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Abstract 

As optical tweezers become widely used in biophysics, calibration becomes essential to 

quantitatively characterize the dynamics of a system probed by this technique. In this the- 

sis, I apply three methods for calibrating optical tweezers: a direct estimate from thermal 

motion of a trapped particle using the equipartition theorem, a more advanced approach 

that analyzes its power spectrum, and a combination of power spectrum analysis and the 

bead's response under an external driving force. Motivated by recent attempts to use para- 

metric resonance for calibration, I also examine the effects of modulating laser power on 

the motion of the trapped particle, predicting and finding experimentally an increase in the 

particle's position variance at low modulation frequencies without evidence for resonant 

effects in the extremely overdamped motion of the trapped particle. I conclude by dis- 

cussing future considerations such as the treatment of hydrodynamics and the effect of an 

anharmonic trap potential. 
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Chapter 1 

Introduction 

The fact that light carries momentum has been realized for over a century, but the manipu- 

lation of microscopic objects using this momentum was not achieved until two decades ago 

[ I ] .  However, it only took a few years for this invention, optical tweezers, to find wide ap- 

plications in physical research, especially in biological systems [2]. In an optical tweezers 

setup, by control of the momentum exchange between laser light and micron-sized objects, 

particles like refractive beads and bacteria can be held and moved by the laser light. The 

applicability of this technique especially to biology is due to the picoNewton force range 

optical tweezers are able to apply and to their relatively simple setup. In single-molecule 

studies, optical tweezers are usually used to exert forces on molecules bound to beads, to 

study the mechanical properties of DNA [3,4], the unfolding-refolding mechanisms of pro- 

teins and DNA and RNA structures [5 ,  6, 71, the mechanisms of molecular motors [8, 91, 

and DNA-protein interactions [lo, 11, 121, among others. By mechanically inducing con- 

formational changes, it is possible to modify the reaction pathways of biochemical reactions 

and thus obtain insight into the reaction mechanisms [9, 131. Molecular motors have been 

widely studied with optical tweezers, and as such, experimental methodologies have been 

developed to characterize their properties such as speed, processivity, stall force, and effi- 

ciency. Motors that have been studied include myosin [14, 151, kinesin [16, 171, and DNA 

and RNA polymerases [18, 631. In cell biology, optical tweezers are widely used to move 

organelles within the cell [20, 211, or to induce mechanical stimuli to study cell properties 

such as elasticity and viability [22, 23, 241. Soft material studies [25], micro-assembly and 

fabrication [26, 271, particle sorting [28] and artificial lattices [29] have also been studied 
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using optical tweezers instruments. 

To meet the requirements for this wide range of applications, a great variety of opti- 

cal and mechanical techniques are incorporated in optical tweezers instruments. In order 

to control the lateral position of the optical trap, the beam path can be manipulated by a 

rotating mirror [30] or by an acousto-optic modulator (AOM) [31]. Experiments have also 

demonstrated that rotation of a polarized beam can exert torque on birefringent material 

or make it rotate [32]. Recent developments in liquid crystal displays make it possible to 

engineer the wavefront of the light in a real-time fashion. Equipped with these LCD spa- 

tial light modulators, dynamic holographic optical tweezers offer three-dimensional con- 

trol over multiple trapped particles simultaneously [33], while an optical vortex created by 

holographic optical tweezers provides insight into novel laser modes [34] and is potentially 

useful in micro-transportation and designing micro-fluidic devices [35]. Other variations 

on optical trapping include combining it with confocal microscopy [36] and total internal 

reflection fluorescent microscopy (TIRFM) [14], atomic-force microscopy (AFM) [37], mi- 

cropipettes, micro surgery techniques [38, 391, fast video imaging [40], and feedback [41] 

and passive force clamps [42,43]. These advancements make optical tweezers an extremely 

flexible and versatile tool with applications in many areas of current research. 

Experiments that seek to characterize forces applied to an object require calibration 

between the optical force and the displacement of the object in the optical tweezers instru- 

ment. The relation between force and displacement of a trapped object depends on several 

parameters: the size, shape, and index of refraction of the trapped particle; the wavelength, 

beam profile and power of the trapping laser; and the numerical aperture of the focusing 

objective lens [44, 451. For small displacements of the trapped particle from its equilib- 

rium position, the particle-trap interaction can be approximated by a harmonic potential 

characterized by a force-displacement coefficient called the trap sti f iess or, more loosely, 

spring constant. To determine the trap stiffness experimentally, one can measure directly 

the displacement produced by a known external force - for example, the Stokes drag in a 

constant flow [46,47, 481, or associated with the fluid flow produced by an oscillatory mo- 

tion of the surrounding solution [47]. An alternate method analyzes the random forces of 

thermal fluctuations by looking at the variance or the power spectrum of position [44, 491. 

While the naive application of such methods produces results that are accurate to 10 - 20%, 

more refined analyses that consider the hydrodynamics can increase the accuracy ten-fold 
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[50]. Combining the two methods (viscous drag and power spectrum) eliminates the need 

to estimate the hydrodynamic drag coefficient or equivalently the size of the particle, a per- 

sistent potential source of systematic error [49]. In the first part of this thesis, I describe the 

implementation of these calibration techniques in our optical tweezers instrument. 

Recently, Joykutty et al. attempted to develop a new method for calibrating the stiffness 

of an optical trap that was based on the periodic modulation of trap stiffness [51]. While 

there are serious difficulties with that technique [52, 531, the effects of a modulated trap 

have both fundamental and practical interest, and I focus on these aspects in the second part 

of this thesis. 

In an underdamped mechanical system, periodic temporal modulation of trap stiffness 

can lead to parametric resonance [54]. The Brownian motion of atoms in magneto-optical 

traps (another type of optical trap) has been studied both theoretically [55] and experimen- 

tally [56, 571. Under the proper conditions, trap modulation can lead to an increase in 

damping and a decrease in the variance of positional fluctuations of the Brownian particle. 

Such a decrease corresponds to a cooling of the temperature of the trapped particle and is a 

desired feature of such traps. On the other hand, parametric excitation can also lead to an 

instability (Hopf bifurcation), where the motion of the particle increases exponentially - an 

undesirable result [58]. Thus, a full understanding of the effects of modulation is important 

in such cases. 

In optical trapping in aqueous media, the motion is extremely overdamped, with dimen- 

sionless dampings that are typically O(10). (The dimensionless damping is proportional to 

the ratio of the natural oscillation period of the particle to its relaxation time in the viscous 

fluid, and is one for a critically damped system.) As we shall see, in the overdamped limit, 

parametric modulation does not lead to the resonant effects seen in underdamped systems; 

however, in the low-frequency limit, I will show that modulation does increase the variance 

of the particle's position. There are practical consequences to this effect, as there are a 

number of situations of recent interest where the trap stiffness is indeed modulated. For ex- 

ample, in time-sharing optical traps, the direction of the trapping beam is switched among 

several angles to create multiple traps [48]. For each trap, the power turns on and off peri- 

odically, a temporal modulation. In another example, linear-scanning optical tweezers [43] 

create a constant force optically. In this technique, the potential is modulated both spatially 

and temporally. In all these cases, the increase in position variance produced by modulation 
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is an undesired effect. While simple arguments show that modulating the trap strength at 

frequencies greater than the particle's response frequency ensures that its stiffness may be 

safely approximated by its time-averaged value [48], the work described in the second part 

of this thesis investigates experimentally and theoretically the consequences of modulating 

at a lower frequency. 

Specifically, in my thesis, I first introduce the detailed setup of our optical tweezers 

instrument, then present multiple calibration methods using the bead's thermal motion in- 

cluding the basic equipartition theorem method, power spectrum analysis of the Brownian 

motion in a stationary optical trap and preliminary results for a hybrid method probing the 

power spectrum of a trapped particle subjected to external spatial perturbation. In Chapter 

3, I experimentally measure the variance of the position of the trapped object in a temporally 

modulated optical trap and compare the result with the predictions of a simple theory based 

on the overdamped Brownian motion of a particle in a parametrically modulated harmonic 

trap. A null-test of the parametric resonance is finally presented to show that parametric 

resonance is neither expected nor observed in an overdamped system. 



Chapter 2 

Building and calibrating the optical 

tweezers 

Quantitative characterization of the optical trap is important for studying systems using 

this technique. In this chapter, I briefly describe the principle of optical trapping, then 

outline the specific instrumental setup of our optical tweezers, and finally introduce multiple 

methods for trap calibration, which involves finding the relation between the optical force 

and the displacement of a trapped particle. 

2.1 Principles of optical trapping 

Optical tweezers involve an object interacting with light and can be described in terms of 

momentum exchange between the trapped object and the light field holding it in place. 

When light interacts with a particle, its momentum is altered and the Poynting vector of the 

light field, defined as the energy flux, which is also proportional to the momentum density, 

changes its direction. This interaction gives rise to an optical force and has been known for 

a long time. This effect was first applied to generate optical trapping by Arthur Ashkin [ I ] .  

A simplified version of the trapping principle can be stated using ray optics, as follows: 

If a dielectric spherical object is placed on the centre line of a Gaussian beam, it will ex- 

perience no net force on its lateral direction due to symmetry (Figure 2.1 (a)). When the 

object is off-centered, the mismatch in the intensity of light being refracted by the object 
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near and far from the centre line creates a net momentum change for the bead that has a lat- 

eral component pointing towards the centre of the beam, or equivalently along the gradient 

of the light intensity (Figure 2.1 (b)). This component is called the gradient force. 

In this picture, the change in light momentum also has an axial component which causes 

a "downstream" force on the object. In addition, reflections on the interfaces generate force 

that has a similar effect. These downstream forces and components all together are called 

the scattering force (Figure 2.1 (a)). 

For trapping in three dimensions, a gradient in the axial direction is created by tightly 

focusing the beam, thus creating a gradient force strong enough to overcome the scattering 

force (Figure 2.1 (c), (d)). Experimentally, a laser and a high numerical aperture (NA) mi- 

croscope objective lens are commonly used to create a strong gradient in the axial direction. 

To estimate the trap stiffness, it is useful to consider the trapped dielectric particle as a 

electric dipole. For a linear dielectric material, the polarization density p is related to the 

electric field E as' 

p = a E .  (2.1) 

Here cu is the polarizability of the trapped particle. For a dielectric sphere of radius R 

where €0 is the permittivity of free space, and m = % is the ratio between the index of 
n n,, 

refraction of the particle n,, and the medium n,. 

The time-averaged gradient force F of an electric dipole in an inhomogeneous light 

intensity I is 

At the focal point of the microscope objective, we approximate the focused light as a 

planar wave with a Gaussian intensity profile perpendicular to the optical axis, with a width 

of one wavelength A: 

where r is the distance from the optical axis, and P is the total power of the laser at the 

focal area. 

'The estimation is shown in MKSA units. 
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intensity profile 

(b) 1 

)>- intensity profile p "Ap 
-7-7 'initid - 

Figure 2.1: Principle of optical trapping illustrated by ray optics. (a) Refraction of light by 

a bead on the centre line of a collimated beam. The refracted light has a symmetric distribu- 

tion in the lateral direction, but its momentum is reduced in the downstream direction. The 

thin arrows show the reflected light that also contributes to the downstream scattering force. 

Reflections are omitted in (b), (c) and (d). (b) When the bead is off-centred, the intensity 

asymmetry in the lateral direction causes a net force on the bead with a component along 

the gradient of the light intensity. (c) In the focused light of a 3-D trap, when the bead is 

upstream of the focus, the total force pushes the bead downstream. (d) The downstream 

bead will experience force that pulls it back towards the beam focus. 
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The trap stiffness at the centre on the perpendicular direction to the optical axis is 

This expression only applies to particles much smaller than the wavelength. Nonethe- 

less, it can be extended to larger dielectric particles to estimate the trap stiffness. Assume a 

3 pm-diameter polystyrene bead is trapped by a 100 mW, 800 nm-wavelength laser. The in- 

dices of refraction of water and polystyrene are taken as 1.33 and 1.59. The trap stiffness is 

then -- lo2  pN/pm. This very crude attempt does not agree with experimental observations. 

Nonetheless, it illustrates the cause of the gradient force, and gives a order-of-magnitude 

estimation of the trap stiffness. The physical picture of a trapped particle that has com- 

parable size with the wavelength is more complicated. The ray diagram picture, Rayleigh 

scattering approach and the treatment based on Mie scattering theory have been attempted 

to theoretically calculate the optical forces with different levels of success. [45, 60, 611. 

This thesis will not discuss these theoretical works any further, but instead will focus on the 

trap calibration by experimental means. 

2.2 Description of the instrumentation 

Optical tweezers are commonly built on a commercial inverted microscope, or from basic 

optical elements and microscope objectives. For a commercial microscope, the alignment is 

easier, and there is a set of microscope accessories available. Customized optical tweezers, 

however, have more flexibility in their optical configuration. In our lab, we built the optical 

tweezers following the latter scheme. For ease of description, our optical tweezers system 

is divided into several components: optics for trapping, position detection and electronics, 

pressure control and fluidic system (Figure 2.2). 

2.2.1 Trapping optics 

Our optical tweezers setup is a position-measuring optical tweezers with a single trap (Fig- 

ure 2.2). The 835 nm light from a 200 mW diode laser (diode from JDS Uniphase FG5431- 
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Figure 2.2: Schematic layout of the optical tweezers setup. A 200 mW, 835 nm near- 

infrared diode laser is used as the trapping laser source. The collimated laser beam is sent to 

and focused by a high-NA microscope objective to create an intensity gradient for trapping. 

On the downstream side an identical objective is used to collect and recollimate the trans- 

mitted (forward-scattered) light for position detection on a lateral effect position-sensitive 

photodetector (PSD). A halogen lamp is placed on the condenser side as the illumination 

light source, and the image is split by a 50% beam splitter for imaging on two cameras, one 

analogue and the other digital. For ease of viewing, the illumination beam path indicated in 

green lines is simplified from Kohler illumination in the actual setup. The detailed align- 

ment procedure is described in Appendix D. The flow chamber in which the laser light is 

focused is mounted on a computer-controlled piezoelectric stage, enabling relative motion 

between two beads for biological studies. The dashed square indicates the parts for posi- 

tion detecting: PSD, PSD pre-amplifier electronics, anti-aliasing filter and AID converter. 

The flow control system for the trapping chamber is omitted in this drawing. Abbreviations 

used here are: L=lens; M=mirror; ND=neutral density. See [62] for more details. The focal 

length of the lenses are: L1 - 40 mm, L2 - 50 mrn, L3 - 150 mm, and LA - 500 mm. The 

cube beamsplitter we use is 03 PBS 065, Melles Griot. 
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G1-830-10-G1-.2; laser assembled by Melles Griot) is focused by an objective lens (Olym- 

pus UPlanApo/lR, NA 1.2, 60X, water immersion) into a flow chamber to trap polystyrene 

beads (Spherotech). A Faraday isolator (Optics for Research Inc., IO-10-834-LP) protects 

the laser from back-scattered light. The transmitted (fonvard-scattered) light is collected 

by an identical objective lens. The position of the trapped bead can be obtained from analy- 

sis of the displacement of the laser beam on a position-sensitive photodetector (PSD, UDT 

Sensors DL-10). On the downstream side, fibre-coupled halogen lamp (Dolan-Jenner In- 

dustries, Inc., Series 180) is used as the illumination light source. The image of the trapped 

bead is sent to two cameras, one analogue with a small magnification for an overview of 

a large area, and the other a digital CCD camera (Flea, Point Grey) capturing the image 

which is sent to a computer for image analysis. The whole setup is enclosed in a plastic 

shield to reduce laser-beam deflection due to air currents [63]. See Appendix D for a brief 

instruction on optical alignment. 

2.2.2 Pressure control and fluidic system 

For biophysical experiments, a flow control system is incorporated in the optical tweez- 

ers setup. We make the flow chamber and chamber holder in our lab following Steven 

Smith's design [3]. The chamber is made of two pieces of cover glass separated by melted 

Nescofilm (Karlan Research Products Corp.) with chamber-shaped cuts. A piece of poly- 

meric tubing (Microfil34G, World Precision Instruments) is placed in the middle of the 

chamber for pipette insertion. One of the cover glasses has holes drilled to connect with 

silicon tubes (Figure 2.3). 

The flow speed at the injection side of the flow chamber is set by applying pressure. 

Pressure is regulated by three valves controlled by the computer, connecting with com- 

pressed nitrogen from a shared pipeline, a vacuum aspirator and atmosphere. Between the 

pressure sources and the flow chamber, a computer-controlled valve selector is inserted to 

switch among up to four solution reservoirs [62]. 

The llow chamber is mounted in a chamber holder, which is attached to a piezoelectric 

stage (Mad City Labs, NANO-H5O) by four magnets. The stage is able to move 50 pm in 

two directions with sub-nanometer resolution. The pipette mounted on the stage therefore 

can be moved relative to the fixed optical trap. In this setup, molecule stretching exper- 
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Figure 2.3: Design of the flow chamber. The chamber is made of two pieces of Nescofilm 

and two pieces of cover glass, one of which has drilled holes for fluid exchange. On one 

side of the chamber, a piece of polymeric tubing is placed between the Nescofilm so that 

micropipette is easily inserted and replaced. 
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iments and studies on molecular motors are possible, by tethering the sample between a 

bead held on the micropipette by suction and a bead held in the optical trap. 

For details on procedures of making chambers and micropipettes, pressure regulation 

and flow speed control, see [62]. 

2.2.3 Position measurement 

The position of the bead is measured in two ways. In one method, the image of the bead is 

acquired by a CCD camera, and the image is analyzed in software for edge detection to Find 

the centroid of the bead [62]. In this method the position is determined to sub-pixel resolu- 

tion ( I  0 nm of the position signal for a fixed bead of 0.2 pixel from the tracking algorithm2), 

and this method can analyze several beads simultaneously. The main limitation is the frame 

rate of the camera, and the computational burden. In this setup, the camera is able to run at 

640 x 480 pixel resolution, 8 bit grey scale at 60 frames per second. Therefore the detection 

bandwidth of the bead position is limited to 60 Hz. In many biological systems, this rate 

is fast enough to track major dynamical events, but it is unable to completely characterize 

the Brownian motion of the bead in the trap, which can be essential in some high-precision 

measurements [63]. Fast cameras are commercially available; however, images must be 

recorded for later analysis as real-time analysis is limited by the data transmission rate and 

computation power of the computer. 

Another way to determine the bead's position is to collect information in the laser light 

after i t  interacts with the bead, using a position-sensitive photodetector (PSD). Both back- 

scattered light and transmitted light can be used for measuring the position. Over a certain 

range, the centre of the transmitted light is proportional to the position of the bead relative 

to the trap centre. The straightforward picture is that the momentum change of the light 

caused by the bead is described by the angular redistribution of the light intensity, which is 

then transformed into the spatial profile of the light by the condenser objective. Therefore 

the shift of the centre of the recollimated light indicates the momentum change of light 

per unit time induced by the bead. In our setup, we use a lateral-effect position-sensitive 

photodetector to measure the position of the centre of the light, and thus the position of the 

'Estimated from the magnification of  the camera of  22 pixeUpm and the standard deviation o f  the position 

signal for a ti xed bcad of  0.2 pixcl 
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trapped bead, since the bead displacement is proportional to the optical force over a small 

range. The signal is amplified by an analogue amplifier, low-pass filtered for anti-aliasing 

(LTC1064-2CN, Linear Tech), sampled by an A/D converter (PCI-6052E, National Instru- 

ments) and sent to the computer for processing. The position-measurement bandwidth is 

limited by the response of the photodetector (8 MHz, for 650 nm light, according to the 

manufacturer), the amplifier (300 kHz, see detailed discussions below), and the A D  con- 

verter (typically 50-1 00 kHz, set by the sampling frequency). This bandwidth is sufficiently 

high for calibrating our optical tweezers as described below. 

Other approaches to position measurement have been introduced in the literature [44]. 

In our setup, video microscopy and the forward-light scattering measurement are precise 

and fast enough for basic physical and biological studies. 

2.2.4 Position calibration 

In order to obtain the position of the trapped bead in "real" units (e. g. ,urn), the signals 

from PSD voltage and particle tracking from video microscopy must be calibrated. In 

this procedure, I fixed a bead on the pipette tip and moved it around the trapping area. The 

movement of the piezoelectric stage is taken as the displacement standard, since the stage is 

calibrated to sub-nanometer precision by the manufacturer. At the same time, the response 

of the PSD and video tracking results are recorded. 

In order to obtain the conversion factors with high signal-to-noise ratio on both horizon- 

tal and vertical directions, I moved the pipette in diagonal scan instead of a 2-D line scan 

to avoid drift occurring over the timescale of a full x-y scan. A 3.1 pm-bead was moved 

through the trap area on a diagonal line, with a scan rate of 5 Hz across 0.5 p m  in each 

direction. The voltage signal of the PSD on both channels and the position sensor voltages 

on the piezoelectric stage are sampled at 1200 Hz and averaged over 20 samples to give a 

60 Hz effective sampling rate. The coordinates of the bead centre given by video tracking 

are determined at 30 frames per second. The resultant video tracking position and PSD 

voltage are plotted against the slage movement in Figure 2.4. The video magnification is 

determined to be 22.111k0.07 pixeVpm and 22.33f 0.06 pixellpm for the horizontal and 

vertical directions respectively, and respectively the PSD magnification is O.9526Ik 0.0008 

V/pm and 1.1716~0.0005 V/pm for the two directions. The difference between PSD con- 
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version factors in the two directions may result from the optical alignment, the sensitivity of 

the PSD, and/or the different channel amplifications of the PSD pre-amplifier3. Also note 

that the PSD magnifications in both directions depend on the specific size of the trapped 

bead, as shown in the following sections. 

I also attempted to correlate the video tracking result with the PSD voltage signal for 

an optically trapped bead. However, because the coherence time of the bead position is on 

the scale of milliseconds4, it is technically hard to synchronize the video frames and the 

PSD voltage signal. In addition, the integration time of the CCD camera will cause prob- 

lems in determining the instantaneous position of the bead. Also because this correlation 

measurement does not give further information than the moving-pipette measurement for 

calibrating the magnifications, I did not investigate this method further. 

2.3 Trap calibration using Brownian motion 

One way to calibrate the trap is to apply directly an external force using a known con- 

stant flow, and observe the displacement of a trapped bead [47, 621. Another category of 

techniques for calibrating the trap stiffness uses thermal motion of the trapped bead; these 

include the equipartition method, the power spectrum method and some variations. The 

power-spectrum method is found to be the best method, as it is a quick and relatively accu- 

rate way to calibrate the trap stiffness. These approaches are described below. 

This section contains the main trap calibration procedure using the bead's thermal mo- 

tion and results. Sections 2.3.1 and 2.3.2 introduce the theoretical background for cali- 

brating, followed by Section 2.3.3 where the hydrodynamic effects are considered for cor- 

rections to the power spectrum method. Two technique sections, Sections 2.3.4 and 2.3.5, 

introduce two data-compression treatments and the details of setting up the anti-aliasing 

scheme. The results are listed and discussed in Section 2.3.6. Section 2.3.7 discusses the 

correlation of the thermal motion between the horizontal and vertical directions and the 

3 ~ h c  amplification of the DL-I0 prc-ampliticr is mcasurcd using a variable dummy load, showing a I : I. I 

ratio on [he two channels of the amplifier (data not shown). This difference results from unmatched resistances 

in thc arnplilicr. 
4 ~ h e  coherence time is the reciprocal of the comer frequency, which is around I kHz for a 2 prn bead in 

a 100 pN/p,m trap. See section 2.3.2 for a description of the corner frequency. 



CHAPTER 2. BUILDING AND CALIBRATING THE OPTICAL TWEEZERS 15 

30.7 30.8 30.9 31.0 31.1 
(b) Stage x (yrn) 

29.0 29.1 29.2 29.3 29.4 
Stage Y (pm) 

I I I I I 

30.7 30.8 30.9 31 .O 31.1 
Stage Y (pm) 

29.0 29.1 29.2 29.3 29.4 
Stage X (pm) 

Figure 2.4: Calibration of the video microscopy and PSD position detection magnification 

of a 3.1 pm bead fixed on the pipette tip. (a) The video magnifications are determined as 

22.11 f 0.07 pixellpm and 22.331t0.06 pixellpm for the horizontal and vertical directions 

respectively. (b) The PSD magnifications are O.9526f 0.0008 Vlpm and l . H l 6 f  0.0005 

VIpm for the two directions. The video magnification only depends on the magnification 

of the trapping objective and the focal length of the imaging lens, whereas the PSD magni- 

fication depends on the collimation, the size of the trapped object and the sensitivity of the 

photodetector. 
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possible reasons for the non-zero correlation. Most of the work in this section follows 

Berg-Sgrensen and Flyvbjerg's work on calibrating an optical trap [50]. 

2.3.1 Position variance and the equipartition theorem method 

According to the equipartition theorem, the variance of a trapped bead is related to the 

thermal energy by , -, 

where ikBT is the thermal energy in one spatial dimension, and the left hand side is the 

average potential energy of a bead in a harmonic trap of stiffness K. 

As stated above, the bead's position is measured by the photodetector, therefore the 

conversion factor from voltage to real displacement must be obtained in order to determine 

the trap stiffness in force per real length units. Thus this conversion factor is a direct source 

of error. 

2.3.2 Basic Lorentzian form of the power spectrum 

The equipartition theorem uses the thermal energy of the trapped bead to evaluate the 

strength of the trap. However, the overall variance of the position neglects all the detailed 

motion information, specifically the energy distribution of each frequency component of 

motion, which is related to the structure of the trapping potential. 

In our optical trap, the interaction between the laser and the trapped object can be ap- 

proximated by a harmonic potential. In such a case, the equation of motion for the trapped 

bead is given by the Langevin equation, 

Here, m is the mass of the bead, x its position, K the trap stiffness, firag is the drag force 

on the bead, kBT the thermal energy and ( ( t )  is a stochastic Gaussian process satisfying 
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For a spherical object with radius R, the drag force term i n  a laminar flow is calculated as 

Fdrng = -?OX I (2.9) 

where the drag coefficient -10 is well approximated by a constant determined by Stokes' law, 

7" = 67rpvR, (2.10) 

where p is the density of the surrounding fluid, u its kinematic viscosity and R the radius 

of the spherical object. In an optical trap, the bead is driven by thermal forces and therefore 

moves with a variable velocity. The actual drag force has a more complicated relation 

than (2.9) and (2.10), as discussed in the next section. Here, I will start with the simple 

expression without any consideration of hydrodynamical effects. 

Since a micron-sized bead optically trapped in an aqueous environment is a highly over- 

damped system, the inertial term can be dropped from (2.7), leaving 

Applying a discrete Fourier transform to both sides, we have5 

Symbols with tildes on top represent the Fourier transforms of the corresponding 

with frequency index k,  when measured for finite length T,,, (Appendix A.l). 

shown from Wiener-Khintchine theorem [64] that 

The expected value of the power spectrum density is given by a Lorentzian [50]: 

(2.11) 

(2.12) 

(2.13) 

variables 

It can be 

(2.14) 

(2.15) 

5The form for the Fourier transform of x is true under the limit T,,, + m. See Appendix A.  
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with an exponential probability distribution of variance (Appendix A.4) 

Here Pk is the power density at frequency fk7 .fc7 the corner frequency (also called the 

particle's response, or roll-off frequency), is defined as 

and D is the diffusion constant according to the Einstein relation 

In principle, one can record a position series, take the power spectrum and fit it with 

Equation (2.15). The f, extracted from the fit can then be used for determining K, according 

to Equation (2.17), given the bead radius R. In this method, errors in bead-size measure- 

ment and fluid viscosity will directly affect the trap-stiffness estimate. This problem is 

partly solved by the hybrid method ([49] and Section 2.4). Other useful treatments are 

applied to the raw data for ease of fitting (Section 2.3.4). 

Note that the power spectrum method recovers the result of the equipartition theorem 

by integrating the power spectrum: 

Using the Einstein relation of Equation (2.18) and the definition of the corner frequency 

fc = ~ / 2 7 r 7 ~ ,  the result from the equipartition theorem Equation (2.6) is recovered. The 

power spectrum method of determining trap stiffness is superior to the equipartition method, 

since extraneous noise (low-frequency drift, discrete-frequency electrical and mechanical 

noise) is clearly distinguishable from the Lorentzian and can be treated accordingly. . 

2.3.3 Hydrodynarnical model of the trapped bead 

The power spectrum is shown to be Lorentzian when assuming the viscous drag force is 

proportional to the bead velocity. However, this assumption is true only when the velocity 

field is stationary around the object. When the bead's motion relative to the surrounding 
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liquid is not a constant, the viscous force depends on the frequency of the specific motion 

mode and on the second derivative of the bead's position. This arises because the bead-fluid 

interaction generates propagating waves that then interact with the bead. The characteristic 

distance 6, or penetration depth, is the typical length that the wave propagates into the fluid. 

When the sphere is undergoing harmonic motion at low Reynolds number limit, the drag 

force exerted on the bead is [65] 

where the penetration depth 6 is related to the oscillation frequency f as 

Here f;, = v/(7rR2), where v is the kinematic viscosity. From the Fourier transform of 

Equation (2.20), the viscous force in the frequency domain can be expressed in terms of the 

Fourier transform of x: 

Therefore the hydrodynamic drag coefficient can be defined as 

Because hydrodynamic effects occur at much higher frequency than the corner fre- 

quency (f,, for a 2 pm-diameter bead in water is -- 300 kHz while f, = 1 kHz), when in- 

cluding hydrodynamic effects in the theoretical analysis of the power spectrum, the inertial 

term in Equation (2.7) should be retained as the typical damping frequency is comparable 

to f, (see the definition of f, below). With the inertial term and a complex y, the power 

spectrum is calculated as 
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Here, f, = yO/(2nm) is a frequency related to the inertial relaxation time of the bead of 

mass m. Substituting y ( fk)  from (2.24) into (2.26), the hydrodynamically corrected power 

spectrum is obtained: 

hydro (Pk. ) =  

where f,* - y / (2 rm*)  

is close to water, f, and 

and m* - m + 2rpR3/3. Because the density of polystyrene 

f,- are related to fu: fm* = 1.5.fu. Tn the actual fits, T use this 

simplification to eliminate tm*. 
Further theoretical modifications to the power spectrum have been discussed in the lit- 

erature [50]. When the bead is placed near an infinitely large plane as is the case in many 

optical tweezers instruments, the boundary will confine the the velocity field of the fluid, 

thereby increasing the effective drag force on the bead. FaxCn derived the exact solution 

for the drag force on a bead at specific locations between two parallel walls [66]. For an 

arbitrary bead location, Oseen developed a reflection treatment that gives a good approx- 

imation to the actual drag force [67]. More recent theoretical [68] and experimental [69] 

studies have also attempted to address the effects of particle confinement. However, these 

treatments only deal with the drag force when the bead has a constant velocity, which is 

not the case for Brownian motion. K. Berg-SGrensen and H. Flyvbjerg combined the ap- 

proximation of harmonic oscillatory bead motion with boundary effects, and calculated the 

drag coefficient in this situation [50]. This treatment gives the corrected drag coefficient in 

(2.26) as 

Re (?(n / l ) / y0)  = I + " 3R (-5 .F1 J') f u  ~ 0 s  (v) l2 f u  
(2.2,) 

and 

Here, 1 is the distance from the bead centre to the boundary, which can be as small as a few 

bead radii. For example in some optical tweezers setups, a molecule is stretched between 

a cover glass and trapped bead, and in magnetic tweezers instruments, the Brownian mo- 

tion of the bead tethered to the chamber wall is likely to be affected by the nearby surface. 
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Moreover, a distinctive feature of the boundary effect is that unlike the vortices in fluid 

that decay exponentially with penetration depth 6, the effect of the boundary at larger sep- 

arations is dominated by the - l/r decay in velocity of the flow. This long-range feature 

suggests that, even in our case where the bead is trapped roughly at the centre of a 160 

pm-thick chamber, L/R -- 50, the boundary effect is still of the order 2%. 

In spite of the likely importance of the boundary effect to precise fits of the high- 

frequency part of the power spectrum, I did not include it in my analysis. The derivation 

of the hydrodynamic model with boundary effect (Equation (34) in [50]) drops the higher- 

order terms of parameter d m .  In fact, this term is -- 1 when fitting to high frequencies 

for bigger beads (f, for a 3.1 pm-diameter bead is -100 kHz) and should not be dropped. A 

correct determination of the effects of hydrodynamics and boundaries is beyond the scope 

of this thesis, and for simplicity, I include hydrodynamic effects but assume the boundary 

to be infinitely far from the bead. The systematic error introduced by this simplification is 

still less than the uncertainty of the bead-size determination (see below). Nonetheless, for 

a more reliable trap stiffness estimate, further investigation of the boundary effect will be 

necessary. 

2.3.4 Data acquisition and compression 

In the experiment, the position signal of the trapped bead is collected by the position- 

sensitive photodetector and its pre-amplifier, low-pass filtered, digitized by an A/D con- 

verter and sent to the computer, where the position signal is Fourier transformed to calcu- 

late the power spectrum. In the specific setup, the corner frequency of a trapped bead can 

range from 500 Hz to 3 kHz depending on bead size, laser power and optical alignment. 

In order to properly characterize the corner frequency, the Nyquist frequency , f N g q ,  which 

is half of the sampling rate f , 5 ,  must be higher than the corner frequency. Even higher fre- 

quencies are required to see the effects of hydrodynamics discussed in the previous section. 

The maximum cumulative sampling rate of the A/D converter I used is 333 kSamples/s for 

all channels, meaning that f s  reaches 333 kHz only for a single channel measurement. In 

practise, I have chosen 300 kHz as the maximum sampling rate for one channel. 

The frequency resolution is given by the reciprocal of the sampling length. At very low 

frequencies (-- 1 Hz and lower), contributions from external noise exceed the Brownian 
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motion of the bead (Appendix C.3). The sources of the very low frequency noise may 

include the thermal instability of the laser head, air density disturbance and the drift of 

optical elements. 

Even though the very low frequency components are not useful for the fitting due to 

drift, it is still helpful to acquire long samples for smaller statistical dispersions. For long 

sampling time (100 seconds in this case), applying the power spectrum analysis to the entire 

data set is not efficient, therefore two data compression procedures, namely windowing and 

blocking, are introduced [50]. For each power spectrum of a series of position measure- 

ments, the power component at each frequency is exponentially distributed with a standard 

deviation of PJ. If I take a number of identical measurements and average all the spectra, 

the sample average will approach a Gaussian distribution about its expected value accord- 

ing to the central limit theorem. For a very long time series of position measurements, 

instead of directly taking the power spectrum, I slice it into small segments, each of which 

is long enough to obtain a frequency resolution sufficient to describe the Lorentzian shape 

of the power spectrum, take the power spectrum of each, and average these individual power 

spectra. This treatment is known as windowing (with a rectangular window function). If 

n ,  is the number of windows, then the deviation of the windowed spectrum is narrowed to 

(Pk)/&. In signal analysis, various window functions can be applied to the raw signal to 

reduce leakage, but can result in signal distortion. In this treatment, since no peak-shaped 

feature is expected in the power spectrum, a rectangular window function suffices. 

In addition to windowing, another data compression method called blocking is widely 

used. Since the Brownian motion gives a smooth Lorentzian form of the spectrum, in 

a small frequency range, the averaged values of frequency and the corresponding power 

density values can be taken to represent the data in this interval. For a block with width n b  

discrete frequencies, the blocked frequency and power are 

and 

When the blocked data are used in the fit, compared with the raw data, the error introduced 

by this treatment depends on the relative change of the tit value, the curvature of the fit 
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function and higher order terms. Specifically, it is shown that for an unwindowed power 

spectrum with exponential distribution, the relative deviation of the parameter probability 

estimate for the blocked data from the raw data is [50] 

Thus, as long as the leading higher order term - & (nh${7i(n) is much less than 1, block- 

ing gives a reliable compression of the original data. In my data analysis procedure, the raw 

data is windowed before blocking, and therefore its distribution is approximated by a Gaus- 

sian instead. However, the deviation remains of the same order with a different coefficient. 

In the blocking procedure used here, the f o m  in (2.32) is used. 

To choose the proper block width, the simplest way is to estimate the largest value of 

P ' ( f ) / P ( f ) ,  calculate the value of n6A f necessary to keep the higher-order term less than 

one, and fix this blocking length globally over the whole frequency range. Actually for 

a tixed tolerance E ,  the proper block width can be determined if an estimate of the corner 

frequency is known. Set 

where f b  = nbA f .  f is the central frequency of the block, and I have used the simple form 

(2.15) to describe the power spectrum. Assuming the start frequency of the block is given 

as f o ,  then the length of this block f6 can be solved from 

Following the dynamical scheme, one can determine the length of each block consecutively 

in a more adaptive fashion compared with the constant block width scheme. I followed this 

latter approach when blocking the power spectrum data. 

2.3.5 Aliasing 

If a continuous signal is recorded in discrete samples at a finite sampling rate, a frequency 

component at f > f N V q  will contribute its magnitude to a frequency between 0 and the 
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Nyquist frequency. This artifact due to a finite sampling rate is well known as aliasing. If 

the sampling rate is f,, and therefore the Nyquist frequency f N y q  = , fs/2, all frequency 

components outside the range [- f N y q ,  f N y q )  will  fold^' into this range: 

where 1V is the number of samples, so flv = f,. Since Zk  are uncorrelated variables, 

It is discussed thoroughly in [50] that improper treatment of aliasing will cause sig- 

nificant systematic error. To avoid this in our experiments, a Jow-pass 'filter, acting as an 

anti-aliasing filter, is used right before data sampling. This removes high-frequency com- 

ponents but leaves the low frequency-components undistorted. The choice of filter depends 

on the specific application, but usually it is required to have minimum pass-band ripple, 

a narrow transition band, and sometimes a certain phase response in the pass band. In 

our case, I use a commercial 8-order Butterworth low-pass tilter (LTC1064-2CN) and a 

second-stage second-order low-pass filter ( f3dB = 94 kHz, TL072CN, Texas Instruments) 

to prevent clock feed-through from the tirst tilter. 

The roll-off frequency of LTC1064-2CN is adjustable, which allows me to tune the 

optimal cutoff. Several factors must be taken into account. The pass band must cover the 

entire frequency range of interest with minimum distortion. Therefore the cutoff frequency 

f3dB must be higher than the upper boundary of the power spectrum fitting range. The 

Nyquist frequency f N y q  is a common choice for f 3dB;  however, since the transition band 

is not infinitely narrow, frequency components beyond fNYq  are not completely attenuated 

and therefore can still fold into the [O,  , f N U q )  range, thus distorting the spectrum. In order 

to have the largest undistorted pass band, i t  is proper to place the Nyquist frequency in the 

middle of the transition band of the filter. Given the maximum practical Nyquist frequency 

of 150 kHz (for a single channel, bandwidth limited by the AID converter), I set f3dB at 

60 kHz and use a fitting range from 0 to 30 kHz in the analysis of the power spectrum. 

Therefore the closest frequency to be aliased to this fitting range is 270 kHz or 4.5 f3dB7 
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Figure 2.5: Anti-aliasing schematic, with a linear frequency axis and logarithmic gain axis. 

The solid line shows the frequency response of the low-pass filter. All signal above the 

Nyquist frequency fN,, will be reflected to the band below i n r y , ,  with attenuation by the 

filter (reflected dotted line). Above a certain frequency jTL,,,,,, high-frequency components 

are attenuated below the noise floor of the AD converter. Thus at frequencies below the 

aliased frequency (2.fN?/, - fnozse), the experimental spectrum is undistorted. In our experi- 

mental implementation of this scheme I chose the cutoff frequency of the filter (,f3dB) such 

that it is lower than the Nyquist frequency f , ~ ~ ~  

where the attenuation of the anti-aliasing filter is over 80 dB, much lower than the noise 

floor of the AID converter (Figure 2.5). 

Because of the design of the filter, when f3& is set larger than 30 kHz, an overshoot in 

the transition band occurs, roughly peaked at 50 kHz (Figure B.l). This is relevant since 

for typical values of window number and block width n, = 100 and n b  = 100, the rela- 

tive variance of the power spectrum is I/,/- = l%, whereas the distortion of the filter 

exceeds this value above 20 kHz. In order to obtain proper information about the hydro- 

dynamic behavior of the bead, a bandwidth up to 30 kHz for fitting the power spectrum is 

necessary, meaning that the proper knowledge of the filter's response is required. I mea- 
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sured its response and include this experimental correction in all estimates of the power 

spectrum used in the following fittings (Appendix B). 

Because aliasing is a well understood process, in principle it is possible to calculate 

its effect and compensate for it. To do that, the frequency response of the detector and 

amplifier up to frequencies for which the gain is below the noise floor of the electronics 

must be known. The A/D converter behaves as a low-pass filter with cut-off frequency 470 

kHz as specified by the manufacturer and verified by my measurements. The photodetector 

also has a low-pass effect since its silicon substrate has a poor absorption of long wavelength 

IR photons6. However for the 835 nm light used here, the cut-off frequency of our PSD is 

at least higher than the A / '  converter. The main problem in determining the frequency 

response 0.f the detection system comes from the PSD pre-amplifier. The amplifier works 

in a current-amplifying mode, which has a strong coupling between load and the amplifier. 

The frequency response thus depends strongly on the load, making it hard to measure using 

a variable dummy load. Nevertheless, I determined its cut-off frequency to be in the range 

of 200 kJ3z to 400 kHz. This is thus the limiting factor for the high-frequency response of 

the system, and because of its load dependence, this effective cutoff frequency is unknown. 

Because of this uncertainty, it is not possible to correct the power spectrum by accounting 

for the aliasing in the measurement, and so the low-pass filtering approach described in the 

previous paragraphs is employed. 

2.3.6 Results 

I calibrated the trap using the routines described above. The position signal from the PSD 

is first low-pass filtered with a cut-off frequency set at f3& = 60 kHz for anti-aliasing. 

The filtered signal is sampled at 300 kHz for 100 s for horizontal and vertical channels 

separately. 

First, the variance of each slice is calculated from the position signal and is used to 

determine the trap stiffness using the equipartition theorem. For a 3.1 pm-diameter trapped 

bead, the variances of horizontal and vertical directions are calculated as 2.52 x V2 

% is reported that for a 1064 nm wavelength IR laser detected by a quadrant photodiode (QPD), the cut- 

off frequency can be as low as 10 kHz [70]. However in our case where a lateral-effect PSD is in use instead 

of a QPD, the effect of IR transparency on the thin silicon substrate is to lower the sensitivity of detection 

rather than to reduce the frequency response. 
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Table 2.1: Fitting parameters for a simple Lorentzian power spectrum fit for a 3.1 pm- 

diameter trapped bead. 
channel 

corner frequency .f, (Hz) 

diffusion constant D (v2/s) 

trap stiffness K (pNlpm) 

x2 
number of points to fit 

and 3.10 x V2 respectively, or 2.77 x 10-"m2 and 2.26 x 10-5p m2, converted 

using the result in 2.2.4. The local temperature of the bead is set to be equal to the room 

temperature of 295 K, a treatment that ignores the (minimal) local heating effect of the 

laser. From Equation (2.6), the trap stiffness is then quickly calculated as K, = 147 pN/pm 

and K ; ~  = 180 pN1pm. 

For determination of the trap stiffness using the power spectrum method, the position 

signal is sliced to 100 windows, then the 100 sets of windowed data are Fourier transformed 

to frequency space. The power density is determined for each, and the average of the 100 

power spectra is taken. Finally the averaged spectrum is blocked as described in Section 

2.3.4 with dynamic block widths. The blocked power spectrum is then fit first with the 

simple Lorentzian of Equation (2.15) with results indicated in Figure 2.6 and Table 2.1. To 

calculate the trap stiffness, I used the 3.1 f 0.1 p m  nominal value as the bead diameter. 

From the X2 value and the residual, it is clear that even though the power spectrum 

has a overall low-pass shape, a simple Lorentzian does not describe the behavior of the 

trapped bead properly. The cause of the discrepancy is not the response of the low-pass 

filter that is ignored in the fit, because the response is flat below 10 kHz (Appendix B). 

Therefore for a reliable estimate of the parameters, further corrections to this simple model 

must be considered. I observed that for the smaller 1.2 pm-diameter bead for which the 

hydrodynamic effect is less significant, X2 is a b o ~ ~ t  6 times larger than the number of points. 

If the sample time is 10 times shorter, the systematic discrepancy will be covered by the 

Brownian randomness, i .e. ,  the residuals become insignificant and the true value Calls within 

the larger error bar. When precision is not a concern, short sample lengths (-- 10 s) and 

fits to the simple Lorentzian (2.15) can return usable estimates of the corner frequency for 
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Figure 2.6: The blocked power spectra and their fits with a simple Lorentzian for a 3.1 pm- 

diameter polystyrene bead from 1 Hz to 10 kHz in horizontal (x) and vertical (y) directions. 

(a) The power spectrum and its fit. The raw data are windowed and blocked as described in 

the text and are fit with Equation (2.19, without correction for the anti-aliasing filter. The 

fitting parameters are listed in Table 2.1 (b) The normalized residual plot of the fit. The 

deviation is normalized by the expected deviation (Pk)  and the number of averages Jm. 
The two dashed lines indicate the distance of the expected standard deviation. X 2  for the fit 

are 5350 for horizontal direction and 5501 for vertical direction compared with 101 points 

being f it. 
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small bead size. 

To obtain a more precise estimate of the fitting parameters, the power spectra are tit 

with the complete model in Equation (2.27), which includes hydrodynamic effects, as well 

as including compensation for the anti-aliasing filter (Figure 2.7and Table 2.2). In fitting 

the power spectra, the diffusion constant D, corner frequency fc and ,fu are set to be fitting 

parameters. The uncertainties are estimated from the covariance matrix, and X2 is calculated 

from the deviation of the experimental power spectrum from the expected values. Since ,f, 

is directly related to the bead size (f,, = u / ( r R 2 ) ,  v = 1 p m , 2 / p ~  for water), the bead 

diameter is shown in Table 2.2 for comparison as well. I apply the same process for 1.2 

pm-, 2.1 pm- and 3.1 pm-diameter beads for both horizontal and vertical directions. The 

results are listed in Table 2.2. For comparison between the simple Lorentzian fit and full 

hydrodynamic model, the experimental data in Figures (2.6) are fit with the corrected model 

with results shown in Figure (2.7). 
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Figure 2.7: The blocked power spectra for a 3.1 pm-diameter polystyrene bead from 1 Hz 

to 10 kHz. The same data are shown in Figure (2.61, but here are fits with the hydrody- 

namically corrected model (2.27). The tit parameters are listed in Table 2.2. Here, the 

normalized residuals fall within the expected f one standard deviation, as indicated by the 

dashed lines. 
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Table 2.2: Power spectrum titting results of beads of 3 djfferent diameters. The trap stiffness 

is calculated using the bead size value from the fit instead of the nominal value from the 

manufacturer. 

channel 

.fitting range (Hz) 

corner frequency f, (Hz) 

diffusion constant D (V2/s) 

f v  (kHz) 
bead diameter d (pm) 

trap stiffness K. (pN/pm) 

PSD sensitivity (Vlpm) 

x2 
number of points to fit 

channel 

titting range (Hz) 

corner frequency f c  (Hz)954 41 2 

diffusion constant D (V2/s) 

Sv ( H z >  
bead diameter d (pm) 

trap stiffness K (piV/pm) 

PSD sensitivity (Vlpm) 

x 
number of points to fit 

1.2 pm bead 

2.1 pm bead 
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channel 

fitting range (Hz) 

corner frequency ,f, (Hz) 

diffusion constant D (V2/s) 

.L (kHz) 
bead diameter d (pm) 

trap stiffness K (pN/pm) 

PSD sensitivity (V/pm) 

x2 
number of points to fit 

3 .1pm bead 

In the chosen titting ranges, the hydrodynamic model agrees with experimental data 

for all three different sized beads, as shown by reasonable values of X 2  ( X 2  Npubnts). 
Also from the residual plots, it is clear that the theory works well statistically (See Figure 

2.7 for the residual for the 3.1 pm-bead, same data as shown in Figure 2.6). For a 100- 

second-long sample, the important fitting parameter for trap stiffness determination, f,, has 

an error bar of about 0.2%, as does the apparent diffusion constant D. In comparison with 

the simple Lorentzian fitting, the hydrodynamic model gives a 20% higher, and much more 

precise estimate of the corner frequency. The third fitting parameter J;, or indirectly the 

bead diameter, has a larger uncertainty. This is because hydrodynamical effects, which 

are characterized by f,, become apparent only at the high frequency range, and the upper 

ranges of fitting barely reach the frequency where the spectra start to be sensitive to the 

bead size. Nonetheless, the power spectrum fillings still give a very accurale estimate of 

the bead sizes. 

The sizes of the beads are small enough that optical artifacts from imaging with the 

microscope objective makes it hard to evaluate the bead size using video microscopy. The 

image of the bead usually has a dark ring around the bead, and the width of the ring depends 

specifically on the focal depth of the bead and the illumination conditions. The accurate size 

of a specific bead also cannot be obtained from the nominal size for the batch of the beads 

since individual beads can have significant deviation from this value, usually f O.lpm. The 

hydrodynamical model gives comparable estimate of the bead size, simply by fitting the 
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power spectrum to Equation (2.27). 

Another test of the tit is the calibration of the photodetector signal calculated from the 

apparent diffusion constant of the refracted laser signal. When the bead size is known, the 

diffusion constant can be calculated from the Einstein relation 

where R is the bead radius. By comparing D calculated with this relation from the bead 

size obtained from the power spectrum fit with the apparent diffusion constant from the fit  

in unit of V2/s, the scaling factor (Vlpm) can be calculated. The scaling factors for different 

bead sizes are listed in Table 2.2. For the 3.1 pm-bead, the result falls in a reasonable range 

but does not agree within the error of the calibration using the piezoelectric stage, given in 

Section 2.2.4. The difference could result from the use of two different beads in the two 

measurements and the realignment of optics in our instrument. 

Although D and f, are determined with good precision, neither is a direct measure of 

the trap stiffness. The apparent diffusion constant (V2/s) is related to the absolute diffusion 

constant (pm2/s), but the scaling factor (Vlpm) of the position detection is required. The 

calibration is problematic because the magnification depends on the bead size. The trap 

stiffness determination from the corner frequency requires the drag coefficient, which is a 

function of the bead size and the viscosity of the surrounding media. In Table 2.2, the trap 

stiffness is calculated from the bead diameter determined by the f i t  to the spectrum, and 

therefore has a relatively large error bar. 

The correlation between fitting parameters is calculated from their covariance matrix. 

I found that the deviation of the estimated D and f, has a correlation of 0.55, suggest- 

ing a valley-shaped parameter likelihood distribution. However, since the uncertainty is 

already compressed below 0.2% by the long sample length, these two parameters are well 

determined by this method. 

Because motion at frequencies much higher than the corner frequency approaches free 

Brownian motion, it does not contain much information about the optical trap. Therefore, 

pushing the upper boundary of the fitting range much beyond the corner frequency does 

not narrow the error bars of the corner frequency and the diffusion constant (Table 2.3). 

However, the bead-size-related hydrodynamic effects have a characteristic frequency f, at 

N 10Cl kHz for a 3.1 pm-bead and MHz range for a 1.2 pm-bead, and thus increasing the 
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Table 2.3: Effect of the upper fitting boundary on fitting parameters from the power spec- 

trum. (2.1 pm bead, channel x. The lower fittin 
upper boundary (kHz) 

boundary is set at I0 Hz in all cases.) 

upper boundary reduces the uncertainty of the bead size (Table 2.3). 

Since the frequency response of all electronics including the anti-aliasing filter is char- 

acterized up to 50 kHz, the power spectrum measurement is accurate up to this frequency. 

However, in the actual fitting I find that the experimental power spectra have a significant 

deviation from the theoretical prediction above a certain frequency depending on bead size. 

The cause of this systematic deviation is unclear. One possible cause could be the system- 

atic error introduced by ignoring boundary effects andlor ignoring nonlinear terms when 

treating the hydrodynamics of the bead . 

The three treatments, the equipartition theorem method, the simple Lorentzian fit  and 

the hydrodynamic model, give different values of the trap stiffness. The equipartition theo- 

rem method does not distinguish the variance of the bead arising from thermal motion from 

noise from other sources. In addition, the position variance estimate in real units depends 

on the sensitivity of the PSD. This procedure can introduce severe systematic error into the 

trap calibration because the sensitivity depends on the alignment, bead size, and the specific 

location of the bead in the focal area, and therefore the pipette-tip calibration can deviate 

from the actual trapping condition significantly. The discrepancy between trap calibration 

by the equipartition method and the power spectrum method can be shown to arise in part 

from the different values of the PSD sensitivity. The simple Lorentzian power spectrum 

method, as discussed earlier, is limited by its over-simplified model. Here too one must use 

predetermined bead size or the conversion factor for the PSD sensitivity. Thus this method 

should only be used for a quick determination of the trap stiffness (<lo s), when precision 

is not a requirement. The hydrodynamic model works well for the real data (up to -- 30 kHz 
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in our instrument), and should be used for quantitative applications of the optical tweezers. 

2.3.7 Cross-talk between channels 

It is stated in [50] that in their experiments, cross-talk between x and y channels was N 

5%. The reasons for this, as Flyvbjerg et al, suggested, could be ellipticity of the trapping 

potential and/or the nonlinear relation between beam displacement and voltage output from 

the quadrant photodiode (QPD) they used. I tested the correlation of the two channels to 

see if this is an issue for us. The sampling rate was set to be 150 kHz for this two-channel 

measurement. 

According to the cross-correlatjon theorem, the correlation of two signals can be ex- 

pressed in terms of the product of their Fourier transforms. I plot P,,/(P&)'/~ as an 

indication of correlation, where P,, is defined as 

where the asterisk represents the complex conjugate. 

Similarly to [50], I observe a -2% correlation between horizontal and vertical channels 

(Figure 2.8). In our case, the photodetector I use is a lateral-effect photodetector instead 

of a QPD, therefore the position-voltage response is linear over a much larger range. The 

presence of the correlation in this experiments suggests therefore the possibility of elliptic- 

ity of the trapping potential. Because the microscope objective is over-filled by the trapping 

beam, if the trapping beam is not perfectly aligned with the axis of the objective, the beam 

will have different momentum in two orthogonal directions, resulting in an elliptical trap 

potential. This is a possible explanation for the correlation of the two channels. I also 

observed that the correlation depends on the orientation of the PSD, which confirms the 

hypothesis that the cause of this correlation is the shape of the trapping potential. Further 

test is suggested if the misalignment results in signiticant correlation. 

2.4 Hybrid method to determine the diffusion constant 

The power spectrum of a thermally driven bead gives precise information about the cor- 

ner frequency and the diffusion constant. The frequency is correctly extracted because of 
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Figure 2.8: The cotrelation spectrum between horizontal and vertical channels, character- 

ized by P,,/(P,P,)112. The data is for the same bead as in Figure 2.7, but sampled at 150 

kHz for two channels simultaneously and windowed at 0.02 s instead of the 1 s applied in 

Figure 2.7. In this test, a -2% correlation is observed. The reason for this correlation could 

be an elliptical shape of the trap and its mismatch with the measurement axis of the PSD. 
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the precise clock time of the A/D converter; however, the diffusion constant is measured 

in units of the position sensor signal, with a unknown conversion factor to real bead dis- 

placement. To recover the trap stiffness in real displacement units, I use the bead size from 

either the high-frequency hydrodynamics or the nominal value from the manufacturer in 

the calculation. In the trap stiffness calculation, the uncertainty in bead size is the dominant 

contribution to the uncertainty in trap stift'ness, since the corner frequency is determined 

with very high precision. 

This problem can be solved if extra information is introduced. When the bead is driven 

by a known external force, the response can be measured and compared with the predictions 

from the magnitude of the driving force, allowing the position sensor to be calibrated. Tolik- 

Norrelykke et al. combined the power spectrum method with a sinusoidal driving force, 

obtaining high precision in the determination of a bead's diffusion constant [49]. Since our 

instrument is capable of performing this experiment and a small error in trap stiffness is our 

goal, I repeated their experiment on our instrument. 

In the experiment, the piezoelectric stage is driven sinusoidally while the position of the 

bead is recorded. In addition to the thermal force, the bead is also driven by the motion of 

the surrounding fluid. Assume that the position of the stage is 

A trapped bead in this moving media will experience a drag force 

Here x ( t )  - xdTive(t) is the relative motion of the bead with respect to the fluid. Note that 

this expression ignores the hydrodynamical effect at high frequencies7. The equation of 

motion of the bead with this external driving force becomes 

yoj: + KX = m<(t) + m j o x ~ i v e ( t )  . (2.42) 

'under  the linear simplifica~ion of hydrodynamics, the only factor thal mahers is the Lhe ralio belween 

the thermally driven motion power density characterized by D and the externally driven power density 

A2,f&,,,6(f - f(L,.i7,,). All the hydrodynamical corrections d o  not change this ratio and therefore the PSD 

sensitivity calibration is unaffected, even though the absolute values of both will change. In any case, a t  the 

15 Hz driving frequency used in these experiments, the counter-action is negligible. 
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The difference compared with the previous treatment of equation (2.11) is the driving term. 

Following the approach of Section 2.3.2 to solve this equation, the power spectrum density 

of a driven bead in a thermal environment is 

The magnitude of the oscillation A at the driving frequency can be measured in real units. 

Additionally, the ratio between the amplitude of driven oscillations and the thermal motion 

is fully described in the power spectrum in Equation (2.43). Thus, from the measured power 

spectrum in undetermined scales and knowledge of A (in real units), the diffusion constant 

in real units is recovered. Note that the response of the motion to the external driving power 

A2 j'jTi,", follows a Lorentzian as a function of driving frequency fdriue, as shown in the 

second term of the right hand side of Equation (2.43). 

For a finite sample length, the power spectrum is evaluated at discrete frequencies. 

Because of this, a single frequency component may contribute signal to the evaluated power 

at nearby frequencies. This artifact of finite sample length is known as "leakage". In the 

evaluation of the power spectrum, i t  is particularly problematic for the power spike at fdrive 

because the total power of one frequency component is hard to evaluate if it is broadened 

into a wider frequency range. Window functions are used in signal processing to obtain a 

narrow power distribution, but this treatment causes some distortion of the signal. The way 

to solve this problem is to set the sample length as an integer multiple of the driving period. 

The power density of the driven oscillation is then confined to just one discrete frequency 

component (see Appendix A.3 for details). If the sample length is T,,,, and therefore the 

frequency resolution A f = 1/TmST, the spectrum of a harmonic oscillation with amplitude 

A and a frequency fdl-ive is an integer multiple of A f .  This specific choice of sample length 

results in a single peak with height A2TmST or A2/A f .  

In this way, the problem of converting the PSD voltage measurement in order to recover 

the diffusion constant in real units is solved. The displacement of the surrounding fluid 

is controlled and measured in real units. The power at the driving frequency is calculated 

according to Equation 2.43, but the motion is measured by the PSD in units of volts. Letting 

p be the conversion factor from displacement to voltage, the theoretical height of the power 
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density as measured from the PSD at the driving frequency is 

D P S D  
P S D  + $ r i v e /  (4af) ~ 2 ~ 2  

pdrive ( A )  = 
2 r 2 ( f j T i z i ,  + f?) .f$i.ue + fc2 7 

>From the relation between the measured power at the driving frequency and the variable 

driving amplitude A, the conversion factor P can be determined. The actual diffusion con- 

stant D(pm,2/s )  is then determined by D P S D ( V 2 / s )  and P(V/prn): 

Finally, with a reliable estimate of the diffusion constant, the absolute value of the trap 

stiffness can be determined. From the Einstein relation kBT = Dye and the definition of 

the the corner frequency f, = 6/2-lryo, 

Because the temperature is well regulated in the laboratory 

(2.46) 

to within 4~0.2  K, the thermal 

energy k B T  has a small contribution to the total error of K.  The absorption of light by 

the trapped bead is negligible since the power of the transmitted laser does not change 

significantly with and without a bead trapped. 

As a cross-check of the results of the above calculation, the bead size is calculated from 

the diffusion constant determined by Equation (2.45): 

This result is compared to the nominal value of the bead size and to the result obtained from 

the high frequency hydrodynamics treatment. 

The layout of the experimental setup remains mostly the same as used for the "station- 

ary" power spectrum measurement. Here the driving signal is delivered from an analogue 

output on the National Instruments PCI-6052E card, and is fed to the analogue input of the 

driver of the piezoelectric stage. The actual motion is measured by the built-in position 

sensor on the piezoelectric stage, and is digitized by the AJD converter on the data acqui- 

sition card. Explicitly, the driving frequency is set at 15 Hz with 20 variable amplitudes 
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because this frequency is well below the bandwidth limit of the piezoelectric stage, but 

high enough to give a distinct peak in a typical power spectrum. At each amplitude, the 

position of the trapped bead read by PSD is recorded at 250 kHz for 5 seconds. After each 

position measurement, the sensor voltage of the stage is recorded at 2 kHz for 1 second to 

extract the driving amplitude. The stage position signal is not taken simultaneously with 

the PSD data due to bandwidth limitations of the A/D converter. The 20 time series are 

Fourier transformed for power spectra, each windowed at 1 Hz and blocked in the same 

way described in Section 2.3.4. Figure 2.9 shows a a representative power spectrum of a 

driven bead. For regular power spectrum fitting o-f thermal motion, the 20 blocked spectra 

are averaged for maximum usage of data and the point at 15 Hz is omitted. This is valid 

because the driving force does not have contributions at frequencies other than the driving 

frequency under the assumption that the system is linear. The power spectrum is then fit 

with the hydrodynarnical model (Equation 2.27) from 40 Hz to 20 kHz to extract ,fc and 

D ~ ~ ~ .  TO determine the actual driving amplitudes, the 20 sets of stage sensor signal are 

fit with sinusoidal functions. Finally the 20 peak power density values at 15 Hz are plotted 

against the square of the driving amplitudes and fit with a straight line (Figure 2.10). The 

PSD conversion factor 0, the diffusion constant D in real units and the trap stiffness r; are 

then calculated. 

In principle, with the aid of an external driving force, the bead radius is well charac- 

terized. It is an independent measurement of the high-frequency hydrodynamical effects 

discussed in the previous sections, and therefore can serve as an examination of the ac- 

curacy of these methods. The peak height-A2 curve shows a good linear relation (Figure 

2. lo), redsuggesting that the shape of the optical trap is harmonic up to the magnitude of the 

harmonic-driven motion (= lo  nm); the magnitude of the thermal background falls into the 

error range of the intercept of the tit. Typical relative error of the slope is around 1% or bet- 

ter, indicating a high precision estimate. However, in preliminary experiments on different 

beads, the bead size derived from the PSD sensitivity /3 and the diffusion constant in V show 

a systematic trend that the bead size derived from horizontal measurements is roughly 5% 

larger than that from the vertical scans (e.g. R, = 3.15 f 0.05pm and R, = 2.93 f 0.06pm 

for a 3.1 pm-diameter bead), whereas in the actual case of a spherical bead, these values 

should be identical. In comparison, the high-frequency hydrodynarnical results yield better 

agreement between x and y but with larger uncertainties. The reason for this discrepancy 
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Figure 2.9: A power spectrum of an externally driven bead (1.2 pm diameter). Data was 

sampled for 5 seconds and sliced in 5 windows. 20 measurements were taken in series 

with different driving magnitudes. In addition to the normal thermal noise spectrum, a 

single spike at the drive frequency (15Hz) indicates how the bead responds to the external 

perturbation. The sample length (5  s) was chosen such that the harmonic driving force has 

only one frequency component in the spectrum as shown. 
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Figure 2.10: The height of the peak at the driven frequency plotted against A2 for a 3.1 

pm-bead in horizontal (x) and vertical (y) directions. The driving magnitudes were set at 

20 different values and the height of the spikes was obtained from the power spectra at 

the driving frequency 15 Hz. The good linear relation in the plots indicates the ability to 

estimate the diffusion constant in real units in high precision. 
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is not clear yet. Multiple factors can contribute to the disagreement, most possibly the 

asymmetry of the trap potential due to optical misalignment. Further tests must be carried 

out. 

2.5 Shape of the trapping potential 

The analysis presented in this thesis is based on a harmonic potential with a linear force- 

displacement relation. Experimentally this assumption is only true over a finite range. The 

anharmonicity of the trapping potential will have effects on the shape of the power spec- 

trum, but also quickly complicates the equation of motion. The nonlinear Langevin equa- 

tion has been treated in the literature [71], but the discussion of its application in optical 

tweezers is not present. 

Since the behaviour of the system is time-independent (apart from the stochastic, ther- 

mally driven motion of the bead), the ensemble distribution of bead positions can be de- 

scribed by Boltzmann's theorem. In thermal equilibrium, the potential U(x) is then related 

to the probability density p(x) of finding the bead at certain location: 

Experimentally, one can plot a two-dimensional histogram of bead positjons or its projec- 

tion on one direction and recover the shape of the trapping potential U ( x ) .  In cases where 

the shape of the trap is not well approximated by a harmonic potential, possibly holographic 

optical tweezers, it would be useful to determine the shape of the trap with this method, and 

also compare it with the resulting power spectrum. 

This method works well to describe the shape of the trapping potential only within the 

range of thermally sampled positions, x. However, when external forces are applied to the 

trapped particle, it generally experiences a larger offset from the trap center than explored 

in the absence of applied force. Thus the trap shape at larger displacements becomes rele- 

vant for quantitative force measurements and must be determined by other means (e.g. the 

application of a calibrated flow force [62]). 
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2.6 Conclusions 

In this chapter I presented a description of our single beam optical tweezers instrument, 

and introduced the methods used to calibrate the trap stiffness. We built the optical tweez- 

ers based on custom optical elements, and incorporated micropipette and flow control. For 

quantitative measurement of displacement and force exerted on the trapped bead, we use 

a video traclung method and forward-scattered light position measurement. The relation 

between optical force and bead displacement, or the trap stiffness, is calibrated by multiple 

methods. The equipartition theorem gives a quick measure of the trap stiffness, but in a unit 

related to the photodetector, thus requiring prior calibration of the photodetector sensitivity. 

This procedure is done by moving a bead in the trapping area using the piezoelectric stage. 

The dependence on bead size of this calibration may introduce a systematic error when cal- 

culating the trap stiffness in real units. I then presented another more sophisticated method. 

The power spectrum of the trapped bead's thermal motion gives information related to the 

trap stiffness, and therefore can be used for trap calibration. The hydrodynamic effects of a 

moving bead in  fluid are also included in the model. By doing this, not only is the precision 

improved (to 0.5%), but also information about the bead size is obtained (5% precision). 

However, the corner frequency, the key parameter for calibrating the trap, is related to the 

trap stiffness by the bead size. Therefore, to make full use of the high precision of the 

corner frequency determination, it is necessary to measure the bead size or its diffusion 

constant more precisely. A hybrid method aiming for solving this problem has been pro- 

posed in [49]. I have repeated this experiment and found a good linear relation between the 

driving amplitude and the bead's response, suggesting a potential high-precision calibra- 

tion method. However, the bead size result does not agree with the hydrodynamical values, 

and has a systematic inconsistency between the two directions. Further improvements in 

instrumentation are required. 



Chapter 3 

Brownian motion in a modulated trap 

In the previous chapter, I discussed the dynamics of an optically trapped particle in a sta- 

tionary trap and a spatially modulated trap. It is shown in Equation (2.43) that the bead's 

response to external perturbation follows a Lorentzian, indicating that the high frequency 

component of the motion is attenuated by the viscous fluid and the low-frequency motion 

is confined by the trap. In the temporal domain, Joykutty et al. reported an observation 

of parametric resonance of the trapped particle when the intensity of the trap was modu- 

lated [51]. Their observation suggested the surprising result that the inertial effect in an 

overdamped system was significant. I repeated this experiment but could not reproduce 

the parametric resonance. Also, from analysis of the modulated system, I derived a rela- 

tion between modulation frequency and the variance of the bead's motjon. This relation is 

confirmed by experiment. 

Calculation of variance 

Here, I introduce the equation of motion of an optically trapped bead in a temporally modu- 

lated harmonic potential. I focus on the particle's position variance and discuss its behavior 

in  both high- and low- modulation frequency limits. The central results in this analysis are 

based on the equations of motion for the time evolution of the position variance for a Brow- 

nian particle in a parametrically modulated harmonic trap with arbitrary damping. Those 

equations were first derived by Zerbe et al. [ 5 5 ] .  Here, we give an alternate derivation for 

the overdamped case and discuss briefly how to extend it to the more general arbitrary- 
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damping case. 

For a trapped particle subjected to a sinusoidally modulated trap stiffness, the over- 

damped equation of motion (2.11) becomes 

where c is the modulation depth, R the modulation frequency and q5 the initial phase. In 

experiments, this initial phase is usually unknown and evenly distributed between 0 and 27r. 

In our linear dissipative system (3.1), information about the initial conditions decays expo- 

nentially and thus does not affect the asymptotic behaviour; since we are only interested in 

the latter, the initial phase can be set to 0. 

To solve for the position, I first scale t using the corner frequency t' = 2n,fet. The 

overdamped equation of motion (3.1) then becomes 

The equivalent stochastic differential equation is 

where w ( t f )  is a Wiener process with ( w ( t ) )  = 0 [72]. Following the derivation of It6's 

lemma [72,73], 

R 
-[I+ E C O S ( - - - - ~ ' ) ] X ~  + z] dt' + 2 / z x d w ( t ' )  ) 

2-lrfc 2 r f c  

since dw2 = dt' and I neglect terms of higher order than dt'. Also, for a continuous function 
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Here p(x, t )  is the probability density of the stochastic variable x(t) ,  and p(z l ,  tl 1x0, to)  is 

the conditional probability density for the system to evolve from state ( xo ,  to)  to (zl, t l ) .  
Thus, since ( x )  = 0, and (x( t ' )dw(t l ) )  = 0, the position variance a,, = ( x 2 )  is 

do,, ( t ' )  = d ( x2  ( t ' ) )  

= (dx2(t ' ) )  

In the general second-order stochastic system (i.e., including the inertial term neglected 

in (3.1)), 

where the factor 4C2 = ? ; / r n ~  = (wo/27r f c ) 2  is used to characterize the strength of damp- 

ing, and wo = ,/%& is the natural frequency of the system. In our case, this squared 

damping factor is (3(102). To determine the variance of the motion of the trapped bead, we 

can use the covariance matrix [55] ,  

Following a derivation similar to that used for the first-order system, one can show that 

the stochastic system described in (3.8) leads to the following dynarnical equations for the 
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elements of the covariance matrix [ 5 5 ] :  

a,, + [l + c cos(-tl)]a,, + I a h , "  
'm, K 2-rrfc m2 ( 2 ~ ~ ' ~ ) s  ' 

In the overdamped limit, $ / ( m ~ )  = (wo/2n f,)' >> 1, and the time scales of a,, and 

q,, are much faster than a,,. I therefore eliminate them adiabatically by setting d-,, = 

a,, = 0 and easily recover (3.7). 

Returning to the overdamped case, Equation (3.7) in unscaled units (real time) becomes 

kBT K 
(1 + E cos Rt) a,, . 

'Yo 'Yo I 
When e << 1, the approximate solution of (3.1 1) gives a Lorentzian form for the variance 

as a function of modulation frequency [52]. 

I now examine the behaviour of (3.1 1) in the limit of high and low R for jnsight into 

how the frequency of modulation affects the position variance of the trapped bead. The 

solution of (3.11) can be written in integral form as 

where T have assumed that initially a,, has the equilibrium value given by the equipartition 

theorem, ksT/r;. 

In the limit of fast modulation R >> 1, (3.12) is Taylor expanded to 

kBT 2ikBT€ 1 
azx(t)  = - - - (sin Rt) + C?(-) . 

K 'Yon R2 

Thus, for fast modulation, the asymptotic spatial variance oscillates around the equilibrium 

value sinusoidally with a magnitude proportional to 1/Q. The solution approaches the 

equilibrium value as R increases: 

This system, with corner frequency f,, can respond only to perturbations slower than f,. 
The trapped bead experiences only the average trap stiffness in this case of high-frequency 

modulation. 
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In the limit of slow modulation R << 1, b,, in (3.11) vanishes adiabatically, and 

The result in (3.15) can be obtained intuitively by noting that if the trap stiffness is mod- 

ulated as K (1 f E cos Rt),  with a modulation frequency much lower than the comer fre- 

quency, the motion of the bead is always governed by the instantaneous trap stiffness. The 

average variance over one period is 

Compared with the cases of fast or no modulation, the variance increases for slow modula- 

tion with an experimentally detectable factor, l / d m .  The transition between these two 

limiting cases (3.14) and (3.16) is governed by f,, since the overdamped system has only 

one timescale, l /  f, [52]. 

I solved (3.1 1) numerically to show the relation between position variance and modu- 

lation frequency for the overdamped system (Figure 3.1, solid lines). In the limit of slow 

modulation, the variance is increased relative to a trap of constant stiffness K by a factor 

of 1/Jm. As the modulation frequency increases beyond the corner frequency, the 

variance approaches that of an unmodulated trap because the system is not able to respond 

faster than the corner frequency f,. 
To further test the analysis, I also performed Monte Carlo simulations of (3.1), using 

parameters to match the experiments described in the next section. Figure 3.1 (closed sym- 

bols) demonstrates that the relation between modulation frequency and Brownian motion 

from the simulations agrees with the numerical solution to (3.1 1). 

In the more general case including inertial effects, fluctuations are described by a sym- 

metric 2-by-2 covariance matrix for a,,, a,, and a,,, where v represents velocity. The time 

evolution of the covariance matrix was derived in Equation (3.10) and in [55]. Here, I in- 

tegrate the solution numerically to show that parametric resonance [54] vanishes when the 

stochastic system goes from under- to overdamped (Figure 3.2). The value of the damp- 

ing factor < = yo/2Jmv,  = wo/4r, fc  is set to several values near 1 and the asymptotic 

stationary solution of the covariance matrix (3.10) is solved and averaged over one period. 

The result shows a damped parametric resonance peak vanishing as the damping factor 
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Figure 3.1: Position variance plotted as a function of modulation frequency R, at two 

- 

different modulation depths, E = 0.2 (circles) and 0.5 (triangles). The predictions from 

- 
A *  
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(3.11) are shown as solid lines, with Monte Carlo simulations (closed symbols) and exper- 

A 
.. . A simulation 

~ ~ 0 . 2  - calculation 
o experiment 

simulation 
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imental data (open symbols) superposed. The transition from low- to high-frequency limit 

(kBT/(&d=) to k B T / ~ )  occurs at the corner frequency, J',. 
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Figure 3.2: Numerical solution to (3.10) for the position variance in the vicinity of critical 

damping, for a modulation depth 6 = 0.2. The variances are relative to the unmodulated 

equilibrium value. The damping factor ( = yo/2& is used to characterize the damp- 

ing strength. In the low damping regime, a parametric resonance peak is shown clearly 

near 2wo. As the damping increases beyond critical damping, the resonance peak quickly 

vanishes. 

increases. In a typical optical tweezers setup where a 2.1-pm-diameter polystyrene bead 

is trapped by a 100 pNlpm optical trap, the dimensionless damping factor is O(10). An 

increase in the variance near 2wo due to parametric modulation is thus not expected. 

To summarize: from the stochastic equation of motion, I have derived the dynamics 

of the covariance matrix and calculated the variance of the position signal. The variance 

has different behaviour in the low- and high-modulation- frequency limits, leading to a 

transition in variance near the corner frequency. 
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3.2 Experimental approach 

To experimentally test the above theoretical results, I trapped a polystyrene bead in an 

optical tweezers instrument and modulated the trap strength. I determined the variance as a 

function of modulation frequency and compared the result with the theory. 

3.2.1 Experimental Setup 

The experimental setup for a temporally modulated trap (Figure 3.3) is similar to that is 

described in Section 2.3. In order to change the trap stiffness, I directly modulated the 

driving current with a laser driver (Melles Griot 06DLD203A) via a computer-controlled 

function generater (Stanford Research Systems DS345). Because the trapping laser is mod- 

ulated and because the output signal from the photodetector and its associated amplifier 

depends on the intensity of the light, I added a weaker, unmodulated laser (660 nrn, 30 

mW diode laser from Circulase and Blue Sky Research) and a separate position-sensitive 

photodetector (UDT Sensors DL-10) to perform position detection in these experiments. 

In these experiments, I modulated the laser current about a mean value that corre- 

sponded to a characteristic bead corner frequency near 400 Hz. This frequency was in 

the middle (logarithmically) of a range defined, on the low end, by drifts limiting sampling 

lengths to 5 0.1 s and, on the high end, by the bandwidth of the laser modulation driver (10 

kHz). Using the intensity of the trapping laser as read by the photodetector, I set the chosen 

modulation depths to 1 % accuracy. 

3.2.2 Laser pointing instability 

In addition to modulating the laser intensity, varying the current also led to a -100 nm 

shift in the central position of the optical trap depending on the intensity. The discussions 

in Section 2.4 suggest that when the spatial modulation is significant, a sharp peak in the 

power spectrum is expected at the modulation frequency Q. To first order, if the position 

changes linearly with laser intensity and if both position and intensity change sinusoidally 

with time', the position variance will increase as c2. Thus, the increase in variance due to 

 h his sin~plification is coarse since the measurement of the bead's position as a function of trapping laser 

power shows multiple plateaux in addition to an overall shift in the vertical direction (relative to the optical 
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Figure 3.3: The optical trapping setup used in position-variance measurements. This setup 

is built on the stationary trap described in Section 2.2 and Figure (2.2). In addition to the 

main infrared trapping laser, a red laser measures the position of a trapped bead using a 

second position-sensitive photodetector (PSD). The trappinglaser current is controlled by 

a laser driver driven by a computer-controlled function generator. 
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spatial modulation resembles that due to temporal modulation (both are O(c2)); however, 

the effects are easily distinguished in the power spectrum, since spatial modulation implies 

a peak at R while intensity modulation gives no peak, in the overdamped case. 

Although this gave a large spurious contribution to the position variance, I realized that 

the spatial modulation was always along one direction. Because of the linearity of the 

equation of motion (3.1), the effect of this spatial modulation was minimized by measuring 

position fluctuations along the orthogonal direction. To do this, T rotated the photodetector 

so that the spurious motion was along one axis of the detector (the vertical axis in Figure 

3.4). This decoupling procedure eliminated the spatial modulation along the orthogonal 

axis and allowed me to study the system in this one dimension. This method is valid only if 

the system dynamics are linear and the pointing instability is one dimensional, which were 

both true here. 

3.2.3 Frequency scan sequence 

Since the bead may be knocked out of the trap by another bead, it is hard to predict the 

lifetime of a trapped bead. The concentration of beads in solution is adjusted to a value 

(- 107ml-I) such that one single bead should be able to stay in the trap stably for the 

time scale of 10 minutes. In these experiments, the n~odulation frequency is scanned in a 

way that the modulation frequencies sampled evenly span the whole range of interest no 

matter when the experiment has to stop. Given an upper and lower bound of this frequency 

range, in the first round the modulation frequency is the midpoint of this range, while the 

following rounds modulate at the midpoints between the frequencies of the previous rounds. 

Therefore the nth, round has 2"-' frequencies that are probed. 

3.2.4 Instrument drift and compensation 

The corner frequency was determined from the power-spectrum method to be 393 f 3 Hz 

(Figure 3 . 3 ,  and the modulation frequency was chosen to range from 30 Hz to 3 kHz. For 

each modulation frequency, I recorded a series of 100 position-time measurements, each 

table). The nonlinear pointing direction-power relation will add discrete harmonics of the basic modulation 

frequency to the resulting power spectrum of the bead's motion. 
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Figure 3.4: Sketch showing the (exaggerated) effect of the pointing instability of the trap- 

ping laser diode. The vertical motion creates a periodic force that modulates the vertical 

position of the particle. Because of the linearity of the equations of motion, displacements 

in the orthogonal, horizontal direction are unaffected. I thus rotated the position detector to 

align its vertical axis with the modulated motion of the bead and recorded positions along 

the orthogonal direction. 
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Figure 3.5: Power spectrum of the trapped bead (2.1 pm, polystyrene), as measured by 

the main trapping laser with unmodulated, constant power (= 30 mW at the trap). Solid 

line is a fit to a modified Lorentzian (Section 2.2.4 and Equation (2.27)) and gives a corner 

frequency of 393 5 3 Hz. The sharp peak at 120 Hz is from the mechanical vibration of 

the objective lens mounts and was filtered out prior to fitting. The power spectrum obtained 

using the red detecting laser gave the same corner frequency (data not shown). 
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sampled at 30 kHz for 0.1 s. After each series of measurements at a given modulation 

frequency, I recorded an identical control series without modulation. 

I took the control measurements because of the low-frequency drifts in measured posi- 

tions. The position variance arises from three primary sources in these measurements: the 

intrinsic Brownian motion of the trapped particle (B), the increase in variance due to mod- 

ulation (M), and experimental "ambient" noise (A) such as drift of the optical path and, 

more importantly here, hops between laser modes in the detection laser. The true increase 

of variance due to trap intensity modulation is estimated by comparing the variance with 

modulation to a variance calculated from averaged data from an unmodulated trap taken 

immediately before and afterward. 

For comparison with theory, we require the ratio (B + fV)/B.  The experimental ratio 

of modulated to unmodulated variance does not completely compensate for the effect of 

noise. This is because the ambient noise and laser drift are additive to the Brownian motion 

of the trapped bead. I approximate the desired ratio 

by the direct ratio between the measurements 

The first two terms recover the desired ratio, and the last term vanishes under the limit 

A << B, which is true in our setup, independent of the strength of the modulation. This is 

justified by the fact that the power spectrum is well fit by Lorentzian. 

3.2.5 Data filtering and results 

I calculated the variances of each 100 modulated and control position-time series for each 

modulation frequency and median filtered these 100 variances. Because variances are al- 

ways positive, measurement errors are always biased to positive values, and occasional 

large external noise (other beads flowing by the beam path, large mechanical vibrations etc.) 

can overwhelm the Brownian motion signal. A median filter thus gives a better estimate 

of the true relative variance than does an averaging filter. Figure 3.1 shows the normal- 

ized experimental variance obtained as a function of modulation frequency. The numerical 
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simulation data and theoretical calculations, which use the same parameters as in the exper- 

iments, are also included. All results are consistent and show that at low frequencies, the 

relative variance asymptotically approaches I/.\/=, with a transition frequency equal to 

the corner frequency. Notice that the scatter in the variance measurements is consistent with 

the scatter in the Monte Carlo simulations, showing that I have correctly modeled not only 

the physics of the trapped bead but also the statistics of the experimental measurements. 

3.2.6 Null test for the parametric resonance 

Since these experiments were undertaken to examine the claim of parametric resonance in 

optical tweezers [51], I tried to reproduce these results. While Joykutty et al. modulated 

their laser intensity with an acousto-optic modulator, I directly varied the current, and hence 

power output, of the laser diode. Laser power was adjusted to give a similar trap strength 

to that used in [51], and I probed beads of the same size. For my experiments, the trapping 

power was reduced such that the corner frequency ,fc was 49.4Hz for a 3.17pm polystyrene 

bead. The trap stiffness /G was therefore 9.27pN/ym, and the natural frequency f o  = 

wo/2./r = 3.75kHz.  I scanned the modulation frequency in a range from 5 k H z  to 10kH.z 

and measured the variance of the position from a 10 s time series sampled at 16 kHz. I 

observed no evidence for a resonance peak in this range (Figure 3.6). 

Discussion 

The focus of this chapter was to determine how the position variance of an optically trapped 

object is affected by a temporally modulated trap intensity. We found that at low modulation 

frequencies, the variance with modulation is higher than without modulation by a factor of 

1 / J m ,  where E is the depth of modulation. In the high-frequency limit, the variance 

is governed by the time-averaged stiffness of the optical trap and equals the variance with- 

out modulation. The transition between these two limiting cases occurs on the timescale 

of viscous relaxation, which is related to the corner frequency. I showed theoretically, nu- 

merically and experimentally that the transition frequency indeed occurs around the comer 

frequency for different modulation depths. 

In principle, the dependence of the variance on modulation frequency could be used to 
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Figure 3.6: Null test for parametric resonance in the overdamped optical trap. This ex- 

periment was the repeat of Joykutty et ul.'s experiment where parametric resonance was 

claimed to be observed at twice the natural frequency. Our experimental result of no para- 

metric peak confirms the theoretical prediction that parametric resonance is not expected in 

an overdamped system. 
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calibrate an optical trap. Earlier work by Joykutty et al. noted a peak in the variance as 

a function of modulation, which they interpreted as a resulting from parametric resonance 

[5 11. If true, this would enable a precise determination of the trap stiffness, as the observed 

peak is sharp. However, the theoretical arguments presented here and in [52] imply that 

no such peak is expected in a highly overdamped system. In addition, a careful scan of 

the variance near the expected frequency (2wo) in our system showed no such peak (Figure 

3.6). The result of Joykutty et al. is thus due to other unknown causes. Nonetheless, the 

observed relations between variance and modulation frequency are characterized by the 

trap stiffness (Figure 3.1), and thus experimentally determining this relation should enable 

determination of the trap stiffness. However, the absence of an analytical form for the 

variance-modulation relation, the long sampling time and experimental subtleties make it 

hard to obtain an accurate and convenient corner frequency measurement. The power- 

spectrum-analysis method discussed in Chapter 2, which uses all the information in the 

position signal, remains the best calibration method. 

Although the dynamics in the overdamped regime are less rich than in an underdamped 

system [56, 57, 581, the frequency dependence of the measured variance nonetheless has 

important implications for experimental design. Because there is only one time scale in 

overdamped systems, the corner frequency also sets the timescale for modulation in instru- 

ments such as time-sharing optical tweezers [48]. When controlled by an acousto-optic 

deflector, the modulation frequency is usually on the scale of kHz or higher, depending on 

the size of the modulator and number of traps [48]. Effectively, the trapped bead acts as 

a low-pass filter for the modulation. So long as the modulation frequency is much higher 

than the  comer frequency, the variance is independent of the specific waveform of modula- 

tion. In such an application, the effect of modulation can be neglected, and each trap can be 

treated as having a constant trapping strength given by the time-averaged intensity at each 

trap. Here, it is also valid to treat the force-displacement relation as linear. When controlled 

by a rotating mirror, by contrast, the modulation is much slower [23, 31, 74, 751, and the 

position variance of isolated trapped beads can be time dependent, with a time-averaged 

value higher than when trapped by a constant-power trap. In this case, the optical trap 

should only be used as a tool to move objects. Since the force-displacement relation de- 

pends on the details of modulation (frequency, duty cycle etc.), quantitative measurements 

will be highly susceptible to systematic errors. As the modulation amplitude increases close 
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to E = 1 (full odoff modulation), the relation between variance and modulation frequency 

becomes increasingly ill fit by a Lorentzian, with the variance diverging at low frequencies; 

however, the high-frequency behaviour is independent of modulation depth, converging to 

variance of a time-averaged trap at frequencies greater than 10fc. Therefore, for quantita- 

tive analysis, the modulation frequency should be at least an order of magnitude above the 

corner frequency. 

In many biophysical applications, optical tweezers are used to probe the mechanical 

properties of biological systems. In such applications, the trapped bead is in contact with 

or tethered to a soft molecule or material. This can result in a decrease of the viscous 

relaxation time of the bead because of the elasticity of the attached molecule, effectively 

increasing the corner frequency [48]. In such a case, a time-sharing trap that gives reli- 

able quantitative results on isolated beads may nonetheless give systematic errors when 

applied to force measurements on materials. Additionally, in this type of experiment, an 

external force applied to the trapped bead results in a displacement from the trap centre, 

and thus modulation of the trap stiffness will induce an oscillation of the bead's position. 

Under certain conditions this oscillation amplitude can exceed the Brownian motion, which 

has implications when characterizing force-dependent systems such as molecular motors. 

Therefore, care must be taken when using time-sharing traps for force-sensitive studies. 

Another reason to modulate the trap stiffness in optical tweezers is to actively control 

the trap stiffness in order to create a constant-force trap or a position controller [4]. The 

constant-force trap (force clamp) is useful in biophysical and biochemical studies, in which 

a controllable force load can be used to probe systems such as molecular motors, nucleic 

acids and protein folding, and to measure statistics in near- and non-equilibrium systems 

[9]. Besides active intensity modulation, other ways to create a force clamp include laminar 

fluid flow [46,47,76,77], active position feedback [42,78], scanning the trap centre with a 

changing trap strength [43], and taking advantage of the anharmonic trapping potential [79]. 

Most of these other techniques require expensive modulators such as acousto-optic deflec- 

tors or high-resolution positioning stages, whereas intensity modulation can be performed 

cheaply by modulating the current of a laser diode. Also, when used for position control, 

although closed-loop feedback does not increase the signal-to-noise ratio of force measure- 

ments, physically reducing the Brownian motion can nonetheless be useful. For example, 

for studies on short molecules, reducing the Brownian motion can decrease unwanted con- 
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tributions from interactions between closely spaced beads. Also, since many theoretical 

arguments are more simply framed in terms of a constant-force constraint, comparisons 

between experiment and theory are simplified by measurements in which the force is held 

fixed [80]. The frequency response of the variance discussed in our study suggests that the 

closed-loop feedback bandwidth must exceed the corner frequency in order to effectively 

control the signal or force in the face of perturbations due to thermal noise. 

3.4 Conclusion 

In a typical optical tweezers setup, the corner frequency, proportional to the trap stiffness, 

is the relevant time scale for the system. I observed experimentally that if the laser intensity 

is modulated sinusoidally, the variance of the position of the trapped object increases by a 

factor of 1/ d m  in the low-modulation-frequency lirni t, and the transition takes place 

around the comer frequency. In principle, this variance-modulation frequency dependence 

could be used to calibrate an optical trap; however, the standard power spectrum method 

is better, being more accurate, faster and requiring less hardware. On the other hand, I 

have shown that low modulation frequencies do lead to detectable increases in the position 

variance, and I have confirmed the expected form of the increase. Such variances can lead to 

systematic errors in force measurements from time-varying traps, and I have given criteria 

for avoiding such effects. 
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Conclusions 

The work in the first part of this thesis implements the calibration procedure described 

in [50] on our optical tweezers instrument. The technical details on how to calibrate the 

optical tweezers using the thermal motion of a trapped bead are presented in Chapter 2. 

The equipartition theorem results in a quick determination of the trap stiffness, but the 

conversion factor from the position detector signal to real displacement must be measured 

separately, and this method is susceptible to external noise of all kinds. A more advanced 

approach decomposes the motion into the frequency domain and analyzes the shape of the 

power spectrum density. The Lorentzian shape from the basic equation of motion does not 

describe the motion very well when high precision (better than 1%) is required. After tak- 

ing hydrodynamic effects and other experimental factors into account, the refined model 

agrees with the experimental data well, giving at least 0.5% precision for the determination 

of the corner frequency. The hydrodynamic model also gives an estimate to the bead size, 

but since hydrodynamic effects occur at much higher frequency than the corner frequency, 

the precision in the bead size (5%)  does not match that in the corner frequency. In the 

determination of the trap stiffness from the corner frequency, the bead size is a key param- 

eter. In principle, a hybrid method that combines the analysis of the thermal motion and 

the response of the bead's motion to an external spatial perturbation solves this problem. 

The preliminary data I have obtained show the possibility of obtaining the diffusion con- 

stant and the bead size from this method. Further experiments still need to be done for this 

method to be practical in our instrument. Despite the fact that the power spectrum method 

only calibrates the trap stiffness within the small spatial range sampled by the bead because 
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of thermal fluctuations, it is overall a fast and precise calibration method compared with 

other methods. 

The effects of temporal modulation on the trapping potential are discussed in theory and 

the experiments confirm the results in Chapter 3. The central result of this chapter is the 

relation between the position variance of the trapped bead and the modulation frequency. 

From the basic equation of motion of the trapped bead, the dynamics of the position vari- 

ance is derived for the general case with inertia and for its simplification in the overdamped 

case, and is calculated numerically for both cases. When the underdamped condition is 

satisfied, the variance has a resonance peak at twice the modulation frequency, known as 

parametric resonance. When the damping increases to the overdamped regime, the reso- 

nance behaviour vanishes. This result is expected since parametric resonance is caused by 

the phase correlation between the motion of the bead and the external modulation of the 

potential, and this correlation is lost when the damping time scale of the system is shorter 

than one period of the modulation. In the overdamped case, instead of the natural fre- 

quency, the typical time scale of the system becomes the corner frequency. It is shown in 

theory that the variance has a transition at the corner frequency, from the high-frequency 

limit where the bead only experiences the average trapping intensity, to the low-frequency 

limit where the bead tracks the instantaneous trapping strength. This result was confirmed 

in experiments. I used a two-laser setup to trap a bead and detect its position separately, 

and the modulation was achieved by changing the laser driving current. The transition of 

variance was observed, and the observation agreed well with the theoretical prediction and 

numerical simulation. 

In addition to improving the shaking-stage method to further refine the calibration of 

the optical trap, improvements to the theoretical model of the trapped bead are potentially 

useful. The boundary effect is known to modify the theoretical trap stiffness by up to 2% 

for the experimental geometries of our instrument. If the trap stiffness can be determined 

to this precision, for example using the hybrid method, including boundary effects in the 

model will become necessary. Another factor that affects the power spectrum is the shape 

of the trapping potential. An alternative characterization method for the trap stiffness and 

determination of the trap potential shape for small displacements are presented in Chapter 

2. 



Appendix A 

Fourier transform 

A.l  Definitions 

In this thesis, the Fourier transform for a continuous measurement x ( t )  with finite length 

T,,, is defined as 

In the discrete version with an evenly sampled time series {( t ,  = j At, zj) I j = 0, . . . , N - 1), 

It can be shown that Z k  is a periodic function with period N for discretely sampled data 

(similar to the derivation in Section A.2). When x ( t )  or x j  is real, jk satisfies: 

The two-sided power spectnlm density is defined as 

In this thesis, Fourier transform and power spectrum (density) are defined over the range 

[-frvy9, frvy9) or [0, f s )  (i.e. double sided), but only the data in [O, fivg9) is used in the 

analysis because of the two properties listed above. 
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A.2 Aliasing 

Consider a harmonic component x ( t )  = e2"if0t+a0 with an arbitrary frequency f 0  and initial 

phase & that is sampled discretely at t = O , l / f , ,  . . . , (N - 1)/ f, at sampling frequency f,. 

Its Fourier transform is 

N-I 

if n E 27. This result shows that in a discrete Fourier transform, harmonic components 

that differ by a multiple of the sampling frequency contribute to the same frequency in the 

Fourier transform. In applications, because the Fourier transform is conventionally defined 

on either [- f N y q ,  . f N y q )  or [0, j,), higher frequency signals will "fold" into this range. An 

anti-aliasing filter is commonly used to remove high-frequency components and therefore 

prevent these distortions due to aliasing. 

A.3 Leakage 

In the discrete Fourier transform, let Tm,, be the total length of the sample in time, N the 

number of samples, and therefore the sampling rate ,f, = NIT,,,. For a single harmonic 

oscillation e2"ift with frequency J', its kL" Fourier component is 
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Tn the case where the sample time T,,$, is an integer multiple of the signal period l/ f ,  

i.e. T,,, f is an integer, the Fourier transform has only one non-zero value at .fk. 

A.4 Fourier transform of Gaussian white noise 

The expected value of the power spectrum density of Gaussian white noise can be derived 

from the stochastic version of the Wiener-Khintchine theorem [64]. Let ( ( t )  be Gaussian 

white noise satisfying Equation (2.8), then 

because of (2.8). 

The distribution of the power spectrum density is less straightforward. An intuitive 

picture to see the distribution of the Fourier transform of the Gaussian white noise is that the 

transform kernel eFhGt is modulated by a random number with Gaussian distribution, and 

therefore the Fourier integration is analogous to the central-limit theorem on the complex 

plane, resulting in a stochastic variable with Gaussian-distributed magnitude and an evenly 

distributed phase. The probability density distribution of / ( 1 2  is then exponential. 

The relation between the Fourier transform and the characteristic function of a stochas- 

tic variable gives a more rigorous derivation. Also see [81] for more discussions on the 

effect of finite sample length and windowing on the distribution of the transform. 



Appendix B 

Frequency response of the anti-aliasing 

filter 

The combined frequency response of the anti-aliasing filter and AID converter i n  series is 

measured by feeding a sinusoidal signal into the filter and fitting the readout from the A/D 

converter with a sinusoidal function. The ratio of the output to input magnitudes gives the 

gain of the filter-DAQ system. To cover the full frequency range probed in the experiments, 

the frequency range is divided into four decades with some overlap. The gain is fit  to a 

polynomial (Figure B. 1) which is then used in the estimate of the physical power spectrum 

calculation in the actual fitting procedure. 
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I o2 I o3 
Frequency (Hz) 

I o4 

Figure B. 1 : The response of the low-pass filter used for anti-aliasing. The full frequency 

range is acquired in four separate decades with overlaps (shown in four symbols), and is 

fit with a I 1  th-order polynomial as shown in the solid line and Table B. This polynomial 

is subsequently used in the calculation of the physical spectrum for spectrum fitting. From 

the response, it is clear that the overshoot-attenuation above 10 kHz have to be taken into 

account for an accurate estimate of the power spectrum. 
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Table B. l :  The coefficients of the polynomial fit to the response of the anti-aliasing filter. 
I coefficient for response of y channel power coefficient for response of x channel 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.98 1632 

1.292079 x 
-9.046740~ 10-lo 

2.377822 x lo-13 

-3.242748 x 10-17 

2.595445 x 

- 1.295773 x 

4.153858~ 

-8.546862~ 

1 .090499 x 
-7.849222 x 

11 2.434174~ 



Appendix C 

Noise of the system 

Since the work in this thesis focuses on the power spectrum and the position variance of a 

trapped particle, the system noise and measurement noise are important parameters, and are 

relatively straightforward to characterize in the frequency domain. Different noise sources 

generate noise at very different ranges, and different treatments are applied to reduce these 

noise contributions. 

C.l High-frequency electronics noise 

50 lcHz is very commonly used in switching power supplies, and this noise contributes to 

electrical contamination of signals via the power supply line directly and radiation. Al- 

though 50 kHz is above our frequency range of interest, aliasing of its harmonics will 

generate a series of sharp spikes below the Nyquist frequency, some occurring in the power 

spectrum fitting range, if an anti-aliasing filter is not used. Tt is not critical for the fitting 

since this noise appears in the form of sharp spikes at predictable frequencies and can be 

excluded from the fit. However, proper experimental treatment will effectively reduce the 

contributions of this electronic noise to measurements. 

To remove the high-frequency noise from the power supply line, I used a linear power 

supply (BCM-15/100, Date1 Systems, Inc.) instead of a switching power supply for the 

PSD pre-amplifier. Two 6-volt batteries are used for the anti-aliasing filter. The radiation 

noise is removed by applying proper shielding to the electronic elements. Shielded cables 

are selected for signal transfer, and the PSD and its pre-amplifier are protected in aluminum 
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Figure C. 1 : Dark noise power spectrum. The PSD signal is recorded in the dark to measure 

the electronic noise. The noise floor is generated by the anti-aliasing filter and is higher 

than the A D  converter digitization noise (data not shown), but much lower than the signal, 

i.e. the thermal noise of the trapped bead (lO-"'/Hz at 10 Hz, see Figure 2.7) within the 

titting range. 

boxes. This reduces all high-frequency noise essentially to the noise floor of the anti- 

aliasing filter (Figure C. 1). 

C.2 Vibration of objectives 

In the mid-frequency range, the major contribution of noise in our measurement is from the 

mechanical vibration of the microscope objectives, with frequencies ranging from 100 Hz 

to 1 kHz. The objectives are each mounted on a translational stage by a top plate, which 

introduces vibrational motion. The magnitude of these vibrations is larger in the vertical 
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Figure C.2: Noise due to the mechanical vibration of objectives. (a) Noise power spectrum 

for the long top plates in two directions. Blue: vertical, Red: horizontal. Because of the 

asymmetry of the setup, vibrations in vertical direction have a larger magnitude than in the 

horizontal direction. (b) Comparison between the vertical noise from long and short top 

plates. Dark (blue): long plate; light (red): short plate. The noise magnitude is reduced for 

the short top plate compared to the long one, and also the resonance frequencies are shifted. 

direction than in the horizontal direction. I characterize the vibration noise by measuring 

the position signal of the laser going through the two objectives, but with no bead trapped. 

Figure C.2 shows different noise arising from the vibration of top plates of two different 

sizes (6.0 cm x 6.0 cm, and 6.0 c m x  11.0 cm respectively). 

Limited by the horizontal design of the jnstrument layout, it is hard to effectively reduce 

the magnitude of the mechanical vibration of the objective. The noise level is mostly one 

order of magnitude below the typical thermal noise of the trapped bead, but the strongest 

resonance peak at 120 Hz is often seen in the power spectrum above the Brownian motion. 

In all the fitting procedures, values within [ l  18, 1223 Hz are omitted from the analysis. 
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C.3 Air-density fluctuation and optical stability 

At low frequency ( < I  Hz), the noise is dominated by air-density fluctuations and instrument 

drift. To reduce the air-current flow, we built an epoxy glass chamber enclosing all the 

optical elements. Even though the room temperature is regulated within 0.2"C, from the 

result of video tracking and PSD signal of a stationary bead, typical drift can exceed 100 nm 

in the time scale of 100 seconds (Figure C.3). The frequency at which the drift exceeds the 

Brownian motion of the trapped particle determines the lower bandwidth limit of typically 

-1 Hz for measurement of a power spectrum. 
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Figure C.3: The low-frequency noise due to drift in the instrument. The slope of the two 

dashed lines is -2. The different magnitudes in the vertical and horizontal directions sug- 

gest that this noise is primarily caused by the drift of the microscope objective mounts. 
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Optical alignment 

The alignment of the tweezers follows the steps listed below. 

D.l Trapping 

Rough height adjustments: All optical paths are on a plane parallel to the optical 

table, therefore all elements should be roughly at the same height, especially the 

laser head and microscope objective stages. 

Place the laser head at the proper place on the optical table; adjust the Faraday iso- 

lator according to its manual to allow maximum transmission and minimum back 

reflection. Insert the half-wave plate, adjust its orientation to obtain the maximum 

transmission. 

Place the cube beam splitter (BS) in the beam path; Rotate the half-wave plate so 

that the cube BS reflection is maximized; adjust the angle of the cube BS so that 

the reflected beam is parallel to the optical table and a row of holes. Use the PSD 

mounted on a rail to record the location of the beam path. 

Insert both microscope objectives and a flow chamber with water (and pipette, op- 

tional), then adjust the positions of the two objectives so that the throughput beam is 

roughly collimated and the chamber is roughly in the middle of the objectives. 
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Fine tune the positions of the objectives so that the throughput beam follows the exact 

beam path (as detected by the PSD) as before the objectives are inserted. 

Trap a bead, then check the power spectrum of the trapped bead. 

Imaging and illumination 

Remove the position detector. Add the illuminating light source to the condenser 

side. 

Insert the proper short-pass filter, imaging lens and camera at the trapping laser side, 

and adjust the position of the imaging lens to obtain the image of the trapped bead. 

For locating the position of the trap, see Philip Johnson's thesis [62]. 

Adjust the position of the illumination light source so that the bead is illuminated 

symmetrically. All additional illumination optical elements should be treated the 

same way. 

Insert one convex lens (Ll) between the condenser objective and the illumination 

light to give a real image of the light source between this lens and the condenser 

objective. 

Insert an iris (condenser diaphragm) at the position of the image of the light source. 

Insert a second convex lens (L2) between the condenser diaphragm and the condenser 

objective to give a second real image near the condenser objective. 

Fine tune the position of the second lens so that opening and closing the condenser 

lens results in a uniform change in the intensity of the image. 
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Figure D. 1: Ray diagram of the illumination optical path. The light coming out of the illu- 

mination source is imaged on the diaphragm plane by the first lens L l ,  and the diaphragm 

is then imaged on the back focal plane of the microscope objective by the second lens L2. 

The imaging plane in the flow chamber should coincide with the trapping plane. 
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