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ABSTRACT 

This thesis extends the model of Klein and lnglis (2001) by taking into 

account the effect of a netting agreement, e.g. an ISDA Master Agreement, and 

the effect of portfolio diversification on the price of vulnerable European options. 

The model considers options traded mutually between two option writers one of 

which may default. Based on this model the credit-risk adjusted price of an option 

is a conditional price with respect to the portfolio of options to which it is added. 

Using a numerical approximation (Monte-Carlo simulation), netting and portfolio 

effects are shown to increase the credit-risk adjusted value of a trading position. 

The paper shows that the price which a counterparty is willing to receive (pay) for 

selling (buying) an option, is less (more) than the usual price if the option has a 

credit risk mitigation effect on the existent portfolio. 

Keywords: Vulnerable Options, Netting, Default, Credit Risk, Pricing. 
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CHAPTER I : INTRODUCTION 

Over the last decade, the largest banks in the world have developed 

sophisticated models in an attempt to evaluate the credit risk arising from 

important aspects of their business lines. These models are intended to help 

banks in quantifying, aggregating and managing risks. As a result of the banks' 

individual efforts, models lead to differences when designing and pricing financial 

instruments. These differences constitute a competitive advantage for those who 

are able to develop and apply pricing models. 

The tremendous growth in the unregulated markets that trade these 

financial instruments, specifically the over-the-counter markets, creates 

increasing requirements to mitigate credit risk. One of the most efficient and 

common strategies in the market is to agree on collateral or guarantees by third 

counterparties. Nevertheless, those instruments are not always feasible or even 

desirable, allowing for other solutions such as the aggregation of two or more 

obligations to achieve a reduced net obligation. This netting process clearly 

reduces the credit risk of the contract and thus leads to a modification of the 

overall risk of the transaction which should be included in the model when pricing 

those instruments. If the risk mitigation due to the netting can be modelled, there 

is a huge competitive advantage to be exploited. 
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Various models have been developed to calculate the price of options that 

may be affected by a credit default (vulnerable options). This paper deals with 

the stream of literature that arose from the structural default models of Black and 

Scholes (1973) and Merton (1974). Specifically, this paper adopts the pricing 

model produced by Klein and lnglis (2001) in which important real-world 

considerations have been taken into account: stochastic interest rates, option 

payout linked to the firm value, possibility of other liabilities and default before 

and at maturity. Additionally, no independency assumption is made, allowing for 

correlation between the assets of the option writer and the option underlying. 

The contribution of this paper is to model the impact of netting and of 

portfolio diversification when valuing vulnerable European options. The remaining 

of the paper is organized as follows: Chapter 2 gives a description of the existing 

pricing models and relevant netting methodologies. Chapter 3 values vulnerable 

options on a stand-alone basis, replicating the findings of Klein and lnglis (2001). 

Chapter 4 specifies a model to price a portfolio of options with a netting 

agreement in place and provides some numerical examples. The credit-risk 

adjusted price of an option is shown to be a conditional price with respect to the 

portfolio of options to which it is added. Chapter 5 demonstrates the effects of 

portfolio diversification on the price of vulnerable options. Chapter 6 gives a 

summary of the conclusions and provides directions for future research. 



CHAPTER 2: LITERATURE REVIEW 

The structure of this section is linked to the main objective of the paper: 

Defining the impact of netting and of portfolio diversification when valuing 

vulnerable European options. Consequently, the first part tracks back the 

different models used to price European options when credit risk of the option 

writer is considered (vulnerable options). The second part reviews available 

literature on netting agreements and specifies the definitions commonly used in 

these type contracts, with a focus on standards developed by the International 

Swaps and Derivatives Association (ISDA). Finally, the last part reviews existent 

pricing models that consider netting or portfolio effects when finding the price for 

derivative instruments. 

Pricing models on vulnerable options 

The impact of credit risk on the price of financial instruments, such as 

derivatives, can be traced back to 1973 and 1974, when Black & Scholes and 

Merton created the basis for valuing corporate liabilities. This model is 

considered as the basis for structural default models, which have been extended 

to price different types of derivatives under various assumptions. 



Fourteen years later Johnson and Stulz (1987) develop the first model to 

price options taking into account credit risk, in this case, the default of the option 

writer. The model has some important considerations. It allows for correlation 

between the value of the assets of the option writer and the underlying. And more 

important, it conditions the default event on the value of the written option which 

results in a recovery amount that is related to the value of the firm. Nevertheless, 

the model has several restrictions that are not realistic. For instance, the model 

does not consider other liabilities of the option writer and defines default as an 

event only possible at maturity. 

Improvements to this model were made by Hull and White (1995) by 

including other liabilities into the financial structure of the option writer. 

Additionally, default is not restricted to take place only at maturity but during the 

life of the option. Default happens if the value of the assets falls below a defined 

fixed boundary. However, the recovery rate is now considered as a ratio of the 

claim and not directly dependent on the value of the assets. 

At the same time, Jarrow and Turnbull (1995) develop a pricing model that 

not only considers default of the option writer but also of the underlying asset. 

Also, the model assumes independency between the value of the option and the 

default boundary which creates a pay out ratio that is exogenous to the model. 

Klein (1996) extends Johnson and Stulz (1987) by considering other 

liabilities of the option writer and including dead weights costs in the payoff, thus 
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bankruptcy costs are reflected in this model. The pay-off ratio in case of default is 

linked to the assets of the option writer. Nevertheless, the model does not 

recognize the effects of the option payoff on the default boundary which restricts 

it to situations where the option liabilities do not constitute an important portion of 

the ongoing liabilities. 

This problem was solved by Klein and lnglis (2001). Their model maintains 

most of the relevant attributes of Klein (1996) and makes significant 

improvements, the most important being the incorporation a default boundary 

with a stochastic component that corresponds to the value of the option at 

maturity. 

This paper selects the Klein and lnglis (2001) model as the most 

advanced and flexible in this family of models and develops it further to allow for 

netting of claims and portfolio diversification effects from mutually traded options. 

Netting agreements for derivatives trading 

The process of netting combines multiple off-setting claims into a single 

claim (Bergman, Bliss & Johnson, 2003). The rights to receive amounts and the 

obligation to pay amounts under different transactions are summed up to a single 

net amount which, in the course of normal business as well as in the event of an 

insolvency, is alone payable or receivable, depending on the sign. 



Netting can substantially reduce credit risk for the counterparties that enter 

into a netting agreement. In case of insolvency the non-defaulted counterparty 

does not risk to lose the sum of its individual claims but only the net claim after 

considering all obligations to the defaulted counterparty. 

With regard to derivatives, netting implies the summation of all market 

values of the transactions under consideration. Consequently, the negotiation of 

a netting agreement can considerably free up existing credit lines and allow for 

more business to be done at the same level of credit risk. In a survey performed 

by Deloitte Development LLC (2007), one out of two financial institutions 

acknowledged to use on-balanceloff-balance sheet netting to reduce credit risk. 

As such, the netting agreement is and has been a catalyst for the tremendous 

growth of derivatives markets (Bergman, Bliss & Johnson, 2003). 

An agreement to net mutual claims usually comes along with a provision 

to close out all transactions in case of insolvency ("close-out netting"). This 

implies that in case of insolvency all derivatives are settled at their current market 

value and there is no further uncertainty about the magnitude of the claim to the 

defaulted counterparty. 

Bergmann, Bliss & Johnson (2003) state that netting puts creditors, other 

than the netting party, at a disadvantage. The assets of the defaulted 

counterparty are distributed preferably to counterparties with netting agreements, 

thus a netting agreement can be seen as creating an unpublicized security. This 
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paper does not deal with the economic implications to creditors other than the 

transaction counterparties under consideration. 

One particular market standard for netting agreements which grew popular 

over the last 20 years is the template provided by the International Swaps and 

Derivatives Association (ISDA). The ISDA standard enables counterparties to 

negotiate in a very succinct way a netting agreement by completing a schedule to 

an otherwise unchanged template (Master Agreement). The ISDA Master 

Agreement is also popular for its legal enforceability under the jurisdiction of most 

financially developed countries' . 

The impact of netting on prices of derivative instruments 

Netting can impact the prices of options, swaps and other financial 

instruments. DuRe and Huang (1996) show that the value of a portfolio of swaps 

is equal or greater with netting in place than without netting. 

Numerical examples for the impact of netting provisions on swaps are also 

given by Duffie and Huang (1996). In their example, the fixed-coupon rate that is 

agreed when entering into a swap is a function of a previously existing swap with 

reversed fixed and floating payments. The hedge ratio, i.e. ratio of notional 

amounts of existing and new swap, determined the new fixed-coupon rate. The 

1 ISDA publishes the legal opinions it obtained from law firms at www.isda.org 
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rate is a linear function of the hedge ratio for values between zero and one, and 

assumes a constant value for hedge ratios above one. 

Hull (2006) describes the payoffs of derivatives as being contingent on the 

ability of the counterparty to pay. In this sense the expected loss from default is 

represented as an option payoff, regardless of the nature of the claims. With 

netting, the payoff to the non-defaulted counterparty is those of an option on a 

portfolio of contracts, while without netting it is the payoff of a portfolio of options, 

which has a smaller value. 

Cooper and Mello (1999) show that a bank will offer better terms when 

entering into a forward contract with a corporate customer if the forward is 

motivated by hedging purposes and the bank holds some of the outstanding debt 

of the customer. The favourable change to the forward rate is due to a reduction 

in credit risk. However, the risk reduction is not a reward for netting the claims 

under the debt and the forward, but acknowledges that the hedge increases the 

value of the firm to the debt holders. 

There is no literature dealing specifically with the impact of netting and 

portfolio diversification effects on the prices of vulnerable options. The main 

contribution of this paper will be to develop a pricing model for options, taking 

into account netting and portfolio effects, and to provide numerical solutions 

based on the model. 



CHAPTER 3: REPRODUCTION OF VULNERABLE 
OPTION PRICES OF KLElN AND INGLIS (2001) 

Model Setting 

The assumptions made by Klein and lnglis (2001) will be valid for the 

model developed in this paper and are reproduced and extended below. 

Assumption 1 : V is the market value of the assets of the option writer. V follows 

a geometric Brownian motion given by: 

Where pv is the instantaneous expected return, av is the instantaneous 

standard deviation and zv is the standard Wiener process. 

Assumption 2: S is the market value of the asset underlying the option. S 

follows a geometric Brownian motion given by: 



Where ys is the instantaneous expected return, os is the instantaneous 

standard deviation and zs is a standard Wiener process. The correlation 

between zv and zs is pvs. 

Assumption 3: Markets are perfect and frictionless. There are no taxes, 

transaction costs or information asymmetries. Securities can be traded in 

continuous time. 

Assumption 4: Default occurs at the expiration of the option, T, only if the value 

of the option writer's assets VT is less than a threshold value D'+L. D' denotes 

the value of the other liabilities of the option writer. It can be seen as the face 

value of a zero coupon bond that has the same maturity as the option under 

consideration2. Klein and lnglis (2001) define L as the payoff under the call option 

(C, = max(S, - K,O)) where ST represents the price of the underlying asset at 

maturity date of the option and K is the strike price of the option. For the model 

developed in this paper, L can denote the payoff of a portfolio of options and, in 

case of a netting agreement in place, represent a net claim against the defaulted 

counterparty. 

Assumption 5: The nominal claim of the option holder is the intrinsic value of the 

option at maturity. 

2 Other liabilities of the option writer have a fixed value D'. There are no bond covenants 
restricting future derivatives transactions. 
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Assumption 6: In case of financial distress, the option holder receives only a 

proportion (1-a)VT/(D* + L)of the nominal claim, where a are the deadweight 

costs of the financial distress. 

The value for a vulnerable call option (e ) ,  defined in Klein and lnglis 

(2001), can be expressed in two stages. The first corresponds to the payoff at 

maturity: 

0 Otherwise 1 

The second corresponds to the time-t value of the vulnerable option, el, 

which is the risk-neutral expectation of the option's payoff at maturity, eT. 

Re-estimation with Monte-Carlo simulation 

The payoff of a vulnerable European call option, as defined in the model of 

Klein and lnglis (2001), is reproduced using a Monte-Carlo simulation. Equation 

(3) can be expressed in a computationally convenient way as: 



Where n is the number of simulations and [ l Io denotes a digital option that 

pays a value of one if the condition is fulfilled and zero otherwise. 

The model assumes path independency for the underlying asset (ST), 

which is non-problematic for a European option. Since default is only observed at 

maturity date of the option, path independency is assumed for the market value 

of the firm (VT) as well. A correlation between asset and underlying, pvs, is taken 

into account by generating correlated random variables for dzv and dzs, 

employing Cholesky factorization. 

Table 1 shows the results for vulnerable European calls, calculated by 

Klein and lnglis (2001), using a binomial tree approach and alternatively an 

analytical approximation, and compares those with the Monte-Carlo simulation 

results which are slightly higher than the prices calculated using the binomial tree 

approach. Black-Scholes prices are given as the credit-risk-free reference price. 



Table 1: Prices of European calls 

S=40, K=40, V=100, ~ * = 9 0 ,  T-t=3, ~ ~ 0 . 2 5 ,  ov=0.20, os=0.20, p=O, r=5% unless otherwise noted. 
Binomial Tree values and analytical approximation taken from Klein and lnglis (2001). Monte- 
Carlo simulation performed with 60.000.000 runs. Prices converge to two decimal digits. 

Base Case 

S = 30 

S = 50 

V = 90 

V =  110 

p = 0.5 

p = -0.5 

os= 0.15 

os = 0.25 

OV= 0.15 

ov = 0.25 

T-t = 2 

T-t = 4 

a = O  

a = 0.5 

r = 3 %  

r = 7 %  

Calculations of 

Black- 
Scholes 

8.37 

2.56 

16.59 

8.37 

8.37 

8.37 

8.37 

7.25 

9.54 

8.37 

8.37 

6.45 

10.09 

8.37 

8.37 

7.16 

9.64 

parameters values: 

Numerical 
Solution 

(~onte-carlo 
Simulation) 

6.25 

2.02 

11.62 

5.72 

6.69 

7.36 

5.24 

5.68 

6.74 

6.48 

6.01 

5.00 

7.30 

7.13 

5.36 

5.17 

7.42 

on the following 

Numerical 
Solution 

(Binomial Tree) 

6.24 

2.01 

11.59 

5.71 

6.65 

7.35 

5.23 

5.66 

6.70 

6.47 

5.97 

4.79 

7.27 

7.1 1 

5.36 

5.16 

7.40 

vulnerable call option 

Analytical 
Approximation 

6.28 

2.03 

11.74 

5.76 

6.73 

7.39 

5.28 

5.67 

6.87 

6.58 

5.99 

5.02 

7.36 

7.16 

5.41 

5.20 

7.47 

prices e, are based 



CHAPTER 4: MODELING OF NETTING EFFECTS 

This section computes the price of a vulnerable European call with a 

netting agreement in place. Netting can significantly reduce the credit exposure if 

the credit risk of one trade is offset by the risk of another trade. The price of a 

vulnerable option can then be seen as a conditional price with respect to the 

portfolio that existed prior to the transaction3. However, to get started the term 

netting must be specified. In order to do this, the following model is defined: 

Model Setting I: Adding a short call to a long call 

To illustrate the impact of netting on the option price, the following 

example is set up. Counterparty A buys from counterparty B a European call 

option on the underlying asset S1. A is assumed to have no credit risk while B is 

risky. Consequently, the call is vulnerable and has values at maturity of el., and 

during the life time of the option of i',,, , equal to those defined in equations (3) 

and (4) respectively. 

3 In this paper the conception of price is the compensation for the change in the value of a 
portfolio, and it varies with the characteristics of the portfolio and the counterparty. While this 
conception may seem to contradict the traditional economic meaning of a price, it will be shown 
that the conditional price can be expressed as a tradable price. 
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An instant later counterparty A sells to B a European call option on the 

underlying asset S2. This option has no credit risk and the same exercise date as 

the call before. Its payoff at maturity is defined by C,,, = max(S,,, - K,,O). The 

correlation between the two underlying assets is given by p ~ 1 , ~ 2 .  Since the model 

developed in this paper deals with the interaction between different options in a 

portfolio, it is rather this correlation, ~S I ,S~  than the correlation between the 

underlying asset and the assets of the option writer, pv,sl and pv,s2 that is of 

interest. 

The goal for this chapter is to set up a matrix that shows the payoff at 

maturity to counterparty A in all possible states of nature. It is sufficient to 

analyze the options' payoff at maturity because time-t values are expressed as 

risk-neutral expectations of the payoff at maturity and consequently default is 

only observed at that moment in time. The possible states of nature are: 

The moneyness of the options: To allow for an easier and more generic 

notation, let C, ,  be the claim at maturity under the option bought by A, 

C,,, = max(S,,, - K, ,O) , and C,,, be the claim at maturity under the option 

sold by A, C,,, = max(S,,, - K,,O) . For the following analysis, C, , and C,,, 

might as well be the claims at maturity under any plain-vanilla option. For 

the above example, the four possible states are: 

- C,,, 2 O,C,,, = 0 :  The long call is in the money and the short call is not. 

- C,,, = 0, C,,, > 0 :  The short call is in the money and the long call is not. 



- C,,, 2 C,,, > 0 :  Both options are in the money, the value of the long call 

is greater. 

- C,,, > C,,, > 0 : Both options are in the money, the value of the long call 

is smaller. 

The existence of a netting agreement. 

The ability of counterparty B to meet its obligations: As stated in 

assumption 4, the occurence of a default at maturity depends on the value 

of the assets of the options writer and the liabilities. With no netting in 

place, B reports the value of the options it holds as part of its current 

assets, and the value of the options written as part of its liabilities. In this 

case the default is given when: 

With netting in place, B will report the net value of the options, where two 

cases must be distinguished: 

- If C,,, < C,,, , the net position is a current asset for B. Then, the default 

is given by: 



However, in this situation A will not suffer a loss if B defaults: A pays 

(C,,, - C,,,)to B, the netting agreement shields A from a loss on its long position 

- If C,,, > C,,, , the net position is a current liability of B to A. The default 

is given when: 

VT < D* + (CI,T - '2,T) 

ons (6), (7) and (8) reveals th equati at the default barri ers 

are equal, with our without netting in place. Table 2 shows the cash flows at 

maturity to counterparty A with this default specification, the netting definition as 

in Chapter 2 and the vulnerable European option payoff defined by Klein and 

lnglis (2001 ). 

If B can meet it's obligation to pay at the maturity of the option, the netting 

agreement does not change the payoffs, consequently these cases are not 

distinguished in Table 2. However, if B is in default, the netting agreement 

makes a difference. The payoff to A at maturity is, when both long call and short 

call mature in the money and with a netting agreement in place, greater than 



without netting agreement4. This shows that the value of the option portfolio is 

greater for counterparty A when a netting agreement is in place, similar to the 

findings of Duffie and Huang (1996) and Hull (2006). 

Table 2: Cash flows to counterparty A at maturity. 

Possible values 
for c,,, and c,,, 

Based on Table 2, let &(.) denote the cash flow at maturity of a 

vulnerable position to counterparty A and let kT*(.)denote the cash flow of the 

Counterparty B's ability to pay 

4 
For C,, ,  2 0, C,,, = 0 and C, , ,  = 0, C,,,  > 0 the payoffs are equal. Using the constraint 

V, < D* + (c,,, - c,,,) that is imposed by the default, it can be shown that the payoff for the cases 

C , , ,  2 C,,,  > 0 and C,,,  > C,, ,  > o is greater with a netting agreement. 
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same vulnerable position with a netting agreement in place. The previous 

analysis has shown that: 

(9) ' T *  (e l ,T  - '2,T)> 'T (el,T - ' 2 . T  ) 

The risk-neutral expectation of the cash-flow for the portfolio with netting is 

given by: 

(10) 
p* = @-I)E* 1~; 1 
I 

Similarly, without netting the risk-neutral expectation is given by: 

It follows also that for any time-t: 

Let ( - C T )  denote the conditional price of the short call, i.e. the 

change in the value of the portfolio for A when adding the short call to the long 

call if no netting is in place: 



The conditional price can be seen as the time-t value of a swap that 

exchanges the cash flows ~ ~ ( t ~ , ~  -qT) and ~ ~ ( k ~ , ~ )  at maturity. Then it can be 

considered as a price with a market-wide meaning which any counterparty would 

agree on, regardless of a previously existing portfolio. Equivalently, for the case 

with netting the conditional price is given by: 

The swap argument holds here as well. Furthermore, 

because the long call is the first transaction and there is no other 

transaction in place that can mitigate the risk even with a netting agreement in 

place. The price of this long option is equivalent to the vulnerable option price 

computed with the model of Klein and lnglis (2001). 

From (9) and (15) follows that C*(-C, ,~)  . > C(-C2,T),el,T : the conditional 
1 ~ 1 . T  

price of the short call, when added to the portfolio that consists so far of the long 

call only, is greater with a netting agreement in place. Furthermore, ~*(-c,,,),~,,,  , 
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which is negative, cannot be lower than the value of a Black-Scholes non- 

vulnerable short option, - C2,, , because A cannot default. From: 

follows that A would be ready to write the call for a premium less than the 

non-vulnerable (credit-risk-free) price of this option. The option portfolio as it 

existed prior to writing the call justifies a lower price for this additional transaction 

because the latter reduces the credit risk of A due to a default of B. 

Contractual Assumptions 

The effects of a netting agreement as it is defined in Table 2 can be 

facilitated by making the following contractual assumptions about the 

specification of the netting agreement: 

The term "netting agreement" refers to a 2002 ISDA Master Agreement. 

The netting agreement is legally enforceable. 

The ISDA schedule contains the following provisions: 

- The counterparties opt to close out the transactions immediately after 

an event of default occurred (automatic early termination). 

- Bankruptcy (failure to pay the due debt) is the only chosen event of 

default. 

With these assumptions, the default under the ISDA agreement 

corresponds to an event defined as: 



where L is, as specified in assumption 4, the net liability of the defaulted 

counterparty to the claimant under consideration. 

The following section will find a value for the conditional price of the short 

call option, c'(-c,,,),~,,~ , in different scenarios, based on the netting agreement 

as it is defined in Table 2 and in line with the ISDA specifications shown above. 

Estimation of conditional option prices with and without netting 

The initial portfolio is defined as t(e,,T), containing a long position in a 

vulnerable European call with the base case parameters in Table 1. Then a short 

position in a non-vulnerable European call option is added (-C,.,), with 

parameters that are initially chosen to equal those of the base case. Parameters 

of both options are later equally changed as defined in Table 3, which shows 

sensitivity of conditional prices. 

The conditional price (base case) with a netting agreement in place, 

e'(-~,,,),~,,~, is approximated with -7.66. Obviously, writing an option reduces 

the value of any given position because it creates the possibility of a cash-outFlow 

at maturity. Consequently, 7.66 is the fair price that counterparty A can demand 

as a premium paid by B in exchange for obtaining the option. 
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Table 3: PriceslConditional prices for different parameters values (Model I). With and 
without netting. 

(Monte- 
Carlo) 

Base case: Si=S1=S2=40, K1=K2=40, 0,; =osl=osz=0.20, pv,S, =pV,S1=pV,S2=0, pS1,S2=0. V=100, 

~ ' = 9 0 ,  T-t=3, a=0.25, ov=0.20, r=5% unless otherwise noted. Monte-Carlo simulation performed 
with 60.000.000 runs. Prices converge to two decimal digits. 

Since A is assumed to be credit-risk-free, a benchmark for the price for 

this option is the Black-Scholes price (8.37). The absolute value of the 
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conditional price 4*(-c2,,) is significantly below 8.37, acknowledging the 
1CI.T 

reduction of credit risk of the option portfolio. 

It can be seen from Table 3 that for all the cases the conditional price of 

the short call is, in absolute terms, lower than the Black-Scholes price. For the 

case with netting, the result confirms the fact that counterparty A will be willing to 

receive less for writing the option. For counterparty B the result implies the 

willingness to pay less than the Black-Scholes price for the option. This 

corresponds to an increment of risk for B when buying an option from a writer 

that has a claim against B that can potentially be netted. For the case without 

netting, the result does not follow from the methodology developed so far. It will 

be explained in the next section. As in Klein and lnglis (2001), the conditional 

price of the short call increases with the value of the assets and decreases with 

volatility of the assets of the option writer and the deadweight cost. Special 

consideration will now be given to effects of the correlation between the two 

underlying assets on the conditional prices. 

Calls on the same underlying (perfect positive correlation) 

For a more detailed analysis the base case is set up now for perfectly 

positively correlated underlying assets. As shown in Table 4, with a netting 

agreement the conditional price of the sold call e*(-c,,,) exactly equals the leu 

cost of the long call. Thus the net value of the portfolio is zero. This is intuitive 
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because the position is flat with respect to market and credit risk, irrespective of 

the chosen asset value and asset volatility. 

Table 4: PriceslConditional prices for perfect positive correlation 

- 

- 
Base case' for calls on identical underlyings (perfect positive correlation): S1=S2=40, K1= K2=40, 
0s1=(3s2=0.20, pv,s1=pv,S2=0, pS1,S2=1, V=100, ~ ' = 9 0 ,  T-t=3, ~ 0 . 2 5 ,  ov=0.20, r=5% unless 
otherwise noted. Monte-Carlo simulation performed with 60.000.000 runs. Prices converge to two 
decimal digits. 

For the no-netting case the results look different. The conditional price 

( - C 2 , T ) , l , T  is not off-setting the premium of the long call, because counterparty 

A is exposed to credit risk. This portfolio can never generate a positive payoff to 

A because: 

- If the option payoffs are positive and B does not default, the net gain is 

zero (C,,, - C,,, , but 

- If the option payoffs are positive and B defaults, A has a negative net 

gain because it pays C,,, but does not receive the full value of C,,, . 



Consequently , ( , - C )  is either zero or negative. Then, 

k(e,,T -C,, , )  must be negative, and thus the absolute value of e( -C , , , )  be 
1 t I . T  

greater than the price of the call e(e,,,). Now, should <(-C2,T)  equal the 
Icl .T 

credit-risk-free price - C,,,? One might argue that this must be the case because 

without netting the short call cannot have a credit-risk mitigating effect on the 

long call. However, the conclusion is wrong because A contributes to the 

solvency of B by paying the option payoff C,,, to B. The conditional price 

<(-C2,T)lt,.Tis given by -7.11, compared to the Black-Scholes price of -8.37. 

Table 4 shows that e(-C,,,) . approaches the credit-risk-free price if the asset 
1 ~ l . T  

value of B becomes very high and default consequently unlikely. 

It is interesting to note the effect of decreasing the asset volatility, in the 

limit to zero. In the shown example, the conditional price e( -C , , , )  offsets the 
1'I.T 

price of the long call. This is the case because V+D* and, with C,,,  = C,, , ,  

VT + C , ,  > D* + C,,, . The conditional price <(-C,, , )  . will be (in absolute terms) 
1 ~ l . T  

higher than ?(el,,) if vT<D* 



Calls on underlyings with perfect negative correlation 

In this section the conditional price of the short call is calculated assuming 

perfect negative correlation between the underlying assets. Again the netting 

case is considered first. Other than with positively correlated underlyings, the 

position e*(k, , -C2,,) is not flat with regard to market and credit risk. 

Unfortunately, perfectly negatively correlated Wiener processes for the 

underlyings do not imply perfect negative correlation of the option payoffs. The 

asymmetry of option payoffs by definition rules out that C,,, = -C2,, , apart from 

the trivial solution C,,, = C,,, = 0. One also cannot conclude that the asymmetry 

imposes a boundary of the form C,,, = 0 for C,*, > 0 or C, , = 0 for C,,, > 0, even 

not if the strikes are equal: S1 and S2 grow at a drift of ( r  -02 / 2 ) ,  hence both 

underlyings, though negatively correlated, may trade at maturity above the strike, 

and are more likely to do so if the drift increases. Consequently, netting can 

improve the position of counterparty A, but to a much lesser degree than it would 

do with positively correlated underlying assets. Table 5 confirms the hypothesis. 

The conditional price of the call with netting is, when compared with the no- 

netting case, 0.04 lower, while with positive correlation the credit risk reduction 

was rewarded with 0.86. Figure 1 illustrates this effect. Credit risk reduction also 



changes when varying interest rates and it is zero for an interest rate of 

r = o2 1 2 ,  chosen to set the drift to zero. 

Table 5: PriceslConditional prices for perfect negative correlation 

(Monte- 
Carlo) 

Base case- for calls on underlyings (perfect negative correlation): S1=S2=40, K1= K2=40, 
osl=as2=0.20, P ~ , ~ ~ = P ~ , ~ ~ = O ,  psl ,s2=-l, V=100, ~ ' ~ 9 0 ,  T-t=3, a=0.25, ov=0.20, r=5% unless 
otherwise noted. Monte-Carlo simulation performed with 60.000.000 runs. Prices converge to 
two decimal digits. 

- 2 ,  

(Black- 
Scholes) 

Although in reality it will be difficult to find equity underlyings that are 

negatively correlated, the argument developed in this section is not irrelevant 

because negative correlation can be created by a call and a put on positively 

correlated assets. 

' ( - C 2 , ~ ) l ~ f , T  q*(-c2,T)lt,,T e ( c 2 , T ) l e , , T  - 

- G , t  
T * ( c ~ * ~ ) ~ ~ , , ~  - 

e(c2,~)lc,T 



Figure 1: Conditional prices, with netting and no netting effects, for different correlations 

-No Netting - - -Netting 

q C o " ! o " ! q q v  
P C ? ?  ? 0 0 0 0 

Correlation 

Base case for calls on underlyings with varying correlation: S1=S2=40, K1= K2=40, osl=os2=0.20, 
~v,sl=~v,s2=0, V=100, ~ * = 9 0 ,  T-t=3, ~ 0 . 2 5 ,  ov=0.20, r=5%. p ~ ~ , ~ ~  is changed on increments of 
0.1, from -1 to 1. Each value is based on simulations of 4.000.000 runs. 

Model Setting II: Adding a long call to a short call 

In this scenario, counterparty A sells to counterparty B a European call 

option on the underlying asset S2. A is again assumed to have no credit risk 

while B is risky. Consequently, the call is non-vulnerable. Its payoff at maturity is 

again defined by C,,, = max(S2,, - K ,  ,0) . 



An instant later counterparty A buys from B a European call option on the 

underlying asset S1. Consequently, the call is vulnerable and has values at 

maturity of el,, and during the life time of the option of e,,!, equal to those 

defined in equations (3) and (4), respectively. This option has the same exercise 

date as the call before. The correlation between the two underlying assets is 

given by P S ~ , S ~ .  All other specification made for model setting I remain 

unchanged. Consequently, the payoff to counterparty A from the portfolio of 

options at maturity is that one specified in Table 2. 

Similar to Equation (16), but with the model setting described above, the 

following inequality holds: 

Consequently, counterparty A will be willing to pay more than the price of 

the vulnerable price of the Klein and lnglis (2001) model. The following section 

will find the conditional price for a long call in different scenarios. 

Estimation of conditional option prices with and without netting 

The initial portfolio is defined as <(-C,.,), containing a short position in a 

non-vulnerable European call with the base case parameters in Table 1. Then a 

long position in a vulnerable European call option (e,,,) is added, with 



parameters that are initially chosen to equal those of the base case. Parameters 

of both options are later equally changed as defined in Table 6. 

Table 6: PriceslConditional prices for different parameters values (Model 11). With and 
without netting. 

~ '=90 ,  T-t=3, a=0.25, ov=0.20, r=5% unless otherwise noted. Monte-Carlo simulation performed 
with 60.000.000 runs. Prices converge to two decimal digits. 

Base Case 

Si = 30 

Si = 50 

V = 90 

= lq0 
- 

pv,s, = Oa5 

pv,s, = -0.5 

I I I I 1 I 

".I " c (c , .~ - G , ~  

-1.41 

-0.46 

-2.54 

-1.77 

-1.11 

-0.85 

-1.89 

~*( -c ,~ )~ -~ .  

+6.96 

+2.10 

+14.05 

+6.60 

+7.26 

+7.52 

+6.48 

+8.26 

~ - c , ~ ) ~ - ~ ~ :  

+6.65 

+2.06 

+13.17 

+6.19 

+7.04 

+7.47 

+5.82 

- c 2 J  
(Black- 

Scholes) 

-8.37 

-2.56 

-16.59 

-8.37 

-8.37 

-8.37 

-8.37 

Base case: Si =S1 =S2=40, Kl=K2=40, oS, =osl=os2=0.20, pVxS, =PV,S~=PV,SZ=O~ PSI .s2=OI V=10o1 

+7.94 -1.70 r = 7 %  

el,[ 
(Monte- 
Carlo) 

+6.25 

+2.02 

+ I  1.62 

+5.72 

+6.69 

+7.36 

+5.24 

-1.38 

- C 2 . T )  

-1.72 

-0.50 

-3.42 

-2.18 

-1.33 

-0.90 

-2.55 

-9.64 +7.42 



Reconciliation of Model I and Model I I  

Unsurprisingly, the value of the portfolio e(eI*, -C2,,) is the same for 

model I and model II, regardless if the short call is added to the long call or vice 

versa. The same statement is valid for the netting case 8*(e1,  - C2,T) : 

This can be rearranged to: 

The amount that A is willing to pay more for the long call, when compared 

to the Klein and lnglis (2001) stand-alone price for that option, is equal to the 

amount that A is willing to receive less for the short call, when compared to the 

credit-risk-free stand-alone Black-Scholes price. This relationship holds with or 

without netting, and can be verified observing the results in Table 3 and Table 6. 



CHAPTER 5: MODELING OF PORTFOLIO 
DIVERSIFICATION EFFECTS 

This section computes the price of vulnerable European calls considering 

portfolio diversification effects. Diversification is here understood by the effect of 

correlation between the two underlying assets on the credit-risk adjusted price of 

the portfolio of options. Pricing options individually charges a premium for the 

probability and severity of default for each option. Nevertheless, when 

considering a portfolio of options, the probability and severity of default of the 

portfolio is not equivalent to the sum of those of each of the options. 

Model Setting: Adding another long call to a long call 

To illustrate the impact of portfolio diversification effects on the option 

price, the following example is set up. Counterparty A buys from counterparty B a 

European call option on the underlying asset S1. Again A is assumed to have no 

credit risk while B is risky. Consequently, the call is vulnerable and has values at 

maturity of , and during the life time of the option of el,, , equal to those 

defined in equations (3) and (4), respectively. 

An instant later counterparty A buys from B another European call option 

on the underlying asset S2. This option has the same exercise date as the call 

before. The correlation between the two underlying assets is given by ps~,s2. 
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As it was mentioned before, the first option el, can be correctly priced as 

a vulnerable call using Klein and Inglis' (2001) model. However, the second call 

k t  cannot be priced using the same model because, among other reasons, 

there is no longer a fixed default boundary. It also should be apparent that the 

credit risk of the second call cannot be less than the credit risk of the first call. 

Similar to the methodology used for the netting analysis, the value of the 

second call can be found as a conditional price, 

Where I';('l,T)is the Klein and lnglis (2001) price and I';(kl,T +k2,T) is 

given by: 

Again, the risk-neutral expectation at time t is given by: 



It can be shown that for a portfolio consisting of two long calls equation 

(23) can be written as follows: 

Where t(e,,,,)and e(e2,T) are the unconditional vulnerable option prices 

and I is a risk increment given by: 

(1 - av'2,T 

*.. + [D* ?:Tcz>2,T I ] [  D*+c2,T j V T < D . + C ~ . T  



The risk-neutral expectation of the risk increment is given by: 

The increment I ,  is always negative, representing the amount by which 

the portfolio of two options is riskier than the two options priced on a stand-alone 

basis. In other words, A will pay less for the portfolio of options than the sum of 

the option prices when priced as if they were the first and only one to be traded. 

The portfolio diversification determines the magnitude of I , .  Numerical analysis 

will show that if the option payoffs are negatively correlated, I ,  will be low. 

Estimation of conditional option prices with portfolio effects 

The initial portfolio is defined as c(e,,T), containing a long position in a 

vulnerable European call with the base case parameters in Table 1. Then 

another long position in a vulnerable European call option , is added, with 

parameters that are initially chosen to equal those of the base case. Parameters 

of both options are later equally changed as defined in Table 7. 



Table 7: PriceslConditional prices for different parameters values. With portfolio effects. 

Base case: Si =S1=S2=40, Kl=K2=40, as! =osl=os2=0.20, pv,S, = p ~ , ~ ~ = p ~ , ~ ~ = O .  pSl,S2=0, V=100. 

~ '=90 ,  T-t=3, a=0.25, ov=0.20, r=5% unless otherwise noted. Monte-Carlo simulation performed 
with 60.000.000 runs. Prices converge to two decimal digits. 

Table 7 shows that the risk increment is always negative, i.e. e2, is priced 

e ( G T  it 1.T 

below the Klein and lnglis (2001) model price. Similarly to what was done when 

+ I  1.74 -0.76 +5.49 

I ,  e, , t  
(Monte- 
Carlo) 

e 2 , t  

(Monte- 
Carlo) 



Modeling netting effects, Figure 2 shows the effect of correlation, P S ~ , S ~ ,  on the 

price of the conditional call e(k,, iGT when considering portfolio effects. 

Figure 2: Conditional prices, with portfolio effects for different correlations 

Base case for calls on underlyings with varying correlation: S1=S2=40, K1= K2=40, osl=os2=0.20, 
p ~ , ~ ~ = p v , ~ ~ = O ,  V=100, ~ * = 9 0 ,  T-t=3, a=0.25, ov=0.20, r=5%. ps1,s2 is changed on increments of 
0.1, from -1 to 1. Each value is based on simulations of 4.000.000 runs. 

With perfect negative correlation, the probability of default slightly more 

than doubles but the severity is similar to that of the default under a single option. 

Consequently, credit risk is appropriately charged when pricing the portfolio at 

the price of two stand-alone vulnerable options and the conditional price 

(6,,T 1 will be close to k(k, ,T) ,  i.e. the increment I ,  will be low. 
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At a contrast, positive correlation increases the severity of a default and 

also increases the probability of default. VT hits the default barrier D* + C,,, + C,,, 

sooner than it hits the stand-alone barrier D* + C, , . Apparent from Figure 3 , the 

combined effect of increasing probability and severity of default in case of 

positive correlation is stronger than the effect of increasing the probability in case 

of negative correlation. Consequently, A will pay less for the second option if the 

correlation between the options underlyings increases. 



CHAPTER 6: CONCLUSIONS 

Credit risk of the option writer can significantly lower the value of a 

portfolio of options. It is well known that a market participant will pay less for a 

vulnerable option than he would for a non-vulnerable option. Pricing models have 

been developed by Johnson and Stulz (1987), Hull and White (1995), Jarrow and 

Turnbull (1995), Klein (1996) and Klein and lnglis (2001). This paper builds on 

the model of Klein and lnglis (2001) which employs a variable default boundary, 

links option payouts to the firm value, allows deadweight costs, other liabilities of 

the option writer and correlation between the assets of the option writer and 

option underlying. 

The next level of appropriate credit-risk adjustment acknowledges the 

previously existing option portfolio and measures the impact of the new 

transaction on the credit exposure. Consideration of netting and portfolio effects 

will change the value of an option portfolio, the price of a transaction is then a 

conditional or incremental price with regard to the prior existing portfolio. A 

netting agreement increases the value of a portfolio that consists of bought and 

sold options. Even without netting, the valuation of vulnerable options in a 

portfolio, as opposed to an individual valuation, influences the value and 

consequently the conditional price of a transaction. Portfolio effects, i.e. effects 
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of correlation between the option underlyings on credit risk, are present in a 

portfolio consisting of bought options only. 

Positive correlation between option underlyings increases the credit-risk 

adjusted value of a portfolio of long and short options, but decreases the value of 

a portfolio of long options only. This influences the price at which a counterparty 

is willing to enter in an additional transaction and also implies that the value of a 

static portfolio of vulnerable options is sensitive to changes in correlation 

between underlyings. 

Figure 3 shows what could be called an evolution of credit-risk adjusted 

option pricing. A market participant that does not price the default risk of an 

option writer will pay the credit-risk-free price for a long option, in this case, the 

Black-Scholes price for a plain-vanilla call. Advancement to the recognition of 

credit risk significantly reduces the willingness to pay for the option. Furthermore, 

acknowledging the positive impact of portfolio valuation in a portfolio of long and 

short options leads to a value closer to the fair price of the long option. Finally, 

recognition of netting effects yields the fair price, conditional on the prior existing 

option portfolio. 



Figure 3: PriceslConditional prices of a long call for different pricing models, when added 
to a short call. 

Parameter 

Base case: S=S1=S2=40, K1= K2=40, sigma(S)=osl=os2=0.20, r h ~ ( V , S ) = p ~ , ~ ~ = p ~ , ~ ~ = O ,  pS1,S2=0, 
V=100, ~ ' = 9 0 ,  T-t=3, a=0.25, ov=0.20, r=5% unless otherwise noted. Monte-Carlo simulation 
performed with 60.000.000 runs. 

A market participant that correctly models netting and portfolio effects may 

accept to write an option for a premium below the credit-risk-free price and buy 
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an option for a premium above the stand-alone price of a vulnerable option. In 

both cases the seemingly unfavourable deal offsets exactly the beneficial change 

to the credit risk of the option portfolio. In real life, a trader may not have the 

incentive to price an option according to this model, because profit & loss 

calculation for options is predominantly based on credit-risk-free prices. Also, as 

long as financial institutions do not compete on the basis of fair credit-risk 

adjusted prices; there may be no incentive to reward a customer for a reduction 

of credit risk by adjusting the transaction price accordingly. 

Price transparency and consequently competitiveness is by definition 

limited because the option prices derived in this paper depend on the existing 

option portfolio. This may give the opportunity to a financial institution to generate 

excess profits when quoting transactions differently from the "fair" conditional 

price. Furthermore, if not all competing financial institutions price sensitive with 

regard to netting and portfolio effects, the one that acknowledges credit risk 

reduction of a trade will have a competitive advantage and will be able to offer a 

comparatively lower price. 



APPENDICES: MATLAB CODE 

Appendix A: Re-estimation of Klein and lnglis (2001) prices 

% Calculation of the Option Price for a Vanilla Call Option 
% Uses Monte-Carlo Simulation's approach 
% 
% Author: Martin Hammer and Patricia Restrepo. 05/25/2007. 
Yo 
%This function calculates price of a vulnerable option, 
% using the pricing model of Klein and lnglis (2001), 
% based on the followings parameters: 
% 
% Inputs: 
% SO= Asset Price 
% X= Strike Price 
% r=lnterest rate ke.  0.05) 
% sunder= standard ~ e v k t i o n  of Underlying (i.e. 0.1) 
% sAsset= Standard Deviation of Counterparty Asset (i.e. 0.1) ~. 

% VO= Asset value of the option writer 
% T= Time to maturity [years] 
% runs= Numbers of runs (simulations) 
% rho= Correlation between asset of the option writer and underlying 
% alpha= deadweight costs 
% FDB = fixed default boundary, value of other liabilites of option writer 
% Type = 'Call' or 'Put' 

%Outputs: 
% OPTION-KI= Price of the vulnerable European option, 
% Note: where Klein and lnglis (2001) choose a threedimensional tree 
% for the numerical approximation, this function employs 
% a Monte-Carlo-Simulation 

%When using the function, use the following notation: 
% MCoption-Proj-KI(S0, X, r, sunder, sAsset, T, FDB, alpha, VO, rho, runs, type) 

function OPTION~KI=MCoption~Proj(SO, X, r, sunder, sAsset, T. FDB, alpha, VO, rho, runs, type) 
switch type 

case 'Call' 
type-flag=l ; 
case 'Put' 
type-flag=-?; 

end 

%Error checking: 
if nargin-=I2 

disp=('lncorrect number of inputs, check again') 
return 

end 
if r> l  

disp=('lnterest Rate should be input in decimals, the value is too high') 
return 

end 
if r<O 



disp=('lnterest Rate should be positive, please check again') 
return 

end 
if sUnderc0 

disp=('Volatility should be positive, please check again') 
return 

end 
if sAssetC0 

disp=('Volatility should be positive. please check again') 
return 

end 
if SOcO 

disp=('Stock prices should be positive, please check again') 
retum 

end 

%Creation of uncorrelated random variables 
RandomNumbers=randn(runs.2); 
%Cholesky Factorization 
c=[l rho;rho I] ;  
R=chol(c); 
RandomCorrelated=RandomNumbers'R; 
RandomUnder=RandomCorrelated(:,l); 
RandomAsset=RandomCorrelated(:,2); 

%Create vector of asset returns 
ReturnAsset=(r-sAssetA2/2)'T+RandomAsset'sAssetsqrt(T); 
%Create vector of correlated underlying returns 
ReturnUnder=(r-sUnderA2/2)'T+RandomUnderWnder*sqrt(T); 

OPTION-KI=(SO'exp(ReturnUnder)'type-flag>Qpe-flag+X) ... %Condition: Option in the money 
.*( VO'exp(ReturnAsset)~(FDB+(SO'exp(ReturnUnder)-X)'Qpe~flag)) ... %Condition: Not bankrupt 
.'(SO'exp(ReturnUnder)-Xytype-flag; %Option Pay-off 

OPTION-KI=OPTION-KI ... %Add to above option pay-off 
+( SO'exp(ReturnUnder)'type-flag>X'type-flag) ... %Condition: Again, option in the money 
.'( VO'exp(ReturnAsset)~(FDB+(SO'exp(ReturnUnder)-X)'Qpeflag)) . %Condition: writer bankrupt 
.'( SO'exp(RetumUnder)-X)'type-flag ... %Option Pay-off 
.'(l-alpha)'VO.*exp(ReturnAsset)./(FDB+(SOexp(ReturnUnder)-X)'Qpeflag); %reduced by recovery 

OPTION-KI=mean(OPTION-Kl)'exp(-r'T); %Average and discount 



Appendix B: Estimation of portfolio prices withlwithout netting 

% Calculation of the portfolio value (vulnerable Vanilla Call Options) 
% Uses Monte-Carlo Simulation's approach 
Yo 
% Author: Martin Hammer and Patricia Restrepo. 05/25/2007. 
Yo 
% This function calculates the value of a portfolio of 
% two vulnerable options, one long (Index 1) and one short (Index 2), 
% extending the pricing model of Klein and lnglis (2001), 
% based on the followings parameters:: 
% 
% Inputs: 
% S l  ,S2= Asset Prices 
% K l  ,K2= Strike Prices 
% r=lnterest rate (i.e. 0.05) 
% sunder1 ,sUnder2= Standard Deviations of Underlyings (i.e. 0.1) 
% sAsset= Standard Deviation of Counterparty Asset (i.e. 0.1) 
% VO=Asset value of the option writer 
% T= Time to maturity [years] 
% nsims= Numbers of runs (simulations) 
% rhoAsset1, rhoAsset2= Correlation between asset of the option writer and underlying 
% alpha= deadweight costs 
% rho12= Correlation between underlyings 
% FDB =fixed default boundary, value of other liabilites of option writer 
% Typel, Type2= 'Call' or 'Put' 

% Outputs: 
% [OPTION-NoN,OPTION-N]= Portfolio value without and with considering netting effects. 

% When using the function, use the following notation: 
% MCoption-Proj-HaRe(T,VO,FDB, sAsset, rhol2,alpha,r, nsims, ... 
YO S l  ,Kl ,sUnderl,rhoAssetl ,type1 ,S2,KZ,sUnderZ,rhoAsset2,type2) 

function [OPTION-NoN, OPTION-N]=MCoption-Proj-HaRe(T,VO,FDB, sAsset, rhol2,alpha,r, nsims, ... 
S1 ,Kl ,sunder1 ,rhoAssetl ,type1 ,... 
S2,K2,sUnder2,rhoAsset2,type2) 

switch type1 
case 'Call' 
typel-flag=l; 
case 'Put' 
typel-flag=-1; 

end 
switch type2 

case 'Call' 
type2_flag=l; 
case 'Put' 
type2_flag=-1; 

end 

%Error checking: 
if nargin-=18 

disp=('lncorrect number of inputs, check again') 
return 

end 

if abs(rhol2)==1 
if rhoAssetl-=rhoAsset2 
disp=('lf assets are perfectly correlated, the rhoAssetl and rhoAsset2 must be equal') 



return 
end 
end 

%Creation of uncorrelated random variables 

XCHOLESKY FACTORIZATION 
if abs(rhol2)<1 
%3x3 correlation matrix i f  rho12 does not equal 1 or -1 
RandomNumbers=randn(nsims.3); 
c=[l rho1 2 rhoAssetl ;rho1 2 1 rhoAsset2; rhoAssetl rhoAsset2 I]; 
R=chol(c); 
RandomCorrelated=RandomNumbers'R; 
RandomAsset=RandomCorrelated(:,3); 
RandomUnderl =RandomCorrelated(:,l ); 
RandomUnder2=RandomCorrelated(:,2); 
else 
%2x2 correlation matrix i f  rho12 equals 1 or -1 
%error checking above ensures that rhoAssetl=rhoAsset2 
RandomNumbers=randn(nsims.2); 
c=[l rhoAssetl;rhoAssetl I ] ;  
R=chol(c); 
RandomCorrelated=RandomNumbers'R; 
RandomAsset=RandomCorrelated(:,2); 
RandomUnderl =RandomCorrelated(:.Ik 
~andom~nder2=~andom~orre la ted~ l  jirho12; 
end 

%create vector of asset returns 
ReturnAsset=(r-sAssetA2/2)*T+RandomAsset'sAsset'sqrt(T); 
%create vector of correlated underlvina returns 

%Define payoff on first option 
X=max((SI 'exp(ReturnUnder1 )-K1 )'typel-flag,O); 
%Define payoff on second option 
~=max( (~2 'ex~(~eturn~nder2 ) -~2 ) ' ty~e2- f la~ ,0 ) ;  
%Define asset value at maturitv 

%Price component for the case that option writer is solvent 
OPTION-SOLVENT=(vr>=(FDB+X-Y)).*(X-Y); 
%Price component for the case that option writer is insolvent, 
%NO NElTING 
OPTION-NoN=(VT<(FDB+X-Y)).'(Y==O).*(X>O(I -alpha).*VT.'X./(FDB+X); 
OPTION-NON=OPTION-NON+(VT<(FDB+X-Y)).'(X==O).*(Y>O).*(-Y); 
OPTION~NoN=OPTION~NoN+(VT<(FDB+X-Y)).*(X=Y).*(YO).*((l-alpha).'(VT+Y).'X./(FDB+X)-Y); 
OPTION~NoN=OPTION~NoN+(VT<(FDB+X-Y)).*(Y~X).*(X~O).*((l-alpha).*(VT+Y).*X./(FDB+X)-Y); 
OPTION~NoN=OPTION~NoN+OPTION~SOLVENT; 

OPTION~NoN=mean(OPTION~NoN~exp(-r'T);%Aerage and discount 

%Price component for the case that option writer is insolvent, 
W I T H  NElTING 
OPTION-N=(VT<(FDB+X-Y)).'(Y==O).*(X>Oy( -alpha).'VT.'X./(FDB+X); 
OPTION-N=OPTION-N+(VT<(FDB+X-Y)).'(X==O).*(Y>O).'(-Y); 
OPTlON~N=OPTlON~N+(VT<(FDB+X-Y)).'(X~=Y).*(YO).*(l -alpha).'VT.'(X-Y)./(FDB+X-Y); 
OPTlON-N=OPTlON-N+(VT<(FDB+X-Y)).*(Y>X).*(X>O).*(X-Y); 
OPTION~N=OPTION~N+OPTIONOPTION_N=OPTION_N+OPTION_SOLVENT;SOLVENT; 
OPTION-N=mean(OPTION-N)'exp(-r*T);%Average and discount 



Appendix C: Estimation of portfolio prices with diversification 
effects 

% Calculation of the Option Price for a vulnerable Vanilla Call Option 
% Uses Monte-Carlo Simulation's approach 
Yo 
% Author: Martin Hammer and Patricia Restrepo. 05/25/2007. 
Yo 
% This function calculates the value of a portfolio of 
% two vulnerable long options, 
% extending the pricing model of Klein and lnglis (2001), 
% based on the followings parameters: 
Yo 
% Inputs: 
% S1 ,S2= Asset Prices 
% K1 ,K2= Strike Prices 
% r=lnterest rate (i.e. 0.05) 
Oh sunder1 ,sUnder2= Standard Deviations of Underlyings (i.e. 0.1) 
% sAsset= Standard Deviation of Counterparty Asset (i.e. 0.1) 
% VO=Asset value of the option writer 
% T= Time to maturity [years] 
% nsims= Numbers of runs (simulations) 
% rhoAsset1, rhoAsset2= Correlation between asset of the option writer and underlying 
% alpha= deadweight costs 
% rhol2= Correlation between underlyings 
% FDB =fixed default boundary, value of other liabilites of option writer 
% Typel, Type2= 'Call' or 'Put' 

% Outputs: 
% OPTION-PF= Portfolio value considering portfolio diversification effects 

%When using the function, use the following notation: 
% MCoption-Proj-PF(T,VO,FDB, sAsset, rhol2,alpha,r, nsims ,... 
% S1 ,K1 ,sunder1 ,rhoAssetl ,type1 ,S2,K2,sUnder2,rhoAsset2,type2) 

function [OPTION-PF]=MCoption-Proj-HaRe(T.VO,FDB, sAsset, rhol2,alpha,r, nsims, ... 
S1 ,Kl ,sunder1 ,rhoAssetl ,type1 ,... 
S2,K2,sUnder2,rhoAssetZ,type2) 

switch type1 
case 'Call' 
typel-flag=l; 
case 'Put' 
typel-flag=-1 ; 

end 
switch type2 

case 'Call' 
type2_flag=l; 
case 'Put' 
type2_flag=-I ; 

end 

%Error checking: 
if nargin-=18 

disp=('lncorrect number of inputs, check again') 
return 

end 



if abs(rhol2)==1 
if rhoksetl-=rhoAsset2 
disp=('lf assets are perfectly correlated, the rhoksetl and rhoAsset2 must be equal') 
return 

end 
end 

%Creation of uncorrelated random variables 

%CHOLESKY FACTORIZATION 

if abs(rhol2)<1 
%3x3 correlation matrix i f  rho12 does not equal 1 or -1 
RandomNumbers=randn(nsims,3); 
c=[l rho12 rhoAssetl;rhol2 1 rhoAsset2: rhoksetl rhoAsset2 I]; 
R=chol(c); 
RandomCorrelated=RandomNumbers'R; 
RandomAsset=RandomCorrelated(:,3); 
RandomUnderl =RandomCorrelated(:,l); 
RandomUnder2=RandomCorrelated(:,2); 
else 
%2x2 correlation matrix i f  rho12 equals 1 or -1 
%error checking above ensures that rhoAssetl=rhoAsset2 

RandomUnderl =RandomCorrelated(:,l); 
RandomUnder2=RandomConelated(:,l)'rhol2; 
end 

%create vector of asset returns 
ReturnAsset=(r-sAssetA2/2)'T+RandomAsset'sAsset'sqrt(T); 
%create vector of correlated underlying returns 
ReturnUnderl =(r-sunder1 A2/2)'T+RandomUnder1 'sUnderl*sqrt(T); 
ReturnUnder2=(r-sUnder2YR)'T+RandomUnder2'sUndeR'sqrt(T); 

%Define payoff on first option 
X=max((Sl'exp(ReturnUnderl)-K1)'typel-flag,O); 
%Define payoff on second option 
Y=max((S2'exp(ReturnUnder2)-K2)'type2-flag,O): 
%Define asset value at maturity 

%Price component for the case that option writer is solvent 
OPTlON-SOLVENT=(VT>(FDB+X+Y)).*(X+Y)+(VT==(FDB+X+Y)).*(X+Y); 
%Price component for the case that option writer is insolvent, 
OPTION-INS=(VT<(FDB+X+Y)).'(1 -alpha).*VT.'(X+Y).I(FDB+X+Y); 
OPTION~PF=OPTION~INS+OPTIONOPTION_PF=OPTION_INS+OPTION_SOLVENT;SOLVENT; 
OPTION-PF=mean(OPTION-PF)'exp(-r*T);%Average and discount 



REFERENCE LIST 

Bergman, W. J., R.R. Bliss, C.A. Johnson, and G.G. Kaufman. Netting, Financial 
Contracts, and Banks: The Economic Implications. Market Discipline in 
Banking: Theory and Evidence. (2003). Vol. 15, 303-334. 

Black, F., and M. Scholes. The valuation of options and corporate liabilities. 
Journal of Political Economy, 8 (1973), 637-659. 

Cooper I. and A. Mello. Corporate Hedging: The relevance of contract 
specifications and banking relationships. European Finance Review, 2 
(1 999), 195-223. 

Deloitte Development LLC (2007). Global Risk Management Survey: 5th edition. 
Web source. 
http://www.deloitte.com/dtt/cda/doc/content/dttttfsi~Global%2ORisk0h2OMa 
nagement%20Survey-Fifth%20Edition~20070328.pdf 

Duffie, D., and M. Huang. Swap rates and credit quality. Journal of Finance, 51 
(1 W6), 92 1-949. 

Hull, J.C. Options, futures, and other derivatives. 6th ed. Prentice Hall, (2006). 

Hull, J.C., and A. White. Valuing derivative securities using the explicit finite 
difference method. Journal of Financial and Quantitative Analysis, 25 
(1 990), 87-99. 

Hull, J.C., and A. White. The impact of default risk on the prices of options and 
other derivative securities. Journal of Banking and Finance, 19 (1 995), 
299-322. 

Jarrow, R., and S. Turnbull. Pricing derivatives on financial securities subject to 
credit risk. Journal of Finance, 50 (1 9954, 53-85. 

Johnson, H., and R. Stulz. The pricing of options with default risk. Journal of 
Finance, 42 (1 987), 267-280. 

Klein, P. Pricing Black-Scholes options with correlated credit risk. Journal of 
Banking and Finance, 50 (1 996), 121 1-1229. 



Klein, P., and M. Inglis. Pricing vulnerable European options when the options 
payoff can increase the risk of financial distress. Journal of Banking and 
Finance, 25 (2001 ), 993-1 01 2. 

Merton, R.C. On the pricing of corporate debt: the risk structure of interest rates. 
Journal of Finance, 29 (1 974), 449-470. 

Schedule to the 2002 Master Agreement. ISDA, International Swaps and 
Derivatives Association. 

2002 Master Agreement. ISDA, International Swaps and Derivatives Association. 


