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Abstract 

In this thesis, we study distributed algorithms in the context of two fundamental problems 

in distributed systems, resource allocation and routing. Resource allocation studies how 

to distribute workload evenly to resources. We consider two different resource allocation 

models, the diffusive load balancing and the weighted balls-into-bins games. Routing studies 

how to deliver messages from source to destination efficiently. We design routing algorithms 

for broadcasting and gossiping in ad hoc networks. 

Diffusive load balancing studies how nodes with initial tasks in a network balance their 

loads concurrently with all their neighbours. We propose a novel analytical method to deal 

with the concurrent load balancing actions, which are the major obstacle for the analysis. 

The idea is to first sequentialize the concurrent load balancing actions, analyze this sequen- 

tial system instead, and then bound the gap between both. We analyze various diffusive 

load balancing algorithms using this idea. 

The weighted balls-into-bins game studies how to evenly allocate a set of independent 

weighted balls into a set of bins. In particular, we consider two different scenarios, the 

static sequential game and the selfish reallocation game. In the static sequential game, 

balls come one after another and need to be allocated in such order. We study how the 

outcome of the game, the expected maximum load of any bin, is influenced by the game 

parameters such as the distribution of ball weights and the order that balls are allocated. 

In the selfish reallocation game, every ball has its own initial location. An iterative, selfish 

distributed reallocation algorithm is applied to balance the workload. We show bounds for 

the convergence time of the algorithm, which is the number of steps to reach (or get close 

to) some equilibrium state. 

We study routing algorithms for broadcasting and gossiping in ad hoc networks. We 

consider the so-called "energy efficient" ad hoc network model. Our goal is to minimize 



not only broadcasting/gossiping time, but also energy consumption, which is measured 

by the total number of sent messages. We present and analyze several energy efficient 

broadcasting/gossiping algorithms for both random and general ad hoc networks. 
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"The important thing is not to stop questioning. Curiosity has its own reason for existing. " 

- Albert Einstein 
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Chapter 1 

Introduction 

A distributed system typically consists of a set of devices with limited computational power 

and restricted ability to communicate with its peers. The latter limits may include the num- 

ber of "reachable" peers, the interconnection structure itself, the communication bandwidth, 

where these and possibly other relevant parameters may even vary over time. The reader 

may think of these devices as processors, workstations, PCs, laptops, printers, wireless- 

enabled hand-held computers or even cellular phones, sensors, and so on. One crucial, 

defining feature of this kind of system that we are interested in, is the absence of any 

central instance that would take care of organizing any aspect of the system. 

In this thesis, we focus on one of the fundamental issues in the study of distributed 

systems, the design and analysis of distributed algorithms. The notion of a distributed 

algorithm, just as that for distributed systems, is overloaded with many meanings. We un- 

derstand it to be an algorithm that runs on a parallel and distributed system as described 

above. We will refer to the devices as nodes, hinting at the fact that the communica- 

tion structures of these systems are often modelled as graphs. We assume that when a 

distributed algorithm is performed, every participating node is running a copy of it concur- 

rently and independently. Since the nodes (or the algorithms running on them) typically 

have to operate on limited information - for instance, the number of participants, or pos- 

sibly information beyond what is known to direct neighbours may not be available - they 

will need to communicate in some way in order to coordinate their actions. 

Distributed algorithms have been widely used in distributed systems in a variety of ar- 

eas such as scientific computing, distributed information processing, telecommunication, and 

many more. For instance, modern parallel computers, sometimes consisting of thousands 



CHAPTER 1. INTRODUCTION 2 

of processors, run distributed algorithms to tackle scientific computing problems such as 

genome analysis. Today's airline companies, insurance agencies and banks build parallel file 

systems to ensure fast access of their customer information. Communication networks like 

the Internet or mobile ad hoc networks, need efficient communication protocols to enable 

users in different geographical areas to conveniently exchange information. All these appli- 

cations critically rely on distributed algorithms. In this thesis, we consider two problems 

fundamental to  distributed systems, resource allocation and routing. We focus on how to 

design and analyze distributed algorithms for these two problems. 

Resource Allocation. Resource allocation studies how to distribute workload to re- 

sources. It is one of the central problems in many distributed systems. For instance, resource 

allocation is critical for massive parallel computers to  achieve a high system throughput 

[46, 631. Resource allocation is also essential to minimize the response time of distributed 

file systems [105, 1041. Throughout the thesis we quantify work in terms of (not necessarily 

equal-sized) tasks. 

In the study of the resource allocation problem, we often use load vectors to represent 

the workload situation. The goal is to minimize some cost function that typically capture 

a notion of "balancedness" of the load vector. For different practical scenarios we can 

have different cost functions. For example, we can use cost functions that characterize the 

deviation between the maximum and the average loads [68, 13, 201, or the variance of the 

load vector [46, 31, 631, or the number of empty resources [21]. We can also distinguish 

between resource allocation models based on which party makes the resource allocation 

decisions. For instance, we can let the resources decide where the tasks should be located 

[46,31, 631, or let tasks decide which resources to choose [68, 13, 201. In particular, the tasks 

may be "selfish", in that they only try to optimize their own workload situations instead of 

the global workload situation [22, 59, 601. 

We study two resource allocation models, the neighbourhood load balancing and the 

balls-into-bins game. In the neighbourhood load balancing model [46, 31, 631, every node is 

initially assigned some arbitrary workload. In order to achieve a balanced workload (or to 

minimize the variance of the load vector), only the nodes connected by a link may exchange 

tasks. There are mainly two neighbourhood load balancing approaches, diffusion and di- 

mension exchange. In the diffusion approach, nodes can concurrently exchange tasks with 

all their neighbours, while in the dimension exchange approach, nodes can only exchange 
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tasks with one neighbour at a time. In the balls-into-bins game  [68, 13, 201, we are given a 

set of independent tasks. Every task runs a distributed algorithm to allocate itself to some 

resource so that (typically) the maximum load in any resource is minimized. In this model, 

every task is allowed to query a small set of nodes to get some partial load information, but 

it is not allowed to communicate with other tasks or nodes. 

Routing. Routing studies how to deliver messages from source to destination in a timely 

manner. It is also a central problem in distributed systems. Routing consists of two major 

tasks, path selection and scheduling. Path selection refers to selecting a path for each packet 

from its origin to its destination, while scheduling refers to arranging the movements of the 

packets along their paths to avoid contention. 

There have been a wide variety of routing algorithms for different networks. For routing 

in packet-switched networks like the Internet, data is usually split up into packets each of 

which is labeled with the complete destination address and is routed individually. The ob- 

jective is to deliver packets to the destination using as few steps as possible. For example, 

Leighton, Maggs and Richa [79] propose an algorithm that can route any set of packets c on 

any network in O(c + d) steps using constant-size queues, where c is the congestion of the 

paths, d is the length of the longest path. For routing in wireless ad hoc or sensor networks, 

since both the wireless channel and the power supply are scarce resources, algorithm design- 

ers must take these two issues into account. For instance, Chen, Low, Chiang and Doyle 

[34] propose a joint design of congestion control, path selection and scheduling for wireless 

ad hoc networks in order to use wireless channels more efficiently. Cartigny, Simplot and 

Stojmenovib 1331 study empirically how to achieve the minimum energy consumption for 

broadcasting in ad hoc networks. In this thesis, we focus on routing in ad hoc networks. 

This thesis studies distributed algorithms for both resource allocation and routing. For 

the resource allocation problem, we first analyze the diffusion model. We then study the 

weighted balls-intebins game, where every ball is associated with some weight. We also 

design efficient distributed routing algorithms for ad hoc networks. In the rest of this 

introductory chapter, we further describe the problems we consider in this thesis. Section 

1.1 and 1.2 introduce distributed load balancing and routing respectively. We summarize 

our contributions and give the thesis outline in Section 1.3. 



CHAPTER 1. INTRODUCTION 

1.1 Distributed Load Balancing 

As we discussed, resource allocation is a fundamental problem for many distributed systems. 

In the following we further introduce two load balancing models, the diflusive load balancing 

and the balls-into-bins games. 

Diffusive Load Balancing 

In the diffusive load balancing model, every node is initially associated with a certain number 

of tasks and the overall workload can be arbitrarily unbalanced. In order to achieve load 

balancing, the nodes with higher load can send some tasks over to those nodes with lower 

load. Moreover, the number of tasks in the system is time-invariant, i.e., neither do new 

tasks appear, nor do existing ones disappear. In the diffusive load balancing algorithms 

(e.g., [46, 31, 63, 231) it is assumed that all the nodes are connected by a network, and in 

each step only the neighbouring nodes can exchange tasks. Our goal is to distribute tasks as 

evenly as possible among nodes. We are particularly interested in the time it takes to reach 

(or come close to) the perfectly balanced state. Note that for diffusion protocols, nodes 

are allowed to transfer workload concurrently, which makes the analysis quite difficult. In 

Chapter 2, we propose a novel analytical technique to cope with this concurrency issue. 

Weighted Balls-into-bins Games 

In the balls-into-bins game [13, 20, go]), every task needs to allocate itself to some resource 

efficiently. To study this problem we often denote tasks as balls and resources as bins. 

In particular, we study the weighted balls-into-bins games, where the balls (tasks) are as- 

sociated with positive weights. In practice, the weight of a task represents the resource 

requirement of the task, i.e., memory or running time. 

We study two different variations of balls-into-bins games. We first consider the static 

sequential game, where we allocate a set of balls coming one after another sequentially. 

A well-known method is to let every ball choose d 2 1 bins uniformly at  random, and 

allocate itself into a bin with the minimum load. If d = 1, the game is called single-choice, 

otherwise multiple-choice. We ask the following two natural questions. How does the weight 

distribution affect the outcome of the game, and how does the order in which we allocate 

balls affect the outcome of the game? We propose an indirect approach, which compares 

an arbitrary weighted system with its uniform counterpart that only consists of unit-size 
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balls and has the same total weight as the weighted system. For the comparison, we use a 

majorization technique similar to [13]. 

We then study the so-called selfish reallocation game, a model that recently received 

much attention in the theory community. This problem models the selfish users' behaviors 

in applications in which users share common resources such as server bandwidth. In such 

applications, every user is selfish in that it only tries to optimize its own situation, i.e., 

the cost incurred by its host resource, without trying to optimize the global situation. To 

analyze this problem we again model the resources as bins and the users as balls. We assume 

that initially every ball is allocated to some arbitrary bin. Afterwards, every ball migrates 

to a different bin according to the following natural distributed reallocation protocol. In 

each step, every ball picks one bin uniformly at random. It then compares the load of its 

current host bin with the load of the randomly chosen bin. If the load difference is above a 

certain threshold then the ball will migrate to the destination bin with a certain probability. 

In this protocol, balls behave selfishly in that they only try to minimize the loads of their 

own bins. Note also that ball migrations happen in parallel. Using game theoretic notion, 

when all the balls stop moving, the system is said to be in some Nash equilibrium. We show 

upper and lower bounds for the convergence time, i.e., the number of steps for the system 

to reach (or get close to) one of the Nash equilibria. 

1.2 Routing in Ad Hoc Networks 

The second part of the thesis studies routing in ad hoc networks. Even though the routing 

problem appears very different from the resource allocation problem studied in the first 

part of the thesis, they both are fundamental mechanisms for distributed systems and their 

analytical techniques share many similarities. 

An ad hoc network is a communication network composed by a set of independent 

mobile devices connected through a wireless medium. The main advantage of ad hoc net- 

works is that they can be easily deployed since they do not need any (wired) infrastructure. 

This advantage makes ad hoc networks very useful in military environments, for example, 

building survivable radio communication networks in battlefields. Ad hoc networks are also 

widely used in civil applications such as disaster recovery, home networks and personal area 

networks [99]. 

We study how to design efficient routing algorithms for broadcasting and gossiping in 
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ad hoc networks. For the broadcasting problem, one node of the network needs to send a 

message to all other nodes in the network. For the gossiping problem, every node of the 

network needs to send a message to every other node. Due to the lack of fixed infrastructure, 

the broadcasting/gossiping algorithms running on ad hoc networks have to be carried out 

in a decentralized manner. 

In a well-accepted theoretical model of ad hoc networks, (e.g., [4l, 51, 55, 72, 112, 7, 73]), 

it is assumed that every device has a fixed communication range and it can reach all the de- 

vices within that range. It is also assumed that there is only one communication channel, so 

that if there is more than one device transmitting at the same time, their messages "collide" 

and need to be resent. In this model, the goal is to minimize the broadcasting/gossiping 

time, that is, the number of time steps to achieve broadcasting/gossiping. In practice, since 

the mobile devices tend to be small and have only limited power supply, energy efficiency 

is another important issue for communication in ad hoc networks (e.g., 166, 851). Thus, 

in Chapter 4, we propose a novel energy efficient model for ad hoc networks. Under this 

model, we propose and analyze several efficient broadcasting and gossiping algorithms that 

achieve the the minimum energy consumption, where the energy consumption is measured 

in terms of the number of messages (or transmissions) sent by each node. 

1.3 Contributions and Organization 

To summarize, this thesis makes the following contributions. 

0 In Chapter 2, we propose a novel analytical method for the diffusion model. The 

key idea is to sequentialize the concurrent load balancing actions and analyze this 

new sequentialized system, and then to  bound the gap between both systems. We 

demonstrate the usefulness of this approach by analyzing various natural diffusion- 

type algorithms. Our results are similar to, or better than previously existing ones, 

while our proofs are significantly easier. 

0 Chapter 3 considers two different scenarios of the weighted balls-intebins games. For 

the static sequential game, we study how the weight distribution, or the order to  a l le  

cate balls, influence the outcomes of the game, in particular, the expected maximum 

load. First, using a majorization approach, we show that for the single-choice game, 

a more balanced weight distribution always yields a smaller expected maximum load. 
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We then show that the same argument does not hold in the multiple-choice game when 

we have large number of balls. Finally, we study how the order to allocate balls affects 

the expected maximum load. 

For the selfish reallocation game, we prove upper and lower bounds for the convergence 

time, i.e., the number of steps for the system to converge (or get close) to some Nash 

equilibrium. For a system with m balls and n bins, we show an upper bound of 

0(mnA3cP2) for the convergence time, where A is the maximum weight of tasks. Our 

analysis is based on the potential function technique. In addition, we prove a lower 

bound of R(mA/e) for the convergence time. Next, we apply our technique to the 

uniform case and show that our algorithm converges to the (real) Nash equilibrium 

in O(1ogm + nlogn)  steps w.h.p. We then combine our protocol and the protocol in 

[22] to obtain a O(1og log m + n log n)  convergence time w.h.p. Finally, we show the 

tightness of this result by proving a matching lower bound. 

0 In Chapter 4, we study radio broadcasting and gossiping algorithms in ad hoc net- 

works. We propose a new energy ef icient  communication model, in which the en- 

ergy consumption of an algorithm is measured in terms of the total number of mes- 

sages (or transmissions) sent. We consider both random and general networks. For 

random networks, we propose a O(1ogn) broadcasting algorithm where every node 

transmits at most once and a O(d log n)  gossiping algorithm using O(1og n) messages 

per node. For general networks with known diameter D ,  we present a randomized 

broadcasting algorithm with optimal broadcasting time O(D log(n/D) + log2 n)  that 

uses 0(log2 n /  log(n/D)) transmissions per node in expectation. Our lower bound 

a(log2 n/log(n/D)) on the number of transmissions matches our upper bound for 

time-invariant distributions. We also demonstrate a tradeoff between these two objec- 

tives. 



Chapter 2 

Diffusive Load Balancing 

In this chapter we focus on an important resource allocation model named the diffusive load 

balancing. We are given a network where nodes represent processing units, edges represent 

communication links. Initially, each node is associated with an arbitrary number of tasks. 

Then in each time step, the neighbouring nodes are allowed to concurrently exchange certain 

amount of tasks to  achieve load balancing. 

We propose a new proof technique to analyze the above procedure. The technique is 

designed to handle concurrent load balancing actions, which are often the main obstacle for 

the analysis. We demonstrate the usefulness of this technique by analyzing various natural 

diffusion algorithms. Our results are similar to, or better than, previously existing ones, 

while our proofs are significantly simpler. The key idea of our proof technique is to first 

sequentialize the original concurrent load transfers, analyze this new sequential system, and 

then to bound the gap between both the concurrent and sequential systems. 

2.1 Introduction 

A well-known model of resource allocation model is the neighbourhood load balancing prob- 

lem. We have a set of identical nodes (processors) that are connected by a network. Initially, 

every node is associated with some number of tasks. The number of tasks in the system is 

time-invariant, i.e., neither do new tasks appear, nor do existing tasks disappear. In each 

step, only the neighbouring nodes (nodes connected by an edge) are allowed to  exchange 

certain number of tasks to  balance their loads. The goal is to distribute tasks as evenly as 

possible among nodes using minimum number of steps. In the following, the load of a node 
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at  time t is defined as the number of tasks on that node at  that time. 

Neighbourhood load balancing approaches can be classified in many ways. We can distin- 

guish between the diffusion and dimension exchange approaches. For diffusion approaches, 

each node is allowed to balance their loads concurrently with all its neighbours. For dimen- 

sion exchange approaches, each node can only communicate with one of its neighbours. The 

neighbour can be chosen either in a round-robin fashion[46], or by randomly generating a 

matching of the underlying network at every time step [63]. We can also distinguish between 

discrete and continuous approaches. For discrete approaches, tasks can not split and nodes 

are only allowed to exchange integer number of tasks. For continuous approaches, tasks can 

be split into arbitrarily small pieces and nodes are allowed to  exchange fractional amount 

of tasks. 

So far, the analysis techniques for diffusion and dimension exchange approaches are quite 

different. The common technique to analyze dimension exchange approaches is the potential 

function technique 146, 63, 62, 941. In this technique, first, we choose a suitable potential 

function to measure the distance between a particular system state and the perfectly bal- 

anced state. We then show that the potential always decreases by a certain amount in every 

time step. However, it is challenging to use this technique for diffusion-type algorithms (see 

162, 941). The major challenge is that in the diffusion approaches, loads can be transferred 

concurrently so that the load situation could change drastically in one step. This makes 

it difficult to apply the potential function technique to analyze diffusion approaches. So 

far the common technique to analyze diffusion approaches is the algebraic technique (see 

[46, 107, 94]), which only works for the continuous case. See Section 2.2 for an overview. 

In this work we propose a simple potential function technique to analyze diffusion load 

balancing approaches. The idea is as follows. First, we LLsequentialize" the concurrent load 

balancing actions of the diffusion approach to get a sequential system. The technique to 

sequentialize the concurrent load balancing actions will be explained later in Section 2.4. 

Since there is no concurrent load balancing action, the sequential system can be easily 

analyzed using existing ideas, e.g., the one from [63]. We then use the potential drop in 

the sequential system to lower bound the potential drop in the original concurrent system. 

In more detail, we show that under certain conditions, the potential drops in both the 

sequentialized and concurrent systems at  most differ by a constant factor. 

We use this technique to analyze the standard diffusion algorithm in the continuous and 

discrete cases. Then we apply our technique to get results for the dynamic model of [58], 
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where the network can change over time, for both cases. Finally, other than the traditional 

neighbourhood load balancing approaches, we also consider a randomized approach which 

allows nodes to randomly choose their load balancing partners among the set of all other 

nodes. Note that in this setting, a node can easily be forced to balance its load with many 

other nodes, so that many concurrent load balancing actions will take place. Note also that 

this setting can be regarded as neighbourhood load balancing where the network topology 

is randomly chosen and changes from step to step. We call such a network random in the 

following. 

We organize the rest of this chapter as follows. We review related work in Section 2.2. 

Section 2.3 consists of our model and new results. Section 2.4, 2.5 and 2.6 study the diffusion 

approaches on fixed network, dynamic network and random network. Finally we conclude 

in Section 2.7. 

2.2 Related Work 

In this section we review related work. We discuss both continuous and discrete load bal- 

ancing approaches. 

2.2.1 Continuous Load Balancing 

Continuous load balancing is the "ideal" case in which tasks can be split arbitrarily. Hence 

it is possible to balance the workload perfectly. In the following we review diffusion and 

dimension exchange approaches. 

Diffusion. Cybenko [46] and, independently, Boillat [31], are the first to study the diffu- 

sion approaches. In the diffusion model of Cybenko, the load distribution at time step t is 

quantified by an n vector, Lt = (ti,. . . , ek), where is the load of node i at time t 2 0. 

In each round t ,  node i and node j compare their load. If e; > ef, node j sends a E .  - (E 2 )  

tasks to node i. a is called the diflusion factor and is set to 1/(6 + l), where 6 is the 

maximum degree of the network. We can write Lt+' = M - Lt, where M = (mij) is a matrix 

defined as 
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M is commonly referred to as diffusion matrix. Cybenko [46] (see also [107, 941) shows 

a tight connection between the convergence rate of his diffusion algorithm and the second 

largest eigenvalue of M. Let e = Cr=, t:/n be the average load and let b = (e, . . . , ?) 
be the balanced distribution. For each t 2 0, define the error e(t) to be dt) - b. Let 

-1 5 p1 5 p2 2 . . . 5 p, = 1 be the set of eigenvalues of M and denote y = maxpi+l {[pi / )  

to  be the second largest eigenvalue of M. Let I le(t) 1 12 be the t2 norm of the error vector e(t). 

It can be shown that 1 le(t+l) 1 12 = I I M . e(t) 1 12 I y . 1 le(t) 1 12, which implies 

Subramanian and Scherson [I071 observe similar relations between convergence time and 

the properties of the underlying network. F'rom Equation (2.1), they obtain the following 

bound on the convergence time T: 

and 

where n is the size of the network, a is the standard deviation of the initial load distri- 

bution. I? and A are the network's electrical and fluid conductance. 

Muthukrishnan, Ghosh and Schultz [94] refer to the above diffusion model as the first 

order scheme and further generalize it to the so called second order scheme, where 

with 0 5 ,f3 5 1 a constant. Lt relates not only to Lt-' but also to LtP2, hence the name 

second order. They show that the second order scheme converges much faster than the first 

order scheme for suitably chosen values of p. Diekmann, F'rommer and Monien [54] extend 

the idea of [94] and propose a general framework to  analyze the convergence behavior of a 

wide range of diffusion-type approaches. They introduce the so called Optimal Polynomial 

Scheme (OPS), which can determine an optimal balancing flow within m steps, where m is 

the number of distinct eigenvalues of the graph. 

In [58] Elskisser, Monien and Schamberger analyze the diffusion algorithm for dynami- 

cally changing networks. The results are stated in Theorem 2.5.1. The proof technique is 

similar to the one in [54]. 
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Dimension Exchange 

In [46], Cybenko also investigates the following dimension exchange approach on a hypercube 

topology. In each round, a single dimension is taken and for every edge on that dimension, 

the algorithm equalizes the workloads of the nodes on both sides of the edge. It is shown 

that a sweep of all dimensions can actually balance the load globally; in fact, after d sweeps 

the system potential would be about e-2 (z 118) of the initial potential, d is the dimension 

of the hypercube. 

In [63], Ghosh and Muthukrishnan study the dimension exchange approach for an ar- 

bitrary network G. To avoid concurrent load balancing actions they randomly generate a 

matching Mt in every round t .  The nodes of the matching are then allowed to  balance their 

load by exchanging half the load difference between every pair. Their proof uses a standard 

potential function argument. They first show that the probability for an edge to be included 

in the matching Mt is at least 1/86, where 6 is the maximum degree of the network. Next, 

they estimate the expected potential drop by summing over all edges. They show that in 

each round the expected drop of 4 is at least X2/166. Here, X2 is defined as the second 

smallest eigenvalue of the Laplacian matrix of G. The Laplacian matrix of G is defined as 

L = D - A, with A denoting the adjacency matrix of G and D = (dij) with dij = 0 if i # j 
and dii the degree of node i. 

2.2.2 Discrete Load Balancing 

Discrete load balancing, in which only integer tasks are allowed to be transferred, is a 

more realistic model than continuous load balancing. In this case the system can not be 

completely balanced. To see that consider the line graph as a network where the load of 

node i is simply i. The load is certainly not totally balanced but no neighbouring pair of 

nodes would balance their load. Unfortunately, discrete load balancing can not be analyzed 

using the algebraic technique of [46]. 

Quite often, the continuous model is used to bound the convergence time of discrete load 

balancing. Since the approximation error is mainly caused by rounding, it is not significant 

when the system is far from the balanced state (see [63, 941). For the discrete version of 

their random matching based algorithm, by carefully calculating how much error can be 

introduced by rounding, Ghosh and Muthukrishnan [63] prove that, as long as 4 2 26n/X2, 

the rounding can at most slow down the convergence time by a factor of two. 
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Besides, using the same rounding technique as above, Muthukrishnan, Ghosh and Schultz 

[94] show that in the case of the discrete version of their first order scheme, the initial 

potential cpo can be reduced to 0(cY2n2/e2) in 0 (log cpo/( l  - (1 + c)y2)) steps. 

Rabani, Sinclair and Wanka [98] propose a more general technique to study the discrete 

load balancing. Their idea is to approximate the discrete system by idealized Markov 

chains. Let M be the diffusion matrix of a diffusion algorithm, and let y, p = 1 - lyl be 

the second largest eigenvalue and the eigenvalue gap of M ,  respectively. Furthermore, let 

K = maxi,j{lei - ejl) be the discrepancy of the initial load vector e. They show for the 

rounds are sufficient to reduce the discrepancy to x. Next, to quantify the deviation of 

the actual load and the distribution generated by the Markov chain, they propose to use 

a natural quantity, the local divergence Q, which is the sum of load differences of the two 

systems across all edges of the network, aggregating over time. They obtain the following 

bound for @: @(M) = O(6 log NIP) .  Finally, applying the knowledge of the second largest 

eigenvalue and combining this with Equation 2.2, they get fairly tight convergence results 

for various network topologies, e.g., line graph, de Bruijn network, degree-d expander etc. 

In [57], ElsGser and Monien show that after applying the first order scheme for Ic = 

O(d log(Kn)/X2) steps, the error in e2 norm I le(lc) 1 l z  can be reduced to O(nd2/X2), where 

K be the initial discrepancy (defined as above). Using a Markov chain based approach, 

ElsGser and Monien [57] propose a new discrete diffusion scheme which is fully randomized 

and distributed. Let 6 be the maximum degree of the underlying graph. They show that, 

after 0 d( log  n log log n + log K)) steps, the algorithm can reduce the error bound 1 le(k) 1 j 2  ( 
to O(&L) .  

All the results above assume a fixed network. Recently, Elsasser, Monien and Scham- 

berger [58] generalize the diffusion scheme to allowing dynamic networks. Let Ak be the 

average value of the ratio between the second smallest eigenvalue and the maximum degree 

during the first K iterations. They propose a diffusion algorithm that needs at most K 

steps to reduce the system potential from @ ( L )  to c@(L), where K = O(ln(l/c)/AK). 
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2.3 Model and New Results 

We have n identical nodes that are connected by a network with maximum degree 6. Nodes 

are allowed to  communicate with each other only if they are connected by an edge. Initially, 

each node stores some number of tasks. The total number of tasks is time-invariant, i.e., 

neither do new tasks appear, nor do existing ones disappear. The objective is to  distribute 

the tasks as evenly as possible among the nodes whilst minimizing the number of load 

balancing steps. 

The load of a node a t  time t is the number of tasks the node stores at  that time. At each 

time step, every node compares its current load with the load of a subset of its neighbours, 

possibly with all of them. If the load of the node exceeds the load of such a neighbour by 

a certain amount, then it sends a certain number of tasks to that neighbour. Clearly, it 

will take a "long" time until the system is balanced if the number of tasks sent is "small" 

compared to  the load difference. On the other hand, if this amount is too big, then load 

might bounce back and forth. To prevent that, the amount of load that a node is allowed 

to  forward to a neighbour is typically upper bounded by a function of the difference d and 

the maximum degree, 6, e.g., d l (6  + 1). 

Our main contribution is a new proof technique which can be used to  analyze many 

diffusion-type load balancing algorithms, where the concurrent load balancing actions are 

the main challenge to the analysis. We demonstrate that our approach can be used to  

analyze the (continuous and discrete) diffusive load balancing in a variety of underlying 

network models. 

The key idea is to  first sequentialize the concurrent actions in a diffusion algorithm, and 

then study how much the concurrency can degrade the algorithm performance. We show 

that under certain conditions, the potential drops of both the sequentialized system and 

the concurrent system differ by a constant factor only. Hence, one can simply "neglect" the 

concurrency, and the remaining analysis can be easily done using existing techniques like 

the one in 1631. To illustrate how the idea works, we first analyze Algorithm 1, a classic 

diffusion algorithm similar to the ones studied in [46, 107, 941. Next, we consider Algorithm 

2, which allows every node to randomly find its balancing partner. We again analyze it 

using the same proof idea; this shows that our technique is quite general. 

Specifically, Section 2.4 analyzes a diffusion algorithm (Algorithm 1) with concurrent 

load balancing actions. For the proof, we use a standard potential function (similar to 
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the ones defined in [46, 63, 94, 1071). We can show that at each step, the potential drop of 

Algorithm 1 is at least some constant (0.5) times that of the corresponding sequentialized 

algorithm. In other words, the concurrency can degrade our algorithm performance by at  

most a factor of two. Finally, we adopt the proof idea in [63] to analyze the sequentialized 

algorithm so as to obtain the main convergence result (Theorem 2.4.4) for Algorithm 1. 

Note that most existing results for diffusion algorithms consider the corresponding dif- 

fusion matrix of the network (see [31, 46, 107, 94]), while our result is expressed in terms of 

network parameters (e.g., the second-smallest eigenvalue of the Laplacian matrix, the maxi- 

mum degree). Moreover, our approach is much simpler. Furthermore, due to the concurrent 

load balancing actions, our algorithm converges a constant times faster than the dimension 

exchange algorithm in 1631. 

Next, we analyze the discrete version of Algorithm 1 and obtain similar results to  the 

ones in [63, 941. We prove that as long as the potential is larger than a certain threshold 

(i.e., the system is "far" from the well-balanced state), the discrete case has similar con- 

vergence behavior to  the continuous case. For the same discrete diffusion algorithm, our 

result (Theorem 2.4.6) is stronger than the one in [94], as it only requires the potential to be 

larger than a term linear in n instead of quadratic. Furthermore, compared to the discrete 

dimension exchange algorithm in [63], our algorithm is still a constant times faster. 

In Section 2.5 we use our proof technique to get similar results to  the ones in [58] for a 

dynamic network model where the active edges can change from round to round. In contrast 

to  [58], we get also results for the discrete load balancing model. 

In Section 2.6, we analyze Algorithm 2, which allows nodes to randomly choose balancing 

partners. Note that Algorithm 2 also contains concurrent load balancing actions since a 

node may have been chosen by many other nodes. Using the same proof idea to handle 

the concurrency, one can show that Algorithm 2 also converges quickly, as in each round 

the system potential drops by at least a constant factor in expectation. This implies that 

Algorithm 2 has a strict logarithmic convergence time which does not rely on any network 

parameters. Note that our results for this model are stronger than the ones that we would 

get by simply applying our results for the dynamic model. To our best knowledge this is 

the first time that the diffusion scheme is analyzed in a model where nodes are allowed to  

randomly choose balancing partners. 
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2.4 Diffusion on Fixed Networks 

In this section we present our results in the standard diffusion model for arbitrary networks. 

Section 2.4.1 deals with the continuous case, where tasks can be arbitrarily split. In section 

2.4.2 we show how to use our technique to obtain results for the discrete case. 

2.4.1 Continuous Case 

First we need some notation. G = (V, E )  is the underlying network. Let {el, ez, . . . e l E l )  be 

the set of edges of G. For each node i E V, let di be the degree of i ,  and let 6 = m a x i ~ v  di. 

a = min . is the edge expansion of G, with 3 = V/S, and E(s,S) the set of edges 
S C V  mln(lSI?ISI) 

with one endpoint in S and the other endpoint in 3. Furthermore, let N(i)  = {j E Vl(i, j) E 

E} denote the set of all neighbours of node i. Let e: be the load of node i at the end of 

Round t. Whenever clear from the context we will simply write ti in the following. Then 

the vector L = {el,. . . ,en) represents the entire load distribution. Now we are ready to  

define our load balancing algorithm. 

Algorithm 1 The diffusion algorithm on graph G 

1: for every node i E V in parallel do 
2: for any j E N(i)  do 
3: if ti > ej then 
4: send & load from node i to  j 

Similar to  the result in [63], Theorem 2.4.4 (presented below) is a function of the edge 

expansion value and the maximum degree of G. Let 0 = X1 < X2 5 . . . 5 An be the eigenval- 

ues of the Laplacian matrix of G (for the definition of Laplacian matrix, see Section 2.2.1). 

Let Lt = {t:, . . . ,ek), t 2 0 be the load vector after t balancing steps and ? = Cy=l l i / n  

the average load. In the following we will assume that all load vectors are normalized, i.e., 

ei 5 5 . . . 5 ek. To analyze the algorithm, we will use the following potential function 

Hence, @(Lt-') - @(Lt) is the potential drop in Round t. 
lef-l-et.-'1 

We assign a weight wij = 4max(d(' -) to each edge e = (i, j )  in every round. The weight 
2 7  3 

w, is the load that will be transferred over e = (i, j )  in Round t. Let Et = {e:, e:, . . . .IEI} 
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be the set of edges sorted in increasing order of their weights. For the sake of the analysis, 

we now assume the edges are activated one by one starting with the edge ei with the 

smallest weight. Then we can define Ltjk = ((I?', . . . , G k )  to  be the load vector right after 

the activation of the first k edges etl, . .  . etk in Round t (applied to  the load distribution 

Lt-I). A@: is the potential drop due to  the activation of edge ee in Round t. Since 

Lt can be obtained from L~- '  by activating all edges in E one after another, we have 
- = C q = ( i , j ) E ~  A@:. The next lemma gives a lower bound for the potential 

drop due to a single edge activation. 

Lemma 2.4.1 Fix a round t. For all edges ee = (i, j )  E E we have 

Proof. Assume > Pi. Since all edges are activated in increasing order of their weights, 

the amount of load that node i can send to  any other neighbour in Round t before the 

activation of ek, is at most 
lei-' - (I$-1 1 

w.. = 
" 4max{di,dj)' 

le;-l-e?-ll 
node i has at most di - 1 additional neighbours, hence it can send at  most (di - 1).  mm{d:,d,l 

load to other neighbours before the activation of edge (i, j ) .  Consequently, 

l e t - l - g t - l ~  
Similarly, node j receives at most (dj - 1) . before the activation of edge (i, j ) .  

Hence, 
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Consequently, 

t,k-1 The second equation is due to ti + t>k-l = el1* + ti:k. The first inequality is due to 

Inequalities 2.3 and 2.4. 0 

Now it is straightforward to  lower bound the potential decrease in a whole round. 

Lemma 2.4.2 @(Lt-l)  - O(Lt)  2 & C ( t 2 - I  - t ; - l ) 2  
( i , j ) € E  

Proof. 

We shall use the following lemma from [63]. 

Lemma 2.4.3 (Fact 2 from [63].) 

Let C be the Laplacian Matrix of our network, x' be the transpose of vector x and 

v1 = (1 ,1 , .  . . , I ) ' .  We have 

where x I vl means that x is orthogonal to vl .  
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Proof. Application of the the Courant-Fischer Minimax Theorem, see [63] for the full proof. 

0 

I t  is now easy to derive the following theorem. 

46 In(l/c) Theorem 2.4.4 For any E > 0, after T = 7 steps, we have @(LT) 5 c .  @(L). 

a L t l a L t .  The idea is similar to [63]. Proof. Fix a round t. First we lower bound 
a(Lt) - 

Define x to be a vector of length n with xi = I:-l - t. Note that Cy=l xi = 0, and that x 

is orthogonal to vl = (1,1, .  . . , I ) ~ .  Hence, 

c - e;-l)2 
@ ( ~ ~ - l )  - @ ( L ~ )  ( i , dEE  

2 (By Lemma 2.4.2) @(Lt-l) 46. C;=l x; 

x' Lx 
n 

- - i (- 1 C x i = o , x # o  
46 x'x 

i= 1 

- - A2 - 
46' 

(By Lemma 2.4.3) (2.5) 

Hence, the potential drops by a constant factor in every round and we obtain 

where the second inequality is due to YO < a < 1, (1 - a)lla < l/e. 0 

2.4.2 Discrete Case 

In this section we analyze the discrete version of Algorithm 1 under the assumption that 

only integral amounts of tasks can be transferred. This means that for each edge (i, j ) ,  we 
lei-e, I 

transfer 14 max{d,,di] 1 tasks. Theorem 2.4.6 gives an upper bound for the balancing time for 
the discrete process. Note that it is no longer possible to  balance the workload completely. 

Compared to the continuous version of the protocol, it takes longer for the discrete protocol 

to  converge against a "nearly balanced state", but the difference is only a multiplicative 

constant. 
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Proof. 

The first inequality is due to Lemma 2.4.2. The fourth inequality follows from CyLl o, < 

d m .  To show the last inequality, by Lemma 2.4.3, wc get CR,J)EE ( ( I : '  - 2 

A ~ @ ( L " )  2 6 4 d 3 ,  hence Jn6 C(t,3)tE (I:-' - < & C(I,3)Et (eF-1 - - n 

A Q(L) 

Theorem 2.4.6 After T = 
A2 

646%ls 861n(*) steps, ~ ( L T )  < 7.. 

Proof. By Lemma 2.4.5, in each round the potcntial drops by a constant factor. as 1or:g as 
86 h(*) 

@(L') 2 9. Hence, after T = 
A2 

steps, we have 

again, the second inequality is due to VO < x  < 1, (1  - x)"" < l / e .  Yl 

R~mccrk. Theorem 2.4.6 is stronger than Theorcm 4 of [95] (see bclow). sincc wc only rcquirc 

the potential to be linear in n, while Theorem 4 of [95] requires the potcntial to hc at lcast 
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quadratic in n. Moreover, it is interesting to compare Theorem 2.4.6 with Theorem 4 in 

[57] .  Theorem 2.4.6 indicates that the system potential @ ( L ~ )  can be reduced to 0(d3n/X2) 

after T steps. This is somewhat weaker than Theorem 4 in [57] which shows that the error 

bound (leTJI2 can be reduced to O ( 6 )  (Note that by definition @ ( L ~ )  = ()leT112)2). Yet, 

the convergence time bound of Theorem 2.4.6 is smaller than which of Theorem 4 in [57] 

(Note that log(@(L)) = O(1og K + log n) with K defined below). Moreover, Theorem 2.4.6 

is for the general first order scheme (FOS) while Theorem 4 in [57] is for a specific algorithm 

that belongs to the second order scheme (SOS). 

Theorem 2.4.7 (Theorem 4 from [g4].) For any E < 1, the discrete first order scheme 

reduces the potential t o  0 (q) in 0 ( )  steps, where y i s  the second largest 

eigenvalue of the network. 

Theorem 2.4.8 (Theorem 4 from [57].) Let G = (V, E) be a graph, let 6 be the m a x i m u m  

vertex degree in G and let X2 be the second smallest eigenvalue of the Laplacian of G. 

Furthermore, let w0 be the initial load o n  G and K = maxi {w: - m) the  m a x i m u m  load 

imbalance. If 2 32(n + 1) In n, then  the randomized algorithm reduces the error I leT 1 l 2  t o  

O(+) with probability 1 - o(l /n)  in 

K + log n log log n) 

iteration steps. 

2.5 Diffusion on Dynamic Networks 

In [58], Elsiisser, Monien and Schamberger consider the diffusion process on dynamic net- 

works, in which the set of nodes is fixed, but the set of of communication edges may vary 

from round to  round. They assume that every node knows the edges that are active in a 

certain time step. The network can now be described by a sequence of "standard" graphs 

(Gk)k>O, - where Gk is the underlying network at time step k .  In this section we show how 

to use our analysis approach to get results for their network model. Similar to Section 2.4, 

we differentiate the continuous and the discrete cases. 
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2.5.1 Continuous Case 

For the continuous case, Elsiisser, Monien and Schamberger prove the following theorem. 

We can show exactly the same result for Algorithm 1 with our proof technique. In fact, 

Theorem 2.5.1 can be easily derived by Theorem 2.4.4. 

Theorem 2.5.1 (Theorem 1 from [58]). Denote A?) and dk) to  be the second smallest 
xf=l ( A T ) / 6 ( k ) )  

eigenvalue and the maximum degree of Gk respectively. Let AK = K be the 

average value of A P ) / d k )  occurring during the first K iterations. Algorithm 1 needs at most 

K steps to reduce the system potential from b(L) to  rb(L) ,  where K = 0 (y). 
Proof. Let L~ be the load vector after K rounds of applying the discrete version of Algo- 

? ) / 6 ( k )  

rithm 1 on (Gk)k>O. - Recall that AK = w. K Then, for K > T, it is true 

that 

Here the first equation is due to Equation 2.5 of Theorem 2.4.4, the first inequality holds 

because QO < x < 1, 1 - x  < e-". 0 

2.5.2 Discrete Case 

For the discrete case, we combine Theorem 2.5.1 and Lemma 2.4.5 and obtain the following 

theorem for the discrete version of Algorithm 1. 

Theorem 2.5.2 Let A?), dk), AK be defined as above. The discrete version of Algorithm 1 

needs at most K steps t o  reduce the system potential to  

b* = 64n m L  ( (6~))  /A?)) ,  where K = 0 
k=l 

Similar to Lemma 2.4.5, we can show that whenever the potential is larger than @* 

defined above, the potential drops at least by a factor of $)/(86(*)) in iteration k. The 

rest proof is similar to  Theorem 2.5.1, we omit the details. 
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2.6 Randomly Choosing Balancing Partners 

In this section, we consider an alternative load balancing approach (Algorithm 2) which 

allows nodes to  randomly choose their balancing partners. The algorithm proceeds in the 

following fashion: in each round, first every node randomly picks a balancing partner; later, 

load is transferred concurrently between the corresponding balancing partners. Note that 

unlike Algorithm 1, Algorithm 2 does not specify the underlying network topology. Using 

our analyzing technique to  handle the concurrency, we can show that in each round, the 

system potential drops by at least a constant factor. This implies that Algorithm 2 has a 

strict logarithmic convergence time. Again, we first show results for the continuous case, 

and then for the discrete case. 

2.6.1 Continuous Case 

We denote by E the set of links whose endpoints are balancing partners, i.e., if node i 

chooses node j as balancing partner, we create a link (i, j )  and add it to  E. Moreover, let 

ti, d(i) be the load and the number of balancing partners of node i. Our algorithm is as 

follows: 

Algorithm 2 The diffusion algorithm that allows randomly picking balancing partners 

1: E=O 
2: for every node i E V do in parallel do 
3: pick j E V uniformly at random 
4: E t E U (2, j) 
5: for every node i E V do in parallel do 
6: for every j such that (i, j) E E do 
7: if ti > tj then 
8: send & tasks from node i to  j 

Below we analyze Algorithm 2. First note that by the classic result of balls-into-bins 

games (see, for example, [13]), there is at least one vertex having 0 balancing ( ) 
partners, with high probability. Consequently, one can not simply use the result in Section 

2.4, which is in terms of the maximum degree of the underlying network. Instead, we prove 

the following result, which indicates that for a given link, it is unlikely for both sides of the 

link to have more than a constant number of balancing partners. 

Lemma 2.6.1 For a fixed link (i, j )  E E, Pr[max{di, dj) 5 5 1 (i, j )  E El > 0.5. 
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Proof. By symmetry, we can assume that link (i, j) is built by node i. In this case, 

among the remaining n - 1 nodes, there must be di - 1 nodes which choose i as their 

balancing partner. Since the probability for every node to choose i is l l n ,  we have di 

1 + B(n  - 1, l l n ) ,  where B(n,p)  is the binomial distribution. Next we consider node j .  

Note that node j has already connected to two links: (i, j )  and another one that node 

j builds. Hence dj N 2 + B(n - 2, l l n )  by similar reason as above. Next, we calculate 

Pr[di > 5 1 (i, j) E El. 

Pr[di > 5 1 (i, j) E E] = Pr[B(n - 1, l l n )  > 41 = Pr[B(n - 1 , l l n )  L 51 

4 
Similarly, we can prove that Pr[dj > 5 1 (i, j) E El < ( z )  < 0.25. Using Pr[A or B] 5 

Pr[A] + Pr[B], the following holds. 

Pr[max{di,dj} 5 51 (i, j) E E] = 1 - Pr[di > 5 or dj > 51 (i, j) E E] 

> 1 - (Pr[di > 5 / (i, j )  E E] + Pr[dj > 5 ( (i, j) E E] ) 

> 1 - (0.05 + 0.25) > 0.5. 

Before we prove Lemma 2.6.3, we show the following result indicating that the potential 

drop at some step t is a constant times of the current system potential. 

Lemma 2.6.2 xa, xy=, (el - ti)' = 2n - @ ( L ~ ) .  

Proof. Let yi = lei -el, and denote A (or B) to be the set of indices i for which 5 e (or 

> 2 resp.). First observe that 

and 
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Similar to (2.7), we get 

By Equations 2.6, 2.7, 2.8 and 2.9, we have: 

Here the third equation holds since C yi = C y j .  The last equation is true due to IAl + 
iEA jEB 

IBI = n and @ ( L t )  = C y: + C y;. 0 
iE A jEB 

Now we are ready to prove the following lemma. 

Lemma 2.6.3 E[(r(Lt+' 1 Lt = L ) ]  5 E ( r ( L ) .  
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Proof. 

n n 

E [ @ ( L ~ + ' ) ~ L ~  = L] = @(L) - C, x (Pr[ec = (i, j )  E El A@c(L)) 
i=1 j=1 

Here, the first inequality is from Lemma 2.4.1. The third equation is due to Lemma 2.6.1. 

The last equation holds by Lemma 2.6.2. 0 

Finally, we prove the following convergence theorem. 

Theorem 2.6.4 For c > 0, after T > 120cln @(L) rounds, pr[@(LT) < ePC] 2 1 - 

@ (L) -44. 

Proof. For any t > 0, by linearity of expectation, we can iteratively use Lemma 2.6.3 to  

obtain 

By Markov inequality, PK-[@(L~+~O) < @(Lt)/2] 2 112. Denote a stage to be 30 rounds. For 

any c > 0, let k = 41og @(L). For stage 0 5 i < k, let Xi be a random variable defined as 

follows. 
1 if @(~30(i+')) < @ ( ~ 3 0 ~ ) / 2 .  

Xi = 
0 otherwise. 

If Xi = 1, we say stage i is successful. Next we bound the number of successful stages. Let 

X = Xi. Clearly E[X] 2 k/2. Applying Chernoff bound we get, 
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Hence, after T = 30c.  k = 1 2 0 ~ .  In @(L) rounds, the number of successful stages is bigger 

than or equal to cln @(L) with probability at least 1 - @(L)-'I4. Consequently, for T > 
120c. ln@(L), pr[@(LT) < e-'1 with probability at least 1 - @ ( L ) - ~ I ~ .  

Note that the random network model of this section can be viewed as a special case of 

the dynamic network model in Section 2.5. For random networks we are able to  show that 

the potential decreases by a constant factor in each round. Theorem 2.5.1 does not give 

a constant factor drop for our random networks. This result is also related to the one of 

Ghosh and Muthukrishnan in [63], where they use random matchings for load balancing. 

To see the difference, first note that our random network may not be a matching. Second, 

our convergence result does not rely on any graph structure parameters while the result in 

[63] does. 

2.6.2 Discrete Case 

For the discrete case we use Algorithm 2 with one change. In every step, whenever ti > tj, 
e i - e .  we transfer 1-1 tasks from ti to  l j .  We show the following result indicating that 

whenever the potential @(L) is bigger than a threshold of 3200n, the potential decreases at 

least by a constant factor of 1/40 in every iteration. 

Lemma 2.6.5 If @(L) >_ 3200n, E[@(Ltfl I Lt = L)] _< %@(L). 

Proof. E[@(L~+ l )  1 Lt = L] 
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5 e ( L )  - -!- . C C (e, - ej)2 + - n2 . C (ti - ej)2 40n . z=1 j=l '4 i=l j=l 

Here, the first inequality is from Lemma 2.4.1. The third equation is due to Lemma 

m C .  a:. The last inequality is true since 2.6.1. The fourth inequality holds by xEl aai 5 d T  

The last equation follows from Lemma 2.6.2. 

Finally, similar to Theorem 2.6.4, we directly obtain the following theorem: 

Theorem 2.6.6 Vc > 0, after T 1 24Oeln (g) rounds, P ~ [ @ ( L ~ )  5 3200nI 2 1 - 

2.7 Summary 

We have proposed a new proof technique that can be used to  analyze many parallel dif- 

fusive load balancing algorithms. The idea is to first sequentialize a diffusion algorithm 

with concurrent load balancing actions, and then to  show that the potential decrease of 

the concurrent system is at most a constant factor compared to which of the corresponding 

sequential system. We have demonstrated the strength of the technique by analyzing contin- 

uous and discrete diffusive load balancing algorithms for both fixed network and randomly 

changing networks. 

We believe that this simple idea is useful in the analysis of many distributed systems 

with concurrent actions. For instance, this idea is applied in the analysis of a parallel 

randomized load balancing protocol in Section 3.5. In the future, we can apply this idea to 

analyze load balancing on other distributed systems, for example, the ad hoc network. This 
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problem is somewhat similar to the problem of randomly choosing load balancing partners 

in Section 2.6. In particular, we can either assume that the topology of an ad hoc network 

is arbitrary, or belongs to some random network classes such as Erdos Rknyi model [55]  or 

random geometric graphs [95]. 



Chapter 3 

Weighted Balls-into-bins Games 

In this chapter we study the balls-into-bins game, where we have a set of independent balls 

and the goal is to allocate them into a set of bins in a balanced manner. This problem has 

been used to model a large set of real life applications in distributed systems where balls 

and bins represent tasks and resources, respectively. We assume that every ball is associated 

with some weight, which can represent the resource requirement of tasks, i.e., memory or 

running time. 

We consider two different scenarios, the static sequential game and the selfish allocation 

game. In the static sequential game, balls come sequentially and need to be placed in such 

order. We study how the outcome of the game, i.e., the expected maximum load of any bin, is 

influenced by the game parameters such as the distribution of ball weights, and the order that 

balls are allocated. In the selfish allocation game, all the balls have some initial locations 

and need to  be reallocated to achieve load balancing. We analyze a natural, distributed 

reallocation algorithm. Our goal is to  bound the convergence time of the algorithm, i.e., the 

number of rounds for the system to reach (or get close to) some equilibrium state. 

3.1 Introduction 

The balls-into-bins game, also referred to as occupancy problem or allocation process, is a 

well-known and much studied model in distributed computing. Generally speaking, the goal 

of balls-into-bins games is to allocate a set of independent balls into a set of bins so that 

the maximum number of balls in any bin is minimized. It is assumed that there is no global 

mechanism to realize this goal and all the balls are independent to each other. Furthermore, 
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every ball is allowed to collect partial load information by querying a small set of bins, but 

it is not allowed to communicate with other balls. 

This well-defined mathematic problem has been used to model many practical distributed 

applications, e.g., dynamic resource allocation, distributed client server systems, network 

routing and hashing etc. [13, 68, 901. For instance, we consider a client server system where 

each client issues some tasks which can be assigned to each server. In order to  minimize the 

response time of tasks, we need to distribute these tasks to  servers as evenly as possible. 

Note that the tasks do not have any information about other tasks in the system and they 

have to be allocated independently. In this case, the balls-into-bins game is an excellent 

model that allows us to effectively use the system. In those applications above, tasks are 

often heterogenous, for example, the tasks in the client server system can have different 

sizes. In this chapter, we investigate balls-into-bins games in the content of weighted balls. 

We assume that each ball (task) is associated with some positive weight representing its 

resource requirements, i.e., memory or running time. 

Balls-into-bins games can be categorized in many ways. We can have either sequential or 

parallel games. In the sequential game, balls arrive one after another and have to be placed 

in such order. The most common approach is to choose d bins independently and uniformly 

at random and place the ball into the least loaded bin [68, 13, 20, 1101. In the parallel game, 

balls arrive in batches while balls in the same batch must be allocated concurrently. For the 

parallel game, the previous approach is no longer applicable and some kind of scheduling 

process is required. For more about the parallel game, see also [3, 106, 191. Furthermore, 

we distinguish between both static and dynamic games. In the case of static games, the set 

of balls is fixed. None of the balls will be deleted and no new ball will ever arrive. In the 

dynamic case, we do not have a fixed number of balls but rather balls may arrive according 

to  some arrival process and leave the system according to some deletion process. An arrival 

(or deletion) process specifies the points of time and the number of balls being injected 

into (or deleted from) the system. For example, in [87], Mitzenmacher considers a model 

that the balls arrive as a Poisson stream of rate An, and each ball has service time that is 

exponentially distributed with mean one. See also [13, 481 for more examples. 

In this chapter, we consider two different settings of balls-into-bins games, the static 

sequential game and the selfish allocation game. 
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Static Sequential Game In the first part of this chapter (Section 3.4), we study the 

static sequential game, where balls arrive one after another without initial locations and 

have to be allocated in such order. A well-known approach is to have every ball choose 

d 2 1 bins independently uniformly at random and pick the bin with the lightest load. An 

advantage of this approach is that it does not need any global information (i.e., system load 

configuration) for allocating balls. Moreover, this approach causes very little overhead since 

each ball is only allowed to query a small number of bins for finding its destination. If every 

ball is only allowed to  pick one bin (i.e., d = I ) ,  the game is called single-choice balls-into- 

bins game, otherwise multiple-choice. As shown in [68, 131, the multiple-choice approach 

could result in a drastic (exponential) decrease of the maximum load over the single-choice 

approach. During the past years, there has been extensive study on this phenomenon and 

many significant results have been obtained. See Section 3.2 for a survey of both the single- 

choice and the multiple-choice approaches. 

Most work done so far assumes that the balls are uniform and indistinguishable. We 

concentrate on the weighted case where every ball i E [m] is associated with a weight wi > 0. 

Let the load of a bin denote the sum of the weights of the balls allocated to  that bin. In [17] 

the authors study the weighted balls-into-bins game by comparing it with its corresponding 

uniform games. More specifically, they compare the maximum load of a game with m 

weighted balls with maximum weight of 1 and total weight W = wl + . . . + w, to  a game 

with approximately 4W uniform balls. They show that the maximum load of the weighted 

game is not larger than that in the uniform system. Their approach can be used for a variety 

of balls-into-bins games and can be regarded as a general framework. 

However, the results of [17] seem to be somewhat unsatisfactory. The authors compare 

the allocation of a number of "light" weighted balls with an allocation of fewer "heavy" 

uniform balls. Intuitively, since the case with light balls comes with more random choices, 

the result should be better to allocate many light balls compared to fewer heavy balls. In 

light of this, we study how the weight distribution affects the results of both the single- 

choice and the multiple-choice games. We show that for the single-choice game, it is indeed 

true that allocating more balanced weight distribution is always better. To show this result 

we use the majorization technique similar to the one in [13]. Later, we prove that for the 

multiple-choice game, surprisingly, a more balanced weight distribution does NOT always 

imply a smaller expected maximum load. 

Another related question is, how does the order of allocating balls affect the outcome 
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of the game? We note that in the single-choice game, since the random choices of all balls 

are independent, the order does not make any difference. Yet, the question becomes subtle 

for the multiple-choice game. Intuitively, it should be better to allocate the heavy balls 

first, then the light balls allocated later will tend to fill the "holes" left by the large ones. 

Hence, we ask, does the decreasing order always yields the minimum expected maximum 

load? Similarly, does the increasing order always yield the maximum expected maximum 

load? 

Selfish Reallocation Game In the second part of this chapter (Section 3.5), we consider 

the problem of dynamically reallocating (or re-routing) m balls among a set of n bins. This 

problem can be used to model many practical applications in large scale networks, e.g. the 

internet, which are open structured and lack of central authorities to guide users' behaviors. 

Particularly, in these applications, users are selfish in that they only aim at minimizing 

their own costs without regard for the overall cost. We model the selfish users as balls, the 

resources (eg., network links, processors etc) as bins. 

We assume that initially each ball has chosen some bin. (Note that this is different to the 

static sequential game introduced above, where balls have to be placed one after another). 

Then we apply the following iterative, distributed algorithm to reallocate balls to bins for 

load balancing. In each step, every ball chooses one bin at random. It then compares the 

load of its current host bin with the load of the randomly chosen bin. If the load difference 

is above a certain threshold then the ball will migrate to the other bin with a probability 

that is proportional to the load difference of these two bins. In this algorithm, each ball 

acts selfishly in that it only tries to minimize the loads of its host bin. Furthermore, there 

is no central control in the system and all the migrations take place in parallel. 

We express our results using the notion of Nash equilibrium and its variations. In general, 

a Nash equilibvium is a state in which users (balls) do not have an incentive to unilaterally 

change their current strategy. In our problem, the Nash equilibrium represents a state that 

none of the balls has an incentive to migrate to other bins. We shall also consider a notion of 

approximate equilibria, namely 6-Nash equilibria, which describes states where no user can 

benefit by more than 6 if he/she unilaterally changes his/her current decision. Our major 

goal is to bound the convergence time, i.e., the number of time steps for the system to reach 

some Nash equilibrium (or eNash equilibrium). 

The rest of the chapter is organized as follows. Section 3.2 consists of some related work. 
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In Section 3.3 we introduce our model and summarize the new results. We study the static 

sequential game and the selfish allocation game in Section 3.4 and Section 3.5, respectively. 

Finally we conclude in Section 3.6. 

3.2 Related Work 

3.2.1 Static Sequential Game 

We review related work for both the single-choice and multiple-choice balls-into-bins games. 

Single-choice Game 

For the single-choice balls-into-bins game, every ball randomly chooses a destination bin. It 

is well-known that (e.g., see [go]), if n balls are allocated into n bins using this strategy, the 

fullest bin has lognl log logn+0(1) balls with high probability ' (w.h.p. or more accurately 

I'-' (n) - +o(l) .  More generally, to allocate m > n In n balls into n bins, the maximum load 

is (mln)  + O( d m )  w.h.p. 190, 201. Note that the deviation term (@( Jw)) 
grows linearly with Jm. This is not satisfactory since in practice we often have m >> n. 

In [104], Sanders considers the single-choice game in a weighted setting. Assume that 

both the total weight of the balls W and the maximum ball weight w,, are fixed. Then 

the expected maximum load is maximized when Wlw,, balls of weight w,, are allocated. 

In (701, Koutsoupias, Mavronicolas and Spirakis consider the random allocation of weighted 

balls. Similar to [17], they compare the maximum load of an allocation of weighted balls to 

that of an allocation of a smaller number of uniform balls with a larger total weight. They 

repeatedly fuse the two smallest balls together to form one larger ball until the weights of 

all balls are within a factor of two of each other. They show that the bin loads after the 

allocation of the weighted balls are majorized by the loads of the bins after the allocation 

of the balls generated by the fusion process. Their approach also applies to more general 

games in which balls can be allocated into bins with non-uniform probabilities. 

Multiple-choice Game 

For the multiple-choice balls-into-bins game, every ball randomly chooses d > 2 bins uni- 

formly at random and allocate itself into the one with the minimum load. During recent 

'We say an event A occurs with high probability, if Pr[A] > 1 - l ln" for some constant a 2 1. 
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years there has been much research on this problem, see [go] for a nice overview. The first 

rigorous analysis for the multiple-choice game is due to Karp, Luby and Meyer aur der 

Heide [68], which studies the use of two hash functions in the context of PRAMS (Parallel 

Random Access Machines). According to [go], there are three main techniques to  analyze 

balls-into-bins games, layered induction, witness trees and differential equation techniques. 

Layered Induction Technique Azar et al. [13] first introduce the layered induction 

technique to  prove tight results for the case when m = O(n). They show that after placing 

m balls the maximum load is Q(m/n + log log n /  log d), w.h.p. The idea is to bound the 

number of bins with at least Ic + 1 balls by the number of bins with at least Ic balls. For 

example, assume there are n balls to  be allocated into n bins. Let Pk be the upper bound for 

the number of bins with at least Ic balls w.h.p. Note that by pigeonhole principle, ,& 5 n/6. 

Then using an induction approach one can then bound Pi+6 in terms of Pi+6-1 Note that 

every stage the bound holds with high probability. The probability that there does exist a 

bin with a load of Ic + 6 is bounded by the sum of fail probabilities in all proof stages. The 

authors then apply a similar inductive argument and stochastic domination to  establish a 

matching lower bound. 

In [20], Berenbrink et al. analyze Greedy[d] for m >> n. The authors eventually tighten 

the upper bound result of the maximum load to  m/n  + log log n + 0(1),  w.h.p. This shows 

that the multiple-choice process behaves inherently different from the single-choice process, 

where the difference between the maximum load and the average load depends on m. They 

first show a "short memory" property of the Greedy process, i.e., no matter what the initial 

situation is, after a polynomial number of additional balls the maximum load of any bin 

can again be bounded as expected. This memoryless property separates the multiple from 

the single-choice approaches, in that for any number of bins, the difference between the 

optimal and the multiple-choice allocation is bounded by a constant, instead of increasing 

polynomially with m. Hence, it is sufficient to consider the case when m = poly(n). The 

rest proof also utilizes the layered induction technique but the idea is very different. In 

particular, they prove bounds not only for the balls lying above the average load, but also 

for those balls lying below average load. 

'we say an event A happens with high probability (w.h.p.), if Pr[A] > 1 - n-' 
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Witness Tree Technique The witness tree technique is first used to  analyze balls-into- 

bins games by Meyer auf der Heide, Scheideler and Stemann [ll] and is further exploited 

in [106]. The idea is similar to the analysis technique delayed sequences in the study of 

randomized routing algorithms [108, 61. When applying to balls-into-bins games, the idea 

is to specify those events lying on the past that "witness" the occurrence of some heavily 

loaded bin. Assume that there is some bin v with at least k balls. Let b be the last ball 

allocated to v. There must be d - 1 other bins with load at least k - 1 since b is allowed 

to  query d bins and place itself into the one with the smallest load. Similarly, for each bin 

with load k - 1, there are d - 1 bins with a load at least k - 2, and so on. These events 

naturally form a so-called witness tree. Then, in order to bound the probability that some 

bin gets load at least k, we can turn to  calculate the total probability of the occurrences of 

these witness trees. Vocking [I101 uses the witness tree technique to analyze a variant of the 

multiple balls-into-bins game, called Always-Go-Left, which introduces a new tie-breaking 

mechanism that always picks the leftmost bin instead of picking one arbitrarily. Surprisingly, 

the Always-Go-Left algorithm can achieve a maximum load of m l n  + log log n ld  + 0(1 ) ,  

w.h.p. 

Differential Equation Technique The idea of differential equation technique is to study 

the corresponding continuous system of the (discrete) balls-into-bins game. It is well-known 

that in many cases, the continuous systems are easier to  analyze by differential equations. 

Using this technique, Mitzenmacher, Prabhakar and Shah 1891 show that a similar perfor- 

mance gain to the multiple-choice game can be achieved by introducing memory. More 

specifically, they show that if every ball only gets one random choice, and meanwhile 

it can also pick the least loaded bin after allocating the last ball, the maximum load is 

log log n l (2  log a) + @(I)  w.h.p. where = (6 + 1)/2 is the golden ratio. For more about 

this technique, see e.g., [88, 87, 901. 

3.2.2 Selfish Reallocat ion Game 

Next we review previous work for the selfish reallocation game. In [59], Even-Dar, Kesselman 

and Mansour introduce the idea of using a potential function to  measure the closeness 

between a system state and the balanced allocation. They use this idea to show convergence 

for sequences of randomly-selected "best response" moves in a more general setting in which 

balls may have variable weights and bins may have variable capacities. Best response means 
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that every time a ball(task) always picks the move that incurs the smallest cost for itself. 

Since they consider only the best-response moves, it is necessary for them to consider only 

strictly sequential algorithms. 

Goldberg [64] considers a algorithm in which every ball select one alternative bin at  

random and migrate if the selected bin has lower load. The algorithm may be implemented 

in a weakly distributed sense, requiring that migration events take place one at a time, and 

costs are updated immediately. He proves an upper bound of O(w~,,m4n5 log(mn)) for 

the convergence time, where m is the number of balls, n is the number of bins, wmax is the 

ratio between the largest and the smallest ball weights. If all balls are of integer weights 

between 1 and wmax, the convergence time is O(m2nwmax). He also shows an fl(n2) lower 

bound for the convergence time. 

Even-Dar and Mansour [60] allow concurrent, independent reallocation decisions where 

balls are allowed to migrate from bins with load above average to bins with load below 

average. They show that the system reaches a Nash equilibrium after expected O(1og log m+ 

logn) rounds. Their proof is also based on the standard potential function technique. 

However, their algorithm requires balls to know certain amount of global knowledge in 

order to make their decisions. A ball needs to know whether its bin is overloaded, i.e., with 

a load larger than average. The authors also show a logarithmic convergence rate for a wide 

range of rerouting strategies. 

In [61], Fischer, Racke, and Vocking investigate convergence to Wardrop equilibria for 

both asymmetric and symmetric rerouting games. In asymmetric games, tasks may be 

associated with different latency functions. They consider a set of rerouting algorithms 

called adaptive sampling,  where in each round, each ball samples an alternative routing 

path with its current latency. If the ball observes that it can improve its latency, it then 

switches with some probability depending on the improvement to the better path. The 

authors prove the first polynomial bounds on the convergence time of adaptive rerouting 

policies for classes of latency functions with bounded relative slope. A differentiable latency 

function t has relative slope d if t'(x) 5 dt(x)/x for all x in the entire range. The authors 

also show the necessity of adaptive sampling by proving an exponential lower bound result 

for the static sampling methods. 

Chien and Sinclair [35] study the ability of a set of distributed, local algorithms to rapidly 

reach the approximate Nash equilibrium. They show that for the symmetry congestion 

game, if the latency function d, of any edge (bin) e satisfies the so called "bounded jump" 
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condition, i.e., de(k + 1) 5 ade(k) for all k 2 1, the convergence to  an eNash equilibrium 

occurs within [nae-'log(nc)l steps, n is the number of balls. They also show that it is 

necessary to  consider the approximate Nash equilibrium, in that the problem of finding 

a (real) Nash equilibrium in symmetric congestion game satisfying the a-bounded jump 

condition with a = 2 is PLS-Complete. 

Berenbrink et al. 1221 consider a strongly distributed system consisting of selfish users. 

They consider only uniform balls and uniform bins. They show an upper bound of O(1og log m+ 

n4) on the expected convergence time in their model as well as a lower bound of R(1og log m+ 

n) .  They furthermore derive bounds on the convergence time to an approximate Nash equi- 

librium as well as an exponential lower bound for a slight modification of their algorithm. 

In fact, the modification is possibly even more natural than the one with the polynomial 

upper bound in that it results in a perfectly balanced distribution in expectation after only 

one step whereas the previously mentioned algorithm does not have this property. 

3.3 Model and New Results 

We first introduce the model we are working on. We have m balls and n bins. Let [m] 

denote (1,. . . , m). Every ball i E [m] is associated with some weight Wi L 1. Let w = 

(wl, . . . , wm) be the vector of ball weights and W = EL1 Wi be the total weight of the 

balls. If wl = w2 = . . . = w,, we say the game is unifomn. In this case, we normalize the 

ball weights such that wi = 1 for all i E [m]. The load of a bin is defined as the total weight 

of balls located in that bin. Then let 3 = W/n be the average load of all bins. 

In the following, we summarize our new results for both the static sequential game and 

the selfish reallocation game. 

3.3.1 Static Sequential Game 

For the static sequential game, we allocate a set of weighted balls into bins in a sequential 

fashion. We consider the well-known approach that to  have every ball pick d 2 1 bin 

independently uniformly at random, and pick the one with the lightest load. We study 

how the weight distribution and the order in which we allocate balls influence the outcome 

(expected maximum load) of the game. 

Section 3.4.2 studies the single-choice game. In Theorem 3.4.8 we fix the number of 

balls and show that the expected maximum load is smaller for more balanced ball weight 
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vectors. This also holds for the sum of the loads of the i largest bins. One could say that 

the majorization is preserved: if one weight vector majorizes another one, then we have the 

same order with respect to the resulting expected bin load vectors. Hence, the expected 

maximum load is minimized when we have uniform balls. To prove Theorem 3.4.8, we use 

an inductive approach. The idea is to  use majorization together with T-transformations (see 

the definition in Section 3.4.1), which allow us to  compare sets of balls that only differ in 

one pair of balls. Corollary 3.4.10 extends the results showing that the allocation of a large 

number of small balls with total weight W ends up with a smaller expected maximum load 

than the allocation of a smaller number of balls with the same total weight. We also show 

that the results are still true for many other random functions that are used to allocate the 

balls into the bins. Our results are stronger than the ones of [70] since we compare arbitrary 

weight distributions with the same total weight. Compared to  [70] we also allow for the 

same number of balls. In addition, we consider the entire load distribution and not only the 

maximum load. 

Section 3.4.3 deals with the multiple-choice game. The main result here is Theo- 

rem 3.4.17. I t  shows that, for sufficiently many balls, allocation of uniform balls is not  

necessarily better than allocation of weighted balls. It is better to allocate first the big 

balls and then some smaller balls on top of them, instead of allocating the same number 

of average sized balls. This result uses the memoryless property of [20]. For fewer balls we 

show in Theorem 3.4.18 that the rnajorization order is not generally preserved. 

The previous results for the single-choice game use the majorization technique induc- 

tively. Unfortunately, it seems difficult to  use T-transformations and the majorization tech- 

nique to  obtain results for weighted balls in the multiple-choice game. We also present 

several examples showing that, for the case of a small number of balls with multiple-choices, 

the maximum load is not necessarily smaller if we allocate more evenly weighted balls. 

3.3.2 Selfish Reallocation Game 

For the selfish reallocation game, initially every ball has chosen some bin. Then we apply 

some iterative, distributed reallocation algorithm to balance the work load. We study the 

convergence time of the algorithm, i.e., the number of rounds for the system to terminate. 

In Section 3.5, we consider the weighted case where each ball i E [n] is associated with 

some positive weight wi. We propose a greedy distributed reallocation algorithm (Algorithm 

4) that is similar to  the one in [22]. Theorem 3.5.1 shows that after O(mnA3~-2)  steps, 
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the system converges to the E-Nash equilibrium with probability at least 415. To our best 

knowledge, this is the first attempt in such model to allows weighted balls. Our analysis 

is based on the potential function technique. The idea is to use an appropriate potential 

function to measure the distance between some system state with the equilibrium state. 

We then show that the system potential always decreases in expectation in one single step. 

Corollary 3.5.10 shows that if all balls are of integer weights, the convergence occurs within 

0 ( m n n 5 )  steps. In addition, we prove a lower bound of S l ( m A l ~ )  for the convergence time 

(Observation 3.5.11). 

In Section 3.5.3, we apply our proof technique above to the uniform case where all the 

balls are identical. We show that our algorithm converges to the (real) Nash equilibrium in 

time O(1og m + n log n) steps w.h.p. This improves the previous result of O(1og log m + n4) 

in [22] for small values of m. We also demonstrate that we can in fact combine our algorithm 

and the algorithm in [22] to obtain an O(1og log m + n  log n) convergence time w.h.p. Finally, 

we show a matching lower bound result (Observation 3.5.18). 

3.4 Static Sequential Game 

In this section we focus on the static sequential games, where a fixed number of balls, m, 

are allocated one after the other. A well-known approach is to let every ball choose d 2 1 

bins independently and uniformly at random, and allocate itself into the bin with minimum 

number of balls (ties are broken arbitrarily). In the following, we will refer to this algorithm 

as Greedy[d] similar to  [13]. 

Algorithm 3 Algorithm Greedy [dl 

for each ball b do 
Choose d bins ul,  . . . , ud independently uniformly at random 
Place ball b into the bin with the least load among ul ,  . . . , ud. 

The status of an allocation is described by a load vector L(w) = (-!?,(w), . . . ,e,(w)), 

where ti is the load of the i-th bin after the allocation of a weight vector w. Whenever it 

is clear from the content we shall drop "w" and write instead L = (el , .  . . ,en). In some 

cases we consider the change that occurs in an allocation after allocating some number of 

additional balls. Then we define Lt to be the load vector after the allocation of the first t 

balls with weights wl, . . . , wt for 1 < t 5 m. In many cases we will normalize a load vector 
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L by assuming a non-increasing order of bin loads, i.e. el 2 t2 > . 2 en. We then define 

Si(w) = c;=, t j ( u )  as the total load of the i highest-loaded bins. Again, when the context 

is clear we shall drop the "w" and write Si = C;=, ej. Finally, let R = [n]. Before we 

proceed, we shall first introduce our major tool, the majorization technique 113, 861. 

3.4.1 Majorization and T-transformations 

To compare two load vectors and also the balancedness of vectors of ball weights, the concept 

of majorization is essential. We first give the definition of majorization (from [86]). 

Definition For two normalized vectors w = (wl, . . . , w,) E EXm and w' = (w;, . . . , wA) E 
k Rm with ELl wi = Czl wi, we say that w' majorizes w, written w' + w, if CiZ1 wi 2 

c:=, for all 1 5 k 5 m. 

Majorization is a strict partial ordering between (normalized) vectors of the same di- 

mensionality. Intuitively, vector v' majorizes another vector v if v is "more spread out", 

or "more balanced", than v'. In the following, if we refer to a weight vector w that is 

more balanced than weight vector w', we mean that w' majorizes w. We will use the term 

majorization if we refer to  load vectors. 

Some examples are: 

For the sake of our analysis, we give a slightly different alternative definition of ma- 

jorization as follows. 

Majorization Let w and w' be two weight vectors with m balls, and let Rm be the set 

of all possible random choices for Greedyld] applied on m balls. Define w(w) (respectively, 

w1(w)) to be the allocation resulting from the choices w E Rm, and let f : Rm -t Rm be a 

one-to-one correspondence. Then we say that w' is majorized by w if there exists a function 

f such that for any w E Rm we have w(w) + w' (f (w)). 

A slightly weaker form of the majorization is the expected majorization defined below. 

We will use it in order to compare the allocation of two different load vectors with each 

other. 
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Expected majoriration Let w and w' be two weight vectors with m balls, and let Rm 

be the set of all possible random choices. Let L(w, w) = (el(w, w), . . . , &(w, w)) (respec- 

tively, Lf(w', w) = (el (w', w), . . . , &(w', w))) be the normalized load vector that results from 

the allocation of w (respectively, w') using w E Rm. Let Si(w, w) = c;.=~ Yj(w,w) and 

Si(wf, w) = C5=l l j(wr,  w). Then we say that L(wt) is expectedly majorized by L(w) if for 

a11 i E [n], we have E[Si(w)] _> E[Si(wf)]. (The expectation is over all possible nm elements, 

selected uniformly at random, in Rm.) 

Now we introduce a class of linear transformations on vectors called T-transformations which 

are crucial to our later analysis. We write 

meaning that w' can be derived from w by applying one T-transformation. Recall that a 

square matrix IT = (nij) is said to  be doubly stochastic if all nij 1 0, and each row sum and 

column sum is one. II is called a permutation matrix if each row and each column contains 

exactly one unit and all other entries are zero (in particular, a permutation matrix is doubly 

stochastic). 

T-transformation A T-transformation matrix T has the form T = X I  + (1 - X)Q, where 

0 I X 5 1, I is the identity matrix, and Q is a permutation matrix that swaps exactly two 

coordinates. Thus, for some vector x of correct dimensionality, XT = (xl ,  . . . , ~ j - ~ ,  Axj + 
(1 - X)xk,xj+l, - . -  ,xk-1, Xxk + (1 - X)xj, xk+l,. . . 2,). 

T-transformations and majorization are closely linked by the following lemma (see [86]). 

Lemma 3.4.1 For w, w' E Rm, w + w' if and only if W' can be derived from w by successive 

applications of at most m - 1 T-transformations. 

One of the fundamental theorems in the theory of majorization is the following. 

Theorem 3.4.2 (Hardy, Littlewood and Pdlya, 1929). For w, w' E Rm, w + w' if and only 

if w' = wP, for some doubly stochastic matrix P. 

Schur-Convex A real-valued function 4 defined on a set A c Rn is said to  be Schur-convex 

on A if 

x 4 y on A ==+ 4(x) I 4 ( y ) .  
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3.4.2 Weighted Single-choice Games 

In this section we study the classical balls-into-bins game where every ball has only one 

random choice. Let w and w' be two m-dimensional weight vectors. Recall that Si(w) is 

defined to  be the random variable counting the cumulative loads of the i largest bins after 

allocating w. In this section we show that, if there exists a majorization order between two 

weight vectors w and w', the same order holds for E [Si(w)] and EISi(wl)]. This implies 

that ,  if w majorizes w', the expected maximum load after allocating w is larger than or 

equal to  the expected maximum load after allocating w'. 

Note that in the single-choice game, the final load distribution does not depend upon the 

order in which the balls are allocated. From Lemma 3.4.1 we know that,  if w + w', then w' 

can be derived from w by applying a t  most m - 1 T-transformations. Thus, it is sufficient to  

show the case in which w' can be derived from w by applying one T-transformation, which 

is what we do in Lemma 3.4.4. First, we give a simple lemma which is used later in Lemma 

3.4.4. 

Lemma 3.4.3 Consider two vectors u = (ul ,  uz, . . . , u,) and v = (vl, vz, . . . , v,), and as- 

sume u ,v  are sorted i n  non-increasing order, i.e., ul > u2 > . . . > u, and vl > vz > . . . > 
v,. For any t > 0, define u o { t )  to  be the (sorted) vector obtained from u by appending 

a new dimension with coordinate value t to  u. Similarly we define v o { t ) .  If u + v, then 

u o  { t )  + v o  {t). 

Proof. Let u' = {ui, uk, . . . , u;+~) = u o {t), v' = {vi, vk, . . . , v;+~) = v o {t). Assume u' 

and v' are sorted in non-increasing order, i.e., ui > uk > . . . > u;+~, vi > vb 2 . . . 2 v;+~. 

According to  the definition of majorization, for any i t [l, n], we have c:.=~ u j  > vj. 

Now fix i E [1, n + I], we have to  show that E;=~ ui 2. c:.=~ vi. Depending on the size of 

t ,  there are four cases: 

1. t 5 min{ui, vi). Since t is neither one of the i largest items in u' nor v', the majoriza- 

tion a t  position i is still preserved. 

2. t > max{ui,vi). In this case, t is one of the i largest items in both u' and v', which 

again means that the majorization a t  position i is still preserved. 

3. ui 2. t 2 vi. Now t is one of the i largest items in v', but not in u'. We get 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 

4. vi > t 2 ui. Similarly, t is one of the i largest items in u', but not in v' 

By the definition of majorization, we conclude that u' + v', i.e., u o {t) + v o {t). 

Now we examine the case where the weight vectors w and w' differ by a single T-transformation. 

T 
Lemma 3.4.4 If w==+wf (2.e. w + w'), then E[Si(w)] 2 E[Si(wf)] for all i E [n]. 

Proof. Let w = (wl, . . . , w,). According to  the definition of a T-transformation, for some 

0 5 X 5 1, we have 

We define yj = ~ ~ ~ { X W . ~ + ( I - X ) W ~ ,  Xwk+(l-X)wj), yk = min{Xwj+ (1 -X)wk, Xwk+(l- 

X)wj). Note that wj + wk = yj + yk, and wj 2 yj 2 yk > wk. Let A = wj - yj = yk - wk. 

Since the final allocation does not depend on the order in which the balls are allocated, 

we can assume in the following that both wj, wk and yj, yk are allocated in the last two 

steps. Now fix the random choices for the first m - 2 balls and let 1 = (el , .  . . ,en) be the 

resulting normalized load vector. Let a2 = [nI2 be the set of random choices of the last two 

balls. Note that  every random choice in R2 occurs with same probability l /n2.  

Now fix a pair of choices (p, q) for the last two balls and define L( t ,  (wj, p), (wk, q)) a s  

the load vector after placing the ball with weight wj into the bin with rank p in !, and the 

ball with weight wk into the bin with rank q in e. (Note, after the allocation of wj the 

order of the bins might change but q still refers to  the old order. Let Si(!, (wj, p), (wk, q)) 

be the cumulative load of the i largest bins of L(e, (wj, p), (wk, q)). Similarly we define 

L(e, (yj, p), (yk, q)) and Si(e, (yj, p), (yk, q)). In the following we compare the two choices 

(p, q) and (q,p) with each other and show that for all e 

Since we compute expected values over all pairs (p, q), this shows that the expected cumula- 

tive loads of the i largest bins of both allocations also obey the same order (see Definition 

3.4.1). 
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For p = q,  the two balls are allocated to the same bin, so the resulting load vectors are 

identical. Therefore Si(!, ( w j ,  p), ( w k ,  q ) )  = Si(!, ( y j ,  p), ( y k ,  q ) ) .  The next lemma considers 

the case p < q. 0 

Lemma 3.4.5 For any normalized ! and V i , p ,  q E [n] with p < q,  we have 

Proof. In the following P and Q are the bins with rank p and q,  respectively (after the 

allocation of the first m-2 balls). The load of all other bins remains the same. The following 

observation (given without proof) compares the load of Q and P for the different possible 

allocations of wk ,  w j ,  yk and yj with each other. Recall that because e is normalized (and 

p < q)  we know that ep 2 e,. 

Observation 3.4.6 For w j  2 yj 2 yk 2 wk and ep 2 e, 

Unfortunately, we can not rank wj  + eq and wk + ep ,  and yj + e, and yk + e, so far. To 

do that we consider in the following the two Zdimensional vectors ( w j  + e,, wk + e,) and 

(yk + ep,  yj + L,) . Since 

one of them majorizes the other. This gives the following two cases. 

Case I: (w j  + e,, wk  + ep)  + ( y j  + !,,yk + ep)  
In this case we can iteratively apply Lemma 3.4.3 to show that L ( t ,  ( w j , q ) ,  ( w ~ , ~ ) )  + 
L(!, ( y j  , q ) ,  ( yk ,  p ) ) .  Hence, for any i E [n] we have 

Since W j  2 yj and yk 2 wk we have wj  + ep 2 yj + ep and yk + e, 2 wk  + t,. From 

Observation 3.4.6(4) we know yj + ep 2 yk + L,. If we now allocate wj  and yj to e,, and wk 

and yk to ep, we still have (w j  + !,, wk + t,) + ( y j  + tp, yk + eq).  This again yields 
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Since for both pairs (p, q) and (q,p) the resulting load vector with yj and yk is majorized 

by its counterpart with the balls wj and wk, the proof of this case is finished. 

A simple example for this case is the following: ep = 3, tq = 2, wj = 6, wk = 1, yj = 4, 

and yk = 3. For this case we have, (wj + t,, wk + I,) = (8,4) + (7,5) = (yk + t,, yj + e,) 
and (wj + ep, wk + eq) = (9,3) + (6,6) = (yk + t,, yj + I,). 

Case 11: (wj + t,, wk + t,) 4 (yj + tq, yk + tp) 
In this case we have L(t ,  (wj, q), (wk, p))  4 L(t ,  (yj, q), (yk, p)) .  Hence, we have to consider 

the two pairs of choices (p, q) and (q,p) together to show our result. We get 

Since mm{wj + eq, wk + e,) 5 max{yk + ep, yj + eq) and wj + eq 2 yj + eq, we have 

yk + 4 > yj + l q .  This results in yk + ep > wj + e,. Using Equation (3.1) we get yj + t, 5 

wk + ep. Hence, we can order the pairs: 

Now, what happens if we consider the pair (q,p) which allocates wj and yj to Q,  and 

wk and yk to P? Since t, > eq and wj yj yk wk we have 

Now we consider three subcases depending on the order of p,  q, and i. 

Case II(A): Bin yk + ep is not among the i largest bins in L(e, (yj, q), (yk,p)). From 

Equation (3.2) we know that yk + & is not smaller than wj + t,, wk + 4, or yj + eq. Hence, 

yj +e, is also not among the i largest bins. Since the load of all bins except P and Q remain 

unchanged, wj + eq and wk + e, are also not among the i largest bins of L(!, (wj, q) , (wk, p)) .  

Thus, we have 

si (e, ( ~ j ,  4)) ( ~ k  P)) = Si (e, (wj Q) ,  (wk, P) 1. 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 47 

Case II(B): Bin yj + e, is one of the i largest bins in L(b,  ( y j ,  q ) ,  ( y k , p ) ) .  From 

Equation (3.2) we know that yj + e, is not larger than w j  + e,, wk + ep ,  or yk + C p .  Hence, 

yk + ep is also among the i largest bins. Since the load of all bins except P and Q remain 

unchanged, w j  + e, and wk + ep are also among the i largest bins of L(b,  ( W j , q ) ,  ( w k , p ) ) .  

Again, we have 

si(e, ( ~ j , q ) ,  ( Y ~ , P ) )  = ( w j , 9 ) ,  ( w k , ~ ) )  

Case II(C): Bin yk + ep is one of the i largest bins of L(e ,  ( y j ,  q ) ,  ( y k ,  p ) ) ,  and bin 

yj + e, is not. Due to  Observation 3.4.6(2) and wj  + ep 2 yj + ep, bin P must also be 

among the i largest bins of both L(e ,  ( w j , p ) ,  ( w k ,  q ) )  and L(e ,  ( y j ,  p ) ,  ( y k ,  q ) ) ,  respectively. 

Similarly, using Observation 3.4.6(4) and wk + e, 5 yk + eq ,  we know that bin Q can not be 

among the i largest bins of L(!, ( w j  , p) ,  ( w k ,  q ) )  and L(!, ( y j ,  p ) ,  ( y k ,  9 ) ) .  This gives us 

NOW it remains to compare Si ( e ,  ( w j  , q )  , (wk , p ) )  and Si  (4 ( y j  , q )  , ( ~ k ,  P ) )  with each other. 

Since yj+lq is not among the i largest bins in Si (e ,  ( y j ,  q ) ,  ( y k ,  p ) ) ,  we have Si(e, ( y j ,  q ) ,  ( ~ k ,  P ) )  = 

Si(!, ( y k , p ) ) .  In Observation 3.4.7 below we show that Si(e,  ( ~ ~ , p ) ) - S i ( e ,  ( w k , p ) )  I A. Since 

S i ( e , ( w j , q ) ,  ( w k , ~ ) )  2 S i ( e , ( w k , ~ ) )  we get 

Equations (3.4) and (3.5) together give 

Observation 3.4.7 Si(e,  ( y k , p ) )  - Si(!, ( w k , p ) )  I A. 

Proof. The proof is split into three cases. If bin P is among the i largest bins in L(B, ( w k , p ) ) ,  

it is also among the i largest bins in L(!, ( y k , p )  ( y k  > w k ) .  In this case 
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If bin P is not among the i largest bins in L(L, (yk,p)) it is also not among the the i largest 

bins in L(L, (wk,p)). Hence, 

In the last case, bin P is among the i largest bins in L(L, (yk,p)),  but not in L(L, (wk,p)). 

In this case we have 

(Or, it follows directly since bin P is the only bin who gets different load in L(L, (yk,p)) 

and L(L, (wk,p)), hence the difference is at most A.) 0 

The iterative application of Lemma 3.4.4 can now be used to  generalize the majorization 

result for vectors that only differ by a single T-transformation to  vectors that differ by several 

T-transformations. This results in the following theorem: 

Theorem 3.4.8 If w + w', then E[Si(w)] 2 E[Si(wf)] for all i E [n] 

Proof. By Lemma 3.4.1, if w + w', then w' can be derived from w by applying at most 

m - 1 T-transformations. In other words, letting k E (1,. . . , m - 1) be the total number of 

T-transformations, there must exist k - 1 m-dimensional vectors vl, . . . , vk-1, such that 

Similar to  Si(w) we define Si(vj), j E (1, . . . , k - 1). Iteratively applying Lemma 3.4.1, we 

get 

E[Si(w)] 2 E[Si(vl)] 2 2 E[Si(vk-l)] > E[Si(wf)]. 

Finally, it is clear that the uniform weight vector is majorized by all other vectors with same 

dimension and same total weight. Using Theorem 3.4.8, we get the following corollary. 

W Corollary 3.4.9 Let w = (wl, .  . . ,w,), W = Cz1 wi, and w' = (,, . . . , K). For all 

i E [n], we have E[Si(w)] > E[Si(wf)]. 

Proof. Note that w' = wP,  where P = (pij) and p;j = l l m  Vi, j E [m] . Clearly P is a dou- 

bly stochastic matrix. Hence by Lemma 3.4.2, w + w'. Consequently, from Theorem 3.4.8 

we have E[Si (w)] > E [Si (w')]. 0 
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Theorem 3.4.8 also shows that an allocation of a large number of small balls with total 

weight W ends up with a smaller expected load than the allocation of a smaller number of 

balls with the same total weight. Note that in the next corollary the relation w t w' must 

be treated somewhat loosely because the vectors do not necessarily have the same length, 

but the meaning should be clear, namely that 'j& wi 2 xi=, wi for all j E [m]. 

Corollary 3.4.10 Let w = (wl, . . . , w,) and W = Czl wi. Suppose that w' = (wi, . . . , w;,) 

with m 5 m', and also that W = Czl w:. If w t w' we have E[Si (w)] 2 E [Si(wf)] for all 

i E [n]. 

Proof. Simply add zeros to  w until it has the same dimension than w'. 0 

It  is easy to see that we can generalize the result to  other probability distributions that are 

used to  choose the bins. 

Corollary 3.4.11 If w t w', and the probability that a ball is allocated to  bin bi, 1 L, i 5 n ,  

is  the same for all balls, then we have E[Si(w)] 1 E[Si(wt)] for all i E [n] . 

Remark The work was submitted to  a journal once. One of the anonymous referees gave 

some very nice idea to  simplify the proof of Theorem 3.4.8. See Appendix 6.2 for an 

alternative proof. The referee also asked whether Lemma 3.4.4 could be generalized to  the 
T 

following. If w==+wf, does Si(w) stochastically dominate Si(wJ)? If this argument was 

true, it would directly imply Lemma 3.4.4. Unfortunately it is not the case. Consider two 

weight vectors w = (5,4,2) and w' = (5,3,3) with the same total weight 11. After allocating 

them into n bins, we get, 

Pr[Sl (w) 2 81 = l / n  < 2/n - l / n2  = ~ r [ ~ l ( w ' )  2 81. 

Thus, Sl(w) does not stochastically dominate S1(wt). This implies that Lemma 3.4.4 is 

probably the best result one can expect. 

3.4.3 Weighted Multiple-choice Games 

In the first sub-section we show that 

allocate uniform balls. For m >> n we 

for multiple-choice games it is not always better to  

construct a set of weighted balls that ends up with a 

3 ~ o r  random variables X and Y, we say 
V k  E R, Pr[X > k ]  2 Pr[Y > k]. 

X stochastically dominates Y, written X + Y, or Y + X ,  if 
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smaller maximum load than a set of uniform balls with the same total weight. The second 

sub-section considers the case where m is not much larger than n.  As we will argue in the 

beginning of that section, it appears that it may not be possible to use the majorization 

technique to get tight results for the weighted multiple-choice game. This is due to the fact 

that the order in which weighted balls are allocated is crucial, but the majorization order 

is not necessarily preserved for weighted balls in the multiple-choice game (in contrast to 

[13] for uniform balls). We discuss several open questions and give some weight vectors 

that result in a smaller expected maximum load than uniform vectors with the same total 

weight. 

Large Number of Balls 

We compare two allocations, A and B. In A we allocate m/2 balls of weight 3 each and 

thereafter m/2 balls of weight 1 each, using the multiple-choice strategy. Allocation B is 
the uniform counterpart of A where all balls have weight 2. We show that the expected 

maximum load in A is strictly smaller than that in B. We will use the short  t e rm  memory 

property stated below in Lemma 3.4.12. See [20] for a proof. Basically, this property says 

that after allocating a sufficiently large number of balls, the load depends on the last poly(n) 

many balls only. If m is now chosen large enough (but polynomially large in n suffices), 

then the maximum load is (w.h.p. upper bounded by 2m/n + log log n.  In the case of balls 

with weight 2, the maximum load is w.h.p.upper bounded by 2m/n + 2 log log n. Since [20] 

gives only upper bounds on the load, we can not use the result directly. We introduce two 

auxiliary allocations named C and V. Allocation C is derived from Allocation A, and V 

is derived from B. The only difference is that in allocations C and V we allocate the first 

m/2 balls optimally (i.e. we always place the balls into the least loaded bins). In Lemma 

3.4.16 we first show that the maximum loads of A and C will be nearly indistinguishable 

after allocating all the balls. Similarly, the maximum loads of B and V will be nearly 

indistinguishable. Moreover, we show that the expected maximum load in V is larger than 

that in C. Then we can show that the expected maximum load in A is smaller than that in 

B (Theorem 3.4.17). For an overview of the four systems, we refer to Table 3.1. 

To state the short memory property we need one more definition. For any two random 

variables X and Y defined jointly on the same sample space, the variation distance between 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 

Table 3.1: Allocations A, B, C, and 27 

First m / 2  balls Last m / 2  balls 1 

I-: (X) (the "law", or distribution, of X )  and L(Y) is defined as 

Allocations 
A 
B 
C 
2) 

llI-:(X) - I-:(Y)II = sup I Pr(X E A) - Pr(Y E A)].  
A 

The following lemma is from [20, Corollary 11. 

Lemma 3.4.12 Suppose Lo = (el, . . . , en) i s  an  arbitrary normalized load vector describing 

an  allocation of m balls into n bins. Define A = el - en to be the maximum load difference 

i n  Lo. Let Lb be the load vector describing the optimal allocation of the same number of 

balls to n bins. Let Lk and Lk, respectively, denote the vectors obtained after inserting k 

further balls to both allocations using the multiple-choice algorithm. Then for k > n5 . A 

ball weights 
3 
2 
3 
2 

where a is an  arbitrary constant. 

ball weights 
1 
2 
1 
2 

algorithm 
Greedy [dl 
Greedy [dl 
Optimal 
O~timal 

Intuitively, Lemma 3.4.12 indicates that given any configuration with maximum difference 

A, in A poly(n) steps the allocation "forgets" the difference, i.e., the allocation is nearly 

indistinguishable from the allocation obtained by starting from a completely balanced all@ 

cation. This is in contrast to the single-choice game requiring A2 . poly(n) steps in order to 

"forget" a load difference A (see [20]). 

algorithm 
Greedy [dl 
Greedy [dl 
Greedy [dl 
Greedv Id1 

Lemma 3.4.13 Suppose we allocate m balls to n bins using Greedy[d] with d _> 2, m >> n. 

Then the number of bins with load at least m l n  + i + y is bounded above by n . exp(-di), 

w.h.p, where y denotes a suitable constant. I n  particular, the maximum load i s  w.h.p. 

m log log n - +  k @(I).  
n logd 
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Proof. The result that the maximum load is at most m/n + log log n/ log d + 0(1)  has been 

shown in 1201. To show the lower bound we first recall two results shown in [13]. First, let u 

and v be two positive integer vectors such that u1 > u2 2 . . . 2 u, and vl > v2 2 . . . 2 vn. 

Azar et al. [13] show that if u + v, then also u + ei + v + ei, where ei is the i th unit 

vector. Now let u, v be two vectors with same total weight. Denote by u' and v' the load 

vectors obtained by allocating a unit-size ball b into two allocations having initial loads u,  

v respectively. Then Azar et al. [13] show the following theorem: 

Theorem 3.4.14 If u + v, there is a coupling of two allocations with respect to the alloca- 

tion of b such that u' + v'. 

We consider two allocations & and 3 .  In & we allocate m balls into n bins using 

Greedy[d], while in 3, we first place m - n balls optimally, and then allocate the remaining 

n balls by Greedy[d]. Clearly after allocating the first m - n balls, the normalized load 

vector of & always majorizes the normalized load vector of 3. Applying Theorem 3.4.14 on 

the last n balls, we see that & + 3 in a stochastic sense. Since the maximum load in 3 

is known to be lower bounded by m/n + log log n/ log d - 0(1 )  w.h.p. [l3]), the same lower 

bound holds for the maximum load of &. 0 

Let Li(A) (or Li(B), Li(C), Li(V)) be the maximum load in Allocation A (respectively, B, 

C, V) after the allocation of the first i balls. If we refer to  the maximum load after the 

allocation of all m balls we will simply write L(A) (or L(B), L(C), L(D)). Lemma 3.4.16 

below compares the load of the four allocations described in Table 3.1. First, we give a 

lemma stating that, given two random variables, a small variation distance implies a small 

difference between their expectations. 

Lemma 3.4.15 Let X and Y be two discrete random variables sharing the same sample 

space. Let ( be the maximum possible value of X and Y. Then, 

Proof. Let G = {kl Pr (X = k) > Pr(Y = k)), S = {kl Pr (X = k) < Pr(Y = k)). Due to 

choice of G and S, 
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Hence, 

(Pr(X = k) - Pr(Y = k)), < . x (Pr(Y = k) - Pr(X = k)) 
kES 

= < x (Pr(X = k) - Pr(Y = k)) 
kEG 

5 < .  sup I Pr(X E A) - Pr(Y E A) I = < .  1 1  L(X) - L(Y) ( I .  
A 

Lemma 3.4.16 Let m = R(n7). 

(a)  I E[L(A)] - E[L(C)] ( 5 m-P, where P is an  arbi tray constant. 

(b) I E[L(B)] - E[L(D)] I 5 m-P', where P' i s  an arb i t ray  constant. 

Proof. Part (a). By Lemma 3.4.13 we get w.h.p. 

log log n 
L+) 5 3 -  (E + ( lo& )) + W ) .  

Using the pigeonhole principle, the maximum load difference A is at most 3.n.log log n/  log d+ 

B(n) - assume the worst case where n - 1 of the n bins are maximally loaded, and only 

one bin is below average. 

Since m/2 = 0(n7)  > n5A, by Lemma 3.4.12, the Greedy[d] algorithm has "short 

memory". In other words, after allocating the remaining m/2 balls of weight one, A and C 

will become almost indistinguishable. Moreover, we note that the variation distance of two 

random vectors is certainly no bigger than that of their respective maxima, thus 
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where a is an arbitrary constant. It is clear that the maximal possible loads of both alloca- 

tions A and C are 2m (if we allocate all the balls into one bin). By Lemma 3.4.15, 

( l + P )  log m+1 as long as we choose a = log, my1 . 
Part (b). This can be shown similar to part (a). 

Part ( c ) .  The deviation of the maximum load from the average in Allocation D is exactly 

Hence, 
2m 

E[L(D)] - E[L(C)] = E [L(C)] - -. 
n 

By Lemma 3.4.13, the maximum load of Allocation C is at least % + l0f;,"dn - @(l)  

Finally, we present the main result of this section, showing that uniform balls do not 

necessarily minimize the maximum load in the multiple-choice game. 

Theorem 3.4.17 E[L(B)] > E[L(A)] + - @(I).  

Proof. Clearly 

Since the difference between (E[L(A)] - E[L(C)]) and (E[L(B)] - E[L(D)]) is at most m-P 

(Lemma 3.4.16), we conclude that 

log log n log log n 
E[L(B)l - W ( 4 l  2 log d - @(I) - m-" m-P' 2 - @(I). 

log d 
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Majorization Order for Arbitrary Number of Balls 

In this section we consider the Greedy[2] process applied on weighted balls, but most of 

the results can be generalized to the Greedy[d] process for d > 2. Just to remind you, in 

the Greedy[2] process each ball sequentially picks independently uniformly at random two 

bins and the current ball is allocated in the least loaded of the two bins (ties can be broken 

arbitrarily). This means, of course, that a bin with relative low load is more likely to get 

an additional ball than one of the highly loaded bins. 

Another way to model the Greedy[d] process is the following: Assume that the load 

vector of the bins are normalized, i.e. C1 2 e2 2 . . . 2 C,. If we now place an additional ball 

into the bins, the ball will be allocated to bin i with probability (id - (i - l )d) /nd,  since all 

d choices have to be among the first i bins, and at least one choice has to  be i. For d = 2 

this simplifies to  (2i - l ) /n2 .  Hence, in this fashion, the process can be viewed as a "one 

choice process", provided the load vector is re-normalized after the allocation of each ball. 

This means that the load distribution of the bins highly depends on the order in which the 

balls are allocated. 

Unfortunately, the dependence of the final load distribution on the order in which the 

balls are allocated makes it very hard to get tight bounds using the majorization technique 

together with T-transformations. Theorem 3.4.8 highly depends on the fact that we can 

assume that wj and wk (yj and yk) are allocated at  the very end of the process, an assumption 

that can not be used in the multiple-choice game. In order to use T-transformations for 

multiple-choice games, we would again need a result that shows that the majorization order 

is preserved when we add more (similar) balls into the allocation. We need a result showing 

that if A F B and we add an additional ball to both A and B, after the allocation we still 

have A' F B' (where A' and B' denote the new allocations with the one additional ball). 

While this is true for uniform balls (see [13]), this is not necessarily true for weighted balls 

and the multiple-choice game. In the following sections we study the majorization order for 

weighted multiple choice games, and the effect that the the allocation order or the number 

of balls have on the final load distribution. 

Majorization Order The following easy example shows that the majorization order need 

not be preserved for weighted balls in the multiple-choice case. Let A = (7,6,5) and 

B = (7,5.8,5.2). If we now allocate one more ball with weight w = 2 into both systems (using 

the Greedy121 algorithm), with probability 519 the ball is allocated to  the third bin in both 
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allocations and we have A' = (7,7,6) and B' = (7.2,7,5.8), hence B' + A'. Alternatively, 

with probability 113 the ball is allocated to the second bin in each allocation resulting in 

load vectors A' = (8,7,5) and B' = (7.8,7,5.2). Finally, with probability l/n2 the ball is 

allocated to the first bin resulting in load vectors A' = (9,6,5) and B' = (9,5.8,5.2). In 

both cases we still have A' + B'. This shows that after the allocation of one additional ball 

using Greedy[2], the majorization relation can turn around. Note that the load distributions 

of A and B are not "atypical", but they can easily come up using Greedy[2]. 

The next lemma gives another example showing that the majorization relation need not 

be preserved for weighted balls in the multiple-choice game. The idea is that we can consider 

two allocations C and 2, where C + V, but by adding one additional ball (with large weight 

w) ,  we then have EIS1 (V')] 2 EIS1 (C')]. It is easy to generalize the lemma to cases where 

w is not larger than the maximum bin load to show that the majorization relation need not 

be preserved. 

T 
Lemma 3.4.18 Let v and u be two (normalized) load vectors with v*u (so v + u). u and 

v have same total weight and u # v. Let w be the weight of an additional ball with w > vl. 

Let vf,u' be the new (normalized) load vectors after allocating the additional ball into v and 

u. Then we have EISl (u')] > EISl (v')]. 

T 
Proof. First we assume v*u. Then, by the property of T-transformations, there must 

exist two bins with rank j, k E Zf, j < k, such that vj > u j  > uk > vk, and for Vi # j ,  k, 

that ui = vi. Besides, we have vj - u j  = uk - vk > 0. We observe that, since w > vl > ul ,  

the destination of the new ball immediately becomes the maximum loaded bin in both 

allocations. Since the probability to place the new ball on top of the i-th largest bin in both 
id-(i-lJd allocations is nd we get 

E[SI (u')] - E[Si (v')] = 

- - 

> 

Here the second equation holds since Vi 6 {j, k}, ui = vi. The last inequality is due to the 

facts that j < k and vj - u j  = uk - vk > 0. 0 

Remark: We feel it necessary to point out that the preceding lemma applies only to the 

largest elements of u' and v'. It is possible that after the allocation of the new ball we 
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could have E[S2(u1)] > E [S2(v1)] or the reverse inequality E[S2(vt)] > E [S2(u1)]. Recall 

that E[S2(u1)] is the expected sum of the largest two elements. 

For example, (using the Greedy[2] algorithm) if we take v = (7,7,3), u = (7,5,5), and 

w = 20, then the first inequality holds. It is easy to check that E[S2(u1)] = 32 > 31; = 

E[S2(v1)]. On the other hand, using the vectors v = (100,1, I ) ,  u = (35,34,33), and a new 

ball having weight w = 101 we find that E[S2(vt)] = 202 > 169; = E[S2(u1)]. However, 

Lemma 3.4.18 tells us that EISl(ul)] > E[(S1(vt)] holds in both cases. 

Lemma 3.4.18 and the example preceding that lemma both showed that a more unbal- 

anced weight vector can end up with a smaller expected maximum load after the allocation 

of some additional (and similar) balls. However, in those cases we assumed that the number 

of bins is very small, or that one of the balls is very big. Simulation results show that for 

most weight vectors w, wt with w + w' the expected maximum load after the allocation of 

w' is smaller than the one after the allocation of w. Unfortunately, we have been unable to 

show formal results along these lines. 

3.4.4 Order of Allocating Balls 

Another interesting question concerns the order of allocating balls under the multiple-choice 

game. In the case that m 2 n we conjecture that if all the balls are allocated in decreasing 

order, the expected maximum is the smallest among all possible permutations. This is 

more or less intuitive since if we always allocate bigger balls first, the chances would be 

low to place the remaining balls in those bins which are already occupied by the bigger 

balls. However, we still do not know how to prove this conjecture. We can answer the peer 

question: what about if we allocate balls in increasing order? The next observation shows 

that the increasing order does not always yield the worst outcome. 

Observation 3.4.19 Fix a set of weighted balls. The expected maximum load i s  not neces- 

sarily maximized by allocating balls i n  increasing order using the Greedy[2] algorithm. 

Proof. We compare two allocations A and B both with n bins. Let wd = {1,2,1,5), 

and wa = {1,1,2,5) be two weight vectors (sequences of ball weights). Notice that wa 

is a monotonically increasing sequence while wd is not. After allocating the first three 

balls, observe that the possible outcomes for A and B are (2,1,1,0,  . . . O), (3 ,1 ,0 .  . . , O), 

(2,2,0.  . . ,0)  and (4,0, . . .0).  We can calculate the probabilities for A and B to end up in 
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outcome (2,2,0.  . . ,0)  are (1 - l /n2)  . 3/n2 and (1 - l /n2)  . l /n2 ,  respectively. Moreover, 

notice both A and B have the same probability to end up in outcome (2,1,1,0, .  . .O) and 

(4,0, .  . . ,0).  Consequently, B has more (in fact, (1 - l /n2)  - 2/n2) probability to end up in 

outcome (3,1,0, .  . . ,0 )  than A, while A is more likely to  end up in outcome (2,2,0, .  . . ,0).  

Hence, after allocating the first three balls, B certainly majorizes A. Since the last ball 

(with weight 5) is bigger than the loads of all bins in both A and B after allocating the first 

three balls, by Lemma 3.4.18 the expected maximum load after allocating w~ is bigger than 

that after allocating w g  0 

Observation 3.4.20 If n = 2, the expected maximum load is not necessarily minimized by 

allocating balls in decreasing order using the Greedy[2] algorithm. 

Proof. We compare two allocations A and B both with m 2 5 balls and n = 2 bins. Let 

w~ = {9,6,. . . ,6 ,5 ,4 ,4)  and wg = {9,6,. . . ,6 ,4 ,5 ,4)  be the corresponding weight vectors. 

Note that w~ is monotonically increasing while wg is not. Let LA (or Lg) be the maximum 

load after allocating A (or B respectively) using the Greedy[2] algorithm. In the following 

we show E[Ld] > E[Lg]. 

For any t > 0, let Xd(t) (or Xg(t)) be a random variable indicating the load vector after 

allocating the first t balls in A(or B, respectively). Furthermore Xd(m - 3) = Xg(m - 3). 

For any e = (el ,&) E Xd(m-3) ,  let d(!) = Itl -t2(.  Note that d(t)  2 6 or d(!) = 3. We 

consider the following two cases. 

Case 1. d(e) 2 6. Note that the weights of the (m - 2)th and (m - l ) th  balls in both 

systems are smaller than 6. Due to  symmetry, exchanging these two balls will not affect the 

expected maximum loads. Consequently, 

Case 2. d(!) = 3. In this case we can write t = (y + 3, y) for some y > 0. Next we show 

that EILAIXA(m - 3) = e] > EILalXB(m - 3) = el. simply enumerating all cases (See 

Figure 3.1), we get, 

Note that LA = max{Xd(m)) = y + 311/32 and Lg = max{XB(m)) = y + 305132. 

Consequently, 

EILAIXd(m - 3) = l] = EILalXa(m - 3)] + 3/16. (3.7) 
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Figure 3.1: Enumerating all the cases of both allocations 

Let I ' ( X ( m  - 3)) denote the set of outcomes of random variable X ( m  - 3). We get, 

The third inequality is due to Equation 3.6 and 3.7. 0 

Remark Observation 3.4.20 shows that the decreasing order does not always give us the 

smallest expected maximum load when n = 2. However, we have not been able to  generalize 

the result to n > 3. We feel that the decreasing order always yields the smallest expected 

maximum load when we have considerable number of bins. Our empirical study in Section 

3.4.5 provides some evidence to support this argument. 
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3.4.5 Many Small Balls 

Another natural question to ask is the one we answered in Corollary 3.4.10 for the single- 

choice game. Is it better to allocate a large number of small balls compared to a smaller 

number of large balls with the same total weight? The next example shows again that the 

majorization relation is not always maintained in the multiple-choice game. 

Observation 3.4.21 Let us  consider two systems A and B both of n bins. Denote Wd = 

(0,2,4, .  . . , 2m-1) and Wa = (1,1,4, .  . . , 2m-1) to be two allocations both of rn > 3 balls. 

Note both systems are of same total weight and Wd + WB, but if m is odd, the expected 

maximum load of A is smaller than B. 

Proof. Clearly after allocating the first two balls System A majorizes System B. Besides, 

note that for both systems, the weight of every newly allocated ball is bigger than the sum 

of weights of all the balls allocated before. Hence, by Lemma 3.4.18, every time when a new 

ball is allocated, the majorization relation would be "reversed". Hence, for any odd number 

m > 3, System B certainly majorizes System A. 0 

To see this, when m = 3, simply by enumerating all cases we can get, the expected 

maximum load of A is 4 + 2/n2, which is smaller than that of B (4 + 4/n2 - 2/n4). 

We emphasize again that the initial majorization relation is no longer preserved during 

the allocation. However, we still conjecture that in "most" cases the allocation of a large 

number of small balls is majorized by the one of a smaller number of large balls with the same 

total weight. Furthermore, it seems that in all cases, the expected maximum loads of the two 

allocations at most differ by an additive factor of the maximum ball size. Unfortunately, so 

far we have been unable to prove formal results. The next section contains empirical results 

obtained by computer simulations examining some of the issue we have raised earlier. 

Simulation Results 

In this section we conduct an empirical study for the weighted multiple-choice balls-into-bins 

game. We allocate m = n balls into n bins while the number of choices, d, is chosen to be 

2. We examine cases in which n is set to 100, 200, 500, and 1000. Note it is not feasible 

to enumerate the huge number of possible allocations (which is nm'*) to calculate the exact 

expected maximum loads. Instead, we approximate them by taking the average maximum 

loads for a large number (specifically 100,000) number of iterations. 
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The goal of the first experiment is to demonstrate the following observation: the more 

balanced the ball weights are, the less the expected maximum load will be, after allocating all 

balls. In our experiment, we first randomly assign a weight in (0 , l )  to each ball. After that, 

we perform a few "mixing" steps, in which we choose two balls at random and equalize their 

weights, to make the overall weight vectors more balanced. We record the corresponding 

expected maximum loads vs. the number of mixing steps in Figure 3.4.5. 

Exp. m a  loads vs. # of mlxmg steps 

0 10 20 30 40 50 60 70 80 90 100 

# of mlxlng steps 

Figure 3.2: Successive equalization of weights 

Although the first observation above is almost always true, we still note that there do 

exist ball weight distributions which achieve smaller expected maximum load than their 

corresponding uniform ones, as shown in Theorem 3.4.17. 

Next we perform an experiment regarding the order of placing balls. We aim at showing 

that if we allocate balls in decreasing order of their weights, we would get the least expected 

maximum load. This seems intuitively likely since if we allocate big balls first, the small 

balls later are likely to fall into the holes left by the big ones. For the experiment, we first 

randomly assign each ball a weight in (0 , l )  and sort all ball weights by non-increasing order. 

Later, we perform a number of "swaps", i.e., we randomly choose two balls and exchange 

their weights, to get different ball arrangements. Figure 3.4.5 shows the relation between 

the number of swaps and the corresponding expected maximum loads. 

Clearly our experiment appears to support the conjecture that the decreasing order 

achieves the minimum expected maximum load when n is large (Recall that counterexamples 
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Exp. max loads vs. (I of swaps 

Figure 3.3: Successive swapping of weights 

do exist when n = 2, see Observation 3.4.20). Unfortunately, we have not yet succeeded in 

proving this conjecture. 

3.5 Selfish Reallocation Game 

In this section we consider the problem of dynamically reallocating (or re-routing) m balls 

among a set of n bins (one may think of the balls as selfish users). Initially every bin is . 
associated with some balls. Then in each round, every ball applies a natural, distributed 

algorithm (Algorithm 4) to reallocate itself into a different bin. Using game theoretic notion, 

when all the balls stop moving the system reaches some Nash equilibrium (or some state 

close to Nash equilibrium). We shall first introduce the notion of Nash equilibrium and its 

variations. 

Nash Equilibrium 

The status of an allocation is represented by a vector X(t)  = (xl(t), . . . , x,(t)) in which 

xi(t) denotes the load of bin i at the end of step t ,  i.e., the sum of weights of balls allocated 

to bin i .  We will normalize load vector X(t)  by assuming a non-increasing order of bin 

loads, i.e. xl(t) 2 xz(t) 2 . 2 x,(t). For any ball b E [m], let rb(t) denote the current bin 

of ball b at step t. In the following, we shall drop "t" if it is clear from the content. 
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Definition. [Nash equilibrium] An assignment is a Nash equilibrium for ball b if 

xTb 5 x j  + wb for all j E [n], (3.8) 

i.e., if ball b cannot improve its situation by migrating to any other bin. 

Definition. [E-Nash equilibrium] For 1 2 E 2 0, we say a state is an E-Nash equilibrium 

for ball b if 

xTb 5 x j  + (1 + E ) w ~ .  (3.9) 

Notice that this definition is somewhat different from (and stronger than), e.g. Chien and 

Sinclair's in [35] where they say that (translated into our model) a state is an E'-Nash 

equilibrium for E' E (0 , l )  if (1 - el)xTb 5 x j  + wb for all j E [n]. However, our definition 

captures theirs: for E' E (0 , l )  let E = - 1(> 0) and observe that xTb < xi + (1 + t)wb < 
2 -+Wb 

(1 + €)(xi + wb) = (1 + (A - l ) ) (x j  + wb) = ;-,, . 

3.5.1 Weighted Case 

We define our allocation process for weighted balls and uniform bins. Xl(0), . . . , Xn(0) is 

the initial assignment. The transition from state X(t)  = (xl(t), . . . , xn(t)) to  state X( t  + 1) 

is given by the algorithm below. Let 0 5 E 5 1 and p = €18. 

Algorithm 4 Greedy Reallocation Protocol for Weighted Tasks 

1: for each ball b in parallel do 
2: let r b  be the current bin of ball b 
3: choose bin j uniformly at random 
4: if XTb(t) 2 Xj(t) + (1 + E ) W ~  //violation of Equation 3.9// then 

5: move ball b from bin r b  to j with probability p 

If the process converges, i.e. if X(t)  = X ( t  + 1) for all t 2 T for some T E N, then the 

system reached some E-Nash equilibrium ("some" because E-Nash equilibria are, in general, 

not unique). Our goal is to  bound the number of steps it takes for the algorithm to con- 

verge, that is, to  find the smallest T with the property from above. We prove the following 

convergence result. 

Theorem 3.5.1 Let E > 0 and p = €18. Let A 2 1 denote the maximum weight of any 

task. Let T be the number of rounds taken by the protocol in Figure 4 to reach an E-Nash 
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equilibrium for the first time. Then, 

Preliminary Results 

In this section we give some necessary notation for the analysis and prove some preliminary 

results. We use a standard potential function (see also [22]). 

In the following we assume, without loss of generality, that the assignment is "normalized", 

meaning xl > . . . > xn. If it is clear from the context we will omit the time parameter t 

in X(t)  = (Xl(t) ,  . . . , X,(t)) and write X = (XI , .  . . ,Xn)  instead. We say ball b has an 

incentive to move to bin i if x,, 2 xi + (1 + c)wb (notice that this is the condition used in 

line 4 of Algorithm 4). 

Let yb = (yb(rb, 1),  . . . , yb(rb, n)) be a random variable with CYzl yb(rb, i)  = 1. yb is 

an n-dimensional unit vector with precisely one coordinate equal to 1 and all others equal 

to 0.  yb(rb, i)  = 1 corresponds to the event of ball b moving from bin r b  to  bin i (or staying 

at  bin i if i = rb). Let the corresponding probabilities (pb(rb, I ) ,  . . . , pb(rb,  n)) be given by 

n if r b  # i and x,, > xi + (1 + c)wb 

if r b  # i and x,, 5 xi + (1 + c)wb 

pb(i, I c )  if r b  = i. 

The first (second) case corresponds to randomly choosing bin i and finding (not finding) 

an incentive to  migrate, and the third case corresponds to randomly choosing the current 

bin. 

For i E [n], let Si(t) denote the set of balls currently on bin i at step t. In the following 

we will omit t in Si and write Si if it is clear from the content. For i ,  j E [n] with i # j, let 

Ij,i be the total weight of balls on bin j that have an incentive to move to bin i, i.e., 

I . .  - 
.I,% - 

Let 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 65 

denote the expected total weight of balls migrating from bin j to bin i  (the last inequality 

is true because IjZi 5 xj; at most all the balls currently on j migrate to i ) .  Next, we show 

three simple observations. 

Observation 3.5.2 

Proof. Part ( 1 )  is similar to Lemma 10 in [23]. To prove Part (2 ) ,  by definition of @ we 

have 

Notice that C:=, E [ X i ( t  + l ) IX( t )  = x] = n Z  and thus 2 ~  C:=, ( E [ x i ( t  + l ) I X ( t )  = 

= 0.  For Part (3 ) ,  simply check the worst case that all the m balls are in one bin. 

0 

3.5.2 Convergence to Nash Equilibrium 

In this section we bound the number of time steps for the system to reach some Nash equilib- 

rium. We first bound the expected potential change during a fixed time step t  (Lemma 3.5.5). 
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We shall first prove two technical lemmas: bounds for CyZl (E[Xi(t  + l)IX(t) = x] - T ) ~  

and CyEl var[Xi (t + 1) IX(t) = X I ,  respectively (Lemma 3.5.3 and Lemma 3.5.4). 

Lemma 3.5.3 

Proof. Since E[Wif] is the expected total weight migrating from bin i to  j ,  we have E[Xi(t+ 

l ) lX(t)  = x] = x i + ~ ! - l  E[Wj,i] - CL=i+l E[WiYk]; recall that we assume xl 2 . , . 2 x,. To 

estimate Cy=l (E[Xi(t + l)IX(t) = x] - T ) ~ ,  we use an indirect approach by first analyzing 

a (deterministic) load balancing process. We then use the load balancing process to  show 

our desired result (see [23]). 

We consider the following load balancing scenario. Assume that there are n bins and 

every pair of bins is connected so that we have a complete network. Initially, every resource 

1 5 i 5 n has zi = xi balls on it. Assume that zl 2 . . . > z,. Then every pair of bins 

(2, k), i < k concurrently exchanges = E[Wi,k] 5 p(xi - xk)/n = p(zi - zk)/n balls. If 

i 2 k we assume tilk = 0. Note that the above system is similar to  one step of the diffusion 

load balancing algorithm on a complete graph Kn. In both cases the exact potential change 

is hard to calculate due to  the concurrent load transfers. The idea we use now is to  first 

"sequentialize" the load transfers, measure the potential drop after each of these sub-steps, 

and then to  use these results to  get a bound on the total potential drop for the whole step. 

In the following we assume that every edge es = (i, k), i ,  k E [n], k > i is labeled with 

weight ti,k 2 0. Note that ti,,, = 0 if X i  < xk. Let N = n(n-1)/2 and E = {el, e2,. . . eN) be 

the set of edges sorted in increasing order of their labels. We assume the edges are sequen- 

tially activated, starting with the edge el with the smallest weight. Let zS = (z:, . . . ,z;) be 

the load vector resulting after the activation of the first s edges. Note that z0 = (z:, . . . ,z:) 
is the load vector before load balancing and zN = (zp ,  . . . , z r )  is the load vector resulting 

after the activation of all edges. 

Moreover, by the definition of our 

Note that @(zO) = @(x) since i E [n], z: = zi = Xi. 

load balancing process and since = E[Wi,k] we have 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 

Hence 

Next we bound @(zN). For any s E [N], let A,(@) = @(zS-l) - @(zS) be the potential 

drop due to the activation of edge e, = (i, Ic). Note that 

Now we bound A,(@). Since all edges are activated in increasing order of their weights 

we get li 5 = p(zi - zk)/n for any node j that is considered before the activation of e,. 

Node i has n - 2 additional neighbours, hence the expected load that it can send to these 

neighbours before the activation of edge e, = (i, k) is at most (n - 2)ti,k < p(zi - zk) - !ilk. 

This gives us 

zf-I 2 Zi - (n - 2)ti,k > Zi - P ( Z ~  - zk) + 
Similarly, the expected load that Ic receives before the activation of edge e, = (i, Ic) is at 

Thus, 

Similarly, since 2:-' < zi and zip' > zk, we get 

Next we bound @(zN). 

Consequently, we get 



CHAPTER 3. WEIGHTED BALLS-INTO-BINS GAMES 

and 

Proof. First of all, note that {yb(rb , i ) )  and {yb'(rb,, i ))  are independent for b # b'. Let 

Si(t) be the set of balls that is assigned to resource i in step t. 

var[Xi(t + l)IX(t) = x] 

- - var [? wb yb(rb, i) = wi v a r [ ~ ~ ( r ~ ,  i)] 

n I b  
= C C w i . v a r [ ~ ' ( r ~ , i ) ]  

j=1 b€Sj ( t )  

= C C w j .  pb ( rb , i ) ( l  - pb( rb , i ) )  + C w i .  pb( rb l i ) ( l  - pb( rb , i ) )  
j#i b€S j  (t) b ~ S i ( t )  

< C C wj  . pb(rb, i)  + C wj . (1 - pb(rb, i ) )  
j#i ~ E S ,  (t) b ~ S i  (t) 

= C C wj  . pb(rb,i)  + C wi . C pb(rb1j) 
j#i b€S, (t) b ~ S i ( t )  j#i 

= C C w j . ~ ~ ( r b , i ) + C  C w i . ~ ' ( r b , j )  
j#i b€S j  (t) j#i b ~ S i ( t )  

x j  - xi xi - x .  c c w b . l + f a  pb(rb, i)  + C C wa . . pb(rb , j )  
j#i b€S, (t) j#i b~S,(t) I + €  

The second inequality holds since (xj - xi) 2 (1 + E) wb whenever a ball b in bin j have an 

incentive to move to bin i (see Algorithm 4). Now note that E[Wi,j] = 0 whenever x j  > xi. 

Hence, 
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Now we are ready to show the following lemma bounding the potential change during 

step t. 

Lemma 3.5.5 

Proof. To prove part ( I ) ,  combining Observation 3.5.2(2), Lemma 3.5.3(1) and 3.5.4, we 

get 

since p = €18. The proof of part (2) is similar. 0 

It is easy to prove the following corollary. 

Corollary 3.5.6 Vt 2 0, E[@(X(t + I))] < E(@[X(t))].  

Proof. By Lemma 3.5.5(1), 
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Next we first show that if @(x) 2 4nA2, then the system potential decreases by a 

multiplicative factor of at least pel4 per round expectedly (Lemma 3.5.7). We then show 

that whenever x is not E-Nash equilibrium, every round the system potential decreases at 

least by an additive factor of pel(6mA) in expectation (Lemma 3.5.9). With these two 

Lemmas, we are ready to show our main result (Theorem 3.5.1). 

Lemma 3.5.7 If @(x) 2 4nn2,  A i s  the maximum ball weight. W e  have E[@(X(t  + 
l ) ) l x ( t )  = X] < (1 - P E / ~ ) @ ( x ) .  

Proof. We first bound xy=l x t = i + l  E [Wi ,k ] (~ i  - xk).  Recall that E[Wi,k] = I i ,k  . (p(1 - 

xk/xi))/n, where 0 5 Iilk 5 xi is the total weight of balls in xi which have an incentive to 

migrate to xk. To prove our bound we only add up the cases when Ii ,k = xi. Note that 

if Ii ,k  < xi, we have xi - xk < (1 + €)A, since otherwise every ball in bin i would have an 

incentive to move to bin k resulting in Ii ,k = xi. 

since @(x) >_ 4nA2 and E 5 1. Now, using Lemma 3.5.5(1) we obtain, 

It is easy to  derive the following corollary from Lemma 3.5.7. 
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Proof. We consider two cases for different values of E[@(X(t)]. If E [@(X(t))] 5 8nA2, 

by Corollary 3.5.6, E[@(X(t  + I))] < E[@(X(t))]  5 8nA2. Next we show if E[@(X(t))]  2 
8nA2, E[@(X(t  + I))] 5 (1 - ~ € 1 8 )  . E[@(X(t))]. Let A = {x E R(X(t))l@(x) I 4nA2}, 

B = R(x) \ A. Note that by definition CxEA Pr[X(t) = x] . @(x) < 4nA2. 

The first inequality is due to Lemma 3.5.5(1) and Lemma 3.5.7. To show the second in- 

equality, observe that 

since 

E [@(X(t))] = x Pr[X(t) = x] . @(x) + x Pr[X(t) = x] . @(x) 2 8nA2 
XEA X E B  

and 

Pr[X(t) = x] . @(x) < 4nA2. 
XEA 

0 

Next we show Lemma 3.5.9, which indicates that whenever the system is not at some E- 

Nash equilibrium, the system potential decreases by an amount of p ~ l ( 6 m A )  in expectation 

during that step. 

Lemma 3.5.9 Assume that at step t the system is not at some E-Nash equilibrium. We 

have E[@(X(t  + l))IX(t) = x] 5 @(x) - &. 

Proof. We consider two cases for different values of XI,  the maximum load of a bin. 
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1. xl > Z +  2A. In this case we have xl > xn + 2A > xn + (1 + € ) A  since xn < Z and 

0 < E < 1. Thus, every ball in bin 1 has an incentive to  move to  bin n.  Using Lemma 

3.5.5(1), we get 

2. xl 5 + 2A. Since x is not E-Nash equilibrium, there must be a t  least one ball b that 

has an incentive to migrate to  some bin v # rb. Note that x,, - xu 2 (1 + e)wb > 1 

and x,, 5 XI 5 : + 2A. Similar to Case 1, 

For the last inequality, we use :. n = W 5 m . A and m > n .  

Proof of Theorem 3.5.1 We first show that after r = 16(ep)-l log m steps, E [@(X(r))]  5 

8nA2. By Observation 3.5.2(3), @(X(O)) 5 m2A2. Repeatedly using Corollary 3.5.8 we 

get E[@(X(r ) ) ]  5 max{8nA2, (1 - ~€18) '  . @(X(O))) = 8nA2. By Markov inequality, 

Pr[@(X(r))  > 80nA2] 5 0.1. 

The following proof is done by a standard martingale argument similar to  [22] and [83]. 

Let us assume that @(X( r ) )  < 80nA2. Let T be the number of additional time steps for 

the system to  reach some E-Nash equilibrium after step r and let t A T be the minimum of 
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t and T .  Let V = pel(6mA) and let Zt = @ ( X ( t  + r ) )  + V t .  Observe that {Zt)tAT is a 

supermartingale since by Lemma 3.5.9 with X ( t  + r )  = x, 

Hence E[Zt+1] = C,  EIZt+l lZt = z] . Pr[Zt = z] 5 C ,  z . Pr[Zt = z] = E[Zt] .  We ob- 

tain 

V . E [TI < E [ @ ( X ( r  + T ) ) ]  + V . E [TI = E [ZT] < . . . 5 EIZo] < 80nn2. 

Therefore E [ T ]  < 80nA2/V = 480mnA3(pe)-l, and Pr[T > 4 8 0 0 m n A ~ ( p ~ ) - ~ ]  < 0.1 by 

Markov's inequality. Hence, after r + T = 16(p~)- l  log m + 4800mnA~(pe ) -~  rounds, the 

probability that the system is not at some E-Nash equilibrium is at most 0.1 + 0.1 = 0.2. 

Subdivide time into intervals of r + T steps each. The probability that the process has 

not reached an E-Nash equilibrium after s intervals is at most (1/5)S. This finishes the proof. 

0 

Corollary 3.5.10 Assume that every ball has integer weight of at least 1. After running 

Algorithm 4 with E = l / A  for O(mnA5)  steps, the chance that the system is not at some 

Nash equilibrium is at most 0.2. 

Proof. When Algorithm 4 terminates, for any ball b and bin i E [n] ,  we have x,, < 
Xi + (1 + E ) W ~  < Xi + wb + 1 < Xi + wb since wb < A and wb is an integer. This implies that 

the system is at one of the Nash equilibria. Now, setting E = l / A  in Theorem 3.5.1 and 

using p = €18 = (8A) - l ,  we obtain the result. 17 

Lower bound for the Convergence time 

We prove the following lower bound result for the convergence time of Algorithm 4. 

Observation 3.5.11 Let T be the first time at which X ( t )  is the Nash equilibrium. There 

is a load configuration X(0 )  that requires E[T]  = n ( m A / e ) .  

Proof. Consider a system with n bins and n uniform balls and m - n balls with weight 

A 2 2. Let 1 = m l n  where m is a multiple of n. Let X ( 0 )  = ( ( I  - l ) A  + 2 ,  ( 1  - l ) A  + 
1,.  . . , ( 1  - l ) A  + 1, ( 1  - 1 ) A ) .  The perfectly balanced state is the only Nash equilibrium. 

Let q be the probability for the unit-size balls in bin 1 to move to  bin n (if exactly one of 

the two unit-sized balls moves, the system reaches the Nash equilibrium). By Algorithm 4, 
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we have q = p .  2/(n(( l -  l )A  + 2))) = O(e/rnA) since 1 = m/n and p = €18. Note that T is 

geometric distributed with probability 2q(l - q). Thus E[T] = 1/(2q(l - q ) )  = R(mA/e). 

0 

Remark We believe that since there is lack of global knowledge and also balls query the 

load of only one other server, even with significant change to  the algorithm we can not omit 

the term A. For an evidence consider two different games as follow, both with two servers. 

There are 4 balls with weights (1,1, A,  A) and the initial configuration is (A + 2, A). 

There are 2 4  + 2 balls all of unit weight, and the initial configuration is (A + 2, A). 

Considering the lack of global knowledge, a ball with unit weight can not distinguish between 

the above games. But in order to have a fast convergence to  the Nash Equilibrium (see [60] 

for the definition), in the first game it needs to migrate with a probability significantly 

higher than the corresponding probability in the second game. 

3.5.3 Uniform Case 

In this section we show convergence for Algorithm 4 for the case that all balls are uniform 

(i.e., A = 1). 1221 shows that the perfectly balanced state is the unique Nash equilibrium. 

We set E = 1 in Algorithm 4, thus p = 1/(8c) = 118. 

Convergence to Nash Equilibrium 

Note that when Algorithm 4 terminates, we have 'di, j E n ,  xi < x j  + (1 + E)A = x j  + 2. 

Hence the system is in the Nash equilibrium. In the following, we show (in Theorem 3.5.16) 

that, after O(1ogm + nlogn)  steps, Algorithm 4 terminates with high probability. This 

improves the previous upper bound of O(log1ogm + n4) in [22] for small values of m. In 

fact, we can actually combine these two algorithms to obtain a tight convergence time of 

O(1og log m + n log n) w.h.p. The tightness of this result can be shown by Theorem 4.2 in 

[22] and Observation 3.5.18. 

For simplicity we assume that m is a multiple of n ,  the proof can easily be extended 

to  n m. We first prove Lemma 3.5.13, which is a similar result to  Lemma 3.5.5(1) that 

bounds the expected potential drop in one round. Then we show that in each round the 

potential drops at least by a factor of 1/32 if the current system potential is larger than 
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n (Lemma 3.5.15(1)), and at least by a factor of 1/8n otherwise (Lemma 3.5.15(2)). With 

these two lemmas, we are ready to show Theorem 3.5.16. 

We will use the same potential function @ ( x )  as the one in Section 3.5.1. Recall that by 

Observation 3.5.2(1), for an arbitrary load configuration x ,  

n , n  R. 

For bin i ,  k E [n], let E[Wi,k] denote the expected number of balls being transferred from bin 

i to k. Note that by Algorithm 4,  if X i  - xk > 2, E[Wi,k] = Xi .p( l -  x k / x i ) / n  =  xi - x k ) / n ,  

otherwise E [ W i I k ]  = 0. Let S i ( x )  = {k : X i  2 xk + 2 )  and E ~ ( x )  = {k : X i  = xr, + 1) .  Let 

Note that the bigger F(x)  is, the more balls are expected to be transferred by Algorithm 4. 

We first show some relations between F ( x )  and @ ( x ) .  

Observation 3.5.12 For any load configuration x ,  we have 

1. I f @ ( x )  2 n, then F ( x )  > @ ( x ) / 2 .  

2. If F ( x )  < 2, then F ( x )  = @ ( ~ ) ~ / n  and @ ( x )  < 6. 

3. If @ ( x )  < 2, then x  is  Nash equilibrium. 

Proof. For Part ( I ) ,  by definition, 

Hence if @ ( x )  2 n, we get F ( x )  2 @ ( x )  - (n - 1 ) / 2  > @ ( x ) / 2 .  

For Part ( 2 ) ,  we first show that if F ( x )  < 2, then x1 - x ,  < 2  (notice that X I  2 x2 2 
. . . , 2  2,). For a contradiction assume that F ( x )  < 2  and x1  - x ,  2 3. Hence V1 5 i 5 n, 

either / x i  - xll 2 2  or Ixi - x,l 2 2. Also notice that by symmetry we have 

1 1 2 1  2 
F ( x )  = - C C ( x i  - xk)I  = - C C (xi  - x k )  2 - . n . (2  ) = 2, 

n 
2n i=l k € S t ( z )  

2n i=1 k € S , ( z )  

resulting a contradiction. 
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Next we show r ( x )  = @(x) ' /n .  Since Z  = m/n is an integer and X I  - xn 5 2, each bin 

can only have ?t - 1, Z, ?t + 1  balls. Let A ( B )  be the set of bins with Z  - 1  balls and (T + 1  

balls), respectively. Of course IAJ = 1 B J  : r .  Thus @ ( x )  = Cy=l (x i  - 3)' = 2r. Hence, 

Consequently, given r ( x )  < 2, we have @ ( x )  5 6. 
For Part (3), for a contradiction assume that x  is not Nash equilibrium. Then there must 

be two bins u, v, such that xu 2 Z + 1  and x,  5 : - 1. Thus @ ( x )  = EL1 (x i  - 2)' 2 2. 

We get a contradiction. 

0 

We then show the following bound for the expected potential drop in one step. 

Lemma 3.5.13 E [ @ ( X ( t  + l ) ) ( X ( t )  = x] 5 @ ( x )  - r ( x ) / 1 6 .  

Proof. Recall that if X i  - xr, 2 2, E[Wi,r,] = p(xi - x k ) / n ,  otherwise E[Wi,r,] = 0. Hence, 

1 
F ( X )  = - .n x x (xi  - x , ) ~  = p-l x x E [ W i , k ] ( ~ i  - I*) .  

Setting E = 1  and p = 118 in Lemma 3.5.5(1), we get 

The following corollaries follow from Lemma 3.5.13. 

Corollary 3.5.14 

1. I f @ ( x )  > n ,  E [ @ ( X ( t  + l ) ) I X ( t )  = x] < (1 - 1/32)@(x) .  

2. I f n  > @ ( x )  > fi, E [ @ ( X ( t  + l ) ) I X ( t )  = x] I @ ( x )  - 118. 

3. If 6 > @ ( x ) ,  E [ @ ( X ( t  + l ) ) ( X ( t )  = x] i @ ( x )  - @(x)'/(16n).  
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Proof. Part (1) follows directly from Lemma 3.5.13 and Observation 3.5.12(1). 

To prove Part (2), if @(x) > 6, by Observation 3.5.12(2) r ( x )  > 2. Then use Lemma 

3.5.13 we get E[@(X(t  + l))IX(t) = x] I @(x) - 118. 

For Part (3), note that E[@(X(t + l))IX(t) = x] 5 @(x) - F(x)/16 by Lemma 3.5.13. 

Thus it is sufficient to show that r ( x )  > @(x)'/n. We consider two cases for different values 

of r (x) .  If r ( x )  2 2, r ( x )  > @(x)'/n since @(x) < 6. If r ( x )  < 2, by Observation 

3.5.12(2), r ( x )  = @(x)'/n. 0 

Next we prove two results that bound the expected potential drop. 

Lemma 3.5.15 For any t > 0, 

1. E[@(X(t  + I))] 5 max {n, (1 - 1/32)E[@(X(t))]}. 

Proof. The   roof of Part (1) is similar to Corollary 3.5.8. If E[@(X(t))] 5 2n, by Corollary 

3.5.6, E[@(X(t + I))] 5 E[@(X(t))] 5 2n. In the following we show if E[@(X(t))] > 2n, 

E[@(X(t + I))] 5 (1 - 1/64)E[@(X(t))]. Let A = {x E R(X(t))l@(x) < n} and B = 

R(X (t)) \ A. Note that by definition CxEA Pr[X (t) = x] . @(x) 5 n. 

x ((1 - 1/64)@(x) Pr[X(t) = XI} + {(1 - 1/64)@(x) . Pr[X(t) = x]} 
X E A  X E  B 

The first inequality is due to Lemma 3.5.5 and Corollary 3.5.14(1). To show the second 

inequality, observe that 

since 

E[@(X (t))] = x Pr[X(t) = x] . @(x) + x Pr[X(t) = x] . @(x) > 2n 
xEA xEB 
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and x Pr[X(t) = x] . @(x) 5 n ,  
X E A  

To prove Part (2), we first show that for any load configuration x,  E [@(X(t + 1)) 1 X (t) = 

x] 5 (1 - 1/(8n))@(x). There are four cases for different values of @(x). 

1. If @(x) 2 n,  by Corollary 3.5.14(1), E[@(X(t  + l))IX(t) = x] < (1 - 1/32)@(x) < 
(1 - 1/(8n))@(x) as long as n > 4. 

2. If n > @(x) > 6 ,  by Corollary 3.5.14(2), E[@(X(t  + l))IX(t) = x] < @(x) - 118 < 
(1 - 1/(8n))@(x) since @(x)/(8n) < 1/13 due to @(x) < n. 

3. If 6 > @(x) 2 2, by Corollary 3.5.14(3), E[@(X(t  + l ) ) JX( t )  = x] 5 @(x) - 

@ ( ~ ) ~ / ( 1 6 n )  5 (1 - 1/(8n))@(x) since @(x) > 2. 

4. Finally, if @(x) < 2, by Observation 3.5.12(3), x must be Nash equilibrium so that 

@(x) = 0. In this case the system potential will not change. Hence E[@(X(t  + 
l ) ) lX(t)  = x] = 0 5 (1 - 1/(8n))@(x). 

Consequently, 

Theorem 3.5.16 Given any initial load configuration X(0) = x. The probability that the 

system does not reach the Nash equilibrium after 64log m + 16nln n steps is at most l l n .  

Proof. We first show that after r = 1281nm steps, E[@(X(r))]  5 n. By Observation 

3.5.2(3), @(X (0)) 5 m2A2 = m2. Using Lemma 3.5.15(1) iteratively for r times, we get 

We then show that after T = 24nln n additional steps, the system reaches Nash equilibrium 

w.h.p. Using Lemma 3.5.15(2) iteratively for T times, we get 

E[@(X (r + T)] 5 E[@(X (r))]  . (1 - 1 / ( 8 n ) ) ~  5 (2n) . (1 - 1 / ( 8 n ) ) ~ ~ ~  I n n  < , . e-31nn - - nP1. 
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By Markov's inequality, P r [ @ ( X ( T  + T ) )  2 21 < l l n .  Observation 3.5.12(3) tells us that if 

@ ( X ( T  + T ) )  < 2,  X ( T  + T )  is Nash equilibrium. Hence, after T + T = 128 In m + 2472 Inn 

steps, the probability that the system does not reach the Nash equilibrium is at most l l n .  

0 

Remark Note that we can combine Algorithm 4 and Algorithm 1 in 1221 to  obtain an 

algorithm that converges in O(log1ogm + nlogn) steps. To see this, first note that by 

Corollary 3.9 in [22], after Tl = 2 log log m steps, E [ @ ( X ( T l ) ]  5 18n. Then using a similar 

argument as above, we can show that after O(1og log m + n log n) ,  the system state is a t  

some Nash equilibrium w.h.p. 

Lower bounds 

We prove the following two lower bound results which show the tightness of Theorem 3.5.16. 

Observation 3.5.17 Let T be the first t ime at which E [ X ( t ) ]  5 c for constant c > 0 .  There 

is an  initial load configuration X ( 0 )  that requires T = R(1og m) . 

Proof. Consider a system with n = 2 bins and m uniform balls. Let X ( 0 )  = ( m ,  0 ) .  We 

first show that E [ @ ( X ( t  + l ) ]  2 ; E [ @ ( X ( ~ ) ) ] .  By definition, 

Hence, setting E = 1 in Lemma 3.5.5(2) we obtain 

Now similar to  Lemma 3.5.15 ( 1 )  we can show that E [ @ ( X ( t  + I ) ) ]  2 7 E [ @ ( X ( t ) ) ] / 8 .  Note 

that @ ( X  (0)) = m 2 / 2 .  In order to make E [ X  (T )]  < c ,  we need T = R (log m) . 0 

Observation 3.5.18 Let T be the first t ime at which X ( t )  is a Nash equilibrium and T* 

be the upper bound for T .  There is an  initial load configuration X ( 0 )  that i n  order to make 

Pr[T 5 T*] > 1 - l / n ,  we need T* = R(n1ogn). 

Proof. Consider a system with n bins and m uniform balls. Let X ( 0 )  be the assignment 

given by X ( 0 )  = ( 2 , 1 , .  . . , 1 , 0 ) .  Denote q be the probability for the balls in bin 1 to  
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move to bin n (if exactly one of the two balls in bin 1 moves, the system reaches the Nash 

equilibrium). By Algorithm 4 (with p = 1/8), q = 2/(2pn) = 1/(8n). Note that T is 

geometric distributed with probability 2q(l - q) < 1/(4n). Consequently, Pr[T > T*] 5 
(1 / (4n ) )~*  (since step 1, . . . , T* all must fail). Thus, to  have Pr[T 5 T*] > 1 - l l n ,  we need 

T* = R(n1ogn). 0 

Remark Note that this lower bound also holds for the algorithm in [22] (with p = 1). 

3.6 Summary 

In this chapter we have studied the weighted balls-into-bins games where every ball is 

associated with some positive weight. we have considered two different scenarios, the static 

sequential game and the selfish reallocation game. 

Static Sequential Game In the static sequential game, balls arrive without initial lo- 

cations. Our goal is to allocate them into bins as evenly as possible. We have studied a 

well-known approach that to  have every ball choose d 2 1 bins independently and uniformly 

at random, and allocate itself into the bin with the lightest load. We have shown that for 

the single-choice game, i.e., d = 1, a more balanced weight distribution always yields a 

smaller expected maximum load. Our proof is based on the majorization technique. For the 

multiple-choice game, we first showed that the expected maximum load is not necessarily 

minimized for the allocation with uniform balls when we have sufficiently many balls. We 

then proved that the majorization order is not generally preserved. Regarding the order 

in which we allocate balls, we proved that the expected maximum load is not necessarily 

maximized if we allocate balls in increasing order. We then showed that the decreasing 

order does not always yield the smallest expected maximum load when n = 2. 

There are two interesting open questions in the static sequential game. First, it would 

be interesting to  generalize Theorem 3.4.17 to allow arbitrary number of balls. Second, we 

proved that the decreasing order does not necessarily yield the smallest expected maximum 

load when n = 2. We are interested in the question whether the counterexample still holds 

for arbitrary n. 

Selfish Reallocation Game In the selfish reallocation game, every bin is initially associ- 

ated with some balls. Then each ball applies the following natural, distributed reallocation 
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algorithm to reallocate itself into different bin. In each round, every ball first picks a bin 

uniformly at random. It then compares the load of its current host bin with the load of 

the randomly chosen bin. If the load difference is above a certain threshold then the ball 

will migrate to the destination bin with a certain probability. Our goal is to bound the 

convergence time, which is the number of steps for the system to terminate. 

For the weighted case where each ball i E [m] is associated with some weight wi 2 1, We 

proved that after o ( ~ ~ A ~ E - ~ )  steps, the system converges to the E-Nash equilibrium with 

probability at least 415, where A is the maximum task weight. Our analysis is based on the 

potential function technique. We also proved a lower bound of R ( r n A l ~ )  for the convergence 

time. For the uniform case where every ball has uniform weight (i.e., A = I ) ,  we proved 

that the system converges to  the (real) Nash equilibrium in O(1og m + n log n)  steps w.h.p. 

We also obtained an algorithm with tight convergence time of O(log1ogm + nlogn) by 

combining our algorithm with the one in [22]. 

The first open question in the selfish reallocation game is whether we can close the gap 

between the upper and lower bounds for the weighted case. Yet, we believe that to  answer 

this question, a different potential function is necessary. Next, instead of the linear latency 

function used in this work, we can consider more general latency functions, e.g., functions 

with "bounded jump" property in [35] or "bounded relative slope" property in [61]. As 

a first step, we can assume that every bin is associated with some positive "speed". The 

latency of a bin would then be the load of that bin divided by the speed. 



Chapter 4 

Energy Efficient Routing in Ad 

Hoc Networks 

In this chapter we study how to design efficient routing algorithms for broadcasting and 

gossiping in ad hoc networks. Our goal is not only to minimize the broadcasting and 

gossiping time, but also to  minimize the energy consumption, which is measured in terms 

of the total number of messages (or transmissions) sent. We consider ad hoc networks with 

both random and general topologies. 

For random networks, we present a broadcasting algorithm where every node transmits 

at most once. We show that our algorithm broadcasts in O(1ogn) time steps (rounds), 

w.h.p., where n is the number of nodes. We then present a O(d log n)  (d is the expected 

degree) gossiping algorithm using O(1ogn) messages per node. For general networks with 

known diameter D,  we present a randomized broadcasting algorithm with optimal broad- 

casting time O(D log(n/D) + log2 n) that uses an expected number of O(log2 n /  log(n/D)) 

transmissions per node. We also show a trade-off result between the broadcasting time and 

the number of transmissions: we construct a network such that any oblivious algorithm 

using a time-invariant distribution requires 0(log2 n/  log(n/D)) messages per node in order 

to  finish broadcasting in optimal time. This demonstrates the tightness of our upper bound. 

We also show that no oblivious algorithm can complete broadcasting w.h.p. using o(1og n) 

messages per node. 
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4.1 Introduction 

In this chapter we consider a typical disributed system, the ad hoc network. We study how 

to  design efficient routing algorithms for two fundamental communication problems in ad 

hoc networks, broadcasting and gossiping. For broadcasting, one node sends a message to  

the rest of the network. For gossiping, every node sends a message to  all other nodes in the 

network. 

An ad hoc network consists of a set of mobile nodes connected through wireless links. 

The main advantage of an ad hoc network is that  it does not need any infrastructure. Thus, 

ad hoc networks are easier to  deploy and are more scalable than traditional networks. Due 

to  these advantages, ad hoc networks have received much attention in recent years. In an 

ad hoc network, nodes model the wireless devices equipped with antennas. Every device 

has a fixed communication range and it can listen to  all neighbouring devices within that 

range. We assume that  all devices share only one communication channel. Hence for a fixed 

device, if several devices within its communication range transmit at the same time, these 

messages "collide" and the receiver is not able to  receive any of them. Moreover, in an ad 

hoc network, nodes can have different communication ranges, one node might be able to  

listen to another, but not vice-versa. This forbids the acknowledgement based protocols, 

since nodes might not be able to  send a confirmation message to  the sender upon receiving a 

message. Another challenge is that, due to  the mobility of wireless nodes, the topology of an 

ad hoc network can change rapidly and nonpredictably. Thus, it is commonly assumed that  

the topology of the network is unknown to  the network nodes. Particularly, a node does not 

know which nodes are within its communication range, or even the number of neighbours. 

Hence, it is desirable that communication algorithms use local information only. 

The communication problem in ad hoc networks has been extensively studied in the 

literature. See Section 4.2 for an overview. The major goal is to  minimize the broadcast- 

ing/gossiping time, i.e., the number of rounds to  achieve broadcasting/gossiping. Yet, since 

the mobile devices tend to  be small and have only small batteries, another important issue 

for communication in ad hoc networks is energy efficiency (e.g., [66, 851). In this work we 

design efficient communication algorithms which minimize both the broadcasting (gossip- 

ing) time and the energy consumption. Since we do not assume variable communication 

ranges, we can assume that devices cannot adjust the energy need for send operations. This 

allows us to  measure the energy consumption in terms of the number of total transmissions. 
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We will also show that there is a tradeoff between minimizing the broadcasting or gossiping 

time, and the number of messages that are needed by randomized protocols. 

The rest of this chapter is organized as follows. In Section 4.2 we introduce the related 

work. Section 4.3 introduces our model and new results. We study broadcasting and 

gossiping for random networks in Section 4.4 and Section 4.5, respectively. In Section 

4.6, we propose and analyze a broadcasting algorithm on general (not random but fixed) 

networks with known diameter. Our algorithm minimizes both the broadcasting time and 

the number of transmissions. We also give some lower bound results on the number of 

transmissions. 

4.2 Related Work 

In the following we review broadcasting and gossiping algorithms(protocols) for unknown ad 

hoc networks. There are mainly two classes of approaches, randomized and deterministic. In 

each round of a randomized algorithm, all active nodes transmit with identical probability 

that is chosen according to  some predetermined probability distribution. In each round of a 

deterministic algorithm, we specify which active nodes will transmit. Let D be the diameter 

of the network. 

4.2.1 Randomized Broadcasting 

Arbitrary Networks 

Alon et al. [7] show that there exists a network with diameter O(1) for which broadcast- 

ing takes expected time R(log2 n). Kushilevitz and Mansour 1761 show a lower bound of 

R(D log(n/D)) time for any randomized broadcasting algorithm. Bar-Yehuda, Goldriech 

and Itai [14] design an almost optimal broadcasting algorithm which achieves the broad- 

casting time of O((D + log n)  log n),  w.h.p. 

Later, Czumaj and Rytter [51] propose an elegant algorithm which achieves (w.h.p.) 

linear broadcasting time on arbitrary networks. Their algorithm uses carefully defined 

selection sequences which specify the probabilities that are used by the nodes to  determine 

if a message should be sent or not. This algorithm needs O(n) transmissions per node. 

Czurnaj and Rytter [51] also obtain an algorithm under the assumption that the network 

diameter is known. The algorithm finishes broadcasting in O(D log(n/D) + log2 n) rounds, 
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w.h.p., and uses expected Q ( D )  transmissions per node. Also, independently, Kowalski and 

Pelc [73] obtain a similar randomized algorithm with the same running time. 

In the following, we review the linear time randomized broadcasting algorithm in [51] in 

more detail. 

Algorithm 5 (The linear randomized broadcasting algorithm from [51])  

for each round r  do 
Choose a transmitting probability IT according to the following distribution: 

for 1  5 k  5 log log n, 
1 Pr[IT = 2-k] for log log n < k  5 log n, 

I - Clog Pr  [IT = Ti] for k  = 0. 2=1 

Every informed node transmits with probability IT. 

Theorem 4.2.1 (Theorem 1  from [51]) Algorithm 5  completes broadcasting in O ( n )  rounds 

with probability at least 1  - n-l . 

We briefly sketch the proof of the broadcasting time in [51]. Let u be the originator of 

the broadcast and let v be an arbitrary node. Let T be the random variable representing 

the number of rounds before v is informed. Fix an arbitrary shortest path P = {u = 

u l , .  . . U L + ~  = v) of length L 5 D from u to v. Let l aye rp ( i )  denote the set such that 

Vw E l a y e r p ( i ) ,  ui is the highest ranked node on the path P that w has an edge to. 

The set l aye rp ( i )  is called the layer of rank i with respect to P. Note that Vi, j ,  l aye rp ( i )  n 
l a y e r p ( j )  = 4 and I Cr=l layerp ( i )  1 5 n. We say l aye rp ( i )  is leading at Round r  if l aye rp ( i )  

is the highest ranked layer consisting of an informed node at Round r .  Let Ti be the random 

variable representing the number of rounds that l aye rp ( i )  is leading. Note that T = Cy=l Ti. 

It  is shown in [51] that Ti follows geometric distribution with probability at least 

Furthermore, [51] proves the following concentration result for the sum of a set of geo- 

metrically distributed random variables. 



CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 86 

Lemma 4.2.2 (Lemma 3.5 from [51]) Let X I , .  . . , X, be a sequence of independent integer- 

valued random variables, each X; being geometrically distributed with a parameter pi, 0 < 
pi < 1. For every i ,  1 < i 5 e, let p; = l /pi  and assume that all pis are from a set A, that 

is  A = { p i  : 1 5 i 5 e). If c:=, pi 5 N ,  then  for every positive real number p, 

Note that E[Ti] 5 20log n. Lemma 4.2.2 with P = n-2, N = 20n, we get 

Pr[T 1 2 - 20n + 8 ln(20n2 log n)(20 log n)2] 5 1 - n-2. 

Finally, applying the Union bound we conclude that Algorithm 5 completes broadcasting in 

O(n) time. 

Using similar idea as above, Czumaj and Rytter 1511 prove the following theorem for 

broadcasting on shallow networks (with known diameter D).  

Theorem 4.2.3 (Theorem 2 from [51]) Let N be a network with diameter D,  there exists a n  

algorithm that can complete broadcasting i n  0(log2 n + D log(n/D)) rounds with probability 

at least 1 - n-'. 

Random Networks 

Elsiisser and Gasieniec [55] are the first to  study the broadcasting problem on the class 

of directed random networks (graphs) G(n,p).  In these networks, every pair of nodes is 

connected with probability p. They propose a randomized algorithm which achieves w.h.p. 

strict logarithmic broadcasting time. Their algorithm is as follows. 

Algorithm 6 (The randomized broadcasting algorithm from 1551) 
Phase 1: 

for Round 1 to D - 1 do 
Every informed node transmits with probability 1. 

Phase 2: (Round D)  

Every informed node transmits with probability n/dD. 

Phase 3: 
for Round D + 1 to O(1og n)  do 

Every informed node transmits with probability lid. 
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Elssser and Gasieniec prove that Algorithm 6 finishes broadcasting in O(1ogn) steps 

w.h.p. ElsGser and Gasieniec [55] also propose a centralized algorithm that achieves 

O(ln n /  lnd + lnd) running time. The authors also show that this algorithm is asymp- 

totically optimal. 

In (561, ElsGser studies the communication complexity of broadcasting in random net- 

works under the so-called random phone call model, in which every node forwards its mes- 

sage to a randomly chosen neighbour at  every round. The proposed algorithm can complete 

broadcasting in 0 (log n)  rounds by using at  most 0 (n max{log log n ,  log n /  log d)) transmis- 

sions, which is optimal under his random phone call model. 

4.2.2 Deterministic Broadcasting 

The problem of deterministic broadcasting is also extensively studied. For arbitrary net- 

works, Chlebus et al. [36] give the first sub-quadratic algorithm with running time of 

0(n"I6). Chrobak, Gasieniec and Rytter [40] propose the first O(n p l y  (log n)) algorithm 

that can complete broadcasting in 0(nlog2 n)  rounds. Kowalski and Pelc [74] show that 

there exists a deterministic algorithm that can complete broadcasting in O(n log n log D )  

rounds using a complicate non-constructive counting argument. Very recently, Czumaj and 

Rytter 1511 obtain a deterministic algorithm with running time 0(log2 D), which is an ex- 

tension of their proposed randomized algorithm. The best known lower bound R(n log D)  

is due to Clementi, Monti and Silvestri [44]. 

4.2.3 Gossiping 

For gossiping, all the previous work follows the join model, where nodes are allowed to  join 

messages originated from different nodes together to one large message. Chrobak, Gasieniec 

and Rytter [41] propose a randomized gossiping algorithm that achieves O(n  log4 n)  gossip- 

ing time. This result was improved to 0(nlog3 n)  by Liu and Probhakaran [81]. Czumaj 

and Rytter [51] obtain so far the fastest randomized algorithm that has a running time of 

O(nlog2 n). The algorithm combines the linear time broadcasting algorithm of [51], and a 

framework proposed by [41]. The framework applies a series of limited broadcasting phases 

(with broadcasting time O( f (n)) ) to do gossiping in time O(max{n log n ,  f (n) log2 n)). 

Chlebus, Kowalski and Rytter [39] study the average-time complexity of gossiping in ad hoc 

networks. They give a gossiping protocol that works in average time of O(n/  log n) ,  which 
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is shown to be optimal. For the case when k different nodes initiate broadcasting (note 

that it is gossiping when Ic = n),  they give an algorithm with O(min{Ic log(n/Ic) + n /  log n)) 

average running time. So far, the fastest deterministic gossiping algorithm has a running 

time of O(TL' .~)  [112]. 

4.2.4 Random Graphs 

Finally, we review some basic topological properties of random graphs. In the classic random 

graph model of Erdos and Rknyi, G(n,p)  is a n-node graph where any pair of vertices 

is connected (i.e., an edge is built in between) with probability p. It can be shown by 

Chernoff bounds that every node in the network has O(d) neighbours w.h.p. Moreover, It 

is well-known (e.g. [31, 421) that as long as p = fl(logn/n), the diameter of the graph is 

(1 + o(l))(log n /  log d) w.h.p. Besides, if p > log n l n ,  the graph is connected w.h.p. 

4.3 Model and New Results 

An ad hoc network is modeled by a directed graph G = (V, E) .  V is the set of devices and 

IVI = n.  For u, v E V, (u, v) E E means that u is in the communication range of v (but 

not necessarily vice versa). We assume that the network G is unknown, meaning that the 

nodes do not have any knowledge about the nodes that can receive their messages, nor the 

number of nodes from which they can receive messages by themselves. This assumption 

makes sense since in a lot of applications the graph G is not fixed because the mobile agents 

can move around (which will results in a changing communication structure). In order to  

make our problem feasible, we assume that our network is strongly connected, i.e., there is 

a path between any pair of nodes. 

We assume that G is either arbitrary 17, 51, 761, or that it belongs to the random 

network class 1551. For random graphs, we use a directed version of the standard model 

G(n,p) ,  where node v has an edge to node w with probability p. Let d be the average in 

and out degree of G. Recall that d = np and D = (1 + o(l))(log n /  log d). 

In the broadcasting problem one node of the network tries to send a message to all other 

nodes in the network, whereas in the case of gossiping every node of the network tries to  

sends a message to  all other nodes. The broadcasting time (or the gossiping time) denotes the 

number of communication rounds needed to finish broadcasting (or gossiping). The energy 

consumption is measured in terms of the total (expected) number of transmissions, or the 
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maximum number of transmissions per node. The algorithms we consider are oblivious, i.e., 

all nodes have to  use the same algorithm. 

Broadcast in random networks Our broadcasting algorithm is similar to the one of 

Elskser and Gasieniec in [55](also Algorithm 6). The difference is that our algorithm sends 

at  most one message per node, whereas Algorithm 6 sends up to D - 1 messages per node. 

The broadcasting time of both algorithms is O(1ogn) w.h.p. Our proof is very different 

from the one in [55]. Elskser and Gasieniec show first some structural properties of random 

graphs which are used to  analyze their algorithm. We directly bound the number of nodes 

which received the message after every round. Our results are also more general in the sense 

that we only need p = w(1og n ln )  instead of p = w(logs n l n )  for constant 6 > 1 (see [55]). 

Gossiping in Random Networks We modify the algorithm of [51] and achieve a gos- 

siping algorithm (Algorithm 8) with running time O(d log n)  w.h.p., where every node sends 

only O(1ogn) messages. To our best knowledge, this is the first gossiping algorithm spe- 

cialized on random networks. So far, the fastest gossiping algorithm for general network 

achieves O(n log2 n) running time and uses an expected number of O(n log n)  transmissions 

per node [51]. 

Broadcasting in General networks Our randomized broadcasting algorithm for general 

networks completes broadcasting time O(D log(n/D) + log2 n)  , w.h.p. It uses an expected 

number of 0(log2 n /  log(n/D)) transmissions per node. Czumaj and Rytter (1511) propose 

a randomized algorithm with O(D log(n/D) + log2 n) broadcasting time. Their algorithm 

can easily be transformed into an algorithm with the same runtime bounds and an expected 

number of 0(log2 n)  transmissions per node. 

Lower Bounds for General networks First we show a lower bound of n log n/2 trans- 

missions for any randomized broadcasting algorithm with a success probability of at least 

1 - n-l. We assume that every node in the network uses the same probability distribution 

to determine if it sends a message or not. Furthermore, we assume that the distribution 

does not change over time. To our best knowledge, all distributions used so far have these 

properties. Czumaj and Rytter ([51]) propose an algorithm that needs ~ ( n  log2 n)  messages 

(see Section 4.2). Hence, there is still a factor of log n messages left between upper and our 

lower bound. 



CHAPTER 4. ENERGY EFFICIENT ROUTING IN AD HOC NETWORKS 90 

Finally, using the same lower bound model, we show that there is a network with O(n) 

nodes and diameter D ,  such that every randomized broadcast algorithm requires an expected 

number of at least log2 n/(max{4c, 8) log(n/D)) transmissions per node in order to  finish 

broadcasting in cDlog(n/D) rounds with probability at least 1 - n-l. This lower bound 

shows the optimality of our proposed broadcasting algorithm (Algorithm 9). 

4.4 Broadcasting in Random Networks 

In this section we present our broadcasting algorithm for random networks. Our algorithm 

is based on the algorithm proposed in [55] (See Algorithm 6 in Section 4.2.1). The algorithm 

completes broadcasting in O(1ogn) rounds w.h.p, which matches the result in [55]. 

Let T = Llog n/ log dl. Throughout the analysis, we always assume that n = 1VI is 

sufficiently large, and p > Slog n /n  for a sufficiently large constant S. Note that the latter 

condition is necessary for the network to be connected w.h.p. In the following, every node 

that already got the message is called informed. An informed node v can be in one of 

two different states. v is called active as soon as it is informed, and it will become passive 

(meaning it will never transmit a message again) as soon as it tried once to send the message. 

The main idea of the algorithm is as follows. 

Phase 1. The goal of Phase 1 is to inform Q (8) nodes w.h.p. (Lemma 4.4.4). To 

prove this result, we repeatedly use Lemma 4.4.3, which bounds the number of active 

nodes after each round. 

Phase 2. The goal of Phase 2 is to inform Q(n) nodes w.h.p. when p < nP2l5 (Lemma 

4.4.5). For the other cases we do not need Phase 2. 

Phase 3. The goal of Phase 3 is to inform every remaining uninformed node w.h.p. 

(Lemma 4.4.6). 

We prove the following theorem. 

Theorem 4.4.1 If p > 6 log n /n  for a sufficiently large constant 6, Algorithm ?' completes 

broadcasting in O(1ogn) rounds, w.h.p. Furthermore, every node performs at most one 

transmission and the ezpected total number of transmissions is O(1og nip). 
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Algorithm 7 An Energy efficient algorithm for Random Networks 

Phase 1: 

1: The state of the source is set to active. 
2: for round r = 1 to  T do 
3: Every active node v transmits once and becomes passive. 
4: if node v receives the message for the first t ime then 
5: The status of v is set to active. 

Phase 2: 
1: if p 5 nP2/"hen 
2: Every active node transmits with probability l/(dTp) and becomes passive. 
3: if node v receives the message for the first t ime then 
4: The status of v is set to  active. 

Phase 3: 

1: for round r = 0 to  p log n (P is a constant) do 
2: if p 5 nP2I5 then 
3: Every active node transmits with probability l /d  
4: A node that has transmitted the message becomes passive. 
5: else 
6: Every active node transmits with probability l/(dp) 
7: A node that has transmitted the message becomes passive. 
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The number of transmissions performed in Phase 1 is 1 + d + . . . + dT-' = O(l/p) since 

T = [log n /  log dl. The (expected) number of transmissions in each round of Phase 2 and 3 

is bounded by lip. Hence, the expected total number of transmissions is O(logn/p). 

To proof Theorem 4.4.1 it remains to bound the broadcasting time. This part of the 

proof is split into several lemmas. Let Ut be the set of active nodes at the beginning of Round 

t, Qt be the set of nodes which transmit in Round t. Let Nt be the number of uninformed 

nodes at the beginning of Round t. We first prove the following simple observations which 

will be used in the later sections. 

Observation 4.4.2 

Proof. (1) is true since in Phase 1 of our algorithm every active node transmits. To prove 

(2), note that for any informed node v at Round t ,  there are only two possibilities: either 

v transmits in some round between 1 and t - 1 (i.e., v E Qi, i E [1, t - I]) ,  or v must be 

active at Round t, (i.e., v E Ut). For (3), simply note that nodes being active in Round r 

will remain active until Round t if they do not transmit in the meantime. For (4), note that 

every node only transmits a t  most once per broadcast. 0 

Observation 4.4.2(4) helps us to argue that the random experiments used later in the 

analysis are independent from each other. In the following, we first prove Lemma 4.4.3 (1) 

showing that in each round of Phase 1 the number of active nodes grows by a factor of O(d), 

w.h.p. The second part of Lemma 4.4.3 strengthens the results if the number of active nodes 

is between [log3 n ,  A]. 

4.4.1 Analysis of Phase 1 

Lemma 4.4.3 If p > 6 log n /n  and 1 5 t 5 T (Phase I ) ,  then the following statements are 

true with a probability 1 - ~ ( n - ~ ) .  
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Proof. We consider two cases of different values of p. If p > 112, we have T = 1 and 

every node will have expectedly (n  - 1)/2 neighbours. The result now follows from a simple 

application of Chernoff bounds. If p 5 112, we fix an arbitrary node u and a round t = 1 in 

Phase 1. First we bound q, the probability that u is informed in Round t ,  i.e. u is connected 

to  exactly one node in Ut. 

Here, the first inequality uses the condition lUtl < l /p .  To see the second one, note that 

YO < p < 112, (1 -p)l/p > 114. Next, we show Nt, the number of uninformed nodes a t  time 

t, is larger than n/2. By Observation 4.4.2(2), 

Here, the first inequality is true by Observation 4.4.2(1) and IUl I < (U2 I < . . . < IUt 1. The 

second one uses the condition lUtl < l / p  and t 5 T = \log n /  log d] 5 log n.  The third 

inequality uses p > 6 log n/n .  Hence, 

since Nt > n/2 and d = np. Note that the events to  be connected to exactly one node in Ut 

are independent for different uninformed nodes. Also, note that each event is only evaluated 

once due to  Observation 4.4.2(4). Using Chernoff bounds we get 

The last inequality uses d = np with p = 6lognln  for a sufficiently large constant 6. 

Consequently JUt+lJ/(Utl > dl16 with a probability 1 - o(np4). Using a similar approach, 

we can prove that lUt+ll/lUtl < 2d with a probability 1 - o(nP4). This finished the proof of 

part 1 of the lemma. 
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To prove part 2 we first need a tighter bound on q. By Equation 4.1, 

Next we bound Nt.  Using Equation 4.2 with (Ut(  < l/(plog n) and t 5 T = [lognl log dl 5 

log n we get 

Now, we obtain the following lower bound for E [ I  Ut+l I ] ,  

For an upper bound on E[JUt+1 I] we use Nt < n and q 5 plUt 1 to  get 

Using Chernoff bounds together with the assumption that lUt 1 > log3 n, we get 

Now, we are ready to  show the following concentration result for IUT+1 1 ,  the number of 

active nodes after Phase 1. 

Lemma 4.4.4 Let cl = 1 6 - ~ 4 - ~ ,  and c2 = 16,. After Phase 1 we have with a probability 

1 - o ( ~ - ~ )  
T cldT 5 ]UT+I~  5 ~ 2 d  . 

Proof. By Observation 4.4.2(4), the random experiments performed in different rounds are 

independent from each other. Hence, we can repeatedly use Lemma 4.4.3 to bound ( U T + ~  I .  

Case 1: p > n-4/5 Since d = n p  2 n1/5, T = [log n/ log dl 5 4. Using Lemma 4.4.3(1) for 

T rounds, we get ( d / 1 6 ) ~  5 lUTtl 1 5 (2d)T with a probability 1 - o(nP3) .  To show that we 

can use Lemma 4.4.3(1) for Round 1 5 i 5 T, we note that IUiJ 5 (2d)T-1 5 8dT-' < l l p  

since T 5 4 and d 2 6 log nln. The lemma now follows from the choices of cl and c2. 
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Case 2: n-4/5 > p > 6 log n/n In this case we have T = Llog n/ log dl 2 5. Using Lemma 

4.4.3(1) for three rounds, we get IU4J > ( d / 1 6 ) ~  > log3 n w.h.p since d = n p  > 6log n. Again, 

we can use Lemma 4.4.3(1) for the first three rounds. After three rounds, the condition of 

Lemma 4.4.3(2) is w.h.p. fulfilled. In the following we show that (Uil does not increase 

too fast such that we are allowed to  use Lemma 4.4.3(2) for Round 4 5 i 5 T - 1,  i.e. 

log3 n < IUi I < l / ( p  log n). For the first inequality, note that (Ui I does not decrease for large 

values of i (Lemma 4.4.3(1)), w.h.p. For the second inequality we use Lemma 4.4.3(1) for 

the first three rounds and then Lemma 4.4.3(2) for the remaining i - 4 rounds, we get 

(Uil < (2d)3 ( 1  + 1/ log n)i-4 di-4 

< 8 ( 1  + l /  log n)logn 8-' 

< (8e)dT-2 < l / ( p  log n). 

The first inequality uses the fact that i < T = Llog n/ log dJ 5 log n. The second inequality 

uses that VO < x < 1, ( 1  + x)'/" < e and i 5 T - 1. The last inequality holds because 

dT-' < l / p  by definition of T and d = n p  > 6log n. This shows that we can use Lemma 

4.4.3(2) for Round 4 5 i 5 T - 1. Similarly, we get 

the last inequality holds by T = \log n/ log d l .  This shows that we can use Lemma 

4.4.3(1) for Round T .  

Now we are ready to bound I U T + ~ ~ .  We use Lemma 4.4.3(1) for three rounds, Lemma 

4.4.3(2) for the next T - 4 rounds, and then Lemma 4.4.3(1) once again. Now we applying 

the Union bound and get with a probability 1 - o ( n P 3 )  

and, 

/ U T + ~  I 5 (2d)3 . (d  ( 1  + 1/ log n))T-4 . (2d) .  

Since T 5 logn, and VO 5 z 5 112, (1  - x)'/" > 114, we get 

( d / 1 6 ) ~  ( d  ( 1  - 3 /  log n))T-4 > ( 1 1 1 6 ) ~  ( 1  - 3/  log n)logn dT > ( 1 6 - ~ 4 - ~ ) d ~ .  
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Similarly, we get 

(d ( 1  + 1/ log n))T-4 (2d) < 24 ( 1  + 1/ log n)logn dT < (16e)dT. 

This shows that with a probability 1 - ~ ( n - ~ )  we have 

4.4.2 Analysis of Phase 2 

Next we show a result for Phase 2. If n-2/5 > p > 6 log n/n for a sufficiently large constant 

6, Lemma 4.4.5 shows that after Phase 2 the number of active nodes is O ( n ) ,  w.h.p. For 

the rest case we do not need Phase 2. 

Lemma 4.4.5 Let c = ~ ~ 4 - ~ ~ ~ - ~ .  If K 2 I 5  > p > 6 log n/n for a suficiently large constant 

6, after Phase 2 (Round T + 1) we have with a probability of 1 - ~ ( n - ~ ) ,  lUT+2( > c n. 

Proof. Phase 2 only consists of Round T + 1 in which every active node transmits with 

probability l / ( d T p ) .  We first prove bounds for l Q ~ + i l .  By Lemma 4.4.4, 

Using Chernoff bounds we get 

Now we fix an arbitrary but uninformed node v .  We show the probability to  inform v in 

Phase 2 is constant. In order to inform v ,  v must be connect to  exactly one node in QT+i. 

Hence, using Equation 4.3 together with the fact that VO < x < 112, (1  - x)'/" > 114, we 

get 
Pr[v is informed] = IQTtl lp(1 - p ) l Q T + l I - l  > - IQTtl lp(1 - p)2c2/p  > ~ ~ 4 - ~ ~ ~ .  

Next we show that NTtl 2 n / 2 ,  w.h.p. First note that we can assume that IUT+i 1 < n / 4 .  

Otherwise, the lemma is already fulfilled by Observation 4.4.2(3) and Equation 4.3. This 
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holds since IUT+zl 2 IUT+~ 1 - IQT+~ 1 > n/4 - 2cz/p > n/8 (p > 6 log n/n).  NOW, using 

Observation 4.4.2(2), 

> n - log n/p - n/4 > n/2, 

with a probability 1 - ~ ( n - ~ ) .  The first equation follows since V 1  < i < T, Qi = Ui and 

by Lemma 4.4.3, IUII < IU2/ < . . . < IUTI. The second inequality holds since lUTl < lip, 

T 5 log n and IUT+1 I < n/4. The third inequality follows since p > 6 log n /n  for a sufficiently 

large constant 6. 

Next we estimate the expected number of active nodes at  the end of Phase 2. 

E[IUT+2 I ]  = NTtl Pr[v is informed] 2 ( ~ 1 4 - ~ " ~ / 2 )  n. 

Note that the events that different uninformed nodes are connected to  exactly one node in 

UT+~ are independent from each other. Also, note that, due to Observation 4.4.2(4), each 

of these events is evaluated only once. Using Chernoff bounds we get 

4.4.3 Analysis of Phase 3 

Next, we show that after running Phase 3 for O(1og n)  rounds, every node is informed w.h.p. 

Note that even at  the end of Phase 3, we still have a considerable amount of active nodes 

because in each round of Phase 3, only a small number of active nodes will transmit and 

become passive afterwards. 

Lemma 4.4.6 After running Phase 3 for 128 log n/c rounds, every node is informed with 

a probability of 1 - o(n-l). 

Proof. Let Ic = 128logn/c. Fix some uninformed node v and let At(v) be the number of 

active neighbours of v a t  the beginning of Round t of Phase 3. For any 0 < t < Ic, let ft(v) 
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be the number of active neighbours of v that  transmitted before Round t of Phase 3. Note 

that At (v) = Ao(v) - ft  (v). Let Pt (v) be the probability to  inform node v in Round t .  In 

the following we consider two cases for different values of p. 

Case 1: n-'l5 2 p > 6 lognln for a sufficiently large constant S. We first show that 

Ao(v) = O(d), w.h.p. Note that Ao(v) is the number of neighbours of v that  are activated 

in Phase 2. Since the probability that v is connected t o  any node in UTt2 (the set of nodes 

that  are activated in Phase 2) is p, EIAO(v)] = (UT+21p > cnp = cd with a probability at 

least 1 - ~ ( n - ~ )  by Lemma 4.4.5. Using Chernoff bounds we get, 

The last inequality holds since EIAo(v)] > cnp with p > blog n l n  for a sufficiently large 

constant 6. Similarly, we can show that 

Since every active neighbour of v transmits with probability l l d  in each round of Phase 

3, we get 

E[ft(v)l I tAo(v)ld I Ao(v)l(44,  

because t 5 k = 128 log n l c  and d = np with p > Slog n l n  for a sufficiently large constant 

6. Using Pr[B(n,p) > anp] < (e/a)anp we get, 

The last inequality follows since by Equation 4.4, Ao(v) > cd/2 > 610g n.  Consequently, it 

follows by Equation 4.4 and 4.5 that cd/4 < Ao(v)/2 < Ao(v) - ft(v) = At(v) < 2d with 

a probability a t  least 1 - ~ ( n - ~ ) .  Using YO < x < 112, (1 - x)'/" > 114 we get with a 

probability at least 1 - ~ ( n - ~ ) ,  

Given this, the probability that  v is not informed in k = 1281ogn/c rounds is at most 

(1 - ~164)" o(nP2). 
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Case 2: p > n-2/5. In this case T = [log n/ log dl = 1 and using Chernoff bounds we can 

show that 3d/4 < IU21 < 3d/2 with a probability at least 1 - ~ ( n - ~ ) .  Next we show that 

Ao(v) = O(dp) w.h.p. Since the probability that v is connected to any active node in U2 is 

p, EIAo(v)] = lU21p 2 3dp/4 with a probability at least 1 - ~ ( n - ~ ) .  Using Chernoff bounds 

we get, 

Similarly, we get Pr[Ao(v) > 2dp] = o(nP3). 

The rest proof is very similar to  Case 1. In particular, we can show that with a probability 

a t  least 1 - o(nP3), dp/4 < At(v) < 2dp. Hence, with a probability a t  least 1 - ~ ( n - ~ ) ,  

Thus, the probability that node v is not informed at Round k of Phase 3 is (1 - 1164)~ = 

~ ( n - ~ ) .  Finally the lemma follows due to  the Union bound. 0 

4.5 Gossiping in Random Networks 

In this section we analyse a gossiping algorithm specialised on random networks. Further- 

more, note that similar to  (41, 81, 511, we can obtain a gossiping algorithm with running time 

O(n log n) by combining the framework proposed in [41] and the broadcasting algorithm in 

Section 4.4. However, the following Algorithm 8 has a better running time of O(dlogn), 

and it uses O(1ogn) transmissions w.h.p. Similar to  (51, 411, we assume that nodes can join 

messages originated from different nodes together to  one large message, and we also assume 

that this message can be sent out in a single round. Let mt(u) be the message that is send 

out by node u in Round t .  Then ml  (u) is the message originated in u. 

Algorithm 8 A gossiping algorithm for the random network G(n,p).  

1: for round r = 0 to l28d log n do 
2: Every node transmits with probability lid. 
3: Every node u joins m,(u) and any incoming messages to m,+l(u). 
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Note that d = np is the average node degree, and diameter 

D = (1 + o(l))(log n /  logd) < log n. 

Also, note that here nodes do not become passive after transmitting once (as it was the case 

in our broadcasting algorithm in Section 4.4). It is easy to  see that the algorithm can be 

transformed into a dynamic gossiping algorithm. All that has to be done is to provide every 

message with a time stamp (generation time), and to  delete old messages out of the mt(i)  

messages. 

Theorem 4.5.1 Assume p > 6lognln for a suficiently large constant 6. Then, with a 

probability 1 - o(n-I), Algorithm 8 completes gossiping in O(d log n),  and every nodes per- 

forms O(1og n )  transmissions w.h.p. 

Proof. First we bound the gossiping time. Let u, v (u # v) be an arbitrary pair of nodes. 

Let T be the time to send the gossiping message ml  (u) from u to  v. Next, we show that T 

is w.h.p. at most 128dlogn. Fix an arbitrary shortest path u = u l ,  . . . U L + ~  = v of length 

L 5 D from u to  v. Let Ti be the random variable representing the number of rounds that 

it takes node ui to  forward the first message containing ml(u) from ui to  ui+l. Since u 

starts to submit its own message immediately in Round 1, and every node w who receives a 

broadcast message in Round r joins the message to  its message m,+l (w), v will get m l  (u) in 

Round T _< c L ~  Ti. It is easy to  see that the random variables TI, . . . , TL are independent 

from each other. To bound T, we first prove a result which is similar to  Lemma 3.4 in [51]. 

Lemma 4.5.2 Let Yl, . . . , YL be a sequence of geometrically distributed random variables 

with parameter 1/(16d), i. e., V1 I i I L, k 2 1, Pr[Y, = k] = 1/(16d)(l- 1/(16d))~-l. Then 

T 3 ~ f = ~  Y,  with a probability at least 1 - ~ ( n - ~ ) .  

Proof. The proof is similar to the proof of Lemma 3.4 in [51]. All that we have to do is to 

bound the probability q that a node successfully sends a message to  a fixed neighbour. The 

expected degree of every node is d and using Chernoff bounds we can show the degree of 

every node is a t  most 2d with a probability 1 - ~ ( n - ~ ) .  Hence, with a probability 1 - ~ ( n - ~ ) ,  

we have 

q >- ( l /d ) ( l  - l/d)2d-1 2 1/(16d). 
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Now it remains to bound P~[C:=~ Y,  5 128dlognl. Similar to the proof of Lemma 3.5 

of [51], applying the standard relation of geometric distribution and binomial distributions, 

and using Chernoff bounds on the corresponding binomial distribution, we get 

Pr  1 c Y, > l28d log n 1 5 Pr  [IB(l28d log n,  l / ( l6d))  < L] 

The third inequality holds since L 5 D < log n.  The bound on the gossiping time follows 

by the Union bound and the fact that there are in total n (n  - 1) source-destination pairs. 

Next we bound the number of transmissions. Let v be an arbitrary node and denote Zv 

to be the number of transmissions performed by v. Note that E[Zv] = 128 log n since in each 

round, every node transmits with probability l l d  and our algorithm has in total 128d log n 

rounds. Using Chernoff bounds we get that Zv 5 256 log n with probability 1 - ~ ( n - ~ ) .  By 

the Union bound, we get with a probability 1 - o(nP1), none of the nodes performs more 

than 256 log n transmissions. 0 0 

4.6 Broadcasting in General Networks 

In this section we consider broadcasting in arbitrary networks with diameter D. Czumaj 

and Rytter ([51]) propose a randomized algorithm with 0(log2 n +  D log(n/D)) broadcasting 

time. Their algorithm can easily be transformed into an algorithm with the same runtime 

and an expected number of Cl(log2 n)  transmissions per node. The only modification neces- 

sary is to stop nodes from transmitting after a certain number of rounds (counting onwards 

from the round they got the message for the first time). In Czumaj and Rytter's algorithm, 

each active node transmits with probability of @(I/  log(n/D)) per round. It informs an arbi- 

trary neighbour u (i.e. it transmits the message and is the only neighbour of u that transmits 

in that round) with a probability of R(l/(log(n/D) logn)) per round. Hence, to get a high 

probability bound, every node has to try to send a message for 0(log2 n log(n/D)) rounds. 

Since an active node transmits with probability O( l /  log(n/D)), the total expected number 

of transmissions is 0(log2 n) per node. Similarly, the Algorithm 5 for unknown diameter 

can be transformed into an algorithm with an expected number of 0(log2 n)  messages per 

node. 

Unfortunately, in general the expected number of 0(log2 n)  transmissions per node can 
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not be improved without increasing the broadcasting time (see Corollary 4.6.5). Under the 

assumption that the network diameter D is known in advance, we propose a new random- 

ized oblivious algorithm with broadcasting time O(Dlog(n/D) + log2 n)  that uses only an 

expected number of 0(log2 n/  log(n/D)) transmissions per node (see Section 4.6.1). Note 

that our algorithm achieves the same broadcasting time as Algorithm 5. In Section 4.6.2, 

we prove a matching lower bound on the number of transmissions (Theorem 4.6.4) which 

indicates that our proposed algorithm is optimal in terms of the number of transmissions. In 

Theorem 4.6.2 we show a tradeoff between broadcasting time and number of transmissions. 

4.6.1 Upper Bound for Broadcasting 

In this section we show that, if the graph diameter D is known in advance, the number 

of transmissions can be reduced from 0(log2 n)  to 0(log2 n/  log(n/D)). The improvement 

is due to a new random distribution which is defined in Figure 4.1. Let X = log(n/D). 

The distribution we use to generate the randomized sequence is denoted by a, and the 

distribution used in Section 4.1 of [51] is denoted by a'. See Figure 4.1 for a comparison of 

the two distributions. Note that V1 5 k 5 logn, 1/(2 logn) <_ a k  5 1/(4X) and a k  2 4 1 2 .  

Let T = O(D log(n/D) + log2 n)  be the number of rounds for broadcasting. 

Figure 4.1: Comparison of our distribution (left) vs. the distribution in [51] (right) 

We prove the following theorem. Note that the broadcasting time is optimal according 

to the lower bounds shown in [76] and [81]. 

Theorem 4.6.1 Algorithm 9 completes broadcasting i n  O(D log(n/D) +log2 n)  rounds with 

probability at least 1 - n-l. The expected number of messages per node i s  

Proof. Each node is active for O(log2 n)  rounds. In every round, an active node transmits 

with a probability of 0(1/ log(n/D)). Hence, the expected total number of transmissions is 

0(log2 n /  log(n/D)) per node. 
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Algorithm 9 An energy efficient broadcasting algorithm for arbitrary network with diam- 
eter D 

1: Choose a randomized sequence I =< 11, 12,. . . , > such that Pr[IT = k] = ak,Vr E 

N, Vk E (0, 1, . . . , log n). 
2: The status of the source is set to active. 
3: for r = 1 to T every active node u do 
4: Let t, be the time step that u is informed 
5: if r 5 t, + p log2 n ( p  is a constant) then 
6: u transmits with probability 2-Ir. 
7: else 
8: u becomes passive. 
9: if u receives the message for the first time then 
10: the status of u is set to  active. 

To show that every node receives the broadcast message, fix a round r ,  an arbitrary 

active node v and one of its neighbours w. Assume w has m > 1 active neighbours in 

Round r and let 1 < k 5 logn such that w/2 < 2k < w. If every active neighbour of w 

sends with probability 2Tk (i.e. IT = k), w is informed with probability at least 0.1 according 

to Lemma 3.2 in [51]. For any 1 5 x 5 logn, a, > 1/(2logn), IT = k with probability 

at least l l ( 2  log n).  Hence, the probability to  inform w is at least 1/(20 log n) per round. 

Using Chernoff bounds we can show that v can successfully inform all its neighbours, w.h.p. 

To bound the broadcasting time, we compare the runtime of our algorithm with the 

runtime of the algorithm for shallow networks in [51]. Any send probability that is chosen 

by the algorithm in 1511 is chosen with at least half the probability by our algorithm. Thus, 

we can use a proof that is similar to  the proof of Theorem 2 in [51] to  show our result. 

Finally, we demonstrate that there is a tradeoff between the expected number of trans- 

missions and the broadcasting time. 

Theorem 4.6.2 Let log(n/D) 5 X 5 logn. Algorithm 9 finishes broadcasting in O(DX + 
log2 n)  rounds w.h.p. The expected number of transmissions is 0(log2 n/X) per node. 

Proof. Every node is active for 0(log2 n)  rounds. Moreover, the expected number of trans- 

missions an active node performs in every round is 0(1/X). Hence the expected total number 

of transmissions is 0(log2 n / ~ )  per node. Since for all 1 5 k <_ logn, a k  1 1/(2 log n) ,  we 

can show (similar to the proof of Theorem 4.6.1) that every node receives the broadcasting 

message w.h.p. 
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It remains to bound the broadcasting time. Our proof is similar to the proof of Theorem 

2 in [51]. We first fix some shortest path vo, . . . , VL of length L 5 D from the source to 

an arbitrary node. Then, we partition all nodes into L disjoint layers with respect to that 

path. We assign a node u to  layer i ,  1 5 i < L, if node vi is the highest ranked node on 

the path that u has an edge to. In the following, a layer is called small, if its size is smaller 

than 2', otherwise it is called large. 

For an arbitrary small layer, since Q1 5 k < A ,  cxr, > 1/(4X), use a similar argument as 

in Theorem 4.6.1, we get that the probability to inform some node in the next layer is at 

least 1/(40X). Hence the expected time spent on any small layer is O(X). Since there are at 

most D layers and by applying the concentration bound in Lemma 4.2.2, we get that the 

total time spent on all small layers is O(DX) w.h.p. 

For an arbitrary large layer (of size s2', s > I ) ,  since QX < k 5 logn, a k  2 &2-(k-'), 

similar to Theorem 2 in [51], we can show that the probability to  inform some node in 

the next layer is fl(l/(sX)). Hence, the expected time spent on a large layer is O(sX). 

Consequently, the total expected time spent on all large layers is 0(Xn/2') = O(DX) since 

2' > n/D.  Applying Lemma 4.2.2 once again, we obtain the high probability bound. 

4.6.2 Lower Bound on the Transmission Number 

In this section we show two lower bounds for oblivious broadcasting algorithms. Observation 

4.6.3, shows a lower bound on the expected number of transmissions for any randomized 

oblivious (every node uses the same algorithm) broadcasting algorithm. We call a probability 

distribution time-invariant if it does not depend on the time t. Theorem 4.6.4 shows a 

lower bound on the expected number of transmissions of any optimal randomized oblivious 

algorithm using a time-invariant distribution. 

Observation 4.6.3 Let A be an oblivious broadcast algorithm. Then, for every n there 

exists a network with O(n) nodes such that A needs at least n logn/2 transmissions to 

complete broadcasting with a probability of at least 1 - n-l. 

Proof. We construct a network with 3n + 1 nodes. s is the node initiating the broadcast, 

and dl ,  . . . , d, are the destination nodes. s has an edge to 2n intermediate nodes ul ,  . . . u2,. 

For all 1 5 i < n, di connects to  both u2i-1 and u2i. Let us assume that s informs u1, . . . ,212, 

in Round tl. Now fix some arbitrary T > t l .  In Round tl + 1 5 r 5 T, let q, be the send 

probability used by the algorithm. For all 1 5 i 5 n,  the probability to  inform node di 
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in Round r is 2qT(l - q,). Due to symmetry we can assume that q, < 112, resulting in 

(1 - q,)llqi 2 114. Hence, 

Pr[di is not informed before Round TI 

T Now it is easy to see that, to inform di with probability 1 - n-l, we need CT=tl+l  q, > 
logn/4. Note that c T = ~ ~ + ~  q, is the expected number of transmissions that ui and vi 

perform between Round t l  + 1 and T. The total number of transmissions performed by all 

2n intermediate nodes is a t  least 2n (log n/4) = n log n/2. 0 

Next we show a matching lower bound on the number of transmissions. This result holds 

for a set of randomized oblivious algorithms with optimal (i.e. O(D log(n/D))) broadcasting 

time (e.g. the algorithm in [51]). 

Theorem 4.6.4 Let D > 1, let c, i be constants, and fix an arbitrary n = 2%. Let A be an 

oblivious broadcast algorithm using a time-invariant probability distribution a. For every 

n > 0, there is a network with O(n)  nodes and diameter D ,  such that A requires an expected 

number of at least log2 n/(max{4c, 8) log(n/D)) tmnsmissions per node in order to finish 

broadcasting in cDlog(n/D) rounds with probability at least 1 - n-l. 

Proof. We can assume that D > 4 log n ,  otherwise this result can be obtained directly from 

Observation 4.6.3 since log(n/D) > logn/2. We construct a layered network (See Figure 

4.2) consisting of two subgraphs G1 and G2. G1 has logn layers, namely S1, .  . . , SIogn, 

where Si, 1 < i < log n is a star consisting of one center node ci and 2' leaf nodes. Every 

leaf node in Si has an edge to the center G + ~  of Si+l, for 1 < i < log n - 1. G2 = vg, . . . , v~ 

is a path of length L = D - 2 log n. To connect G1 and G2, we connect every node of 

the star Slogn to the first node of Gp, also denoted as clogn+l. Note that our network has 

C',O_p," (2i + 1) + D - 2 log n + 1 < 2n + D nodes and diameter D.  

We assume that cl is the originator of the broadcast. The purpose of G1 is to show 

that every informed node in G must be active for at least ln2 n rounds in order to complete 

broadcasting with probability 1 -nP1. More specifically, no matter what a is, there is always 
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Figure 4.2: The network used in Theorem 4.6.4 

a star Si such that the probability to inform ci+l is at most 1/ Inn. Since our distribution 

is time invariant and every node does not know which star it belongs to, every node in the 

network needs to  be active for at least ln2 n rounds. Let p be the mean of distribution a 

and r(a) be the set of outcomes of a .  Next, we use Gz to  argue that in order to finish 

broadcasting in cDlog(n/D) rounds, p ,  the mean of a, must be at least 1/(2clog(n/D)). 

Hence, the total expected number of transmissions per node is at least 

Let Ai be the event that q+l is informed in Round ti under the condition that every 

leaf node of Si is active (note that they are always activated at the same time). Let Qti 

be the random variable that represents the probability chosen at  Round ti. Note that Qti 

has distribution a. For any q E r(a), let Pr[AiJQti = q] be the probability to inform ci+l if 

Qti = y. Since ci+l is informed if exactly one of the 2' leaf nodes of Si transmits we get 

Observe that Pr[Ai] = CqEr(,) (Pr[Qti = y] Pr[AilQti = q]). We get, 

log n log n 

/ log n \ 
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For the third inequality, we use Equation 4.6 and 

Consequently, 
log n 

1 1 --  - 
ln2logn Inn '  

Let i* = argmini Pr[Ai]. Consequently, in order to complete broadcasting with probability 

at least 1 - n-', every leaf node of Sp must be active for at least ln2 n rounds. 

In the following we show p 2 1/(2c log(n/D)) using G2. First note that L = 0 - 2  log n > 
D/2 since D 2 4 log n. For any 0 < i 5 L - 1, let Ti be the number of rounds that vi is the 

highest ranked node on the path that is informed. Note that Ti is geometrically distributed 

with probability p ,  we have E [ C ~ Z ~  Ti] = L . E[Ti] = Lip. Hence, in order to  inform v~ 

within cDlog(n/D) rounds (even expectedly), we need p 2 1/(2clog(n/D)) since L > 012.  

We have shown that every node in the network needs to be active for ln2 n rounds while 

in each round, the expected number of transmissions it performs is at least 1/(2clog(n/D)). 

Hence, the total expected number of transmissions per node is (ln2 n )  ( l l (2c log(n/D))) > 
log2 nl(4c log(n/D)). 0 

Setting D = n in the network constructed above, we immediately get the following 

corollary. 

Corollary 4.6.5 There exists a network with O(n) nodes such that any randomised obliv- 

ious broadcasting algorithm that finishes broadcasting in cn rounds with probability at least 

1 - n-' requires an  expected number of a(log2 n)  transmissions. 

4.7 Summary 

We have considered an "energy efficient" routing model for ad hoc networks. Our goal is to  

minimize not only the broadcasting and gossiping time, but also the the energy consump- 

tion, which is measured by the total number of messages sent. For random networks, we 

presented a O(1og n)  broadcasting algorithm where every node transmits at most once and 

a O(d log n)  gossiping algorithm using O(1og n)  messages per node. For general networks 

with known diameter D ,  we presented a randomized broadcasting algorithm with optimal 

broadcasting time O(D log(n/D) + log2 n)  that uses 0(log2 n/  log(n/D)) transmissions per 
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node in expectation. Our lower bound 0(log2 n/  log(n/D)) on the number of transmissions 

matches our upper bound for time-invariant distributions. We also demonstrated a tradeoff 

between these two objectives. 

There are a few interesting directions for future work. First, so far we used the Erdos- 

R6nyi model to  model practical ad hoc networks, which is somewhat unrealistic. We can 

consider other alternative models for random graphs, such as the random geometric graphs 

1951. Second, the question remains open to  determine the minimum energy consumption for 

gossiping in general networks. Third, it would be interesting to generalize the lower bound 

result in Theorem 4.6.4 for general distributions without the time-invariant property. Last 

but not least, similar to [39], we can consider the more general problem that 1 5 k 5 n 

different nodes initiate broadcasting. Note that broadcasting (i.e., k = 1) and gossiping 

(i.e., k = n)  are two special cases of this problem. 



Chapter 5 

Conclusion 

In this thesis, we have studied distributed algorithms for two fundamental problems in 

distributed systems, resource allocation and routing. We considered two well-motivated re- 

source allocation models, the diffusive load balancing and the weighted balls-into-bins games. 

We also studied routing algorithms for broadcasting and gossiping on ad hoc networks. 

Diffusive load balancing Diffusive load balancing, a typical neighbourhood load bal- 

ancing model, studies how nodes with some initial tasks in a network balance their loads 

concurrently with all their neighbours. The concurrent load exchanging actions have been 

the main obstacle for the analysis of the diffusion algorithms since the load situation could 

change significantly during one single step of load exchanges. In this thesis, we have pro- 

posed a novel analytical method. The idea is to  first sequentialize concurrent actions to 

obtain a sequential system, analyze the sequential system, and then bound the gap between 

both systems. We have demonstrated the strength of this technique by analyzing several 

diffusion algorithms. This idea is simple yet also general. We believe that it is helpful in 

the analysis of many other distributed systems with concurrent actions. In particular, we 

have applied the same idea to  analyze the selfish-allocation game in Chapter 3. 

Weighted balls-into-bins games The weighted balls-into-bins game studies how to al- 

locate a set of weighted balls into a set of bins in a balanced manner. We have considered 

two different scenarios, the static sequential game and the selfish reallocation game. 

In the static sequential game, balls comes one after another and have to  be allocated 

in such order. We have considered a well-known approach that to have every ball pick 
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d > 1 bins independently and uniformly at random and place itself into the least loaded 

bin. We have studied how the outcome of the game, the expected maximum load of any 

bin, is influenced by the game parameters such as the distribution of ball weights, and 

the order that balls are allocated. Our main idea is to  use the majorization technique 

inductively to  show one system majorizes another. In particular, we have shown that the 

single-choice game (d = 1) is "order-preserving" according to  vector majorization while the 

multiple-choice game (d 2 2) does not have this nice property. We have also discussed 

several limitations of this technique. For future work, we can apply this technique to study 

other related problems in the static sequential game. For example, given two systems with 

the same total weight, does the system with small number of "large" balls always majorizes 

the system with large number of "tiny" balls? Or whether their corresponding expected 

maximum loads differ only by a constant? However, we believe that new ideas are necessary 

to answer this question. 

In the selfish reallocation game, every ball has its own initial location. We have studied 

an iterative, selfish distributed reallocation algorithm. We have shown some upper and 

lower bounds for the convergence time of the algorithm, which is the number of steps for 

the system to terminate upon reaching (or getting close to) the Nash equilibrium. Our 

main proof method is the potential function technique. The idea is to  define some potential 

function to  measure the distance between some system state and the Nash equilibrium, and 

then to show that the potential always decreases in expectation. For the uniform case where 

each ball is of uniform weight, we obtained tight bounds for the convergence time. To our 

best knowledge, this work is the first attempt to analyze the selfish reallocation game with 

heterogenous tasks. In the future, we can consider applying our proof technique to study 

more general models, for example, those ones that allow arbitrary latency functions. 

Energy Efficient Routing in Ad Hoc Networks We have considered an "energy effi- 

cient" ad hoc network model, in which the energy consumption of a broadcasting/gossiping 

algorithm is measured in terms of the total number of messages (or transmissions) sent. 

Our goal is two-fold: we want to  minimize not only broadcasting/gossiping time, but also 

energy consumption. Under this model, we have presented and analyzed several energy 

efficient broadcasting/gossiping algorithms for both random and general ad hoc networks. 

We have also given some lower bounds for the energy consumption, and demonstrated a 

tradeoff between these two objectives. In the future, we can try to  generalize this model 
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to more practical scenarios. For instance, we can assume that our ad hoc network has a 

topology of random geometric graph similar to [95]. 

In this thesis we have studied distributed algorithms for two fundamental problems in 

distributed systems, resource and routing. Although the models we consider are different, 

they do share common features and challenges, such as lack of central control (knowledge) 

and concurrent user actions. We have presented various new results as well as some novel 

proof techniques. IIn the future, we plan to further study the scope and limitation of the 

proposed techniques. We also plan to exploit the practical implications of our theoretical 

results by studying the corresponding real-life problems. 



Chapter 6 

Appendix 

6.1 Tail Estimates 

The following version of Chernoff bounds can be found, for example, in, [91]. 

Lemma 6.1.1 Let X I , .  . . Xn be independent Bernoulli random variables and let X = 

Cy=l Xi and p = E [ X ] .  Then we have, 

1. Pr [X < (1 - t ) p ]  < e-pc2/" for 0 5 E 5 1. 

2. Pr  [X > (1  + E ) ~ I  < e-pc2/3, for E > 0 .  

3. Pr [ ( X  - p( 5 ~ p ]  > 1 - 2e-pe2/3, for 0 5 E 5 1. 

6.2 An Alternative Proofof Theorem 3.4.8 

After we submitted [24] to a journal, one of the anonymous reviewers pointed out the proof 

of Lemma 3.4.4 can in fact be simplified. The following proof is rewritten based on the 

comments. 

Fix an arbitrary allocation w E On.  We first prove a lemma which indicates that Function 

f (w) = Si (w, W) is convex. 

Lemma 6.2.1 Function f (w) = Si(w, w) is convex. 

Proof. Let v and v' be two m-dimensional vectors such that w = (1 - X)v + Xv' 

Si(w,w)  = max 
Ac[n],IAl=i lLj<m: wjEA 
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- - max C ((1 - X)v, + Xu;) 
Ac[n],lAl=i 

l<j<m: w j € A  

5 ( 1  - A) max 
Bc[n],lBJ=i l < _ j < m : w 3 E B  

X max max 
B1€[n],(B'I=i B'c[n],lBII=i 

l<j<m : w j E B 1  

T 
Note that if w====+wl, w' = X . w + ( 1  - X)wP, where P is a permutation matrix. Using 

Lemma 6.2.1, we get 

The second equation holds since E [Si(w)]  = E [ S i ( w P ) ]  for any permutation matrix P .  
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