
DISTRIBUTED ALGORITHMS FOR RESOURCE

ALLOCATION AND ROUTING

Zengjian Hu

B.Sc., Beijing Institute of Technology, 1997

M.Sc., Institute of Computing Technology, Chinese Academy of Sciences, 2000

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Zengjian Hu 2007

SIMON FRASER UNIVERSITY

2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author

APPROVAL

Name:

Degree:

Title of thesis:

Zengjian Hu

Doctor of Philosophy

Distributed Algorithms for Resource Allocation and Routing

Examining Committee: Dr. Qianping Gu

Chair

Date Approved:

Dr. Petra Berenbrink

Assistant Professor of Computing Science

Senior Supervisor

Dr. Binay Bhattacharya

Professor of Computing Science

Supervisor

Dr. Funda Ergiin

Associate Professor of Computing Science

SFU Examiner

Dr. Robert Elskser, University of Paderborn

Junior Professor of Computer Science

External Examiner

SIMON FRASER '
UNI~ER~ITY~I brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser
University the right to lend this thesis, project or extended essay to users of the Simon Fraser University
Library, and to make partial or single copies only for such users or in response to a request from the library
of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use
in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU
Library website <www.lib.sfu.ca> at: <http:llir.lib.sfu.calhandleIl8921112~) and, without changing the
content, to translate the thesislproject or extended essays, if technically possible, to any medium or format
for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may
be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the
author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia
materials forming part of this work, may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in
the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

In this thesis, we study distributed algorithms in the context of two fundamental problems

in distributed systems, resource allocation and routing. Resource allocation studies how

to distribute workload evenly to resources. We consider two different resource allocation

models, the diffusive load balancing and the weighted balls-into-bins games. Routing studies

how to deliver messages from source to destination efficiently. We design routing algorithms

for broadcasting and gossiping in ad hoc networks.

Diffusive load balancing studies how nodes with initial tasks in a network balance their

loads concurrently with all their neighbours. We propose a novel analytical method to deal

with the concurrent load balancing actions, which are the major obstacle for the analysis.

The idea is to first sequentialize the concurrent load balancing actions, analyze this sequen-

tial system instead, and then bound the gap between both. We analyze various diffusive

load balancing algorithms using this idea.

The weighted balls-into-bins game studies how to evenly allocate a set of independent

weighted balls into a set of bins. In particular, we consider two different scenarios, the

static sequential game and the selfish reallocation game. In the static sequential game,

balls come one after another and need to be allocated in such order. We study how the

outcome of the game, the expected maximum load of any bin, is influenced by the game

parameters such as the distribution of ball weights and the order that balls are allocated.

In the selfish reallocation game, every ball has its own initial location. An iterative, selfish

distributed reallocation algorithm is applied to balance the workload. We show bounds for

the convergence time of the algorithm, which is the number of steps to reach (or get close

to) some equilibrium state.

We study routing algorithms for broadcasting and gossiping in ad hoc networks. We

consider the so-called "energy efficient" ad hoc network model. Our goal is to minimize

not only broadcasting/gossiping time, but also energy consumption, which is measured

by the total number of sent messages. We present and analyze several energy efficient

broadcasting/gossiping algorithms for both random and general ad hoc networks.

To Rong, Ben, Dad and Mum

"The important thing is not to stop questioning. Curiosity has its own reason for existing. "

- Albert Einstein

Acknowledgments

It is finally the time to thank the many people who made this thesis possible. I wish I

had said thanks to you in person; Forgive me if I did not. First of all, I wish to express

my deep appreciation to my senior supervisor, Dr. Petra Berenbrink, for whom I had the

privilege for being her first Ph.D graduate. Petra had been a wonderful advisor as well as a

good friend. Throughout my stay in SFU, she had spent a great deal of efforts and money

discussing research with me, correcting my writeups, sending me to conferences and so on.

She had helped me to mature more than ever both scientifically and personally. Thank you,

Petra!

I am also very grateful to my supervisor, Dr. Binay Bhattacharya. Every time when I

encountered problems, Binay was always the first person I seek for advice. Binay, your kind

help and warm encouragement had been important to me. Thanks!

I also wish to thank all my teachers in SFU. I am especially grateful to Dr. Funda Ergiin,

Dr. Martin Ester, Dr. Qian-Ping Gu, Dr. Art Liestman and Dr. Pavol Hell. Their broad

knowledge, as well as kind personalities have greatly inspired me. I am also indebted to my

co-authors, Dr. Colin Cooper, Dr. Tom Friedetzky, Dr. Leslie Ann Goldberg, Dr. Paul

Goldberg and Dr. Russell Martin, for the good collaborations which lead to this thesis.

Special thanks also goes to Dr. Robert Elskser, who came all the way from Europe to

attend my defence.

I would like to thank my fellow gradudate students in the Computing Science department

for creating a fun environment. Life would not be as joyful as it was here without my

great friends: Zhengbing Bian, Tugkan Batu, Yuanzhu Peter Chen, Qidan Cheng, Andrew

Clement, Bradley Coleman, Lei Duan, Zhe Fang, Richard Frank, Byron Gao, Baohua Gu,

Iman Hajirasouliha, Yuzhuang Hu, Mayu Ishida, Varun Jain, Hao Jiang, Wen Jin, Hossein

Jowhari, Emre Karakoc, Chiyoko Kawano, Mike Letourneau, Yudong Liu, Cheng Lu, Flavia

vii

Moser, Lawrence Ryan, Zhongmin Shi, Qiaosheng Shi, Evgeny Skvortsov, Ming Su, Yi Sun,

Stephen Tse, Dan Wang, Feng Wang, Yang Wang, Yong Wang, Ning Wei, Weihua Xiong,

Yinan Zhang, Zhong Zhang and Senqiang Zhou.

I thank my entire extended family for always being so supportive. My grandma, parents-

in-laws, sister, my brother-in-laws, sister-in-law, have always been there to support me.

Finally, and most importantly, I wish to thank my family. Rong, my wife, is always there

to support me. Her love has accompanied me to get through the hard times. This thesis

would not have been here without her. This thesis is dedicated to her and our newborn son,

Ben, who has given us great joy. Dad and mum, I can not thank you enough for bringing

me to this world, raising me and educating me. I know you were always proud for every

single achievement I made. This thesis is also dedidated to you.

. . .
Vll l

Contents

Approval ii

Abstract iii

Dedication v

Quotat ion vi

. . Acknowledgments v11

Contents ix

List of Tables xii

List of Figures xiii

List of Programs xiv

1 Introduction 1

. 1.1 Distributed Load Balancing -4

. 1.2 Routing in Ad Hoc Networks .5

. 1.3 Contributions and Organization 6

2 Diffusive Load Balancing 8

. 2.1 Introduction. 8

. 2.2 Related Work 1C)

. 2.2.1 Continuous Load Balancing 10

. 2.2.2 Discrete Load Balancing I 2

. 2.3 Modcl and Ncw Results 14

. 2.4 Diffiision on Fixed Networks 16

. 2.4.1 Continuous Casc 16

. 2.4.2 Discrete Casc 19

. 2.5 Diffiision on Dynamic Nrtworks 21

2.5.1 Continuous Casc . 22

. 2.5.2 Discrctc Casc 22

. 2.6 Randomly Choosing Balancing Partners 23

. 2.6.1 Continuous Casc 23

. 2.6.2 Discrctc Case 27

. 2.7 Summary 28

3 Weighted Balls-into-bins Games 30

. 3.1 Introdiiction 30

. 3.2 Rclatcd Work 34

3.2.1 Static Sequcntial Game . 34

. 3.2.2 Selfish Reallocation Game 36

. 3.3 Modcl and New Rcsults 38

. 3.3.1 Static Sequential Gamc 38

. 3.3.2 Selfish Reallocation Game 39

. 3.4 Static Scqucntial Gamc 40

. 3.4.1 Majorization and T-transformations 41

. 3.4.2 Weightcd Singlc-choicc Gamcs -13

. 3.4.3 Wcighted Multiple-choicc Garncs -11)

. 3.4.4 Order of Allocating Balls 57

. 3.4.5 Many Small Balls 60

. 3.5 Selfish Reallocation Game fi:!

. 3.5.1 Wcighted Case G3

. 3.5.2 Convcrgcncc to Nash Equilibrium 65

3.5.3 Uniform Case . 72

. 3.6 Summary 80

4 Energy Efficient Routing in Ad Hoc Networks 8 2

4.1 Introduction . 83

. 4.2 Rclatcd Work 84

. 4.2.1 Randomized Broadcasting 84

. 4.2.2 Dctcrministic Broadcasting 87

. 4.2.3 Gossiping 87

. 4.2.4 Random Graphs 88

4.3 Model and New Rcsults . 88

4.4 Broadcasting in Random Networks . 90

. 4.4.1 Analysis of Phase 1 92

. 4.4.2 Analysis of Phasc 2 96

4.4.3 Analysis of Phase 3 . 97

. 4.5 Gossiping in Random Networks 99

. 4.6 Broadcasting in General Networks 101

. 4.6.1 Upper Bound for Broadcasting 102

. 4.6.2 Lower Bound on the Transmission Number 104

. 4.7 Summary 107

5 Conclusion 109

6 Appendix 112

. 6.1 Tail Estimates 11.2

. 6.2 An Alternative Proof of Theorem 3.4.8 11'2

Bibliography 114

List of Tables

3.1 Allocations A, B, C, and D . 54

xii

List of Figures

3.1 Enumerating all the cases of both allocations 62

3.2 Successive equalization of weights . 65

3.3 Successive swapping of weights . 66

4.1 Comparison of our distribution (left) vs . the distribution in [51] (right) . . . 107

4.2 The network used in Theorem 4.6.4 . 110

...
Xlll

List of Programs

xiv

Chapter 1

Introduction

A distributed system typically consists of a set of devices with limited computational power

and restricted ability to communicate with its peers. The latter limits may include the num-

ber of "reachable" peers, the interconnection structure itself, the communication bandwidth,

where these and possibly other relevant parameters may even vary over time. The reader

may think of these devices as processors, workstations, PCs, laptops, printers, wireless-

enabled hand-held computers or even cellular phones, sensors, and so on. One crucial,

defining feature of this kind of system that we are interested in, is the absence of any

central instance that would take care of organizing any aspect of the system.

In this thesis, we focus on one of the fundamental issues in the study of distributed

systems, the design and analysis of distributed algorithms. The notion of a distributed

algorithm, just as that for distributed systems, is overloaded with many meanings. We un-

derstand it to be an algorithm that runs on a parallel and distributed system as described

above. We will refer to the devices as nodes, hinting at the fact that the communica-

tion structures of these systems are often modelled as graphs. We assume that when a

distributed algorithm is performed, every participating node is running a copy of it concur-

rently and independently. Since the nodes (or the algorithms running on them) typically

have to operate on limited information - for instance, the number of participants, or pos-

sibly information beyond what is known to direct neighbours may not be available - they

will need to communicate in some way in order to coordinate their actions.

Distributed algorithms have been widely used in distributed systems in a variety of ar-

eas such as scientific computing, distributed information processing, telecommunication, and

many more. For instance, modern parallel computers, sometimes consisting of thousands

CHAPTER 1. INTRODUCTION 2

of processors, run distributed algorithms to tackle scientific computing problems such as

genome analysis. Today's airline companies, insurance agencies and banks build parallel file

systems to ensure fast access of their customer information. Communication networks like

the Internet or mobile ad hoc networks, need efficient communication protocols to enable

users in different geographical areas to conveniently exchange information. All these appli-

cations critically rely on distributed algorithms. In this thesis, we consider two problems

fundamental to distributed systems, resource allocation and routing. We focus on how to

design and analyze distributed algorithms for these two problems.

Resource Allocation. Resource allocation studies how to distribute workload to re-

sources. It is one of the central problems in many distributed systems. For instance, resource

allocation is critical for massive parallel computers to achieve a high system throughput

[46, 631. Resource allocation is also essential to minimize the response time of distributed

file systems [105, 1041. Throughout the thesis we quantify work in terms of (not necessarily

equal-sized) tasks.

In the study of the resource allocation problem, we often use load vectors to represent

the workload situation. The goal is to minimize some cost function that typically capture

a notion of "balancedness" of the load vector. For different practical scenarios we can

have different cost functions. For example, we can use cost functions that characterize the

deviation between the maximum and the average loads [68, 13, 201, or the variance of the

load vector [46, 31, 631, or the number of empty resources [21]. We can also distinguish

between resource allocation models based on which party makes the resource allocation

decisions. For instance, we can let the resources decide where the tasks should be located

[46,31, 631, or let tasks decide which resources to choose [68, 13, 201. In particular, the tasks

may be "selfish", in that they only try to optimize their own workload situations instead of

the global workload situation [22, 59, 601.

We study two resource allocation models, the neighbourhood load balancing and the

balls-into-bins game. In the neighbourhood load balancing model [46, 31, 631, every node is

initially assigned some arbitrary workload. In order to achieve a balanced workload (or to

minimize the variance of the load vector), only the nodes connected by a link may exchange

tasks. There are mainly two neighbourhood load balancing approaches, diffusion and di-

mension exchange. In the diffusion approach, nodes can concurrently exchange tasks with

all their neighbours, while in the dimension exchange approach, nodes can only exchange

CHAPTER 1. INTRODUCTION 3

tasks with one neighbour at a time. In the balls-into-bins game [68, 13, 201, we are given a

set of independent tasks. Every task runs a distributed algorithm to allocate itself to some

resource so that (typically) the maximum load in any resource is minimized. In this model,

every task is allowed to query a small set of nodes to get some partial load information, but

it is not allowed to communicate with other tasks or nodes.

Routing. Routing studies how to deliver messages from source to destination in a timely

manner. It is also a central problem in distributed systems. Routing consists of two major

tasks, path selection and scheduling. Path selection refers to selecting a path for each packet

from its origin to its destination, while scheduling refers to arranging the movements of the

packets along their paths to avoid contention.

There have been a wide variety of routing algorithms for different networks. For routing

in packet-switched networks like the Internet, data is usually split up into packets each of

which is labeled with the complete destination address and is routed individually. The ob-

jective is to deliver packets to the destination using as few steps as possible. For example,

Leighton, Maggs and Richa [79] propose an algorithm that can route any set of packets c on

any network in O(c + d) steps using constant-size queues, where c is the congestion of the

paths, d is the length of the longest path. For routing in wireless ad hoc or sensor networks,

since both the wireless channel and the power supply are scarce resources, algorithm design-

ers must take these two issues into account. For instance, Chen, Low, Chiang and Doyle

[34] propose a joint design of congestion control, path selection and scheduling for wireless

ad hoc networks in order to use wireless channels more efficiently. Cartigny, Simplot and

Stojmenovib 1331 study empirically how to achieve the minimum energy consumption for

broadcasting in ad hoc networks. In this thesis, we focus on routing in ad hoc networks.

This thesis studies distributed algorithms for both resource allocation and routing. For

the resource allocation problem, we first analyze the diffusion model. We then study the

weighted balls-intebins game, where every ball is associated with some weight. We also

design efficient distributed routing algorithms for ad hoc networks. In the rest of this

introductory chapter, we further describe the problems we consider in this thesis. Section

1.1 and 1.2 introduce distributed load balancing and routing respectively. We summarize

our contributions and give the thesis outline in Section 1.3.

CHAPTER 1. INTRODUCTION

1.1 Distributed Load Balancing

As we discussed, resource allocation is a fundamental problem for many distributed systems.

In the following we further introduce two load balancing models, the diflusive load balancing

and the balls-into-bins games.

Diffusive Load Balancing

In the diffusive load balancing model, every node is initially associated with a certain number

of tasks and the overall workload can be arbitrarily unbalanced. In order to achieve load

balancing, the nodes with higher load can send some tasks over to those nodes with lower

load. Moreover, the number of tasks in the system is time-invariant, i.e., neither do new

tasks appear, nor do existing ones disappear. In the diffusive load balancing algorithms

(e.g., [46, 31, 63, 231) it is assumed that all the nodes are connected by a network, and in

each step only the neighbouring nodes can exchange tasks. Our goal is to distribute tasks as

evenly as possible among nodes. We are particularly interested in the time it takes to reach

(or come close to) the perfectly balanced state. Note that for diffusion protocols, nodes

are allowed to transfer workload concurrently, which makes the analysis quite difficult. In

Chapter 2, we propose a novel analytical technique to cope with this concurrency issue.

Weighted Balls-into-bins Games

In the balls-into-bins game [13, 20, go]), every task needs to allocate itself to some resource

efficiently. To study this problem we often denote tasks as balls and resources as bins.

In particular, we study the weighted balls-into-bins games, where the balls (tasks) are as-

sociated with positive weights. In practice, the weight of a task represents the resource

requirement of the task, i.e., memory or running time.

We study two different variations of balls-into-bins games. We first consider the static

sequential game, where we allocate a set of balls coming one after another sequentially.

A well-known method is to let every ball choose d 2 1 bins uniformly at random, and

allocate itself into a bin with the minimum load. If d = 1, the game is called single-choice,

otherwise multiple-choice. We ask the following two natural questions. How does the weight

distribution affect the outcome of the game, and how does the order in which we allocate

balls affect the outcome of the game? We propose an indirect approach, which compares

an arbitrary weighted system with its uniform counterpart that only consists of unit-size

CHAPTER 1. INTRODUCTION 5

balls and has the same total weight as the weighted system. For the comparison, we use a

majorization technique similar to [13].

We then study the so-called selfish reallocation game, a model that recently received

much attention in the theory community. This problem models the selfish users' behaviors

in applications in which users share common resources such as server bandwidth. In such

applications, every user is selfish in that it only tries to optimize its own situation, i.e.,

the cost incurred by its host resource, without trying to optimize the global situation. To

analyze this problem we again model the resources as bins and the users as balls. We assume

that initially every ball is allocated to some arbitrary bin. Afterwards, every ball migrates

to a different bin according to the following natural distributed reallocation protocol. In

each step, every ball picks one bin uniformly at random. It then compares the load of its

current host bin with the load of the randomly chosen bin. If the load difference is above a

certain threshold then the ball will migrate to the destination bin with a certain probability.

In this protocol, balls behave selfishly in that they only try to minimize the loads of their

own bins. Note also that ball migrations happen in parallel. Using game theoretic notion,

when all the balls stop moving, the system is said to be in some Nash equilibrium. We show

upper and lower bounds for the convergence time, i.e., the number of steps for the system

to reach (or get close to) one of the Nash equilibria.

1.2 Routing in Ad Hoc Networks

The second part of the thesis studies routing in ad hoc networks. Even though the routing

problem appears very different from the resource allocation problem studied in the first

part of the thesis, they both are fundamental mechanisms for distributed systems and their

analytical techniques share many similarities.

An ad hoc network is a communication network composed by a set of independent

mobile devices connected through a wireless medium. The main advantage of ad hoc net-

works is that they can be easily deployed since they do not need any (wired) infrastructure.

This advantage makes ad hoc networks very useful in military environments, for example,

building survivable radio communication networks in battlefields. Ad hoc networks are also

widely used in civil applications such as disaster recovery, home networks and personal area

networks [99].

We study how to design efficient routing algorithms for broadcasting and gossiping in

CHAPTER 1. INTRODUCTION 6

ad hoc networks. For the broadcasting problem, one node of the network needs to send a

message to all other nodes in the network. For the gossiping problem, every node of the

network needs to send a message to every other node. Due to the lack of fixed infrastructure,

the broadcasting/gossiping algorithms running on ad hoc networks have to be carried out

in a decentralized manner.

In a well-accepted theoretical model of ad hoc networks, (e.g., [4l, 51, 55, 72, 112, 7, 73]),

it is assumed that every device has a fixed communication range and it can reach all the de-

vices within that range. It is also assumed that there is only one communication channel, so

that if there is more than one device transmitting at the same time, their messages "collide"

and need to be resent. In this model, the goal is to minimize the broadcasting/gossiping

time, that is, the number of time steps to achieve broadcasting/gossiping. In practice, since

the mobile devices tend to be small and have only limited power supply, energy efficiency

is another important issue for communication in ad hoc networks (e.g., 166, 851). Thus,

in Chapter 4, we propose a novel energy efficient model for ad hoc networks. Under this

model, we propose and analyze several efficient broadcasting and gossiping algorithms that

achieve the the minimum energy consumption, where the energy consumption is measured

in terms of the number of messages (or transmissions) sent by each node.

1.3 Contributions and Organization

To summarize, this thesis makes the following contributions.

0 In Chapter 2, we propose a novel analytical method for the diffusion model. The

key idea is to sequentialize the concurrent load balancing actions and analyze this

new sequentialized system, and then to bound the gap between both systems. We

demonstrate the usefulness of this approach by analyzing various natural diffusion-

type algorithms. Our results are similar to, or better than previously existing ones,

while our proofs are significantly easier.

0 Chapter 3 considers two different scenarios of the weighted balls-intebins games. For

the static sequential game, we study how the weight distribution, or the order to a l le

cate balls, influence the outcomes of the game, in particular, the expected maximum

load. First, using a majorization approach, we show that for the single-choice game,

a more balanced weight distribution always yields a smaller expected maximum load.

CHAPTER 1. INTRODUCTION 7

We then show that the same argument does not hold in the multiple-choice game when

we have large number of balls. Finally, we study how the order to allocate balls affects

the expected maximum load.

For the selfish reallocation game, we prove upper and lower bounds for the convergence

time, i.e., the number of steps for the system to converge (or get close) to some Nash

equilibrium. For a system with m balls and n bins, we show an upper bound of

0(mnA3cP2) for the convergence time, where A is the maximum weight of tasks. Our

analysis is based on the potential function technique. In addition, we prove a lower

bound of R(mA/e) for the convergence time. Next, we apply our technique to the

uniform case and show that our algorithm converges to the (real) Nash equilibrium

in O(1ogm + nlogn) steps w.h.p. We then combine our protocol and the protocol in

[22] to obtain a O(1og log m + n log n) convergence time w.h.p. Finally, we show the

tightness of this result by proving a matching lower bound.

0 In Chapter 4, we study radio broadcasting and gossiping algorithms in ad hoc net-

works. We propose a new energy ef icient communication model, in which the en-

ergy consumption of an algorithm is measured in terms of the total number of mes-

sages (or transmissions) sent. We consider both random and general networks. For

random networks, we propose a O(1ogn) broadcasting algorithm where every node

transmits at most once and a O(d log n) gossiping algorithm using O(1og n) messages

per node. For general networks with known diameter D , we present a randomized

broadcasting algorithm with optimal broadcasting time O(D log(n/D) + log2 n) that

uses 0(log2 n / log(n/D)) transmissions per node in expectation. Our lower bound

a(log2 n/log(n/D)) on the number of transmissions matches our upper bound for

time-invariant distributions. We also demonstrate a tradeoff between these two objec-

tives.

Chapter 2

Diffusive Load Balancing

In this chapter we focus on an important resource allocation model named the diffusive load

balancing. We are given a network where nodes represent processing units, edges represent

communication links. Initially, each node is associated with an arbitrary number of tasks.

Then in each time step, the neighbouring nodes are allowed to concurrently exchange certain

amount of tasks to achieve load balancing.

We propose a new proof technique to analyze the above procedure. The technique is

designed to handle concurrent load balancing actions, which are often the main obstacle for

the analysis. We demonstrate the usefulness of this technique by analyzing various natural

diffusion algorithms. Our results are similar to, or better than, previously existing ones,

while our proofs are significantly simpler. The key idea of our proof technique is to first

sequentialize the original concurrent load transfers, analyze this new sequential system, and

then to bound the gap between both the concurrent and sequential systems.

2.1 Introduction

A well-known model of resource allocation model is the neighbourhood load balancing prob-

lem. We have a set of identical nodes (processors) that are connected by a network. Initially,

every node is associated with some number of tasks. The number of tasks in the system is

time-invariant, i.e., neither do new tasks appear, nor do existing tasks disappear. In each

step, only the neighbouring nodes (nodes connected by an edge) are allowed to exchange

certain number of tasks to balance their loads. The goal is to distribute tasks as evenly as

possible among nodes using minimum number of steps. In the following, the load of a node

CHAPTER 2. DIFFUSIVE LOAD BALANCING

at time t is defined as the number of tasks on that node at that time.

Neighbourhood load balancing approaches can be classified in many ways. We can distin-

guish between the diffusion and dimension exchange approaches. For diffusion approaches,

each node is allowed to balance their loads concurrently with all its neighbours. For dimen-

sion exchange approaches, each node can only communicate with one of its neighbours. The

neighbour can be chosen either in a round-robin fashion[46], or by randomly generating a

matching of the underlying network at every time step [63]. We can also distinguish between

discrete and continuous approaches. For discrete approaches, tasks can not split and nodes

are only allowed to exchange integer number of tasks. For continuous approaches, tasks can

be split into arbitrarily small pieces and nodes are allowed to exchange fractional amount

of tasks.

So far, the analysis techniques for diffusion and dimension exchange approaches are quite

different. The common technique to analyze dimension exchange approaches is the potential

function technique 146, 63, 62, 941. In this technique, first, we choose a suitable potential

function to measure the distance between a particular system state and the perfectly bal-

anced state. We then show that the potential always decreases by a certain amount in every

time step. However, it is challenging to use this technique for diffusion-type algorithms (see

162, 941). The major challenge is that in the diffusion approaches, loads can be transferred

concurrently so that the load situation could change drastically in one step. This makes

it difficult to apply the potential function technique to analyze diffusion approaches. So

far the common technique to analyze diffusion approaches is the algebraic technique (see

[46, 107, 94]), which only works for the continuous case. See Section 2.2 for an overview.

In this work we propose a simple potential function technique to analyze diffusion load

balancing approaches. The idea is as follows. First, we LLsequentialize" the concurrent load

balancing actions of the diffusion approach to get a sequential system. The technique to

sequentialize the concurrent load balancing actions will be explained later in Section 2.4.

Since there is no concurrent load balancing action, the sequential system can be easily

analyzed using existing ideas, e.g., the one from [63]. We then use the potential drop in

the sequential system to lower bound the potential drop in the original concurrent system.

In more detail, we show that under certain conditions, the potential drops in both the

sequentialized and concurrent systems at most differ by a constant factor.

We use this technique to analyze the standard diffusion algorithm in the continuous and

discrete cases. Then we apply our technique to get results for the dynamic model of [58],

CHAPTER 2. DIFFUSIVE LOAD BALANCING 10

where the network can change over time, for both cases. Finally, other than the traditional

neighbourhood load balancing approaches, we also consider a randomized approach which

allows nodes to randomly choose their load balancing partners among the set of all other

nodes. Note that in this setting, a node can easily be forced to balance its load with many

other nodes, so that many concurrent load balancing actions will take place. Note also that

this setting can be regarded as neighbourhood load balancing where the network topology

is randomly chosen and changes from step to step. We call such a network random in the

following.

We organize the rest of this chapter as follows. We review related work in Section 2.2.

Section 2.3 consists of our model and new results. Section 2.4, 2.5 and 2.6 study the diffusion

approaches on fixed network, dynamic network and random network. Finally we conclude

in Section 2.7.

2.2 Related Work

In this section we review related work. We discuss both continuous and discrete load bal-

ancing approaches.

2.2.1 Continuous Load Balancing

Continuous load balancing is the "ideal" case in which tasks can be split arbitrarily. Hence

it is possible to balance the workload perfectly. In the following we review diffusion and

dimension exchange approaches.

Diffusion. Cybenko [46] and, independently, Boillat [31], are the first to study the diffu-

sion approaches. In the diffusion model of Cybenko, the load distribution at time step t is

quantified by an n vector, Lt = (ti,. . . , ek), where is the load of node i at time t 2 0.

In each round t , node i and node j compare their load. If e; > ef, node j sends a E . - (E 2)

tasks to node i. a is called the diflusion factor and is set to 1/(6 + l), where 6 is the

maximum degree of the network. We can write Lt+' = M - Lt, where M = (mij) is a matrix

defined as

CHAPTER 2. DIFFUSIVE LOAD BALANCING 11

M is commonly referred to as diffusion matrix. Cybenko [46] (see also [107, 941) shows

a tight connection between the convergence rate of his diffusion algorithm and the second

largest eigenvalue of M. Let e = Cr=, t:/n be the average load and let b = (e, . . . , ?)
be the balanced distribution. For each t 2 0, define the error e(t) to be dt) - b. Let

-1 5 p1 5 p2 2 . . . 5 p, = 1 be the set of eigenvalues of M and denote y = maxpi+l {[pi /)

to be the second largest eigenvalue of M. Let I le(t) 1 12 be the t2 norm of the error vector e(t).

It can be shown that 1 le(t+l) 1 12 = I I M . e(t) 1 12 I y . 1 le(t) 1 12, which implies

Subramanian and Scherson [I071 observe similar relations between convergence time and

the properties of the underlying network. F'rom Equation (2.1), they obtain the following

bound on the convergence time T:

and

where n is the size of the network, a is the standard deviation of the initial load distri-

bution. I? and A are the network's electrical and fluid conductance.

Muthukrishnan, Ghosh and Schultz [94] refer to the above diffusion model as the first

order scheme and further generalize it to the so called second order scheme, where

with 0 5 ,f3 5 1 a constant. Lt relates not only to Lt-' but also to LtP2, hence the name

second order. They show that the second order scheme converges much faster than the first

order scheme for suitably chosen values of p. Diekmann, F'rommer and Monien [54] extend

the idea of [94] and propose a general framework to analyze the convergence behavior of a

wide range of diffusion-type approaches. They introduce the so called Optimal Polynomial

Scheme (OPS), which can determine an optimal balancing flow within m steps, where m is

the number of distinct eigenvalues of the graph.

In [58] Elskisser, Monien and Schamberger analyze the diffusion algorithm for dynami-

cally changing networks. The results are stated in Theorem 2.5.1. The proof technique is

similar to the one in [54].

CHAPTER 2. DIFFUSIVE LOAD BALANCING

Dimension Exchange

In [46], Cybenko also investigates the following dimension exchange approach on a hypercube

topology. In each round, a single dimension is taken and for every edge on that dimension,

the algorithm equalizes the workloads of the nodes on both sides of the edge. It is shown

that a sweep of all dimensions can actually balance the load globally; in fact, after d sweeps

the system potential would be about e-2 (z 118) of the initial potential, d is the dimension

of the hypercube.

In [63], Ghosh and Muthukrishnan study the dimension exchange approach for an ar-

bitrary network G. To avoid concurrent load balancing actions they randomly generate a

matching Mt in every round t . The nodes of the matching are then allowed to balance their

load by exchanging half the load difference between every pair. Their proof uses a standard

potential function argument. They first show that the probability for an edge to be included

in the matching Mt is at least 1/86, where 6 is the maximum degree of the network. Next,

they estimate the expected potential drop by summing over all edges. They show that in

each round the expected drop of 4 is at least X2/166. Here, X2 is defined as the second

smallest eigenvalue of the Laplacian matrix of G. The Laplacian matrix of G is defined as

L = D - A, with A denoting the adjacency matrix of G and D = (dij) with dij = 0 if i # j
and dii the degree of node i.

2.2.2 Discrete Load Balancing

Discrete load balancing, in which only integer tasks are allowed to be transferred, is a

more realistic model than continuous load balancing. In this case the system can not be

completely balanced. To see that consider the line graph as a network where the load of

node i is simply i. The load is certainly not totally balanced but no neighbouring pair of

nodes would balance their load. Unfortunately, discrete load balancing can not be analyzed

using the algebraic technique of [46].

Quite often, the continuous model is used to bound the convergence time of discrete load

balancing. Since the approximation error is mainly caused by rounding, it is not significant

when the system is far from the balanced state (see [63, 941). For the discrete version of

their random matching based algorithm, by carefully calculating how much error can be

introduced by rounding, Ghosh and Muthukrishnan [63] prove that, as long as 4 2 26n/X2,

the rounding can at most slow down the convergence time by a factor of two.

CHAPTER 2. DIFFUSIVE LOAD BALANCING 13

Besides, using the same rounding technique as above, Muthukrishnan, Ghosh and Schultz

[94] show that in the case of the discrete version of their first order scheme, the initial

potential cpo can be reduced to 0(cY2n2/e2) in 0 (log cpo/(l - (1 + c)y2)) steps.

Rabani, Sinclair and Wanka [98] propose a more general technique to study the discrete

load balancing. Their idea is to approximate the discrete system by idealized Markov

chains. Let M be the diffusion matrix of a diffusion algorithm, and let y, p = 1 - lyl be

the second largest eigenvalue and the eigenvalue gap of M , respectively. Furthermore, let

K = maxi,j{lei - ejl) be the discrepancy of the initial load vector e. They show for the

rounds are sufficient to reduce the discrepancy to x. Next, to quantify the deviation of

the actual load and the distribution generated by the Markov chain, they propose to use

a natural quantity, the local divergence Q, which is the sum of load differences of the two

systems across all edges of the network, aggregating over time. They obtain the following

bound for @: @(M) = O(6 log NIP) . Finally, applying the knowledge of the second largest

eigenvalue and combining this with Equation 2.2, they get fairly tight convergence results

for various network topologies, e.g., line graph, de Bruijn network, degree-d expander etc.

In [57], ElsGser and Monien show that after applying the first order scheme for Ic =

O(d log(Kn)/X2) steps, the error in e2 norm I le(lc) 1 l z can be reduced to O(nd2/X2), where

K be the initial discrepancy (defined as above). Using a Markov chain based approach,

ElsGser and Monien [57] propose a new discrete diffusion scheme which is fully randomized

and distributed. Let 6 be the maximum degree of the underlying graph. They show that,

after 0 d(log n log log n + log K)) steps, the algorithm can reduce the error bound 1 le(k) 1 j 2 (
to O(&L) .

All the results above assume a fixed network. Recently, Elsasser, Monien and Scham-

berger [58] generalize the diffusion scheme to allowing dynamic networks. Let Ak be the

average value of the ratio between the second smallest eigenvalue and the maximum degree

during the first K iterations. They propose a diffusion algorithm that needs at most K

steps to reduce the system potential from @ (L) to c@(L), where K = O(ln(l/c)/AK).

CHAPTER 2. DIFFUSIVE LOAD BALANCING

2.3 Model and New Results

We have n identical nodes that are connected by a network with maximum degree 6. Nodes

are allowed to communicate with each other only if they are connected by an edge. Initially,

each node stores some number of tasks. The total number of tasks is time-invariant, i.e.,

neither do new tasks appear, nor do existing ones disappear. The objective is to distribute

the tasks as evenly as possible among the nodes whilst minimizing the number of load

balancing steps.

The load of a node a t time t is the number of tasks the node stores at that time. At each

time step, every node compares its current load with the load of a subset of its neighbours,

possibly with all of them. If the load of the node exceeds the load of such a neighbour by

a certain amount, then it sends a certain number of tasks to that neighbour. Clearly, it

will take a "long" time until the system is balanced if the number of tasks sent is "small"

compared to the load difference. On the other hand, if this amount is too big, then load

might bounce back and forth. To prevent that, the amount of load that a node is allowed

to forward to a neighbour is typically upper bounded by a function of the difference d and

the maximum degree, 6, e.g., d l (6 + 1).

Our main contribution is a new proof technique which can be used to analyze many

diffusion-type load balancing algorithms, where the concurrent load balancing actions are

the main challenge to the analysis. We demonstrate that our approach can be used to

analyze the (continuous and discrete) diffusive load balancing in a variety of underlying

network models.

The key idea is to first sequentialize the concurrent actions in a diffusion algorithm, and

then study how much the concurrency can degrade the algorithm performance. We show

that under certain conditions, the potential drops of both the sequentialized system and

the concurrent system differ by a constant factor only. Hence, one can simply "neglect" the

concurrency, and the remaining analysis can be easily done using existing techniques like

the one in 1631. To illustrate how the idea works, we first analyze Algorithm 1, a classic

diffusion algorithm similar to the ones studied in [46, 107, 941. Next, we consider Algorithm

2, which allows every node to randomly find its balancing partner. We again analyze it

using the same proof idea; this shows that our technique is quite general.

Specifically, Section 2.4 analyzes a diffusion algorithm (Algorithm 1) with concurrent

load balancing actions. For the proof, we use a standard potential function (similar to

CHAPTER 2. DIFFUSIVE LOAD BALANCING 15

the ones defined in [46, 63, 94, 1071). We can show that at each step, the potential drop of

Algorithm 1 is at least some constant (0.5) times that of the corresponding sequentialized

algorithm. In other words, the concurrency can degrade our algorithm performance by at

most a factor of two. Finally, we adopt the proof idea in [63] to analyze the sequentialized

algorithm so as to obtain the main convergence result (Theorem 2.4.4) for Algorithm 1.

Note that most existing results for diffusion algorithms consider the corresponding dif-

fusion matrix of the network (see [31, 46, 107, 94]), while our result is expressed in terms of

network parameters (e.g., the second-smallest eigenvalue of the Laplacian matrix, the maxi-

mum degree). Moreover, our approach is much simpler. Furthermore, due to the concurrent

load balancing actions, our algorithm converges a constant times faster than the dimension

exchange algorithm in 1631.

Next, we analyze the discrete version of Algorithm 1 and obtain similar results to the

ones in [63, 941. We prove that as long as the potential is larger than a certain threshold

(i.e., the system is "far" from the well-balanced state), the discrete case has similar con-

vergence behavior to the continuous case. For the same discrete diffusion algorithm, our

result (Theorem 2.4.6) is stronger than the one in [94], as it only requires the potential to be

larger than a term linear in n instead of quadratic. Furthermore, compared to the discrete

dimension exchange algorithm in [63], our algorithm is still a constant times faster.

In Section 2.5 we use our proof technique to get similar results to the ones in [58] for a

dynamic network model where the active edges can change from round to round. In contrast

to [58], we get also results for the discrete load balancing model.

In Section 2.6, we analyze Algorithm 2, which allows nodes to randomly choose balancing

partners. Note that Algorithm 2 also contains concurrent load balancing actions since a

node may have been chosen by many other nodes. Using the same proof idea to handle

the concurrency, one can show that Algorithm 2 also converges quickly, as in each round

the system potential drops by at least a constant factor in expectation. This implies that

Algorithm 2 has a strict logarithmic convergence time which does not rely on any network

parameters. Note that our results for this model are stronger than the ones that we would

get by simply applying our results for the dynamic model. To our best knowledge this is

the first time that the diffusion scheme is analyzed in a model where nodes are allowed to

randomly choose balancing partners.

CHAPTER 2. DIFFUSIVE LOAD BALANCING

2.4 Diffusion on Fixed Networks

In this section we present our results in the standard diffusion model for arbitrary networks.

Section 2.4.1 deals with the continuous case, where tasks can be arbitrarily split. In section

2.4.2 we show how to use our technique to obtain results for the discrete case.

2.4.1 Continuous Case

First we need some notation. G = (V, E) is the underlying network. Let {el, ez, . . . e l E l) be

the set of edges of G. For each node i E V, let di be the degree of i , and let 6 = m a x i ~ v di.

a = min . is the edge expansion of G, with 3 = V/S, and E(s,S) the set of edges
S C V mln(lSI?ISI)

with one endpoint in S and the other endpoint in 3. Furthermore, let N(i) = {j E Vl(i, j) E

E} denote the set of all neighbours of node i. Let e: be the load of node i at the end of

Round t. Whenever clear from the context we will simply write ti in the following. Then

the vector L = {el,. . . ,en) represents the entire load distribution. Now we are ready to

define our load balancing algorithm.

Algorithm 1 The diffusion algorithm on graph G

1: for every node i E V in parallel do
2: for any j E N(i) do
3: if ti > ej then
4: send & load from node i to j

Similar to the result in [63], Theorem 2.4.4 (presented below) is a function of the edge

expansion value and the maximum degree of G. Let 0 = X1 < X2 5 . . . 5 An be the eigenval-

ues of the Laplacian matrix of G (for the definition of Laplacian matrix, see Section 2.2.1).

Let Lt = {t:, . . . ,ek), t 2 0 be the load vector after t balancing steps and ? = Cy=l l i / n

the average load. In the following we will assume that all load vectors are normalized, i.e.,

ei 5 5 . . . 5 ek. To analyze the algorithm, we will use the following potential function

Hence, @(Lt-') - @(Lt) is the potential drop in Round t.
lef-l-et.-'1

We assign a weight wij = 4max(d(' -) to each edge e = (i, j) in every round. The weight
2 7 3

w, is the load that will be transferred over e = (i, j) in Round t. Let Et = {e:, e:,IEI}

CHAPTER 2. DIFFUSIVE LOAD BALANCING 17

be the set of edges sorted in increasing order of their weights. For the sake of the analysis,

we now assume the edges are activated one by one starting with the edge ei with the

smallest weight. Then we can define Ltjk = ((I?', . . . , G k) to be the load vector right after

the activation of the first k edges etl, . . . etk in Round t (applied to the load distribution

Lt-I). A@: is the potential drop due to the activation of edge ee in Round t. Since

Lt can be obtained from L~- ' by activating all edges in E one after another, we have
- = C q = (i , j) E ~ A@:. The next lemma gives a lower bound for the potential

drop due to a single edge activation.

Lemma 2.4.1 Fix a round t. For all edges ee = (i, j) E E we have

Proof. Assume > Pi. Since all edges are activated in increasing order of their weights,

the amount of load that node i can send to any other neighbour in Round t before the

activation of ek, is at most
lei-' - (I$-1 1

w.. =
" 4max{di,dj)'

le;-l-e?-ll
node i has at most di - 1 additional neighbours, hence it can send at most (di - 1). mm{d:,d,l

load to other neighbours before the activation of edge (i, j) . Consequently,

l e t - l - g t - l ~
Similarly, node j receives at most (dj - 1) . before the activation of edge (i, j) .

Hence,

CHAPTER 2. DIFFUSIVE LOAD BALANCING

Consequently,

t,k-1 The second equation is due to ti + t>k-l = el1* + ti:k. The first inequality is due to

Inequalities 2.3 and 2.4. 0

Now it is straightforward to lower bound the potential decrease in a whole round.

Lemma 2.4.2 @(Lt-l) - O(Lt) 2 & C (t 2 - I - t ; - l) 2
(i , j) € E

Proof.

We shall use the following lemma from [63].

Lemma 2.4.3 (Fact 2 from [63].)

Let C be the Laplacian Matrix of our network, x' be the transpose of vector x and

v1 = (1 ,1 , . . . , I) ' . We have

where x I vl means that x is orthogonal to vl .

CHAPTER 2. DIFFUSIVE LOAD BALANCING 19

Proof. Application of the the Courant-Fischer Minimax Theorem, see [63] for the full proof.

0

I t is now easy to derive the following theorem.

46 In(l/c) Theorem 2.4.4 For any E > 0, after T = 7 steps, we have @(LT) 5 c . @(L).

a L t l a L t . The idea is similar to [63]. Proof. Fix a round t. First we lower bound
a(Lt) -

Define x to be a vector of length n with xi = I:-l - t. Note that Cy=l xi = 0, and that x

is orthogonal to vl = (1,1, . . . , I) ~ . Hence,

c - e;-l)2
@ (~ ~ - l) - @ (L ~) (i , dEE

2 (By Lemma 2.4.2) @(Lt-l) 46. C;=l x;

x' Lx
n

- - i (- 1 C x i = o , x # o
46 x'x

i= 1

- - A2 -
46'

(By Lemma 2.4.3) (2.5)

Hence, the potential drops by a constant factor in every round and we obtain

where the second inequality is due to YO < a < 1, (1 - a)lla < l/e. 0

2.4.2 Discrete Case

In this section we analyze the discrete version of Algorithm 1 under the assumption that

only integral amounts of tasks can be transferred. This means that for each edge (i, j) , we
lei-e, I

transfer 14 max{d,,di] 1 tasks. Theorem 2.4.6 gives an upper bound for the balancing time for
the discrete process. Note that it is no longer possible to balance the workload completely.

Compared to the continuous version of the protocol, it takes longer for the discrete protocol

to converge against a "nearly balanced state", but the difference is only a multiplicative

constant.

CHAPTER 2. DIFFUSIVE LOAD BALANCING

Proof.

The first inequality is due to Lemma 2.4.2. The fourth inequality follows from CyLl o, <

d m . To show the last inequality, by Lemma 2.4.3, wc get CR,J)EE ((I : ' - 2

A ~ @ (L ") 2 6 4 d 3 , hence Jn6 C(t,3)tE (I:-' - < & C(I,3)Et (eF-1 - - n

A Q(L)

Theorem 2.4.6 After T =
A2

646%ls 861n(*) steps, ~ (L T) < 7..

Proof. By Lemma 2.4.5, in each round the potcntial drops by a constant factor. as 1or:g as
86 h(*)

@(L') 2 9. Hence, after T =
A2

steps, we have

again, the second inequality is due to VO < x < 1, (1 - x)"" < l / e . Yl

R~mccrk. Theorem 2.4.6 is stronger than Theorcm 4 of [95] (see bclow). sincc wc only rcquirc

the potential to be linear in n, while Theorem 4 of [95] requires the potcntial to hc at lcast

CHAPTER 2. DIFFUSIVE LOAD BALANCING 21

quadratic in n. Moreover, it is interesting to compare Theorem 2.4.6 with Theorem 4 in

[57] . Theorem 2.4.6 indicates that the system potential @ (L ~) can be reduced to 0(d3n/X2)

after T steps. This is somewhat weaker than Theorem 4 in [57] which shows that the error

bound (leTJI2 can be reduced to O (6) (Note that by definition @ (L ~) = ()leT112)2). Yet,

the convergence time bound of Theorem 2.4.6 is smaller than which of Theorem 4 in [57]

(Note that log(@(L)) = O(1og K + log n) with K defined below). Moreover, Theorem 2.4.6

is for the general first order scheme (FOS) while Theorem 4 in [57] is for a specific algorithm

that belongs to the second order scheme (SOS).

Theorem 2.4.7 (Theorem 4 from [g4].) For any E < 1, the discrete first order scheme

reduces the potential t o 0 (q) in 0 () steps, where y i s the second largest

eigenvalue of the network.

Theorem 2.4.8 (Theorem 4 from [57].) Let G = (V, E) be a graph, let 6 be the m a x i m u m

vertex degree in G and let X2 be the second smallest eigenvalue of the Laplacian of G.

Furthermore, let w0 be the initial load o n G and K = maxi {w: - m) the m a x i m u m load

imbalance. If 2 32(n + 1) In n, then the randomized algorithm reduces the error I leT 1 l 2 t o

O(+) with probability 1 - o(l /n) in

K + log n log log n)

iteration steps.

2.5 Diffusion on Dynamic Networks

In [58], Elsiisser, Monien and Schamberger consider the diffusion process on dynamic net-

works, in which the set of nodes is fixed, but the set of of communication edges may vary

from round to round. They assume that every node knows the edges that are active in a

certain time step. The network can now be described by a sequence of "standard" graphs

(Gk)k>O, - where Gk is the underlying network at time step k . In this section we show how

to use our analysis approach to get results for their network model. Similar to Section 2.4,

we differentiate the continuous and the discrete cases.

CHAPTER 2. DIFFUSIVE LOAD BALANCING

2.5.1 Continuous Case

For the continuous case, Elsiisser, Monien and Schamberger prove the following theorem.

We can show exactly the same result for Algorithm 1 with our proof technique. In fact,

Theorem 2.5.1 can be easily derived by Theorem 2.4.4.

Theorem 2.5.1 (Theorem 1 from [58]). Denote A?) and dk) to be the second smallest
xf=l (A T) / 6 (k))

eigenvalue and the maximum degree of Gk respectively. Let AK = K be the

average value of A P) / d k) occurring during the first K iterations. Algorithm 1 needs at most

K steps to reduce the system potential from b(L) to rb(L) , where K = 0 (y).
Proof. Let L~ be the load vector after K rounds of applying the discrete version of Algo-

?) / 6 (k)

rithm 1 on (Gk)k>O. - Recall that AK = w. K Then, for K > T, it is true

that

Here the first equation is due to Equation 2.5 of Theorem 2.4.4, the first inequality holds

because QO < x < 1, 1 - x < e-". 0

2.5.2 Discrete Case

For the discrete case, we combine Theorem 2.5.1 and Lemma 2.4.5 and obtain the following

theorem for the discrete version of Algorithm 1.

Theorem 2.5.2 Let A?), dk), AK be defined as above. The discrete version of Algorithm 1

needs at most K steps t o reduce the system potential to

b* = 64n m L ((6~)) /A?)) , where K = 0
k=l

Similar to Lemma 2.4.5, we can show that whenever the potential is larger than @*

defined above, the potential drops at least by a factor of $)/(86(*)) in iteration k. The

rest proof is similar to Theorem 2.5.1, we omit the details.

CHAPTER 2. DIFFUSIVE LOAD BALANCING

2.6 Randomly Choosing Balancing Partners

In this section, we consider an alternative load balancing approach (Algorithm 2) which

allows nodes to randomly choose their balancing partners. The algorithm proceeds in the

following fashion: in each round, first every node randomly picks a balancing partner; later,

load is transferred concurrently between the corresponding balancing partners. Note that

unlike Algorithm 1, Algorithm 2 does not specify the underlying network topology. Using

our analyzing technique to handle the concurrency, we can show that in each round, the

system potential drops by at least a constant factor. This implies that Algorithm 2 has a

strict logarithmic convergence time. Again, we first show results for the continuous case,

and then for the discrete case.

2.6.1 Continuous Case

We denote by E the set of links whose endpoints are balancing partners, i.e., if node i

chooses node j as balancing partner, we create a link (i, j) and add it to E. Moreover, let

ti, d(i) be the load and the number of balancing partners of node i. Our algorithm is as

follows:

Algorithm 2 The diffusion algorithm that allows randomly picking balancing partners

1: E=O
2: for every node i E V do in parallel do
3: pick j E V uniformly at random
4: E t E U (2, j)
5: for every node i E V do in parallel do
6: for every j such that (i, j) E E do
7: if ti > tj then
8: send & tasks from node i to j

Below we analyze Algorithm 2. First note that by the classic result of balls-into-bins

games (see, for example, [13]), there is at least one vertex having 0 balancing ()
partners, with high probability. Consequently, one can not simply use the result in Section

2.4, which is in terms of the maximum degree of the underlying network. Instead, we prove

the following result, which indicates that for a given link, it is unlikely for both sides of the

link to have more than a constant number of balancing partners.

Lemma 2.6.1 For a fixed link (i, j) E E, Pr[max{di, dj) 5 5 1 (i, j) E El > 0.5.

CHAPTER 2. DIFFUSIVE LOAD BALANCING 24

Proof. By symmetry, we can assume that link (i, j) is built by node i. In this case,

among the remaining n - 1 nodes, there must be di - 1 nodes which choose i as their

balancing partner. Since the probability for every node to choose i is l l n , we have di

1 + B(n - 1, l l n) , where B(n,p) is the binomial distribution. Next we consider node j .

Note that node j has already connected to two links: (i, j) and another one that node

j builds. Hence dj N 2 + B(n - 2, l l n) by similar reason as above. Next, we calculate

Pr[di > 5 1 (i, j) E El.

Pr[di > 5 1 (i, j) E E] = Pr[B(n - 1, l l n) > 41 = Pr[B(n - 1 , l l n) L 51

4
Similarly, we can prove that Pr[dj > 5 1 (i, j) E El < (z) < 0.25. Using Pr[A or B] 5

Pr[A] + Pr[B], the following holds.

Pr[max{di,dj} 5 51 (i, j) E E] = 1 - Pr[di > 5 or dj > 51 (i, j) E E]

> 1 - (Pr[di > 5 / (i, j) E E] + Pr[dj > 5 ((i, j) E E])

> 1 - (0.05 + 0.25) > 0.5.

Before we prove Lemma 2.6.3, we show the following result indicating that the potential

drop at some step t is a constant times of the current system potential.

Lemma 2.6.2 xa, xy=, (el - ti)' = 2n - @ (L ~) .

Proof. Let yi = lei -el, and denote A (or B) to be the set of indices i for which 5 e (or

> 2 resp.). First observe that

and

CHAPTER 2. DIFFUSIVE LOAD BALANCING

Similar to (2.7), we get

By Equations 2.6, 2.7, 2.8 and 2.9, we have:

Here the third equation holds since C yi = C y j . The last equation is true due to IAl +
iEA jEB

IBI = n and @ (L t) = C y: + C y;. 0
iE A jEB

Now we are ready to prove the following lemma.

Lemma 2.6.3 E[(r(Lt+' 1 Lt = L)] 5 E (r (L) .

CHAPTER 2. DIFFUSIVE LOAD BALANCING

Proof.

n n

E [@ (L ~ + ') ~ L ~ = L] = @(L) - C, x (Pr[ec = (i, j) E El A@c(L))
i=1 j=1

Here, the first inequality is from Lemma 2.4.1. The third equation is due to Lemma 2.6.1.

The last equation holds by Lemma 2.6.2. 0

Finally, we prove the following convergence theorem.

Theorem 2.6.4 For c > 0, after T > 120cln @(L) rounds, pr[@(LT) < ePC] 2 1 -

@ (L) -44.

Proof. For any t > 0, by linearity of expectation, we can iteratively use Lemma 2.6.3 to

obtain

By Markov inequality, PK-[@(L~+~O) < @(Lt)/2] 2 112. Denote a stage to be 30 rounds. For

any c > 0, let k = 41og @(L). For stage 0 5 i < k, let Xi be a random variable defined as

follows.
1 if @(~30(i+')) < @ (~ 3 0 ~) / 2 .

Xi =
0 otherwise.

If Xi = 1, we say stage i is successful. Next we bound the number of successful stages. Let

X = Xi. Clearly E[X] 2 k/2. Applying Chernoff bound we get,

CHAPTER 2. DIFFUSIVE LOAD BALANCING 27

Hence, after T = 30c. k = 1 2 0 ~ . In @(L) rounds, the number of successful stages is bigger

than or equal to cln @(L) with probability at least 1 - @(L)-'I4. Consequently, for T >
120c. ln@(L), pr[@(LT) < e-'1 with probability at least 1 - @ (L) - ~ I ~ .

Note that the random network model of this section can be viewed as a special case of

the dynamic network model in Section 2.5. For random networks we are able to show that

the potential decreases by a constant factor in each round. Theorem 2.5.1 does not give

a constant factor drop for our random networks. This result is also related to the one of

Ghosh and Muthukrishnan in [63], where they use random matchings for load balancing.

To see the difference, first note that our random network may not be a matching. Second,

our convergence result does not rely on any graph structure parameters while the result in

[63] does.

2.6.2 Discrete Case

For the discrete case we use Algorithm 2 with one change. In every step, whenever ti > tj,
e i - e . we transfer 1-1 tasks from ti to l j . We show the following result indicating that

whenever the potential @(L) is bigger than a threshold of 3200n, the potential decreases at

least by a constant factor of 1/40 in every iteration.

Lemma 2.6.5 If @(L) >_ 3200n, E[@(Ltfl I Lt = L)] _< %@(L).

Proof. E[@(L~+ l) 1 Lt = L]

CHAPTER 2. DIFFUSIVE LOAD BALANCING

5 e (L) - -!- . C C (e, - ej)2 + - n2 . C (ti - ej)2 40n . z=1 j=l '4 i=l j=l

Here, the first inequality is from Lemma 2.4.1. The third equation is due to Lemma

m C . a:. The last inequality is true since 2.6.1. The fourth inequality holds by xEl aai 5 d T

The last equation follows from Lemma 2.6.2.

Finally, similar to Theorem 2.6.4, we directly obtain the following theorem:

Theorem 2.6.6 Vc > 0, after T 1 24Oeln (g) rounds, P ~ [@ (L ~) 5 3200nI 2 1 -

2.7 Summary

We have proposed a new proof technique that can be used to analyze many parallel dif-

fusive load balancing algorithms. The idea is to first sequentialize a diffusion algorithm

with concurrent load balancing actions, and then to show that the potential decrease of

the concurrent system is at most a constant factor compared to which of the corresponding

sequential system. We have demonstrated the strength of the technique by analyzing contin-

uous and discrete diffusive load balancing algorithms for both fixed network and randomly

changing networks.

We believe that this simple idea is useful in the analysis of many distributed systems

with concurrent actions. For instance, this idea is applied in the analysis of a parallel

randomized load balancing protocol in Section 3.5. In the future, we can apply this idea to

analyze load balancing on other distributed systems, for example, the ad hoc network. This

CHAPTER 2. DIFFUSIVE LOAD BALANCING 29

problem is somewhat similar to the problem of randomly choosing load balancing partners

in Section 2.6. In particular, we can either assume that the topology of an ad hoc network

is arbitrary, or belongs to some random network classes such as Erdos Rknyi model [55] or

random geometric graphs [95].

Chapter 3

Weighted Balls-into-bins Games

In this chapter we study the balls-into-bins game, where we have a set of independent balls

and the goal is to allocate them into a set of bins in a balanced manner. This problem has

been used to model a large set of real life applications in distributed systems where balls

and bins represent tasks and resources, respectively. We assume that every ball is associated

with some weight, which can represent the resource requirement of tasks, i.e., memory or

running time.

We consider two different scenarios, the static sequential game and the selfish allocation

game. In the static sequential game, balls come sequentially and need to be placed in such

order. We study how the outcome of the game, i.e., the expected maximum load of any bin, is

influenced by the game parameters such as the distribution of ball weights, and the order that

balls are allocated. In the selfish allocation game, all the balls have some initial locations

and need to be reallocated to achieve load balancing. We analyze a natural, distributed

reallocation algorithm. Our goal is to bound the convergence time of the algorithm, i.e., the

number of rounds for the system to reach (or get close to) some equilibrium state.

3.1 Introduction

The balls-into-bins game, also referred to as occupancy problem or allocation process, is a

well-known and much studied model in distributed computing. Generally speaking, the goal

of balls-into-bins games is to allocate a set of independent balls into a set of bins so that

the maximum number of balls in any bin is minimized. It is assumed that there is no global

mechanism to realize this goal and all the balls are independent to each other. Furthermore,

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 3 1

every ball is allowed to collect partial load information by querying a small set of bins, but

it is not allowed to communicate with other balls.

This well-defined mathematic problem has been used to model many practical distributed

applications, e.g., dynamic resource allocation, distributed client server systems, network

routing and hashing etc. [13, 68, 901. For instance, we consider a client server system where

each client issues some tasks which can be assigned to each server. In order to minimize the

response time of tasks, we need to distribute these tasks to servers as evenly as possible.

Note that the tasks do not have any information about other tasks in the system and they

have to be allocated independently. In this case, the balls-into-bins game is an excellent

model that allows us to effectively use the system. In those applications above, tasks are

often heterogenous, for example, the tasks in the client server system can have different

sizes. In this chapter, we investigate balls-into-bins games in the content of weighted balls.

We assume that each ball (task) is associated with some positive weight representing its

resource requirements, i.e., memory or running time.

Balls-into-bins games can be categorized in many ways. We can have either sequential or

parallel games. In the sequential game, balls arrive one after another and have to be placed

in such order. The most common approach is to choose d bins independently and uniformly

at random and place the ball into the least loaded bin [68, 13, 20, 1101. In the parallel game,

balls arrive in batches while balls in the same batch must be allocated concurrently. For the

parallel game, the previous approach is no longer applicable and some kind of scheduling

process is required. For more about the parallel game, see also [3, 106, 191. Furthermore,

we distinguish between both static and dynamic games. In the case of static games, the set

of balls is fixed. None of the balls will be deleted and no new ball will ever arrive. In the

dynamic case, we do not have a fixed number of balls but rather balls may arrive according

to some arrival process and leave the system according to some deletion process. An arrival

(or deletion) process specifies the points of time and the number of balls being injected

into (or deleted from) the system. For example, in [87], Mitzenmacher considers a model

that the balls arrive as a Poisson stream of rate An, and each ball has service time that is

exponentially distributed with mean one. See also [13, 481 for more examples.

In this chapter, we consider two different settings of balls-into-bins games, the static

sequential game and the selfish allocation game.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 32

Static Sequential Game In the first part of this chapter (Section 3.4), we study the

static sequential game, where balls arrive one after another without initial locations and

have to be allocated in such order. A well-known approach is to have every ball choose

d 2 1 bins independently uniformly at random and pick the bin with the lightest load. An

advantage of this approach is that it does not need any global information (i.e., system load

configuration) for allocating balls. Moreover, this approach causes very little overhead since

each ball is only allowed to query a small number of bins for finding its destination. If every

ball is only allowed to pick one bin (i.e., d = I) , the game is called single-choice balls-into-

bins game, otherwise multiple-choice. As shown in [68, 131, the multiple-choice approach

could result in a drastic (exponential) decrease of the maximum load over the single-choice

approach. During the past years, there has been extensive study on this phenomenon and

many significant results have been obtained. See Section 3.2 for a survey of both the single-

choice and the multiple-choice approaches.

Most work done so far assumes that the balls are uniform and indistinguishable. We

concentrate on the weighted case where every ball i E [m] is associated with a weight wi > 0.

Let the load of a bin denote the sum of the weights of the balls allocated to that bin. In [17]

the authors study the weighted balls-into-bins game by comparing it with its corresponding

uniform games. More specifically, they compare the maximum load of a game with m

weighted balls with maximum weight of 1 and total weight W = wl + . . . + w, to a game

with approximately 4W uniform balls. They show that the maximum load of the weighted

game is not larger than that in the uniform system. Their approach can be used for a variety

of balls-into-bins games and can be regarded as a general framework.

However, the results of [17] seem to be somewhat unsatisfactory. The authors compare

the allocation of a number of "light" weighted balls with an allocation of fewer "heavy"

uniform balls. Intuitively, since the case with light balls comes with more random choices,

the result should be better to allocate many light balls compared to fewer heavy balls. In

light of this, we study how the weight distribution affects the results of both the single-

choice and the multiple-choice games. We show that for the single-choice game, it is indeed

true that allocating more balanced weight distribution is always better. To show this result

we use the majorization technique similar to the one in [13]. Later, we prove that for the

multiple-choice game, surprisingly, a more balanced weight distribution does NOT always

imply a smaller expected maximum load.

Another related question is, how does the order of allocating balls affect the outcome

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 33

of the game? We note that in the single-choice game, since the random choices of all balls

are independent, the order does not make any difference. Yet, the question becomes subtle

for the multiple-choice game. Intuitively, it should be better to allocate the heavy balls

first, then the light balls allocated later will tend to fill the "holes" left by the large ones.

Hence, we ask, does the decreasing order always yields the minimum expected maximum

load? Similarly, does the increasing order always yield the maximum expected maximum

load?

Selfish Reallocation Game In the second part of this chapter (Section 3.5), we consider

the problem of dynamically reallocating (or re-routing) m balls among a set of n bins. This

problem can be used to model many practical applications in large scale networks, e.g. the

internet, which are open structured and lack of central authorities to guide users' behaviors.

Particularly, in these applications, users are selfish in that they only aim at minimizing

their own costs without regard for the overall cost. We model the selfish users as balls, the

resources (eg., network links, processors etc) as bins.

We assume that initially each ball has chosen some bin. (Note that this is different to the

static sequential game introduced above, where balls have to be placed one after another).

Then we apply the following iterative, distributed algorithm to reallocate balls to bins for

load balancing. In each step, every ball chooses one bin at random. It then compares the

load of its current host bin with the load of the randomly chosen bin. If the load difference

is above a certain threshold then the ball will migrate to the other bin with a probability

that is proportional to the load difference of these two bins. In this algorithm, each ball

acts selfishly in that it only tries to minimize the loads of its host bin. Furthermore, there

is no central control in the system and all the migrations take place in parallel.

We express our results using the notion of Nash equilibrium and its variations. In general,

a Nash equilibvium is a state in which users (balls) do not have an incentive to unilaterally

change their current strategy. In our problem, the Nash equilibrium represents a state that

none of the balls has an incentive to migrate to other bins. We shall also consider a notion of

approximate equilibria, namely 6-Nash equilibria, which describes states where no user can

benefit by more than 6 if he/she unilaterally changes his/her current decision. Our major

goal is to bound the convergence time, i.e., the number of time steps for the system to reach

some Nash equilibrium (or eNash equilibrium).

The rest of the chapter is organized as follows. Section 3.2 consists of some related work.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 34

In Section 3.3 we introduce our model and summarize the new results. We study the static

sequential game and the selfish allocation game in Section 3.4 and Section 3.5, respectively.

Finally we conclude in Section 3.6.

3.2 Related Work

3.2.1 Static Sequential Game

We review related work for both the single-choice and multiple-choice balls-into-bins games.

Single-choice Game

For the single-choice balls-into-bins game, every ball randomly chooses a destination bin. It

is well-known that (e.g., see [go]), if n balls are allocated into n bins using this strategy, the

fullest bin has lognl log logn+0(1) balls with high probability ' (w.h.p. or more accurately

I'-' (n) - +o(l) . More generally, to allocate m > n In n balls into n bins, the maximum load

is (mln) + O(d m) w.h.p. 190, 201. Note that the deviation term (@(Jw))
grows linearly with Jm. This is not satisfactory since in practice we often have m >> n.

In [104], Sanders considers the single-choice game in a weighted setting. Assume that

both the total weight of the balls W and the maximum ball weight w,, are fixed. Then

the expected maximum load is maximized when Wlw,, balls of weight w,, are allocated.

In (701, Koutsoupias, Mavronicolas and Spirakis consider the random allocation of weighted

balls. Similar to [17], they compare the maximum load of an allocation of weighted balls to

that of an allocation of a smaller number of uniform balls with a larger total weight. They

repeatedly fuse the two smallest balls together to form one larger ball until the weights of

all balls are within a factor of two of each other. They show that the bin loads after the

allocation of the weighted balls are majorized by the loads of the bins after the allocation

of the balls generated by the fusion process. Their approach also applies to more general

games in which balls can be allocated into bins with non-uniform probabilities.

Multiple-choice Game

For the multiple-choice balls-into-bins game, every ball randomly chooses d > 2 bins uni-

formly at random and allocate itself into the one with the minimum load. During recent

'We say an event A occurs with high probability, if Pr[A] > 1 - l ln" for some constant a 2 1.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 35

years there has been much research on this problem, see [go] for a nice overview. The first

rigorous analysis for the multiple-choice game is due to Karp, Luby and Meyer aur der

Heide [68], which studies the use of two hash functions in the context of PRAMS (Parallel

Random Access Machines). According to [go], there are three main techniques to analyze

balls-into-bins games, layered induction, witness trees and differential equation techniques.

Layered Induction Technique Azar et al. [13] first introduce the layered induction

technique to prove tight results for the case when m = O(n). They show that after placing

m balls the maximum load is Q(m/n + log log n / log d), w.h.p. The idea is to bound the

number of bins with at least Ic + 1 balls by the number of bins with at least Ic balls. For

example, assume there are n balls to be allocated into n bins. Let Pk be the upper bound for

the number of bins with at least Ic balls w.h.p. Note that by pigeonhole principle, ,& 5 n/6.

Then using an induction approach one can then bound Pi+6 in terms of Pi+6-1 Note that

every stage the bound holds with high probability. The probability that there does exist a

bin with a load of Ic + 6 is bounded by the sum of fail probabilities in all proof stages. The

authors then apply a similar inductive argument and stochastic domination to establish a

matching lower bound.

In [20], Berenbrink et al. analyze Greedy[d] for m >> n. The authors eventually tighten

the upper bound result of the maximum load to m/n + log log n + 0(1), w.h.p. This shows

that the multiple-choice process behaves inherently different from the single-choice process,

where the difference between the maximum load and the average load depends on m. They

first show a "short memory" property of the Greedy process, i.e., no matter what the initial

situation is, after a polynomial number of additional balls the maximum load of any bin

can again be bounded as expected. This memoryless property separates the multiple from

the single-choice approaches, in that for any number of bins, the difference between the

optimal and the multiple-choice allocation is bounded by a constant, instead of increasing

polynomially with m. Hence, it is sufficient to consider the case when m = poly(n). The

rest proof also utilizes the layered induction technique but the idea is very different. In

particular, they prove bounds not only for the balls lying above the average load, but also

for those balls lying below average load.

'we say an event A happens with high probability (w.h.p.), if Pr[A] > 1 - n-'

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 36

Witness Tree Technique The witness tree technique is first used to analyze balls-into-

bins games by Meyer auf der Heide, Scheideler and Stemann [ll] and is further exploited

in [106]. The idea is similar to the analysis technique delayed sequences in the study of

randomized routing algorithms [108, 61. When applying to balls-into-bins games, the idea

is to specify those events lying on the past that "witness" the occurrence of some heavily

loaded bin. Assume that there is some bin v with at least k balls. Let b be the last ball

allocated to v. There must be d - 1 other bins with load at least k - 1 since b is allowed

to query d bins and place itself into the one with the smallest load. Similarly, for each bin

with load k - 1, there are d - 1 bins with a load at least k - 2, and so on. These events

naturally form a so-called witness tree. Then, in order to bound the probability that some

bin gets load at least k, we can turn to calculate the total probability of the occurrences of

these witness trees. Vocking [I101 uses the witness tree technique to analyze a variant of the

multiple balls-into-bins game, called Always-Go-Left, which introduces a new tie-breaking

mechanism that always picks the leftmost bin instead of picking one arbitrarily. Surprisingly,

the Always-Go-Left algorithm can achieve a maximum load of m l n + log log n ld + 0(1) ,

w.h.p.

Differential Equation Technique The idea of differential equation technique is to study

the corresponding continuous system of the (discrete) balls-into-bins game. It is well-known

that in many cases, the continuous systems are easier to analyze by differential equations.

Using this technique, Mitzenmacher, Prabhakar and Shah 1891 show that a similar perfor-

mance gain to the multiple-choice game can be achieved by introducing memory. More

specifically, they show that if every ball only gets one random choice, and meanwhile

it can also pick the least loaded bin after allocating the last ball, the maximum load is

log log n l (2 log a) + @(I) w.h.p. where = (6 + 1)/2 is the golden ratio. For more about

this technique, see e.g., [88, 87, 901.

3.2.2 Selfish Reallocat ion Game

Next we review previous work for the selfish reallocation game. In [59], Even-Dar, Kesselman

and Mansour introduce the idea of using a potential function to measure the closeness

between a system state and the balanced allocation. They use this idea to show convergence

for sequences of randomly-selected "best response" moves in a more general setting in which

balls may have variable weights and bins may have variable capacities. Best response means

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 37

that every time a ball(task) always picks the move that incurs the smallest cost for itself.

Since they consider only the best-response moves, it is necessary for them to consider only

strictly sequential algorithms.

Goldberg [64] considers a algorithm in which every ball select one alternative bin at

random and migrate if the selected bin has lower load. The algorithm may be implemented

in a weakly distributed sense, requiring that migration events take place one at a time, and

costs are updated immediately. He proves an upper bound of O(w~,,m4n5 log(mn)) for

the convergence time, where m is the number of balls, n is the number of bins, wmax is the

ratio between the largest and the smallest ball weights. If all balls are of integer weights

between 1 and wmax, the convergence time is O(m2nwmax). He also shows an fl(n2) lower

bound for the convergence time.

Even-Dar and Mansour [60] allow concurrent, independent reallocation decisions where

balls are allowed to migrate from bins with load above average to bins with load below

average. They show that the system reaches a Nash equilibrium after expected O(1og log m+

logn) rounds. Their proof is also based on the standard potential function technique.

However, their algorithm requires balls to know certain amount of global knowledge in

order to make their decisions. A ball needs to know whether its bin is overloaded, i.e., with

a load larger than average. The authors also show a logarithmic convergence rate for a wide

range of rerouting strategies.

In [61], Fischer, Racke, and Vocking investigate convergence to Wardrop equilibria for

both asymmetric and symmetric rerouting games. In asymmetric games, tasks may be

associated with different latency functions. They consider a set of rerouting algorithms

called adaptive sampling, where in each round, each ball samples an alternative routing

path with its current latency. If the ball observes that it can improve its latency, it then

switches with some probability depending on the improvement to the better path. The

authors prove the first polynomial bounds on the convergence time of adaptive rerouting

policies for classes of latency functions with bounded relative slope. A differentiable latency

function t has relative slope d if t'(x) 5 dt(x)/x for all x in the entire range. The authors

also show the necessity of adaptive sampling by proving an exponential lower bound result

for the static sampling methods.

Chien and Sinclair [35] study the ability of a set of distributed, local algorithms to rapidly

reach the approximate Nash equilibrium. They show that for the symmetry congestion

game, if the latency function d, of any edge (bin) e satisfies the so called "bounded jump"

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 38

condition, i.e., de(k + 1) 5 ade(k) for all k 2 1, the convergence to an eNash equilibrium

occurs within [nae-'log(nc)l steps, n is the number of balls. They also show that it is

necessary to consider the approximate Nash equilibrium, in that the problem of finding

a (real) Nash equilibrium in symmetric congestion game satisfying the a-bounded jump

condition with a = 2 is PLS-Complete.

Berenbrink et al. 1221 consider a strongly distributed system consisting of selfish users.

They consider only uniform balls and uniform bins. They show an upper bound of O(1og log m+

n4) on the expected convergence time in their model as well as a lower bound of R(1og log m+

n) . They furthermore derive bounds on the convergence time to an approximate Nash equi-

librium as well as an exponential lower bound for a slight modification of their algorithm.

In fact, the modification is possibly even more natural than the one with the polynomial

upper bound in that it results in a perfectly balanced distribution in expectation after only

one step whereas the previously mentioned algorithm does not have this property.

3.3 Model and New Results

We first introduce the model we are working on. We have m balls and n bins. Let [m]

denote (1,. . . , m). Every ball i E [m] is associated with some weight Wi L 1. Let w =

(wl, . . . , wm) be the vector of ball weights and W = EL1 Wi be the total weight of the

balls. If wl = w2 = . . . = w,, we say the game is unifomn. In this case, we normalize the

ball weights such that wi = 1 for all i E [m]. The load of a bin is defined as the total weight

of balls located in that bin. Then let 3 = W/n be the average load of all bins.

In the following, we summarize our new results for both the static sequential game and

the selfish reallocation game.

3.3.1 Static Sequential Game

For the static sequential game, we allocate a set of weighted balls into bins in a sequential

fashion. We consider the well-known approach that to have every ball pick d 2 1 bin

independently uniformly at random, and pick the one with the lightest load. We study

how the weight distribution and the order in which we allocate balls influence the outcome

(expected maximum load) of the game.

Section 3.4.2 studies the single-choice game. In Theorem 3.4.8 we fix the number of

balls and show that the expected maximum load is smaller for more balanced ball weight

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 39

vectors. This also holds for the sum of the loads of the i largest bins. One could say that

the majorization is preserved: if one weight vector majorizes another one, then we have the

same order with respect to the resulting expected bin load vectors. Hence, the expected

maximum load is minimized when we have uniform balls. To prove Theorem 3.4.8, we use

an inductive approach. The idea is to use majorization together with T-transformations (see

the definition in Section 3.4.1), which allow us to compare sets of balls that only differ in

one pair of balls. Corollary 3.4.10 extends the results showing that the allocation of a large

number of small balls with total weight W ends up with a smaller expected maximum load

than the allocation of a smaller number of balls with the same total weight. We also show

that the results are still true for many other random functions that are used to allocate the

balls into the bins. Our results are stronger than the ones of [70] since we compare arbitrary

weight distributions with the same total weight. Compared to [70] we also allow for the

same number of balls. In addition, we consider the entire load distribution and not only the

maximum load.

Section 3.4.3 deals with the multiple-choice game. The main result here is Theo-

rem 3.4.17. I t shows that, for sufficiently many balls, allocation of uniform balls is not

necessarily better than allocation of weighted balls. It is better to allocate first the big

balls and then some smaller balls on top of them, instead of allocating the same number

of average sized balls. This result uses the memoryless property of [20]. For fewer balls we

show in Theorem 3.4.18 that the rnajorization order is not generally preserved.

The previous results for the single-choice game use the majorization technique induc-

tively. Unfortunately, it seems difficult to use T-transformations and the majorization tech-

nique to obtain results for weighted balls in the multiple-choice game. We also present

several examples showing that, for the case of a small number of balls with multiple-choices,

the maximum load is not necessarily smaller if we allocate more evenly weighted balls.

3.3.2 Selfish Reallocation Game

For the selfish reallocation game, initially every ball has chosen some bin. Then we apply

some iterative, distributed reallocation algorithm to balance the work load. We study the

convergence time of the algorithm, i.e., the number of rounds for the system to terminate.

In Section 3.5, we consider the weighted case where each ball i E [n] is associated with

some positive weight wi. We propose a greedy distributed reallocation algorithm (Algorithm

4) that is similar to the one in [22]. Theorem 3.5.1 shows that after O(mnA3~-2) steps,

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 40

the system converges to the E-Nash equilibrium with probability at least 415. To our best

knowledge, this is the first attempt in such model to allows weighted balls. Our analysis

is based on the potential function technique. The idea is to use an appropriate potential

function to measure the distance between some system state with the equilibrium state.

We then show that the system potential always decreases in expectation in one single step.

Corollary 3.5.10 shows that if all balls are of integer weights, the convergence occurs within

0 (m n n 5) steps. In addition, we prove a lower bound of S l (m A l ~) for the convergence time

(Observation 3.5.11).

In Section 3.5.3, we apply our proof technique above to the uniform case where all the

balls are identical. We show that our algorithm converges to the (real) Nash equilibrium in

time O(1og m + n log n) steps w.h.p. This improves the previous result of O(1og log m + n4)

in [22] for small values of m. We also demonstrate that we can in fact combine our algorithm

and the algorithm in [22] to obtain an O(1og log m + n log n) convergence time w.h.p. Finally,

we show a matching lower bound result (Observation 3.5.18).

3.4 Static Sequential Game

In this section we focus on the static sequential games, where a fixed number of balls, m,

are allocated one after the other. A well-known approach is to let every ball choose d 2 1

bins independently and uniformly at random, and allocate itself into the bin with minimum

number of balls (ties are broken arbitrarily). In the following, we will refer to this algorithm

as Greedy[d] similar to [13].

Algorithm 3 Algorithm Greedy [dl

for each ball b do
Choose d bins ul, . . . , ud independently uniformly at random
Place ball b into the bin with the least load among ul , . . . , ud.

The status of an allocation is described by a load vector L(w) = (-!?,(w), . . . ,e,(w)),

where ti is the load of the i-th bin after the allocation of a weight vector w. Whenever it

is clear from the content we shall drop "w" and write instead L = (el , . . . ,en). In some

cases we consider the change that occurs in an allocation after allocating some number of

additional balls. Then we define Lt to be the load vector after the allocation of the first t

balls with weights wl, . . . , wt for 1 < t 5 m. In many cases we will normalize a load vector

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 4 1

L by assuming a non-increasing order of bin loads, i.e. el 2 t2 > . 2 en. We then define

Si(w) = c;=, t j (u) as the total load of the i highest-loaded bins. Again, when the context

is clear we shall drop the "w" and write Si = C;=, ej. Finally, let R = [n]. Before we

proceed, we shall first introduce our major tool, the majorization technique 113, 861.

3.4.1 Majorization and T-transformations

To compare two load vectors and also the balancedness of vectors of ball weights, the concept

of majorization is essential. We first give the definition of majorization (from [86]).

Definition For two normalized vectors w = (wl, . . . , w,) E EXm and w' = (w;, . . . , wA) E
k Rm with ELl wi = Czl wi, we say that w' majorizes w, written w' + w, if CiZ1 wi 2

c:=, for all 1 5 k 5 m.

Majorization is a strict partial ordering between (normalized) vectors of the same di-

mensionality. Intuitively, vector v' majorizes another vector v if v is "more spread out",

or "more balanced", than v'. In the following, if we refer to a weight vector w that is

more balanced than weight vector w', we mean that w' majorizes w. We will use the term

majorization if we refer to load vectors.

Some examples are:

For the sake of our analysis, we give a slightly different alternative definition of ma-

jorization as follows.

Majorization Let w and w' be two weight vectors with m balls, and let Rm be the set

of all possible random choices for Greedyld] applied on m balls. Define w(w) (respectively,

w1(w)) to be the allocation resulting from the choices w E Rm, and let f : Rm -t Rm be a

one-to-one correspondence. Then we say that w' is majorized by w if there exists a function

f such that for any w E Rm we have w(w) + w' (f (w)).

A slightly weaker form of the majorization is the expected majorization defined below.

We will use it in order to compare the allocation of two different load vectors with each

other.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 42

Expected majoriration Let w and w' be two weight vectors with m balls, and let Rm

be the set of all possible random choices. Let L(w, w) = (el(w, w), . . . , &(w, w)) (respec-

tively, Lf(w', w) = (el (w', w), . . . , &(w', w))) be the normalized load vector that results from

the allocation of w (respectively, w') using w E Rm. Let Si(w, w) = c;.=~ Yj(w,w) and

Si(wf, w) = C5=l l j(wr, w). Then we say that L(wt) is expectedly majorized by L(w) if for

a11 i E [n], we have E[Si(w)] _> E[Si(wf)]. (The expectation is over all possible nm elements,

selected uniformly at random, in Rm.)

Now we introduce a class of linear transformations on vectors called T-transformations which

are crucial to our later analysis. We write

meaning that w' can be derived from w by applying one T-transformation. Recall that a

square matrix IT = (nij) is said to be doubly stochastic if all nij 1 0, and each row sum and

column sum is one. II is called a permutation matrix if each row and each column contains

exactly one unit and all other entries are zero (in particular, a permutation matrix is doubly

stochastic).

T-transformation A T-transformation matrix T has the form T = X I + (1 - X)Q, where

0 I X 5 1, I is the identity matrix, and Q is a permutation matrix that swaps exactly two

coordinates. Thus, for some vector x of correct dimensionality, XT = (xl , . . . , ~ j - ~ , Axj +
(1 - X)xk,xj+l, - . - ,xk-1, Xxk + (1 - X)xj, xk+l,. . . 2,).

T-transformations and majorization are closely linked by the following lemma (see [86]).

Lemma 3.4.1 For w, w' E Rm, w + w' if and only if W' can be derived from w by successive

applications of at most m - 1 T-transformations.

One of the fundamental theorems in the theory of majorization is the following.

Theorem 3.4.2 (Hardy, Littlewood and Pdlya, 1929). For w, w' E Rm, w + w' if and only

if w' = wP, for some doubly stochastic matrix P.

Schur-Convex A real-valued function 4 defined on a set A c Rn is said to be Schur-convex

on A if

x 4 y on A ==+ 4(x) I 4 (y) .

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

3.4.2 Weighted Single-choice Games

In this section we study the classical balls-into-bins game where every ball has only one

random choice. Let w and w' be two m-dimensional weight vectors. Recall that Si(w) is

defined to be the random variable counting the cumulative loads of the i largest bins after

allocating w. In this section we show that, if there exists a majorization order between two

weight vectors w and w', the same order holds for E [Si(w)] and EISi(wl)]. This implies

that , if w majorizes w', the expected maximum load after allocating w is larger than or

equal to the expected maximum load after allocating w'.

Note that in the single-choice game, the final load distribution does not depend upon the

order in which the balls are allocated. From Lemma 3.4.1 we know that, if w + w', then w'

can be derived from w by applying a t most m - 1 T-transformations. Thus, it is sufficient to

show the case in which w' can be derived from w by applying one T-transformation, which

is what we do in Lemma 3.4.4. First, we give a simple lemma which is used later in Lemma

3.4.4.

Lemma 3.4.3 Consider two vectors u = (ul , uz, . . . , u,) and v = (vl, vz, . . . , v,), and as-

sume u ,v are sorted i n non-increasing order, i.e., ul > u2 > . . . > u, and vl > vz > . . . >
v,. For any t > 0, define u o { t) to be the (sorted) vector obtained from u by appending

a new dimension with coordinate value t to u. Similarly we define v o { t) . If u + v, then

u o { t) + v o {t).

Proof. Let u' = {ui, uk, . . . , u;+~) = u o {t), v' = {vi, vk, . . . , v;+~) = v o {t). Assume u'

and v' are sorted in non-increasing order, i.e., ui > uk > . . . > u;+~, vi > vb 2 . . . 2 v;+~.

According to the definition of majorization, for any i t [l, n], we have c:.=~ u j > vj.

Now fix i E [1, n + I], we have to show that E;=~ ui 2. c:.=~ vi. Depending on the size of

t , there are four cases:

1. t 5 min{ui, vi). Since t is neither one of the i largest items in u' nor v', the majoriza-

tion a t position i is still preserved.

2. t > max{ui,vi). In this case, t is one of the i largest items in both u' and v', which

again means that the majorization a t position i is still preserved.

3. ui 2. t 2 vi. Now t is one of the i largest items in v', but not in u'. We get

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

4. vi > t 2 ui. Similarly, t is one of the i largest items in u', but not in v'

By the definition of majorization, we conclude that u' + v', i.e., u o {t) + v o {t).

Now we examine the case where the weight vectors w and w' differ by a single T-transformation.

T
Lemma 3.4.4 If w==+wf (2.e. w + w'), then E[Si(w)] 2 E[Si(wf)] for all i E [n].

Proof. Let w = (wl, . . . , w,). According to the definition of a T-transformation, for some

0 5 X 5 1, we have

We define yj = ~ ~ ~ { X W . ~ + (I - X) W ~ , Xwk+(l-X)wj), yk = min{Xwj+ (1 -X)wk, Xwk+(l-

X)wj). Note that wj + wk = yj + yk, and wj 2 yj 2 yk > wk. Let A = wj - yj = yk - wk.

Since the final allocation does not depend on the order in which the balls are allocated,

we can assume in the following that both wj, wk and yj, yk are allocated in the last two

steps. Now fix the random choices for the first m - 2 balls and let 1 = (el , . . . ,en) be the

resulting normalized load vector. Let a2 = [nI2 be the set of random choices of the last two

balls. Note that every random choice in R2 occurs with same probability l /n2.

Now fix a pair of choices (p, q) for the last two balls and define L(t , (wj, p), (wk, q)) a s

the load vector after placing the ball with weight wj into the bin with rank p in !, and the

ball with weight wk into the bin with rank q in e. (Note, after the allocation of wj the

order of the bins might change but q still refers to the old order. Let Si(!, (wj, p), (wk, q))

be the cumulative load of the i largest bins of L(e, (wj, p), (wk, q)). Similarly we define

L(e, (yj, p), (yk, q)) and Si(e, (yj, p), (yk, q)). In the following we compare the two choices

(p, q) and (q,p) with each other and show that for all e

Since we compute expected values over all pairs (p, q), this shows that the expected cumula-

tive loads of the i largest bins of both allocations also obey the same order (see Definition

3.4.1).

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 45

For p = q, the two balls are allocated to the same bin, so the resulting load vectors are

identical. Therefore Si(!, (w j , p), (w k , q)) = Si(!, (y j , p), (y k , q)) . The next lemma considers

the case p < q. 0

Lemma 3.4.5 For any normalized ! and V i , p , q E [n] with p < q, we have

Proof. In the following P and Q are the bins with rank p and q, respectively (after the

allocation of the first m-2 balls). The load of all other bins remains the same. The following

observation (given without proof) compares the load of Q and P for the different possible

allocations of wk , w j , yk and yj with each other. Recall that because e is normalized (and

p < q) we know that ep 2 e,.

Observation 3.4.6 For w j 2 yj 2 yk 2 wk and ep 2 e,

Unfortunately, we can not rank wj + eq and wk + ep , and yj + e, and yk + e, so far. To

do that we consider in the following the two Zdimensional vectors (w j + e,, wk + e,) and

(yk + ep, yj + L,) . Since

one of them majorizes the other. This gives the following two cases.

Case I: (w j + e,, wk + ep) + (y j + !,,yk + ep)
In this case we can iteratively apply Lemma 3.4.3 to show that L (t , (w j , q) , (w ~ , ~)) +
L(!, (y j , q) , (yk , p)) . Hence, for any i E [n] we have

Since W j 2 yj and yk 2 wk we have wj + ep 2 yj + ep and yk + e, 2 wk + t,. From

Observation 3.4.6(4) we know yj + ep 2 yk + L,. If we now allocate wj and yj to e,, and wk

and yk to ep, we still have (w j + !,, wk + t,) + (y j + tp, yk + eq). This again yields

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 46

Since for both pairs (p, q) and (q,p) the resulting load vector with yj and yk is majorized

by its counterpart with the balls wj and wk, the proof of this case is finished.

A simple example for this case is the following: ep = 3, tq = 2, wj = 6, wk = 1, yj = 4,

and yk = 3. For this case we have, (wj + t,, wk + I,) = (8,4) + (7,5) = (yk + t,, yj + e,)
and (wj + ep, wk + eq) = (9,3) + (6,6) = (yk + t,, yj + I,).

Case 11: (wj + t,, wk + t,) 4 (yj + tq, yk + tp)
In this case we have L(t , (wj, q), (wk, p)) 4 L(t , (yj, q), (yk, p)) . Hence, we have to consider

the two pairs of choices (p, q) and (q,p) together to show our result. We get

Since mm{wj + eq, wk + e,) 5 max{yk + ep, yj + eq) and wj + eq 2 yj + eq, we have

yk + 4 > yj + l q . This results in yk + ep > wj + e,. Using Equation (3.1) we get yj + t, 5

wk + ep. Hence, we can order the pairs:

Now, what happens if we consider the pair (q,p) which allocates wj and yj to Q, and

wk and yk to P? Since t, > eq and wj yj yk wk we have

Now we consider three subcases depending on the order of p, q, and i.

Case II(A): Bin yk + ep is not among the i largest bins in L(e, (yj, q), (yk,p)). From

Equation (3.2) we know that yk + & is not smaller than wj + t,, wk + 4, or yj + eq. Hence,

yj +e, is also not among the i largest bins. Since the load of all bins except P and Q remain

unchanged, wj + eq and wk + e, are also not among the i largest bins of L(!, (wj, q) , (wk, p)) .

Thus, we have

si (e, (~ j , 4)) (~ k P)) = Si (e, (wj Q) , (wk, P) 1.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 47

Case II(B): Bin yj + e, is one of the i largest bins in L(b, (y j , q) , (y k , p)) . From

Equation (3.2) we know that yj + e, is not larger than w j + e,, wk + ep , or yk + C p . Hence,

yk + ep is also among the i largest bins. Since the load of all bins except P and Q remain

unchanged, w j + e, and wk + ep are also among the i largest bins of L(b, (W j , q) , (w k , p)) .

Again, we have

si(e, (~ j , q) , (Y ~ , P)) = (w j , 9) , (w k , ~))

Case II(C): Bin yk + ep is one of the i largest bins of L(e , (y j , q) , (y k , p)) , and bin

yj + e, is not. Due to Observation 3.4.6(2) and wj + ep 2 yj + ep, bin P must also be

among the i largest bins of both L(e , (w j , p) , (w k , q)) and L(e , (y j , p) , (y k , q)) , respectively.

Similarly, using Observation 3.4.6(4) and wk + e, 5 yk + eq , we know that bin Q can not be

among the i largest bins of L(!, (w j , p) , (w k , q)) and L(!, (y j , p) , (y k , 9)) . This gives us

NOW it remains to compare Si (e , (w j , q) , (wk , p)) and Si (4 (y j , q) , (~ k , P)) with each other.

Since yj+lq is not among the i largest bins in Si (e , (y j , q) , (y k , p)) , we have Si(e, (y j , q) , (~ k , P)) =

Si(!, (y k , p)) . In Observation 3.4.7 below we show that Si(e, (~ ~ , p)) - S i (e , (w k , p)) I A. Since

S i (e , (w j , q) , (w k , ~)) 2 S i (e , (w k , ~)) we get

Equations (3.4) and (3.5) together give

Observation 3.4.7 Si(e, (y k , p)) - Si(!, (w k , p)) I A.

Proof. The proof is split into three cases. If bin P is among the i largest bins in L(B, (w k , p)) ,

it is also among the i largest bins in L(!, (y k , p) (y k > w k) . In this case

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 48

If bin P is not among the i largest bins in L(L, (yk,p)) it is also not among the the i largest

bins in L(L, (wk,p)). Hence,

In the last case, bin P is among the i largest bins in L(L, (yk,p)), but not in L(L, (wk,p)).

In this case we have

(Or, it follows directly since bin P is the only bin who gets different load in L(L, (yk,p))

and L(L, (wk,p)), hence the difference is at most A.) 0

The iterative application of Lemma 3.4.4 can now be used to generalize the majorization

result for vectors that only differ by a single T-transformation to vectors that differ by several

T-transformations. This results in the following theorem:

Theorem 3.4.8 If w + w', then E[Si(w)] 2 E[Si(wf)] for all i E [n]

Proof. By Lemma 3.4.1, if w + w', then w' can be derived from w by applying at most

m - 1 T-transformations. In other words, letting k E (1,. . . , m - 1) be the total number of

T-transformations, there must exist k - 1 m-dimensional vectors vl, . . . , vk-1, such that

Similar to Si(w) we define Si(vj), j E (1, . . . , k - 1). Iteratively applying Lemma 3.4.1, we

get

E[Si(w)] 2 E[Si(vl)] 2 2 E[Si(vk-l)] > E[Si(wf)].

Finally, it is clear that the uniform weight vector is majorized by all other vectors with same

dimension and same total weight. Using Theorem 3.4.8, we get the following corollary.

W Corollary 3.4.9 Let w = (wl, . . . ,w,), W = Cz1 wi, and w' = (,, . . . , K). For all

i E [n], we have E[Si(w)] > E[Si(wf)].

Proof. Note that w' = wP, where P = (pij) and p;j = l l m Vi, j E [m] . Clearly P is a dou-

bly stochastic matrix. Hence by Lemma 3.4.2, w + w'. Consequently, from Theorem 3.4.8

we have E[Si (w)] > E [Si (w')]. 0

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 49

Theorem 3.4.8 also shows that an allocation of a large number of small balls with total

weight W ends up with a smaller expected load than the allocation of a smaller number of

balls with the same total weight. Note that in the next corollary the relation w t w' must

be treated somewhat loosely because the vectors do not necessarily have the same length,

but the meaning should be clear, namely that 'j& wi 2 xi=, wi for all j E [m].

Corollary 3.4.10 Let w = (wl, . . . , w,) and W = Czl wi. Suppose that w' = (wi, . . . , w;,)

with m 5 m', and also that W = Czl w:. If w t w' we have E[Si (w)] 2 E [Si(wf)] for all

i E [n].

Proof. Simply add zeros to w until it has the same dimension than w'. 0

It is easy to see that we can generalize the result to other probability distributions that are

used to choose the bins.

Corollary 3.4.11 If w t w', and the probability that a ball is allocated to bin bi, 1 L, i 5 n ,

is the same for all balls, then we have E[Si(w)] 1 E[Si(wt)] for all i E [n] .

Remark The work was submitted to a journal once. One of the anonymous referees gave

some very nice idea to simplify the proof of Theorem 3.4.8. See Appendix 6.2 for an

alternative proof. The referee also asked whether Lemma 3.4.4 could be generalized to the
T

following. If w==+wf, does Si(w) stochastically dominate Si(wJ)? If this argument was

true, it would directly imply Lemma 3.4.4. Unfortunately it is not the case. Consider two

weight vectors w = (5,4,2) and w' = (5,3,3) with the same total weight 11. After allocating

them into n bins, we get,

Pr[Sl (w) 2 81 = l / n < 2/n - l / n2 = ~ r [~ l (w ') 2 81.

Thus, Sl(w) does not stochastically dominate S1(wt). This implies that Lemma 3.4.4 is

probably the best result one can expect.

3.4.3 Weighted Multiple-choice Games

In the first sub-section we show that

allocate uniform balls. For m >> n we

for multiple-choice games it is not always better to

construct a set of weighted balls that ends up with a

3 ~ o r random variables X and Y, we say
V k E R, Pr[X > k] 2 Pr[Y > k].

X stochastically dominates Y, written X + Y, or Y + X , if

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 50

smaller maximum load than a set of uniform balls with the same total weight. The second

sub-section considers the case where m is not much larger than n. As we will argue in the

beginning of that section, it appears that it may not be possible to use the majorization

technique to get tight results for the weighted multiple-choice game. This is due to the fact

that the order in which weighted balls are allocated is crucial, but the majorization order

is not necessarily preserved for weighted balls in the multiple-choice game (in contrast to

[13] for uniform balls). We discuss several open questions and give some weight vectors

that result in a smaller expected maximum load than uniform vectors with the same total

weight.

Large Number of Balls

We compare two allocations, A and B. In A we allocate m/2 balls of weight 3 each and

thereafter m/2 balls of weight 1 each, using the multiple-choice strategy. Allocation B is
the uniform counterpart of A where all balls have weight 2. We show that the expected

maximum load in A is strictly smaller than that in B. We will use the short t e rm memory

property stated below in Lemma 3.4.12. See [20] for a proof. Basically, this property says

that after allocating a sufficiently large number of balls, the load depends on the last poly(n)

many balls only. If m is now chosen large enough (but polynomially large in n suffices),

then the maximum load is (w.h.p. upper bounded by 2m/n + log log n. In the case of balls

with weight 2, the maximum load is w.h.p.upper bounded by 2m/n + 2 log log n. Since [20]

gives only upper bounds on the load, we can not use the result directly. We introduce two

auxiliary allocations named C and V. Allocation C is derived from Allocation A, and V

is derived from B. The only difference is that in allocations C and V we allocate the first

m/2 balls optimally (i.e. we always place the balls into the least loaded bins). In Lemma

3.4.16 we first show that the maximum loads of A and C will be nearly indistinguishable

after allocating all the balls. Similarly, the maximum loads of B and V will be nearly

indistinguishable. Moreover, we show that the expected maximum load in V is larger than

that in C. Then we can show that the expected maximum load in A is smaller than that in

B (Theorem 3.4.17). For an overview of the four systems, we refer to Table 3.1.

To state the short memory property we need one more definition. For any two random

variables X and Y defined jointly on the same sample space, the variation distance between

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Table 3.1: Allocations A, B, C, and 27

First m / 2 balls Last m / 2 balls 1

I-: (X) (the "law", or distribution, of X) and L(Y) is defined as

Allocations
A
B
C
2)

llI-:(X) - I-:(Y)II = sup I Pr(X E A) - Pr(Y E A)].
A

The following lemma is from [20, Corollary 11.

Lemma 3.4.12 Suppose Lo = (el, . . . , en) i s an arbitrary normalized load vector describing

an allocation of m balls into n bins. Define A = el - en to be the maximum load difference

i n Lo. Let Lb be the load vector describing the optimal allocation of the same number of

balls to n bins. Let Lk and Lk, respectively, denote the vectors obtained after inserting k

further balls to both allocations using the multiple-choice algorithm. Then for k > n5 . A

ball weights
3
2
3
2

where a is an arbitrary constant.

ball weights
1
2
1
2

algorithm
Greedy [dl
Greedy [dl
Optimal
O~timal

Intuitively, Lemma 3.4.12 indicates that given any configuration with maximum difference

A, in A poly(n) steps the allocation "forgets" the difference, i.e., the allocation is nearly

indistinguishable from the allocation obtained by starting from a completely balanced all@

cation. This is in contrast to the single-choice game requiring A2 . poly(n) steps in order to

"forget" a load difference A (see [20]).

algorithm
Greedy [dl
Greedy [dl
Greedy [dl
Greedv Id1

Lemma 3.4.13 Suppose we allocate m balls to n bins using Greedy[d] with d _> 2, m >> n.

Then the number of bins with load at least m l n + i + y is bounded above by n . exp(-di),

w.h.p, where y denotes a suitable constant. I n particular, the maximum load i s w.h.p.

m log log n - + k @(I).
n logd

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 52

Proof. The result that the maximum load is at most m/n + log log n/ log d + 0(1) has been

shown in 1201. To show the lower bound we first recall two results shown in [13]. First, let u

and v be two positive integer vectors such that u1 > u2 2 . . . 2 u, and vl > v2 2 . . . 2 vn.

Azar et al. [13] show that if u + v, then also u + ei + v + ei, where ei is the i th unit

vector. Now let u, v be two vectors with same total weight. Denote by u' and v' the load

vectors obtained by allocating a unit-size ball b into two allocations having initial loads u,

v respectively. Then Azar et al. [13] show the following theorem:

Theorem 3.4.14 If u + v, there is a coupling of two allocations with respect to the alloca-

tion of b such that u' + v'.

We consider two allocations & and 3 . In & we allocate m balls into n bins using

Greedy[d], while in 3, we first place m - n balls optimally, and then allocate the remaining

n balls by Greedy[d]. Clearly after allocating the first m - n balls, the normalized load

vector of & always majorizes the normalized load vector of 3. Applying Theorem 3.4.14 on

the last n balls, we see that & + 3 in a stochastic sense. Since the maximum load in 3

is known to be lower bounded by m/n + log log n/ log d - 0(1) w.h.p. [l3]), the same lower

bound holds for the maximum load of &. 0

Let Li(A) (or Li(B), Li(C), Li(V)) be the maximum load in Allocation A (respectively, B,

C, V) after the allocation of the first i balls. If we refer to the maximum load after the

allocation of all m balls we will simply write L(A) (or L(B), L(C), L(D)). Lemma 3.4.16

below compares the load of the four allocations described in Table 3.1. First, we give a

lemma stating that, given two random variables, a small variation distance implies a small

difference between their expectations.

Lemma 3.4.15 Let X and Y be two discrete random variables sharing the same sample

space. Let (be the maximum possible value of X and Y. Then,

Proof. Let G = {kl Pr (X = k) > Pr(Y = k)), S = {kl Pr (X = k) < Pr(Y = k)). Due to

choice of G and S,

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Hence,

(Pr(X = k) - Pr(Y = k)), < . x (Pr(Y = k) - Pr(X = k))
kES

= < x (Pr(X = k) - Pr(Y = k))
kEG

5 < . sup I Pr(X E A) - Pr(Y E A) I = < . 1 1 L(X) - L(Y) (I .
A

Lemma 3.4.16 Let m = R(n7).

(a) I E[L(A)] - E[L(C)] (5 m-P, where P is an arbi tray constant.

(b) I E[L(B)] - E[L(D)] I 5 m-P', where P' i s an arb i t ray constant.

Proof. Part (a). By Lemma 3.4.13 we get w.h.p.

log log n
L+) 5 3 - (E + (lo&)) + W) .

Using the pigeonhole principle, the maximum load difference A is at most 3.n.log log n/ log d+

B(n) - assume the worst case where n - 1 of the n bins are maximally loaded, and only

one bin is below average.

Since m/2 = 0(n7) > n5A, by Lemma 3.4.12, the Greedy[d] algorithm has "short

memory". In other words, after allocating the remaining m/2 balls of weight one, A and C

will become almost indistinguishable. Moreover, we note that the variation distance of two

random vectors is certainly no bigger than that of their respective maxima, thus

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 54

where a is an arbitrary constant. It is clear that the maximal possible loads of both alloca-

tions A and C are 2m (if we allocate all the balls into one bin). By Lemma 3.4.15,

(l + P) log m+1 as long as we choose a = log, my1 .
Part (b). This can be shown similar to part (a).

Part (c) . The deviation of the maximum load from the average in Allocation D is exactly

Hence,
2m

E[L(D)] - E[L(C)] = E [L(C)] - -.
n

By Lemma 3.4.13, the maximum load of Allocation C is at least % + l0f;,"dn - @(l)

Finally, we present the main result of this section, showing that uniform balls do not

necessarily minimize the maximum load in the multiple-choice game.

Theorem 3.4.17 E[L(B)] > E[L(A)] + - @(I).

Proof. Clearly

Since the difference between (E[L(A)] - E[L(C)]) and (E[L(B)] - E[L(D)]) is at most m-P

(Lemma 3.4.16), we conclude that

log log n log log n
E[L(B)l - W (4 l 2 log d - @(I) - m-" m-P' 2 - @(I).

log d

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Majorization Order for Arbitrary Number of Balls

In this section we consider the Greedy[2] process applied on weighted balls, but most of

the results can be generalized to the Greedy[d] process for d > 2. Just to remind you, in

the Greedy[2] process each ball sequentially picks independently uniformly at random two

bins and the current ball is allocated in the least loaded of the two bins (ties can be broken

arbitrarily). This means, of course, that a bin with relative low load is more likely to get

an additional ball than one of the highly loaded bins.

Another way to model the Greedy[d] process is the following: Assume that the load

vector of the bins are normalized, i.e. C1 2 e2 2 . . . 2 C,. If we now place an additional ball

into the bins, the ball will be allocated to bin i with probability (id - (i - l)d) /nd, since all

d choices have to be among the first i bins, and at least one choice has to be i. For d = 2

this simplifies to (2i - l) /n2 . Hence, in this fashion, the process can be viewed as a "one

choice process", provided the load vector is re-normalized after the allocation of each ball.

This means that the load distribution of the bins highly depends on the order in which the

balls are allocated.

Unfortunately, the dependence of the final load distribution on the order in which the

balls are allocated makes it very hard to get tight bounds using the majorization technique

together with T-transformations. Theorem 3.4.8 highly depends on the fact that we can

assume that wj and wk (yj and yk) are allocated at the very end of the process, an assumption

that can not be used in the multiple-choice game. In order to use T-transformations for

multiple-choice games, we would again need a result that shows that the majorization order

is preserved when we add more (similar) balls into the allocation. We need a result showing

that if A F B and we add an additional ball to both A and B, after the allocation we still

have A' F B' (where A' and B' denote the new allocations with the one additional ball).

While this is true for uniform balls (see [13]), this is not necessarily true for weighted balls

and the multiple-choice game. In the following sections we study the majorization order for

weighted multiple choice games, and the effect that the the allocation order or the number

of balls have on the final load distribution.

Majorization Order The following easy example shows that the majorization order need

not be preserved for weighted balls in the multiple-choice case. Let A = (7,6,5) and

B = (7,5.8,5.2). If we now allocate one more ball with weight w = 2 into both systems (using

the Greedy121 algorithm), with probability 519 the ball is allocated to the third bin in both

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 56

allocations and we have A' = (7,7,6) and B' = (7.2,7,5.8), hence B' + A'. Alternatively,

with probability 113 the ball is allocated to the second bin in each allocation resulting in

load vectors A' = (8,7,5) and B' = (7.8,7,5.2). Finally, with probability l/n2 the ball is

allocated to the first bin resulting in load vectors A' = (9,6,5) and B' = (9,5.8,5.2). In

both cases we still have A' + B'. This shows that after the allocation of one additional ball

using Greedy[2], the majorization relation can turn around. Note that the load distributions

of A and B are not "atypical", but they can easily come up using Greedy[2].

The next lemma gives another example showing that the majorization relation need not

be preserved for weighted balls in the multiple-choice game. The idea is that we can consider

two allocations C and 2, where C + V, but by adding one additional ball (with large weight

w) , we then have EIS1 (V')] 2 EIS1 (C')]. It is easy to generalize the lemma to cases where

w is not larger than the maximum bin load to show that the majorization relation need not

be preserved.

T
Lemma 3.4.18 Let v and u be two (normalized) load vectors with v*u (so v + u). u and

v have same total weight and u # v. Let w be the weight of an additional ball with w > vl.

Let vf,u' be the new (normalized) load vectors after allocating the additional ball into v and

u. Then we have EISl (u')] > EISl (v')].

T
Proof. First we assume v*u. Then, by the property of T-transformations, there must

exist two bins with rank j, k E Zf, j < k, such that vj > u j > uk > vk, and for Vi # j , k,

that ui = vi. Besides, we have vj - u j = uk - vk > 0. We observe that, since w > vl > ul ,

the destination of the new ball immediately becomes the maximum loaded bin in both

allocations. Since the probability to place the new ball on top of the i-th largest bin in both
id-(i-lJd allocations is nd we get

E[SI (u')] - E[Si (v')] =

- -

>

Here the second equation holds since Vi 6 {j, k}, ui = vi. The last inequality is due to the

facts that j < k and vj - u j = uk - vk > 0. 0

Remark: We feel it necessary to point out that the preceding lemma applies only to the

largest elements of u' and v'. It is possible that after the allocation of the new ball we

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 57

could have E[S2(u1)] > E [S2(v1)] or the reverse inequality E[S2(vt)] > E [S2(u1)]. Recall

that E[S2(u1)] is the expected sum of the largest two elements.

For example, (using the Greedy[2] algorithm) if we take v = (7,7,3), u = (7,5,5), and

w = 20, then the first inequality holds. It is easy to check that E[S2(u1)] = 32 > 31; =

E[S2(v1)]. On the other hand, using the vectors v = (100,1, I) , u = (35,34,33), and a new

ball having weight w = 101 we find that E[S2(vt)] = 202 > 169; = E[S2(u1)]. However,

Lemma 3.4.18 tells us that EISl(ul)] > E[(S1(vt)] holds in both cases.

Lemma 3.4.18 and the example preceding that lemma both showed that a more unbal-

anced weight vector can end up with a smaller expected maximum load after the allocation

of some additional (and similar) balls. However, in those cases we assumed that the number

of bins is very small, or that one of the balls is very big. Simulation results show that for

most weight vectors w, wt with w + w' the expected maximum load after the allocation of

w' is smaller than the one after the allocation of w. Unfortunately, we have been unable to

show formal results along these lines.

3.4.4 Order of Allocating Balls

Another interesting question concerns the order of allocating balls under the multiple-choice

game. In the case that m 2 n we conjecture that if all the balls are allocated in decreasing

order, the expected maximum is the smallest among all possible permutations. This is

more or less intuitive since if we always allocate bigger balls first, the chances would be

low to place the remaining balls in those bins which are already occupied by the bigger

balls. However, we still do not know how to prove this conjecture. We can answer the peer

question: what about if we allocate balls in increasing order? The next observation shows

that the increasing order does not always yield the worst outcome.

Observation 3.4.19 Fix a set of weighted balls. The expected maximum load i s not neces-

sarily maximized by allocating balls i n increasing order using the Greedy[2] algorithm.

Proof. We compare two allocations A and B both with n bins. Let wd = {1,2,1,5),

and wa = {1,1,2,5) be two weight vectors (sequences of ball weights). Notice that wa

is a monotonically increasing sequence while wd is not. After allocating the first three

balls, observe that the possible outcomes for A and B are (2,1,1,0, . . . O), (3 ,1 ,0 . . . , O),

(2,2,0. . . ,0) and (4,0, . . .0). We can calculate the probabilities for A and B to end up in

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 58

outcome (2,2,0. . . ,0) are (1 - l /n2) . 3/n2 and (1 - l /n2) . l /n2 , respectively. Moreover,

notice both A and B have the same probability to end up in outcome (2,1,1,0, . . .O) and

(4,0, . . . ,0). Consequently, B has more (in fact, (1 - l /n2) - 2/n2) probability to end up in

outcome (3,1,0, . . . ,0) than A, while A is more likely to end up in outcome (2,2,0, . . . ,0).

Hence, after allocating the first three balls, B certainly majorizes A. Since the last ball

(with weight 5) is bigger than the loads of all bins in both A and B after allocating the first

three balls, by Lemma 3.4.18 the expected maximum load after allocating w~ is bigger than

that after allocating w g 0

Observation 3.4.20 If n = 2, the expected maximum load is not necessarily minimized by

allocating balls in decreasing order using the Greedy[2] algorithm.

Proof. We compare two allocations A and B both with m 2 5 balls and n = 2 bins. Let

w~ = {9,6,. . . ,6 ,5 ,4 ,4) and wg = {9,6,. . . ,6 ,4 ,5 ,4) be the corresponding weight vectors.

Note that w~ is monotonically increasing while wg is not. Let LA (or Lg) be the maximum

load after allocating A (or B respectively) using the Greedy[2] algorithm. In the following

we show E[Ld] > E[Lg].

For any t > 0, let Xd(t) (or Xg(t)) be a random variable indicating the load vector after

allocating the first t balls in A(or B, respectively). Furthermore Xd(m - 3) = Xg(m - 3).

For any e = (el ,&) E Xd(m-3) , let d(!) = Itl -t2(. Note that d(t) 2 6 or d(!) = 3. We

consider the following two cases.

Case 1. d(e) 2 6. Note that the weights of the (m - 2)th and (m - l) th balls in both

systems are smaller than 6. Due to symmetry, exchanging these two balls will not affect the

expected maximum loads. Consequently,

Case 2. d(!) = 3. In this case we can write t = (y + 3, y) for some y > 0. Next we show

that EILAIXA(m - 3) = e] > EILalXB(m - 3) = el. simply enumerating all cases (See

Figure 3.1), we get,

Note that LA = max{Xd(m)) = y + 311/32 and Lg = max{XB(m)) = y + 305132.

Consequently,

EILAIXd(m - 3) = l] = EILalXa(m - 3)] + 3/16. (3.7)

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Figure 3.1: Enumerating all the cases of both allocations

Let I ' (X (m - 3)) denote the set of outcomes of random variable X (m - 3). We get,

The third inequality is due to Equation 3.6 and 3.7. 0

Remark Observation 3.4.20 shows that the decreasing order does not always give us the

smallest expected maximum load when n = 2. However, we have not been able to generalize

the result to n > 3. We feel that the decreasing order always yields the smallest expected

maximum load when we have considerable number of bins. Our empirical study in Section

3.4.5 provides some evidence to support this argument.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

3.4.5 Many Small Balls

Another natural question to ask is the one we answered in Corollary 3.4.10 for the single-

choice game. Is it better to allocate a large number of small balls compared to a smaller

number of large balls with the same total weight? The next example shows again that the

majorization relation is not always maintained in the multiple-choice game.

Observation 3.4.21 Let us consider two systems A and B both of n bins. Denote Wd =

(0,2,4, . . . , 2m-1) and Wa = (1,1,4, . . . , 2m-1) to be two allocations both of rn > 3 balls.

Note both systems are of same total weight and Wd + WB, but if m is odd, the expected

maximum load of A is smaller than B.

Proof. Clearly after allocating the first two balls System A majorizes System B. Besides,

note that for both systems, the weight of every newly allocated ball is bigger than the sum

of weights of all the balls allocated before. Hence, by Lemma 3.4.18, every time when a new

ball is allocated, the majorization relation would be "reversed". Hence, for any odd number

m > 3, System B certainly majorizes System A. 0

To see this, when m = 3, simply by enumerating all cases we can get, the expected

maximum load of A is 4 + 2/n2, which is smaller than that of B (4 + 4/n2 - 2/n4).

We emphasize again that the initial majorization relation is no longer preserved during

the allocation. However, we still conjecture that in "most" cases the allocation of a large

number of small balls is majorized by the one of a smaller number of large balls with the same

total weight. Furthermore, it seems that in all cases, the expected maximum loads of the two

allocations at most differ by an additive factor of the maximum ball size. Unfortunately, so

far we have been unable to prove formal results. The next section contains empirical results

obtained by computer simulations examining some of the issue we have raised earlier.

Simulation Results

In this section we conduct an empirical study for the weighted multiple-choice balls-into-bins

game. We allocate m = n balls into n bins while the number of choices, d, is chosen to be

2. We examine cases in which n is set to 100, 200, 500, and 1000. Note it is not feasible

to enumerate the huge number of possible allocations (which is nm'*) to calculate the exact

expected maximum loads. Instead, we approximate them by taking the average maximum

loads for a large number (specifically 100,000) number of iterations.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 61

The goal of the first experiment is to demonstrate the following observation: the more

balanced the ball weights are, the less the expected maximum load will be, after allocating all

balls. In our experiment, we first randomly assign a weight in (0 , l) to each ball. After that,

we perform a few "mixing" steps, in which we choose two balls at random and equalize their

weights, to make the overall weight vectors more balanced. We record the corresponding

expected maximum loads vs. the number of mixing steps in Figure 3.4.5.

Exp. m a loads vs. # of mlxmg steps

0 10 20 30 40 50 60 70 80 90 100

of mlxlng steps

Figure 3.2: Successive equalization of weights

Although the first observation above is almost always true, we still note that there do

exist ball weight distributions which achieve smaller expected maximum load than their

corresponding uniform ones, as shown in Theorem 3.4.17.

Next we perform an experiment regarding the order of placing balls. We aim at showing

that if we allocate balls in decreasing order of their weights, we would get the least expected

maximum load. This seems intuitively likely since if we allocate big balls first, the small

balls later are likely to fall into the holes left by the big ones. For the experiment, we first

randomly assign each ball a weight in (0 , l) and sort all ball weights by non-increasing order.

Later, we perform a number of "swaps", i.e., we randomly choose two balls and exchange

their weights, to get different ball arrangements. Figure 3.4.5 shows the relation between

the number of swaps and the corresponding expected maximum loads.

Clearly our experiment appears to support the conjecture that the decreasing order

achieves the minimum expected maximum load when n is large (Recall that counterexamples

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Exp. max loads vs. (I of swaps

Figure 3.3: Successive swapping of weights

do exist when n = 2, see Observation 3.4.20). Unfortunately, we have not yet succeeded in

proving this conjecture.

3.5 Selfish Reallocation Game

In this section we consider the problem of dynamically reallocating (or re-routing) m balls

among a set of n bins (one may think of the balls as selfish users). Initially every bin is .
associated with some balls. Then in each round, every ball applies a natural, distributed

algorithm (Algorithm 4) to reallocate itself into a different bin. Using game theoretic notion,

when all the balls stop moving the system reaches some Nash equilibrium (or some state

close to Nash equilibrium). We shall first introduce the notion of Nash equilibrium and its

variations.

Nash Equilibrium

The status of an allocation is represented by a vector X(t) = (xl(t), . . . , x,(t)) in which

xi(t) denotes the load of bin i at the end of step t , i.e., the sum of weights of balls allocated

to bin i . We will normalize load vector X(t) by assuming a non-increasing order of bin

loads, i.e. xl(t) 2 xz(t) 2 . 2 x,(t). For any ball b E [m], let rb(t) denote the current bin

of ball b at step t. In the following, we shall drop "t" if it is clear from the content.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Definition. [Nash equilibrium] An assignment is a Nash equilibrium for ball b if

xTb 5 x j + wb for all j E [n], (3.8)

i.e., if ball b cannot improve its situation by migrating to any other bin.

Definition. [E-Nash equilibrium] For 1 2 E 2 0, we say a state is an E-Nash equilibrium

for ball b if

xTb 5 x j + (1 + E) w ~ . (3.9)

Notice that this definition is somewhat different from (and stronger than), e.g. Chien and

Sinclair's in [35] where they say that (translated into our model) a state is an E'-Nash

equilibrium for E' E (0 , l) if (1 - el)xTb 5 x j + wb for all j E [n]. However, our definition

captures theirs: for E' E (0 , l) let E = - 1(> 0) and observe that xTb < xi + (1 + t)wb <
2 -+Wb

(1 + €)(xi + wb) = (1 + (A - l)) (x j + wb) = ;-,, .

3.5.1 Weighted Case

We define our allocation process for weighted balls and uniform bins. Xl(0), . . . , Xn(0) is

the initial assignment. The transition from state X(t) = (xl(t), . . . , xn(t)) to state X(t + 1)

is given by the algorithm below. Let 0 5 E 5 1 and p = €18.

Algorithm 4 Greedy Reallocation Protocol for Weighted Tasks

1: for each ball b in parallel do
2: let r b be the current bin of ball b
3: choose bin j uniformly at random
4: if XTb(t) 2 Xj(t) + (1 + E) W ~ //violation of Equation 3.9// then

5: move ball b from bin r b to j with probability p

If the process converges, i.e. if X(t) = X (t + 1) for all t 2 T for some T E N, then the

system reached some E-Nash equilibrium ("some" because E-Nash equilibria are, in general,

not unique). Our goal is to bound the number of steps it takes for the algorithm to con-

verge, that is, to find the smallest T with the property from above. We prove the following

convergence result.

Theorem 3.5.1 Let E > 0 and p = €18. Let A 2 1 denote the maximum weight of any

task. Let T be the number of rounds taken by the protocol in Figure 4 to reach an E-Nash

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

equilibrium for the first time. Then,

Preliminary Results

In this section we give some necessary notation for the analysis and prove some preliminary

results. We use a standard potential function (see also [22]).

In the following we assume, without loss of generality, that the assignment is "normalized",

meaning xl > . . . > xn. If it is clear from the context we will omit the time parameter t

in X(t) = (Xl(t) , . . . , X,(t)) and write X = (XI , . . . ,Xn) instead. We say ball b has an

incentive to move to bin i if x,, 2 xi + (1 + c)wb (notice that this is the condition used in

line 4 of Algorithm 4).

Let yb = (yb(rb, 1), . . . , yb(rb, n)) be a random variable with CYzl yb(rb, i) = 1. yb is

an n-dimensional unit vector with precisely one coordinate equal to 1 and all others equal

to 0. yb(rb, i) = 1 corresponds to the event of ball b moving from bin r b to bin i (or staying

at bin i if i = rb). Let the corresponding probabilities (pb(rb, I) , . . . , pb(rb, n)) be given by

n if r b # i and x,, > xi + (1 + c)wb

if r b # i and x,, 5 xi + (1 + c)wb

pb(i, I c) if r b = i.

The first (second) case corresponds to randomly choosing bin i and finding (not finding)

an incentive to migrate, and the third case corresponds to randomly choosing the current

bin.

For i E [n], let Si(t) denote the set of balls currently on bin i at step t. In the following

we will omit t in Si and write Si if it is clear from the content. For i , j E [n] with i # j, let

Ij,i be the total weight of balls on bin j that have an incentive to move to bin i, i.e.,

I . . -
.I,% -

Let

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 65

denote the expected total weight of balls migrating from bin j to bin i (the last inequality

is true because IjZi 5 xj; at most all the balls currently on j migrate to i) . Next, we show

three simple observations.

Observation 3.5.2

Proof. Part (1) is similar to Lemma 10 in [23]. To prove Part (2) , by definition of @ we

have

Notice that C:=, E [X i (t + l) IX(t) = x] = n Z and thus 2 ~ C:=, (E [x i (t + l) I X (t) =

= 0. For Part (3) , simply check the worst case that all the m balls are in one bin.

0

3.5.2 Convergence to Nash Equilibrium

In this section we bound the number of time steps for the system to reach some Nash equilib-

rium. We first bound the expected potential change during a fixed time step t (Lemma 3.5.5).

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 66

We shall first prove two technical lemmas: bounds for CyZl (E[Xi(t + l)IX(t) = x] - T) ~

and CyEl var[Xi (t + 1) IX(t) = X I , respectively (Lemma 3.5.3 and Lemma 3.5.4).

Lemma 3.5.3

Proof. Since E[Wif] is the expected total weight migrating from bin i to j , we have E[Xi(t+

l) lX(t) = x] = x i + ~ ! - l E[Wj,i] - CL=i+l E[WiYk]; recall that we assume xl 2 . , . 2 x,. To

estimate Cy=l (E[Xi(t + l)IX(t) = x] - T) ~ , we use an indirect approach by first analyzing

a (deterministic) load balancing process. We then use the load balancing process to show

our desired result (see [23]).

We consider the following load balancing scenario. Assume that there are n bins and

every pair of bins is connected so that we have a complete network. Initially, every resource

1 5 i 5 n has zi = xi balls on it. Assume that zl 2 . . . > z,. Then every pair of bins

(2, k), i < k concurrently exchanges = E[Wi,k] 5 p(xi - xk)/n = p(zi - zk)/n balls. If

i 2 k we assume tilk = 0. Note that the above system is similar to one step of the diffusion

load balancing algorithm on a complete graph Kn. In both cases the exact potential change

is hard to calculate due to the concurrent load transfers. The idea we use now is to first

"sequentialize" the load transfers, measure the potential drop after each of these sub-steps,

and then to use these results to get a bound on the total potential drop for the whole step.

In the following we assume that every edge es = (i, k), i , k E [n], k > i is labeled with

weight ti,k 2 0. Note that ti,,, = 0 if X i < xk. Let N = n(n-1)/2 and E = {el, e2,. . . eN) be

the set of edges sorted in increasing order of their labels. We assume the edges are sequen-

tially activated, starting with the edge el with the smallest weight. Let zS = (z:, . . . ,z;) be

the load vector resulting after the activation of the first s edges. Note that z0 = (z:, . . . ,z:)
is the load vector before load balancing and zN = (zp , . . . , z r) is the load vector resulting

after the activation of all edges.

Moreover, by the definition of our

Note that @(zO) = @(x) since i E [n], z: = zi = Xi.

load balancing process and since = E[Wi,k] we have

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Hence

Next we bound @(zN). For any s E [N], let A,(@) = @(zS-l) - @(zS) be the potential

drop due to the activation of edge e, = (i, Ic). Note that

Now we bound A,(@). Since all edges are activated in increasing order of their weights

we get li 5 = p(zi - zk)/n for any node j that is considered before the activation of e,.

Node i has n - 2 additional neighbours, hence the expected load that it can send to these

neighbours before the activation of edge e, = (i, k) is at most (n - 2)ti,k < p(zi - zk) - !ilk.

This gives us

zf-I 2 Zi - (n - 2)ti,k > Zi - P (Z ~ - zk) +
Similarly, the expected load that Ic receives before the activation of edge e, = (i, Ic) is at

Thus,

Similarly, since 2:-' < zi and zip' > zk, we get

Next we bound @(zN).

Consequently, we get

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

and

Proof. First of all, note that {yb(rb , i)) and {yb'(rb,, i)) are independent for b # b'. Let

Si(t) be the set of balls that is assigned to resource i in step t.

var[Xi(t + l)IX(t) = x]

- - var [? wb yb(rb, i) = wi v a r [~ ~ (r ~ , i)]

n I b
= C C w i . v a r [~ ' (r ~ , i)]

j=1 b€Sj (t)

= C C w j . pb (rb , i) (l - pb(rb , i)) + C w i . pb(rb l i) (l - pb(rb , i))
j#i b€S j (t) b ~ S i (t)

< C C wj . pb(rb, i) + C wj . (1 - pb(rb, i))
j#i ~ E S , (t) b ~ S i (t)

= C C wj . pb(rb,i) + C wi . C pb(rb1j)
j#i b€S, (t) b ~ S i (t) j#i

= C C w j . ~ ~ (r b , i) + C C w i . ~ ' (r b , j)
j#i b€S j (t) j#i b ~ S i (t)

x j - xi xi - x . c c w b . l + f a pb(rb, i) + C C wa . . pb(rb , j)
j#i b€S, (t) j#i b~S,(t) I + €

The second inequality holds since (xj - xi) 2 (1 + E) wb whenever a ball b in bin j have an

incentive to move to bin i (see Algorithm 4). Now note that E[Wi,j] = 0 whenever x j > xi.

Hence,

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

Now we are ready to show the following lemma bounding the potential change during

step t.

Lemma 3.5.5

Proof. To prove part (I) , combining Observation 3.5.2(2), Lemma 3.5.3(1) and 3.5.4, we

get

since p = €18. The proof of part (2) is similar. 0

It is easy to prove the following corollary.

Corollary 3.5.6 Vt 2 0, E[@(X(t + I))] < E(@[X(t))].

Proof. By Lemma 3.5.5(1),

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 70

Next we first show that if @(x) 2 4nA2, then the system potential decreases by a

multiplicative factor of at least pel4 per round expectedly (Lemma 3.5.7). We then show

that whenever x is not E-Nash equilibrium, every round the system potential decreases at

least by an additive factor of pel(6mA) in expectation (Lemma 3.5.9). With these two

Lemmas, we are ready to show our main result (Theorem 3.5.1).

Lemma 3.5.7 If @(x) 2 4nn2, A i s the maximum ball weight. W e have E[@(X(t +
l)) l x (t) = X] < (1 - P E / ~) @ (x) .

Proof. We first bound xy=l x t = i + l E [Wi ,k] (~ i - xk). Recall that E[Wi,k] = I i ,k . (p(1 -

xk/xi))/n, where 0 5 Iilk 5 xi is the total weight of balls in xi which have an incentive to

migrate to xk. To prove our bound we only add up the cases when Ii ,k = xi. Note that

if Ii ,k < xi, we have xi - xk < (1 + €)A, since otherwise every ball in bin i would have an

incentive to move to bin k resulting in Ii ,k = xi.

since @(x) >_ 4nA2 and E 5 1. Now, using Lemma 3.5.5(1) we obtain,

It is easy to derive the following corollary from Lemma 3.5.7.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 7 1

Proof. We consider two cases for different values of E[@(X(t)]. If E [@(X(t))] 5 8nA2,

by Corollary 3.5.6, E[@(X(t + I))] < E[@(X(t))] 5 8nA2. Next we show if E[@(X(t))] 2
8nA2, E[@(X(t + I))] 5 (1 - ~ € 1 8) . E[@(X(t))]. Let A = {x E R(X(t))l@(x) I 4nA2},

B = R(x) \ A. Note that by definition CxEA Pr[X(t) = x] . @(x) < 4nA2.

The first inequality is due to Lemma 3.5.5(1) and Lemma 3.5.7. To show the second in-

equality, observe that

since

E [@(X(t))] = x Pr[X(t) = x] . @(x) + x Pr[X(t) = x] . @(x) 2 8nA2
XEA X E B

and

Pr[X(t) = x] . @(x) < 4nA2.
XEA

0

Next we show Lemma 3.5.9, which indicates that whenever the system is not at some E-

Nash equilibrium, the system potential decreases by an amount of p ~ l (6 m A) in expectation

during that step.

Lemma 3.5.9 Assume that at step t the system is not at some E-Nash equilibrium. We

have E[@(X(t + l))IX(t) = x] 5 @(x) - &.

Proof. We consider two cases for different values of XI, the maximum load of a bin.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 72

1. xl > Z + 2A. In this case we have xl > xn + 2A > xn + (1 + €) A since xn < Z and

0 < E < 1. Thus, every ball in bin 1 has an incentive to move to bin n. Using Lemma

3.5.5(1), we get

2. xl 5 + 2A. Since x is not E-Nash equilibrium, there must be a t least one ball b that

has an incentive to migrate to some bin v # rb. Note that x,, - xu 2 (1 + e)wb > 1

and x,, 5 XI 5 : + 2A. Similar to Case 1,

For the last inequality, we use :. n = W 5 m . A and m > n .

Proof of Theorem 3.5.1 We first show that after r = 16(ep)-l log m steps, E [@(X(r))] 5

8nA2. By Observation 3.5.2(3), @(X(O)) 5 m2A2. Repeatedly using Corollary 3.5.8 we

get E[@(X(r))] 5 max{8nA2, (1 - ~€18) ' . @(X(O))) = 8nA2. By Markov inequality,

Pr[@(X(r)) > 80nA2] 5 0.1.

The following proof is done by a standard martingale argument similar to [22] and [83].

Let us assume that @(X(r)) < 80nA2. Let T be the number of additional time steps for

the system to reach some E-Nash equilibrium after step r and let t A T be the minimum of

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 73

t and T . Let V = pel(6mA) and let Zt = @ (X (t + r)) + V t . Observe that {Zt)tAT is a

supermartingale since by Lemma 3.5.9 with X (t + r) = x,

Hence E[Zt+1] = C, EIZt+l lZt = z] . Pr[Zt = z] 5 C , z . Pr[Zt = z] = E[Zt] . We ob-

tain

V . E [TI < E [@ (X (r + T))] + V . E [TI = E [ZT] < . . . 5 EIZo] < 80nn2.

Therefore E [T] < 80nA2/V = 480mnA3(pe)-l, and Pr[T > 4 8 0 0 m n A ~ (p ~) - ~] < 0.1 by

Markov's inequality. Hence, after r + T = 16(p~)- l log m + 4800mnA~(pe) -~ rounds, the

probability that the system is not at some E-Nash equilibrium is at most 0.1 + 0.1 = 0.2.

Subdivide time into intervals of r + T steps each. The probability that the process has

not reached an E-Nash equilibrium after s intervals is at most (1/5)S. This finishes the proof.

0

Corollary 3.5.10 Assume that every ball has integer weight of at least 1. After running

Algorithm 4 with E = l / A for O(mnA5) steps, the chance that the system is not at some

Nash equilibrium is at most 0.2.

Proof. When Algorithm 4 terminates, for any ball b and bin i E [n] , we have x,, <
Xi + (1 + E) W ~ < Xi + wb + 1 < Xi + wb since wb < A and wb is an integer. This implies that

the system is at one of the Nash equilibria. Now, setting E = l / A in Theorem 3.5.1 and

using p = €18 = (8A) - l , we obtain the result. 17

Lower bound for the Convergence time

We prove the following lower bound result for the convergence time of Algorithm 4.

Observation 3.5.11 Let T be the first time at which X (t) is the Nash equilibrium. There

is a load configuration X(0) that requires E[T] = n (m A / e) .

Proof. Consider a system with n bins and n uniform balls and m - n balls with weight

A 2 2. Let 1 = m l n where m is a multiple of n. Let X (0) = ((I - l) A + 2 , (1 - l) A +
1,. . . , (1 - l) A + 1, (1 - 1) A) . The perfectly balanced state is the only Nash equilibrium.

Let q be the probability for the unit-size balls in bin 1 to move to bin n (if exactly one of

the two unit-sized balls moves, the system reaches the Nash equilibrium). By Algorithm 4,

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 74

we have q = p . 2/(n((l - l)A + 2))) = O(e/rnA) since 1 = m/n and p = €18. Note that T is

geometric distributed with probability 2q(l - q). Thus E[T] = 1/(2q(l - q)) = R(mA/e).

0

Remark We believe that since there is lack of global knowledge and also balls query the

load of only one other server, even with significant change to the algorithm we can not omit

the term A. For an evidence consider two different games as follow, both with two servers.

There are 4 balls with weights (1,1, A, A) and the initial configuration is (A + 2, A).

There are 2 4 + 2 balls all of unit weight, and the initial configuration is (A + 2, A).

Considering the lack of global knowledge, a ball with unit weight can not distinguish between

the above games. But in order to have a fast convergence to the Nash Equilibrium (see [60]

for the definition), in the first game it needs to migrate with a probability significantly

higher than the corresponding probability in the second game.

3.5.3 Uniform Case

In this section we show convergence for Algorithm 4 for the case that all balls are uniform

(i.e., A = 1). 1221 shows that the perfectly balanced state is the unique Nash equilibrium.

We set E = 1 in Algorithm 4, thus p = 1/(8c) = 118.

Convergence to Nash Equilibrium

Note that when Algorithm 4 terminates, we have 'di, j E n , xi < x j + (1 + E)A = x j + 2.

Hence the system is in the Nash equilibrium. In the following, we show (in Theorem 3.5.16)

that, after O(1ogm + nlogn) steps, Algorithm 4 terminates with high probability. This

improves the previous upper bound of O(log1ogm + n4) in [22] for small values of m. In

fact, we can actually combine these two algorithms to obtain a tight convergence time of

O(1og log m + n log n) w.h.p. The tightness of this result can be shown by Theorem 4.2 in

[22] and Observation 3.5.18.

For simplicity we assume that m is a multiple of n , the proof can easily be extended

to n m. We first prove Lemma 3.5.13, which is a similar result to Lemma 3.5.5(1) that

bounds the expected potential drop in one round. Then we show that in each round the

potential drops at least by a factor of 1/32 if the current system potential is larger than

C H A P T E R 3. WEIGHTED BALLS-INTO-BINS GAMES 75

n (Lemma 3.5.15(1)), and at least by a factor of 1/8n otherwise (Lemma 3.5.15(2)). With

these two lemmas, we are ready to show Theorem 3.5.16.

We will use the same potential function @ (x) as the one in Section 3.5.1. Recall that by

Observation 3.5.2(1), for an arbitrary load configuration x ,

n , n R.

For bin i , k E [n], let E[Wi,k] denote the expected number of balls being transferred from bin

i to k. Note that by Algorithm 4, if X i - xk > 2, E[Wi,k] = Xi .p(l - x k / x i) / n = xi - x k) / n ,

otherwise E [W i I k] = 0. Let S i (x) = {k : X i 2 xk + 2) and E ~ (x) = {k : X i = xr, + 1) . Let

Note that the bigger F(x) is, the more balls are expected to be transferred by Algorithm 4.

We first show some relations between F (x) and @ (x) .

Observation 3.5.12 For any load configuration x , we have

1. I f @ (x) 2 n, then F (x) > @ (x) / 2 .

2. If F (x) < 2, then F (x) = @ (~) ~ / n and @ (x) < 6.

3. If @ (x) < 2, then x is Nash equilibrium.

Proof. For Part (I) , by definition,

Hence if @ (x) 2 n, we get F (x) 2 @ (x) - (n - 1) / 2 > @ (x) / 2 .

For Part (2) , we first show that if F (x) < 2, then x1 - x , < 2 (notice that X I 2 x2 2
. . . , 2 2,). For a contradiction assume that F (x) < 2 and x1 - x , 2 3. Hence V1 5 i 5 n,

either / x i - xll 2 2 or Ixi - x,l 2 2. Also notice that by symmetry we have

1 1 2 1 2
F (x) = - C C (x i - xk)I = - C C (xi - x k) 2 - . n . (2) = 2,

n
2n i=l k € S t (z)

2n i=1 k € S , (z)

resulting a contradiction.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 76

Next we show r (x) = @(x) ' /n . Since Z = m/n is an integer and X I - xn 5 2, each bin

can only have ?t - 1, Z, ?t + 1 balls. Let A (B) be the set of bins with Z - 1 balls and (T + 1

balls), respectively. Of course IAJ = 1 B J : r . Thus @ (x) = Cy=l (x i - 3)' = 2r. Hence,

Consequently, given r (x) < 2, we have @ (x) 5 6.
For Part (3), for a contradiction assume that x is not Nash equilibrium. Then there must

be two bins u, v, such that xu 2 Z + 1 and x, 5 : - 1. Thus @ (x) = EL1 (x i - 2)' 2 2.

We get a contradiction.

0

We then show the following bound for the expected potential drop in one step.

Lemma 3.5.13 E [@ (X (t + l)) (X (t) = x] 5 @ (x) - r (x) / 1 6 .

Proof. Recall that if X i - xr, 2 2, E[Wi,r,] = p(xi - x k) / n , otherwise E[Wi,r,] = 0. Hence,

1
F (X) = - .n x x (xi - x ,) ~ = p-l x x E [W i , k] (~ i - I*) .

Setting E = 1 and p = 118 in Lemma 3.5.5(1), we get

The following corollaries follow from Lemma 3.5.13.

Corollary 3.5.14

1. I f @ (x) > n , E [@ (X (t + l)) I X (t) = x] < (1 - 1/32)@(x) .

2. I f n > @ (x) > fi, E [@ (X (t + l)) I X (t) = x] I @ (x) - 118.

3. If 6 > @ (x) , E [@ (X (t + l)) (X (t) = x] i @ (x) - @(x)'/(16n).

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 77

Proof. Part (1) follows directly from Lemma 3.5.13 and Observation 3.5.12(1).

To prove Part (2), if @(x) > 6, by Observation 3.5.12(2) r (x) > 2. Then use Lemma

3.5.13 we get E[@(X(t + l))IX(t) = x] I @(x) - 118.

For Part (3), note that E[@(X(t + l))IX(t) = x] 5 @(x) - F(x)/16 by Lemma 3.5.13.

Thus it is sufficient to show that r (x) > @(x)'/n. We consider two cases for different values

of r (x) . If r (x) 2 2, r (x) > @(x)'/n since @(x) < 6. If r (x) < 2, by Observation

3.5.12(2), r (x) = @(x)'/n. 0

Next we prove two results that bound the expected potential drop.

Lemma 3.5.15 For any t > 0,

1. E[@(X(t + I))] 5 max {n, (1 - 1/32)E[@(X(t))]}.

Proof. The roof of Part (1) is similar to Corollary 3.5.8. If E[@(X(t))] 5 2n, by Corollary

3.5.6, E[@(X(t + I))] 5 E[@(X(t))] 5 2n. In the following we show if E[@(X(t))] > 2n,

E[@(X(t + I))] 5 (1 - 1/64)E[@(X(t))]. Let A = {x E R(X(t))l@(x) < n} and B =

R(X (t)) \ A. Note that by definition CxEA Pr[X (t) = x] . @(x) 5 n.

x ((1 - 1/64)@(x) Pr[X(t) = XI} + {(1 - 1/64)@(x) . Pr[X(t) = x]}
X E A X E B

The first inequality is due to Lemma 3.5.5 and Corollary 3.5.14(1). To show the second

inequality, observe that

since

E[@(X (t))] = x Pr[X(t) = x] . @(x) + x Pr[X(t) = x] . @(x) > 2n
xEA xEB

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES

and x Pr[X(t) = x] . @(x) 5 n ,
X E A

To prove Part (2), we first show that for any load configuration x, E [@(X(t + 1)) 1 X (t) =

x] 5 (1 - 1/(8n))@(x). There are four cases for different values of @(x).

1. If @(x) 2 n, by Corollary 3.5.14(1), E[@(X(t + l))IX(t) = x] < (1 - 1/32)@(x) <
(1 - 1/(8n))@(x) as long as n > 4.

2. If n > @(x) > 6 , by Corollary 3.5.14(2), E[@(X(t + l))IX(t) = x] < @(x) - 118 <
(1 - 1/(8n))@(x) since @(x)/(8n) < 1/13 due to @(x) < n.

3. If 6 > @(x) 2 2, by Corollary 3.5.14(3), E[@(X(t + l)) JX(t) = x] 5 @(x) -

@ (~) ~ / (1 6 n) 5 (1 - 1/(8n))@(x) since @(x) > 2.

4. Finally, if @(x) < 2, by Observation 3.5.12(3), x must be Nash equilibrium so that

@(x) = 0. In this case the system potential will not change. Hence E[@(X(t +
l)) lX(t) = x] = 0 5 (1 - 1/(8n))@(x).

Consequently,

Theorem 3.5.16 Given any initial load configuration X(0) = x. The probability that the

system does not reach the Nash equilibrium after 64log m + 16nln n steps is at most l l n .

Proof. We first show that after r = 1281nm steps, E[@(X(r))] 5 n. By Observation

3.5.2(3), @(X (0)) 5 m2A2 = m2. Using Lemma 3.5.15(1) iteratively for r times, we get

We then show that after T = 24nln n additional steps, the system reaches Nash equilibrium

w.h.p. Using Lemma 3.5.15(2) iteratively for T times, we get

E[@(X (r + T)] 5 E[@(X (r))] . (1 - 1 / (8 n)) ~ 5 (2n) . (1 - 1 / (8 n)) ~ ~ ~ I n n < , . e-31nn - - nP1.

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 79

By Markov's inequality, P r [@ (X (T + T)) 2 21 < l l n . Observation 3.5.12(3) tells us that if

@ (X (T + T)) < 2, X (T + T) is Nash equilibrium. Hence, after T + T = 128 In m + 2472 Inn

steps, the probability that the system does not reach the Nash equilibrium is at most l l n .

0

Remark Note that we can combine Algorithm 4 and Algorithm 1 in 1221 to obtain an

algorithm that converges in O(log1ogm + nlogn) steps. To see this, first note that by

Corollary 3.9 in [22], after Tl = 2 log log m steps, E [@ (X (T l)] 5 18n. Then using a similar

argument as above, we can show that after O(1og log m + n log n) , the system state is a t

some Nash equilibrium w.h.p.

Lower bounds

We prove the following two lower bound results which show the tightness of Theorem 3.5.16.

Observation 3.5.17 Let T be the first t ime at which E [X (t)] 5 c for constant c > 0 . There

is an initial load configuration X (0) that requires T = R(1og m) .

Proof. Consider a system with n = 2 bins and m uniform balls. Let X (0) = (m , 0) . We

first show that E [@ (X (t + l)] 2 ; E [@ (X (~))] . By definition,

Hence, setting E = 1 in Lemma 3.5.5(2) we obtain

Now similar to Lemma 3.5.15 (1) we can show that E [@ (X (t + I))] 2 7 E [@ (X (t))] / 8 . Note

that @ (X (0)) = m 2 / 2 . In order to make E [X (T)] < c , we need T = R (log m) . 0

Observation 3.5.18 Let T be the first t ime at which X (t) is a Nash equilibrium and T*

be the upper bound for T . There is an initial load configuration X (0) that i n order to make

Pr[T 5 T*] > 1 - l / n , we need T* = R(n1ogn).

Proof. Consider a system with n bins and m uniform balls. Let X (0) be the assignment

given by X (0) = (2 , 1 , . . . , 1 , 0) . Denote q be the probability for the balls in bin 1 to

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 80

move to bin n (if exactly one of the two balls in bin 1 moves, the system reaches the Nash

equilibrium). By Algorithm 4 (with p = 1/8), q = 2/(2pn) = 1/(8n). Note that T is

geometric distributed with probability 2q(l - q) < 1/(4n). Consequently, Pr[T > T*] 5
(1 / (4n))~* (since step 1, . . . , T* all must fail). Thus, to have Pr[T 5 T*] > 1 - l l n , we need

T* = R(n1ogn). 0

Remark Note that this lower bound also holds for the algorithm in [22] (with p = 1).

3.6 Summary

In this chapter we have studied the weighted balls-into-bins games where every ball is

associated with some positive weight. we have considered two different scenarios, the static

sequential game and the selfish reallocation game.

Static Sequential Game In the static sequential game, balls arrive without initial lo-

cations. Our goal is to allocate them into bins as evenly as possible. We have studied a

well-known approach that to have every ball choose d 2 1 bins independently and uniformly

at random, and allocate itself into the bin with the lightest load. We have shown that for

the single-choice game, i.e., d = 1, a more balanced weight distribution always yields a

smaller expected maximum load. Our proof is based on the majorization technique. For the

multiple-choice game, we first showed that the expected maximum load is not necessarily

minimized for the allocation with uniform balls when we have sufficiently many balls. We

then proved that the majorization order is not generally preserved. Regarding the order

in which we allocate balls, we proved that the expected maximum load is not necessarily

maximized if we allocate balls in increasing order. We then showed that the decreasing

order does not always yield the smallest expected maximum load when n = 2.

There are two interesting open questions in the static sequential game. First, it would

be interesting to generalize Theorem 3.4.17 to allow arbitrary number of balls. Second, we

proved that the decreasing order does not necessarily yield the smallest expected maximum

load when n = 2. We are interested in the question whether the counterexample still holds

for arbitrary n.

Selfish Reallocation Game In the selfish reallocation game, every bin is initially associ-

ated with some balls. Then each ball applies the following natural, distributed reallocation

CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 81

algorithm to reallocate itself into different bin. In each round, every ball first picks a bin

uniformly at random. It then compares the load of its current host bin with the load of

the randomly chosen bin. If the load difference is above a certain threshold then the ball

will migrate to the destination bin with a certain probability. Our goal is to bound the

convergence time, which is the number of steps for the system to terminate.

For the weighted case where each ball i E [m] is associated with some weight wi 2 1, We

proved that after o (~ ~ A ~ E - ~) steps, the system converges to the E-Nash equilibrium with

probability at least 415, where A is the maximum task weight. Our analysis is based on the

potential function technique. We also proved a lower bound of R (r n A l ~) for the convergence

time. For the uniform case where every ball has uniform weight (i.e., A = I) , we proved

that the system converges to the (real) Nash equilibrium in O(1og m + n log n) steps w.h.p.

We also obtained an algorithm with tight convergence time of O(log1ogm + nlogn) by

combining our algorithm with the one in [22].

The first open question in the selfish reallocation game is whether we can close the gap

between the upper and lower bounds for the weighted case. Yet, we believe that to answer

this question, a different potential function is necessary. Next, instead of the linear latency

function used in this work, we can consider more general latency functions, e.g., functions

with "bounded jump" property in [35] or "bounded relative slope" property in [61]. As

a first step, we can assume that every bin is associated with some positive "speed". The

latency of a bin would then be the load of that bin divided by the speed.

Chapter 4

Energy Efficient Routing in Ad

Hoc Networks

In this chapter we study how to design efficient routing algorithms for broadcasting and

gossiping in ad hoc networks. Our goal is not only to minimize the broadcasting and

gossiping time, but also to minimize the energy consumption, which is measured in terms

of the total number of messages (or transmissions) sent. We consider ad hoc networks with

both random and general topologies.

For random networks, we present a broadcasting algorithm where every node transmits

at most once. We show that our algorithm broadcasts in O(1ogn) time steps (rounds),

w.h.p., where n is the number of nodes. We then present a O(d log n) (d is the expected

degree) gossiping algorithm using O(1ogn) messages per node. For general networks with

known diameter D, we present a randomized broadcasting algorithm with optimal broad-

casting time O(D log(n/D) + log2 n) that uses an expected number of O(log2 n / log(n/D))

transmissions per node. We also show a trade-off result between the broadcasting time and

the number of transmissions: we construct a network such that any oblivious algorithm

using a time-invariant distribution requires 0(log2 n/ log(n/D)) messages per node in order

to finish broadcasting in optimal time. This demonstrates the tightness of our upper bound.

We also show that no oblivious algorithm can complete broadcasting w.h.p. using o(1og n)

messages per node.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS

4.1 Introduction

In this chapter we consider a typical disributed system, the ad hoc network. We study how

to design efficient routing algorithms for two fundamental communication problems in ad

hoc networks, broadcasting and gossiping. For broadcasting, one node sends a message to

the rest of the network. For gossiping, every node sends a message to all other nodes in the

network.

An ad hoc network consists of a set of mobile nodes connected through wireless links.

The main advantage of an ad hoc network is that it does not need any infrastructure. Thus,

ad hoc networks are easier to deploy and are more scalable than traditional networks. Due

to these advantages, ad hoc networks have received much attention in recent years. In an

ad hoc network, nodes model the wireless devices equipped with antennas. Every device

has a fixed communication range and it can listen to all neighbouring devices within that

range. We assume that all devices share only one communication channel. Hence for a fixed

device, if several devices within its communication range transmit at the same time, these

messages "collide" and the receiver is not able to receive any of them. Moreover, in an ad

hoc network, nodes can have different communication ranges, one node might be able to

listen to another, but not vice-versa. This forbids the acknowledgement based protocols,

since nodes might not be able to send a confirmation message to the sender upon receiving a

message. Another challenge is that, due to the mobility of wireless nodes, the topology of an

ad hoc network can change rapidly and nonpredictably. Thus, it is commonly assumed that

the topology of the network is unknown to the network nodes. Particularly, a node does not

know which nodes are within its communication range, or even the number of neighbours.

Hence, it is desirable that communication algorithms use local information only.

The communication problem in ad hoc networks has been extensively studied in the

literature. See Section 4.2 for an overview. The major goal is to minimize the broadcast-

ing/gossiping time, i.e., the number of rounds to achieve broadcasting/gossiping. Yet, since

the mobile devices tend to be small and have only small batteries, another important issue

for communication in ad hoc networks is energy efficiency (e.g., [66, 851). In this work we

design efficient communication algorithms which minimize both the broadcasting (gossip-

ing) time and the energy consumption. Since we do not assume variable communication

ranges, we can assume that devices cannot adjust the energy need for send operations. This

allows us to measure the energy consumption in terms of the number of total transmissions.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 84

We will also show that there is a tradeoff between minimizing the broadcasting or gossiping

time, and the number of messages that are needed by randomized protocols.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the related

work. Section 4.3 introduces our model and new results. We study broadcasting and

gossiping for random networks in Section 4.4 and Section 4.5, respectively. In Section

4.6, we propose and analyze a broadcasting algorithm on general (not random but fixed)

networks with known diameter. Our algorithm minimizes both the broadcasting time and

the number of transmissions. We also give some lower bound results on the number of

transmissions.

4.2 Related Work

In the following we review broadcasting and gossiping algorithms(protocols) for unknown ad

hoc networks. There are mainly two classes of approaches, randomized and deterministic. In

each round of a randomized algorithm, all active nodes transmit with identical probability

that is chosen according to some predetermined probability distribution. In each round of a

deterministic algorithm, we specify which active nodes will transmit. Let D be the diameter

of the network.

4.2.1 Randomized Broadcasting

Arbitrary Networks

Alon et al. [7] show that there exists a network with diameter O(1) for which broadcast-

ing takes expected time R(log2 n). Kushilevitz and Mansour 1761 show a lower bound of

R(D log(n/D)) time for any randomized broadcasting algorithm. Bar-Yehuda, Goldriech

and Itai [14] design an almost optimal broadcasting algorithm which achieves the broad-

casting time of O((D + log n) log n), w.h.p.

Later, Czumaj and Rytter [51] propose an elegant algorithm which achieves (w.h.p.)

linear broadcasting time on arbitrary networks. Their algorithm uses carefully defined

selection sequences which specify the probabilities that are used by the nodes to determine

if a message should be sent or not. This algorithm needs O(n) transmissions per node.

Czurnaj and Rytter [51] also obtain an algorithm under the assumption that the network

diameter is known. The algorithm finishes broadcasting in O(D log(n/D) + log2 n) rounds,

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 85

w.h.p., and uses expected Q (D) transmissions per node. Also, independently, Kowalski and

Pelc [73] obtain a similar randomized algorithm with the same running time.

In the following, we review the linear time randomized broadcasting algorithm in [51] in

more detail.

Algorithm 5 (The linear randomized broadcasting algorithm from [51])

for each round r do
Choose a transmitting probability IT according to the following distribution:

for 1 5 k 5 log log n,
1 Pr[IT = 2-k] for log log n < k 5 log n,

I - Clog Pr [IT = Ti] for k = 0. 2=1

Every informed node transmits with probability IT.

Theorem 4.2.1 (Theorem 1 from [51]) Algorithm 5 completes broadcasting in O (n) rounds

with probability at least 1 - n-l .

We briefly sketch the proof of the broadcasting time in [51]. Let u be the originator of

the broadcast and let v be an arbitrary node. Let T be the random variable representing

the number of rounds before v is informed. Fix an arbitrary shortest path P = {u =

u l , . . . U L + ~ = v) of length L 5 D from u to v. Let l aye rp (i) denote the set such that

Vw E l a y e r p (i) , ui is the highest ranked node on the path P that w has an edge to.

The set l aye rp (i) is called the layer of rank i with respect to P. Note that Vi, j , l aye rp (i) n
l a y e r p (j) = 4 and I Cr=l layerp (i) 1 5 n. We say l aye rp (i) is leading at Round r if l aye rp (i)

is the highest ranked layer consisting of an informed node at Round r . Let Ti be the random

variable representing the number of rounds that l aye rp (i) is leading. Note that T = Cy=l Ti.

It is shown in [51] that Ti follows geometric distribution with probability at least

Furthermore, [51] proves the following concentration result for the sum of a set of geo-

metrically distributed random variables.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 86

Lemma 4.2.2 (Lemma 3.5 from [51]) Let X I , . . . , X, be a sequence of independent integer-

valued random variables, each X; being geometrically distributed with a parameter pi, 0 <
pi < 1. For every i , 1 < i 5 e, let p; = l /pi and assume that all pis are from a set A, that

is A = { p i : 1 5 i 5 e). If c:=, pi 5 N , then for every positive real number p,

Note that E[Ti] 5 20log n. Lemma 4.2.2 with P = n-2, N = 20n, we get

Pr[T 1 2 - 20n + 8 ln(20n2 log n)(20 log n)2] 5 1 - n-2.

Finally, applying the Union bound we conclude that Algorithm 5 completes broadcasting in

O(n) time.

Using similar idea as above, Czumaj and Rytter 1511 prove the following theorem for

broadcasting on shallow networks (with known diameter D).

Theorem 4.2.3 (Theorem 2 from [51]) Let N be a network with diameter D, there exists a n

algorithm that can complete broadcasting i n 0(log2 n + D log(n/D)) rounds with probability

at least 1 - n-'.

Random Networks

Elsiisser and Gasieniec [55] are the first to study the broadcasting problem on the class

of directed random networks (graphs) G(n,p). In these networks, every pair of nodes is

connected with probability p. They propose a randomized algorithm which achieves w.h.p.

strict logarithmic broadcasting time. Their algorithm is as follows.

Algorithm 6 (The randomized broadcasting algorithm from 1551)
Phase 1:

for Round 1 to D - 1 do
Every informed node transmits with probability 1.

Phase 2: (Round D)

Every informed node transmits with probability n/dD.

Phase 3:
for Round D + 1 to O(1og n) do

Every informed node transmits with probability lid.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 87

Elssser and Gasieniec prove that Algorithm 6 finishes broadcasting in O(1ogn) steps

w.h.p. ElsGser and Gasieniec [55] also propose a centralized algorithm that achieves

O(ln n / lnd + lnd) running time. The authors also show that this algorithm is asymp-

totically optimal.

In (561, ElsGser studies the communication complexity of broadcasting in random net-

works under the so-called random phone call model, in which every node forwards its mes-

sage to a randomly chosen neighbour at every round. The proposed algorithm can complete

broadcasting in 0 (log n) rounds by using at most 0 (n max{log log n , log n / log d)) transmis-

sions, which is optimal under his random phone call model.

4.2.2 Deterministic Broadcasting

The problem of deterministic broadcasting is also extensively studied. For arbitrary net-

works, Chlebus et al. [36] give the first sub-quadratic algorithm with running time of

0(n"I6). Chrobak, Gasieniec and Rytter [40] propose the first O(n p l y (log n)) algorithm

that can complete broadcasting in 0(nlog2 n) rounds. Kowalski and Pelc [74] show that

there exists a deterministic algorithm that can complete broadcasting in O(n log n log D)

rounds using a complicate non-constructive counting argument. Very recently, Czumaj and

Rytter 1511 obtain a deterministic algorithm with running time 0(log2 D), which is an ex-

tension of their proposed randomized algorithm. The best known lower bound R(n log D)

is due to Clementi, Monti and Silvestri [44].

4.2.3 Gossiping

For gossiping, all the previous work follows the join model, where nodes are allowed to join

messages originated from different nodes together to one large message. Chrobak, Gasieniec

and Rytter [41] propose a randomized gossiping algorithm that achieves O(n log4 n) gossip-

ing time. This result was improved to 0(nlog3 n) by Liu and Probhakaran [81]. Czumaj

and Rytter [51] obtain so far the fastest randomized algorithm that has a running time of

O(nlog2 n). The algorithm combines the linear time broadcasting algorithm of [51], and a

framework proposed by [41]. The framework applies a series of limited broadcasting phases

(with broadcasting time O(f (n))) to do gossiping in time O(max{n log n , f (n) log2 n)).

Chlebus, Kowalski and Rytter [39] study the average-time complexity of gossiping in ad hoc

networks. They give a gossiping protocol that works in average time of O(n/ log n) , which

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 88

is shown to be optimal. For the case when k different nodes initiate broadcasting (note

that it is gossiping when Ic = n), they give an algorithm with O(min{Ic log(n/Ic) + n / log n))

average running time. So far, the fastest deterministic gossiping algorithm has a running

time of O(TL' .~) [112].

4.2.4 Random Graphs

Finally, we review some basic topological properties of random graphs. In the classic random

graph model of Erdos and Rknyi, G(n,p) is a n-node graph where any pair of vertices

is connected (i.e., an edge is built in between) with probability p. It can be shown by

Chernoff bounds that every node in the network has O(d) neighbours w.h.p. Moreover, It

is well-known (e.g. [31, 421) that as long as p = fl(logn/n), the diameter of the graph is

(1 + o(l))(log n / log d) w.h.p. Besides, if p > log n l n , the graph is connected w.h.p.

4.3 Model and New Results

An ad hoc network is modeled by a directed graph G = (V, E) . V is the set of devices and

IVI = n. For u, v E V, (u, v) E E means that u is in the communication range of v (but

not necessarily vice versa). We assume that the network G is unknown, meaning that the

nodes do not have any knowledge about the nodes that can receive their messages, nor the

number of nodes from which they can receive messages by themselves. This assumption

makes sense since in a lot of applications the graph G is not fixed because the mobile agents

can move around (which will results in a changing communication structure). In order to

make our problem feasible, we assume that our network is strongly connected, i.e., there is

a path between any pair of nodes.

We assume that G is either arbitrary 17, 51, 761, or that it belongs to the random

network class 1551. For random graphs, we use a directed version of the standard model

G(n,p) , where node v has an edge to node w with probability p. Let d be the average in

and out degree of G. Recall that d = np and D = (1 + o(l))(log n / log d).

In the broadcasting problem one node of the network tries to send a message to all other

nodes in the network, whereas in the case of gossiping every node of the network tries to

sends a message to all other nodes. The broadcasting time (or the gossiping time) denotes the

number of communication rounds needed to finish broadcasting (or gossiping). The energy

consumption is measured in terms of the total (expected) number of transmissions, or the

CHAPTER 4. ENERGY EFFICIENT ROUTING IN A D HOC NETWORKS 89

maximum number of transmissions per node. The algorithms we consider are oblivious, i.e.,

all nodes have to use the same algorithm.

Broadcast in random networks Our broadcasting algorithm is similar to the one of

Elskser and Gasieniec in [55](also Algorithm 6). The difference is that our algorithm sends

at most one message per node, whereas Algorithm 6 sends up to D - 1 messages per node.

The broadcasting time of both algorithms is O(1ogn) w.h.p. Our proof is very different

from the one in [55]. Elskser and Gasieniec show first some structural properties of random

graphs which are used to analyze their algorithm. We directly bound the number of nodes

which received the message after every round. Our results are also more general in the sense

that we only need p = w(1og n ln) instead of p = w(logs n l n) for constant 6 > 1 (see [55]).

Gossiping in Random Networks We modify the algorithm of [51] and achieve a gos-

siping algorithm (Algorithm 8) with running time O(d log n) w.h.p., where every node sends

only O(1ogn) messages. To our best knowledge, this is the first gossiping algorithm spe-

cialized on random networks. So far, the fastest gossiping algorithm for general network

achieves O(n log2 n) running time and uses an expected number of O(n log n) transmissions

per node [51].

Broadcasting in General networks Our randomized broadcasting algorithm for general

networks completes broadcasting time O(D log(n/D) + log2 n) , w.h.p. It uses an expected

number of 0(log2 n / log(n/D)) transmissions per node. Czumaj and Rytter (1511) propose

a randomized algorithm with O(D log(n/D) + log2 n) broadcasting time. Their algorithm

can easily be transformed into an algorithm with the same runtime bounds and an expected

number of 0(log2 n) transmissions per node.

Lower Bounds for General networks First we show a lower bound of n log n/2 trans-

missions for any randomized broadcasting algorithm with a success probability of at least

1 - n-l. We assume that every node in the network uses the same probability distribution

to determine if it sends a message or not. Furthermore, we assume that the distribution

does not change over time. To our best knowledge, all distributions used so far have these

properties. Czumaj and Rytter ([51]) propose an algorithm that needs ~ (n log2 n) messages

(see Section 4.2). Hence, there is still a factor of log n messages left between upper and our

lower bound.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 90

Finally, using the same lower bound model, we show that there is a network with O(n)

nodes and diameter D , such that every randomized broadcast algorithm requires an expected

number of at least log2 n/(max{4c, 8) log(n/D)) transmissions per node in order to finish

broadcasting in cDlog(n/D) rounds with probability at least 1 - n-l. This lower bound

shows the optimality of our proposed broadcasting algorithm (Algorithm 9).

4.4 Broadcasting in Random Networks

In this section we present our broadcasting algorithm for random networks. Our algorithm

is based on the algorithm proposed in [55] (See Algorithm 6 in Section 4.2.1). The algorithm

completes broadcasting in O(1ogn) rounds w.h.p, which matches the result in [55].

Let T = Llog n/ log dl. Throughout the analysis, we always assume that n = 1VI is

sufficiently large, and p > Slog n /n for a sufficiently large constant S. Note that the latter

condition is necessary for the network to be connected w.h.p. In the following, every node

that already got the message is called informed. An informed node v can be in one of

two different states. v is called active as soon as it is informed, and it will become passive

(meaning it will never transmit a message again) as soon as it tried once to send the message.

The main idea of the algorithm is as follows.

Phase 1. The goal of Phase 1 is to inform Q (8) nodes w.h.p. (Lemma 4.4.4). To

prove this result, we repeatedly use Lemma 4.4.3, which bounds the number of active

nodes after each round.

Phase 2. The goal of Phase 2 is to inform Q(n) nodes w.h.p. when p < nP2l5 (Lemma

4.4.5). For the other cases we do not need Phase 2.

Phase 3. The goal of Phase 3 is to inform every remaining uninformed node w.h.p.

(Lemma 4.4.6).

We prove the following theorem.

Theorem 4.4.1 If p > 6 log n /n for a sufficiently large constant 6, Algorithm ?' completes

broadcasting in O(1ogn) rounds, w.h.p. Furthermore, every node performs at most one

transmission and the ezpected total number of transmissions is O(1og nip).

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS

Algorithm 7 An Energy efficient algorithm for Random Networks

Phase 1:

1: The state of the source is set to active.
2: for round r = 1 to T do
3: Every active node v transmits once and becomes passive.
4: if node v receives the message for the first t ime then
5: The status of v is set to active.

Phase 2:
1: if p 5 nP2/"hen
2: Every active node transmits with probability l/(dTp) and becomes passive.
3: if node v receives the message for the first t ime then
4: The status of v is set to active.

Phase 3:

1: for round r = 0 to p log n (P is a constant) do
2: if p 5 nP2I5 then
3: Every active node transmits with probability l /d
4: A node that has transmitted the message becomes passive.
5: else
6: Every active node transmits with probability l/(dp)
7: A node that has transmitted the message becomes passive.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 92

The number of transmissions performed in Phase 1 is 1 + d + . . . + dT-' = O(l/p) since

T = [log n / log dl. The (expected) number of transmissions in each round of Phase 2 and 3

is bounded by lip. Hence, the expected total number of transmissions is O(logn/p).

To proof Theorem 4.4.1 it remains to bound the broadcasting time. This part of the

proof is split into several lemmas. Let Ut be the set of active nodes at the beginning of Round

t, Qt be the set of nodes which transmit in Round t. Let Nt be the number of uninformed

nodes at the beginning of Round t. We first prove the following simple observations which

will be used in the later sections.

Observation 4.4.2

Proof. (1) is true since in Phase 1 of our algorithm every active node transmits. To prove

(2), note that for any informed node v at Round t , there are only two possibilities: either

v transmits in some round between 1 and t - 1 (i.e., v E Qi, i E [1, t - I]) , or v must be

active at Round t, (i.e., v E Ut). For (3), simply note that nodes being active in Round r

will remain active until Round t if they do not transmit in the meantime. For (4), note that

every node only transmits a t most once per broadcast. 0

Observation 4.4.2(4) helps us to argue that the random experiments used later in the

analysis are independent from each other. In the following, we first prove Lemma 4.4.3 (1)

showing that in each round of Phase 1 the number of active nodes grows by a factor of O(d),

w.h.p. The second part of Lemma 4.4.3 strengthens the results if the number of active nodes

is between [log3 n , A].

4.4.1 Analysis of Phase 1

Lemma 4.4.3 If p > 6 log n /n and 1 5 t 5 T (Phase I) , then the following statements are

true with a probability 1 - ~ (n - ~) .

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS

Proof. We consider two cases of different values of p. If p > 112, we have T = 1 and

every node will have expectedly (n - 1)/2 neighbours. The result now follows from a simple

application of Chernoff bounds. If p 5 112, we fix an arbitrary node u and a round t = 1 in

Phase 1. First we bound q, the probability that u is informed in Round t , i.e. u is connected

to exactly one node in Ut.

Here, the first inequality uses the condition lUtl < l /p . To see the second one, note that

YO < p < 112, (1 -p)l/p > 114. Next, we show Nt, the number of uninformed nodes a t time

t, is larger than n/2. By Observation 4.4.2(2),

Here, the first inequality is true by Observation 4.4.2(1) and IUl I < (U2 I < . . . < IUt 1. The

second one uses the condition lUtl < l / p and t 5 T = \log n / log d] 5 log n. The third

inequality uses p > 6 log n/n . Hence,

since Nt > n/2 and d = np. Note that the events to be connected to exactly one node in Ut

are independent for different uninformed nodes. Also, note that each event is only evaluated

once due to Observation 4.4.2(4). Using Chernoff bounds we get

The last inequality uses d = np with p = 6lognln for a sufficiently large constant 6.

Consequently JUt+lJ/(Utl > dl16 with a probability 1 - o(np4). Using a similar approach,

we can prove that lUt+ll/lUtl < 2d with a probability 1 - o(nP4). This finished the proof of

part 1 of the lemma.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 94

To prove part 2 we first need a tighter bound on q. By Equation 4.1,

Next we bound Nt. Using Equation 4.2 with (Ut(< l/(plog n) and t 5 T = [lognl log dl 5

log n we get

Now, we obtain the following lower bound for E [I Ut+l I] ,

For an upper bound on E[JUt+1 I] we use Nt < n and q 5 plUt 1 to get

Using Chernoff bounds together with the assumption that lUt 1 > log3 n, we get

Now, we are ready to show the following concentration result for IUT+1 1 , the number of

active nodes after Phase 1.

Lemma 4.4.4 Let cl = 1 6 - ~ 4 - ~ , and c2 = 16,. After Phase 1 we have with a probability

1 - o (~ - ~)
T cldT 5]UT+I~ 5 ~ 2 d .

Proof. By Observation 4.4.2(4), the random experiments performed in different rounds are

independent from each other. Hence, we can repeatedly use Lemma 4.4.3 to bound (U T + ~ I .

Case 1: p > n-4/5 Since d = n p 2 n1/5, T = [log n/ log dl 5 4. Using Lemma 4.4.3(1) for

T rounds, we get (d / 1 6) ~ 5 lUTtl 1 5 (2d)T with a probability 1 - o(nP3) . To show that we

can use Lemma 4.4.3(1) for Round 1 5 i 5 T, we note that IUiJ 5 (2d)T-1 5 8dT-' < l l p

since T 5 4 and d 2 6 log nln. The lemma now follows from the choices of cl and c2.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 95

Case 2: n-4/5 > p > 6 log n/n In this case we have T = Llog n/ log dl 2 5. Using Lemma

4.4.3(1) for three rounds, we get IU4J > (d / 1 6) ~ > log3 n w.h.p since d = n p > 6log n. Again,

we can use Lemma 4.4.3(1) for the first three rounds. After three rounds, the condition of

Lemma 4.4.3(2) is w.h.p. fulfilled. In the following we show that (Uil does not increase

too fast such that we are allowed to use Lemma 4.4.3(2) for Round 4 5 i 5 T - 1, i.e.

log3 n < IUi I < l / (p log n). For the first inequality, note that (Ui I does not decrease for large

values of i (Lemma 4.4.3(1)), w.h.p. For the second inequality we use Lemma 4.4.3(1) for

the first three rounds and then Lemma 4.4.3(2) for the remaining i - 4 rounds, we get

(Uil < (2d)3 (1 + 1/ log n)i-4 di-4

< 8 (1 + l / log n)logn 8-'

< (8e)dT-2 < l / (p log n).

The first inequality uses the fact that i < T = Llog n/ log dJ 5 log n. The second inequality

uses that VO < x < 1, (1 + x)'/" < e and i 5 T - 1. The last inequality holds because

dT-' < l / p by definition of T and d = n p > 6log n. This shows that we can use Lemma

4.4.3(2) for Round 4 5 i 5 T - 1. Similarly, we get

the last inequality holds by T = \log n/ log d l . This shows that we can use Lemma

4.4.3(1) for Round T .

Now we are ready to bound I U T + ~ ~ . We use Lemma 4.4.3(1) for three rounds, Lemma

4.4.3(2) for the next T - 4 rounds, and then Lemma 4.4.3(1) once again. Now we applying

the Union bound and get with a probability 1 - o (n P 3)

and,

/ U T + ~ I 5 (2d)3 . (d (1 + 1/ log n))T-4 . (2d) .

Since T 5 logn, and VO 5 z 5 112, (1 - x)'/" > 114, we get

(d / 1 6) ~ (d (1 - 3 / log n))T-4 > (1 1 1 6) ~ (1 - 3/ log n)logn dT > (1 6 - ~ 4 - ~) d ~ .

C H A P T E R 4. ENERGY EFFICIENT ROUTING IN A D HOC N E T W O R K S 96

Similarly, we get

(d (1 + 1/ log n))T-4 (2d) < 24 (1 + 1/ log n)logn dT < (16e)dT.

This shows that with a probability 1 - ~ (n - ~) we have

4.4.2 Analysis of Phase 2

Next we show a result for Phase 2. If n-2/5 > p > 6 log n/n for a sufficiently large constant

6, Lemma 4.4.5 shows that after Phase 2 the number of active nodes is O (n) , w.h.p. For

the rest case we do not need Phase 2.

Lemma 4.4.5 Let c = ~ ~ 4 - ~ ~ ~ - ~ . If K 2 I 5 > p > 6 log n/n for a suficiently large constant

6, after Phase 2 (Round T + 1) we have with a probability of 1 - ~ (n - ~) , lUT+2(> c n.

Proof. Phase 2 only consists of Round T + 1 in which every active node transmits with

probability l / (d T p) . We first prove bounds for l Q ~ + i l . By Lemma 4.4.4,

Using Chernoff bounds we get

Now we fix an arbitrary but uninformed node v . We show the probability to inform v in

Phase 2 is constant. In order to inform v , v must be connect to exactly one node in QT+i.

Hence, using Equation 4.3 together with the fact that VO < x < 112, (1 - x)'/" > 114, we

get
Pr[v is informed] = IQTtl lp(1 - p) l Q T + l I - l > - IQTtl lp(1 - p)2c2/p > ~ ~ 4 - ~ ~ ~ .

Next we show that NTtl 2 n / 2 , w.h.p. First note that we can assume that IUT+i 1 < n / 4 .

Otherwise, the lemma is already fulfilled by Observation 4.4.2(3) and Equation 4.3. This

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 97

holds since IUT+zl 2 IUT+~ 1 - IQT+~ 1 > n/4 - 2cz/p > n/8 (p > 6 log n/n). NOW, using

Observation 4.4.2(2),

> n - log n/p - n/4 > n/2,

with a probability 1 - ~ (n - ~) . The first equation follows since V 1 < i < T, Qi = Ui and

by Lemma 4.4.3, IUII < IU2/ < . . . < IUTI. The second inequality holds since lUTl < lip,

T 5 log n and IUT+1 I < n/4. The third inequality follows since p > 6 log n /n for a sufficiently

large constant 6.

Next we estimate the expected number of active nodes at the end of Phase 2.

E[IUT+2 I] = NTtl Pr[v is informed] 2 (~ 1 4 - ~ " ~ / 2) n.

Note that the events that different uninformed nodes are connected to exactly one node in

UT+~ are independent from each other. Also, note that, due to Observation 4.4.2(4), each

of these events is evaluated only once. Using Chernoff bounds we get

4.4.3 Analysis of Phase 3

Next, we show that after running Phase 3 for O(1og n) rounds, every node is informed w.h.p.

Note that even at the end of Phase 3, we still have a considerable amount of active nodes

because in each round of Phase 3, only a small number of active nodes will transmit and

become passive afterwards.

Lemma 4.4.6 After running Phase 3 for 128 log n/c rounds, every node is informed with

a probability of 1 - o(n-l).

Proof. Let Ic = 128logn/c. Fix some uninformed node v and let At(v) be the number of

active neighbours of v a t the beginning of Round t of Phase 3. For any 0 < t < Ic, let ft(v)

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 98

be the number of active neighbours of v that transmitted before Round t of Phase 3. Note

that At (v) = Ao(v) - ft (v). Let Pt (v) be the probability to inform node v in Round t . In

the following we consider two cases for different values of p.

Case 1: n-'l5 2 p > 6 lognln for a sufficiently large constant S. We first show that

Ao(v) = O(d), w.h.p. Note that Ao(v) is the number of neighbours of v that are activated

in Phase 2. Since the probability that v is connected t o any node in UTt2 (the set of nodes

that are activated in Phase 2) is p, EIAO(v)] = (UT+21p > cnp = cd with a probability at

least 1 - ~ (n - ~) by Lemma 4.4.5. Using Chernoff bounds we get,

The last inequality holds since EIAo(v)] > cnp with p > blog n l n for a sufficiently large

constant 6. Similarly, we can show that

Since every active neighbour of v transmits with probability l l d in each round of Phase

3, we get

E[ft(v)l I tAo(v)ld I Ao(v)l(44,

because t 5 k = 128 log n l c and d = np with p > Slog n l n for a sufficiently large constant

6. Using Pr[B(n,p) > anp] < (e/a)anp we get,

The last inequality follows since by Equation 4.4, Ao(v) > cd/2 > 610g n. Consequently, it

follows by Equation 4.4 and 4.5 that cd/4 < Ao(v)/2 < Ao(v) - ft(v) = At(v) < 2d with

a probability a t least 1 - ~ (n - ~) . Using YO < x < 112, (1 - x)'/" > 114 we get with a

probability at least 1 - ~ (n - ~) ,

Given this, the probability that v is not informed in k = 1281ogn/c rounds is at most

(1 - ~164)" o(nP2).

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 99

Case 2: p > n-2/5. In this case T = [log n/ log dl = 1 and using Chernoff bounds we can

show that 3d/4 < IU21 < 3d/2 with a probability at least 1 - ~ (n - ~) . Next we show that

Ao(v) = O(dp) w.h.p. Since the probability that v is connected to any active node in U2 is

p, EIAo(v)] = lU21p 2 3dp/4 with a probability at least 1 - ~ (n - ~) . Using Chernoff bounds

we get,

Similarly, we get Pr[Ao(v) > 2dp] = o(nP3).

The rest proof is very similar to Case 1. In particular, we can show that with a probability

a t least 1 - o(nP3), dp/4 < At(v) < 2dp. Hence, with a probability a t least 1 - ~ (n - ~) ,

Thus, the probability that node v is not informed at Round k of Phase 3 is (1 - 1164)~ =

~ (n - ~) . Finally the lemma follows due to the Union bound. 0

4.5 Gossiping in Random Networks

In this section we analyse a gossiping algorithm specialised on random networks. Further-

more, note that similar to (41, 81, 511, we can obtain a gossiping algorithm with running time

O(n log n) by combining the framework proposed in [41] and the broadcasting algorithm in

Section 4.4. However, the following Algorithm 8 has a better running time of O(dlogn),

and it uses O(1ogn) transmissions w.h.p. Similar to (51, 411, we assume that nodes can join

messages originated from different nodes together to one large message, and we also assume

that this message can be sent out in a single round. Let mt(u) be the message that is send

out by node u in Round t . Then ml (u) is the message originated in u.

Algorithm 8 A gossiping algorithm for the random network G(n,p).

1: for round r = 0 to l28d log n do
2: Every node transmits with probability lid.
3: Every node u joins m,(u) and any incoming messages to m,+l(u).

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 100

Note that d = np is the average node degree, and diameter

D = (1 + o(l))(log n / logd) < log n.

Also, note that here nodes do not become passive after transmitting once (as it was the case

in our broadcasting algorithm in Section 4.4). It is easy to see that the algorithm can be

transformed into a dynamic gossiping algorithm. All that has to be done is to provide every

message with a time stamp (generation time), and to delete old messages out of the mt(i)

messages.

Theorem 4.5.1 Assume p > 6lognln for a suficiently large constant 6. Then, with a

probability 1 - o(n-I), Algorithm 8 completes gossiping in O(d log n), and every nodes per-

forms O(1og n) transmissions w.h.p.

Proof. First we bound the gossiping time. Let u, v (u # v) be an arbitrary pair of nodes.

Let T be the time to send the gossiping message ml (u) from u to v. Next, we show that T

is w.h.p. at most 128dlogn. Fix an arbitrary shortest path u = u l , . . . U L + ~ = v of length

L 5 D from u to v. Let Ti be the random variable representing the number of rounds that

it takes node ui to forward the first message containing ml(u) from ui to ui+l. Since u

starts to submit its own message immediately in Round 1, and every node w who receives a

broadcast message in Round r joins the message to its message m,+l (w), v will get m l (u) in

Round T _< c L ~ Ti. It is easy to see that the random variables TI, . . . , TL are independent

from each other. To bound T, we first prove a result which is similar to Lemma 3.4 in [51].

Lemma 4.5.2 Let Yl, . . . , YL be a sequence of geometrically distributed random variables

with parameter 1/(16d), i. e., V1 I i I L, k 2 1, Pr[Y, = k] = 1/(16d)(l- 1/(16d))~-l. Then

T 3 ~ f = ~ Y, with a probability at least 1 - ~ (n - ~) .

Proof. The proof is similar to the proof of Lemma 3.4 in [51]. All that we have to do is to

bound the probability q that a node successfully sends a message to a fixed neighbour. The

expected degree of every node is d and using Chernoff bounds we can show the degree of

every node is a t most 2d with a probability 1 - ~ (n - ~) . Hence, with a probability 1 - ~ (n - ~) ,

we have

q >- (l /d) (l - l/d)2d-1 2 1/(16d).

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 101

Now it remains to bound P~[C:=~ Y, 5 128dlognl. Similar to the proof of Lemma 3.5

of [51], applying the standard relation of geometric distribution and binomial distributions,

and using Chernoff bounds on the corresponding binomial distribution, we get

Pr 1 c Y, > l28d log n 1 5 Pr [IB(l28d log n, l / (l6d)) < L]

The third inequality holds since L 5 D < log n. The bound on the gossiping time follows

by the Union bound and the fact that there are in total n (n - 1) source-destination pairs.

Next we bound the number of transmissions. Let v be an arbitrary node and denote Zv

to be the number of transmissions performed by v. Note that E[Zv] = 128 log n since in each

round, every node transmits with probability l l d and our algorithm has in total 128d log n

rounds. Using Chernoff bounds we get that Zv 5 256 log n with probability 1 - ~ (n - ~) . By

the Union bound, we get with a probability 1 - o(nP1), none of the nodes performs more

than 256 log n transmissions. 0 0

4.6 Broadcasting in General Networks

In this section we consider broadcasting in arbitrary networks with diameter D. Czumaj

and Rytter ([51]) propose a randomized algorithm with 0(log2 n + D log(n/D)) broadcasting

time. Their algorithm can easily be transformed into an algorithm with the same runtime

and an expected number of Cl(log2 n) transmissions per node. The only modification neces-

sary is to stop nodes from transmitting after a certain number of rounds (counting onwards

from the round they got the message for the first time). In Czumaj and Rytter's algorithm,

each active node transmits with probability of @(I/ log(n/D)) per round. It informs an arbi-

trary neighbour u (i.e. it transmits the message and is the only neighbour of u that transmits

in that round) with a probability of R(l/(log(n/D) logn)) per round. Hence, to get a high

probability bound, every node has to try to send a message for 0(log2 n log(n/D)) rounds.

Since an active node transmits with probability O(l / log(n/D)), the total expected number

of transmissions is 0(log2 n) per node. Similarly, the Algorithm 5 for unknown diameter

can be transformed into an algorithm with an expected number of 0(log2 n) messages per

node.

Unfortunately, in general the expected number of 0(log2 n) transmissions per node can

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 102

not be improved without increasing the broadcasting time (see Corollary 4.6.5). Under the

assumption that the network diameter D is known in advance, we propose a new random-

ized oblivious algorithm with broadcasting time O(Dlog(n/D) + log2 n) that uses only an

expected number of 0(log2 n/ log(n/D)) transmissions per node (see Section 4.6.1). Note

that our algorithm achieves the same broadcasting time as Algorithm 5. In Section 4.6.2,

we prove a matching lower bound on the number of transmissions (Theorem 4.6.4) which

indicates that our proposed algorithm is optimal in terms of the number of transmissions. In

Theorem 4.6.2 we show a tradeoff between broadcasting time and number of transmissions.

4.6.1 Upper Bound for Broadcasting

In this section we show that, if the graph diameter D is known in advance, the number

of transmissions can be reduced from 0(log2 n) to 0(log2 n/ log(n/D)). The improvement

is due to a new random distribution which is defined in Figure 4.1. Let X = log(n/D).

The distribution we use to generate the randomized sequence is denoted by a, and the

distribution used in Section 4.1 of [51] is denoted by a'. See Figure 4.1 for a comparison of

the two distributions. Note that V1 5 k 5 logn, 1/(2 logn) <_ a k 5 1/(4X) and a k 2 4 1 2 .

Let T = O(D log(n/D) + log2 n) be the number of rounds for broadcasting.

Figure 4.1: Comparison of our distribution (left) vs. the distribution in [51] (right)

We prove the following theorem. Note that the broadcasting time is optimal according

to the lower bounds shown in [76] and [81].

Theorem 4.6.1 Algorithm 9 completes broadcasting i n O(D log(n/D) +log2 n) rounds with

probability at least 1 - n-l. The expected number of messages per node i s

Proof. Each node is active for O(log2 n) rounds. In every round, an active node transmits

with a probability of 0(1/ log(n/D)). Hence, the expected total number of transmissions is

0(log2 n / log(n/D)) per node.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 103

Algorithm 9 An energy efficient broadcasting algorithm for arbitrary network with diam-
eter D

1: Choose a randomized sequence I =< 11, 12,. . . , > such that Pr[IT = k] = ak,Vr E

N, Vk E (0, 1, . . . , log n).
2: The status of the source is set to active.
3: for r = 1 to T every active node u do
4: Let t, be the time step that u is informed
5: if r 5 t, + p log2 n (p is a constant) then
6: u transmits with probability 2-Ir.
7: else
8: u becomes passive.
9: if u receives the message for the first time then
10: the status of u is set to active.

To show that every node receives the broadcast message, fix a round r , an arbitrary

active node v and one of its neighbours w. Assume w has m > 1 active neighbours in

Round r and let 1 < k 5 logn such that w/2 < 2k < w. If every active neighbour of w

sends with probability 2Tk (i.e. IT = k), w is informed with probability at least 0.1 according

to Lemma 3.2 in [51]. For any 1 5 x 5 logn, a, > 1/(2logn), IT = k with probability

at least l l (2 log n). Hence, the probability to inform w is at least 1/(20 log n) per round.

Using Chernoff bounds we can show that v can successfully inform all its neighbours, w.h.p.

To bound the broadcasting time, we compare the runtime of our algorithm with the

runtime of the algorithm for shallow networks in [51]. Any send probability that is chosen

by the algorithm in 1511 is chosen with at least half the probability by our algorithm. Thus,

we can use a proof that is similar to the proof of Theorem 2 in [51] to show our result.

Finally, we demonstrate that there is a tradeoff between the expected number of trans-

missions and the broadcasting time.

Theorem 4.6.2 Let log(n/D) 5 X 5 logn. Algorithm 9 finishes broadcasting in O(DX +
log2 n) rounds w.h.p. The expected number of transmissions is 0(log2 n/X) per node.

Proof. Every node is active for 0(log2 n) rounds. Moreover, the expected number of trans-

missions an active node performs in every round is 0(1/X). Hence the expected total number

of transmissions is 0(log2 n / ~) per node. Since for all 1 5 k <_ logn, a k 1 1/(2 log n) , we

can show (similar to the proof of Theorem 4.6.1) that every node receives the broadcasting

message w.h.p.

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 104

It remains to bound the broadcasting time. Our proof is similar to the proof of Theorem

2 in [51]. We first fix some shortest path vo, . . . , VL of length L 5 D from the source to

an arbitrary node. Then, we partition all nodes into L disjoint layers with respect to that

path. We assign a node u to layer i , 1 5 i < L, if node vi is the highest ranked node on

the path that u has an edge to. In the following, a layer is called small, if its size is smaller

than 2', otherwise it is called large.

For an arbitrary small layer, since Q1 5 k < A , cxr, > 1/(4X), use a similar argument as

in Theorem 4.6.1, we get that the probability to inform some node in the next layer is at

least 1/(40X). Hence the expected time spent on any small layer is O(X). Since there are at

most D layers and by applying the concentration bound in Lemma 4.2.2, we get that the

total time spent on all small layers is O(DX) w.h.p.

For an arbitrary large layer (of size s2', s > I) , since QX < k 5 logn, a k 2 &2-(k-'),

similar to Theorem 2 in [51], we can show that the probability to inform some node in

the next layer is fl(l/(sX)). Hence, the expected time spent on a large layer is O(sX).

Consequently, the total expected time spent on all large layers is 0(Xn/2') = O(DX) since

2' > n/D. Applying Lemma 4.2.2 once again, we obtain the high probability bound.

4.6.2 Lower Bound on the Transmission Number

In this section we show two lower bounds for oblivious broadcasting algorithms. Observation

4.6.3, shows a lower bound on the expected number of transmissions for any randomized

oblivious (every node uses the same algorithm) broadcasting algorithm. We call a probability

distribution time-invariant if it does not depend on the time t. Theorem 4.6.4 shows a

lower bound on the expected number of transmissions of any optimal randomized oblivious

algorithm using a time-invariant distribution.

Observation 4.6.3 Let A be an oblivious broadcast algorithm. Then, for every n there

exists a network with O(n) nodes such that A needs at least n logn/2 transmissions to

complete broadcasting with a probability of at least 1 - n-l.

Proof. We construct a network with 3n + 1 nodes. s is the node initiating the broadcast,

and dl , . . . , d, are the destination nodes. s has an edge to 2n intermediate nodes ul , . . . u2,.

For all 1 5 i < n, di connects to both u2i-1 and u2i. Let us assume that s informs u1, . . . ,212,

in Round tl. Now fix some arbitrary T > t l . In Round tl + 1 5 r 5 T, let q, be the send

probability used by the algorithm. For all 1 5 i 5 n, the probability to inform node di

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 105

in Round r is 2qT(l - q,). Due to symmetry we can assume that q, < 112, resulting in

(1 - q,)llqi 2 114. Hence,

Pr[di is not informed before Round TI

T Now it is easy to see that, to inform di with probability 1 - n-l, we need CT=tl+l q, >
logn/4. Note that c T = ~ ~ + ~ q, is the expected number of transmissions that ui and vi

perform between Round t l + 1 and T. The total number of transmissions performed by all

2n intermediate nodes is a t least 2n (log n/4) = n log n/2. 0

Next we show a matching lower bound on the number of transmissions. This result holds

for a set of randomized oblivious algorithms with optimal (i.e. O(D log(n/D))) broadcasting

time (e.g. the algorithm in [51]).

Theorem 4.6.4 Let D > 1, let c, i be constants, and fix an arbitrary n = 2%. Let A be an

oblivious broadcast algorithm using a time-invariant probability distribution a. For every

n > 0, there is a network with O(n) nodes and diameter D , such that A requires an expected

number of at least log2 n/(max{4c, 8) log(n/D)) tmnsmissions per node in order to finish

broadcasting in cDlog(n/D) rounds with probability at least 1 - n-l.

Proof. We can assume that D > 4 log n , otherwise this result can be obtained directly from

Observation 4.6.3 since log(n/D) > logn/2. We construct a layered network (See Figure

4.2) consisting of two subgraphs G1 and G2. G1 has logn layers, namely S1, . . . , SIogn,

where Si, 1 < i < log n is a star consisting of one center node ci and 2' leaf nodes. Every

leaf node in Si has an edge to the center G + ~ of Si+l, for 1 < i < log n - 1. G2 = vg, . . . , v~

is a path of length L = D - 2 log n. To connect G1 and G2, we connect every node of

the star Slogn to the first node of Gp, also denoted as clogn+l. Note that our network has

C',O_p," (2i + 1) + D - 2 log n + 1 < 2n + D nodes and diameter D.

We assume that cl is the originator of the broadcast. The purpose of G1 is to show

that every informed node in G must be active for at least ln2 n rounds in order to complete

broadcasting with probability 1 -nP1. More specifically, no matter what a is, there is always

CHAPTER 4. ENERGY EFF'ICIENT ROUTING IN AD HOC NETWORKS

Figure 4.2: The network used in Theorem 4.6.4

a star Si such that the probability to inform ci+l is at most 1/ Inn. Since our distribution

is time invariant and every node does not know which star it belongs to, every node in the

network needs to be active for at least ln2 n rounds. Let p be the mean of distribution a

and r(a) be the set of outcomes of a . Next, we use Gz to argue that in order to finish

broadcasting in cDlog(n/D) rounds, p , the mean of a, must be at least 1/(2clog(n/D)).

Hence, the total expected number of transmissions per node is at least

Let Ai be the event that q+l is informed in Round ti under the condition that every

leaf node of Si is active (note that they are always activated at the same time). Let Qti

be the random variable that represents the probability chosen at Round ti. Note that Qti

has distribution a. For any q E r(a), let Pr[AiJQti = q] be the probability to inform ci+l if

Qti = y. Since ci+l is informed if exactly one of the 2' leaf nodes of Si transmits we get

Observe that Pr[Ai] = CqEr(,) (Pr[Qti = y] Pr[AilQti = q]). We get,

log n log n

/ log n \

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS

For the third inequality, we use Equation 4.6 and

Consequently,
log n

1 1 -- -
ln2logn Inn '

Let i* = argmini Pr[Ai]. Consequently, in order to complete broadcasting with probability

at least 1 - n-', every leaf node of Sp must be active for at least ln2 n rounds.

In the following we show p 2 1/(2c log(n/D)) using G2. First note that L = 0 - 2 log n >
D/2 since D 2 4 log n. For any 0 < i 5 L - 1, let Ti be the number of rounds that vi is the

highest ranked node on the path that is informed. Note that Ti is geometrically distributed

with probability p , we have E [C ~ Z ~ Ti] = L . E[Ti] = Lip. Hence, in order to inform v~

within cDlog(n/D) rounds (even expectedly), we need p 2 1/(2clog(n/D)) since L > 012.

We have shown that every node in the network needs to be active for ln2 n rounds while

in each round, the expected number of transmissions it performs is at least 1/(2clog(n/D)).

Hence, the total expected number of transmissions per node is (ln2 n) (l l (2c log(n/D))) >
log2 nl(4c log(n/D)). 0

Setting D = n in the network constructed above, we immediately get the following

corollary.

Corollary 4.6.5 There exists a network with O(n) nodes such that any randomised obliv-

ious broadcasting algorithm that finishes broadcasting in cn rounds with probability at least

1 - n-' requires an expected number of a(log2 n) transmissions.

4.7 Summary

We have considered an "energy efficient" routing model for ad hoc networks. Our goal is to

minimize not only the broadcasting and gossiping time, but also the the energy consump-

tion, which is measured by the total number of messages sent. For random networks, we

presented a O(1og n) broadcasting algorithm where every node transmits at most once and

a O(d log n) gossiping algorithm using O(1og n) messages per node. For general networks

with known diameter D , we presented a randomized broadcasting algorithm with optimal

broadcasting time O(D log(n/D) + log2 n) that uses 0(log2 n/ log(n/D)) transmissions per

CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 108

node in expectation. Our lower bound 0(log2 n/ log(n/D)) on the number of transmissions

matches our upper bound for time-invariant distributions. We also demonstrated a tradeoff

between these two objectives.

There are a few interesting directions for future work. First, so far we used the Erdos-

R6nyi model to model practical ad hoc networks, which is somewhat unrealistic. We can

consider other alternative models for random graphs, such as the random geometric graphs

1951. Second, the question remains open to determine the minimum energy consumption for

gossiping in general networks. Third, it would be interesting to generalize the lower bound

result in Theorem 4.6.4 for general distributions without the time-invariant property. Last

but not least, similar to [39], we can consider the more general problem that 1 5 k 5 n

different nodes initiate broadcasting. Note that broadcasting (i.e., k = 1) and gossiping

(i.e., k = n) are two special cases of this problem.

Chapter 5

Conclusion

In this thesis, we have studied distributed algorithms for two fundamental problems in

distributed systems, resource allocation and routing. We considered two well-motivated re-

source allocation models, the diffusive load balancing and the weighted balls-into-bins games.

We also studied routing algorithms for broadcasting and gossiping on ad hoc networks.

Diffusive load balancing Diffusive load balancing, a typical neighbourhood load bal-

ancing model, studies how nodes with some initial tasks in a network balance their loads

concurrently with all their neighbours. The concurrent load exchanging actions have been

the main obstacle for the analysis of the diffusion algorithms since the load situation could

change significantly during one single step of load exchanges. In this thesis, we have pro-

posed a novel analytical method. The idea is to first sequentialize concurrent actions to

obtain a sequential system, analyze the sequential system, and then bound the gap between

both systems. We have demonstrated the strength of this technique by analyzing several

diffusion algorithms. This idea is simple yet also general. We believe that it is helpful in

the analysis of many other distributed systems with concurrent actions. In particular, we

have applied the same idea to analyze the selfish-allocation game in Chapter 3.

Weighted balls-into-bins games The weighted balls-into-bins game studies how to al-

locate a set of weighted balls into a set of bins in a balanced manner. We have considered

two different scenarios, the static sequential game and the selfish reallocation game.

In the static sequential game, balls comes one after another and have to be allocated

in such order. We have considered a well-known approach that to have every ball pick

CHAPTER 5. CONCLUSION 110

d > 1 bins independently and uniformly at random and place itself into the least loaded

bin. We have studied how the outcome of the game, the expected maximum load of any

bin, is influenced by the game parameters such as the distribution of ball weights, and

the order that balls are allocated. Our main idea is to use the majorization technique

inductively to show one system majorizes another. In particular, we have shown that the

single-choice game (d = 1) is "order-preserving" according to vector majorization while the

multiple-choice game (d 2 2) does not have this nice property. We have also discussed

several limitations of this technique. For future work, we can apply this technique to study

other related problems in the static sequential game. For example, given two systems with

the same total weight, does the system with small number of "large" balls always majorizes

the system with large number of "tiny" balls? Or whether their corresponding expected

maximum loads differ only by a constant? However, we believe that new ideas are necessary

to answer this question.

In the selfish reallocation game, every ball has its own initial location. We have studied

an iterative, selfish distributed reallocation algorithm. We have shown some upper and

lower bounds for the convergence time of the algorithm, which is the number of steps for

the system to terminate upon reaching (or getting close to) the Nash equilibrium. Our

main proof method is the potential function technique. The idea is to define some potential

function to measure the distance between some system state and the Nash equilibrium, and

then to show that the potential always decreases in expectation. For the uniform case where

each ball is of uniform weight, we obtained tight bounds for the convergence time. To our

best knowledge, this work is the first attempt to analyze the selfish reallocation game with

heterogenous tasks. In the future, we can consider applying our proof technique to study

more general models, for example, those ones that allow arbitrary latency functions.

Energy Efficient Routing in Ad Hoc Networks We have considered an "energy effi-

cient" ad hoc network model, in which the energy consumption of a broadcasting/gossiping

algorithm is measured in terms of the total number of messages (or transmissions) sent.

Our goal is two-fold: we want to minimize not only broadcasting/gossiping time, but also

energy consumption. Under this model, we have presented and analyzed several energy

efficient broadcasting/gossiping algorithms for both random and general ad hoc networks.

We have also given some lower bounds for the energy consumption, and demonstrated a

tradeoff between these two objectives. In the future, we can try to generalize this model

CHAPTER 5. CONCLUSION 111

to more practical scenarios. For instance, we can assume that our ad hoc network has a

topology of random geometric graph similar to [95].

In this thesis we have studied distributed algorithms for two fundamental problems in

distributed systems, resource and routing. Although the models we consider are different,

they do share common features and challenges, such as lack of central control (knowledge)

and concurrent user actions. We have presented various new results as well as some novel

proof techniques. IIn the future, we plan to further study the scope and limitation of the

proposed techniques. We also plan to exploit the practical implications of our theoretical

results by studying the corresponding real-life problems.

Chapter 6

Appendix

6.1 Tail Estimates

The following version of Chernoff bounds can be found, for example, in, [91].

Lemma 6.1.1 Let X I , . . . Xn be independent Bernoulli random variables and let X =

Cy=l Xi and p = E [X] . Then we have,

1. Pr [X < (1 - t) p] < e-pc2/" for 0 5 E 5 1.

2. Pr [X > (1 + E) ~ I < e-pc2/3, for E > 0 .

3. Pr [(X - p(5 ~ p] > 1 - 2e-pe2/3, for 0 5 E 5 1.

6.2 An Alternative Proofof Theorem 3.4.8

After we submitted [24] to a journal, one of the anonymous reviewers pointed out the proof

of Lemma 3.4.4 can in fact be simplified. The following proof is rewritten based on the

comments.

Fix an arbitrary allocation w E On. We first prove a lemma which indicates that Function

f (w) = Si (w, W) is convex.

Lemma 6.2.1 Function f (w) = Si(w, w) is convex.

Proof. Let v and v' be two m-dimensional vectors such that w = (1 - X)v + Xv'

Si(w,w) = max
Ac[n],IAl=i lLj<m: wjEA

CHAPTER 6. APPENDIX

- - max C ((1 - X)v, + Xu;)
Ac[n],lAl=i

l<j<m: w j € A

5 (1 - A) max
Bc[n],lBJ=i l < _ j < m : w 3 E B

X max max
B1€[n],(B'I=i B'c[n],lBII=i

l<j<m : w j E B 1

T
Note that if w====+wl, w' = X . w + (1 - X)wP, where P is a permutation matrix. Using

Lemma 6.2.1, we get

The second equation holds since E [Si(w)] = E [S i (w P)] for any permutation matrix P .

Bibliography

[I] Micah Adlcr, Pctra Bcrenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paid Goldlmg.
and hlikc Patcrson. A proportionatc fair schcduling rule with good worst-case pcrfor-
mancc. In Proc. 15th ACM Symposium on Parallelism in Algorithms and Archltwturr.~
(SPAA), pages 101-108, 2003.

[2] Micah Adler, Pctra Bercnbrink, and K. Schrodcr. Aiialyziilg an i ih i i te parall~~l 101)
allocation process. In Proc 6th European Symposium on AIgorlfhnt.5 (E S A j , pages
417-428, 1998.

[3] Micah Adler, Soumen Chakrabarti, Michacl Mitzenmachcr, and Lare Rasinusscn. Par-
allcl randomized load balancing. In Proc 27th ACM Symposiwn on Th,eory oj' con,-
puting (STOC), pages 238-247, 1995.

[4] William Aicllo, Fan Chung, and Linyuan Lu. A random graph ixiodcl for rriassivc
graphs. In Proc 32nd ACM Symposium on Theorg of computing (STOC). pagcs 171-
180, 2000.

[5] David J. Aldous and Jamcs A. Fill. Reversible Markov Chmns u n d Rondom Walks
on Graphs. http://www.stat.berkelcy.edu/ aldous/RWG/book.htinl. Book in prcpa-
ration.

[6] Romas Aleliunas. Randomized parallel communication. In Proc 1stACAP Syrnpos~ utr l

on Pnnczples of Dzstributed Computzng (PODC), pagcs 60-72, 1982.

[7] Noga Alon, Anlotz Bar-Noy, Nathan Linial, and David Pclcg. A lowcr hound fix r d i o
broadcast. Journal of Computer and System Scicnces, 43(2):290- 298. 1991

[8] Matthew Andrews, Antonio Fernhdez, Ashish Goel, and Lisa Zhang. Sourcc rourir~g
and schcduling in packet nctworks. Journal of ACM, 52(4):582 -601, 2005.

[9] Elliot Anshclevich, David Kcmpc, and Jon Kleinberg. Stability of load bala.riciiig
algorithms in dynamic adversarial systems. In Proc 34th ACM Symposium on Theory
of computing (STOC), pagcs 39Ck406, 2002.

[lo] Hagit Attiya and Jcnnifcr Wclch. Distributed Computing. Wilcy and Sons h c . , 2004.

BIBLIOGRAPHY 115

[l l] Fricdhclrn Meyer auf dcr Hcidc, Christian Scheidelcr, and Volkcr Stcmann. Exploitil~g
storage redundancy to speed up randomized shared memory simulatioi~s. In Proc 1L'nrl
Symposium on Theoretical Aspects of Computer Scrence (SrTACS), pagrs 267-278.
1995.

[12] Baruch Awcrbuch, Petra Berenbrink, Andre Brinkmann, and Christian Schcidch.
Simple routing strategies for adversarial systems. In Proc 42th IEEE S,ymposm~n on
Foundatzons of Computer Science (FOCS), pagcs 158-167, 2001.

[13] Yossi Azar, Andrei Z. Brodcr, Anna R. Karlin, and Eli Upfal. Balancod allocations.
SIAM Journal on Computing, pagcs 180-200, 1999.

[14] Rcuvcn Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-con~plcxity of broad-
cast in multi-hop radio nctworks: An exponential gap between dct,crlninisnl and ran-
domization. Journal of Computer and System Sciences, 45(1):104-126, 1992.

[15] Rcuvcn Bar-Ychuda, Amos Israeli, and Alon Itai. Multiple communication in multihop
radio nctworks. SIAM Journal Computing, 22(4):875-887, 1993.

[16] Pctra Bcrcnbrink. Randomized Allocation of Independent Tasks. PhD thcsis. Drpurt -
rnent of Computer Science, University of Pardcborn, 2000.

[17] Pctra Bcrcnbrink, F'ricdhclm Meyer auf der Hcidc, and Klaus Schriitler. Allocating
weighted balls in parallel. Theory of Computing Systems, 32281 300, 1999.

1181 Pctra Berenbrink, Colin Cooper, and Zcngjian Hu. Energy rfficicmt r;~ndorrliscd c.ol11-
munication in unknown adhoc nctworks. In Proc. 19th ACM Symposium on P u r d
lelism in Algorithms and Architectures(SPAA), 2007.

[l9] Pctra Bcrcnbrink, Artur Czumaj, Tom F'riedetzky, and Nikits Vvrdenski~ya. Infinite
parallel job allocation (cxtcnded abstract). In Proc. 14th ACM Symposium on Puml-
lelzsm zn Algorithms and Architectures (SPAA), pagcs 99 108, 2000.

[20] Petra Bcrcnbrink, Artur Czumaj, Angelika Stcgcr, and Bcrthold Vocking. Balancctl
allocations: the heavily loaded case. In Proc 32th ACM Sympocsi.um on Theoyy of
Computing (STOC), pagcs 745-754, 2000.

[21] Pctra Bcrcnbrink, Tom Friedctzky, and Lcslic A. Goldberg. Thc na.t.ura1 work-st.caling
algorithm is stable. In Proc 42th IEEE Symposium on Fourr,dations of C70v~,p.i(tw
Science (FOCS), pages 178-187, 2001.

[22] Pctra Bcrcnbrink, Tom F'ricdctzky, Lcslic Ann Goldbcrg. Paul \V. Goltlbcrg, Zcr~gjim
Hii, and Rlissell A. Martin Distributed s~lfish load balmring. In Pror 17th orinunl
ACM-SIAM symposium on Dzscrete algorithms (SODA), pagcs 354 -363, 200G.

[23] Pctra Bercnbrink, Tom F'ricdctzky, and Zcngjian Hu. -4 new analytical mcthoct to
parallel. diffusion-type load balancing. In Proc 21st IEEE Internutrorrc~l Parullrl oncj

Dzstnbuted Processzng Symposzum(IPDPS), page 56, 2006.

BIBLIOGRAPHY 116

[24] Pctra Berenbrink, Tom F'riedetzky, Zcngjian Hu, and Iman Hajirasouliha. Convcrgencc
to equilibria in distributed, selfish reallocation processes with weighted tasks, 2007.

[25] Pctra, Bcrenbrink, Tom F'ricdetzky, Zengjian Hu, and Russell Martin. On v,.c:ightcd
balls-into-bins games. In Proc 22nd Symposium on Theoretical Aspects of Conlputw
Scien.ce (STACS), pages 231-243, 2005.

[26] Petra Berenbrink, Tom Friedctzky, and Russell Martin. Dynamic diff~~sion load bal-
ancing. Technical report, University of Warwick, 2004.

[27] Pctra Berenbrink, Tom F'ricdctzky, and Ernst W. Mayr. Parallel contiliuoiis rantlom-
izcd load balancing. In Proc. l l t h ACM Symposzum on Pnrallelzs.rn 171 Algorzthrn< a n d
Archztectures (SPAA), pagcs 192-201, 1998.

1281 Pctra Bercnbrink, Tom Friedetzky, and Angelika Stcgcr. R.a~~domizcd a i d advcmarial
load balancing. In Proc. l l t h ACM Symposium on Parallelism i7r Algorithm,s crnd
Architectures (SPAA), pagcs 175-184, 1999.

[29] Pctra Bcrenbrink, Marco Ricdcl, and Christian Scheideler. Simple cornpctitivc request
scheduling strategies. In Proc. 11th ACM Symposium on Parallelism in Alqorithrns
and Architectures (SPAA), pages 33-42. Association for Computing Machincrv. 1999.

[30] P d r a Bcrcnbrink and Christian Schcideler. Locally efficient on-line 5tratc.gic.s for
routing packets along fixed paths. In Proc 10th annual ACM-SIAM symposz~~n~ on
D~screte algorithms (SODA), pages 112-121, 1999.

[31] Jacques E. Boillat. Load balancing and poisson equation in a graph. Conc.unerrc!~ -
Practice and Experience, 4:289-314, 1990.

[32] Bela Bollobh. The diameter of random graphs. IEEE Transactions on Infol-w~nttorr
Theory, 36(2):285-288, 1990.

1331 Russ Bublcy and Martin E. Dyer. Path coupling: A tcchiiiquc for proving rapid iriixilig
in markov chains. In Proc 38th IEEE Symposium on Foundations of Comput~r Sclcnce
(FOCS), pages 223-231, 1997.

[34] Julien Cartigny, David Simplot, and Ivan StojmenoviC. Localized minirnuni-cmqy
broadcasting in ad-hoc networks. In Proc 22nd Annual IEEE Conference on Comput~r
Co~n,munications, pagcs 2210-2217, 2003.

[35] Lijun Chen, Steven H. Low, Mung Chiang, and John C. Doyle. Cross-laycr congestion
control, routing and scheduling design in ad hoc wireless networks. 111 Proc 25th
Annual IEEE Conference on Computer Communications. 2006.

[36] Steve Chicn and Alistair Sinclair. Convergence to approximate nilsll cqi~ilibria in
congestion games. In Proc 18th annual ACM-SIAM symposiunt on Discrete a1gor.ithrrr.s
(SODA), 2007.

BIBLIOGRAPHY 117

[37] Bogdan S. Chlcbus, Leszek Gasicnicc, Alan Gibbons. Andrzcj Pclc. a d Woj(.iccJi
Rytter. Deterministic broadcasting in ad hoc radio networks. Distrii',uted Computzn!j.
15(1):27-38, 2002.

[38] Bogdan S. Chlcbus, Leszek Gasicniec, Anna ~ s t l i n , and John Michacl R.obson. Dc-
tcrministic radio broadcasting. In Proc 27th International Colloqium on Automata,
Languages and Pmgmmming (ICA LP), p a p 717-728, 2000.

[39] Bogdan S. Chlcbus, Leszek Gasicnicc, and Wojcicch Rytter. Fast broadcasting and
gossiping on radio networks. Journal of Algorithms, 43(2): 1 77--l89, 2002.

[do] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Avc:ra,gc-tirnc
complexity of gossiping in radio nctworks. In Proc 13th Colloq~llztm on Stn~ctuml
Information and Com~munication Complexity (SIROCCO), p a p 253--267, 2006.

[41] Marck Chrobak, Lcszck Gasienicc, and Wojciech Ryttcr. Fast broadcasting m d gos-
siping in radio networks. In Proc 41st IEEE Symposium 071 Foundatzons 0.f Co~r iput~r
Science (FOCS), pagcs 575-581, 2000.

[42] Marck Chrobak, Lcszek Gasienicc, and Wojcicch Ryttcr. A ra.ndomizcd algorithm for
gossiping in radio networks. In Proc 7th Inten~ational Com,puting and Combiuatorir:~
Conference (COCOON), pages 483-492, 2001.

[43] Fan Chung and Linyuan Lu. The diameter of random sparsc graphs. Adz~ancr:.s Zit.

Applied Mathem,atics, 26(4):257-279, 2001.

[44] Fan R. K. Chung. Spectral Graph Theory. Amcrican Mathciriatical Society. 1997

1-25] Andrca E. F. Clcmcnti, Angclo Monti, and Riccardo Silvcstri. Distributed broad-
casting in radio nctworks with unknown topology. Theoretcal Computing Sczc~nm.
1-3(302):337-364, 2003.

[46] Rcnc L. Cruz and Arvind Santhanam. Optimal routing, link scheduling. and p o w r
control in multi-hop wirelcss networks. In Proc 22nd Annua.1 IEEE Clonf~rencr on
Computer Comm~unications, pagcs 702-711, 2003.

[47] Georgc Cybcnko. Dynamic load balancing for distributcd rncmory multiprocessors.
Journal of Parallel Distributed Computer Systems, 7(2):279-301, 1989.

[48] A. Czumaj, C. Rilcy, and C. Schcidcler. Pcrfcctly balanccd allocation. In Proc 11th In-
ternational Workshop on Randomization and Approximation, Techniqu~s irr. Conapirtc,,r
Science(RANDOM), pagcs 240-251. LNCS, 2003.

[49] Artur Czumaj. Recovery timc of dynamic allocation proccsscs. Theory c?f Corriputcr
Systems, 33(5/6):465-487, 2000.

[XI] Artur Czumaj. Selfish routing on the internet. In Joseph Lcung, editor, Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. CRC press, 2003.

BIBLIOGRAPHY 118

[5l] Artur Czumaj, Piotr Krysta, and Berthold Vocking. Sclfish traffic allocatioil for svrvcr
farms. In ACM, cditor, Proc 34th ACM Symposium on Theory qf Computing (STOC),
pagcs 287-296, 2002.

[52] Artur Czumaj and Wojciech Ryttcr. Broadcasting algorithirls in radio nctworks with
unknown topology. Journal Algorithms, 60(2):115-143, 2006.

[53] Artur Czumaj and Volker Stcmann. Randornizcd allocation proccsscs (cxtcntlcd ab-
stract). In Proc 38th Symposium on Foundations of Computer Sclencr (FOCS). pagcs
194-203. 1997.

[54] Artur Czumaj and Bcrthold Vocking. Tight bounds for worst-case cquilibria. 111
Proc 13th ACM-SIAM symposium on Discrete algorithms (SODA). p a p 413-420.
2002.

[55] Ralf Dickmann, Andrcas Frommcr, and Burkhard Monicn. Efficient schemes for war-
cst ncighbor load balancing. Parallel Computing, 25:789-812, 1999.

1561 R. Elsiisser and L. Gasicnicc. Radio communication on random graphs. In Proc. 17th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). pagcs 309 -
315. 2005.

[57] Robert Elsiisscr. On the communication complcxity of randornizcd broac1ca.stirig in
random-like graphs. In Proc. 18th ACM Symposium on Parallelism in Al,qo.rdthn~s m d
Architectures (SPAA), pagcs 148-157, 2006.

[58] Robcrt Elsasscr and Burkhard Monien. Load balancing of unit sizc tokci~s a i d expan-
sion propcrtics of graphs. In Proc. 15th ACM Symposium 071 Parallelism in Al,qor.ithms
and Architectures(SPAA), pagcs 266-273, 2003.

1591 Robcrt Elsiisscr, Burkhard Monicn, and Stcfan Schamberger. Load balancirlg in dy-
namic nctworks. In Proc 7th International Symposium on Parallel Architectuues, Al-
gorithms and Networks (ISPAN), pages 193-200, 2004.

[60] Eyal Even-Dar, Alexander Kcsselman, and Yishay Mansour. Convcrgcncc timc to
nash equilibria. In Proc 30th International Colloqium on Automata, Lan!juagcs (~ 7 ~ 1

Programming (ICALP), pages 502-513, 2003.

[61] Eyal Even-Dar and Yishay Mansour. Fast convcrgcncc of selfish rerouting. In Proc 16th
annual ACM-SIAM symposium on Discrete algorithms (SODA), pagcs 77'2- 781. 2005.

[62] Simon Fischer, Harald Rackc, and Bcrthold Vocking. Fast cor1vcrgcmc.c to wardrop
cquilibria by adaptivc sampling mcthods. In Proc 38th ACM S?yrnposcunr 071 Theor!/
of computing (STOC), pages 653-662, 2006.

BIBLIOGRAPHY 119

[63] Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. hluthnkrishnan.
C. Grcg Plaxton, Rajmohan Rajaramanand Andra W. Richa., Robcrt Entlrc Tar-
jail, and David Zuckerman. Tight analyses of two local load balancing algorithms. In
Proc 27th ACM symposium on Theory of computing (STOC), pagcs 548--558, 1995.

1641 Bhaskar Ghosh and S. Muthukrishnan. Dynamic load balancing in parallcl and dis-
tributed nctworks by random matchings (cxtcndcd abstract). In Proc. Gth ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pagcs 2266235, 1CKM.

[65] Paul W. Goldberg. Bounds for the convcrgcncc ratc of randorrlizcd local scarch in
a multiplaycr load-balancing game. In Proc 23rd ACM Symposium on Principles o,f
Distributed Computing (PODC), pagcs 131-140, 2004.

[66] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomiza.tio11 in sccluc~lt,ial
and distributcd algorithms. ACM Computer Survey, 26(1):7-86, 1994.

[67] Wcndi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Atlaptivc pro-
tocols for information dissemination in wirclcss scnsor nctworks. I11 PTUC 5th,
Annual ACM/IEEE International Conference on Mobile Co.mputin.g and Network-
ing(MOBICOM), pagcs 174-185, 1999.

[68] Mark Jcrrum. Counting, sampling and integrating: algorithms and complcxity.
Springcr Verlag, 2003.

[69] Richard M. Karp, Michael Luby, and Friedhelm Mcycr auf der Heide. Efficient pram
simulation on a distributcd memory machine. Algorithmzca, 16(4/5):517-5-22, 1996.

[70] Lcftcris M. Kirousis, Evangclos Kranakis, Danny Krizanc, a i d Andrzcj Prlc. P o w r
consumption in packet radio nctworks (cxtcndcd abstract). In Proc. 14th Syrnpos~~irn
on Theoretzcal Aspects of Computer Sczence (STACS), pagcs 363 374. 1997.

1711 Elias Koutsoupias, Marios Mavronicolas, and Paul G. Spirakis. Approxi~natr cquilihrin
and ball fusion. Theory of Computer Systems, 36:683-693, 2003.

[72] Elias Koutsoupias and Christos Papadimitriou. Worst-casc equilibria.. In PIDC 16th
Symposium on Theoretical Aspects of Computer Science (SE4CS), Lccturc Notes in
Computer Science, pages 404-413. Springer, 1999.

[73] Dariusz R. Kowalski and Andrzej Pelc. Deterministic broadcasting time ill radio
nctworks of unknown topology. In Proc 43rd Symposium on Foundations 0.f C!omputer
Science (FOCS), pages 63-72, 2002.

[74] Dariusz R. Kowalski and Andrzej Pclc. Broadcasting in undircctcd ad hoc radio
nctworks. In Proc 22nd ACM Symposium on Principles of Distributed Compulir~g
(PODC), pagcs 73-82, 2003.

BIBLIOGRAPHY 120

[75] Dariusz R. Kowalski and Andrzej Pclc. Faster deterministic broadcasting in ad boc
radio networks. In Proc 20th Symposzum on Theoretzcal Aspects of Con~puter SCZPTICP
(STA CS), pagcs 109-120, 2003.

[76] T.G. Kurtz. Strong approximation theorems for density dcpcndcnt markov chains.
Stochastic Processes and Applications, 6:223-240, 1978.

[77] Eyal Kushilcvitz and Yishay Mansour. An omega(log (/ d)) lower bound for broadcast
in radio networks. SIAM Journal on Computing, 27(3):702--712, 1998.

[78] F. T . Leighton, Bruce M. Maggs, Abhiram G. Ranadc, and Satish B. Hao. Randornizcd
routing and sorting on fixed-connection networks. Journal of Algorithrr~s, 17(1):157-
205, 1994.

[79] Frank Thomson Leighton, Brucc M. Maggs, and Satish Rao. Packet rolltirig arid
job-shop scheduling in ~(congcstion + dilation) stcps. Conlhznntor~rcl, l4(2) : 167 186.
1994.

[SO] Frank Thomson Leighton, Bruce M. Maggs, and A1idr6a I%-. Kicha. Fast algoritlii~i:, for
finding congestion + dilation) packet routing schedules. Combrnatorzca. 19(3):375
401. 1999.

[81] Richard J . Lipton, Evangelos Markakis, and Aranyak Mchta. Playing largc gamcs
using simplc strategics. In Proc 4th ACM Conference on Electronic Com,nrerce (EE),
pagcs 36-41, 2003.

[82] Ding Liu and Manoj Prabhakaran. On randomized broadcasting ant1 gossiping i11
radio nctworks. In Proc 8th International Computing and Comhinatorics Confererrre
(COCOON), pages 340-349, 2002.

[83] Linyuan Lu. The diamctcr of random massive graphs. In PTOC 12th ~ ~ ~ I L ~ ~ . ~ C M - S I A M
symposium on Discmte algorithms (SODA), pagcs 912-921, 2001.

[84] Michael Luby, Dana Randall, and Alistair R. Sinclair. Markov chain algorithir~s for
planar lattice structurcs. SIAM Journal on Computing. 31:167 192, 2001.

[85] Nancy Lynch. Distributed Algorithms. Morgan Kaufnian Publishcrs Inc.: 19%.

[86] Samuel Madden, Michael J . Franklin, Joscph M. Hellerstcin, and TVci Hong. Tag.:
A tiny aggrcgation service for ad-hoc sensor nctworks. In Proc 4th Syrnpo.si,irnr, orr
Operating Systems Design an,d Implementation (OSDI), pagcs 131~-146. 2002.

[87] Albert M. Marshall and Ingram Olkin. Inequalities, Theory of Majorzzation, and t t s
Applicutions. Academic Press, 1979.

[88] Michael Mitzcnmachcr. Load balancing and dcnsity dcpcndcnt jump rnarkov pro-

cesses. In Proc 37st IEEE Symposium on Foundations of Compater Srienre (FOGS),
pagcs 213-222, 1996.

BIBLIOGRAPHY 121

[89] Michael Mitzcnmacher. The power of two choiccs in randomizcd load balancing. Jour-
nal of Parallel and Distributed Systems, 12:1094-1104, 2001.

[go] hilichacl Mitzenmacher, Balaji Prabhakar, and Devavrat Shah. Load balancing with
mcrnory. In Proc 43rd IEEE Symposzum on Foundatzons of Computer Sc~cnct (POCS),
pagcs 799-808, 2002.

[91] Michacl Mitzcnmacher, Andrea W. Richa, and Ranicsh Sitaramnn. T h c power of
two random choiccs: A survey of technique and results. Handbook of Randonuzcd
Computing, 2000.

[92] Michacl Mitzcnmachcr and Eli Upfal. Probabzlity and Computmg. Cairibridgc Prcss,
2005.

[93] Prasant Mohapatra. Wormhole routing tcchniqucs for directly conncctcd rnulticom-
putcr systcms. ACM Computer Survey, 30(3):374-410, 1998.

[94] Ra,jccv Motwani and Probhakar Raghavan. Randomized Algorithms. Camhridgr Prrss.
1995.

[95] S. Muthukrishnan, Bhaskar Ghosh, and Martin H. Schultz. First- and sccund-or(lcr
diffusive methods for rapid, coarse, distributed load balancing. Th.cory of Computer
Systems, 4:331-354, 1998.

[96] S. Muthukrishnan and Gopal Pandurangan. Thc bin-covering tcchniquc for thrcsh-
olding random gcomctric graph propcrtics. In Proc. 16th ACM-SIAM sympos~iin~ or1
Dzscrete algorithms (SODA), pagcs 989-998, 2005.

[97] Christos Papadimitriou. Algorithms, gamcs, and thc intcrnct. In Proc YSrd ACAI
Symposium on Theory of computing (STOC), pagcs 749-753, 2001.

[98] David Pclcg and Eli Upfal. Thc token distribution problem. SIAM journal on. Corn-
puting, 2:229-243, 1989.

[99] Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divcrgcricc of markov cliaiiis
and thc analysis of iterative load balancing schcmcs. In Proc 39th IEEE Sympostrlrn
on Foundations of Computer Science (FOCS), pages 694-705, 1998.

[loo] Rajniohan Rajaraman. Topology control and routing in ad hoc nctworks: a snrvcy.
SIGA CT News, 33(2):60-73, 2002.

[loll Tim Roughgardcn. How unfair is optimal routing'? In Proc 13th ACA4-SIAM s!jrnpo-
sium on Discrete Algorithms (SODA), pagcs 203-204, 2002.

[lo21 Tim Roughgarden. Thc pricc of anarchy is independent of tlic network topology. 111
Proc 34th ACM Symposium on Theory of computing (STOC), pagcs 42-437. 2002.

BIBLIOGRAPHY 122

11031 Tim Roughgarden. Selfish muting. PhD thesis, Department of Computcr Scicncc,
Cornell University, 2002.

j104] Tim Roughgarden and ~ v a Tardos. How bad is selfish routing? ,Journal of AC'M,
49(2):236 -259, 2002.

[105] Pctcr Sanders. On the competitivc analysis of randomized static load balancing. 111
Proc. 1st Workshop on Randomized Parallel Algorithms (RANDOIL). 1996.

[106] Pctcr Sanders, Sebastian Egncr, and Jan Korst. Fast concurrciit acccss to pa.rallc1
disks. Algorithmica, 35(1):21-55, 2003.

[I071 Volkcr Stemann. Parallel balanced allocations. In Proc. 8th ACM Synrposzr~m o n
Parallelism in Algorithms and Architectures (SPAA), pagcs 261 269. 1996.

[I081 Raghu Subramanian and Isaac D. Schcrson. An analysis of diffusive load-balanciiig. 111
Proc. 6th ACM Symposium on Parallelism in Algorithms and Architectums (SPAA),
pagcs 220-225, 1994.

[LO91 Eli Upfal. Efficient schemes for parallel communication. Journal of ACM, 31(3):507-
517. 1984.

[I101 Adrian Vctta. Nash equilibria in competitivc socictics, with applications to facility
locat ion. traffic. routing and anctions. In Proc 43rd IEEE Symposzum on Foun datlons
of Computer Sczence (FOGS), pagcs 416-428, 2002.

[I l l] Bcrthold Vocking. How asymmetry helps load balancing. Journal of AC'hf. 50(4):568
589, 2003.

[112] Chcng-Zhong Xu, Burkhard Monicn, Rcinhard Liiling. and Fmncis C. 581. Lau. Ail
analytical comparison of nearest neighbor algorithms for load balaricing in parallel
computers. In Proc 9th International Parallel Processing Symposium (IPPS). pages
472-479, 1995.

[I131 Ying Xu. An ~ (n ' . ~) deterministic gossiping algorithm for radio networks. Algo~~th-
mica, 36(1):93-96, 2003.

