
Classification of Walks in Wedges 

by David Fernand Laferrikre 

B.Sc., University of Victoria, 2005 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  D E G R E E  O F  

in the  Department 

of 

Mathematics 

@ David Fernand L,aferrikre 2007 

SIMON FRASER UNIVERSITY 

2007 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author 



APPROVAL 

Name: David Fernand Laferrikre 

Degree: Master of Science 

Title of Thesis: Classification of Walks in Wedges 

Examining Committee: Dr. Jason Bell 

Chair 

Dr. Marni NIishna 

Senior Supervisor 

Dr. Petr Lisonek 

Supervisory Commit tee 

Dr. Andrew Rechnitzer 

External Examiner 

Date of Defense: July 25, 2007 

11 



S I M O N  FRASER U N I V E R S I T Y  
L I B R A R Y  

Declaration of 
Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has granted to 
Simon Fraser University the right to lend this thesis, project or extended essay to users 
of the Simon Fraser University Library, and to make partial or single copies only for 
such users or in response to a request from the library of any other university, or other 
educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or make 
a digital copy for use in its circulating collection (currently available to the public at the 
"Institutional Repository" link of the SFU Library website ~www.lib.sfu.ca~ at: 
<http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to 
translate the thesis/project or extended essays, if technically possible, to any medium 
or format for the purpose of preservation of the digital work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not be 
allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, of 
any multimedia materials forming part of this work, may have been granted by the 
author. This information may be found on the separately catalogued multimedia 
material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in part, 
and licensing other parties, as the author may desire. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 

Revised: Summer 2007 



Abstract 

Planar lattice walks are combinatorial objects which arise in statistical mechanics in 

both the modeling of polymers and percolation theory. It has been shown previously 

that  lattice walks restricted to a half-plane have algebraic generating functions. Much 

work has been done to classify the generating functions of walks restricted to the first 

quadrant quarter-plane as algebraic, D-finite, or non-D-finite. We consider walks 

restricted to two regions: an eighth-plane wedge and a three-quarter-plane region. 

We find combinatorial criteria to define families of walks with algebraic generating 

functions in those regions, as well as an isomorphism that  maps nearly one fourth of 

the walks in the eighth-plane to walks in the quarter-plane. Further, we find evidence 

of a family of walks whose generating functions are non-D-finite in any wedge smaller 

than a half-plane. 

Keywords: Dyck paths; formal power series; generating functions; planar lattice 

paths; statistical mechanics 

Subject Terms: Combinatorial Enumeration Problems; Generating Functions; Sta- 

tistical Mechanics 
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Chapter 1 

Introduction 

1.1 Planar lattice walks 

Many problems in statistical mechanics can be modeled using combinatorial objects. 

An example of such an  object is the random walk. In this thesis, we examine one 

form of random walk: the planar lattice path with next nearest neighbour steps. 

A planar lattice path (also known as a planar lattice walk) of length n is a suc- 

cession of n steps from one point in Z x Z to  another, where each step is from a fixed 

set (called a step set) y C Z x Z. Unless otherwise stated, a lattice walk starts a t  

the origin. 

We denote the eight steps (0, I ) ,  ( I ,  I ) ,  ( I ,  O ) ,  ( I ,  - I ) ,  (0, - I ) ,  (-1, - I ) ,  (-1, O ) ,  

and (-1,l) by N ,  NE, E, SE, S, SW, W, and NW, respectively. We are interested in 

walk sets given by subsets y of { N ,  NE,. . . , W, NW). Since the above steps never 

change the x- and y- coordinate by more than one, we call them unit steps or next 

nearest neigbour steps. Figure 1.1 shows an example of a path generated by the step 

set y = { N ,  E ,  S,  W). 

The length generating functions of walks in the half-plane {(i, j )  E Z x Zli >_ 01,  
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Y / Step set 1 

Figure 1.1: Planar lattice path of length 36 generated by y = {N, El  S, W). 

which we denote by R,, have been characterized by Banderier and Flajolet [I] .  The 

generating functions of walks in the first quadrant {(i, j )  E Z x Z ( i  2 0, j 2 0), which 

we denote by RT12, have been the subject of much study (see [4],[5],[6] ,[20],[2l]). The 

additional constraint on walks in R,/2 causes the behaviour of generating functions 

of walks in R,/2 to be different from that of generating functions of walks in R,. 

This thesis is motivated primarily by the question, "For a given step set y,  what 

effect does the choice of a region have on the generating function of the walks in 

that region?" We therefore consider walks in three different regions of the pla- 

nar lattice: the quarter-plane {(i, j) E Z x Zli 2 0, j 2 O ) ,  the one-eighth-plane 

{(i, j) E Z x ZJi  2 0, i 2 j ) ,  and the three-quarter-plane bounded by the negative 

x-axis and the negative y-axis. These three regions we denote by RTIz, RnI4, and 

R3,p1 respectively. We consider these regions specifically because R,/4 is smaller 

than RT12, and R3,/2 is bigger than R,. 
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The initial part of this research is an endeavour to  classify the generating functions 

of each of the walks described above as algebraic, D-finite, or neither for the regions 

RK14 and R3K/2. Algebraic generating functions are further classified as rational, 

trivial (meaning the steps generate no walks), or neither. We then examine how 

results on RTpl Rx/4 ,  and R3.rr/2 can be extrapolated to  general regions. 

We begin by first describing the most ubiquitous lattice path, the Dyck path. 

1.2 Dyck paths 

Dyck paths are planar lattice paths of length 2n made up of the steps NE and SE that 

start  a t  the origin, remain in the region y 2 0, and end at the point (2n, 0). Figure 

1.2 shows an example of a Dyck path of length 22. These paths are counted by the 

Catalan numbers, which are a very well studied integer sequence in combinatorics. 

The n th  Catalan number, denoted by Cn is defined as 

Its entry in the On-Line Encyclopedia of Integer Sequences is A000108 [22]. Stanley's 

book Enumerative Combinatorics Volume 2 [23] describes sixty-six different interpre- 

tations of the Catalan numbers. 

Figure 1.2: Dyck path of length 22 
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Dyck paths are a very important set of paths because they model physical phe- 

nomena well, and techniques used in their enumeration have many applications in the 

enumeration of other planar lattice paths. They are somewhat simple in that they 

are only restricted by one boundary. We will examine in Chapter 3 the complications 

that  arise when we consider walks that  are restricted by two boundaries. However we 

must first develop some of the tools we use to  enumerate walks. 

1.3 Enumerative methods in combinatorics 

Stanley [23] writes in his Enumerative Combinatorics Volume I, 

The basic problem of enumerative combinatorics is that  of counting 

the number of elements of a finite set. Usually we are given an infinite 

class of finite sets Si where i ranges over some index set I. . . , and we wish 

to  count the number f ( i )  of elements of each Si "simultaneously." 

The combinatorial objects examined in this thesis can be quite complicated and 

are rarely counted directly. We must use more powerful tools of enumeration in order 

to  gain the desired information. 

1.3.1 Ordinary generating functions 

Let I = N. Then f : N + N, where f (n )  E N is the number of objects of size n. The 

ordinary generating function of f is the formal power series 

For example, let S, be the set of Dyck paths of length 2n. Then 
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f (n) = Cn = ( T ) / ( n  + I ) ,  and the ordinary generating function F ( x )  of f is 

For many applications it is sufficient to express a generating function F ( x )  in 

terms of a functional equation as opposed to  a series in terms of f (n). For example, 

F ( x )  = C 2"xn can be expressed as F ( x )  = 1 + 2xF(x) .  

Hierarchy of ordinary generating functions 

For the sake of simplicity, we will let q denote an arbitrary ordinary generating 

function. We classify 7 as rational, algebraic, D-finite, or non-D-finite. We will 

define these terms below using the notation defined in Appendix A. Throughout this 

thesis K will denote a field of characteristic zero. In practice, however, we generally 

assume K to be the complex numbers. 

The smallest class of generating functions we consider is the class of rational 

generating functions. 

Definition 1.1. A formal power series q E K [[x]] is said to be rational if there exist 

P(,) polynomials Q(x)  and P ( x ) ,  such that Q(x) # 0 and q = 

The rational generating functions have a natural extension to the class of algebraic 

generating functions, which we define below. 

Definition 1.2. A formal power series 7 E K[[x]] is said to be algebrazc if there 

exist polynomials Po(x),  . . . , Pd(x) E K [ X I ,  not all 0, such that 

The smallest positive integer d for which Equation (1.3.1) holds is called the degree 

of 77. 
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Example 1.3. Consider the Dyck paths: the generating function D(x)  that counts 

Dyck paths satisfies the equation 

so D(x)  is algebraic. 

If a generating function 77 = C a(n)xn is algebraic, then the asymptotic growth 

of a (n )  must be of the form a (n )  - apnnY, where a and p are algebraic over Q, and 

7 E Q \ (-1, -2, .  . .} [28]. 

The rational generating functions are easily shown to be algebraic generating 

functions. 

The class of algebraic generating functions extends further to  the class of differ- 

entiably finite, which we will write as D-finite from now on. Stanley defines D-finite 

as follows: 

Definition 1.4. Let u E K[[s ] ] .  If there exist polynomials po(x),  . . . , pd(x) E K[x] 

with pd(x) # 0, such that  

where u(j) = djuldxj,  then we say that u is a D-finite power series 

Another word for D-finite is holonomic. An example of a D-finite function is 

u(x)  = x2eZ, since ul(x) = ( I  + 5)u.  However, s2eZ is not an algebraic series, so the 

D-finite functions form a class which is not equal to  the class of algebraic functions. 

If u E K[[x]] is not D-finite, we say it is non-D-finite. 

There is another way of determining if a generating function 77 is D-finite that 

depends on a property of its coefficients. We first define a function f : N -t K to 

be polynomially recursive, or P-recursive, if there exist polynomials Po, . . . , P, E K[n]  
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with Pe # 0, such that  

for all n E W. The following proposition from Stanley [23] relates D-finite series and 

P-recursive functions. 

Proposition 1.1. Let 7 = Cn,o f (n)xn E K[[x]]. Then 7 is D-finite zf and only if - 

f is P-recursive. 

Closure properties of generating functions 

Let u, u E K [[x]] be rational power series, and let a,  0 E K .  Then uv and a u  + pv 

are also rational. Similarly, if u ,  v E Kal,[[xj], then a u  + pv, uv E Ka1,[[x]]. This is 

because Ka,,[[x]] forms a subalgebra of K[[x]] [23]. 

Stanley [23] also states the closure properties of D-finite power series in the form 

of two theorems, which we summarize: 

1. If u ,  u are D-finite, and a, ,B E K,  then a u  + ,Bv and uv are both D-finite. 

2. If u is D-finite, and v E Kal,[[x]] with v(0) = 0, then u(v(x))  is D-finite. 

1.3.2 Multivariate generating functions 

Oftentimes we are interested in counting combinatorial objects in terms of more than 

one property. For example, we might like to know how many Dyck paths of length n 

there are that  intersect the x-axis k times. A generating function in a single variable 

could not contain the information we require, so we instead use a generalized form of 

the ordinary generating function called the multivariate generating function. 

,4 multivariate generating function is a formal power series over a set of variables 

X I , .  . . , x, where each x, encodes a property of the combinatorial object. For this 
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thesis we will always use the variable t as our 'counting' variable, ie., the variable t 

will correspond to the size of the objects we enumerate. 

Continuing our previous example, let D(t ;  z) be the generating function that 

counts the Dyck paths of length n that have k intersections with the x-axis. This 

example has statistical mechanical properties that are examined in Example 2.2. We 

let the power o f t  denote the length of the walk, and we let the power of z denote the 

number of time it intersects the x-axis. Therefore, we define D( t ;  z) by 

where a,,,, denotes the number of walks of length n that intersect the axis k times. 

We find by examinination that 

We classify the multivariate generating functions in a similar way to the uni- 

variate generating functions. A series rj E K[[xl ,  . . . , x,]] is classified as rational, 

algebraic, D-finite, or non-D-finite. A series rj is rational if there exist polynomials 

P, Q E K[x l ,  . . . , x,], Q # 0, such that Qrj = P. 

The series rj is algebraic over the field K ( x l ,  . . . , x,) if there exist polynomials 

Po , .  . . , Pk E K [ x l ,  . . . , x,] not all equal to 0 such that Po+Plq+P2rj2+. .+Pkrjk = 0. 

The series rj is D-finite over K ( x l ,  . . . , x,) if, for 1 5 i 5 m, rj satisfies a system 

of non-trivial partial differential equations of the form 

where PjVi E K [ x l ,  . . . , xn],  and di is the order of the partial differential equation in 

the variable xi. 
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1.3.3 Noncommutative generating functions 

One tool we often use to show that a power series 17 E h'[[xl,. . . , x,]] is algebraic is 

the theory of noncommutative formal series in several variables. Stanley [23] describes 

this theory in detail, although the theory of algebraic formal power series itself is due 

to Chomsky and Schiitzenberger [12]. 

Again, let K denote a fixed field. Let X be a set, called an alphabet, and let X* 

be the set of all finite strings of zero or more elements from X .  We denote the empty 

word (word string of zero elements) by E .  Finally, define X +  = X *  \ {E) .  

Example 1.5. Let X = {x, y). The Dyck language, denoted by 23, is the set of all 

words w E X *  satisfying the following conditions: 

(a) The number of x's in w is equal to the number of y's in w. 

(b) For any factorization w = uv, the number of x's in u is at least as large as the 

number of y's. 

The Dyck words of length six or less are given by 

€ xy x2y2 xyxy ~ 3 ~ 3  x2yxy2 x2y2xy xyx2y2 xyxyxy. 

If we map x to  the step N E  and map y to  SE, it is clear that the Dyck language 

is isomorphic to  the set of Dyck paths described in Example 1.3. 

Definition 1.6. A formal noncommutative (power) series in X over h' is a function 

S : X *  + K. We write (S, w)  for S(w) and then write 

s = C (S, w)w 
1IJE.X- 

The set of all non-commutative formal series in X is denoted K((X))  
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Example 1.7. Let X = {x, y), and for w E .Y* define (S, w} as 

1 i f w E D  
(S, 4 = 

0 otherwise 

Then 

S = 1 + xy + x2y2 + xyxy + x3y3 + x2yxy2 + x2y2xy + xyx2y2 + xyxyxy + . . 

Definition 1.8. Let 2 = { i l l . .  . , in) be an alphabet disjoint from X. A proper 

algebraic s y s t e m  is a set of equations zi = pi, 1 5 i 5 n ,  where: 

(a) pi E K ( X ,  2) (i.e., pi is a non-commutative polynomial in the alphabet X U 2); 

(b) ( p , ,  1) = 0 and (p,, z,) = 0 (i.e., p, has no constant term and no terms 

~ 9 3 1 0  # c, E K).  

A solution t o  a proper algebraic system ( p 1  p )  is an n-tuple 

(R1, .  . . , Rn) E K((X)),  of formal series in X with zero constant term satisfying 

Each Ri is called a componen t  of the system . . . p,) 

Definition 1.9. 

(a) A series S E K ((X))  is algebraic if S- (S, 1) is a component of a proper algebraic 

system. The set of all algebraic series S E K((X))  is denoted K,l,((X)). 

(b) The support of a series S = C(S, w)w E K ((X))  is defined by 

supp(S) = {w E X *  : (S, w) # 0). 

A language is a subset of X*. A language L is said to be algebrazc if it is the 

support of an algebraic series. An algebraic language is also called context-free. 
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Example 1.10. Consider the Dyck language, V .  The non-empty words in V are 

described by the following recursive property. If w E V+ then it begins with an x ,  

followed by a Dyck word, then a y, and finally another Dyck word. Thus V is a 

solution to the proper algebraic system 

and is therefore algebraic. 

We would like to relate algebraic formal series to commutat ive  algebraic generating 

functions. First, we let 4 : K ( ( X ) )  + K[[X]]  be the continuous algebra homomor- 

phism defined by 4(x)  = 3; for all x E X .  Thus d(S) can be thought of as the 

"abelianization" of S. 

Example 1.11. Let X = {x, y),  and for w E X *  and S E K ( (X))  define (S, w) as 

1 i f w E V  
(S, w) = 

0 otherwise. 

Then 4(S) = 1 + xy + 2x2$ + 5x3y3 + . . . 

We now state without proof a theorem from Stanley 1231 which allows us to relate 

algebraic formal series to  algebraic generating functions. 

Theorem 1.2. Let S E Ka1,((X)),, ,where X i s  a finite alphabet. T h e n  4(S) i s  

algebraic over the  field K ( x )  of rational funct ions  in the commuting ,variables X .  

This theorem is particularly useful because many combinatorial objects are iso- 

morphic to languages. 

Example 1.12. We now apply Theorem 1.2 to Equation (1.3.4) to obtain the gener- 

ating function which counts the Dyck words. We first abelianize the noncommutative 
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generating function of the Dyck words. This new ordinary generating function D(x ,  y) 

must satisfy the functional equation 

Essentially what we have done is replace each x and y in a word w E 23 with com- 

mutative variables to obtain the ordinary generating function D ( x ,  y).  We now let 

x = y = t to obtain the length generating function D( t ) :  

1.3.4 The importance of D-finiteness 

One might ask why it is relevant that  the generating function of a combinatorial 

object is D-finite or algebraic. According to  Flajolet, Gerhold, and Salvy [13], 

. . . a  rough heuristic in this range of problem is the following: Almost 

anything is [non-D-finite] unless it is [D-finite] by design. 

In general, we expect a combinatorial object with a D-finite generating function to  

have a "nice" structure. Furthermore, the asymptotic growth rate of the coefficients 

of a D-finite series is of the form 

where t,  r E N, 8 is algebraic over Q, and P is a polynomial [28]. This form is 

important because typical applications of lattice path enumeration are interested 

in asymptotic behaviour. Chapter 2 gives some examples of such applications in 

statistical mechanics. 

On the other hand, given a combinatorial object, we would like to  determine 

its generating function exactly. Guttmann [16] describes a method to  distinguish 
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between lattice-based problems that are likely to be "solvable", and those which are 

not. Typically explicit solutions of such problems are given as solutions to low order 

differential equations. If a problem is unsolvable, its solution (generating function) 

can be neither algebraic nor D-finite. 

Guttman's method takes advantage of the following fact: if f (z) = En>O an(x)zn - 

with coefficients an(x)  in the field K = C(x)  is algebraic or D-finite, then the poles 

of an(x)  that lie in a bounded region cannot become dense on the boundary of that 

as n increases. For example, the function f (z) = z n / ( l  - xn)  has poles that - 

become dense on the unit circle. However, not every non-D-finite function displays 

this behaviour. For example, Guttmann [16] gives the following as an example of a 

non-D-finite function whose singularities do not become dense on a boundary: 

z ( e z / ( l - = )  - 
f (x, z) = e 1) 

Bousquet-Mdou and PetkovSek [6] used this fact about the singularities of non- 

D-finite generating functions to find the first example of a set of walks restricted 

to Rx14 whose length generating function is non-D-finite. Up to that point, it had 

been conjectured that all walks restricted to Rn14 had D-finite generating functions. 

Bousquet-Mdou and PetkovSek proved the following results about walks generated 

by ((2, I ) ,  (-1,2)) (these walks are known as knight walks): 

1. The length generating functions of knight walks in Rn12 that begin at (1,l) is 

non-D-finite. 

2. The generating function that counts the knight walks in Rn12 that begin at 

(1,l) and end on the line y = x is non-D-finite. 



Chapter 2 

St at ist ical Mechanics 

2.1 Statistical mechanics and combinatorics 

There has recently been an increased interest in the  enumeration of planar lattice 

paths under different restrictions (see [3], [4], [5] ,161, [7], [20], [21]). An example of a re- 

stricted lattice path is a self-avoiding walk. This is in large part due to  the  suitability 

of these combinatorial objects for the modeling of physical systems that  arise in sta- 

tistical mechanics. Most significantly, self-avoiding walks have been used to model 

polymers in solution under different physical conditions (see [9], [lo], [l 11, [25], [26], [27]). 

These conditions usually take the form of a region in which the  polymer must remain 

and how the  polymer interacts with the  boundaries of that  region. 

Much of the  information presented in Section 2.1.1 is taken from Introductory 

Statistical Mechanics[8] by Roger Bowley and Mariana Sanchez. 
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2.1.1 Introduction to statistical mechanics 

Statistical mechanics is an area of physics which examines the bulk properties of 

matter under the assumption that matter is composed of a very large number of 

particles (typically on the order of such as atoms or molecules. It is also 

assumed that  each particle obeys the laws of mechanics. These laws may be those of 

classical, quantum, relativistic, or some other physics. The behaviour of an individual 

particle is not considered, as statistical methods are used. Since such large numbers of 

particles are considered, typical applications of combinatorics to  statistical mechanics 

involve the asymptotic behaviour of combinatorial objects, i e . ,  the behaviour of their 

generating functions as n --+ m. 

The bulk properties of a system of particles is called the macrostate of the system. 

Some examples of macrostate properties are pressure and temperature of a gas. When 

we consider the macrostate of a system, we are not concerned with an individual 

particle of that  system. If we are interested in an individual particle, we consider its 

microstate. The energy and momentum of a particle are examples of microstates. 

In statistical physics, an important property of a system is its entropy. Entropy 

can be thought of as a measure of the disorder of a system. The more disorganized a 

system is, the higher its entropy. For example, think of a container of water molecules 

as our system. When the water is frozen, its molecules are packed together in a 

regular lattice in a very orderly manner. When the water is in the form of steam, 

each molecule moves about nearly independent of the other molecules. Therefore, 

the system has lower entropy when the water is frozen than when the water is in gas 

form. 

When combinatorial objects are used in statistical mechanics, the information 

most often obtained relates to the entropy of a system. Therefore the bulk of this 

chapter will be devoted to the methods used to consider the entropy of a physical 
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system. 

In statistical mechanics, the entropy of a system, denoted by S, is 

S = klog W 

where k = 1.38066 x J K-' is Boltzmann's constant and W is the number of 

possible microstates of the system. The units in k are joules (J )  and degrees Kelvin 

(K). Boltzmann's constant is named for thermodynamicist Ludwig Boltzmann. He 

proved that Equation (2.1.1) gives a measure of the entropy of a system of atoms and 

molecules in the gas phase. 

There is another way to consider the entropy of a system: we may think of the 

entropy of a system as the amount of "mixupedness" (a  word coined by the physicist 

Gibbs) which remains about a system after its macrostate has been determined. Given 

a system's macrostate, its entropy measures the degree to which the probability of 

the system is spread out over different possible microstates. The higher the number 

of possible microstates, the higher a system's entropy. 

2.1.2 The canonical ensemble 

In statistical mechanics, an ensemble is a collection of systems all prepared in the same 

way, i e . ,  they have the same macroscopic properties: they each have the same number 

of particles, energy, volume, shape, magnetic field, et cetera. However, two systems 

prepared in the same manner may not be in the same quantum state, i.e., their 

microscopic properties may differ. The probability that a system is in a particular 

quantum state is the fraction of the ensemble in this state. The microcanonical 

ensemble is the physical model that assumes that each quantum state is equally 

probable. This is perhaps not the most realistic model, but it is a reasonable starting 

point. 

The canonical ensemble is similar to the microcanonical in that each system is 
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identically prepared, but the energy of each system is not constant. In this ensemble, 

energy may be passed from one system to its neighbours, so the energy of a given 

system fluctuates. Each system is in contact with the other systems, which act as a 

heat bath for the system. A heat bath is a system so large that when it loses or gains 

heat from some other system its energy remains constant. The combined system is 

thermally isolated so its total energy, UT is constant. 

The partition function 

Definition 2.1. Let E, denote the total energy of a system in microstate j .  The 

partition function is given by the equation 

where the sum is taken over all 

temperature ,O is conventionally 

the different quantum microstates, and the inverse 

defined as 

where T is the temperature in degrees Kelvin. 

As a simple example, suppose we have a system A of four particles where no 

two particles have the same energy. Next, suppose the energies of the particles are 

El = 0, E2 = 1.4 x J, E3 = 2.8 x J1 E4 = 5.6 x J. Finally, suppose the 

heat bath of the system has a temperature of 4 K. Then the partition function is 

Alternatively, one may write Z as a sum over energy levels, En. If there are g, 

quantum states with energy En, then Z may be written as 
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where the sum is over all the different energy levels of the system. The quantity gn 

is called the degeneracy of the energy level En.  If no two microstates have the same 

energy, then we say the system is non-degenerate.  

Entropy in the canonical ensemble 

In the canonical ensemble, the entropy of a system A is calculated by considering 

M - 1 replica systems in contact with each other and with A; when hi is taken to 

be very large, these systems act as a heat bath for A. The collection of systems is 

thermally isolated. 

Each of the replica systems is identical to  the rest, but we assume that  each of the 

systems is easily distinguished from one another based on their position. 4 typical 

example of a system would be a large classical object containing many particles such 

as a bar of lead. We say that  a system, i e . ,  bar of lead, is in a particular quantum 

mechanical state &, and let ni be the number of systems in the quantum state 7j l i .  The 

,Vi systems can be arranged in hi! ways. Since swapping the positions of two replica 

systems in the state i would not change the macrostate whatsoever, and there are 

ni! ways of arranging the systems in state i, the number of arrangements of systems, 

denoted by W ,  is 

M !  
W =  

nl!n2!n3! . . . ' 

If we take fkf to be so large that  each ni is huge, we may use Stirling's approximation 

and the identity M log(h1) = xi ni log(M) to  express the entropy for the mi systems, 

-4s PI - co, ni/M approaches the probability pi of finding the system in state $;. 
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Thus the average entropy per system, S, may be written as 

If all the probabilities are equal, then p, = 1/ W ,  and 

which is Boltzmann's entropy for a system. 

In the canonical ensemble the probability of a system being in the state $i is 

, -DE, 
p. = - 

Z '  

Suppose these probabilities are not equal. We substitute Equation (2.1.3) into Equa- 

tion (2.1.2) to see that 

The average energy is denoted 0 and is defined by 

Therefore, 

which we rewrite as 

The quantity (D-TS) is the mean value of the Hernlholtz free energy, an important 

quantity in statistical mechanics. We denote this quantity by F .  
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2.1.3 Combinatorics and entropy 

Since the focus of enumerative combinatorics is counting, it is ideally suited to de- 

termine the entropy of systems in some models. The main tool used is the ordinary 

generating function, which is used to count arrangements of microstates and is written 

where wn is the number of arrangements of n microstates. When combinatorics is 

used in statistical mechanics, we eliminate all multiplicative constants and units of 

measurement such as k and J ,  respectively. This is done for the sake of simplicity, 

and for the reason that  it would be entirely arbitrary to assign physical units to a 

planar lattice path, which is a purely mathematical object. Therefore we say that the 

entropy of a system of n particles is simply log(wn). 

A combinatorial object that has been used in statistical mechanics is the random 

planar walk. An interacting model is one in which the vertices of the walk interact 

with each other, i.e., they are not independent. For example, a self-avoiding walk 

(a  walk which never visits the same point more than once) is an interacting model. 

In an interacting model, each walk has an energy associated with it which depends 

on some property of the walk. An example of such a property is the interactions of 

a walk with some boundary. As a result, the generating functions will depend on a 

new parameter which will be conjugate to the energy. We let pn(m) be the number 

of a family of walks of length n counted with respect to some property of size m.  For 

example, m may be the number of times a walk hits the x-axis. If a walk is counted 

by p,(m), we say it has energy m .  

The canonical partition function of the model is 

where z is an activity conjugate to the energy. 
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In combinatorial models, a property of interest is the free energy density (free 

energy per vertex or edge), which is defined as followed: 

The limiting free eneryy density (per vertex or edge) is defined by 

1 
3 ( z )  = lim Fn(z)  = lim - log pn(z) 

n+w n+m n. 

for values of z where this limit exists. 

The generating function of a model with partition function pn(z)  is 

If the limiting free energy exists, it can be computed from the radius of convergence of 

G(x,  z ) ,  denoted x,(z), using the Cauchy-Hadamard theorem, which we state below. 

Theorem 2.1 (Cauchy-Hadamard). The radius of convergence r of the Taylor 

series 

Thus, from Equation (2.1.6) we find that 

where 3 ( z )  exists. 

Example 2.2 Staircase walks adsorbing o n  the m a i n  diagonal. An exam- 

ple of a combinatorial object with statistical mechanics properties is given by van 

Rensburg[25]: a staircase walk above the main diagonal is a random walk in the 
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square lattice made up of N and E steps that starts a t  the origin and stays on or 

above the line y = x. We say that such a walk adsorbs where it intersects the main 

diagonal. If we rotate these walks by 45", we see that  the ones that end on the diago- 

nal are isomorphic to Dyck paths (see Figure 2.2). Therefore the generating function 

of such walks, denoted by GD, is 

Figure 2.1: Staircase walk rotated to form a Dyck path. 

An exczlrsion is a staircase walk above the main diagonal with only its end points 

on the diagonal. Such walks can be thought of as a step N followed by a Dyck path 

and ending with a step E. Therefore the generating function of excursions, denoted 

by GE is 

We now use the generating functions for GD(x) ,  and GE(x)  to construct a model 

for Dyck paths adsorbing on (attaching to) the main diagonal. To do this, we in- 

troduce a second variable 2 ,  which shall be the activity conjugate to the number of 
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times a walk hits the main diagonal. A Dyck path is either a single visit of weight z,  

or an excursion followed by a Dyck path. Thus we obtain the generating function 

The radius of convergence xc(z) of GD(x ,  z)  is determined from the singularities of 

GD(x1  z ) ,  i. e., when its denominator is zero, or when the square root term in the de- 

nominator is zero. Therefore ' xc(z) depends on z(1 - J=)/2. If 

1 > z ( l  - J F ' & 7 ) / 2 ,  then zc (z )  = 112. If 1 = z(1 - d K G ) / 2 ,  then we 

solve for x to  find xc(z) .  From this we determine that  

This defines the free energy F D ( z )  = - logx,(z) for this model 

Physically this can be thought of as follows: when z 5 2, the free energy of the 

system is independent of z,  and therefore the systems interactions with the surface 

are ignored. For z > 2, an increase in z corresponds to  a more attractive diagonal 

boundary, and thus a higher free energy. 

2.1.4 Planar lattice walks and st at ist ical mechanics 

Linear polymers 

A polymer is a molecule made up of many copies of a single smaller molecule called a 

monomer. A linear polymer is simply a chain of monomers, i e . ,  two monomers have 

one neighbour, and the rest each have two. Self-avoiding walks are a natural choice 

of combinatorial object to  utilise as possible models for polymers. In particular, the 

thermodynamical properties of self-avoiding walks in confined geometries have been 

investigated. 
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At first glance, it may seem that such a model would be far too idealized and simple 

to  have any practical application in physics. However, it may be that  model systems 

that  idealize a physical systems may exhibit the same critical behaviour (behaviour 

as n -+ CG) as the physical system they simulate. This would provide insight into the 

properties that  determine phase behaviour of physical systems. 

Forces in square lattice directed paths in a wedge 

Consider the walks generated by { N ,  E) confined to  an arbitrary wedge between the 

y-axis and the line y = r x ,  where r is a non-negative real number. We call such a 

wedge an r-wedge. These walks can be used as a simple model of a linear polymer in 

a confined space. The thermodynamical properties of these walks have been investi- 

gated by van Rensburg and Ye 1271. Figure 2.1.4 shows a general representation of 

the walks in which we are interested. 

Figure 2.2: Arbitrary confined walk 

Let c?) be the number of directed paths from the origin of length n confined to 
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the r-wedge. Then their generating function, denoted by g,, is defined as 

Although they did not find g, for an arbitrary r ,  van Rensburg and Ye were able to 

prove that  

Therefore, by Theorem 2.1 the radius of convergence of the generating function g, is 

given by 

From this they are able to determine the free energy per vertex of the walk of infinite 

length: 

r log r 
3, = -logt, = log(1 + r )  - -. 

l t r  

The derivative of 3,, denoted by F,, represents the entropic force exerted as the 

wedge is closed by increasing r .  This force can be thought of as a spring force exerted 

by the walk on the walls. This corresponds to the entropic force a polymer molecule 

would exert on its enclosing boundaries. The expression of F, is given by 

The entropic force can also be expressed in terms of the angle cr between the y-axis 

and the line y = r x .  In these terms the force is expressed 
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With the use of MAPLE, van Rensburg and Ye found F, to  be maximum when 

r = 2.09349.. . [27]. This corresponds to  a wedge angle a = 0.445624612.. ., which 

is near ~ / 7 .  I t  should be noted that F, is a measure of vertical force against the line 

y = rx. 

What does all this mean to a non-physicist? According to this model, if we have 

a polymer in a wedge, we can 'squeeze' it by decreasing a.  As a decreases from 7r/2 

to 7r/4, we encounter no resistance, ie., no force against the boundary of the wedge. 

Further closing the wedge, however, causes a force which increases the smaller the 

wedge becomes. The vertical force reaches a maximum near 7r/7 and then decreases 

with a.  

The above results are in part what motivates our study of walks in different 

restricted regions of the planar lattice. The combinatorial model in [27] is much 

easier to  examine than the walks we consider, and it illustrates the importance of the 

choice of boundaries. The fact that Fa = 0 for a E (7r/4,7r/2) leads us to hypothesize 

that  the behaviour of the generating functions of the walks in RTI4 will not differ 

significantly from that  of the walks in RTlz 

Other models 

There are many other restricted self-avoiding walks whose thermodynamical proper- 

ties have been studied. Van Rensburg 1251 has written a survey that  covers a wide 

variety of self-avoiding walk models and their thermodynamical properties. Other 

combinatorial objects whose statistical mechanical properties have been investigated 

are interacting polygons, animals and vesicles; van Rensburg's 1241 book on the sub- 

ject is a thorough resource with many examples explained in detail. 
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Lattice Walk Classification 

We now examine general lattice walks in four different regions. Section 3.1 recalls 

the half-plane, Section 3.2 the quarter-plane, Section 3.3 the one-eight-plane, and 

Section 3.4 the three-quarter plane. 

3.1 Reduction to  half-plane 

There has been much work done recently to classify the generating functions of lattice 

paths in various restricted regions. For a given region, let L ( y )  denote the set of all 

walks generated by a step set y that remain in that region. It is natural to think of 

lattice walks in terms of languages. Let y = {Al , .  . . , A,) be a step set of cardinality 

n. Then L ( y )  is isomorphic to some language 2 Z*, where 2 = { a l , . .  . , a,). 

Let S be the formal noncommutative power series that sums all the words in 

Z. In order to determine the complete generating function Qy(x, y; t ) ,  we apply the 

function 4 : K ( ( Z ) )  + K[[x ,  y, t ] ]  defined as follows: if an, is the letter corresponding 

to the step Ak = (xZ, yj) ,  then 4(ak)  = x"Jt. For example, if y = { N )  and 2 = {a),  

then $(a) = yt .  
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For each L ( y ) ,  we actually consider two generating functions. The complete 

generating function, denoted by Qy (x,  y; t )  is defined by 

where ai  j(n) counts the number of walks of length n that  end a t  the point ( 2 ,  j ) .  The 

length generating function, denoted by Qy(t)  counts the walks of length n irrespective 

of their end point, i. e., Qy( t )  = Q y ( l ,  1 ;  t ) .  If Qy (x,  y; t )  is algebraic (resp. D-finite), 

then Qy ( t )  is also algebraic (resp. D-finite). 

3.1.1 Walks in the half-plane 

We say that  a step set Y is simple if each step in Y is of the form (1, a ) ,  where a E Z. 

A walk generated by a simple step set is called semi-directed because it always moves 

in the positive x direction. Banderier and Flajolet [I]  proved that ,  in R,, for any 

simple step set y the complete generating function for walks that  stay on or above 

the x-axis is algebraic. By assigning a weight to each step in a simple step set, we 

adapt their result to show that  for any Y,  the length generating function for the walks 

generated by Y that  remain in the half-plane R, are algebraic. We state this result 

formally in Lemma 3.2. 

For the purpose of this section, we will think of a step set Y of size m as an ordered 

m-tuple, although we will still call it a step set. With a step set 

Y = ( ( a l ,  b l ) ,  . . . , (a,, b,)) we can associate an m-tuple of weights I2 = (wl,  . . . , w,), 

where the weight wi > 0 is associated with the step (a,, b i ) .  The weight of a given 

path is defined as the product of the weights of its individual steps. Let a (n )  be the 

sum of the weights of all paths of length n .  

There are several ways weights can be used with lattice paths. If each wi = 1 then 

a (n)  is the total number of paths of length n .  Another situation of interest is when 

C w, = 1, as this corresponds to a probabilistic model of walks where, a t  each step 
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in a walk, each step (ai, b,) is taken with probability wi. Finally, we may use weights 

to enumerate coloured paths: for example, w, = 2 would mean that the step (ail bi) 

can be coloured in one of two ways. In this case a (n)  is again the total number of 

paths of length n.  

Example 3.1. Suppose we wanted to count the number of Dyck paths where we 

colour each of the steps either red or blue. Then y = ((1, I ) ,  (1, - I ) ) ,  Il = (2,2). In 

this case the weights correspond to the number of ways of taking a step. 

Let S = ((1, b l ) ,  . . . , (1, b,)) be a simple step set, with I l  = (wl,  . . . , wm) a corre- 

sponding m-tuple of weights. Banderier and Flajolet give Qs(t) as a function of the 

characteristic polynomial of S, which is a Laurent polynomial in u denoted by P (u )  

and defined as 

The characteristic polynomial associated with the coloured Dyck paths in Example 3.1 

Now, let y = ( (a l1  b l ) ,  . . . (a,, b,)) be an arbitrary step set. For a walk w gener- 

ated by Y to remain in R,, the following must be true of any prefix u of w: the sum 

of all the steps in u must have a non-negative x-coordinate. We show these walks 

have an algebraic length generating function by mapping y to an ordered pair (S, Il), 

where S is a simple step set and I l  is a system of weights. We map y to ( S ,  !J) as 

follows: first, map each step (ai, bi) to the step ( l , a i ) ,  and let k be the number of 

distinct ails.  Next, let S = ((1, c l ) ,  . . . (1, ck)) be a k-tuple that contains each of the 

distinct (1, ai)'s. Finally, let I l  = ( w l , . .  . , wk). where each wj is the number of steps 

in Y with x-coordinate cj. 

Essentially we are mapping w to a semi-directed walk with possibly different 

coloured steps that stays above the x-axis. For example, the step set 

Y = ((2,2) ,  (2. l ) ,  ( - l , 3 ) ,  (-3,2)) has two steps with x-coordinate 2, one step with 
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x-coordinate -1, and one step with x-coordinate -3. Therefore y is mapped to  the 

ordered pair ( S ,  ll), where S = ( (1 ,2 ) ,  (1, - I ) ,  (1, -3 ) ) ,  and ll = ( 2 , 1 , 1 ) .  

This shows that  each walk generated by y is isomorphic to  a semi-directed walk 

with coloured steps, and therefore Qy( t )  = Qs(t) ,  which is algebraic. However, in 

order to  show the algebraicity of the complete generating function for step sets that  

are not simple, we use other techniques, which we describe below. 

3.1.2 Single restriction lemma 

We begin by proving a lemma which states that  walks isomorphic to  those generated 

in R, by y whose steps are all unit steps have an algebraic complete generating 

function. In order t o  do so we utilize both the Dyck language and its extension: the 

Motzkin language. 

Motzkin paths are similar to  Dyck paths: they are lattice paths generated by 

((1, I ) ,  (1, O ) ,  (1, -1)) that  end on the x-axis and cannot step below it. Before we 

define the language corresponding to the Motzkin paths, we require the following 

definition: let u be a word in X *  and let a E X .  We define lula to  be the number of 

occurences of the letter a in the word u. 

The words that  correspond to  Motzkin paths are defined as follows: a word u E 

{a, b,  c)* is Motzkin word if luia = luIb and for any factorization u = wv we have 

Iwla >- Iwlb. For example, u = aaacbccbbcacbaaabbcccb is a Motzkin word. We call 

the set of all Motzkin words the Motzkin language and denote it by M. 

Like Dyck words, Motzkin words have a simple unique decomposition. If the first 

letter of a non-empty Motzkin word is c, the word can be thought of as a c followed by 

a Motzkin word. If its first letter is an a, the decomposition is similar to  that  of a Dyck 

word: again we consider the factorization u = awbv where w is the shortest word pos- 

sible such that  lawbl, = larwblb. For example, the words ,ul = aaacbccbbcacbaaabbcccb 
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and u:! = caaacbccbbcacbaaabbc~cb are factored as shown: 

Thus M is a solution to the proper algebraic system 

and M is algebraic. To obtain the length generating function of Motzkin words, m( t ) ,  

we let a = b = c = t: 

m(t)  = 1 + tm(t)  + t2m(t)'. 

To obtain the complete generating function of Motzkin paths, which we denote by 

m(x, y; t ) ,  we let a = xyt, b = xt ly ,  and c = zt :  

A Motzkin-like language applied to lattice walks 

Each walk set can be considered in terms of the restrictions on its walks. For example, 

the set of walks generated by the step set {S, N E ,  E )  in RxI2 is unrestricted. Walks 

generated by {W, N ,  N E ) ,  on the other hand, have the following restriction: for any 

i, the first i steps of a walk must have at  least as many N E  steps as S steps and at 

least as many N E  steps as W. This representation of planar lattice walks has similar 

structure to Motzkin words and Dyck words. 

For example, we may represent walks generated by {W, S, N E )  with words made 

up of the letters {xl,  yl ,  y2), where xl represents NE, yl represents S, and yz represents 

W. The set of words representing these walks is the set 
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When we consider sets of walks in terms of a language we are able to classify the 

generating functions for many different step sets as algebraic. We now state and 

prove a lemma that  gives a necessary condition for algebraicity of Qy(x l  y ;  t ) .  

Lemma 3.1. Let  y = {Al,  . . . , A,) be a s tep  set  of cardinali ty n ,  a n d  let  the  language 

2 C {al,  . . . , a,)* be i somorph ic  t o  L ( y ) .  Suppose  there ex is ts  s o m e  permutat ion p 

and in tegers  1 < i < j < m < n such  that  w e  can  define 2 entirely by the  condit ion 

that  fo r  a n y  factor izat ion z = uu of a word z E 2 ,  

T h e n  2 i s  algebraic, and the  complete generating func t ion  Qy(x,  y; t )  i s  also algebraic. 

If 2 can  be defined zn such  a m a n n e r ,  i t  i s  called singular. 

Proof. Let W C_ 2 be the set of all words w E { a ,  b,c ,d ,e)*  such that 

jwla + 21wlb = Iwl, + 2 1 ~ 1 ~ .  These words are isomorphic to  the walks generated by 

((1, I ) ,  (1 ,2) ,  (1, -1)) (1, -2) ,  ( 1 , O ) )  in RTp that  end on the x-axis. In order to prove 

that W is algebraic, we must first define three other sets of words. 

Let W2 be the set of all words w E {a, b, c, dl  e)' such that 

1wla + 21~lb  = lwlc + 2(wld - 1 and such that for any prefix u of w, 

lUla + 21~lb L lulc + 2 1 ~ 1 ~  - 1 . These words correspond to walks that  stay above 

and end on the line y = -1. 

Let W3 C- 2 be the set of all words w E { a ,  b,  c ,  d, e)' such that 

Iwla + 21 wlb = Iw 1 ,  + 21w I d  + 1. These words correspond to walks that stay above 

y = 0 end on the line y = 1. 

Finally, let W4 be the set of all words w E {a, b, c, dl  e)* that satisfy the following 

three conditions: 
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there exists a factorization w = uv such that  lula + 2 1 ~ 1 ~  = (uIc + 2Iuld - 1; 

for any prefix u of W ,  /u / ,  + 2!uib 2 lulc t 2 / ~ ( d  - 1 

The words in W4 correspond to  walks that  end on the x-axis but touch the line 

y = -1 a t  some point. For the purposes of this lemma, we will speak of walks and 

their corresponding words as if they are the same object. 

In manner similar to  that  of Motzkin paths, we decompose a non-trivial w based 

on its first return to  the x-axis. The decomposition depends on both w's first step 

and its first step back t o  the axis. If w begins with an e, we count that  single step as 

both its first step and its first return to  the axis. Therefore we have five cases: 

Case 1. If w begins with e, it is factored as w = ev, where v E W .  

Case 2. If w begins with a and first returns to  the x-axis with c, it is factored as 

w = aucv, where u ,  v E W. 

Case 3. If ,w begins with a and first returns with d ,  it is factored as w = aw3du, 

where u E W ,  and w3 E W3. 

Case 4. If w begins with b and first returns with c, it is factored as w = bw2cu, 

where u E W ,  and w2 E W2. 

Case 5. If w begins with b and first returns with d l  it is factored as 

w = bw4du + budv', where u ,  v, v' E W ,  and w4 E W4. The plus sign 

in such a decomposition represents an exclusive or, ie., w satisfies pre- 

cisely one of the two possible decompositions. This case is different from 

the others because w might never touch the  line y = 1 between its first 

step and its first return. 

Figure 3.1 shows the decomposition of Case 4 in terms of a walk. 
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Figure 3.1: Decomposition of w in Case 4. 

We next decompose a word w2 E W2 uniquely based on its first step onto the line 

y = -1. If its first step to  y = -1 is c, we factor w2 as w2 = UCU, where ,u,v E W. 

Otherwise we factor w2 as w2 = w3dw, where w E W ,  and w3 E W3. 

In contrast to W2, we uniquely decompose w3 E W3 based on its last return to 

the x - axis. If that  step is a ,  we factor w3 as w3 = uau, where u,  u E W. Otherwise 

we factor w3 as w3 = wbw2, where w E W ,  and w2 E W2. 

Finally, we consider w4 E W4. We know that w4 must step down to  the line 

y = -1, so we uniquely decompose it based on its final step from that  line. Again we 

have two possibilities: if the last step from y = -1 is a ,  we factor w4 as w4 = w2aw, 

where w E W ,  and w2 E W2. Otherwise we factor w4 as w4 = u2bu2, where 

~ v 2  E W2. 

From the above unique decompositions, we determine that  ( W ,  W2, W3, W4) is a 

solution to the proper algebraic system 

w = 1 + ew + awcw + aw3dw + bw2cw + bw4dw + bwdw 

w2 = wcw + w3dw 

w3 = waw + wbw2 

w4 = wZ(aw + bw2). 

Therefore I.V is an algebraic language. 
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We now prove that the language X c { a ,  b, c, d ,  e)* defined by the restriction 

luIa + 2 1 ~ 1 ~  2 \ u / ,  + 2(uld is algebraic. In order to do so, we must define a second 

language X = {u E { a ,  b, c ,  dl e)* : lula + 2 1 ~ 1 ~  2 lulc + 21uld - I) .  

For z E X there is a unique decomposition based on the last time z leaves the 

x - axis .  This decomposition depends on the step taken by z from the axis for the 

last time. If z ends on the axis, it is in W .  Otherwise it leaves the axis for the last 

time with either c or d. If its last step from the axis is c ,  it factors as z = waz', where 

w E W ,  and z1 E X .  Otherwise it factors as z = wbz' or z = wbE, where w E W ,  

z' E X ,  and t E X .  

For Z E x there is a unique decomposition based on the last time 2 steps to the 

region above the x-axis from below. If this last step is from the axis, E factors as 

t = w4az,  E = w4bz, or = w4bt1, where w4 E W4, z E X ,  and 2' E X .  Otherwise 2 

factors as 2 = w2bzl where w2 E W2,  and z E X .  Therefore ( X ,  X )  is a solution to 

the proper algebraic system 

so X is an algebraic language. Figure 3.1 shows the decomposition of z in terms of a 

walk. 
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XOR 

Figure 3.2: Decomposition of z.  

Finally, to obtain the algebraic language 2 isomorphic to L ( y )  we simply let 

a = + . . . + a,(,), let b = ap(i+l) + . . . + a,(j), let c = ap(j+l) + . . . + ap(k), let 

d = ap(k+l) + . . . + ap(m)1 and let e = + . . . + a,(,). 

Given a step set Y,  we let Qy (x,  y ;  t )  = 4(Z), which is algebraic by Theorem 1.2. 

Example 3.2. Let y = {NE, SE, E) and consider the walks L ( y )  generated by y 

in the region RTp. Then L ( y )  is characterized by the single restriction lulNE > lu/sE 

By Lemma 3.1, L ( y )  is isomorphic to a language 2 2 {a, b, c, d l  e)* defined by the 

following proper algebraic system: 

w = 1 + bw + awcw 

2 = w + waz. 

We apply 11, to obtain the following generating functions: 
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Notice that  W ( x ;  t )  = Q(x,  0; t )  is the complete generating function for Motzkin 

paths. 

Lemma 3.1 applies to  walks whose step sets are of any cardinality and whose steps 

are not necessarily unit steps. For example, the walks in the first quadrant generated 

by the step set {(2 ,2) ,  (-2, I ) ,  ( 0 , l ) )  have an algebraic complete generating function 

and are counted by an algebraic length generating function. 

Banderier and Flajolet's result for simple walks in RT12 can also be extended to  

walks in R, that  are not simple, and it can be stated in terms of a language. 

Lemma 3.2. Let y = {Al , .  . . , A,) be a step set of cardinality n, and let the language 

2 C_ {a l ,  . . . , a,)' be isomorphic to C ( y ) .  Suppose there exists a permutation p, 

positive integers 1 j 5 m 5 n; and a set of  positive integers r = {yl,  7 2 , .  . . , -lm) 

such that we can define 2 entirely by the condition that for any factorization z = u v  

of a word z E 2, 

71 I u I ~ ~ ( ~ )  + . . . + 7jIuIaP(,) ~ J + l I u I a ~ ( ~ + i )  + . . . + ~ r n  ( ~ l ~ , ( , ,  . 

Then  the length generating function Qy(t)  is algebraic. 

Proof. Because of Banderier and Flajolet [I] ,  it is sufficient to  show that  2 is isomor- 

phic to  a set of walks generated by a step set X that  must remain in R,. We first 

define a function 8 : Y -+ Z x Z as follows: 

Essentially B maps a step A,(,) to  a step with a unique y coordinate that steps 

away from or towards the y-axis by a distance of 7,. Denote 8(A,(,)) by B,, and 

let X = 8(Y).  Then a walk w generated by X is in R, if and only if, for every 

factorization w = uv, the following inequality is satisfied: 
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Inequality (3.1.2) is the same as Inequality (3.1.1), so the walks generated by X in 

R, are isomorphic to 2. 0 

Lemma 3.2 is a more general result than Lemma 3.1, but our proof of Lemma 3.1 is 

constructive and relies solely on the combinatorial properties of algebraic languages. 

In contrast, the proof of Lemma 3.2 relies on Flajolet and Banderier's [I]  result whose 

proof uses combinatorial arguments combined with complex analysis and Laurent 

polynomials. 

The language in Lemma 3.1 is defined by a specific case of the Inequality (3.1.1) 

where I? = {1,2).  The method used t o  prove Lemma 3.1 can be used for any specific 

set of positive integers I?, but the larger I? is, the more complicated the construction. 

3.2 Walks in the quarter-plane 

Recall that  the quarter-plane is defined as RTl2 = {(i, j) E Z x Zli > 0, j > 0). This 

region is a well studied one, and this section outlines some of the results proven about 

walks in RT12. AS mentioned earlier, Dyck paths are easy t o  investigate because they 

are really only bounded by the x-axis. 

The next step is t o  consider a step set that  generates walks which may interact 

with both boundaries in R,p. A walk that  may interact with two boundaries is 

defined by two restrictions as opposed to  the single restriction of Dyck paths. One 

such step set is Y = {NE, W, S). The walks generated by y are known as Krewerasl 

walks and are named for Germain Kreweras. 

3.2.1 Kreweras' walks 

Kreweras' walks are planar lattice walks that  start a t  the origin, remain in RT12, and 

are composed of three types of steps: NE, W, and S. Figure 3.3 shows an example of 
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a Kreweras' walk of length 24. 

Figure 3.3: Example of a Kreweras' walk of length 24 

In 1965 [18] Kreweras proved that the number of planar walks that  begin a t  (0 ,0) ,  

consist of 3n unit steps, any of which can be NE, S, or W and always remain in RalS 

is 

Gessel [15] proved in 1986 that the generating function Q( t )  of the numbers a(3n) 

is algebraic. However, the methods used by both Kreweras and Gessel involved first 

guessing the correct solution then proving it. The fact that  this generating function 

is algebraic is interesting because Q( t )  cannot be constructed with a proper alge- 

braic system, a result which can be proven with the "pumping lemma" for algebraic 

series [17]. The pumping lemma states a property that every context-free algebra must 

have, and the generating function for Kreweras' walks cannot have that property. 

In 2005 Bousquet-Mdou [5] further investigated the enumeration of planar lattice 

walks using NE, S, or W steps. She proved that the complete generating function 

of those walks is algebraic. Unlike Kreweras and Gessel, she derived the solution 

constructively rather than conjecture and verify a solution. Her methods and results 
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are summarized below. 

Bernardi [2] recently constructed a purely combinatorial proof for Equation (3.2.1). 

He did so by finding a bijection between Kreweras' walks that  end a t  the origin and 

loopless triangulations. 

Enumeration of Kreweras' walks of length n 

Consider planar lattice walks that start at  (0, O ) ,  use N E ,  S ,  or W steps, and always 

remain RTlz Let a,,,(n) be the number of n-step walks of this type ending at  ( 2 ,  j ) .  

Denote by Q(x ,  y; t )  the complete generating function of walks: 

We construct these walks recursively by starting considering a walk as a shorter 

walk with a single step appended to it. This recursive definition gives the functional 

equation 

The first term in the right-hand side counts the empty walk. The next term shows 

the three ways one can add a step a t  the end of a walk. For example, ;Q(x, y; t) 

represents adding a step west a t  the end of a walk. Since the walk must remain in 

RTlz, we cannot add a S step to a walk ending on the x-axis, and we cannot add a 

W step to a walk ending on the y-axis. The last two terms in the right-hand side 

subtract the contributions of these forbidden moves. 

There is a correspondence between walks ending on the x-axis and those ending 

on the y-axis. If we take a walk that ends on the x-axis and substitute a S step for 

each W step and vice versa, we effectively reflect the walk across the line y = x to get 

a walk of the same length that  ends on the y-axis. Therefore Q(x, 0; t )  = Q(0, x ;  t) 
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and Q(0 ,  y ;  t )  = Q ( y ,  0; t ) .  Notice that xy - t ( x  + y + x2y2)  is symmetric in x and y .  

Thus we can swap x and y in Equation (3.2.2) to show that Q ( x ,  y; t )  = Q ( y ,  x ;  t ) ,  so 

Q ( x ,  y; t )  is symmetric in x and y. 

Equation (3.2.2) is equivalent to 

where 

R ( x )  = x tQ(x ,  0;  t ) .  

Because of the symmetry properties of Q ( x ,  y; t ) ,  R ( x )  is well-defined. 

In order to state Theorem 3.3 we first recall from Table A. l  that the coeffecient 

of x y n  f ( x )  is denoted by by [xZ]  f ( x ) .  

Theorem 3.3 (Bousquet-Mdou [ 5 ] ) .  Let VV = W ( t )  be the power series in t 

defined by 

W = t (2  + W 3 ) .  

Then the generating function of Kreweras' walks ending on the x-axis is 

Consequently, the length generatzng function of walks ending at (i, 0)  is 

where Ci = (2:) / ( i  + 1) is the ith Catalan number. The Lagrange inversion formula 

gives the number of such walks of length 3n + 2i as 
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The complete generating function Q ( x ,  y ; t )  can be recovered using 

Equation (3.2.3): 

( l / W - f ) J 1 - + ( 1 / w - y ) J m  1  
Qb? Y ;  t )  = --  

zy  - t ( x  + y + x2y2) xyt ' 

where 2 = l / x  and f j  = l / y .  

The technique used by Bousquet-Mdou to  prove Theorem 3.3 is called the obsti- 

nate kernel method. This method couples the variables x  and y so as to cancel the 

kernel K ( x ,  y )  = ( xy  - t ( x  + y + x Z y 2 ) )  to  find information about the series R ( x ) .  

She then uses a tool called the algebraic kernel method, which we describe in detail 

below. With the algebraic kernel method, she found Q d ( x )  = C ~ ~ , ~ ( n ) x ~ ,  the diago- 

nal of Q ( x ,  y ;  t )  that counts the Kreweras' walks of length n  that  end on the diagonal 

y = x. By finding Q d ( x ) ,  she was then able to  determine Q ( x ,  y ;  t ) .  We will first use 

Dyck paths to  give an example of the obstinate kernel method 

Obstinate kernel method applied to Dyck paths 

Let L ( y )  be the set of walks generated by Y = { N E ,  S E )  in Rxp,  and consider the 

complete generating function Q y ( x l  y ;  t )  of L ( y ) .  The Dyck paths are a subset of 

L ( y ) ,  and the complete generating function of the Dyck paths is Q y ( x l  0; t ) .  We 

construct the walks recursively in a manner similar to  that  of Kreweras' walks to  

obtain the functional equation 

Equation (3.2.4) can equivalently be written as 

( xy  - t xZy2  - t x 2 ) Q y ( x ,  y ;  t )  = xy - x2 tQy(x ,  0; t ) .  
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We call (x y - tx2 y2 - tx2) the kernel of Qy(x, y; t )  and denote it by K (x, y). We treat 

K ( x ,  y) as a function of y and find its roots: 

Let Yo = '-7, and let Yl = "7. Since Yo is a formal power series in t ,  

we may substitute it into Equation (3.2.5) to  obtain 

Finally, we substitute Equation (3.2.6) into Equation (3.2.5) and divide by K ( x ,  y) 

to obtain 

dc'y(x,Y;t) = 
v 

2t2x2(tx2y2 + tx2 - xy) ' 

Algeraic kernel method applied to Kreweras' walks 

Equation (3.2.3) can be rewritten as 

The algebraic kernel method couples the x and y variables and uses the algebraic 

properties of K ( x ,  y) to determine Q d .  Equivalently, 

where K,(s ,  y) = 1 - t ( 3  + Lj + xy) is the rational version of the kernel K .  K, has an 

invariance property: 
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Iterative application of the involutive transformations @ : ( x ,  y) ++ (2g,  y) and 

\k : ( x ,  y)  H ( x l  2 g )  gives us the pairs ( x ,  y ) ,  ( ~ y ,  y ) ,  ( ~ y ,  x ) ,  ( x ,  ~ y ) ,  and ( y ,  2 y ) ,  all 

of which can be substituted for ( x ,  y)  in Equation (3.2.8). 

These substitutions give three equations: 

Summing the first and third equations and subtracting the second one gives: 

Equivalently, 

) (3.2.9) X ~ Q ( X ,  y )  - z Q ( z ~ ,  y )  + ~ Q ( x ,  3 y )  + - 22 - ~ R ( x )  . 

We now consider Equation (3.2.9) in terms of formal power series in t  and examine 

the constant term in y,  i e . ,  the sum of all the terms that  contain no powers of y. 

On the left hand side of Equation (3.2.9), the only terms without a power of y as  a 

coefficient are in z Q ( z y ,  y; t )  and l l t ,  so we may ignore the other terms. Recall that 

The constant terms with respect to y are those in which i = j ,  ie., 

Walks for which i = j are those that  end on the diagonal y = x .  These walks are 

encoded by the series 

C x'tna,,i (n). 
i=j,n>O 
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which we denote by Qd(x ) .  Thus, the constant term with respect to y on the left hand 

side of Equation (3.2.9) is zQd(z )  + lit. TO determine Qd we need only to extract 

the terms constant in y on the right hand side of Equation (3.2.9). 

As a polynomial in y, h'(x, y )  has two roots: 

Jsing Yo an( 5, K ( X ,  y) factors as - t ~ ~ ( y - Y o ) ( ~ - Y ~ ) ,  so KT = - t ~ y ( y - Y ~ ) ( ~ - ~ , ) .  

Below we use partial fractions of y to express KT as a Laurent series in y: 

Gathering like powers of y yields the system of equations 

-1 o = - -  Btx, 
Yl 

which we solve to determine 

y1 - 1  A = -  a n d  B = C =  
yo - Yl tx(Yo - Yl)  ' 

Let A ( x )  = ( 1  - t ~ ) ~  - 4t2x, which is the descriminant of Yo and Y l .  Since 

Yo - Yl = - d m / t x l  there is the following expression for l / K T :  
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Each of A(x) ,  Yo, and Yl can be expressed as a formal power series in t with 

coefficients in Q[x, 51, so the above expansion of 1/K, is valid in the set of formal 

power series in t with coefficients in Q[x,  3,  y, ij]. Therefore from Equation (3.2.9), we 

determine 

As a Laurent polynomial in x ,  A(x)  has three roots. Two of which (Xo and X1) 

are formal power series in A; the other (X2)  is a Laurent series in t.  The coefficients 

of these series can be computed inductively: 

Thus Xo is defined by the relation x = t + 2tx3I2, and X I  is defined by x = t - 2tx3I2. 

To calculate X2 we solve for the "other" x: 

Therefore X2  is defined by the relation shown in Equation (3.2.11). 

We now develop the initial series for Xol  X1, and X2  below by iteritave expansion: 

In order to proceed further, we must first state an important lemma proven by 

Bousquet-Mdou and Schaeffer. 
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Lemma 3.4 (Factorization Lemma [3, 71). Let A ( x ;  t )  be a series in t with coef i -  

cients in R[x,z],  and assume A ( x ; O )  = 1 .  There ezzsts a unique triple 

( A o ( t ) ,  A + ( x ;  t ) ,  A- (5;  t ) )  - (Ao, A + ( x ) ,  A- ( 5 ) )  of formal power series zn t that sat- 

isfies the  following conditions: 

2. the  coef ic ients  of A. are in R; 

3. the coef ic ients  o f  A + ( x )  are in R [ x ] ;  

4 .  the  coef ic ients  of A- (5 )  are in R [ z ] ;  

The proof of Lemma 3.4 gives an explicit construction of how to factor A ( x )  based 

on the series expansions of its roots as series over t .  We use this proof to factor A ( x ) :  

Recall that W is defined b y  the formula W = t (2 + W 3 ) .  Though it is not obvious, 

X2 = 1/W2: 
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Note that  1 /W2 has the same iterative definition as XZ .  We use Maple to expand 

1/W2: 

Since the first terms of 1/ W2  are the same as those of X2,  and 1/ W2  satisfies the same 

recurrence as X2 ,  we may conclude that  the two series are indeed equal. Therefore 

A, = 4 t 2 / w 2  and A+(x)  = 1 - x w 2  

We proceed with the canonical factorization of A(x)  and the fact that X2 = 1/W2 

to determine 
l / t - 2 2 - 2 R ( x )  

d K z m  
Extracting the nonnegative powers of x gives R(x) ,  from which Q(x ,  0; t )  is deter- 

mined: 

From Q(x,  0; t ) ,  Q(x ,  y; t )  can now be completely determined, and Theorem 3.3 

follows. 

3.2.2 Reverse Kreweras' walks 

We now develop in more detail an example from Mishna [20] to further illustrate 

the importance of the algebraic kernel method of lattice path enumeration. Consider 

planar lattice walks that  start  a t  (0, O ) ,  use SW, N ,  or E steps and remain in RT12. 

Walks created using these steps are simply Kreweras' walks done in reverse, so we 

call them reverse Kreweras' walks. 
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Enumeration of reverse Kreweras' walks of length n 

Let P ( x l  y; t )  be the complete generating function for reverse Kreweras' walks. We 

obtain the functional equation 

or equivalently 

( x y  - t ( 1  + x 2 ~  + ~ 2 2 ) )  P ( x ,  y; t )  = xy - tP (0 ,  y; t )  - t P ( x ,  0; t )  + tP(0:  0; t ) .  

We let L ( x ,  y) = xy - t (1 + x2Y + y2x)  and let 

1 
L T ( x 1  y) = -L(x ,  y) = 1 - t ( ~ f j  + x + y) .  (3.2.12) 

x  Y 

This rational kernel has the same invariance property as the rational kernel for 

Kreweras' Walks, i. e., 

Again, iterative application of the involutive transformations : ( x ,  y) H ( zy ,  y )  

and Q : ( x ,  y) H ( x ,  Z f j )  gives us the pairs ( x ,  y ) ,  ( Z f j ,  y ) ,  (QJ, x ) ,  ( x ,  Z y ) ,  and ( y ,  zfj). 

We now define a counterpart to L,: 

Substitution of the pairs (3, f j ) ,  (3,  x y ) ,  and ( x y ,  y )  into Equation (3.2.12) yields 

the following system of equations: 

Z ~ L , P ( Z ,  y ;  t )  = Z y  - tP (Z ,  0 ;  t )  - tP (0 ,  y; t )  + tP(0,O; t )  

yETP(3,  xy;  t )  = y - tP(z ,O;  t )  - tP(0 ,  xy;  t )  + tP(0,O; t )  

xL,P(xy,  y ;  t )  = ;c - t P ( x y ,  0; t )  - tP (0 ,  y ;  t )  + tP(0,O; t ) .  
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Summing the first and second equation and subtracting the third one gives 

1 
zyP(z, y; t) + y P ( z ,  xy; t )  - xP(xy,  y; t )  = - (2y + y - 2tP(Z' 0; t )  + tP(0,O; t ) )  

LT 

We now apply the fact that the rational kernel KT(xl  y) from the proof of 

Theorem 3.3 is equal to LT(x, y) to express the right hand side of Equation (3.2.13): 

1 
-(zg + y - x2tP(z1  0; t )  + tP(0,O; t ) )  
KT 

As in the case of Equation (3.2.9), extraction of the constant term of 

Equation (3.2.13) with respect to y on the left hand side yields xPd(x) ,  where Pd(x) 

is the generating function that counts the number of reverse Kreweras' walks ending 

on the diagonal. The constant term in y on the right hand side is more difficult to 

extract: 

YoYl = 5, so extraction of the constant term in y from Equation (3.2.13) yields 

- - 
1 

m (2Yo - x - 2tP(2 '  0; t )  + tP(0,O; t ) )  . 

For a series f (x,  2 ,  t )  in @[x, 2][[t]], let fl denote the series obtained from f 

by keeping only those terms whose coefficients of tn are polynomials in @ [ T I .  We 
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now use the canonical factorization of A(x) ,  use the fact that A. = 4t2/W2 and 

A+ (x )  = 1 - x  W 2 ,  and extract the non-positive powers of x to determine P(2,O; t )  : 

First we calculate 

Bousquet-Melou[5] showed that A_(%)  can be expressed as 

1 - 2W(l + W3/4)  + 3'W2/4. If we let X = 2W2/4 - W ( l  + W3/4) ,  

then = d m  Note that X E k[[t]] .  Therefore 

From this we determine 
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The other term in the right hand side of Equation (3.2.15) is more difficult to deter- 

mine: 

We next develop f as a series in I: 

Combine Equations (3.2.16) and (3.2.17): 
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Therefore, 

The only remaining unknown term is P(0,O; t ) ,  which counts the number of reverse 

Kreweras' walks ending a t  (0,O). Fortunately, each reverse Kreweras' walk that ends 

in the origin is simply a Kreweras' walk done in reverse. Thus we can extract P(0,O; t )  

from Theorem 3.3: 

We now have a complete expression for P ( x ,  0; t ) ,  and thus P ( x ,  y; t ) .  

Theorem 3.5. Let W = W(t)  be the power series in t defined by 

and let V - V(t)  be the power series in t defined by 

Then the generating function of reverse Kreweras' walks ending on the x-axis is 
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Corollary 3.6. The complete generating function for reverse Kreweras' walks is 

where 

Corollary 3.7. Let W ( t )  and V ( t )  be defined as in Theorem 3.5. The length gener- 

ating function for the reverse Kreweras' walks is 

where 

U ( x )  = t P ( x ,  0; t ) .  

3.2.3 Double Kreweras' walks 

The complete and length generating functions of both Kreweras' and reverse Krew- 

eras' walks are algebraic, which leads us to wonder if there exist other generalizations 

of the Kreweras' walks with algebraic complete and length generating functions. 

We consider the walks generated by the union of the steps that  generate the 

Kreweras' and reverse Kreweras' walks. That  is, let y = { N ,  N E ,  E l  S ,  SW, W ) .  We call 

the walks generated by y in RTI2 double Kreweras' walks, and denote the complete 

generating function of these walks by Qd(x ,  y; t ) .  We write Qd(x ,  y; t )  in terms of its 

iterative definition below: 

Unfortunately, we have been unable to successfully apply the algebraic kernel 

method to Equation (3.2.18). One problem is that  the step set for double Kreweras' 



CHAPTER 3. LATTICE WALK CLASSIFICATION 5 5 

walks is "too symmetric." The kernel of Qd(x,  y; t )  is invariant over the same x, y 

pairs as the Kreweras' and reverse Kreweras' walks, but substituting the different 

pairs into Equation (3.2.18) does not yield enough different equations to determine 

anything about Qd(x,  y; t ) .  However, with the aid of the GFCTN package in MAPLE 

(see Appendix B) we hypothesize that  the length generating function for the double 

Kreweras' walks, which we denote by Qd( t ) ,  satisfies the following two equations: 

Therefore, it is our conjecture that  the length generating function Qd(t)  is algebraic. 

We rearrange Equation (3.2.19): 

Since the generating function for unrestricted walks generated by y in the planar 

lattice is A, it appears that Qd(t)  may simply be the subtraction of the generating 

function of walks that  leave RaI2 from the unrestricted generating function. However, 

we have yet to find a proof that  this is the case. The simplicity of Qd(t)  is encouraging 

in that ,  if it were correct, there may be a nice combinatorial argument for a proof. 

From Equation (3.2.20) we also determine the following recursion for the coefficients 

a (n)  of tn in Qd(t):  

a1 = 3, 

1 
an = - (12(n - l ) anP2  + (4,n + 2 ) ~ , - ~ )  for n > 2 

n + l  



CHAPTER 3. LATTICE WALK CLASSIFICATION 

3.2.4 Classes of walks 

There are many instances of different step sets that lead to isomorphic walks. For 

example, the walks generated by a step set y are isomorphic to  those generated by 

the set made up of the steps in y reflected across the line y = x. Instead of examining 

each step set individually, it is useful to collect the step sets into classes according to 

the length generating functions of their walks in a given region. Table 3.1 gives the 

isomorphic classes of step sets of cardinality three whose walk sets are non-trivial. 

Class 

1 

Table 3.1: RTl2 step set classes 

The generating functions for all walks generated by y in the first quadrant where 
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lyl = 3 have been classified by Mishna [20]. Table 3.2 summarizes her results 

Counting GF 1 Q d x ,  Y; t) = C a,, (n)x'yJtn I 

Table 3.2: Classification of walks in RTj2 [20] 

I\, ~ 
I \a I 

3.2.5 Step sets of cardinality greater than three 

non-D-Finite 

non-D-Finite 

Mishna [20] states a conjecture which applies to step sets of all cardinalities that 

are made up unit steps. In order to state her conjecture, we must first define two 

W  I W ( t )  1s t h e  power serles ~n t  defined by W  = t ( 2  + w 3 )  
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operators on steps: rev and reflect. The rev operator reverses the direction of a step, 

i. e., rev(x, y) = (-x, -y). The reflect operator reflects the step across the line y = x ,  

i e . ,  reflect(x, y) = (y, x) .  We now state Mishna's conjecture: 

The generating function Qy is holonomic if and only if a t  least one of the following 

holds: 

0 L(y)  are the Kreweras' or reverse Kreweras' walks; 

0 y is singular; 

0 y is symmetric across the x- or y-axis; 

3.2.6 Gessel's walks 

Gessel conjectured that  the length generating function Qy ( t )  for y = {N, SE, S, NW) 

is D-finite, which is also guessed by MAPLE using the GFUN package. The GFUN 

package guesses that  Qy( t )  satisfies the following differential equation: 

However, Zeilberger has conjectured that the complete generating function Qy(x,  y ;  t )  

is not D-finite. Gessel's walks are interesting because if both Gessel and Zeilberger are 

correct, the walks would represent a first case in RTI2 where the complete generating 

function was not in the same class as the length generating function. 
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The eighth-plane 

Recall that  the i-plane is the region RT14 = { ( i ,  j )  E Z x Zli > 0, i > j ) .  We 

consider this region because we would like to see if shrinking the lattice region in 

question to one smaller than RT12 results in a significant change in the behaviour of 

the generating functions of walks. We specifically choose RT14 for two reasons: the 

first is that  it lacks any reflective symmetry in the planar lattice, whereas RT12 is 

symmetric across the line y = x. The second reason is that  the boundaries of RT14 

are each parallel to a unit step. 

3.3.1 Rn12 to  Rn14 isomorphism 

When we consider walks in terms of their restrictions, it is clear that  some walks in 

RT14 are isomorphic to walks in RT12. For example, the walks generated in RT14 by 

{NE, S, W) are isomorphic to the walks generated by {NE, SE, W) in RT12 because 

both are defined by the restriction lula > 1ulb > lul, In this section we define a 

natural isomorphism between walks in RT14 and walks in RT12. 

Define $ : RT12 -+ RTI4 by $((x,  y ) )  = (x  + y, y).  Let ,w = WO, W I , .  . . , W, be 

a planar lattice walk. Define the mapping Q? on the set of planar lattice walks by 

Q?(w) = $(wO), $(wl) ,  . . . , $(wn). Since $ is a function, it is obvious that  Q? is well 

defined. 

Lemma 3.8. The mapping Q? is an isomorphism that maps walks from RT12 to RT14. 

Proof. We first show that $ is a bijection from Z x Z to itself. Suppose 

$((x,  y))  = $((a,  b ) ) .  Then (x  + y, Y )  = (a  + b, b ) ,  which implies that y = b and 

x = a .  Therefore T& is one-to-one. Let (x ,  y) E Z x Z .  Then (x  - y, y)  E Z x Z ,  and 

therefore $ is onto. Thus $ is a bijection from the set of all lattice steps to itself. 
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Since both w and Q(w)  are a sequence of points in Z x Z ,  both represent a planar 

lattice walk of length n .  It remains to show that Q(w)  is one-to-one and onto. 

Let w = w0, wl1 . . . , W, and v = vo, v l ,  . . . , v, be walks in RT14, and suppose that 

Q(w)  = Q(v) .  Then for 0 5 i 5 n ,  +(wi) = +(v,), which implies that  w = v. 

Therefore, 9 is one-to-one. Next, let w = wo, w l ,  . . . , w, be a walk in RT14, where 

wi = (a,, bi). Then for 0 5 i 5 n l  0 5 bi 5 a,, +-'((a,, bi)) = (ai - bi, bi) is a point in 

RT12. Thus 9 is onto and is therefore an isomorphism. 

Finally, note that  +((O, 0))  = (0,O). Therefore if w is a walk that  begins a t  the 

origin, so is 9 ( w ) .  

G 

Table 3.3.1 shows the mapping of the steps { N ,  NE, E, SE, S ,  SW,  W ,  NW) in RT14 

Step in RT12-plane 

Table 3.3: 9 { N 1  NE, El SE, S ,  SW,  W,  NW) 

From these mappings we can see that  a set of walks in RT14 whose step set is a 

subset of { N ,  NE, El S ,  SW, W} is isomorphic to a set of walks in RT12 whose step set 

is a subset of { N ,  El SE, S ,  W ,  NW). 
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For example, the set of walks in RT14 generated by the step set {NE, S, W) is 

isomorphic to  the set of walks in RT12 generated by the step set { N ,  SE, W). 

Another way to think of the isomorphism V1 is as a transformation on RT12 

itself. This transformation is illustrated in Figure 3.4. 

Figure 3.4: RT12 mapped by 9-' to  RT14 

The isomorphism \k allows us to classify (as algebraic, D-finite, or neither) the 

generating function of every set of walks in RT12 whose step set is of cardinality three 

and whose step set does not contain either NW or SE based on the classifications 

of generating functions of walks in the first quadrant. Table 3.3.1 summarizes the 

classification of walks in RT12 we are able to classify using Q .  
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/ Y in :-plane I Q(Y) 1 Classification of Q y ( r ,  y; t )  I 

Algebraic 

Algebraic 1 1 ~ 1  il'Tll Algebraic 1 
Non-D-Finite 

Table 3.4: Walks in Ra14 mapped by 9 

We are further able to prove that two other classes of walks in RTI4 have algebraic 

complete generating functions. The length generating functions of these walks are al- 

gebraic by Banderier and Flajolet [I], but we find their complete generating functions 

and prove that they are algebraic. 

Walks generated by y = {NW, NE, E) 

The walks generated by the step set {NW, NE,  E) are isomorphic to  the set W of all 

words w E {a, b, c)" such that for all factorizations w = uv, lula > 2 1 ~ 1 ~ .  That is to 

say, for every b in w,  there must be at  least two previous a's. The complete generating 

function of these words is algebraic, and thus so is its length generating function. 

To prove that Qy(x l  y;  t )  is algebraic, we simply apply Lemma 3.1. 

Let 2 c {a, b, c)" be the language isomorphic to C(Y). Then ( W ,  W 3 , 2 )  is a solution 
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to the proper algebraic system 

w = 1 + aw + awgbw 

Wg = waw 

z = W + waz. 

Therefore both 2 and Qy(x ,  y ; t )  are algebraic. Recall that  d ( a )  = xt,  d(b) = Zyt, 

and d(c) = xyt to  obtain the following system: 

Note that W(x ,  y; t )  counts the walks that  end on the line y = x .  We find the first 

few terms of Qy:  

Walks generated by y = {W, NW, E) 

The walks generated by the step set {W, NW, E) are isomorphic to  the set W of all 

words w E {a, b, c)* such that  for all factorizations w = uv, lulb+ 2luIc 5 lula. Again, 

the complete generating function of these words is algebraic, and thus so is its length 

generating function. 

To prove that  Qy(x ,  y; t)  is algebraic, we apply Lemma 3.1. Let 2 C {a, b,c)* 

be the language isomorphic to  L ( y ) .  Then ( W ,  W3, 2) is a solution to the proper 

algebraic system 

w = 1 + awcw + aw$w 

w3 = waw 

z = w + w a z .  
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Therefore both 2 and Q y ( x ,  y;  t )  are algebraic. We again recall that +(a)  = x t ,  

+(b)  = s t ,  and +(c) = Zjjt to obtain the following system: 

Again, W ( x ,  y ;  t )  counts the walks that  end on the line y = x .  We find the first few 

terms of Q y :  

3.3.2 Unclassified cases 

Two interesting unclassified cases in are yl = {NW, SW, E) ,  which is defined by 

the restriction 21u/, < 2 l ' ~ l ~  < IuIa, and y2 = { N E ,  SE, W), which is defined by the 

restriction Iu/, 5 2 1 ~ 1 ~  5 2/u / , .  These walks are interesting because their structure is 

very similar to that  of the walks generated by yl and Y2 in RaI2 

In R,p, Q y l ( t )  and Qy,( t )  are both D-finite via Theorem 3.9, which was proved 

by Bousquet-Mdou and PetkovSek [6]. Note that Theorem 3.9 does not apply to 

Gessel's walks. 

Theorem 3.9 (Bousquet-Mdou and Petkov~ek).  Let y be a step set, and sup- 

pose that ( x ,  y )  € y + (-x, y )  € Y ,  and suppose that lyl < 1 for all ( x ,  y )  € y. Then  

the complete generating function Q y ( x ,  y;  t )  for the walks generated by y i n  R a p  is 

D-finite. 

Unfortunately we are unable to extend Theorem 3.9 to Ra14 Bousquet-Mdou and 

PetkovSek proved their theorem by describing a "correspondence" between certain 

walks in R, and walks in R,p. However, the proof of D-finiteness depends on the 
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fact that the complete generating functions of walks in the half-plane are algebraic. 

To extend their method to RT12 would require that all walks in the region R312 

between y = x and y = -x have algebraic generating functions, and that region does 

not have that property (see Chapter 4) .  

However, the walks generated in by yl are isomorphic to walks similar to 

Kreweras' walks, and the walks generated in R;12 by Y2 are isomorphic to walks 

similar to reverse Kreweras' walks. Therefore, we believe that in RTI4, Qy,(t) and 

Qy,(t) are both D-finite. 

The remaining unclassified cases in Rs14 for y of cardinality three are all very simi- 

lar. Each of them is defined by a set of restrictions of the form 

alula < P1ulb I yIuI, + blul,, where a ,  P, y ,  b E N. What that means is that any walk 

subject to these restrictions can never return to the origin. Mishna and Rechnitzer [21] 

have proven that walks defined by luIa I lulb 5 1uIa + IuI, have a non-D-finite length 

generating function, and we believe that their result is evidence that our remaining 

unclassified walks in Ra/2 also have non-D-finite length generating functions. 

Table 3.3.2 outlines the walks classified in this section, as well as the conjectures 

for the unclassified walks. The column labeled "Classification" contains the class 

into which the complete generating function Qy(x,  y; t )  falls. Conjectures for the 

generating functions are denoted by an asterisk. 
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Class Restrictions Classification I cf. 

Rational 1 

Algebraic 1 5 3.2.4 

Algebraic / 5 3.2.4 

Algebraic 5 3 . 2 . 4  

Algebraic 5 3.2.4 

Algebraic 1 5 3.2.4 

Table 3.5: RT14 step set classes (conjectures denoted by *) 

In both RTi4 and RT12 there are step sets that yield algebraic generating functions, 

and there are step sets that yield non-D-finite generating functions. We also have 

an explicit isomorphism which maps walks between Rlr14 and RT12 Therefore, we 

hypothesize that the generating functions for walks in different regions no bigger than 
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RTI2 do not differ significantly in their behaviour as long as their boundaries have 

rational slopes. 

3.4 The three-quarter-plane 

Since Banderier and Flajolet [I] proved that  all walks in R, have algebraic generating 

function, we are interested in whether or not this is true for regions "larger" than 

R,. A natural place to  begin is the three-quarter-plane region R3,12 bounded by the 

negative x- and y-axes. This region is a good choice for two regions: the boundaries 

are parallel to  some of the unit steps, and the region is symmetric across the line 

y = x .  These two facts allow for simplification in many cases. 

We first investigate walks in R3T12 by using MAPLE to  count the number of 

walks of length one to fifty generated by different y ' s  of cardinality three. From 

this enumeration we use the GFUN package to try to guess three things: Qy(t ) ,  an 

algebraic equation satisfied by Qy(t) ,  and a linear differential equation satisfied by 

Q y ( t )  The code we use is adapted from code developed by Mishna; a sample of the 

code is given in Appendix B. 

The only y ' s  for which MAPLE is able to  return any guesses all fall into a specific 

class of step sets, which we describe in Section 3.4.1. 

3.4.1 Half-planar step sets 

Definition 3.3. A step set is half-planar if the walks it generates in the unrestricted 

planar lattice remain in a half-plane. 

An example of a half-planar step set is { N ,  NE, W, NW). Figure 3.5 shows all the 

maximal half-planar step sets. 
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($1 (b) (4 (4 (4 (f 

Figure 3.5: Maximal half-planar step sets 

When we examined the generating functions of walks generated by half-planar 

step sets in R3a/2, we noticed that  they were algebraic and their walks fell into one 

of three categories: 

1. their walks were unrestricted; 

2. their walks only interacted with one of the boundaries of R3a/2; 

3. their walks could potentially interact with either boundary, but once they 

stepped off a line through the origin, they could only afterwards interact with 

a single boundary. 

We give an example of each of the three possibilities below. 

Example 3.4. Consider the walks generated by y = {NW, NE, SE) in R3a/> These 

walks are unrestricted, so their length generating function is Qy(t)  = A, which is 

of course algebraic. 

Example 3.5. Let y = {NE, SW, NW). The walks generated by Y in R3a/2 are 

defined by the restriction 

I U ~ N E  + IUJNW 2 IU ISW.  

Therefore, by Lemma 3.1, Qy(t )  is defined by the system 
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Therefore Qy( t )  is algebraic. 

Example 3.6. Let y = {W,S,  E). Then walks in C ( y )  may end either in the 

fourth quadrant or the second quadrant. If w E C ( y )  ends in the fourth quadrant, 

it is factored as w = vul ,  where v is the longest prefex of w that  ends a t  the origin 

with a step W (v may also be empty), and ul  is a walk in the half-plane y 2 0. 

The generating function V(t)  for walks in C ( y )  that  end a t  the origin with a step 

W is V(t)  = ;+ w. Since u1 cannot step into the region x > 0, the generating 

function Ul(t) for walks like ul  is defined by the system 

Therefore Ul(t) is algebraic, as is Ql ( t )  = V(t)Ul( t ) .  

If w E L ( y )  ends in the second quadrant, it is factored as w = vu2, where v is the 

longest prefix of w that  ends a t  the origin with a step E (again, v may be empty), 

and u, is a walk in the half-plane x 2 0. The generating function for v is again V(t)  

as defined above. The walks in the half-plane x 2 0 are defined by the restriction 

uIw > )uIE, SO by Lemma 3.1 their generating function U2(t) is defined by the system I - 

Therefore U2(t) and Q2(t)  = V(t)U2(t) are also algebraic. 

We are thus able to  determine the algebraic length generating function for walks 

in L(Y) :  

We use MAPLE to  determine the Qy(t)  explicitly, and the result is given in Table 3.6, 

as well as the length generating functions for every class of half-planar step sets 
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of cardinality three in R3.rr12. These generating functions were determined with 

Theorem 3.10. 

Table 3.6: Half-planar length generating functions in R3.rrI2 for (yl = 3 

Rather than considering just R3K12, we consider a more general region larger than 

the half-plane. Define the region as follows: let one of its boundaries be either the 

positive y-axis or the line y = mlx, where ml is a non-positive rational number, and 

let the second boundary be either the negative y-axis or the line y = m2x, where 

m2 is a rational number. We call such a region a rational region, and denote it by 

Rfrac. We also assume that m2 > ml .  Figure 3.4.1 shows two possible RfraC1s: where 

the shaded area is excluded from Rf,,,. We call the region excluded from Rfr,, the 
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forbidden region. 

Figure 3.6: Two possible rational regions 

First write ml and m2 as fractions in lowest terms, i.e., ml = p l / q l  and 

m2 = p 2 / q 2 ,  where ql and 9 2  are positive. Then a walk w in Rf,,, generated by a 

step set Y must satisfy a t  least one of two conditions based on ml and m2: for any 

prefix u of w, either 
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where 

1 i f x E Y  . = { 
0 otherwise 

The first condition is simply that  the walk is above the line y = mlx ,  i.e., qly 2 plx. 

The second condition is that  the walk must be below the line y = m2x. Note that 

both conditions may be satisfied simultaneously. For the case when Rfrac is bounded 

by the negative y-axis, simply let q2 = 0 in Equation (3.4.2) 

For a half-planar step set y ,  we define its bounding edge as a line that  unrestricted 

walks generated by y cannot cross. For example, walks generated by y = {N, W, S) 

cannot cross the y-axis. Note that  the bounding edge may not be unique. In fact, 

it is only unique in the case where y contains two parallel steps, i.e., two steps that 

point in opposite directions. In RfraC, walks generated by a half-planar step set have 

a special property: once a walk steps off its bounding edge, it cannot return. 

As an example, let Rf,,, = R3.rr/2, and let y = {NW, W, S, SE). Then the bounding 

edge of y is the line y = -x. Once a walk w leaves the bounding line, it must remain 

in either the the second quadrant or the fourth quadrant permanently. This is because 

a walk may never step towards the bounding line by definition of a half-planar step 

set. We use that  fact to  prove the following theorem. 

Theorem 3.10. Let y  be half-planar, and let L(y)  be the walks generated by y  i n  a 

rational region Rfrac. T h e n  the length generating function Qy ( t )  for L(y) is algebraic. 

Proof. We find Qy( t )  be decomposing a walk w E L(y)  based on the region in which 

it terminates. Given a half-planar y and a region Rfrac, there are three possibilities 

for how walks may interact with the boundaries of Rfrac: 

1. walks in L(y)  cannot interact with either boundary except at  the origin; 

2. walks in C(y) are restricted by one boundary but can only interact with the 

second boundary at  the origin; 
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3. walks in L ( y )  may interact with either boundary depending on whether they 

step off the boundary line a t  x > 0 or at  x < 0. 

1 In the first case the walks in L(Y) are unrestricted, and therefore Qy(t)  = =. 

Next, assume that  walks in L ( y )  are only restricted by one boundary. Without 

loss of generality assume the boundary to  be the line y = m l x  (if L ( y )  actually 

interacts with the other boundary, we simply reflect the boundary lines and the step 

set across the x-axis). Then a walk w E C ( y )  is defined by the restriction that  for 

any prefix u of w, 

Therefore by Lemma 3.2, Qy(t )  is algebraic. 

Finally, consider the case where w E C ( y )  may interact with either boundary of 

Rm,. If w steps off the bounding line, we decompose w in a nearly unique manner 

based on where it leaves its bounding line. If it does not leave the bounding line, 

we decompose w based on where it ends. For the sake of simplicity, if w leaves the 

bounding line or terminates in the region above y = mlx ,  we say that  w ends above 

the forbidden region. If it leaves the bounding line or terminates in the region below 

y = mzx, we say that  w ends below the forbidden region. 

Suppose w ends above the forbidden region. Then we may uniquely decompose 

w as w = vul based on its last return to the origin from below the forbidden region. 

In this decomposition v is the longest walk possible that ends a t  the origin with a 

step from below the forbidden region, and ul is defined by the inequality given in 

Equation (3.4.1). If y contains two steps (a ,  b) and (-a, -b), then the boundary line 

is unique and v is a walk made up solely of (a ,  b) and (-a, -b) steps that  ends a t  

the origin with a step up out from below the forbidden region. I t  is plain that v is 

isomorphic to  a semi-directed walk that ends on the x-axis with a step up. If the 
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boundary line for y is not unique, then v  is the empty walk. The generating function 

P ( t )  for semi-directed walks that  end on the x-axis is 

which is algebraic. Since precisely half of the non-trivial walks counted by P ( t )  end 

with a step up, the generating function for walks like v  is denoted by V ( t )  and given 

by 

Since ul is defined by a single restriction, its corresponding generating function 

U l ( t )  is also algebraic by Lemma 3.2. Therefore the generating function Q l ( t )  of 

walks that end above the forbidden region is algebraic and defined as 

If w ends below the forbidden region, its decomposition is nearly identical to the 

above case. We decompose w as w = vu2  based on its last return to  the origin from 

above the forbidden region. The generating function that counts v  is again V ( t ) .  

The suffix u2 is defined by the inequality in Equation (3.4.2) and is counted by U 2 ( t ) ,  

which is algebraic by Lemma 3.2. Therefore the generating function Q 2 ( t )  of walks 

that  end below the forbidden region is algebraic and defined as 

As we mentioned before, the above decomposition is nearly unique. The only walks 

that  are overcounted are those that  end a t  the origin, which are counted exactly twice. 

Therefore the length generating function for C ( y )  in Rf,,, is 

and Q y  ( t )  is algebraic. 
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We realize that  the proof of Theorem 3.10 is technical, but the essential idea 

behind it is that  half-planar walks fall into one of the three categories illustrated by 

Examples 3.4, 3.5, and 3.6. 

If both the boundaries of Rfrac are parallel to unit steps, we say that  Rfrac is normal. 

If Rfrac is normal, then we may actually use Lemma 3.1 instead of Lemma 3.2 in the 

method used to Theorem 3.10. The reason for this is that  when Rfrac has both 

boundaries parallel to unit steps, the restrictions on the walks all have either 1 or 2 

as coefficients, and therefore Lemma 3.1 is applicable. The  advantage of this method 

is that  we are able to  determine not only the length generating functions, but the 

complete generating functions of the walks in RrraC. Tables 3.7 and 3.8 show the 

restrictions on walks generated by each maximal half-planar step set in all normal 

regions larger than R, (up to translation). 
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Restrictions 

None 

None 

None 

None 

Table 3.7: Restrictions on half-planar step sets in RSrl8, R3r12 
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1 Restrictions 

I K l l  None 

None 

-- 

None 

None 

None 

None 

None 

Table 3.8: Restrictions on half-planar step sets in Rj,,z, R7?r/4 
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3.4.2 Non-half-planar step sets in RBn+ 

In general, for a given Y the walks generated by y must satisfy one of two con- 

ditions: either 6 N / t ~ 1 ~  + ~ N E ~ U ~ N E  + ~ N W I U I N W  > ~ S E I U I S E  + 6sluls + ~ S W ~ U ~ ~ W  OR 

~ N E I u I N E  + 6 E l ~ l E  + ~ S E I U I S E  > ~ S W ] U ( S W  + 6 w I u I W  + ~ N W I U I N W .  What this essentially 

means is that  the walk must either be in the half-plane y > 0 or the half-plane x > 0. 

Note that  this is not an exclusive or, i. e., both conditions may simultaneously be 

satisfied. 

The most significant difference between step sets that  are half-planar and those 

that are not is that  a walk generated by a half-planar Y may only satisfy both 

conditions when it is a t  the origin, but a walk generated by a non-half-planar y may 

intersect any point in R3,12. The freedom enjoyed by a walk generated by non-half- 

planar y greatly complicates things. 

The fact that  walks are unable to enter the region ( Z  x Z)\R3,12 keeps us from 

utilizing the method that Bousquet-Mdou [3] used to prove that  all walks made up 

of unit steps in the slit denoted by R2T, have algebraic functions because her 

method uses the fact that walks that  begin and end on the x-axis in R3,/2 may step 

into the half-plane s < 0. 

Another stumbling block is the fact that MAPLE has been unable to guess for 

any of the non-planar step sets y of cardinality three, let alone higher cardinalities. 

We have used MAPLE to  search for algebraic equations of order seven or lower and 

differential equations of order seven or lower with coefficients of degree seven to no 

avail. 

However, because non-half-planar walks in R3,12 are able to return to the origin, 

we believe that  they have a "cycling" behaviour similar to  that  of walks in R2, which 

would give them a nice decomposition and thus D-finite generating functions. 

'Walks in the slit plane begin at  the origin and may step anywhere in Z x Z except for the 
non-positive x-axis. 



Chapter 4 

Observations on More General 

Wedges 

4.1 A class of non-D-finite walks 

There exist walks in RTI4 whose length generating functions are non-D-finite: but 

there are none in R,. This leads us to  pursue a general class of non-D-finite walks in 

an arbitrary region "smaller" than R,. First, consider the step set y = {NE, SE, NW) 

in RTI4 Mishna and Rechnitzer[21] proved the following theorem: 

Theorem 4.1 ([21]). The complete generating function Qy(x ,  y ;  t )  and the length 

generating function Q y ( l r  1; t )  are both non-D-finite. 

These walks have two things in common with the knight's walks of Bousquet- 

Mdou and Petkovsek: 

they may interact with both boundaries of Ra14; 

they are unable to  return to the origin. 
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Therefore a good place to start our search for a class of non-D-finite walks is a 

generalization of the walks in Theorem 4.1. 

4.1.1 Walks in a quarter-plane wedge 

Let X = { N ,  S, E) and consider the walks generated by X that remain in the wedge 

bounded by y = i x .  Let 

where bi,j(n) is the number of walks generated by X of length n  that end a t  (i, j ) .  If 

we map y onto X by mapping N E  to  E, SE to S, and NW to N ,  we see that  

Therefore each walk generated by y in the quarter-plane is isomorphic to  a walk 

generated by X in the wedge 0 < jyl 5 x,  and Theorem 4.1 implies that  neither 

Qx(x ,  y; t )  nor Qx(1,  1;  t )  are D-finite. 

Let B,!+(t) = bk,J(n)tn be the power series in t  that counts the number of - 

walks ending a t  ( k ,  j ) .  Then 

encodes the walks that end on x  = k where y marks the final height of the walk. 

From this, we rewrite Q x ( x ,  y: t )  as 

In order to determine Bk( t ) ,  we uniquely decompose a walk w generated by X in 

terms of its steps E. A walk w that  ends on the line x  = k  can be decomposed as 
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w = uv where u is a walk that ends on the line x = k - 1 followed by a step E, and 

v is a walk made up solely of N and S steps that starts  a t  (k,  i) ,  ends a t  (k,  j ) ,  and 

remains between y = x and y = -x. Therefore v is isomorphic to  a generalized Dyck 

path (called a directed path) that begins a t  height i, ends a t  height j, and remains in 

a strip of height 2k. Figure 4.1.1 (adapted from [21]) illustrates this decomposition. 

Figure 4.1: Directed path obtained from decomposition of a walk in the wedge 

We denote the length generating function of such generalized Dyck paths by 

H:,k(t). This generating function is given as Example 11 in [14] and is written in 

terms of a generalized Fibonacci polynomial 

We have 

for j 5 i. 
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Therefore, 

Next consider B k ( y ;  t )  under the transformation t  t. &. We compute 

and substitute into Equation (4.1.4), which results in the following expression for 

Bk(Yi t )  = Bk(Y1 & I :  

Let w E C ( X )  be a walk that ends at  the point ( 2 ,  j ) .  The reflection of w across the 

x-axis is also in L ( X ) ,  so Bk ( y ;  t )  = B k ( t ;  t ) .  We take advantage of this fact and use 

maple to  simplify Equation (4.1.5): 
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Since we are primarily interested in the length generating function of the walks in 

L ( X ) ,  let y = 1: 

Since B k ( l )  is rational, it appears that  each of the (2k + 2)-th roots of -1 is a 

pole of B k ( l ) ,  and the set of poles of B k ( l )  taken over all k is dense in the unit 

circle. If this were the case, the following theorem applied to the generating function 

Q Q x ( y ,  y ;  -) = C B k ( l ;  &)yk would allow us to  conclude that  Q x ( x ,  y; t )  is non- 

D-finite. 

Theorem 4.2. [19] Let f ( x ;  t )  = C, cn(x) tn  be a D-finite power series in C ( x ) [ [ t ] ]  

with rational coeficients i n  x .  For n 2 0,  let Sn be the set of poles of c,(y), and let 

S = IJ Sn.  Then S has only a finite number of accumulation points. 

Unfortunately, Mishna and Rechnitzer were unable to  prove directly that  the 

singularities in question did not cancel. However, using an iterated kernel method they 

were able to  prove that  Q x ( x ,  y; t )  is indeed non-D-finite. Therefore the singularities 

in Equation (4.1.7) do not cancel, for otherwise Q x ( x ,  y; +) would be rational with 

a finite number of poles, and therefore algebraic. 

4.1.2 An extension to  more general wedges 

A natural question is whether Theorem 4.1 can be extended to  the generating func- 

tioris of walks generated by X in an arbitrary region between y = ax and y = -bx, 

where a ,  b E R+ and x 2 0. We first explore the region bounded by y f m.x, where 

m E Z. 
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Let Qx, (x,  y; t )  = xn,z,j2, biJ(n)xiyjtn be the complete generating function of 

the walks generated by X in the region 0 5 lyl 5 mx,  and consider each walk in 

terms of its steps E as in the case of m = 1. Therefore, 

where 

Next, consider Ck(y;  t )  under the transformation t ++ &. We compute 

and substitute into Equation (4.1.4). Let y = 1 and simplify with MAPLE, which 

results in the following expression for C k ( l ;  t )  = Ck (1, &) : 

Similarly to  the case where m = 1, the poles of C k ( l , t )  appear to be the 

(2mk + 2)-th roots of -1. Barring some miraculous cancellations, it would appear 

that  the set of poles of Ck ( l ,  t )  taken over all k is dense on the unit circle. We have 

unfortunately been unable to prove that  this is the case. However, we have used 

MAPLE to plot these singularities for various values of m and k, and they do appear 

to  be growing dense on the unit circle. Of course, these plots prove nothing in of 

themselves as there may be cancellation for some much larger value of k. They are 

encouraging, though. Table 4.1.2 shows some of the plots done with MAPLE. 
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Table 4.1: Plots of roots of the denominator of B k ( l ,  &) 



Chapter 5 

Conclusions and Future Direct ions 

5.1 Conclusions 

In Chapter 1 we said that the motivation of this thesis is, "For a given step set y, what 

effect does our choice of the boundaries of a region have on the generating function 

of the walks in that region?" While we have not answered the question entirely, we 

have made significant progress towards that goal. 

Lemma 3.8 leads us t o  conclude that there is not a significant difference between 

Ra14 and Ra12 in terms of the behaviour of generating functions of walks. 

Theorem 3.10 gives a large class of step sets that have algebraic complete gen- 

erating functions in any region Rf,,, at least as large as R, with rational lines for 

boundaries. Furthermore, Therem 3.10 in conjunction with Lemma 3.1 gives a con- 

struction for these generating functions in regions bounded by two lines parallel to 

unit steps. The fact that we can construct these generating functions explicitly will 

allow us analyze their asymptotic behaviour. 
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Future work 

In the course of this research many questions and conjectures arose that  are possible 

directions for further study. We outline some of these below. 

5.2.1 A necessary condition for D-finiteness? 

When we examine the complete generating functions classified by Mishnaj201 (see 

Table 3.2)) we find two conditions that  separate the two step sets whose complete 

generating functions are non-D-finite from the others. First, yl = {NW, N E ,  SE) and 

y2 = {NW, N, SE) generate no non-trivial walks that  end a t  the origin. Second, the 

walks generated by yl and y2 may intersect both the x- and y-axes. That is, the 

walks may interact with either of the regional boundaries. From these conditions we 

formulate Conjecture 1. 

Conjecture 1. Let R be the convex region bounded by the line y = a x  and the 

line y = bx ,  and let y be a step set. Suppose that the walks C ( y )  generated by y 

that remain in R m a y  interact with both boundaries, and suppose that the only walk 

in C ( y )  that returns to  the origin is  the trivial walk. Then  the length generating 

function Q y ( t )  = C a ( n ) t n  of  the walks in C ( y )  i s  non-D-finite.  

If Conjecture 1 is true, then it further implies that  the complete generating func- 

tion Q y ( x ,  y ;  t )  of L(y)  is also non-D-finite. 

Recall from Section 3.2.6 that Zeilberger conjectured that the complete generat- 

ing function of C ( y )  for y = { N ,  S, SE, NW) is non-D-finite. If he is correct, then 

Conjecture 1 clearly cannot be a su f ic ien t  condition for D-finiteness. Therefore we 

choose to conjecture in a manner that  does not conflict with Zeilberger. 
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5.2.2 Double Kreweras' walks 

Conjecture 2. The length generating function Qd(t) of  the walks generated by  

{ N ,  N E ,  E l  S ,  SW, W) in RTlpis algebraic and is defined b y  the system 

5.2.3 Walks in a region larger than R, 

Though we were unable to find evidence that all step sets in R3xi2 give D-finite 

length generating functions, we belive that that is the case. The intuition behind the 

D-finiteness for non-half-planar step sets is the fact that walks generated by a non- 

half-planar step may return to the origin as many times as they like. This indicates 

that there may be some sort of cyclic construction of these walks that yield a D-finite 

generating function similar to that of walks in the slit plane. This construction would 

differ from that of D-finite walks in RTI2. 

Conjecture 3. For any step set y (0, hl) x (0, hl), the length generating function 

Qy(t) for walks generated b y  y in R3~/2 is D-finite. 

5.2.4 A class of non-D-finite walks 

In Chapter 4 we describe a potential class of non-D-finite walks. 

Conjecture 4. Let y = {N,S, E) and let m E W. Then the complete generating 

function Qy(x, y; t )  for walks in the wedge between the lines y h mx is non-D-finite. 

5.2.5 Extensions of proven results 

There is also more work that can be done with the results we have already proven. 

For example. any of the walks we have directly enumerated can be examined in terms 
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of their asymptotic behaviour. This asymptotic data  can then be used to determine 

the statistical mechanical properties of many walks using the methods discussed in 

Chapter 2. 

Asymptotic techniques such as those used by van Rensburg in [26] may also shed 

light on the behaviour of the generating functions of walks generated by a half-planar 

y in any region larger than 72,. This would include regions whose boundaries do not 

have rational slopes. 

Another worthwhile task is to generalize the construction used in Lemma 3.1 to 

all the walks whose generating functions are algebraic by Lemma 3.2. 

Finally, it is of interest to consider regions of the planar lattice that  are "bigger" 

than the slit plane. For example, suppose walks are allowed to walk anywhere in 

Z x Z with the following restriction: a walk which crosses the negative x-axis from 

south to north (resp. north to south) cannot do so again without first crossing the 

negative x-axis from north to south (resp. south to north). 

We close with a quote from Kurt Vonnegut, Jr.: 

New knowledge is the most valuable commodity on earth. The more 

truth we have to work with, the richer we become. 



Appendices 

A Table of notation 

ring of polynomials in x 
field of rational functions in x (the quotient field of K[x]) 
ring of formal power series in x 
field of Laurent series in x (the quotient field of K[[x]]) 
ring of algebraic power series in x over K(x)  
field of algebraic Laurent series in x over K(x )  
ring of polynomials in X I ,  . . . , X i  

ring of noncommutative polynomials in the alphabet X 
ring of rational noncommutative series in the alphabet X 
ring of formal (noncommutative) series in the alphabet X 
ring of (noncommutative) algebraic series in the alphabet X 
the coefficient of xn in the power series F ( x )  

Table A . l :  Power Series Notation 
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Sample MAPLE code for counting walks 

The MAPLE code below was used to generate sequences that counted the number of 

walks of length 1 to n generated by a given step set that remain in the three-quarter 

plane. We then used the GFUN package to guess the length generating function of 

the walks generated then guess if the generating function was D-finite or algebraic. 

Similar code was used for the same purpose in the quarter and one-eighth plane. 

The first MAPLE procedure we define is Count270. It counts the walks of length 

n which are generated by a given step set y and end at  the point (i, j). It does so by 

starting at the point (i, j) and recursively working back to the origin by subtracting 

steps in y. Each successful return to the origin adds 1 to the value returned by 

Count270. The inputs a and b in Count270 are used to keep track of the last point 

in the walk before the current point. This ensures that walks which step across the 

forbidden region are not mistakenly counted. 

#--Count270 counts t h e  walks of l eng th  <<n>> genera ted  

#--by t h e  s t e p  s e t  <<Steps>> ending a t  po in t  ( < < i > > , < < j > > )  

Count270 := proc ( i ,  j ,  a ,  b ,  n ,  S t eps )  

op t ion  remember; 

#--if walk s t e p s  i n t o  forbidden r eg ion  

i f  i < O a n d  j  < O o r n < O t h e n O  

#--if walk c ros ses  forbidden r eg ion  

e l i f  ( i  = -1 and j  = 0  and a  = 0  and b  = -1) 

o r  ( i  = 0  and j = -1 and a  = -1 and b  = 0) t h e n  0  

#--if walk has  r e t u r n e d  t o  o r i g i n  and i s  of l e n g t h  <<n>> 

e l i f  n  = 0 and j  = 0 and i = 0 then  1 

#--if walk i s  i n  t h e  allowed r eg ion ,  but  not  a t  t h e  o r i g i n  

e l s e  a d d ( ~ o u n t 2 7 0 ( i - s  [I] , j-s [2] , i ,  j , n-1, S t e p s ) ,  s = Steps )  

end i f :  

end proc:  
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Next we define the procedure GenSeries270, which has two uses. It can be used 

to generate the first n coefficients of the length generating function Q y ( t )  for walks 

generated by a given step set y, or it can be used to generate the first n coefficients 

of the length generating function for walks that  end a t  a given point ( i ,  j). Which 

task it undertakes depends on the input it receives. 

In order to calculate the coefficients of the generating function for walks that  end 

a t  (2 ,  j), it simply creates a sequence where each term in the sequence is determined 

by Count270. In order to calculate the first n coefficients of the length generating 

function, it calculates a double sum for each 0 5 i 5 n which exhaustively counts all 

the walks of length i generated by y. 

#--Generate t h e  sequence of number of walks genera ted  by <<Steps>> of l eng th  

#--<<n>> ending a t  p o i n t  < < f i n a l > > ,  where <<Steps>> i s  a  l ist  of 2-vectors 

GenSeries270 := proc  (S teps ,  N, f i n a l )  

l o c a l  k ;  

i f  nargs  = 3 t h e n  [seq(Count270 (op (f i n a l )  , k ,  S teps )  , k  = 0  . . N) 1 

e l s e  [seq(add(add(Count270(i, j ,  i ,  j ,  k ,  S t e p s ) ,  j = -k . . k ) ,  

i = -k . .  k ) ,  k = O  . .  N)] 

end i f :  

end proc:  

We now give an example of an application of GenSeries270 and the GFUN pack- 

age for the step set Y = {N, SE, W). 
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#--Generate the sequence that counts the walks generated by W,N,SW 

~ : = ~ e n ~ e r i e s 2 7 0 (  [lo, 11, [-I ,-I] , [-I ,011,50) ; 

Finally, we use the GFUN package to guess the if Q y ( t )  satisfies an algebraic 

equation and a differential equation 

#--Use gfun package to guess generating function 

with(gfun) : 

guessgf (L,x) ; 
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#--Use gfun package to guess differential equation 

listtodiffeq(L,y(x)); 

2 /d \ 2 

[{(-I + 2 x + 3 x ) x I - -  y(x)l + 1 + (4  x - 1 + 3 x ) y(x), y(O) = 11, ogfl 

\dx / 

2 2 

[I + (-1 + 3 x )  y(x) + ( - x + 3  x y(x) , ogfl 

MAPLE guesses that  the length generating function for the walks generated by 

y = { N ,  W, SW) satisfies the equation 

which is indeed the correct solution. 

Since GenSeries270 generates the initial terms of an integer sequences, it is nat- 

ural to  check if these sequences are included in the On-Line Encyclopedia of Integer 

Sequences [22]. Unfortunately, we were unable to classify any previously unclassified 

walks in this manner. 
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