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Abstract 

We analyze two finite difference schemes, the median and the morphological schemes, for nu- 

merically solving the motion by mean curvature partial differential equation. We show that 

these schemes satisfy sufficient conditions for convergence to the correct viscosity solution 

of the underlying equation. Moreover, we explore a recent link between the motion by mean 

curvature partial differentia1 equation to a two-person differential game; we argue that these 

schemes can be interpreted as discrete approximations to this two-person differential game. 

Numerical results comparing the two schemes to standard finite difference discretizations 

are also presented. 

Keywords: 

Motion by mean curvature; Viscosity solutions; Two-person differential games; Degenerate 

elliptic schemes; Finite difference method 
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Chapter 1 

Introduction 

Our goal in this thesis is to understand and interpret numerical schemes that solve the initial 

and boundary value problem, 

w t ,  x7 ?I) - - v ( )  for ( t ,  X, Y) E 10. T )  x n at 

for a domain R c Kk2 and some T > 0. More precisely, we study 

1. sufficient criteria for numerically capturing the correct weak solution, the viscos,ity 

solution (see Chapter 2), of (1.1), and 

2. how to construct and interpret numerical schemes for (1.1) via a differential game 

theory (see Chapter 3) approach. 

We will refer to the partial differential equation in (1.1) as motion by mean curvature. As the 

name suggests, the problem (1.1), (1.2), (1.3) is closely related to the problem of evolving 

contours according to their curvature. This geometric meaning of (1.1) is helpful when 

constructing weak solutions. We will establish this link in Section 1.2. 

1.1 Curvature Motion 

The central theme of this thesis is the evolution of curves in two dimensions driven by their 

curvature. More precisely, in two dimensions, if we denote by C ( t ,  s) E R' the set of points 
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in the plane representing some curve parametrized by s a t  time t ,  we wish to evolve it by 

where K. is the mean curvature and N the unit inward normal of C a t  (t, s). 

Recently, curvature motion has proved useful in image processing problems, such as 

denoising. Other areas O F  application include fluid dynamics, combustion, crystal growth 

and front propagation. 

1.2 Level Set Formulation 

The level set method, invented by Osher and Sethian [20], has proved to be one of the most 

versatile and robust methods to evolve curves and surfaces, both in theoretical and numerical 

settings. The basic idea is to represent a given curve by a zero level set of a surface. By 

increasing the co-dimension one can treat a wide class of curve evolution problems naturally. 

For example, kinks and topological changes of a curve are considered to be computationally 

difficult to tame using direct numerical methods for (1.4), but are easily implemented using 

the Level set method. For an overview of other curve evolving methods, such as marker-point 

methods and volume preserving methods, see [23]. 

We briefly develop the level set formulation of curve evolution in x2; the same idea 

extends to higher dimensions. Suppose we start  with (1.4), but with K repla.cc:d by an 

arbitrary normal velocity vector v(t ,  s): 

Define the embedding function u : [0, T )  x Et2 + R to be the surface that will represent C 

by its zero level set. This is equivalent to saying, if we define 

then C(t,x, y) = Lo( t ,x ,  y) .  Now if we take the derivative with respect 

ie. the equation satisfying the coordinates of the points on C, we have 

(1.7) 

to t of 0 = u( t ,  x ,  y ) ,  
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Noting that 

we continue from (1.8): 

au 
0 = Vu(t,  Lo) , i qv  + - 

at 

since Vu(t, Lo) points in the opposite direction of J'?. The norm I . I is the usual Euclidean 

norm. We need not necessarily take the zero level set; hence, we can replace Lo by C, for 

any c. But, since any point (x, y) E R2 must be on some level set of u, we can replace Lo 

simply by (x,  y) .  After this replacement, we arrive at 

The partial differential equation (1.13) is the level set  formulation of the curve evolution 

problem (1.6). For motion by mean curvature, we have 

and hence (1.1) is the level set formulation of (1.4). 

1.2.1 Other Representations of Motion by Mean Curvature 

In understanding (1.1), it is useful to be familiar with other forms of motion by mean 

curvature. Expanding and simplifying the right hand side of (1.1) yields 

Now we turn to a more geometric representation. The Laplacian operator A may be 

decomposed as follows: 

Au = nT(02u)n + t T ( ~ % ) t  (1.15) 

where n = VuIlVu1, t = VLu,':VuJ and D'U is the Hessian of u. ('7' is the operator 
a a (&,  -&) . )  This decomposition separates an isotropic second derivative, the Laplscian, 
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into second derivatives in the normal and tangent directions of the level set contours of u: 

n and t,  respectively. Hence, a more suggestive form of (1.15) may be 

The two terms on the right hand side of (1.15) and (1.16) are referred to as the infinity 

Laplacian of u denoted by A,u, and the 1-Laplacian of u denoted by Alu ,  respectively1. 

This decomposition into two orthogonal directions is special to R2. But A l u  in fact equals 

the right hand side of (1.1). Hence, motion by mean curvature (1.1) may also be represented 

in the following way: 

1.2.2 Remarks 

1. The final step leading to (1.13) tells us an interesting fact: by solving (1.13), one is 

solving (1.4) for every level set. of the embedding function u. 

2. A theorem of Grayson [ll] states that for all closed simple Co in EX2, a curve C evolving 

according to (1.4) eventually shrinks to a point, and then disappears. This is not the 

case in higher dimensions. For example, a "dumbbell" shaped surface in R3 may have 

its "handle" pinch off to cause a change in topology, see Figure 1.1. 

3. The representation (1.19) clarifies what it means to evolve the embedding function u 

by motion by mean curvature: an anisotropic Gaussian smoothing restricted to each 

level set2. 

1.3 Layout of the Thesis 

Much of this thesis will be devoted towards developing the necessary tools. This is due 

to the author's philosophy that numerical simulations should only be attacked when the 

underlying partial differential equation and its numerical theory are sufficiently understood. 

' T h i s  notation is not s tandard .  Some authors define A i u  as our definition of Alu multiplied by some 
power of IVul. 

 h his happens t o  be a very useful property of motion by mean curvature in image denoising. 
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Figure 1.1: The evolution of a "dumbbell". Left to right: Initial surface; the surface evolved 
after some time t > 0. (Numerical code courtesy of Mr. Wilson Au.) 

Chapter 2 defines and outlines major results of viscosity solutions for (1.1). This chapter 

contains mainly theoretical results and properties which will later be used to evaluate nu- 

merical schemes. Chapter 3 presents the two-person differential game interpretation of (1.1), 

(1 .3) .  The interpretation is included in this thesis to shed new light on modern numerical 

schemes for (1.1). Chapter 4 develops the modern machinery needed to prove convergence 

of schemes to the correct weak solution. Chapter 5 presents two modern finite difference 

schemes for (1.1). It also gives proofs of convergence and numerical results. Chapter 6 

empirically compares these schemes to standard finite difference schemes on several test 

cases. 



Chapter 2 

Viscosity Solutions 

The notion of viscosity solutions provides a powerful framework for proving the existence 

and uniqueness of weak solutions for a wide class of partial differential equations. The idea 

is to give suitable conditions to allow for non-smooth solutions while achieving existence 

and uniqueness. One allows of non-smoothness, roughly speaking, by touching the weak 

solution ,u from above and below by Cm test functions 6 and applying derivatives on 4 
rather than on u. 

Viscosity solutions were first developed for first order Hamilton-Jacobi type equations1 

by Crandall and Lions in 1983; similar theory for motion by mean curvature (1.1) was later 

introduced by Evans and Spruck [7] and Chen, Giga and Goto [3]. We will mainly follow 

the development of the theory as introduced by Evans and Spruck. 

2.1 Definitions 

For this section, we will use the Forms, 

R' x [O, co) 

and, 
1 L T 2  u.t = -(V u) D u O'U IW" [0, 00) IW2 (2.2) 

for motion by mean curvature, where vL is the operator (&, -&) and D2u is the Hessian 

of u.  These are of the same form as (1.18) and (1. 17), respectively. 

 o or a definition of Hamilton-Jacobi equations and its derivatives, see 161 
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2.1.1 Degenerate Ellipticity 

Let s2 be the set of 2 by 2 symmetric real matrices and R be a domain in Zt2. We start by 

defining a class of degenerate elliptzc partial dijjerential equations. 

Definition 2.1.1 (Degenerate ellipticity). Let 

be continuous. Denote F[.u](x) := F(x ,  Vu(x),  D ~ U )  for some smooth function u. Consider 

the elliptzc m d  parabolic Dirichlet boundary value problem.s, 

F [ u ] ( x ) = O  x ~ i 2  

U ( X )  = g(x) E an, 

W e  say that (2.3) or (2.4) is degenerate elliptic if 

F ( x ,  p, X) < F ( x ,  p, Y) whenever Y L X .  (2.5) 

Note that by X 5 Y for matrices X, Y, we mean that (Y - X) is a positive semi-definite 

matrix. We show that motion by mean curvature is degenerate elliptic. The continuity 

of F in the preceding definition may be relaxed by taking its u,pper and lower semicon- 

tinous functions; this allows the development of the forthcoming theory also at isolated 

discontinuities. 

Propos i t ion  2.1.2. Motion by mean curvature (2.2) is degenerate elliptic. 

Proof. In this case, the function F is 

where F is continuous except a t  an isolated point p = 0, which poses no problems. We 

assume that p # 0. If Y 5 X ,  then 

1 
F ( P ,  X) - F(p ,  Y )  = - - ; - Z ( p J - ) T ( ~  - Y) pL 5 0: \ P I  (2.7) 

since (X - Y) is positive semi-definite. C 
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As mentioned in the beginning of the chapter, the goal is to allow for 'suitable' non- 

smooth (but continuous) solutions to satisfy (2.1)) or equivalently, (2.2). We will later clarify 

what is meant by 'suitable'. The immediate problem is how one should deal with Vu and 

D2u,  if ,u, were not smooth. 

2.1.2 Viscosity Solutions 

To motivate the definition of viscosity solutions, we introduce an arbitrary test function 

q5 E CW((O,T) x R) and for the time being, suppose u E C 2 ( ( 0 , ~ )  x R) satisfies the 

inequality 

ut + F ( V U ,  D ~ U )  I 0. (2.8) 

Such u is called a subsolution of (2.4). Suppose ( u  - 4) attains a local maximum a t  the 

point and time z0 = (to, xO, yo) E (0, T) x fl. Then, by calculus, we have, 

If F is defined as in (2.6), since motion by mean curvature is degenerate elliptic, 

at zo. Hence, we may characterize solutions that satisf?; (2.8) by a differential inequality 

involving derivatives just in test functions: 

If we assume, without loss of generality, that v(z0) = 4(zO), then the test function can be 

interpreted as "touching the solution u from above'' a t  the point and time zo [6, Lemma p. 

,5441. Assuming that (u - 4 )  now has a local minimum, reversing the inequality in (2.8) (u 

is then called a supersolution) also reverses the inequality in (2.10). Subsequently, if both 

inequalities hold, and F is chosen as in Proposition 2.1.2, we have a solution to (2.1). 

We now give definitions of viscosity subsolutions and viscosity supersolutions 2. 

Definition 2.1.3 (Viscosity subsolution). 4 bounded function u E C ( R  x [0,  co)) zs a 

viscosity subsolution of (2.1), provided that if (u - 4)  has a local maximum at a po,lnt 

(to,xo, yo) for a sm,ooth 4, then, 

"ln [7 ] ,  what we call viscosity solutions are referred to as "weak solutions" 
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2. i f  V4(to, xo, yo) = 0, then  

4t I w - vTD24 q 

at (to, xo, yo), for  some q E IR2 such that  171 5 1. 

Definition 2.1.4 (Viscosity supersolution). A bounded function u E C ( 0  x [0, CO))  i s  a 

viscosity supersolution of' (2.1); provided that if (u - 4) has a local m i n i m u m  at a poznt 

(to, xo, yo) for  a smooth g), then, 

at ( t o ,  xo,  yo ) ,  for some q E LR2 such th,at 171 5 1. 

The definition for viscosity solutions follows. 

Definition 2.1.5 (Viscosity solution). A bounded function u E C(S2 x [0, a)) i s  a viscosity 

solution of (2.1), ~f i t  is both a viscosity sub.solution and a v.iscosity supersohtion.  

See 19, Chapter 21 for a simpler definition of viscosity solutions (Definitions 2.1.3, 2.1.4 

and 2.1.5) using upper and lower semicontinuous functions. Note that in definitions 2.1.3 

and 2.1.4, there is a degree of freedom on 7 where the gradient vanishes. The conditions on 

17) in (2.12) and (2.14) are particularly tailored for useful convergence properties of viscosity 

solutions; see, for example, [7, Theorem 2.71. 

The form (2.12) and (2.14) can be slightly simplified. We apply a generalization of 

(1.15). By letting v = 771, (2.12) can be written as 

and Iul 5 1, and similarly for (2.14) with reversed inequality. 
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2.1.3 Properties of Viscosity Solutions 

\Ve outline three fundamental properties of viscosity solutions for (2 .1) :  the comparison 

property, uniqueness and existence. Some of these will be motivated, but all will be given 

without proof. For rigorous justification, we refer the reader to  [7] or'[9]. We also prove a 

Lemma connecting viscosity solutions to classical solutions of (2.1). 

First, we present the comparison property. 

Theorem 2.1.6 (Comparison property). Let u and v be a viscosity subsolution and super- 

solution, respectively, of (2.1)) such that u < u in { t  = 0) x R.  Assume further that 

on [O, CO) x n ; 2 { J w  + t 2 R} ,  u and v are constants such that .u 5 ,v (2.16) 

for some R > 0. Then, 

u 5 ?I on  [0, m) x R. 

The comparison principle is a nonlinear generalization of the maximum principle for 

the heat equation. Recall that the (strong) m a ~ i m u m  principle asserts the maximum of a 

solution to the heat equa.tion (only) occurs either at the initial condition or on the boundary 

of the domain. 

Consider now motion by mean curvature (2.1). As shown in Example 2.2.1 below, a 

constant is a viscosity sub- and supersolution of (2.1) that satisfies the assumptions of 

Theorem 2.1.6. If u is a viscosity solution of (2.1) bounded above by cl and below by c;! 

a t  t = 0, then Theorem 2.1.6 implies that cl 5 u 5 c2 for all t 2 0. We have shown the 

contraction property, or the non-expansivity in the co-norm: 

Theorem 2.1.7 (Contraction property). Let U ,  v be viscossty solutions of (2.1)) such that 

(2.16) holds for some R > 0. Then 

Suppose now that u and 2) are two viscosity solutions to (2.1) with the same initial 

condition. Suppose further that u and v both satisfy (2.16). Since both are viscosity sub- 

and supersolutions, and u < v and v 5 u at t = 0, the Theorem 2.1.6 implies that u I v 

and v 5 u for all t 2 0. Hence, the comparison principle implies the following: 

Theorem 2.1.8 (Uniqueness of viscosity solutions). A viscosity solution of (2.1) is unique 

,zf it is constant on fl x [0, co) n{J= + t > R ) .  
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Finally, we present the existence result: 

Theorem 2.1.9 (Existence of viscosity solutions). Suppose g : 0 - R is a continuous 

function such that 

g i s c o n s t a n t o n ~ n { J ~ ~ ~ ) .  ~ (2.19) 

for some S > 0. Then there exists a viscosity solution u of (2.1) such that u ( 0 ,  x, y )  = g(z, y )  

and is constant on R x [O, m) n{d- + t 2 R ) .  The constant R only depends on S .  

Any form of weak solution must coincide with the classical solution whenever sufficient 

smoothness is met. In the case of (2.1),  c2 is sufficient. 

Lemma 2.1.10. A classical solution .u E C2([0 ,  T] x 0) of (2.1) ,is a viscosity solution. 

Proof. Suppose u is c2 and satisfies ( 2 . 1 )  in the classical sense at 20 = ( to , zo ,  yo),  so 

V u ( z O )  # 0. First we show that .u is a subsolution. Suppose ( u  - 4)  has a local maximum at 

20 for some smooth 4 .  Then .ut(zo) = 4 t ( ~ O ) ,  VU(ZO)  = V ~ ( Z O )  and ~ ~ u ( z o )  5 D2@(zO).  B y  

Proposition 2.1.2, (2 .1)  is degenerate elliptic. Defining F as in (2 .6) ,  combining the results 

gives 

-$t(zo) = --uc(.zo) = F ( V 4 z o ) ,  ~ ~ 4 2 0 ) )  > F ( V d ( z o ) ,  D24(.zo)) (2.20) 

and we are done. The argument for u being a supersolution reverses the inequalities above. 

Hence, u is a viscosity solution. 

We remark on a result useful when constructing new solutions from known ones. 

Lemma 2.1.11. If ,ul and u2 are viscosity solutions of (2.1) then ,u = min{ul, ,u2) i s  a 

.uiscosity supersolution of (2.1). 

Proof. If ( u  - 4) has a local minim~um at zo = ( to ,  xo ,yo) ,  then min{u~ - 4 , 2 1 2  - 4 )  does 

also. Then either ( u l  - 4) or (u:! - 4)  has a local minimum at zo. But since z~l;u2 are 

viscosity solutions, we have that 4 satisfies (2.13) a t  zo. The case when Vd = 0 is a weaker 

condition, so the argument holds. C 

2.2 Interpretations and Examples 

Motivation and definitions of viscosity solutions thus far have been analytic. We now provide 

a geometric interprrt,ation of why the definitions of viscosity sub- and supersolutions are 
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plausible. In doing so, we remind the reader of the geometric meaning of (2.1): motion of 

IeveI sets in the inward normal direction by their curvature. 

Suppose u ,  4 are smooth and convex, and ( I L  - 4)  attains a maximum at z0 and time t. 

This is the case where u is a viscosity subsolution. The level sets of u and 4, geometrically, 

are shown in Figure 2.1. Let K~ and K$ denote the curvature of the level sets a t  xo of 

u and 4, respectively. Clearly, rc, < n4. Furthermore, since 1V.u = IVqtI, we have that 

A L u  5 A14, a t  xo. Therefore, 

which is equivalent to (2 .11) .  

Figure 2.1: Visualization O F  viscosity subsolution. The level sets of u and 4 are shown in 
thick and thin lines, respectively. The function (u - 4) attains a maximum at the point xo. 

The same argument can be made when (u - 4) attains a minimum at xo and t. This 

is the case where u is a viscosity supersolution. The corresponding plot is shown in Figure 

2.2. 

For concreteness, we illustrate the definitions with three examples. 

Example 2.2.1 (A constant). Consider the case u = c,  a constant. Note that u t  = Au = 0. 

We first check that u is a viscosity subsolution according to Definition 2.1.3. Take 

any arbitrary point zo = (to, xo, yo) E 10, m) x Cl. If (u - 4) has a local ma.ximum, then 

(u - $) t  = 0 and A(u - 4) 5 0, so d t  = 0 and A$ 2 0. Choosing 7 = 0, we have ( 2 . 1 2 ) ,  and 

we are done. 

We next check that u is a viscosity supersolution according to Definition 2.1.4. If (-u - 4) 
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Figure 2.2: Visualization of viscosity supersolution. The level sets of v and 4 are shown in 
thick and thin lines, respectively. The function ( u  - 4) attains a minimum at the point xo. 

has a local minimum, then (v - q 5 ) t  = 0 and A(u  - 4 )  2 0,  so 4t = 0 and Ad 5 0. Again, 

choosing = 0 ,  we have ( 2 . 1 4 ) ,  and we are done. 

Since u is a viscosity subsolution and a viscosity supersolution, it is a viscosity solution. 

Example 2.2.2 ( A  paraboloid). Let 

It  is easy to check that u satisfies ( 2 . 1 )  in the classical sense a t  all points except at the 

origin. By Lemma 2.1.10, u is a viscosity solution except a t  the origin. 

To check that u is a viscosity subsolution at the origin, if (u - 4) has a local maximum 

a t  z0 = ( tO,O,O),  then & ( z O )  = .u t (z0)  = 1;  Vq5(zo)  = V u ( z 0 )  = 0 and Aq5(zo) 2 A u ( z o )  = 2. 

So (2 .12)  is satisfied when 7 = 0. 

To check that u is a viscosity supersolution at the origin, we use ( 2 . 1 5 ) .  If (u  - 4)  has 

a local minimum a t  20 = (to, 0,  0 ) ,  then & ( z o )  = u t ( z 0 )  = 1. Choosing v = O satisfies the 

reverse inequality of ( 2 . 1 5 ) .  

Our last example is less trivial. 

Example 2.2.3. Consider the function 

u ( t ,  2, y) = min (2 .21)  

At some to > 0, .u is a viscosity solution of ( 2 . 1 )  in the regions SI := {(x, y )  : (2' + y2 - 

1 ) / 2  + to < 0 )  and S z  := ( ( 2 ;  y )  : (x" fy"  - 1 ) / 2  + to > 0 )  by 2.2.1 and 2.2.2, 

respectively. Furthermore, by  Lemma 2.1.11, ,u is a supersolution of ( 2 . 1 ) .  
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We argue geometrically that u is a viscosity subsol~~tion in S3 := {(x, y)  : (s2 + y" 
1)/2 +to = 0 ) .  Note that Al.u = 1 in S1 and Alu = 0 in S2, the latter in the viscosity sense. 

Now, if ( u  - 4) attains a maximum for some smooth 4, the zero level set of q5 must have 

a larger curvature in the inward normal direction than 1 = Alulsl >,Alulsl? = 0. Hence, 

Alq5 > max{Alulsl, Aluls,) > ut = 44. in the viscosity sense on S3. Thus u is a viscosity 

subsolution. 

2.3 Further Interesting Properties 

Recall that for the heat equation, information is propagated isotropically a t  "infinite speed". 

Observing the form (1.19), motion by mean curvature is effectively solving the heat equa- 

tion along the direction tangent to the level set curves. We therefore naturally expect a 

property that propagates information a t  infinite speed for motion by mean curvature. More 

concretely, suppose two closed simple contours C and C are evolved up to some arbitrary 

small time t > 0 to Ct and et,  respectively. Evans and Spruck [7] presented the following 

result: 

Theorem 2.3.1. Denote by inside(C) the points in and on  a closed simple contour C. If 

ins ide(C)  C i n s i d e ( f )  then inside(Ct) C i n s ide (c t )  for all t > 0. firtherrnore, if C # 2 
then Ct tt = 0 for all t > 0. 

We show a simple consequence of this result. Suppose C and f are convex and nearly 

identical, except for an "inward dent" on Ĉ  of arbitrary smallness. Theorem 2.3.1 asserts 

that for arbitrary small time t > 0, it will be completely inside the open set with boundary 

Ct (Figure 2.3)!  In other words, the difference in mean curvature locally propagated a t  

infinite speed to the whole level set. 

We now turn to a more bizarre phenomenon. Consider evolving a surface u : [0, m) x R + 

R whose zero level sets are the x and y axes, as in Figure 2.4 (a). To see how this curve 

will evolve by (1.4), observe how an L-shaped initial curve will evolve, as shown in Figure 

2.5. Since ro in Figure 2.4 (a) is four L-shaped curves rotated and superimposed, one 

would expect the curve to extend outward from the origin in all directions! If u is the 

underlying level set function, we see that its zero level set gets pulled apart from its origin. 

Consequently, an interior or a "fat" zero level set is formed for some finite time t > 0. 
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Figure 2.3: Example of infinite speed propagation. Left to right: Two nearly identical closed 
curves; the two curves after evolving for an arbitrary small time t > 0. 

Graphically, the shaded region and its boundary in Figure 2.4 (b) is the zero level set rt at 

t > 0. This is the correct viscosity solution for the given initial condition. 

Figure 2.4: Fattening example. (a) Initial curve ro; (b) the curve ro after evolving according 
to (1.1) for some finite time to give rt. 

2.4 Remarks 

The definitions and results presented in this chapter were developed solely to supplement 

the following chapters and are by no means complete. For alternate definitions, complete 

prooFs and other auxiliary results regarding viscosity solutions of motion by mean curvature 



CHAPTER 2. VISCOSITY SOLUTIONS 

Figure 2.5: Evolution of a 'corner'. Left to right: Initial curve ro; the curve ro, shown in 
gray, after evolving according to (1.1) for some finite time to give Ft. 

see [7], [3]. For a more comprehensive (and highly rigorous) overview of level set evolution 

equations, see [9]. 

Sources that verify fattening numerically and theoretically are outlined in [9]. 
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Differential Game Interpretations 

Kohn and Serfaty [14] discovered that (1.1) ca.n be interpreted as a solution to a two-person 

differential game. A game, in our sense, consists of a value function to be optimized under 

some rules represented as a mathematical condition. A two-person differential game is a 

game involving two opposing players - one that attempts to optimize some value function, 

and another that acts against it - that evolves continuously in real space and, and if relevant, 

in time. Rather tha.n discussing further generalities, we will only present materials relevant 

to the following sections. For completeness, relevant theorems will be presented at the end 

of the section. 

3.1 Example 

As an illustration, we start with an example of a discrete time game. In the context of 

games, the two players will always be Paul and Carol. 

Game 1 (Discrete convex minimum-time exit). Let R be a bounded, convex set in IK2, and 

E > 0. Paul starts at some location x E R and wishes to reach BR i n  a min imum number of 

steps; Carol is t y i n g  to obstruct him. The rules at each time step, in  order, are: 

1. Paul chooses a direction to move, by a unit vector v E I W ~ .  

2. Carol chooses to reverse v or to leave it alone. z.e. she ch,ooses b = 1 or -1 and 

replaces .u by bu . 

3. Paul moves in the direction bv by &E 
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Game 1 is referred to as an exit game, since exiting R is equivalent to Paul fulfilling his 

goal. 

Can Paul exit in a finite number of steps? If Paul points v partially in the direction of 

closest exit, he knows that Carol will reverse it. On the other hand, if he decides to point 

v partially in the opposite direction to the closest exit, he knows she will leave v unaltered. 

The only advantageous direction Paul has left to move is in the tangent direction with respect 

to dR of the closest exit point - then Carol (and Paul) has no advantage (disadvant,age) in 

reversing v or not. Meanwhile, since 0 is convex, Paul moves closer to 80 at each step! 

It is clear that, if Paul had started close enough to dR, he can exit in one step by 

applying the aforementioned strategy. Let's define a closed curve BOl C 0 such that, i f  

Paul starts anywhere in the region Ol = {area bounded by 8f11 and afl}, he can exit in one 

step, as shown in Figure 3.1. Likewise, define dRn+l lying inside R .  such that Paul can exit 

R, if he had started anywhere in the region R,+1 = {area bounded by aOn+l and dR,), 

for ,n = 1 , 2 , .  . . . Then we have a finite set of concentric regions Ri that partition R .  Hence, 

if Paul starts the game a t  x E Ri an optimal strategy should exit him in exactly i steps. 

Figure 3.1: Paul can exit in one step if he is between dR1 and aR.  The distance he travels 
is &E in the tangent direction to dR. 

This can be mathematically formulated as shown in the following section. 
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3.1.1 The Dynamic Programming Principle 

Let the valzle f u n c t i o n  be uE(x) = ~~k if: 

Paul needs k steps to exit, starting from z and following an optimal strategy. 

Then, 

uE (z) = rnin max {z2 + uE(s  + f i ~ b v ) } .  
IIvIl=L b=f 1 

In other words, the partial op t imal  strategy c a n  be opt imal ly  extended locally. This principle, 

in general, is known as the d y n a m i c  programming principle. The order of the rnin and may 

is important in (3.1) - Paul phns  his strategy knowing that Carol would work optimally to 

obstruct him. 

The equation derived from the dynamic programming principle (3.1) is key to deriving 

the partial differential equation for the continuous analogue of Game 1. From the definition 

of u', is the distance traveled by Paul a t  each step; hence, to derive the continuous 

game, we need to take the limit E -+ 0 of (3.1), in some sensible way. We will present 

here (and later for other games) heuristic arguments in deriving the corresponding partial 

differential equation; for rigorous proofs, see [14]. 

Let u := lim,,ouE uniformly, assuming such a limit exists. Then (3.1) suggests that, 

In the latter step we expanded u(x + & ~ b v )  by its Taylor series about x. Dividing by E ~ ,  

cancelling u(x), and noting that Carol will choose b  to maximize the quantity inside the 

bracket, we have 

Taking E + 0, we see that Paul is forced to choose *u such that the first term in the rnin is 

zero, ie. v = f B ~ U / I G U ~  (the sign of v does not matter since the second term is quadratic 

in v). With our choice of v ,  using the observation (1.19), we arrive at 

with the boundary conditions u = 0 at 80. The resulting partial differential equation (3.5) 

is closely related to the original problem (1.1) - the level set ,u = t is the curve evolved from 
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dR by (1.4) up  to time t .  Hence, the closed curves dR, tend to mean curvature evolutions 

of XI as E + 0. However, since we are interested in evolving the entire embedding function 

by mean curvature, rather than just a single curve, we will not discuss it further. 

3.2 Motion by Mean Curvature 

To derive the partial differential equation (1.1), we consider the following maximum maturity 

time game: 

Game 2. Paul and Carol play with th.e same rules as Game 1 ,  but now with a dzfferent goal. 

Paul now has an objective jknction uo(x) and a maturity time T - his goal is to minimize 

uo at the time of maturity. More precisely, if y(.) is the piecewise linear path taken by Paul 

as a function of t ime, his goal, starting at some posztzon x and time t, is 

min uo (Y (TI) y(.) : possible paths taken by Paul. 
Y(,) 

(3.6) 

As before, Paul moves f i~  at every time step of size E ~ .  

Let the value function for this game be 

minuo(y(T)) : y(.) path starting at x and time t (3.7) 
I/(.) 

Since the rules are the same as Game 1, uE satisfies a similar dynamic programming principle: 

uE(x, t )  = min max uE(x + d%bv, t + z2)  
Iv l l=l  b=&1 

We proceed as before, taking the limit E --+ 0 and the Taylor series in two dimensions (again, 

u := limE-o u' ): 

u ( z ,  t )  = min max u(x + v%bw, t + c2) (3.9) 
[I1.11I=l b=11 

= min max{u(x, t )  + &bv.  Vu + E'(u~ + uT . D 2 u .  u )  f 0 ( c 3 ) )  (3.10) 
Ilv(l=l b=%l 

After canceling u(x, t ) ,  dividing by E~ and treating the rnax,,=*l, we obtain 
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Since E -+ 0, Paul is again forced to have zl = f V'UIIVUI. The resulting partial differential 

equation is 

'The partial differential equation (3.12) is not quite (1.1 

change of variables 7 = T - t :  

) ,  (1.3); it can be made so by a 

3 .3  Curvature Motion 

We saw in the last subsection that Game 2, at least heuristically, converges to the motion 

by mean curvature partial differential equation (1.1) as E -> 0. We will now see that a small 

change in Game 2 yields the "positive" and the "negative" mean curvature flow, i.e., 

where (s)+ = max(x, 0) and ( 2 ) -  = min(x, 0).  If we "add" the right hand sides of (3.14), 

then we get the motion by mean curvature partial differential equation (1.1). Of course, it 

does not make sense to "add" two differential games. However, we will see in Chapter 5 

that such approach is useful for the interpretation of numerical schemes. 

3.3.1 Negative Curvature Ivlotion 

We first present a modified version of Game 2. 

Game 3. Paul and Carol play with the same rules as Game 2, except that ,now he is allowed 

to travel, at each time step E ~ ,  ang distance wzthin &. 4 s  before; Paul has an, objective 

function uo(x) and a maturity time T - his goal is to minimize u0 at the time of maturity. 

In other words, in Game 3, Paul may choose to move less than &E, should it be more 

advantageous for him. 

When would this added flexibility prove profitable for Paul? If the level sets of uo are 

convex, Paul would always move in the tangent direction a much as possible to minimize 

his objective. Hence, the Game 2 and Game 3 are identical if the level srts O F  uo are convex. 
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Now, suppose a level set of uo is concave a t  some point, and Paul starts there. Then, by 

moving a distance &E, he is forced to move to where the objective u0 is higher. 

Now consider Game 3. Since Paul does not necessarily have to move a t  any time step, 

a t  a point where the level set is concave, he will choose not to move., Hence, from Paul's 

perspective of minimizing the objective, the rules of Game 3 are better than those of Game 

2.  

The dynamic programming principle applied to Game 3, using the same notation, yields 

the following: 

uE(z,  t )  = min rnauuE(3: + &bv, t + E').  (3.15) 
I lv( ls1  b = f  1 

The same argument as before gives, 

The difference now is that ZJ is parallel to  ~ ' u / l V u J  (or just V'U) but not necessarily equal. 

Since we have the freedom to let v = 0, the minimization should give 

The resulting partial differential equation for Ga.me 3 is, 

for t < T, backwards in time. The change of variables r := T - t gives 

UT = ( V .  5) Vul 
IQ-ul - 

for T > 0, and .u = uo a t  T = 0. 

Hence, Game 3 yields the "negative" curvature motion. 

3.3.2 Positive Curvature Motion 

We consider what Kohn and Serfaty refer to in [14], as the "inverse game" of Game 3. 
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Game 4 (Inverse game). Paul and Carol play with the same rules as Game 1; except that 

now the goal is exactly opposite: Paul's goal is to stay inside S2 as long as possible, while 

Carol ,wants to steer h im out. ALSO, as i n  Game 3, Paul may move, at each time step, a 

distance up to and including fi~. 

Note that this is not a time dependent problem; the formulation is similar to (3.1). The 

dynamic programming principle is now, 

uE(z )  = max min { E ~  + ,uE (:x + A ~ b v ) ) .  
I v l < l  b = & l  

Similar argument follows: 

o = max min { L ~ J ~ u  V,U + vr  D ~ U  u) 
I I l l I I < L  b=&l E 

Finally, we derive the time dependent form of the partial differential equation. We 

present the inverse game with the objective function. 

Game 5 (Time dependent inverse game). Paul and Carol play with the same rules as Game 

3, except that now the goal is exactly opposite: Paul's goal i s  to move such as to maximize 

the given objective function U O ,  while Carol tries to obstruct him. Also, as i n  Game 3, Paul 

may move, at each time step of' size E ~ ,  a distance up to and includmg \ /ZE. 

The now familiar dynamic programming principle for Game 5 becomes, 

u E ( x ,  t )  = max rnin u ' (x  f d%bv,t + E ~ ) ,  
i lvl l i l  b=f 1 
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and the heuristic derivation of the corresponding partial differential equation becomes, 

The resulting partial differential equation for Game 5, after the change of variables T := T-t: 

is 

for T > 0, and u = uo at T = 0. 

Hence, Game 5 yields the "positive" curvature motion. 

3.3.3 Remarks 

We emphasize that,  algebraically, 

is equivalent to the motion by mean curvature partial differential equation (1.1) but from 

game interpretation perspective, it is meaningless. Numerical interpretations rehting to 

(3.34) will be presented in Chapter 5. 

We also note that for the negative curvature flow, the boundary of a closed set will evolve 

into its convex hull, as in Figure 3.2. This makes sense from the perspective of the game. If 

Paul is currently at a location where the level set is convex, then his strategy would be to  

not move - any move in the tangent direction will cause the objective function to increase. 

3.4 Theorems 

In deriving partial differential equations, we have only argued heuristically a,nd formally. 

Rigorous proofs confirming these claims were shown by R. Kohn, S. Serfaty, G. Barles and 
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Figure 3.2: The convex hull. Left to right: initial curve; its convex hull (the dotted line 
shows a part of the initial curve). 

F. Da Lio (the latter two authors contribute in the appendix) in [14]. We will present only 

the relevant theorems involving the games introduced in this section. In essence, the value 

functions for all the games converge to the unique viscosity solutions of the formally derived 

partial differential equations. 

Theorem 3.4.1 (Convergence for Game 2, motion by mean curvature). For Game 2; sup- 

pose the objective function ug is  con t inuo~s .  For some E > 0, let uE(x,  t )  be the associated 

value function. Thenu" converges umforml.g on compact sets to the un,ique viscosity solution 

of (3.12) as E 7 0.  

Theorem 3.4.2 (Convergence for Game 3, negative curvature motion). For Game 3, sup- 

pose the objective function uo is  continuous. For some c > 0, let .uE(x, t )  be the associated 

value function,. Then uE converges uniformly on  compact sets to th,e unzque viscosity solution 

of (3.19) as E -+ 0.  

Theorem 3.4.3 (Convergence for Game 5, positive curvature motion). For Game 5, sup- 

pose the objective function ug is  continuous. For some E > 0,  let uE(s, t )  be th.e associated 

value junction,. Then uE converges uniformly on compact sets to the unique uiscositg solution. 

of (3.32) as E + 0.  

For complete proofs, we refer the reader to [14] 



Chapter 4 

Numerical Analysis 

Numerical schemes for motion by mean curvature have been well studied in several frame- 

works. Traditional, non-level set approaches, are surveyed in [23]. Finite element methods 

were studied in detail by Deckelnick, et al. [5]. 

We will only cover finite difference schemes, primarily due to their simplicity. In this 

chapter we present the necessary numerical analysis for understanding convergence of numer- 

ical schemes for degenerate elliptic partial differential equations. The bulk of this material 

is due to Oberman [19] .  

4.1 Preliminaries 

4.1.1 Setup 

Throughout this chapter, the setup will be as follows. A continuous function u : [O,T] x 

[-  L,, L,] x [ -  L,, L y ]  -' R will be approximated on a uniform Cartesian grid of size Nt x iV, x 

N, by the grid function where dt = T / ( N t  - I),  dx = 2L,/(!VX - I), dy = 2 L Y / ( ~ V y  - 1 )  

and 

ut3 z u ( n . d t , i  .dx - L z ,  j . d y  - L y ) .  

Points on the Cartesian grid will be referred to as grid points or lattice points. The arbitrary 

constants dt,  dx and dy we shall call the t i m x  step, grid spacing in z and grid spacing in y, 

respectively. A scheme is a discrete function that maps a grid function to grid function. A 

neighbourhood of a scheme a t  a grid point (2 ,  j) is the set of (local) grid points near (.i; j ) ,  
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we can describe a scheme 3 by the expression 

F[u] := 3 ( 'u l j ,  u . ~  j 

For conciseness, we may occasionally represent 

and denote the right hand side of (4.1) by 3(5) 
In some situations the directional resolution 

denoted by N ( i ,  j ) ,  which influence the value a t  (i,j) a t  each time step. A boundary point is 

a grid point that has no neighboursl. For simplicity, if uTj is the grid function of u ( x ,  y ,  t ) ,  

parameter, dB, is relevant. This parameter 

was first introduced in Oberman [19], [IS] for schemes where N ( i ,  j) approximates points 

on a circle. The dB is the maximum angle between two consecutive points in N ( i ,  j )  that 

approximately lie on the circle with centre (z, j). For conciseness we denote the vector 

d5 := [dx ,  dy?  dB]. 

4.1.2 Consistency, Monotonicity and Stability 

We define consistency for the Al  operator in the sense of [18]. We must be careful as A l u  

does not exist in the classical sense where the gradient of u vanishes. 

We denote schemes that are dependent on dZ  as 3& and schemes that further dependent 

on dt as 3 2 .  

Definition 4.1.1 (Consistency for A, ) .  The scheme 3d" is consistent with - A l  if for every 

smooth jhnction 4, and for every x ,  y ,  t > 0: 

lim .Fd';4] = -A14 
&--0 

at (x, y ,  t )  if V 4  # 0,  and 

at (x, y, t )  where X ,,,, A,,, are the minimum and maximum 

- D'4, otherwise. 

Xm, (4.3) 

eigenvalues, respectively, of 

With a scheme 3d" for the -Al operator, the simplest scheme for the time dependent 

motion by mean curvature is the explicit Euler map:  

s$[$ := u - d t P 6 : u ] .  (4.4) 

that we will only be cons~dering the Dirichlet problem of motion by mean curvature 
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Intuitively, by updating u ~ ~ l  by ( s $ [ u ~ ] ) ~ , ~  at each time step and grid point (i, j), u2j 

should approximate the solution to mot,ion by mean curvature (1.1) as dZ, dt + 0.  In the 

rest of this chapter, we will present the relevant machinery and results that allow us to 

guaxantee that such updating indeed solves (1.1). 

We define two important properties of schemes: monotonicity and stability in the m a -  

imum norm. The norm 1 1  . IIp is the component-wise maximum norm. 

Definition 4.1.2 (Monotonicity). Given grid functions u and v, a scheme 3 is monotone 

if u 5 v component-wise implies 

3[~1 5 3 [ ~ 1 .  (4.5) 

Definition 4.1.3 (Stability in the maximum norm). Given grid functions .u and v ,  a scheme 

3 is stable in the maximum norm if 

4.1.3 Theorem of Barles and Souganidis 

The Lax Equivalence Theorem for initial value problems arising in conservation laws [12] 

requires two criteria for convergence: consistency and stability. For degenerate elliptic 

partial differential equations, there is a further extra criterion for convergence: monotonicity. 

The following fundamental result is due to Barles and Souganidis [I]. 

T h e o r e m  4.1.4 (Barles and Souganidis, 1991). Consider a degenerate elliptzc partial dif- 

ferential equation for which there exist unique viscosity solutions. 4 consistent, stable ap- 

proximation scheme converges to the unique viscosity solution provided it is monotone. 

Theorem 4.1.4 will be our guiding recipe for constructing finite difference schemes that 

converge to the unique viscosity solution of (1.1). 

4.2 Degenerate Elliptic Schemes 

In Chapter 2, we encountered the notion of degenerate elliptic partial differential equations, 

and showed that (2.1) is degenerate elliptic. Now we define degenerate elliptic schemes. 

Definition 4.2.1 (Degenerate elliptic schemes). Consider the scheme 3 as in  (4.2). We 

call 3 degenerate elliptic i f  each argument of 3 i s  nondecreasing i n  each variable, i.e. 
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nondecreasing in ui,j and in (.uij - u ~ I ~ ~ ~ , ( ~ , ~ ) ) .  

Furthermore, we call 3 degenerate elliptic with Lipschitz constant K if there exists some 

constant K such that, for any E, 5 E I W ~ ' " ( ~ J ) I + '  and at all grid points (i, j ) ,  the followzng 

holds: 

l(3(E))i,j - (3(<))i , j l  5 KIIC - SIILX, (4.7) 

where (3(<)),,j denotes the value of the gmd Junction 3(<) at the grid point (i, j ) .  

We saw in Chapter 2 that the definition of viscosity solutions for (1.1) followed naturally 

from the notion of degenerate elliptic partial differential equations. Likewise, properties such 

as existence, uniqueness, comparison principle and contraction all followed from the defi- 

nition of viscosity solutions. We now see that the notion of degenerate elliptic schemes is 

linked with monotonicity and stability in the maximum norm for consistent explicit Euler 

maps. We emphasize that consistency, monotonicity and stability are sufficient for conver- 

gence to the unique viscosity solution of (1.1), due to Theorem 4.1.4. 

Theorem 4.2.2 (Monotonicity and Stability of E,uler Map). Let 3& be a degenerate elliptic 

scheme ,with Lipschitz constant K .  Then the corresponding explicit Euler map 5':: as in  (4 .4 )  
is  monotone and stable i n  the max imum norm, provided 

Proof. We will only prove the monotonicity. For the proof on stability, see 1191. Let u and 

v be grid functions, and denote 

Furthermore, assume that ,u 5 v ,  component-wise. It is sufficient to show that S:;:U~ 5 

S 2 b 1 .  
First note that, due to the degenerate ellipticity (Definition 4.2.1) and Lipschitz continuity 

(4.7) of 3&: 
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where m u { . ,  .) is the componentwise maximum at each index. Furthermore, given (4.9), 

we have 

< - < = ( ~ i , ~  - % , j ,  (vij - W J )  - (vi - u ~ ) I < ~ ~ ( ~ , ~ ) ) .  
> 0, so But since u < v ,  we have that ( v E  - u ~ ) J ~ ~ , , , ( ~ , ~ )  - 

I I  mas{< - E l  O ) l L  I vi,j - u . , ~  

a t  each grid point (i, j ) .  

Now, given the above results and the condition (4.8),  

We now have the sufficient set of tools to construct finite difference schemes for solving 

unique viscosity solutions to (1.1). For a function evolving according to the explicit Euler 

scheme (4.4) to converge to the unique viscosity solution of (1. l ) ,  the following properties 

are sufficient: 

1. the scheme F is consistent with -ALu, 

2.  3 is degenerate elliptic with Lipschitz constant K, and 

3. the time step dt satisfies dt 5 1/K.  

4.2.1 Remarks 

When constructing numerical schemes, it is highly desirable that they obey properties char- 

acteristic of the underlying partial differential equation they model. For instance, the dis- 

crete maximum principle must be satisfied for approximating the heah equation [12], and 

likewise, the entropy condition for hyperbolic conservation laws [13]. 

In the case of motion by mean curvature, the counterpart is the comparison property, 

as outlined in Theorem 2.1.6. We merition here that the discrete version of the comparison 
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property, as well as the existence and uniqueness of the explicit Euler map follow from 

degenerate ellipticity and the Banach fixed point theorem. This line of argument is treated, 

with complete proofs, in [19]. 

4.3 Constructing Degenerate Elliptic Difference Schemes 

In closing this chapter, we provide basic building blocks for constructing new degenerate 

elliptic schemes from known ones. 

The key observation is due to Crandall, Ishii and Lions [4]: If g : IRk - R is a nonde- 

creasing function of its arguments a.nd Fi, i = 1,. . . , k are degenerate elliptic schemes, then 

the scheme 

F = g ( F 1 : . . . , F k )  (4.10) 

is degenerate elliptic. Futhermore, it is easy to see that the linear combination 

is degenerate elliptic, provided cri 2 0 for all i = 1,. . . , k .  

Some nondecreasing functions we will use to exploit the first property are the maximum, 

minimum and median functions, i.e., 

It is also worth noting that 3 = 0 is a degenerate elliptic scheme. 



Chapter 5 

Numerical Schemes 

In this chapter, we present four schemes tha.t numerically compute (1.1); or more precisely, 

evaluate the A l  operator. Two of these will be nonmonotone and the other two monotone, in 

t,he sense of Definition 4.1.2. We will present provable convergence results for the monotone 

schemes, and remark on other issues such as stencil choice and bounda,ry conditions. 

We will also describe a link between the two monotone schemes for motion by mean 

curvature and the differential game interpretation of Chapter 3. 

5.1 The Nonmonotone Schemes 

The setup of the grid is as described in Section 4.1.1. We will also assume for simplicity 

that dx = dy. We present two schemes based on standard finite differences for solving (1.1) 

with some initid condition and Dirichlet boundary ~ondit~ions. The initial data will be a 

grid function uO, i.e. uo . = uO. In presenting the schemes, only the iteration rule will be 
z J 

given. 

We will use standard operator notation for forward, backward and centered differences: 
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Scheme 1 (Centered Scheme). Update by the  rule 

Scheme 2 (Divergence scheme). Define 

and similarly for  Vyui,J. T h e  value at the half-grid is  the average of  the two closest grid 

point values. Update by  the rule 

We will refer to Scheme 1 as the centered scheme;  the discretization follows from centre 

differencing all terms in (1.14). We will refer to Scheme 2 as the divergence scheme [15, 

Ca.nonical scheme]; the discretization applies a forward-backward differencing on the diver- 

gence structure of (1.1). Both the centered and the divergence schemes are not monotone; 

hence, we will refer to these schemes as nonTmon,otone schemes. A standa,rd elementary 

Taylor expansion argument shows that both schemes are consistent; we will not prove them 

here. 

5.1.1 Drawbacks to the Nonmonotone Schemes 

For a constant viscosity solution (Example 2.2.1), both nonmonotone schemes experience 

division by zeros. This can be overcome in a t  least two ways. One way is to modify the 

den~minat~ors of (5.1) and (5.2) by adding to them some E = O(dx2). The error resulting 

in this modification is 0(dx2).  Another way is to call an if-then statement that sets the 

right hand sides of (5.1) and (5.3) to zero if their denominators are zero, i.e. the function 

there is nearly constant. This method exploits the fact that u in (1.1) is stationary in time 

wherever u is constant in space. 

Aside from the aforementioned issue, nonmonotone schemes can cause undesirable dif- 

fusion for certain initia.1 conditions. For more specific examples, see numerical examples in 

Section 6.2. There a.re no proofs to the author's knowledge that guarantee the convergence 

of nonmonotone schemes to the correct viscosity solution. 
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For pra,ctical purposes, another drawback for nonmonotone schemes is there are no 

known CFL-type conditions that guarantee their stability. For our numerical tests, the time 

step required to attain stability are chosen by trial a.nd error to be dt  = drc2/10. 

We a.lso remark tha,t both the centered and the divergence schemes are computationally 

intensive at each time step; this is a consequence of directly discretizing (1.1) by a usual 

finite difference approach. 

5.2 The Median Scheme 

The following scheme, called the median scheme, was proposed by Oberman [18] 

Scheme 3 (Median scheme). Let N z ( i ,  j )  denote a set of grid points that approximate a 

circle centred at (2 ,  j )  of radius m . d x .  Denote, 

Update by  the rule, 

We will clarify what we mean by approximating the circle in Section 5.2.1. We apply 

our recipe from Chapter 4 to check that the median scheme should indeed converge to the 

unique viscosity solution of (1.1). For this scheme, we read off the numerica.1 operator for 

To see that 3Zed is degenerate elliptic, we can write, 

4 

where N( i ,  j )  := N k ( i ,  j ) .  Since Fa := u:j - u'4 is degenerate elliptic for k E N(i, j ) ,  by 
k 

(4.10) and (4.11), we have that F Z , ~  is also degenerate elliptic. Furthermore, note that for 

grid functions u ~ , ~  and vi,j, 

so 3zd is degenerate elliptic with Lipschitz constant 2 / ( m - d ~ ) ~ .  Consistency of the scheme, 

u?* - u?3 
2 ' J  - a l u  = o ( d z 2  + do ) ,  

(m  . d ~ ) ~  
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is proven in [18]. Hence, the explicit Euler scheme for 3Zd converges to the unique viscosity 

solution of (1.1) provided 

We mention here a simple interpretation of why the median scheme solves (1.1). Observ- 

ing (1.19), a scheme for the operator Al  should mimic the one-dimensional heat equation 

in the direction of the tangent of the level curves of u. For sufficiently small dz,  the median 

d u e  of N%(i, j )  is a reasonable approximation to u ; + ~  and uy-,, above. Hence, we arrive 

at (5.4). 

5.2.1 Sample Stencils 

We give sample stencils for the median scheme. By stencils, we are referring to the arrmge- 

ment of N ( i ,  j )  := Nz( i ,  j )  with respect to (i, j ) .  In practice, the stencil may be chosen to 

approxin~ate a circle by hand. For our numerical results, we follow [IS] and use the stencils 

shown in Figure 5.1. We will refer to them as level 0, 1, 2 and 3 stencils or schemes; their 

properties are outlined in Table 5.1. 

Figure 5.1: Stencils outlined in Table 5.1. The open circles denote the lattice points in 
N( i ,  j). The grid spacing is dx, with the filled circle as the center point (i, j). Left to right: 
Level 0, 1, 2 and 3. 

In te rpola ted  Med ian  Scheme 

Note that the stencils in Figure 5.1 are circumscribed approximations to the circle of corre- 

sponding radii. For example, for the level 1 median scheme, wherever the level sets are nearly 

in the direction of ( 1 , l )  or (1, - I ) ,  the numerical solut,ion propagates the level sets faster 
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Table 5.1: Median scheme stencil properties. 
I Level 1 1  # of neighbours I stencil radius I dB directional resolution ] 

than the exact solution. For wider stencils, the circumscribed approximations approach the 

circle, so the error in propagation decreases. 

To obtain a better approximation for smaller stencils, we can 1inea.rly interpolate values 

on grid nodes onto the circle of corresponding radii. For example, the level 1 median scheme 

will still have eight neighbors, but the four "corners" will differ: for instance, the ui+l,j+l 

value in the original level 1 median scheme is replaced by (&uitlijtl + ~ u i 1 ) ;  see Figure 

5.2. 

Figure 5.2: The interpolated median scheme stencils. Grid points that a.re not on the circle 
are interpolated onto the circle, shown by filled circles. Left to right: level 1 stencil; level 2 
stencil. 

The Median Scheme on a Hexagonal Grid 

Another way to improve the circular a.pproximation is to use a grid composed of equilateral 

triangles. The level 1 median scheme on such a. grid will have six neighbors, all distmce 

exactly dzr from the center. We will call this the hexagonal gr id from the shape of the level 

1 stencil. As we will see in the next chapter, this stencil gives better a,ccuracy than the level 

1 median scheme on a Cartesian grid, despite having a larger dB. We note that the level 2 

version of the median scheme on a hexagonal grid will not have neighbours of equal distance 
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from the center; hence, we will only consider the level 1 stencil 

Figure 5.3: The median scheme on a hexagonal grid. Left to right: a hexagonal grid; the 
level 1 media.n scheme stencil on a hexagonal grid. 

5.2 .2  Boundary Conditions 

Dirichlet boundary conditions are enforced by simply a.ssigning values from the previous 

time step a t  the boundary points. For wider stencils, care must be taken in computing 

values near the boundary; the circle on which to compute the median must be deformed 

near the boundary to  accommodate the wider stencil'. The deformed stencils are shown in 

Figure 5.4. For the interpolated median scheme, the interpolation can be computed only 

where the stencil is not deformed. 

Figure 5.4: The median scheme near the boundary. Left to right: Level 2 stencil one lattice 
point from the boundary; Level 3 stencil two lattice points from the boundary; Level 3 
stencil one lattice point horn the boundary. The lattice points in the shaded boxes are the 
boundary points. 

'AS an exception, we employ simpler bounclary conditions to bet,tcAr illustrat,~ the point for the diagonal 
sine curve test in Sections 6.2 a.nd 6.3. Since we know that straight level srts do not move, we enforce 
Dirichlet boundary conditions for all grid points (m - 1) p~xel  distances from the boundary for stencils of 
radius m . dx. 
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5.2.3 Game Interpretation: The Median Scheme 

We now establish a link between the median scheme and the differential game interpretation 

of Cha.pter 3. 

Recall Game 2. To minimize the objective function u,  Pa.ul's strategy was to move 

in the tangent direction of the level set of u a distance a&, a.t each time step E ~ .  AS 

mentioned earlier, the median value on the boundary of a circular neighbourhood is a 

sensible approximation of the va.lue in the tangent direction of the level set. Therefore, if 

dt = E~ and rn . dx = h~ for some E > 0, (5.9) 

then 

UTT1 = ui, n* j . (5.10) 

should be a scheme to solve (1.1). However, (5.9) is equivalent to having d t  = (rn . dx)'/2, 

which yields (5.10) when substituted into (5.4)! Thus, we have shown that (5.4) is a. gener- 

alization of a discretization of Game 2. 

5.3 The Morphological Scheme 

The last scheme, the morphological scheme ,  is due to Catte, Dibos and Koepfler [2]. The 

name is derived from morphological i m a g e  processing, a standard technique in digital filters 

l101. 

Scheme 4 (Morphological scheme). D e n o t e  Sk,@(i,  j) t o  be t h e  set  o f  grid points tha t  are 

interpolated by a l ine  w i t h  centre (i, j )  of length (approximately)  h and  angle 0 E [0, T ) ,  a.n,d 

O t o  be s o m e  suitably chosen  (fin,ite, in, pra.ctice) se t  of angles in [0 ,  T ) .  Let  m be a positive 

integer  (nz . dx i s  t h e  s tenci l  radius)  a n d  update  by t h e  rule ,  

We check the degenerate ellipticity for t,he morphological scheme. The scheme for -Al 

is 

dP - 1 
- T m ~ ~ . p h  - min ma.x (u. 1 , ~  . - u? k )  + max - min ( u i j  - u?) 

OEO C E S ~ ~  d r  ~ ( Z J )  O E e  k E S z m . d l . e ( i , j )  
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Since & := uCJ -ZL? is degenerate elliptic for E in N ( i ,  j), taking the maximum and minimum 

(and vice versa), a.dding, and ~nult~iplying by (m d ~ ) - ~  maintains its degenerate ellipticity. 

A similar argument to the median scheme imples that FZ,,~ is degenerate elliptic with 

Lipschitz constant 2/(m . d ~ ) ~ .  

The consistency of the morphological scheme in the sense of Definition 4.1.1 must be 

worked out. If u is smooth and Vu # 0, this turns out to be simple since the morphological 

scheme is identical to the median scheme when the stencils are chosen similarly (see Figure 

5.7). To argue this, consider the median and the morphological scheme stencils with dB = 0, 

or, equivalently, O = [O ,T ) .  Then, the values to which the two schemes iterate the next 

time step when dt = ( m .  dx2)/2 is shown in Figure 5.5: each scheme outputs the average of 

the two squares. Note how, for d6' = 0, the two schemes output different values. However, 

for some fixed dB > 0 and small enough stencil radius (in physical space), i.e. a finite m 

and small enough dx, the level sets are straight enough that both schemes output the same 

value; see Figure 5.6. 

Figure 5.5: Schematic diagram of median and morphological scheme stencils where Vu # 0. 
The open-ended curves are the level sets of u, the circle is the stencil, and each scheme 
outputs the average of the two squares. Left to right,: median scheme; nlorphological scheme. 

Therefore, 

However, a t  points where the gradient vanishes, the morphological scheme is not convergent 

in the sense of Definition 4.1.1. To describe the consistency behavior of the morphological 
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Figure 5.6: For a positive dd and small enough stencil radius, the median and the mor- 
phological schemes (of the same stencil ra,dius) output the average of the same two va.lues, 
shown by the arrows. The bhck dots on the circle are the grid points that approxima.te the 
circle of the stencil radius. 

scheme a,t singularities, we consider the quadratic: 

where c is some constant. There is no loss of genera.lity since any u(z ,  y )  such that Vu = 0 

can be represented as above under some coordinate system. The two eigenvalues of D2u 

are X I  and X 2 .  To avoid confusion of signs, we will check consistency by testing to see if 

- ~ i z ~ ~ ~  is between the two eigenvalues of D2u. Let the grid point ( i ,  j )  lie directly on the 

origin; i.e. 

,u,,j = u(0,O) = c. 

We classify the convergence behavior a t  the origin into three cases: 

Case 1: X 1 X 2  5 0 

The origin is either a saddle point or; when one of the eigenvalues is zero, a non-strict 

(or degenerate) local extrema. Assume, without the loss of generality, tha,t X I  < 0 < X 2 .  

Furthermore, assume that we are on a hypothetical grid where dB = 0, i.e. O = [O,  n), an 

uncountably infinite set. The latter assumption lets us omit errors of O(dd) in our analysis. 
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We check the consistency requirement of Definition 4.1.1. 

For the term 

the minimization over O implies 0 = 0, i.e. in the (1,O) direction, the eigenvector of XI. 

Note that XI is that smaller eigenvalue. This choice of 0 minimizes the maximum of uz - u i , j  

along S2m.k,e(i, j). The maximum value of u,- -u,,, along j) occurs at the origin, 

i.e. a,t = ( 2 ,  j ) ,  SO 

min-  mas  (u ; -u i j )  = O + c - c = 0 .  
OEe k€&m.dz,o(i,.I) 

Simila.rly, for the term 

mau - rnin (uz - u ~ J ) ,  
OE' k ~ S 2 ~ , . d r . o ( ~ d  

the maximizing 0 will be 7r/2, i.e. in the ( 0 , l )  direction, the eigenvector of A2 .  The minimum - 
value of u; - u i , j  along S2,,,.d,,,,2(i, j) occurs at the origin, i.e. (x, Y) = (O,O), or k = (i, j ) ,  

may rnin (u; - u i f )  = 0 + c - c = 0. 
k ~ 2 ~ . d ~ . o ( i , j )  

Combining these results, we have, 

- 3 d Z  - 1 
morph  - (u: - u i j )  + mas  min (u;  - u i , j )  "' k ~ ~ ~ , d ~ , ~ ( i , i )  

= 0 E [A,, X2]. 

Hence, the morphological scheme is consistent with Alu according to Definition 4.1.1. 

Case 2: XI, A2 > 0 

The point is a (strict) local minimum. Assume, without the loss of generality, that X L  >_ 

A2 > 0. Furthermore, assume again that we are on a hypothetical grid where dB = 0. 

We check the consistency requirement of Definition 4.1.1. 

For the term 

rnin max (uE - u i j )  
C: S2m.dz,8(i , j )  

the minimization over O implies 8 = n/2, i.e. in the (0 , l )  direction, the eigenvector of 

X 2 .  Note that Xz is that smaller eigenvalue. This choice of 0 minimizes the rna.ximum of 
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UG - u . i , j  along S 2 m . h , e ( i ,  j ) .  The maximum value of uz - u i , j  along S 2 m . h , T / 2 ( i ,  j )  occurs 
+ 

where ( 2 ,  y) = ( 0 , m .  drc), or k = (i, j + m),  so 

(m . dx) (m . d ~ ) ~  
min _ max ( u ~  - ~ i j )  = A 2  + C - c = &  
OE8 k E . ~ 2 m . d z . ~ ( ~ , j )  2 2 

Similarly, for the term 

max - rnin (uk7 - u i , j ) ,  
' € 8  k€Szm.d , . e ( i , j )  

the maximizing 0 will be 0, i.e. in the ( 1 , O )  direction, the eigenvector of X L .  The minimum 
* 

value of U Z  - u i , j  along S2m,h,0(i, j )  occurs a t  the origin, i.e. (x, y) = ( O , O ) ,  or k = ( i ,  j), so 

rnax _ rnin ( u ~  - u i , j )  = 0 + c - c = 0. 
OEe k % m - d z ~ d i r . i )  

Combining these results, we have, 

-FG - 1 
morph - min max (uz - u i , j )  + max - min (u; - u i j )  

OEQ ~ ~ ~ ~ ~ . ~ ~ , e ( i , j )  "@ k E S 2 m . d 2 . 8 ( i j )  

Hence, the morphological scheme is inconsistent: -3g&,,,, underestimates Alu according 

to Definition 4.1.1 by $. 

Case 3: X I ,  X 2  < 0 

The point is a (strict) local maximum. Assume again tha.t X I  5 A2 < 0. Furthermore, 

assume again that we are on a hypothetical grid where dB = 0. 

By the same argument as in the last case, for the first term, we have that 

rnin - rnax ( u ~  - ~ i , j )  = 0 + c - c = 0. 
''@ kES,?m.d,.o(i,j) 

Here, 8 = 0. For the second term, 

(m. . $ x ) ~  (m  . d ~ ) ~  
rnax - rnin (uz - u i , j )  = X 2  

2 
+ c - c = X 2  

OEQ k€s2 , .dz . e ( i , j )  2 
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Here, 8 = 7r/2. Combining the terms, we have fi - 1 
-3rnorph - min - max (u: - u , , ~ )  + max-  min (u; - u Z f )  

OEg k ~ S ~ ~ . ~ ~ , ~ ( i , j )  "FF3 kES2m.d , ,~ ( i , j )  

Hence, the morphological scheme is inconsistent: -.FEmph overestimates Alu  according to 

Definition 4.1.1 by 9. 

We summarize the consistency behavior of the n~orphological scheme at singularities. 

Let X1 and A2 be the eigenvalues of D ~ U .  Then, 

( O ( d r 2  + d B )  if Vu # 0 

- ~ z ~ ~ ~  - A, u = 
O(dz2 + dB)  if XIX2 5 O 

-9 ++(do) if X1 2 X2 > 0 

In conclusion, by Theorem 4.1.4, the corresponding explicit Euler scheme converges to  the 

unique viscosity solution of (1.1) only when the function has no local extrema., provided 

that 

d t  I (m  . d ~ ) ~ / 2 .  

5.3.1 Sample Stencils 

The choice of stencils for the morphological scheme is similar to that of the median scheme. 

We will a.gain refer to them as Level 0, 1, 2 and 3 stencils. The stencils are outlined in 

Table 5.2 and shown in Figure 5.72. As with the median scheme, due to the circumscribed 

approximation of the circle (or disc, in this case), propagation of curves will be faster than 

the exact solution. 

5.3.2 Boundary Conditions 

The morphologica.1 scheme, like the median scheme, must be deformed neax the boundary. 

Stencils near the boundary for the morphological scheme are shown in Figure 5.8. As for 

2 ~ s  with the median scheme, we employ thicker boundary conditions in Sections 6.2 and 6.3 
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Table 5.2: Morphological scheme stc.nci1 properties. 
I Level 11 # of neiahbours I # of directions = 101 1 stencil radius I dr9 directional resolution I 

Figure 5.7: The morphological scheme stencils. The grid spacing is dz. The gray lines show 
the different directions O a.nd the open black circles show the grid points that extrapolate 
them. Left to right: Level 0, 1, 2 and 3. 

the median scheme, thicker boundary conditions will be used for numerical tests in Sections 

6.2 and 6.3. 

Figure 5.8: The morphological scheme near the boundary. Left to right: level 2 stencil one 
lattice point from the boundary; level 3 stencil two lattice points from the boundary; level 
3 stencil one lattice point from the boundary. The lattice points in the shaded boxes are 
the boundary points. 

5.3.3 Game Interpretation: the Morphological Scheme 

Recall Game 3. If Paul has the choice of traveling a distance of at most a&, we showed that 

the resulting partial differential equation is the negative curvature flow (3.20). A reasonable 

way to discretize Paul's strategy is to evaluate the maximum of the minima along all possible 
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directions {S2JZE,e(i, j )  : 0 E 0) at each time step and iterate: 

u! ' t l  = rnax - rnin (u;), 
z ?3 

OE@ kES,fic,,(z,~) 

where d t  = E'. The justification for (5.14) is summa.rized: 

Paul knows that if he chooses v such that it points in a direction not tangent 

to the level set, Carol will reverse or not reverse v to his disadvantage. If Paul 

chooses a direction 0 where the minimum of S2JZE,e is not maximized, then 8 

is not pointing in the tangent direction and Ca.rol will choose b = $1 that puts 

him a t  a disadvantage. 

Note that (5.14) will yield the same value as the median scheme where u is concave, and 

will be stationary where convex. 

Repeating the a.rgument for Game 5, a reasonable discretization of the positive curvature 

flow is 

utfl = rnin max (u;), 
OEEl E~s2,&s(i,~) 

again where d t  = E ~ .  Note that (5.15) will yield the same value as the median scheme where 

u is convex, and will be stationary where concave. 

By adding the equations (5.14) a.nd (5.15) as described in (3.34), one has a discretization 

Since m .  d z  = and d t  = E ~ ,  again we have that d t  = ( m .  d ~ ) ~ / 2 .  Substituting this into 

(5.11) gives (5.16). Hence, we have shown that (5.11) is a generalization of a discretization 

of Ga,mes 3 and 5. 

Insufficient diffusion 

Recall that the consistency of the morphological scheme does not hold true at strict local 

extrerna. We explore this in the game interpretation. For Game 3, Paul will choose not to 

move a t  a. local minimum, while for Game 5, Paul will choose to move in a.ny direction as 

much as possible. This is reflected by: 
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where N,(i, j) are httice points approximately m .  dx distance from ( i , j ) .  From the game 

interpretation, the updated value a::' should be maxz,, ( ,  . u i .  But by (5.16), this value 
m 113) 

would be halved. Hence, the change at the minimum for the morphological scheme is half 

of that in the exact solution. We will call this discrepancy insuficien,t diflusion,. Insufficient 

diffusion is a direct consequence of the consistency failure of the morphologica,l scheme at 

the strict local extrema. 

From hereon, we will refer to the media.n and morphological schemes as monotone 

schemes. 



Chapter 6 

Numerical Experiments 

In this section? we present various numerical experiments on artificial examples for the four 

schemes presented in the last chapter. 

6.1 A Steady State Example 

Before embarking on solving the time dependent problem (1.1), we test our schemes on the 

rela.ted steady state problem 

0 = Alu  - 1. (6.1) 

The equation (6.1) is nearly identical to (G .5 ) ,  except for an arbitrary chosen sign. This test 

reveals the characteristics of the scheme more clearly, as we need not consider numerical 

artifacts arising from time stepping. To solve (6.1), we numerically solve by the Euler 

method, 

ut = A,u- 1 (6.2) 

until stea.dy state. 

The test is to run with initial condition 

which is a1rea.d~ the steady state solution to (6.2). The domain is [-I, 112. We measure the 

error between the exact solution uo and the numerical steady state solution. 



CHAPTER 6. NUMERICAL EXPERIMENTS 

6.1.1 The Median Scheme 

The  results of using the median scheme are shown in Figure 6.1. The level sets of the 

numerical solution approach those of the exact solution and their differences decrease as 

the stencils become wider. The numerica.1 solution overestimates the exact solution in the 

interior since the stencils a,re circumscribed approximations of circles. 

The level 1 and 2 interpolated median scheme results are shown in Figure 6.2. Note how 

the interpolated scheme has errors nearly half of those of the regular median scheme. 

The results for the level 1 median scheme on a hexa,gonal grid are shown in Figure 

6.3. Note how the results are about ten times better than the level 1 interpolated and 

non-interpolated median schemes, despite the fact that do is larger. 

6.1.2 The Morphological Scheme 

The results of using the morphological scheme are shown in Figure 6.4. For levels 1 and 

2, the results resemble those of the median scheme in 6.1. However, for t,he level 3 stencil, 

the numerical solution underestimates the e m c t  solution. This is due to insufficient diffu- 

sion, a phenomenon tha.t grows as the stencil width widens. For wider stencils or sharper 

paraboloids, we expect the insufficient diffusion to grow - a wea,kness of the morphological 

scheme. 

6.1.3 The Nonmonotone Schemes 

The  results of the centered and the divergence schemes are shown in Figure 6.5 and 6.6, 

respectively. The centered scheme solves to machine epsilon. The  divergence scheme has an 

error of order a t  the local minimum. This shows tha t  the a.veraged forward-backward 

differencing is prone to lower accuracy tha.n centered differencing a t  1oca.l extrema. Never- 

theless, the nonmonotone schemes outperform the monotone schemes, despite the smaller 

stencils. 

6.2 Diagonal Sine Curve 

The initial condition to be tested is, 

uo(.x, y) = u(x,  y, 0) = s i n ( 4 ~ ( x  - y)) 
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Enor (urn - U-) lor VCdlm SThem. Lem 1 

Frror (u- - u",,) for 'Arcan $-..erne - 1 . ~ 1 3  

Figure 6.1: Steady state test for the median scheme. Sample level sets and the difference 
between the numerical and exact solution are shown. Top to bottom: level 1; level 2; level 
3. Computations were performed on a loo2 grid. 
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Figure 6.2: Steady state test for the interpolated median scheme. Sample level sets arid 
the difference between the numerical and exact solution are shown. Top to bottom: level 1; 
level 2.  Computations were performed on a loo2 grid. 

Figure 6.3: Steady state test for the level 1 median scheme on a hexagonal grid. Sample level 
sets and the difference between the numerical and exact solution are shown. Computa.tions 
were performed on a loo2 grid. 
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Figure 6.4: Steady state test for the morphological scheme. Sample level sets and the 
difference between the numerical and exact solution are shown. Top to bottom: level 1; 
level 2; level 3. Computations were performed on a loo2 grid. 
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Centered Scheme 
Errcr (urn - u*,,) for Centered Scheme 
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Figure 6.5: Steady state test for the centered scheme. Sample level sets and the difference 
between the numericd and exact, solution are shown. Computations were performed on a 
loo2 grid. 

Dwergence Scheme 
Error (urn, - u ,,,,,) for D'mrgence Scheme 

r n4 

rf ' -  

I" 
i: 

20 40 60 80 I00 
x - gr~d number 

Figure 6.6: Steady state test for the divergence scheme. Sample level sets and the difference 
between the numerical and exact solution are shown. Computations were performed on a. 
loo2 grid. 
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in the domain [O,  11'. Since uo has straight level sets, the solution of (1.1) should be sta- 

tiona.ry for t > 0. 

lnit~al cond~l~on 

Figure 6.7: The initial condition uo for the diagonal sine curve test. 

6.2.1 Median Scheme and Capping 

For the level 1 media.n scheme, numerical diffusion of 0 ( d x 2 )  appears a t  the maxima a.nd 

the minima.. The width of this numerical diffusion is 2dx. See Figure 6.9. In general, a 

stencil of radius m . dx would have a numerical diffusion of radius 2m . dx. We shall refer 

to this phenomenon as capping. For a schematic drawing of capping, see Figure 6.8. We 

emphasize that capping is finite numerical diffusion in that it occurs only for small finite 

time. In practice, if the stencil width is m . dx, it usually takes m iterations for the ca.pping 

to complete. 

Capping for the median scheme can be explained from observing the scheme. At a 

masimum (or a minimum) of u, the median value of its neighbours would be less (or greaker) 

than at the center. This causes the initial diffusion. More generally, a,ny extremum dong a 

linear manifold in a neighbourhood of radius m . d x  experiences such diffusion. The diff'usion 

thus stops when the width of the plateau, or capping, is 2nz. dx. 

We note that the max-norm error due to capping depends on the solution. The sine 

curve is nearly parabolic a t  its extrema, hence its capping of height O(dx2). For a sharper 

extremum, such as 1x1 or m, the error due to capping would be O(dx) and o(&), re- 

spectively. The O(dx2) error due to capping for the diagona.1 sine curve example is confirmed 

in Figure 6.10. 
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Figure 6.8: Schematic dia.gram of capping a t  a maximum of a sine curve. Left to right: 
initial condition; steady state solution (the initial condition is shown in gray). 

Median Scheme - Level 1 ,  t = 0 2 Error (urn - usxad) for Median Scheme - Level 1 ,  t = 0.2 

/ / # 
10 015 10r--l -Q02 

20 lo 01 
g 30-, 1 -  !o.m 
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, 5 C  , U L 6  
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60 
5.-. ----i8 1 70 , -0 015 

0.5~-.---.,, ,, _-- id 06 
.---- 

] -002 
0 2 80. ;:j 

0 0 .:.I bo eo 
Y x x - grid number 

Figure 6.9: The level 1 m e d h  scheme result of the diagonal sine curve at  t = 0.2. Left to 
right: numerical solution; t,he error to the exact solution. Computations were performed on 
a 802 grid. 
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Convergence o f  Med ian  scheme wrt dx 

10' 1 oL 
number of grid points 

Figure 6.10: A plot of 0 ( d x 2 )  convergence for the level 1 median scheme for the diagonal 
sine curve example. The error is primarily due to capping. 
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6.2.2 Morphological Scheme 

In theory, the morphological scheme should converge to the exact viscosity solution, since 

there are no strict local extrema. In fact, the morphological scheme gives the correct solution 

to machine epsilon; see Figure 6.11. 

We mentioned earlier that the morphological scheme is identical to the median scheme 

where the function is smooth and has nonzero gradient. At saddle points and non-strict 

extrema, the morphological scheme does not induce capping like the median scheme. The 

min-max and the max-min operators of the morphological scheme correctly compute Alu 

to be zero. In this sense, the morphological scheme is superior to the median scheme. 

Iviorpholog~cal Scheme Level 1, t = 0 2 Error (urn - umn) for Morphological Scheme - Level 1, t = 0.2 

, d5 

2C 

Figure 6.11: The level 1 morphological scheme result of the diagonal sine curve a t  t = 0.2. 
Left to right: numerical solution; the error to the exact solution. Computations were 
performed on a 802 grid. 

6.2.3 Nonmonotone Schemes 

Both the centered and divergence structure schemes diffuse excessively a t  the saddle points. 

They differ from capping in that t,he diffusion continues until errors are comparable to the 

initial data. See Figure 6.12 and 6.13 for results of the centered and the divergence schemes, 

respectively. 

The excessive diffusion resulting for the divergence scheme can be explained geometri- 

cally. The divergence scheme essentially discretizes the divergence structure of (1.1), where 

Vu1 = f i g  + U; is discretized by mixed forward and backward differences. Such discretiza 

tion results in lVul > 0 a t  the saddle points. The discretization of V . (Vu/IVuI) also yields 

low accuracy: as shown in Figure 6.14; a discretization of V . (Vu/)Vul) would be negative 
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Centered Scheme, t = 0 05 

Centered Scheme, t = 0 1 
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Figure 6.12: The solution by the centered scheme a t  t = 0.05,0.1,0.2. Computations were 
performed on a 802 grid. 
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D~vergence Scheme, t = 0 05 Error (unum - uexan) for D~vergence Scheme, t = 0 05 
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Figure 6.13: The solution by the divergence scheme at t = 0.05. Computa,tions were per- 
formed on a 80' grid. 

at  the maxima (and positive a t  minima). Therefore, the divergence scheme will compute 

A lu  to be negative a t  the maxima and positive at the minima - this is the cause of the 

diffusion. The fact tha,t diffusion also occurs for the centered scheme may be explained by a 

similar argument. Although centered differences do compute u,, uy to be zero (to machine 

epsilon) at the extrema, the division in the denominator in (5.1) by a discretization of IVuI, 

may amplify the non-zero nature of the right hand side. For larger grid spacing dx, the 

Figure 6.14: Left to right: a plot of Vu near the maximum of uo; a plot of VuIlVtq near 
the maximum of u c  Note tha,t a discretization of V . (VullVul) would be negative along 
the maximum. 

excess diff~ision is faster. See Figure 6.15. 
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With periodic boundary conditions, we also see faster diffusion. See Figure 6.16. 

Centered Scheme, t = 0.05 

Figure 6.15: The dia,gonal sine curve test with the centered scheme for grid size 402 at 
t = 0.05. Note how the diffusion is faster than that in the results shown in Figure 6.12. 

6.3 Steeper Diagonal Sine Curve 

We now change the direction of the level sets of the last example to be steeper. Consider 

the initial condition: 

uo = sin(2x(x - ky)), 

for integer k .  If k # 0 or 51, the level 1 median and morphological schemes can no longer 

capture the correct solution, since the level sets do not pass through the lattice points on 

its stencil. If the level set is not captured by the stencil, excess diffusion introduces errors 

comparable to the initial data. To overcome this, steeper level sets can be captured by 

stencils of finer directional resolution do. For k = 2, t8he level 2 monotone schemes capture 

the level set direction, while for k = 3, level 3 schemes capture. We emphasize that capping 

occurs for all levels of the median scheme stencils, a.nd not for any morphological scheme 

stencils. 

Figure 6.17 shows results with k = 3 for the centered scheme and levels 1, 2 and 3 of the 

median scheme. Results for the level 3 morphological scheme are shown in Figure 6.18. Note 

how the centered and levels 1 and 2 median schemes diffuse - they differ from capping. The 
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Centered Scheme, t = 0 2 

Figure 6.16: The  dia.gona1 sine curve test with the centered scheme for grid size 80' a t  
t = 0.2 with periodic boundary conditions. Note how the diffusion is faster than that in the 
results shown in Figure 6.12. 

level 3 median scheme displays capping, while the morphological scheme does not diffuse. 
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Med~an Scheme - Level 1 I = 0 2 Medlan S c h m  - Level 2 t - D 2 

Centered Scheme, 1 = 0 2 iJiedlan Scheme - Level 3, I = 0 2 

Figure 6.17: Numerical results with initial condition s i n ( 2 ~ ( x  - 3y)) a t  t = 0.2. Clockwise 
from top left: level 1 median scheme; level 2 m e d i m  scheme; level 3 medim scheme; centered 
scheme. All computations were performed on a loo2 grid. 
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Morphological Scheme - Level 3, t = 0.2 

Figure 6.18: Numerical results of the level 3 morphological scheme with initial condition 
sin(2r(x - 3y)) a t  t = 0.2. Computations were performed on a loo2 grid. 

6.4 The Shrinking Circle 

The monotone schemes rely on approximating a circle on a Cartesian grid. We present a 

weakness due to this approximation. We use the sample viscosity solution 

~ ( t ,  x, y) = min + t,O 

from Example 2.2.3. The level sets of numerical solutions a t  t = 0.2 using the median and 

morphological schemes are shown in Figure 6.19. Note how the level sets are approxima.tely 

k-gons, where k is the number of lattice points that approximate the circle. The formation 

of polygonal level sets is inherit to the scheme and does not change with grid spacing dx. 

The divergence scheme, for example, computes circular level sets - see Figure 6.20. 

The f O . l  level sets a t  t = 0.05 for the monotone schemes and the exact solution are 

shown in Figures 6.21 and 6.22. Note tha.t the circumscribed approximation of the circle 

forces the numerical solution to propa,gate faster than the exact solution. For higher levels 

of the median scheme, this difference becomes negligible. The morphological scheme, for 

smaller stencils, experiences similar effects. However, for level 3, the numerical solution 

propaga,tes more slowly than the exact solution. This is due to insufficient diffusion; this 
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Median Scheme - Level 1. I = 0.2 Med~an Scheme - Level 2, t = 0 2 Median Scheme - Level 3. I = 0.2 

- 1  I 1 

1 
Morphologicai Scheme - Level 1, t = 0 2 Morpholog~cal Scheme - Level 2, t = 0 2 Morpholog~cal Scheme - Level 3, t = 0 2 

I I I I -- - .  11 

Figure 6.19: Level sets of the shrinking circle by the monotone schemes. Top, left to right: 
The median scheme level 1, 2 and 3; Bottom, left to right: The morphological scheme level 
1, 2 and 3. Computations were performed on a loo2 grid. 

effect is present for all levels of the morphological scheme, but becomes more pronounced 

as the stencils widen. 



CHAPTER 6. NUI\TERICAL EXPERIMENTS 64 

Error (urn - u,.,,) for Divergence Scheme t = 0 05 
D~vergence Scheme t = 0 05 

x ~ ~ . 3  

0 

Figure 6.20: Level sets of the shrinking circle by the divergence scheme, and its error relative 
to the exact solution. Computations were performed on a loo2 grid. 

6.5 Consistency in dQ 

As presented earlier, for fixed dz, the convergence rate for both the median and the morpho- 

logical schemes are O(d19) (provided there are no strict extrema for the latter scheme). To 

confirm this numerica.lly, we again use the exact viscosity solution (6.3) from the shrinking 

circle test. 

We compute the solution a t  t = 0.2 and compare it to the known exact solution. Note 

that although u is radial with respect to  the origin, it is not radial locally, which makes it 

a good test for directional resolution convergence. We ran the test with the levels 0, 1, 2, 3 

stencils for the median and morphological schemes for number of grid points N = 20, 40, 80 

and 160 on the unit square. We plot the m-norm error with respect to do. The results are 

shown in Figure 6.23 for the median scheme and Figure 6.24 for the morphological scheme. 

We sec that for the median scheme, there is approximakely an O(d0) convergence as N 

increases. However, for the morphological scheme, the error from the level 3 stencil is larger 

tha.n that for the level 2 stencil, due to the insufficient diffusion effect. The plot suggests 

that the d0 error dominates for smaller stencils while insufficient diffusion dominates for 

wider stencils. An interesting result is, the level 2 stencil has a, somewhat small max-norm 

error; this may be due t,o the two counteracting effects, the circumscribed approximation 

and the insufficient diffusion, canceling out. 
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Figure 6.21: The -0.1 level sets of the median scheme (thick) a.nd the exact solution (thin) 
and the error of the embedding function for the shrinking circle test, at  t = 0.05. Top to 
bottom: level 1, 2 and 3. Computations were performed on a loo2 grid. 
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Figure 6.22: The -0.1 level sets of the morphological scheme (thick) a.nd the exact solution 
(thin) and the error of the embedding function for the shrinking circle test, a t  t = 0.05. Top 
to bottom: level 1, 2 and 3. Computations were performed on a loo2 grid. 
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Figure 6.23: Convergence of cc-norm error with respect to de for various numbers of grid 
points for the median scheme stencils. Clockwise from top left: N = 20, iV = 40, N = 160, 
iV = 80. The dotted line represents O(d0).  



CHAPTER 6. NUMERICAL EXPERIMENTS 

N = 80 

d theta 

N 5 6 0  

d theta 

Figure 6.24: Convergence of oc-norm error with respect to dd for various numbers of grid 
points for the morphological scheme stencils. Clockwise from top left: N = 20, N = 40, 
N =  160, N = 80. The dotted line represents O(d0). 
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6.6 Fattening 

The phenomenon of fattening is described in Section 2.3. To reproduce this numerically, we 

follow the initial condition used in [Is]: 

a.s shown in Figure 6.25. 

Initial condition 

Figure 6.25: The initial condition uo for the fattening example. 

All nonmonotone and monotone schemes produce the "fat" set of zeros nea.r the origin. 

We do not know the exact solution explicitly for t > 0. We omit the divergence scheme as 

it produced nearly identical results as the centered scheme. The results are shown in Figure 

6.26. 

We showed in the diagonal sine curve example that a t  saddle points, the median scheme 

produces capping, the centered scheme produces excess diffusion and the morpho1ogica.l 

scheme produces no diffusion. Moreover, since there are no strict local extrema, the mor- 

phological scheme should converge to the unique viscosity solution. The fattening example 

has saddle points along y = kx, so we should observe some noticeable difierences between 

the three schemes. In other words, we expect to see the following: 

the median scheme and the morphologica.l scheme should differ by some constant (of 

O ( d x ) ) .  This is due to the capping of the median scheme at the ~ingularit~ies. This 

difference should not grow for increasing time, and 
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the difference between the centered scheme and the morphological scheme should grow 

as time increa,ses. This is due to the excess diffusion a.rising from the centered scheme 

a t  the singula.rities. 

The *0.01 level sets of the centered, median and morphological schemes a t  times t = 0.01 

and t = 0.5 are shown in Figure 6.27. Notme how: 

0 a t  t = 0.01; the centered scheme and the morphological scheme level sets are nearly 

identical, while the median scheme differs from the other two, and 

a.t t = 0.5, the difference between the level sets of the median scheme and the morpho- 

logical scheme do not change from t = 0.01; the level sets of the centered scheme move 

faster outward, supporting the fact that the centered scheme excessively diffuses. 

In other words, for small time, capping gives low accuracy for the median scheme, while for 

larger time, excess diffusion of the centered scheme grows. 
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Centered Scheme, t = 0 02 

Med~an Scheme - Level 2, t = 0 02 

Y 
-1 -1 

X 

Morpholog~cal Scheme - Level 2. t = 0 02 

Figure 6.26: Solution a t  t = 0.02 with uo(x, y)  = 1x1 - lyl. Top to bottom: Centered scheme; 
level 2 median scheme; level 2 morphological scheme. All computations were performed on 
a 1602 grid. Note the "fa.tn set of zeros near the origin for all scheme results. 
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Figure 6.27: The f 0.01 level sets of the fattening exa,mple, computed using the centered, 
median and the morphological schemes. Top to bottom: the level sets a t  t = 0.01; the level 
sets a t  t = 0.5. All computa,tions were performed on a 2002 grid. 
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6.7 Computational Cost 

The nonmonotone schemes in general use far more operations than the monotone schemes. 

Furthermore, the median and morphological schemes can be simplified into forms (5.9) 

and (5.16) if dt = (sm . d ~ ) ~ / 2  and dt = (nx . dz)'; respectively. This is well reflected on 

the computational cost of the schemes. The time ta,ken to compute the fattening example 

(Section 6.6) by various schemes are shown in Table 6.1 and Figure 6.28. All computa~tions 

were done using MATLAB on a,n Apple PowerMa,c G5 with 2 GB RAM. The coding for the 

schemes was optimized by storing as many precomputable va.lues, such as l l d x ,  as possible. 

The computa,tional times for the monotone schemes outperform the nonmonot,one schemes, 

largely due to the time stepping. The fastest median and morphological stencils were ap- 

proximately 10 times fa,ster than the centered scheme and 30 times faster than the divergence 

scheme. For the nonmonotone schemes, the time step providing stability was chosen by trial 

and error. For the monotone schemes, the time step increa,ses quadra,tica,lly as the radius 

of the stencil. Both monotone schemes therefore performed better as the stencil radius 

increased, despite the larger number of lattice points in its neighbourhood. 

Table 6.1: Computation times in seconds. I\/lecl/Morph n, refers to the level n Me- 
dian/I\/Iorphological scheme. The nonmonotone schemes used dt = ds2/10 and the monotone 
schemes dt = (m . dx)'/2, for stability purposes. 
I Grid 1 1  Centered ] Div. [I Med 1 [ Med 2 1 Med 3 11 Morph 1 [ Morph 2 ] Morph 3 ] 
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computation time for various schemes 

+centeredl 
I 

-G- rnedlan L1 

I o3 I O* 1 0' 
number of gr~d polnts 

Figure 6.28: Computation times in seconds - the results of Table 6.1 in a log-log graph. 
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6.8 Closing Remarks 

We ha.ve presented two degenerate elliptic schemes for solving (1.1): the median and the 

morphological schemes. We explained that the median scheme converges to the unique 

viscosity solution for any initial condition, while the morphological scheme converges only 

in the absence of strict local extrema. The lakter scheme therefore experiences insufficient 

diffusion a t  strict local extrema, whereas the median scheme does not. Despite this weakness 

the morphological scheme outperforms the median scheme a t  saddle points, due to the 

capping phenomenon. Both monotone schemes compute orders of magnitude faster than 

the nonmonotone schemes. 



Chapter 7 

Conclusions and Future Work 

In this thesis, we have developed two particular monotone finite difference schemes via three 

distinct concepts: viscosity solutions, differential game interpretations, and degenerate ellip- 

tic numerical schemes. The central conclusions are that the median a,nd the morphological 

schemes 

1. can be interpreted naturally from the differential game interpretation of the motion 

by mean curvature partial differential equation; 

2. outperform traditional finite difference schemes in terms of speed. 

In particular, the median scheme always converges to the viscosity solution, despite lower a.c- 

curacy compared to nonmonotone schemes. Also, nonmonotone schemes may be consistent 

and stable but not converge to t,he viscosity solution. 

This thesis report is the first to present the connection between the median and mor- 

phological schemes to the differential game interpretation of [14]. This is a textbook ca,se of 

how theory behind an equation provides deeper insight into previously discovered numerical 

schemes. This may give hope for constructing degenerate elliptic finite difference schemes 

for other Hamilton-Jacobi equations which have explicit game interpretations. 

For future work, it ma,y be interesting to create a hybrid scheme that enjoys the best 

of both schemes: using the morphological scheme at saddle points to avoid capping, and 

using the median scheme a t  strict local extrema to avoid insufficient diffusion. We note that 

this report does not investigate boundary conditions fully; there may be better choices of 

stencils near the boundary that work for any problem. 
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In closing, the median and the morphological schemes have not yet been recognized 

in the numerical community as much as they may deserve. For example, fast solvers for 

motion by mean curvature are of importance for computing image processing problems, 

such as denoising and inpainting, in real t,ime. To the a.uthor's knowledge, to  date no work 

in the literature uses either scheme for such applications. We note that a MATLAB toolbox 

featuring the median scheme has been released by Mitchell [16], [17]. 
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