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Abstract 

In this thesis we study an existing Analytic Photon Distribution (APD) method For SPECT 
imaging. The method uses muIti-dimensional numerical integration to calculate photon 

propagation and detection probabilities for a SPECT camera system. This calculation is 

extremely time-consuming in the original implementation of the method. Fast computa- 

tion of these probabilities is especially challenging for scattered photons, due to the la.rge 

number of possible photon paths and the high dimension of the integration problem. The 

choice of integration method, however, can significantly improve the speed of the calcula- 

tion. Replacing Romberg integration, which was used in the original implementation, with 

a Gaussian quadrature method allows us to greatly reduce the calculation time. The photon 

distributions generated using the improved quadrature method are in good agreement with 

those generated by the original program. 

Keywords: Numerica.1 Integration; Medical Imaging; SPECT; Gaussian Quadrature; Romberg's 

Method 

Subject Terms: Numerical Integration; Tomography, Emission; Diagnostic Imaging 
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Chapter 1 

Background 

This thesis is Fundamentally about finding an eficient and accurate method for a large nu- 

merical integration problem. Understanding the context of this problem, however, requires 

an understanding of both basic medical imaging concepts and of the specific calculation from 

which the problem arises. This background chapter is therefore divided into three sections. 

The first gives an overview of Single Photon Emission Computed Tomography (SPECT). 

The second discusses the Analytic Photon Distribution (APD) method and the numerical 

integration problem that arises from it. The final section gives an overview of the relevant 

numerical integration methods. 

1.1 Overview of SPECT 

SPECT is a commonly used functional medical imaging modality. A functional imaging 

modality gives information about aspects of the body's physiology, such as blood flow or 

cell metabolism. This is in contrast to modalities such as X-ray computed tomography (CT) 

or Magnetic Resonance Imaging (MRI) which primarily depict the anatomy of the patient. 

The SPECT imaging process first requires administering a radiopharmaceutical to the 

patient. A radiopharmaceutica,l is a chemical compound which mimics some nutrient or 

other biological compound (glucose, for example), labeled with a radioactive isotope. After 

the radiopharmaceutical is administered to the patient, it is absorbed by some targeted organ 

in the body. The radiation emitted by the tracer can then be detected using a camera system. 

The camera acquires a set of discrete two-dimensional projections from multiple angles 

around the patient. A mathematical algorithm is then used to reconstruct these projections 
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into a three-dimensional image representing t-he distribution of the radiopharmaceutical in 

the body. Based on this information, the physician can make a diagnosis. 

The two most common applications of SPECT are perfusion studies and detection of 

metastatic tumors. In a perfusion study, one uses the radiotracer to measure blood flow in 

a particular organ, such as the heart, lungs, or brain. A reduced amount of blood flow in 

some regions may indicate a health risk to the patient. In a tumor study, on the other hand, 

the physician looks for regions that show higher uptake of the radiotracer than surrounding 

tissue. Cells showing abnormally high uptake rates may be cancerous. 

While a complete treatment of SPECT is not necessary in the discussion of this work, 

it is important to understand some of the fundamental concepts of the imaging process. 

In particular, the concepts of ~o l l im~t ion ,  energy resolution and photon interaction with 

matter play an important part in the calculations done by the APD method, upon which 

this work is based. As such, we will briefly discuss these three elements of SPECT imaging. 

For a more thorough discussion of SPECT, see [AW04], particularly Chapters 2, 7 and 22. 

1.1.1 Collimation 

A gamma camera detects the photons emitted by the radiotracer using a flat scintillator 

crystal, usually sodium iodide (NaI). When a photon strikes the crystal, the energy from that 

photon creates a flash of light, which is detected by an array of photomultiplier tubes (PMT) 

located behind the crystal. These tubes produce an electrical current which is detected by 

the accompanying electronics, which then register this impact as an event. However, while 

the crystal and PMT array detect the location at which the impact occurred, they are 

not capable of determining the direction from which the photon originated. So, if photons 

are just allowed to strike the detector crystal at any angle, there is no hope of obtaining a 

meaningful reconstruction since every detected photon could have originated from anywhere. 

To solve this problem, the SPECT camera system consists of another component known 

as a collimator. A collimator is a thick slab of heavy material (typically lead) which is 

perforated by an  array of long, narrow channels. The collimator sits on top of the detector 

crystal surface and, in principle, ensures that every photon detected by the crystal must 

have originated from somewhere within the fairly narrow field of view of the collimator. A 

simple reconstruction method will then assume that every photon detected originated from 

somewhere along the straight line normal to the detector at the point where the photon 

was detected. More realistic methods will take into account that the field of view of each 
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Figure 1.1: Schematic diagram of a typical SPECT camera system. The collimator prevents 
photons from being detected unless they follow a path that is almost normal to the detector 
surface. Taken from [Van04], with permission of the author. 

collimator hole is actually a cone, defined by the angle of acceptance of the collimator. 

Figure 1.1 gives an illustration of a typical SPECT camera setup, including the collimator. 

Collimation considerably reduces the number of photons detected by the camera system, 

by a factor of about As a result, SPECT requires a fairly long acquisition time in 

order to record a statistically significant number of events. 

1.1.2 Energy Resolution 

All photons originating from a radiotracer are emitted with a specific energy - or for some 

isotopes, one of several possible energies. Technetium-99m1 for instance, emits photons 

with energy 140 lteV, while Indium-111 emits photons with 171 or 245 keV. In principle, 

one would like to only record collisions with the detector crystal where the incident photon's 

energy matches with that of the radiotracer, to avoid detecting radiation from other sources. 

Unfortunately, in practice the NaI crystals that are most often used in a SPECT camera 

system are only able to measure the energy of the incident photon with limited accuracy 

- typically 5-10%. The measurement of the photon's energy is modeled as a Gaussian 

distribution centred at  the true energy value. 

As a result of the detector's limited energy resolution, the camera system has to accept 

photons detected within a certain range of' energies (the energy window) as having been 

emitted by the radiotracer. For instance, with Technetium-99m one typically uses a 20% 
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energy window of 126-154 keV. While the use of an energy window is necessary in order to 

acquire sufficient data to create a meaningf~d image, it has the undesirable side-effect that 

photons from other sources, or scattered photons from the radiotracer (see next section) 

will be detected and contaminate the image. 

1.1.3 Photon Interactions with Matter 

As the emitted photon travels through the body, there are several ways in which it can inter- 

act with body tissue before reaching the camera detector. Sometimes the photon interacts 

with an atom and is completely absorbed, and thus never reaches the detector. This process 

is known as attenuation (or photoelectric absorption), and can distort both the quantitative 

and qualitative accuracy of an image, because fewer photons will be detected from sources 

deep within the body, giving the appearance of reduced activity in those areas. 

A second type of photon interaction occurs when the incident photon strikes an electron 

and scatters off of it. This phenomenon is known as Compton (or incoherent) scattering. In 

addition to changing the direction of the photon, Compton scattering also causes it to lose 

energy, as some is transferred to the struck electron. The amount of energy lost depends on 

the magnitude of the scattering angle 8. The energy of the photon after scattering, Ef, can 

be determined by the formula: 

where Eo is the initial energy of the incident photon, and 

is the ratio of the initial photon energy to the rest mass energy of the electron. The 

probability that a photon interacts with a free electron and scatters with angle 0 is given 

by the Klein-Nishina cross-section: 

do  r2 a2(1 - c o d ) 2  - (0, a )  = + (1 + c0s2 0) 
dR 2 1 + a (1 - cos 8) 

(1.3) 
where a: is as defined in (1.2), and ro is the classical electron radius. Note that the Klein- 

Nishina cross-section gives the probability of photon interaction with a free electron. Since 

the majority of electrons are bound to an atom, a multiplicative correction known as the 

incoherent scattering function must be applied to the cross-section when using it in practice. 
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Figure 1.2: Illustration of a Compton-scattered photon. The photon on the left has scattered 
at  site S and then been detected by the camera system. Without scatter correction, the 
reconstruction algorithm will assume that the photon originated from somewhere along the 
dashed line, when in fact no activity exists there. 

This scattering function represents the probability that an electron, which acquired energy 

from a scattering photon, will ionize or escape from the atom. [We1971 

A third type of photon interaction is known as Rayleigh (coherent) scattering, which 

occurs when the electromagnetic field of an atom deflects the incident photon. In this case 

the photon changes direction without losing any energy. Rayleigh scattering occurs mostly 

for low energy photons (50 keV or less), and is a much less prevalent effect in SPECT 

imaging than Compton scattering. It will not be discussed further in this work. 

Compton scattering is a significant problem in SPECT imaging because it gives false 

spatial information about the distribution of activity in the patient. Although a scattered 

photon will lose energy, it can still have sufficient energy to be detected within the energy 

window of the camera system. For instance, a 140 keV photon scattering through a.n angle of 

57" will have a final energy of 126 keV, and thus is still likely to be detected in a 20% energy 

window. A nai've reconstruction algorithm will then assume that the photon originated 

horn somewhere in the region defined by the collin~ator's field of view, when in fact it came 

from elsewhere. Compton scattering thus results in a degraded image, where there will be 

reduced contrast around regions of high activity, as well the appearance of increased overall 

activity. There may also appear to be activity where none actually exists. Figure 1.2 gives 

an illustration of Compton scattering and how it can a.ffect the reconstruc.tion. 
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1.2 The APD method 

In this section we describe the Analytic Photon Distribution (APD) method, with particular 

emphasis on calculations requiring numerical integration. 

1.2.1 Overview of APD 

The APD method calculates the point spread function (PSF) for a given distribution of 

activity, separated into primary (unscattered) and scattered components. The PSF is a 

two-dimensional function which represents the computed probabilities that a photon emitted 

by the radiotracer from some point in the patient volume is detected at  any point on the 

detector. In other words, the PSF shows the expected distribution of detected photons on 

the camera head due to a point source, for a given a,cquisition angle. Unlike real SPECT 

data, the distribution calculated by APD is completely noiseless. APD takes into account 

the distribution of activity in the body (the activity map) as well as the distribution of 

body tissues (the attenuation map). The attenuation map is necessary for accurate PSF 

calculation, since denser tissues are more likely to scatter or attenuate photons. Both of 

these maps are represented as discretized volumes, consisting of cubical voxels. The surface 

of the detector is also modeled as a discrete 2-dimensional pixel grid. The matrix size used 

in APD is 64 x 64 x 64 for the activity and attenuation maps, and 64 x 64 for the detector 

grid. 

The fundamental idea behind APD is that the cdculation of PSF probabilities relies 

on two different types of pa.rameter. Some parameters, such as the matrix size, imaging 

geometry, and the energy window used for acquisition, are completely independent of the 

actual patient being imaged. Other parameters, such as the activity and attenuation maps, 

will be different for each patient. APD separates the PSF calculation into two components 

- one independent of the patient, and one which depends on patient-specific data. The 

first component can be precalculated and stored in a set of lookup tables, rather than 

recalculating it For every patient. Thus we can greatly reduce the amount of calculation 

required to do full PSF calculations for multiple patients. 

The original APD method was developed in [We197], and explicitly calculates the PSF for 

every voxel containing activity. Doing so resulted in extremely long calculation times, which 

led to the development of the APDI method several years later [Van04]. APDI (standing 

for APD with Interpolation) only calculates the PSF for a subset of the voxels containing 
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activity, and then estimates the PSFs for the remaining voxels using trilinear interpolation. 

It was found that this modification to the program reduced computation time by a factor 

of 10 to 20. Furthermore, the differences from the exact APD calculation introduced by 

interpolation were sma.11, relative to the statistical uncertainty already present in SPECT 

projection data. In t h s  work, the distinction between APD and APDI is not important, as 

we focus on parts of the calculation that are identical in both methods. 

Because APD gives a PSF which sepa,rates primary from scattered photons, it can be 

used to correct for scatter as part of a reconstruction algorithm. [Van041 describes how APD 

can be used in tandem with Ordered Subsets Expectation M&~imization (OSEM - a well- 

known iterative image reconstruction algorithm) to produce a scatter-corrected image. This 

method is referred to as OSEM-APDI. The main problem with APD is that the calculation 

time is too long for it to be applied clinically - even after the APDI improvement. Photon 

scatter probabilities must be calculated for every source location and every possible scatter 

location, for both first-order scatter (photons that scatter only once before being detected) 

and second-order scatter (photons that scatter twice before being detected). To use APD in 

a reconstruction algorithm, we must also calculate the PSI? for each of the angles of rotation 

at  which the projection data was acquired - often 60 or 120 angles. The calculation of scatter 

probabilities requires a great deal of numerical integration, and this integration makes up 

the bulk of APD's calculation time. 

1.2.2 PSI? Calculations in APD 

The simplest APD calculation is of the primary photon distribution function (PDF). 4 

primary photon is one which travels straight from the source voxel to the detector pixel 

without scattering anywhere in the patient, as illustrated by the dash-dotted line in Fig- 

ure 1.3. Primary photons give accurate information about the distribution of activity in the 

body, and so the objective of scatter correction is to keep as much information as possible 

from primary photons, whlle eliminating false information obta.ined from scattered photons. 

The expected number of primary photons emitted from a source voxel . ? ' a d  detected in 

the detector pixel centred at 6, is given by [WelS'i]: 

where: 
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Figure 1.3: Schematic diagram showing possible photon paths from a source voxel centred 
at ~7 to the detector pixel centred at 6. The dash-dotted line represents a primary photon, 
travelling directly from s' to 6 without scattering. The first-order scattered photon (solid 
line) originates from Sand  scatters once a t  position f before being detected at 6. Finally, 
the dashed line represents a second-order scattered photon, which scatters at position il and 
position < before finally being detected at  6. Taken from [VanO4;, with permission of the 
author. 

0 Q is the activity at .? - the number of photons emitted from that point during the 

acquisition, 

0 A, is the area of the detector pixel 

0 F(,C) is the probability that a photon arriving at  the collimator surface at an angle 

< with respect to the normal will pass through the collimator and strike the detector 

crystal, 

0 PE(B) is the probability that a photon that has Compton scattered though an angle 

B will be detected in the energy window being used, 

0 r,, is the distance between the points 6 and Z, 

d2n is the solid angle of a sphere centred at  5' and subtended by the detector 
4n7-n s 

pixel element d%, and 

0 p(y) represents the attenuation coefficient at position g along the path travelled by 

the phot,on. The attenuation coefficient of a particular tissue measures the likelihood 

that this tissue attenuates a photon with a given energy. 
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In this formula we can clearly see how the calculation is split into patient-dependent and 

independent components. The area integral over A, depends only on the geometry of the 

camera system, while PE(8) depends only on the initial energy of the emitted photons and 

the energy window being used. In contrast, the path integral of the attenuation from $ t o  

Fi depends on the attenuation map for a specific patient, and the activity level Q depends 

on the activity map for that patient. 

In APD, the area integral is calculated as a discrete function of source and detector 

position, and stored in a primary lookup table. The appropriate values can then simply be 

accessed from the table when calculating the PSF, rather than calculating them every time. 

This primary lookup table is quite small, as a primary photon can only be detected in a 

Fairly small subset of detector pixels under the source, due to the small acceptance angle of 

the collimator. As a result, there are relatively few table entries to be calculated. 

The PDF calculation is quite simple and does not require a significant amount of com- 

putation time. The calculation of PSFs for first and second-order scatter is much more 

complicated. The number of photons that originate from source voxel < scatter once, a.nd 

are then detected in pixel fi, (as illustrated by the solid line in Figure 1.3) is given by the 

scatter distribution function (SDF) [We197]: 

where 

and 

$$ (8, a )  is the Klein-Nishina scattering cross-section (l.3), 

p,(<) is the electron density in scattering voxel 6, 

0 is the Compton scattering angle, 

~ ( y ,  8) is the attenuation at  position y  for a photon which has scattered through an 

angle 0,  with ~ ( y )  p ( y ,  0)l, and 

' ~ o t e  that p now depends on 8, since attenuation depends on the energy of the photon as well as the 
density of the body tissue. Since the photon's energy changes after scattering through an angle 8 according 
to \:.i:! the attenuation function must take this into account. 
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a! is as defined in (1.2). 

All other symbols are defined as in (1.4). Note that since there are many voxels tf, where 

the photon can scatter before being detected at  ii,, SDFl must include a summation over 

all I voxels which could be scatter sites. 

In (1.5), all patient-independent factors are collected into the term K,ti,,, given in (1.6). 

This term requires integrating over the area of the detector pixel 6 as well as the volume 

of the scattering voxel fi,, for a total of five dimensions. Since this term depends only on 

geometry (as well as the energy window, which is constant), symmetry allows APD to avoid 

having to calculate the factor K,t,,, for every combination of source, scattering and detector 

site. Instead, the first-order lookup table can be parameterized by five physical dimensions: 

four distances and one angle, as illustrated in Figure 1.4. 

As with the primary lookup table, these KStinc factors are calculated for a discrete set 

of input values and stored as a lookup table. Unlike the primary lookup table, however, 

this table is quite large and expensive to calculate, even after taking advantage of symmetry 

as described above. For the level of discretization chosen for APD, the table consists of 

approximately eight million values, compared to about five thousand for the primary table. 

Roughly one quarter of these values are calculated directly using (1.6), while the rest are 

estimated using interpola.tion. 

Finally, the APD method also performs a second-order scatter calculation, for photons 

that scatter twice prior to being detected, as i11ustra.ted by the dashed line in Figure 1.3. 

The photon first scatters through an angle .rl) at voxel C, then through angle 4 at the second 

voxel ( before being detected. In principle, this calculation would require an 8-dimensional 

integral - a volume integral over each of the two scattering sites, plus an area integral over 

the detector pixel. Such a computation would be extremely expensive, however. Instead, 

the APD method uses the KstinC factors (1.6) from the first-order calculation, as well as a 

number of approximations, in order to simplify the second-order calculation. As a result, 

calculating the second-order SDF requires only performing one additional volume integral. 

The formula for the second-order SDF is [We197]: 
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Figure 1.4: Diagram of the five-dimensional parameterization of the APD lookup tables. 
The XY plane represents the detector surface, with the Z-axis being normal to the detector. 
The point s' represents the source voxel, while is the last scattering voxel and ii is the 
detector pixel. The five dimensions used to parameterize the table are the distances from 

to ii in the 2-direction (a) and XY-direction (b), from s' to Fin the 2-direction (c) and 
XY-direction (d), and finally the angle (e) between the vectors s'- Fand F- 6, projected 
into the XY plane. Taken from [Van04], with permission of the author. 

where 

The terms p ,  and p, are the electron density and attenuation coefficient for water, respec- 

tively. All other terms are as defined for the equations (1.4) and (1.5), with some small 

modifications where necessary. For example, the function PE can now take two arguments, 

to account for the Fact that the photon has lost energy by scattering through two angles. 

For the derivation of the second-order formula, see [We197j, Section 3.2.2. 

To calculate the factors KLttnc, APD first evaluates the volume integral in (1.8) for a 

discrete set of values and stores it in an intermediate table. These factors are then multiplied 

with the appropriate factors Ku,t,n, (1.6) and summed as per the formula. The final KLtlnc 

factors are stored in the second-order lookup table. The second-order lookup table can be 

parameterized in exactly the same way as the first, as specified in Figure 1.4. 

Higher-order scattered photons are also present in acquired SPECT data, but are rarely 
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detected since the photons will usually lose. too much energy to Fall within the energy 

window. APD does not perform any higher-order scatter caIculations, but rather makes a 

small adjustment to the second-order scatter contribution to compensate. 

As the formulas show, the PSF calculations in APD consist of two types of integral. The 

first type are path integrals of the attenuation values through the patient's body. These 

integrals must be calculated for each individual patient, and therefore camot be stored in a 

lookup table. The second type are the area and volume integrals that are part of the lookup 

table calcuiations. 

1.2.3 Features of the Integrands 

It is now useful to examine the integrands in the formulas (1.4), (1.6) and (1.8) in more detail 

to determine any important features. The primary photon integrand in (1.4) is the simplest 

to analyze. Rather than modelling the collimator as a discrete collection of holes through 

which photons can pass, APD models the collimator with the acceptance function F ( J ) ,  

described in Section 3.1 of [We197]. The larger the angle J that the incident photon makes 

with the detector normal, the smaller the probability that the photon will pass through 

the collimator and be detected. In fact, if E exceeds the maximum acceptance angle of the 

collimator, F ( J )  will be zero. As a result, F(<)  can be interpreted as forming a cone on 

the detector surface. The maximum probability of detection occurs when J is zero, at  the 

point on the detector surface directly under the source. I?(() then decreases radially until 

J exceeds the collimator acceptance angle, at which point it becomes zero. For a source 

point that is far away from the detector surface, the cone will be wide since the photon can 

be detected over a larger region on the detector, but a s  the source moves closer the cone 

becomes more narrow. 

The area integral in (1.4) will be over some portion of this cone, and possibly the entire 

cone if it is sufficiently small. As a result, in some cases the integrand will be nonsmooth 

since the cone has discontinuities in the first derivative. This includes the point a t  the top 

of the cone, as  well as the edge along the base where the integrand becomes zero. Figure 1.5 

gives an illustration for two different source locations. 

We now consider the first-order scatter integral (1.6). We can view this 5-dimensiona,l 

integral as an iterated integral, consisting of two parts. First, consider holding the location 

of the scattering point fixed, and simply integrating over the area of the detector pixel. This 

integral will be similar to t,he one seen in the primary case, as the integrand has a roughly 



CH,4PTER 1. BACKGRO LrND 
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Figure 1.5: Surface plot of integrsnd for primary lookup table, for two different source 
locations. The detector pixel grid is overlaid on the plot, and the source voxel was located 
above the centre pixel. In the left figure, the source is far away from the detector, and the 
photon can be detected in several pixels. The integrand in pixel A is nonsmooth because it 
contains part of the edge of the cone. The integrand in pixel C (the pixel directly below the 
source) is a.lso nonsmooth since it contains the tip of the cone. The integrand in pixel B is 
smooth, however. In the right figure, the source is quite close to the detector. As a result, 
the photon can only be detected in pixel D, directly below the source. The integrand is zero 
elsewhere. 

conical shape. However, since the photon has been scattered, the integrand is no longer 

radially symmetric a.bout the point directly below the scattering location. Photons on one 

side of the "cone" will have scattered through a larger angle than the photons on the other 

side, and thus will have lost more energy. Since the energy window is centred around the 

initial energy of the photon, these photons with less energy will have a lower probability of 

being detected. As a result, the "cone" will be slightly concave on one side. Figure 1.6 gives 

an example of this type of behaviour. 

To evaluate the three-dimensional volume integral, we then consider varying the location 

of the scattering point within the scattering voxel. The function being integrated is now some 

portion of the volume O F  the conical function that was just discussed - the part contained 

within one detector pixel. As we vary the coordinates of the scattering point, this function 

will have fairly smooth behaviour compared to the integrand at  the detector level. This is 

because the volume over the pixel area varies fairly smoothly as the cone-shaped function 
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Figure 1.6: Surface plot of integrand for the first part of the first-order scatter integral, with 
pixel grid overlaid. The source point is 14.46 cm above the scattering voxel, and slightly 
offset in the horizontal plane. The photons on the near side of the cone have been scattered 
through a larger angle than the photons on the far side of the cone, and thus have a lower 
probability of detection. As a result, the cone is slightly concave on that side. 

is translated on the detector surface (if the scatter point varies in the plane parallel to the 

surface) or as it broadens or narrows (as the distance of the scatter point from the detector 

surface varies). Figure 1.7 gives an example of how the volume function changes as the 

position of the scatter point shifts within the scattering voxel. The key point is that even 

though the function is initially not smooth, after integrating it over the two detector pixel 

dimensions, the resulting function has smoother behaviour. 

The second-order integrand does not have a simple physical interpretation like these 

first two integrands, as it is essentially a scaling factor that is multiplied by first-order 

table elements to give second-order scattering probabilities. It  is also more complicated to 

visualize this integrand as there are more parameters coming into play. Since the second- 

order calculation is not as significant as the primary and first-order calculations (since it 

contributes much less to the acquired projection data), we will not examine this integrand 

in detail as we did the other two. 

1.3 Numerical Integration 

As described in the previous section, APD calculations require multidin~ensional integration 

of a numerically calculated function over pixel areas and voxel volumes. The method that 
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Figure 1.7: Plots showing how the integrand varies smoothly once we have integrated over 
the area of the detector piuel. In both cases, the scattering voxel is located directly above 
the detector pixel. The source voxel is 30.316 cm above the detector surface, and is offset 
from the scattering voxel by 7.579 cm in the x-direction. In the left figure, the y and z 
co-ordinates of the scattering point are held fixed, while it varies in the x-direction inside 
the scattering voxel. In the right figure, the x and y co-ordinates of the scattering point 
are held fixed, while we vary the distance from the detector surface. In this second figure 
the distance from the detector surface is ranging over many scattering voxels; over a single 
voxel there is only a slight change in the value of the integrand. These integrand values are 
approximate numerical values calculated by Gaussian quadrature (cf. Section 1.3.4) 

was being used by the code was to evaluate the multidimensional integrals as iterated 

integrals using Romberg's method. In this thesis we will investigate the use of iterated 

Gaussian quadrature instead. A discussion of numerical integration, including these two 

methods. follows. 

1.3.1 Interpolation 

The interpolation problem is fundamental to many numerical integration methods. Given 

a set of points x,, i = 0 . .  . n, and corresponding function values f,, the goal of interpolation 

is to find a simple function P(x) such that 

For all i. The function P(x) can then be used, for instance, to estimate the value of f at 

other points close to the zi. 



CHAPTER I .  BACKGROUND 16 

One of the most basic interpolating functions is the Lagrange interpolating polynomial. 

If one defines polynomials Li as follows: 

1 for x = x, 

0 f o r x = x , , j # i  

then the following polynomial will have degree at  most n and satisfy (1.9): 

Furthermore, this polynomial is the unique polynomial of degree n or less satisfying this 

property. 

Constructing the Lagrange polynomial using this definition is not computationally effi- 

cient, however. If one wishes to estimate the value of the function at a single point x using 

the Lagrange interpolant, then a better method is Neville's algorithm [SB02]. Neville's a1- 

gorithm is based on the fact that the Lagrange polynomial can be constructed recursively. 

Suppose we have n, + 1 data points (xi, ft), and let Pjjk denote the Lagrange polynomial 

interpolating the points xj ,  xj+l . . . xk, ,j 5 k.  Then, the Lagrange polynomials can be 

derived recursively by 

P J ( 4  = fj (1.12) 

and 

That  is, the Lagrange polynomial with degree n can be constructed from two Lagrange 

polynomiais of degree n - 1, each of which passes through all but one of the interpolation 

points. To evaluate the full Lagrange polynomial of degree n, at a single point, then, one 

can construct it using a table, as  illustrated in Table 1.1. 

In cases where the Lagrange polynomial needs to be evaluated at several points, however, 

other methods which explicitly construct the polynomial may be preferable to Neville's. 
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Table 1.1: Table showing how Neville's algorithm recursively constructs the Lagra.nge poly- 
nomial. The elements Pi(.) in the leftmost column are simply the data values fi that were 
provided. The table can be built column-wise from left to right or row-wise from top to 
bottom, using the recursion formula (1.13). 

1.3.2 Basic Quadrature Methods 

Suppose we want to evaluate the definite integral 

The most basic numerical quadrature methods are derived by replacing the integrand 

f(x) with an interpolating function, and then exactly integrating the interpola.nt. The 

simplest of these methods is the trapezoid rule, which is obtained by integrating the Lagrange 

interpolant of degree 1 passing through both endpoints [Ra165j: 

where h = b - a  is the spacing between the interpolation points, and 5 is some unknown 

point in the interval ( a ,  6 ) .  To estimate I, we drop the final term which may be interpreted 

as  an error in this estimate. The trapezoid rule is said to have degree of precision 1; since 

it will give the exact value of the integral for polynomials up to degree 1. 

The trapezoid rule is obviously a fairly crude integration formula. One way of obtaining 

higher accuracy is to use more points and use a higher-order Lagrange interpolant. For 

instance, using three equally-spaced points and the second-order Lagrange interpolant gives 



CHAPTER 1 .  BACKGROUND 

which has degree of precision 3. Note that here the spacing between points is h = i ( b  - a ) .  

In general, however, constructing Lagrange interpolants of increasing order and inte- 

grating them is not practical as the number of points increases, since the interpolant tends 

to become highly oscillatory. A more effective method of improving accuracy is to split the 

interval of integration into smaller subintervals of equal length and use low-order quadrature 

formulas on each of those subintervals. Let xo be the left endpoint a and x, be the right 

endpoint 6, with equally spaced interpolation points zi between them. The spacing between 

points is denoted by h = i ( b  - a) ,  as before. Then, applying this piecewise approach leads 

to composite integration formulas, such as the composite trapezoid rule: 

and the composite Simpson's rule: 

These formulas both fall under the category of closed Newton-Cotes formulas; "closed" 

because they include the endpoints of the interval, and "Newton-Cotes" formulas because 

the evaluation points are all equally spaced. While these formulas are simple to apply, their 

accuracy is limited by the spacing h between points. To obtain higher accuracy one must 

use more points. 

1.3.3 Romberg's Method 

A more efficient way of improving accuracy is Romberg's method. Romberg's method com- 

bines the compositk trapezoid rule (1.17) with a technique known as Richardson's extrapola- 

tion to improve the accuracy of the calcula.tion by "cancelling off" error terms of increasing 

order. In particular, while (1.17) gives the composite trapezoid rule with the error term in 

closed form (obtained by evaluating f'"(x) at an unknown point 5 in the interval), one can 

also write it with the error term a s  an infinite series: 

(This form is derived using the Euler-Msclaurin sum formula - see [HenS2?, pp. 252-285 For 

details.) The error term coefficients a2k  are linear combinations of the 2k - Ph derivative of 
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the integrand evaluated at the endpoints a and 6. So, writing the composite trapezoid rule in 

this form implicitly assumes that f has any desired number of continuous derivatives [HenS2]. 

Provided that the form (1.19) holds, if one were to apply the trapezoid rule with !V 

points having a spacing O F  h between them, then apply it again with 21V points (having a 

spacing of i), then the leading order error term a2h2 should be 4 times larger for the first 

approximation than the second. If we call the first approximakion TN and the second T2,v, 

it then follows that the expression 

should have a leading error term of order h4, since the C? (h" terms will cancel off. In fact, 

if we actually evaluate (1.20), we derive the composite Simpson's rule approximation (1.18)' 

which does have an 0 (h4)  leading order error. We also note that the composite trapezoid 

rule (1.19) only contains even-powered error terms, so this one step allows us to go from 

having an 0 (h2) error to an C? (h4) error. 

Romberg's method is a generalization of this process that uses Richardson's extrapola- 

tion to successively cancel off error terms until the desired accuracy is reached. The Romberg 

approximation is usually calculated in a tabular fashion, as illustrated in Table 1.2. 

Entries are calculated row-by-row. The entry &,k is the composite trapezoid rule ap- 

proximation with 2k subintervals, and is calculated in an intelligent way so as to re-use as 

much data as possible from the previous application of the composite trapezoid rule: 

where hk = % is the spacing between the points. Meanwhile, the entry R3,k is the result of 

applying Richardson's extrapolation to the previously calculated values R j - l , k - l  and R J - l , k  

in order to cancel OR the 0 ( h y )  error term: 

The final output of Romberg's method l ~ i t h  m steps is the last diagonal entry &,,. 

As desired, For smooth integrands the Romberg's method approximations RkIk will usually 

converge to the true value I much f a t e r  than the trapezoid rule approximations &,k.  
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Table 1.2: Table of Romberg's method calculations 

However, it is not always necessary to calculate the full table. Each column of the table 

should also converge to the true value faster than the first column, and so one could also 

just use the last entry of one of these columns as the final result. 

Table 1.3 gives an example of ideal behaviour for Romberg's method. If f is not dif- 

ferentiable, however, then the error behaviour indicated by (1.19) is not applicable, and 

Rornberg's method may not give the expected convergence. For instance, consider the "hat 

function" shown in Figure 1.8: 

The integral of f(x) on the interval [ O , 1 ]  is clearly 0.15 (since the area is a triangle with 

height 1 and base 0.3), but f (z) is not differentiable on that interval due to the presence 

of several sharp corners. When we apply Romberg's method (Table 1.4), we find that 

the values obtained from extrapolation are actually worse than those obtained with the 

composite trapezoid rule, since the extrapolation assumes that the error term has a form 

which does not hold for non-differentiable functions. 

When applying Romberg's method, one typically does not know a priori how many 

refinements need to be made. Instead, Rornberg's method is often applied with some error 

tolerance specified by the user. One can compare successive Romberg approximations to 

get an estimate of the error in the integrand, and then continue the refinement if necessary. 

Romberg's method is particularly well suited to this kind of refinement, since the composite 

trapezoid rule can reuse the function evaluations done at  the previous step in the next 
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Exact value: 0.71825182845905 

Table 1.3: Romberg's method applied to the integral of x2ex on the interval [O,l]. The exact 
value of the integral is e - 2. The leftmost column gives the total number of function eval- 
uations used to obtain the trapezoid rule estimate in the second column. When comparing 
the table values to the exact one, we find that even the first entry obtained from Richard- 
son's extrapolation, R I , ~ ,  is slightly more accurate than the fourth composite trapezoid rule 
evaluation, Rq3. The final a.nswer R3,3 is accurate to 7 decimal places, compared to only 1 
decimal place for R Q ~ .  

refinement, as per (1.21). 

Romberg's method was implemented in APD closely following the algorithm presented 

in Section 4.3 of [PTVF92]. Rather than explicitly building the Romberg approximations 

as illustrated in Table 1.2, this algorithm makes use of a polynomial interpolation scheme 

based on Neville's algorithm. Table 1 . 2  is in fact identical to the Neville's algorithm table 

(Table 1.1) that one obtains if one treats the set of composite trapezoid rule approximations 

RO,k as a hnction of relative step size squared, and then extrapolates to a step size of h = 0. 

(This derivation of Romberg's method is followed in [SB02], as opposed to the approach 

taken in this section). Rather than comparing previous estimates to determine the error, 

the algorithm in [PTVF92] uses the error estimate provided by the interpolation routine. 

1.3.4 Gaussian Quadrature 

In Section 1.3.2, we considered only Newton-Cotes quadrature formulas: where the spacing 

between the evaluation points (the abscissae) was equal. Given n f 1 abscissae on the 

interval, the only choice was which weight to use for each the function evaluation. With 

these n + 1 degrees of freedom, it was only possible to achieve a quadrature formula with 



CHAPTER I .  BACKGROUND 

Figure 1.8: Plot of hat function given by (1.23) 

degree of precision n or n + 1.' 

Suppose instead that the abscissae no longer need to be equally spaced, and can be 

chosen freely. We now ha.ve 2n + 2 degrees of freedom, as we can choose both the locations 

of the abscissae and how to weight the function values at  those points. As might be expected, 

this allows us to achieve a degree of precision of 2n $- I. However, we still must determine 

how to choose the weights and abscissae to achieve this degree of precision. 

One method of 

quadrature formula 

require that 

doing so is to generate a system of equations by enforcing that the 

be exact for polynomials up to degree 2n + 1; in particular, we would 

for powers p up to 2n $ 1. This would give a nonlinear system of equations for the weights 

wi and abscissae xi, which we could then solve to obtain the correct values. This a.lgebraic 

approach is quite cumbersome, however, and it is preferable to take a more analytical 

approa.ch to the problem, such as the one found in [SEOZ], Section 3.6. 

Consider the special case of integrating a function on the interval [-I, I]. The goal is to 

*1n particular, i f  n is odd then we can only achieve degree of precision n, bu t  for even n the degree OF 
precision is n + 1. See [b165] ,  pp. 116-117 for details. 
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Exact value: 0.1500 

Table 1.4: Romberg's method applied to the hat function (1.23). Romberg's method pro- 
vides no improvement to the convergence, since it assumes error behaviour that is only 
applicable for smooth functions. 

find w, and x, such that 

for any polynomial p(x) of degree 2n + 1 or lower. On the interval [-I, 11, there exists a 

well-known orthogonal basis for the space O F  polynomials, namely the Legendre poIynomi- 

als [Hoc64J. The Legendre polynomials are a set of polynomials of increasing degree such 

that 
2i+l if i = j {F otherwise 

The first few Legendre polynomials are po(z) = 1, pl (x) = x, p2(x) = x2 - 5 .  Subsequent 

terms are generated using a recursive relationship. The Legendre polynomial p, has n real 

zeros on the interval [- 1,1]. 

Now, since p(x) is a polynomial of degree 2n + 1 or lower, it can be written as 

where p,,+l is the n f lth Legendre polynomial, and q(x) and r(x) have degree n or lower. 

Furthermore, since the Legendre polynomials form a basis For the space of polynomials, we 

can write 

n n 
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for some real coefficients a k ,  Pk. By (1.27) and the orthogonality of the Legendre polyno- 

mials (1.26), it thus follows that 

The left-hand side of (1.25) thus simplifies to 2Po. Now, consider the summation on the 

right-hand side. If we let the x.i be the n + 1 zeros of p,+l, substituting (1.27) into the 

summation gives 

We now force the wi to satisfy a linear system of equations. In particular, we require 

2 for k = 0 2 w$k(xi) = { 
i=O 0 Fork = l . . . n  

It can be shown (see [SB02J) that this system has a unique solution. If the wi satisfy this 

system, (1.30) then gives 
n 

From (1.29) and (1.32), it follows that choosing the xi to be the roots of the Legendre 

polynomials, and wi to satisfy the system (1.31) satisfies the desired condition (1.25). Fur- 

thermore, one can show that this choice of weights and abscissae is the only choice that 

satisfies this condition (cf. [SB02]). The values of xi and wi for increasing values of n 

have been extensively tabulated (see [Hoc64], for instance). As well, [PTVF92] provides 

algorithms for calculating these values. 

This choice of weights and abscissae is the most widely-used type of Gaussian quadrature, 

known as Gauss-Legendre quadrature. Other types of Gaussian quadrature also exist. In 

particular, if the integrand is well-approximated by a polynomial times some function W ( x ) ,  
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[ Number of points 1 Value 1 Absolute Error 1 

Table 1.5: Gauss-Legendre quadrature applied to the integral of x2eZ on the interval 10: 11. . . 
The accuracy obtained with only 4 function evaluations is comparable to the Romberg value 
R 3 , ~  in Table 1.3: which required 9 function evaluations a s  well as the extra computation for 
Rxhardson's extrapolation. With only 8 function evaluations we are nearly able to obtain 
machine precision. 

then one would want a quadrature formula which exactly integrates 

for polynomials p(z) up to degree 2n + 1. The correct choice of weights and abscissae can 

be determined in the same way as was done for the Gauss-Legendre quadrature (which 

corresponds to W ( x )  = 1). The main difference is that rather than using roots of Legendre 

polynomials, one uses a class of polynomials that are orthogonal when integrated against 

the function W(x). Some common choices include Gauss-Chebyshev quadrature (W(x) = 

(I  - x ~ ) - ' / ~ )  or Gauss-Jacobi quadrature ( W ( x )  = (1 - ~ ) ~ ( l  + x ) P ,  for some constant 

powers CY, p) [PTVF92]. In this work we only consider the most commonly-used Gauss- 

Legendre type. Note that to apply Gauss-Legendre quadrature, we must first translate and 

scale the domain of integration to the interval [-I, 11. The integral is then calculated using 

the Gauss-Legendre formula and then rescaled to the original domain of integration. 

Gaussim quadrature is a very powerful method because it can achieve high accuracy 

with very few function evaluations, provided that the integrand is well-approximated by a 

polynomial. Table 1.5 gives the results of Gauss-Legendre quadrature For the integral of x % ~  

on [ O , l ] .  When we compare to Table 1.3; we see that Gauss-Legendre quadrature is far more 

accurate than the composite trapezoid rule, and is even able to achieve the same accuracy as 

the Romberg scheme with fewer function evaluations. As with Romberg's method, however, 

the effectiveness of Gaussian quadrature depends to a large extent on the behaviour of the 

integrand. For hmberg ' s  method, we saw in Table 1.4 that the convergence will be poor 

i f  the integrand is not smooth. Similarly) Gauss-Legendre quadrature may not give good 

results if the integrand is not well-approximated by a polynomial. Table 1.6 shows the result 
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Table 1.6: Gauss-Legendre quadrature applied to the hat function (1.23). As with Romberg 
integration, the results are not very accurate. We a.chieve about the same accuracy as the 
Romberg scheme For a given number of function evaluations. 

Number of points 

8 1 

of Gauss-Legendre quadrature for the hat function (1.23). As was the case with Romberg 

integration. the results are poor compared to the accuracy that was achieved for the smooth 

integrand in Table 1.5. 

One disadvantage O F  Gaussian quadrature is that unlike Romberg's method, it is not 

particularly well suited to refinement if the first estimate proves to be unsatisfactory. For 

instance, if one calculates a Gaussian quadrature approximation using 8 points, none of 

these points can be reused in a 16-point approximation, since all the weights and abscissae 

are different. A modified scheme known as Gauss-Kronrod quadrature does exist, where one 

can increase the number of points from n, to 2n + 1, and re-use all of the n points from the 

first approximation. The resulting quadrature scheme only has degree of precision 3n f 1, 

however, rather than the accuracy of 4n + 1 that one would obtain from the full Gaussian 

scheme. Furthermore, computation of the weights and abscissae is more complicated than 

for straightforward Gaussian quadrature. See [Lau97] for more details. 

Value 
0.17132558080136 

Absolute Error 
2.13e-2 



Chapter 

Development of Improved 

Quadrature for APD 

Calculation of the lookup tables in APD is very time-consuming in the original implemen- 

tation, with the calculation of primary, first-order and second-order lookup tables taking 

nearly two weeks to complete. If the camera geometry and specified energy window do not 

change, then this is not a serious deficiency since the lookup tables only need to be calculated 

once. However, the calculation time does impose limitations on the type of studies for which 

APD is practical. A study which involved testing different energy window configurations, 

for instance, would require calculating a complete set of lookup tables for each one. 

While the slow calculation time is due in large part to the number of lookup table 

elements that need to be calculated, it may also due to inefficient numerical integration. 

As discussed in the previous chapter, Romberg integration assumes that the integrand is a 

smooth function. However., since the integrands in APD sometimes have discontinuities in 

the first derivative (cf. Section 1.2.3), Romberg's method will be slow to converge for these 

cases. Furthermore, even for smooth functions, the results in Table 1.5 suggest that Gaussian 

quadrature may provide better accuracy with fewer function evaluations than Romberg's 

method. Thus, it seems likely that Gaussian quadrature would be preferable to Romberg 

integration for this application. Even though Gaussian quadrature does not perform very 

well for nonsmooth integrals either (as illustrated in Table 1.6), its performance is certainly 

on pax with Romberg's method. 

As such, it makes sense to consider Gaussian quadrature as an alternative to the Romberg 
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scheme that was used in the original implementation. However, before implementing Gaus- 

sian quadrature in APD, it is useful to run some simple numerical experiments to see how 

it compares to Romberg quadrature. as well as several other methods. We then discuss the 

implementation of Gaussian quadrature in APD, looking specifically at  each of the three 

lookup tables. 

2.1 Comparison of Numerical Quadrature Methods 

In this section we compare several numerical quadrature routines in MATLAB with some 

integrands which mimic those found in APD. We include both the straightforward Romberg 

and Gaussian integration methods discussed in the previous chapter, as well as some more 

sophisticated integration methods that have already been implemented in MATLAB. Since 

the goal of this work is to improve the speed of the numerical quadrature in APD while 

maintaining comparable accuracy, we compare the computation times of these quadrature 

routines, while setting parameters to achieve roughly the same accuracy. The integration 

routines tested are the following: 

Romberg integration based on explicit construction of Table 1.2 

Gauss-Legendre quadrature 

Adaptive Simpson quadrature, using the MATLAB method adaptsim from !GGOO] 

a Adaptive Lobatto quadrature, using the method adapt l o b ,  also found in [GGOO] 

MATLAB'S quad method, which is largely based on the adaptsim method. 

The first two methods were run for a fixed number of function evaluations. The latter 

three are adaptive methods, which refine the integral until a desired tolerance is reached. 

These tolerances were set so as to achieve similar accuracy to that obta.ined with the first two 

methods. It  is worth noting that Lobatto quadrature is very similar to Gaussian quadrature 

in that it allows (almost) free choice of abscissae and weights in order to maximize the degree 

of precision of the method. The key difference is that Lobatto quadrature requires that both 

endpoints of the interval be included as abscissae. As a result, the degree of precision of a 

Lobatto quadrature formula is two less than that of the corresponding Gaussian quadrature 

formula. Since these two methods are quite similar. we would expect that the method 
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- 

Table 2.1: Comparison of quadrature methods for integrating hat functions 

Tolerance I Average 
Rel. Error 

Gaussian 
adaptsim 
adaptlob 

auad 

adaptlob will give some idea of the efficiency of Gaussian quadrature when used in an 

adaptive way (using Kronrod rules, as discussed a t  the end of Section 1.3.4). 

In the first experiment, hat functions O F  the form (1.23) were generated with randomly 

generated heights, widths and peak locations on the interval iO: 11. These functions mimic the 

first-derivative discontinuities present in APD integrands at the detector level, as described 

in Section 1.2.3. Since the true value of the integral can be determined easily, we can 

compare the numerically calculated values to the true value for each method to check its 

accuracy. The runtime of each method was also measured, as well as the total number of 

function evaluations used for each integral. 

One thousand random hat functions were generated and numerically integrated. The 

following parameters were uniformly randomized: 

Location of the peak between 0.1 and 0.9 

- 0.00230 
1.0e-3 I 0.00239 
1.0e-2 i 0.00196 

6.25e-5 1 0.00151 

0 Height of peak between 0.3 and 1.0 

Average F'unction 
Evaluations 

Maximum 
Rel. ~ r r o r  

Total width of function between 0.1 and 0.6 

Average 
runtime (msl 

0.0394 
0.8460 
0.0366 
0.0387 

The results are summarized in Table 2.1. 

Based on this experiment, Gaussian quadrature is definitely very competitive with the 

other methods. For functions of this type, it obtains comparable accuracy to Romberg's 

method with roughly the same number of function evaluations. The only method which 

requires significantly fewer function evaluations on average is quad. When comparing the 

actual runtimes, however, Gaussian quadrature outperforms all of the other methods by a 

considerable margin. It is roughly 10 times faster than the next-fastest method, and 15 

times faster than Romberg's method. This dramatic difference in ca.lculation time may not 

necessarily carry over to APD (which is coded in C rather tha.n MATLAB: and which has 

0.14 1 32 1 
1.92 1 30.8 1 
1.44 j 52.8 
1.57 I 25.1 
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some additional calculational overhead); however, it does suggest that Gaussian integration 

is very computationally efficient. Furthermore, it also appears to be fairly reliable, as the 

maximum relative error that it attained in this experiment is on par with the best results. 

(Note that the m a  error for the adaptsim method is much larger than any of the others - 

in some pathological cases where the hat function is quite narrow, this method terminates 

despite having "missed" a large part of the integrand). 

When comparing the methods for several smooth functions, we Found that Gaussian 

quadrature is often able to achieve higher a.ccuracy than the other methods, using fewer 

function evaluations. In addition, the calculation time is also significantly faster, as was the 

case in the first experiment. 

It  is important to note a key difference between the Gaussian quadrature method used 

here and the adaptive methods. The Gaussian quadrature method uses a fixed number of 

function evaluations, and as a result there is no guarantee of obtaining a desired error. In 

fact, without any other estimates of the integral, there is no way of even estimating what the 

error in the approximation is. The three ada,ptive methods, on the other hand, will refine 

the estimate until a desired error tolerance is reached, talung more function evaluations if 

necessary. 'CVlile a fixed number of points was also used For Romberg integration in these 

experiments, Romberg's method is also usually implemented to refine the approximation 

until a desired tolerance is reached (cf. Section 1.3.3), which was the case in APD. 

Given the la.rge size of the integration problem in APD, however, a quadrature method 

that does this type of refinement may not be efficient. Calculating a full set of primary, 

first-order and second-order lookup tables in APD requires tens of billions of integration 

operations. If each one of these integration steps requires refinement, there will be several 

recursive calls for each integration step as well. These recursive steps add a significant 

amount of overhead to each integration call, especially if the integral is slow to converge. 

Thus, using Gaussian quadrature with a fixed number of points may be a preferable method 

For APD lookup table calculation. This method can be implemented with very little over- 

head, as it simply requires evaluating the function at  the specified points, multiplying by 

the appropriate weights and then summing up the resulting values. Furthermore, the ex- 

perimental results suggest that Gaussian quadrature with a fixed number of points can be 

trusted to give results with comparable accuracy to other quadrature methods, if enough 

points are used. So, if we can determine how many points are "enough", then we can be 

reasonably sure that Gaussian quadrature will provide accurate results in much faster time 
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than any of the adaptive methods. While this method does not give any idea of the error in 

the approximation, some uncertainty in the accuracy of the calculated probabilities is ac- 

ceptable, since the probabilities in APD are not exact anyways, but the result of a number 

of simplifying assumptions. 

The goal is then to develop a fast Gaussia,n quadrature routine for lookup table cal- 

culations in APD. This routine should give comparable results to those obtained with the 

Romberg scheme (which were experimentally validated in (We1971 and [Van04]), but take 

significantly less time to compute. A runtime on the order of hours rather than days is 

desired. The main problem is finding the acceptable tradeoff between accuracy (i.e. the 

number of quadrature points to use) and runtime. We will take a somewhat experimental 

approach to this problem. and will also make use of some observations about the integrands 

from Section 1.2.3. 

2.2 Primary Lookup Table 

Primary lookup table calculation is not a time-consuming calculation in APD. Even using the 

Romberg scheme of the original implementation, the calculation only takes several seconds 

to complete. This is due in large part to the fact that the primary table contains only about 

five thousand elements, since a primary photon can only be detected in a small subset 

of detector pixels on the camera head due to the collimator. Furthermore, the integral 

is only two-dimensional, making each element fast to compute. Nonetheless, the primary 

lookup table is a good starting point to see how Gaussian quadrature compares to Romberg 

integration for the actual APD calculation. The primary lookup table calculation consists 

of evaluating the two-dimensional area integral in Equation (1.4). 

In this section and all subsequent ones, we are computing lookup tables for Technetium- 

99m (initial energy of 140 keV), using an energy window of 130-150 keV. The physical 

parameters are set to model a Philips VXGP collimator. As mentioned in the previous 

chapter, APD uses 64 x 64 x 64 activity and attenuation maps, and a 64 x 64 detector grid. 

All calculations were done on a machine with dual 3.6 GHz Pentium 4 processors and 2 CB 

of RAM. 
Using 16 Gaussian quadrature points for each dimension gave a primary lookup table 

that showed fairly good agreement with the original table. Only about 3% of the non-zero 

entries differed by more than 2% relative difference. Furthermore, those entries that did 
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differ by more than 2% were all on the order.of or smaller, which is about 100 times 

smaller than the median value of the table. Creation of the new table was about ten times 

faster than the old one as well, although the difference was not noticeable in realtime. 

Accuracy is especially important for the primary table, however, since primary photons 

are the most significant contribution to SPECT data. Since runtime was not an issue, we 

increased the number of quadrature points to 32 for each dimension to try to improve the 

accuracy Further. Doing so gave a table that was virtually identical to the one obtained 

with Romberg integration. The only entries differing by more than 2% were on the order of 

10-I' or smaller, i.e. essentially zero. 

While the change to Ga,ussian quadrature has not improved the speed of the primary 

lookup table calculation appreciably, it does show that Gaussian quadrature is at  least 

competitive with Romberg's method in the APD calculation itself. 

2.3 First-Order Lookup Table 

Due to the large number of elements and the higher dimension of the integration problem, it 

is not possible to use as many quadrature points for the first-order table as for the primary 

table. Even using just 16 points for every dimension results in a calculation time of several 

days. Halving this to 8 points for every dimension produces an acceptable runtime of several 

hours, but the table is not sufficiently accurate for cases where the scattering point is close 

to the detector surface. It  is difficult to accurately approximate the integral with a small 

number of points in this case, since the integrand is only nonzero on a small part of the 

detector surface. Using 8 points does, however, provide results that match up well with the 

original table for values where the scattering point is far away from the detector surface. 

We therefore use this Gaussian quadrature scheme as a starting point for the development 

of our method. 

The first-order lookup table (Equation 1.6) is separated into a number of smaller files, 

split up based on the distance from the scattering point to the detector (parameter (a) in 

Figure 1.4). We wilI go through each of these files and compare the values in the original 

APD lookup table (calculated using Romberg's method) to those in the new table using 

Gaussian quadrature. We will also compare to a Gaussian quadrature-based table using 16 

points for every dimension. As mentioned, the runtime to create this table is much longer 

than the target runtime. Tha,t said, it does provide a good benchmark for the highest 
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accuracy that we can reasonably expect to obtain with Gaussian quadrature. 

We first compare the Gaussian quadrature-based table using 8 points to these two bench- 

marks. In particular, we will look at the median and average relative difference between 

table entries, as well as how many of the entries differ by more than 5% relative difference. 

The relative difference is calculated as the absolute value difference between the entries, 

divided by the size of the entry in the original table. Since the lookup tables contain a 

large number of zero entries (anywhere from 45% to SO%, depending on the distance of the 

scattering point from the detector), we compute these statistics only for those entries that 

are non-zero, to avoid skewing the statistics. 

Figure 2.1 plots these statistics, as a function of scatter-detector difference, when com- 

paring against the original Romberg-calculated table. The plot is split into two parts, since 

the differences between the two tables are quite significant when the scattering point is close 

to the detector. We can see that for distances of 10 cm or less, the tables do not agree with 

one mother very well at  all. The majority of table entries differ by more than 5%, and the 

differences can even average more than 100% in some cases. Between 10 and 30 cxn, there 

is some fluctuation in the statistics, but on the whole only about 5 to 10% of entries differ 

by more than 5%: and the average difference varies in about the same range. The median 

difference is always less than 1%. Finally, from 30cm onwards, the statistics are fairly con- 

sistent, with about 5% of table entries differing by more than 5%, and the average difference 

sitting around 2-3%. The median is about one to two-tenths of a percentage point. 

The agreement between the 8-point and 16-point Gaussian quadrature-based tables is 

considerably better, though still poor for short distances. For distances of about 10 cm 

or more, however, we find that just over 1% of table entries differ by more than 5%, and 

on average entries only differ by 0.5% or less. There is a sharp increase in the number of 

elements differing and the size of the differences around 22 cm, which is difficult to explain. 

Certainly there does not seem to be any physical reason that would account for poorer 

agreement between table entries at that distance. Furthermore, examining the lookup table 

entries directly and comparing against nearby values (i.e., the entries For distances slightly 

less and slightly more than 22 cm) does not indicate any aberrant behaviour to the naked 

eye. This large discrepancy may be an artifact of the specific matrix and pixel size that 

was used in this calculation. In any event, the difference only reaches about 5% of entries 

differing by more than 5%, which was the norm when comparing against the Romberg table. 

Since the total number of lookup table entries is so great, it is unlikely that this "spike" in 
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Figure 2.1: Plot of differences between first-order lookup tables calculated using 8-point 
Gaussian quadrature and Romberg's method, as a function of distance of the scattering 
point from the detector surface. 

the difference between the table values for this distance will result in a noticeable effect on 

the final PSF calculation. 

Figure 2.2 gives a plot of the statistics for 8-point vs. 16-point Gaussian quadrature. 

While it is clear that the 8-point and 16-point Gaussian quadrature-based tables agree with 

each ot,her better than the 8-point Gaussian and Romberg tables, it is not entirely clear what 

the implications are. Without knowing the exact values of the integrals, it is not possible to 

say which of these tables is in Fact the most accurate. It  could be that the 16-point Gaussian 

table is the most accurate, in which case it is encouraging that the 8-point Gaussian table 

agrees with it quite well in most cases. It  could also be that Romberg table is the most 

accurate, which would be less encouraging because the agreement is not as good. Or it 

could be that neither of the two benchmarks is very accurate, and the 8-point Gaussian 

table simply agrees better with the 16-point table. 

What is very obvious, however, is that the Gaussian quadrature method is far faster than 

Rornberg's method. The &point table takes oniy 4 hours to compute, a vast improvement 

over the runtime using Romberg's method, which was roughly 10 days. Since speed is the 

primary motivating factor in this application, this weighs more heavily than the Fairly small 
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Figure 2.2: Plot of differences between first-order lookup tables calculated using 8-point 
Gaussian quadrature and 16-point Gaussian quadrature, as a function of distance of the 
scattering point from the detector surface. 

deviations between the Romberg table and the Gaussian-quadrature based tables. Having 

accepted that Gaussian quadrature is preferable to Romberg integration, we will design 

our quadrature scheme with the intention of matching up with the 16-point Gaussian table 

as well a s  possible. For scatter-detector distances of about 10 cm or more, the agreement 

between the tables is already acceptable. So, the problem becomes getting better agreement 

for the shorter distances, without significantly increasing the runtime. 

It may be possible to achieve a good tradeoff between speed and accuracy for these 

short distcances by finding some value between 8 and 16 points per level, but this may not 

be efficient. Going from 8 to 12 points, for instance, would increase the runtime by 1.5' =. 7.6 

times, since the integral is five-dimensional. Instead of changing the number of points at 

every level, it may make sense to use fewer points when the integrand is smooth, and more if 

it is not. In part,icular, as noted in Section 1.2.3, the integrand will have smoother behaviour 

when integrating over the voxel volume than over the pixel area.. Thus, we may be abie 

to use a smalI number of points at those last three levels of integration without losing too 

much accuracy. 

So, we try a scheme that uses 16 points for the first two levels of integration (the detector 
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Figure 2.3: Plot of differences between first-order lookup tables calculated using the final 
quadrature scheme and 16-point Gaussian quadrature, as a function of distance of the 
scattering point from the detector surface. The final scheme uses 8 points at every level for 
scatter-detector distances greater than 10 cm, and switches to using 16 points for the lowest 
two dimensions when the scattering point is closer. 

level) and 8 points for the last three. This will increase the runtime by a factor of four over 

the 8-point method, so we only want, to use it when necessary, i.e. for small scatter-detector 

distances. For larger distances, we will use 8 points at every level. With the new scheme, 

we find that we now get good agreement with the 16-point table for short distances down 

to about 4 cm, as shown in Figure 2.3. The values for closer distances still do not match up 

very well, but this will probably have a negligible effect on the actual APD calculation itself. 

The reason is that these table entries will be rarely used, since there is seldom any scattering 

material that close to the detector surface in an actual SPECT scan. Thus, we simply accept 

that the integrals will be difficult to accurately calculate in these cases, and do not seek to 

improve the accuracy here any further. The final Gaussian quadrature scheme that we use 

for the first-order table will be 16-16-8-8-8 for scatter-detector distances of about 10 cm or 

less, and use 8 points at every level for larger distances. The full set of first-order lookup 

tables takes about 6 hours to calculate using this new scheme. 
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2.4 Second-Order Lookup table 

The process to construct the second-order lookup table consists of two steps. Numerical 

integration takes place in the first step, where the volume integral component of the K& 

term (1.8) is computed. These values are stored in an intermediate table. The second step 

completes the calculation of the K,& terms by multiplying values from this table and the 

first-order lookup table and summing them according to the formula. Unfortunately, the 

second step of this process is the most time-consuming, so improving the speed of the first 

part will not dramatically improve the overall runtime. In particular, the first step requires 

only about 6 hours to compute with Romberg's method, while the summation takes over 60 

hours. 

That said, there were some other concerns about the second-order scatter calculation 

in APD, aside from the time needed to create lookup tables. In [\ian04], the photon dis- 

tributions generated by APD were compared to simdated data from SimSET, a Monte 

Carlo-based program which simulates SPECT scans [HHGf93]. The author comments in 

Appendix A that 

"there are discrepancies in the individual components from primary photons, 

first and second order Compton scattered photons. In particular, there is a 

large systematic difference between SimSET and APD in the relative magnitude 

of the second order Compton scatter distribution ... For SimSET 74% of the 

total counts come from primary photons, 22% From first order Compton scatter, 

and 4% from second order. For APD the percentages are 78% primary, 20% first 

order, and 2% second order." 

In other words, the amount of second-order scatter calculated by APD was significantly 

less than the amount calculated by SimSET. SimSET does make its own approximations and 

assumptions which may differ from those used in APD, so perfect agreement between the 

two methods is certainly not expected. (SimSET data also contains noise due to the random 

nature of the calculation, but even in the absence of this noise one would still expect some 

differences due to the differing assumptions). Nonetheless, the discrepancy in the amount of 

second-order scatter calculated is significant enough to be of some concern. Some possible 

explanations were suggested for the discrepancy in [Van04J, but no satisfactory conclusion 

was reached as to the cause. One possiole cause that was not. mentioned is the presence of 

errors in the second-order lookup table. An examination of the intermediate table of volume 
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integrals reveals that some entries have negative values. Since the integrands in APD are 

always non-negative, this is clearly an error. Although the n~unber of negl~tive entries is not 

large (roughly 0.1% of non-zero table entries), the magnitudes of many of these negative 

entries is significant compared to the other entries in the table. Thus, they could reduce 

the size of the fina,I second-order lookup table entries when included in the summation step. 

Furthermore, the presence of these negative entries may also indicate some problem with the 

integration method (or its implementation) that could make other table entries unreliable 

as well. 

Conclusively tracking down the cause of these errors is difficult, due to the large number 

of calculations done for even a single one of the volume integrals. It is clear, however, that 

the negative values arise as a result of the extrapolation step in Romberg's algorithm. While 

the extrapolation should not produce any negative values in theory, it appears that numeri- 

cal error results in some small negative values arising at  the lowest dimension of integration. 

These negative values are then magnified in the subsequent two levels of integration, result- 

ing in some large negative values in the end result. Switching to Gaussian quadrature will 

ensure non-negativity, since the method simply sums up a series of non-negative values with 

no extrapolation. 

The completed second-order lookup table is parameterized in the exact same way as 

the first. To determine an appropriate Gaussian quadrature scheme, we will again compare 

lookup tables to both the original second-order table and a benchmark table generated with 

Gaussian quadrature. In this case, the benchmark table is generated using 32 points at each 

of the three dimensions in the initial integration step. As in the first-order case, we start 

with 8 points a t  every level. 

The &point Gaussian table shows poor agreement with the Romberg-calculated table, 

particularly for scatter-detector distances of l0cm or less. After this point there is a fairly 

consistent trend of about 30% of entries differing by more than 5% relative difference, and 

the average relative difference being about 10%. Checking the signs of these differences 

reveals that in most cases, the entries in the Gaussian table are larger than those in the 

Romberg table, so we would expect that the Gaussian-calculated lookup table will indeed 

result in more second-order scatter when used to calculate the PSFs. 

The 8-point Gaussian ta.ble does agree fairly well with the 32-point table, regardless of 

scatter-detector distance. (See Figure 2.4). In most cases about 4% of table entries differ by 

more than .5%, and the average relative difference is around 2%. Furthermore, calculating 
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Figure 2.4: Plot of differences between second-order lookup tables calculated using 8-point 
Gaussian quadrature and using Romberg integration (left plot) and 32-point Gaussian 
quadrature (right plot). The agreement between the two tables calculated with Gaussian 
quadrature is fairly good, but the Romberg table differs significant,ly. 

the table with only 8 points is very fast, taking only about 20 minutes. Increasing to 16 

points at  every level will increase this runtime by a factor of roughly 8, For a total of a few 

hours. Since this is still an acceptable runtime, we will go to 16 points to see if the accuracy 

is much improved. 

Agreement between the 16-point and Romberg tables is also poor. As one would expect, 

however, the 16-point Gaussian table does agree better with the 32-point table than the 

8-point table did. Entries now differ by less than 1% on average. Therefore, there does not 

seem to be any advantage to using 32 points to calculate the intermediate table, as it gives 

more or less the same results as with 16 points. Since the results are also Fairly consistent 

for all scatter-detector distances, we will simply use a 16-point scheme at  a.11 three levels 

for the whole calculation, rather than switching midway through as was done For the first- 

order case. The time taken to calculate the intermediate table is just over 2 hours; almost 

a threefold improvement over Romberg's method. However, as mentioned this does not 

appreciably improve the runtime for second-order lookup table calculation, since the second 

step still takes several days. 
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Figure 2.5: Plot O F  differences between second-order lookup tables calculated using 16- 
point Gaussian quadrature and using Romberg integration (left plot) and 32-point Gaussian 
quadrature (right plot). Agreement with the Romberg table is still poor, but the agreement 
with the 32-point Gaussian table is improved by using 16 points rather than 8. 



Chapter 3 

Experiment a1 Validat ion 

In the previous section the lookup tables were compared entry-by-entry to see how much 

of a discrepancy was being introduced by switching to Gaussian quadrature. While the 

agreement between the new and old tables was generally good, there were differences noted 

between them, particularly for the first and second-order scatter tables. On the whole these 

differences did not appear to be large, but it is difficult to judge how rnuch of an effect they 

will have when incorporated into a full APD calculation. In particular, simply looking a t  

average or median differences between table entries does not take into account that some 

lookup table entries may be accessed much more frequently than others when doing an 

actual PSF calculation, or that differences between the tables may average out during the 

calculation. Thus, in order to better assess the impact of the change of integration methods, 

we must compare actual APD PSF calculations using both sets of tables. In this section we 

first describe the parameters of the experiments, then the results. 

3.1 Experimental Setup 

We performed experiments with two different objects to compare the PSFs. In the first 

experiment a simple point source is placed in an elliptical water cylinder, off-centre near 

the edge of the cylinder. Placing the source off-centre means that the amount of scatter 

will change m the camera. rotates, since there will be varying amounts of water between the 

detector and the source. Figure 3.1 shows the setup for this first experiment. 

The second experiment uses the Mathematical Cardiac Torso (MCAT) phantom [PXTL97] 

to model a realistic human torso with activity in the heart. MCAT creates an attenuation 
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Figure 3.1: Water cylinder and point source used for first experiment. The white point 
inside the cylinder indicates the location of the source. 

map modelling realistic tissue distributions for a human torso, including cardiac, bone, liver, 

muscle and lung tissue. It also permits the user to specify different levels of activity inside 

each one of these regions. A standard sized female torso was used for the experiment, with 

uniform activity in the left and right myocardia of the heart. Figure 3.2 shows three axial 

slices through the phantom used for this experiment. 

In both experiments, we calculate the PSFs using both the old and new lookup tables. 

The activity and attenuation maps were also used to generate projection data in the Sim- 

SET (HHGf 931 Monte Carlo simulator. In all cases the projections were acquired over 360•‹ 

at 3' intervals, resulting in a total of 120 projections. Since both SimSET and APD allow 

us to separate the projection data into primary, first-order and second-order components, 

we were able to compare each of these components with one another to see how they differ. 

In particular, this allows us to assess 

0 How much of a difference is introduced into the actual calculated PSFs with the change 

in integration method for the lookup tables 

0 How the APD PSFs compare with data from SimSET. We are particularly interested 

in whether the amount of second-order scatter calculated is closer to that estimated 

by SimSET (cf. Section 2.4) when using the new lookup tables. 

For both esperiments, we compare the data in two ways. First, for each projection angle 



CHAPTER 3. EXPEHPIENTA L VALIDATION 
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Figure 3.2: MCAT phantom used for the second experiment. The figure shows three asial 
slices through the phantom. Darker regions indicate more dense tissues. The activity in the 
left and right rnyocardia is shown in white. 

we compare the PSFs by drawing profiles along lines through the detector bin with the most 

counts. This allows us to compare the spatial distribution of the counts in part of the PSF, 

as well as as the quantitative values. Secondly, for each projection angle, we summed up the 

total counts for primary, first-order and second-order scatter and calculated the ratio of each 

to the total number of counts. This gives an overall idea of how the calculated amounts of 

primary, first-order and second-order detected photons compare for the different projection 

angles. In this second case we also compared against the ratios given by SimSET. 

3.2 Results and Discussion 

In the first experiment, we look at  the PSFs for two specific acquisition angles around the 

water cylinder - 90" and 270". The 90" angle corresponds to having the detector on the 

right side of the cylinder shown in Figure 3.1, while the 270" angle is on the left side of the 

cylinder. In the first case, the source is fairly close to the detector with little attenuating 

material between them. As a result, we expect primary photons to make up the bulk of the 

detected photons, and for the photons to be detected in a Fairly small region of the detector. 

In the second case, the detector is on the far side of the cylinder, with a large amount of 

water between it and the source. We therefore expect to see a much greater qua.ntity of 
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scatter, and for the PSFs to be spread over alarger part of the detector surface. 

Figure 3.3 shows the primary, first-order and second-order PSFs calculated using both 

versions of the lookup tables. Spatially the PSFs are virtually indistinguishable from one 

another. However, it is apparent from the scaling that there is a discrepancy in the mag- 

nitude of the first-order PSF. In Figure 3.4 we draw profiles through the dashed lines in 

Figure 3.3 to better see the difference in the values. Here we can clearly see that the peak 

value of the first-order PSF calculated with Gaussian qua.drature is larger than the value 

calculated with Romberg integration. Quantitatively, the value in the pixel with the largest 

magnitude is about 18% higher. Overall, the quantity of first-order scatter calculated for 

this angle using the new lookup tables is about 4.5% more than that calculated with the 

old ones. 

Some discrepancy in the first-order PSI? is not unexpected for the 90" angle, since the 

source is close to the detector. Recall From Section 2 .2  that it was for short scatter-detector 

distances that the two tables had the largest differences between them. 18% is a significant 

difference, however, and it is important to see whether the amount of first-order scatter 

calculated with the new lookup table is unusually high. Based on the data from SimSET, 

this does not appear to be the case. The ratio of first-order scattered photons to total 

photons detected for the 90" acquisition angle was 11.00% in SimSET, 10.02% with the new 

lookup tabies, and 9.58% with the old lookup tables. So the quantities calculated with the 

new lookup table are actually in better agreement with those found in SimSET than those 

calculated with the old Lookup table. It  may be that the lookup table values calculated 

for short distances using Romberg's method were not accurate, and that APD was slightly 

underestimating the quantity of first-order scatter using those lookup tables. 

Interestingly, the PSFs for second-order scatter essentially overhp, even though it was 

For second-order scatter that we observed the most significant differences between the old 

and new lookup tables. It  is not immediately obvious why this is the case. Going back to 

the direct comparison of table entries (as was done in Section 2.4) we find that there are 

many more entries for which the new table value is larger than the old table value. However, 

in cases where the old table value is larger, the difference tends to be greater. Thus, it may 

be that the differences between the two tables end up cancelling out for the most part, 

resulting in two nearly identical PSFs. 

The PSFs for the 270" angle (Figures 3.5 and 3.6) are characterized by a much wider 

distribution of photons, since the source is farther away from the detector now. As expected. 
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Figure 3.3: Primary, first-order and second-order PSFs for first experiment - 90' acquisi- 
tion angle. The PSFs in the left column were calculated using the tables calculated with 
Romberg's method, and those in the right used the new Gaussian qua.drature schemes. The 
figures are zoomed in on the region of most interest. 
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Figure 3.4: Corresponding profiles drawn along the dashed lines in Figure 3.3. The profiles 
drawn with a solid line are profiles for the Gaussian lookup tables; the dashed lines are for 
the Romberg lookup tables. 
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there is also significantly more scatter. The agreement between the PSFs is better in this 

case than for the 90" angle. There is still a noticeable discrepancy in the first-order PSF, 

but it is smaller than it was when the source was close to the detector. The peak value is 

now only about 6% higher with the new table, and the overall amount of first-order scatter 

calculated is less than 1% more. 

Finally? in Figure 3.7, we compare the ratios of each type of detected photon to the total 

number of detected photons; for all 120 acquisition angles. The most obvious feature is that 

the amount of second-order scatter calculated by SimSET is still much higher than that 

calculated with APD, especially when second-order scatter becomes more prevalent when 

there is more attenuating material between the source and detector. The change to the 

lookup tables has not significantly increased the amount of second-order scatter calculated 

in APD. However, the ratios for the APD PSFs calcuhted using either set of lookup tables 

match up very well overall. The maximum difference in these ratios for any of the acquisition 

angles is 0.6%. Overall, the total ratios across all projections are: 

'71.9% primary, 22.5% first-order and 5.6% second-order in SimSET 

74.9% primary, 22.2% first-order and 2.9% second-order in APD with new lookup 

tables 

75.2% primary, 21.9% first-order and 2.9% second-order in APD with old lookup tables 

So, the discrepancy between the amount of second-order scatter calculated by APD and 

SimSET still exists. We conclude that this discrepancy is not a result of the negative 

values in the intermediate second-order calculation (c.f. Section 2.4). There is some other 

difference in the way that SimSET and APD calculate second-order scatter that is causing 

this difference. 

In the second experiment, there are now multiple voxels containing activity, and the 

attenuating medium is much more complex. We wish to see if either of these factors results 

in a significant difference between the PSFs calculated with the old and new lookup tables. 

As before, we look at  the PSF for two acquisition angles - 9O0, when the detector is on 

the right side of the phantom in Figure 3.2, and 270": when it is on the left. Again, there 

should be more scatter For the 270" angle, since there is more attenuating material between 

the activity and the detector. 

Figures 3.5 through 3.12 show results corresponding to Figures 3.3 to  3.7, for the second 

experiment. The main differences hetween the new and old results are the same as for 
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Figure 3.5: Primary, first-order and second-order PSFs for first experiment - 270" acquisi- 
tion angle. The PSFs in the left column were calculated using the tables calculated with 
Romberg's method, and those in the right used the new Gaussian quadrature schemes. The 
figures are zoomed in on the region of most interest. 
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Figure 3.6: Corresponding profiles drawn along the dashed lines in Figure 3.5. The profiles 
drawn with a solid line are profiles for the Gaussian lookup tables; the dashed lines are for 
the Romberg lookup tables. 
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the first experiment. The most significant area of disagreement is still around the peak 

values for the first-order scatter PSF, where the values from the new lookup table are larger 

tha.n those from the old table. The discrepancies are not as large as they were in the first 

experiment, however, and are usually in the range of 2-3%. Aside from this, there is very 

little difference in the PSFs calculated with the old m d  new loolcup tables. As in in the first 

experiment, however, there is a significant difference in the amount of second-order scatter 

between APD and SimSET. Overall the ratio of second-order scatter is about 3.1% For the 

APD PSFs, and 4.95% for the SimSET data. 
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Figure 3.7: Ratios of primary, first-order and second-order photons detected to total photons 
detected for first experiment. 
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Figure 3.8: Primary, first-order and second-order PSFs For second experiment - 90' acqui- 
sition angle. The PSFs in the left column were calculated using the tables calculated with 
Romberg's method, and those in the right used the new Gaussian quadrature schemes. The 
figures are zoomed in on the region of most interest. 
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Figure 3.9: Corresponding profiles drawn along the dashed lines in Figure 3.8. The profiles 
drawn with a solid line are profiles for the Gaussian lookup tables; the dashed lines are for 
the Romberg lookup tables. 
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Figure 3.10: Primary, first-order and second-order PSFs for second experiment - 2'70' ac- 
quisition angle. The PSFs in the left column were calculated using the tables calculated 
with Romberg's method, and those in the right used the new Gaussian quadrature schemes. 
The figures are zoomed in on the region of most interest. 
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Figure 3.11: Corresponding profiles drawn along the dashed lines in Figure 3.10. The profiles 
drawn with a. solid line are profiles for the Gaussiaa lookup tables; the dashed lines are for 
the Romberg lookup tables. 
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Figure 3.12: Ratios of primary, first-order and second-order photons detected to total pho- 
tons detected For second experiment. 



Chapter 4 

Concluding Remarks and Future 

Work 

4.1 Conclusions 

In this thesis, we have replaced the Romberg integration method that was being used to 

evaluate integrals in APD with a Gaussian quadrature method. The primary advantage of 

this method is that it is significantly faster than Romberg's method. The time to create 

the first-order lookup table has been reduced from about 10 days (240 hours) to 6 hours, an 

improvement of 4000%. The time to create the second-order lookup table has not been sig- 

nificantly improved, however, since the bulk of that calculation does not involve integration. 

Nonetheless, the time to calculate a full set of APD lookup tables has now been reduced 

from nearly two weeks to about three days. 

The change in integration method has resulted in some differences between the new and 

old lookup tables. In the case of the primary lookup table, these differences are small and the 

resulting PSFs calculated by APD are basically indistinguishable. For the first-order lookup 

table, the differences are la.rger, a.nd are fairly significant for cases where the scattering point 

is close to the detector surface. As a result, the PSF for first-order scatter shows a higher 

quantity of scatter with the new tables. The difference in peak number of counts was 

observed to be as high as 18% for a point source in a water cylinder. However, the amount 

of first-order scatter calculated with the new lookup tables is actually in better agreement 

with Monte Carlo data for this case, so the amount of first-order scatter calculated is not 
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unusually high. For second-order scatter, the differences between the new and old tables 

are fa.irly significant. However, the actual calculated PSFs do not show large discrepancies 

with one another. 

As a more general remark, we find that Gaussian quadrature (with a fixed number 

of points) has proven to be quite reliable and extremely computationally efficient for this 

application. In other applications where there is an extremely large number of integration 

operations required, Gaussian quadrature may be preferable to other methods which have 

significantly more computational overhead. One drawback of the method, however, is that 

it does not produce any error estimates. Thus, prior to adopting this kind OF Gaussian 

quadrature method, one should do some experimentation to ensure how many points one 

should use to obtain sensible results. 

4.2 Future Work 

Some of the decisions made in the development of the quadrature method (such as the 

number of points to use, and the switching point from 16-16-8-8-8 to 5-8-8-8-5 in the first- 

order table calculation) may be dependent on the parameters that were used during the 

experimentation (cf. Section 2.2). It  may be worth experimenting with some different sets 

of parameters to make sure that these choices are still sensible. It  would also be interesting 

to see if the unusual spike in discrepancies around 22 cm mentioned in Section 2.3 is still 

present with a different pixel size. 

While it is clear that the Gaussian quadrature scheme that has been implemented is 

much faster than Romberg's method, it is not clear whether or not it is more xcurate. In 

light of some of the differences observed during the experiments, it is definitely of interest to 

know whether using Gaussian quadrature has also improved the overall accuracy of the APD 

ca.lculation. Determining whether or not this is the case would require compa.ring against 

values that we know to be very accurate. One possibility would be to use results generated 

with more sophisticated quadrature methods (such as the adaptive methods mentioned in 

Section 2.1) as a basis for comparison. 

R o m  the point of view of 4 P D  itself, there are still areas where the speed of the cal- 

culation could be improved. The main bottleneck in lookup table calculation is now the 

summation that takes place in the construction of the second-order lookup table, and it may 

be worth examining this calculation to see if it can be accelerated as well. The main 4PD 
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method that calculates the PSFs can also be examined for potential speed improvements. 

Improving the speed of this calculation could help push APD towards being a more clinicdy 

viable method of scatter correction. 

Finally, the discrepancy between the amount of second-order scatter calculated by Sim- 

SET versus APD is still a concern which warrants further investigation. We may wish to 

compare APD against other Monte Carlo based programs to see if the amounts of second- 

order scat,ter calculated are in better agreement with one another. 



Bibliography 

[AW04] John N. Aarsvold and Miles N. Wernick. Emission Tomography: The Funda- 

mentals of' PET and SPECT.  Academic Press Inc., San Diego, 2004. 

[GGOO] Walter Gmder and Walter Gautschi. Adaptive quadrature-revisited. BIT, 

40(1):84-101, 2000. 

[Hen821 Peter Henrici. Essentials of numerical analysis wzth pocket calculator demon- 

strations. John Wiley & Sons Inc., New York, 1982. 

[HHGf 931 R.L. Harrison, D.R. Haynor, S.B. Gillispie, S.D. Vannoy? MS. Kaplan, and T.K. 

Lewellen. A public-domain simulation system for emission tomography photon 

tracking through heterogeneous attenuation using importance sampling. J. Nuc. 

Med., 34(5), 1993. 

[Hoc64] Urs W. Hochstrasser. Chapter 22: Orthogonal polynomials. In Milton 

Abramowitz and Irene A. Stegun, editors, Handbook of mathematical functions 

with formulas. graphs, and mathematical tables, volume 55 of Nutional Bureau of 

Standards Applied 12/lathernatics Series, pages xiv+1046. For sale by the Super- 

intendent of Documents, U.S. Government Printing Office, Washington, D.C., 

1964. 

[Lau97] Dirk P. Laurie. Calculation of Gauss-Kronrod quadrature rules. Math. Comp., 

66(2l9): 1133-1145, 1997. 

[PTVF92] William H. Press, Saul A. Teukolsky, Wil1ia.m T. Vetterling, and Brian P. Flan- 

nery. Numerical recipes i n  C. Cambridge University Press, Cambridge, second 

edition, 1992. 



BIBLIOGRAPHY 

[PXTf97] P.H. Pretorius, W. Xia, B.M.W. Tsui, T.S. Pan, and E.J. Villegas. Evaluation 

of right and left ventricular volume and ejection fraction using a mathematical 

cardiac torso phantom for gated pool spect. J. Nuc. Med., 38(10), 1997. 

Anthony Ralston. A first course In, numerical analysis. McGraw-Hill Book Co., 

New York, 1965. 

J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12 of Texts 

in Applied Mathematics. Springer-Verlag, New York, third edition, 2002. Trans- 

lated from the German by R. Bartels, W. Gautschi and C. Witzgall. 

Eric Vandervoort. Implementation of an analytically based scatter correction in 

spect reconstructions. Master's thesis, University of British Columbia, January 

2004. 

R. Glenn Wells. Analytical Calculation of Photon Distributions in SPECT Pro- 

jections. PhD thesis, University of British Columbia, August 1997. 


