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Abstract 

While frequent pattern mining is fundamental for many da ta  mining tasks, mining maximal 

frequent itemsets efficiently is important in both theory and applications of frequent itemset 

mining. The fundamental challenge is how to  search a large space of item combinations. 

Most of the existing methods search an  enumeration tree of item combinations in a depth- 

first manner. 

In this thesis, we develop a new technique for more efficient maximal frequent itemset 

mining. Different from the classical depth-first search, our method uses a novel probing and 

reordering search method. It uses the patterns found so far to  schedule its future search so 

that  many search subspaces can be pruned. Three optimization techniques, namely reduced 

counting, pattern expansion and head growth, are developed to  improve the performance. 

As indicated by a systematic empirical study, our new approach outperforms the currently 

fastest maximal frequent itemset mining algorithm FPMax* clearly. 
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"He alone deserves freedom as well as life, who has to win them by conquest everyday." 
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Chapter 1 

Introduction 

The problem of efficient mining of frequent itemsets is fundamental for many data mining 

tasks, such as mining association rules (61, correlations [9], causality [27], sequential pat- 

terns [7], episodes [21], partial periodicity [17], iceberg-cube computation [8], associative 

classification [20], and subspace clustering [4]. Since it was firstly proposed in [5], this prob- 

lem has been studied extensively. There exists prolific literature focusing on this problem, 

in which various algorithms have been proposed. 

1.1 The Frequent Itemset and the Maximal Frequent Itemset 

Mining Problem 

Let I = {i l , i2 ,  ..., in) be a set of items, an itemset S is a subset of I. Let 1 = ISI, then 1 is 

called the length of S, and S is called an 1-itemset. An itemset S' subsumes an itemset S" 

if and only if S' 2 S". For the sake of simplicity, we often write an itemset as a string of 

items. For example, itemset {a, c, d) is often written as acd. 

A transaction is a tuple (tid, Y) where tid is a unique transaction-id and Y is an itemset. 

Transaction ( t id ,Y)  contains itemset S if and only if S Y.  For a given transaction 

database D which consists of multiple transactions, the support of an itemset S, denoted by 

support(S), is the number of transactions containing S. That  is, 

For a given minimum support threshold min-sup, an  iternset S is a frequent itemset or 

as known as a frequent pattern if and only if support(S) 2 min-sup. Given a transaction 
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Table 1.1: A transaction database 

database and a minimum support threshold, the problem of frequent itemset mining [5] is 

to find the complete set of frequent itemsets. 

For example, consider the transaction database D in Table 1.1. Let the support threshold 

min-sup = 2. Since support(bc) = 4, it is a frequent itemset. 

Requent itemsets have the following well-known monotonic Apriori property, or down- 

ward closure property [5]. 

Theorem 1 (Apriori Property) If S is frequent in a transaction database D ,  then every 

nonempty subset of S is frequent. 

Proof. Let T r a n s ( X )  = {(tid,Y) E DIY > X ) ,  and S1 be an nonempty subset of S. For 

any transaction ( t id ,Y) ,  if Y > S, Y _> S1. Then Trans(S1) > Trans (S) ,  ITrans(S1)( 2 
ITrans(S) 1 .  That  is, support(S1) >_ support(S). The theorem is proved. 0 

According t o  the Apriori property, a long frequent itemset of length 1 leads to  (2' - 2) 

shorter frequent itemsets. For example, in Table 1.1, if min-sup = 2, abcd is a frequent 

itemset. All subsets of abcd including a ,  b, c, d, ab, . . . , bcd are frequent itemsets as well. 

An itemset S is called a maximal frequent itemset or an MFI  for short [25] if S is frequent 

and every proper superset of S is infrequent. In Table 1.1, when min-sup = 2 ,  the MFIs 

are abcd, bcde and df. The problem of mining maximal frequent itemsets or mining MFIs 

for short is to  find the complete set of MFIs. 

1.2 Motivation and Contribution 

Mining maximal frequent itemsets efficiently is important in both theory and applications 

of frequent itemset mining. On the theoretical side, the MFIs serve as the border between 
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the frequent itemsets and the infrequent ones. With the set of WlFIs, for any itemset S, 

whether it is frequent or not can be determined quickly using the Apriori property: if there 

exist some MFI M such tha t  S 2 M ,  then S is frequent, otherwise S is infrequent. In 

addition, MFIs serve as a summary of all frequent itemsets. By the Apriori property, every 

non-empty subset of an MFI is FI,  thus the number of MFIs is much less than the number 

of FIs. As an example, on the chess dataset with m i n - s u p  = lo%, the number of F I  is 

1,394,140,008, but the number of MFIs is only 2,612,646. 

On the application side, MFIs are used in a few interesting and challenging data  mining 

tasks. For example, using MFIs, we can find emerging patterns [12] which are itemsets 

frequent in the positive samples and infrequent in the negative samples. If an itemset S 

is a subset of some MFIs in the positive sample and a proper superset of some MFIs in 

the negative sample, then S is an emerging pattern. Emerging patterns can be used to  

construct effective classifiers [18]. As another example, using MFIs with respect to  a series 

of support thresholds, we can summarize and approximate the support information of all 

frequent itemsets (221. 

The  fundamental challenge of mining MFIs is how t o  search a large space of itemsets 

and identify MFIs. Most of the existing methods search an enumeration tree of the set of 

itemsets in a depth-first manner, and prune subtrees using the MFIs found before. 

While the previous studies focus on catching pruning opportunities sharply, can we 

systematically create pruning opportunities in the mining? In this thesis, we develop a 

Pattern-Aware Dynamic Scheduling approach to  tackle the problem. Different from the 

classical depth-first search methods, our approach adopts a novel probing and reordering 

method to  search for MFIs. It uses the hlFIs found so far to  schedule its future search 

so that  many search subspaces can be pruned. To further enhance the efficiency, three 

optimization techniques, namely reduced counting, pattern expansion and head growth, are 

proposed. As indicated by a systematic empirical study using the benchmark data  sets, our 

new approach outperforms the currently fastest maximal frequent itemset mining algorithm 

FPMax* [15] in a clear margin. 

1.3 Thesis Organization 

The  organization of this thesis is as follows. In Chapter 2 we give a systematic review on 

related work. In Chapter 3 we propose our Pattern-Aware Dynamic Scheduling approach. 
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The three optimization techniques will be introduced in Chapter 4. An extensive empirical 

comparison between the PADS algorithm and existing state-of-the-art algorithms will be 

reported in Chapter 5. In Chapter 6 we will discuss how our approach can be applied to 

other data mining problems, and conclude the study. 



Chapter 2 

Related Work 

In this chapter we will give a systematically review related work on mining maximal frequent 

itemsets. 

The problem of maximal frequent itemset (MFI for short) mining has been extensively 

studied since it was first proposed in (251. To tackle this problem, many algorithms have 

been proposed. Here, we review nine representative algorithms, namely MaxEclat [29], Max- 

Clique [29], Princer-Search [19], MaxMiner [25], Depthproject [ I ] ,  Mafia [ lo] ,  GenMax [13], 

FPMax* [15] and LCMmax [28]. 

In this chapter we compare those algorithms in four aspects: 

1. Whether they are main memory algorithms or out-of-core algorithms1; 

2. Methods used to organize the search procedures; 

3. Data structures used to store data in main memory, if they are main memory algo- 

rithms or if they are out-of-core algorithms, but require loading a proportion of the 

database into main memory to speed up computation; and 

4. Pruning techniques used to prune unpromising search space. 

Table 2.1 gives a summarization of the comparison, where PADS is the new algorithm 

we will introduce in Chapter 3. 

'Out-of-core refers to  algorithms which process da ta  tha t  is too large t o  fit into the  main memory of a 
computer a t  one time. Such algorithms must be optimized t o  efficiently fetch and access data  stored in slow 
bulk memory such as hard drive or tape drives. 
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2.1 Main Memory Algorithms versus Out-of-core Algorithms 

It is assumed that  the whole database cannot be held into main memory when various 

frequent itemsets mining algorithms are first proposed. Since multiple scans of the database 

are needed, the mining process becomes 10-bounded, and one of the focuses of algorithm 

design is to reduce the number of database scans. The early algorithms such as MaxEclat, 

MaxClique, Princer-search, MaxMiner make this assumption. 

However, there are some dense datasets with small size but a large number of MFIs, 

which makes the problem CPU-bounded rather than 10-bounded. A good example is the 

Chess data  set generated from the UCI Chess dataset by Roberto Bayardo, the size of 

which is only 334KB. When the minimum threshold is set to 3%) the number of MFIs is 

7,682,809! FPMax*, the winner on mining MFIs a t  Workshop on Frequent Itemset Mining 

Implementations in 2 0 0 3 ~  takes more than 2,000 seconds to-mine all the MFIs on a computer 

with a 3.0 GHz Pentium CPU and 1.0 G B  main memory. 

Moreover, main memory availability has increased by orders of magnitude in the past 

decade, and nowadays many small to medium size databases can be held into main memory. 

In addition, when the length of frequent patterns is long, the number of MFIs increases 

exponentially, which makes the problem computationally difficult. 

Thus, it is reasonable to  assume that  some databases can be held into main memory and 

focus on CPU efficiency in algorithm design. Algorithms proposed later such as DepthPro- 

ject, Mafia, Genhilax and FPMax all make this assumption. 

2.2 Search Methods 

Given a set of items, all its subsets can be organized by a subset lattice. Figure 2.1(a)3 gives 

an  example of a lattice. By the downward closure property of the frequent itemsets, that  

is, all subsets of a frequent itemset are frequent, and all supersets of an  infrequent itemset 

are infrequent, mining maximal frequent itemsets is essentially finding the border between 

frequent and infrequent itemsets in the lattice. 

For each k-itemset S in the lattice, we can retain only the edge between S and the (k - 1) 

' ~ e l d  on 19 November 2003, Melbourne, Florida, USA in conjunction with ICDM'O3 

3 ~ e  draw the lattice with the empty set a t  the top and the largest set a t  the bottom, the conventional 
bottom-up search, however, begins from the empty set.  It  thus actually follows the top-down direction in this 
figure. The  similar convention is applied to  the top-down search. 
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abc abd abe acd ace ade bcd bce bde cde abc abd a b e  acd ace ade bcd bce bde cde 

abcd abce abde acde bcde -\\ abcd abce abde acde bcde 

abcde abcde 

(a) an item set lattice (b) a set enumeration tree 

Figure 2.1: An example of a lattice and a set enumeration tree. 

prefix4 of S and remove all the other edges connecting S and its (k  - 1)-subsets. T h e  subset 

lattice is then reduced to  a set enumeration tree [26], as  illustrated by Figure 2 . l (b) .  

Previous maximal frequent itemset mining algorithms organize the search space with the 

help of either a subset lattice or a set enumeration tree. We thus can divide those algorithms 

into two categories: lattice-based algorithms and tree-based algorithms. 

2.2.1 Searching in a Subset Lattice 

With the  help of a lattice, we can search the MFIs with different approaches: the bottom-up 

search, the top-down search, and the hybrid search which is a combination of both top-down 

and bottom-up searches. 

T h e  bottom-up search is proposed in the Apriori algorithm [6]. Figure 2.2 gives the 

complete Apriori algorithm. I t  first scans the database once to  find the set of frequent 

single items L1. At the k(k >_ 2)-th level, we 

1. joins any pair of frequent length (k - 1) itemsets sharing a (k - 2)- prefix to get the 

4We assume there exists a lexicographical order among items. For simplicity, an itemset is represented 
as a string sorted in this order. 
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I n p u t :  a transaction database D and support threshold min-sup; 
O u t p u t :  L ,  frequent itemsets in D ;  
M e t h o d :  
1: L1 =find-frequent-1-itemsets(D); 
2: f o r ( k = 2 ;  L k - l # O ;  k++){  
3: Ck = a p r i ~ r i - g e n ( L ~ - ~ ,  min,up); 
4: for each  transaction t E D{ 
5: Ct=subset(Ck , t );  
6 :  for e a c h  candidate c E Ct 
7: c.count++; 

8: L k = { ~ E C k / c . c o u n t > _ m i n , u p }  

1 
9: r e t u r n  L = Uk Lk;  

p r o c e d u r e  a p r i ~ r i - g e n ( L ~ _ ~ :  frequent (k - 1)-itemsets; min-sup: minimum support 
threshold) 
1: for each  itemset l1 E Lk-1 
2: for each  itemset 12 E Lk-1 
3 : if((ll[l] = 12[1]) A (11[2] = 12[2]) A ... A (ll[k - 21 = 12[k - 21) 

r\(l1[k - 11 < 12[k - 1)))  then{  
4: c = l1[1]l1[2) ... ll[k - 2]11[k - ljl2[k - 1); 
5 : if c has an infrequent (k - 1)-subset t h e n  
6 : delete c; 
7 : else add c to Ck; 

} 
8: r e t u r n  Ck; 

Figure 2.2: The Apriori algorithm 
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candidate length k frequent itemsets Ck.  For example, suppose a1 ... a k - 2 a k - 1  and 

a1 ... ak-zak are two frequent k-itemsets, we can join them to get al...ak-2ak-lak a s  

one candidate length k frequent itemsets; 

2. delete from Ck any itemsets if one of its length (k - 1) subset is infrequent; and 

3. count the supports of itemsets in Ck by scanning the database once to get the set of 

frequent length k itemsets Lk. 

This process continues until Lk is empty. All frequent itemsets are found and the set 

of MFIs can be obtained by deleting those which are subsets of some frequent itemsets. 

A disadvantage of this method is that it generates and counts the supports of all frequent 

itemsets, which is more than necessary for identifying only the maximal frequent ztemsets. 

In contrary to the bottom-up search, the top-down search starts from the maximal 

itemset of the lattice, that  is, the itemset that  contains all items. If it is frequent, we are 

done and output it as an MFI. Otherwise, suppose its length is k, we generate each of its 

(k - 1)-subsets and check their supports. This process repeats until the itemset is frequent. 

Let C be the set of frequent itemsets obtained in this process, then C is a superset of the 

set of all MFIs. We need to eliminate from C those itemsets which are subsets of other 

frequent itemsets in C to obtain the set of MFIs. The top-down search requires examining 

all infrequent itemsets. 

Due to the aforementioned reasons, for the maximal frequent itemset mining problem, 

both the top-down and the bottom-up searches have their disadvantages, hence lattice-based 

algorithms MaxEclat, MaxClique and Princer-Search combine the two methods in some way 

to achieve higher efficiency. 

The Princer-Search algorithm combines the bottom-up search and the top-down search: 

both the bottom-up and the top-down searches are conducted simultaneously, and they help 

each other to prune the search space. The pruning is based on the following observations: 

(1) when an itemset is known frequent, then all of its subsets must be frequent and they 

do not need to be examined anymore, and (2) when an itemset is known infrequent, then 

all of its supersets must be infrequent, and they do not need to be examined anymore. 

While the top-down search and the bottom-up search only use the first observation and the 

second observation, respectively, to prune search space, Princer-Search combines those two 

observations to  prune search space. Long MFIs can be found in early scans of the database 

by the top-down search, thus the bottom-up search does not need to  examine their subsets 
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anymore. Similarly, short infrequent itemsets can be found in early scans by the bottom-up 

search, top-down search then does not need to  examine their supersets anymore. Thus, 

compared with the bottom-up or the top-down search, Princer-Search needs fewer database 

scans. 

Both MaxEclat and MaxClique use the hybrid search to search for MFIs in the lattice. 

The search consists of two phases: the hybrid phase which tries to get a long frequent 

itemset S1, and the bottom-up phase which examines the rest nodes of the lattice which 

are non-subsets of S1. 

Hybrid Phase I Bottom-up Phase 

Figure 2.3: Hybrid search in the sublattice with prefix A. 

It should be mentioned that  either MaxEclat or MaxClique does not search in the entire 

lattice. Instead, they first partition the entire lattice into small sub-lattices, and conduct 

hybrid search to find MFIs in each sub-lattice. The union of all MFIs in these sub-lattices 

is a superset of the MFIs in the entire lattice since some itemsets may be locally maximal 

but not globally maximal. For example, suppose abcde is a maximal frequent itemset in the 

sublattice having prefix a ,  and bcde is a maximal frequent itemset in the sublattice having 

prefix 6, then bcdeis a locally maximal frequent itemset but not globally maximal frequent 

itemset. Thus, a post-processing phase is needed to  eliminate those itemsets which are not 
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globally maximal. We will give an  example to show the hybrid search later. 

The difference between MaxEclat and MaxClique lies in the way they partition the 

lattice: MaxEclat partitions the lattice into multiple prefix-based equivalent classes while 

MaxClique partitions it into maximal-clique-based pseudoequivalent classes. For further 

details, please refer to [29]. 

Figure 2.3 gives an example of the hybrid search. After partitioning, the entire lattice 

is decomposed into several sub-lattices. In the sublattice with prefix a ,  suppose ab, ac, ad, 

ae  and a f  are known frequent and they form the starting point of the hybrid search. The 

algorithm first combines ab with ac to generate abc and checks its support. If it is frequent, 

the algorithm further extends abc with ad to get abcd and then checks its frequency. The 

process repeats until the extension turns out to be infrequent. In this example, suppose 

extension to abcde fails, then abcd is a candidate for maximal frequent itemset. This ends 

the hybrid phase. In the folowing bottom-up phase, the algorithm examines the frequencies 

of abe, ace, ade, abf ,  ac f ,  adf and ae f .  The frequent ones, abe, ade, abf ,  adf and a e f ,  are 

retained and an Apriori-like bottom-up search is conducted beginning from those itemsets 

to find the rest MFIs in this sublattice. 

2.2.2 Searching in a Subset Enumeration Tree 

When searching in a subset enumeration tree, we can conduct either the breadth-first search, 

as done in MaxMiner, or the depth-first search, as done in Depthproject, Mafia, GenMax, 

FPMax and LCMmax. 

To make the explanation easier, we first introduce some definitions. Let P be an itemset, 

when we are visiting the P node in the set enumeration tree, P is also called the head of the 

current search. We assume that  we can sort the items according to  an order R ,  and i +R j 

denote item i precedes item j in order R .  Then,  we can define the Tail  and Untrimmed Tail  

of the current search as follows. 

Def ini t ion 1 The tail of an  empty itemset 0, Tai l (@),  is the set of frequent items. That is, 

Tail(@) = {tlsupport({t)) 2 min-sup). 

Def ini t ion 2 Suppose P is the parent of Q in the set enumeration tree, R is an order on 

Ta i l (P ) ,  and Q = P U {i), the untrimmed tail of an itemset Q, F ( Q ) ,  is the set of items 

ordered after item i in Ta i l (P ) ,  that is, F ( Q )  = {tit E T a i l ( P )  and Vi E Q : i +R t). 
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Def ini t ion 3 The tail of an non-empty itemset Q, Tail(Q),  is the set of items in F(Q)  

that are frequent extensions of Q .  That is, Tail(Q) = {t E F(Q)lQ U {t) is frequent). 

Let us look at  an  example. Suppose L1 = {a, b, c, d ,  el  f ,  g) is the set of frequent items, 

and P = 8, then Tai l{P)  = L1. Let Q = {b) be a child of P, and the alphabetical order is 

used to sort the items in Tai l (P) ,  then the set of items sorted after b in Ta i l (P ) ,  that is, 

{c, d l  el  f ,  g) ,  is F (Q) .  For each item i E F ( Q ) ,  if Q U {i) is frequent, then i is inserted into 

Tail(Q).  Thus we have the folllowing lemma. 

Lemma 1 If P is the parent of Q in the set enumeration tree, then Tai l (P)  > F(Q)  2 

Tail  (Q) . 

In the breadth-first search, for each frequent k-itemset Q,  for each item i E F ( Q ) ,  QU{z) 

is generated as a child of Q and inserted into Ck+l. The supports of itemsets in Ckfl are 

counted by the next scan of the database. It should be noticed that  the children generation 

here is equivalent to  the candidate generation in Apriori. Thus, the breadth-first search in 

a set enumeration tree is in fact equivalent to the bottom-up search in its corresponding 

lattice. 

The tree structure, however, is more useful than the lattice as it possesses some nice 

properties that  can be employed to prune the search space. The lookahead pruning and 

the dynamic reordering techniques are based on the properties of the set enumeration trees. 

They will be introduced in Section 2.4. 

The depth-first search in the set enumeration tree without any pruning proceeds in the 

following way: at  each node Q ,  F ( Q )  is generated from the Tail of its parent. For each 

item i E F ( Q ) ,  count the support of Q U {i) .  If it is frequent, insert i into Tail  (Q). After 

Tail(Q) is obtained, for each item i E Tail(Q),  node Q U {i) is generated and processed 

recursively. Figure 2.4 gives the depth-first search algorithm in the set enumeration tree. 

The function DFS is first called with N = 8, T = L1, that  is, the set of frequent 1-itemsets, 

and L = 8. All frequent itemsets will be returned in L when the search terminates. 

The depth-first search can be implemented by constructing projected databases. An 

P-projected database consists of all and only the transactions subsuming P, and in each 

transaction, only the items in Ta i l (P )  are retained, and items not in Ta i l (P )  are removed. 

To search maximal frequent itemsets in the subtree of a in the set enumeration tree, we only 

need to  check the a-projected database. Similarly, to search the maximal frequent itemsets in 

the subtree of ab, we only need to check the ab-projected database, which can be constructed 
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Algorithm: depth-first search in a set enumeration tree. 
Input: Database D ;  minimum support threshold min-sup. 
Output: frequent itemsets L in database D.  
Methods: 

1: L = 0 ;  
2: L1 =find-frequent-1-itemsets(D); 
3: L = L U L , ;  
4: call DFS(0 ,  L l ,  L);  
5 :  return L; 

procedure DFS(N:  an itemset, T:  tail of N ,  F :  the set of frequent itemsets) 
1: if ( T  = 0) then 
2: L = L u N ;  

else 
3 : for each item i E T 
4: N' = N U {i); 
5 : F' = {t E Tli 4 t ) ;  
6 : T' = {t E F1lsupport(N' U t )  > min-sup); 
7 : call DFS(N1,  T I ,  L);  

Figure 2.4: A depth-first search algorithm in a set enumeration tree 
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ALGORITHM: LCMmax (P:itemset, H:items to be added) 
1: H' :=the set of items e in H s.t. P u {e) is frequent 
2: If H' = 0 then 
3: If P U {e) is infrequent for any e then 
4 : output P; return 
5: End if 
6: End if 
7: Choose a n  item e* E HI; H' := H' - {e*) 
8: LCMmax(P U {e), HI) 
9: P' := frequent itemset of the  maximum size found in the recursive call in 7 
10: For each item e E H - P' do 
11: H' := H' - {e) 
12: LCMmax(P U {e), HI) 
13: End for 

Figure 2.5: The LCMmax algorithm. 

from the a-projected database. Since ab is a child of a in the set enumeration tree, the 

depth-first search takes a divide-and-conquer strategy. 

The examination of all frequent iternsets in either the breadth-first search or depth-first 

search mentioned above is not necessary for the maximal frequent itemset mining problem. 

In Section 2.4 we will introduce various pruning techniques which can be employed to prune 

unpromising branches in the set enumeration tree. 

LCMmax uses an  interesting search method which is different from both depth-first 

search and breadth-first search. When searching the I-subtree, it first picks an item e in the 

tail, and searches the branch I U {e) recursively. Let P' be a frequent itemset of maximum 

length obtained by the recursive search in the I U {e)-subtree, in the following steps, it 

reorders the items in Tail(1) so that  any item not in P' has an  index less than any item in 

P I ,  then a recursive call is generated for each e E Tail(1) - P I .  In Section 3.6, we will give 

a thorough analysis of LCMmax and compare it with our PADS algorithm. 
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2.3 Data Structures 

Main memory algorithms need some data structures to store the database in main memory. 

Out-of-core algorithms such as MaxEclat and MaxClique also hold part of the database 

into main memory to accelerate search. In the algorithms we review in this chapter, five 

data structures, namely horizontal bitvector, vertical transaction ID list, vertical bitvector, 

FP-tree and simple array, have been used. Simple array is used by LCMmax. It is a two- 

dimensional array which consists of item lists for each transaction. It is a straightforward 

representation of the database. Thus, in this subsection, we will introduce the rest four data 

structures one by one. 

2.3.1 Horizontal Bitvector 

Horizontal bitvector(or bitstring) is firstly used in the algorithm Treeproject [2] for mining 

all frequent itemsets. Based on this data  structure, Depthproject was proposed for mining 

maximal frequent itemsets. 

a b c d e f  a h  
T I 0  abcefh 
T20 bcef 

T30 adgh 
T40 bdfh 

Min_sup=2 
Tail(b)={c,e,f,h) 

b-projected database: 

T I 0  cefh 
T20 cef 
T40 fh 

Figure 2.6: An example of horizontal bitvectors. 

In this data  structure, every transaction is represented by one bitvector, every item 

corresponds to one bit in each bitvector. The bit is set to 1 if the item appears in the 
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trasaction, and 0 otherwise. Figure 2.6 gives a n  example of horizontal bitvectors for a 

sample database and a projected database. 

Each 8 consecutive correspond to  256 counters, each 
counter correspond to one value of that byte. 

T I 0  abcefh 
T20 bcef 
T30 dgh 
T40 bdfh 

e f a h  

Counters for abcdefgh after scanning 4 transactions: 

Support of an item is the sum of counts in the 128 counters which take 
on the value of 1 of that byte. 

Figure 2.7: Counting technique using horizontal bitvectors. 

Specialized counting technique is developed for support counting in horizontal bitvector, 

as illustrated by Figure 2.7. Assume that  each transaction T contains n bits, and can 

therefore be expressed in the form of [n/81 bytes. Each byte of the transaction contains 

the  information about the  presence or absence of eight items, and the integer value of a 

byte can take on any value from 0 to  28 - 1 = 255. For each 8 items represented by a 

byte, 256 counters are maintained. When a transaction is scanned, for each byte in the 

transaction, add 1 to  the counter which represents the value of tha t  transaction byte. This 



C H A P T E R  2. RELATED W O R K  18 

process repeats for each transaction in the database. Therefore, at  the end of scanning, we 

have 256 * In181 counts. For an item i ,  there are 25612 = 128 counters corresponding to its 

presence. The support of an item i is the sum of those 128 counts in those counters. 

The benefit of this counting technique is that  it performs only 1 operation for each byte 

in the transaction, which contains 8 items. Thus, this method is a factor of 8 faster than 

the naive counting technique. 

2.3.2 Vertical Transaction ID List 

Vertical transaction ID list(tid-list for short) is firstly used for mining maximal frequent 

itemsets in [33] in the algorithms MaxEclat and MaxClique. An improved version of tid-list 

called diffsets is developed in [13] in the algorithm GenMax. 

It should be noted that though MaxEclat, MaxClique and GenMax all use vertical data 

representation, the search method of MaxEclat and MaxClique is different from that  of 

GenMax. While MaxEclat and MaxClique use a lattice-based search method, GenMax uses 

a tree-based search method. 

DATABASE 

Transact~ons Items 

Figure 2.8: An example of vertical transaction ID list 

5 

6 

a b c d e  

b c d  
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In this data  structure, each item has one transaction ID list. The list of item i contains 

the IDS of all transactions having i. Figure 2.8 gives an  example. There are two advantages 

of tid-lists: first, the support of a k-itemset can be computed by simply intersecting the 

tid-lists of any of its two (k - 1)-subsets; second, to compute the support of an itemset, 

using tid-lists can avoid scanning the whole database, only tid-lists relevant to the itemset 

are needed. 

An improved version of tid-lists is the diffsets, which is firstly proposed in [30]. Diffsets 

are used in tree-based search method. The diffset of an  itemset Q stores the difference 

between the transaction id list of its parent P in the set enumeration tree and the transaction 

id list of Q. Let t ( X )  denotes the tid-list of an itemset X ,  diffset of a node Q stores 

t ( P )  - t (Q).  

The diffset for an itemset Q ,  d(Q),  can be computed as follows. If Q is a 1-itemset, 

d(Q) = t (D)  - t (Q) ,  where t(D) be the list of all transaction IDS. If the size of Q is larger 

than 1, suppose the parent of Q in the search tree is P = Q - {j), and the parent of P is 

P' = P - {i), then Q = P I  U {i) U {j), and 

d(Q) = d(P '  U (2)  U { j ) )  

= t (P1  u {i)) - t ( P 1  u {j))  

= t (P1  U {i)) - t (P1 U {j))  + t (P1)  - t(P1) 

= t(P1) - t (P1  U {j))  - ( t(P1) - t (P1  u (2))) 

= d(P1 u {j))  - d(P1 u {i)) 

The support of P u { i )  can be computed by s u p p o r t ( P ~ { i ) )  = support(P) - l d ( P ~ { i ) ) l .  

Figure 2.9 gives an  example of diffsets. In this example, the diffsets on level 2 can be 

computed from either the tid-lists or the diffsets on level 1. Diffsets on level k(k > 2) are 

computed using the diffsets on level (k - 1).  

2.3.3 Vertical Bitvector 

Vertical bitvector is firstly introduced in [lo] in the algorithm Mafia. Vertical bitvector is 

similar to tid-list, except that  it uses bitmap, instead of a list of transaction IDS, to store 

the transactions in which an item(set) occurs. There is one bit for each transaction in the 

database. If item i appears in transaction j, then bit j of the bitvector for item i is set to  

one; otherwise the bit is set to zero. This definition is the same for itemsets. The support 
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DATABASE 

Transactions 

1 

Items 

a b d e  

3 

4 

T ID  SET database 

a b c d e  DIFFSET database 

level 1 

ab ad bc bd be cd ce 

a b d e  

a b c e  

5 

6 

abd abe ade bcd bce bde 

a b c d e  

b c d  

abde 

m 

level 3 

level 4 

Figure 2.9: An example of diffset 
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Vertical tid-lists Vertical Bitvectors 

A B  C D E  A B  C D E  

Figure 2.10: Differences between tid-lists and vertical bitvectors 

of an item(set) can be obtained by simply counting the number of ones in its bitvector. 

Figure 2.10 shows the difference between tid-lists and vertical bitvectors. 

Bitmap for item set ( X  U Y) can be computed by applying bitwise-AND operation to 

bitmap(X) and bitmap(Y). 

Compared with tid-lists, the benefit of vertical bitvector is its efficiency in space and in 

the computation. Representing a transaction ID in tid-list require 32 bits, thus when the 

support of an item(set) is more than 1/32(% 3%), which is around 3%, vertical bitvector is 

less costly than tid-list in space. The  time complexity of intersecting two tid-lists t l  and t2  is 

O(ltll + lt21), while the time complexity of intersecting two vertical bitvectors is 0(/D1/32),  

where (Dl is the number of transactions of database D .  The saving is obvious when the 

support is high. 

When the support of an  itemset is low, the bitvector becomes sparse since most bits in 

its bitvector are zeros. Bitwise-AND operation over the 0 regions is a waste of computation. 

Compressed bitvector is proposed to avoid this problem. In the tree based searching method, 

when we are searching in the P-subtree, all transactions that  do not contain P is useless in 

counting the support of P U {i). Thus we can remove those transactions from the bitvectors 

of P and items in Tai l (P) .  This leads to projected bitvectors for P .  Figure 2.11 gives an 

example of a projected bitvectors. 



CHAPTER 2. RELATED W O R K  

Vertical Bitvectors 

Compressed Vert ical Bitvectors for (a) 

b c d e  

Figure 2.11: An example of compressed bitvectors 

FP-tree is an extended prefix-tree structure for compact representation of relevant frequency 

information in the database. It is firstly proposed in [16] in the context of mining all frequent 

itemsets. 

Each node in the FP-tree has three fields: item-name, count! and node-link. The field 

item-name stores the item this node represents, the field count stores the support of the 

itemset represented by the path from the root to this node, and the field node-link stores a 

pointer to the next node having the same item-name. 

Each FP-tree is associated with a header table. Each row in the header table stores the 

name of a frequent item and a node-link which points to the first node in the FP-tree having 

the item-name. Items in the header table are sorted in support-descending order. 

An FP-tree is constructed by two scans of the database. In the first scan, all frequent 
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items are found and inserted in support-descending order into the header table. In the second 

scan, each transaction is scanned from the database, infrequent items in this transaction 

are removed. The  remaining frequent items are sorted according to the order in the header 

table and inserted into the FP-tree. If this itemset shares prefix with an iternset already in 

the FP-tree, the count of every node in that  prefix is increased by one. For every item not 

included in the shared prefix, a new node is created and its count is initialized with one. 

All nodes in the FP-tree sharing the same item-name are linked via the node-link field, 

and node-link field in the header table points to  the first node in the FP-tree having the 

itern-name. 

Similar to other data structures, projected FP-tree can be constructed progressively. If 

P is the parent of Q in the set enumeration tree, the Q-projected FP-tree can be con- 

structed by scanning the P-projected FP-tree twice. The construction process is similar to 

the construction of the initial FP-tree. 

Table 2.2: A transaction database (min-sup = 2) 

Given min-sup = 2, Figure 2.12(a) gives an  example of an FP-tree for the sample 

database in Table 3.1. Figure 2.12(b) shows an example of projected FP-tree. 

In [15], an improved version of FP-tree is proposed to  reduce the traverse time. In the 

improved version, each FP-tree is associated with an two-dimensional array. Each cell in 

the array stores the count of a 2-itemset in the FP-tree. Figure 2.12(b) and (d) are the 

array for the FP-tree in Figure 2.12(a) and (c),  respectively. The array is updated when 

constructing the FP-tree. Each cell is initialized as 0. When a transaction with count c is 

inserted into the FP-tree, for each combination of any two items in that  transaction, the 

corresponding cell is increased by c. 

Without using the array technique, for each item i in the header table of a n  projected 

FP-tree Tx, we construct a new projected FP-tree Txuti) by scanning TX twice. The first 

scan generates T a i l ( X ~  {i)), sort the items in Ta i l (X  U {i)) and construct the header table 

(Ordered) Frequent Items 

C ,  9, a, b, d, e, f 
c ,  a ,  e ,  f ,  h 

TID 

100 
200 

Items Bought 

a, 4 c ,  d, e, f, g 
a, c,  e, f ,  h, k 
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Header table 

............................ 

( a  ) Initial FP-tree 

Header table 

............ 

1 a:2 1 .... 1 6 
( c ) d-projected FP-tree 

c g a b d e f  

( b )  

Figure 2.12: FP-tree for the sample database in Table 3.1 

of TxuIi1.  The second scan construct the FP-tree Txuii1. With the arra: y' technique, the 

first scan can be omitted by reading the information in the array associated with FP-tree 

T x  As shown in [15], this technique can reduce the running time significantly. 

2.3.5 Summarization 

Each of the four data structures has its advantages and disadvantages. The horizontal 

bitvector is efficient in counting and memory. However, it has to scan the database once to  

count the support of one itemset. Using the vertical id-list, only a small proportion of the 

database is needed read to  compute the support of an itemset, however, if the database can 
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not be held in main memory, to  find all frequent length 2 itemset, its has to do intersections 

of between the tid-lists of any two length 1 itemsets. It thus has to do the intersection for 

I L1l * ( I  L1 I - 1)/2 times, where L1 is the set of frequent 1-itemsets. Those intersections require 

scanning the database for IL1 - 1)/2 times, thus in implementation we need to temporarily 

transform vertical tid-list into horizontal data format t o  compute the tid-list for all length 

2 frequent itemsets. The vertical bitvector is more efficient than vertical tid list when the 

support is high, however, when the support is low, this is not the case. This is because 

intersections between two bitvectors over the 0 region cannot be avoided. The FP-tree 

is a compact representation of the database in which different transactions can share the 

common prefix. When the overlaps between transactions in the database is small, FP-tree 

may not help save the space and the size of FP-tree may exceed the size of the database. 

Despite this advantage, it should however be noticed that the current fastest algorithm for 

mining maximal frequent itemsets uses the FP-tree as the main data structure. 

2.4 Pruning Techniques 

For searching in a set enumeration tree, various pruning techniques have been proposed to  

avoid searching unpromising branches. In this subsection, we give an  introduction to  four 

important pruning techniques that  have been used in the previous algorithms. 

2.4.1 Lookahead 

Lookahead is an  important pruning technique in maximal frequent itemset mining. It is 

firstly proposed in MaxMiner and used by other tree-based maximal frequent itemset mining 

algorithms. The idea of lookahead is that  if the leftmost itemset of a subtree rooted at  T 

is frequent, that  is, if T U l ail(^)^ is frequent, then we can avoid exploring the rest part of 

the subtree since all of them are the subsets of the leftmost itemset. 

In the breadth-first and the depth-first search algorithms, lookahead is implemented in 

different ways. Figure 2.13 illustrates the implementation of lookahead in MaxMiner. Let 

{ a ,  b, c, d, e) be the set of frequent items, in the next scan of the database, in addition to  

counting the support of candidate frequent length 2 itemsets ab, ac, ad,  ae,  bc,bd, be, cd, 

ce and de, frequencies of abcde, bcde, and cde are also counted as they are in the form of 

'Some algorithms (e.g., MaxMiner) do the superset checking before trimming F ( T )  t o  T a i l ( T ) ,  so they 
use T U F ( T )  instead o f  T U T a i l ( T ) .  
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ab ac ad a e  bc bd be cd ce de ab ac ad a e  bc bd be cd ce de 

A\\\\ abCde 
bcde cde 

abc abd abe acd ace ade bcd bce bde cde 

abcd abce abde acde bcde 

abcde 

Figure 2.13: Lookahead in breadth-first search using a set enumeration tree 

Q u F (Q) for some frequent length 1 itemset Q.  If Q u F (Q) is frequent, then the descendants 

of Q do not need to  be examined in the following scans. 

In the depth-first search, we have two approaches to  testing whether Q U Tail(Q) is 

frequent or not. One way (named HUTMFI in Mafia) is to  check whether Q U Tail(Q) is a 

subset of some MFI already found. Another way (named FHUT in Mafia) is to explore the 

leftmost path of the subtree rooted at  Q ,  as Q UTail(Q) is the leftmost node in the subtree 

rooted a t  Q. If it is frequent, we can skip exploring the rest part of the subtree. Those two 

ways are usually used together in most algorithms, and HUTMFI is usually applied before 

FHUT. 

2.4.2 Progressive Focusing 

There may exist millions of MFIs in a database. The superset check in the lookahead 

technique can be expensive. To accelerate superset check, the progressive focusing technique 

is proposed in GenMax. The idea is that  when exploring the subtree rooted at  P, we 

maintain a list of local MFIs M F I p ,  which are MFIs subsuming P. For each direct child 

Q = P U {i) of P, before unfolding the subtree rooted at  Q ,  we check whether i U Tail(Q) is 

a subset of some MFI in M FIp , instead of comparing Q U Tail (Q) against the whole set of 
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MFIs. Typically IMFIpl  is far less than I M F I I ,  so this technique can significantly reduce 

the time spent in superset check. 

Similar to the projected database construction, construction of local MFIs is progressive, 

that  is, M F I Q  is constructed from M F I p ,  where P is the parent of Q in the search tree. 

2.4.3 Dynamic Reordering 

Dynamic reordering is firstly proposed in MaxMiner and adopted by all the maximal fre- 

quent itemset mining algorithms proposed later. The idea of dynamic reordering is that  

sorting the items in the Ta i l (P )  in ascending order of their support in P-projected database 

may lead to more effective pruning of the search space. 

Suppose we are searching the subtree of P I  and Q = P U { i )  is a child of P .  If we 

sort items in Ta i l (P )  in support-ascending order, then Tail(Q) will consist of items having 

higher support than item i in the P-projected database. Thus QuTai l (Q)  is more likely to be 

frequent than in the situation where items in T a i l ( P )  are randomly ordered. The lookahead 

pruning technique therefore is more likely to  be applied to prune the search space. 

2.4.4 Parent Equivalence Pruning (PEP) 

PEP is firstly identified in closed frequent itemset mining algorithms CLOSET [24] and 

CHARM [32], and later used by Mafia and GenMax in maximal frequent itemset mining. 

When we search the subtree of P with T a i l ( P ) ,  if there is some item i E Ta i l (P )  

such that  support(P) = support(P U { i ) ) ,  then all transactions having P also have i .  It 

is impossible that  some MFIs have P but do not have i .  Therefore, we can move i from 

Ta i l (P )  to P ,  that  is, let Ta i l (P )  = Ta i l (P )  - { i )  and P = P U { i ) .  In this way we search 

the P-subtree with a smaller tail and the search space is reduced. 



Chapter 3 

Pattern- Aware Dynamic 

Scheduling 

In this chapter we propose a new maximal frequent itemset mining algorithm: pattern-aware 

dynamic  scheduling (PADS for short). 

Our algorithm is tree-based. We assume that  the data is main memory resident. Our 

algorithm can use data structures like vertical tid list, vertical bitvector and FP-tree. In 

current implementation, we use the  FP-tree as the main data structure for the following 

reasons. Firstly, FP-tree is a compact presentation of the database and has been shown a 

very efficient data structure. Secondly, to compare the performance of our search method to 

the currently best algorithm FPMax*, it is better to use the same data structure as FPMax* 

uses. 

Besides the integration of pruning techniques lookahead and progressive focusing, we use 

a novel search method called probing and reordering which differs significantly from either 

the previous breadth-first search or the depth-first search methods. Our algorithm also 

takes advantage of the current MFIs to  organize the future search space. Three optimization 

techniques are proposed to  improve the efficiency. As shown by the empirical study, our 

algorithm outperforms the currently best algorithm FPMax* with a clear margin. 
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3.1 Ideas 

As analyzed in Chapter 2, most previous tree-based algorithms basically follow the depth-first 

search or the breadth-first search and pruning framework. We notice that, though various 

pruning techniques have been applied, generating the subsets of MFIs still constitutes the 

major cost. In particular, the cost comes from two aspects. 

Firstly, given a set MFIs already found, the current approaches cannot fully utilize them 

to prune the search space. For example, in Figure 3.l(a), there are 5 MFIs in the database: 

abce, abde, acd, bcd and cde. Suppose items in Tail(0) are ordered lexicographically. All 

approaches except LCM v2 search the tree in the following order (the nodes in brackets are 

pruned by the lookahead pruning technique): 

0-a-ab-abc-abce-abde- (abe)  - a c - a c d - ( a c e - a d - a d e - a e ) - b - b c - b c d -  

(bce - bd - bde - be) - c - cd - cde - (ce - d - de - e) 

After finding abce, to search the rest MFIs, most current approaches have to search 

the children of abd, ac, b and c, during which nodes ac, b, bc and c are visited and their 

projected databakes are generated. Those nodes, however, are subsets of abce. Can we 

avoid visiting them? The answer is Yes. If after the discovery of the MFI abce, we reorder 

the items in Tail(0) such that any item not in abce precedes any item in abce, as shown in 

Figure 3.l(b),  then the subtrees of a ,  b, c and e can be pruned immediately, since all nodes 

in those subtrees are subsets of abce. All the other MFIs are now in the d-subtree, we thus 

can focus on only the d-subtree and search it recursively. 

Here, the MFI abce used to reorder the items is called the key pattern. 

Please note that LCM v2 uses the similar reordering idea, however, the key pattern used 

to reorder the children of the root node is obtained by fully identifying all MFIs in the 

subtree of its leftmost child and picking the longest one. In this example, after finding MFIs 

abce, abde, acd in the a-subtree, one of the longest MFI, say abce, is used to reorder the 

rest items in Tail(0), thus d is ordered before b, c and e, then the ab, ac and ae subtrees are 

pruned and only the ad-subtree is searched recursively. The inefficiency of this approach is 

analyzed in section 4.5. 

Secondly, the discovery of MFIs is costly. Even with the reordering technique, to find the 

MFI abce, the depth-first search method may still need to construct the projected databases 

for itemsets a ,  ab and abc. The projected database construction is costly. Suppose Q is an 

itemset, to construct the Q-projected database, we firstly need to count the support of 
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(a) before reordering 

a b c e  

abc abe ace bce 

(b) after reordering 

0 I temsets i n  el l ipses a re  MFls  

Figure 3.1: Different ordering of the tail may affect the computation efficiency-an example 
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Input :  a transaction database TDB,  an itemset S and support threshold min-sup; 
Ou tpu t :  the complete set of MFIs; 
Function PADS(TDB, S, min-sup) 

1: compute Tail(S); 
2: // head-and-tail pruning 

if there exists an MFI Y found before such that Tail(S) U S c Y t h e n  
r e tu rn ;  

3: if Tail(S) = 0 t h e n  
4: output S as an MFI; 
5 :  probe for a frequent itemset MI with prefix S; 
6 :  choose a key pattern Y among all MFIs already found; 
7 :  make a order R on items in Tail (S) according to Y; 
8: construct an FP-tree Ts for S; 
9: for each item i E (Tail(S) - Y) in the order of R 
10: call PADS(Ts, S U {i), min-sup); 
11: r e tu rn ;  

Figure 3.2: The Framework of the PADS algorithm. 

Q U {i) for each item i in Q's untrimmed tail F ( Q ) .  After that Tail(Q) is found and the 

Q-projected database is generated. How can we avoid this cost as much as possible? We 

observe that the discovery of an MFI can be implemented efficiently by using a probing 

process, which only require scanning the projected database of Q's parent once. We will 

introduce this technique in Section 3.2. 

The framework of our approach is shown in Figure 3.2. When searching the subtree 

rooted at an itemset S, after we know that S U Tail(S) is not a subset of any MFI found 

before and Tail(S) # 0, we firstly apply the probing process to try to  find one maximal 

frequent itemset MI in this subtree. Next, among all the MFIs already found, including the 

M I  found in the probing process, we pick one MFI Y as the key pattern. Then, we reorder 

items in Tail(S) in such a way that any item not in the key pattern precedes any item in the 

key pattern, and construct the S-projected FP-tree Ts. All the children of S in the search 

tree can then be divided into two groups: the promising children, whose descendants may 

have new MFIs, and the unpromising children, whose descendants do not have new MFIs. 

For each i E Tail (S) - Y, S U {i) is a promising children of S. For each i E Tail(S) n Y, 

S U {i) is an unpromising children of S. Only the promising children are searched in a 
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Input: an itemset S, S 's  untrimmed tail F ( S ) ,  an order R on F ( S ) ,  
and support threshold min-sup; 

Output: a frequent itemset; 
Method: 

1: S1 = S; 
2: Let i l l  i2 ,  ... ,in be the itemlist of F ( S )  after sorted according to R;  
3: for ( j  = 1; j 5 n;  j++ )  
4: if support(S1 U {ij)) >_ min-sup 
5: S1 = S I U  {i,); 
6: return St; 

Figure 3.3: The Framework of the Probing Process. 

recursive way. 

3.2 The Probing Process 

Let S be an itemset, suppose in the set enumeration tree we are searching the S-subtree 

and the untrimmed tail F ( S )  is {ill 22, ..., ik), how can we find one MFI S1 in the S-subtree 

without physically constructing any projected databases? We propose a probing process 

to tackle this problem. The probing process works as follows. For each item i in F ( S ) ,  

we check whether S U {i) is frequent. If yes, then let S = S U {i). Otherwise we keep S 

unchanged. We repeat this process until all items in F ( S )  are tried. Figure 3.3 gives the 

framework of the probing process. 

To ensure that all frequent itemsets output are maximal, we have the following Lemma 

and Theorem. 

Lemma 2 (Local Maximality of the Probing Result) Given a frequent itemset S ,  its 

untrimmed tail F ( S ) ,  and an order R on F (S ) ,  let Q be the output of the probing process, 

then there is not item i in F ( S )  but not in Q such that Q U {i) is frequent. That is, Q is 

local mazimal. 

Proof. Let i l ,  i2, ..., in be the item list we get after sorting F ( S )  according to R ,  suppose 
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ik is in F ( S )  but not in Q, and Q U {ik) is frequent. Let 

M = {ili E Q fl F(S)  and i precedes ik in order R) 

Then, before the k-th iteration in Figure 3.3, S' = S U M .  Since S U M U {ik) c Q U {ik), 

by the monotonicity property, S U M U {ik) is frequent. Then, ik  should be included into 

S' in line 5 in Figure 3.3. Contradiction. 0 

Theorem 2 (Global Maximality of the Probing Result) Given a frequent itemset S ,  

its untrimmed tail F (S ) ,  and an order R on F (S) ,  let Q be the output of the probing process, 

if Q is not subsumed by some MFIs found before, then Q itself is an MFI. 

Proof. We firstly prove that all nodes searched after node S-subtree cannot be a superset 

of S. 

Let T be an arbitrary node searched after S-subtree. Suppose M = alaz ... ai is the 

lowest common ancestor of S and T in the set enumeration tree, S = alaz ... aib l...b, and 

T = alaz ... aicl ...%. Let R' be an order on Tail(M) and i +RI j denote item i precedes item 

j according to order R'. Since S-subtree is searched before T ,  bl + p  cl. Let F = {ili E 

Tail(M) and cl + p  i) ,  then T E M U {cl ) U F, and bl is not in M U {cl) U F .  Therefore 

S is not a subset of T . 
Equivalently, we can say that in the set enumeration tree, all supersets of Q can either 

be a node in the S-subtree or a node searched before the S-subtree. By Lemma 2, there is 

no frequent proper superset of Q in the S-subtree. Thus, if Q is not a subset of some MFIs 

found before searching the S-subtree, Q itself is an MFI. 0 

Table 3.1: A transaction database. 

TID 
100 
200 

With different data structures, the probing process can be conducted differently. Since 

in our algorithm the FP-tree data structure is used, how can we take advantage of the 

FP-tree to conduct the probing process? Let us look at an example. 

Items Bought 

a, b, c, 4 e, f, g, i 
a, c, e, f, h, k 

(Ordered) Frequent Items 

C, 9, a, b, d, e, i, f 
c, a, e, .f, h 
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Hearder table 

(a) FP-tree 

Abagc 
bA bfL. fea feg fec 

feclg feac 

(b) The probing process 

I - I 

(c) The reordering process 

Figure 3.4: Probing and reordering using an FP-tree 
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Example 1 Given a transaction database in Table 3.1 and min-sup = 2, an FP-tree in 

Figure 3.4(a) is constructed. Suppose we are probing for an MFI in the f-subtree in the set 

enumeration tree, as shown in Figure 3.4(b). F ( f )  = {c, g, a ,  b, d, el i) .  We impose an order 

R on F ( f )  where R is the reverse of the item order in the header table. That is, we are 

probing with F (  f )  in the order i, el d, b, a,  g, c. 

In the FP-tree all paths from the root to the f nodes can be obtained by following the 

node link of f in the header table. The support of each path is recorded in the count field of 

the f node on it. In Figure 3.4(a), there are three paths having f :  pl(r-c-g-a-&d-e-i-f), 

pa(r-c-g-b-d- f )  and p3(r-c-i-e- f ) .  The supports of all the three paths are 1. To track 

these paths, for each path we keep a node on it. We call this node the representative 

node of the path. The representative nodes of all these paths form a list. At the beginning 

all nodes in the list are the f nodes in the FP-tree, as shown by list 1 in Figure 3.4(a). St 

is initialized with S = {f) .  

Let us now look at the parents of the f nodes. On path pl,  pz and p3, they are i, d and 

e, respectively. Since the nodes on each path are sorted in the order in the header table, 

thus pl cannot have node i, and p:! cannot have nodes i and e. In other words, a node k 

can only exist on paths whose representative node has a parent j such that j 5~ k. 

For all k E F ( f ) ,  let L(k) be the sum of the supports of paths whose representative 

nodes have a parents k. That is, 

L(k) = C p l s  node h a s  a parent  k s u ~ ~ o r t ( ~ )  

then we have L ( i ) = l ,  L (e )= l ,  L (d )= l ,  L(b)=O, L(a)=O, L(g)=O, L(c)=O. 

Since a node k can only exist on paths whose representative node has a parent j such 

that j 5~ k, thus 

support(St u {k)) = L(k) if V j  < R  k, L( j )  = 0 (3.1) 

and 

support(St U {k)) 5 L(j)  (3.2) 
j 5 ~ k  

In this example, support(S1 U {i)) = L(i) = 1, support(St U {e)) 5 L(i) + L(e) = 2, 

support(St U {d)) 5 L(i) + L(e) + L(d) = 3. 

Since St U {i) is infrequent, we remove i from F ( f )  and check next item e. The upper 

bound of support(S1~{e)) is 2, thus Stu{e) can be frequent. To calculate support(St~{e)) ,  
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we need to update the node list first. Let parent(k) denote the parent of k node in the FP- 

tree. For each node in the list, if it has a parent k 4~ e, we replace this node by its ancestor 

j in the FP-tree such that j 4~ e and parent(j)  >R e. After updating, intuitively, each 

node in the list is on the frontier between items already tried and items to be tried on the 

path it represents. Equation 3.1 and 3.2 can thus again be applied to calculate the support 

and support upper bounds. In this example, node f on pl is replaced by node i on pl ,  as 

shown by list 2 in Figure 3.4(a). 

Now for each item k in F ( f ) ,  we recalculate L(k). L(e)=2,  L (d )= l ,  L(b)=O, L(a)=O, 

L(g) = 0, L(c) = 0. Thus support(St U {e)) = L(e) = 2 2 min-sup, e is added to S t .  In 

this case, we remove all nodes from the list which do not have parent e, so that only paths 

having St are retained. Next we replace the rest nodes by their parent e, as shown by list 

3 in Figure 3.4(a). Each node in the list is again brought to the frontier between items 

already tried and items to be tried on the path it represents. 

We repeat this process until all items in F ( f )  are tried. In this example, feac  is the 

result of the probing process. Figure 3.4(b) shows the probing process in the search tree. 

I t  is easy to see that using FP-tree the probing process can be done by simply traversing 

the branches having f .  I t  is efficient since no projected databases are physically constructed. 

0 

Our probing process in fact adopts the pseudo database projection technique, which is 

firstly proposed in [23]. In Figure 3.5 we give the pseudo code for the probing process in an 

FP-tree. 

Since the probing process does not check whether St is subsumed by some MFI already 

found, according to Theorem 2, before we output it as an MFI, we need to further check 

whether it is a subset of some MFI found before to guarantee its maximality. 

3.3 Choosing the Key Pattern 

When searching the S-subtree, after the probing process, we get one frequent itemset M 

that can be used as a key pattern to reorder Tail(S). Let M = {MIM is an MFI, M > 
S and M n Tail(S) # 81, any M E M can be chosen as a key pattern for reordering the 

items in Tail(S).  However, using different key patterns may affect the size of the future 

search space. In this section, we discuss how to choose a good key pattern. 
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Input: a projected FP-tree Tp, an itemset S = P U {ik), S's untrimmed tail F (S ) ,  
an order R which is the reverse of the order in the header table, 
support threshold min-sup; 

Output: an frequent itemset which is maximal in the search tree rooted at S ;  
Method: 

Initialize a node list L with all the ik nodes in the Tp; 
for each n E L 

let p be the path from the root to node N; 
support(p) = the count recorded in the count field in n; 

S' = S;  
while (F(S)  # 0) { 

for each node n E L 
Let p be the path it represents; 
L (parent (n)) = L (parent (n)) + support (p) ; 

Let j be the item with the least order in F ( S )  s.t. CkSRj L(k) 2 min-sup; 
remove all items that precedes j in R from F(S) ;  
if Vk +R j, L(k) = 0 then { 

S = S U  {j);  
F(S) = F ( S )  - {j); 
remove all nodes from L that does not have parent j ;  
replace all nodes in L by their parent; 

1 
else 

for each node n E L with a parent p +R j 
replace n by its ancestor k such that k +R j and parent(k) ?R j; 

1 
return S'; 

Figure 3.5: Pseudo Code for the Probing Process Using the FP-tree. 
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From the previous analysis, the number of potential children of S is equal to ITail(S) - 

M ( = ITail (S) I - IM n Tail (S) 1 ,  thus the larger IM n Tail (S) I, the less the children we need 

to search in the future. 

In the set enumeration tree, any M E M exists in two parts: (1) the S-subtree, and (2) 

the subtrees searched before S. The probing process returns an M in the S-subtree. One 

question we may ask is, is the probing process necessary? We argue that M returned by 

the probing process is likely to cover more items in Tail(S) than some MFI searched before 

the S-subtree. Next let us give some analysis. 

Let St be the result returned by the probing process, then St exists in the S-subtree. 

By Lemma 2 we know that St n Tail(S) is a maximal frequent itemset in the S-projected 

database. 

We may sort the items in the tail in different orders and probe for multiple times, and 

then pick the best result. However, there is no guarantee that this multiple-probing process 

can return longer MFIs that have sharper pruning power. Moreover, the probing process is 

computationally costly even though the pseudo projection technique is used. Thus in our 

algorithm when visiting a node we probe only once. 

Now let us consider another key pattern candidate M E M,  M # St from the subtrees 

searched before S .  Let N = M - M nTail(S) = M -Tail (S), then MnTai l (S)  is a maximal 

frequent itemset in N-projected database. Otherwise there exists an item i not in M such 

that M n Tail (S) U {i) is frequent in N-projected database, then N U ( M  n Tail (S)) U {i) = 

M U {i) should be frequent in the input database D ,  M is not an MFI in D.  

Since M > S, N = M - Tail(S) > S - Tail(S) = S.  In addition, N # S, otherwise 

M = S U ( M  n Tail(S)) is in the S-subtree. Thus we have N > S .  Then the N-projected 

database is a subset of the S-projected database. With the same minimum support min-sup, 

it is likely that the size of a maximal frequent itemset in S-projected is larger than the size 

of a maximal frequent itemset in N-projected database. That is, ISt n Tail(S)I is likely 

larger than I M n Tail (S) 1. This is confirmed by the experiment. In our experiment, we 

find that for most of the time St covers more items in Tail(S) than any other MFI already 

found. This is the reason why we actively probe for an frequent itemset whenever we search 

a subtree. 

However, this is a heuristic. There is no guarantee that ISt n Tail(S)I is always larger 

than IM n Tail (S)  I. In some cases, M may have heavier overlap with Tail (S). 

To reduce the search space as much as possible, heuristically we can pick one Y E M 
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that  has the largest overlap with Tail(S) as the key pattern. That is, we pick the key 

pattern 

Y = a r g m a x ~ ~ ~  , S{IZ n Tail(S)I) 

Please note that  Tail(S) contains a t  least one item that is not in Y .  Otherwise, since 

S u Tail(S) is a subset of Y,  S is pruned by the lookahead pruning. 

We implement the key pattern selection as a byproduct of the lookahead pruning. For 

each itemset S ,  to apply the lookahead pruning, we have to check X U Tail(S) against all 

the MFIs found so far. At the same time, we also collect the information of IY n Tail(S)I. 

Thus, the cost of computing the candidate in this step is very little. 

To speed up the lookahead check, we also adopt the progressive focusing technique 

introduced in Section 2.4.2. We use prefix trees to organize MFIs found so far. Each S- 

projected FP-tree Ts is associated with an MFI tree MFI-Ts, which stores all MFIs having 

S as their subsets. MFI-Ts is constructed when Ts is constructed. Similar to the FP-trees, 

the construction of MFI trees takes a divide-and-conquer approach: let P be the parent of 

Q in the search tree, then MFI-TQ is constructed by scanning MFI-Tp once. 

3.4 The Reordering Process 

According to the key pattern Y chosen in the previous step, we can reorder items in Tail(S) 

so that any item in the key pattern precedes any item not in the key pattern. After reorder- 

ing, the children of S fall into two categories: the promising children and the unpromis- 

ing children. For each i E Tail(S) - Y, S U { i )  is a promising children of S.  For each 

i E Tail(S) n Y, S U { i )  is an unpromising children of S. There may exist new MFIs among 

the descendants of the promising children, but there cannot be any new MFIs among the 

descendants of the unpromising children. Unpromising children can then be pruned imme- 

diately. Only promising children are search in a recursive way. 

The above process is called pattern-aware dynamic scheduling (PADS for short). Here 

we prove the correctness of the above scheduling. 

Theorem 3 (Correctness of Tail Reorder) Let S be a frequent itemset, and Y be an 

MFI such that S c Y. If a dynamic search order with respect to Y is used to construct the 

set enumeration subtree of S ,  then for any item z E Tail(S) n Y and any pattern Z in the 

subtree of S U { z ) ,  Z c Y. 



CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 40 

Proof. As discussed before, Tai l (S U {z}) c Tail(S).  Since a dynamic search order with 

respect to Y is used, z is behind all items in Tail (S)  -Y in the order. That is, Tail (SU{Z}) c 
Y. Moreover, since z E Tail (S)  n Y  and S c Y, we have Z C ( S  u {z) u Tail ( S  u {z))) c Y. 

The theorem is proved. 0 

Example 2 Figure 3.4(c) gives an example of the reordering process. Before reordering, 

the order of items in Tail( f )  is e, d, b, a ,  g, c. Suppose f eac is selected to reorder Tail( f ). 

After reordering, the order of items in Tai l ( f )  becomes g,  d, b, a ,  c, e. The children f a ,  f c 

and f e are pruned immediately. 0 

Please note that our Pattern-Aware Dynamic Scheduling is different from the technique 

of dynamic ordering frequent items developed in the previous studies. Dynamic ordering 

frequent items is a heuristic method. Due to the correlations among frequent items, there 

exist counter examples where sorting frequent items in support ascending order does not 

help pruning. In contrast, the effect of dynamic search scheduling is determined once the 

key pattern is chosen. To search the subtree of a pattern S, once there exists at least one 

key pattern Y > S found before, a dynamic search order based on Y can be used to prune 

some children of S by dynamic search scheduling. It  is not heuristic. 

3.5 Summary 

Our Pattern-Aware Dynamic Scheduling approach consists of three phases. When searching 

the S-subtree, in the first phase, we applies the probing process to search for a frequent 

itemset M1.  Possibly M I  covers a good proportion of items in Tail(S) since there is no 

frequent itemsets in the S-subtree which is a proper superset of M I .  In the second phase, 

among all the MFIs already found, we pick one that is a superset of S and covers the most 

items in Tail(S) as the key pattern. In the third phase, we reorder the items in Tail(S) 

such that any item not in the key pattern precedes any item in the key pattern. After the 

reordering process, all the children of S are divided into promising children and unpromising 

children. Only promising children are searched by recursive calls. 

Different from classical depth-first search algorithms, in PADS, as long as a key pattern 

Y is selected to reorder the tail of S ,  in the S-subtree, any subsets of Y are no longer visited. 

The key pattern Y is selected efficiently by using a probing process and taking advantage 

of the lookahead pruning. 
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Optimization Techniques 

In this section we propose three optimizations, namely reduced counting, pattern expansion 

and head growth, to improve the efficiency of PADS search. 

4.1 Reduced Counting 

Counting is the major cost in frequent itemset mining. In PADS, we can reduce the number 

of items to be counted in each projected database. In this subsection, we introduce the 

optimization technique. 

As introduced in Chapter 2, to reduce the tree-traverse time, in FPMax* [15] an array 

technique is used. Using this technique, each FP-tree is associated with an array. Let S be 

an itemset, for every two items i and j in the header table of the FP-tree Ts, the array stores 

the support of {i, j) in the S-projected database. For each item i in the header table of the 

projected FP-tree Ts, Tai l (S U {i)) can be generated by reading the row of i in the array 

and collecting the item j such that the support in the cell of {i, j) is larger than min-sup, 

instead of by scanning Ts once. In our implementation, we also integrate this technique. 

However, by using the PADS search method, we do not need to construct the complete array. 

Let Y be the key pattern selected to reorder Tail(S).  Since for any item i E Y n Tail(S),  

S U (2)-subtree do not need to be searched, thus the tail of S U {i) does not need to be 

generated. Consequently, the row of i in the array does not need to be constructed. That 

is, in the array we only need to construct the rows for items in Tail(S) - Y. 

Let us look at  an example. 
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Hearder table 

c a e g b  

array without reduced counting 

c a e g b  

array with reduced counting 

Figure 4.1: Reduced Counting 

Example  3 In the database shown in Table 3.1, if feac is the selected as the key pattern to  

reorder the f-subtree, after reordering, the tail off  is {c, a, e, g, b, d). When constructing 

the the projected FP-tree Tf , we do not need to construct the rows for a and e, as shown 

in Figure 4.1. 0 

The space and computation saved by reduced counting depends on the key pattern Y.  

The more items Y covers in Tail(S), the more space and computation we can save. Let 

1 = Y n Tail(S),  then the upper (1 - 1) rows do not need to be constructed, thus we can 

save the cost of computing and storing (I - 1) * (I - 2)/2 array cells. Since the key pattern 

maximizes 1, it also maximizes the saving greedily. 

4.2 Pattern Expansion 

When searching the S-subtree, the more items in Tail(S), the larger the S-subtree and the 

search space. If we can identify some items in Tail(S) that definitely appear in the all the 

MFIs in the S-subtree, then we can remove these items from Tail(S) and add them to S .  

This adjustment reduces the size of the S-subtree and thus improves the efficiency. In this 
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section, we take advantage of the FP-tree data structure and develop a technique called 

pattern expansion to  achieve this goal. 

Figure 4.2: Pattern expansion 

Our pattern expansion technique is similar to the P E P  technique proposed in [lo]. With 

the FP-tree structure, we can do better. 

Definition 4 (Single Prefix) A single prefix in an FP-tree is a path from the root of the 

FP-tree to a node N such that N is the only node on this path that has more than one child. 

Suppose we are searching the S-subtree, and Ts is the S-projected FP-tree, for any item 

in the single prefix of the FP-tree, we can simply move it from the Tail(S) to  S .  Here we 

prove the correctness of pattern expansion. 

Theorem 4 (Correctness of Pattern Expansion) In the projected FP-tree Ts, let Tl 

be the set of items in the single prefix, then all MFIs in the S-subtree is a superset of TI. 

Proof. Let T2 = Tail  (S) - TI, and Trans(Y) be the set of transactions having Y. I t  is easy 

to see that  Vi E T2, T rans (S  U {i)) = Trans (S  U TI U {i)). Any MFI M in the S-subtree 

should have a t  least one item i E T2, otherwise M E X U Tl c S U Tl U {i). Since S U {i) is 

frequent and T rans (S  U {i)) = Trans (S  U TI U {i)), S U TI u {i) is also frequent, thus M 

is not maximal. 

Let M be a frequent itemset in the S-subtree and N = M n T2, then M > S U N, thus 

T rans (M)  C Trans (S  U N). Since for any i E T2, Trans(S  U {i)) = Trans (S  U TI U {i)), 
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thus Trans(M) G Trans(S  U N) = Trans(S  U TI U N).  Thus it is impossible that an MFI 

in the S-subtree does not have TI as its subset. 0 

Let us look at an example. 

Example 4 suppose we are searching the S-subtree and the projected FP-tree Ts as shown 

in Figure 4.2. The single prefix in Ts is the path c - g - b - i - d. Then, searching the 

S-subtree with tail {c, g, b, i ,  d, e, f ,  h) is equivalent to searching the S U {c, g, b, i ,  d)-subtree 

with tail {e, f ,  h). 0 

Please note that different from PEP, for i E TI, support(S U {i)) is not necessarily equal 

to support(S). Thus, compared with PEP, we can move more items from the tail to the 

head. 

4.3 Head Growth 

Projected database construction is one of the major costs in the MFI mining process, thus 

should be avoided as much as possible. Consider the situation where there is only one 

item i E Tail(S) that is not contained in the key pattern Y. If we only reorder the items 

in the tail, then we will need to construct the projected FP-tree Ts, and construct the 

projected FP-tree TsUii) by scanning Ts. Since S has only one promising child S U {i), Ts 

is constructed but used only once: for constructing Tsu{i}. In this situation, we can move i 

from the tail to  the head. That is, instead of searching the S-subtree, we can directly search 

the S U (2)-subtree, then we can skip constructing the projected FP-tree Ts. 

Please note that this Head Growth technique can be applied iteratively. After i is moved 

into the head, we compute Tai l (S U {i)). If again there is only one item i' in Tail(S U {i)) 

that is not covered by the key pattern, i' is also moved from Tail(S U {i)) to the head, and 

we search the S U {i, 2')-subtree directly. In this way we may skip constructing multiple 

projected FP-trees a t  one time. 

4.4 Algorithm 

Based on the above analysis, we have the PADS algorithm as shown in Figure 4.3. 
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4.5 Comparison with LCM v2 

As introduced in Chapter 2, the algorithm LCM v2 also reorders the tails and then prunes 

the unpromising branches. One may wonder what are the differences between PADS and 

LCM v2. In this section we make a thorough comparison between PADS and LCM v2. 

PADS and LCM v2 are different in the selection of the key patterns. In LCM v2, 

when searching the S-subtree, it first chooses an item i E Tail(S),  orders i before other 

items in Tail(S),  and fully searches the Su{i)-subtree. After that it picks the frequent 

itemset M of the maximum size in the SU{~)-subtree as the key pattern, and reorders 

items Tail(S) - {i) according to M. Similar to PADS, only the children of S extended 

by items in Tail(S) - M are searched further. The key patterns selected in this way 

are not necessarily good, since the item i is arbitrarily chosen. In contrast, PADS uses 

a systematic method to find heuristically good key patterns for tail reordering. 

2. PADS selects the key patterns more efficiently than LCM v2. In LCM v2, key patterns 

are obtained by searching a significant proportion of the S-subtree. During the search, 

the projected databases are constructed recursively. In contrast, the key patterns in 

PADS are byproducts of the lookahead pruning. The cost is very little compared to 

database projections. 

3. PADS and LCM v2 use different data structures. PADS uses FP-tree, while LCM v2 

uses simple arrays. 

4. PADS uses lookahead pruning to decide whether a frequent itemset is maximal. LCM 

uses a different method for maximality check: let S be a frequent itemset found and 

Trans(S)  be the set of transactions having S, S is maximal if and only if there is no 

item i not included by S but is frequent in Trans(S) .  Please note that i may not be 

included in Tail(S). So, for each transaction T in the S-projected database and each 

item i not in Tail(S),  LCM v2 needs to record the occurrence of i in T .  The support 

of i in Trans(S)  is the number of the occurrences of i in all T E Trans(S).  This 

method does not need to store all MFIs in main memory. The computation time for 

maximality check depends on the size of database, while in PADS it depends on the 

number of MFIs already found. 
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Input :  a transaction database T D B  and support threshold min-sup; 
Ou tpu t :  the set of MFIs; 
Method:  
1: F 1  =the set of frequent items; 
2: construct FP-tree for TDB;  
3: for each i E F 1  
4: call PADS(PDB,  {i}); 

Funct ion PADS(PDB,  X )  / / P D B  is the projected database of X's parent 
5: let Tai l (X) = the set of frequent items in P D B ;  
6: //head-and-tail pruning, progressive focusing search 

// should be used in the subpattern matching 
if there exists an MFI Y found before such that Tail(X) U X C Y t h e n  

r e tu rn ;  
7: if Tail(X) = 0 t h e n  
8: output X as an MFI; 
9: let Yl be the candidate key pattern obtained from the probing process; 
10: let Yz be the candidate key pattern as the byproduct of the subpattern checking; 
11: let Y be the better key pattern between Yl and Yz; 
12: / / ~ e a d  Increase 

if ITail(X) - Y I = 1 t h e n  
I = Tail(X) - Y,  X = X U  {I}, Tail(X) = Tail(X) - {I}; 
call PADS(PDB,  X )  
r e t u r n ;  

13: make a dynamic search order R on items in Tai l (X) according to Y; 
14: construct an FP-tree for PDBx;  
15: //pattern expansion 

let Z be the set items in the single prefix of P D B x ,  
X = X U Z ,  Tail(X) = Tail(X) - Z ;  

16: for each item i E (Tail(X) - Y) in the order of R 
17: call PADS(PDBx,  X U {i}); 
18: r e tu rn ;  

Figure 4.3: The PADS algorithm. 
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Empirical Study 

We conducted an extensive performance study to evaluation the effectiveness of the dynamic 

search scheduling and the efficiency of our PADS algorithm. Here we report the experimental 

results on five real data sets. The five real data sets were prepared by Roberto Bayardo 

from the UCI datasets [ll] and PUMSB. They have been used extensively in the previous 

studies [ I ,  10, 14, 15, 25, 281 as the benchmark data sets. Some characteristics of the five 

data sets are shown in Table 5.1. The Chess and Connect datasets are compiled from game 

state information, the mushroom dataset contains records describing the characteristics of 

various mushroom spices, Pumsb is prepared from the PUMS census data1, and Pumsb* is 

obtained from Pumsb by removing items with higher than 80% support. The numbers of 

MFIs in those datasets with some selected minimum supports are shown in Figure 5.1. In 

this table a support threshold is presented as a percentage with respect to the total number 

of transactions in the data set, that is, m ' ~ ~ u P  where D is the data set in question. 

All the experiments were conducted on a P C  computer running the Microsoft Windows 

XP SP2 Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB 

main memory, and a 160 GB hard disk. The programs were implemented in C/C++ using 

Microsoft Visual Studio. NET 2003. 

We compare our method with two state-of-the-art algorithms FPMax* [14] [15] and 

LCM v2 [28]. FPMax* is the winner in mining maximal frequent itemsets at the Workshop 

on Frequent Itemset Mining Implementations 2003 (FIMI'O3). According to the extensive 
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Figure 5.1: The number of MFIs on the five benchmark data sets with some minimum 
supports. 
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Table 5.1: Characteristics of benchmark data sets. 

Data set 

Chess 

empirical study reported at  FIMI'03, it outperforms MAFIA, GenMax and other MFI min- 

ing algorithms. LCM v2 is the winner at FIMI'04. It provides the functionalities for mining 

all/closed/maximal frequent itemsets. LCM v2 is currently the best algorithm for mining 

closed frequent itemsets. With respect to mining maximal frequent itemsets, it also demon- 

strates good performance and is thus included in our empirical study. We obtained the 

source codes of FPMax* and LCM v2 from the F'requent Itemset Mining Implementations 

Repository website (http://fimi.cs.helsinki.fi/). 

We firstly make comparison on three aspects: the runtime, the memory consumption, 

and the scalability with respect to the number of transactions in the database. To illustrate 

the reasons why PADS is more efficient, we also make comparison on the number of database 

projections and the number of maximality check operations, as database projections and 

maximality checks are the most costly operations in the mining process. 

5.1 The Runtime 

# tuples 

3,196 

Figure 5.2 shows the runtime comparison of the three algorithms on the five data sets. The 

curve PADS indicates the runtime of PADS with optimizations, while the curve PADS- 

indicates the runtime without optimizations. It should be mentioned that LCM v2 has 

execution problems under some circumstances. On the Pumsb dataset with min-sup lower 

than 40%, on the Pumsb* dataset with min-sup lower than 6%, and on the Connect dataset 

with min-sup lower than 0.2%, LCM v2 gives segmentation faults and cannot finish properly. 

Therefore parts of its results are missing. 

Figure 5.2 clearly shows that PADS outperforms FPMax* and LCM on the five data 

sets. Compared with FPMax*, the lower the support threshold, the larger the difference in 

runtime. With a smaller support threshold, more itemsets and longer itemsets are qualified 

# items 

76 

avg trans len 

37 
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Figure 5.2: The Runtime Comparison of the Three Algorithms. 
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as frequent itemsets. This trend suggests that  PADS is more scalable than FPMax* on 

mining a large number of long frequent itemsets. When the support threshold is low, the 

difference in runtime between the two methods can be more than 60%. 

PADS outperforms LCM v2 clearly for most of the time, especially on the Mushroom and 

the Connect datasets. The only circumstance LCM v2 outperforms PADS is on the Chess 

dataset with min-sup 5 15%. The reason is that the number of MFIs is large (more than 

1 million) but the database size is relatively small (only 3,196 tuples), so the maximality 

check method of LCM v2 still works well. 

The figures also show the effectiveness of the optimization techniques. On the five 

datasets, the optimization techniques contribute to the improvement in runtime as much as 

the reordering technique. 

5.2 Memory Consumption 

Figure 5.3 shows the virtual memory consumption of the three algorithms on the five 

datasets. The memory consumption values shown are peak values during the execution. 

On all these datasets, the memory usages of PADS and FPMax* are very close to each 

other. This is because PADS and FPMax* use the same data structure to store the pro- 

jected databases and MFIs. In fact in both PADS and FPMax*, the first FP-tree To and the 

first MFI tree MFI-T0 contribute to the major part of the memory usage. This is because 

projected FP-trees and projected MFI trees are typically of much smaller sizes. 

We also notice that there are some minor differences between the memory consumption 

of PADS and FPMax*. The reasons are as follows. Firstly, in PADS, to select the best key 

pattern to reorder the tail of an itemset S, we maintain two arrays: one records ITail(S)nMI 

and one records the address of M ,  where M is an MFI already found. The sizes of the two 

arrays depend on the number of MFIs having S. Thus, compared with FPMax*, PADS 

needs some additional memory. Secondly, by adopting the probing process and the head 

growth technique, PADS can avoid constructing the projected databases for some nodes in 

the search tree. Thus, the maximum memory needed by PADS for holding the projected 

databases can be less than that needed by FPMax*. 

I t  can also be seen that, different from LCM v2, PADS and FPMax* demonstrate dif- 

ferent characteristics in memory consumption. The memory usage of PADS and FPMax* is 

more sensitive to the number of MFIs, while the memory usage of LCM v2 is more sensitive 
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Figure 5.3: The Memory Comparison of the Three Algorithms. 
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to the size of the database. When the dataset is small but the number of MFIs is large, 

such as the Chess dataset with low minimum support, LCM v2 consumes less memory. In 

contrast, when the dataset is large but the number of MFIs is small, such as the Pumsb* 

dataset with high minimum support, FPMax* and PADS need less memory. 

The above difference is due to  the fact that LCM uses a different method for maximality 

check. I t  does not store the current set of MFIs in main memory. Instead, it uses the follow- 

ing observation: let S be a frequent itemset found and Trans(S)  be the set of transactions 

having S, S is maximal if and only if there is no item i not included by S but is frequent 

in Trans(S) .  Please note that i may not be included in Tail (S).  Since the S-projected 

database consists of only items in Tail(S),  to conduct maximality check, for each transac- 

tion T in the S-projected database and an item i not in Tail(S),  LCM v2 needs to  record 

the occurrence of i in T. The support of i in Trans(S)  is the number of the occurrences of 

i in all T E Trans(S) .  The memory consumption of LCM v2 is thus more sensitive to the 

size of the database. 

5.3 Scalability 

Figure 5.4 shows the scalability of the three algorithms on the three datasets of relatively 

large size: Pumsb, Pumsb* and Connect. We study the scalability of the three algorithms 

in two aspects: runtime scalability and memory scalability. We fixed the minimum support 

min-sup. For each dataset, we randomly generate four reduced datasets whose sizes range 

from 20% to 80% of its original size. Then we record the runtime and memory consumption 

of the three algorithms on those datasets. 

It can be seen that PADS shows the best scalability, while LCM v2 has the worst 

scalability. The efficiency of PADS shows the advantage of our search method. The cost in 

LCM v2 is caused by two reasons. Firstly, as mentioned in Section 4.5, in LCM v2, the time 

needed by the maximality checks depends on the size of the projected databases, instead of 

the number of MFIs already found. On large databases, the projected databases may still 

consist of many transactions, making the maximality check slow. Secondly, LCM v2 uses 

simple arrays, instead of FP-trees, as the main data  structure. In FP-trees, when the size 

of the database increases, more transactions can share common prefixes. In contrast, using 

simple arrays, only identical transactions can be merged. Therefore the FP-tree is more 

compact than the simple array, and database projection can be performed more efficiently. 
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Figure 5.4: Scalability on Three Datasets . 



CHAPTER 5. EMPIRICAL STUDY 55 

In terms of memory usage, as analyzed in Section 5.2, PADS and FPMax* share the 

same characteristics. The memory consumption in LCM v2 increases more quickly than 

both FPMax* and PADS. The first reason is that LCM v2 uses database reduction to 

conduct maximality checks which have to record extra information for each transaction in 

the projected database. In addition, LCM v2 uses simple arrays which are not as compact 

as FP-trees, therefore more memory is needed. 

5.4 Number of Database Projections and Maximality Check 

Operations 

What are the major reasons that PADS outperforms FPMax* and LCM v2? The major cost 

of MFI mining in the depth-first manner comes from two aspects: constructing projected 

databases and checking whether a frequent itemset or the union of the head and the tail of 

a node is a subset of some MFIs found before. 

5.4.1 Number of Database Projections 

Figure 5.5 shows the comparison of the three algorithms in terms of the number of projected 

databases. For PADS there are two kinds of projections: physical projections and pseudo 

projections. The number of physical projections is counted for comparison. 

I t  is shown that FPMax* constructs much fewer projected databases than LCM v2, even 

though LCM v2 adopts the reordering technique which can reduce the number of database 

projections. The reasons are as follows. 

Let S be an itemset, since LCM v2 does not store the MFIs found so far in main memory, 

it cannot utilize the current set of MFIs to decide whether S ~ T a i l ( S )  is frequent. Instead, 

it has to explore the leftmost path of the S-subtree, during which up to ITail(S)( projected 

databases may be constructed. 

In addition, in FPMax*, an optimization technique is used: when the S-projected FP- 

tree Ts has only a single path, S U Tail(S) is known frequent, thus we do not need to 

construct projected databases for any descendants of S in the search tree. In contrast, 

LCM v2 needs to construct projected databases recursively until the leftmost child of S is 

searched. 

Due to above two reasons, in FPMax* the number of projected databases can be less 
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than LCM v2 even though LCM v2 adopts the reordering technique. 

It can be seen that on all datasets, PADS constructs much fewer projected databases 

than FPMax* and LCM v2. The number of projected databases constructed by PADS is 

about 15 25% of that by FPMax* and 6 - 15% of that by LCM v2. This shows the power 

of our PADS search method and the effectiveness of the optimization techniques. 

5.4.2 Number of Maximality Check Operations 

Figure 5.6 shows the comparison of the three algorithms in terms of the number of the 

maximality check operations. PADS again needs fewer maximality check operations than 

both FPMax* and LCM v2 in most cases, but the comparison between FPMax* and LCM 

v2 is not stable. Here we give the following analysis. 

Firstly, since maximality check or lookahead check is needed to prune the unpromising 

subspaces, by reordering the items in the tail, the search spaces of PADS and LCM v2 

are more compact. Some subspaces can be pruned immediately without conducting any 

maximality check. Thus, compared with FPMax*, PADS and LCM v2 can save maximality 

checks by avoiding searching unpromising subspaces. 

Secondly, suppose S is an itemset, and S U Tail(S) is a subset of some MFIs already 

found. Since LCM v2 does not store the current set of MFIs in the main memory, it 

cannot decide the maximality of S U Tail (S) by checking whether S U Tail (S) is a subset 

of some MFI. Its maximality check method can only decide whether S is maximal or not. 

While PADS and FPMax* can stop searching the S-subtree in this case, LCM v2 has to 

explore the leftmost child of S. Thus, compared with PADS and FPMax*, LCM v2 needs 

additional ITail(S)I maximality checks to prune the S-subtree. This is the reason why with 

the reordering technique, LCM v2 may still need more maximality checks than FPMax*. 

The saving in generating fewer projected databases and fewer maximality checks well 

explains why PADS is more efficient than FPMax* and LCM v2. 

5.5 Summary 

The experimental results on the five benchmark datasets show that PADS is more efficient 

than FPMax* and LCM v2 in most cases. The efficiency of PADS comes from the fewer 

projected databases generated and fewer maximality check operations needed. With respect 
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Figure 5.5: Number of Projected Database Generated. 
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to the memory consumption, PADS shares similar characteristics with FPMax*. The mem- 

ory needed by PADS and FPMax* is more sensitive to the number of MFIs, instead of the 

size of the database. 



Chapter 6 

Conclusion 

In this thesis we introduced a new search method for mining maximal frequent itemsets 

from transaction databases. Our major contribution is that we do not follow the classical 

enumeration order which is used to enumerate all frequent itemsets. Instead, we proposed 

a novel probing and reordering search method, which takes the current set of mining results 

to schedule the future search, and makes the search more efficient. We developed three 

optimization techniques to improve the efficiency. As shown by the extensive empirical 

study using the benchmark real data sets, our method outperforms FPMax* and LCM v2, 

two state-of-the-art methods in maximal frequent itemset mining. 

Though we introduced our search method in the context of maximal frequent itemset 

mining, the Pattern-Aware Dynamic Scheduling method, however, may also be applied to 

other problems. Next we discuss some possible extensions. 

The maximal clique search problem bears many similarities to maximal frequent itemset 

mining. They are both searching for maximal combinations of items or vertices. With some 

necessary modifications, our method may be applied to the maximal clique search problem. 

In addition to frequent itemset mining, mining other frequent patterns is also well stud- 

ied by the data mining community. For example, frequent sequential patterns, frequent 

subgraphs and frequent subtrees. One interesting question we may ask is whether our 

Pattern-Aware Dynamic Scheduling approach can be applied to those problems. 

1. Mining closed/maximal sequential patterns. The problem of mining sequential pat- 

terns has been well studied. While frequent itemset mining searches for frequent com- 

binations of items, sequential pattern mining is interested in frequent subsequences of 



CHAPTER 6. CONCLUSION 61 

items. Then, can we search the sequential patterns in a more intelligent way so that 

we can avoid mining non-closed sequential patterns as much as possible? Can we mine 

maximal sequential patterns in a similar way by taking advantage of the current set 

of maximal frequent sequential patterns? Those are the interesting problems to be 

studied. 

2. Mining closed/maximal frequent subgraphs. Graphs are more complex structures 

than itemsets and sequences. Mining frequent subgraphs is more difficult than mining 

frequent itemsets. Similar to the set enumeration tree in the frequent itemset mining, 

in graph mining canonical label systems are used to systematically enumerate all 

graphs without having any duplicate. In the current approaches to graph mining, once 

a canonical label system is used, the enumeration order is determined. Our Pattern- 

Aware Dynamic Scheduling approach, however, requires changing the enumeration 

order dynamically. Then, can we add dynamics to the canonical label system so that 

the enumeration order can be changed according to the mining results we already got? 

This can be a problem to study, too. 
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