10),
ulO:ubfa port map (inl1(10), in2(10), in3(10), c(1
ull:ubfa port map (inl(11), in2(11), in3(11), c(1
ul2:ubfa port map (inl(12), in2(12), in3(12), c(1
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uls

ulg:

ulb
ule

ul7:

uls
ulo

u20:

uzl
s(2

:ubfa
ubfa
:ubfa
:ubfa
ubfa
:ubfa
:ubfa
ubfa
:ubfa
2) <=

port map (inl(13), in2
port map (inl(14), in2
port map (inl(15), in2
port map (inl(le), in2
port map (inl (17}, in2
port map (inl(18), in2
port map (inl(19), in2
port map (inl(20), 1in2
port map (inl{21), in2

in3

end structure;

library ieee;
use leee.std logic_1164.all;

(22) ;

entity csa 22 0 23 5 31 13 is port

inl
in2
in3
c
s

in
in
in
out
out

std 1oglc vector (22
std logic_vector (23

std logic_vector (31
std_logic vector (24
std logic vector(31

end csa 22 0 23 5 31 13;

architecture
component ubha port (
x : in std _logic;

i

n S

td logic;

vy o

c : out std logic;
s out std logic);
end component ;

component ubfa port (

end component ;

x : i
Y i
z i
c o
s o

n s
n s
n s
ut s
ut s

td logic;
td logic;
td logic;
td logic;
td logic);

inl(0) ;

inl(1l);

inl(2);

inl(3);

inl (4);

port map (inl(5), in2(5
port map (inl(é), in2(6
port map (inl(7), in2(7
port map (inl(8), in2({(8

port map (inl(9), in2(9
port map (inl(10), in2
port map (inl(11), in2
port map (inl{(12), in2
port map (inl(13), in2
port map (inl(14), in?2
port map (inl(15), in2

(

downto O
downto 5
downto 1
downto 6

downto 0)});

structure of csa 22 0 23 5 31 13 1is
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ulé:ubfa port map (inl(16), in2(16), in3(16)
ul7:ubfa port map (inl(17), in2(17), in3(17)
ul8:ubfa port map (inl(18), 1in2(18), in3(18)
ul9:ubfa port map (inl(19), in2{(19), in3{19)
u20:ubfa port map (inl(20), in2(20), in3(20)
u2l:ubfa port map (inl(21), in2(21), in3(21)
u22:ubfa port map (inl(22), in2(22), in3(22),
u23:ubha port map (in2(23), in3(23), c(24), s(
s(24) <= 1in3(24);
s(25) <= 1in3(25);
s(26) <= 1in3(26);
S(27) <= 1inl3(27);
s(28) <= 1in3(28);
s(29) <= in3(29);
s(30) <= 1in3(30);
s{(31) <= in3(31);

end structure;

library ieee;

use ieee.std logic_1164.all;

entity csa 23 8 24 9 25 10 is port (
inl . in std loglc vector (23 downto 8) ;
in2 : in std _logic vector (24 downto 9);
in3 : in std logic_vector (25 downto 10);
c : out std logic_vector (25 downto 10);
S : out std logic_vector (25 downto 8)) ;

end csa_ 23 8 24 9 25 10;

architecture structure of c¢sa_23 8 24 9 25 10 is

component ubha port (

end component;

X in std_logic;
Yy in std logic;
c out std_logic;
S out std_logic);

component ubfa port(

end component;

begin

s(8) <= inl(8);

u9:ubha port map (inl(9), in2(9), c(10), s(9
ulO:ubfa port map (inl(10), in2(10), in3(10)
ull:ubfa port map {inl(11), in2(11), in3{11)
ul2:ubfa port map (inl(12), in2(12), in3(12)
ul3:ubfa port map (inl(13), in2(13), in3(13)
ul4:ubfa port map (inl(14), in2(14), in3(14)
ul5:ubfa port map (inl(15), in2(15), in3(15)
ulé:ubfa port map (inl(16), in2(16), in3(1s6)
ul7:ubfa port map (inl(17) in2(17), in3(17)

b d in std logic;
Yy in std logic;
zZ in std_logic;
c out std_logic;
s out std_logic) ;
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uls
ulo
uz20
uzl:
uz2
uz23
uz24
s (25

:ubfa
:ubfa
:ubfa

ubfa

:ubfa
:ubfa
:ubha

) <=

port
port
port
port
port
port
port

map
map
map
map
map
map
map

in3 (25) ;
end structure;

library ieee;
use ieee.std logic 1164.all;

entity csa 24_6_30_8_31_0 is port

inl
in2
in3
c
s

in std loglc Vector(24

in std logic_vector

out
out

end csa_24 6_30_8 31 0;

architecture
component ubha port (
X in std _logic;

Y
c
s

1

n

std logic;

out std logic;
out std logic);
end component;

component ubfa port (

X @ 1

n QN

i
i
o
o

n std logic;
n std logic;
n std logic;
ut std logic;

ut std logic);
end component

port map
port map
port map
port map

port
port
port
port
port
port
port
port

map
map
map
map
map
map
map
map

std logic_vector

(3

in std_logic_vector(Bl
(3

std _logic vector(3

, 1n2(18), in3(18
, in2(19), in3(19
, 1n2(20), in3 (20
, 1n2(21), in3 (21
, 1n2(22), 1in3(22
, 1n2(23), in3(23
, in3{24), c(25)
(
downto 6) ;
downto 8) ;
downto 0) ;
1 downto 7);
31 downto 0));

., c(7), s(6
, c(8), s(7
, in3(8), c
, in3(9), c
10), in3(10
11), in3(11
12}, in3{(12
13), 1in3(13
14), in3(14
15), in3(15
16), in3 (16
17), in3 (17

structure of csa 24 6 30 8 31_0 is
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uls
ulo
uz20
uz2l:
uz22
uz23
u24
uz25
uz6
u27:
uz28
u29:
u3o

:ubfa
:ubfa
:ubfa

ubfa

:ubfa
:ubfa
:ubfa
:ubha
:ubha

ubha

:ubha

ubha

:ubha

s{31) <=
end structure;

port
port
port
port
port
port
port
port
port
port
port
port
port

map
map
map
map
map
map
map
map
map
map
map
map
map

in3{31);

library ieee;
use leee.std logic 1164.all;

, in2
, in2

entity csa_25 8 25 10 26 11 is port (
in std loglc Vector(25
in std logic_vector

in std logic_vector 26

inl
in2
in3
c
5]

out
out

end csa 25 8 25 10 26 11;

architecture
component ubha port (
x in std _logic;
y in std logic;
c out std logic;
S

end component ;

out std logic) ;

component ubfa port (

X : 1

begin
s(8)
s(9)
ulo

ull:
:ubfa
:ubfa
:ubfa
:ubfa

ul2
ull
ul4
uls

ulé:
:ubfa
:ubfa

ul?
uls

ul9:

n o NN

i
i

out

O

<=

:ubha

ubfa

ubfa

ubfa

n std logic;
n std logic;
n std logic;

std logic;

ut std logic);
end component

inl(8) ;
<= 1n1(9) ;

port
port
port
port
port
port
port
port
port
port

map
map
map
map
map
map
map
map
map
map

(2

(
std logic vector(26
std logic_vector (26

(18), in3(
(19), in3(
(20), in3¢{
(21), in3(
(22), 1in3(
(23), in3(
(24), in3(
(25), c{(26
(26), c(27
(27), c(28
(28), c(29
(29), c(30
(30), c(31
downto 8)
downto 10
downto 11
downto 11
downto 8)

)
)i
)
)

1

nwn nn on on-~

o~~~ e

structure of csa 25 8 25 10 26 11 is
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uz2o0

:ubfa

uzl:
:ubfa
:ubfa
uzda:
:ubfa

s(26) <=
end structure;

uz22
uz23

uz5

ubfa

ubfa

port
port
port
port
port
port

in3 (2

library ieee;
use ieee.std logic 1164.all;

map
map
map
map
map
map
6);

, in3(

)
)
), 1n3
Yy, 1in3
), in3
), in3

entity csa 26 8 26_11 30 15 is port

inl
in2
in3
c
8

in
in
in
out
out

end csa 26 8 26 11 30 _15;

architecture structure of csa 26 8 26 11 30_15 is

component ubha port {

end component ;

X

Y
c
8

i
i

n

std logic;

n std _logic;
out std_logic;
out std_logic) ;

component ubfa port (
x : in std logic;
Y in std_logic;
z in std logic;
c out std _logic;
s out std _logic);

end component

begin
s (8
s (9

s(10)

ull
ul?2
ul3
ul4d
uls

ul?

)
)

<=

<=

<=

:ubha
:ubha
:ubha
:ubha
:ubfa
ulé6:
:ubfa

ul8:
:ubfa
:ubfa

ulsd
uz20

u2l:
:ubfa
:ubfa
:ubfa
:ubfa
:ubfa

uz22
uz23
uz4
uz2s
uz26

ubfa

ubfa

ubfa

inl (8} ;
inl(9) ;
inl1(10) ;

port
port
port
port
port
port
port
port
port
port
port
port
port
port
port
port

map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map

std_logic vector(26
std logic_vector (26
std logic_vector (30
std_logic_vector
std _logic_vector(30

{
(
(27
(

downto 8
downto 1
downto 1
downto 1
downto 8

(2

, 1n3(2

0)
1)
2)

(23)
(24)
(25)

'

i
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s(27) <= 1
s5(28) <= 1
s(29) <= 1
s(30) <= 1

end structure;

library ieee;
use ieee.std logic 1164.all;

entity csa 27 12 28_13 29 14 is port (

inl
in2
in3
c
S

in
in
in
ou
ou

std loglc vector (2
std logic_vector (28
std_logic_vector(
t std logic vector(2
t std logic vector (2

end csa_ 27 12 28 13 29 14;

architecture
compornent

X in

Y in
] out

S out

downto 1
downto 1
downto 1
downto 1
downto

structure of csa 27 12 28_13 29 14 is

ubha port (
std logic;
std logic;
std logic;
std logic);

end component ;

component
X : in
Y in
z in
c out
S out

end component ;

begin

s(12) <= 1
:ubha p
:ubfa p
:ubfa p
:ubfa p
:ubfa p
ulsg:

ul3l
uléd
ulb
ulé
ul?

uls
u20
u2l

uz23
uz4
uz25s
u26
u227
uz28

ubfa p

:ubfa p
:ubfa p
:ubfa p
uz2:

ubfa p

:ubfa p
:ubfa p
:ubfa p
:ubfa p
:ubfa p
:ubha p

s(29) <= 1
end structure;

library ieee;

ubfa port(
std logic;
std logic;
std_logic;
std logic;
std logic);

nl(12);

ort map (inl{(13), in2
ort map (inl{(14), in2
ort map (inl(15), in2
ort map (inl(16), in2
ort map (inl(17), in2
ort map (inl(18), in2
ort map (inl(19), in2
ort map (inl(20), in2
ort map (inl{(21), in2
ort map (inl(22), 1in2
ort map (inl(23), in2
ort map (inl(24), in2
ort map (inl(25), in2
ort map (inl(26), in2
ort map (inl(27), in2
ort map (in2({28), in3

n3(29);
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use ieee.std logic_1164.all;

entity csa 27 12 30_8 30 _12 is port |

inl . in std loglc “vector (27 downto 12);
in2 . in std logic vector (30 downto 8);

in3 . in std _logic vector (30 downto 12);
C : out std logic_ vector (31 downto 13);
s . out std logic vector(30 downto 8));

end csa_27 12 30_8_30_12;

architecture structure of csa_27_12_30_8 30_12 1is

component

X : i
i

ubha port (

n std logic;
y : in std logic;
c : out std logic;
s : out std logic);
end component ;

component ubfa port(

X : in std logic;
Yy in std_logic;
z in std_logic;
c out std logic;
S out std_logic);

end component,

begin
s(8) <= in2(8);
s(9) <= in2(9);
s{10) <= in2(10);
s(11) <= in2(11);
ul2:ubfa port map (inl(12), in2(12), in3(12),
ul3:ubfa port map (inl{13), in2(13), in3{13),
ul4:ubfa port map (inl(14), in2(14), in3(14),
ul5:ubfa port map (inl(15), in2(15), in3 (15},
ulé:ubfa port map (inl(16), in2(16), in3(16),
ul7:ubfa port map (inl(17), in2(17), in3(17),
ul8:ubfa port map (inl(18), in2(18), in3(18),
ul9:ubfa port map (inl(19), in2(19), in3(19),
u20:ubfa port map (inl(20), in2(20), in3(20)
u2l:ubfa port map (inl(21), in2(21}, in3(21),
u22:ubfa port map (inl(22), in2(22), in3(22),
u23:ubfa port map (inl(23), in2(23), in3(23),
u24:ubfa port map (inl(24), in2(24), in3(24),
u25:ubfa port map (inl(25), in2(25), in3(25),
u26:ubfa port map (inl(26), in2(26), in3(26),
u27:ubfa port map (inl(27), in2(27), in3(27),
u28:ubha port map (in2(28), in3(28), c(29), s
u29:ubha port map (in2(29), in3(29), c(30), s
u30:ubha port map (in2(30), in3(30), c(31), s

end structure;

library ieee;
use ieee.std logic_l1164.all;

entity csa 29 12 29 14_30_15 is port (
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inl
in2
in3
c
s

i
i
i
o
o

n std_logic vector (29
n std logic_vector(29
n std logic vector (30
ut std _logic vector (30
ut std_logic_vectoxr (30

end csa_29_12 29 14 _30_15;

architecture
component

X in

Yy in

c ou

8 ou

downto 12
downto 14

downto 15
downto 15);
downto 12));

structure of csa 29 12 29 14 30 15 is

ubha port (
std logic;
std_logic;
t std _logic;
t std logic)

end component ;

compone
X

n 0N~

nt
in
in
in
ou
ou

ubfa port (
std_logic;
std_logic;
std _logic;
t std logic;
t std logic);

end component

begin

s(12) <=
s{13) <=

ul4:ubh
uls5:ubf
ulé :ubf
ul?:ubf
ul8:ubf
ul9:ubf
u20:ubf
uz2l:ubf
u22:ubf
u23:ubf
u24 :ubf
u25:ubf
u26:ubf
uz27:ubf
u28:ubf
u29:ubf
g8(30) <

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

inl(12);

inl (13) ;

port map (inl{14), in2
port map {(inl(15), in2
port map (inl(lse), in2
port map (inl(17), in2
port map (inl(18), in2
port map (inl(19), in2
port map (inl(20), in2
port map (inl(21), in2
port map (inl(22), in2
port map (inl(23), in2
port map (inl(24), in2
port map (inl(25), in2
port map (inl(26), in2
port map (inl(27), in2
port map (inl(28), inZ2
port map (inl(29), in2
in3{30) ;

end structure;

library ieee;
use ieee.std logic_1164.all;

entity ubha is port (

X : 1in
Yy in
C out
S out
end ubha

S
S
S
S

td logic;
td_logic;
td_logic;
td logic);

architecture behav of ubha is
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begin
c <= x and vy;
S «= X XOr Yy;
end behav;

library ieee;
use ieee.std logic _1l164.all;

entity ubfa is port (

x : in std logic;

in std logic;

in std logic;

out std logic;

: out std logicy;
end ubfa;

n Qo NX

architecture behav of ubfa is

begin
c <= (xandy ) or ( y and z ) or ( z and x );
S <= X XOY Yy XOr Z;

end behav;

library ieee;
use ieee.std logic_ll64.all;

entity cla is port (

X : in std logic vector ( 31 downto O );

Yy : in  std logic _vector ( 31 downto 7 );

s : out std logic_vector ( 31 downto 0 ));
end cla;

architecture structure of cla is
component gpgenerator port (

a : 1n std logic;
b in std logic;
g : out std logic;
P out std logic);

end component ;

component claunit 25 port (
g : in std_logic_vector ( 24 downto 0 );
p : in std logic_vector ( 24 downto 0 );
c : out std logic vector ( 25 downto 1 ));
end component;

signal g : std logic_vector ( 31 downto 7 );
signal p : std logic_vector ( 31 downto 7 );
signal c¢ : std_logic vector ( 32 downto 8 );
begin
s(0) <= x(0);
s(1) <= x(1);
s(2) <= x(2);
s(3) <= x{(3);
s(4) <= x(4);
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ul0:gpgenerator port map

ull:gpgenerator port map

ul2:gpgenerator port map

ul3:gpgenerator port map

ul4:gpgenerator port map

ulS:gpgenerator port map

ulé6:gpgenerator port map

ul7:gpgenerator port map

ul8:gpgenerator port map

ul9:gpgenerator port map

u20:gpgenerator port map

u2l:gpgenerator port map

uz22:gpgenerator port map

u23:gpgenerator port map

uz24 :gpgenerator port map
u25:claunit 25 port map

P

(g,

end structure;

library ieee;
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use ieee.std logic 1164.all;

entity gpgenerator is port (
a : in std logic;
b in std logic;
g : out std logic;
p : out std logic);
end gpgenerator;

architecture behav of gpgenerator is

begin
g <= a and b;
p <= a xor b;
end behav;

library ieee;
use ieee.std logic 1164.all;

entity claunit 25 is port {
g : in std_logic vector (
p : in std logic vector (
c : out std _logic_ vector (
end claunit 25;

24 downto 0 ) ;
24 downto 0 ) ;
25 downto 1 ));

architecture claunit_25 of claunit 25 is

begin

c(l) <= g(0);

c(2) <= g(l) or ( p{l) and

c(3) <= g(2) or ( p(2) and

c(4) <= g(3) or ( p(3) and
{ p(3) and p(2) and p(1)

c(5) <= g(4) or ( p(4) and
( p(4) and p(3) and p(2)
{ p(4) and p(3) and p(2)

c(6) <= g(5) or ( p{(5) and
( p(5) and p(4) and p(3)
( p(5) and p(4) and p(3)
{ p(5) and p(4) and p(3)

c(7) <= g(6) or ( p(6) and
( p(6) and p(5) and p(4)
{ p(6) and p(5) and p(4)
( p(6) and p(5) and p(4)
( p(6) and p(5) and p(4)

c(8) <= g(7) or ( p(7) and
{ p{7) and p(6) and p(5)
( p{7) and p(6) and p(5)
{ p(7) and p{(6) and p(5)
{ p(7) and p(6) and p(5)
( p(7) and p(6) and p(5)

g(o)y );

c{(9) <= g(8) or ( p(8) and
{ p(8) and p(7) and p(6)
( p(8) and p(7) and p(6)
( p(8) and p(7) and p(6)
( p(8) and p(7) and p(6)

)

)

g(o) );
g(l) ) or ( p(2) and p(1l}) and g(0)
g{2) ) or ( p(3) and p(2) and g(1)
and g(0) );
g(3) ) or ( p(4) and p(3) and g(2)
and g(l1) ) or
and p(l) and g(0) );
g(4) ) or ( p(5) and p(4) and g(3)
and g{2) ) or
and p(2) and g(l) ) or
and p(2) and p(l) and g(0) );
g(5) ) or ( p(6) and p(5) and g(4)
and g{(3) ) or
and p(3) and g(2) ) or
and p(3) and p(2) and g(1) ) or
and p(3) and p{(2) and p(l) and g(0)
g(6) ) or ( p(7) and p(6) and g(5)
and g(4) ) or
and p(4) and g(3) ) or
and p(4) and p(3) and g(2) ) or
and p(4) and p(3) and p(2) and g(1)
and p(4) and p(3) and p(2) and p(1)
g(7) ) or ( p(8) and p(7) and g(6)
and g(5) ) or
and p(5) and g(4) ) or
and p(5) and p(4) and g(3) ) or
and p(5) and p(4) and p{(3) and g(2)
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( p(8) and p(7) and p(6) and p(5) and p(4) and p(3) and p(2) and
p(1) and g(0) };
c(10) <= g(9) or ( p(9) and g(8) ) or ( p(9) and p(8) and g(7) ) or
{ p(9) and p(8) and p(7) and g(6) ) or
( p(9) and p(8) and p(7) and p(6) and g(5) } or
( p(9) and p(8) and p(7) and p(6) and p(5) and g(4) ) or
( p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and g(3) ) or
( p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and p(3) and
g(2) ) or
( p{9) and p(8) and p(7) and p(6) and p(5) and p(4) and p(3) and

{ p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and
p(3) and p{(2) and p(1l) and g(0) );
c(11) <= g(10) or ( p(10) and g(9) ) or ( p(l10) and p(9) and g(8) )

or

( p(10) and p(%9) and p(8) and g(7) ) or

{ p(10) and p(9) and p(8) and p(7) and g(6) ) or

( p(10) and p(9) and p(8) and p(7) and p(6) and g(5) ) or

( p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and g(4) )
or

( p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and

( p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and
p(3) and g(2) ) or
{ p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and
p(4) and p(3) and p(2) and g(1l) ) or
( p(10) and p(9) and p(8) and p(7) and p(é6) and p(5) and
p(4) and p(3) and p(2) and p(l) and g{(0) );
c(12) <= g(11) or ( p(11) and g(10) ) or { p(11l) and p(10) and g(9)
) or
( p(11) and p(10) and p(9) and g(8) ) or
( p(11) and p(10) and p(9) and p(8) and g(7) ) or
( p(11) and p(10) and p(9) and p(8) and p(7) and g(6) ) or
( p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and g(5) )

( p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)

( p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)
and p(4) and g(3) ) or
( p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and
p(5) and p(4) and p(3) and g( ) )} or
( p{11) and p(10) and p(9) and p(8) and p(7) and p(6) and
p(5) and p(4) and p(3) and p(2) and g(l) ) or
{ p(11) and p(10) and p(9) and p(8) and p(7) and p{s6) and
p(5) and p(4) and p(3) and p(2) and p(l) and g(0) );
c(13) <= g{12) or ( p(12) and g(1l1l) ) or ( p(12) and p(l1) and g(10)
) or
( p(12) and p(11) and p{(10) and g(9) ) or
{ p(12) and p(11) and p(10) and p(9) and g(8) ) or
( p(12) and p(11) and p(10) and p(9) and p(8) and g(7) ) or
( p(12) and p(11) and p(10) and p(9) and p(8) and p(7) and g(6) )

or
( p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and p(6)
and g(5) ) or
( p(12) and p(11) and p(10) and p(9) and p(8) and p(7) and
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p{6) and p(5) and g(4) ) or
( p{l2) and p(ll) and p(l0) and p(9%) a
p(6) and p(5) and p(4) and g{3) ) or
( p(l2) and p(11l) and p(10) and p(9) a
p(6) and p(5) and p(4) and p(3) and
{ p(12) and p(1l1l) and p(10) and p(9) a
p(6) and p(5) and p(4) and p(3) and
( p(12) and p(11) and p(10) and p(9) a
and p(5) and p(4) and p(3) and p(2) and p(1)
c(14) <= g(13) or ( p(13) and g(12) ) or
) or
( p(13) and p(12) and p(11l) and g(10)}
( p(13) and p(12) and p(11) and p(10)
{ p(13) and p(12) and p(11l) and p(10)
( p(13) and p(12) and p(1l1l) and p(10)
) or
{ p(13) and p(12) and p(1l1l) and p{(10)
and g(6) ) or
( p(13) and p(12) and p{(ll) and p(10)
p(7) and p(6) and g(5) ) or
( p(13) and p(12) and p(11l) and p{10)
p(7) and p(6) and p(5) and g(4) ) or
( p(13) and p(12) and p(11l) and p(10)
p(7) and p(6) and p(5) and p(4) and
( p(13) and p(12) and p(11l) and p(10)
p(7) and p(6) and p(5) and p{4) and
( p(13) and p(12) and p(11) and p(10)
p{(7) and p(6) and p(5) and p(4) and
{ p(13) and p(12) and p(11l) and p(10)
p(7) and p(6) and p(5) and p(4) and
g(o) J);
c(15) <= g(1l4) or ( p(14) and g(13) ) or
) or
{ p(14) and p(13) and p{(1l2) and g(11)
( p(l4) and p(13) and p(1l2) and p(1l1)
( p(14) and p(13) and p(12) and p(11l)
( p(14) and p(13) and p(12) and p(11)
) or
( p(14) and p(13) and p(12) and p(11)
p(8) and g(7) ) or
{ p(l4) and p(13) and p(12) and p(11)
p(8) and p(7) and g(6) } or
( p(14) and p(13) and p(1l2) and p(11)
p(8) and p(7) and p(6) and g(5) ) or
( p(14) and p(13) and p(12) and p(11)
p(8) and p(7) and p(6) and p(5) and
( p(l4) and p(13) and p(1l2) and p(11)
p(8) and p(7) and p(6) and p(5) and
( p(14) and p(13) and p(1l2) and p(11)
p(8) and p(7) and p(6) and p(5) and
{ p(14) and p(13) and p(12) and p(11)
p(8) and p(7) and p(6) and p(5) and
g(l) ) or
( p(l4) and p(13) and p(12) and p(1l1)
p(8) and p(7) and p(6) and p(5) and
p(1l) and g(0) );
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nd p(8) and p(7) and
nd p(8) and p(7)
g(2) ) or

nd p(8) and p(7)
p(2) and g(1) )
nd p{(8) and p(7)
and g(0) );

( p(13) and p(12)

and

and
or
and p(6)

and g(11)

) or

and g{(9)
and p(9)
and p(9)

)
and g (7)

and p(9) and p(7)

and p(9) and

and p(9) and
and p(9)
g(3) ) or
and p(9)
p(3) and
and p(9)
p(3) and
and p(9)
p(3) and

and

( and
)

and p(8) and
p(2) and g(1)
and p(8) and
p(2) and p(1)

)

or
and

( p(14) and p(13) and g{(12)
) or

and g(10)
and p(10)

and p(10)

) or
and
and

) or
and g (8)
and

and p(10) and

and p(10) and and

and p(10) and and

and p(10) and and
g{4) ) or

and p{10) and
p(4) and g(3)
and p(10) and
p(4) and p(3)
and p(10) and

p(4) and p(3)

p(9) and
) or

p(9) and
and g (2)
p(9) and

and p(2)

)} or
and

and p(10) and
p(4) and p(3)

p(9) and

and p(2) and



c(16) <= g(15) or ( p(15) and g(14) ) or ( p(15) and p(l14) and g(13)

( p(15) and p(14) and p(13) and g{12) ) or
( p{l5) and p(14) and p(13) and p(12) and g(11l) ) or
( p(15) and p(14) and p(13) and p(12) and p(11l) and g(10) ) or
( p(15) and p(14) and p(13) and p(12) and p(11) and p(10) and
g(9) ) or
( p(15) and p(14) and p{13) and p(12) and p(1l) and p(10) and
p(9) and g(8) )} or
( p{15) and p(14) and p(13) and p{(l12) and p(11) and p(10) and
p(9) and p(8) and g(7) ) or
( p(15) and p(14) and p(13) and p(12) and p(11l) and p(10) and
p(9) and p(8) and p(7) and g(6) ) or
( p(15) and p(14) and p(13) and p(12) and p(1 and p(10) and
p(9) and p(8) and p(7) and p(6) and g(5) ) or
( p(15) and p(l4) and p(13) and p(l2) and p(11) and p(10) and
p(9) and p(8) and p(7) and p(6) and p(5) and g(4) ) or
( pl1 and p(14) and p(13) and p(12) and p(11) and p(10) and
p( ) and p(8) and p(7) and p(6) and p(5) and p(4) and g(3) ) or
( p(1 ) and p(l4) and p(13) and p(12) and p(11) and p(10) and
p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and p(3) and
g(2) ) or
( p(15) and p(14) and p(13) and p(12) and p(ll) and p(l0) and
p{%9) and p(8) and p(7) and p(6) and p(5) and p(4) and p(3) and
p(2) and g(l) ) or
( p(15) and p(14) and p(13) and p(12) and p(1l1) and p(10) and
p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and p(3} and
p(2) and p(1) and g(0) );
c{17) <= g(16) or ( p(l6) and g(15) ) or ( p{(l6) and p(1l5) and g(14)
) or
( p(l6) and p(1l5) and p(14) and g(13) ) or
( p(16) and p(15) and p(14) and p(13) and g(12) ) or
( p(16) and p(15) and p(14) and p(13) and p(12) and g(11) ) or
( p(16) and p(1l5) and p(14) and p(13) and p(12) and p(11) and
g(10) ) or
( p{le) and p(1l5) and p(14) and p(13) and p(12) and p(l1) and

)
9
{ p(16) and p(15) and p(14) and p and p(12) and p(1l1l) and
)
)

(13)
p(10) and p(9) and g{(8) ) or ( p(16) and p(15) and p(14) and
p(13) and p(12) and p(11) and p(10) and p(9) and p(8) and g(7)
) or
( p(16) and p(15) and p(14) and p{(12) and p(12) and p(11l) and
p(10) and p(9) and p(8) and p(7) and g(6) ) or
( p(16) and p(15) and p(14) and p(13) and p(12) and p(11) and
p(10) and p(9) and p(8) and p(7) and p(6) and g(5) ) or
( p(16) and p(15) and p(14) and p(13) and p(12) and p(11) and
p(10}) and p(9) and p(8) and p(7) and p(6) and p(5) and g(4) )
or
( pf{le) and p(15) and p(14) and p(13) and p(l2) and p(1l1l) and
p(10) and p(9) and p(8) and p(7) and p(s) and p{(5) and p(4) and
g(3) ) or
( p{16) and p(15) and p(14) and p(13) and p(12) and p(11) and
p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and
p(3) and g(2) ) or
( p(16) and p(15) and p(14) and p{13) and p(12) and p(ll) and
p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and p(4) and
p(3) and p(2) and g(l1) ) or
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( p(le) and p(l5) and p{(14) and p(13) and p(12) and p(11) and
p(l1l0) and p(%) and p(8) and p(7) and p(6) and p(5) and p{4) and
p(3) and p(2) and p(l) and g(0) );
c(18) <= g{17) or ( p(17} and g(16) ) or ( p(1l7) and p{(16) and g(15)
) or
( p(17) and p(16) and p(1l5) and g(14) ) or
( p(17) and p(16) and p(15) and p(14) and g(13) ) or
( p(17) and p(l6) and p(15) and p(14) and p(13) and g(12) ) or
{ p(17) and p(1l6} and p(15) and p(14) and p(13) and p(12) and
g(l1l) ) or
( p(17) and p(16) and p(15) and p(14) and p(13) and p(12) and
p(11) and g(10) ) or
( p(17) and p(16) and p(15) and p(l4) and p(13) and p(12) and
p(11) and p(10) and g(9) ) or
( p(17) and p(16) and p(15) and p(l4) and p(13) and p(12) and
p(11) and p(10) and p(9) and g(8) ) or
( p(17) and p(16) and p(15) and p(l14) and p{(13) and p(12) and
p(11l) and p(10) and p(9) and p(8) and g(7) ) or
( p(17) and p(16) and p(15) and p(l1l4) and p(13) and p(12) and
p(1l1l) and p(10) and p(9) and p(8) and p(7) and g(6) ) or
( p(17) and p(16) and p(15) and p(1l4) and p(13) and p(12) and
p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and g(5) )
or
( p(17) and p(l6) and p(15) and p(l4) and p(l13) and p(12) and
p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)
and g(4) ) or
( p(17) and p(16) and p(15) and p{l4) and p(13) and p(12) and
p(11l) and p{10) and p(9) and p(8) and p(7) and p(6) and p(5)
and
p(4) and g(3) ) or
{ p{17) and p(16) and p(15) and p(14) and p(13) and p(12) and
p(1l) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)
and
p{4) and p(3) and g{2) ) or
( p(17) and p(16) and p(1l5) and p(l4) and p(13) and p(12) and
11) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)
and
p(4) and p(3) and p(2) and g(l) ) or
( p(17) and p(16) and p(15) and p(l4) and p(13) and p(12) and
p(11) and p(10) and p(9) and p(8) and p(7) and p(6) and p(5)
and
p{4) and p(3) and p(2) and p(1) and g(0) );
c(19) <= g(18) or ( p{18) and g(17) ) or ( p(18) and p(17) and g(16)
) or
{ p(18) and p(17) and p{l6) and g(15) )} or
{ p(18) and p(17) and p(16) and p{(15) and g(14) ) or
( p(18) and p(17) and p(16) and p(1l5) and p(14) and g(13) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
g(l2) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
p(12) and g(11) ) or
( p(18) and p(17) and p(l6) and p(15) and p(14) and p{(13) and
p(12) and p(ll) and g{(10) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
p(l2) and p(1l1l) and p(10) and g(9) ) or
( p{18) and p(17) and p(l6) and p(1l5) and p(14) and p(13) and
p(12) and p(11l) and p(10) and p(9) and g(8) } or



)

)

( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
p(12) and p(ll) and p(10) and p(9) and p(8) and g(7) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p{(13) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and g(6)
or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13}) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and p(6)
and g(5) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and
p(6) and p(5) and g(4) ) or
( p(18) and p(17) and p(16) and p(15) and p(1l4) and p(13) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and p(6)
and
p(5) and p(4) and g(3) ) or
( p(18) and p(17) and p(16) and p(15) and p(1l4) and p(13) and
p(12) and p(11) and p(10) and p(9) and p(8) and p(7) and p(6)
and p(5) and p(4) and p(3) and g(2) ) or
( p(18) and p(17) and p(16) and p(l5) and p(14) and p(13) and
p(12) and p(11) and p(10) and p(9) and p(8) and p(7) and p(6)
and
p(5) and p(4) and p(3) and p(2) and g(1) ) or
( p(18) and p(17) and p(16) and p(15) and p(14) and p(13) and
p(12) and p(11) and p(10) and p(9) and p{(8) and p(7) and p(6)
and
p(5) and p(4) and p(3) and p(2) and p(1) and g(0) );
c{20) <= g(19) or ( p(19) and g(18) ) or { p(19) and p(18) and g(17)
) or
( p(19) and p(18) and p(17) and g(16) ) or
( p(19) and p(18) and p(17) and p(l6) and g(15) ) or
( p(19) and p(18) and p(17) and p(1l6) and p(15) and g(14) ) or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
g(13}) ) or
{ p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
p(13) and g(12) ) or
( p(19) and p(18) and p{17) and p{(16) and p(15) and p(l4) and
p(13) and :
p(12) and g(11) ) or
( p(19) and p(18) and p(l17) and p(16) and p(15) and p(14) and
p(13) and
p(12) and p(1l1l) and g(10) ) or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
p(13) and
p(12) and p(11l) and p(10) and g(9) ) or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
p(13) and
p(12) and p(11) and p(10) and p(9) and g(8) ) or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(l4) and
p(13) and
p(12) and p(11) and p(10) and p(9) and p(8) and g(7) ) or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
p(13) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and g(6)
or
( p(19) and p(18) and p(17) and p(16) and p(15) and p(14) and
p(13) and
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p(l12) and p(11) and p(10) and p{(9) and p(8) and p(7) and p(6)
and g{5) ) or
( p(19) and p(18) and p(l17) and p(l6) and p(l5) and p(l4) and
p(13) and p(l2) and p(11) and p(l0) and p(2) and p(8) and p(7)
and
p(6) and p(5) and g{4) ) or
( p(19) and p(18) and p(l7) and p(l1l6) and p{(15) and p(l4) and
p(13) and
p(l2) and p(1l1l) and p(10) and p(9) and p(8) and p(7) and p(6}
and
p(5) and p(4) and g(3) ) or
{ p(19) and p(18) and p(17) and p(l6) and p(1l5) and p(l4} and
p(1l3) and
p(l2) and p(11) and p(10) and p(9) and p(8) and p(7) and p(6)
and p{(5) and
p(4) and p(3) and g{(2) )} or
( p(19) and p(18) and p(l7) and p(l6) and p(l5) and p(l1l4) and
p(13) and
p(12) and p(1l1l) and p(10) and p(9) and p(8) and p(7) and p(6)
and p(5) and
p(4) and p(3) and p(2) and g(l) ) or
( p(19) and p(18) and p(17) and p(le) and p(1l5) and p(l4) and
p(13) and
p(12) and p(11) and p(10) and p(9) and p(8) and p(7) and p(6)
and p(5) and
p(4) and p(3) and p{(2) and p(l) and g{0) );
c(21) <= g(20) or ( p(20) and g{(19) ) or ( p(20) and p(19) and g(18)
) or

( p(20) and p(19) and p(1l8) and g(17} )} or

{ p(20) and p(19) and p(18) and p(17) and g(1l6) ) or

( p(20) and p(l19) and p(1l8) and p(l17) and p(l6) and g(l5) ) or

( p(20) and p{(19) and p(1l8) and p(1l7) and p(16) and p(1l5) and
g(l4) ) or

( p(20) and p(19) and p(18) and p(l7) and p(1l6) and p(1l5) and

p(l4) and g(13) ) or

( p(20) and p(19) and p(l1l8) and p(l7) and p(l6) and p(1l5) and
p(l4) and p(1l3) and g(l2) ) or
( p(20) and p(19) and p(18) and p(1l7) and p(l6) and p(1l5) and
p(l4) and p(1l3) and p{(l2) and g(l1ll) ) or
( p(20) and p(19) and p(18) and p(17) and p(l6) and p{(l5) and
p(l4) and p(13) and p(1l2) and p(ll) and g(10) )} or
( p(20) and p(19) and p(18) and p(l17) and p(l6) and p(l5) and
p(l4) and p(13) and p(l2) and p(ll) and p(l1l0) and g(9) ) or
( p(20) and p{(19) and p(l8) and p(17) and p(l6) and p(1l5) and
p(l4) and p(13) and p(1l2) and p(11l) and p(10) and p(9) and g(8)
) or
( p(20) and p(19) and p(18) and p(17) and p(16) and p(15) and
p(l4) and
p(13) and p(1l2) and p(1l1l) and p(10) and p(9) and p(8) and g(7)

( p(20) and p(19) and p(1l8) and p(l7) and p(l6) and p(1l5) and
p(13) and p{(12) and p(1l1l) and p(1l0) and p(9) and p(8) and p(7}

( p(20) and p(19) and p(18) and p(17) and p(l6) and p(1l5) and
p(14) and p(13) and p(12) and p(ll) and p(10) and p(9) and p(8)
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p(7) and p(6) and g(5) } or
( p(20) and p(19) and p(18) and p(17) and p(16) and p(15) and
p(14) and
p(13) and p(1l2) and p(11l} and p(10) and p(9) and p(8) and p(7)
and
p(6) and p(5) and g(4) ) or
( p(20) and p(19) and p(18) and p(17) and p(l6) and p(1s) and
p{1l4) and
p(13) and p(12) and p(1l1l) and p(10) and p(9) and p(8) and p(7)
and
p(6) and p(5) and p(4) and g(3) ) or
( p(20) and p(19) and p(18) and p(17) and p(1l6) and p(15) and
p(14) and
p(13) and p(12) and p(1ll) and p(10) and p(9) and p(8) and p (7}
and
p(6) and p(5) and p(4) and p{3) and g(2) ) or
( p(20) and p(19) and p(18) and p(17) and p(16) and p(15) and
p(1l4) and
p(13) and p(12) and p(11l) and p(l10) and p(9) and p(8) and p(7)
and
p(6) and p(5) and p(4) and p(3) and p(2) and g(l) ) or
( p(20) and p(19) and p(18) and p(17) and p(16) and p(1lS) and
p{(14) and
p(13) and p(12) and p(11) and p(10)} and p(9) and p(8) and p(7)

and
p(6) and p(5) and p(4) and p(3) and p(2) and p(l) and g(0) );
c(22) <= g(21) or ( p{(21l) and g(20) ) or ( p(21) and p(20) and g(19)
) or
( p(21) and p(20) and p(19) and g(18) ) or
( p(21) and p(20) and p(19) and p(18) and g(17) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and g(l6) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p{l6) and
g(15) ) or
( p{21) and p(20) and p(19) and p(18) and p(17) and p(1l6) and
p(15) and g(14) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p(16) and
p(15) and p(l4) and g{(13) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p(le) and
p(15) and p(14) and p(13) and g(12) ) or
{ p(21) and p(20) and p(19) and p(18) and p(17) and p(16) and
p(15) and p(14) and p(13) and p(12) and g(1l1l) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p(le) and
p(15) and p(14) and p(13) and p{12) and p(11l) and g(l0) ) or
( p(21) and p(20) and p(19) and p{18) and p(17) and p(l6) and
p(15) and p(14) and p(13) and p(12) and p(11) and p(10) and
g(9) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p(16) and
p(15) and
p(14) and p(13) and p(l2) and p{(11l) and p{(10) and p(9) and g(8)
) or

( p(21) and p(20) and p(19) and p(18) and p(17) and p{l6) and

p(14) and p(13) and p(l12) and p(11) and p(10) and p(9) and p(8)
and g(7) ) or
( p(21) and p(20) and p(19) and p(18) and p(17) and p(l6) and
p(15) and p(14) and p(13) and p(12) and p(11l) and p(10) and
p(9) and p(8) and p(7) and g(6) ) or



{ p(21) and p{(20) and p(19)
p(15) and p(l4) and p(13)
p(9) and p(8) and p(7) an
( p(21) and p(20) and p(19)
p(15) and p(l14) and p(13)
p(9) and p(8) and p{7) an
( p(21) and p(20) and p(19)
p(15) d p(1l4 > and p(13)
p{9) and p(8) and p(7) an
( p(21) and p(20) and p(19)
p(1l5) and
p{(l4) and p(13) and p(1l2)
and
p(7) and p(6) and p(5) an
( p(21) and p(20) and p(19)
p(15) and
p(l4) and p(13) and p(12)
and
p(7) and p(6) and p(5) an
( p(21) and p(20) and p(19)
p(1s) and
p(l14) and p(13) and p(1l2)
and
p(7) and p(6) and p(5) an
gl(0) );
c(23) <= g(22) or ( p{22) and
) or
( p(22) and p(21) and p(20)
( p(22) and p(21) and p(20)
( p(22) and p(21) and p(20)
( p(22) and p(21) and p(20)
g(l6) ) or
( p(22) and p(21) and p(20)
p(l6) and g(15) ) or
( p(22) and p(21) and p(20)
p(16) and p(1l5) and g(14)
( p(22) and p(21) and p(20)
p(l6) and p(1l5) and p(14)
( p(22) and p(21) and p(20)
p(l6) and p(l15) and p(1l4)
( p(22) and p(21) and p(20)
p(l6) and p(15) and p{14)
( p(22) and p(21) and p(20)
p(l6) and p(15) and p{l4)
g(l0) ) or
{ p(22) and p(21) and p(20)
p(l6) and
p(15) and p(1l4) and p(1l3)
g(9) ) or
( p(22) and p(21) and p(20)
p(lé) and
p(15) and p(l14) and p(13)
p(9) and g(8) ) or
( p(22) and p(21) and p(20)
p(l6) and p(15) and p(14)
p(l0) and p(9) and p(8) a
( p(22) and p(21) and p(20)

and p(18)
and p(12)
d p{6) and
and p(18)
and p(l2)
d p(6) and
and p(18)
and p(12)
d p(6) and
and p(18)

and p(1l1)

d p(4) and
and p(18)

and p(11)

d p{(4) and
and p(18)

and p(11)

d p(4) and

g(21) )

and
and
and
and

and

and
) or
and
and
and
and
and
and
and
and
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and p(

and

and p(l17) and p(l6) and
and p(11) and p{(10) and
g(5) ) or

and p{l17) and p(l6) and
and p(ll) and p(10) and
p(5) and g(4) ) or

and p(17) and p(lée) and
and p(1l1l) and p(10) and
p(5) and p(4) and g(3) ) or
and p(l17) and p(l6) and
and p(10) and p(9) and p(8)
p(3) and g(2) ) or

and p(l17) and p(l6) and
and p(l10) and p(9) and p(8)
p(3) and p(2) and g(l1l) ) or
and p(17) and p(l16) and
and p(10) and p(%9) and p(8)
p(3) and p(2) and p(l) and
( p(22) and p(21}) and g(20)
) or

and g(18) ) or

and p(18) and g(17) ) or
and p(18) and p(17) and
and p(18) and p(1l7) and
and p(18) and p(17) and
and p(18) and p(17) and

) or

and p(18) and p(17) and
and g(12) ) or

and p(l18) and p(l17) and
and p(l12) and g(l11) ) or
and p(18) and p(l17) and
and p(l12) and p{l1ll) and
and p{(18) and p(17) and
and p(ll) and p(10) and
and p(18) and p(17) and
and p(11) and p(10) and
and p(18) and p(17) and
and p(12) and p(11l) and
and p(18) and p(17) and



and

p(1l6) p(15) and p{14) and
p(l0) and p(9) and p(8) and p(
( p(22) and p(21) and p(20) and
p(l6) and p(l1l5) and p(l4) and
p(l0) and p{(9) and p(8) and p(
( p(22) and p(21) and p(20) and
p(16) and p(15) and p(1l4) and
p(10) and p(9) and p(8) and p(
or
( p(22) and p(21) and p(20) and
p(lée) and
p(15) and p(l14) and p(1l3) and
p(%9) and
p(8) and p(7) and p(6) and p(5
( p(22) and p(21) and p(20) and
p(l6) and
p(l5) and p(14) and p(l3) and
p(9) and
p(8) and p(7) and p(6) and p(5
( p(22) and p(21) and p(20) and
p(lée) and
p(1l5) and p{(l14) and p(13) and
p(9) and
p(8) and p(7) and p(6) and p(5
g{(l) )} or
( p(22) and p(21) and p(20 ) and
p(le) and p(l15) and p(l4) and
p(10) and p(9) and p(8) and p(7
p(3) and p(2) and p(l) and g(0
c(24) <= g{23) or ( p(23) and g(22)
) or
( p(23) and p(22) and p(21) and
( p(23) and p(22) and p(21) and
( p(23) and p(22) and p(21) and
( p(23) and p(22) and p(21) and
g(17) ) or
( p(23) and p(22) and p(21) and
p(17) and g(l6) ) or
( p{23) and p(22) and p(21) and
p(17) and p(l6) and g(l1l5) ) or
( p(23) and p(22) and p(21) and
p(l17) and p(l6) and p(l5) and
( p(23) and p(22) and p{(21) and
p(l7) and p(l6) and p(l5) and
( p(23) and p(22) and p(21) and
p(17) and p(l6) and p(1l5) and
( p(23) and p(22) and p(21) and
p(17) and p(l6) and p(l5) and
g(ll) ) or
( p(23) and p(22) and p(21) and
p(l17) and
p(l6) and p(15) and p(l4) and
g(10) ) or
( p(23) and p(22) and p(21) and
p(17) and p(l6) and p(15) and
p(11) and p(10) and g(9) ) or
({ p(23) and p(22) and p(21) and

p(13) and p(l2) and p{(ll) and
7) and g(6) ) or
p(1%9) and p(18) and p(17) and
p(13) and p(1l2) and p(1l1l) and
7) and p(6) and g(5) ) or
p(19) and p(18) and p(l17) and
p(13) and p(12) and p(1l1l) and
7) and p(6) and p(5) and g(4)
p(19) and p(18) and p(17) and
p(l2) and p(ll) and p(l0) and
) and p(4) and g(3) ) or
p(19) and p(18) and p(l7) and
p(12) and p(ll) and p(1l0) and
) and p(4) and p(3) and g(2) )
p(19) and p(18) and p(l17) and
p(l2) and p(ll) and p(l0) and
) and p(4) and p(3) and p(2) and
p(19) and p(18) and p(l7) and
p(13) and p(l2) and p(ll) and

) and p(6) and p(5) and p(4)
) )i

) or ( p(23) and p(22) and g(21)
g(20) ) or
p(20) and g(19) ) or
p(20) and p(l9) and g{18) ) or
p(20) and p(19) and p(18) and
p(20) and p(l92) and p(18) and
p(20) and p(19) and p(18) and
p(20) and p(19) and p(18) and
g(l4) ) or
p(20) and p(19) and p(18) and
p(l4) and g(13) ) or
p(20) and p(19) and p(1l8) and
p(l4) and p(1l3) and g(l2) ) or
p(20) and p(1l9) and p(1l8) and
p(1l4) and p(13) and p(1l2) and
p(20) and p(19) and p(18) and
p(13) and p(12) and p(1l1l) and
p(20) and p(19) and p(18) and
p(l4) and p(13) and p(l2) and
p(20) and p(l9) and p(18) and



p{17) and p(16) and p(15) and p(14)
p(11) and p(10) and p(9) and g(8) )
{ p(23) and p(22) and p(21) and p(20)
p(17) and p(16) and p(1S5) and p(14)
p(11) and p(10) and p(9) and p(8) an
{ p(23) and p(22) and p(21) and p(20)
p(17) and p(16) and p(15) and p(14)
p(11) and p(10) and p(9) and p(8) an
{ p(23) and p(22) and p(21) and p(20)
p(17) and p(16) and p(15) and p{14)
p{11) and p(10) and p(9) and p(8B) an
or
( p(23) and p(22) and p(21) and p(20)
p(17) and
p(l6) and p(15) and p(l14) and p(13)
p(10) and
p(9) and p(8) and p{(7) and p(6) and
( p(23) and p(22) and p(21) and p(20)
p(17) and
p(l6) and p(l5) and p(14) and p(13)
p{10) and
p(9) and p(8) and p(7) and p(6) and
( p(23) and p(22) and p(21) and p(20)
p(17) and
p(l16) and p(1l5) and p(14) and p(13)
p(10} and
p(9) and p(8) and p(7) and p(6) and
g(2) ) or
( p(23) and p(22) and p(21) and p(20)
p(17) and p(l6) and p(15) and p(14)
p(11) and p(10) and p(9) and p(8) an
and
p(4) and p(3) and p(2) and g(1) ) or
( p(23) and p(22) and p(21) and p(20)
p(l7) and p(16) and p(1l5) and p{14)
p(11}) and p(10) and p(9) and p(8) an
and
p{4) and p(3} and p(2) and p(1) and
c(25) <= g(24) or ( p(24) and g(23) ) or
) or
( p(24) and p(23) and p(22) and g(21)
{ p(24) and p(23) and p(22) and p(21)
( p(24) and p(23) and p(22) and p(21)
( p(24) and p{(23) and p(22) and p(21)
g(l8) ) or
( p(24) and p(23) and p(22) and p(21)
p(18) and g(17) ) or
( p(24) and p(23) and p(22) and p(21)
p(18) and p(17) and g(16) ) or
( p(24) and p(23) and p(22) and p(21)
p(18) and p(17) and p(16) and g(15)
{ p(24) and p(23) and p(22) and p(21)
p(18) and p(17) and p(16) and p(15)
{ p(24) and p(23) and p(22) and p(21)
p(18) and p(17) and p(16) and p(15)
( p(24) and p(23) and p(22) and p(21)
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and p(13) and p(12) and
or

and p(19) and p(18) and
and p(13) and p(12) and
d g(7) ) or

and p(19) and p(18) and
and p(13) and p(12) and
d p(7) and g(6) ) or

and p{19) and p(18) and
and p(13) and p(12) and
d p(7) and p(6) and g{(s5) )
and p(19) and p{18) and
and p(l2) and p(11) and
p(5) and g(4) ) or

and p(19) and p(18) and
and p(12) and p(l1l1l) and
p(5) and p(4) and g(3) ) or
and p(19) and p(18) and
and p(12) and p(11) and
p(5) and p(4) and p(3) and
and p(19) and p{(18) and
and p(13) and p(12)} and
d p(7) and p(6) and p(5)
and p(19) and p(18) and
and p(13) and p(12) and
d p(7) and p(6) and p(5)
g(o) );

( p(24) and p(23) and g(22)
) or

and g(20) ) or

and p(20) and g(19) ) or
and p(20) and p(19) and
and p{(20) and p(19) and
and p(20) and p(19) and
and p(20) and p(19) and
) or

and p(20) and p(19) and
and g(14) ) or

and p(20) and p(19) and
and p{14) and g(13) ) or
and p{(20) and p(19) and



p(18) and p(l7) and p(l6) and p(l5) and p(l4) and p(l3) and
g(lz) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(19) and
p(18) and
p(l17) and p(l6) and p(l5) and p{(l4) and p(13) and p(1l2) and
g(11l) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(19) and
p(18) and p(l17) and p(l6) and p(l5) and p(l4) and p(1l3) and
p(12) and p(11) and g(10}) ) or
{ p(24) and p(23) and p(22) and p(21) and p(20) and p(19) and
p(18) and p(l7) and p(l6) and p(l1l5) and p{(l4) and p(l3) and
p(l2) and p(1l1l) and p(10) and g(9) ) or
( p{24) and p(23) and p(22) and p(21) and p(20) and p{(19) and
p(18) and p(17) and p(1l6) and p(1l5) and p(14) and p(13) and
p(12) and p(l1l) and p(10) and p(9) and g(8) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(19) and
p(18) and p(17) and p(l16) and p(1l5) and p(14) and p(1l3) and
p(l2) and p(1l1l) and p(1l0) and p(9) and p(8) and g(7) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(1l9) and
p(18}) and p(l7) and p(l6) and p(1l5) and p(1l4) and p(1l3) and
p(12) and p(ll) and p(10) and p(9) and p(8) and p(7) and g(6
or
( p(24) and p{23) and p(22) and p(21) and p(20) and p(19) and
p(18) and
p(17) and p(l6) and p{l5) and p(l4) and p(1l3) and p(l2) and
p(ll) and
p({10) and p(9) and p(8) and p(7) and p(6) and g(5) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p{1l9) and
p(18) and
p(17) and p(l6) and p{1l5) and p{(l4) and p(1l3) and p(l2) and
p(11) and
p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and g(4)
or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(l1l9) and
p{18) and
p(17) and p(16) and p(15) and p{(l14) and p(13) and p(12) and
p(ll) and
p(10) and p(9) and p(8) and p(7) and p(6) and p(5) and p(4)
g(3) ) or
( p(24) and p(23) and p(22) and p(21) and p{20) and p(19) and
p{18) and p(l7) and p(l6) and p(l5) and p(14) and p{(13) and
p(12) and p(11l) and p(10) and p(9) and p(8) and p(7) and
p(6) and p(5) and p{(4) and p(3) and g(2) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(19) and
p(18) and p(l17) and p(1l6) and p(1l5) and p(l4) and p(13}) and
p(12) and p(1l1l) and p(10) and p(9) and p(8) and p{7) and
p(6) and p(5) and p(4) and p(3) and p(2) and g(l) ) or
( p(24) and p(23) and p(22) and p(21) and p(20) and p(1l9) and
p(18) and p(17) and p(l6) and p(l5) and p(l14) and p{(l3) and
p(l2) and p(11) and p(10) and p(9) and p{(8) and p(7) and p(6
and
p(5) and p{4) and p(3) and p(2) and p(l) and g(0) );

end claunit 25;
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and
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