
TANKER BASED ROBOT RECHARGING 

by 

Pawel Zebrowski 

BASc., Simon Fraser University, 2004 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Pawel Zebrowski 2007 

SIMON FRASER UNIVERSITY 

Summer 2007 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Pawel Zebrowski 

Degree: 

Title of thesis: 

Master of Science 

Tanker Based Robot Recharging 

Examining Committee: Dr. Robert Hadley, 

Professor, Computing Science 

Simon Fraser University 

Chair 

Date Approved: 

Dr. Richard Vaughan, 

Assistant Professor, Computing Science 

Simon Fraser University 

Senior Supervisor 

Dr. Greg Mori, 

Assistant Professor, Computing Science 

Simon Fraser University 

Supervisor 

Dr. Ze-Nian Li, 

Professor, Computing Science 

Simon Fraser University 

SFU Examiner 



Declaration of 
Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has granted to 
Simon Fraser University the right to lend this thesis, project or extended essay to users 
of the Simon Fraser University Library, and to make partial or single copies only for 
such users or in response to a request from the library of any other university, or other 
educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or make 
a digital copy for use in its circulating collection (currently available to the public at the 
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: 
<http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to 
translate the thesis/project or extended essays, if technically possible, to any medium 
or format for the purpose of preservation of the digital work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not be 
allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, of 
any multimedia materials forming part of this work, may have been granted by the 
author. This information may be found on the separately catalogued multimedia 
material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in part, 
and licensing other parties, as the author may desire. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



Abstract 

Teams of autonomous mobile robots wishing to sustain lc lng term a  pera at ion need a means of re- 

fueling. Traditionally, this has been accomplished by requiring that each robot return to a central 

charging station. Since energy is a scarce resource, this must be done in an energy efficient way. 

This thesis proposes an energy efficient tanker based approach for recharging robot teams. A service 

robot is employed to transport energy from a charging station to other robots. Energy efficient path 

planning for this robot is shown to be NP-hard. Several novel heuristic techniques for joint robot 

motion planning to achieve efficient tanker-robot meetings are presented and analyzed. A heuristic 

is developed which is perfectly scalable, and shown both analytically and experimentally to produce 

energy efficient robot paths. 
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Chapter 1 

Introduction 

1.1 Robots and energy 

Energy maintenance is a key requirement in creating long-lived autonomous robots. An autonomous 

robot, no matter how sophisticated its Artificial Intelligence, will have its life-span and work-load 

limited by the available energy. This problem is in common with all living things, and is so funda- 

mental that we believe it may place interesting constraints on the design of intelligent autonomous 

systems. 

Consider a team of robots moving throughout an environment in order to take temperature read- 

ings. Since each robot has a finite amount of energy, at some point it will need to be recharged, or 

cease functioning. The usual approach to solving this problem is to outfit all robots with means to 

recharge themselves, usually by visiting a charging device at some fixed location. This approach 

places certain demands on the sensing and computation of the robots, for example finding a fixed 

known location requires localization, which is certainly possible but can be very computationally 

expensive to achieve in indoor robots. Yet this technology is mature enough that at least one off-the- 

shelf recharging system1 is available for research robots, as is a low-cost domestic floor-sweeping 

robot, the Roomba  isc cover^^ with autonomous base-station recharging. 

There is an alternative approach: a robot 'tanker' system in which a special-purpose robot col- 

lects energy from a source and distributes it to one or more worker robots. This may have two 

advantages compared to conventional autonomous recharging: first in terms of cost and complexity 

of worker robots, and second in overall system efficiency. 
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1.2 The tanker approach 

The tanker based approach is suggested as a useful alternative to individual recharging approaches 

for systems of autonomous robots. In the most simple form, an energy-transporting tanker coexists in 

an environment consisting of worker robots ('workers') designed to perform some task (for example: 

forage) and is required to find and recharge worker robots in need of energy, while maintaining its 

own energy level. Such a tanker must be able to locate and approach worker robots, as well as return 

to a charging location and recharge itself. 

This approach to robot recharging has apparently not been proposed or studied before. The 

benefits of the tanker approach over a self-charging system can be seen in the division of labor. 

Worker robots are able to largely retain their task scope, with no need for extra sensing or algorithmic 

complexity. Tankers have only one task, to search for and recharge workers. Further, this division of 

labor leads to a division in complexity. For worker robots, the coupling of their intended tasks and 

the recharging task is not required. As an example, a worker can stop working and wait for a tanker, 

instead of concerning itself with the complexities of returning to a charging station. A certain level 

of modularity is also introduced, consistent with the idea of interchangeable parts. This is likely to 

lead to cost saving and ease of replacement in case of failure. 

A further benefit is that of energy efficiency. A team of robots that need to independently travel 

to a central charging station may not be the most efficient use of energy. Under certain conditions, 

the introduction of a tanker robot can yield much more efficient energy usage, as will be shown later. 

1.3 The need to meet 

In order to achieve tanker based recharging, the system of tanker and worker robots needs to have 

a means of exchanging energy. This is likely to require a tanker and worker to physically interact 

(for example, connect to each other) in order to transfer energy. For such interaction to take place, 

a tanker and worker must meet. Further, since the overall system goal is sustaining function given a 

finite energy capacity, energy efficiency is a key goal in prescribing meeting mechanisms. 

Such a system has numerous degrees of freedom which can make the problem difficult to solve. 

First is the combinatorial problem of deciding in what order the tanker should meet each worker. 

In all cases except a rendezvous, this is a non trivial problem. Following this is the continuous 

problem of deciding where each meeting should take place and which robots should attend. Next is 

the problem of scheduling meetings, prevalent when workers discharge at different rates and require 
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recharging at different times, or when the tanker does not have enough capacity to recharge all 

workers without recharging itself. Last is the problem involving obstacles, navigation, localization, 

and interference, all while maintaining energy efficiency. In this thesis we tackle the problem of 

deciding where to meet, and briefly examine the combinatorial problem as well as the problem of 

obstacles and interference. 

Given the complexity of tanker based recharging, we chose to focus on finding methods for 

achieving energy efficient meetings. This is done in order to limit the problem scope to a manageable 

size. Despite showing only partial solutions to tanker based recharging, the results presented here 

are useful since an increase in efficiency can lead to an increase in system utility. 

1.4 Related work 

1.4.1 Robot docking and recharging 

Autonomous robot recharging has historically been accomplished by having robots return to a cen- 

tral charging station at a fixed location. This technique goes back as far as 1953 when W. G. Walter 

demonstrated autonomous robot "tortoises" going back to a home base [40]. The tortoises used light 

following to identify and approach a base which, once entered, established physical contact and al- 

lowed for recharging. Since then, numerous designs based on this principle have been presented. 

In 1999, Nourbakhsh et al. [26] developed "Sage," an autonomous robotic tour guide to be em- 

ployed full time at the Carnegie Museum of Natural History. The goal of the project was to develop 

a highly reliable robotic tour guide capable of giving interactive tours to visitors with minimal ser- 

vice intervention. As part of this goal, Sage had to have energy autonomy, which was accomplished 

with the help of a charging station. Reliable docking was achieved using a CCD camera and a three 

dimensional landmark placed directly above the charging station. Sage used a custom built "plug" 

to interface with the charging station. 

In 2000, Oh, Zelinksy, and Taylor [27] presented an approach based on aircraft landing. They 

used a Nomad XR4000 to divide the task of identifying and approaching the docking station into 

long range and short range operations. Infrared sensors were used for long range detection of the 

charging station and to bring the robot close enough for laser target tracking to take over. A physical 

connection was established with the help of a flexible power plug. 

Several other authors present variations for docking and charging autonomous robots. Silverman 

et al. [35] show similar results using a Pioneer 2-DX robot. Kartoun et al. show a vision based 

recharging system designed for an ER-1 Evolution Robotics mobile robot in [15]. Emami et al. [12] 
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show a very tolerant physical design. 

It should be noted that doclung station based recharging has matured enough as a technology to 

become useful in commercial applications. iRobot's low-cost domestic cleaning robots make use of 

a "self-charging home base" in order to recharge. 

1.4.2 Path planning 

The problem of path planning for multiple robots to assemble in one location, the rendezvous prob- 

lem, has received some attention. Most authors consider the setting where robots have incomplete 

information about locations of other robots which makes it difficult to coordinate and agree on a 

single meeting point. 

Dudek and Roy [ l  11 study the rendezvous problem for an unknown environment in the absence 

of communication. They propose several techniques whereby each robot evaluates its environment 

while exploring, and ranks environmental features to be classified as landmarks. Different methods 

are used in selecting rendezvous points from the list of suitable landmarks. 

Schlude [34] explores the problem of achieving multi-robot rendezvous. He presents a method 

which results in robots moving towards a common rendezvous point with the help of "Contraction 

Functions." He identifies similarities of the resulting rendezvous point to the Weber point, prevalent 

in facility location problems. 

Further examples of rendezvous under varying assumptions can be seen in [19] and [9]. Ando et 

al. [I] describe and prove a distributed rendezvous algorithm for robots with limited visibility. Other 

authors concentrate on selecting a meeting point to ensure that some specific properties hold, or to 

optimize the formation during the convergence. Smith et al. [36] describe a scheme which makes 

the convergence process more organized in a certain mathematical sense. 

Lanthier et al. [17] present an algorithm for finding the meeting point which minimizes the 

maximum individual travel costs to a single meeting point on a weighted terrain. This is in contrast 

to our work, which considers total system energy usage, and is a problem that has not been addressed 

previously. 

1.4.3 Energy efficiency 

Energy efficiency in general motion planning is well studied. The Distributed Energy-efficient Au- 

tonomous Robots (DEAR) group of Purdue University has contributed a significant body of work 

to the study of energy efficiency in mobile robots. In [24], Mei et al. study a method for comparing 
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the energy efficiency of proposed motion plans. They devise a method which considers turns, ac- 

celerations, and velocities in order to calculate expected energy usage of a given path, and compare 

it to other candidate paths. In [23], they propose an energy efficient exploration algorithm which 

augments existing exploration techniques to reduce duplicate coverage and employ energy efficient 

motion planning. Yongguo Mei's PhD thesis [22] thoroughly explores several energy efficiency 

issues in multi-robot systems. 

Wang et al. [41] study energy efficiency in mobile sensor networks. They consider all the actua- 

tion costs for a mobile sensor along with several road conditions, and propose an optimal or close to 

optimal velocity schedule for each. Sun and Reif [37] build on the work of Rowe [32,33] to present 

results for energy efficient motion planning on more challenging terrains, considering friction and 

gravity. 

1.4.4 Facility location 

Energy efficient path planning for one service robot to visit each worker robot, which we will later 

formally define and name, is novel. However, the analytical component of the problem has similar- 

ities to the weighted Fermat-Torricelli problem. Further, as mentioned earlier, Konrad Schlude [34] 

alludes to the similarities between finding a rendezvous location, and finding the Weber point given 

all robot locations. The facility location problem class is well studied and has a complex background. 

Drezner [lo] provides a good survey of this family of problems. 

1.5 Thesis outline 

Chapter 2 The feasibility of tanker based recharging is examined. A tanker is placed in a simu- 

lated multi-room environment along with several worker robots and charging stations. A nayve ap- 

proach is taken to all problems required in achieving tanker based recharging, and some simplifying 

assumptions are made. Several design techniques are tested and compared, but no optimality results 

are sought. A description is provided for hardware required in achieving tanker based recharging. 

Chapter 3 The rendezvous problem is introduced, and techniques presented for achieving ren- 

dezvous in an energy efficient manner. Two methods are compared in different environments and 

energy consumption examined. 



CHAPTER 1. DJTRODUCTION 6 

Chapter 4 The frugal feeding problem is introduced, and shown to be NP-hard. Special cases of 

the problem are identified and solutions suggested. Discrete and numerical techniques are described 

for solving the meeting location component of the frugal feeding problem. 

Chapter 5 The frugal feeding heuristic is presented and analyzed. A variety of experiments are 

performed to demonstrate the utility of the heuristic as well as the Nelder-Mead numerical solution 

from the previous chapter. The effects of obstacles and interference are examined. Complete solu- 

tions to the frugal feeding problem are demonstrated by pairing both the frugal feeding heuristic and 

Nelder-Mead with ordering algorithms. Computation time requirements are discussed. 

Chapter 6 Tanker based recharging results are discussed and compared to traditional docking 

station recharging. Future work is presented, along with an outline of unsolved problems remaining 

in tanker based recharging. 



Chapter 2 

Tanker Recharging 

The work elaborated in this chapter is based on the work by Pawel Zebrowski and Richard Vaughan 

[45], presented at the International Conference on Advance Robotics (ICAR 2005), Seattle, Wash- 

ington, July 18-20,2005. 

2.1 Feasibility 

To begin, we set out to examine whether tanker based recharging is a feasible approach to recharging 

robot teams. We start by adopting a nai've approach to problems encountered during design. The 

goal is to demonstrate experimentally that under some set of conditions, a tanker is able to maintain 

acceptable levels of energy in itself and several worker robots. This is done by conducting experi- 

ments in a simulated real-world environment using a number of worker robots and several charging 

stations. Care is taken to achieve an accurate simulation, although several simplifications are as- 

sumed intentionally as part of the naYve approach. Several design techniques are demonstrated and 

evaluated. 

2.2 Experiments 

The experiments in this chapter demonstrate tanker based recharging in simulation using PlayerIStage 

[13]. The simulated world is a two dimensional floorplan map of a hospital (a standard Stage envi- 

ronment) constructed from a blueprint of this hospital. Within the world is one tanker robot and a 

number of worker robots, each able to traverse the hospital rooms and corridors. 



CHAPTER 2. TANKER RECHARGING 8 

Each robot in this world is equipped with an energy device which allows for the simulation of 

energy depletion and acquisition. The energy device consumes energy at a rate proportional to the 

number of devices on a robot and the mass of the robot (as defined in the simulation). For example, 

a Pioneer 3-DX based robot consumes less energy per time unit than a Nomadic Technology Nomad 

200 based robot equipped with a laser range finder. It should be noted that a motionless robot 

continues to consume energy at a slow rate to simulate energy consumed by circuitry. 

The world contains within it 'energy squares' which are idealized charging stations. The energy 

squares have the ability to give unlimited amounts of energy. Unlike a robot, which can acquire, 

store, and use a finite amount of energy, an energy square models a wall outlet or other public 

utility connected energy source. Each robot is equipped with a 'nose' that is used to transfer energy 

between charging location and robot, or robot and robot. This is an abstraction from the physical 

mechanisms required to achieve such a system. See Section 2.5 for an example implementation. 

2.2.1 Devices 

The tanker is modeled after a Nomadic Technology 200. It is simulated by a sixteen-sided polygon 

with sixteen sonar range sensors. The tanker is also equipped with a laser range finder modeled 

after a SICK LMS laser range finder. These devices are used for tanker navigation throughout the 

hospital. The workers are modeled after a Pioneer 3-DX. They contain sonar range sensors, which 

are used for navigation. 

Each robot is equipped with a dynamically changeable tiducial device, used primarily to dis- 

tinguish a worker in need of energy from all other workers. Any worker robot with fiducial id 

f id > 200 is considered to be in need of energy. On real robots, this could be achieved using colour 

indicator lights and a blobfinder device. Fiducial id's are also used for statistical purposes, and to 

keep a list of energy awaiting worker robots when the tanker cannot immediately recharge them. 

This, however, is not crucial to the successful implementation of our experiments. 

2.2.2 Controller 

The tanker controller is implemented based on the Subsumption Architecture [7]. This approach 

is chosen as the robot needs to perform a series of simple tasks which have a static priority that is 

easily defined. The general groups of tasks are defined as follows, in order of priority: 

1. maintain mobility by avoiding obstacles and cyclic motion, 
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File View 

Figure 2.1 : A portion of the simulated world. 

2. find charging locations and return to a charging location if tanker energy is below threshold, 

and 

3. find worker robots in need of energy and recharge them. 

The state transition diagram in Figure 2.2 defines the states and transitions of a tanker. Notice 

that this state transition diagram is not dependent on any particular method, but is adaptable based 

on environment. For example, the "return to energy" state is implemented using a breadcrumb 

trail-following method that combines some features of planning and mapping [39] but can easily be 

replaced with a more complex localization scheme. 

Execution begins in the energy search state, where the tanker's goal is to find a charging location. 

Finding a charging location is key to sustaining energy beyond the initial amount provided, since 

the tanker depends on a reliable source of energy. No assumption is made that the energy locations 

are known a priori. Once a charging location is found, the tanker begins a cycle of searching and 

charging worker robots, and returning to a charging location to recharge itself. This cycle continues 

indefinitely. The tanker always chooses to recharge itself before recharging workers, in order to 

sustain functionality. 
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Figure 2.2: The tanker state transition diagram. 

Worker In N not found, 
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2.2.3 Implementation 

Data structures 

Energy 
Search 

The tanker depends on several data structures that define the action of the robot. Let the 'worker 

vector' N be a list of tuples < f id, x, y ,  8 > (fiducial id, position, and orientation) which identifies 

the last seen location of all workers discovered as being in need of energy. Let the breadcrumb trail 

vector B be a list of tuples < x, . y , O  > (position and orientation) which identifies a series of points 

Energy square found 
and E >_E,,. 

along the path to the last seen charging square. Let the energy threshold Emin be the amount of 

energy below which the tanker begins seeking a charging location to recharge, and Em,, be tanker's 

maximum attainable energy level. 
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In the energy search state, the tanker moves around its environment in an attempt to locate a source 

of energy. An energy square is identifiable by a range of specific fiducial ids. While in this state, 

the tanker adds the location of any workers in need of energy to the worker vector N, but does 

A 
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Worker charged and 

not proceed to help them at this time. Upon finding a charging station, the tanker begins dropping 

breadcrumbs during all subsequent actions in order to reliably return to this location when needed. 

When a charging location is once again identified, a new breadcrumb trail is started. 

In the robot search state, the tanker looks for worker robots in need of recharging. Upon locating 

chargmg from 

v v INI>O 

one, the tanker adds the robot's location information to the worker vector N. When the worker vector 

Tanker 
Charging 

N is non-empty, the tanker proceeds directly to the location of some robot in N, determined by the 

chosen charging order method. During this worker approach state, the tanker continues noting other 

. 
Energy squarefound 

and E < Em,. 

Return To 
Energy ' E < Ern,, 

Robot 
Charging 
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worker robots in need of energy. In the worker recharging state, the tanker transfers energy from 

itself to the worker robot. 

When the tanker's energy level E < Emin, the tanker immediately begins following bread- 

crumbs in reverse order to get back to the last seen charging location. Once at the charging location, 

the tanker is able to recharge itself. When finished, it resumes looking for robots to add to the worker 

vector N, or approaching some robot in N. 

Navigation 

The tanker achieves obstacle avoidance with help from the Vector Field Histogram (VFH) method 

[5].  VFH attempts to guide the tanker in traversing its environment from its current pose p to 

some specified pose p' while avoiding static and dynamic obstacles. It does this by constructing 

a two-dimensional Cartesian histogram grid as a world model, then reducing this grid into a one- 

dimensional polar histogram centered around the robot. This polar histogram describes the obstacle 

density around the robot, and is used to select the most suitable direction of travel. 

Since VFH is a local path planner, its use may result in cyclic motion while trying to negotiate 

local minima in the environment. To suppress this cyclic motion, a cyclic motion detection tech- 

nique is used. This technique is achieved by placing a virtual 'tail7 on the tanker consisting of n 

breadcrumbs. Let pi be the position of the tanker at time i. Let Ti be the tail at time i. Let j and k 

be times. Tj =< po ,p l ,  ..., pj > for j < n and Tk =< pk-,, ...,pk > for k > n. The tail can then 

be thought of as a series of the last n breadcrumbs taken at some regular interval. The algorithm 

compares the current pose p, to every location in the tail T,. Confidence C that the tanker is in a 

cycle is then defined as the number of pi that are near p,. In this implementation, pi is considered 

near p, if it is within one meter from p,. 

Cyclic motion confidence C remains low as long as the tanker traverses an area not seen within 

the last n time units. However, if the tanker becomes trapped in a short cycle, the number of 

tail points pi near p, will increase. When confidence C reaches some threshold the tanker begins 

taking evasive action, in this case moving towards an open area until the confidence drops below 

the threshold. This occurs as soon as the tanker leaves the area in which the cycle occurred, thereby 

stopping the cyclic motion and returning control to normal navigation. 
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FLOOR 4 

Figure 2.3: Typical path taken with right wall following. 

Figure 2.4: Typical path taken with random walking. 

Searching 

The tanker spends most of its time searching for worker robots and energy locations. Two searching 

techniques are explored: right wall following and random walking. 

Right wall following is achieved with the help of VFH, by setting the destination in front and to 

the right of the tanker's current location. See Figure 2.3 for a typical path taken during one simulated 

hour. 

Random walking is defined as follows. Every t = 10 seconds, a new destination d is chosen in 

an area x = -lo... 10 and y = - 10 ... 10 where the tanker is defined to be at (0,O). A bias towards 

destinations in front of the robot is added to promote non-cyclic movements. Should the tanker come 

within 1 meter of destination d before time t elapses, a new destination d' is chosen immediately. 

See Figure 2.4 for a typical path taken during one simulated hour. 



CHAPTER 2. TANKER RECHARGING 13 

Return to energy 

Reliable return to a charging location is assured with the help of a breadcrumb trail algorithm. A 

breadcrumb bt =< x, y ,  0 > is a coordinate at time t. The breadcrumb trail T, after last seeing the 

charging station n seconds ago is defined as T, =< b,, bo,  b l ,  ..., b, > where b, is the location of the 

last seen charging station. When the tanker reaches an energy level E < Emin, it stops performing 

its current action and proceeds to the last dropped breadcrumb b,. Upon coming within 1 meter of 

b,, T is truncated after b, - 1, and the tanker proceeds to b, - 1. This continues until reaching b, 

and therefore the charging location. An optimization is added such that should the tanker be within 

1 meter of any other breadcrumb bj  where j < n and j 5 k for all bk within 1 meter of the tanker, 

the list of breadcrumbs is truncated after b j  - 1. This results in the tanker not repeating any cyclic 

behavior it performed during searching. 

Worker robot recharging 

The tanker identifies that a worker is charging from it by monitoring energy usage per second (watts). 

When watts used increases above the nominal rate, the tanker concludes that some robot is charging. 

The tanker then immediately stops moving to facilitate the charging. While charging, at intervals 

of 30 seconds, the tanker initiates a 360-degree rotation during which all robots within 1 meter and 

facing the tanker are identified as charging. Their id's are noted and removed from the worker vector 

N. When the tanker's watts fall back to the nominal rate, the tanker resumes its previous task. 

2.2.4 Procedure 

Experiments are run in simulation using PlayerIStage to demonstrate tanker based recharging. An 

experiment consists of 7 simulated one-hour trials. Each trial begins by placing the tanker and 

9 worker robots in the simulated hospital world. A worker robot is to explore its environment, 

avoiding obstacles, until its energy level reaches some threshold, at which point it is to indicate the 

need for energy, stop moving, and wait for the tanker. Even while motionless, the worker continues 

to consume energy. 

A record is kept of the tanker's state every simulated second. From this, the following data is 

used to gauge experiment performance: 

1. number of worker robots in need of energy found, 

2. number of worker robots recharged, 
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EiTanker Chargmg 
Return To Energy 
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Figure 2.5: Percent of time spent in each state: 1. Random walking, breadcrumbs, worker vector, 
FIFO. 2. Right wall following, breadcrumbs, worker vector, FIFO. 3. Random walking, bread- 
crumbs disabled, worker vector, FIFO. 4. Random walking, breadcrumbs, worker vector disabled, 
FIFO. 5. Random walking, breadcrumbs, worker vector, LIFO. 

3. percentage of time spent in each state, and 

4. mean energy. 

This data is used to gauge the effectiveness of several performance enhancements as well as certain 

design tradeoffs. Two performance enhancements tested are breadcrumb trails when seeking energy, 

and the worker vector. The design tradeoffs tested are two different search strategies, and two 

processing techniques for the worker vector. 

2.3 Results 

2.3.1 Searching 

Two techniques are explored for searching: random walkmg and right wall following. Right wall 

following provides for a detailed search with a slow coverage of the entire environment, while the 

random algorithm covers the entire environment with little detailed search. As a result, robots further 
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Figure 2.6: Typical path taken with worker vector disabled. 

away are usually only discovered by the random algorithm, while robots hidden in rooms are only 

discovered by right wall following. Figure 2.4 and 2.3 demonstrate the coverage of each searching 

algorithm. Table 2.1 shows that right wall following performed significantly better than random 

walking, finding an average of 14 worker robots in need of charging, as compared to 4.5 using 

random walking. Further, robot searching only consumed 28% of the tanker's time while using right 

wall following, compared to 37% with random walking. 

Table 2.1: Mean number of workers found varying search technique. 
1 Mean number of workers found I I Random Walking 4.5 

Right Wall Following 14 

2.3.2 Worker vector 

We found that the worker vector reduces the mean time spent searching for depleted workers by 4%. 

It is interesting to note that a significant reduction of time spent in the energy seeking state is also 

noticeable. With the worker vector enabled, 21% of time is spent returning to a charging location, 

as compared to 5% with the vector disabled. Examining a typical path taken with the list disabled 

(Figure 2.6) shows that this is a result of the tanker staying closer to the charging location, and often 

retracing its path several times after recharging. 
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2.3.3 Breadcrumb trail 

Table 2.2: Mean number of workers recharged with and without the worker vector. 

Experiments were performed with the breadcrumb trail enabled and disabled, storing only the pose 

of a charging location. Out of 7 trials with breadcrumb trail disabled, 2 terminated prematurely be- 

cause the tanker could not return to a charging station before becoming depleted of energy. Further, 

the mean percent energy level in trials with breadcrumb trails enabled is 72% compared to 55% 

with breadcrumb trails disabled. The percent of time spent returning to a charging location with 

breadcrumbs enabled is 21 %, compared to 38% disabled. This leads to a conclusion that keeping a 

breadcrumb trail reduces the amount of time spent returning to charging locations, which allows for 

more time to be spent searching for depleted workers. 

Enabled 
Disabled 

Table 2.3: Mean percent energy level with and without the breadcrumb trail. 
Mean percent energy level 

Enabled 
Disabled 55% 

Mean number of workers recharged 
3.25 
3.66 

2.3.4 Charging order 

Two methods of charging depleted worker robots were tested: first in, first charged (FIFO) and 

charge last seen robot first (LIFO). First in, first charged guarantees that each robot will eventually 

be recharged, while charge last seen robot first makes the optimization of attending to closest robots 

first, resulting in better performance, but potential starvation. On average, first in first charged 

resulted in 19% of time being spent seeking depleted workers, while charge last seen robot first 

spent only 2%. First in first charged resulted in 37% of time spent searching for depleted workers, 

as compared to charge last seen robot first, with 49%. Starvation did not occur in any of the trials. 

2.4 Discussion 

We have shown that the tanker method for recharging systems of autonomous mobile robots is a 

feasible solution to the recharging problem. Several techniques are explored and compared to yield 
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a functioning tanker robot in simulation. This section discusses the significance of results obtained 

as well as possible improvements. 

2.4.1 Search techniques 

The two search techniques tested produced varying results. Right wall following can be seen to 

charge significantly more workers than random walking, and it does so with less time spent search- 

ing. However, the advantage of right wall following over random walking does not indicate a su- 

perior search technique. Both methods perform nearly identical tasks: navigate the environment 

due to some algorithm without storing historical data, planning, or otherwise intelligent reasoning. 

The reason that right wall following proves superior in our experiments is because the majority of 

worker robots tend to remain in rooms, often far away from corridors. This, however, is not true in 

general. Consider a system of transport robots. It is foreseeable that such a system will favor spend- 

ing time in corridors between rooms, making random walking a more effective search algorithm. 

Given this, a provably superior search algorithm may need to be based on a search strategy similar 

to frontier-based exploration [43] or some other more complex method. 

2.4.2 Worker vector 

Table 2.2 shows that the worker vector does not result in an increase in the number of worker robots 

recharged. It is however witnessed that a slight reduction (4%) in the percent of time spent searching 

for workers does occur. It is conjectured that the lack of a perceivable performance benefit results 

from the following phenomenon. 

It is observed that without the worker vector, the tanker stays significantly closer to the last 

seen charging station than with the vector enabled. This is once again attributed to the simplicity of 

the search technique. After tanker recharging is complete, the tanker commences its search strategy. 

Having no worker vector to remind it where it left off, it begins just as before, retracing large portions 

of the same path already traversed after the last recharge. In this sense, the worker vector acts more 

like a bookmark to remind the tanker where it left off before returning to recharge. This results in 

a more complete coverage of the entire environment. A more sophisticated search algorithm would 

likely account for this. 

By remaining close to the last seen charging station, the tanker is able to traverse an area pop- 

ulated with robots at more frequent intervals, thereby having more opportunity to recharge workers 

in this area. This results in workers near the charging location receiving immediate assistance. With 
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the worker vector enabled (and therefore broader coverage) a worker must wait longer before being 

recharged. It is therefore reasoned that the lack of perceivable performance benefit resulting from 

the worker vector is due to the tanker recharging the same group of robots repeatedly, thereby arti- 

ficially increasing the charged worker count, instead of recharging all robots less frequently. This, 

of course, is not the desired result, as the goal is to sustain the energy level of the entire system by 

recharging all worker robots. Without the worker vector, a subset of workers is never discovered, 

and never recharged. 

2.4.3 Breadcrumb trail 

It can be seen from the experiments that a tanker is capable of reaching some distant target without 

the help of breadcrumb trails. This is witnessed when, with the worker vector enabled, the tanker 

is able to find the last worker seen, even if the location is a long distance away. The same cannot 

be expected in real world experiments with imperfect localization. The breadcrumb trail is used 

as a mechanism for reliably returning to an energy source, regardless of localization properties. It 

is shown in [39] that breadcrumb trails are reliable even with imperfect localization, which allows 

the tanker to make no assumptions about localization properties a priori. We conjecture that bread- 

crumbs would have further improved performance had they been employed in the worker vector as 

well. 

2.4.4 Charging order 

Charging order is seen to have a significant influence on the percentage of time spent seeking work- 

ers in the worker vector. The reason for this is clear: having traversed a path encountering n workers, 

LIFO allows for the robots to be charged in reverse order. However, with FIFO, the tanker needs to 

traverse the path again, in reverse, then begin charging robots in the original order added. This extra 

traversal consumes time that can be used for other tasks. Further, should the tanker encounter any 

new workers while traversing this path, it will have to perform yet another cycle. 

It should be noted that LIFO is in theory susceptible to starvation. The tanker may never get 

the chance to approach the first worker seen if others keep being recharged. While not witnessed 

in experimentation, it is easy to set up a starvation scenario. For this reason, LIFO should not be 

considered a superior algorithm unless starvation is acceptable. 

A more suitable algorithm would be one that allows for the path optimization of LIFO, but is 

not susceptible to starvation. For example, an algorithm that incorporates priorities increasing with 

time could be used. 
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2.5 Physical Interaction 

In order to experiment with tanker based recharging in a real world setting, a means of exchanging 

energy between tanker and a charging station, as well as tanker and worker robots must be con- 

structed. Below are the details of this work in progress. In particular, designs are outlined for the 

components involved: charging station, tanker, and worker robots. 

The goal is to have a tanker robot that has a single physical interface for giving and receiving 

electrical energy. This way, the coupling of tanker and charging station is similar to the coupling of 

tanker and worker robot. Further, care is taken to make this coupling as easy as possible. 

2.5.1 Charging station 

Our charging method uses a custom built charging station, and a Pioneer 3-DX outfitted with a 

SICK LMS laser range finder and ActivMedia 2 degree-of-freedom grippers. Figure 2.7 shows a 

schematic of the proposed charging station. The station consists of a cylinder mounted vertically 

with two metal contact plates mounted along the outside. These metal contacts are to be gripped by 

a tanker (much like a puck would) in order to complete the charging circuit. Two physical barriers 

mounted vertically prevent the tanker from short circuiting the charging station in the event that one 

gripper lands directly on both charging plates. 

The cylinder is mounted on a spring to allow for tolerance when approached by a tanker. It is 

also constructed on a smooth base that allows the entire station to slide, giving additional tolerance. 

The cylinder is tall enough to allow for our tanker to use its laser range finder to identify the shape, 

and has a coloured 'hat' to aid in navigation. 

2.5.2 Tanker 

Figure 2.8 shows a Pioneer 3-DX about to connect to a charging station. The tanker is outfitted 

with 'mittens': metal contacts mounted to the grippers which physically touch the contacts on the 

charging station. With this approach, the act of interfacing with the charging station turns into 

a problem similar to locating and moving a puck. Wawerla et al. [42] describe an algorithm for 

achieving this. 

Since our robots run on direct current, polarity needs to be observed. It is not possible to know 

the polarity before the robot connects, therefore circuitry is added to detect and rectify the polarity 

when a connection is established. 
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(b) Side 

Figure 2.7: Charging station schematic. 
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Figure 2.8: Tanker approaching a charging station. Printed by permission of Richard Vaughan. 

2.5.3 Worker 

Work is in progress on construction of worker robots called 'chatterboxes.' Figure 2.9 shows the 

chatterbox design, which will be puck shaped to allow for interfacing with the tanker robot. The 

chatterboxes will have contacts along the outside of their perimeter to mimic the shape of a charging 

station. Once located and connected, the tanker will be able to give energy to a worker. 

2.6 Conclusion 

A novel means of recharging robot teams is presented. The use of an energy distributing tanker 

robot in a system of autonomous worker robots as a solution for achieving long term multi-robot 

systems is demonstrated. A tanker robot is constructed in simulation and demonstrated to be ade- 

quate at performing the prescribed task. We describe both a general tanker architecture suitable for 

adaptation given some target environment as well as design details used in achieving the tanker used 

in our experiments. 

Several design techniques are implemented and evaluated for suitability and performance. Met- 

rics are shown that demonstrate the utility of each technique, as well as a discussion about the 

intended and emergent behaviour. 

A design is presented for implementing tanker based recharging on real robots. A tanker capable 

of using the same physical interface to recharge itself and give charge to a worker is shown. A 

charging station and worker robot are described. 
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Figure 2.9: Chatterbox schematic. 

Figure 2.10: A disassembled chatterbox. Printed by permission of Barry Shell. 



Chapter 3 

Rendezvous 

The work elaborated in this chapter is based on the work by Pawel Zebrowski, Yaroslav Litus, and 

Richard Vaughan [44], presented at the Fourth Canadian Conference on Computer and Robot Vision 

(CRV 2007), Montreal, QC., May 28-30,2007. 

3.1 Introduction 

In order to achieve tanker based recharging, the tanker and worker robots need to meet. In this 

chapter we examine the problem of finding the most energy efficient meeting location given the 

locations and movement costs of all robots. Two methods, 'global' and 'local' are described and 

their properties compared. Both methods are tested in simulation. The experimental setup which is 

used henceforth is discussed. 

3.2 Rendezvous as docking station recharging 

The rendezvous problem can be thought to describe the best case energy usage estimate should all 

workers be required to dock at a single charging station. Consider n robots in some environment 

and some unique optimally energy efficient rendezvous location p*. If a charging station is located 

at p*, then the cost of a rendezvous achieved at this point will be the minimum total cost required if 

each robot was to return to the charging station and charge itself. This allows us to compare tanker 

based recharging results to traditional base station recharging energy usage. See Section 6.2 for a 

comparison of tanker based recharging versus docking station recharging. 
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Figure 3.1 : A mechanical interpretation of the rendezvous problem. 

3.3 Problem characterization 

Assume n robots are located at positions ri, i = 1 . . . n. When a robot moves, it expends energy 

proportional to the length of its trajectory. Robots have individual energy costs ci per unit of traveled 

distance, thus if robot i moves from a to b, it spends cil la - bll units of energy. Now the task is to 

find a point p* which minimizes the total energy spent by all robots for meeting at that point: 

p* = arg min ci 1 p - ri 1 1  
P .  

(3.1) 
a= 1 

Problem (3.1) is well known in optimization where it belongs to the family of facility location 

problems. Historically, it has a variety of names including the Fermat-Steiner problem, Weber 

problem, single facility location problem, and the generalized Fermat-Tomcelli problem. Though it 

is not possible to find a closed-form solution for this problem, the properties of its solutions are well 

known (see [14] for the case n = 3 and [16] for the general case). Effective numerical algorithms 

exist [31]. Interestingly, it is also possible to describe the solution using a mechanical interpretation 

as a system of idealized strings, pulleys, and weights [29]. Figure 3.1 shows an example of such a 

system in which weight ci represent the locomotion cost of robot R, and the holes (pulleys) represent 

robot location. When this system is allowed to reach equilibrium, the knot will come to rest at the 

optimal rendezvous point p*. 

We will now briefly state the properties of the solution point. First, p* cannot be located outside 

the convex hull formed by ri. Second, if points ri are not collinear (not lying upon a straight line), 

the goal function in (3.1) is strictly convex, which ensures the uniqueness of p* if n > 3. Finally, it 

is possible to prove the following theorem [16]: 
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Theorem 1. Zfri are not collinear and for each point ri 

then p* # ri for any i and ELl ci = 0 (the floating case). I f  (3.2) does not hold for some I I P  - ~ t l I  
ri then p* = ri (the absorbed case). 

Intuitively, in the floating case all robots meet at some point which is not the starting point of 

any robot: all robots move. In the absorbed case, one robot stays still and the others drive to it. 

If ri are collinear, then there may exist more than one point where minimum energy cost is 

incurred and this method may fail. This is not a significant practical problem for two reasons. First, 

in most real world situations, the robots are unlikely to be perfectly aligned (with the exception of 

1-degree of freedom robots such as trains). Second, even in the collinear case the 'local dynamic' 

method presented below converges to a unique instance of the possible minima. 

3.4 Solution 

3.4.1 Global method 

Since in our setting, each robot has complete information about other robot locations, the straight- 

forward way to rendezvous is for each robot to find an approximation of p* using a numerical 

method and then move towards it. Alternatively, if communication is possible, one robot can cal- 

culate q* -. p* and broadcast q* to the other robots. We will call this approach the global method 

because it computes a single point in global world coordinates common to all robots. The global 

method provides a complete solution to the problem provided the complete traversal costs are com- 

putable in advance, i.e. a complete map of obstacles is available in advance, and robot travel costs 

do not change. Any changes to travel costs that are detected during run-time will require a com- 

plete recalculation to ensure the best solution. In the experiments below, we will refer to the global 

method using only the static initial conditions as the global static method. If the global method is 

recalculated to take into account new information, we call this the global dynamic method. 

In our experiments, we use the Nelder-Mead minimization method [25], which is a numerical 

method for minimizing an objective function in n-dimensional space. The method uses a simplex: a 

polytope of n+ 1 vertices, to continually improve its estimate of the minimum points of the objective 

function. This is done until the simplex is smaller than the desired approximation precision. 
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In the next section we propose a fast local heuristic method which allows robots to move towards 

p* without ever calculating its location. An advantage of this method is that, in its dynamic form it 

naturally adapts to run-time changes in robot travel costs. 

3.4.2 Local method 

In this heuristic local method, each robot's physical trajectory approximates a gradient descent to- 

wards point p* on the total movement cost function landscape. Since in the general case the gradient 

of the cost function is not pointing directly at p*, the gradient must be reevaluated at suitable in- 

tervals. Each robot moves in the direction of the local gradient, which is periodically recalculated, 

until all robots arrive approximately at the rendezvous point. At no point is the complete landscape 

or a complete trajectory computed. 

This method can be considered an example of the "information surfing" technique described 

by Bourgault et al. in [6]. Our contribution is the design of novel algorithms that approximate the 

minimal global energy cost objective function, and the empirical evaluation that suggests this is a 

practical solution to the rendezvous problem. 

First, we introduce the function which returns a unit length vector in the direction from point a 

to point b: 
4 b - a 

d(a ,  b) = - 
Ilb - all 

We present two versions of this algorithm. Each robot runs the same algorithm asynchronously 

in parallel. The local static method uses only the initial robot locations and fixed movement costs. 

The local dynamic method assumes that robots periodically broadcast their current position estimate 

as they drive; the algorithm uses the latest position estimate for each robot. The two methods have 

different costs and benefits. which we describe below. 

Algorithm 1: local static 

1. Update current location of self, x.  

4 4 

2. Calculate D = CilzZri cid(x, r i ) .  

3. If x = ri for some i, set c = ci, otherwise set c = 0. 

4. If 1161 1 < c then stop. Otherwise proceed in the direction 6. 

5. Go to step 1. 
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Algorithm 2: local dynamic 

Let self be the robot originally located at T j  

1. Update current location and movement cost of self, rj, cj. If information about other robots 

was received, update it as well. 

2. Let A = {i, where1 lri - rj  1 I I E ) ,  meaning the set of robots which are closer to rj than some 

threshold E .  Note that j E A, thus A has at least one element. 

+ + 

3. Calculate D j  = xigA cid(x, Ti). 

5. If ((fijl( < c then stop. Otherwise proceed in the direction fij. 

6. Broadcast own position and movement cost. 

7. Go to step 1. 

Both versions of the local method converge to the optimal meeting point (or any one of the optimal 

points in the collinear case). 

The local approach has important benefits in comparison with the global methods. First, if the 

convergence trajectories performed using the local method are only slightly longer than the optimal 

straight paths top* (as shown empirically below), then the robots may meet a little sooner since they 

do not need to wait until the calculation of p* is over to start moving. Second, if conditions change 

during the progress of convergence, the local method will incorporate changes instantly, adapting to 

the new information without the need for a computationally expensive recalculation of the meeting 

point. Conditions may change for several reasons, for example: 

1. a robot may need to quit the rendezvous routine or a new robots may enter, 

2. a robot may pick up additional load which will make it more costly to move (or the inverse), 

or 

3. a robot may need to depart from its trajectory towards the meeting point because of environ- 

mental obstacles. In the extreme case the meeting point calculated using the original locations 

of the robots may end up inside a newly-discovered obstacle, and a replacement meeting place 

must be found. 
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Any of these events could cause the optimal meeting place to move significantly. This means 

that, for the global methods, a complete solution must be computed from scratch. In the last exam- 

ple, a robot may encounter new pieces of an obstacle it is navigating around, causing a stream of 

recalculations that may produce useless meeting points that turn out to be inside yet more obstacles. 

In contrast, the local methods quickly compute only the direction to move right now, that is towards 

the current best meeting place. 

3.5 Experiments 

A set of experiments is performed to demonstrate and compare the proposed global and local meth- 

ods. For further comparison, a ndive method in which the robots meet at their center of mass is also 

tested. Each of these three methods is tested in its static and dynamic variants, for a total of six 

experiments. 

3.5.1 World and simplifying assumptions 

Experiments are performed in simulation using the PlayerIStage robot control and simulation system 

[13]. The world is an empty circular arena 40 meters in diameter, containing ten mobile robots 

modeled after the ActivMedia Pioneer 3-DX with SICK LMS laser range finders. Each robot is 

assigned an individual weight ci which describes its energy consumption per unit distance traveled. 

Total energy used as robot i moves from a to b is assumed to be ci((a - bl(. 

During the experiment, robots are not visible to each other nor can they collide with each other. 

This unrealistic model is chosen in order to eliminate the effects of inter-robot spatial interference 

in this study. Spatial interference is a significant issue in multi-robot systems, particularly when the 

robots must operate in the same region, and rendezvous is the extreme case. Spatial interference is 

the critical limiting factor in how closely robots can approach the ideal rendezvous point, and will 

strongly determine the design of stopping conditions for any rendezvous algorithm. We recognize 

the importance of this topic [48], but believe it can usefully be ignored here to examine pure ren- 

dezvous performance, where our robots are treated as points that do not interfere with each other. 

Further, robots are assumed to have perfect localization, again to avoid influencing results based on 

the details of any one localization technique. The impact of localization error on the stability of our 

methods is an interesting area for future study. 
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3.5.2 Task 

Given some initial arrangement of robots in the environment, the task is to meet at the unique 

location that minimizes the total system energy used on locomotion. Robots are deemed to have 

successfully met if for any two robots r ,  and rn the distance between them is less than some 

threshold s. In these experiments s is 1 meter. 

The metric used to evaluate the performance of each method is the total system energy E used 

to achieve the rendezvous. where 

and di is the length of the trajectory of robot i. 

3.5.3 Robot controller 

The experiment depends on two controllers: a robot controller and a processing controller. Commu- 

nication between controllers is implemented with UDP datagram. The robot controller is responsi- 

ble for controlling robot movement within the environment. It reports the robot's current position to 

the processing controller, waits for the controller to prescribe the next move, then moves the robot to 

this location while avoiding obstacles. Obstacle avoidance uses the standard Player implementation 

of Borenstein's Vector Field Histogram method [5 ] .  

3.5.4 Processing controller 

A single centralized processing controller is used to offload computation from the individual low- 

level robot controllers. It tracks each robot's position and computes each robot's next move using 

the chosen method. In static methods only the robot's original starting positions are considered. In 

dynamic methods only the most recently received robot positions are considered. 

Global rendezvous method 

This controller implements the algorithm described in 3.4.1. Given the location of each robot ri 

it is possible to construct a cost function for meeting at any location p in the environment. It is 

then possible to find the minimum of this function, as described by Equation 3.1. Our method 

achieves this using the Nelder-Mead algorithm [25].  Nelder-Mead returns an approximation q* to 

the minimum cost location p*. The processing controller then prescribes this as the location each 
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robot should go to. In the dynamic variant q* is recomputed periodically using the latest robot 

positions. In the static variant, q* is recomputed using only the initial positions. 

Local rendezvous method 

The local method works by computing the conjugate gradient and prescribing the direction each 

robot should move in based on this gradient. In both static and dynamic variants, the local gradient 

at the robot's current position is recomputed periodically. The static variant implements Algorithm 

1 above. The dynamic variant implements Algorithm 2 above. 

Center-of-mass method 

This method calculates the center of mass given the arrangements of robots. The center of mass is 

simply the weighted vector sum of the robot positions. This point is then prescribed as the meeting 

place for each robot to move to. In the static variant, the rendezvous point is calculated exactly once 

from the initial robot positions. In the dynamic variant, the meeting point is recalculated periodically 

using the latest robot positions. 

3.5.5 Experimental consistency 

Each experiment uses an identical low-level robot controller. Only the high-level method for se- 

lecting the next robot goal position is changed between trials. To avoid any artifacts introduced 

by the presence or absence of communication overhead, the static experiments actually perform 

communication but simply discard the received messages. 

3.5.6 Procedure 

Each of the six experiments is performed with seven distinct initial configurations illustrated in 

Figure 3.2. A configuration consists of a map that specifies each robot's starting position and orien- 

tation, and the position of any environmental obstacles. A configuration also specifies each robot's 

locomotion cost weight. Configurations 3 and 4 use the same starting locations but have different 

locomotion costs. Maps 6 and 7 incorporate an obstacle to demonstrate each method's ability to 

cope with obstacles. 

20 trials are performed on each configuration/rnethod pair, for a total of 6 x 7 x 20 = 840 trials. 

The total energy used in the trial is recorded and used to compute a mean and standard deviation. 
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(a) Map 1 - all 
robots equal weight 

(b) Map 2 - all (c) Map 3 - single 
robots equal weight robot weight = 10, 

all others weight = 
1. Map 4 - Single 
robot weight = 1, all 
others weight = 10 

(d) Map 5 - all ( e )  Map 6 - all (f) Map 7 - all 
robots equal weight robots equal weight robots equal weight 

Figure 3.2: Experiment initial conditions. 

The path taken by each robot is also recorded. There is a time limit on experiments (ten times the 

typical trial length) in case a trial fails to result in a rendezvous. 

3.6 Results 

3.6.1 Paths traversed 

Figure 3.3 shows some example paths taken during the experiments. In each case, the global meth- 

ods result in robots heading directly for the meeting location (Figure 3.3(a) and 3.3(d)) while the 

local methods tend to take a curved path (Figure 3.3(b) and 3.3(e)) as predicted in Section 3.4.2. 

In the absence of obstacles (and spatial interference), all methods perform similarly regardless 

of whether the static or dynamic variant is used. The only exception is the local static method with 

collinear initial conditions, which fails to rendezvous as mentioned in Section 3.3. 

In an environment with obstacles, all methods manage to achieve a meeting regardless of whether 

the static or dynamic variant is used. 
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(a) Global static 

........ ... 
\~ 

(b) Local static (c) Center-of-mass 
static 

(d) Global dynamic (e) Local dynamic (f) Center-of-mass 
dynamic 

Figure 3.3: Typical paths taken on map 2. 

105.21 115.21 113.79 1 1 :"::' 77.56 1 80.49 86.12 
923.74 477.89 503. I8 531.24 
95.58 97.36 97.98 95.54 

3.6.2 Energy used 

Table 3.1 : Mean total energy used in maps without obstacles. All standard deviations < 5%. 

Local 
152.79 
119.00 
81.48 

530.1 1 
Failed 

Map 
1 

Table 3.1 shows the mean total energy used for each methodmap combination. In each case without 

obstacles (Map 1-5) the global methods use less energy than the local methods. In cases with 

obstacles, this is not true. In cases where the center of mass coincides with the minimum energy 

cost location (as expected e.g. in Map 1) the center of mass method performs well, otherwise it 

performs poorly compared to the other methods. 

Static 
C-o-mass Global 1 

149.92 

Dynamic 
C-o-mass 

149.93 
Global 
149.99 

Local 
151 .56 
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3.7 Discussion 

Table 3.2: Mean total energy used in maps with obstacles. All standard deviations < 6%. 

3.7.1 Paths traversed 

Map 
6 
7 

Figure 3.3 shows typical paths taken for each method using Map 2 (Figure 3.2(b)). Figure 3.3(a) 

and 3.3(d) show the robots meeting at approximately the optimal location. Figure 3.3(b) shows the 

robots also meeting at the optimal location, but the path traversed is an arc. This curve is produced 

by the robot following the local conjugate gradient. The local methods almost always result in 

curved paths that are slightly longer than those produced by the global methods. 

In practice the cost of the longer path is traded off against the cost of the increased computation 

that may be required by the global method. It is unknown whether a robot that sits idle while 

computing the optimal meeting location then heading directly for it will consume less energy than 

a robot that begins moving immediately, but follows a longer path. This is a possible area of future 

research. 

Figure 3.3(c) shows robots meeting at the center of mass. Notice that in this case, the center 

of mass does not coincide with the optimal meeting point and the energy usage is higher than the 

optimal methods. In the dynamic variant (Figure 3.3(f)) this is more pronounced, as the meeting 

point moves further away from the optimal location. 

3.7.2 Static versus dynamic 

The effect of dynamic updating can be seen clearly by comparing Figure 3.3(b) and 3.3(e). Updating 

position information results in robots 'sticking' together when they meet (Figure 3.3(e)). This is a 

desired result, since two robots r and s at the same location are equivalent to one robot of weight 

r + s. Further, each robot in such a group should conclude the same shortest path to the meeting 

point. In the comparison of 3.3(b) and 3.3(e) dynamic updating achieves this by shortening the 

curved path caused by the local method. 

Dynamically updated robot positions can act as a benefit or hinderance. In our trials, it results in 

both improved and degraded cases. The degradation tends to be minimal while improvements tend 

Dynamic 
C-o-mass 

293.58 
1150.64 

Static 
C-o-mass 

284.46 
579.20 

Global 
288.56 
533.58 

Local 
256.75 
549.57 

Global 
283.23 
5.24.22 

Local 
256.25 
600.02 
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to be significant. One particular example of this is the collinear case using the local method, where 

without dynamic updates the robots never meet. In our trials, the nai've center of mass method never 

benefits from dynamic updates. 

In an environment with obstacles, benefits of dynamically updating position information depend 

on the details of the environment. For example, in cases where an obstacle results in a shift of the 

optimal location, such an update is an asset. In cases where one obstacle results in a shift, then 

another results in a shift back, dynamic updating results in cyclic behaviour (and therefore higher 

energy usage). This is due to updates not yielding any real insight into the path that will need to 

be traversed, and is the expected result. However, one notable benefit of dynamic updating occurs 

when the meeting location chosen lies in an unreachable space (such as inside an obstacle). With 

the static methods, robots will perpetually attempt to reach an unreachable space. With the dynamic 

method, there is a chance that the optimal meeting location will shift away from the unreachable 

location. An algorithm which considers obstacles when computing the meeting location would be 

more suitable in this case. 

3.7.3 Local versus global 

Both methods achieve their intended goal: to identify a meeting location that can be reached at a 

minimum total cost. However, the methods exhibit different characteristics which make each more 

suitable in certain applications. 

The global method performs well, but is computationally expensive. For a large number of 

robots computation may become prohibitive. This is especially true in the dynamic case. Every 

position update results in a recomputation of the optimal meeting location. On the other hand, 

the local method is computationally cheap, but does not yield a location but rather a direction to 

head in. Further, the path traversed tends to be slightly longer than that of the global method. The 

suitability of each method depends on the application. For small teams of robots, the global method 

should perform well, even the dynamic variant. For larger teams, the local method will avoid lengthy 

computation before moving. If a meeting is desired in a minimum amount of time, it may be the case 

that computation time with the global method exceeds the extra travel time resulting from the local 

method. In such a case, the local method would result in a rendezvous before the global method, 

despite the longer path. 
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3.8 Conclusion 

We state the natural robot rendezvous problem, where multiple robots must meet at some location, 

chosen to optimize some utility function over all robots, and identify this as the single-facility lo- 

cation problem. We propose that this is the initial step in achieving meetings required for tanker 

based recharging and argue that the energy required to achieve a rendezvous is the minimum energy 

required to achieve traditional docking station recharging for all worker robots. 

We implement a standard numerical solution and empirically evaluate its performance in a vari- 

ety of scenarios. This data is then used to evaluate the performance of a novel behavioural heuristic 

method, which is shown to (i) produce global rendezvous; and (ii) incur travel costs only slightly 

greater than the global optimization method. The novelty here is in designing Algorithms 1 and 2 

that create a local gradient that approximates the direction of the global optimum. These algorithms 

are very fast, with runtime growth linear with population size, and small constant per-robot cost. 

For some applications this may be preferred to an iterative numerical approximation technique with 

unknown runtime. Further, by iterating the local algorithm as the robot drives, we can naturally 

incorporate new information about robot locations, and thus cope with obstacles, robot locomotion 

failures, etc. without invalidating previous computation. 

Some limitations of this work so far are in our assumptions of good global localization and 

reliable communication. The assumption of no robot collisions is not important, as this can be 

considered equivalent to the presence of obstacles, with which this method is shown to cope. 

Consideration of the local heuristic method suggests that in the presence of unbiased error in 

global localization, these methods will cause the robots to converge until their mutual distances are 

within a small factor of the mean localization error. Given that global localization methods that give 

accuracy to less than a robot's sensor range are in everyday use, our method should be practical. 

As for unreliable communications, we believe that occasional dropped messages will cause only 

small changes in individual robot behaviour, leading to graceful degradation in overall performance. 

On the other hand, a robot that loses communications completely during a run may be irrecoverably 

lost if the other robots encounter obstacles that cause the optimal rendezvous point to change. 
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Frugal Feeding 

The work elaborated in this chapter is based on the work by Yaroslav Litus, Richard Vaughan, and 

Pawel Zebrowski [20], presented at the IEEE International Conference on Robotics and Automation 

(ICRA 2007), Rome, Italy, April 10-14,2007. 

4.1 Introduction 

This chapter introduces the 'frugal feeding' problem by relaxing the requirement for all robots to 

meet at one location. In order to achieve tanker based recharging, only the tanker needs to visit each 

worker robot. Further, since energy is a precious resource, doing so in an energy efficient manner is 

desirable. We seek to minimize the total amount of fuel spent driving robots to refueling rendezvous, 

so that the fuel available for useful work is maximized. 

We present several partial methods to aid in solving the frugal feeding problem in practice. 

First, we outline a restricted locations case, where potential solutions are picked from a discrete set 

of candidate solutions. Following, we present the Nelder-Mead continuous numerical solution. 

4.2 Problem definition 

Given a set of original locations of worker robots and tanker robot, find a set of meeting points such 

that the tanker meets every worker in a way that minimizes the total energy spent on locomotion. By 

analogy to a mother animal attending her offspring we have named this problem the frugal feeding 

problem. It can be stated formally as follows: 
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Definition 1 (Frugal feeding problem). Given tanker location po E Rd, worker locations ri E 

Rd, i = 1. .lc and locomotion cost functions Ci : Rd x Rd --, R, i = 0. .lc, find 

Here Co(x, y )  gives the cost of tanker relocation from x to y, Ci(x, y )  gives the corresponding cost 

for worker i, and .ir : {l..lc) -+ {l..lc} permutes the workers according to the order in which they 

are attended by the tanker: 

Definition 1 could be amended to require the tanker to return to its original location after attend- 

ing all workers, perhaps to refuel itself. This modification does not change the following analysis. 

The problem has two components. One is combinatorial: finding the order in which robots 

should be attended; the other is analytical: finding the meeting points for the given order. 

We will denote the solution points as pf  and corresponding permutation as T* .  The possibility 

of several robots being attended in one place is permitted, and captured by the possible coincidence 

of some meeting points p f .  

The Fermat-Tomcelli problem (also called the Steiner-Weber problem) asks for the unique 

point x minimizing the sum of the distances to arbitrarily given points XI, . . . , x, in Euclidean d- 

dimensional space. Elaborating on the conventions in the Fermat-Tomcelli problem literature [16], 

we name the location of solution points as follows. 

Definition 2 (Special solution points). I f p ;  = rj for some j , we call pf  a worker absorbed point. 

In this case worker i should either remain still and wait for the tanker to come to it, or move to the 

location of another worker: I f p f  = po, we call p5 a tanker absorbed point. In this case the tanker 

should not move. Instead, worker i should move to the tanker's original location. Otherwise, pf is 

not coincident with the starting point of any robot, and we call it a floating point. We show below 

that all of these are plausible contingencies. 

An instance of the problem is shown schematically in Figure 4.1, along with candidate solutions 

of each possible type. 

The problem definition does not commit to any particular locomotion cost function. Cost func- 

tions could be complex to account for the presence of obstacles or other heterogeneities of the en- 

vironment or robots. Unfortunately the nature of the cost function can make the complete problem 

very difficult to solve. Here we use the straightforward cost function: 



CHAPTER 4. FRUGAL FEEDING 3 8 

A 
(a) Tanker absorbed 

A 
(b) Worker absorbed 

A 
(c) Floating 

A 
(d) Hybrid 

Figure 4.1: Schematic of the frugal feeding problem. Tanker robot (triangle) must rendezvous 
with worker robots (circles labeled r l ,  1-2, r3) in order. Four types of solution are possible: tanker 
absorbed, worker absorbed, floating, and a hybrid of these. 

So the cost of relocating a robot is simply the weighted Euclidean distance between the origin and 

destination. The weight models the energetic cost of moving the robot some unit distance: a large, 

heavy robot would have a higher weight than a small, lightweight robot. 

4.2.1 Analysis 

The first observation to make is that solution points p: can not lie outside the convex hull of 

{PO,  r l ,  rz, ... rk ) .  This can be seen by considering a candidate meeting point outside the hull: re- 

placing the candidate point with the closest point on the convex hull will unambiguously decrease 

the value of the goal function. 

Special cases 

Under certain conditions we can quickly find solutions without solving the general problem. We first 

show sufficient conditions for the worker absorbed case, i.e. where the meeting point for a worker 

is at that worker's starting location: 

Lemma 1. Ifwi > 2wo then pi = ri. Ifwi > 2wo, then p,* = ri is the unique solution for pi. 

Pro05 The components of the objective function in (4.1) which depend on pi are 
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We can consider gi in isolation. Point pf = argmin gi (p i )  is the solution to the weighted Fermat- 

Torricelli problem formed by points pi-1, pi+l, r i  with corresponding weights wo,  wo ,  w i .  As shown 

by Kupitz [16] there is a sufficient condition for the solution to be exactly at point ri  (the absorbed 

case) if points are non-collinear: 

where G ( x ,  y )  = ( y  - x ) / l J  y - X I  1 gives the unit vector in direction from point x to point y. Now 

we find the upper bound of the left side of (4.4) to solve for the condition, sufficient for any pair of 

pi-1, pi+l which satisfies the non-collinearity condition. The left side can achieve value 2wo only 

when pi-1 = pi+l, thus for the non-collinear case the condition is w i  > 2wo. We complete the 

proof by considering the collinear case. [4, p. 2511 gives the sufficient condition for the collinear 

case of the Fermat-Tomcelli problem. Point pf  is unique, if W -  < W / 2  and W f  < W / 2 ,  where 

W -  is the total weight of the points to the one side of p f ,  W+ is the total weight of the points to the 

other side, and W is the weight of the minimum point itself. If W = W+ = W / 2 ,  then pf  is one 

of the many minimum points which comprise a closed segment and are defined by these equalities. 

Interpreting these conditions for our case we obtain the desired result. 0 

We now present sufficient conditions for the case where the tanker stands still and all workers 

are charged at the tanker location. 

Lemma 2. I f ~ f = ,  w i  < wo then p f  = po for all i. If the inequality is strict, then this solution is 

unique. 

Proofi Let Ca = ~ f = ~  w i  1 lri - po 1 be the cost of a complete tanker absorbed solution, and 
k C ( p l ,  pa, . . .pk) = C i = l  ( w ~ I  lri - pi1 I + wo(lpi - pi-1 I I )  denote the cost of an alternative solution. 

We will show that for all values of pi, i = l . . k  inequality AC = Ca - C ( p l ,  ...pk) I 0 holds. 
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4.2.2 Complexity 

Lemma 1 can be used to show that the frugal feeding problem is NP-hard because of its combina- 

torial component which finds the best order in which robots are visited. To do this we reduce the 

geometric salesman problem to the frugal feeding problem. 

Theorem 2. GEOMETRIC TRAVELING SALESMAN 5 FRUGAL FEEDING 

Pro05 Given an instance of the geometric traveling salesman problem (set of points ai, i = O..n 

where ag is the original location of the salesman) we create the following frugal feeding problem. 

Assign po = ag; wg = 1; ri = ai, wi > 2 for i = l..n. According to Lemma 1, for any considered 

order of meetings (given by permutation .ir in (4.1)) optimal locations pi = r,(i). This means that 

the set of solution points coincides with the set of robot locations, { p l )  = {r i ) .  Thus the solution 

for the frugal feeding problem will be the minimum traveling path between all points ri starting at 

location po which is exactly the solution to the original problem. 0 

Theorem 2 proves that the combinatorial component of the frugal feeding problem is not easier 

than the geometric traveling salesman problem. Given that the latter is NP-hard [28] and no general 

scalable solution is available, we consider a search for efficient domain-specific heuristics to be 

more promising than attempts to find an exact solution. An interesting opportunity for future work 

is to find an algorithm which will solve the combinatorial component (meeting order) and analytical 

component (rendezvous locations) simultaneously. Literature on the traveling salesman problem is 

abundant, so depending on the particular initial conditions, a suitable heuristic could be selected. 

For example, if the number of robots is large and time is critical, heuristics presented in [30] could 

be used. A cheap and simple alternative ordering could be a nearest neighbour series, starting at po. 

4.3 Restricted locations case 

Assume that the locations where the tanker could attend to a worker are not arbitrary, but are limited 

to a fixed set of places. This models, for example, a list of coffee shops where a consultant can meet 

clients, or a list of air strips where a robot reconnaissance airplane could meet a ground-based tanker 

truck. The finite set of meeting places could also be a division of continuous space into a regular 

grid. 

In this discrete version, the optimization problem (4.1) is extended with a constraint pi E L, 

where L is the set of possible meeting places. L could be a superset of the original robot locations 
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{ri) U { p o l .  The nai've brute-force algorithm for solving the analytical part of the problem will take 

o ( [ L \ ~ ~ )  time (JLIk possible meeting point arrangements and O(k) to calculate the cost value). 

However, it is possible to exploit the structure of the objective function and to show an algorithm 

with running time 0 ( I  LI2k). This algorithm is based on the ideas of dynamic programming [3] and 

is presented in [20]. 

4.4 Continuous case 

In the continuous version, the cost function in Equation 4.1 is altered in order to eliminate the 

combinatorial component of the frugal feeding problem. The cost function now becomes: 

It is possible to arrange this function in the form of a multidimensional minimization problem. 

In Chapter 5, we use the Nelder-Mead numerical minimization method to find points q;, q;, ..., qz 

which approximate the solution points p; ,p ; ,  . . . , p ;  to (4.5). These points can then be prescribed to 

both tanker and worker robots as the meeting locations. 

For a more complete description of numerical methods for the frugal feeding problem see Litus 

et al. in [20]. 

4.5 Conclusion 

This chapter introduces and formally defines the frugal feeding problem. An analysis is performed 

and several special cases of the problem are identified. Finally, it is shown that this problem is 

NP-hard. 

A discrete method, which produces optimal results in polynomial time, and the Nelder-Mead 

numerical method are described. In the next chapter, we present a perfectly scalable, distributed 

heuristic for achieving good quality multi-point rendezvous. 



Chapter 5 

Frugal Feeding Heuristic 

The work elaborated in this chapter is based on the work by Yaroslav Litus, Pawel Zebrowski, and 

Richard Vaughan submitted to the IEEE Transactions on Robotics on June 1 1,2007. 

5.1 Introduction 

This chapter presents a method whereby a simple controller, running in parallel on each robot, 

causes the robots to achieve good quality multi-point rendezvous thus approximating the solution to 

the analytical part of the frugal feeding problem. The method is perfectly scalable, in that both the 

effective computation time and time to task completion are linear in the population size. 

It is assumed herein that the indexing of the workers corresponds to the partial order in which 

they are attended by the tanker. All robots know their own indices as well as the index of the next 

robot to be charged. Unlike the single-point rendezvous heuristic described in Chapter 3 and [44], 

here a robot needs to know only the locations of two other robots to calculate the direction of 

movement. We formally define a meeting as the event when robots come within distance s of each 

other. 

Algorithm 1: frugal feeding heuristic 

1. Update current location and movement cost of self, rj ,  w j .  If information about the relevant 

robots is received, update it as well. 

2. Check sufficient conditions described in Section 4.2.1. If satisfied, behave accordingly and go 

to step 6. 
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3. If k = 1 (only one worker in charging queue), then if wo > wl tanker stops, worker rl moves 

towards tanker. If wo < wl,  worker rl stops, tanker moves towards worker. If wo = wl,  

tanker and worker may move towards each other, or one of them may stop and wait for the 

other. Go to step 6. 

4. Workers 0 > 0): If j = k, let rk+l = rk. 
- - 

If j = 1 (the next worker to be charged), set 61 = wod(rl ,  ro )  + wod(rl , r2) .  
+ - - 

Otherwise, set Dj = wod(r j ,  r j - l )  + wod(r j ,  r j i l ) .  - 
Tanker 0 = 0): Set do = wld(ro,  r l )  + wol(ro, r2) .  

5. If 1 Idj 1 1 < wj then stop. Otherwise proceed in the direction 6 j .  

6. Broadcast own position and movement cost. Once the worker robot is met and charged, 

tanker or charged worker should broadcast a corresponding message. Upon receipt, the robots 

decrease the robot counter k and own queue number j .  The charged worker is not considered 

anymore in this instance of the problem. 

7. Go to step 1 

5.2 Proof of correctness and run time bounds 

The proof of correctness due to Yaroslav Litus and shown in Appendix A identifies the robots them- 

selves as the current approximation to the solution points. Every robot tries to improve the quality 

of the solution by moving along the direction which decreases the corresponding part of the total 

cost function. If a robot is located at the minimizing point for the current configuration of robots, the 

robot stops. The proof shows the correctness of the frugal feeding heuristic by bounding the time it 

takes for robots to meet given robot sensor range -9. 

5.3 Experiments 

A set of experiments is performed to demonstrate the frugal feeding heuristic and to empirically 

assess the efficiency of the paths it produces. Again, we consider only the analytical component of 

the frugal feeding problem: the order in which the tanker must visit each worker is fixed thereby 

eliminating the combinatorial component. 
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Further experiments are performed where the combinatorial component is solved with either 

brute force or a nearest neighbour algorithm. This is to demonstrate results for a complete solution 

to the frugal feeding problem. These example solutions are arbitrary and are intended as proof of 

concepts that at least some solution exists. 

All experiments are performed with inter-robot collisions disabled where robots are invisible to 

each other and can occupy the same space. Experiments are then repeated with inter-robot colli- 

sions enabled. Non-collision experiments are performed in order to achieve results close to those 

predicted theoretically (without the influence of interference) and to validate the theory, while col- 

lision experiments are done in order to demonstrate algorithm suitability with interference present, 

and to gauge its effects. 

All experiments are performed in a variety of environments, including ones with and without 

obstacles. Again, this is to demonstrate the frugal feeding heuristic method's ability to cope with 

obstacles and to gauge the effects. 

Experimental set up is outlined in Section 3.5. Important differences are noted below. 

5.3.1 Controller implementation 

The experiment depends on two controllers: a robot controller and a processing controller. Even 

though the frugal feeding heuristic is intended to run in a distributed environment, we make use 

of a computation controller for experimental consistency. Communication between controllers is 

implemented with UDP datagrams. 

Robot controller 

This controller is responsible for the robots and their movements. The controller is principled on the 

subsumption architecture [7] which is used to prioritize tasks that a robot needs to perform. Since 

the tasks can all be assigned a static priority, this architecture works well. 

The robot controller subsumption architecture consists of the following tasks: 

1. communicate - update the central processor of the current location, 

2. work - perform some task (the worker's main goal), and 

3. seek way point - head for the way point prescribed by the tanker. 
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In our experiments, workers are assumed to have stationary tasks (such as digging a hole or 

taking measurements). This is done in order to have repeatable trials, since having workers move as 

part of their task would result in randomized starting locations. 

Computation controller 

This controller is responsible for aggregating robot data and prescribing the next way point for each 

robot. For this set of experiments, the only data considered are current robot location and locomotion 

cost. This controller performs the following tasks repeatedly: 

1.  check for new information from worker robots and update location data, 

2. check if any meetings have been achieved, and update the list of meetings still required, 

3. if no more meetings are required, terminate, 

4. execute the chosen method on this data and store the result, 

5. communicate this result (next way point) with each robot, 

6. graph and log data and statistics. 

For legacy reasons, in our implementation this computation controller is part of the tanker robot 

controller. 

5.3.2 Implementation details 

A note should be made about obstacle avoidance using the standard Player implementation of Boren- 

stein's Vector Field Histogram method [ 5 ] .  With visual inspection of trials, it can be seen that VFH 

does not always perform in an ideal way. In particular, should an obstacle cause a robot to turn and 

head away from a destination, VFH may not cause the robot to stop and turn around. Instead, the 

robot will head away from the destination for some time before changing course back towards it. 

This has an impact on energy consumed. 

Another implementation detail deals with the following scenario. Consider a tanker Ro with 

cost of movement Co and worker R, with cost of movement Ci distance d apart. If Co = Ci, then 

where should the two robots meet? Meeting at any point which lies on the straight line between 

Ro and R, will result in the same total cost of movement. The problem arises when a numerical 

algorithm is asked to solve this problem. It will come up with a different point on this line every 
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time, resulting in erratic robot movements. For this reason, tanker cost of movement Co is changed 

to Co + E for all experiments. This breaks the symmetry and causes the worker to do all traveling in 

the above scenario. 

A more straightforward implementation detail is that, to avoid any artifacts from simulating a 

docking, we consider that robots have met when their mutual distance is less than a threshold of 

s = 1 meter. In a real robot implementation, we assume that another controller could take over to 

perform a sensor-based docking manoeuver. 

Data recorded 

Each trial records the following information: 

0 general trial information, such as time elapsed, total energy used, and number of computa- 

tional cycles required, 

0 location of all robots, every second, which allows us to reconstruct the path taken by each 

robot, including temporal information, 

0 the goal point p: for each robot, every second. This allows us to visualize the information 

each robot has received which dictated the resulting path. It also allows us to visualize the 

results obtained from the processing controller, and 

0 elapsed computation time (real time) for every computation cycle. This allows us to examine 

computation time constants as well as rate of growth. 

5.3.3 Frugal feeding task 

Given some initial arrangement of robots in the environment, the task is for the tanker to meet with 

each worker robot exactly once, while minimizing the total system energy used on locomotion. 

For the sake of an accurate comparison, this task is further constrained such that the tanker must 

visit workers in a predetermined sequence (in order to keep the combinatorial portion of frugal 

feeding constant between experiments). This constraint is eliminated when performing experiments 

to demonstrate a complete solution for frugal feeding. 

The tanker is deemed to have successfully met with a worker if the distance between it and the 

worker to be visited next is less than some threshold s. In these experiments s is 1 meter. It should 

be noted that coming within distance s of a worker out of order does not result in a meeting. 
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The metric used to evaluate the performance of each method is the total system energy E used 

during the experiment, where 

and di is the length of the trajectory of robot R, in a population of n robots. 

Fixed order Nelder-Mead controller 

This controller uses the Nelder-Mead numerical minimization algorithm [21] to find an approxi- 

mation to the solution of the problem (4.5) for a predetermined visiting order T .  The processing 

controller then prescribes the approximated solution q: -- p5 as the destination location ri for robot 

R,, 1 <= i <= n where n is the number of robots. The tanker Ro is prescribed to visit each of q5 

for 1 <= i <= n and wait at each location until the worker arrives. 

In order to achieve robustness the solution is computed repeatedly with updated robot positions 

ri. Each recomputation provides a new set of meeting locations q:. This allows the system to recover 

in case a robot deviates from the chosen path because of an obstacle, interference, or navigation 

error. These deviations may make the original solution invalid presenting a new instance of the 

frugal feeding problem. Since it is difficult to determine if the deviation is significant enough to 

invalidate the present solution without comparing it with the solution for the current robot positions, 

recomputation is performed each time robot locations are updated. 

Fixed order frugal feeding heuristic controller 

Given the location of each robot R, and a predetermined visiting order T ,  this controller implements 

the algorithm described in Section 5.1 to compute each robot's direction of travel. This direction is 

then used to determine a point which is given as the goal point for the VFH control program of 

robot R,. Robot R, then attempts to drive top!, while avoiding obstacles and results in R, traveling in 

the direction originally intended by the frugal feeding heuristic. It should be noted that Ri will never 

reach p: as it is always a constant distance away from ri. A similar technique is used to implement 

the stopping condition. Point pi is set to ri and given to the VFH control program of robot Ri. This 

results in robot R, stopping. 

This computation is performed repeatedly with updated robot positions ri. Every cycle, each 

newly generated goal location pi is communicated with robot R,. 
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Brute force Nelder-Mead controller 

This controller implementation constructs all possible worker visiting orders and applies the fixed 

order Nelder-Mead controller to each potential order. The ordering that achieves the lowest cost is 

used, and the controller proceeds as before with this order. The ordering is computed repeatedly 

along with the Nelder-Mead algorithm. 

Nearest neighbour frugal feeding heuristic controller 

This controller implementation constructs an ordering based on the nearest neighbour method. This 

ordering is then used as the ordering for the fixed order heuristic controller. The ordering is com- 

puted repeatedly along with the frugal feeding heuristic algorithm. 

Distributed single point heuristic controller 

This controller is based on the algorithm in Chapter 3. It is included for comparison with the other 

methods. 

Procedure 

All three controllers are used with nine distinct initial configurations, four of which contain obsta- 

cles. A configuration consists of the number of robots and a map that specifies each robot's starting 

position and orientation, along with any environmental obstacles. A configuration also specifies 

each robot's locomotion cost weight. Fixed order experiments are performed with ten worker robots, 

while variable order experiments are limited to five worker robots due to algorithm runtime restric- 

tions. 

All experiments are performed with collisions disabled, then repeated with collisions enabled. A 

minimum of 20 trials are performed on each configuratiordmethod pair, for a total of more than 2000 

trials. There is a time limit on experiments in order to prevent trials from continuing indefinitely. 

For example, if two robots have collided and are not able to move, all meetings may not be able to 

complete. 

5.3.4 Fixed order results 

Overall, both Nelder-Mead and the frugal feeding heuristic perform well in our fixed order exper- 

iments. Both methods achieve the goal of tanker visiting each worker, and both methods do so 
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(a) Map 1 Nelder- (b) Map 2 Nelder- (c) Map 3 Nelder- (d) Map 4 Nelder- (e) Map 5 Nelder- 
Mead Mead Mead Mead Mead 

(f) Map 1 I+-H (g) Map 2 FFH (h) Map 3 FFH (i) Map 4 FFH (j) Map 5 FFH 

Figure 5.1 : Typical paths taken for maps 1 through 5. Visiting order is fixed, collisions are disabled, 
and no obstacles are present. 

Table 5.1 : Mean and standard deviation of total energy used for rendezvous with no obstacles present 

using similar amounts of energy. Visual inspection of paths traversed shows robots moving in direct 

trajectories, agreeing on common meeting locations, and not participating in obvious sub-optimal 

behaviour. In our experiments, all trials completed successfully. See Appendix C for a complete list 

and collisions disabled. There are 10 workers per experiment and visiting order is fixed. 

of results. 

Nelder-Mead and the frugal feeding heuristic do not always dictate the same robot path. Figure 

5.l(b) shows the path traversed using Nelder-Mead, while Figure 5.l(g) shows the same map using 

the frugal feeding heuristic. This difference is reflected in Table 5.1. A second notable difference can 

be seen in Figure 5.l(a) and 5.l(d). Notice the irregular paths taken by the workers. We conjecture 

this to be an artifact of using a numerical optimization method. Again, the effects are reflected with 

increased energy usage for Nelder-Mead in Table 5.1. Finally, an important difference which cannot 

be seen in the figures is that of timing. The Nelder-Mead method results in all robots learning their 

destination together and therefore traveling at once. The frugal feeding heuristic method produces 

Method 

Nelder-Mead 
FFH 

Single point 

Map 1 

P 
117.08 
105.00 
150.60 

0 

4.55 
0.17 
0.26 

Map 2 

P 
74.40 
61.89 
123.27 

0 

6.30 
0.29 
0.31 

Map 3 

P 
65.04 
60.89 
66.60 

0 

1.43 
0.30 
0.19 

Map 4 Map 5 

P 
103.36 
82.53 
131.56 

P 
54.28 
52.09 
93.70 

0 

3.68 
0.11 
0.98 

L7 

0.75 
0.07 
0.44 
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(a) Map 6 Nelder- (b) Map 7 Nelder- (c) Map 8 Nelder- (d) Map 9 Nelder- 
Mead Mead Mead Mead 

Figure 5.2: Typical paths taken for maps 6 through 9. Visiting order is fixed, collisions are disabled, 
and obstacles are present. 

Table 5.2: Mean and standard deviation of total energy used for rendezvous with obstacles present 
and collisions disabled. There are 10 workers Der ex~eriment and visiting order is fixed. 

Method 

Nelder-Mead 

'stop-and-go' behaviour. For example, in Figure 5.l(a) Nelder-Mead causes all the robots to move 

towards their meeting location at the beginning of the trial, while in Figure 5.1 (f), workers do not 

approach their final meeting location until the tanker is near by. This emergent behaviour influences 

the duration of trials. 

Table 5.1 shows that both Nelder-Mead and frugal feeding heuristic result in lower energy usage 

as compared with single point rendezvous, unless the rendezvous solution coincides with the frugal 

feeding solution. It must be noted, however, that the single point rendezvous results include the 

tanker. If an analogy is drawn that single point rendezvous is the best case tankerless recharging 

outcome, a tanker would not participate in any such rendezvous, and therefore result in lower energy 

costs. This is discussed in more detail in Section 6.2. 

FFH 
Single point 

Map 6 

P I u 
122.46 1 11.92 
105.15 
283.17 

Map 7 

P 1 u 
274.93 1 0.14 

0.14 
6.54 

Map 8 

P I u 
78.11 1 9.65 

Map 9 

P I u 
69.88 1 1.31 

321 S O  
275.94 

3.02 
0.17 

62.26 
149.26 

0.54 
12.15 

68.06 
71.30 

1 .I3 
0.17 
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(a) Map I Nelder- (b) Map 2 Nelder- (c) Map 3 Nelder- (d) Map 4 Nelder- (e) Map 5 Nelder- 
Mead Mead Mead Mead Mead 

Figure 5.3: Typical paths taken for maps 1 through 5. Visiting order is fixed, collisions are enabled, 
and no obstacles are present. 

Table 5.3: Mean and standard deviation of total energy used for rendezvous with no obstacles present 

Obstacles 

and collisions enabled. There are 10 workers per experiment and visiting order is fixed. 

Several experiments are performed with obstacles present to demonstrate method suitability in a 

more realistic environment. Figure 5.2 shows sample paths taken in the presence of obstacles. With 

the help of VFH, both methods do a suitable job of negotiating obstacles, although Figures 5.2(b) 

and 5.2(f) demonstrate the deficiency of using an obstacle avoidance method that suffers from the 

local minima problem. As robots take evasive action due to obstacles, they do not always choose the 

most energy efficient path. The result is robots taking the longer of two paths around an obstacle, 

which is not energy efficient. 

Method 

Nelder-Mead 
FFH 

Single~oin t  

Map 1 

P 
121.86 
101.06 
222.64 

Map 2 
u 

6.59 
21.07 
69.45 

P 
132.01 
136.34 
328.86 

Map 3 Map 4 
u 

17.08 
24.13 
108.20 

P 
117.40 
59.45 
278.69 

P 
117.47 
85.25 

460.67 

Map 5 
u 

26.67 
1.37 

73.45 

u 
9.77 
0.20 

186.61 

P 
61.57 
56.95 

235.05 

u 
3.62 
1.07 

72.05 
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(a) Map 1 Nelder-Mead (b) Map 2 Nelder-Mead (c)  Map 3 Nelder-Mead (d) Map 4 Nelder-Mead (e) Map 5 Nelder-Mead 

Figure 5.4: Typical paths taken for maps 1 through 5. Visiting order can change, collisions are 
disabled, and no obstacles are present. 

Table 5.4: Mean and standard deviation of total energy used for rendezvous with no obstacles present 
and collisions disabled. There are 5 workers per experiment and visiting order varies to minimize 

Interference 

energy usage. 

In our experiments, the degree to which interference degrades performance varies by map. For 

example, Figures 5.3(a) and 5.3(f) show paths which suffer minimally since robots do not approach 

each other. In contrast, Figures 5.3(c) and 5.3(h) show cyclic behaviour caused by robots vying for 

the same meeting position while avoiding collisions. 

The effects of interference can be seen when comparing the results in Table 5.3 with Table 5.1. 

Map 1 energy usage exhibits a small mean total energy increase when interference is introduced. On 

the other hand, map 2 shows mean total energy usage nearly doubling. 

Method 

Nelder-Mead 
FFH 

Singlepoint 

Map 1 Map 2 

P 
71.43 
85.71 
73.17 

P 
39.81 
45.59 
56.03 

u 

1.05 
0.71 
0.10 

u 

0.12 
0.61 
0.17 

Map 3 

P 
31.52 
42.69 
42.87 

u 

0.49 
0.16 
0.20 

Map 4 Map 5 

P 
42.72 
42.49 
58.47 

P 
16.49 
19.53 
21.95 

u 

0.64 
0.08 
0.22 

u 

0.10 
0.03 
0.12 
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5.3.5 Variable order results 

Table 5.5: Mean and standard deviation of total energy used for rendezvous with obstacles present 
and collisions enabled. There are 5 workers per experiment and visiting order varies to minimize 
energy usage. 

Our proposed solutions are paired with two ordering algorithms in an effort to demonstrate a com- 

plete solution. Figure 5.4 shows resulting paths for Nelder-Mead paired with brute force ordering 

and the frugal feeding heuristic paired with nearest neighbour ordering. Both lead to tanker success- 

fully visiting each worker. Table 5.4 shows that brute force ordering leads to slightly lower energy 

use in some maps. 

Method 

Nelder-Mead 
FFH 

Single point 

Collisions and interference 

Table 5.5 presents the results for variable order experiments with collisions enabled in the presence 

of obstacles. These can be considered the most realistic of our experiments and suggest that both 

Nelder-Mead and the frugal feeding heuristic perform at least as well as single point rendezvous 

under most conditions in the presence of interference and obstacles. 

5.3.6 Statistical analysis 

Map 6 

A statistical analysis evaluating the statistical significance of the difference between Nelder-Mead 

and the frugal feeding heuristic was performed by Yaroslav Litus and is shown in Appendix B. The 

analysis accounts for environmental differences and does not assume normality of samples. It finds 

that Nelder-Mead takes on average 8.72 more units of energy to achieve all required meetings, which 

is less than 15% of total energy spending and is not very notable from a practical point of view. 

P 
128.17 
93.15 
198.16 

5.3.7 Computation time 

u 
19.65 
11.20 
35.31 

Map 7 

A special experiment was performed to compare the computation time used by Nelder-Mead and 

the frugal feeding heuristic for a larger number of robots. For each method, we vary the number 

of workers from 1 to 50 in steps of 5 and measure the run time. A reported run time is the time t 

P 
172.46 
176.22 
173.18 

u 

13.89 
15.83 
7.98 

Map 8 Map 9 
P 

54.00 
77.82 
77.62 

P 
49.17 
47.54 
53.06 

u 

8.60 
10.31 
9.70 

u 
5.73 
0.69 
2.99 
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Nelder-Mead H+ 
Frugal Feeding Heuristic ;--x--. 

Number of workers 

Figure 5.5: Experimental Computation Time 

elapsed for one calculation cycle to finish. For example, a run time t of 2 seconds shows that it will 

take 2 seconds to determine the set of meeting points by Nelder-Mead or calculate the movement 

directions by the frugal feeding heuristic. Figure 5.5 shows how computation time changes as the 

number of robots increases. 

It can be seen that computation times for the fixed order Nelder-Mead method increase mono- 

tonically. At 50 workers, each computation cycle takes 10 seconds. We believe that such delays can 

result in cyclical motion and sub-optimal paths in the presence of obstacles and interference. 

The frugal feeding heuristic, to the contrary, shows no apparent increase in computation time as 

the number of workers grows. Theoretically, the time should grow linearly with a very small slope 

(the time required to sum two weighted unit vectors), however, this small increase is overshadowed 

by operating system process scheduling noise for the range of population size we consider. It should 

be noted that this experiment measures the total calculation time for all robots in the system. The 

actual per-robot direction calculation time is independent of population size, and thus the method is 

perfectly scalable. 
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5.4 Discussion 

5.4.1 Nelder-Mead versus the frugal feeding heuristic 

The statistical analysis in Section 5.3.6 argues that in our test environments, the difference in Nelder- 

Mead and frugal feeding heuristic performance is not significant in practice. Despite this, the two 

methods do have some notable differences which affect their suitability. 

In our implementation of the Nelder-Mead numerical technique, repetitive computation with 

similar starting positions yields slightly different results each time. This is responsible for the emer- 

gence of two energy wasting behaviours. First, Nelder-Mead tends to result in worker robots slowly 

'creeping' in the direction of a meeting location. This occurs because the numerical algorithm may 

dictate a location during one iteration, then dictate a slightly different location during the second 

iteration. This causes a robot to slowly move between successively dictated points, resulting in a 

path that is not necessarily a straight line. An example of this effect can be seen by examining the 

irregular worker robot paths in Figure 5.1 (a). 

A second emergent behaviour is due to the inherent instability of the frugal feeding problem. 

Given some environment, there may be multiple paths that lead to an optimal solution. Recompu- 

tation using Nelder-Mead will result in the prescribed solution jumping back and forth between the 

multiple optimal solutions. An example of this occurs when a tanker and one worker with equal 

weights try to decide where to meet. The Nelder-Mead method proposes a series of ever-changing 

meeting points along the line between the tanker and worker. More debilitating effects occur when 

the ever-changing paths cause robots to move in irregular paths. 

Similarly to Nelder-Mead, the frugal feeding heuristic exhibits stop-and-go movement. This 

results from a robot Ri meeting its stopping condition briefly as the other robots being considered 

continue moving. Once these other robots move close enough to cause R, to no longer meet its 

stopping condition, Ri quickly moves ahead to again meet its stopping condition. The result is 

a stop-and-go motion. While such motion has benefits in avoiding interference, Barilli et al. [2] 

suggests that it is not energy efficient. 

Finally, it is possible to describe scenarios where the frugal feeding heuristic dictates a sub- 

optimal path. Consider the initial conditions shown in Figure 5.6 and the charging order R1, R2, R3. 

In this case, the frugal feeding heuristic will result in tanker Ro moving towards worker R1 until 

worker R2 (which is moving towards R1) reaches R1. At this point both R1 and R2 will move 
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Figure 5.6: An example world where the frugal feeding heuristic results in a sub-optimal path. 
Locomotion cost is shown above robot. 

towards Ro, while Ro continues to move towards R1 and R2. After a meeting with R1 and R2 is 

achieved, Ro begins moving back towards R3. This is not the most energy efficient path in this 

scenario. A more efficient path would have robots R1 and R2 move to Ro, after which Ro would 

move to R3. 

5.4.2 The effects of obstacles 

While both Nelder-Mead and the frugal feeding heuristic are demonstrated in an environment with 

obstacles, nearly all of the paths in Figure 5.2 show that the obstacles are not considered by either 

algorithm when prescribing an energy efficient path. This is the expected result, as our chosen cost 

function does not consider obstacles directly. The result is an energy efficient path which tolerates 

obstacles, not an energy efficient path through an obstacle-filled environment. The frugal feeding 

problem in the presence of obstacles is an area of future research. 

The stop-and-go movements resulting from the frugal feeding heuristic provide for stability in 

the presence of obstacles. Visual inspection suggests that some subset of robots is usually stationary. 

This results in minimal deviation from the chosen paths as robots are forced to change course. 

Nelder-Mead, on the other hand, results in more chaotic outcomes. Most robots tend to be moving at 

the same time, and when an obstacle is encountered, some robots choose evasive action that hinders 

the progress of a rendezvous. As an example, consider the hypothetical case where all robots are 

attempting to rendezvous inside an obstacle. With Nelder-Mead, upon seeing the obstacle, each 

robot decides to turn right. This results in robots circling the obstacle indefinitely. In contrast, the 

subset of stationary robots resulting from frugal feeding heuristic will often be enough to break the 

symmetry. More work is required in this area. 
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5.4.3 The effects of interference 

Enabling inter-robot collisions is shown to result in increased mean total system energy usage. This 

is largely caused by robots circling around each other vying for the same space. Since cyclic be- 

haviour wastes energy, special interference reducing provisions need to be made to reduce it, as 

suggested in [8,38,46-48]. 

Intuitively, maps which result in tanker absorbed solutions will suffer more from interference 

as robots attempt to rendezvous around the tanker. Most of our results exhibit this to some extent, 

while the single point rendezvous results can be seen to be most affected, as all 10 robots attempt to 

crowd around the tanker. As a basic attempt to mitigate this problem, our robots are programmed to 

leave the rendezvous area (without adding to total energy usage) once a meeting has occurred in an 

attempt to minimize such interference. 

5.4.4 Variable order techniques 

Brute force ordering is shown to produce lower mean energy usage than nearest neighbour ordering, 

but is very computationally expensive. In fact, we have to restrict our variable order set of exper- 

iments to 5 worker robots in order to have manageable computation times. Our results show that 

nearest neighbour can produce reasonable orderings in some environments, but can degrade under 

specific conditions. As an example, notice the cyclic path taken by tanker in Figure 5.4Q). 

Continuous recomputation of the charging order has benefits and drawbacks. In experiments 

where robots are forced from their paths due to interference or obstacles, recomputation of the 

ordering is an asset as robots adjust to the new instance of the frugal feeding problem. On the other 

hand, in certain settings, recomputing the order causes robots to alter a chosen path before a meeting 

has been achieved, resulting in a detour. 

5.5 Conclusion 

In this chapter, we considered a practically inspired optimization problem of finding an energy- 

minimizing route for a heterogeneous robot system where a single service robot needs to meet 

a number of worker robots. This problem has two components, combinatorial (finding the best 

meeting order) and analytic (finding the best meeting places). In Chapter 4 we argued that the 

combinatorial component is NP-hard and here we propose a scalable distributed heuristic solution 

to the analytic component. By exploiting embodiment and the natural parallelism of the robot system 
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the heuristic achieves good results with very small computational demands. 

Experiments are performed and theoretical results confirmed in simulation. Nelder-Mead is 

compared with the frugal feeding heuristic in a variety of environments to gauge their effectiveness at 

achieving multi-point rendezvous. Both methods perform well, with each emerging as the preferred 

method under certain conditions. Both are favorably compared to single point rendezvous results. 

Additional experiments are performed by applying a brute force ordering technique to Nelder- 

Mead and a nearest neighbour ordering technique to the frugal feeding heuristic in an attempt to 

demonstrate a complete solution to the frugal feeding problem. Brute force ordering is empirically 

shown to produce better results at the cost of computation requirements. We demonstrate computa- 

tion times in a separate experiment. 

Several experiments are performed with obstacles and collisions enabled to gauge the effects of 

interference. In these experiments, robots depend heavily on VFH to avoid contact. Both Nelder- 

Mead and the frugal feeding heuristic are shown to cope with some level of obstacles and interfer- 

ence. Drawbacks are identified as both methods are deemed to merely tolerate obstacles instead of 

considering them when developing energy efficient motion plans. 



Chapter 6 

Discussion and Conclusion 

6.1 The tanker approach: summary of contributions 

Chapter 2 introduces the use of an energy distributing tanker robot in a system of autonomous 

worker robots. This approach is presented as a suitable alternative for recharging robot teams and 

is demonstrated in simulation. Several design attributes are explored, and general conclusions con- 

jectured about the the properties of tanker based recharging. A design to physically achieve the 

coupling required to perform tanker based recharging is shown. Tanker to charging station coupling 

is demonstrated. 

In Chapter 3 we move away from the ad-hoc techniques employed in Chapter 2 and attempt 

to structure tanker recharging so that it is more efficient and predictable. We introduce the notion 

of an energy efficient rendezvous in an attempt to answer the question "If we're concerned with 

energy efficiency, where is the best place to meet in order to recharge." We present two techniques 

for answering this question and discuss their merits. We demonstrate their suitability for achieving 

rendezvous in simulation. 

Chapter 4 introduces the frugal feeding problem as the problem of finding the most energy 

efficient way for a tanker to meet with each worker. The problem is divided into two sub-problems: 

the order in which tanker should meet with each worker, and where each meeting should take place. 

The problem is analyzed for special cases and complexity. The ordering portion of frugal feeding is 

shown to be NP-hard. The chapter also outlines a partial discrete and numerical method for solving 

the frugal feeding problem. These solutions ignore the combinatorial portion of the problem and 

instead solve only the location component. The merits of each technique are discussed. 
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Chapter 5 presents a heuristic for solving the location component of frugal feeding. Simulation 

is used to demonstrate the heuristic and compare it to the Nelder-Mead numerical method presented 

in Chapter 4 as well as the rendezvous method in Chapter 3. The heuristic is then paired with 

an ordering heuristic and Nelder-Mead is paired with a brute force ordering technique in order to 

demonstrate two complete solutions to the frugal feeding problem. All solutions are then evaluated 

in several different environments: all combinations of obstacles present and absent, collisions en- 

abled and disabled, and several initial robot arrangements. Final experiments are performed to show 

experimental running times for each method. 

In addition to the author's supervisor, Richard Vaughan, our colleague Yaroslav Litus contributed 

significantly to some of the ideas in this thesis in the context of a collaborative project in the Au- 

tonomy Lab. Specifically, Litus formalized the generalized energy efficient rendezvous problem, 

proposed, formalized, and proved the convergence of the local solution, formalized the frugal feed- 

ing problem, and proposed, formalized, and proved the convergence of the frugal feeding heuristic. 

The remaining content and ideas are the author's own. 

6.2 Tanker based recharging versus base station recharging 

We have shown that tanker based recharging can have advantages over traditional docking station 

recharging. We argue that the division of labor which results from the introduction of a tanker can 

lower system complexity and cost while increasing modularity and productivity. Worker robots 

are not constrained by their requirements to maintain sufficient operational energy levels, and can 

therefore be less sophisticated. As an example, consider the utility of driving a ride-on-lawnmower 

to the gas station instead of delivering fuel in a gas can. 

We set out to see the conditions under which the use of a tanker would make sense. We have 

shown that in several experimental scenarios, having a tanker based recharging scheme yields lower 

aggregate system energy usage. Further, since any solution to the frugal feeding problem makes 

provisions for the tanker absorbed subset of solutions, tanker based recharging should always be 

expected to perform at least as well as traditional base station recharging if the choice to use a 

tanker has been made and removing it from our system of robots is not an option. 

However, the question of whether to initially include a tanker is not as straight forward. The 

introduction of a tanker into the system changes the rendezvous and frugal feeding outcomes. It 

is possible to construct a scenario where having a tanker increases aggregate system energy usage. 



CHAPTER 6. DISCUSSION AND CONCLUSION 

Figure 6.1: A world where tanker (triangle) based recharging is less efficient than traditional base 
station (star) recharging. 

Consider the multi-robot system in Figure 6.1. In this example, having robots recharge at the charg- 

ing station would use less energy than requiring the tanker to travel all the way to the charging 

station and then distributing energy. Any tanker based recharging scheme needs to take into account 

such a scenario. It is straightforward to see that if a tanker is initially placed at the charging station, 

tanker based recharging will yield results at least as good as base station recharging. On the other 

hand, if a scenario always results in tanker absorbed recharging, then base station recharging will 

perform as well as tanker based recharging. 

6.3 Future work 

We argue for the utility of tanker based recharging under certain conditions. However, before this 

recharging strategy can be used effectively, several remaining problems need to be addressed. 

The visiting order for workers has been shown to be NP-hard. Since brute-force ordering will not 

scale well, a heuristic is needed to provide good ordering. The nearest neighbour ordering heuristic 

used in Chapter 5 may be a good first step, but degrades under certain conditions. It may also be 

possible to solve the frugal feeding problem concurrently with the ordering problem. 

A second critical issue is that of timing. A practical tanker based recharging scheme will require 

the tanker to return to a charging station periodically to replenish its own fuel store. The decision of 

when to do this is non-trivial. Consider a tanker which has half of its energy remaining. If it drives 

by the charging station, should it stop to refuel? This question becomes harder once we consider 

current worker energy stores and their rates of discharge. If all workers are full, then stopping to top 
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up seems like a good idea, however, if a worker is about to run out of energy, then the situation is 

more urgent. A solution to this timing problem (including starvation) will likely draw from the body 

of work on resource scheduling problems. 

Third, obstacles and interference should be accounted for, not simply tolerated. While our ex- 

periments show that our methods work in the presence of obstacles and interference, all claims of 

optimality are invalidated when a robot takes a detour to avoid an obstacle. Integrating a global 

path planner, such as [18], as part of the cost function may lead to energy efficient paths in the 

presence of obstacles, especially if we retain the assumption of having an environment map a pri- 

ori. An approach to limiting the effects of robot-to-robot interference may be found in the RAGE 

project [8,38,4643]. 

Finally, a more realistic cost metric would provide more convincing evidence of the usefulness of 

these techniques in the real world. Energy costs due to acceleration, changes in direction, and idling 

are not considered in this work. For example, trials performed using the frugal feeding heuristic 

often resulted in repetitive acceleration and deceleration. However, we know from [2] that this kind 

of motion should be avoided in the interest of energy efficiency. A good cost model should strive to 

eliminate such inefficiencies. 



Appendix A 

FFH: Proof of Correctness 

This proof is due to Yaroslav Litus, based on the work by Yaroslav Litus, Pawel Zebrowski, and 

Richard Vaughan submitted to the IEEE Transactions on Robotics on June 1 l th, 2007. 

A.l  Proof of correctness and run time bounds 

Formally, ro (the tanker) and r l  (the next robot to be charged) move along the approximated anti- 

gradient of the cost function g(p1) = wol lro - pill + wo 1 lpl - pzl( + w l J  Jpl - r l  1 1  using the 

current position of robot rz as an approximation to the unknown solution point pz. The rest of 

the robots r j ,  j = 2 ,  ..., Ic move along the approximated antigradient of the cost functions f j ( p j )  = 

W O I  Ipj -pj-1 I I +woI Ipj -pj+l I I + W j  I Irj p j  I I using rj-1, rj+l as approximations for the unknown 

solution points pj-1, pj+l. 

Below we prove that the heuristic is correct and all of the robots are eventually charged. To do 

this we bound the time required for the robots to meet. 

Theorem 3. For any initial locations r j ,  j = 0, . . . , Ic and meeting range s, ifrobots ro, r l  recalculate 

their movement direction f i j  every rime they travel distance 6 < s / 2  then after at most 

iterations ro and r l  will meet. 

Pro06 Consider the situation depicted in Fig A. ](a). We need to show that after ro and rl  stop 

or move some distance E along the directions Zo and f i l  as prescribed by the algorithm, distance 

I lro - rill decreases significantly enough that in a finite time this distance is smaller than meeting 

range s. The proof proceeds in four steps. First, we show that TO and r l  will never satisfy their 

stopping conditions simultaneously. This means that at least one of them moves. Second, we bound 



APPENDlX A. FFH: PROOF OF CORRECTNESS 

(a) Robots and their direction vectors. 

Z 

(b) Tanker TO stops while T I  moves to point x. 

Z 

(c) Tanker TO moves to point x, worker rl stops. (d) Tanker TO moves to point x, worker T I  moves to 
point y. 

Figure A.l: Illustrating the frugal feeding heuristic correctness proof. ro is the tanker robot, rl is 
the worker robot the tanker should meet next, 1-2 is the worker robot to meet after rl .  
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the decrease of distance in one iteration in the case when ro stops and rl moves. Then we do the 

same for the case when ro moves and rl stops. Finally, we bound the decrease of distance for the 

case when both 7-0 and rl move. 

First we establish the conditions for 7-0 and rl to stop. Lr2rorl = cr, Lr2rlro = p. Norms of 

direction vectors )ld011~ = w2 + w i  + 2w1wo cos a, 1161))2 = 2w;(1 + cos p). TO stops when 

I 16~1 1 < wo, or w2 + w i  + 2w1wo cos cr < w i  which, given positive weights simplifies to 

wl + 2wo cos cr < 0; (stopping conditions for ro)  (A. 1) 

Similarly, for rl the stopping conditions are 1161 I I < wl:  

2wi(1 + cos /3) < w?; (stopping conditions for r l )  (-4.2) 

Note, that since wo and wl are positive, (A. 1) implies cr > 7r/2. 

Both robot stop. Substituting w: < 4wi cos2 cr from (A.l) into (A.2) and simplifying gives 

( 1  + cos p )  < 2 c0s2 a, (A.3) 

As p 5 7r - a:, and cr > 7r/2 we have I cos PI 2 1 cos 0 1 .  Plugging this into (A.3) and simplifying 

gives 

2c0s2p - cosp - 1 > 0 04.4) 

Solving this for cosP we get cosp E (-co, -112) U (1 ,  co) which means ,i3 > 5 ~ 1 6 .  Since a: > 
7r/2, cr + /3 > 7r which violates the triangle sum of angles property. Thus, the system of inequalities 

(A. 1) and (A.2) has no valid solutions. This means robots 7-0 and rl can not stop simultaneously. 

ro stops, rl moves. This situation is shown in Fig A. 1 (b). Initially the distance between robots is 

l t  = I Ira - r l l ( .  After rl moves to point x traveling distance E ,  the distance between robots becomes 

= llro - 211. Note, that 61 always bisects Lp. 
Using the law of cosines, I;+, = 1: + e2  - 21te cos P/2. Since l t  > s and /3/2 < 7r/4 (because 

cr > 7r/2) the following is valid: 

This allows us to bound the decrease in the squared distance between robots in one iteration as: 
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ro moves, rl stops. This situation is illustrated by Fig A.l(b). Here tanker ro moves to point x, 

decreasing the distance to the worker from lt = I lro - rill to = I lrl - X I  1. The distance tanker 

travels is E = Ilx - ro 11. 

By the law of cosines 
2 2 2 lt+l = 1, + E - 261 cosy (A.7) 

To bound y we apply the law of sines, wo/ sin y = wl/ sin(ai - 7). Starting with wo sin(ai - y) = 

wl sin y and doing trigonometric transformations we derive 

wo sin ai 
t a n y  = 

W l  + wocosai 

Since p 5 .ir - a, cos P > c o s ( ~  - a ) .  This inequality can be plugged into stopping condition (A.2) 
2w2-w2 to get 2w;(l+ cos(.ir - a ) )  < wf. The latter simplifies to cos ai > +. Plugging this into (A.8) 

2% 
and using wl 5 2wo we obtain 

wo sin ai 
t a n y  < 

2w;-w: 
W1 + 2wo 

2w; < 
2wow1 + 2w; - w: 

This implies y E [0, .ir/4]. We use this bound with (A.7) to arrive at the same bound on squared 

distance as (A.5) describes. Thus, the bound (A.6) applies for this case as well. 

Both robots move Fig A.l(d) shows robot ro moving to point x and robot rl moving to point y. 

The distance between robots changes from It = I Ira -rl I I to l t + ~  = I lx- y ( 1. Both robots move equal 

distance 1 lx - rol 1 = Ily - r1 I I = E. We will use additional notation a = 110 - roll, b = ((0 - rl ( 1 .  
Using the law of cosines, 

= 1; + 2 ~ ( 1  - cos 6)(c - a - b )  (A. 10) 

We start by bounding 6. Note, that y + P/2 + 6 = .ir. From (A.l), it follows that ro moves 

only when wl + 2wo cos a > 0. This implies wl + wo cos a > 0 (given positive weights). The 

latter could be used in (A.8) to get tan y > 0. Thus, if ro moves, y E [O, x / 2 ] .  Now, consider 2 
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cases. First, if p 2 7r/2 then y + P/2 5 7r - P/2 which implies 6 2 ~ / 4 .  Second, if P < ~ / 2 ,  

y + P/2 < 7r/2 + n/4. In this case, 6 > 7~14. Thus, we bounded 6 and 

J 2  1 - c o s 6 > 1 - -  
2 

(A. 1 1) 

Now we need to bound r-a- b. Applying the law of sines we get I t /  sin 6 = b/ sin y = a/ sin(P/2). 

Thus, 

r - a - b  = r -  
It (sin y + sin(P/2)) 

sin 6 
s(sin y + sin(P/2)) 

< r -  
sin 6 

- - sin y + sin(P/2) 
E - S  

sin(7 + PI21 
2 +P 

- - 
2 sin (+) cos (v) 

E - S 
2 +4 2 sin (v) cos (+) 

< r - s cos (F) 

Combining equations (A. 10)-(A. 12) we bound the decrease in squared distance: 

(A. 1 2) 

(A. 13) 

Comparing (A.6) and (A.13) we see that the latter is a more conservative estimate of the squared 

distance decrease. Thus, if the initial distance between robots is L, the upper bound on the number 
4L2 of steps needed to meet is =. 0 

Corollary 1. For any initial locations rj , j = 0, .. . , Ic and sensor range s, if robots recalculate their 

movement direction fij every time they travel distance e < s/2 then a fer  at most k& iterations 

all workers will be charged, assuming charging occurs instantaneously and C = maxi3 I lri - rj I I. 
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FFH: Statistical Analysis 

This statistical analysis is due to Yaroslav Litus, based on the work by Yaroslav Litus, Pawel Ze- 

browski, and Richard Vaughan submitted to the IEEE Transactions on Robotics on June 1 lth, 2007. 

B.l Statistical analysis 

The goal of this statistical analysis is to evaluate the statistical significance of the difference between 

Nelder-Mead and the frugal feeding heuristic. Figure B.l presents the histograms and box-plots of 

the data used in the analysis. All hypothesis testing results assume 5% significance level if not stated 

otherwise. 

The number of observations for any particular map-method pair is at most 26. Because of this, 

it is difficult to conclude whether the difference between observations can be explained by normal 

noise. In fact, different normality tests give contradictory results on these samples. Therefore, even 

though all within-map t-tests reject the hypothesis that Nelder-Mead and the frugal feeding heuristic 

observations come from the same distribution, the validity of these tests could be questioned. We 

conduct non-parametric Kruskal-Wallis tests which do not require the normality of samples. For 

all 5 maps the hypotheses of equal performance of Nelder-Mead method and the frugal feeding 

heuristic are rejected. 

Given the above, we use all available observations to estimate the difference in performance 

by regressing the energy used for rendezvous on the dummy variable Method2 which represents 

the Nelder-Mead method. The Wald test and likelihood ratio test for group-wise heteroskedasticity 

reject the hypothesis that the noise variance is equal between maps. The test of joint significance of 

group means rejects the adequacy of the pooled OLS model in favour of a fixed effects alternative. 
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(a) Map 1 Nelder-Mead 

(d) Map 2 Nelder-Mead (e) Map 2 FFH 

(c) Map 1 Boxplot 

(f) Map 2 Boxplot 

(g) Map 3 Nelder-Mead (h) Map 3 FFH (i) Map 3 Boxplot 

(i) Map 4 Nelder-Mead (k) Map 4 FFH (1) Map 4 Boxplot 

(m) Map 5 Nelder-Mead (n) Map 5 FFH (0) Map 5 Boxplot 

Figure B. 1: Statistical representation of experimental results. The histograms show the distribution 
of energy losses for repeated experiments on 5 maps using either Nelder-Mead or the frugal feeding 
heuristic method. The boxplots present results obtained from both methods for every map. The left 
plot represents the frugal feeding heuristic, the right plot represents Nelder-Mead. 
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Thus the model of our choice is a fixed effects model corrected for group-wise heteroskedasticity. 

Estimation results are presented in Table B.1. We observe significant fixed effects of each map 

(dummy variables dud ,  du2 ,  ..., d u 5 )  which is reasonable since each map has different theoreti- 

cally possible minimum energy spending. The effect of Method2 is also significant which agrees 

with the result of the within-map tests. The value of the coefficient indicates that on average Nelder- 

Mead takes 8.72 more units of energy to converge. However, this distinction is less than 15% of the 

energy spending, thus it is not very notable from the practical point of view. 
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Table B. 1: Estimation results 

Model: WLS estimates using 25 1 observations 
Included 5 cross-sectional units 

Dependent variable: Energy 
Weights based on per-unit error variances 

(standard errors in parentheses) 

Variable Coefficient t-statistic p-value 

Statistics based on the weighted data: 

Sum of squared residuals 
Standard error of residuals (8)  
Unadjusted R~ 
Adjusted R2 
F (6,245) 
Akaike information criterion 
Schwarz Bayesian criterion 
Hannan-Quinn criterion 

Statistics based on the original data: 

Mean of dependent variable 78.2138 
S.D. of dependent variable 22.4821 
Sum of squared residuals 5042.10 
Standard error of residuals (6) 4.53652 



Appendix C 

FFH: Experimental Results 

Table C. 1 : Mean total energy used for rendezvous with no obstacles present and collisions disabled. 
There are 10 workers per exveriment and visiting order is fixed. 

Table C.2: Mean total energy used for rendezvous with obstacles present and collisions disabled. 

- 
Method 

Nelder-Mead 
FFH 

Single point 

Table C.3: Mean total energy used for rendezvous with no obstacles present and collisions enabled. 

There are 10 workers per experiment and visiting order is fixed. 

Method 

Nelder-Mead 
FFH 

Singlepoint 

Map 1 

There are 10 workers per experiment and visiting order is fixed. 

LT 

117.08 
105.00 
150.60 

Method 

Nelder-Mead 
FFH 

Singlepoint 

P 
4.55 
0.17 
0.26 

Map 2 

Map 6 

u 
74.40 
61.89 
123.27 

0 

122.46 
105.15 
283.17 

P 
6.30 
0.29 
0.31 

Map 3 

Map 7 
P 

11.92 
0.14 
6.54 

Map l 

u 
65.04 
60.89 
66.60 

u 
274.93 
321.50 
275.94 

u 
121.86 
101.06 
222.64 

P 
1.43 
0.30 
0.19 

Map 4 

P 
0.14 
3.02 
0.17 

Map 8 

P 
6.59 
21.07 
69.45 

L7 

103.36 
82.53 
131.56 

Map 5 

L7 

78.1 1 
62.26 
149.26 

Map 9 

Map 2 

P 
3.68 
0.11 
0.98 

u 
54.28 
52.09 
93.70 

P 
9.65 
0.54 
12.15 

u 
69.88 
68.06 
71.30 

u 
132.01 
136.34 
328.86 

Map 4 Map 3 

1-1 

0.75 
0.07 
0.44 

P 
1.31 
1.13 
0.17 

P 
17.08 
24.13 
108.20 

u 
117.47 
85.25 

460.67 

Map 5 
u 

117.40 
59.45 
278.69 

P 
9.77 
0.20 

186.61 

u 
61.57 
56.95 
235.05 

P 
26.67 
1.37 

73.45 

P 
3.62 
1.07 

72.05 
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Table C.4: Mean total energy used for rendezvous with obstacles present and collisions enabled. 
There are 10 workers per experiment and visiting order is fixed. 

Table C.6: Mean total energy used for rendezvous with obstacles present and collisions disabled. 

Method 

Nelder-Mead 
FFH 

Single point 

Table C.5: Mean total energy used for rendezvous with no obstacles present and collisions disabled. 
There are 5 workers per experiment and visiting order varies to minimize energy usage. 

Method 

Nelder-Mead 
FFH 

Single point 

Table C.7: Mean total energy used for rendezvous with no obstacles present and collisions enabled. 

There are 5 workers per experiment and visiting order varies to minimize energy usa; 

Map 6 

Method 

Nelder-Mead 
FFH 

Singlepoint 

Table C.8: Mean total energy used for rendezvous with obstacles present and collisions enabled. 

L7 

127.80 
105.54 
305.73 

Map 1 

There are 5 workers per experiment and visiting order varies to minimize energy usage. 

P 
10.57 
0.15 
32.1 1 

Map 7 

L7 

71.43 
85.71 
73.17 

L7 

380.17 
355.65 
357.71 

Map 2 
P 

1.05 
0.71 
0.10 

Map 6 

Method 

Nelder-Mead 
FFH 

Singleuoint 

There are 5 workers per experiment and visiting order varies to minimize energy usage 

P 
39.86 
18.28 
58.59 

Map 8 

L7 

39.81 
45.59 
56.03 

L7 

106.81 
82.69 
172.03 

Method 

Nelder-Mead 
FFH 

Single point 

L7 

148.22 
169.81 
175.31 

Map 9 

P 
0.12 
0.61 
0.17 

Map 3 

P 
0.61 
0.11 
0.58 

Map 7 

Map l Map 2 

P 
36.42 
28.75 
21.84 

L7 

152.91 
69.66 
124.50 

L7 

31.52 
42.69 
42.87 

L7 

164.79 
164.71 
165.16 

L7 

72.13 
86.65 
73.15 

0 

47.67 
61.15 
60.24 

P 
54.15 
3.21 
11.29 

P 
0.49 
0.16 
0.20 

Map 4 

P 
0.12 
0.10 
0.13 

Map 8 

P 
1.34 
1.00 
0.15 

P 
4.43 
12.31 
0.94 

Map 3 

Map 6 

L7 

42.72 
42.49 
58.47 

Map 5 

L7 

43.35 
61.42 
69.27 

Map 9 

0 

42.14 
44.13 
47.69 

L7 

128.17 
93.15 
198.16 

P 
0.64 
0.08 
0.22 

L7 

16.49 
19.53 
21.95 

P 
0.29 
7.78 
2.95 

L7 

39.01 
46.30 
47.55 

P 
4.13 
1.56 
2.99 

Map 4 

P 
19.65 
11.20 
35.31 

Map 7 

P 
0.10 
0.03 
0.12 

P 
0.36 
0.18 
0.19 

L7 

45.80 
44.18 
73.46 

Map 5 

L7 

172.46 
176.22 
173.18 

L' 
2.61 
0.29 
7.48 

L7 

17.87 
20.77 
23.23 

Map 8 
P 

13.89 
15.83 
7.98 

L' 
0.52 
0.07 
0.17 

L7 

54.00 
77.82 
77.62 

Map 9 

P 
8.60 
10.31 
9.70 

L7 

49.17 
47.54 
53.06 

P 
5.73 
0.69 
2.99 
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