
EFFICIENT MAXIMAL FREQUENT ITEMSET MINING

BY PATTERN-AWARE DYNAMIC SCHEDULING

Xinghuo Zeng

B.Sc., Nanjing University, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E D E G R E E O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Xinghuo Zeng 2007

SIMON FRASER UNIVERSITY

Summer 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author

APPROVAL

Name:

Degree:

Title of thesis:

Xinghuo Zeng

Master of Science

Efficient Maximal Frequent Itemset Mining by Pattern-Aware

Dynamic Scheduling

Examining Committee: Dr. Wo-Shun Luk

Chair

Dr. Jian Pei, Senior Supervisor

Dr. Ke Wang, Supervisor

Dr. Martin Ester, SFU Examiner

Date Approved:

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make
a digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to
translate the thesis/project or extended essays, if technically possible, to any medium
or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of
any multimedia materials forming part of this work, may have been granted by the
author. This information may be found on the separately catalogued multimedia
material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in part,
and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

While frequent pattern mining is fundamental for many da ta mining tasks, mining maximal

frequent itemsets efficiently is important in both theory and applications of frequent itemset

mining. The fundamental challenge is how to search a large space of item combinations.

Most of the existing methods search an enumeration tree of item combinations in a depth-

first manner.

In this thesis, we develop a new technique for more efficient maximal frequent itemset

mining. Different from the classical depth-first search, our method uses a novel probing and

reordering search method. It uses the patterns found so far to schedule its future search so

that many search subspaces can be pruned. Three optimization techniques, namely reduced

counting, pattern expansion and head growth, are developed to improve the performance.

As indicated by a systematic empirical study, our new approach outperforms the currently

fastest maximal frequent itemset mining algorithm FPMax* clearly.

To my beloved family.

"He alone deserves freedom as well as life, who has to win them by conquest everyday."

- Johann Wolfgang von Goethe(1749-1832)

Acknowledgments

I would like to express my deep gratitude to my senior supervisor and mentor Dr. Jian Pei,

for his patience and guidance. As a beginner in research, I benefit a lot from discussions

with him. I thank him for sharing his experience and skills in research with me, for his

warm encouragement and care which help me to overcome the difficulties in my research

and life.

I would like to thank my supervisor Dr. Ke Wang, for his insightful comments which

help to improve the quality of my thesis. My thanks also go to Dr. Martin Ester, for his

valuable comments on my thesis and the generous help he offered me when I worked with

him as a TA. I am very thankful to Dr. Wo-Shun Luk for chairing my defence.

I am also grateful to my friends all over the world. I thank Ming Hua, Mag Lau, Bin

Zhou, Ji Xu, Yabo Xu, Dan Wang, Feng Wang, Wendy Wang and Xu Cheng for their kind

help during my study a t SFU. I thank Huizhen Tang in Beijing, Tianyu Cao and Shuxun

Cao in Nanjing, Edith Ngai and Raymond Wong in Hong Kong, Ted in Tokyo, Wei Wu in

Singapore and Yan Zhang in Netherlands, for their care and understanding.

My deepest gratitude goes to my parents, my sister and my aunt. I thank them for their

endless support and love all through my life. Never can I accomplish this without their love.

Contents

Approval i i

Abstract iii

Dedication iv

Quotat ion v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 The Frequent Itemset and the Maximal Frequent Itemset Mining Problem . . 1

1.2 Motivation and Contribution . 2

1.3 Thesis Organization . 3

2 Related Work 5

2.1 Main Memory Algorithms versus Out-of-core Algorithms 7

2.2 Search Methods . 7

2.2.1 Searching in a Subset Lattice . 8

2.2.2 Searching in a Subset Enumeration Tree 12

2.3 Da ta Structures . 16

vii

2.3.1 Horizontal Bitvector . 16

2.3.2 Vertical Transaction ID List . 18

2.3.3 Vertical Bitvector . 19

2.3.4 FP-tree . 22

2.3.5 Summarization . 24

Pruning Techniques . 25

2.4.1 Lookahead . 25

2.4.2 Progressive Focusing . 26

2.4.3 Dynamic Reordering . 27

. 2.4.4 Parent Equivalence Pruning (PEP) 27

3 P a t t e r n - A w a r e D y n a m i c Schedu l ing 2 8

3.1 Ideas . 29

3.2 The Probing Process . 32

3.3 Choosing the Key Pattern . 36

. 3.4 The Reordering Process 39

3.5 Summary . 40

4 O p t i m i z a t i o n Techn iques 4 1

4.1 Reduced Counting . 41

4.2 Pattern Expansion . 42

4.3 Head Growth . 44

. 4.4 Algorithm 44

. 4.5 Comparison with LCM v2 45

5 E m p i r i c a l S t u d y

. 5.1 The Runtime

. 5.2 Memory Consumption

. 5.3 Scalability

5.4 Number of Database Projections and Maximality Check Operations

. 5.4.1 Number of Database Projections

5.4.2 Number of Maximality Check Operations

. 5.5 Summary

...
Vlll

6 Conclusion

Bibliography

List of Tables

1.1 A transaction database . 2

2 .1 A summarization of previous algorithms on mining hlF1 itemsets 6

2.2 A transaction database (min-sup = 2) . 23

. 3.1 A transaction database 33

. 5.1 Characteristics of benchmark data sets 49

List of Figures

. 2.1 An example of a lattice and a set enumeration tree 8

. 2.2 The Apriori algorithm 9

. 2.3 Hybrid search in the sublattice with prefix A 11

2.4 A depth-first search algorithm in a set enumeration tree 14

. 2.5 The LCMmax algorithm 15

. 2.6 An example of horizontal bitvectors 16

. 2.7 Counting technique using horizontal bitvectors 17

. 2.8 An example of vertical transaction ID list 18

. 2.9 An example of diffset 20

. 2.10 Differences between tid-lists and vertical bitvectors 21

. 2.11 An example of compressed bitvectors 22

. 2.12 FP-tree for the sample database in Table 3.1 24

. 2.13 Lookahead in breadth-first search using a set enumeration tree 26

3.1 Different ordering of the tail may affect the computation efficiency-an example 30

. 3.2 The Framework of the PADS algorithm 31

. 3.3 The Framework of the Probing Process 32

. 3.4 Probing and reordering using an FP-tree 34

. 3.5 Pseudo Code for the Probing Process Using the FP-tree 37

. 4.1 Reduced Counting 42

. 4.2 Pattern expansion 43

. 4.3 The PADS algorithm 46

5.1 The number of MFIs on the five benchmark data sets with some minimum

. supports 48

. 5.2 The Runtime Comparison of the Three Algorithms 50

. 5.3 The Memory Comparison of the Three Algorithms 52

. 5.4 Scalability on Three Datasets 54

. 5.5 Number of Projected Database Generated 57

. 5.6 Number of Maximality Check Operations 58

xii

Chapter 1

Introduction

The problem of efficient mining of frequent itemsets is fundamental for many data mining

tasks, such as mining association rules (61, correlations [9], causality [27], sequential pat-

terns [7], episodes [21], partial periodicity [17], iceberg-cube computation [8], associative

classification [20], and subspace clustering [4]. Since it was firstly proposed in [5], this prob-

lem has been studied extensively. There exists prolific literature focusing on this problem,

in which various algorithms have been proposed.

1.1 The Frequent Itemset and the Maximal Frequent Itemset

Mining Problem

Let I = {i l , i2 , ..., in) be a set of items, an itemset S is a subset of I. Let 1 = ISI, then 1 is

called the length of S, and S is called an 1-itemset. An itemset S' subsumes an itemset S"

if and only if S' 2 S". For the sake of simplicity, we often write an itemset as a string of

items. For example, itemset {a, c, d) is often written as acd.

A transaction is a tuple (tid, Y) where tid is a unique transaction-id and Y is an itemset.

Transaction (t id ,Y) contains itemset S if and only if S Y. For a given transaction

database D which consists of multiple transactions, the support of an itemset S, denoted by

support(S), is the number of transactions containing S. That is,

For a given minimum support threshold min-sup, an iternset S is a frequent itemset or

as known as a frequent pattern if and only if support(S) 2 min-sup. Given a transaction

C H A P T E R 1 . INTRODUCTION

Table 1.1: A transaction database

database and a minimum support threshold, the problem of frequent itemset mining [5] is

to find the complete set of frequent itemsets.

For example, consider the transaction database D in Table 1.1. Let the support threshold

min-sup = 2. Since support(bc) = 4, it is a frequent itemset.

Requent itemsets have the following well-known monotonic Apriori property, or down-

ward closure property [5].

Theorem 1 (Apriori Property) If S is frequent in a transaction database D , then every

nonempty subset of S is frequent.

Proof. Let T r a n s (X) = {(tid,Y) E DIY > X) , and S1 be an nonempty subset of S. For

any transaction (t id ,Y) , if Y > S, Y _> S1. Then Trans(S1) > Trans (S) , ITrans(S1)(2
ITrans(S) 1 . That is, support(S1) >_ support(S). The theorem is proved. 0

According t o the Apriori property, a long frequent itemset of length 1 leads to (2' - 2)

shorter frequent itemsets. For example, in Table 1.1, if min-sup = 2, abcd is a frequent

itemset. All subsets of abcd including a , b, c, d, ab, . . . , bcd are frequent itemsets as well.

An itemset S is called a maximal frequent itemset or an MFI for short [25] if S is frequent

and every proper superset of S is infrequent. In Table 1.1, when min-sup = 2 , the MFIs

are abcd, bcde and df. The problem of mining maximal frequent itemsets or mining MFIs

for short is to find the complete set of MFIs.

1.2 Motivation and Contribution

Mining maximal frequent itemsets efficiently is important in both theory and applications

of frequent itemset mining. On the theoretical side, the MFIs serve as the border between

C H A P T E R I . INTRODUCTION 3

the frequent itemsets and the infrequent ones. With the set of WlFIs, for any itemset S,

whether it is frequent or not can be determined quickly using the Apriori property: if there

exist some MFI M such tha t S 2 M , then S is frequent, otherwise S is infrequent. In

addition, MFIs serve as a summary of all frequent itemsets. By the Apriori property, every

non-empty subset of an MFI is FI, thus the number of MFIs is much less than the number

of FIs. As an example, on the chess dataset with m i n - s u p = lo%, the number of F I is

1,394,140,008, but the number of MFIs is only 2,612,646.

On the application side, MFIs are used in a few interesting and challenging data mining

tasks. For example, using MFIs, we can find emerging patterns [12] which are itemsets

frequent in the positive samples and infrequent in the negative samples. If an itemset S

is a subset of some MFIs in the positive sample and a proper superset of some MFIs in

the negative sample, then S is an emerging pattern. Emerging patterns can be used to

construct effective classifiers [18]. As another example, using MFIs with respect to a series

of support thresholds, we can summarize and approximate the support information of all

frequent itemsets (221.

The fundamental challenge of mining MFIs is how t o search a large space of itemsets

and identify MFIs. Most of the existing methods search an enumeration tree of the set of

itemsets in a depth-first manner, and prune subtrees using the MFIs found before.

While the previous studies focus on catching pruning opportunities sharply, can we

systematically create pruning opportunities in the mining? In this thesis, we develop a

Pattern-Aware Dynamic Scheduling approach to tackle the problem. Different from the

classical depth-first search methods, our approach adopts a novel probing and reordering

method to search for MFIs. It uses the hlFIs found so far to schedule its future search

so that many search subspaces can be pruned. To further enhance the efficiency, three

optimization techniques, namely reduced counting, pattern expansion and head growth, are

proposed. As indicated by a systematic empirical study using the benchmark data sets, our

new approach outperforms the currently fastest maximal frequent itemset mining algorithm

FPMax* [15] in a clear margin.

1.3 Thesis Organization

The organization of this thesis is as follows. In Chapter 2 we give a systematic review on

related work. In Chapter 3 we propose our Pattern-Aware Dynamic Scheduling approach.

CHAPTER 1. INTRODUCTION 4

The three optimization techniques will be introduced in Chapter 4. An extensive empirical

comparison between the PADS algorithm and existing state-of-the-art algorithms will be

reported in Chapter 5. In Chapter 6 we will discuss how our approach can be applied to

other data mining problems, and conclude the study.

Chapter 2

Related Work

In this chapter we will give a systematically review related work on mining maximal frequent

itemsets.

The problem of maximal frequent itemset (MFI for short) mining has been extensively

studied since it was first proposed in (251. To tackle this problem, many algorithms have

been proposed. Here, we review nine representative algorithms, namely MaxEclat [29], Max-

Clique [29], Princer-Search [19], MaxMiner [25], Depthproject [I] , Mafia [lo] , GenMax [13],

FPMax* [15] and LCMmax [28].

In this chapter we compare those algorithms in four aspects:

1. Whether they are main memory algorithms or out-of-core algorithms1;

2. Methods used to organize the search procedures;

3. Data structures used to store data in main memory, if they are main memory algo-

rithms or if they are out-of-core algorithms, but require loading a proportion of the

database into main memory to speed up computation; and

4. Pruning techniques used to prune unpromising search space.

Table 2.1 gives a summarization of the comparison, where PADS is the new algorithm

we will introduce in Chapter 3.

'Out-of-core refers to algorithms which process da ta tha t is too large t o fit into the main memory of a
computer a t one time. Such algorithms must be optimized t o efficiently fetch and access data stored in slow
bulk memory such as hard drive or tape drives.

C
at

eg
or

y

L
at

ti
ce

B

as
ed

T
re

e
B

as
ed

T
ab

le
 2

.1
:

A
 s

um
m

ar
iz

at
io

n
of

 p
re

vi
ou

s
al

go
ri

th
m

s
on

 m
in

in
g

M
F

I
it

em
se

ts

A
lg

or
it

hm

M
ax

C
li

qu
e

M
ax

E
cl

at

P
ci

nc
er

-S
ea

rc
h

M
ax

M
in

er

D
ep

th
pr

oj
ec

t
M

af
ia

G

en
M

ax

F
P

M
ax

*
L

C
M

 v
2

P
A

D
S

M
ai

n
M

em
or

y

* * * * * *

D
at

a
S

tr
uc

tu
re

ve

rt
ic

al
 T

ID
 l

is
t

ve
rt

ic
al

 T
ID

 l
is

t

ho
ri

zo
nt

al
 b

iv
ec

to
r

ve
rt

ic
al

 b
iv

ec
to

r
di

ff
se

ts

F
P

-t
re

e
si

m
pl

e
ar

ra
y

F
P

-t
re

e

S
ea

rc
h

M
et

ho
d

hy
br

id

hy
br

id

hy
br

id

br
ea

d-
fi

rs
t

de
pt

h-
fi

rs
t

de
pt

h-
fi

rs
t

de
pt

h-
fi

rs
t

d
ep

t h
-f

ir
st

de

pt
h-

fi
rs

t
an

d
re

or
de

r
pr

ob
e

an
d

re
or

de
r

P
ru

ni
ng

 T
ec

hn
iq

ue
s

L
oo

ka
he

ad

* * t
 * * * *

P
E

P

* * *

D
yn

O
rd

r

* * * * * *

P
ro

gF
oc

* * * * *

CHAPTER 2. RELATED WORK 7

2.1 Main Memory Algorithms versus Out-of-core Algorithms

It is assumed that the whole database cannot be held into main memory when various

frequent itemsets mining algorithms are first proposed. Since multiple scans of the database

are needed, the mining process becomes 10-bounded, and one of the focuses of algorithm

design is to reduce the number of database scans. The early algorithms such as MaxEclat,

MaxClique, Princer-search, MaxMiner make this assumption.

However, there are some dense datasets with small size but a large number of MFIs,

which makes the problem CPU-bounded rather than 10-bounded. A good example is the

Chess data set generated from the UCI Chess dataset by Roberto Bayardo, the size of

which is only 334KB. When the minimum threshold is set to 3%) the number of MFIs is

7,682,809! FPMax*, the winner on mining MFIs a t Workshop on Frequent Itemset Mining

Implementations in 2 0 0 3 ~ takes more than 2,000 seconds to-mine all the MFIs on a computer

with a 3.0 GHz Pentium CPU and 1.0 G B main memory.

Moreover, main memory availability has increased by orders of magnitude in the past

decade, and nowadays many small to medium size databases can be held into main memory.

In addition, when the length of frequent patterns is long, the number of MFIs increases

exponentially, which makes the problem computationally difficult.

Thus, it is reasonable to assume that some databases can be held into main memory and

focus on CPU efficiency in algorithm design. Algorithms proposed later such as DepthPro-

ject, Mafia, Genhilax and FPMax all make this assumption.

2.2 Search Methods

Given a set of items, all its subsets can be organized by a subset lattice. Figure 2.1(a)3 gives

an example of a lattice. By the downward closure property of the frequent itemsets, that

is, all subsets of a frequent itemset are frequent, and all supersets of an infrequent itemset

are infrequent, mining maximal frequent itemsets is essentially finding the border between

frequent and infrequent itemsets in the lattice.

For each k-itemset S in the lattice, we can retain only the edge between S and the (k - 1)

' ~ e l d on 19 November 2003, Melbourne, Florida, USA in conjunction with ICDM'O3

3 ~ e draw the lattice with the empty set a t the top and the largest set a t the bottom, the conventional
bottom-up search, however, begins from the empty set. It thus actually follows the top-down direction in this
figure. The similar convention is applied to the top-down search.

CHAPTER 2. RELATED W O R K

abc abd abe acd ace ade bcd bce bde cde abc abd a b e acd ace ade bcd bce bde cde

abcd abce abde acde bcde -\\ abcd abce abde acde bcde

abcde abcde

(a) an item set lattice (b) a set enumeration tree

Figure 2.1: An example of a lattice and a set enumeration tree.

prefix4 of S and remove all the other edges connecting S and its (k - 1)-subsets. T h e subset

lattice is then reduced to a set enumeration tree [26], as illustrated by Figure 2 . l (b) .

Previous maximal frequent itemset mining algorithms organize the search space with the

help of either a subset lattice or a set enumeration tree. We thus can divide those algorithms

into two categories: lattice-based algorithms and tree-based algorithms.

2.2.1 Searching in a Subset Lattice

With the help of a lattice, we can search the MFIs with different approaches: the bottom-up

search, the top-down search, and the hybrid search which is a combination of both top-down

and bottom-up searches.

T h e bottom-up search is proposed in the Apriori algorithm [6]. Figure 2.2 gives the

complete Apriori algorithm. I t first scans the database once to find the set of frequent

single items L1. At the k(k >_ 2)-th level, we

1. joins any pair of frequent length (k - 1) itemsets sharing a (k - 2)- prefix to get the

4We assume there exists a lexicographical order among items. For simplicity, an itemset is represented
as a string sorted in this order.

CHAPTER 2. RELATED WORK

I n p u t : a transaction database D and support threshold min-sup;
O u t p u t : L , frequent itemsets in D ;
M e t h o d :
1: L1 =find-frequent-1-itemsets(D);
2: f o r (k = 2 ; L k - l # O ; k++){
3: Ck = a p r i ~ r i - g e n (L ~ - ~ , min,up);
4: for each transaction t E D{
5: Ct=subset(Ck , t);
6 : for e a c h candidate c E Ct
7: c.count++;

8: L k = { ~ E C k / c . c o u n t > _ m i n , u p }

1
9: r e t u r n L = Uk Lk;

p r o c e d u r e a p r i ~ r i - g e n (L ~ _ ~ : frequent (k - 1)-itemsets; min-sup: minimum support
threshold)
1: for each itemset l1 E Lk-1
2: for each itemset 12 E Lk-1
3 : if((ll[l] = 12[1]) A (11[2] = 12[2]) A ... A (ll[k - 21 = 12[k - 21)

r\(l1[k - 11 < 12[k - 1))) then{
4: c = l1[1]l1[2) ... ll[k - 2]11[k - ljl2[k - 1);
5 : if c has an infrequent (k - 1)-subset t h e n
6 : delete c;
7 : else add c to Ck;

}
8: r e t u r n Ck;

Figure 2.2: The Apriori algorithm

CHAPTER 2. RELATED WORK 10

candidate length k frequent itemsets Ck. For example, suppose a1 ... a k - 2 a k - 1 and

a1 ... ak-zak are two frequent k-itemsets, we can join them to get al...ak-2ak-lak a s

one candidate length k frequent itemsets;

2. delete from Ck any itemsets if one of its length (k - 1) subset is infrequent; and

3. count the supports of itemsets in Ck by scanning the database once to get the set of

frequent length k itemsets Lk.

This process continues until Lk is empty. All frequent itemsets are found and the set

of MFIs can be obtained by deleting those which are subsets of some frequent itemsets.

A disadvantage of this method is that it generates and counts the supports of all frequent

itemsets, which is more than necessary for identifying only the maximal frequent ztemsets.

In contrary to the bottom-up search, the top-down search starts from the maximal

itemset of the lattice, that is, the itemset that contains all items. If it is frequent, we are

done and output it as an MFI. Otherwise, suppose its length is k, we generate each of its

(k - 1)-subsets and check their supports. This process repeats until the itemset is frequent.

Let C be the set of frequent itemsets obtained in this process, then C is a superset of the

set of all MFIs. We need to eliminate from C those itemsets which are subsets of other

frequent itemsets in C to obtain the set of MFIs. The top-down search requires examining

all infrequent itemsets.

Due to the aforementioned reasons, for the maximal frequent itemset mining problem,

both the top-down and the bottom-up searches have their disadvantages, hence lattice-based

algorithms MaxEclat, MaxClique and Princer-Search combine the two methods in some way

to achieve higher efficiency.

The Princer-Search algorithm combines the bottom-up search and the top-down search:

both the bottom-up and the top-down searches are conducted simultaneously, and they help

each other to prune the search space. The pruning is based on the following observations:

(1) when an itemset is known frequent, then all of its subsets must be frequent and they

do not need to be examined anymore, and (2) when an itemset is known infrequent, then

all of its supersets must be infrequent, and they do not need to be examined anymore.

While the top-down search and the bottom-up search only use the first observation and the

second observation, respectively, to prune search space, Princer-Search combines those two

observations to prune search space. Long MFIs can be found in early scans of the database

by the top-down search, thus the bottom-up search does not need to examine their subsets

CHAPTER 2. RELATED W O R K

anymore. Similarly, short infrequent itemsets can be found in early scans by the bottom-up

search, top-down search then does not need to examine their supersets anymore. Thus,

compared with the bottom-up or the top-down search, Princer-Search needs fewer database

scans.

Both MaxEclat and MaxClique use the hybrid search to search for MFIs in the lattice.

The search consists of two phases: the hybrid phase which tries to get a long frequent

itemset S1, and the bottom-up phase which examines the rest nodes of the lattice which

are non-subsets of S1.

Hybrid Phase I Bottom-up Phase

Figure 2.3: Hybrid search in the sublattice with prefix A.

It should be mentioned that either MaxEclat or MaxClique does not search in the entire

lattice. Instead, they first partition the entire lattice into small sub-lattices, and conduct

hybrid search to find MFIs in each sub-lattice. The union of all MFIs in these sub-lattices

is a superset of the MFIs in the entire lattice since some itemsets may be locally maximal

but not globally maximal. For example, suppose abcde is a maximal frequent itemset in the

sublattice having prefix a , and bcde is a maximal frequent itemset in the sublattice having

prefix 6, then bcdeis a locally maximal frequent itemset but not globally maximal frequent

itemset. Thus, a post-processing phase is needed to eliminate those itemsets which are not

CHAPTER 2. RELATED WORK

globally maximal. We will give an example to show the hybrid search later.

The difference between MaxEclat and MaxClique lies in the way they partition the

lattice: MaxEclat partitions the lattice into multiple prefix-based equivalent classes while

MaxClique partitions it into maximal-clique-based pseudoequivalent classes. For further

details, please refer to [29].

Figure 2.3 gives an example of the hybrid search. After partitioning, the entire lattice

is decomposed into several sub-lattices. In the sublattice with prefix a , suppose ab, ac, ad,

ae and a f are known frequent and they form the starting point of the hybrid search. The

algorithm first combines ab with ac to generate abc and checks its support. If it is frequent,

the algorithm further extends abc with ad to get abcd and then checks its frequency. The

process repeats until the extension turns out to be infrequent. In this example, suppose

extension to abcde fails, then abcd is a candidate for maximal frequent itemset. This ends

the hybrid phase. In the folowing bottom-up phase, the algorithm examines the frequencies

of abe, ace, ade, abf , ac f , adf and ae f . The frequent ones, abe, ade, abf , adf and a e f , are

retained and an Apriori-like bottom-up search is conducted beginning from those itemsets

to find the rest MFIs in this sublattice.

2.2.2 Searching in a Subset Enumeration Tree

When searching in a subset enumeration tree, we can conduct either the breadth-first search,

as done in MaxMiner, or the depth-first search, as done in Depthproject, Mafia, GenMax,

FPMax and LCMmax.

To make the explanation easier, we first introduce some definitions. Let P be an itemset,

when we are visiting the P node in the set enumeration tree, P is also called the head of the

current search. We assume that we can sort the items according to an order R , and i +R j

denote item i precedes item j in order R . Then, we can define the Tail and Untrimmed Tail

of the current search as follows.

Def ini t ion 1 The tail of an empty itemset 0, Tai l (@), is the set of frequent items. That is,

Tail(@) = {tlsupport({t)) 2 min-sup).

Def ini t ion 2 Suppose P is the parent of Q in the set enumeration tree, R is an order on

Ta i l (P) , and Q = P U {i), the untrimmed tail of an itemset Q, F (Q) , is the set of items

ordered after item i in Ta i l (P) , that is, F (Q) = {tit E T a i l (P) and Vi E Q : i +R t).

CHAPTER 2. RELATED WORK 13

Def ini t ion 3 The tail of an non-empty itemset Q, Tail(Q), is the set of items in F(Q)

that are frequent extensions of Q . That is, Tail(Q) = {t E F(Q)lQ U {t) is frequent).

Let us look at an example. Suppose L1 = {a, b, c, d , el f , g) is the set of frequent items,

and P = 8, then Tai l{P) = L1. Let Q = {b) be a child of P, and the alphabetical order is

used to sort the items in Tai l (P) , then the set of items sorted after b in Ta i l (P) , that is,

{c, d l el f , g) , is F (Q) . For each item i E F (Q) , if Q U {i) is frequent, then i is inserted into

Tail(Q). Thus we have the folllowing lemma.

Lemma 1 If P is the parent of Q in the set enumeration tree, then Tai l (P) > F(Q) 2

Tail (Q) .

In the breadth-first search, for each frequent k-itemset Q, for each item i E F (Q) , QU{z)

is generated as a child of Q and inserted into Ck+l. The supports of itemsets in Ckfl are

counted by the next scan of the database. It should be noticed that the children generation

here is equivalent to the candidate generation in Apriori. Thus, the breadth-first search in

a set enumeration tree is in fact equivalent to the bottom-up search in its corresponding

lattice.

The tree structure, however, is more useful than the lattice as it possesses some nice

properties that can be employed to prune the search space. The lookahead pruning and

the dynamic reordering techniques are based on the properties of the set enumeration trees.

They will be introduced in Section 2.4.

The depth-first search in the set enumeration tree without any pruning proceeds in the

following way: at each node Q , F (Q) is generated from the Tail of its parent. For each

item i E F (Q) , count the support of Q U {i) . If it is frequent, insert i into Tail (Q). After

Tail(Q) is obtained, for each item i E Tail(Q), node Q U {i) is generated and processed

recursively. Figure 2.4 gives the depth-first search algorithm in the set enumeration tree.

The function DFS is first called with N = 8, T = L1, that is, the set of frequent 1-itemsets,

and L = 8. All frequent itemsets will be returned in L when the search terminates.

The depth-first search can be implemented by constructing projected databases. An

P-projected database consists of all and only the transactions subsuming P, and in each

transaction, only the items in Ta i l (P) are retained, and items not in Ta i l (P) are removed.

To search maximal frequent itemsets in the subtree of a in the set enumeration tree, we only

need to check the a-projected database. Similarly, to search the maximal frequent itemsets in

the subtree of ab, we only need to check the ab-projected database, which can be constructed

CHAPTER 2. RELATED WORK

Algorithm: depth-first search in a set enumeration tree.
Input: Database D ; minimum support threshold min-sup.
Output: frequent itemsets L in database D.
Methods:

1: L = 0 ;
2: L1 =find-frequent-1-itemsets(D);
3: L = L U L , ;
4: call DFS(0 , L l , L);
5 : return L;

procedure DFS(N: an itemset, T: tail of N , F : the set of frequent itemsets)
1: if (T = 0) then
2: L = L u N ;

else
3 : for each item i E T
4: N' = N U {i);
5 : F' = {t E Tli 4 t) ;
6 : T' = {t E F1lsupport(N' U t) > min-sup);
7 : call DFS(N1, T I , L);

Figure 2.4: A depth-first search algorithm in a set enumeration tree

CHAPTER 2. RELATED W O R K

ALGORITHM: LCMmax (P:itemset, H:items to be added)
1: H' :=the set of items e in H s.t. P u {e) is frequent
2: If H' = 0 then
3: If P U {e) is infrequent for any e then
4 : output P; return
5: End if
6: End if
7: Choose a n item e* E HI; H' := H' - {e*)
8: LCMmax(P U {e), HI)
9: P' := frequent itemset of the maximum size found in the recursive call in 7
10: For each item e E H - P' do
11: H' := H' - {e)
12: LCMmax(P U {e), HI)
13: End for

Figure 2.5: The LCMmax algorithm.

from the a-projected database. Since ab is a child of a in the set enumeration tree, the

depth-first search takes a divide-and-conquer strategy.

The examination of all frequent iternsets in either the breadth-first search or depth-first

search mentioned above is not necessary for the maximal frequent itemset mining problem.

In Section 2.4 we will introduce various pruning techniques which can be employed to prune

unpromising branches in the set enumeration tree.

LCMmax uses an interesting search method which is different from both depth-first

search and breadth-first search. When searching the I-subtree, it first picks an item e in the

tail, and searches the branch I U {e) recursively. Let P' be a frequent itemset of maximum

length obtained by the recursive search in the I U {e)-subtree, in the following steps, it

reorders the items in Tail(1) so that any item not in P' has an index less than any item in

P I , then a recursive call is generated for each e E Tail(1) - P I . In Section 3.6, we will give

a thorough analysis of LCMmax and compare it with our PADS algorithm.

CHAPTER 2. RELATED WORK

2.3 Data Structures

Main memory algorithms need some data structures to store the database in main memory.

Out-of-core algorithms such as MaxEclat and MaxClique also hold part of the database

into main memory to accelerate search. In the algorithms we review in this chapter, five

data structures, namely horizontal bitvector, vertical transaction ID list, vertical bitvector,

FP-tree and simple array, have been used. Simple array is used by LCMmax. It is a two-

dimensional array which consists of item lists for each transaction. It is a straightforward

representation of the database. Thus, in this subsection, we will introduce the rest four data

structures one by one.

2.3.1 Horizontal Bitvector

Horizontal bitvector(or bitstring) is firstly used in the algorithm Treeproject [2] for mining

all frequent itemsets. Based on this data structure, Depthproject was proposed for mining

maximal frequent itemsets.

a b c d e f a h
T I 0 abcefh
T20 bcef

T30 adgh
T40 bdfh

Min_sup=2
Tail(b)={c,e,f,h)

b-projected database:

T I 0 cefh
T20 cef
T40 fh

Figure 2.6: An example of horizontal bitvectors.

In this data structure, every transaction is represented by one bitvector, every item

corresponds to one bit in each bitvector. The bit is set to 1 if the item appears in the

CHAPTER 2. RELATED WORK 17

trasaction, and 0 otherwise. Figure 2.6 gives a n example of horizontal bitvectors for a

sample database and a projected database.

Each 8 consecutive correspond to 256 counters, each
counter correspond to one value of that byte.

T I 0 abcefh
T20 bcef
T30 dgh
T40 bdfh

e f a h

Counters for abcdefgh after scanning 4 transactions:

Support of an item is the sum of counts in the 128 counters which take
on the value of 1 of that byte.

Figure 2.7: Counting technique using horizontal bitvectors.

Specialized counting technique is developed for support counting in horizontal bitvector,

as illustrated by Figure 2.7. Assume that each transaction T contains n bits, and can

therefore be expressed in the form of [n/81 bytes. Each byte of the transaction contains

the information about the presence or absence of eight items, and the integer value of a

byte can take on any value from 0 to 28 - 1 = 255. For each 8 items represented by a

byte, 256 counters are maintained. When a transaction is scanned, for each byte in the

transaction, add 1 to the counter which represents the value of tha t transaction byte. This

C H A P T E R 2. RELATED W O R K 18

process repeats for each transaction in the database. Therefore, at the end of scanning, we

have 256 * In181 counts. For an item i , there are 25612 = 128 counters corresponding to its

presence. The support of an item i is the sum of those 128 counts in those counters.

The benefit of this counting technique is that it performs only 1 operation for each byte

in the transaction, which contains 8 items. Thus, this method is a factor of 8 faster than

the naive counting technique.

2.3.2 Vertical Transaction ID List

Vertical transaction ID list(tid-list for short) is firstly used for mining maximal frequent

itemsets in [33] in the algorithms MaxEclat and MaxClique. An improved version of tid-list

called diffsets is developed in [13] in the algorithm GenMax.

It should be noted that though MaxEclat, MaxClique and GenMax all use vertical data

representation, the search method of MaxEclat and MaxClique is different from that of

GenMax. While MaxEclat and MaxClique use a lattice-based search method, GenMax uses

a tree-based search method.

DATABASE

Transact~ons Items

Figure 2.8: An example of vertical transaction ID list

5

6

a b c d e

b c d

CHAPTER 2. RELATED W O R K 19

In this data structure, each item has one transaction ID list. The list of item i contains

the IDS of all transactions having i. Figure 2.8 gives an example. There are two advantages

of tid-lists: first, the support of a k-itemset can be computed by simply intersecting the

tid-lists of any of its two (k - 1)-subsets; second, to compute the support of an itemset,

using tid-lists can avoid scanning the whole database, only tid-lists relevant to the itemset

are needed.

An improved version of tid-lists is the diffsets, which is firstly proposed in [30]. Diffsets

are used in tree-based search method. The diffset of an itemset Q stores the difference

between the transaction id list of its parent P in the set enumeration tree and the transaction

id list of Q. Let t (X) denotes the tid-list of an itemset X , diffset of a node Q stores

t (P) - t (Q).

The diffset for an itemset Q , d(Q), can be computed as follows. If Q is a 1-itemset,

d(Q) = t (D) - t (Q) , where t(D) be the list of all transaction IDS. If the size of Q is larger

than 1, suppose the parent of Q in the search tree is P = Q - {j), and the parent of P is

P' = P - {i), then Q = P I U {i) U {j), and

d(Q) = d(P ' U (2) U { j))

= t (P1 u {i)) - t (P 1 u {j))

= t (P1 U {i)) - t (P1 U {j)) + t (P1) - t(P1)

= t(P1) - t (P1 U {j)) - (t(P1) - t (P1 u (2)))

= d(P1 u {j)) - d(P1 u {i))

The support of P u { i) can be computed by s u p p o r t (P ~ { i)) = support(P) - l d (P ~ { i)) l .

Figure 2.9 gives an example of diffsets. In this example, the diffsets on level 2 can be

computed from either the tid-lists or the diffsets on level 1. Diffsets on level k(k > 2) are

computed using the diffsets on level (k - 1).

2.3.3 Vertical Bitvector

Vertical bitvector is firstly introduced in [lo] in the algorithm Mafia. Vertical bitvector is

similar to tid-list, except that it uses bitmap, instead of a list of transaction IDS, to store

the transactions in which an item(set) occurs. There is one bit for each transaction in the

database. If item i appears in transaction j, then bit j of the bitvector for item i is set to

one; otherwise the bit is set to zero. This definition is the same for itemsets. The support

CHAPTER 2. RELATED W O R K

DATABASE

Transactions

1

Items

a b d e

3

4

T ID SET database

a b c d e DIFFSET database

level 1

ab ad bc bd be cd ce

a b d e

a b c e

5

6

abd abe ade bcd bce bde

a b c d e

b c d

abde

m

level 3

level 4

Figure 2.9: An example of diffset

C H A P T E R 2. RELATED W O R K

Vertical tid-lists Vertical Bitvectors

A B C D E A B C D E

Figure 2.10: Differences between tid-lists and vertical bitvectors

of an item(set) can be obtained by simply counting the number of ones in its bitvector.

Figure 2.10 shows the difference between tid-lists and vertical bitvectors.

Bitmap for item set (X U Y) can be computed by applying bitwise-AND operation to

bitmap(X) and bitmap(Y).

Compared with tid-lists, the benefit of vertical bitvector is its efficiency in space and in

the computation. Representing a transaction ID in tid-list require 32 bits, thus when the

support of an item(set) is more than 1/32(% 3%), which is around 3%, vertical bitvector is

less costly than tid-list in space. The time complexity of intersecting two tid-lists t l and t2 is

O(ltll + lt21), while the time complexity of intersecting two vertical bitvectors is 0(/D1/32),

where (Dl is the number of transactions of database D . The saving is obvious when the

support is high.

When the support of an itemset is low, the bitvector becomes sparse since most bits in

its bitvector are zeros. Bitwise-AND operation over the 0 regions is a waste of computation.

Compressed bitvector is proposed to avoid this problem. In the tree based searching method,

when we are searching in the P-subtree, all transactions that do not contain P is useless in

counting the support of P U {i). Thus we can remove those transactions from the bitvectors

of P and items in Tai l (P) . This leads to projected bitvectors for P . Figure 2.11 gives an

example of a projected bitvectors.

CHAPTER 2. RELATED W O R K

Vertical Bitvectors

Compressed Vert ical Bitvectors for (a)

b c d e

Figure 2.11: An example of compressed bitvectors

FP-tree is an extended prefix-tree structure for compact representation of relevant frequency

information in the database. It is firstly proposed in [16] in the context of mining all frequent

itemsets.

Each node in the FP-tree has three fields: item-name, count! and node-link. The field

item-name stores the item this node represents, the field count stores the support of the

itemset represented by the path from the root to this node, and the field node-link stores a

pointer to the next node having the same item-name.

Each FP-tree is associated with a header table. Each row in the header table stores the

name of a frequent item and a node-link which points to the first node in the FP-tree having

the item-name. Items in the header table are sorted in support-descending order.

An FP-tree is constructed by two scans of the database. In the first scan, all frequent

CHAPTER 2. RELATED WORK 2 3

items are found and inserted in support-descending order into the header table. In the second

scan, each transaction is scanned from the database, infrequent items in this transaction

are removed. The remaining frequent items are sorted according to the order in the header

table and inserted into the FP-tree. If this itemset shares prefix with an iternset already in

the FP-tree, the count of every node in that prefix is increased by one. For every item not

included in the shared prefix, a new node is created and its count is initialized with one.

All nodes in the FP-tree sharing the same item-name are linked via the node-link field,

and node-link field in the header table points to the first node in the FP-tree having the

itern-name.

Similar to other data structures, projected FP-tree can be constructed progressively. If

P is the parent of Q in the set enumeration tree, the Q-projected FP-tree can be con-

structed by scanning the P-projected FP-tree twice. The construction process is similar to

the construction of the initial FP-tree.

Table 2.2: A transaction database (min-sup = 2)

Given min-sup = 2, Figure 2.12(a) gives an example of an FP-tree for the sample

database in Table 3.1. Figure 2.12(b) shows an example of projected FP-tree.

In [15], an improved version of FP-tree is proposed to reduce the traverse time. In the

improved version, each FP-tree is associated with an two-dimensional array. Each cell in

the array stores the count of a 2-itemset in the FP-tree. Figure 2.12(b) and (d) are the

array for the FP-tree in Figure 2.12(a) and (c), respectively. The array is updated when

constructing the FP-tree. Each cell is initialized as 0. When a transaction with count c is

inserted into the FP-tree, for each combination of any two items in that transaction, the

corresponding cell is increased by c.

Without using the array technique, for each item i in the header table of a n projected

FP-tree Tx, we construct a new projected FP-tree Txuti) by scanning TX twice. The first

scan generates T a i l (X ~ {i)), sort the items in Ta i l (X U {i)) and construct the header table

(Ordered) Frequent Items

C , 9, a, b, d, e, f
c , a , e , f , h

TID

100
200

Items Bought

a, 4 c , d, e, f, g
a, c, e, f , h, k

CHAPTER 2. RELATED WORK

Header table

............................

(a) Initial FP-tree

Header table

............

1 a:2 1 1 6
(c) d-projected FP-tree

c g a b d e f

(b)

Figure 2.12: FP-tree for the sample database in Table 3.1

of TxuIi1. The second scan construct the FP-tree Txuii1. With the arra: y' technique, the

first scan can be omitted by reading the information in the array associated with FP-tree

T x As shown in [15], this technique can reduce the running time significantly.

2.3.5 Summarization

Each of the four data structures has its advantages and disadvantages. The horizontal

bitvector is efficient in counting and memory. However, it has to scan the database once to

count the support of one itemset. Using the vertical id-list, only a small proportion of the

database is needed read to compute the support of an itemset, however, if the database can

CHAPTER 2. RELATED WORK 2 5

not be held in main memory, to find all frequent length 2 itemset, its has to do intersections

of between the tid-lists of any two length 1 itemsets. It thus has to do the intersection for

I L1l * (I L1 I - 1)/2 times, where L1 is the set of frequent 1-itemsets. Those intersections require

scanning the database for IL1 - 1)/2 times, thus in implementation we need to temporarily

transform vertical tid-list into horizontal data format t o compute the tid-list for all length

2 frequent itemsets. The vertical bitvector is more efficient than vertical tid list when the

support is high, however, when the support is low, this is not the case. This is because

intersections between two bitvectors over the 0 region cannot be avoided. The FP-tree

is a compact representation of the database in which different transactions can share the

common prefix. When the overlaps between transactions in the database is small, FP-tree

may not help save the space and the size of FP-tree may exceed the size of the database.

Despite this advantage, it should however be noticed that the current fastest algorithm for

mining maximal frequent itemsets uses the FP-tree as the main data structure.

2.4 Pruning Techniques

For searching in a set enumeration tree, various pruning techniques have been proposed to

avoid searching unpromising branches. In this subsection, we give an introduction to four

important pruning techniques that have been used in the previous algorithms.

2.4.1 Lookahead

Lookahead is an important pruning technique in maximal frequent itemset mining. It is

firstly proposed in MaxMiner and used by other tree-based maximal frequent itemset mining

algorithms. The idea of lookahead is that if the leftmost itemset of a subtree rooted at T

is frequent, that is, if T U l ail(^)^ is frequent, then we can avoid exploring the rest part of

the subtree since all of them are the subsets of the leftmost itemset.

In the breadth-first and the depth-first search algorithms, lookahead is implemented in

different ways. Figure 2.13 illustrates the implementation of lookahead in MaxMiner. Let

{ a , b, c, d, e) be the set of frequent items, in the next scan of the database, in addition to

counting the support of candidate frequent length 2 itemsets ab, ac, ad, ae, bc,bd, be, cd,

ce and de, frequencies of abcde, bcde, and cde are also counted as they are in the form of

'Some algorithms (e.g., MaxMiner) do the superset checking before trimming F (T) t o T a i l (T) , so they
use T U F (T) instead o f T U T a i l (T) .

CHAPTER 2. RELATED WORK

ab ac ad a e bc bd be cd ce de ab ac ad a e bc bd be cd ce de

A\\\\ abCde
bcde cde

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 2.13: Lookahead in breadth-first search using a set enumeration tree

Q u F (Q) for some frequent length 1 itemset Q. If Q u F (Q) is frequent, then the descendants

of Q do not need to be examined in the following scans.

In the depth-first search, we have two approaches to testing whether Q U Tail(Q) is

frequent or not. One way (named HUTMFI in Mafia) is to check whether Q U Tail(Q) is a

subset of some MFI already found. Another way (named FHUT in Mafia) is to explore the

leftmost path of the subtree rooted at Q , as Q UTail(Q) is the leftmost node in the subtree

rooted a t Q. If it is frequent, we can skip exploring the rest part of the subtree. Those two

ways are usually used together in most algorithms, and HUTMFI is usually applied before

FHUT.

2.4.2 Progressive Focusing

There may exist millions of MFIs in a database. The superset check in the lookahead

technique can be expensive. To accelerate superset check, the progressive focusing technique

is proposed in GenMax. The idea is that when exploring the subtree rooted at P, we

maintain a list of local MFIs M F I p , which are MFIs subsuming P. For each direct child

Q = P U {i) of P, before unfolding the subtree rooted at Q , we check whether i U Tail(Q) is

a subset of some MFI in M FIp , instead of comparing Q U Tail (Q) against the whole set of

C H A P T E R 2. RELATED W O R K

MFIs. Typically IMFIpl is far less than I M F I I , so this technique can significantly reduce

the time spent in superset check.

Similar to the projected database construction, construction of local MFIs is progressive,

that is, M F I Q is constructed from M F I p , where P is the parent of Q in the search tree.

2.4.3 Dynamic Reordering

Dynamic reordering is firstly proposed in MaxMiner and adopted by all the maximal fre-

quent itemset mining algorithms proposed later. The idea of dynamic reordering is that

sorting the items in the Ta i l (P) in ascending order of their support in P-projected database

may lead to more effective pruning of the search space.

Suppose we are searching the subtree of P I and Q = P U { i) is a child of P . If we

sort items in Ta i l (P) in support-ascending order, then Tail(Q) will consist of items having

higher support than item i in the P-projected database. Thus QuTai l (Q) is more likely to be

frequent than in the situation where items in T a i l (P) are randomly ordered. The lookahead

pruning technique therefore is more likely to be applied to prune the search space.

2.4.4 Parent Equivalence Pruning (PEP)

PEP is firstly identified in closed frequent itemset mining algorithms CLOSET [24] and

CHARM [32], and later used by Mafia and GenMax in maximal frequent itemset mining.

When we search the subtree of P with T a i l (P) , if there is some item i E Ta i l (P)

such that support(P) = support(P U { i)) , then all transactions having P also have i . It

is impossible that some MFIs have P but do not have i . Therefore, we can move i from

Ta i l (P) to P , that is, let Ta i l (P) = Ta i l (P) - { i) and P = P U { i) . In this way we search

the P-subtree with a smaller tail and the search space is reduced.

Chapter 3

Pattern- Aware Dynamic

Scheduling

In this chapter we propose a new maximal frequent itemset mining algorithm: pattern-aware

dynamic scheduling (PADS for short).

Our algorithm is tree-based. We assume that the data is main memory resident. Our

algorithm can use data structures like vertical tid list, vertical bitvector and FP-tree. In

current implementation, we use the FP-tree as the main data structure for the following

reasons. Firstly, FP-tree is a compact presentation of the database and has been shown a

very efficient data structure. Secondly, to compare the performance of our search method to

the currently best algorithm FPMax*, it is better to use the same data structure as FPMax*

uses.

Besides the integration of pruning techniques lookahead and progressive focusing, we use

a novel search method called probing and reordering which differs significantly from either

the previous breadth-first search or the depth-first search methods. Our algorithm also

takes advantage of the current MFIs to organize the future search space. Three optimization

techniques are proposed to improve the efficiency. As shown by the empirical study, our

algorithm outperforms the currently best algorithm FPMax* with a clear margin.

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

3.1 Ideas

As analyzed in Chapter 2, most previous tree-based algorithms basically follow the depth-first

search or the breadth-first search and pruning framework. We notice that, though various

pruning techniques have been applied, generating the subsets of MFIs still constitutes the

major cost. In particular, the cost comes from two aspects.

Firstly, given a set MFIs already found, the current approaches cannot fully utilize them

to prune the search space. For example, in Figure 3.l(a), there are 5 MFIs in the database:

abce, abde, acd, bcd and cde. Suppose items in Tail(0) are ordered lexicographically. All

approaches except LCM v2 search the tree in the following order (the nodes in brackets are

pruned by the lookahead pruning technique):

0-a-ab-abc-abce-abde- (abe) - a c - a c d - (a c e - a d - a d e - a e) - b - b c - b c d -

(bce - bd - bde - be) - c - cd - cde - (ce - d - de - e)

After finding abce, to search the rest MFIs, most current approaches have to search

the children of abd, ac, b and c, during which nodes ac, b, bc and c are visited and their

projected databakes are generated. Those nodes, however, are subsets of abce. Can we

avoid visiting them? The answer is Yes. If after the discovery of the MFI abce, we reorder

the items in Tail(0) such that any item not in abce precedes any item in abce, as shown in

Figure 3.l(b), then the subtrees of a , b, c and e can be pruned immediately, since all nodes

in those subtrees are subsets of abce. All the other MFIs are now in the d-subtree, we thus

can focus on only the d-subtree and search it recursively.

Here, the MFI abce used to reorder the items is called the key pattern.

Please note that LCM v2 uses the similar reordering idea, however, the key pattern used

to reorder the children of the root node is obtained by fully identifying all MFIs in the

subtree of its leftmost child and picking the longest one. In this example, after finding MFIs

abce, abde, acd in the a-subtree, one of the longest MFI, say abce, is used to reorder the

rest items in Tail(0), thus d is ordered before b, c and e, then the ab, ac and ae subtrees are

pruned and only the ad-subtree is searched recursively. The inefficiency of this approach is

analyzed in section 4.5.

Secondly, the discovery of MFIs is costly. Even with the reordering technique, to find the

MFI abce, the depth-first search method may still need to construct the projected databases

for itemsets a , ab and abc. The projected database construction is costly. Suppose Q is an

itemset, to construct the Q-projected database, we firstly need to count the support of

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

(a) before reordering

a b c e

abc abe ace bce

(b) after reordering

0 I temsets i n el l ipses a re MFls

Figure 3.1: Different ordering of the tail may affect the computation efficiency-an example

CHAPTER 3. PATTERN-AWA RE DYNAMIC SCHEDULING

Input : a transaction database TDB, an itemset S and support threshold min-sup;
Ou tpu t : the complete set of MFIs;
Function PADS(TDB, S, min-sup)

1: compute Tail(S);
2: // head-and-tail pruning

if there exists an MFI Y found before such that Tail(S) U S c Y t h e n
r e tu rn ;

3: if Tail(S) = 0 t h e n
4: output S as an MFI;
5 : probe for a frequent itemset MI with prefix S;
6 : choose a key pattern Y among all MFIs already found;
7 : make a order R on items in Tail (S) according to Y;
8: construct an FP-tree Ts for S;
9: for each item i E (Tail(S) - Y) in the order of R
10: call PADS(Ts, S U {i), min-sup);
11: r e tu rn ;

Figure 3.2: The Framework of the PADS algorithm.

Q U {i) for each item i in Q's untrimmed tail F (Q) . After that Tail(Q) is found and the

Q-projected database is generated. How can we avoid this cost as much as possible? We

observe that the discovery of an MFI can be implemented efficiently by using a probing

process, which only require scanning the projected database of Q's parent once. We will

introduce this technique in Section 3.2.

The framework of our approach is shown in Figure 3.2. When searching the subtree

rooted at an itemset S, after we know that S U Tail(S) is not a subset of any MFI found

before and Tail(S) # 0, we firstly apply the probing process to try to find one maximal

frequent itemset MI in this subtree. Next, among all the MFIs already found, including the

M I found in the probing process, we pick one MFI Y as the key pattern. Then, we reorder

items in Tail(S) in such a way that any item not in the key pattern precedes any item in the

key pattern, and construct the S-projected FP-tree Ts. All the children of S in the search

tree can then be divided into two groups: the promising children, whose descendants may

have new MFIs, and the unpromising children, whose descendants do not have new MFIs.

For each i E Tail (S) - Y, S U {i) is a promising children of S. For each i E Tail(S) n Y,

S U {i) is an unpromising children of S. Only the promising children are searched in a

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

Input: an itemset S, S 's untrimmed tail F (S) , an order R on F (S) ,
and support threshold min-sup;

Output: a frequent itemset;
Method:

1: S1 = S;
2: Let i l l i2 , ... ,in be the itemlist of F (S) after sorted according to R;
3: for (j = 1; j 5 n; j++)
4: if support(S1 U {ij)) >_ min-sup
5: S1 = S I U {i,);
6: return St;

Figure 3.3: The Framework of the Probing Process.

recursive way.

3.2 The Probing Process

Let S be an itemset, suppose in the set enumeration tree we are searching the S-subtree

and the untrimmed tail F (S) is {ill 22, ..., ik), how can we find one MFI S1 in the S-subtree

without physically constructing any projected databases? We propose a probing process

to tackle this problem. The probing process works as follows. For each item i in F (S) ,

we check whether S U {i) is frequent. If yes, then let S = S U {i). Otherwise we keep S

unchanged. We repeat this process until all items in F (S) are tried. Figure 3.3 gives the

framework of the probing process.

To ensure that all frequent itemsets output are maximal, we have the following Lemma

and Theorem.

Lemma 2 (Local Maximality of the Probing Result) Given a frequent itemset S , its

untrimmed tail F (S) , and an order R on F (S) , let Q be the output of the probing process,

then there is not item i in F (S) but not in Q such that Q U {i) is frequent. That is, Q is

local mazimal.

Proof. Let i l , i2, ..., in be the item list we get after sorting F (S) according to R , suppose

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

ik is in F (S) but not in Q, and Q U {ik) is frequent. Let

M = {ili E Q fl F(S) and i precedes ik in order R)

Then, before the k-th iteration in Figure 3.3, S' = S U M . Since S U M U {ik) c Q U {ik),

by the monotonicity property, S U M U {ik) is frequent. Then, ik should be included into

S' in line 5 in Figure 3.3. Contradiction. 0

Theorem 2 (Global Maximality of the Probing Result) Given a frequent itemset S ,

its untrimmed tail F (S) , and an order R on F (S) , let Q be the output of the probing process,

if Q is not subsumed by some MFIs found before, then Q itself is an MFI.

Proof. We firstly prove that all nodes searched after node S-subtree cannot be a superset

of S.

Let T be an arbitrary node searched after S-subtree. Suppose M = alaz ... ai is the

lowest common ancestor of S and T in the set enumeration tree, S = alaz ... aib l...b, and

T = alaz ... aicl ...%. Let R' be an order on Tail(M) and i +RI j denote item i precedes item

j according to order R'. Since S-subtree is searched before T , bl + p cl. Let F = {ili E

Tail(M) and cl + p i) , then T E M U {cl) U F, and bl is not in M U {cl) U F . Therefore

S is not a subset of T .
Equivalently, we can say that in the set enumeration tree, all supersets of Q can either

be a node in the S-subtree or a node searched before the S-subtree. By Lemma 2, there is

no frequent proper superset of Q in the S-subtree. Thus, if Q is not a subset of some MFIs

found before searching the S-subtree, Q itself is an MFI. 0

Table 3.1: A transaction database.

TID
100
200

With different data structures, the probing process can be conducted differently. Since

in our algorithm the FP-tree data structure is used, how can we take advantage of the

FP-tree to conduct the probing process? Let us look at an example.

Items Bought

a, b, c, 4 e, f, g, i
a, c, e, f, h, k

(Ordered) Frequent Items

C, 9, a, b, d, e, i, f
c, a, e, .f, h

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

Hearder table

(a) FP-tree

Abagc
bA bfL. fea feg fec

feclg feac

(b) The probing process

I - I

(c) The reordering process

Figure 3.4: Probing and reordering using an FP-tree

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 35

Example 1 Given a transaction database in Table 3.1 and min-sup = 2, an FP-tree in

Figure 3.4(a) is constructed. Suppose we are probing for an MFI in the f-subtree in the set

enumeration tree, as shown in Figure 3.4(b). F (f) = {c, g, a , b, d, el i) . We impose an order

R on F (f) where R is the reverse of the item order in the header table. That is, we are

probing with F (f) in the order i, el d, b, a, g, c.

In the FP-tree all paths from the root to the f nodes can be obtained by following the

node link of f in the header table. The support of each path is recorded in the count field of

the f node on it. In Figure 3.4(a), there are three paths having f : pl(r-c-g-a-&d-e-i-f),

pa(r-c-g-b-d- f) and p3(r-c-i-e- f) . The supports of all the three paths are 1. To track

these paths, for each path we keep a node on it. We call this node the representative

node of the path. The representative nodes of all these paths form a list. At the beginning

all nodes in the list are the f nodes in the FP-tree, as shown by list 1 in Figure 3.4(a). St

is initialized with S = {f) .

Let us now look at the parents of the f nodes. On path pl, pz and p3, they are i, d and

e, respectively. Since the nodes on each path are sorted in the order in the header table,

thus pl cannot have node i, and p:! cannot have nodes i and e. In other words, a node k

can only exist on paths whose representative node has a parent j such that j 5~ k.

For all k E F (f) , let L(k) be the sum of the supports of paths whose representative

nodes have a parents k. That is,

L(k) = C p l s node h a s a parent k s u ~ ~ o r t (~)

then we have L (i) = l , L (e)= l , L (d)= l , L(b)=O, L(a)=O, L(g)=O, L(c)=O.

Since a node k can only exist on paths whose representative node has a parent j such

that j 5~ k, thus

support(St u {k)) = L(k) if V j < R k, L(j) = 0 (3.1)

and

support(St U {k)) 5 L(j) (3.2)
j 5 ~ k

In this example, support(S1 U {i)) = L(i) = 1, support(St U {e)) 5 L(i) + L(e) = 2,

support(St U {d)) 5 L(i) + L(e) + L(d) = 3.

Since St U {i) is infrequent, we remove i from F (f) and check next item e. The upper

bound of support(S1~{e)) is 2, thus Stu{e) can be frequent. To calculate support(St~{e)) ,

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 36

we need to update the node list first. Let parent(k) denote the parent of k node in the FP-

tree. For each node in the list, if it has a parent k 4~ e, we replace this node by its ancestor

j in the FP-tree such that j 4~ e and parent(j) >R e. After updating, intuitively, each

node in the list is on the frontier between items already tried and items to be tried on the

path it represents. Equation 3.1 and 3.2 can thus again be applied to calculate the support

and support upper bounds. In this example, node f on pl is replaced by node i on pl , as

shown by list 2 in Figure 3.4(a).

Now for each item k in F (f) , we recalculate L(k). L(e)=2, L (d)= l , L(b)=O, L(a)=O,

L(g) = 0, L(c) = 0. Thus support(St U {e)) = L(e) = 2 2 min-sup, e is added to S t . In

this case, we remove all nodes from the list which do not have parent e, so that only paths

having St are retained. Next we replace the rest nodes by their parent e, as shown by list

3 in Figure 3.4(a). Each node in the list is again brought to the frontier between items

already tried and items to be tried on the path it represents.

We repeat this process until all items in F (f) are tried. In this example, feac is the

result of the probing process. Figure 3.4(b) shows the probing process in the search tree.

I t is easy to see that using FP-tree the probing process can be done by simply traversing

the branches having f . I t is efficient since no projected databases are physically constructed.

0

Our probing process in fact adopts the pseudo database projection technique, which is

firstly proposed in [23]. In Figure 3.5 we give the pseudo code for the probing process in an

FP-tree.

Since the probing process does not check whether St is subsumed by some MFI already

found, according to Theorem 2, before we output it as an MFI, we need to further check

whether it is a subset of some MFI found before to guarantee its maximality.

3.3 Choosing the Key Pattern

When searching the S-subtree, after the probing process, we get one frequent itemset M

that can be used as a key pattern to reorder Tail(S). Let M = {MIM is an MFI, M >
S and M n Tail(S) # 81, any M E M can be chosen as a key pattern for reordering the

items in Tail(S). However, using different key patterns may affect the size of the future

search space. In this section, we discuss how to choose a good key pattern.

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING

Input: a projected FP-tree Tp, an itemset S = P U {ik), S's untrimmed tail F (S) ,
an order R which is the reverse of the order in the header table,
support threshold min-sup;

Output: an frequent itemset which is maximal in the search tree rooted at S ;
Method:

Initialize a node list L with all the ik nodes in the Tp;
for each n E L

let p be the path from the root to node N;
support(p) = the count recorded in the count field in n;

S' = S;
while (F(S) # 0) {

for each node n E L
Let p be the path it represents;
L (parent (n)) = L (parent (n)) + support (p) ;

Let j be the item with the least order in F (S) s.t. CkSRj L(k) 2 min-sup;
remove all items that precedes j in R from F(S) ;
if Vk +R j, L(k) = 0 then {

S = S U {j);
F(S) = F (S) - {j);
remove all nodes from L that does not have parent j ;
replace all nodes in L by their parent;

1
else

for each node n E L with a parent p +R j
replace n by its ancestor k such that k +R j and parent(k) ?R j;

1
return S';

Figure 3.5: Pseudo Code for the Probing Process Using the FP-tree.

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 38

From the previous analysis, the number of potential children of S is equal to ITail(S) -

M (= ITail (S) I - IM n Tail (S) 1 , thus the larger IM n Tail (S) I, the less the children we need

to search in the future.

In the set enumeration tree, any M E M exists in two parts: (1) the S-subtree, and (2)

the subtrees searched before S. The probing process returns an M in the S-subtree. One

question we may ask is, is the probing process necessary? We argue that M returned by

the probing process is likely to cover more items in Tail(S) than some MFI searched before

the S-subtree. Next let us give some analysis.

Let St be the result returned by the probing process, then St exists in the S-subtree.

By Lemma 2 we know that St n Tail(S) is a maximal frequent itemset in the S-projected

database.

We may sort the items in the tail in different orders and probe for multiple times, and

then pick the best result. However, there is no guarantee that this multiple-probing process

can return longer MFIs that have sharper pruning power. Moreover, the probing process is

computationally costly even though the pseudo projection technique is used. Thus in our

algorithm when visiting a node we probe only once.

Now let us consider another key pattern candidate M E M, M # St from the subtrees

searched before S . Let N = M - M nTail(S) = M -Tail (S), then MnTai l (S) is a maximal

frequent itemset in N-projected database. Otherwise there exists an item i not in M such

that M n Tail (S) U {i) is frequent in N-projected database, then N U (M n Tail (S)) U {i) =

M U {i) should be frequent in the input database D , M is not an MFI in D.

Since M > S, N = M - Tail(S) > S - Tail(S) = S. In addition, N # S, otherwise

M = S U (M n Tail(S)) is in the S-subtree. Thus we have N > S . Then the N-projected

database is a subset of the S-projected database. With the same minimum support min-sup,

it is likely that the size of a maximal frequent itemset in S-projected is larger than the size

of a maximal frequent itemset in N-projected database. That is, ISt n Tail(S)I is likely

larger than I M n Tail (S) 1. This is confirmed by the experiment. In our experiment, we

find that for most of the time St covers more items in Tail(S) than any other MFI already

found. This is the reason why we actively probe for an frequent itemset whenever we search

a subtree.

However, this is a heuristic. There is no guarantee that ISt n Tail(S)I is always larger

than IM n Tail (S) I. In some cases, M may have heavier overlap with Tail (S).

To reduce the search space as much as possible, heuristically we can pick one Y E M

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 39

that has the largest overlap with Tail(S) as the key pattern. That is, we pick the key

pattern

Y = a r g m a x ~ ~ ~ , S{IZ n Tail(S)I)

Please note that Tail(S) contains a t least one item that is not in Y . Otherwise, since

S u Tail(S) is a subset of Y, S is pruned by the lookahead pruning.

We implement the key pattern selection as a byproduct of the lookahead pruning. For

each itemset S , to apply the lookahead pruning, we have to check X U Tail(S) against all

the MFIs found so far. At the same time, we also collect the information of IY n Tail(S)I.

Thus, the cost of computing the candidate in this step is very little.

To speed up the lookahead check, we also adopt the progressive focusing technique

introduced in Section 2.4.2. We use prefix trees to organize MFIs found so far. Each S-

projected FP-tree Ts is associated with an MFI tree MFI-Ts, which stores all MFIs having

S as their subsets. MFI-Ts is constructed when Ts is constructed. Similar to the FP-trees,

the construction of MFI trees takes a divide-and-conquer approach: let P be the parent of

Q in the search tree, then MFI-TQ is constructed by scanning MFI-Tp once.

3.4 The Reordering Process

According to the key pattern Y chosen in the previous step, we can reorder items in Tail(S)

so that any item in the key pattern precedes any item not in the key pattern. After reorder-

ing, the children of S fall into two categories: the promising children and the unpromis-

ing children. For each i E Tail(S) - Y, S U { i) is a promising children of S. For each

i E Tail(S) n Y, S U { i) is an unpromising children of S. There may exist new MFIs among

the descendants of the promising children, but there cannot be any new MFIs among the

descendants of the unpromising children. Unpromising children can then be pruned imme-

diately. Only promising children are search in a recursive way.

The above process is called pattern-aware dynamic scheduling (PADS for short). Here

we prove the correctness of the above scheduling.

Theorem 3 (Correctness of Tail Reorder) Let S be a frequent itemset, and Y be an

MFI such that S c Y. If a dynamic search order with respect to Y is used to construct the

set enumeration subtree of S , then for any item z E Tail(S) n Y and any pattern Z in the

subtree of S U { z) , Z c Y.

CHAPTER 3. PATTERN-AWARE DYNAMIC SCHEDULING 40

Proof. As discussed before, Tai l (S U {z}) c Tail(S). Since a dynamic search order with

respect to Y is used, z is behind all items in Tail (S) -Y in the order. That is, Tail (SU{Z}) c
Y. Moreover, since z E Tail (S) n Y and S c Y, we have Z C (S u {z) u Tail (S u {z))) c Y.

The theorem is proved. 0

Example 2 Figure 3.4(c) gives an example of the reordering process. Before reordering,

the order of items in Tail(f) is e, d, b, a , g, c. Suppose f eac is selected to reorder Tail(f).

After reordering, the order of items in Tai l (f) becomes g, d, b, a , c, e. The children f a , f c

and f e are pruned immediately. 0

Please note that our Pattern-Aware Dynamic Scheduling is different from the technique

of dynamic ordering frequent items developed in the previous studies. Dynamic ordering

frequent items is a heuristic method. Due to the correlations among frequent items, there

exist counter examples where sorting frequent items in support ascending order does not

help pruning. In contrast, the effect of dynamic search scheduling is determined once the

key pattern is chosen. To search the subtree of a pattern S, once there exists at least one

key pattern Y > S found before, a dynamic search order based on Y can be used to prune

some children of S by dynamic search scheduling. It is not heuristic.

3.5 Summary

Our Pattern-Aware Dynamic Scheduling approach consists of three phases. When searching

the S-subtree, in the first phase, we applies the probing process to search for a frequent

itemset M1. Possibly M I covers a good proportion of items in Tail(S) since there is no

frequent itemsets in the S-subtree which is a proper superset of M I . In the second phase,

among all the MFIs already found, we pick one that is a superset of S and covers the most

items in Tail(S) as the key pattern. In the third phase, we reorder the items in Tail(S)

such that any item not in the key pattern precedes any item in the key pattern. After the

reordering process, all the children of S are divided into promising children and unpromising

children. Only promising children are searched by recursive calls.

Different from classical depth-first search algorithms, in PADS, as long as a key pattern

Y is selected to reorder the tail of S , in the S-subtree, any subsets of Y are no longer visited.

The key pattern Y is selected efficiently by using a probing process and taking advantage

of the lookahead pruning.

Chapter 4

Optimization Techniques

In this section we propose three optimizations, namely reduced counting, pattern expansion

and head growth, to improve the efficiency of PADS search.

4.1 Reduced Counting

Counting is the major cost in frequent itemset mining. In PADS, we can reduce the number

of items to be counted in each projected database. In this subsection, we introduce the

optimization technique.

As introduced in Chapter 2, to reduce the tree-traverse time, in FPMax* [15] an array

technique is used. Using this technique, each FP-tree is associated with an array. Let S be

an itemset, for every two items i and j in the header table of the FP-tree Ts, the array stores

the support of {i, j) in the S-projected database. For each item i in the header table of the

projected FP-tree Ts, Tai l (S U {i)) can be generated by reading the row of i in the array

and collecting the item j such that the support in the cell of {i, j) is larger than min-sup,

instead of by scanning Ts once. In our implementation, we also integrate this technique.

However, by using the PADS search method, we do not need to construct the complete array.

Let Y be the key pattern selected to reorder Tail(S). Since for any item i E Y n Tail(S),

S U (2)-subtree do not need to be searched, thus the tail of S U {i) does not need to be

generated. Consequently, the row of i in the array does not need to be constructed. That

is, in the array we only need to construct the rows for items in Tail(S) - Y.

Let us look at an example.

CHAPTER 4. OPTIMIZATION TECHNIQUES

Hearder table

c a e g b

array without reduced counting

c a e g b

array with reduced counting

Figure 4.1: Reduced Counting

Example 3 In the database shown in Table 3.1, if feac is the selected as the key pattern to

reorder the f-subtree, after reordering, the tail off is {c, a, e, g, b, d). When constructing

the the projected FP-tree Tf , we do not need to construct the rows for a and e, as shown

in Figure 4.1. 0

The space and computation saved by reduced counting depends on the key pattern Y.

The more items Y covers in Tail(S), the more space and computation we can save. Let

1 = Y n Tail(S), then the upper (1 - 1) rows do not need to be constructed, thus we can

save the cost of computing and storing (I - 1) * (I - 2)/2 array cells. Since the key pattern

maximizes 1, it also maximizes the saving greedily.

4.2 Pattern Expansion

When searching the S-subtree, the more items in Tail(S), the larger the S-subtree and the

search space. If we can identify some items in Tail(S) that definitely appear in the all the

MFIs in the S-subtree, then we can remove these items from Tail(S) and add them to S .

This adjustment reduces the size of the S-subtree and thus improves the efficiency. In this

CHAPTER 4. OPTIMIZATION TECHNIQUES 43

section, we take advantage of the FP-tree data structure and develop a technique called

pattern expansion to achieve this goal.

Figure 4.2: Pattern expansion

Our pattern expansion technique is similar to the P E P technique proposed in [lo]. With

the FP-tree structure, we can do better.

Definition 4 (Single Prefix) A single prefix in an FP-tree is a path from the root of the

FP-tree to a node N such that N is the only node on this path that has more than one child.

Suppose we are searching the S-subtree, and Ts is the S-projected FP-tree, for any item

in the single prefix of the FP-tree, we can simply move it from the Tail(S) to S . Here we

prove the correctness of pattern expansion.

Theorem 4 (Correctness of Pattern Expansion) In the projected FP-tree Ts, let Tl

be the set of items in the single prefix, then all MFIs in the S-subtree is a superset of TI.

Proof. Let T2 = Tail (S) - TI, and Trans(Y) be the set of transactions having Y. I t is easy

to see that Vi E T2, T rans (S U {i)) = Trans (S U TI U {i)). Any MFI M in the S-subtree

should have a t least one item i E T2, otherwise M E X U Tl c S U Tl U {i). Since S U {i) is

frequent and T rans (S U {i)) = Trans (S U TI U {i)), S U TI u {i) is also frequent, thus M

is not maximal.

Let M be a frequent itemset in the S-subtree and N = M n T2, then M > S U N, thus

T rans (M) C Trans (S U N). Since for any i E T2, Trans(S U {i)) = Trans (S U TI U {i)),

CHAPTER 4. OPTIMIZATION TECHNIQUES 44

thus Trans(M) G Trans(S U N) = Trans(S U TI U N). Thus it is impossible that an MFI

in the S-subtree does not have TI as its subset. 0

Let us look at an example.

Example 4 suppose we are searching the S-subtree and the projected FP-tree Ts as shown

in Figure 4.2. The single prefix in Ts is the path c - g - b - i - d. Then, searching the

S-subtree with tail {c, g, b, i , d, e, f , h) is equivalent to searching the S U {c, g, b, i , d)-subtree

with tail {e, f , h). 0

Please note that different from PEP, for i E TI, support(S U {i)) is not necessarily equal

to support(S). Thus, compared with PEP, we can move more items from the tail to the

head.

4.3 Head Growth

Projected database construction is one of the major costs in the MFI mining process, thus

should be avoided as much as possible. Consider the situation where there is only one

item i E Tail(S) that is not contained in the key pattern Y. If we only reorder the items

in the tail, then we will need to construct the projected FP-tree Ts, and construct the

projected FP-tree TsUii) by scanning Ts. Since S has only one promising child S U {i), Ts

is constructed but used only once: for constructing Tsu{i}. In this situation, we can move i

from the tail to the head. That is, instead of searching the S-subtree, we can directly search

the S U (2)-subtree, then we can skip constructing the projected FP-tree Ts.

Please note that this Head Growth technique can be applied iteratively. After i is moved

into the head, we compute Tai l (S U {i)). If again there is only one item i' in Tail(S U {i))

that is not covered by the key pattern, i' is also moved from Tail(S U {i)) to the head, and

we search the S U {i, 2')-subtree directly. In this way we may skip constructing multiple

projected FP-trees a t one time.

4.4 Algorithm

Based on the above analysis, we have the PADS algorithm as shown in Figure 4.3.

CHAPTER 4. OPTIMIZATION TECHNIQUES

4.5 Comparison with LCM v2

As introduced in Chapter 2, the algorithm LCM v2 also reorders the tails and then prunes

the unpromising branches. One may wonder what are the differences between PADS and

LCM v2. In this section we make a thorough comparison between PADS and LCM v2.

PADS and LCM v2 are different in the selection of the key patterns. In LCM v2,

when searching the S-subtree, it first chooses an item i E Tail(S), orders i before other

items in Tail(S), and fully searches the Su{i)-subtree. After that it picks the frequent

itemset M of the maximum size in the SU{~)-subtree as the key pattern, and reorders

items Tail(S) - {i) according to M. Similar to PADS, only the children of S extended

by items in Tail(S) - M are searched further. The key patterns selected in this way

are not necessarily good, since the item i is arbitrarily chosen. In contrast, PADS uses

a systematic method to find heuristically good key patterns for tail reordering.

2. PADS selects the key patterns more efficiently than LCM v2. In LCM v2, key patterns

are obtained by searching a significant proportion of the S-subtree. During the search,

the projected databases are constructed recursively. In contrast, the key patterns in

PADS are byproducts of the lookahead pruning. The cost is very little compared to

database projections.

3. PADS and LCM v2 use different data structures. PADS uses FP-tree, while LCM v2

uses simple arrays.

4. PADS uses lookahead pruning to decide whether a frequent itemset is maximal. LCM

uses a different method for maximality check: let S be a frequent itemset found and

Trans(S) be the set of transactions having S, S is maximal if and only if there is no

item i not included by S but is frequent in Trans(S) . Please note that i may not be

included in Tail(S). So, for each transaction T in the S-projected database and each

item i not in Tail(S), LCM v2 needs to record the occurrence of i in T . The support

of i in Trans(S) is the number of the occurrences of i in all T E Trans(S). This

method does not need to store all MFIs in main memory. The computation time for

maximality check depends on the size of database, while in PADS it depends on the

number of MFIs already found.

CHAPTER 4. OPTIMIZATION TECHNIQUES

Input : a transaction database T D B and support threshold min-sup;
Ou tpu t : the set of MFIs;
Method:
1: F 1 =the set of frequent items;
2: construct FP-tree for TDB;
3: for each i E F 1
4: call PADS(PDB, {i});

Funct ion PADS(PDB, X) / / P D B is the projected database of X's parent
5: let Tai l (X) = the set of frequent items in P D B ;
6: //head-and-tail pruning, progressive focusing search

// should be used in the subpattern matching
if there exists an MFI Y found before such that Tail(X) U X C Y t h e n

r e tu rn ;
7: if Tail(X) = 0 t h e n
8: output X as an MFI;
9: let Yl be the candidate key pattern obtained from the probing process;
10: let Yz be the candidate key pattern as the byproduct of the subpattern checking;
11: let Y be the better key pattern between Yl and Yz;
12: / / ~ e a d Increase

if ITail(X) - Y I = 1 t h e n
I = Tail(X) - Y, X = X U {I}, Tail(X) = Tail(X) - {I};
call PADS(PDB, X)
r e t u r n ;

13: make a dynamic search order R on items in Tai l (X) according to Y;
14: construct an FP-tree for PDBx;
15: //pattern expansion

let Z be the set items in the single prefix of P D B x ,
X = X U Z , Tail(X) = Tail(X) - Z ;

16: for each item i E (Tail(X) - Y) in the order of R
17: call PADS(PDBx, X U {i});
18: r e tu rn ;

Figure 4.3: The PADS algorithm.

Chapter

Empirical Study

We conducted an extensive performance study to evaluation the effectiveness of the dynamic

search scheduling and the efficiency of our PADS algorithm. Here we report the experimental

results on five real data sets. The five real data sets were prepared by Roberto Bayardo

from the UCI datasets [ll] and PUMSB. They have been used extensively in the previous

studies [I , 10, 14, 15, 25, 281 as the benchmark data sets. Some characteristics of the five

data sets are shown in Table 5.1. The Chess and Connect datasets are compiled from game

state information, the mushroom dataset contains records describing the characteristics of

various mushroom spices, Pumsb is prepared from the PUMS census data1, and Pumsb* is

obtained from Pumsb by removing items with higher than 80% support. The numbers of

MFIs in those datasets with some selected minimum supports are shown in Figure 5.1. In

this table a support threshold is presented as a percentage with respect to the total number

of transactions in the data set, that is, m ' ~ ~ u P where D is the data set in question.

All the experiments were conducted on a P C computer running the Microsoft Windows

XP SP2 Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB

main memory, and a 160 GB hard disk. The programs were implemented in C/C++ using

Microsoft Visual Studio. NET 2003.

We compare our method with two state-of-the-art algorithms FPMax* [14] [15] and

LCM v2 [28]. FPMax* is the winner in mining maximal frequent itemsets at the Workshop

on Frequent Itemset Mining Implementations 2003 (FIMI'O3). According to the extensive

CHAPTER 5. EMPIRICAL STUDY

Chess Mushroom

Support (%)

Pumsb*

Support (%)

35 40 45 50 55

Support (%)

Connect

0-
3 4 5 6 7

Support (%)

Figure 5.1: The number of MFIs on the five benchmark data sets with some minimum
supports.

CHAPTER 5. EMPIRICAL STUDY

Table 5.1: Characteristics of benchmark data sets.

Data set

Chess

empirical study reported at FIMI'03, it outperforms MAFIA, GenMax and other MFI min-

ing algorithms. LCM v2 is the winner at FIMI'04. It provides the functionalities for mining

all/closed/maximal frequent itemsets. LCM v2 is currently the best algorithm for mining

closed frequent itemsets. With respect to mining maximal frequent itemsets, it also demon-

strates good performance and is thus included in our empirical study. We obtained the

source codes of FPMax* and LCM v2 from the F'requent Itemset Mining Implementations

Repository website (http://fimi.cs.helsinki.fi/).

We firstly make comparison on three aspects: the runtime, the memory consumption,

and the scalability with respect to the number of transactions in the database. To illustrate

the reasons why PADS is more efficient, we also make comparison on the number of database

projections and the number of maximality check operations, as database projections and

maximality checks are the most costly operations in the mining process.

5.1 The Runtime

tuples

3,196

Figure 5.2 shows the runtime comparison of the three algorithms on the five data sets. The

curve PADS indicates the runtime of PADS with optimizations, while the curve PADS-

indicates the runtime without optimizations. It should be mentioned that LCM v2 has

execution problems under some circumstances. On the Pumsb dataset with min-sup lower

than 40%, on the Pumsb* dataset with min-sup lower than 6%, and on the Connect dataset

with min-sup lower than 0.2%, LCM v2 gives segmentation faults and cannot finish properly.

Therefore parts of its results are missing.

Figure 5.2 clearly shows that PADS outperforms FPMax* and LCM on the five data

sets. Compared with FPMax*, the lower the support threshold, the larger the difference in

runtime. With a smaller support threshold, more itemsets and longer itemsets are qualified

items

76

avg trans len

37

CHAPTER 5. EMPIRICAL STUDY

Chess Mushroom

10 1 5 . 20 25 30 0.1 0.2 0.3 0.4 0.5

Support (%) Support (%)

Pumsb* Purnsb

2 4 6 8 1 0 35 40 45 50 55
Support (%) Support (%)

Connect

Figure 5.2: The Runtime Comparison of the Three Algorithms.

CHAPTER 5. EMPIRICAL STUDY 51

as frequent itemsets. This trend suggests that PADS is more scalable than FPMax* on

mining a large number of long frequent itemsets. When the support threshold is low, the

difference in runtime between the two methods can be more than 60%.

PADS outperforms LCM v2 clearly for most of the time, especially on the Mushroom and

the Connect datasets. The only circumstance LCM v2 outperforms PADS is on the Chess

dataset with min-sup 5 15%. The reason is that the number of MFIs is large (more than

1 million) but the database size is relatively small (only 3,196 tuples), so the maximality

check method of LCM v2 still works well.

The figures also show the effectiveness of the optimization techniques. On the five

datasets, the optimization techniques contribute to the improvement in runtime as much as

the reordering technique.

5.2 Memory Consumption

Figure 5.3 shows the virtual memory consumption of the three algorithms on the five

datasets. The memory consumption values shown are peak values during the execution.

On all these datasets, the memory usages of PADS and FPMax* are very close to each

other. This is because PADS and FPMax* use the same data structure to store the pro-

jected databases and MFIs. In fact in both PADS and FPMax*, the first FP-tree To and the

first MFI tree MFI-T0 contribute to the major part of the memory usage. This is because

projected FP-trees and projected MFI trees are typically of much smaller sizes.

We also notice that there are some minor differences between the memory consumption

of PADS and FPMax*. The reasons are as follows. Firstly, in PADS, to select the best key

pattern to reorder the tail of an itemset S, we maintain two arrays: one records ITail(S)nMI

and one records the address of M , where M is an MFI already found. The sizes of the two

arrays depend on the number of MFIs having S. Thus, compared with FPMax*, PADS

needs some additional memory. Secondly, by adopting the probing process and the head

growth technique, PADS can avoid constructing the projected databases for some nodes in

the search tree. Thus, the maximum memory needed by PADS for holding the projected

databases can be less than that needed by FPMax*.

I t can also be seen that, different from LCM v2, PADS and FPMax* demonstrate dif-

ferent characteristics in memory consumption. The memory usage of PADS and FPMax* is

more sensitive to the number of MFIs, while the memory usage of LCM v2 is more sensitive

CHAPTER 5. EMPIRICAL STUDY

Chess Mushroom

10 15 20 25 30

Support (%)

Pumsb*

2 4 6 8 1 0

Support (Yo)

0'
0.1 0.2 0.3 0.4 0.5

Support (%)

Pumsb
3e+008 FPMax .-... 4 -...-

2.5e+008 CM v2 ---+---

2e+008 PADS -
E h

-
35 40 45 50 55

Support (%)

Connect

Support (%)

Figure 5.3: The Memory Comparison of the Three Algorithms.

CHAPTER 5. EMPIRICAL STUDY 53

to the size of the database. When the dataset is small but the number of MFIs is large,

such as the Chess dataset with low minimum support, LCM v2 consumes less memory. In

contrast, when the dataset is large but the number of MFIs is small, such as the Pumsb*

dataset with high minimum support, FPMax* and PADS need less memory.

The above difference is due to the fact that LCM uses a different method for maximality

check. I t does not store the current set of MFIs in main memory. Instead, it uses the follow-

ing observation: let S be a frequent itemset found and Trans(S) be the set of transactions

having S, S is maximal if and only if there is no item i not included by S but is frequent

in Trans(S) . Please note that i may not be included in Tail (S). Since the S-projected

database consists of only items in Tail(S), to conduct maximality check, for each transac-

tion T in the S-projected database and an item i not in Tail(S), LCM v2 needs to record

the occurrence of i in T. The support of i in Trans(S) is the number of the occurrences of

i in all T E Trans(S) . The memory consumption of LCM v2 is thus more sensitive to the

size of the database.

5.3 Scalability

Figure 5.4 shows the scalability of the three algorithms on the three datasets of relatively

large size: Pumsb, Pumsb* and Connect. We study the scalability of the three algorithms

in two aspects: runtime scalability and memory scalability. We fixed the minimum support

min-sup. For each dataset, we randomly generate four reduced datasets whose sizes range

from 20% to 80% of its original size. Then we record the runtime and memory consumption

of the three algorithms on those datasets.

It can be seen that PADS shows the best scalability, while LCM v2 has the worst

scalability. The efficiency of PADS shows the advantage of our search method. The cost in

LCM v2 is caused by two reasons. Firstly, as mentioned in Section 4.5, in LCM v2, the time

needed by the maximality checks depends on the size of the projected databases, instead of

the number of MFIs already found. On large databases, the projected databases may still

consist of many transactions, making the maximality check slow. Secondly, LCM v2 uses

simple arrays, instead of FP-trees, as the main data structure. In FP-trees, when the size

of the database increases, more transactions can share common prefixes. In contrast, using

simple arrays, only identical transactions can be merged. Therefore the FP-tree is more

compact than the simple array, and database projection can be performed more efficiently.

CHAPTER 5. EMPIRICAL STUDY

Pumsb (min_sup=60%)

PADS

a .--...-.-- -------

Database Size (%)

Pumsb* (min_sup=6%)

o 1 I
20 40 60 80 100

Database Size (%)

Connect (min_sup=5%)

Database Size (%)

h
100

V)

80
o

60
V

a 40 E .-
E
2

0

Pumsb (min_sup=60%)

0-
20 40 60 80 100
Database Size (%)

20 40 60 80 100

-
FPMax*

- LCM v2 ---+--;.--:-
PADS ..a'-

- ..+" * -..-.--- ---Lb
+ - * - &--....--. --

- ,'&../ ----
, +'

Pumsb* (min_s~p=6~/0)

5e+007
h a 4e+007 +
>r

3e+007
F
0 2e+007 E
$ le+007

C

0-
20 40 60 80 100

Database Size (%)

,.* /,/.'
2 0 ' 7

Connect (min_sup=5%)

0-
20 40 60 80 100

Database Size (%)

Figure 5.4: Scalability on Three Datasets .

CHAPTER 5. EMPIRICAL STUDY 55

In terms of memory usage, as analyzed in Section 5.2, PADS and FPMax* share the

same characteristics. The memory consumption in LCM v2 increases more quickly than

both FPMax* and PADS. The first reason is that LCM v2 uses database reduction to

conduct maximality checks which have to record extra information for each transaction in

the projected database. In addition, LCM v2 uses simple arrays which are not as compact

as FP-trees, therefore more memory is needed.

5.4 Number of Database Projections and Maximality Check

Operations

What are the major reasons that PADS outperforms FPMax* and LCM v2? The major cost

of MFI mining in the depth-first manner comes from two aspects: constructing projected

databases and checking whether a frequent itemset or the union of the head and the tail of

a node is a subset of some MFIs found before.

5.4.1 Number of Database Projections

Figure 5.5 shows the comparison of the three algorithms in terms of the number of projected

databases. For PADS there are two kinds of projections: physical projections and pseudo

projections. The number of physical projections is counted for comparison.

I t is shown that FPMax* constructs much fewer projected databases than LCM v2, even

though LCM v2 adopts the reordering technique which can reduce the number of database

projections. The reasons are as follows.

Let S be an itemset, since LCM v2 does not store the MFIs found so far in main memory,

it cannot utilize the current set of MFIs to decide whether S ~ T a i l (S) is frequent. Instead,

it has to explore the leftmost path of the S-subtree, during which up to ITail(S)(projected

databases may be constructed.

In addition, in FPMax*, an optimization technique is used: when the S-projected FP-

tree Ts has only a single path, S U Tail(S) is known frequent, thus we do not need to

construct projected databases for any descendants of S in the search tree. In contrast,

LCM v2 needs to construct projected databases recursively until the leftmost child of S is

searched.

Due to above two reasons, in FPMax* the number of projected databases can be less

CHAPTER 5. EMPIRICAL STUDY

than LCM v2 even though LCM v2 adopts the reordering technique.

It can be seen that on all datasets, PADS constructs much fewer projected databases

than FPMax* and LCM v2. The number of projected databases constructed by PADS is

about 15 25% of that by FPMax* and 6 - 15% of that by LCM v2. This shows the power

of our PADS search method and the effectiveness of the optimization techniques.

5.4.2 Number of Maximality Check Operations

Figure 5.6 shows the comparison of the three algorithms in terms of the number of the

maximality check operations. PADS again needs fewer maximality check operations than

both FPMax* and LCM v2 in most cases, but the comparison between FPMax* and LCM

v2 is not stable. Here we give the following analysis.

Firstly, since maximality check or lookahead check is needed to prune the unpromising

subspaces, by reordering the items in the tail, the search spaces of PADS and LCM v2

are more compact. Some subspaces can be pruned immediately without conducting any

maximality check. Thus, compared with FPMax*, PADS and LCM v2 can save maximality

checks by avoiding searching unpromising subspaces.

Secondly, suppose S is an itemset, and S U Tail(S) is a subset of some MFIs already

found. Since LCM v2 does not store the current set of MFIs in the main memory, it

cannot decide the maximality of S U Tail (S) by checking whether S U Tail (S) is a subset

of some MFI. Its maximality check method can only decide whether S is maximal or not.

While PADS and FPMax* can stop searching the S-subtree in this case, LCM v2 has to

explore the leftmost child of S. Thus, compared with PADS and FPMax*, LCM v2 needs

additional ITail(S)I maximality checks to prune the S-subtree. This is the reason why with

the reordering technique, LCM v2 may still need more maximality checks than FPMax*.

The saving in generating fewer projected databases and fewer maximality checks well

explains why PADS is more efficient than FPMax* and LCM v2.

5.5 Summary

The experimental results on the five benchmark datasets show that PADS is more efficient

than FPMax* and LCM v2 in most cases. The efficiency of PADS comes from the fewer

projected databases generated and fewer maximality check operations needed. With respect

CHAPTER 5. EMPIRICAL STUDY

Chess Mushroom

Support (%)

Purnsb*

Support (%)

0.1 0.2 0.3 0.4 0.5

Support (%)

Purnsb
u 3 l e+oo i 1 7 1
0
aJ LCM v2
r 8e+006
0 > PADS +

35 40 45 50 55
Support (%)

- Connect

B 3 4 5 6 7

Support (%)

Figure 5.5: Number of Projected Database Generated.

CHAPTER 5. EMPIRICAL STUDY

Chess

Support (%)

Pumsb*

-
2 4 6 8 1 0

Support (%)

Mushroom

Support (%)

Connect
5e+006 FPMax* --..-A -----.

4e+006
DSS +

0-
3 4 5 6 7

Support (%)

-
35 40 45 50 55

Support (%)

Figure 5.6: Number of Maximality Check Operations

CHAPTER 5. EMPIRICAL STUDY 59

to the memory consumption, PADS shares similar characteristics with FPMax*. The mem-

ory needed by PADS and FPMax* is more sensitive to the number of MFIs, instead of the

size of the database.

Chapter 6

Conclusion

In this thesis we introduced a new search method for mining maximal frequent itemsets

from transaction databases. Our major contribution is that we do not follow the classical

enumeration order which is used to enumerate all frequent itemsets. Instead, we proposed

a novel probing and reordering search method, which takes the current set of mining results

to schedule the future search, and makes the search more efficient. We developed three

optimization techniques to improve the efficiency. As shown by the extensive empirical

study using the benchmark real data sets, our method outperforms FPMax* and LCM v2,

two state-of-the-art methods in maximal frequent itemset mining.

Though we introduced our search method in the context of maximal frequent itemset

mining, the Pattern-Aware Dynamic Scheduling method, however, may also be applied to

other problems. Next we discuss some possible extensions.

The maximal clique search problem bears many similarities to maximal frequent itemset

mining. They are both searching for maximal combinations of items or vertices. With some

necessary modifications, our method may be applied to the maximal clique search problem.

In addition to frequent itemset mining, mining other frequent patterns is also well stud-

ied by the data mining community. For example, frequent sequential patterns, frequent

subgraphs and frequent subtrees. One interesting question we may ask is whether our

Pattern-Aware Dynamic Scheduling approach can be applied to those problems.

1. Mining closed/maximal sequential patterns. The problem of mining sequential pat-

terns has been well studied. While frequent itemset mining searches for frequent com-

binations of items, sequential pattern mining is interested in frequent subsequences of

CHAPTER 6. CONCLUSION 61

items. Then, can we search the sequential patterns in a more intelligent way so that

we can avoid mining non-closed sequential patterns as much as possible? Can we mine

maximal sequential patterns in a similar way by taking advantage of the current set

of maximal frequent sequential patterns? Those are the interesting problems to be

studied.

2. Mining closed/maximal frequent subgraphs. Graphs are more complex structures

than itemsets and sequences. Mining frequent subgraphs is more difficult than mining

frequent itemsets. Similar to the set enumeration tree in the frequent itemset mining,

in graph mining canonical label systems are used to systematically enumerate all

graphs without having any duplicate. In the current approaches to graph mining, once

a canonical label system is used, the enumeration order is determined. Our Pattern-

Aware Dynamic Scheduling approach, however, requires changing the enumeration

order dynamically. Then, can we add dynamics to the canonical label system so that

the enumeration order can be changed according to the mining results we already got?

This can be a problem to study, too.

Bibliography

[I] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth first generation
of long patterns. In KDD '00: Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 108-118, New York, NY,
USA, 2000. ACM Press.

[2] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree projection algo-
rithm for generation of frequent item sets. Journal of Parallel Distributed Computing,
61 (3):350-371, 2001.

[3] Charu C. Aggarwal. Towards long pattern generation in dense databases. SIGKDD
Explor. Newsl., 3(1):20-26, 2001.

[4] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications.
In SIGMOD '98: Proceedings of the 1998 ACM SIGMOD international conference on
Management of Data, pages 94-105, New York, NY, USA, 1998. ACM Press.

[5] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules be-
tween sets of items in large databases. In SIGMOD '93: Proceedings of the 1993 ACM
SIGMOD international conference on Management of data, pages 207-216, New York,
NY, USA, 1993. ACM Press.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB '94: Proceedings of the 20th International Conference
on Very Large Data Bases, pages 487-499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In ICDE,
pages 3-14, 1995.

[8] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and ice-
berg cube. In SIGMOD '99: Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, pages 359-370, New York, NY, USA, 1999. ACM
Press.

BIBLIOGRAPHY 63

[9] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets: general-
izing association rules to correlations. In SIGMOD '97: Proceedings of the 1997 ACM
SIGMOD international conference on Management of data, pages 265-276, New York,
NY, USA, 1997. ACM Press.

[lo] Douglas Burdick, Manuel Calimlim, and Johannes Gehrke. MAFIA: A maximal fre-
quent itemset algorithm for transactional databases. In Proceedings of the 17th In-
ternational Conference on Data Engineering, pages 443-452, Washington, DC, USA,
2001. IEEE Computer Society.

[ll] C.L. Blake D.J. Newman, S. Hettich and C. J . Merz. UCI repository of machine learning
databases, 1998.

[12] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: discovering trends
and differences. In KDD '99: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 43-52, New York, NY,
USA, 1999. ACM Press.

[13] Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent item-
sets. In ICDM '01: Proceedings of the 2001 IEEE International Conference on Data
Mining, pages 163-170, Washington, DC, USA, 2001. IEEE Computer Society.

[14] Gosta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent itemsets.
In FIMI'03 Workshop on Frequent Itemset Mining Implementations, November 2003.

1151 Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using
fp-trees. IEEE Transactions on Knowledge and Data Engineering, 17(10):1347-1362,
2005.

[I61 Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In SIGMOD '00: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 1-12, New York, NY, USA, 2000. ACM
Press.

[17] Guozhu Dong Jiawei Han and Yiwen Yin. Efficient mining of partial periodic patterns
in time series database. In ICDE '99: Proceedings of the 15th International Conference
on Data Engineering, page 106, Washington, DC, USA, 1999. IEEE Computer Society.

[18] Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao, and Limsoon Wong. Deeps: A new
instance-based lazy discovery and classification system. Mach. Learn., 54(2):99-124,
2004.

[19] Dao Lin and Zvi M. Kedem. Princer-search: A new algorithm for discovering the
maximum frequent itemset. In Proceedings of the 1998 International Conference on
Extending DataBase Technology (EDBT'98), pages 105-109, 1998.

BIBLIOGRAPHY 64

[20] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. In KDD '98: Proceedings of the 9th ACM SIGKDD international conference
on Knowledge discoveq and data mining, pages 80-86, 1998.

[21] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Min. Knowl. Discov., 1(3):259-289, 1997.

[22] Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. Mining condensed frequent-pattern
bases. Knowl. Inf. Syst., 6(5):570-594, 2004.

[23] Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing Yang.
H-mine: Hyper-structure mining of frequent patterns in large databases. In ICDM
'Ol: Proceedings of the 2001 IEEE International Conference on Data Mining, pages
441-448, Washington, DC, USA, 2001. IEEE Computer Society.

[24] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In ACM SIGMOD Workshop on Research Issues i n Data
Mining and Knowledge Discovery, pages 21-30, 2000.

[25] Jr . Roberto J . Bayardo. Efficiently mining long patterns from databases. In SIGMOD
'98: Proceedings of the 1998 ACM SIGMOD international conference on Management
of data, pages 85-93, New York, NY, USA, 1998. ACM Press.

[26] R. Rymond. Search through systematic set enumeration. In Proceedings of the 1992
International Conference on Knowledge Representation and Reasoning (K R '92), pages
539-550, 1992.

[27] Craig Silverstein, Sergey Brin, Rajeev Motwani, and Jeffrey D. Ullman. Scalable tech-
niques for mining causal structures. In Ashish Gupta, Oded Shmueli, and Jennifer
Widom, editors, V L D B '98, Proceedings of 24th International Conference on V e q Large
Data Bases, August 24-27, 1998, New York City, New York, USA, pages 594-605. Mor-
gan Kaufmann, 1998.

[28] Yuzo Uchida Takeaki Uno, Tatsuya Asai and Hiroki Arimura. LCM ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations(FIMI 04), Brighton,
UK, 2004.

[29] Mohammed J . Zaki. Scalable algorithms for association rule mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372-390, 2001.

[30] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. Technical
report, RPI, 11 2001.

[31] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In KDD
'03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discoveq and data mining, pages 326-335, New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 65

[32] Mohammed J. Zaki and C. Hsiao. Charm: an efficient algorithm for closed association
rule mining. Technical report, RPI, 1999.

1331 Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New
algorithms for fast discovery of association rules. Technical report, Rochester, NY,
USA, 1997.

