
TRIPLE-THRESHOLD STATIC POWER MINIMIZATION 
TECHNIQUE IN HIGH-LEVEL SYNTHESIS USING 90NM 

MTCMOS TECHNOLOGY 

Harry I-An Chen 
B.A.Sc. (First Class Honors), Simon Fraser University, 2005 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 

In the 
School 

of 
Engineering Science 

O Harry I-An Chen 2007 

SIMON FRASER UNIVERSITY 

Summer 2007 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author 



APPROVAL 

Name: 

Degree: 

Title of Thesis: 

Harry I-An Chen 

Master of Applied Science 

Triple-Threshold Static Power Minimization 
Technique in High-Level Synthesis Using 90nm 
MTCMOS Technology 

Examining Committee: 

Chair: Dr. Ash Parameswaran 
Professor of Engineering Science 

Dr. Marek Syrzycki 
Co-Senior Supervisor 
Professor of Engineering Science 

Dr. James Kuo 
Co-Senior Supervisor 
Adjunct Professor of Engineering Science 

Dr. Rick Hobson 
Examiner 
Professor of Engineering Science 

Date DefendedIApproved: J u l  I 18, u 0 7  



S I M O N  F R A S E R  U N I V E R S I T Y  
L I B R A R Y  

Declaration of 
Partial Copyruht licence 
The author, whose copyright is declared on the title page of this work, has granted to 
Simon Fraser University the right to lend this thesis, project or extended essay to 
users of the Simon Fraser University Library, and to make partial or single copies only 
for such users or in response to a request from the library of any other university, or 
other educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the "institutional Repository" link of the SFU Library website 
cwww.lib.sfu.ca> at: chttp://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not be 
allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, of 
any multimedia materials forming part of this work, may have been granted by the 
author. This information may be found on the separately catalogued multimedia 
material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in part, 
and licensing other parties, as the author may desire. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 

Revised: Summer 2007 



ABSTRACT 

As CMOS System-on-Chips approach the limits of power dissipation, static 

power has become dominant in a circuit's total power dissipation. The static power is 

increasing exponentially as technology nodes shrink and is projected to exceed the 

dynamic power within the near future. Techniques that use the multi-threshold CMOS 

(MTCMOS) technology have been developed to reduce static power effectively. In this 

thesis, a novel triple-threshold static power minimization technique in high-level 

synthesis has been developed using the 90nm MTCMOS technology. Using static timing 

analysis, the optimal partitioning of gates with three different threshold voltages is 

determined via iterative analysis. The proposed triple-threshold technique has been 

applied to optimize several benchmark circuits, and the results show an average saving in 

static power close to 90% compared to un-optimized LVT designs. For all designs tested, 

the triple-threshold technique has produced designs with lower static power compared to 

a dual-threshold technique. 

Keywords: multi-threshold; triple-threshold; static power reduction; low power; high- 
level synthesis: digital CMOS VLSl 

Subject Terms: Electric Leakage Prevention; Metal oxide semiconductors. 
Complementary -- Design and construction; Integrated circuits -- Design and 
construction; Digital integrated circuits 





ACKNOWLEDGEMENTS 

I would like to thank Dr. Kilo for his direction, inspiration, and dedicated effort 

behind this thesis work. In the short time of a year and a half, you have taught me a great 

deal of information with your profound knowledge that I would not have learned 

elsewhere. Thank you for your kindness. your criticism, and your encouragements. 

I would like to thank Dr. Syrzycki for his kind offer to continue to provide 

guidance through the rest of my graduate studies. Thank you for your dedication and 

helpful advices, and thank you for taking every effort to ensure my success. I am very 

grateful of your guidance throughout my undergraduate and graduate studies. Also, 

thank you for your kind supplies for making the lab a nice place for research. 

I would like to thank Dr. Hobson for introducing the world of VLSl to me during 

my undergraduate studies. Without your educational course, this thesis work would not 

have been possible. 

I would also like to thank Benjamin Chung at PMC Sierra. Thank you for 

providing your original TCL scripts and your help in jumpstarting my research. 

Finally. 1 would like to give special thanks to my family and friends for the strong 

support and cheer during my graduate studies. Special thanks to my lab mates, Edward 

and Henry, for the memorable time spent together. 



TABLE OF CONTENTS 

. . 
Approval ............................................................................................................................ 11 

... 
Abstract ............................................................................................................................. ill 

......................................................................................................................... Dedication iv 

Acknowledgements ............................................................................................................ v 

Table of Contents ............................................................................................................. vi 
... 

List of Figures ................................................................................................................. vi11 

List of Tables .................................................................................................................... ix 

................................................................................. List of abbreviations and acronyms x 

Introduction ................................................................................................... 1 
CMOS Development Trends ........................................................................... 1 
Research Goals ................................................................................................ 8 
Thesis Outline .................................................................................................. 9 

Related Work on MTCMOS Techniques .................................................. 10 
................................................................... MTCMOS Technique Overview 10 

................................................................................. SourceIBody Biasing I I 
Virtual Supply Rail .................................................................................... 12 
Dual-Threshold TransistorIGate Partitioning ............................................ 14 

Dual-Threshold Partitioning Algorithms ....................................................... 15 
........................................................................... LVT to HVT Algorithms 16 
........................................................................... HVT to LVT Algorithms 20 

................................................................ . Transistor-Level vs Gate-Level 23 
............................................................... Prior Triple-Threshold Techniques 24 

Summary ........................................................................................................ 26 

Simulation Tools .......................................................................................... 27 
.............................................. Support for TCL Scripting in Synopsys Tools 27 

....................................................................... Synopsys Design Compi lerTM 28 
Circuit Synthesis ........................................................................................ 28 

.......................................................................... Power Dissipation Report 29 
Cell Usage Report ...................................................................................... 30 

Synopsys PrimeTimeTM ................................................................................. 31 
Timing Report ........................................................................................ 31 
Timing Path Selection ................................................................................ 32 
Cell Replacement ....................................................................................... 32 



Modelling of Timing Delays and Power ....................................................... 33 
Timing Model ............................................................................................ 33 

.............................................................................................. Power Model 35 
Summary ........................................................................................................ 36 

Proposed Triple-threshold Static Power Reduction Technique .............. 38 
Characterization of Standard Cell Libraries .................................................. 38 
Methodology .................................................................................................. 40 

Implementation Limitations ...................................................................... 42 
Summary ........................................................................................................ 44 

Simulation Results ....................................................................................... 45 
16-Bit Wallace Tree Multiplier ..................................................................... 45 

Multiplier Circuit Overview ...................................................................... 45 
Simulation Results ..................................................................................... 48 

1995 High-Level Synthesis Benchmark Circuit Suite ................................... 53 
ITC'99 Benchmark Circuit Suite ................................................................... 56 

........................................................................................................ Summary 59 

Conclusions .................................................................................................. 60 

Appendices ........................................................................................................................ 62 

Appendix A: ITC'99 Benchmark Suite Simulation Results ........................................ 62 

............................. Appendix B: 16-bit Wallace Tree Multiplier VHDL Code LIsting 65 

Reference List ................................................................................................................. 101 

vii 



LIST OF FIGURES 

Figure 1.1 . 

Figure 1.2 . 

Figure 1.3 . 

Figure 1.4 . 

Figure 1.5 . 

Figure 2- 1 . 

Figure 2.2 . 

Figure 2.3 . 

Figure 2.4 . 

Figure 2.5 . 

Figure 3- 1 . 

Figure 4.1 . 

Figure 4.2 . 

Figure 5- 1 . 

Figure 5.2 . 

Figure 5.3 . 

Figure 5.4 . 

Figure 5.5 . 

Figure 5.6 . 

Figure 5.7 . 

Figure 5.8 . 

Scaling down of transistor sizes in CMOS development [ l ]  ....................... 1 

Projected supply voltage and threshold voltage ........................................... 3 

Subthreshold current for transistors with different threshold 
voltages ........................................................................................................ 5 

Power trend in the past few decades of CMOS development [5] ................ 5 

Predicted power trend in future CMOS development [6] ............................ 6 

Reducing subthreshold leakage current by adjusting V. or Vb .................. 12 

Virtual powerlground rails isolated by HVT sleep transistors ................... 13 

Levelized maximum cut for a circuit represented as an acyclic 
graph [27] ................................................................................................... 18 

The maximum cut I1  algorithm flow diagram [34] .................................... 22 

Triple-threshold technique that combines the virtual rail technique 
and the dual-threshold gate partitioning technique [30][3 I] ...................... 25 

Flowchart of a typical circuit synthesis process ........................................ 28 

Flowchart of the proposed triple-threshold algorithm ............................... 42 

Flowchart of the modified triple-threshold algorithm ............................... 44 

Partial products in a 16-bit multiplication ................................................. 46 

Block diagram of the Wallace tree structure .............................................. 47 

Timing path from x7 to Pjl in (a) dual-threshold multiplier and (b) 
triple-threshold multiplier .......................................................................... 50 

Static power dissipation of designs optimized with different clock 
constraints .................................................................................................. 53 

Circuit B02 optimized with (a) dual-threshold technique and (b) 
triple-threshold technique .......................................................................... 56 

Static power of the LVT. dual.threshold. and triple-threshold 
designs ........................................................................................................ 57 

Number of LVT cells in the LVT. dual.threshold. and triple- 
........................................................................................ threshold designs 57 

Static power vs . number of LVT cells ....................................................... 58 

viii 



LIST OF TABLES 

Table 4- 1 . Threshold voltages of the 90nm HVT. SVT and LVT standard cell 
libraries .............................................................................................................. 38 

Table 4.2 . Performance comparison of a 16-bit Wallace tree multiplier 
synthesized using the HVT. SVT and LVT standard cell libraries ................... 39 

Table 5.1 . Performance comparison of a 16-bit Wallace tree multiplier 
synthesized using the HVT. SVT and LVT standard cell libraries ................... 48 

Table 5.2 . Static power comparison of the LVT. dual-threshold and triple- 
............................................................................................... threshold designs 48 

Table 5.3 . Timing delay and static power of selected gates in the dual-threshold 
.................................................................................. and triple-threshold paths 51 

Table 5.4 . Functions of circuits in the 1995 high-level synthesis benchmark suite .......... 54 

Table 5.5 . Static power reductions in dual-Vt and triple-Vt optimized designs ................ 55 

Table 5.6 . Composition of gates and optimization run time ............................................. 55 

Table A-l . Functions of circuits in the ITC'99 benchmark suite [5 11 ............................... 62 

Table A.2 . Static power reductions in dual-Vt and triple-Vt optimized designs ............... 63 

Table A.3 . Composition of gates in the optimized designs ............................................... 64 



LIST OF ABBREVIATIONS AND ACRONYMS 

BFS 

CAD 

CMC 

CMOS 

HVT 

1Cs 

1LP 

ITRS 

LBT 

LVT 

MlSA 

MTCMOS 

NP 

NP-Hard 

RTL 

SDF 

STA 

SVT 

Breadth-First Search 

Computer-Aided Design 

Canadian Microelectronics Corporation 

Complementary Metal-Oxide-Semiconductor technology 

High Threshold Voltage 

Integrated Circuits 

Integer Linear Programming 

International Technology Roadmap for Semiconductors 

Levelized Back-Tracing 

Low Threshold Voltage 

Maximum Independent-set-based Slack Assignment 

Multi-Threshold CMOS technology 

Non-deterministic Polynomial-time, a set of decision problems that can be 
solved in polynomial time in non-deterministic computer model 

Non-deterministic Polynomial-time Hard, a class of problems that is at least 
as hard as a problem in the NP set 

Register Transfer Language 

Specific Delay Fictitious-buffers 

Static Timing Analysis 

Standard Threshold Voltage 



TCL Tool Command Language 

TTL Transistor-Transistor Logic, a standard for designing integrated circuits with 
a 5V power supply 

VLSl Very-Large-Scale Integration 



1 INTRODUCTION 

1.1 CMOS Development Trends 

The CMOS technology development has been progressing steadily and rapidly 

over the past few decades. Transistor sizes have been scaled down at an exponential rate 

(Figure 1-I) ,  allowing designers to integrate more transistors onto a chip. As the 

transistor density increases, the power density also increases. Designers no longer have 

to achieve just the simple goals of optimizing for speed and area. but to strive for a 

balance between speed, area and power dissipation. 

1970 1980 1990 2000 201 0 2 020 

Figure 1-1. Scaling down of transistor sizes in CMOS development Ill 



Traditionally, integrated circuits (IC) have been driven by high supply voltages. 

e.g. 5V for standard transistor-transistor logic (TTL). The use of standardized high 

supply voltages ensures compatibility between devices and provides large load-driving 

capabilities. However, as transistor sizes are scaled down, the load capacitance for each 

transistor in an IC decreases, and high load-driving capabilities are no longer necessary. 

Lowering the supply voltage to reduce the power dissipation becomes a viable option for 

designers. 

Another factor leading to supply voltage reductions is associated with 

increasingly high internal electric fields in CMOS transistors. Reducing the channel 

length of a transistor while keeping constant the voltage drops over the gate oxide and the 

channel increases the electric field across the channel, which causes long-term reliability 

concerns due to impact ionization and hot carrier effects [2]. Reducing the supply 

voltage to relieve stress from high internal electric fields becomes necessary. 

The total power dissipation of a CMOS circuit consists of dynamic power and 

static power. Dynamic power is the power dissipated due to a change in the input; static 

power is the power dissipated when the circuit is inactive. Typically, the main 

component of power dissipation in a CMOS circuit is the dynamic power, which can be 

estimated using Eq. 1 .I [3]: 

where a is the circuit's switching activity, Cload is the load capacitance, Vdd is the supply 

voltage, fClk is the clock frequency, t,, is the short-circuit time per clock cycle, and I,, is 

the short-circuit current. The first term in the equation describes the switching power; the 



second term describes the short-circuit power. Because of the quadratic relationship 

between dynamic power and the supply voltage, a linear reduction in the supply voltage 

results in a quadratic reduction in the dynamic power dissipation. 

Although reducing the supply voltage results in large reductions in the power 

dissipation, the circuit's switching speed is compromised. For an NMOS transistor 

operating in the saturation region, the drain current can be expressed as [4]: 

As the supply voltage drops, VGS decreases and the drain current decreases in a quadratic 

fashion, resulting in lower switching speeds. To counter this side effect, designers lower 

the threshold voltage to increase the speed. Figure 1-2 shows the trend in scaling the 

supply voltage and threshold voltage as projected by the International Technology 

Roadmap for Semiconductors (ITRS) in 2001. 

Figure 1-2. Projected supply voltage and threshold voltage 



Lowering the threshold voltage introduces new problems as CMOS technology 

progresses towards the nanometre regime. For an MOS transistor operating in weak 

inversion mode, the minority carriers diffuse across the channel, resulting in leakage 

currents. Ideally when the gate potential is zero, the transistors should be cut off and the 

off-current should be zero. In practice, the subthreshold current depends exponentially 

on the gate potential and is non-zero at a zero gate potential [2]: 

Plotting the drain current in logarithmic scale against the gate voltage produces a linear 

plot, and the slope of this line is known as the "subthreshold slope." Adjusting the 

threshold voltage of an MOS transistor shifts the plot horizontally, thereby shifting the y- 

intercept (representing the off-current) vertically. But because of the exponential scale 

on the vertical axis, the magnitude of the off-current changes exponentially. 

Figure 1-3 shows the drain current simulation in HSPICE of three 90nm 

minimum-size transistors with different threshold voltages. The subthreshold leakage 

current at VGS = 0 is increased by an order of magnitude when the threshold voltage is 

decreased by 0.08V. The exponential increase in the leakage current is undesirable and 

results in the exponential increase in the static power of the circuit. 



Figure 1-3. Subthreshold current for transistors with different threshold voltages 

As CMOS technology development continues, the static power becomes 

increasingly more dominant in the total power dissipation envelope. Figure 1-4 shows 

the power trend for the past few decades as reported by Intel [ 5 ] .  

Figure 1-4. Power trend in the past few decades of CMOS development 151 

1000 g 

100 

10 1 

1 ,  

0 1  

0 0 1  ; 

0 001 

< 

ow 
.NY ?+' Leakage / 

P 
I 

1 
h 

I I I I 

1960 1970 I 980 I 990 2000 2010 



Traditionally, the dynamic power has been the dominant factor in the total power, 

and the static power has always been negligible. In recent years, however, the static 

power has become increasingly more dominant. If the current trend continues, the static 

power is predicted to contribute to most of the power in a CMOS very-large-scale 

integration (VLSI) system, even surpassing the dynamic power. Figure 1-5 shows the 

projected power dissipation per gate in future CMOS development [6]. The dynamic 

power dissipation per gate can be reduced by lowering the supply voltage. Nevertheless, 

the leakage power per gate continues to increase as the threshold voltage is reduced. 

2002 2004 2006 2008 2010 2012 2014 2016 

Figure 1-5. Predicted power trend in future CMOS development 161 

Faced with the new problem of having increased static power dissipations in a 

circuit, designers must investigate ways to reduce the static power. Some areas of 

research currently being pursued are: 

Research new materials for low-leakage transistors. 



Design transistors with variable body-bias for dynamic threshold-voltage 

ad-justments. 

Utilize multi-threshold CMOS (MTCMOS) technology. 

The MTCMOS technology utilizes transistors with different threshold voltages to 

reduce static power. Combining the strengths of slow and less leaky high threshold- 

voltage (HVT) transistors with fast but leaky low threshold-voltage (LVT) transistors, the 

MTCMOS approach may be the most cost-effective technique. Manufacturers of the 

nanometre CMOS technology usually provide transistor models with a predetermined set 

of threshold voltages. HVT transistors can be placed in designs where timing 

requirements are less stringent, thus saving static power; transistors with the standard 

threshold voltage (SVT) can be used for typical applications; and LVT transistors can be 

used for high-speed applications at the expense of dissipating more static power. To fully 

exploit the MTCMOS technology, it is possible to reduce the static power by placing 

HVT transistors in slower timing paths while placing LVT transistors in high-speed 

paths. 

Several different categories of MTCMOS techniques exist in the literature. and 

the results have been promising. The MTCMOS approach can use existing technology as 

well as preserve the high-level circuit designs, making it a practical and efficient 

approach for reducing static power. This research project is focused on the MTCMOS 

approach, and a new triple-threshold methodology for static power minimization is 

presented. 



1.2 Research Goals 

In the current highly competitive IC industry, designing for low-cost, low-power 

and high-speed applications with the shortest time-to-market is important. Given these 

criteria for IC designs, the MTCMOS approach may be the most cost-effective way to 

minimize the static power dissipation of a circuit. To ensure fast time-to-market. using 

MTCMOS techniques in high-level synthesis is ideal. Numerous dual-threshold 

MTCMOS techniques have been published in literature. However, publications on using 

the triple-threshold technology are scarce. To expand the research in this area, this 

research focuses on developing a high-level triple-threshold optimization technique. 

The research goals are as follows: 

To investigate current MTCMOS techniques. 

To develop a 16-bit multiplier circuit as a test vehicle for analyzing the 

static power dissipation. 

To propose a new methodology using the 90nm triple-threshold 

technology. 

To evaluate the effectiveness of the new methodology and compare with 

current methodologies using the 16-bit multiplier as well as other 

benchmark circuits if available. 

The proposed technique should also meet the following criteria: 

The technique should be applicable for optimizing existing as well as 

future gate-level netlists. 



It should provide savings in the static power dissipation that are 

comparable or better than current techniques. 

The circuit's operating clock speed should not be compromised while the 

static power is minimized. 

The circuit's area should not be significantly increased. 

The optimization run-time should be reasonable and comparable to 

existing techniques. 

The final deliverable is a high-level triple-threshold static power reduction 

methodology that is suitable for designing low-power high-speed digital CMOS VLSl 

designs. 

1.3 Thesis Outline 

This thesis is organized as follows. Chapter 2 discusses prior work on MTCMOS 

static power reduction techniques. Different approaches and algorithms will be presented 

and analyzed. Chapter 3 describes the simulation tools used in the experiments. Chapter 

4 describes the proposed triple-threshold technique, and the simulation results are 

presented and analyzed in Chapter 5. Chapter 6 concludes this thesis. 



2 RELATED WORK ON MTCMOS TECHNIQUES 

This chapter presents an overview of MTCMOS circuit design techniques for 

reducing static power. Benefits and drawbacks for each technique will be presented. 

This work utilizes the MTCMOS gate partitioning technique, and thus gate partitioning 

algorithms will be described in more detail. Most gate partitioning algorithms utilize the 

dual-threshold technology. Nevertheless, the relative efficiency and effectiveness of each 

algorithm can be applied to triple-threshold algorithms. 

2.1 MTCMOS Technique Overview 

The MTCMOS technique relies on the use of transistors with different threshold 

voltages to reduce the leakage current in a circuit. HVT transistors have low 

subthreshold leakage currents and slow switching speeds; LVT transistors have fast 

switching speeds and high leakage currents. To combine the strengths of both HVT and 

LVT transistors in an MTCMOS circuit, several circuit design techniques have been 

developed: 

1 .  Source/body biasing: A bias voltage is applied to the source or body of an 

"off' device to increase the threshold voltage due to body effect. The 

subthreshold leakage current is reduced as a result. 

2. Virtual supply rails: LVT circuits are isolated from the power and ground rails 

by placing HVT sleep transistors in series with VDD and/or ground to provide 

virtual supply rails. 



3 .  Gate Partitioning: LVT gates are placed in timing-critical paths and HVT 

gates are placed in non-critical paths to reduce the overall static power 

dissipation. 

2.1.1 Source/Body Biasing 

The source or body biasing technique uses a biasing voltage for the source or 

substrate when a transistor is in  the "off' state. For an NMOS transistor, the threshold 

voltage can be expressed as follows [2]: 

When a positive biasing voltage V s ~  is applied, the threshold voltage is increased. 

The biasing voltage VSB can be controlled by biasing the body potential [19][20] 

or by biasing the source terminal [21][22], as shown in Figure 2-1. During normal 

operations, V S ~  is kept at zero to maintain the nominal threshold voltage. In sleep mode, 

VSB is increased, which increases the threshold voltage and lowers the subthreshold 

leakage current. A side effect, though, is an increase in the reverse PN-junction leakage 

current from the source to substrate. 

The biasing techniques require extra circuitry to implement the biasing voltage. 

As a result, the circuit area is larger, especially for body biasing since each transistor 

requires a separate well. The biasing techniques also require custom layouts for each 

gate, which increases the design cost and complexity. 



- 

Figure 2-1. Reducing subthreshold leakage current by adjusting V, or Vb 

2.1.2 Virtual Supply Rail 

For mobile applications with long idle times, devices can be put into sleep mode 

to reduce power. The power supply and ground rails are isolated with HVT sleep 

transistors to provide virtual supply rails for the logic blocks, as shown in Figure 2-2. 

Although the figure shows that both the power and ground rails are gated with sleep 

transistors, only one polarity sleep transistor is required if the logic block is purely 

combinational [S]. During normal operations, the sleep transistors are turned on and the 

logic blocks can operate at fast speeds with the LVT transistors. In standby mode. the 

supply rails are switched off and the subthreshold leakage currents are reduced with the 

use of the HVT sleep transistors [7][9][10][1 I]. 

Implementation of virtual supply rails can vary. The most basic design method is 

to add a sleep transistor for each logic gate. The standard cell libraries provided by 

manufacturers cannot be used with this method, and custom designs for each gate is 

required, which costs considerable design time. The area penalty is very large due to the 

large number of sleep transistors being used, and extra complexity is introduced to the 

routing and buffering of the global sleep signal. 



Logic r'- 
Virtual Gnd 

Figure 2-2. Virtual power/ground rails isolated by HVT sleep transistors 

Instead of using a sleep transistor for every logic gate, the other extreme design 

method is to use one very large sleep transistor to provide a virtual rail for a large block 

of gates. Standard cell libraries can be used to implement the logic block, and the area 

penalty is minimal. However, due to the large parasitic capacitances in the virtual rails. 

the switching speed is penalized when changing between the sleep and active modes. 

The sleep transistor may also be larger than necessary, since not all transistors may be 

switching at the same time. 

More fine-grained approaches have been proposed to cluster gates together based 

on discharge current patterns [12][13][14][15]. Gates that have mutually-exclusive 

discharge current patterns can share the same sleep transistor without having to increase 

the sleep transistor size; gates with discharge currents that do not exceed a set limit can 

also be clustered. The fine-grained algorithms for transistor sizing require more 

optimization run time. With the advance of computer technology, however, the design 

cost diminishes. 



Regardless of the implementation, an inherent problem for virtual s ~ ~ p p l y  rails is 

the inability to retain state information during sleep mode. Special sequential circuits are 

required for state retention [16] .  For some circuits where MTCMOS gates are connected 

to standard CMOS gates, sneak leakage paths may also exist. Extra effort is necessary to 

eliminate the leakage paths [ I  6][17] [18] .  

The virtual supply rail technique is a common technique to reduce power in 

mobile applications during standby mode. However, the technique cannot be used to 

reduce leakage power during the active mode. In fact, the power dissipation may 

increase slightly during the active mode because of the extra sleep transistors. For 

applications that are active most of the time, the virtual supply rail technique is 

ineffective in reducing static power. 

2.1.3 Dual-Threshold TransistorIGate Partitioning 

The dual-threshold partitioning techniques place LVT devices in timing-critical 

paths and HVT devices in non timing-critical paths. Since the subthreshold leakage 

current depends exponentially on the threshold voltage, changing transistors from LVT to 

HVT can result in leakage current reductions by a few orders of magnitude [a] .  

To partition a circuit into HVT and LVT transistors, the circuit's critical paths 

must be identified. For optimal partitioning, a transistor in the non-critical path should 

only be replaced by a transistor of higher threshold voltage if the leakage power reduction 

is maximal and the delay penalty is minimal. Identifying which transistors or gates to be 

replaced is known to be a non-deterministic polynomial-time hard (NP-hard) problem 

[23][24] ,  i.e. the complexity is at least as hard as a polynomial-time problem. In the 



worst-case scenario, solving the problem req~~i res  run times that depend exponentially on 

the circuit size. To achieve acceptable run times. heuristic algorithms have been 

developed for near-optimal partitioning. More details on these algorithms will be 

covered in the following sections. 

A drawback of the dual-threshold partitioning technique is the requirement of 

extra masks during the man~~facturing process. Also, for designs with many critical 

paths, partitioning may be ineffective. However, the partitioning technique can reduce 

leakage currents during both active and sleep modes, and standard cell libraries can be 

used. Compared to the biasing or virtual supply rail techniques, gate partitioning requires 

less circuit design time, does not require extra circuitry, and can provide leakage power 

reductions at all times. Gate partitioning is therefore a more attractive method for 

reducing leakage power for general applications. For mobile applications, partitioning 

may also be used in conjunction with the virtual rail technique to further reduce power in 

sleep mode [30][3 11. 

2.2 Dual-Threshold Partitioning Algorithms 

The dual-threshold algorithms can be separated into two broad categories. The 

LVT to HVT algorithms start with an LVT circuit and selectively replace gates in the 

non-critical paths from LVT to HVT. The HVT to LVT algorithms start with an HVT 

circuit and selectively replace gates in the critical paths from HVT to LVT. Depending 

on the circuits and the availability of computer-aided design (CAD) tools, both types of 

algorithms may be similarly effective in reducing static power. 



2.2.1 LVT to HVT Algorithms 

The LVT to HVT algorithms initialize a design with LVT gates. LVT gates in the 

non-critical paths are replaced by HVT gates based on different criteria. Some proposed 

algorithms are: breadth-first search (BFS) [25], levelized back-tracing [26], levelized 

maximum cut [27], maximum independent set [28][29], and solving specific delay 

fictitious-buffers (SDF) as an integer linear programming (ILP) problem [24]. 

2.2.1.1 Breadth-First Search 

The BFS algorithm [25] traces gates backwards from the primary outputs. The 

delay time of each gate is calculated and recorded. The maximum amount of time that a 

gate's delay can be increased without affecting the circuit's overall performance is 

recorded as the slack time. During the back-tracing search, if the slack of a gate is 

positive and changing the gate's threshold to HVT does not result in a negative slack, the 

gate is changed to HVT. The algorithm continues the back-tracing search for one 

primary output until all gates have been back-traced. and the algorithm continues to back- 

trace from the next primary output until all primary outputs have been back-traced. 

The BFS algorithm is a fast algorithm but may not result in the most optimal 

designs, since the replacement of gates does not depend on the weight of the delay or 

power, but rather on the order in which gates are visited. An algorithm that prioritizes the 

replacement of gates based on a weight of the amount of power saved vs. the time delay 

increase may be more effective in partitioning the gates. Also, back-tracing from a fixed 

primary output may affect the path slacks for other primary outputs. A levelized 

approach where gates in the same level are replaced before gates in the next level are 

replaced may produce better results. 



2.2.1.2 Levelized Search 

A levelized search algorithm assigns a level number to every gate in the circuit. 

The algorithm starts from assigning a level number zero to each primary input. Then. all 

gates are assigned a level number that is one greater than the maximum level number of 

the immediate fan-in gates. The levelized back-tracing (LBT) algorithm [26] is similar to 

the BFS algorithm, except that gates in the same level are replaced before gates in the 

next traversed level are replaced. The algorithm traces from the maximum level back 

towards the primary inputs. For all gates in each level, if replacing a gate with a high 

threshold does not result in a negative slack, the gate is assigned a high threshold voltage. 

The back-tracing cont in~~es  until level zero is reached. 

The LBT algorithm improves upon the BFS algorithm by prioritizing the 

assignment of gates in the same level to HVT. Results ofoptimizing benchmark circuits 

show that the LBT algorithm produces circuits with lower leakage power than BFS for all 

the circuits tested [26]. The LBT algorithm, however, still does not assign weights to the 

gates or levels, and thus more power reductions may be possible with a weighted search 

algorithm. 

2.2.1.3 Maximum Cut 

A gate-level circuit can be represented as a directed acyclic graph, where each 

gate is represented as a node, and each fan-in or fan-out connection is represented as a 

directed edge. A cut of a directed acyclic graph is a partition of the nodes into two 

disjoint sets. The levelized maximum cut algorithm in [27] solves the gate partitioning 

problem by iteratively finding cuts with the maximum weight in a circuit. The weight is 

defined as the power saving of each node by replacing the LVT gate with an HVT gate. 



To reduce the complexity for finding all possible cuts in the graph, the levelized approach 

assigns a level number for each gate. and cuts are only made at the boundary between 

each level (Figure 2-3). Gates in the level with the maximum total weight are selected 

for replacement in each iteration process. The algorithm continues until no more levels 

can be selected without causing a negative slack. 

I I 

I 

I 

level 1 - 1  I ,avef, I kwei ,+ I ,  i e reW2 
I 

level i - I  cut Ievel i t?  cut 
level i cut 

Figure 2-3. Levelized maximum cut for a circuit represented as an acyclic graph 127) 

The levelized maximum cut algorithm replaces gates with larger reductions in 

static power first. Compared to BFS and LBT, the levelized maximum cut algorithm 

produces designs with lower static power. 

2.2.1.4 Maximum Independent Set 

The maximum independent set algorithms solve the gate partitioning problem by 

finding the maximum set of gates that can be changed to HVT without degrading 

performance. 

The maximum independent-set-based slack assignment (MISA) algorithm in [28] 

weighs each node based on the effective power saving. the change in the slack, and the 



likelihood that an adjacent node is also an HVT node (for manufacturing yield 

considerations). All nodes that may be changed to HVT without causing a negative slack 

are placed in a candidate list. The greedy algorithm, i.e. an algorithm that selects the 

locally optimum choices at each stage with the hope of finding the globally optimum 

solution, is used to iteratively select the node with the maximum weight and determine if 

the node can be changed to HVT without c a ~ ~ s i n g  a negative slack. 

The algorithm in [29] is similar to [28], but weighs nodes based on the effective 

power saving only. The greedy approach is also used to iteratively select and replace the 

nodes with the maximum weight while keeping the slack non-negative. 

The MISA algorithm in [28] is the most computationally intensive approach. For 

large applications, the efficiency may be lower compared to algorithms in [27] and [29]. 

The algorithm also considers placing HVT nodes adjacent to each other to improve yield, 

which may result in suboptimal placement for reducing static power. However, since 

slack is also being weighted and gates with smaller impacts on the slack are replaced 

first, the algorithm in [28] may potentially be able to replace more LVT gates to HVT 

than the algorithm in [27] or [29]. 

Algorithms in [27], [28] and [29] are all greedy algorithms. The levelized 

approach in [27] is not as fine-grained as in [29]. However, as with all greedy 

algorithms, unique worst-case scenarios may exist where the greedy algorithms are 

suboptimal [32]. Hence, in some cases the algorithm in [27] may produce better results 

than the algorithm in [29], and vice versa. 



2.2.1.5 Integer Linear Programming 

The ILP algorithm in [24] inserts buffers into a circuit for delay balancing. The 

delay buffers are fictitious entities that are used solely for the purpose of modelling the 

slack in a circuit. The selection of gates is solved as an ILP problem to minimize the 

total static power. After selecting and replacing the gates. the threshold voltage for the 

HVT gates that results in the lowest static power is determined. 

Compared to other LVT to HVT algorithms. the ILP algorithm generates designs 

with the lowest static power. However, the ILP algorithm is also significantly more 

computationally intensive, and thus it is unsuitable for large designs. 

2.2.2 HVT to LVT Algorithms 

The HVT to LVT algorithms initialize a design with HVT gates. An HVT circuit 

is slower than an LVT circuit, and thus the slow HVT gates in critical paths need to be 

replaced with fast LVT gates to improve the performance. Algorithms that have been 

proposed for HVT to LVT replacement are: breadth-first search (BFS) [33], minimum cut 

[34], maximum cut 1341, and maximum independent set [35][36][37]. 

2.2.2.1 Breadth-First Search 

The BFS algorithm in [33] is similar to the BFS algorithm in [25], except that 

weights have been assigned to the gates to improve the optimization process. The 

algorithm traverses backwards from the primary outputs, and in each iteration run, the 

gate with the maximum timing delay reduction is changed to LVT. Timing information 

is updated and new critical paths are selected after each gate replacement. This algorithm 



combines BFS with the maximum independent set approach, and the results have been 

shown to be better than algorithms in [24] and [25]. 

2.2.2.2 Minimum Cut 

The minimum cut algorithm in [34] assigns weights to each node based on the 

increase in the static power and the reduction in the time delay when a node is changed 

from HVT to LVT. The algorithm searches for cuts that have the minimum total weight 

in each iteration process, i.e. cuts where gates can be changed to LVT with the least 

increase in the static power and the most time delay reduction. Gates that are not in the 

critical path are assigned a weight of infinity. 

Finding the minimum cut of a weighted graph has been studied extensively. The 

well-known solution to the minimum cut problem is the max-flow-min-cut algorithm 

[38]. The fastest algorithm is the preflow-push algorithm [39] and is the algorithm 

implemented in [34]. 

In [34], the minimum cut algorithm is shown to be less effective than the 

maximum cut algorithm in [27] (presented in Section 2.2.1.3). The main reason is that 

the assignment of infinite weights to the gates in non-critical paths misleads the algorithm 

to a suboptimal solution [34]. The maximum cut algorithms do not require the 

assignment of infinite weights and thus are more effective than the minimum cut 

algorithm. 

2.2.2.3 Maximum Cut I1 

The maximum cut 11 algorithm in [34] initializes a design with HVT gates, but all 

gates in the critical paths are replaced with LVT gates. For the subset of LVT gates in 



the circuit, the maximum cut algorithm in [27] is used to search for and replace gates 

back to HVT, as shown in Figure 2-4. 

,.,- _.-c--- 
--.. -. . - --.. 

,I,' ~... .,+ ...~ 
,./' 

/' 

,', 
'9 

'I - -  - - I 
i 

I 
1' 

,/ 
,i 

---/___--- 

Figure 2-4. The maximum cut I1 algorithm flow diagram 1341 

Both the tnaxitnum cut and maximum cut I1 algorithms have similar results in 

static power reductions and are shown to be more effective than the minimum cut 

algorithm [34]. However, the maximum cut 11 algorithm only needs to process a smaller 

subset of the circuit and is therefore a more efficient algorithm than the maximum cut 

algorithm in [27]. 



2.2.2.4 Maximum Independent Set 

The maximum independent set algorithms in  [35] and [36] initialize designs using 

HVT gates. Each gate is assigned a weight, and in each iteration run the gate with the 

maximum weight is selected and replaced by an LVT gate to reduce the timing delay. In 

[35], the weight of a gate is defined as the maximum delay time reduction when the gate 

is changed from HVT to LVT. In [36] and [37], the weight of a gate is defined as the 

number of critical paths passing through the gate. 

The algorithm in [35] replaces gates with the maximum time delay reduction. 

However, the gate being replaced may be in a critical path where only a slight decrease in 

the time delay is necessary to meet the timing constraint. Replacing a gate with the 

maximum time delay reduction when unnecessary may result in larger static power, and 

therefore the algorithm in [35] may be suboptimal. 

The algorithm in [36] addresses this problem by selecting gates where most 

critical paths pass through. By replacing these bottleneck gates first with LVT gates, the 

time delays for the most number of critical paths can be reduced at once. This algorithm 

is therefore potentially more effective than other weighted algorithms. It will be used for 

comparison purposes to evaluate the performances of dual-threshold and triple-threshold 

algorithms. 

2.2.3 Transistor-Level vs. Gate-Level 

Transistor-level circuits are typically modelled with tools such as HSPICE. which 

provides accurate simulations on the transistor currents and timing delays. In gate-level 

modelling, each gate is characterized with a set of parameters for the area, timing and 

power. In general, simulations at the transistor-level are computationally more intensive 

2 3 



than gate-level simulations, and for large designs, gate-level simulations are more 

efficient. 

A drawback of gate-level simulations is that transistors within a gate must be 

either all LVT or all HVT. Since not all inputs of a gate may be part of a critical path, the 

transistors connected to inputs in the non-critical path can be assigned to HVT while 

transistors connected to inputs in the critical path can be assigned to LVT. Algorithms 

for transistor-level MTCMOS assignments have been proposed [40][41][42]. 

Nevertheless, given the trend of a growing number of gates being integrated into a chip, 

these transistor-level optimization techniques may be unsuitable for current and future 

designs. 

2.3 Prior Triple-Threshold Techniques 

The triple-threshold techniques utilize three different threshold voltages on a chip 

to provide more fine-grained control on transistor leakage currents. Prior work using the 

triple-threshold technology has been very limited -the triple-threshold technology has 

just become a possibility in the 90nm CMOS technology node. A triple-threshold 

technique that combines the use of the virtual rail technique and the partitioning 

technique has been proposed, as shown in Figure 2-5 [30][31]. 



Virtual Vdd 
I 

Critical Path 
e 

Figure 2-5. Triple-threshold technique that combines the virtual rail technique and the dual- 
threshold gate partitioning technique 1301 131 1 

The prior triple-threshold technique uses HVT transistors to implement the sleep 

function. In the logic blocks, the threshold voltages are assigned to gates using a dual- 

threshold technique. The manufacturing technology requires two more masks than 

conventional CMOS manufacturing. The ion implantation for HVT transistors is 

implemented using both masks for the SVT and LVT implantation, and the ion 

implantation concentration for HVT transistors is the sum of the ion implantation 

concentrations for SVT and LVT. 

The technique combines the benefits of the virtual rail technique and the gate 

partitioning technique. The static power has been reduced during both standby and active 

modes while not compromising the circuit speed. However, SVT and LVT gate have 

been used inside logic blocks for speed considerations. Because SVT transistors have 

larger subthreshold leakage currents than HVT transistors, the static power may be higher 

compared to HVT+LVT dual-threshold circuits during the active mode. Further static 



power reduction may be possible with a more fine-grained approach by using HVT gates 

inside the logic blocks in addition to the SVT and LVT gates. 

2.4 Summary 

This chapter has presented an overview on MTCMOS techniques for static power 

reduction. The biasing, virtual supply rail and gate partitioning techniques have been 

presented and compared. The gate partitioning technique is a better approach in terms of 

design cost and silicon area, and algorithms for dual-threshold partitioning have been 

presented. Prior triple-threshold techniques have also been presented in this chapter. 

Previous publications using the triple-threshold technology have been scarce. The only 

prior work found has not fully exploited the capabilities of the triple-threshold 

technology, and more fine-grained optimization may be possible. Based on prior work 

information, more static power reductions may be achieved with a fine-grained triple- 

threshold gate partitioning technique. 



3 SIMULATION TOOLS 

This chapter describes the simulation tools used for the experiments. The tools 

chosen for this thesis are Synopsys Design CompilerTM and PrimeTimeTM, both made 

available by the Canadian Microelectronics Corporation (CMC). Synopsys Design 

CompilerTM is a convenient tool for high-level synthesis, while PrimeTimeTM provides 

accurate static timing analysis and extraction of critical paths. Both tools include the 

support of scripting using the tool command language (TCL), which enables fast 

development and testing of optimization algorithms. 

3.1 Support for TCL Scripting in Synopsys Tools 

A major advantage of using Synopsys tools is the integrated support for TCL 

scripts. The TCL language provides basic programming constructs such as variables, 

loops, and procedures. Scripts can be written to process return values from Synopsys 

commands and iteratively perform optimization steps. TCL is a scripting language and 

thus scripts do not need to be compiled into a machine language before execution, which 

allows for rapid script development and debugging. 

Synopsys Design CompilerTM supports two modes of operation. The legacy mode 

can be started using the clc-shell command, while TCL mode is started with the clc-shell- 

t command. PrimeTimeTM only runs in one mode with integrated TCL support. To 

invoke PrimeTimeTM, the pt - shell command is used. 



3.2 Synopsys Design CompilerTM 

Design CompilerTM is a tool for fast synthesis of register transfer level (RTL) 

circuits. In this work, Design CompilerTM is used for circuit synthesis. power dissipation 

estimation, and cell usage report. 

3.2.1 Circuit Synthesis 

A typical synthesis flow consists of the following steps: 

1 .  Read in a high-level or gate-level RTL design written in the VHDL or 

verilog language. 

2. Set a timing constraint for the circuit to specify a target clock period. 

3. Load logical and physical standard cell libraries, which contain area, 

timing, power, and layout information for each logic gate. 

4. Generate a netlist of gates that perform functions specified in the RTL 

design. The design may be optimized for area, speed, or power. 

-, ,- 
'2, 

i RTL Design ) ( Constraints j 

and SynapsysOeslgn I 
, Physicai 

Figure 3-1. Flowchart of a typical circuit synthesis process 



The following is a sample TCL code listing for synthesizing a circuit in VHDL to 

generate a verilog netlist. 

# set 
set t 
set 1 

up library 
arget library { target-library ) 
ink - lTbrary { link-library ) 

# read in VHDL 
read-vhdl circuit . vhdl 

# set current design 
current-design design-name 

# link design to library 
1 ink 

# synthesize the circuit 
compile 

# flatten design (optional) 
Ungroup -all flatten 

# write netlist 
write -format verilog -output net1ist.v 

3.2.2 Power Dissipation Report 

The power dissipation of a design can be obtained using the reportgower 

command in Design CompilerTM. The reportgower command reports the total dynamic 

and leakage power of a design. The dynamic power is broken down into the cell internal 

power, which is the short circuit power plus the charging and discharging of any internal 

capacitances within a gate, and the net switching power, which is the power dissipated by 

charging and discharging of the output load capacitances at each gate. The report further 

breaks down the total internal power into the internal power dissipated by all 

combinational circuits and the internal power dissipated by all sequential circuits. The 

combinational and sequential gate counts are also given in the report. 



The following is a sample TCL code listing for generating a power dissipation 

report. 

- 

# set up library 
set target-library { target-library } 
set link - library { link-library } 

# read in netlist 
read-verilog netlist. v 

# set current design 
current-design design-name 

# link design to library 
1 ink 

# define clock constraint 
create-clock -period clockgeriod-in-ns n a m e  clock-name [get-ports 

clock - name] 

# generate power report 
report-power -analysis-effor high -verbose -nosplit 

3.2.3 Cell Usage Report 

Design CompilerTM can generate a report on the gate composition of a circuit 

using the report-reference command. The following is a sample TCL code listing for 

generating a cell reference report. 

# set up library 
set target-library { target-library } 
set link - library { link-library } 

# read in netlist 
readverilog net1ist.v 

# list all cells in the design 
report-reference -nosplit 

The report lists the names of all logic gates used to synthesize the design, the 

source library of each gate, the corresponding area, and the count of each gate. 



3.3 Synopsys PrimeTimeTM 

Synopsys PrimeTimeTM is a tool for performing static timing analysis (STA), 

which is a method of computing a circuit's timing performance by checking all possible 

paths in the design 1431. The worst-case timing delay for the circuit determines the 

overall circuit performance. 

An alternative timing analysis method is to perform dynamic simulation, which 

determines the behaviour of a circuit for a given set of input vector. Dynamic simulation 

checks for the logical functionality of a circuit, and the timing is sensitized by the test 

vector. Compared with dynamic simulation, STA is faster to perform because functional 

verifications are not required. In addition, the timing analysis in STA is more thorough 

because it checks for all timing paths in the design and not just the timing delays that are 

sensitized by a particular set of input vectors. 

3.3.1 Timing Report 

A timing report can be obtained using the report-timing command in 

PrimeTimeTM. The following is a sample TCL code listing for generating a timing report. 



# set up library 
set target-library { target-library } 
set link-library { link-library } 

# read in netlist 
read - verilog net1ist.v 

# set current design 
current-design design-name 

# link design to library 
1 ink 

# define clock constraint 
create-clock -period clockgeriod-in-ns -name clock-name [getgorts 

cl ock-name] 

# generate timing report 
report-timing 

3.3.2 Timing Path Selection 

To select timing paths in a design in PrimeTimeTM, the get-timingqnths 

command can be used. The command selects all timing paths in the design by default, 

but several options are available to limit the selection of the timing paths. In particular, 

the -slack - lesser - than option is useful for selecting only the paths that violate the timing 

constraints. 

The following is the TCL code to obtain a maximum number of 5000 timing paths 

that have a negative slack. 

get-timing-path -slack-lesser-than 0 -max-paths 5000 I 

3.3.3 Cell Replacement 

After loading a design into PrimeTimeTM and linking the design to a library, each 

individual cell can be swapped to another type of cell with equivalent pinouts using the 



swup-cell command. This command is used to replace an HVT cell by an SVT or LVT 

cell during the gate partitioning optimization process. 

The following is a sample TCL code to swap a cell. 

( swap-cell cell-1 is t replacemen t-cell I 

After swapping in a new cell, PrimeTimeTM implicitly re-links the part of the 

design that has been changed. The original design itself, however, remains unchanged in 

the memory. PrimeTimeTM records changes to the netlist in a separate change list, which 

can be exported using the write-changes command, as shown below. 

write-changes -format text -output change-1ist.txt I 

3.4 Modelling of Timing Delays and Power 

In high-level synthesis, a circuit is modelled as a netlist of gates. Each gate has 

been characterized by its area, load capacitances, power, and timing information. A 

synthesis tool obtains the information from the standard cell libraries and predicts the 

timing delays and power dissipations of a circuit in a hierarchical manner, thereby 

reducing the analysis time. The following sections will describe the timing and power 

models in the Synopsys tools. 

3.4.1 Timing Model 

In PrimeTimeTM, a design is divided into a set of timing paths. The signal 

propagation delays along each path are calculated and checked against timing violations. 



A timing path has a start point and an endpoint. A start point is a clock pin of a 

sequential logic or an input port of the design; an endpoint is an output port of the design 

where output data is captured. The total delay of a path is calculated by summing all cell 

and net delays in the path. 

The cell delay is the timing delay from the input to the output of a gate. The 

standard cell libraries contain timing delay tables that list the gate delay as a function of 

several variables, such as the input state, the input transition time, and the output load 

capacitance. Since it is not possible to list the timing delay under all possible conditions, 

PrimeTimeTM uses interpolation or extrapolation methods to estimate the timing delay of 

a cell when a condition is not listed in the table. 

The net delay is the timing delay from the output of a cell to the input of the next 

cell in the timing path. The net delay is dependent upon the parasitic capacitances and 

resistances between cells as well as the output drive strength of the cells. During the 

synthesis step, layout information is usually not available. Instead of determining the 

actual capacitance and resistance values, PrimeTimeTM estimates the net delay using 

statistical wire load models in the standard cell libraries. 

Having determined the timing delays of each cell and each net. the total path 

delay can be calculated as follows: 

where DClk is the clock source delay, Dclk - net is the clock network delay, DCeIl is the cell 

delay, and Dl,,, is the network delay. 



The path delay is compared with the timing constraint to determine the path slack 

time. The path slack time is calculated as the difference between the path delay time and 

the path required time: 

Slack = Required Time - Path Delay. (3.2) 

A positive slack indicates that the path has met the timing constraint, and a negative slack 

indicates a timing violation in the design. 

The path required time is calculated as follows: 

where Tclk is the clock period, Dclk is the clock source delay, Dclk - net is the clock network 

delay, Tclk - llncertalnty is the clock uncertainty, and Tset,,, is the register setup time. 

3.4.2 Power Model 

Design CompilerTM reports the internal power, switching power, and leakage 

power of a design. Transistor-level modelling of the design is not performed; rather, each 

gate is modelled as a black box with pre-determined parameters for estimating power 

dissipations. 

The cell internal power is the power dissipated within the boundaries of a cell, 

which consists of the short circuit power plus the charging and discharging of any 

internal capacitances within a gate. The internal power is a function of the input 

transition time and the capacitances of a cell. An internal power lookup table for each 

logic gate is available in the standard cell library. Similar to timing delay calculations, 

Design CompilerTM uses interpolation or extrapolation methods to estimate the internal 

power of a cell. 



The switching power of a cell is the power dissipated when charging or 

discharging the output load capacitances and is a function of the load capacitance and the 

switching activity. The output load capacitance is the sum of the input capacitance of the 

fanout gates plus the parasitic capacitances in the routing network, which can be 

estimated using the statistical wire load model. The switching activity can be determined 

during functional simulations. When no simulation data is available. Design CompilerTM 

calculates a default switching activity. The probability that the state of each primary 

input is at logic I is set to 0.5 by default, and the default toggle rate is also set to 0.5. 

indicating that an input toggles once per two clock cycles. The logic states and toggle 

rates are propagated from the primary inputs throughout the rest of the design, and the 

switching activity of each cell is determined. After determining the switching activity 

and the load capacitances, the switching power can be calculated using Eq. 3.4. 

The leakage power of a cell is dependent on the input states. For each input state. 

a corresponding leakage power value can be obtained from the standard cell library for 

each logic gate. Design CompilerTM calculates the static power of a circuit by 

multiplying the static power value for each state by the percentage of the total simulation 

time at that state. When no functional simulations are performed, the default states are 

determined for each gate as described above. 

3.5 Summary 

This chapter has described the simulation tools used in this thesis. The basic 

functionalities and usages have been presented as well as the sample TCL codes 



corresponding to each function. The timing and power models in Synopsys tools have 

also been described. 



4 PROPOSED TRIPLE-THRESHOLD STATIC POWER 
REDUCTION TECHNIQUE 

This chapter presents the novel triple-threshold technique proposed in this thesis. 

Parts of this work have been presented in [44] and [45]. The triple-threshold standard 

cell libraries available from CMC have been characterized with the relative performance 

and leakage power. Given the cell library characterization information, a new 

methodology for a fine-grained triple-threshold gate partitioning technique is proposed to 

fully utilize the benefits of the triple-threshold technology. 

4.1 Characterization of Standard Cell Libraries 

The threshold voltages of the 90nm standard cell libraries are listed in Table 4-1. 

These threshold voltage values are the nominal values given in the 90nm design rule 

manual. However, since the standard cells provided by CMC are black boxes without 

any layout information. the actual threshold voltages may differ from the nominal values 

depending on the layouts of each cell. 

Table 4-1. Threshold voltages of the 90nm HVT, SVT and LVT standard cell libraries 

I Cell Library ( NMOS VT [V] ( PMOS VT [V] / 
HVT 

SVT 

LVT 

0.32 

0.24 

0.18 

-0.36 

-0.29 

-0.24 



To compare the performance and static power dissipation of designs synthesized 

with the three different standard cell libraries, a 16-bit Wallace tree multiplier with a 

carry look-ahead adder has been developed as a test vehicle. The 16-bit multiplier is 

synthesized in Synopsys Design CompilerTM to generate a netlist of 1 123 cells. The 

design has been synthesized three times: with the HVT library only, with the SVT library 

only, and with the LVT library only. The static power dissipation reported by Design 

CompilerTM for each synthesized design is recorded, and STA is performed in 

PrimeTimeTM for each design to determine the timing delay of the longest critical path. 

The results are shown in Table 4-2. 

Table 4-2. Performance compnrison of a 16-bit Wallace tree multiplier synthesized using the HVT, 
SVT and LVT standard cell libraries 

The 90nm standard cell libraries have been designed such that an HVT gate 

would occupy the same area as an SVT or an LVT gate. Therefore all three synthesized 

designs occupy the same die area. 

The simulation results of the 16-bit multiplier indicate that the SVT synthesized 

design dissipates static power that is about 20 times larger than the HVT synthesized 

design, and the LVT design dissipates about 20 times larger static power than the SVT 

Cell Library 

HVT 

SVT 

Longest Path Delay 
Ins1 

3.4 

2.6 

Max. Clock Frequency 
[MHz1 

294.1 

384.6 

Static Power 
t PWI 

0.75506 

1 4.4600 



design. Performance-wise, the LVT design is 24% faster than the SVT design and 62% 

faster than the HVT design. To fully utilize the triple-threshold technology, SVT and 

LVT cells must be placed in critical paths of a design to increase the clock frequency, 

while the number of SVT and LVT cells must be minimized due to the large penalty in 

the static power. The next section presents the proposed fine-grained triple-threshold 

gate partitioning methodology for minimizing static power while maximizing speed. 

4.2 Methodology 

Simulations of the 16-bit multiplier indicate that replacing an HVT cell by an 

SVT cell would result in a 20 times increase in the static power, and replacing an SVT 

cell by an LVT cell also results in a 20 times increase in the static power. Therefore only 

the minimum number of SVT and LVT cells should be used in a design to reduce timing 

delays. 

The proposed methodology is an M1SA-type HVT to LVT algorithm similar to 

the algorithm presented in [36] where it has been applied to the dual-threshold 

technology. As previously stated in Section 2.2.2.4, by assigning the number of critical 

paths passing through a gate as the weight of the gate, the algorithm may be more 

effective in reducing the number of critical paths with fewer cell replacements. The 

MlSA algorithm is also less computationally intensive compared with some other 

algorithms and is therefore chosen as the basis for developing the proposed triple- 

threshold algorithm. 



The TCL code used to implement the dual-threshold algorithm in [36] has been 

provided by Benjamin Chung at PMC Sierra. The code has been modified to work with 

the 90nm standard cell libraries at SFU. 

To extend the dual-threshold algorithm for use with the triple-threshold 

technology, the usage of cells in the triple-threshold standard cell libraries must be 

prioritized. The priority of HVT cells is higher than SVT cells due to the lower static 

power dissipation, and the priority of LVT cells is the lowest because of the enormous 

increase in the static power. The proposed triple-threshold algorithm involves the 

following steps: 

I .  Initial Synthesis: The RTL design is synthesized using the HVT standard 

cell library to produce an HVT netlist. 

2.  Incremental Replacement of SVT Cells: STA is performed for the HVT 

netlist to determine the timing-critical paths in the design. A weight (or 

cost) is assigned to each cell in the critical paths to indicate the number of 

critical paths passing through the cell. The cell with the highest cost is 

replaced by the equivalent SVT cell. This step is repeated until the timing 

constraint has been met or all the HVT cells in the critical paths have been 

replaced with SV'T cells. 

3.  Incremental Replacement oJ'LVT Cells: If all HVT cells in the critical 

paths have been replaced by SVT cells and the design still violates the 

timing constraint, STA is performed to select critical paths, and the 

highest cost cells are replaced with the equivalent LVT cells. The LVT 

cell replacement is repeated until the timing requirement has been met. 

4 1 



The proposed algorithm prioritizes using HVT cells in a design first and LVT 

cells last, ensuring that the leakiest cells are only used if necessary while optimizing a 

design to meet timing requirements. Figure 4-1 shows a flowchart of the proposed triple- 

threshold algorithm. 

I I 
&----+ --- 

Replace H~ghest-Cusl 
,- Cells with SVT 

Figure 4-1. Flowchart of the proposed triple-threshold algorithm 

4.2.1 Implementation Limitations 

Due to the NP-hard nature of the problem, selecting all critical paths at once is 

impractical. For example, the total number of critical paths in the 16-bit multiplier well 

exceeds seven figures. On the other hand, PrimeTimeTM is only capable of selecting 

around 500,000 paths using the get-timingqaths command due to memory addressing 

constraints on a 32-bit Sun workstation. Selecting all paths may be possible on a 64-bit 

workstation; however. the run time required is also exponentially large. A modification 

in the algorithm is necessary to address the practical limitations. 



The proposed algorithm in the previous section selects the global highest-cost 

cells to be replaced by cells with a higher threshold voltage. Since only a limited number 

of paths can be selected, the local highest-cost cells within the selected paths are selected 

for replacement instead. Starting with an HVT netlist, the modified algorithm selects a 

number of critical paths from the design. If all local highest-cost cells have been replaced 

by SVT cells and the paths are still identified by PrimeTimeTM as critical cells, one local 

highest-cost SVT cell is replaced by its counterpart LVT cell. The LVT cell replacement 

may have changed the timing delays in the design, and running STA again may result in 

PrimeTimeTM selecting new critical paths that contain HVT cells. The algorithm must 

then return to the state for incremental replacement of SVT cells. Figure 4-2 shows the 

modified flowchart with the changes shaded in gray. 

The rnaxqaths variable can be set in PrimeTimeTM to indicate the maximum 

number of timing paths to obtain during STA. This variable increases the run time 

significantly when set to a large number exceeding 1000 and for a large design exceeding 

1000 gates. However, this variable has no direct correlation to the reductions in the static 

power. When rnaxqaths is set to a number lower than 50, the run time may be very fast, 

but the resulting design may be suboptimal. Setting the rnaxqaths variable to a number 

between 100 and 1000 results in circuits that vary slightly in the static power reduction, 

but the optimal number must be determined empirically for each circuit to be optimized. 

In general, however, the variation in the static power reduction is little and does not 

warrant performing extra experiments to determine the best value for rnaxqaths. 



Cells wrth SVT 

Figure 4-2. Flowchart of the modified triple-threshold algorithm 

4.3 Summary 

This chapter has presented the simulation results of the 16-bit multiplier as a test 

vehicle for characterizing the triple-threshold standard cell libraries. The results lead to 

the priority of using cells with a higher threshold voltage first. A suitable fine-grained 

triple-threshold static power minimization methodology is proposed and described. Due 

to practical limitations. a modified algorithm has been developed. 



5 SIMULATION RESULTS 

This chapter presents the experimental results of optimizing designs using the 

proposed triple-threshold methodology. Simulations ofthe 16-bit multiplier are 

presented in more detail. For comparison with the dual-threshold technique [36], two 

sets of benchmark circuit suites have been optimized. The VHDL source code of the 

1995 high-level synthesis benchmark circuits is obtained from 

http://~~~.ece.vt.edu/mhsiao/hIsyn.htmI, and the ITC'99 benchmark suite VHDL code 

is obtained from http://www.ite.tul.cz/asic/iscas/index.htmI. 

5.1 16-Bit Wallace Tree Multiplier 

A 16-bit Wallace tree multiplier has been implemented as a test vehicle for 

experiments conducted in this thesis. The goal is to choose a common circuit that has 

considerable complexity and size. Since the multiplier is a fundamental circuit in 

processor designs, the 16-bit Wallace tree multiplier architect~~re is chosen for 

implementation. 

5.1.1 Multiplier Circuit Overview 

A typical multiplier circuit consists of three stages: partial product generation. 

partial product accumulation, and final addition [3]. The first stage generates partial 

products by taking the logical AND operation of the two multiplicands. For a 16-bit 

multiplication calculation, 16 partial products are generated, as shown in Figure 5-1. The 

number of partial products may be reduced using the modified Booth's recoding scheme 



[46]. However, since the focus of this thesis is not on optimizing the multiplier 

architecture, the modified Booth's recoding is not implemented in the 16-bit multiplier. 

Partial products are generated using simple logical AND operations in the 

implementation. 

L . X ~ X  x r h x I ,  Y n, r , x , )  x s , 
X ? . , I f  y b i $. , b y  y" b + y , )  y , \ 

PPIJ ..................... 
PP1 A................... 

PPL ...................'. 
FP3 xye.e. .a 0 .  * . x S 1 s l  

PP4 . . . . . . . . . . . . . . . . .  Yo Y l Y ,  

FP5 . . . . . . . . . . a . e .o . . . . . . .  
PPti * . ' i , .  0 * * a ' Y x i '  

P P ~  . . . . . . e e . . .m . . . . . . . .  16 Partial 
PPE! . .' a ~ . . a * . . . . . . # ~ . . . . .  Products 
PPCr ' > .  0 0 . 0  0 0  0 .  # X z . x j  

PPll) .................... 
PP1 I . . . . . . . . * . . . . . . . . . .  
PPI" x ' f  ............. X,&f .. 
PPl5 '-P . . . . . . . . . . . . . . . ~ . .  
PF-'14 r * v k .  * 
PP15 ' ~ . a  a r e h ~ r x ~ .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 5-1. Partial products in a 16-bit multiplication 

The second stage in the multiplication process is to sum the 16 partial products 

and simplify into two final partial products. The Wallace tree structure [47] is a simple 

yet fundamental architecture for implementing a fast multiplier. Using 3-2 carry-save 

adders, the accumulation of the partial products can be performed in a few stages without 

ripple delays. The block diagram of the implemented Wallace tree structure is shown in 

Figure 5-2. 





5.1.2 Simulation Results 

Table 4-2 has been duplicated below for reference. As shown in the table, the 

HVT multiplier has a longest path delay of 3.4 ns, whereas the LVT multiplier has a 

longest path delay of 2.1 ns. To generate an optimized netlist using the triple-threshold 

methodology, the clock constraint is set to 2.1 ns, which is the shortest path delay in the 

LVT design. The triple-threshold optimized netlist is compared to the dual-threshold 

optimized design [36]. The original netlist consists of 1123 cells; the dual-threshold 

optimized design consists of 897 HVT cells and 226 LVT cells; the triple-threshold 

optimized netlist consists of 833 HVT cells, 196 SVT cells, and 94 LVT cells. 

Table 5-1. Performance comparison of a IBbit Wallace tree multiplier synthesized using the HVT, 
SVT and LVT standard cell libraries 

Cell Library 

HVT 

SVT 

LVT 

Table 5-2. Static power comparison of the LVT, dual-threshold and triple-threshold designs 

Longest Path Delay 
Ins1 

3.4 

2.6 

2.1 

Multiplier Design 

LVT 

Dual-Threshold 

Triple-Threshold 

Max. Clock Frequency 
[MHz1 

294.1 

384.6 

476.2 

# HVT 

0 

897 

833 

Static Power 
[PWI 

0.75506 

14.4600 

270.7 120 

# SVT 

0 

0 

196 

# LVT 

1123 

226 

94 

'10 LVT 

100% 

20% 

8.4% 

Static Power [pW] 

270.71 

59.89 

27.40 



By using 9 1.6% fewer LVT gates in the design, the triple-threshold multiplier has 

reduced the static power by 90% compared to the LVT multiplier. Compared to the dual- 

threshold multiplier, the triple-threshold multiplier contains 58.4% fewer LVT gates, and 

the static power dissipation is 54% less. Since LVT gates dissipate significantly more 

static power than HVT and SVT gates, the triple-threshold methodology has 

demonstrated its effectiveness in reducing the static power by minimizing the use of LVT 

gates in a design. 

An arbitrary path from input x-/ to output P3 ,  is selected to analyze the difference 

in static power between the dual-threshold design and the triple-threshold design. Figure 

5-3 shows the path in (a) the dual-threshold optimized design and (b) the triple-threshold 

optimized design. 

The dual-threshold path contains 9 HVT cells (shaded in gray) and 23 LVT cells 

(in black outline), while the triple-threshold path contains 7 HVT cells, 8 SVT cells 

(shaded in gray stripes), and 17 LVT cells. Comparing the two paths. nine cells have 

been assigned with different threshold voltages. The delay and static power for the nine 

cells are presented in Table 5-3. 



Figure 5-3. Timing path from x, to P3, in (a) dual-threshold multiplier and (b) triple-threshold 
multiplier 



Table 5-3. Timing delay and static power of selected gates in the dual-threshold and triple-threshold 
paths 

Dual-V, 
Path Cell 

FD2QLVT 

EOHVT 

A02NHVT 

EOLVT 

A02NLVT 

EOLVT 

A02NLVT 

EOHVT 

EOLVT 

Path 
Delay [ns] 

0.10 

0.10 

0.09 

0.05 

0.06 

0.05 

0.06 

0.10 

0.02 

Static Power 
[PWI 

478.8098 

0.8555 17 

0.545 157 

325.1559 

188.8806 

327.8204 

189.5429 

0.925426 

335.4581 

Tri-V, Path 
Cell 

FD2QSVT 

EOSVT 

A02NSVT 

EOSVT 

A02NSVT 

EOHVT 

A02NSVT 

EOSVT 

EOSVT 

Total 

Path 
Delay [ns] 

0.13 

0.08 

0.07 

0.06 

0.07 

0.08 

0.07 

0.08 

0.03 

0.68 

Static Power 
IPWI 

Compared to the dual-threshold path, the triple-threshold path has 6 fewer LVT 

cells and 8 additional SVT cells. The use of fewer LVT cells results in an increased 

delay of 0.05 ns. Referring to Figure 5-3, the total path delays for the dual-threshold and 

triple-threshold paths are 2.00 ns and 2.05 ns, respectively. Both optimized paths still 

meet the 2.1 ns timing constraint. Note that 0.05 ns of setup time is required; therefore 

the triple-threshold path has zero slack time after the optimization and the dual-threshold 

path has 0.05 ns of slack time. For comparison, the same path in the HVT multiplier has 

a total path delay of 2.79 ns. The use of LVT cells in the optimized paths has effectively 

reduced the circuit delay time to meet the timing constraint. Compared to the dual- 

threshold path, the total static power for the nine cells in the triple-threshold path is 



93.2% lower. This demonstrates the effectiveness of the triple-threshold technique in 

reducing static power. 

The triple-threshold optimized multiplier design is capable of running at the same 

speed as the pure LVT design, while dissipating 90% less static power. However, not all 

designs need to be run at the fastest possible speed. Figure 5-4 shows the static power 

dissipation of the same multiplier optimized with different clock constraints. At the 

highest clock speed (lowest clock period), the static power reduction is 90% as previously 

presented. As the clock speed requirement is lowered, fewer LVT gates are required in 

the design to meet the timing requirement, and therefore the static power dissipation is 

even lower. Using the triple-threshold technique. the 90% reduction in static power is the 

minimum reduction that can be achieved in the 16-bit multiplier design. At lower target 

clock frequencies, more than 95% static power reduction can be achieved. 

The proposed triple-threshold technique not only allows designers to maximize a 

circuit's clock speed while minimizing static power, but also to make trade-off decisions 

to obtain more static power reductions by reducing speed requirements. 



2.1 2.2 2 3  2.4 2.5 2.6 2.7 2.5 2.9 3.1) 3.1 3.2 3.3 3.4 

Clock Period (ns) 

Figure 5-4. Static power dissipation of designs optimized with different clock constraints 

5.2 1995 High-Level Synthesis Benchmark Circuit Suite 

The 1995 high-level synthesis benchmark circuit suite consists of eight circuits. 

Table 5-4 summarizes the functions of each circuit. The eight circuits are optimized 

using the dual-threshold and triple-threshold algorithms on a Sun Ultra 45 workstation. 

Table 5-5 shows the static power reductions in the dual-threshold and triple-threshold 

optimized designs, and Table 5-6 shows the run times for optimizing the circuits. 

The optimization run time for the triple-threshold algorithm is up to twice as long 

as the dual-threshold algorithm for small designs. but as circuit complexity increases, the 

triple-threshold optimization run time is comparable to the dual-threshold run time. 

On average, the triple-threshold optimized designs have 89.3% reduction in static 

power compared to the LVT designs. Compared to the dual-threshold optimized designs, 



the average reduction in static power is 41%. In all circuits tested, the triple-threshold 

algorithm has generated circuits with the lowest static power dissipation. 

In Table 5-5, the clock period of each circuit is set to the longest critical path 

delay of the LVT circuit, which is the fastest clock possible for each design. As 

previously established, for lower clock speed requirements, more static power reductions 

may be achieved. Therefore the reported reduction in static power is the minimum 

reduction that can be achieved for each circuit. 

am29 10 Microprogram address sequencer 

Table 5-4. Functions of circuits in the 1995 high-level synthesis benchmark suite 

barcode 1 Barcode reader design 

Circuit 

d hrc 

Function 

I Differential heat release computation circuit 

diffeq ( Solves a particular differential equation 

1 Computes the greatest common divisor of two numbers 

I kalman ( An implementation of the Kalman filter 

Iru Part of a cache controller circuit that finds the least recently used item in the 
cache 

I prawn 1 A simple 8-bit microprocessor I 



Table 5-5. Static power reductions in dual-V, and triple-V, optimized designs 

Circuit # 
Gates 

Clock I Static Power [pW] Oh Saving vs. 1 LVT 
Tri-V, % 

Saving 
vs. Dual- 

Vt 

Period 
Ins1 

LVT 

am29 10 

barcode 

dlirc 

d i ffeq 

gcd 

kalman 

lru 

prawn 

Avg. 

Table 5-6. Composition of gates and optimization run time 

Circuit Run Time (h:mm:ss) 

# HVT # LVT # HVT 

513 

147 

1136 

4218 

304 

203 5 

375 

429 

# SVT # LVT 

am29 10 

barcode 

dhrc 

d i ffeq 

gcd 

kalman 

Iru 

prawn 



5.3 ITC'99 Benchmark Circuit Suite 

The ITC'99 benchmark suite [5  11 has been developed as an update to the 

ISCAS'85 [49] and ISCAS'89 [50] gate-level benchmark circuits to reflect modern 

circuit designs. The functions of each circuit in the ITC'99 benchmark suite and 

simulation results of the dual-threshold and triple-threshold optimized designs are shown 

in Appendix A. 

The smallest circuit B02 is selected to illustrate how gates of different threshold 

voltages are placed in the dual-threshold and triple-threshold optimized designs, as shown 

in Figure 5-5. The dual-threshold circuit contains 1 1  HVT cells and 7 LVT cells; the 

triple-threshold circuit contains 7 HVT cells, 7 SVT cells, and 4 LVT cells. The triple- 

threshold circuit dissipates 30.17% less static power compared to the dual-threshold 

circuit due to the use of fewer LVT cells. 

reset 

clock 

lmea 

reset 

cluck 

l~nea 

(b) 

Figure 5-5. Circuit B02 optimized with (a) dual-threshold technique and (b) triple-threshold 
technique 



Figure 5-6 and Figure 5-7 show the static power dissipations and number of LVT 

cells in the LVT. dual-threshold and triple-threshold designs. Comparing the two figures. 

it is evident that the static power dissipation follows the same trend as the number of 

LVT cells in a design. A direct relation between static power and the number of LVT 

cells can be implied. 

Stai~c F ~wer I p'!: 

Figure 5-6. Static power of the LVT, dual-threshold, and triple-threshold designs 

Figure 5-7. Number of LVT cells in the LVT, dual-threshold, and triple-threshold designs 



Figure 5-8 plots the static power vs. the number of LVT cells. Since LVT cells 

are the dominant contributors to the total static power in a circuit, a linear trend can be 

established where static power increases directly as the number of LVT cells in a design. 

For each decade increase in the number of LVT cells used in a design. the static power of 

the design also increases by one decade, regardless of the number of HVT or SVT cells in 

the design. The static power can be estimated using Eq. 5.1: 

Pstatlc = a . N L\'I (5.1) 

where a is a technology dependent parameter and equals 0.247 pW/gate for the 90nm 

technology provided by CMC. 

Static Power vs. urn. nf LVT Cells 

Figure 5-8. Static power vs. number of LVT cells 



5.4 Summary 

This chapter has presented the simulation results in this work. A 16-bit Wallace 

tree has been implemented as a test vehicle for synthesis with the triple-threshold 

standard cell libraries. A comparison has been made for the relative clock speed and 

static power dissipation between cells of different threshold voltages, and a 20 times 

difference in static power has been observed between HVT and SVT cells and between 

SVT and LVT cells. Based on a dual-threshold MISA gate partitioning algorithm, a 

suitable triple-threshold static power minimization for the 90nm technology has been 

proposed and implemented. A minimum static power reduction of 90% has been 

achieved using the proposed triple-threshold technique to optimize the 16-bit multiplier. 

As clock speed requirements become lower, more static power reductions can be 

achieved. The triple-threshold technique has also been compared to the dual-threshold 

technique using two sets of benchmark circuits. The optimization run time of the triple- 

threshold technique may be up to twice as long as the dual-threshold technique for small 

designs, but the difference in run time diminishes for large designs. A linear relationship 

has been observed between the static power dissipation in a design and the number of 

LVT cells being used. This observation shows that placing higher priority on using HVT 

cells and lower priority on SVT and LVT cells contributes to the effectiveness of the 

proposed triple-threshold methodology. In all benchmark circuits tested, designs 

optimized with the triple-threshold technique have the lowest static power dissipations. 



6 CONCLUSIONS 

As CMOS technology development progresses towards the nanometre regime, 

power management becomes a problem as more devices are integrated in a system-on- 

chip. With the continual scale down of power supply voltages and threshold voltages, the 

static power increases exponentially and becomes dominant in the total power envelope. 

To combat the increase in static power, extensive research has been done over the past 

two decades in various areas. 

One of the research areas has been to utilize the MTCMOS technology and take 

advantage of the difference in speed and leakage current of transistors with different 

threshold voltages. In Chapter 2, three main topics of circuit design techniques using the 

MTCMOS technology have been presented, i.e. the sourcelbody biasing, virtual supply 

rails, and gate partitioning techniques. The gate partitioning technique requires less 

design costs and provides more fine-grained control for reducing static power compared 

to the other techniques. Previously proposed gate partitioning techniques utilize the dual- 

threshold technology, and several LVT to HVT and HVT to LVT algorithms have been 

presented and compared. By extending the MISA-based HVT to LVT algorithm to 

utilize the triple-threshold CMOS technology, more fine-grained static power reduction 

may be possible compared to previous techniques. 

Chapter 3 presents the simulation tools used in this thesis. The Synopsys tools 

have been used for synthesis of test circuits and generation of timing and power reports. 

Sample TCL scripts have also been presented. 



Chapter 4 describes the proposed novel triple-threshold static power minimization 

methodology. The MISA-based algorithm has been adapted for use with the triple- 

threshold standard cell libraries. Based on the characterization of the cell libraries. a 

priority scheme has been set for the usage of HVT, SVT. and LVT cells. A suitable 

algorithm has been developed and presented. To work around limitations of the tools, a 

modified algorithm is used. 

Benchmark circuit suites have been used to determine the effectiveness of the 

proposed triple-threshold algorithm. The circuits have been optimized using the 

proposed technique, and compared with circuits optimized with the dual-threshold 

technique. The simulation results have been presented in Chapter 5 .  For the 16-bit 

Wallace tree multiplier, a minimum reduction in static power of 90% has been achieved. 

The proposed technique allows designers to trade off clock speed with static power 

reduction. The optimization run times for the triple-threshold technique is comparable to 

the dual-threshold technique for large designs. For all circuits tested, the proposed triple- 

threshold technique is shown to optimize circuits with the lowest static power dissipation. 

In conclusion, a novel triple-threshold static power minimization technique in 

high-level synthesis has been proposed. The proposed technique can be included in 

standard design flows with relatively low design costs, while achieving the most static 

power reductions compared to other gate partitioning techniques. 



APPENDICES 

APPENDIX A: ITC'99 BENCHMARK SUITE SIMULATION 
RESULTS 

Table A-1. Functions of circuits in the ITC'99 benchmark suite 151 1 

Circuit I Function 

I Finite state machine (FSM) comparing serial flows 

I FSM that recognizes BCD numbers 

I Resource arbiter 

I Computes min and man 

I Elaborates the contents of a memory 

I Interrupt handler9 

/ Counts points on a straight line 

8 0 8  1 Find inclusions in sequences of numbers 

B09 I Serial to serial converter 

B 10 I Voting system 

B 1 1 I Scramble string with variable cipher 

B 12 1 One-player game for guessing a sequence 

B I3 I Interface to meteo sensors 

B I4 / Subset of the Viper processor 

I Subset of the 80386 processor 

1 Parametric hard-to-initialize circuit 

/ Three copies of B IS 

1 Two copies of B 14 and two copies of B 1 7 

1 TWO copies of B I 8 

I A copy of B 14 and a modified version of 8 1 4  

I Two copies of B 14 

B22 A copy of B 14 and two modified versions of B 14 



Table A-2. Static power reductions in dual-V, and triple-V, optimized designs 

Circuit 

Avg. 

# 
Gates 

Clock 
Period 

[nsl 

Static Power 1pWj 

LVT 

'YO Saving vs. 
LVT 

Tri-V, %O 

Saving vs. 
Dual-Vt 



Table A-3. Composition of gates in the optimized designs 

Circuit Total # of 
Gates 

# HVT 

1 1  

19 

29 

49 

69 

68 

76 

142 

152 

14 1 

222 

265 

594 

2826 

296 1 

5883 

5921 

8856 

9173 

27 104 

55352 

# LVT # HVT 

Tri-V, 

# SVT 

7 

8 

15 

14 

32 

10 

40 

3 5 

49 

58 

7 5 

3 4 

66 

436 

374 

995 

974 

1513 

1141 

2312 

3237 

# LVT 



APPENDIX B: 16-BIT WALLACE TREE MULTIPLIER 
VHDL CODE LISTING 

This section presents the code listing of the 16-bit Wallace tree multiplier. The 

code has been developed without realizing that the "generate" statement could be used to 

make the code more compact. For example, the following section of code could be 

replaced with a more compact generate statement. 

The following code is the equivalent generate statement for the above code. 

g l  : f o r  i i n  2  t o  9 g e n e r a t e  
f a  : ubfa  p o r t  map ( i n 1  ( i ) ,  in2  ( i )  , i n3  ( i )  , c ( i + l ) ,  s ( i )  ) ; 

Using generate statements can reduce a large portion of the code size. However, 

changes to the input or output ports of some entities may be necessary in order to use the 

generate statement. Therefore, the code presented listing below has not been updated 

with generate statements. 



library ieee; 
use ieee.std-logic-ll64.all; 

entity multiplier is port ( 
reset : in std-logic; 
clk : in std-logic; 
in1 : in std logic,-vector (15 downto 0) ; 
in2 : in stdrlogic-vector (15 downto 0) ; 
dout : out std-logic-vector(31 downto 0)); 

end multiplier; 

architecture structure of multiplier is 
component reg1 port ( 

reset : in std-logic; 
clk : in std-logic; 
din : in std-logic; 
dout : out std-logic) ; 

end component; 

component reg16 port( 
reset : in std-logic; 
clk : in std-logic; 
din : in std logic__vector(15 downto 0); 
dout : out stdllogic-vector (15 downto 0) ) ; 

end component; 

component reg32 port( 
reset : in std-logic; 
clk : in std-logic; 
din : in std-logic-vector (31 downto 0) ; 
dout : out std-logic-vector(31 downto 0)); 

end component; 

component ppg port ( 
: in 
: in 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 
: out 

std-logic-vector( 
std-logicvector( 
std-logic-vector( 
std-logicvector( 
std logic-vector( 
stdIlogic-vector ( 
std-logic -vector ( 
std-logic-vector( 
std logic-vector( 
std-logic-vector ( 

stdrlogic-vector ( 
std-logic-vector( 
std-logicvector( 
std - logic-vector( 
std-logic-vector( 
std-logic-vector( 
std logic vector( - 

stdIlogic-vector ( 

15 downto 0) ; 
15 downto 0) ; 
15 downto 0) ; 
16 downto 1) ; 
17 downto 2) ; 
18 downto 3) ; 
19 downto 4) ; 
20 downto 5) ; 
21 downto 6) ; 
22 downto 7) ; 
23 downto 8) ; 
24 downto 9); 
25 downto 10); 
26 downto 11) ; 
27 downto 12) ; 
28 downto 13) ; 
29 downto 14) ; 
30 downto 15)); 



end component; 

component wallace port ( 

PPO 
PPl 
PP2 
PP3 
PP4 
PP5 
PP 6 
PP7 
PP 8 
PP9 
PPlO 
PPll 
PP12 
PP13 
PP14 
PP15 
wlcc 
wlcs 

: in 
: in 
: in 
: in 
: in 
: in 
: in 
: out 
: out 

std-logic-vector 
std-logicvector 
std-logic-vector 
std-logic-vector 
std-logic-vector 
std logic-vector 
stdIlogic-vector 
std-logic-vector 
std-logic-vector 
std-logic-vector( 
std logic-vector( 
std-logic-vector( 
std-logic vector(27 downto 12) ; 
stdIlogic~vector(28 downto 13) ; 
std-logicvector(29 downto 14) ; 
std-logic-vector (30 downto 15) ; 
std-logic-vector(31 downto 7) ; 
std logic vector(31 downto 0)) ; - - 

15 downto 0) ; 
16 downto 1); 
17 downto 2) ; 
18 downto 3) ; 
19 downto 4) ; 
20 downto 5) ; 
21 downto 6); 
22 downto 7) ; 
23 downto 8); 
24 downto 9); 
25 downto 10); 
26 downto 11); 

end component; 

component cla port ( 
x : in std-logic-vector ( 31 downto 0 ) ;  
Y : in std-logic-vector ( 31 downto 7 ) ;  
s : out std-logic-vector ( 31 downto 0 ) ) ;  

end component; 

signal bin1 
signal bin2 
signal bdout 
signal ppO 
signal ppl 
signal pp2 
signal pp3 
signal pp4 
signal pp5 
signal pp6 
signal pp7 
signal pp8 
signal pp9 
signal pplO 
signal ppll 
signal pp12 
signal pp13 
signal pp14 
signal pp15 
signal wlcs 
signal wlcc 

: std-logic-vector(l5 
: std-logic-vector(l5 
: std-logic-vector(31 
: std-logic-vector(l5 
: std-logic-vector(l6 
: std-logic-vector(l7 
: std-logic-vector(l8 
: std-logic-vector(l9 
: std-logicvector (20 
: std-logic-vector(21 
: std-logic-vector02 
: std-logicvector(23 
: std-logic-vector(24 
: std-logic-vector(25 
: std-logic-vector(26 
: std-logic-vector(27 
: std-logic-vector(28 
: std-logic-vector(29 
: std-logic-vector(30 
: std-logic-vector(31 
: std-logic-vector(31 

downto 0) ; 
downto 0) ; 
downto 0) ; 
downto 0) ; 
downto 1) ; 
downto 2) ; 
downto 3) ; 
downto 4) ; 
downto 5) ; 
downto 6) ; 
downto 7) ; 
downto 8) ; 
downto 9) ; 
downto 10) ; 
downto 11) ; 
downto 12) ; 
downto 13) ; 
downto 14) ; 
downto 15) ; 
downto 0) ; 
downto 7) ; 

begin 
ureginl : reg16 port map (reset, clk, inl, binl) ; 
uregin2: reg16 port map (reset, clk, in2, bin2); 



ucla: cla port map (wlcs, wlcc, bdout) ; 

uregdout: reg32 port map (reset, clk, bdout, dout); 
end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

library work; 
use work.constants.al1; 

entity reg16 is port ( 
reset : in std-logic; 
clk : in std-logic; 
din : in std-logic-vector (15 downto 0) ; 
dou t : out std-logic-vector(l5 downto 0)); 

end reg1 6 ; 

architecture behavior of reg16 is 
begin 

synch-output-data : process(reset, clk) 
begin 

if ( reset = '0' ) then 
dout <= ( others = >  ? ? ) ;  

elsif ( rising-edge( clk ) ) then 
dout <= din; 

end if; 
end process; 

end behavior; 

1 ibrary ieee ; 
use ieee.std-logic-ll64.all; 

library work; 
use work.constants.al1; 

entity reg32 is port ( 
reset : in std-logic; 
clk : in std-logic; 
din : in std-logic-vector(31 downto 0); 
dout : out std-logic-vector(31 downto 0)) ; 

end reg32 ; 

architecture behavior of reg32 is 
begin 



synch-output-data : process(reset, clk) 
begin 

if i reset = '0' ) then 
dout <= ( others = >  ? ? ) ;  

elsif ( rising-edge( clk ) ) then 
dout <= din; 

end if ; 
end process; 

end behavior; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity ppg is port ( 
in1 : in std-logic-vector (15 downto 0) ; 
in2 : in std-logic-vector (15 downto 0) ; 
p p ~  : out std logic vector(l5 downto 0) ; - 

ppl : out stdIlogic-vector (16 downto 1) ; 
pp2 : out std-logic-vector(l7 downto 2); 
pp3 : out std-logic-vector(l8 downto 3); 
pp4 : out std-logic-vector 
pp5 : out std-logic-vector 
pp6 : out std-logic-vector 
pp7 : out std-logic-vector 
pp8 : out std-logic-vector 
pp9 : out std-logic-vector 
pplo : out std-logic-vector 
ppll : out std-logic-vector( 
pp12 : out std logic-vector(27 downto 12); 
pp13 : out stdPlogic vector (28 downto 13) ; 
pp14 : out std~logic~vector (29 downto 14) ; 
pp15 : out std-logic-vector(30 downto 15) ) ;  

end ppg; 

19 downto 4); 
20 downto 5) ; 
21 downto 6); 
22 downto 7) ; 
23 downto 8) ; 
24 downto 9) ; 
25 downto 10) ; 
26 downto 11) ; 

architecture structure of ppg is 
component ppgl6 port( 

in1 : in std-logic-vector(l5 downto 0); 
in2 : in std-logic; 
ppg : out std-logic-vector(l5 downto 0 ) ) ;  

end component; 
begin 

u0 :ppgl6 port map (inl, in2 (0) , 
ul:ppgl6 port map (inl, in2(1), 
u2 :ppg16 port map (inl, in2 (2) , 
u3:ppg16 port map (inl, in2(3), 
u4 :ppg16 port map (inl, in2 (4) , 
u5 :ppg16 port map (inl, in2 (5) , 
u6 :ppg16 port map (inl, in2 (6) , 
u7:ppg16 port map (inl, in2(7), 
u8 :ppg16 port map (inl, in2 (8) , 
u9 :ppg16 port map (inl, in2 (9) , 
ulO:ppgl6 port map (inl, in2(10 
ull:ppgl6 port map (inl, in2(11 
u12:ppg16 port map (inl, in2(12 



u13:ppg16 port map (inl, in2 (l3), pp13) ; 
u14 :ppg16 port map (inl, in2 (14) , pp14) ; 
ul5 :ppg16 port map (inl, in2 (15) , pp15) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity ppgl6 is port ( 
in1 : in std-logic-vector (15 downto 0) ; 
in2 : in std-logic; 
ppg : out std-logic-vector(l5 downto 0)) ; 

end ppgl6 ; 

5) < =  inl(5) and in2; 
6) < =  inl(6) and in2; 
7) < =  inl(7) and in2; 
8) < =  inl(8) and in2; 
9) <= in1 (9) and in2; 
10) <= inl(l0) and in2; 
11) < =  in1 (11) and in2; 
12) < =  inl(12) and in2; 

( 
( 

( 
ppg(l3) <= inl(13) and in2; 
ppg(l4) <= in1 (14) and in2; 
ppg(15) < =  inl(15) and in2; 

end behav ; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity wallace 1s port ( 

ppo : in std logic-vector(l5 downto 0); 
ppl : in std~logic-vector (16 downto 1) ; 
pp2 : in std-logic-vector(l7 downto 2) ; 
pp3 : in std-logic-vector(l8 downto 3); 
pp4 : in std-logic-vector(l9 downto 4); 
pp5 : in std-logic-vector(20 downto 5) ; 
pp6 : in std logic vector (21 downto 6) ; 
pp7 : in stdIlogic~vector (22 downto 7) ; 
pp8 : in std-logicvector (23 downto 8) ; 
pp9 : in std-logic-vector(24 downto 9) ; 
pplO : in std-logicvector(25 downto 10) ; 
ppll : in std-logic-vector(26 downto 11) ; 
pp12 : in std-logicvector(27 downto 12) ; 
pp13 : in std-logic-vector(28 downto 13); 
pp14 : in std-logic-vector(29 downto 14) ; 
pp15 : in std-logic-vector(30 downto 15) ; 
wlcc : out std-logic vector(31 downto 7); - 



wlcs : out std-logic-vector(31 downto 0 ) )  ; 
end wallace; 

architecture structure of wallace is 
component csa-15-0-16-1-17-2 port( 

in1 : in std-logic-vector(l5 downto 0); 
in2 : in std-logic-vector ( 16 downto 1) ; 
in3 : in std-logic-vector(l7 downto 2); 
c : out std-logic-vector(l7 downto 2) ; 
s : out std - logic-vector (17 downto 0) ) ; 

end component; 

component csa-19-4-20-5-21-6 port( 
in1 : in std-logic-vector (19 downto 4) ; 
in2 : in std logic-vector(20 downto 5) ; 
in3 : in stdIlogic-vector(21 downto 6) ; 
c : out std-logic-vector(21 downto 6); 
s : out std-logic-vector(21 downto 4)); 

end component; 

component csa-23-8-24-9-25-10 port( 
in1 : in std--logic-vector (23 downto 8) ; 
in2 : in std-logic-vector(24 downto 9); 
in3 : in std-logic-vector(25 downto 10); 
c : out std-logic-vector(25 downto 10); 
s : out std-logic-vector(25 downto 8)) ; 

end component; 

component csa-27-12-28-13-29-14 port( 
in1 : in std-logic-vector(27 downto 12); 
in2 : in std-logic-vector(28 downto 13); 
in3 : in std-logic-vector(29 downto 14); 
c : out std-logic-vector(29 downto 14) ; 
s : out std-logic-vector(29 downto 12)) ; 

end component; 

component csa-17-0-17-2-18-3 port( 
in1 : in std-logic-vector(l7 downto 0); 
in2 : in std-logic-vector(l7 downto 2); 
in3 : in std logic-vector(l8 downto 3); 
c : out std-logic-vector(l8 downto 3); 
s : out std-logic-vector - (18 downto 0) ) ; 

end component ; 

component csa-21-4-21-6-22-7 port( 
in1 : in std-logic-vector (21 downto 4) ; 
in2 : in std-logic-vector(21 downto 6); 
in3 : in std-logic-vector(22 downto 7) ; 
c : out std logic-vector(22 downto 7) ; 
s : out std~logic-vector (22 downto 4) ) ; 

end component; 

component csa-25-8-25-10-26-11 port( 
in1 : in std logic-vector(25 downto 8); 
in2 : in std-logic-vector (25 downto 10) ; 
in3 : in std-logic-vector (26 downto 11) ; 
c : out stdIlogic-vector (26 downto 11) ; 



s : out std-logic~~vector(26 downto 8)); 
end component; 

component csa-29-12-29-14-30-15 port( 
in1 : in std logic-vector(29 downto 12) ; 
in2 : in std-logic-vector (29 downto 14) ; 
in3 : in stdIlogic-vector (30 downto 15) ; 
c : out std-logic-vector(30 downto 15); 
s : out std-logic-vector(30 downto 12)) ; 

end component; 

component csa-18-0-18-3-22-7 port( 
in1 : in std-logic-vector (18 downto 0) ; 
in2 : in std logic-vector(l8 downto 3) ; 
in3 : in std-logic vector (22 downto 7) ; 
c : out std~logic~vector (19 downto 4) ; 
s : out std-logic-vector(22 downto 0)); 

end component; 

component csa-19-4-22-0-22-4 port( 
in1 : in std logic-vector(l9 downto 4); 
in2 : in std-logic-vector (22 downto 0) ; 
in3 : in std-logic vector(22 downto 4); 
c : out ~ t d ~ l o ~ i c ~ v e c t o r  (23 downto 5) ; 
s : out std - logic-vector(22 downto 0)) ; 

end component; 

component csa-26-8-26-11-30-15 port( 
in1 : in std-logic-vector(26 downto 8); 
in2 : in std logic vector(26 downto 11) ; 
in3 : in stdIlogic~vector (30 downto 15) ; 
c : out std-logic-vector(27 downto 12) ; 
s : out std-logic-vector(30 downto 8)) ; 

end component; 

component csa-27-12-30-8-30-12 port( 
in1 : in std logic-vector(27 downto 12); 
in2 : in std-logic vector(30 downto 8); 
in3 : in stdIlogic~vector (30 downto 12) ; 
c : out std-logic-vector(31 downto 13) ; 
s : out std-logic-vector(30 downto 8)) ; 

end component; 

component csa-22-0-23-5-31-13 port( 
in1 : in std logic-vector(22 downto 0) ; 
in2 : in std-logic-vector(23 downto 5); 
in3 : in std~logic-vector (31 downto 13) ; 
c : out std-logic-vector (24 downto 6 ) ; 
s : out std-logic-vector(31 downto 0)) ; 

end component; 

component csa-24-6-30-8-31-0 port( 
in1 : in std logic-vector(24 downto 6); 
in2 : in std-logic-vector(30 downto 8) ; 
in3 : in stdIlogic-vector (31 downto 0) ; 
c : out std-logic-vector(31 downto 7); 
s : out std-logic-vector(31 downto 0)) ; 



end component; 

signal cO : std-logic-vector ( 17 downto 2 ) ;  
signal so : std-logic-vector ( 17 downto 0 ) ; 

signal cl : std logic vector ( 21 downto 6 ) ;  - - 

signal sl : std-logic-vector ( 21 downto 4 ) ;  
signal c2 : std-logic-vector ( 25 downto 10 ) ;  

signal s2 : std-logic-vector ( 25 downto 8 ) ;  
signal c3 : std-logic-vector ( 29 downto 14 ) ;  
signal s3 : std-logic-vector ( 29 downto 12 ) ;  
signal c4 : std logic-vector ( 18 downto 3 ) ;  
signal s4 : stdllogic-vector ( 18 downto 0 ) ; 

signal c5 : std-logicpvector ( 22 downto 7 ) ;  
signal s5 : std logicIvector ( 22 downto 4 ) ;  

signal c6 : std-logic-vector ( 26 downto 11 ) ; 
signal s6 : stdIlogic-vector ( 26 downto 8 ) ; 

signal c7 : std logic-vector ( 30 downto 15 ) ;  

signal s7 : std-logic-vector ( 30 downto 12 ) ;  
signal c8 : stdIlogic-vector ( 19 downto 4 ) ; 

signal s8 : std-logic-vector ( 22 downto 0 ) ;  
signal c9 : std logic-vector ( 23 downto 5 ) ;  

signal s9 : stdIlogic-vector ( 22 downto 0 ) ;  

signal c10 : std logic-vector ( 27 downto 12 ) ;  
signal s10 : stdIlogic-vector ( 30 downto 8 ) ;  
signal cll : std-logic-vector ( 31 downto 13 ) ;  
signal sll : std-logic-vector ( 30 downto 8 ) ;  

signal c12 : std-logic-vector ( 24 downto 6 ) ;  

signal s12 : std - logic - vector ( 31 downto 0 ) ;  
begin 

u0:csa-15-0-16-1-17-2 port map ( ppO, ppl, pp2, cO, SO ) ;  
ul: csa-19-4-20-5-21 6 port map ( pp4, pp5, pp6, cl, sl ) ; 

u2 :csa-23-8-24-9-253 port map ( pp8, pp9, pplO, c2, s2 ) ; 
~3:csa-27-12-28-13-29-14 port map ( pp12, pp13, ppl4, c3, s3 ) ;  

u4:csa-17-0-17-2-18-3 port map ( SO, cO, pp3, c4, s4 ) ;  

u5:csa-21-4-21-6-22-7 port map ( sl, cl, pp7, c5, s5 ) ;  
u6:csa-25-8-25-10-26-11 port map ( s2, c2, ppll, c6, s6 ) ;  
~7:csa-29-12-29-14-30-15 port map ( s3, c3, pp15, c7, s7 ) ;  

u8:csa-18-0-18-3-22-7 port map ( s4, c4, c5, c8, s8 ) ;  
u9:csa-19-4-22-0-22-4 port map ( c8, s8, s5, c9, s9 ) ;  
u10:csa-26-8-26-11-30~15 port map ( s6, c6, c7, c10, s10 ) ;  
ull: csa-27-12-30-8-30-12 port map ( c10, s10, s7, cll, sll ) ; 

u12:csa-22-0-23-5-31-13 port map ( s9, c9, cll, c12, s12 ) ;  
u13 : csa-24-6-30-8-31-0 port map ( c12, sll, s12, wlcc, wlcs ) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-15-0-16-1-17-2 is port ( 

in1 : in std logic-vector(l5 downto 0); 
in2 : in stdrlogic-vector (16 downto 1) ; 
in3 : in std logic-vector(l7 downto 2); 
c : out std-logic-vector - (17 downto 2) ; 



s : out std-logic-vector(l7 downto 0) ) ;  

end csa-15-0-161-17-2; 

architecture structure of csa-15-0-16-1-17-2 is 
component ubha port ( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component ; 

begin 
s (0) c =  in1 (0) ; 
u1:ubha port map 
u2 :ubfa port map 
u3:ubfa port map 
u4:ubfa port map 
u5 : ubf a port map 
u6:ubfa port map 
u7 :ubfa port map 
u8:ubfa port map 
u9:ubfa port map (in1(9), in2(9), in3(9), ~ ( 1 0 ) ~  ~ ( 9 ) )  ; 

ul0:ubfa port map (in1 (lo), in2 (lo), in3 (lo), c(ll), s (10) ) ; 
ull:ubfa port map (inl(ll), in2(11), in3(ll), c(12), ~ ( 1 1 ) )  ; 

ul2:ubfa port map (in1(12), in2(12), in3(12), c(13), ~(12)); 
ul3:ubfa port map (in1(13), in2(l3), in3(l3), c(l4), ~ ( 1 3 ) )  ; 

ul4:ubfa port map (in1(14), in2(14), in3(14), c(15), ~(14)); 
ul5:ubfa port map (in1 (IS), in2 (151, in3 (l5), c(l6), s (15) ) ; 
ul6:ubha port map (in2 (l6), in3 (16), c(17), ~ ( 1 6 )  ) ; 
s (17) <= in3 (17) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-17-0-17-2-18-3 is port ( 
in1 : in std-logic-vector (17 downto 0) ; 
in2 : in std logic-vector(l7 downto 2); 
in3 : in std~logic-vector (18 downto 3) ; 
c : out std-logic-vector(l8 downto 3); 
s : out std logic-vector(l8 downto 0)) ; 

end csa-17-0-17-2-~8-3 ; 

architecture structure of csa-17-0-17-2-18 - 3 is 
component ubha port ( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 



s : out std-logic) ; 
end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (0) < =  in1 (0) ; 
s(1) < =  inl(1) ; 
u2 :ubha port map (in1 (2), in2 (2) , c (31, s (2) ) ; 
u3:ubfa port map (in1(3), in2 (3), in3 (3), c(4), s (3)) ; 
u4 :ubfa port map (in1 (41, in2 (4), in3 (41, c (5), s (4) ) ; 
u5 :ubfa port map (in1 (5), in2 (5), in3 (5), c (6), s (5) ) ; 
u6:ubfa port map (in1(6), in2(6), in3(6), c(7), ~ ( 6 ) ) ;  
u7:ubfa port map (in1(7), in2 (7), in3 (7), c(8), s(7) ) ; 
u8:ubfa port map (in1 (8), in2 (8), in3 (8), c (9), s (8) ) ; 
u9:ubfa port map (in1 (9), in2 (9 
ul0 :ubfa port map (in1 (10) , in2 
ull :ubfa port map (in1 (11) , in2 
ul2 :ubfa port map (in1 (12) , in2 
ul3:ubfa port map !in1(13), in2 
ul4:ubfa port map (in1(14), in2 
ul5:ubfa port map (in1(15), in2 
ul6:ubfa port map (in1 
ul7 :ubfa port map (in1 
s (18) <= in3 (18) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.al 

entity csa-18-0-18-3-22-7 

1; 

is port ( 
in1 : in std logic-vector(l8 downto 0); 
in2 : in stdIlogic-vector (18 downto 3) ; 
in3 : in std-logic-vector(22 downto 7); 
c : out std-logic-vector(l9 downto 4); 
s : out std-logic-vector (22 downto 0) ) ; 

end csa-18-0-18-3-22-7; 

architecture structure of csa-18-0-18-3-22-7 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 



c : out std-logic; 
s : out std-logic) ; 

end component; 

begin 
s (0) < =  in1 (0) ; 
s (1) < =  in1 (1) ; 
s(2) < =  inl(2); 
u3:ubha port map (in1(3), in2(3), c(4), ~ ( 3 ) ) ;  
u4 :ubha port map (in1 (4), in2 (4), c (5), s (4) ) ; 
u5 :ubha port map (in1 (5), in2 (51, c (6), s (5) ) ; 
u6:ubha port map (in1(6), in2(6), c(7), ~ ( 6 ) ) ;  
u7:ubfa port map (inl(7), in2(7), in3(7), ~ ( 8 1 ,  ~ ( 7 ) )  ; 

u8:ubfa port map (in1(8), in2(8), in3(8), c(9), ~ ( 8 ) ) ;  
u9:ubfa port map (in1 (9), in2 (9), in3 (9), c(10), s (9) ) ; 
ul0:ubfa port map (in1 (10) , in2 (lo), in3 (lo), c (11) , s (10) ) ; 
ull :ubfa port map (in1 (11) , in2 (11) , in3 (11) , c (12), s (11) ) ; 
ul2 :ubfa port map (in1 (12), in2 (12), in3 (12), c (l3), s (12) ) ; 
ul3:ubfa port map (in1(13), in2(13), in3 (l3), c(14), s(l3)) ; 
ul4:ubfa port map (in1 (141, in2 (l4), in3 (l4), ~ ( 1 5 ) ~  ~ ( 1 4 )  ) ; 

ul5:ubfa port map (in1 (151, in2 (Is), in3 (IS), c (l6), s (15) ) ; 
ul6:ubfa port map (in1(16), in2 (l6), in3 (l6), c(17), s (16) ) ; 
ul7:ubfa port map (in1 (171, in2 (l7), in3 (l7), c (181, s (17) ) ; 
ul8 :ubfa port map (in1 (l8), in2 (l8), in3 (l8), c (lg), s (18) ) ; 
s (19) < =  in3 (19) ; 
s (20) < =  in3 (20) ; 
s (21) < =  in3(21) ; 
s (22) < =  in3 (22) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-19-4-20-5-21-6 is port ( 
in1 : in std-logic-vector(l9 downto 4); 
in2 : in std logic-vector(20 downto 5) ; 
in3 : in std~logic-vector (21 downto 6) ; 
c : out std-logic-vector(21 downto 6); 
s : out std-logic-vector(21 downto 4) ) ;  

end csa-19-4-20-5-21-6; 

architecture structure of csa-19-4-20-5-21-6 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 



begin 
s(4) < =  inl(4); 
u5:ubha port map 
u6:ubfa port map 
u7:ubfa port map 
u8:ubfa port map 
u9:ubfa port map 
ul0:ubfa port map 
u1l:ubfa port map 
ul2:ubfa port map 
ul3:ubfa port map 
ul4:ubfa port map 
ul5:ubfa port map 
ul6:ubfa port map 
ul7:ubfa port map 
ul8:ubfa port map 
ul9:ubfa port map 
u20:ubha port map 
s (21) <= in3 (21) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-19-4-22-0-22-4 is port ( 

in1 : in std-logic-vector(l9 downto 4); 
in2 : in std-logic-vector (22 downto 0) ; 
in3 : in std-logic-vector (22 downto 4) ; 
c : out std logic vector(23 downto 5) ; 
s : out std~logic~vector(22 downto 0)); 

end csa-19-4-22-0 - 22-4; 

architecture structure of csa-19-4-22-0-22-4 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

begin 
s (0) <= in2 (0) ; 
s (1) < =  in2 (1) ; 
s (2) < =  in2 (2) ; 
s(3) <= in2(3) ; 
u4:ubfa port map (in1(4), in2(4), in3(4), c(5), ~ ( 4 ) ) ;  
u5:ubfa port map (inl(5), in2 (51, in3 (5), c(6), s(5) ) ; 



u6 :ubfa port map (in1 (6), in2 (61, in3 (61, c(7), ~ ( 6 )  ) ; 
L I ~  : ~ ~ b f a  port map (in1 (71, in2 (7), in3 (7), ~ ( 8 ) ~  s (7) ) ; 
u8:ubfa port map (inl(8), in2 (a), in3 (a), ~ ( 9 ) ~  ~ ( 8 )  ) ; 
u9:ubfa port map (in1 (9), in2 (9), in3 (9), c (lo), s (9) ! ; 
ul0 :ubfa port map (in1 (lo), in2 (101, in3 (lo), c(ll), s (10) ) ; 
ull :ubfa port map (in1 (111, in2 (111, in3 (ll), c (12), s (11) ) ; 
ul2:ubfa port map (in1 (121, in2 (121, in3 (12), c (13), s (12) ) ; 
ul3:ubfa port map (in1(13), in2(13), in3(13), ~ ( 1 4 1 ,  ~(13)); 
ul4:ubfa port map (in1(14), in2 (l4), in3 (141, ~ ( 1 5 ) ~  ~ ( 1 4 ) ) ;  
ul5:ubfa port map (in1 (151, in2 (IS), in3 (IS), c(l6), s (15) ) ; 
ul6:ubfa port map (in1 (l6), in2 (161, in3 (l6), c (17), s (16) ) ; 
ul7:ubfa port map (in1 (171, in2 (l7), in3 (l7), c (la), s (17) ) ; 
ul8 :ubfa port map (in1 (la), in2 (la), in3 (la), c(l9), s (18) ) ; 
ul9:ubfa port map (in1(19), in2 (lg), in3 (191, ~ ( 2 0 1 ,  s (19) ) ; 
u20:ubha port map (in2 (20), in3 (20), c (211, s (20) ) ; 
u21:ubha port map (in2 (211, in3 (211, c (22), s (21) ) ; 
u22 :ubha port map (in2 (22), in3 (22), c(23), s (22) ) ; 

end structure; 

library ieee ; 
use ieee.std-logic-ll64.all; 

entity csa-2lp4-21-6_22-7 is port ( 

in1 : in std-logic-vector(21 downto 4); 
in2 : in std-logic-vector(21 downto 6); 
in3 : in std-logic-vector(22 downto 7); 
c : out std-logic-vector(22 downto 7); 
s : out std-logic-vector(22 downto 4)); 

end csa-21-4-21-6-22-7; 

architecture structure of csa-21-4-21-6-22-7 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component ; 

begin 
s (4) < =  in1 (4) ; 
s (5) < =  in1 (5) ; 
u6:ubha port map (in1(6), in2(6), c(7), ~ ( 6 ) ) ;  
u7:ubfa port map (in1 (7), in2 (7), in3 (7), c(8), s(7) ) ; 
u8:ubfa port map (in1(8), in2 (a), in3 ( 8 1 ,  c(9), ~ ( 8 ) )  ; 

u9:ubfa port map (inl(91, in2 (9), in3 (9), ~ ( 1 0 1 ,  ~ ( 9 ) )  ; 

ul0:ubfa port map (in1 (lo), in2 (lo), in3 (lo), c (111, s (10) ) ; 
ull:ubfa port map (in1 (11) , in2 (ll), in3 (ll), c (121, s (11) ) ; 
ul2:ubfa port map (inl(l21, in2 (12), in3 (12), c(13), ~ ( 1 2 ) )  ; 



ul4 :ubfa port map ( 

ul5:ubfa port map ( 
ul6 :ubfa port map ( 
ul7 : ubf a port map ( 

ul8 :ubfa port map ( 
ul9 :ubfa port map ( 
u20 : ubf a port map ( 
u21 :ubfa port map (in1 (21), in2 (21), in3 (21), c (22), s (21) ) ; 
s (22) < =  in3 (22) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-22-0-23-5-31-13 is port ( 
in1 : in std logic-vector(22 downto 0); 
in2 : in std-logic-vector (23 downto 5) ; 
in3 : in stdIlogic-vector (31 downto 13) ; 
c : out std logic-vector (24 downto 6) ; 
s : out std-lbgic-vector (31 downto 0) ) ; 

end csa-22-0-23-5-71-13 ; 

architecture structure of csa-22-0-23-5-31-13 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (0) < =  in1 (0) ; 
s (1) < =  in1 (1) ; 
s (2) < =  in1 (2) ; 
s (3) < =  in1 (3) ; 
s (4) < =  in1 (4) ; 
u5:ubha port map (in1 (5) , in2 (5) , c 
u6:ubha port map (in1(6), in2(6), c 
u7:ubha port map (inl(7), in2(7), c 
u8:ubha port map (in1(8), in2(8), c 
u9:ubha port map (in1(9), in2(9), c 
ul0 :ubha port map (in1 (10) , in2 (10) 
ul1:ubha port map (inlill), in2(11), ~ ( 1 2 1 ,  ~(11)); 
ul2 :ubha port map (in1 (12), in2 (12), c (13) , s (12) ) ; 
ul3:ubfa port map (in1(13), in2(13), in3(13), c(l4), ~(13)); 
ul4:ubfa port map (in1(14), in2(14), in3(14), c(15), ~(14)); 
ul5:ubfa port map (in1 (Is), in2 (15), in3 (IS), c(16), s (15) ) ; 



ul6:ubfa port map 
ul7 : ubf a port map 
ul8:ubfa port map 
ul9 : ubfa port map 
u20:ubfa port map 
u21:ubfa port map 
u22:ubfa port map 
u23:ubha port map 
s (24) < =  in3 (24) ; 
s (25) < =  in3 (25) ; 
s (26) <= in3 (26) ; 
s(27) < =  in3 (27) ; 
s(28) < =  in3 (28) ; 
s (29) < =  in3 (29) ; 
s (30) < =  in3 (30) ; 
s (31) < =  in3 (31) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-23-8-24-9-25-10 is port 
in1 : in stdlogic-vector(23 
in2 : in std-logic-vector - (24 
in3 : in std-logic-vector(25 
c : out std-logic-vector (25 
s : out std-logic-vector(25 

end csa-23-8-24-9-25-10; 

architecture structure of csa-23-8- 
component ubha port ( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (8) < =  in1 (8) ; 
u9:ubha port map ( 
ul0:ubfa port map 
ul1:ubfa port map 
ul2:ubfa port map 
ul3:ubfa port map 
ul4:ubfa port map 
ul5:ubfa port map 
ul6:ubfa port map 
ul7:ubfa port map 

downto 8) ; 
downto 9) ; 
downto 10) ; 
downto 10); 
downto 8) ) ; 



ul8:ubfa port map (in1(18), in2 (l8), in3(18), c(19), s(l8)); 
ul9:ubfa port map (in1 (191, in2 (lg), in3 (lg), c(20), s (19)) ; 
u20:ubfa port map (in1 (201, in2 (20), in3 (20), c(21), s (20) ) ; 
u21:ubfa port map (in1 (21), in2 (21) , in3 i21), c (221, s (21) ) ; 
u22:ubfa port map (inl(221, in2(22), in3(22), c(23), ~ ( 2 2 ) ) ;  
u23 :ubfa port map (in1 (23), in2 (23), in3 (23), c (24), s (23) ) ; 
u24:ubha port map (in2(24), in3(24), c(25), ~(2.4) 1 ; 
s (25) < =  in3 (25) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-24-6-30-8-31-0 is port ( 
in1 : in std-logic-vector (24 downto 6) ; 
in2 : in std logic-vector (30 downto 8) ; 
in3 : in std~logic-vector (31 downto 0) ; 
c : out std-logic-vector(31 downto 7); 
s : out std-logic-vector(31 downto 0)); 

end csa-24-6-30-8-31-0; 

architecture structure of csa-24-6-30-8-31-0 is 
component ubha port ( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

begin 
s (0) < =  in3 (0) ; 
s (1) < =  in3 (1) ; 
s (2) < =  in3 (2) ; 
s (3) < =  in3 (3) ; 
s (4) < =  in3 (4) ; 
s(5) < =  in3 (5); 
u6:ubha port map (in1 (6), in3 (61, ~ ( 7 1 ,  s(6) ) ; 
u7:ubha port map (in1(7), in3(7), c(8), ~ ( 7 ) ) ;  
u8 :ubfa port map (in1 (8), in2 (8), in3 (8), ~ ( 9 ) ~  s (8) ) ; 
u9:ubfa port map (in1(9), in2(9), in3(9), c(10), ~ ( 9 ) ) ;  
ulo :ubfa port map (in1 (lo), in2 (lo), in3 (lo), c (ll), s (10) ) ; 
ull :ubfa port map (in1 (11) , in2 (ll), in3 (11) , ~ ( 1 2 1 ,  s (11) ) ; 
ul2 :ubfa port map (in1 (12), in2 (12), in3 (12), c(l3), s (12) ) ; 
ul3 :ubfa port map (in1 (l3), in2 (l3), in3 (l3), c (l4), s (13) ) ; 
ul4:ubfa port map (inl(l41, in2(14), in3(14), ~ ( 1 5 1 ,  ~ ( 1 4 ) ) ;  
ul5:ubfa port map (in1 (IS), in2 (IS), in3 (IS), c(l6), s (15) ) ; 
ul6 :ubfa port map (in1 (161, in2 (l6), in3 (l6), c(l7), s (16) ) ; 
ul7:ubfa port map (in1(17), in2(17), in3(17), c(18), ~(17)); 



ul9:ubfa port map 
u20:ubfa port map 
u21: ubfa port map 
u22:ubfa port map 
u23:ubfa port map 
u24:ubfa port map 
u25:ubha port map 

ul8:ubfa port map ( '  (181, in2 (181, in3 (la), c (lg), s (18) ) ; 
( 

u26 :ubha port map (in2 (26), in3 (26), c (27), s (26) ) ; 
u27:ubha port map (in2 (27), in3 (271, c (28), s (27) ) ; 
u28:ubha port map (in2 (28), in3 (28), c (29), s (28) ) ; 
u29:ubha port map (in2 (29), in3 (29), ~ ( 3 0 1 ,  s (29) ) ; 
u30:ubha port map (in2 (301, in3 (3O), c (3l), s (30) ) ; 
s (31) c =  in3 (31) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-25-8-25-10-26-11 is port ( 
in1 : in std-logic-vector(25 downto 8); 
in2 : in std logic-vector(25 downto 10); 
in3 : in stdIlogic-vector(26 downto 11); 
c : out std-logic-vector(26 downto 11); 
s : out std-logic - vector(26 downto 8)); 

end csa-25-8-25-10-26-11; 

architecture structure of csa-25-8-25-10-26-11 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubf a port ( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

begin 
s(8) c =  inl(8) ; 
s (9) c =  in1 (9) ; 
ul0:ubha port map 
u1l:ubfa port map 
ul2:ubfa port map 
ul3:ubfa port map 
ul4:ubfa port map 



u2 1 : ubf a port map (in1 (21 
u22:ubfa port map (inl(22 
u23:ubfa port map (inl(23 
u24:ubfa port map (inl(24 
u25:ubfa port map (inl(25 
s (26) <=  in3 (26) ; 

end structure: 

u20:ubfa port map (in1 (20), in2 (20), in3 (20), c (21), s (20) ) ; 
) 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-26-8-26-11-30-15 is port ( 

in1 : in std logic vector(26 downto 8) ; 
in2 : in stdIlogicSector (26 downto 11) ; 
in3 : in std logic-vector(30 downto 15); 
c : out stdIlogic-vector (27 downto 12) ; 
s : out std-logic-vector(30 downto 8)); 

end csa-26-8-26-11-30-15; 

architecture structure of csa-26-8-26-11-30-15 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s(8) <= inl(8) ; 
s (9) < =  in1 (9) ; 
s (10) <=  in1 (10) ; 
ull : ubha port map 
ul2:ubha port map 
ul3:ubha port map 
ul4:ubha port map 
ul5:ubfa port map 
ul6:ubfa port map 
ul7:ubfa port map 
ul8:ubfa port map 
ul9:ubfa port map 
u20:ubfa port map 
u21 :ubfa port map 
u22 :ubfa port map 
u23:ubfa port map 
u24:ubfa port map 
u25:ubfa port map 
u26:ubfa port map 



s (27) <= in3 (27) ; 
s (28) < =  in3 (28) ; 
s (29) < =  in3 (29) ; 
s (30) < =  in3 (30) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa-27-12-28-13-29-14 is port ( 
in1 : in std-logic-vector(27 downto 12) ; 
in2 : in std logic-vector(28 downto 13) ; 
in3 : in stdIlogic-vector (29 downto 14) ; 
c : out std-logic-vector(29 downto 14); 
s : out std logic-vector(29 downto 12)) ; 

end csa-2 7-12-2 8-15-2 9-14 ; 

architecture structure of csa-27-12-28-13-29-14 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (12) < =  in1 (12) ; 
ul3:ubha port map 
ul4:ubfa port map 
ul5:ubfa port map 
ul6:ubfa port map 
ul7:ubfa port map 
ul8:ubfa port map 
ul9:ubfa port map 
u20:ubfa port map 
u21 :ubfa port map 
u22:ubfa port map 
u23:ubfa port map 
u24 :ubfa port map 
u25:ubfa port map 
u26:ubfa port map 
u27:ubfa port map 

library ieee; 



use ieee.std-logic-ll64.all; 

entity csa-27-12-30-8-30-12 is port ( 
in1 : in std logic-vector (27 downto 12) ; 
in2 : in std-logic-vector (30 downto 8) ; 
in3 : in stdIlogic-vector (30 downto 12 ) ; 
c : out std-logic-vector(31 downto 13) ; 
s : out std-logic-vector(30 downto 8) ) ;  

end csa-27-12-30-8-30-12; 

architecture structure of csa-27-12-30-8-30-12 is 
component ubha port( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

component ubfa port( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (8) <= in2 (8) ; 
s (9) < =  in2 (9) ; 
s(10) <= in2 (10) ; 
s (11) <= in2 (11) ; 
ul2:ubfa port map 
ul3:ubfa port map 
ul4:ubfa port map 
ul5:ubfa port map 
ul6:ubfa port map 
ul7:ubfa port map 
ul8 : ubf a 
ul9:ubfa 
u2 0 : ubf a 
u21 :ubfa 
u22 : ubf a 
u23 :ubfa 
u24 : ubf a 
u25:ubfa 

port 
port 
port 
port 
port 
port 
port 
port 

u26 :ubfa port map (in1 (26), in2 (26), in3 (26), c (27), s (26) ) ; 
u27 :ubfa port map (in1 (27), in2 (27), in3 (27), c (28), s (27) ) ; 
u28 :ubha port map (in2 (28), in3 (28), c (29), s (28) ) ; 
u29 :ubha port map (in2 (29), in3 (291, c (30), s (29) ) ; 
u30:ubha port map (in2 (3O), in3 (301, c(3l), s (30) ) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity csa - 29 - 12-29-14-30-15 is port ( 



in1 : in std-logic-vector(29 downto 12) ; 
in2 : in std logic-vector(29 downto 14) ; 
in3 : in stdrlogic vector (30 downto 15) ; 
c : out std-logicIvector (30 downto 15) ; 
s : out std-logic-vector(30 downto 12) ) ;  

end csa-29-12-29-14-30-15; 

architecture structure of csa-29-12-29-14-30-15 is 
component ubha port ( 

x : in std-logic; 
y : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end component; 

component ubfa port( 
x : in std-logic; 
y :  in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic); 

end component; 

begin 
s (12) < =  in1 (12) ; 
s (13) < =  in1 (13) ; 
ul4:ubha port map (in1(14), in2(14), c(15), ~(14)); 

ul6:ubfa port map (inl(16 
ul7:ubfa port map (inl(17 
ul8:ubfa port map (inl(18 
ul9:ubfa port map (inl(19 
u20:ubfa port map (inl(20 
u21:ubfa port map (inl(21 
u22:ubfa port map (inl(22 
u23:ubfa port map 
u24:ubfa port map 
u25:ubfa port map 
u26:ubfa port map 
u27:ubfa port map 
u28:ubfa port map 
u29:ubfa port map 
s (30) < =  in3 (30) ; 

end structure; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity ubha is port ( 

x : in std logic; 
y : in std~logic; 
c : out std-logic; 
s : out std-logic); 

end ubha; 

architecture behav of ubha is 



begin 
c < =  x and y; 
s < =  x xor y; 

end behav: 

library ieee; 
use ieee.std-logic-ll64.all; 

entity ubfa is port ( 
x : in std-logic; 
y : in std-logic; 
z : in std-logic; 
c : out std-logic; 
s : out std-logic) ; 

end ubfa; 

architecture behav of ubfa is 
begin 

c < =  ( x and y ) or ( y and z ) or ( z and x ) ;  

s < =  x xor y xor z; 
end behav ; 

library ieee; 
use ieee.std-logic-ll64.all; 

entity cla is port ( 
x : in std-logic-vector ( 31 downto 0 ) ;  

Y : in std-logic-vector ( 31 downto 7 ) ;  
s : out std-logic-vector ( 31 downto 0 ) ) ;  

end cla; 

architecture structure of cla is 
component gpgenerator port( 

a : in std-logic; 
b : in std-logic; 
g : out std-logic; 
p : out std-logic) ; 

end component; 

component claunit-25 port ( 
g : in std-logic-vector ( 24 downto 0 ) ;  
p : in std logic-vector ( 24 downto 0 ) ; 

c : out std-logic-vector - ( 25 downto 1 ) )  ; 

end component ; 

signal g : std logic-vector ( 31 downto 7 ) ;  

signal p : stdrlogic-vector ( 31 downto 7 ) ; 
signal c : std-logic-vector ( 32 downto 8 ) ;  

begin 
s(0) < =  x(0) ; 
s(1) < =  x(1) ; 
s(2) < =  x(2); 
s(3) < =  x(3); 
s(4) < =  x(4); 



library ieee; 



use  ieee.std-logic~ll64.all; 

e n t i t y  gpgenerator  i s  p o r t  ( 

a  : i n  s td - log ic ;  
b  : i n  s td - log ic ;  
g  : out  s td - log ic ;  
p  : out s td - log ic )  ; 

end gpgenerator ;  

a r c h i t e c t u r e  behav of gpgenerator  i s  
begin  

g  < =  a  and b ;  
p  <= a  xor b ;  

end behav ; 

l i b r a r y  i e e e ;  
use ieee.std-logic-ll64.all; 

e n t i t y  c launi t -25 i s  p o r t  ( 

g  : i n  s t d  logic-vector  ( 24 downto 0 ) ;  
p  : i n  std-logic-vector ( 24 downto 0 ) ; 
c  : out  s td I log ic -vec to r  ( 25 downto 1 ) )  ; 

end c launi t -25;  

a r c h i t e c t u r e  c launi t -25 of claunit-25 i s  
begin 

c ( l )  < =  g ( 0 )  ; 
c ( 2 )  < =  g ( 1 )  o r  ( p ( 1 )  and g ( 0 )  ) ;  

c ( 3 )  < =  g ( 2 )  o r  ( p ( 2 )  and g ( l )  ) o r  ( p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

~ ( 4 )  < =  g ( 3 )  o r  ( p ( 3 )  and g ( 2 )  ) o r  ( p ( 3 )  and p ( 2 )  and g ( l )  ) o r  
( p ( 3 )  and p ( 2 )  and p ( l )  and g ( 0 )  ) ;  

c ( 5 )  <= g ( 4 )  o r  ( p ( 4 )  and g ( 3 )  ) o r  ( p ( 4 )  and p ( 3 )  and g ( 2 )  ) o r  
( p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) o r  
( p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

c ( 6 )  < =  g ( 5 )  o r  ( p ( 5 )  and g ( 4 )  ) o r  ( p ( 5 )  and p ( 4 )  and g ( 3 )  ) o r  
( p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) o r  
( p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) o r  
( p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ; 

c ( 7 )  < =  g ( 6 )  o r  ( p ( 6 )  and g ( 5 )  ) o r  ( p ( 6 )  and p ( 5 )  and g ( 4 )  ) o r  
( p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) o r  
( p ( 6 )  and ~ ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) o r  
( p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) o r  
( p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

c ( 8 )  < =  g ( 7 )  o r  ( p ( 7 )  and g ( 6 )  ) o r  ( p ( 7 )  and p ( 6 )  and g ( 5 )  ) o r  
( p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) o r  
( p ( 7 )  and p ( 6 )  and p15) and p ( 4 )  and g ( 3 )  ) o r  
( p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) o r  
( p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) o r  
( p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and 

g ( 0 )  1 ;  
c ( 9 )  < =  g ( 8 )  o r  ( p ( 8 )  and g ( 7 )  o r  ( p ( 8 )  and p ( 7 )  and g ( 6 )  ) o r  

( p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) o r  
( p(81 and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) o r  
( p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) o r  
( p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) o r  



( p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and 
g ( l )  or 

( p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and 
p ( l )  and g ( 0 )  ) ;  

~ ( 1 0 )  <=  g ( 9 )  or ( p ( 9 )  and g ( 8 )  ) or ( p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
( p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 
( p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) or 

8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) or 
8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 
8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 

8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 

8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 

c ( l 1 )  <= g ( 1 0 )  or ( p ( 1 0 )  and g ( 9 )  
or 

( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and g  
( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p  
( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p  
( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p  

0 r 
( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p  

g ( 3 )  or 

) or ( ~ ( 1 0 )  and p ( 9 )  and g ( 8 )  ) 

( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

p ( 3 )  and g ( 2 )  ) or 
( p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

p ( 4 )  a n d p ( 3 )  a n d p ( 2 )  a n d g ( 1 )  ) or 

and p ( 9 )  and g ( 8 )  ) or 
and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6  
and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6  

and p ( 4 )  and 

and p ( 4 )  and 

and 

and 

0 )  and g ( 9 )  

) or 
and g ( 5 )  1 

and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

g ( 3 )  ) or 
and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and 

and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 
and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and 

and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 
( p ( l l )  a n d - p ( l ~ )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and 

p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

~ ( 1 3 )  <=  g ( 1 2 )  or ( ~ ( 1 2 )  and g ( l 1 )  ) or ( ~ ( 1 2 )  and ~ ( 1 1 )  and g ( 1 0 )  
) or 

( p ( l 2 )  and p ( l 1 )  and p ( 1 0 )  and g ( 9 )  ) or 
( p ( l 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 
( ~ ( 1 2 )  and ~ ( 1 1 )  and p110) and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
( ~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) 

or 
( p ( l 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

and g ( 5 )  ) or 
( ~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and 



and p ( 5 )  and g ( 4 )  ) or 
) and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7  
and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 

) and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7  
and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 

) and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7  
and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) 

) and 

) and 

) and 
or 

( p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  
and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

~ ( 1 4 )  < =  g ( 1 3 )  or ( p ( 1 3 )  and g ( 1 2 )  ) or ( p ( 1 3 )  and p ( 1 2 )  and g ( l 1 )  
) or 

( p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and g ( 1 0 )  ) or 
( p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and g ( 9 )  ) or 
( p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 
( ~ ( 1 3 )  and p ( 1 2 )  and p  

or 
( p ( 1 3 )  and p ( 1 2 )  and p  

and g ( 6 )  ) or 
( ~ ( 1 3 )  and p ( 1 2 )  and p  

p ( 7 )  and p ( 6 )  and g ( 5  
( ~ ( 1 3 )  and p ( 1 2 )  and p  

11) and p  

11) and p  

11) and p  

) or 
11) and p  

1 0 )  and p ( 9 )  and p ( 8 )  and g ( 7 )  

1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  

1 0 )  and p ( 9 )  and p ( 8 )  and 

1 0 )  and p ( 9 )  and p ( 8 )  and 
) or 

( p ( l 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and 
p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 

( p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and 
~ ( 7 )  and ~ ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 

( ~ ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and 
p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 

( ~ ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and 
~ ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( l )  and 

g ( 0 )  1 ;  
~ ( 1 5 )  < =  g ( 1 4 )  or ( ~ ( 1 4 )  and g ( 1 3 )  ) or ( p ( 1 4 )  and ~ ( 1 3 )  and g ( 1 2 )  

) or 
( ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and g ( l 1 )  ) or 
( p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and g ( 1 0 )  ) or 

and p ( 1 3 )  and p(12 
and g ( 7 )  ) or 

and p ( 1 3 )  and p(12 

and p ( l l  
and p ( l 1  

and p i l l  

and p ( l 1  
and p ( 7 )  and g ( 6 )  ) or 

( p ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and p  

p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  
( ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and p  

p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
( ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and p  

p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
( p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p (  

p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
( p ( 1 4 )  and p ( 1 3 )  and 

p ( 8 )  and p ( 7 )  and p  
g ( l )  or 

( ~ ( 1 4 )  and p ( 1 3 )  and 
p ( 8 )  and p ( 7 )  and p  

~ ( 1 )  and g ( 0 )  ) ;  

and p (10  
and p ( 1 0  

and p ( 1 0  

and p  ( 1 0  

and g ( 9 )  ) or 
and p ( 9 )  and g ( 8 )  

and p  ( 9 )  and 

and p  ( 9 )  and 

11) and ~ ( 1 0 )  and p ( 9 )  and 
) or 
11) and ~ ( 1 0 )  and p ( 9 )  and 
and g ( 4 )  ) or 
11) and ~ ( 1 0 )  and p ( 9 )  and 
and p ( 4 )  and g ( 3 )  ) or 
11) and ~ ( 1 0 )  and p ( 9 )  and 
and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 

~ ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and p ( 9 )  and 
6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and 

~ ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and 
6)  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and 



~ ( 1 6 )  < =  g ( 1 5 )  or ( p ( 1 5 )  and g ( 1 4 )  ) or i p ( 1 5 )  and p ( 1 4 )  and g ( 1 3 )  
or 

( ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and g ( 1 2 )  ) or 
( p ( l 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and g ( l 1 )  ) or 
( p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and g ( 1 0 )  ) or 
( p ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and 

g ( 9 )  ) or 
( p ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and 

p ( 9 )  and g ( 8 )  ) or 
( ~ ( 1 5 )  a n d p ( 1 4 )  a n d p ( 1 3 )  a n d p ( 1 2 )  a n d p ( l 1 )  a n d p ( 1 0 )  and 

p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
( ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and 

p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 
( p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and 

p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) or 
( ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and 

~ ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) or 
( ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and 

p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 !  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 
( p ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and 

p ( 9 )  a n d p ( 8 )  a n d p ( 7 )  a n d p ( 6 )  a n d p ( 5 )  a n d p ( 4 )  a n d p ( 3 )  and 
g ( 2 )  ) or 

( p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and 
p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 

p ( 2 )  and g ( l )  or 
( ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and 

~ ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 
p ( 2 )  and p ( l )  and g ( 0 )  ) ;  

~ ( 1 7 )  < =  g ( 1 6 )  or ( p ( 1 6 )  and g ( 1 5 )  ) or ( p ( 1 6 )  and p ( 1 5 )  and g ( 1 4 )  
) or 

( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and g ( 1 3 )  ) or 
( p ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and g ( 1 2 )  ) or 
( p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and g ( l 1 )  ) or 
( p ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l l )  and 

g ( l 0 )  ) or 
( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l l )  and 

~ ( 1 0 )  and g ( 9 )  ) or 
( ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 

~ ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or ( ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and 
~ ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and ~ ( 9 )  and p ( 8 )  and g ( 7 )  

) or 
( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and 

p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 
( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l l )  and 

~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) or 
( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and 

p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) 
or 

( p ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 

g ( 3 )  or 
( ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and 

~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 
p ( 3 )  and g ( 2 )  ) or 

( ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 
p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 



( ~ ( 1 6 )  and p ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 
pi31 and p ( 2 )  and p ( l )  and g (O)  1 ; 

~ ( 1 8 )  < =  g ( 1 7 )  or ( ~ ( 1 7 )  and g ( 1 6 )  ) or ( p ( 1 7 )  and p ( 1 6 )  and g ( 1 5 )  

or 
( ~ ( 1 7 )  and ~ ( 1 6 )  and p ( l 5 )  and g ( 1 4 )  ) or 
( ~ ( 1 7 )  and ~ ( 1 6 )  and p ( l 5 )  and p ( 1 4 )  and g ( 1 3 )  ) or 
( p ( 1 7 )  and p ( 1 6 )  and p ( l 5 )  and p ( 1 4 )  and p ( 1 3 )  and g ( 1 2 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

g ( l 1 )  or 
( ~ ( 1 7 )  and p ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and g ( 1 0 )  ) or 
( ~ ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

p ( l 1 )  and p ( 1 0 )  and g ( 9 )  ) or 
( p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
( ~ ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 
( ~ ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) 
or 

( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

and g ( 4 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  a n d p ( 1 0 )  a n d p ( 9 )  a n d p ( 8 )  a n d p ( 7 )  a n d p ( 6 )  a n d p ( 5 )  
and 

p ( 4 )  and g ( 3 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
and 

p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and ~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and 

p  (11) and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
and 

p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 
( ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  
and 

p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  
~ ( 1 9 )  <= g ( 1 8 )  or ( ~ ( 1 8 )  and g ( 1 7 )  ) or ( p ( 1 8 )  and p ( 1 7 )  and g ( 1 6 )  

) or 
( p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and g ( 1 5 )  ) or 
( ~ ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and g ( 1 4 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and g ( 1 3 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

g ( l 2 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

p ( 1 2 )  and g ( l 1 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

~ ( 1 2 )  and ~ ( 1 1 )  and g ( 1 0 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

p ( l 2 )  and p ( l 1 )  and p ( 1 0 )  and g ( 9 )  ) or 
( ~ ( 1 8 )  and p ( 1 7 )  and ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 



(18)  and ~ ( 1 7 )  and p ( 1 6 )  and p ( l 5 )  and p ( 1 4 )  and p ( 1 3 )  and ( P  
P  

( P  
P  

or 

( P  
P  

and g ( 5 )  

12)  and p ( l 1 )  and p  
18)  and p ( 1 7 )  and p  
1 2 )  and p ( l l )  and p  

18)  and p ( 1 7 )  and p  
1 2 )  and p ( l 1 )  and p  

10)  and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
10)  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) 

1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
10)  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

(15)  and p ( 1 4 )  and p ( 1 3 )  and 
( 9 )  and p ( 8 )  and p ( 7 )  and 

( p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p  

~ ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p  
p ( 6 )  and p ( 5 )  and g ( 4 )  ) or 

( p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p  
p ( l 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p  

and 
~ ( 5 )  a n d p ( 4 )  a n d g ( 3 )  ) or 

(15)  and p ( 1 4 )  and p ( 1 3 )  and 
( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

( ~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
~ ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  
and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 

( p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

and 
p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 

( ~ ( 1 8 )  and ~ ( 1 7 )  and ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p (  
~ ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  

and 

~ ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  
~ ( 2 0 )  < =  g ( 1 9 )  or ( ~ ( 1 9 )  and g ( 1 8 )  ) or ( ~ ( 1 9 )  and p ( 1 8  

) or 
( p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and g ( 1 6 )  ) or 

13 ) and 
and p ( 6 )  

) and g ( 1 7 )  

( ~ ( 1 9 )  and p ( 1 8  
( ~ ( 1 9 )  and p ( 1 8  

g ( 1 3 )  ) or 
( ~ ( 1 9 )  and p ( 1 8  

p ( 1 3 )  and g ( 1 2 )  ) or 
( ~ ( 1 9 )  and p ( 1 8  

~ ( 1 3 )  and 

P  
( P  

p ( 1 3 )  and 

P  
( P  

p ( 1 3 )  and 

P  
( P  

p ( 1 3 )  and 

12)  and g ( l 1  

and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5  
and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5  

and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5  

and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5  

1 9 )  and p ( 1 8 )  and p  

1 2 )  and p ( l 1 )  and g  
1 9 )  and p ( 1 8 )  and p  

12)  and p ( l 1 )  and p  
1 9 )  and p  18)  and p (  

) or 
and g ( 1 4  
and p ( 1 4  

and p  ( 1 4  

and p ( 1 4  

) or 
and 

and 

and 

17)  and p (  

10)  ) or 
17)  and p (  

10)  and g (  
17)  and p (  

16)  and p ( 1 5 )  and p ( 1 4 )  and 

16) and p ( 1 5 )  and p ( 1 4 )  and 

9 )  or 
1 6 )  and p ( 1 5 )  and p ( 1 4 )  and 

11) and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 
18)  and ~ ( 1 7 )  and ~ ( 1 6 )  and p ( 1 5 )  and 

11) and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and g  
18)  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 

p ( 1 4 )  and 

( 7 )  or 
p ( 1 4 )  and 



~ ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  
and g ( 5 )  ) or 

( pi191 and pi181 and p ( 1 7 )  and p ( 1 6  
~ ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0  

and 
p ( 6 )  and p ( 5 )  and g ( 4 )  ) or 

( ~ ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6  
~ ( 1 3 )  and 

p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  
and 

p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 

and p ( 8 )  and p ( 7 )  and p ( 6 )  

) and p ( 1 5 )  and p ( 1 4 )  and 
) and p ( 9 )  and p ( 8 )  and p ( 7 )  

) and p ( 1 5 )  and p ( 1 4 )  and 

and p ( 8 )  and p ( 7 )  and p ( 6  

( p ( 1 9 )  and p ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and 
~ ( 1 3 )  and 

~ ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6  
and p  ( 5 )  and 

p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 
( ~ ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p  

~ ( 1 3 )  and 
~ ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p  

and p ( 5 )  and 
p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  

( p  (19 )  and p ( 1 8 )  and p ( 1 7 )  and p  
~ ( 1 3 )  and 

1 6 )  and p ( 1 5 )  and p ( 1 4 )  and 

9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

) or 
1 6 )  and p ( 1 5 )  and p ( 1 4 )  and 

~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  
and p ( 5 )  and 

p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  
~ ( 2 1 )  <= g ( 2 0 )  or ( p ( 2 0 )  and g ( 1 9 )  ) or ( p ( 2 0 )  and p ( 1 9 )  and g ( 1 8 )  

) or 
( p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and g ( 1 7 )  ) or 

and p ( 1 9  
and p ( 1 9  
and p  (19 

and p  (19  

3 )  ) or 
and p  (19  
and p  (13  

and p ( 1 8  
and p  (18  
and p ( 1 8  

and p  (18  

and p ( 1 8  

and p ( 1 7 )  and g ( 1 6  
and p ( 1 7 )  and p ( 1 6  
and p ( 1 7 )  and p ( 1 6  

and p ( 1 7 )  and p ( 1 6  

and p ( 1 7 )  and p ( 1 6  

and p ( 1 9 )  and ~ ( 1 8 )  and p ( 1 7 )  
and p ( 1 3 )  and p ( 1 2 )  and g ( l 1 )  
and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  
and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  
and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  
and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  
and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  
and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  

and p ( 1 6 )  

) or 
and p ( 1 6 )  
and g ( 1 0 )  
and p ( 1 6 )  
and p ( 1 0 )  
and p ( 1 6 )  
and p ( 1 0 )  

or 
and g ( 1 5 )  ) or 
and p ( 1 5 )  and 

and p ( 1 5 )  and 

and p ( 1 5 )  and 

and p  (15  

and p ( 1 5  

) or 
and p  (15  

and g ( 9 )  
and p ( 1 5  
and p ( 9 )  

and 

and 

and 
or 

and 
3nd g ( 8 )  

20)  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 

1 3 )  and p ( 1 2 )  and p ( l 1 )  and p (1O)  and p ( 9 )  and p ( 8 )  and g ( 7 )  

20)  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 

~ ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  
and g ( 6 )  ) or 

( p ( 2 0 )  and ~ ( 1 9 )  and p ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 
~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  

and 



p ( 7 )  and p ( 6 )  and g ( 5 )  ) or 
( p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 

p ( 1 4 )  and 
p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  

and 
p ( 6 )  and p ( 5 )  and g ( 4 )  or 

( p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( l 5 )  and 

and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  

and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 
and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p (16  

and p ( 8 )  and p ( 7 )  

) and p ( 1 5 )  and 

and p ( 8 )  and p ( 7 )  

and ~ ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 
( p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 

p ( 1 4 )  and 
~ ( 1 3 )  and ~ ( 1 2 )  and ~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  

and 
p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 

( p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and 
p ( 1 4 )  and 

~ ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  
and 

p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( l )  and g ( 0 )  ) ;  

~ ( 2 2 )  <= g ( 2 1 )  or ( ~ ( 2 1 )  and g ( 2 0 )  ) or ( p ( 2 1 )  and p ( 2 0 )  and g ( 1 9 )  
) or 

( p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and g ( 1 8 )  ) or 
( p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and g ( 1 7 )  ) or 
( ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  
( ~ ( 2 1 )  and ~ ( 2 0 )  and p ( 1 9 )  and p  

g ( l 5 )  ) or 
( ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

~ ( 1 5 )  and g ( 1 4 )  ) or 
( ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

~ ( 1 5 )  and p ( 1 4 )  and g ( 1 3 )  ) or 
( p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

18)  and p  
18)  and p  

18)  and p  

18)  and p  

18)  and p  

17)  and g ( 1 6 )  ) or 
17)  and p ( 1 6 )  and 

17)  and p ( 1 6 )  and 

17) and p ( 1 6 )  and 

17)  and p ( 1 6 )  and 
~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and g ( 1 2 )  ) or 

( p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and 
~ ( 1 5 )  and p ( 1 4 )  and pi131 and p ( 1 2 )  and g ( l 1 )  ) or 

( ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and 
~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and g ( 1 0 )  ) or 

( ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and 
and p ( 1 4 )  

and p ( 2 0 )  

and p ( 1 3 )  

and p ( 2 0 )  

and p ( 1 2 )  

and ~ ( 1 8 )  

and p ( l 1 )  

and p ( 1 8 )  

and p ( 1 0 )  and 

and p ( 1 6 )  and 

and p ( 9 )  and g ( 8 )  

and p ( 1 6 )  and 

~ ( 1 4 )  and ~ ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  
and g ( 7 )  ) or 

( ~ ( 2 1 )  and p ( 2 0 )  and ~ ( 1 9 )  and ~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and 
~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and ~ ( 1 2 )  and p ( l 1 )  and p ( l 0 )  and 
p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 



( p ( 2 1 )  and p ( 2 0 )  and pi191 and p ( 1 8 )  and 
\ 

P  
~ ( 1 5 )  and 

P  
and 

P  
( P  

p ( l 5 )  and 

P  
and 

and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5  

and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
and p ( 1 4 )  and p ( 1 3 )  and p i12)  and 

and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5  
and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5  
and p ( 2 0 )  and p  ( 1 9 )  and p ( 1 8 )  and 

and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 

and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3  
and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 

~ ( 1 7 )  and p ( 1 6 )  and 
~ ( 1 1 )  and p ( l O j  and 

or 
~ ( 1 7 )  and p ( 1 6 )  and 
~ ( 1 1 )  and p ( 1 0 )  and 

and g ( 4 )  ) or 
p ( l 7 )  and p ( 1 6 )  and 

14)  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0  

7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 
2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7  

14)  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0  

and p ( 1 0 )  and 
p ( 4 )  and g ( 3 )  ) or 

and p ( 1 6 )  and 

and p ( 9 )  and p ( 8 )  

g ( 2 )  ) or 
and p ( 1 6 )  and 

and p ( 9 )  and p ( 8 )  

p ( 2 )  and g ( l )  ) or 
and p ( 1 6 )  and 

and p ( 9 )  and p ( 8 )  

p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and 
g ( 0 )  ) ;  

c ( 2 3 )  < =  g ( 2 2 )  or ( p ( 2 2 )  and g ( 2 1 )  ) or ( p ( 2 2 )  and p ( 2 1 )  and g ( 2 0 )  
) or 

( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and g ( 1 9 )  ) or 
( p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and g ( 1 8 )  ) or 
( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p  (19)  and p  
( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

g ( 1 6 )  ) or 
( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

p ( 1 6 )  and g ( 1 5 )  ) or 
( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

p ( 1 6 )  and p ( 1 5 )  and g ( 1 4 )  ) or 
( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p  

18)  and g ( 1 7 )  ) or 
18)  and p ( 1 7 )  and 

18)  and p ( 1 7 )  and 

18)  and p ( 1 7 )  and 

18)  and p ( 1 7 )  and 
and p ( 1 5 )  
and p ( 2 1 )  
and p ( 1 5 )  
and p ( 2 1 )  
and p ( 1 5 )  
and p ( 2 1 )  
and p ( 1 5 )  

and p  ( 14 
and p (20  
and p ( 1 4  
and p ( 2 0  
and p  ( 1 4  
and p (20  
and p  (14 

( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  
p(161 and 

p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  
g ( 9 )  or 

( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  
p ( 1 6 )  and 

p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  

and g ( 1 3 )  ) or 
and p ( 1 9 )  and p ( 1 8 )  and p (  
and p ( 1 3 )  and g ( 1 2 )  ) or 
and p ( 1 9 )  and p ( 1 8 )  and p (  
and p ( 1 3 )  and p ( 1 2 )  and g (  
and p ( 1 9 )  and p ( 1 8 )  and p (  
and p ( 1 3 )  and p ( 1 2 )  and p (  

17)  and 

17 ) and 
11) ) or 
17)  and 
11) and 

and p ( 1 9 )  

and p ( 1 2 )  

and p ( 1 9 )  

and p  ( 1 2 )  

and p ( 1 8 )  

and p ( l 1 )  

and p ( 1 8 )  

and p  (11) 

and p ( 1 7 )  and 

and p ( 1 0 )  and 

and ~ ( 1 7 )  and 

and p ( 1 0 )  and 

( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 
(15)  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
( 9 )  and p ( 8 )  and g ( 7 )  ) or 
(21)  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 



( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 1 6 )  and p  
1 0 )  and p  
22)  and p  
1 6 )  and p  
1 0 )  and p  
22)  and p  
1 6 )  and p  
1 0 )  and p  

9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  
21)  and p ( 2 0 )  and p ( 1 9 )  and p (  
1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p (  
9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  
21)  and p ( 2 0 )  and ~ ( 1 9 )  and p i  
1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p (  
9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

or 
1 8 )  and p ( 1 7 )  and 
1 2 )  and p ( l 1 )  and 
and g ( 5 )  ) or 
18)  and p ( 1 7 )  and 
1 2 )  and p ( l 1 )  and 
and p ( 5 )  and g ( 4 )  ) 

( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 
p ( 1 6 )  and 

~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and 

and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 
and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 

and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and 

and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 
and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 

and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and ~ ( 1 0 )  and 

and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and 

( p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and ~ ( 1 9 )  and p ( 1 8 )  and p ( 1 7 )  and 
p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 
~ ( 3 )  and p ( 2 )  and p ( l )  and g ( 0 )  ) ; 

~ ( 2 4 )  < =  g ( 2 3 )  or ( p ( 2 3 )  and g ( 2 2 )  ) or ( p ( 2 3 )  
or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and g ( 2 0 )  ) or 
( ~ ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and g ( 1 9  
( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9  
( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9  

g ( 1 7 )  ) or 
( p ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9  

p ( 1 7 )  and g ( 1 6 )  ) or 
( p ( 2 3 )  and p ( 2 2 )  and p  

p ( 1 7 )  and ~ ( 1 6 )  and g 
( p ( 2 3 )  and p ( 2 2 )  and p  

p ( 1 7 )  and p ( 1 6 )  and p  
( p ( 2 3 )  and p ( 2 2 )  and p  

p ( 1 7 )  and p ( 1 6 )  and p  
( p ( 2 3 )  and p ( 2 2 )  and p  

21)  and p  
1 5 )  ) or 
21)  and p  
1 5 )  and g  
21)  and p  
1 5 )  and p  
21)  and p  

20)  and p  

20)  and p  
1 4 )  ) or 
20) and p  
1 4 )  and g  
20)  and p  ( 

p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p  
( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p  

p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p  
g ( l 1 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p  
p ( 1 7 )  and 

p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p  

and p ( 2 2  
and p ( 1 6  

) and p ( 1 0  
) and p ( 2 2  

nd p ( 2 2 )  

) or 
and g ( 1 8  
and p  (18  

and p ( 1 8  

and p ( 1 8  

and p  (18  

and p ( 1 8  
) or 
and p  (18  

nd g ( 2 1 )  

) or 
and 

and 

and 

and 

and 

and 
13 )  and g ( 1 2 )  ) or 
1 9 )  and p ( 1 8 )  and 
1 3 )  and p ( 1 2 )  and 

1 9 )  and p ( 1 8 )  and 

1 2 )  and p ( l 1 )  and 

) and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
) and p ( 1 5 )  and p ( l 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
) and g ( 9 )  ) or 
) and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 



~ ( 1 7 )  and ~ ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and ~ ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and g ( 5 )  ) 

or 
( ~ ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 

~ ( 1 7 )  and 
~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 

~ ( 1 0 )  and 
~ ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 
~ ( 1 7 )  and 

~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 
p ( 1 0 )  and 

~ ( 9 )  and ~ ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and g ( 3 )  ) or 
( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 

~ ( 1 7 )  and 
~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and p ( l 1 )  and 

p ( 1 0 )  and 
p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and 

g ( 2 )  ) or 
( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( 1 8 )  and 

~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and ~ ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

and 
p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 

( p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and p ( l 8 )  and 
~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 
~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  

and 
p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

~ ( 2 5 )  <= g ( 2 4 )  or ( p ( 2 4 )  and g ( 2 3 )  ) or ( p ( 2 4 )  and p ( 2 3 )  and g ( 2 2 )  
or 

( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and g ( 2 1 )  ) or 
( ~ ( 2 4 )  a n d p ( 2 3 )  a n d p ( 2 2 )  a n d p ( 2 1 )  a n d g ( 2 0 )  ) or 
( ~ ( 2 4 )  and p ( 2 3 )  and ~ ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and g ( 1 9 )  ) or 
( ~ ( 2 4 )  and ~ ( 2 3 )  and ~ ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

g ( 1 8 )  or 
( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

p ( 1 8 )  and g ( 1 7 )  ) or 
( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

~ ( 1 8 )  and p ( 1 7 )  and g ( 1 6 )  ) or 
( ~ ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and g ( 1 5 )  ) or 
( ~ ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and g ( 1 4 )  ) or 
( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and g ( 1 3 )  ) or 
( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 



g ( 1 2 )  or 
( p ( 2 4 )  and ~ ( 2 3 )  and pi22 

p ( 1 8 )  and 
p ( 1 7 )  and ~ ( 1 6 )  and p ( 1 5  

g ( l 1 )  ) or 

and p ( 2 1  

and p ( 1 4  

and p ( 2 1  ( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  
~ ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5  
~ ( 1 2 )  and p ( l 1 )  and g ( 1 0 )  ) or 

( ~ ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1  
~ ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5  
p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and g ( 9 )  

) 
) 

( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  
(18)  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  

and p ( 2 0  

and p  (13 

and p ( 2 0  
and p  (14 

and p ( 2 0  
and p ( 1 4  

) or 
and p ( 2 0  
and p ( 1 4  

and pi191 and 

and p ( 1 2 )  and 

and ~ ( 1 9 )  and 
and p ( 1 3 )  and 

and p ( 1 9 )  and 
and p  (13)  and 

and p ( 1 9 )  and 
and p ( 1 3 )  and 

12)  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and g ( 8 )  ) or 
24) and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 
18)  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
12)  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and g ( 7 )  ) or 
24) and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

( 
( 
( 
( 
(18)  and ~ ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 

~ ( 1 2 )  and p ( l l )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and g ( 6 )  ) 
or 

( p  (24)  and ~ ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p  (20)  and p ( 1 9 )  and 
p ( 1 8 )  and 

~ ( 1 7 )  and ~ ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

) and 
p  (17)  

and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  
and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p  

and p ( 1 6 )  and ~ ( 1 5 )  and ~ ( 1 4 )  and P 
) and 

~ ( 1 0 )  and p ( 9 )  

( ~ ( 2 4 )  and p ( 2 3  
p ( 1 8 )  and 

p ( 1 7 )  and p ( 1 6  
p ( l 1 )  and 

~ ( 1 0 )  and p ( 9 )  
g ( 3 )  ) or 

( ~ ( 2 4 )  and p ( 2 3  

and q ( 5 )  ) or 
(20)  and p ( 1 9 )  and 

(13)  and p ( 1 2 )  and 

and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and g ( 4 )  ) 

and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 

and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and p ( 1 2 )  and 

and p ( 8 )  and p ( 7 )  and p ( 6 )  and p ( 5 )  and p ( 4 )  and 

) and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 
p ( 1 8 )  and p ( 1 7 )  and p ( 1 6 )  and p ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
p ( 1 2 )  and p ( l 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and 
p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and g ( 2 )  ) or 

( p ( 2 4 )  and p ( 2 3 )  and p ( 2 2 )  and ~ ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 
~ ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and ~ ( 1 5 )  and p ( 1 4 )  and p ( 1 3 )  and 
p  (12)  and p ( l 1 )  and p  (10)  and p ( 9 )  and p ( 8 )  and p ( 7 )  and 
p ( 6 )  and p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and g ( 1 )  ) or 

( ~ ( 2 4 1  and p ( 2 3 )  and p ( 2 2 )  and p ( 2 1 )  and p ( 2 0 )  and p ( 1 9 )  and 
~ ( 1 8 )  and ~ ( 1 7 )  and p ( 1 6 )  and ~ ( 1 5 )  and p ( l 4 )  and p ( 1 3 )  and 
p ( 1 2 )  and ~ ( 1 1 )  and p ( 1 0 )  and p ( 9 )  and p ( 8 )  and p ( 7 )  and p ( 6 )  

and 
p ( 5 )  and p ( 4 )  and p ( 3 )  and p ( 2 )  and p ( 1 )  and g ( 0 )  ) ;  

end claunit-25; 



REFERENCE LIST 

[ l ]  S. Chou, "Integration and innovation in the nanoelectronics era," IEEE International 
Solid-state Circuits Conference. vol. I ,  pp. 36-41. Feb. 2005. 

[2] J.B. Kuo, CMOS Digital IC. New York, NY: McGraw-Hill, 1996 

[3] J.M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2""d. 
New Jersey, NJ: Prentice Hall, 2003. 

[4] D.A. Neamen, Semiconductor Physics and Devices, 3'" Ed. New York, NY: 
McGraw-Hill, 2003. 

[5] G. Moore, "No exponential is forever: but 'forever can be delayed," IEEE 
International Solid-state Circuits Corference, vol. 1, pp. 20-23, Feb. 2003. 

[6] T. Sakurai, "Perspectives on power-aware electronics," IEEE International Solid- 
State Circuits Conference, vol. 1 ,  pp. 26-29, Feb. 2003. 

[7] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, "I-V 
power supply high-speed digital circuit technology with multithreshold-voltage 
CMOS," IEEE Journal of Solid-state Circuits, vol. 30, pp. 847-853, Aug. 1995. 

[8] J .  Kao, S. Narendra, and A. Chandrakasan, "Subthreshold leakage modeling and 
reduction techniques,'' IEEE International Conference on Computer Aided 
Design, pp. 141 -1 48, Nov. 2002. 

[9] J. Kao, and A. Chandrakasan. "Dual-threshold voltage techniques for low-power 
digital circuits." IEEE Journal of Solid-state Circuits, vol. 35, pp. 1009-101 8, Jul. 
2000. 

[ lo]  R. Rao, K. Agarwal, D. Sylvester, R. Brown, K .  Nowka, and S. Nassif, "Approaches 
to run-time and standby mode leakage reduction in global buses,'' International 
Symposium on Low Power Electronics and Design, pp. 1 88- 193, Aug. 2004. 

[I I ]  C. Gopalakrishman, and S. Katkoori. "Behavioral synthesis of datapaths with low 
leakage power," IEEE International Symposium on Circuits and Systems, vol. 4, 
pp. 699-702, May 2002. 

[I21 M. Anis. S, Areibi, M. Mahmoud. and M. Elmasry, "Dynamic and leakage power 
reduction in MTCMOS circuits using an automated efficient gate clustering 
technique," Design Automation Conference, pp. 480-485. Jun. 2002. 

[13] T. Chang, T. Hwang, and S. Hsu, "Functionality directed clustering for low power 
MTCMOS design,'' Asian and South Pacific Design Automation Conference, vol. 
2, pp. 862-867, Jan. 2005. 



[I 41 V. Khandelwal. and A. Srivastava. "Leakage control through fine-grained placement 
and sizing of sleep transistors," IEEE International Conference or? Cumptiter. 
Aided Design, pp. 533-536, Nov. 2004. 

[I 51 J.T. Kao, A.P. Chandrakasan, "Dual-threshold voltage techniques for low-power 
digital circuits," IEEE Jozmzal ofSolid-State Circuits, vol. 35. pp. 1009- 101 8, Jul. 
2000. 

[16] I. Kao, and A. Chandrakasan, "MTCMOS sequential circuits," European Solid-State 
Circuits Conference, pp. 3 17-320. Sep. 2001 . 

[I 71 U.  KO, A. Pua, A. Hill, and P. Srivastava, "Hybrid dual-threshold design techniques 
for high-performance processors with low-power features," International 
Symposium on Low Power Electronics and Design, pp. 1 8-20, Aug. 1997. 

[IS] B.H., Calhoun, F.A., Honore, and A. Chandrakasan, "Design methodology for fine- 
grained leakage control in MTCMOS," International Symposizlm on Low Power 
Electronics and Design, pp. 104- 109, Aug. 2003. 

[I 91 T. Kobayashi, and T. Sakurai, "Self-adjusting threshold-voltage scheme (SATS) for 
low-voltage high-speed operation," IEEE Custom Integrated Circuits Conference, 
pp. 27 1-274, May. 1994. 

[20] M. Sumita, "High resolution body bias techniques for reducing the impacts of 
leakage current and parasitic bipolar," International Symposium on Low Power 
Electronics and Design, pp. 203-208, Aug. 2005. 

[21] M. Horiguchi. T. Sakata, and K. Itoh. "Switched-source-impedance CMOS circuit 
for low standby subthreshold current giga-scale LSl's," IEEE Journal of Solid- 
State Circzlits, vol. 28, pp. 113 1-1 135, Nov. 1993. 

[22] T. Kawahara, M. Horiguchi, Y. Kawajiri, G. Kitsukawa, T. Kure, and M. Aoki, 
"Subthreshold current reduction for decoded-driver by self-reverse biasing," IEEE 
Jourtral of Solid-State Circuits, vol. 28, pp. 1 136- 1 144, Nov. 1993. 

[23] W.N. Li, A. Lim, P. Agrawal, and S. Sahni, "On the circuit implementation 
problem," IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 12, pp 1 147-1 156, Aub. 1993. 

[24] V. Sundarara-jan. and K.K. Parhi, "Low power synthesis of dual threshold voltage 
CMOS VLSl circuits," International Symposium oiz Low Power Electronics and 
Design, pp. 1 39- 144. 1999. 

[25] L. Wei, A. Chen, M. Johnson, K. Roy, and V. De, "Design and optimization of low 
voltage high performance dual threshold CMOS circuits," ACM Design 
Automation Conference, pp. 489-494, Jun. 1998. 

[26] L. Wei, Z. Chen. K. Roy, M. Johnson, Y. Ye. and V. De, "Design and optimization 
of dual-threshold circuits for low-voltage low-power applications," IEEE 
Transactions on Ve1-y Large Scale Integration (VLSI) Systems, vol. 7, pp. 16-24, 
Mar. 1999. 



[27] Q. Wang, and S.B.K. Vrudhula, "Static power optinlization of deep s~~bmicron 
CMOS circuits for dual VT technology", IEEE International Conference on 
Computer-Aided Deslgn. pp. 490-496, Nov. 1998. 

[28] Y. Ho, and T. Hwang, "Low power design using dual threshold voltage," ACM 
Design Automation Conjerence, pp. 205-208, Jan. 2004. 

[29] X. Tang, H. Zhou, and P. Banerjee, "Leakage power optimization with dual-Vth 
library in high-level synthesis," Design Automation Cotference, pp. 202-207, Jun. 
2005. 

1301 K. Fujii, T. Douseki, and M. Harada, "A sub-1 V triple-threshold CMOS/SIMOX 
circuit for active power reduction," International Solid-State Circuits Conference, 
pp. 190-191, Feb. 1998. 

[31] K. Fujii, and T. Douseki, "A 0.5-V, 3-mW, 54x54-b multiplier with a triple-Vth 
CMOS/SIMOX circuit scheme," IEEE International SOI Conjerence. pp. 72-74, 
Oct. 1999. 

[32] J. Bang-Jensen, G. Gutin, and A. Yeo, "When the greedy algorithm fails," Descrete 
Optimization, vol. 1, pp. 121 -1 27, Nov, 2004. 

1331 N. Tripathi, A. Bhosle, D. Samanta, and A. Pal, "Optimal assignment of high 
threshold voltage for synthesizing dual threshold CMOS circuits," IEEE 
International Conference on VLSI Design, pp. 227-232, Jan. 2001. 

[34] Q. Wang, and S.B.K. Vrudhula, "Algorithms for minimizing standby power in deep 
submicrometer, dual-V, CMOS circuits", IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 2 1, pp. 306-3 18, Mar. 2002. 

1351 K. Shin, and T. Kim, "Leakage power minimisation in arithmetic circuits," 
Electronics Letters, pp. 41 5-41 7, Apr. 2004. 

[36] B. Chung, and J.B. Kuo, "Gate-Level Dual-Threshold Static Power Optimization 
Methodology (GDSPOM) for Designing High-speed Low-Power SOC 
Applications Using 90nm MTCMOS Technology," IEEE International 
Symposium on Circuits and Systems. p p. 4. May 2006. 

1371 B. Chung, Gate-Level Dual-Threshold Static Power Optimization Methodology 
(GDSPOM) for Designing High-speed Low-Power SOC Applications Using 90nm 
MTCMOS Technology, M.A.Sc thesis, Simon Fraser University, Burnaby, BC, 
2005. 

[38] L.R. Ford Jr., and D.R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton 
University Press, 1962. 

[39] A.V. Goldberg, and R.E. Tarjan, "A new approach to the maximum flow problem," 
Proceedings of the Eighteenth Anntral ACM Symposium on Theory of'Computing, 
pp. 136-146, May 1986. 



[40] P. Gupta. A.B. Kahng, and P. Sharnla. "A practical transistor-level dual threshold 
voltage assignment methodology," Internntional Symposium on Quality of 
Electronic Design, pp. 42 1-426, Mar. 2005. 

[41] L. Wei, Z. Chen, K. Roy, Y. Ye, and V. De. "Mixed-VtI, (MVT) CMOS circuit 
design methodology for low power applications," ACM Design Automation 
Conference, pp. 430-435, Jun. 1999. 

[42] S. Sirichotiyakul, T. Edwards, C. Oh, J. Zuo. A. Dharchoudhury, R. Panda, and D. 
Blaauw, "Stand-by power minimization though simultaneous threshold voltage 
selection and circuit sizing," ACM Design Automation Conference, pp. 436-441, 
Jun. 1999. 

[43] ----, PrimeTime User Guide: Fundamentals, Synopsys. Jun. 2005. 

[44] H.I.A. Chen, E.K.W. Loo, J.B. Kuo, and M.J. Syrzycki, "Triple-threshold static 
power minimization technique in high-level synthesis for designing high-speed 
low-power SOC applications using 90nm MTCMOS technology," Canadian 
Conference on Electrical and Computer Engineering, Vancouver, BC, Apr. 2007. 

[45] H.I.A. Chen, E.K.W. Loo, J.B. Kuo, and M.J. Syrzycki, "Triple-threshold static 
power minimization in high-level synthesis of VLSl CMOS," International 
Workshop on Power and Timing Modeling, Optimization and Simulation, 
Goteborg, Sweden, pp. 453-462, Sep. 2007. 

[46] 0. MacSorley. "High speed arithmetic in binary computers." IRE Proceedings, vol. 
49, pp. 67-91, Jan. 1961. 

[47] C. Wallace, "A suggestion for a fast multiplier," IEEE Transactions on Electronic 
Computers, EC-13, pp. 14-1 7, Feb. 1964. 

[48] P.M. Kogge, and H.S. Stone, "A parallel algorithm for the efficient solution of a 
general class of recurrence equations," IEEE Transactions on Computers, vol. C- 
22, pp. 786-793, Aug. 1973. 

[49] F. Brglez, and H. Fujiwara, "A neutral netlist of 10 combinational benchmark 
circuits and a target translator in Fortran," IEEE International Symposium on 
Circuits and Systems, Jun. 1985. 

[50] F. Brglez, D. Bryan. and K. Kozminski. "Combinatorial profiles of sequential 
benchmark circuits," IEEE International S)wiposium on Circuits and Sj?stems, pp. 
1929-1 934, 1989. 

[5 11 F. Corno, M.S. Reorda, and G. Squillero, "RT-level ITC'99 benchmarks and first 
ATPG results," IEEE Design & Test of'Computers, vol. 17, pp. 44-53, Jul. 2000. 


