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ABSTRACT 

Collateralized debt obligations (CDO) are a recent development in credit 

derivatives market. Credit risk of the collaterals is securitized through issuing 

tranches. The values of those tranches depend on the default risk characteristics 

of the pool of collaterals. In this paper, a reduced form model of default is 

considered. The hazard rates of collaterals follow square-root diffusion processes 

that can be correlated. The question of hedging the values of tranches against 

default risk and uncertain movements of hazard rates is analyzed and a feasible 

hedging strategy using credit default swaps is suggested. The model avoids the 

static nature of copula models. Sensitivity of results to various parameters of the 

model is examined. 

Keywords: CDO; CDS; Default intensity; Diffusion; Hedging; Tranche 
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1. Introduction 

A credit derivative is a financial instrument whose payoff depends on the 

creditworthiness of some companies or countries. Companies can use credit 

derivatives to trade credit risks in the same way that they trade market risks. The 

most exciting developments in derivatives markets have been in the credit 

derivatives area since the late 1990s. The total notional principal of outstanding 

credit derivatives contracts was around $800 billion in 2002. That grew to over $3 

trillion by 2003. As a result, modelling credit risk has become an active and 

important field. However, modelling credit is very difficult since default is a rare 

event. There are not enough observations to test models and extract meaningful 

statistics. There are several approaches to modelling credit. They can be divided 

into two broad categories of structural and reduced-form models. Structural 

models try to relate default events to the internal structure of the issuer of the 

debt. Reduced-form models do not explain why default occurs. Instead, they 

model the probability of default using the notion of default intensity. This paper 

focuses on reduced-form models. 

One of the most important advances in the securitization of credit risk is 

the issuance of collateralized debt obligations (CDOs). The underlying collateral 

is usually a portfolio of bonds or bank loans. The cash flow structure of a CDO 

allocates payments from the collateral pool to a prioritized collection of securities 

called tranches. That is the description of a cash CDO. There are also synthetic 

CDOs which use a pool of CDSs (described below) instead of a pool of bonds. 



The default dependency of the debt instruments in the underlying collateral is 

crucial to pricing and hedging of the tranches. The key element in models for 

pricing and hedging of these products is the mechanism that generates default 

dependency. Credit default swaps can be used to hedge the tranches of a CDO. 

Credit default swaps (CDSs) are the most popular credit derivatives. They 

provide insurance against the default of a particular company. The protection 

buyer pays premium over time to the protection seller. In case of default by the 

company, the protection seller buys the bonds of that company for their face 

value. The market for CDSs has grown since the late 1990s. CDSs account for 

around 70% of all credit derivatives. 

There are three major approaches to modelling default dependency within 

the category of reduced-form models. The first one is models that have 

dependent default intensities but conditionally independent default times such as 

Duffie and Garleanu (2001). The second one is factor copula models such as Li 

(2001), Laurent and Gregory (2005), Rogge and Schonbucher (2003), and Hull 

and White (2004). The dependence structure of default times is described by the 

copula function. The models in this approach are usually presented and used in a 

static fashion. This makes it hard to have intuition for dynamic aspects of the 

model. The third one is models with direct interaction between default intensities 

such as Jarrow and Yu (2001), Davis and Lo (2001), Giesecke and Weber (2OO6), 

and Yu (2005). In this approach, default intensities jointly jump upwards by a 

discrete amount when a credit event occurs (default contagion). The 



disadvantage of this approach is that calibration is very difficult since estimation 

of the jump factor is nontrivial. 

The risk management of CDO tranches has become very important for 

investors in credit markets. Tranches should be hedged against default risk of 

companies in the collateral and uncertain movements of default intensities 

(spread risk). Hedging is possible by buying or selling protection using single- 

name CDSs since the value of CDSs depends on the spreads. The standard 

approach for determining the sensitivity to spread changes (spread-deltas) is 

pricing the tranches using Gaussian copula and then varying the spreads to see 

how much the prices change. It assumes that all other parameters stay constant 

as one varies the intensities. Hedge ratios protecting tranches against the default 

of firms (default-deltas) can be calculated similarly as described by Neugebauer 

(2006). However, that method has deficiencies which are related to the 

weakness of copula models which is studied in Schonbucher (2001). Dynamic 

hedging of credit risky securities is studied by Laurent (2007) and Frey (2006). 

They analyze the hedging of CDO tranches with CDSs in a Markov-chain model 

with default contagion. However, they focus mainly on the case without spread 

risk. On the other hand, Industry practice tends to ignore hedging against default 

risk and hedges the spread risk only. 

In this paper hedging tranches of a simple cash CDO against both spread 

risk and default risk is considered. The collateral consists of two bonds. A 

square-root diffusion model for default intensities is assumed which avoids the 

discretization of Markov chains and the static nature of copula models. The 



diffusion of spreads of different firms can be correlated and intensities of different 

firms can be different. Hedge ratios for hedging against both the spread risk and 

default risk using CDSs were calculated using Monte Carlo simulations. It was 

shown that full hedge is possible if two CDSs with different maturities are traded 

in the market. One often finds that the relative accuracy of estimating sensitivities 

can be hundreds of times lower than the relative price precision. Variance 

reduction techniques were employed to improve the efficiency of estimating 

sensitivities. The model can be extended to include more bonds and also default 

contagion. 



2. Model 

This section explains the model, CDSs, CDOs, and the hedging strategy 

2.1. Intensity Modeling 

The reduced-form model of default assumes that the probability of default 

over the next small interval of time is AAt given the condition that the firm has 

survived up to that time. A is called the hazard rate or default intensity which is a 

non-negative number. The default means the default of the firm under 

consideration. All the outstanding bonds issued by the firm default in case of 

bankruptcy of the firm. With deterministic hazard rate, the probability of survival 

from time t to T with the condition that it has survived up to time t is: 

With stochastic hazard rate, the equation becomes: 

Processes in which the hazard rate is stochastic are called the Cox 

processes. The model used in this paper is the influential model of short-term 

interest rate r called CIR process. The interest rate r is replaced with the 

hazard rate A : 



z is a standard Brownian motion. This process is also called a square-root 

diffusion process. 0 is the long-run mean of 2 which means that E,[A(s)]  

converges to 0 as s + oo. K is the rate of reversion to the long-term mean. It 

keeps ;1 from getting too far from the long-term mean. o is a volatility coefficient. 

Therefore, the instantaneous standard deviation as a fraction of level is dm. 
2(t) is always non-negative in this model which is required since hazard rate is 

non-negative by definition. The analytical solution is: 

p(t ,  T )  = ~ ( t ,  ~ ) e - ~ " ~ ~ " " '  

where 

y is defined as: 

Now one can get the probability density function for default time z : 

P ( t I z I t + A t I z > O )  ap(0,t) 
f ( t )  = lim - - -- 

At+o ~t at 

In this paper it is assumed that short-term default-free interest rate r ( t )  is 

constant. To price a defaultable zero-coupon bond with unit face value and 

maturity T we use: 

- j O 1 r ( s M  
B(0 ,  T )  = E o [ e  ' { r > T )  1 = 

The above formula uses the 

A ( s ) d s  
e - r T ~ o [ l , r , T , ]  = e-"E0[e-joJ ] = e - r T p ( ~ , ~ )  (9) 

risk-neutral valuation principle which states that the 



value of a security is equal to its expected discounted cash flows under the risk- 

neutral probabilities. Therefore, the probability measure used in the model is the 

risk-neutral measure. Note that the real-world probability measure can be 

different. 

There are two firms in this model. The hazard rate of each firm follows a 

CIR process. The two diffusion processes can be correlated: 

d l ,  ( t )  = K ( B  - I ,  (t  ))dt + o d m d z ,  ( t )  (1 0) 

d l 2  ( I )  = K ( B  - I2 (t))dt + od l , ( f )dz2  ( t )  (11) 

The two diffusion processes are correlated: 

COV[&, ( t ) ,  dz2 ( t ) ]  = pdt (12) 

No default contagion is assumed. That means if one firm defaults, the intensity of 

other firm does not jump. Moreover, conditional on the intensity paths, the default 

times of the two firms are independent. The only source of default dependence is 

the correlated diffusion of intensities. The parameters of the CIR process are the 

same for both firms, but the spot intensities can be different. 

One can use the survival indicator variable to define a measure for default 

correlation by time T . The survival indicator d;  is zero if the firm i defaults by 

time T and it is one if it does not default. To measure the default correlation 

between firms i and j, covariance of di and d ,  can be used: 

E[di ] = pi = P(zi > T )  

2 2 
Var[di] = E[d,  ] - ( E [ d i ] ) ?  = pi - pi = pi (1 - p i )  

Cov[d,, d,] = E[did,] - E [ d i ] E [ d j ]  = p, - p i p .  .I 



where p,  is the probability of both firms surviving. Now the binomial measure of 

default correlation can be defined as: 

2.2. Credit Default Swaps 

Credit default swaps are the most important instruments in the credit 

derivatives market. They provide insurance against the default of an issuer (the 

reference entity). The buyer pays a premium until either the maturity of the 

contract or default on the reference entity, whichever comes first. If the default 

occurs, the seller of protection compensates the buyer by paying the face value 

of the bond in exchange for the defaulted bond (physical settlement). Zero 

recovery is assumed here in case of default. It means that the value of the bond 

drops to zero when default happens. 

CDS has two legs: the premium leg and the protection leg. Protection 

buyer pays a premium until the default occurs. It is assumed that the premium is 

paid continuously. The protection seller pays the protection buyer the face value 

of the bond in case of default. Value of the premium leg is: 

where c is the CDS spread and p( t )  is the probability of survival until time t .  

Value of the protection leg is: 



where f ( t )  is the probability density of default. The value of a CDS contract to 

the protection buyer is: 

When the contract is signed at time zero, the CDS spread is determined so that 

the net value of the CDS is zero (break-even condition): 

The CDS spread is then locked and cannot be changed. That means that the 

CDS can gain nonzero value over time as the hazard rate changes. A change in 

the hazard rate would change the probability distribution function of default times, 

but leaves the CDS spread unchanged. Therefore, f ( t )  and p( t )  change as 

initial intensity changes, but c stays the same. The partial derivative with respect 

to initial intensity is: 

where f (A , t )  and p(A, t )  are functions of both time and the initial intensity. 

2.3. Collateralized Debt Obligations 

A collateralized debt obligation creates securities with different risk 

characteristics from a pool of debt instruments. Those securities are called 



tranches of the CDO. Cash flows from the pool of debt instruments are allocated 

to tranches in a prioritized way. There are typically three categories of tranches, 

senior, mezzanine, and equity tranches. Senior has priority over mezzanine, and 

mezzanine has priority over equity. That is the description of a cash CDO. There 

are also synthetic CDOs which use a pool of CDSs instead of a pool of bonds. 

Only cash CDOs are considered in this paper. Relative values of tranches 

depend on default dependencies of the collateral pool. For example, if all the 

bonds in the pool default together, all tranches have the same value. If defaults 

of different bonds are independent, the equity tranche becomes much riskier than 

the senior tranche. 

In this paper, a portfolio of two zero-coupon bonds of identical maturity T 

is considered. The face value of each bond is $1. The two bonds are issued by 

two different firms. There are two tranches, a senior tranche and an equity 

tranche. The payoff structure of the tranches at maturity is assumed as the 

following: 

With no defaults, both tranches get $1 at maturity. 

With one default, the equity tranche gets zero and the senior gets $1. 

Both tranches get zero if both firms default. 

The payoff structure makes the equity tranche responsible for the first 50% of 

loss and the senior tranche responsible for the second 50%. The following 

notation is used: 



pi = P(z;  > T )  (22) 

This means that pi is the survival probability of firm i until time T which is the 

maturity of the CDO. Let V,, and Vsn be the values of the equity and senior 

tranches at time zero. It is assumed that the default intensity of each firm follows 

a CIR process according to Eq. (lo), (1 I ) ,  and (12). The values of tranches at 

time zero depend on the parameters of the model and the initial intensities of 

firms: 

Veq = Veq ('1 9 A2 > (23) 

vsn = vsn (4  9 A2 1 (24) 

where the fixed parameters are omitted since they are constant over time. One 

can derive analytical solutions for prices of tranches when defaults are 

independent: 

v,, = e - r T ~ l  (4 1 ~ 2  (A2 ) (25) 

vsn = e-rT ( 1  - [ 1  - PI (4 )1[1 - p2 (4 )I) (26) 

where p , (A , )  and p2(A2)  are survival probabilities which depend on initial 

intensities. 

2.4. The Hedging Problem 

The value of a hedge portfolio changes deterministically over time interval 

At.  That means that the hedge instruments should cancel the effects of sources 

of uncertainty in the value of the hedged asset. Hedging is done for events with 

probabilities that are O(At) .  Events with probabilities that are o(At) are not 



considered. The reason is that as only the limit At 4 0 is considered for dynamic 

hedging. As time goes on, the hedge position should be adjusted dynamically to 

maintain the deterministic change in the hedged portfolio's value. 

Eq. (23) and (24) are conditional on the survival to date of both firms. 

Given that condition, the two tranches should be hedged against fluctuations in 

both intensities. That means there are two sources of uncertainty. However, the 

defaults of the two firms can impact the values of the two tranches too. That 

means that there are four sources of uncertainty: changes in A,, changes in A,, 

default of firm 1, and the default of firm 2.  This implies that one needs four hedge 

instruments to hedge each tranche. A possibility is using two CDSs with different 

maturities for each firm as explained below. 

For hedging, two CDSs on each firm with maturities s and 1 ( s  < 1 ) are 

used. s and 1 stand for short and long. That means that each tranche holder 

buys or sells CDSs on firms 1 and 2.  The values of hedge portfolios for the equity 

and senior tranches are: 

hedge - 21 21 
Veq - V, + a;; v& + a;: v&s + a:(; V& + VcDs (27) 

hedge - I1 21 21 
Vsn -Vsn + a : i V i h  +aSnv~L  +as?v;is +asnVcDs (28) 

where a 's are hedge ratios for different CDSs. For example, a;; is the number 

of CDSs with value V& and maturity s on firm 1 bought to hedge the equity 

tranche. The probability of both firms defaulting within At is o ( A t )  and not 

considered. If one firm defaults, the value of equity tranche drops to zero and the 

value of senior tranche becomes equal the price of the remaining bond. Hedging 



against changes in intensities can be done by setting the partial derivatives equal 

to zero. Therefore, for hedging the equity tranche we should have: 

Ve, = a:; + a;; (29) 

2s 21 
V e q  = a e q  + a e g  (30) 

For hedging the senior tranche we have: 

Is 11 
V s n  - ' 2  = a s n  + a s n  

Vsn - B1 = as2ns +a: 

Eq - 

A =  

For 

(29) to (36) can be put in a compact form using matrices: 

equity tranche we get: 



And for senior tranche we get: 

As long as matrix A is invertible, Eq. (38) and (39) can be solved and hedge 

ratios can be calculated. Matrix A is block-diagonal and is invertible if and only if 

the following equations hold: 

Eq. (40) and (41) hold if the sensitivity of the value of a CDS to initial intensity 

depends on its maturity. 



3. Simulation Methodology 

This section explains the simulation and variance reduction methods used to 

estimate prices and sensitivities. 

3.1. Estimating Prices 

To analyze the case of correlated defaults, one has to resort to simulation 

since analytical solutions are often available only for the marginal distributions. In 

order to simulate the CIR process of Eq. (3), the following discrete-time 

approximation can be used: 

n(t  + ~ t )  - ~ ( t )  = ~ ( e  - ~ ( t ) ) ~ t  + ~ m & ~ ( t )  (42) 

where ~ ( t )  is drawn from a standard normal distribution. Negative outcomes for 

A(t + At) should be replaced with zero since hazard rate is non-negative. The 

draws from the standard normal are iid for different times. 

It is usually easy to simulate a random variable X if the inverse of the 

cumulative distribution function F - ' ( x )  is known. The inverse-transform method 

sets: 

X = F  -' ( U )  (43) 

where U  is a uniform random variable on [0,1]. In the case the CIR model used 

in this paper, the inverse of the CDF is not known analytically although one can 

use numerical methods like Newton's method to solve for time to default using 



the expression for the CDF. For the direct simulation of time to default, the 

following algorithm (count-down method) is used: 

1. Simulate a uniform random variable 0 I U I 1 . 

2. Generate a default intensity path up to time T 

3. Find r' such that l' A (s)ds = - In( U ) . 

One has to show that the algorithm produces the true distribution of default time. 

That means showing r (default time) and r' have the same distribution. The 

following definition is used: 

- ( i . ( S i d .  

Y ( t )  = e 

Note that the distribution of z can be found as: 

Now let U be an independent uniform random variable on [0,1] and denote by z' 

the time at which y(zr) = U. The probability distribution of z '  is given by: 

where the law of iterated expectation is used. The equation above shows that the 

distribution of z' (time simulated in the algorithm) and z have the same 

distribution. 

The integration was done numerically using the trapezoidal method: 



where ti is one of the points on the time grid: 

0 = to < t ,  < ... < t ,  = T (48) 

The trapezoidal rule is based on the idea of approximating the function in each 

sub-interval by a straight line so that the shape of the area in the sub-interval is 

trapezoidal. As the number of sub-intervals used increases, the straight line will 

approximate the function more closely. z' was found by minimizing 

I lot1 A ( s )  ds + In( U ) I over t i ' s .  The minimization works because I: A ( s )  ds 

is monotonically increasing in t  . If the minimization returns z  = T , it means that 

default has not occurred by time T .  

In order to price the senior and equity tranches, two intensity paths should 

be simulated together according to Eq. (1 O), (1 I ) ,  and (12). Therefore, two 

correlated standard normal random variables E ,  and E ,  should be generated. 

The variance-covariance matrix of E,  and E ,  is: 

Cholesky decomposition of a positive-definite 

positive-definite for I p I< 1. The matrix C that 

C T C  = C 

matrix can be used since C is 

satisfies: 

(50) 

is called the Cholesky decomposition of C . Now C T Z  would have the desirable 

variance-covariance matrix where Z is a vector of independent standard normal 

variables: 

E[(CTZ)(CTZ) ' ]  = E[CTZZTC]  = C T E [ Z Z T ] C  = CTIC = C 



Given the algorithms above one can simulate the two intensity paths for 

the two firms. The two uniform random variable U, and U ,  which are used to 

simulate z, and z, are independent because default times are independent 

conditional on the realization of intensities. Given the simulated default times, the 

discounted payoffs of senior and equity tranches can be calculated to price the 

tranches. 

3.2. Estimating Sensitivities 

Sensitivities have to be estimated in order to get the hedge ratios. Assume 

that one is interested in estimating the derivative of a ( A )  where a ( A )  is any 

function of the parameter A .  Also assume that: 

a ( 4  = E [ Y ( 4 I  (52) 

where the random variable Y ( A )  depends on the parameter A .  Central- 

d a ( 4  . difference method was used to get -. 
dA 

Variance of Y ( A  + h )  - Y ( A  - h )  depends on how the simulation is done. Pathwise 

derivative estimates were used to estimate sensitivities. This method estimates 

derivatives directly. It uses common random numbers to simulate Y ( A  + h )  and 

Y ( A  - h )  . That method is legitimate as long as: 



Eq. (54) is equivalent to saying that the interchange of differentiation and 

expectation is justified: 

In most cases, variance of [ Y ( A  + h )  - Y ( A  - h ) ] / ( 2 h )  blows up as h  + 0 .  On the 

other hand, the estimator becomes unbiased as h + 0 .  Therefore, one has to 

worry about the trade-off between bias and variance when deciding what h to 

use. 

3.3. Variance Reduction 

Usually a large number of simulations are required to achieve the 

desirable accuracy. That is very expensive in terms of computation time. There 

are several variance reduction techniques available which are studied in 

Glasserman (2004). Their usefulness depends on the problem under 

consideration. Two variance reduction techniques were employed in the 

simulation: antithetic variates and control variates. The use of control variate was 

possible since there is an analytical solution for the price of a bond in the CIR 

model. 

With the antithetic variable technique, two default times are simulated with 

each intensity path using U and 1 - U . It is based on the observation that if U is 

uniformly distributed over [OJ] , then 1 - U is too. The price simulations from U 

and 1 - U are then averaged. This method attempts to reduce variance by 

introducing negative dependence between pairs of replications. It also saves time 



in this model since only one intensity path is required to generate two default 

times. 

The control variate technique exploits information about the errors in 

estimates of known quantities to reduce the error in an estimate of an known 

quantity. Assume you want to estimate E[Y]  . Suppose on each replication of Y 

another output X is calculated along. Assume that E [ X ]  is known. Then for any 

fixed b we calculate: 

Y(b)  = Y - b(X  - E [ X ] )  (56) 

Now it is clear that: 

E[Y(b)] = E[Y]  - b ( E [ X ]  - E [ X ] )  = E[Y]  (57) 

Var[Y(b)] = at - 2 b a x a , p ,  + b 2 a i  (58) 

The optimal coefficient b* minimizes the variance: 

The covariance and variance in Eq. (59) are not typically known, but they can be 

estimated using the simulations. The control variate in this model is based on the 

analytical solution for the price of a bond which is the expected value of 

discounted payoffs. Therefore, for estimating derivatives, the derivative of the 

price of a bond can be used as the control variate. For example, to estimate 

dVeq / dA, , dB, / d l ,  is used as the control variate. 



4. Results and Discussion 

Simulations were done N = 10' times. The time step chosen was At = 0.01. 

The unit of time is one year. It should be noted that there might be some bias 

because of time discretization. On the other hand, computation time increases as 

At is decreased. At should be small enough so that the discretization bias is 

much smaller than the Monte Carlo noise. Analytical solution is available for the 

zero correlation case. The tranche prices calculated by Monte Carlo can be 

compared with the analytical result to see if the bias is within the accuracy of the 

Monte Carlo result. That was the case for At = 0.01 and N = 10' which suggested 

that At = 0.01 is small enough. MATLAB code is attached in the appendix. 

The base case of B = 0.03 (low-quality investment grade), K = 0.25 , 

A, = 2, = 0.03, r = 0.05 , and o = 0.17 was considered. o was chosen so that 

volatility of o l f i  = 100% is implied. in Eq. (21) can be calculated with aa 

numerical integration and central-difference method for taking the derivative. The 

reason is that there are analytical expressions for f ( 1 , t )  and p ( 2 , t ) .  The CDSs 

used have maturities s = 2 and I = 5 . The result of numerical integration and 

differentiation for 2, = 2, = 0.03 was: 



Eq. (60) and (61) imply that matrix A in Eq. (37) is invertible. That means that 

the hedging problem has a unique solution. A realization of intensity paths for the 

base case with p = 0.8 is shown in Figure 1. Prices of tranches and their partial 

derivatives with respect to initial intensities ( A ,  = A, = 0.03) for the base case with 

p = 0.8 are shown in Table 1. SD is the estimate of the standard deviation of the 

sample mean. The analytical results for the same parameters but zero correlation 

are shown in Table 2. Hedge ratios for the base-case parameters and p = 0.8 

are shown in Table 3. The analytical results for the same parameters but zero 

correlation are shown in Table 4. 

Figure 1 - Realization of intensity paths for the Base Case with p = 0.8 



Table I - Prices of tranches and their derivatives for the Base Case with p = 0.8 

T=l  T=3 T=5 T=10 

Estimate SD Estimate SD Estimate SD Estimate SD 

Equity Equity Equity Equity 

Price 0.8963 7.01 E-04 0.723 9.98E-04 0.588 0.001 1 0.3593 9.43E-04 

Derivative -0.7861 0.0025 -1.4504 0.0056 -1.51 11 0.007 -1.0835 0.0066 

Senior Senior Senior Senior 

Price 0.9504 8.97E-05 0.8523 2.68E-04 0.7586 3.91E-04 0.5603 5.09E-04 

Derivative -0.0273 0.0025 -0.1656 0.0056 -0.3004 0.007 -0.4082 0.0066 

Table 2 - Prices of bonds, tranches, and their derivatives for the Base Case with p = 0 

T=l  T=3 T=5 T=10 

Equity Equity Equity Equity 
Price 0.896 0.7221 0.5854 0.3515 

Derivative -0.7895 -1.4801 -1.5703 -1.1 353 
Senior Senior Senior Senior 

Price 0.9504 0.8546 0.765 0.572 
Derivative -0.0239 -0.1358 -0.241 -0.3561 

Bond Bond Bond Bond 

Price 0.9232 0.7884 0.6752 0.4617 

Table 3 - Hedge Ratios for the Base Case with p = 0.8 

CDS Estimate SD Estimate SD Estimate SD Estimate SD 

Equity Equity Equity Equity 
IS 1.4744 0.0034 0.2605 0.0069 -0.1654 0.0085 -0.2833 0.0079 
11 -0.5781 0.0031 0.4625 0.0066 0.7534 0.0082 0.6426 0.0077 
2s 1.4744 0.0034 0.2605 0.0069 -0.1654 0.0085 -0.2833 0.0079 
21 -0.5781 0.0031 0.4625 0.0066 0.7534 0.0082 0.6426 0.0077 

Senior Senior Senior Senior 
IS 0.0408 0.0029 -0.0195 0.0064 -0.1214 0.008 -0.2039 0.0076 
11 -0.0136 0.0028 0.0834 0.0064 0.2048 0.008 0.3025 0.0076 
2s 0.0408 0.0029 -0.0195 0.0064 -0.1214 0.008 -0.2039 0.0076 
21 -0.0136 0.0028 0.0834 0.0064 0.2048 0.008 0.3025 0.0076 



Table 4 - Hedge Ratios for the base case with p = 0 

CDS Equity Equity Equity Equity 
1 s 1.4699 0.2243 -0.2397 -0.363 
1 I -0.5739 0.4978 0.8251 0.7144 
2s 1.4699 0.2243 -0.2397 -0.363 
21 -0.5739 0.4978 0.8251 0.7144 

CDS Senior Senior Senior Senior 
1 s 0.0446 0.0206 -0.0368 -0.1 138 
1 I -0.0174 0.0457 0.1266 0.2241 
2 s 0.0446 0.0206 -0.0368 -0.1 138 
2 1 -0.01 74 0.0457 0.1266 0.2241 

To estimate derivatives, one has to choose a value for h in Eq. (55). 

Prices of senior and equity tranches are plotted in Figure 2 as a function of 

intensity of firm 2 for the base case parameters, zero correlation and T = 3 .  That 

can be done analytically since zero correlation is assumed. It is clear from Figure 

2 that the price curves are very linear in the relevant range. That implies that 

choosing a large value for h is a safe choice. h = 0.01 was used for simulations. 

Comparing the hedge ratios in Tables 3 and 4 reveals that hedge ratios 

are close for p = 0.8 and p = 0 when maturity T is short. As T increases, the 

difference between the hedge ratios becomes larger. It is also important to look 

at the estimated binomial measure of default correlation for the two bonds. The 

results are shown in Table 5. Those results show that default correlation 

increases as T increases. The default correlations in Table 5 are rather small. To 



test the sensitivity of that result to the parameters of the model, the default 

correlation was estimated for different level of volatility and also for different 

mean reversion rates. The results are shown in Table 6. The estimates in Table 6 

show that it is possible to achieve higher default correlation with higher volatility 

and lower mean reversion rate. Therefore, this model is capable of producing 

reasonable default correlation for long maturities. 

Figure 2 - Prices of tranches 

Prices of tranches were calculated analytically for = 0 ,  A,, = 0.03, T = 3 and different values of 
1,. Other parameters were the base case parameters. 



Table 5 - Estimates of default correlation for different maturities 
Binomial measure of default correlation was estimated for the base case with p = 0.8 for different 

maturities. 

Table 6 - Estimates of default correlation 
Binomial measure of default correlation was estimated for T = 10 with different combinations of a 
and K .  Other parameters are the base case parameters. 



5. Conclusion 

In this paper hedging tranches of a simple cash CDO was considered. The 

collateral consisted of two bonds. A square-root diffusion model for default 

intensities was assumed. The diffusion of spreads of different firms can be 

correlated and intensities of different firms can be different. The model avoids the 

discretization of Markov chain models and the static nature of copula models. It 

was shown that one can fully hedge the tranches using CDSs with different 

maturities. Hedge ratios for hedging against both the spread risk and default risk 

using CDSs were calculated using Monte Carlo simulations. Variance reduction 

techniques were employed to improve the efficiency of estimating sensitivities. 

Default correlations and hedge ratios were estimated for different parameters of 

the model. It was shown that the model is capable of producing reasonable 

default correlation for long maturity, high volatility, and low mean reversion rate. 

Even though the model has two bonds, it can be extended to include more bonds 

and also default contagion. 



Appendix 

MATLAB Code 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Pricing the equity and senior tranches using Monte Carlo. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

theta = 0.03; 
kappa = 0.25; 
r = 0.05; 
rho-cop = 0; 
rho-diff = 0.8; 
sigma = 0.17; 

C-cop = chol( [l,rho-cop;rho-cop,l]); 
C - diff = chol([l,rho - diff;rho - diff,l]); 

lambdal = zeros (M+1,1) ; 
lambda2 = zeros (M+1,1) ; 

areal = zeros (M+l, 1) ; 
area2 = zeros (M+1,1) ; 

senior = zeros (N, 1) ; 
equity = zeros (N, 1) ; 

lambdal (1) =lambda1 0; 
lambda2 (1) =lambda2:0; 

for i=l:N 
z = C-cop' * randn(2,l); 
P1 = -log (normcdf (Z (1) ) ) ; 

P2 = -log (normcdf (Z (2) ) ) ; 

for j=l:M 
w = C-diffl * randn(2,l) ; 



lambdal(j+l) = lambdal(j) + kappa * (theta - lambdal(j)) * dt + 
igma * sqrt (lambdal (j) ) * W (1) * sqrt (dt) ; 

lambda2 (j +I) = lambda2 (j ) + kappa * (theta - lambda2 (j ) ) * dt + 
igma * sqrt(lambda2(j)) * W(2) * sqrt(dt); 

if lambdal (j+l) < 0 
lambdal(j+l) = 0; 

end 

if lambda2 (j+l) c 0 
lambda2 (j +l) = 0; 

end 

areal (j+l) = areal (j) + dt * (lambdal (j+l) + lambdal (j) ) /2; 
area2 (j+l) = area2 (j) + dt * (lambda2 (j+l) + lambda2 (j) ) /2; 

end 

[al, bl] =min (abs (PI -areal) ) ; 
[a2, b2] =min (abs (P2 -area2) ) ; 

if taul c T 
defaultl(i) = 1; 

else 
defaultl(i) = 0; 

end 

if tau2 c T 
default2 (i) = 1; 

else 
default2 (i) = 0; 

end 

if (taul == T) & (tau2 == T) 
senior(i) = exp(-r*T) ; 
equity (i) = exp (-r*T) ; 

elseif (taul c T) & (tau2 c T) 
senior (i) = 0; 
equity(i) = 0; 

else 
senior (i) = exp (-r*~) ; 

equity(i) = 0; 
end 

end 

senior-price = mean(senior) 
stdev senior = std(senior)/sqrt(~) - 

equity-price = mean(equity) 
stdev-equity = std(equity)/sqrt(N) 



cov-default = cov(defaultl,default2) ; 
default corr = cov default (l,2) / sqrt (cov-default (1,l) * - 
C O V - ~ ~ ~ Z U ~  t (2,2 

12=etime (clock, to) /6O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Calculates the partial derivatives of values of senior and equity 
% tranches with respect to initial intensity of firm 1 using Monte 
% Carlo. Partial derivatives with respect to initial intensity of 
% firm 2 can be calculated similarly. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

theta = 0.03; 
kappa = 0.25; 
r = 0.05; 
rho-cop = 0; 
rho - diff = 0.8; 
sigma = 0.17; 

C-cop = chol ( [l, rho-cop;rho-cop, 11 ) ; 
C-dif f = chol ( [l, rho-dif f ; rho-dif f, 11 ) ; 

lambda1 up = zeros (M+1,1) ; 
lambdalIdown = zeros (~+1,1) ; 

lambda2 = zeros (M+1,1) ; 

areal up = zeros (M+1,1) ; - 
areal-down = zeros (M+1,1) ; 

area2 = zeros (M+1,1) ; 

senior-up = zeros (N, 1) ; 
senior-down = zeros (N, 1) ; 

equity-up = zeros (N, 1) ; 
equi ty-down = zeros (N, 1 ) ; 



anti-equity-up = zeros (N, 1) ; 
anti-equity-down = zeros (N, 1) ; 

bondl-up = zeros (N, 1) ; 
bondl-down = zeros (N, 1) ; 

anti-bondl-up = zeros (N, 1) ; 
anti-bondl-down = zeros (N, 1) ; 

for i=l:N 
z = C-cop1 * randn(2,l); 

anti P1 = -log(normcdf (-Z(1) ) ) ; 
antiI~2 = -log (normcdf (-Z (2) ) ) ; 

for j=l:M 
W = C-dif f * randn (2,l) ; 

lambdal-up(j+l) = lambdal-up(j) + kappa * (theta - 
lambdal-up(j) ) * dt + sigma * sqrt (lambdal-up(j)) * ~ ( 1 )  * sqrt (dt) ; 

lambda1 - down(j+l) = lambdal-down(j) + kappa * (theta - 
lambdal-down(j)) * dt + sigma * sqrt(lambda1-down(j)) * W(1) * sqrt(dt); 

if lambda1 - up(j+l) < 0 
lambdal-up (j+l) = 0; 

end 

if lambdal-down(j+l) < 0 
lambdal-down(j+l) = 0; 

end 

areal-up(j+l) = areal-up(j) + dt * (lambdal-up (j+l) + 
lambdal-up (j ) ) /2 ; 

areal-down ( j +l) = areal-down ( j ) + dt * (lambdal-down ( j +l) + 
lambdal-down ( j ) ) / 2 ; 

lambda2(j+l) = lambda2(j) + kappa * (theta - lambda2(j)) * dt t 
sigma * sqrt(lambda2(j)) * W(2) * sqrt (dt) ; 

if lambda2 (j +l) < 0 
lambda2 (j+l) = 0; 

end 

area2(j+l) = area2(j) + dt * (lambda2(j+l) + lambda2(j))/2; 
end 



[anti-al-up,anti-bl-up]=min(abs(anti-PI- up)); 
[anti-al-down,anti-bl-down1 =rnin(abs (anti - PI-areal - down) ) ; 

[a2, b2] =min (abs (P2-area2) ) ; 
[anti-a2, anti-b2] =min (abs (anti-P2 -area2 ) ) ; 

anti-taul-up = (anti-bl up - 1) * dt; 
anti-taul-down = (anti-bl-down - 1) * dt; 

tau2 = (b2 - 1) * dt; 
anti-tau2 = (anti-b2 - 1) * dt; 

if taul-up < T 
bondl-up (i) = 0; 

else 
bondl-up(i) = exp(-r*~) ; 

end 

if taul-down < T 
bondl-down (i) = 0; 

else 
bondl-down (i) = exp (-r*T) ; 

end 

if anti-taul-up < T 
anti-bondl-up (i ) = 0 ; 

else 
anti-bondl-up (i = exp (-r*T) ; 

end 

if anti-taul-down < T 
anti-bondl-down ( i) = 0 ; 

else 
anti - bondl-down(i) = exp(-r*T); 

end 

if (taul-up == T) & (tau2 == T) 
senior-up (i) = exp (-r*~) ; 

equity-up (i) = exp ( - r * ~ )  ; 
elseif (taul-up < T) & (tau2 < T) 

senior-up(i) = 0; 
equity-up(i) = 0; 

else 
senior-up (i) = exp (-r*~) ; 

equity-up(i) = 0; 
end 



if (taul-down == T) & (tau2 == T) 
senior-down (i) = exp (-r*T) ; 
equity-down(i) = exp(-r*T) ; 

elseif (taul-down c T) & (tau2 c T) 
senior-down(i) = 0; 
equity-down(i) = 0; 

else 
senior-down (i) = exp (-r*T) ; 
equity-down(i) = 0; 

end 

if (anti-taul-up == T) & (anti-tau2 == T) 
anti-senior-up (i) = exp (-r*T) ; 
anti-equity-up (i) = exp (-r*T) ; 

elseif (anti-taul-up c T) & (anti-tau2 c T) 
anti-senior-up (i) = 0 ; 
anti-equity-up(i) = 0; 

else 
anti-senior-up (i) = exp ( -r*T) ; 
anti-equity-up (i) = 0 ; 

end 

if (anti - taul-down == T) & (anti-tau2 == T) 
anti-senior-down (i) = exp ( -r*T) ; 
anti equity-down (i) = exp (-r*T) ; 

elseif (anti-taul-down c T) & (anti-tau2 c T) 
anti-senior-down ( i ) = 0 ; 
anti-equity-down (i) = 0 ; 

else 
anti - senior-down (i) = exp (-r*T) ; 
anti-equity-down (i ) = 0 ; 

end 
end 

f-bondl-up = (bondl-up + anti_bondl_up)/2; 
f - bond1 - down = (bondl-down + anti-bondl-down)/2; 

f-senior-up = (senior-up + anti-senior - up)/2; 
f-senior-down = (senior-down + anti_senior_down)/2; 

f-equity-up = (equity-up + anti_equity_up)/2; 
f - equity-down = (equity-down + anti_equity_down)/2; 

gamma=sqrt(kappaA2 + 2*sigmaA2); 
C = @(t) (kappa+gamma) * (exp(gamma*t)-1) + 2*gamma; 
A = @(t) 2 * gamma * exp((kappa+gamma)*t/2) / C(t); 
B = @(t) 2*(exp(gamma*t) -1) / C(t); 
psurvival = @(t, y) ~ ( t )  A (2*kappa*theta/ (sigmaA2) ) * exp (-B (t) *y) ; 

cont-var = (f-bondl-up - f-bondl-down) - exp(- 
r*T) * (psurvival (T, lambda1 - 0 + h/2) - psurvival (T, lambdal-0 - h/2) ) ; 

cov-senior = cov(cont-var, f-senior-up - f-senior-down) ; 
b-senior = cov_senior(1,2) / cov-senior(1,l); 



cov-equity = cov(cont-var, f-equity-up - f-equity-down) ; 
b - equity = cov_equity(l,2) / cov-equity(1,l) ; 

senior-derivl-cont = f-senior-up - f-senior-down - b-senior * cont-var; 
equity-derivl-cont = f-equity-up - f-equity-down - b-equity * cont-var; 

senior-derivative1 = (l/h) * mean(senior-derivl-cont) 
stdev - senior-derivative1 = std (senior-derivl-cont) / (sqrt (N) *h) 

equity-derivative1 = (l/h) * mean(equity-derivl-cont) 
stdev - equity-derivative1 = std(equity-derivl-cont)/(sqrt(~)*h) 

12=etime (clock, to) /6O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Calculates the CDS premium and derivative with numerical 
% integration and differentiation. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

theta = 0.03; 
kappa = 0.25; 
r = 0.05; 
sigma = 0.17; 

•’1 = zeros(M+l,l); 
areal = zeros (M+1,1) ; 

•’2 = zeros(M+l,l); 
area2 = zeros (M+1,1) ; 

f 1 up = zeros (M+1,1) ; - 
areal up = zeros (M+1,1) ; - 

f 2 up = zeros (M+1,1) ; - 
area2-up = zeros (M+l, 1) ; 

f 1-down = zeros (M+1,1) ; 
areal-down = zeros (M+1,1) ; 

f 2-down = zeros (M+l, 1) ; 
area2-down = zeros (M+l, 1) ; 



C = @ (t) (kappa+gamma) * (exp (gamma*t) -1) + 2*gamma; 
A = @(t) 2 * gamma * exp((kappa+gamma)*t/2) / ~ ( t ) ;  
B = @ (t) 2* (exp (gamma*t) -1) / C (t) ; 
psurvival = @(t,y) ~ ( t )  A (2*kappa*theta/ (sigmaA2) ) * exp(-~(t) *y) ; 
partial A = @ (t) (gamma* (kappa+gamma) *exp ( (kappa+gamma) * t  * C (t) - 
gamma* (kappa+garnma) *exp (gamma*t) *2 *gamma*exp ( (kappa+gamma) *t/2) ) / 
c (t) ̂2; 
partial-B = @ (t) (2*gamma*exp (gamma*t) *C  (t) - 
2*gamma*(gamma+kappa)*exp(gamma*t)*(exp(gamma*t)-l)) / C(t)^2; 
pdensity = @ (t, y) - (2*kappa*theta/ (sigmaA2) ) * 
~ ( t )  A (2*kappa*theta/ (sigmaA2) - 1) * partial-~(t) * exp (-B (t) *Y) + 
A (t) A (2*kappa*theta/ (sigmaA2) ) * y * partial-B (t) * exp (-B (t) *Y) ; 

funcl = @(t,y) exp(-r*t) *psurvival (t,y) ; 
func2 = @(t,y) exp(-r*t)*pdensity(t,y); 

for j=l:M 
fl(j+l) = funcl(j*dt, lambda-0) ; 
areal(j+l) = areal(j) + dt * (fl(j+l) + fl(j))/2; 

•’1 up(j+l) = funcl(j*dt,lambda-0 + h/2); 
areal - up(j+l) = areal-up(j) + dt * (•’1 up(j+l) + fl-up(j))/2; - 

•’2 - down(j+l) = func2(j*dt,lambda 0 - h/2); 
area2-down (j+l) = area2-down (j ) 5 dt * (•’2-down (j+l) + 

f2_down(j) )/2; 
end 

c = area2 (M+1) / areal (M+1) 

( (area2-up (M+1) - c * areal-up (M+l) ) - (area2-down (M+1) - c * 
areal-down (M+l) ) ) /h 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Calculates the hedge ratios and prices numerically for the 
% zero correlation case. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

theta = 0.03; 
kappa = 0.25; 
r = 0.05; 
sigma = 0.17; 

CDS Is = 1.4439; 
CDSI~~ = 2.3227; 

gamma=sqrt(kappaA2 + 2*sigmaA2) ; 
c = @ (t) (kappa+gamma) * (exp (gamma*t) -1) + 2*gamma; 
A = @(t) 2 * gamma * exp((kappa+gamma)*t/2) / ~ ( t ) ;  
B = @(t) 2*(exp(gamma*t) -1) / C(t) ; 
psurvival = @(t,y) A(t)^(2*kappa*theta/(sigmaA2) ) * exp(-~(t) *Y) ; 

E Q 4  =@(t,yl,y2) exp(-r*t)*psurvival(t,yl)*psurvival(t,y2); 
S N g  =@(t, yl, y2) exp (-r*t) * (1- (1-psurvival (t,yl) ) * (1-psurvival (t, y2) ) ) ; 

SN = SN p(~,lambdal-0,lambda2-0) 
EQ = E Q - ~  (T, lambdal-O,lambda2-0) - 

SN1 = (SNg (T, lambdal-0 + h/2,lambda2 - 0) - S N g  (T, lambdal-0 - 

h/2,lambda2-0) ) /h 
EQ1 = (EQg(T, lambda1 - 0 + h/2,lambda2-0) - E Q g  (T, lambda1 - 0 - 
h/2,lambda2_0))/h 

B1 = exp (-r*~) *psurvival (T, lambdal-0) ; 
B2 = exp ( - r * ~ )  *psurvival (T, lambda2-0) ; 

A = [l 1 0 0;CDS - Is CDS - 11 0 0;O 0 1 1;O 0 CDS-2s CDS-211; 



B-EQ = [EQ;-EQ1;EQ;-EQ2] ; 
Hedge-EQ = inv-A * B-EQ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Calculates the hedge ratios and their standard errors. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

theta = 0.03; 
kappa = 0.25; 
r = 0.05; 
rho-cop = 0; 
rho - diff = 0.8; 
sigma = 0.17; 

SN = 0.5603; 
ERR-SN = 5.0873e-004; 

EQ = 0.3593; 
ERR-EQ = 9.4252e-004; 



gamma=sqrt(kappaA2 + 2*sigmaA2); 
C = @(t) (kappa+gamma) * (exp(gamma*t)-1) + 2*gamma; 
A = @(t) 2 * gamma * exp((kappa+gamma)*t/2) / C(t); 
B = @(t) 2* (exp(gamma*t) -1) / C(t) ; 
psurvival = @(t, y) ~ ( t )  A (2*kappaktheta/ (sigmaA2) ) * exp (-B (t) *y) ; 

B1 = exp (-r*T) *psurvival (T, lambdal-0) ; 
B2 = exp ( - r * ~ )  *psurvival (T, lambda2-0) ; 

A = [l 1 0 0;CDS - IS CDS - 11 0 0;O 0 1 1;O 0 CDS - 2s CDS - 211; 
inv-A = inv (A) ; 

B EQ = [EQ;-EQ1;EQ;-EQ21; 
ERR - B - EQ = [ERR-EQ ; ERR-EQ1 ; ERR-EQ ; ERR-EQ2 1 ; 

B SN = [SN-B2;-SN1;SN-B1;-SN2]; 
ERR B SN = [ERR SN; ERR SN1; ERR SN; ERR SN2] ; - - - - - - 

Hedge-SN = inv-A * B-SN 
VAR-Hedge-SN = ( inv-A . A 2 ) * (ERR-B-SN . A 2 ) ; 
ERR-Hedge - SN = VAR - Hedge - SN.^(1/2) 
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