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Abstract

One of the primary goals of data mining is to extract patterns from a large volume of data.

Rules characterize patterns in a humanly comprehensible manner. In particular, association

rules have become one of the central research topics in data mining. Association rule mining

has previously been restricted to data in a single table. As most data-intensive applications

employ a relational database for storage and retrieval, this thesis aims at mining association

rules from a standard relational database.

Fundamentally different from previous works, the proposed algorithm is driven by the

Probabilistic Relational Model (PRM) of a relational database rather than the minimum

support restriction. Based on the conditional independence relationships inferred from the

PRM structure, our algorithm removes a set of antecedent attributes that lead to the gen­

eration of redundant rules to improve the learning efficiency and effectiveness.

Keywords: multi-relational association rule; Probabilistic Relational Model; conditional

independence
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Chapter 1

Introduction

The primary goal of data mining is to extract knowledge from a large volume of data. If-then

rules are known to be one of the most expressive and humanly comprehensible representation

of knowledge. In particular, association rules have become one of the central research topics

in data mining, which has many important real life applications, such as market basket

analysis, customer profiling and Genomic Data analysis.

Market basket analysis provides answers to the following questions: "if a customer pur­

chases product A, how likely is he to purchase product B?" and "What product will a

customer buy if he buys product A?". An association rule has the format of A -t B. The

probability of co-occurrence of both A and B is called the support and the probability of

the occurrence of B given the occurrence of A is called the confidence. Although association

rule mining algorithms have been extensively studied for decades, most existing approaches

focus on mining rules from data residing in a single table. Today most data-intensive appli­

cations employ relational databases, typically consisting of multiple tables, for data storage

and retrieval. It would be advantageous to automatically learn association rules directly

from multi-relational databases. This thesis focuses on finding association rules from multi­

relational databases in a cost effective manner.

1.1 Motivation

Association rule mining is a process of finding relationships or associations among specific

values of categorical variables in the data set. Most of the current association rule mining

algorithms assume that all data reside, or can be made to reside, in a single table. However,

1



CHAPTER 1. INTRODUCTION 2

many industrial database applications make use of relational databases to store, manipulate

and retrieve structured data. Multi-relational databases consist of a collection of tables.

Records in each table only represent part of the information about individuals. Individuals

need to be reconstructed by joining foreign key relations between tables. The single table

assumption prevents the use of current mining techniques in some important domains, or

requires significant effort to pre-process data. Rather than mining association rules from

individuals that can be thought of as rows of attribute-value data in a single table, we need

to develop algorithms for mining association rules directly from multi-relational databases.

By mining rules directly from relational databases, we can make use of database indexing

and query optimization techniques implemented in relational database management systems

(RDBMS) to improve mining performance.

The major challenge in association rule mining is to improve efficiency. In transactional

databases, the number of possible rules grows exponentially with the number of items. In

relational databases, if the database contains n descriptive attributes and on average each

attribute has m values, then the number of candidate rules grows exponentially with m- n as

each pair of (attribute, value) corresponds to one item in a transactional database. In order

to improve the performance, different algorithmic approaches have attempted to keep the

search space manageable. Apriori-like algorithms make use of the anti-monotonic property

of support. Another common approach to reduce search space is to define a set of constraints

on the patterns, referred to as declarative bias. The Inductive Logic Programming (ILP)

approach uses WARMODE declarations [6] as its declarative bias. The multi-relational data

mining approach [15] uses selection graph as its declarative bias.

An associated problem in association rule mining in general is the overwhelmingly large

number of rules typically generated. For example, Warmr [6] generated almost 100 rules for

a tiny Prolog database (shown in Table 1.1) when both minimum support and minimum

confidence are set to 0.1. If the data set size becomes larger, typical for an industrial

relational database, more than 100,000 rules are selected. As a common observation, many

of these rules are redundant. A rule is considered redundant if its information can be

obtained from another more general rule. The general approach is to apply an additional

redundancy elimination phase, as proposed in [19] [26] [18]. It would be advantageous to

push redundancy elimination into the rule generation step.

Relational databases usually come with larger data set and richer relational structure. Is

it possible to find a novel algorithm to speed up the rule mining process while realizing the
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Table 1.1: Prolog database with customer information
customer(allen). parent (allen, bill). buys(allen,wine).
customer(bill). parent (allen,carol). buys (bill,cola).

customer(carol). parent (bill.zoe). buys(bill,pizza) .
customer(diana). parent (carol.diana). buys(diana,pizza).

3

goal of effectiveness in finding association rules? This thesis attempt to propose a solution

in answering this question.

1.2 Our Approach

Our approach is inspired by the probabilistic relational model (PRM) [9]. PRMs extends

Bayesian networks with the concepts of objects, their properties and relations between

them. A PRM consists of two components: the qualitative dependency structure and the

quantified parameters associated with it. The dependency structure encodes the dependency

relationships among the attributes in the same table or in different tables of a database.

As stated in the previous section, the most important consideration in rule mining is the

efficiency of the algorithm and usefulness of the rules generated. The algorithm proposed

in this thesis utilizes the PRM dependency structure learned from the database to prune

out redundant rules in the candidate generation step. It can speed up the rule discovery

process while effectively reducing redundancy.

In addition, our algorithm does not rely on the anti-monotonic property of support to

reduce the search space. Apriori-based algorithms need a minimum support threshold, and

find rules with supports exceeding the threshold. Minimum support threshold can help

avoid evaluating too many candidates but may miss those rules whose supports are below

the threshold. For example, rules about golden credit card user or unsuccessful loans in

the financial database usually have very low support. If the minimum support threshold is

large, these rules may not be discovered by Apriori-based algorithms. However these rules

may be of great interest to the users. Our algorithm differentiates from the Apriori-based

algorithms by using the conditional independence relationships to prune candidates other

than minimum support threshold, thus our algorithm can efficiently find high confidence

rules with very low minimum support.
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1.3 Contributions

Main contributions in this thesis include:

4

• We investigate the current approaches for relational rule mining and analyze their

limitations regarding the performance and the usefulness of the resulting rules.

• We explore the semantic information of PRM structure component and propose an

efficient attribute-oriented candidate generation method based on the conditional in­

dependency relationships encoded in PRM.

• By pruning the attribute sets leading to the generation of redundant rules at the

candidate generation step, the proposed PRM-based association rule mining algorithm

drastically speeds up the mining process as well as effectively eliminates the redundant

rules at an earlier stage.

• We show experimentally that our algorithm is efficient for generating non-redundant

rules and the rule set is significantly smaller than the non-pruning algorithm. We

also show that our algorithm efficiently finds all the high-confidence rules without

minimum support limitation.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 explains the concept of association rules, Apriori algorithm, and current

approaches of multi-relational association rule mining.

• Chapter 3 introduces the background knowledge of the probabilistic models, including

conditional independence, Baysian networks and Probabilistic Relational Model.

• Chapter 4 gives a detailed description and explanation of our PRM-based relational

data mining algorithm.

• Chapter 5 describes our experiment design, methodology and the experimental evalu­

ation on a real world financial database.

• Chapter 6 concludes with a brief summary of this thesis and directions for future

works.



Chapter 2

Related Works

Since its introduction in 1993 [22], the task of association rule mining has received a lot

of attention in the literature. A broad variety of algorithms have been proposed to deal

with computation-intensive association rule mining. Based on the data source these algo­

rithms apply to, rule mining algorithms can be classified into different categories: mining

association rules from relational database, transactional database, spatial database, tempo­

ral and time-series database and the world-wide web [27]. This thesis focuses on mining

association rule from relational databases. As association rule mining originated in market

basket analysis which aims at finding patterns from transactional databases, we start with

a brief introduction of association rule mining algorithms for transactional databases and

then move to existing association rule mining paradigms for relational databases.

2.1 Association Rule Mining Algorithms

Association rules find interesting associations or correlated relations from large amounts

of data. The resulting rules can help users make intelligent business decisions. A typical

application of association rule mining is market basket analysis. Given a large amount of

transaction records of customer purchases, the association rule mining process finds associ­

ations between the different items that customers put into their shopping baskets. Sample

results from association rule mining process include: "60% of customers who purchased milk

also bought bread" , or "40% of the customers who purchased apples also bought juice". This

kind of information could be used by retailers to design their store layout or to decide which

type of customers are likely to respond to certain offers.

5



CHAPTER 2. RELATED WORKS 6

A transaction record basically consists of a transaction id and a set of items. An example

of a transactional database is shown in Table 2.1.

Table 2.1: Transactional Database Example
Transaction id items

1 printer, laptop, scanner
2 desktop, printer, ink
3 printer, monitor
4 printer, scanner

The definition of an association rule, according to Agrawal [25], is as follows:

Let I = {il,i2, ... ,im } be a set of all items. Let D be a set of all transactions, where

every transaction T is a set of items T ~ I. A set X ~ I with k = IXI is called a k-itemset.

An association rule is of the form X -. Y where X c I, Y c I, and X nY = 0. The rule

{printer} -. {scanner} is an example of association rule from the data in Table 2.1.

The support of itemset T is the probability of that set of items appearing in a transaction.

The support of the association rule X -. Y, is the probability P(X UY). The support is

calculated by dividing the number of transactions containing all the items in both X and

Y by the total number of transactions. In Table 2.1, the support of the rule {printer} -.

{scanner} is 1/2. An itemset whose support exceeds a pre-defined support threshold is

called a frequent itemset.

The confidence of an association rule is defined as the conditional probability P(Y I X).

The confidence is calculated by dividing the number of transactions containing all the items

in both X and Y by the total number of transactions containing all the items in X. The

confidence of the example rule above is 2/3. The rule can be interpreted as "67% of the

people buying a printer will also buy a scanner". A rule that satisfies the minimum support

and confidence threshold requirement is called a strong rule.

Although the support-confidence framework can weed out a lot of uninteresting rules,

it may also introduce many rules that are not interesting to the user or exclude some rules

that may be interesting to the user but do not satisfy the minimum support requirement.

Some alternative metrics have been proposed to measure the interestingness of a given

rule. For example, lift, correlation and collective strength are often used to determine the

interestingness of association patterns.

In brief, "Association rule mining is to find out association rules that satisfy the pre­

defined minimum support and confidence from a given database" [2]. The problem is usually
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decomposed into two subproblems:

7

1. Find all frequent itemsets: finding all the itemsets whose supports exceed the pre­

defined minimum support.

2. Generate strong association rules from the frequent itemsets: finding all the rules that

satisfy the minimum support and the minimum confidence requirement.

2.1.1 Apriori Algorithm

The best known algorithm for finding frequent itemsets is the Apriori algorithm. A key

observation exploited in Apriori is that all subsets of a frequent itemset are also frequent.

This property is called the anti-monotone property. The Apriori algorithm employs a level­

wise search. It starts with finding the set of frequent l-itemsets and denotes this set as L 1•

Then L 1 is used to find L2 and so on, until no more frequent k-itemsets can be found. The

pseudocode of the Apriori algorithm [11] is presented in Algorithm 1.

Algorithm 1 Apriori

Input: Database D, minimum support threshold miti.sup
1: L 1 = find_frequenLl - itemsets(D);
2: for k=2; L k - 1 i- 0; k++ do
3: Ck=aprorLgen(Lk_1 ,min_sup )
4: for each transaction tED do
5: Ct=subset(Ck,t);
6: for each candidate c E C, do
7: c.count++;
8: end for
9: Lk={ C E Ck I c.count 2: min_sup}

10: end for
11: end for
12: return L = Uk t.,

The apriori.gen procedure consists of join and prune actions. In the join step, Lk-1 is

joined with itself to generate all possible candidates. Then any candidate whose subset is not

frequent is removed from the candidate sets in the prune step. The following example illus­

trates the apriori.gen procedure. Let L3 = {{l, 2, 3}, {I, 2, 4}, {I, 3, 4}, {I, 3, 5}, {2, 3, 4}}.

In the join step, C4 = {{I, 2, 3, 4}, {I, 3, 4, 5}}. After the pruning step, only {I, 2, 3, 4} is a

valid candidate. Because {I, 4, 5} is not in L 3 , the anti-monotone property allow us to safely

exclude the itemsets {I, 3, 4, 5} from the candidate sets without performing a database scan.
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After the frequent itemsets in the database have been discovered, association rule gen­

eration is straightforward. Based on the definition of confidence, the following procedure is

used to find the strong association rules.

• Find all non-empty subsets for each frequent itemset l .

• If the confidence of the rule 8 --+ l is above the confidence threshold (where 8 is a

subset of l), output the rule s --+ l,

By using the anti-monotone property of support, Apriori avoids the effort of counting the

candidate itemsets that are known to be infrequent, thus greatly reduces the computation

cost. However, Apriori still has two drawbacks. First, it requires multiple database scans and

second, too many itemset candidates need to be tested. In order to improve the efficiency,

several new algorithms with modifications or improvements have been developed. A brief

overview of Apriori variations is given in the next section.

2.1.2 Variations of Apriori

Based on the Apriori algorithm, two approaches have been developed to improve the effi­

ciency. The first approach is to reduce the number of passes over the database or reduce the

size of the database to be scanned in every pass. The second approach explores different

kinds of pruning techniques to reduce the number of candidate itemsets. Apriori counts all

candidates at the same level in one database scan. The key part is to look up the candidates

in one transaction. AprioriTID [2] represents each transaction with the candidates it cur­

rently contains. After the first pass, the size of this encoding becomes much smaller than

the database, thus saving much reading effort. However, the major drawback of AprioriTID

is that it needs more memory. Experimental results show that Apriori outperforms Apri­

oriTID in earlier passes while AprioriTID has better performance at later passes. In light

of this observation, AprioriHybrid [2] was developed to take advantage of both methods.

It uses Apriori in the earlier passes and then switches to AprioriTID in the later passes.

Partitioning [24] reduces the database scans to two passes. It uses the divide-and-conquer

approach by dividing the entire database into several partitions such that all the data and

candidate itemsets can fit into memory. In the first phase, local minimum support (minSup)

is calculated by multiplying global minSup by the number of transactions in that partition.

For each partition, it uses the local minSup to conduct a frequent itemset search as usual.
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The underlying observation for the Partitioning algorithm is that an itemset can not be

frequent if it does not appear in any of the local frequent items. After the local frequent

itemset search is completed, comes the second phase, in which the union of frequent itemset

from all partitions are tested by performing the second database scan. Dynamic Itemset

Counting (DIe) algorithm [3] requires fewer database scans than Apriori. DIC partitions

the database into several intervals. While scanning the first interval, the 1-itemsets are

generated and counted. At the end of the first interval, the potential frequent 2-itemsets are

also generated, and so on. In general, at the end of the kth interval, the potential frequent

(k + l)-itemsets are generated. By separating counting and candidate generation step, the

candidates are generated at an earlier stage, so that less database scans are needed.

2.1.3 Mining Frequent Itemsets without Candidate Generation

Han et al. [12] proposed a frequent pattern-growth (FP-growth) method to discover fre­

quent itemsets without candidate generation. The FP-growth method first derives a so­

called FP tree, which is a highly-condensed representation of the transaction database. The

FP tree is constructed by converting each frequent item into a node and each record into

a path in the tree. The second step is to derive the support values of all frequent item­

sets from the FP tree. By avoiding the candidate generation process and requiring fewer

passes over the database, FP-growth is an order of magnitude faster than Apriori algorithm.

Three features contribute to the efficiency of the FP-growth method. First, only frequent

items are included in the FP tree, and irrelevant information is discarded. As a result of

such improvement, no computational resources will be wasted. Second, only two database

scans are required. Frequent patterns are generated by traversing the FP tree, constructing

the conditional FP tree which contains patterns with specified suffix patterns. Third, the

divide-and-conquer approach employed by FP-growth considerably reduces the size of the

subsequent conditional FP-tree, and longer frequent patterns are generated by adding a

suffix to the shorter frequent patterns.
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2.2 Propositionalization Approach of Relational Association

Rule Mining

Although association rule mining has been studied extensively since its introduction, most

algorithms assume that the data is stored in a single table. Very few papers address the

problem of mining association rules when data is stored in multiple tables. A naive ap­

proach is to transform a relational representation of a learning problem into a propositional

(attribute-value) representation, then apply the traditional association rule mining algo­

rithm on the flattened representation. This kind of representation transformation is known

as propositionalization. A simple propositionalization of the relational database is obtained

by a complete join over all the tables in the database. However, the naive propositionaliza­

tion approach may not only cause loss of information, but may also fail to produce correct

rules, or produce rules whose support and confidence do not correctly reflect the knowledge

embedded in the data.

The following example shows that the propositionalization approach sometimes fails to

produce the correct association rule. Suppose we have a simple database consisting of three

tables: Student table with attributes {studentID(SID),intelligence, ranking}, Registra­

tion table with attributes {registrationID(RID), studentID(SID), courselD( CID), grade}

and Course table with attributes {courseID(CID) , courseName(CN) , courseRate}. The

Entity-Relationship (ER) diagram is illustrated in Figure 2.1 and the sample tables are

illustrated in Table 2.2, Table 2.3 and Table 2.4. Joined table is obtained by joining the

three tables above and is presented in Table 2.5 below.

Student -----<~>---- Course

Figure 2.1: Entity-Relationship Diagram of Registration Database

The rule, "intelligence = High ---t ranking = High" , involves the attributes "intelligence"

and "ranking" which belongs to the same entity table Student. If we calculate the support

and the confidence based on the Joined table, then the support of this rule is 60% and the

confidence is 75%. Another way is to calculate these measures based on the Student table

only, in which case the support of the rule is 33% and the confidence is 50%. A question

arises as to which result is the correct one. As this rule only involves the attributes in
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Table 2 3' Course Table. .
CID CN rate

1 cmpt275 High
2 cmpt307 Middle
3 cmpt354 High

Table 2 2' Student Table..
SID intelligence ranking I

1 High High I
2 High Middle
3 Low Low I

Table 2.4: Registration Table
RID SID CID grade

1 1 1 High
2 1 2 High
3 1 3 High
4 2 1 High
5 3 1 Middle

Table 2 5' Joined Table..
RID SID intelligence ranking CID CN rate grade

1 1 High High 1 cmpt275 High High
2 1 High High 2 cmpt307 Middle High
3 1 High High 3 cmpt354 High High
4 2 High Middle 1 cmpt275 High High
5 3 Low Low 1 cmpt275 High Middle

the single entity table Student, we think the confidence and support value should only be

calculated from Student table. However, if we use Apriori to mine association rules from

the propositionalized table, then we would obtain a misleading result of the support and

the confidence measures.

This example illustrates that applying Apriori algorithm directly on the propositional­

ized database may produce misleading results. In the next section, we will introduce and

analyze two other approaches that address the relational association rule mining problem.
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2.3 Current Approaches of Relational Association Rule Min-
.
mg

Two types of database are commonly used for storing and representing structured data,

namely Prolog database and relational database. Each tuple in the relational database can

be viewed as a typed logical formula in the conjunctive normal form, which can be rep­

resented by a set of facts (or predicates) in the Prolog database. Based on what kind of

structured data representation format they apply to, two frameworks have been developed

towards the discovery of association rules from structured data: Inductive Logic Program­

ming (ILP) framework and Multi-Relational Data Mining framework (MRDM). The ILP

approach can be seen as learning from a set of predicates whereas the relational data mining

approach can be seen as learning from a set of tables.

Essentially, the problem of association rule mining can be modelled as a search problem

over all the possible patterns. Usually, a rule discovery algorithm needs to define the follow­

ing components: pattern language, score function, search strategy and declarative bias. In

order to mine interesting patterns from large databases efficiently, a way to express patterns,

which is called pattern language, needs to be defined first. During the search process, a score

function for measuring the interestingness of a given pattern is also required. Given the pat­

tern language and the score function, most algorithms do not conduct an exhaustive search.

Instead, some prior information is used to limit the search space. Such constraint on the

search space is commonly referred to as declarative bias. Regarding the search mode, both

ILP and MRDM employ a top-down search strategy: starting with the most general pattern

and progressively considering more specific patterns. In this section, we study how ILP and

MRDM frameworks approach the pattern language choice, score function and declarative

bias aspects differently, and explore the limitations for each framework.

2.3.1 ILP Approach: Warmr

Inductive Logic Programming (ILP) is a research area formed at the intersection of Machine

Learning and Logic Programming. ILP systems develop predicate descriptions from exam­

ples and background knowledge. Warmr [6] is an inductive logic programming algorithm

designed to discover association rules over a limited set of conjunctive queries on relational

databases. Warmr uses Prolog queries as its pattern language. Moreover, it discovers those

queries that are "frequent" in a given Prolog (relational) database. Before we introduce the
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Warmr algorithm, the notion of query extension, frequent query and query subsumption [6]

need to be defined.

Definition 2.1 (Atomic formula) An atomic formula over R is an expression of the form

R(X), where R is a relation name and X is a k-tuple of variables and constants, with k the

arity of R.

Definition 2.2 (Query Extension) is an existentially quantified implication in the form

of

ll, , lm -; lm+l, ... , ln with 1 $ m < n. This is a shortened notion of the following format:

ll, ,lm -; Ls, .•. ,lm,lm+l, ... ,ln where each li is an atomic formula.

A query extension actually consists of two queries. The former corresponds to the

premise of a logic statement, and the latter is the consequence. In the unshortened form,

the consequence part is longer than the premise. That is where the "extension" comes from.

An example query extension taken from [6] is as follows:

? - customer(X),parent(X, Y) -; buys(Y, cola)

This should be interpreted as "if a customer has a child, then that customer also has a child

that buys cola". The complete form of this query extension is:

? - customer(X),parent(X, Y) -; customer(X),parent(X, Y), buys(Y, cola)

Definition 2.3 (Frequent Query) The support of a query Q over an instance I of the

database is the number of tuples in the answer of query Q. A query Q is frequent if the

support is above a pre-defined threshold.

Definition 2.4 (Query Subsumption) If the tuples returned by query Qt, for every pos­

sible instance of a database, is always a subset of the tuples returned by query Q, then we

say Q subsumes Qt.

Pattern Language

Warmr uses Prolog as the representation of data and patterns. Specifically, Warmr uses

Query Extension as its pattern language. Please refer to above for the definition and an

example of Query Extension.
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Score Function

Like Apriori, Warmr uses support and confidence as its evaluation measure. A sample

Prolog database is given in Table 2.6 [6].

Table 2 6' Customer Database..
customer(allen). parent (allen, bill). buys(allen,wine).
customer(bill) . parent (allen,carol). buys(bill,cola) .

customer(carol).

I

parent(bill,zoe) . buys(bill ,pizza).
customer(diana). parent(carol,diana). buys(diana.pizza).

The support of the query, ? - customer(X),parent(X, Y), buys(Y, cola). is 25% because

only one customer (allen), satisfies the query. We interpret it as "25% of customers are

parents of children who buy cola". For the next query, ? - customer(X) , parent (X, Y)., the

query result constains three customers, namely "allen", "bill" and "carol". The support of

the query is 75%, meaning "75% of customers are parents". The confidence of the following

query extension, ?-customer(X) ,parent(X, Y) ---t buys(Y, cola), is 33%. The interpretation

of this rule should be "If a customer has a child, then that customer also has a child that

buys cola."

Similar to Apriori, Warmr is based on a two-phase architecture. The first phase generates

all frequent patterns and the second phase generates all frequent and confident query exten­

sions. This approach requires the minimum support parameter and pushes the minimum

support requirement into the search by using the anti-monotone property of the support

measurement: if a query is frequent, then all of the generalizations of this query are frequent.

Only when the first phase is completed, does Warmr then proceed into the second phase

to generate all the confidence rules. This strategy implies that the confidence parameter is

totally ignored until frequent queries are screened for rules of high support.

Although this support-confidence framework benefits from the anti-monotone property

of support measure by reducing the large search space that has to be explored, it also suffers

from the following problem. In a transactional database, we assume that all the items in the

dataset have the same nature, so a low support itemset is considered to be uninteresting by

the user. However, this assumption does not always hold, especially in a relational database.

For example, suppose our analysis target is the client table in a financial database. Then

we can classify a client based on certain descriptive attributes, such as district (in which

the client lives) and gender. Let us consider two refinements of hypothesis client(x):
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RuieA : client(x), district(x, districtl)

RuleB: client(x),gender(x,jemale)

support 20%

support 45%
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Both rules are specializations of client(x) and the support of rule A is much lower than

the support of ruleB. If there are 78 distinct district values but only 2 values for the gender

attribute, then rule A is more likely to be unexpected by the user than rule B. Therefore, the

min-support threshold should depend on the number of attribute values. In the relational

database, the number of values for each attribute varies significantly. A uniform min-support

threshold seems unreasonable. Some readers may argue that we can solve the problem by

using the adaptive min-support parameters. But, in the worst case, this approach would end

up using a different min-support parameter for every attribute in the database. Assuming

this is achievable, setting proper min-support values is another challenge: a small threshold

may lead to the generation of too many candidates, whereas a too large one may miss some

rules with low coverage. For example, if only 4% of the clients have a gold credit card, and

the min-support threshold is set to be 5%, then all the rules with respect to gold card users

would be left out from the resulting rules.

Declarative Language Bias

In order to constrain the query language to a meaningful and useful pattern, a mechanism

to reduce the huge search space is needed. As in the Warmr algorithm, Warmode is a

declarative language bias formalism adapted for it. Warmode consists of three components

as discussed briefly below .

• Warmode key: This is an atom which must be included in all queries. In other

words, all possible queries must extend the original key atom and this key constraint

determines what is counted.

• Warmode mode: In the Warmode framework, each variable argument of an atom is

bound with mode-labels +, - and ±.

+: The variable is input, which means it must be bound before the atom is

called.

The variable is output; it is only bound by the atom.

±: The variable can be an input or an output.
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• Warmode type: This is a constraint on the sharing of variable names. When an

atom is appended to the previous query, the arguments that share a variable name

must have the same types, or at least one variable is untyped.

The Warmode key, type and mode restrict what is to be counted, how the query can be

extended by adding more atoms and how the variables can be used in each atom extension.

For example [6], with key and mode declarations:

key: parent(-, -)

atoms: parent( -p, -c), buys (+c, cola)

Then the query

? - parent(X, Y), buys(Y, cola).

is a valid query, but

? - parent(X, Y), buys(X, cola).

is not a valid query.

Warmode formalism may generate candidates that do not comply with the general lev­

elwise framework. In a sample beer drinker database, one possible frequent query is of the

format:

Q1 (x) : -likes(x,y), visits(x,z), serves(z,y)

The answer of Q1 consists of all drinkers that visit at least one bar which serves at least

one beer they like. As stated by Bart Goethals [10], if the Warmode declaration for this

example is shown below:

Key := visits( -, -)

Atoms := {likes(±, Duvel), likes(±,Trappist), serves(±, Duvel), serves(±,Trappist)}

Then the admissible candidate queries are :
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Both queries are single extensions of the key. So they are generated in the same iteration.

Clearly, Q2 is more general than Q1. In this case, the candidate generation step of Warmr

generates patterns of different levels in the search space. FUrthermore, although Q2 is

syntactically a refinement of the key visits]-,-), it is not a semantical refinement of the key.

The addition of the new predicate likes will not reduce the number of the answers of the

key. This problem is due to the syntactical nature of the declarative language bias used in

Warmr and its inability to capture the semantic information of the relational schema.

In summary, Warmr was built on the solid theoretical foundations of ILP. It used the

notion of atom sets as a first order logic extension of itemsets in transactional databases.

The incorporation of techniques from ILP allows generating more complex and more expres­

sive rules and taking the background knowledge into account. But Warmr also has some

shortcomings that are listed below.

1. Although Warmr provides a sound theoretical basis for multi-relational association rule

mining, it does not seriously address the efficiency of computation. As a consequence,

Warmr does not scale well with regards to the number of relations and the number

of attributes in the database. Thus they are usually inefficient for databases with

complex schemas.

2. The syntax-based nature of the Warmode declaration makes it hard to be accurately

specified by a non-expert user.

3. The Warmr approach primarily is designed for relational data stored as Prolog as­

sertions. Adapting it for data stored in relational databases is complicated because

Prolog engines are not designed to support the relational databases. As such it can

not incorporate the existing relational database management technologies (e.g. query

optimization technique, concurrency control) into the mining process.

2.3.2 Multi-Relational Data Mining Approach: Selection Graph

Knobbe and Blockeel [16] proposed the MRDM approach to support mining on full relational

databases. The proposed algorithm finds rules with a previously defined consequence in the

form of S ~ T. In this approach, the semantic information in the relational database is

explored to prune the search space. Also, the multiplicity of associations among tables are
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used in the mining process to avoid redundant computation. A so-called selection graph is

used to express the pattern instead of SQL statements or first order logic expressions. This

section contains the detailed description of MRDM approach for rule discovery.

Pattern language and declarative language bias

The possible patterns that can be discovered depend on the declarative language bias spec­

ified by each framework. The multi-relational data mining approach expresses patterns in

a graphical language of selection graphs. The definition of selection graphs is from [16].

Definition 2.5 (Selection Graph) A selection graph G is a pair (N, E), where N is a set

of pairs (t, C) called selection node, t is a table in the data model, and C is a possibly empty

set of conditions on attributes in t of type (t.a8c). 8 is one of the following operators,

=, ~,2:. E is a set of triples (p, q, a) called selection edges, where p and q are selection

nodes, and a is an association between q.t and p.t in the data model. The selection graph

contains at least one node no which corresponds to the target table to.

Child

Parent

Age>40

Figure 2.2: This selection graph represents the set of parents older than 40, who have at
least one child, and bought one toy.

The selection graph is a representation of selected individuals in the relational database.

A node in the selection graph selects a set of tuples in table t that satisfy the set of conditions

in C. An edge in the selection graph specifies the association among tables. Selection graphs

are more expressive and intuitive than SQL statements or Prolog expressions but they can
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be easily translated into SQL or Prolog. The SQL translation of the above selection graph

example is as follows:

SELECT DISTINCT Parent.name

FROM Parent, Child, Toy

WHERE Parent.name = Child.parentName

AND Parent.name = Toy.buyerName

AND Parent.age > 40

Selection graphs also provides a search space for multi-relational data mining algorithm

to explore. The rule mining system Safarii, the implementation of MRDM rule discovery

algorithm, explores the possible candidate pattern in a top-down fashion. Starting with a

very general pattern, it progressively considers more complex and specific selection graphs.

The refinement of a given selection graph is achieved by two possible operations as listed

below [16].

1. Condition refinement: adding a condition to a selection node without changing the

structure of the selection graph. Based on the type of the attributes, three operators

'S, 2: or = can be used.

2. Association refinement: adding an edge and a node to the graph. This operation

specializes the originally selected individuals by requiring an association with instances

in another table.

From the definition of the selection graph, conditions on each node are of the format: t.a

operator C, where t is a table in the data model and C is a constant. Adding a condition on

a specific node means that only the objects that satisfy the condition in the corresponding

table will be counted. Also the addition of edges are only allowed when it is consistent with

the data model. That is, only when an association between two corresponding tables in the

data model exists, can the association edge be added as a refinement of the original graph.

The refinement specification guarantees that unnecessary and invalid patterns will not be

generated and tested. In the beer drinker example, only the refinement Ql is valid since it

is consistent with the data model. Q2 is not a valid refinement as it is not the consequence

of any of the two refinement operations.
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Score function
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Along the score junction dimension, the safarii system offers a collection of rule evaluation

measures proposed by Lavrac, Flach and Zupan [17]. These measures are selectable by

users. The condensed list of the supported measurement options is as follows [15]:

support(S -t T) = P(ST)

coverage(S -t T) = P(S)

accuracyl(S -t T) = P(TIS)

specijicity(S -t T) = P( ,SI,T)

sensitivity(S -t T) = P(SIT)

novelty2(S -t T) = P(ST) - P(S)P(T)

Among the various score functions offered by the system, the author recommends that ac­

curacy or novelty should be used in practice, because "they both express what is close to

an expert's judgment of interesting" [17].

Safarii features a Client/Server architecture to separate the search process and the

computation-intensive evaluation of candidate patterns in the database. This separation

is achieved through a set of so-called multi-relational data mining primitives. The mining

process never accesses the database directly, only through the use of a set of pre-defined

primitives. The data primitives typically contain the statistical summaries for a range of

similar candidate patterns. The implementation of data primitives allow the system to op­

timize the database access by combining several hypotheses testing into one query. The

reduction of the database access in turn improves the performance of the rule discovery

process.

Although the use of data models will reduce the search space to some extent, the number

of hypotheses generated by MRDM is still too large when coping with industrial-sized data­

bases. Computational complexity of a discovery process is strongly related to the number

of hypotheses evaluated during the discovery process. The maximum number of possible

1also called confidence

2 also called leverage
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hypotheses can be calculated by multiplying the number of distinct attribute values in all

attributes. This number is typically very large even for a moderate size data. Considering

a single node in the selection graph, the number of possible condition refinements is 2m ·n

where m is the number of descriptive attributes in the entity table and n is the average

number of values per attributes. With regards to the association refinement, typically any

two tables from a relational database can be associated with each other, either directly or

indirectly, through the foreign key chain. From the refinement operations of the selection

graph, we can not see any reduction in the number of hypotheses. For example, in a dataset

with 7 attributes, if all attributes have exactly 10 different values, then the MRDM would

generate 10 million hypotheses. This is clearly an obstacle for the efficient association rule

learning.

Based on our investigations of current approaches for mining interesting patterns from

multi-relational databases, we can draw several conclusions:

• The propositionalization approach may fail to produce all interesting rules or may

produce rules whose parameters do not reflect the real support and confidence measure

of the rule.

• The support threshold favors patterns with a high coverage and discriminates patterns

with lower coverage. This results in a large amount of high confidence rules with low

coverage undiscovered.

• Rules among attributes of the same relation should be analyzed with respect to the

set of individuals in the same relation. Rules among attributes of several tables should

be analyzed with respect to all the relations involved.

• We need to find a solution to reduce the number of hypotheses in order to avoid the

huge computational cost.



Chapter 3

Probabilistic Models

"Probabilistic models are a marriage between probability theory and graph theory. They

are playing an increasingly important role in the design and analysis of machine learning

algorithms." - Michael Jordan, 1998

Probabilistic graphical Models have been used successfully in many applications for rep­

resenting statistical patterns in real world data. Among various graphical models developed

so far, Bayesian Networks (BN) provide a very intuitive representation of the dependency

relationships between different variables with a domain. Bayesian networks are designed

to model attribute-based domains, so they are not well suited for modelling data residing

in a relational database. Probabilistic Relational Model (PRM) extends the Bayesian Net­

work framework to allow relational structure being fully represented and exploited. The

conditional independence relationships encoded in the PRM graph can provide the guid­

ance for searching interesting patterns from relational databases. In this chapter, we will

briefly introduce the following topics: conditional independence, Bayesian Networks and

Probabilistic Relational Models.

3.1 Conditional Independency

Suppose we have the following three attributes, each with its value domain shown in paren­

theses: Intelligence(high, medium, [ow), Ranking(high, medium, [ow), and Grade(a, b, c).

In the following example, we abbreviate each attribute by its first letter, capital letters for

the attributes and lower case letters for a particular value of this attribute. We use P(A) to

denote a probability distribution over the possible values of attribute A, and P(a) to denote

22
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the probability of the event A = a.

A joint distribution specifies the probability of two or more co-occurring events. We

can compute the probability of any instantiation of I, Rand G given a joint distribution

of attribute values. There are 27 entries in a complete joint distribution table for our

example above, one for each possible combination of attribute values. A portion of the joint

distribution table is shown in Table 3.1. This table only covers the joint probabilities when

G= b.

Table 3.1: Partial joint distribution example
G I R P(G, I, R)
b high high 0.118
b high low 0.059
b high medium 0.118 I

b low high 0.059
b low low 0.~59 I

b low medium

In most cases, the distribution of one attribute is only influenced directly by certain

attributes while indirectly influenced by others. For example, the effect of attribute I on R

might be mediated by G. A formal assertion of this observation is called conditional inde­

pendence. By definition, A and B (where A and B are two nodes in the graph corresponding

to two attributes in the database) are independent, written as A 1- B, if for every value of

A and B:

P(A, B) = P(A) . P(B)

A and C are conditional independent given B, written A 1- C I B, if for every value of A, B

and C:

P(A, C I B) = P(A I B) . P(C I B)

or alternatively,

P(A I B) = P(A I B,C).

For the example above, if we know that the attribute R is only influenced directly by

G, we can assert that for every combination of g, i, T, we have:
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P(R = riG = g, I = i) = P(R = riG = g) .(1)
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This assertion states that R is independent of I given G.

Conditional independency allows us to represent the joint probability with a much more

compact factored form.

P(R, G, 1) = P(RIG, 1) . P(GI1) . P(1)

= P(RIG) . P(GI1) . P(I)

The first equation follows from the chain rule and the second equation follows from Equation

(1) above. Given the equation above, we can calculate the joint distribution using three

smaller tables P(R I G), P(G I 1) and P(1). So the storage requirement for the factored

representation is 9 + 9 + 3 = 21 entries compared with 27 entries in the full joint distribution

representation. The improved storage requirement does not seem quite impressive in this

case, but if we have n nodes in a graph, the full joint distribution requires O(2n ) space, and

the factored form only requires O(n2k ) space where k is the maximum in-degree of a node.

If n is large, the amount of storage required can be significantly reduced.

3.2 Bayesian Networks

A Bayesian network is a graphical representation of a joint probability distribution, rep­

resenting dependency and conditional independence relationships among the nodes in the

graph. The underlying assumption is that only a few nodes in the graph affect each other

directly. A simple Bayesian Network model for our student domain is illustrated in Fig­

ure 3.1.

A Bayesian network consists of two components. The first component is a directed

acyclic graph where each node corresponds to one attribute and the edge denotes a direct

dependence of an attribute on its parent. The structure of a Bayesian network encodes a

set of conditional independence assumptions. Each node Ai is conditionally independent

of its non-descendants given its parents. The second component consists of a set of local

Conditional Probability Distribution (CPD), one for each node in the graph, denoted as

P(Ailparent(Ai)). CPD for a given node specifies the distribution over the values of Ai
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Intelligence

Grade

Ranking

Figure 3.1: A simple Bayesian Network for student domain
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given any possible assignment of values of its parents. These two components together

allow us to construct the global joint distribution using the chain rule and the conditional

independence relationship statements encoded in the structure component.

Table 3.2: CPD for Ranking node in student domain
G=a G=b G=c

R=h 0.67 0.17 0.1
R=m 0.33 0.67 0.2
R=l 0 0.16 0.7

Consider the graph shown in Figure 3.1, in which Intelligence, Grade and Ranking are

connected in a chain. There is a missing edge between I and R, meaning that I and Rare

conditionally independent given G, i.e.:

L1RIG

Moreover, we assert that there are no other conditional independencies characterizing this

graph. Note that this assertion does not mean that no further conditional independencies

can arise in any of the distributions in the family associated with this graph. For example,

it is possible that there are some distributions of I and G, where p(g I i) = p(i), so G .L I.

The key point is that edges that are present in a graph do not necessarily imply dependence,

whereas edges that are missing do necessarily imply independence [14].
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In essence, the issue comes down to a difference between universally quantified state­

ments and existentially quantified statements, with respect to the family of distributions

associated with a given graph. Asserted conditional independency always hold for these

distributions. Non-asserted conditional independence sometimes fail to hold for the distrib­

utions associated with a given graph [14]. This statement is the key point of our algorithm

design. We use conditional independencies rather than conditional dependencies for our

pruning step in order to guarantee the correctness of our algorithm. The conditional inde­

pendence inference method of the probabilistic models will be further discussed in the next

section.

3.3 Bayes-Ball Algorithm: Determining Conditional Inde­

pendence in Bayesian Network

We can derive a set of basic conditional independence statements from BNs as follows [14]:

Defining an ordering I of the nodes in a graph G to be topological, if for every node Xi,

the nodes in the parent set X1l"i appear before Xi in I. Let XVi denote the set of nodes that

appear earlier than Xi in I, not including the parent nodes X1l"i' then {Xi .1 XVi IX1l"J for

i = 1, ... , n. Informally, any node is independent of all its non-descendant nodes given its

parents.

Apart from the basic conditional independence relations, the BN structure encodes many

further conditional independence relations. The notion of graph separation provides a mech­

anism for inferring conditional independence relations implied by a network structure. In

Figure 3.2: The nodes A2 and A3 separate Al from A6

Figure 3.2, Al is independent of A6 given A2 and A3 . This is not one of the basic conditional
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independencies for graph 4.2, but it can be inferred by the notion of graph separation. We

say nodes A2 and A3 d-separate nodes Al and A6 . The 'd' in d-separation stands for

dependence. If two variables are d-separated relative to a set of variables Z in a directed

graph, then they are independent conditionally on Z in all probability distributions. How­

ever, naive testing of d-separation may be inefficient because of the large number of chains

in acyclic directed graph.

The Bayes-Ball algorithm [23] is an efficient algorithm to assess the d-separation in

the network. This algorithm can decide whether a conditional independence statement,

X A ..1 X B I Xc is true, where X A, X B and Xc are any possible disjoint sets of nodes in the

network. The complexity of the algorithm is O(n + m) where n is the number of nodes and

m is the number of edges, which is linear in the size of the graph. The Bayes-Ball algorithm

starts by shading the nodes Xc, placing a ball at node XA and let the ball bounce around

the graph according to a set of rules. If the ball reach X B , we assert that X A ..1 X B I Xc

is not true, otherwise, we assert that X A ..1 X B IXc is true [14].

Next we need to specify what happens when the ball arrives at node Y from node X

destined to node Z (Figure 3.3 ). We specify these rules based on three canonical graphs.

Figure 3.3: What happens when a ball originating from X arrives at Y while destined for
Z?

• Case 1: (referring to Figure 3.4) The ball arrives at node Y from X and node Y is

shaded. Clearly, if Y is given, X is independent with node Z, so we can not allow the

ball to pass through node Y and reach the node Z. In this case, the ball should bounce

back. On the other hand, if Y is not given, we can not assert that X is independent
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with Z; it is possible that X is dependent with Z through Y, so we allow the ball to

pass through Y and reach Z.

(a) when Y is shaded (given),
then ball bounces back.

(b) when Y is unshaded, the ball
passes through.

Figure 3.4: Case 1

• Case 2: (referring to Figure 3.5) In this canonical graph, similar considerations apply.

When Y is known (shaded), then X is independent with Z and the ball must bounce

back. When Y is unknown (unshaded), X is possibly dependent on Z through Y, so

the ball passes through.

(a) when Y is shaded(given) , then
ball bounces back ..

(b) when Y is unshaded, the ball
passes through

Figure 3.5: Case 2

• Case 3: (referring to Figure 3.6) This graph is often referred to as a "v-structure".

Here we simply reverse the rules. When node Y is given, we allow the ball to pass

through, reflecting that we do not assert that X and Z are conditionally independent

given Y. When node Y is unshaded, we require the ball to bounce back.
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x x

(a) when Y is shaded (given), (b) when Y is unshaded, the ball
then ball passes through. bounces back

Figure 3.6: Case 3

3.4 Probabilistic Relational Models

Probabilistic Relational Models [9] are an extension of Bayesian networks but incorporates

a much richer relational structure. They are to Bayesian Networks as relational logic is to

propositional logic. A PRM specifies a relational schema for the domain, a set of probabilistic

dependencies between the attributes in the domain, as well as a probability distribution over

the database.

3.4.1 Relational Schema

The relational schema of the PRM framework represents the structure of the database. The

schema consists of a set of schema classes X = {Xl, X 2, ... , X n } , where each schema class

corresponds to a table in a database. For each class X, there is a set of descriptive attributes

A(X) which corresponds to columns in a database table. A schema class Xi also contains a

set of links or reference slots, which corresponds to reference attributes in a database table.

Figure 3.7 illustrates an example of a relational schema. Classes are shown as boxes which

contain ovals representing descriptive attributes and round-cornered rectangles representing

reference attributes. In this example, each object of the Registration class has a link called

Student!D referring to a Student object, and a link called Course!D referring to a Course

object.

A relational skeleton (T for a relational schema is defined as a set of instances for each

class with the relationships that hold between them (that is, the value for each reference slot

is specified). In other words, a relational skeleton is a partial specification of an instance of
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Figure 3.7: Relational schema example
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the schema where the values of the attributes are not specified.

An instantiation I specifies a set of instances for each class X E X along with the values

for each attributes and reference slot. The generic term object or instance refers to both

entities and relationships.

3.4.2 Probabilistic Model for Attributes

A PRM specifies a probability distribution over attributes from all the classes. Similar to

a Bayesian network, the underlying assumption is that each attribute is influenced directly

by only a few others. So the probabilistic model for each attribute can be expressed by a

function of these few influences. In addition, not all attributes from a schema will participate

in a probabilistic model. Only the descriptive attributes with quantifiable values participate

in the dependency model (for example, the Rating attribute in Figure 3.7). The reference

attributes are non-probabilistic attributes which provide additional reference information

about the instance (for example, the StudentID attribute in Figure 3.7).

There are two major differences between a PRM and a Bayesian network. First, a

PRM defines the dependency structure between attributes at the class level. Any instance

of a class implicitly inherit the dependency model for each attribute of that class. So,

the dependency model applies universally on every object of a specific class. A Bayesian

network lacks the concepts of "class" or "object", because it models a pre-specified set

of random variables, whose relationships with each other are fixed in advance. Second, a

PRM explicitly uses the relational structure of the model, which allows the attribute of an

object to depend on attributes of related objects. A PRM consists of two components: the

qualitative dependency structure and the quantitative parameters associated with it. The

dependency structure specifies a set of parents Pa(X.A) of each attribute X.A. The parents



CHAPTER 3. PROBABILISTIC MODELS 31

are attributes that directly influence the attribute X.A. Two types of former parents are

defined. The attribute X.A can depend on another probabilistic attribute B of X; or X.A

can also depend on attributes of related objects X.T.B, where T is a slot chain and B refers

to an attribute in another table. The notion of slot chain is defined as follows [9]: Let

R(XI , ... , X k ) be a relation. We can project R onto its i-th and j-th arguments to obtain

a binary relation p(x, y), which can be viewed as a slot of Xi. For any x in Xi, we let x.p

denote all the elements y in X j such that p(x, y) holds. We can concatenate slots to form

longer slot chains T = PI, ... , Pm. Intuitively, a slot chain is a function that maps the values

of attribute X.A to the values of attribute YB residing in another table Y. If the slot chain

is a multi-valued function, then an aggregation function will be used.

The formal definition of a PRM from [8] is given as follows.

Definition 3.1 (Probabilistic Relational Model) A Probabilistic Relational Model (PRM)

IT for a relational schema R is defined as follows. For each class X E X and each descriptive

attribute A E A(X), we have:

• a set of parents Pa(X.A) = {UI , ... , Ul} where each U, has the form X.B or {(X.T.B),

where T is a slot chain and { is an aggregate of X.T.B .

• a legal conditional probability distribution (CPD) , P(X.A I Pa(X.A)).

A PRM specifies the probability distribution over attributes from all the classes using

the same underlying principles as a Bayesian network. We can derive a set of independency

assertions of the descriptive attributes from the dependency structure of a PRM as from a

Bayesian network. A set of basic conditional independency statements can be obtained from

a PRM in the same way as from a Bayesian network: any node is independent of all its non­

descendant nodes given its parents. Similarly, further conditional independence relations

can also be inferred from the PRM structure using the Bayes-Ball algorithm introduced in

Section 3.3.

Figure 3.8 shows the PRM structure of a simple university domain. In this PRM

structure example, we can easily derive a set of conditional independence assertions: Stu­

dent.Ranking is independent of Student. Intelligence given Avg(Registration. Grade), Stu­

dent.Ranking is independent of Course.Difficulty given Avg(Registration. Grade).
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Figure 3.8: The PRM structure of simple university domain

3.4.3 PRM Semantics

PRMs define a distribution over possible instantiations of a database that are consistent with

a relational skeleton. As with Bayesian networks, the joint distribution over different values

of attributes can be represented by a much more compact factored form. The probability

distribution over all instances can be computed as follows.

P(I Ia-; S, Os) = II II P(Ix.A I Ipa(XA) , Os)

xEO"r AEA(x)

= II II II P(Ix.Allpa(x.A),Os)

XiEX AEA(x;J XEO"r(Xi)

Ix.A denotes the value of x.A in the instantiation I, X denotes the set of all classes

in the schema and S denotes the probabilistic dependency structure having parameter Os.

Informally, we can compute the joint distribution by taking the product, over all x.A, of the

probability in the CPD of the specific value assigned by the instance to the attribute given

the values assigned to its parents [8].
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After we have reviewed the definition of PRM, its components and the semantics, we will

briefly introduce the important task of automatic PRM structure learning from an existing

database. Three aspects must be addressed before we start the learning process. First,

we need to determine which dependency structures are legal. Second, we should specify

how to evaluate the goodness of a given structure. Finally we have to decide the effective

search strategy to find a good structure. This is known as the search-and-score algorithm.

A structure is legal if the dependency between object attributes is acyclic. This is due

to the restriction that PRM is a directed acyclic graph (no cycle is allowed). In order to

guarantee that the generated structure is legal, the key point is to maintain a stratified class

dependency graph and consider only structures whose dependency structures are consistent

with the stratification. Specifically, whenever an edge is added into the graph, we can check

whether the new edge will introduce a cycle in the graph. The checking step requires only

0(1 V 1 + I E I) time where / V 1 is the number of vertices and 1 E I is the number of

edges in the graph. After determining that a structure is legal, the next step is to evaluate

the structure based on a score function. PRM learning adapts the Bayesian model selection

methods for the framework. Let S denote a structure, I denote an instantiation of a data­

base and a denote the skeleton of a relational schema. The following is based on the Bayes

rule:

P(SII, o ) ex PUIS, u)P(S/u)

The goal is to maximize the posterior probability of a structure given an instantiation I

and a skeleton a, The posterior probability P(SII, o ) can be calculated from P(Slu) (the

prior over the structure given the skeleton) and PUIS, o ) (the marginal likelihood). The

third issue we need to address is the search strategy. PRM learning uses a greedy local

search by considering candidates in the following order [7]:

• Consider only dependencies within the same table.

• Consider dependencies from neighboring tables, via relation chains.

• Consider dependencies from further tables, via relation chains.

Our implementation of PRM structure learning is adapted from the K2 algorithm [4]

which is a greedy heuristic algorithm for finding Baysian Network structures. The algorithm
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first assumes a node has no parent, and then incrementally adds a parent as its predecessor

whose addition most increases the probability of the resulting structure until no improvement

is possible or a pre-specified threshold on the maximum number of parents is reached.



Chapter 4

PRM-Based Association Rule

Mining

Efficient pattern discovery from relational databases is challenged by the large size of data­

bases. Inductive logical programming (ILP) techniques have had considerable success on a

variety of multi-relational rule ming tasks. However, most ILP approaches are not scalable

with regard to the number of relations and the number of attributes in the database. Thus

they are usually inefficient for databases with complex schemas. The multi-relational data

mining (MRDM) approach, on the other hand, improves its performance by using data min­

ing primitives, but the number of hypotheses to be tested is quite large due to the lack of

a candidate pruning strategy. Our algorithm can efficiently discover non-redundant, high­

confidence rules with a pre-determined consequence attribute. Fundamentally different from

previous works, the proposed algorithm is driven by the conditional independence relations

between attributes rather than the minimum support restriction. This attribute-oriented

pruning approach can efficiently remove a set of antecedent attributes that lead to the gener­

ation of redundant rules, therefore reduce the number of hypotheses to be evaluated during

the rule mining process. In this chapter, we will describe our PRM-based Association Rule

Mining algorithm (PARM) in detail.

35
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One major task of rule discovery is to extract interesting rules from large volumes of data.

Often, interesting rules are buried under a large amount of trivial or redundant rules. In

order to avoid this situation, two approaches can be used to reduce the rule size by elim­

inating trivial or redundant rules. The first approach is to utilize the subjective interests

specified by users to eliminate uninteresting rules and effectively find valuable ones. In many

applications, users are interested in discovering properties of a specific class of instances.

We seize such situations by requiring users to specify an attribute as the consequence and

we aim to find all such rules. The second approach is to simplify the resulting rule set

by removing redundant rules. Most existing approaches eliminate the redundant rules by

reorganizing and post-pruning the resulting rule set, as in [19], [18] and [26], which does

not improve the efficiency of the learning process. It would be advantageous to push the

redundant pruning phase into the mining process so as to discover the non-redundant rule

set in a cost effective manner. In this section, we will start with some definitions, and then

explain the single consequence non-redundant rule mining problem in more detail.

Definition 4.1 (Descriptive attribute of a relation) Given a relation T with primary

key K from database D, we define any attributes, denoted by T.A, that describe the properties

of entities in T with quantifiable values as a descriptive attribute of the relation T.

Definition 4.2 (Atomic formula) Given a relation T from D, an atomic formula is a

constraint on a descriptive attribute T.A. It is in the form T.A8c. 8 is one of the following

operators, =, ~,2: and c is a constant.

Definition 4.3 (Single consequence association rule) Given a pre-defined target de­

scriptive attribute T.A of the target table T, a single consequence association rule is of the

form QI ----+ Q2 where QI is of the form iI, ... lm, Q2 is of the form II, ... , 1m, lm+I, Ii is an

atomic formula and Im+l is an atomic formula of T.A. In abbreviation, we write this rule

as h, ...,1m ----+ Im+I.

We say that a single consequence rule r (X ----+ I) is more general than rule rt (XI ----+ I)

if X C XI, denoted as r C rt . Conversely, rt is more specific than r, denoted as r! :J r,

Definition 4.4 (Non-redundant single consequence rule set) Let R be the complete
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set of singel consequence association rules whose confidence is greater than or equal to min­

conf for a given database D and a pre-defined target attribute A. A set RN is a non-redundant

single consequence rule set w.r.t R if (1)RN ~ R; (2)Vr t E R - RN, 3r E RN such

that r C rt and conf(r) 2 conf(rt); and (3) Vr ERN, !3rt E R N such that rr C rand

conf(rt) 2 conf(r).

The non-redundant single consequence rule mining problem is formally defined as follows.

Definition 4.5 (Non-redundant single consequence rule mining problem) Given a

relational database D, the PRM dependency structure G ofD, the minimal confidence thresh­

old minconf and the consequence attribute A, find the set of all non-redundant rules having

A as its single consequence attribute such that the confidence of each rule is greater than or

equal to a pre-defined minconf.

Our approach is aimed at finding a special subset of the complete association rule set

without losing the completeness power of the latter. Let us imagine how a user makes

predictions using a set of association rules. Given a set of association rules, the user selects

a matching rule with the highest confidence from the rule set, and then uses the consequence

of the rule as the prediction result. Assume that a complete association rule set contains the

following two rules: a ---t c (confidence = 0.6) and a, b ---t C (confidence =0.5). Obviously, the

user would pick the first rule over the second rule. Therefore, the second rule will never be

selected in the above prediction procedure. We call the second rule a redundant rule because

there exists a more general rule with a higher confidence. The proposed algorithm removes

all the redundant rules from the association rule set and forms a new rule set, which can

predict exactly the same results as the original association rule set. We define this subset

as the non-redundant association rule set with regards to the complete association rule set.

It is clear that our definition of a non-redundant rule set is different from the general

definition of a non-redundant rule set. In [19], a rule is considered redundant if its confidence

is close to a more general rule. However, we define a rule as being redundant if its confidence

is less than or equal to a more general rule. Therefore, the non-redundant rule set defined

in [19] is larger than the non-redundant rule set defined by us. As explained above, our

definition originates from how users will make predictions based on our rule set. If users

make predictions by selecting the matching rules with the highest confidence value, then

the specific rules with lower confidence values will never be selected during the prediction
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procedure. However, our algorithm can be easily adjusted to find the non-redundant rule

set defined in [19] by modifying the rule pruning procedure. In the rule pruning step, we

remove a rule if there exists a subrule with a higher confidence. To adapt it to the non­

redundant rule definition in [19], we can set a minimum confidence difference threshold to

measure whether two confidence values are close enough, then remove a more specific rule

only if there exists a more general rule with "close confidence" .

The proposed approach is based on the PRM dependency structure of a relational data­

base. Since only the descriptive attributes with quantifiable values can participate in the

dependency model of the PRM, we mainly focus on finding a set of rules that explore the

dependency relationships between the descriptive attributes in a relational database. The

pattern language to be used is the conjunction of a set of atomic formulae, which repre­

sents the selection of instances that satisfy all the descriptive attributes constraints defined.

The underlying assumption is that a set of constraints over the descriptive attributes can

uniquely identify a set of instances from a database.

4.2 Comparison With the Classification Rules

Our problem setting presents some similarities with the classification rule discovery problem.

Both problems aim at a pre-determined class attribute in the database and attempt to find

regularities about the specified class. In order to distinguish the single literal consequence

association rule discovery task and the classification task, we need to examine the function­

alities of data mining first. In general, data mining tasks can be classified into two classes:

predictive and descriptive. "Descriptive mining tasks characterize the general properties of

the data in the database while predictive mining tasks make inference on the current data

in order to predict unseen individuals" [11]. Based on the above definition, association rule

mining can be classified as a descriptive task whereas classification falls into the predictive

class. A predictive task is interested in global models that give a unique classification of

each individual either in the database or yet unobserved. Usually no hard thresholds are

involved in a traditional classification rule generation algorithm. A descriptive task, on the

other hand, produces a local model that explains and increases understanding of current

data. It is based on some hard thresholds, such as the minimum support and the minimum

confidence. Our algorithm is a descriptive algorithm by nature. The rule set generated by

our algorithm are independent with each other. They specify some knowledge about the
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individuals covered by the antecedent of the rule, but not the remainder of the database.

The rule set can not be treated as a classifier directly because of the following reasons:

• Not all individuals in the database are covered by at least one rule.

• Some individuals may be covered by multiple rules with different class labels.

Besides the differences mentioned above, there are other dissimilarities between a clas­

sification algorithm and an association rule algorithm. A classification algorithm usually

generates a small set of rules while association rule sets are often very large. A classifica­

tion rule mining algorithm normally uses a heuristic criterion and cannot guarantee finding

the optimal rule set whereas an association rule mining algorithm generates all the rules

satisfying the requirement.

Despite of the above differences, association rules and classification rules are closely

related. It is possible to use association rule mining techniques to solve classification rule

mining problems, but how to adapt our algorithm to make it suitable for the classification

task is an interesting research topic for future.

4.3 Basic Idea

In this section, we will first briefly review the semantics of PRM dependency structure, and

then introduce the basic idea of our proposed approach.

4.3.1 PRM Review

Our PRM-based Association Rule Miner (PARM) algorithm for learning non-redundant

single-consequence association rules is a PRM-based approach. As illustrated in Chapter

3, the dependency structure of a PRM encodes a set of dependency relationships between

the descriptive attributes in a relational database with graphical representation. The PRM

structure of a simple university database is shown in Figure 4.1.

From the PRM structure, we can derive a set of dependency assertions of the descriptive

attributes. The dependency relations can either exist between attributes in the same table

(Registration. Satisfaction depends on Registration. Grade), or between attributes in different

tables (Registration. Satisfaction depends on Professor. Teaching-Ability). Intuitively, the de­

pendency relationships can guide our search for interesting patterns from large databases.
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Figure 4.1: The PRM structure of university domain

Recall an important characteristic of the independency assertions: if two attributes are

independent, the independency relationship applies for all values of the attributes. Based

on this property, we propose an attribute-oriented pruning method to reduce the num­

ber of hypotheses. Antecedent attribute sets that lead to generating redundant rules are

removed from the complete candidate sets. The attribute-oriented pruning allows us to

save significant amount of computational effort for evaluating redundant rules. Other than

the improved performance, the size of the discovered rule set is also reduced by means of

redundancy elimination.

4.3.2 Derivable Candidate and Generating Candidate

An attribute candidate is a set of descriptive attributes that appear in the antecedent part

of rules. Throughout this thesis, the term candidate will also be used in abbreviation

for attribute candidate. Suppose a database consists of n descriptive attributes, the total

number of possible attribute candidates is 2n - 1 if the consequence attribute is excluded from

the antecedent attribute set. We categorize all the attribute candidates into two classes:

derivable candidate and generating candidate. In this section, starting with a brief overview

of conditional independence, conditional probability and confidence measurement, we then

introduce the definitions of derivable candidate and generating candidate.

In the original formulation of the association rule discovery problem, support and con­

fidence are two interestingness measures. Support measures the joint probability of events
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associated with a particular rule and confidence measures the conditional probability of

events associated with the rule. If we formulate the support and confidence measure in

the context of random variables and probability distribution, the interestingness of a rule

B = b ----> A = a is usually defined as a function of p(A = a), p(B = b) and p(A = o.r.B = b):

support(B = b ----> A = a) = p(A = a 1\ B = b)

. p(A = a 1\ B = b)
con jidencet B = b ----> A = a) = = p(A = a I B = b)

p(B = b)

The structure of a PRM model gives us a set of conditional independence statements

of the descriptive attributes in the model, but can we utilize conditional independence to

reduce our search space? Suppose we have a single conclusion A, and we try to derive all

the rules in the form of X = x ----> A = a. If we have the rule

conf(B = b ----> A = a) = p(A = a I B = b) = p

and we also know A ..1 C I B, then for every value a, band c we have that

p(A = a I B = b) = p(A = a I B = b,C = c)

so,

conf(B = b,C = c ----> A = a) = p(A = a I B = b,C = c)

= p(A = a I B = b)

= conf(B = b ----> A = a)

This implies that the rule B = b, C = c ----> A = a is redundant in the sense that the

confidence of a more general rule B = b ----> A = a is no less than its confidence. In other

words, the confidence does not rise by adding knowledge about C. We can safely prune the

rule B = b,C = c ----> A = a for every instantiation of A, Band C.

Another frequently used interestingness measure lift also presents this property:

lift(B = b ----> A = a) = p(A = a 1\ B = b) = p(A = a I B = b)
p(B = b) . p(A = a) p(A)
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Similarly, if we know A ...L C I B, we have:

lift(B = b, C = c -+ A = a) = p(A = a I B = b, C = c)
p(A)

p(A = a I B = b)
p(A)

= lift(B = b -+ A = a)
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Since the above equation applies to all values of A, B, C, we can safely remove the

antecedent attribute set {B, C} if the antecedent attribute set {B} already exists. We call

set {B, C} a derivable candidate.

Definition 4.6 (derivable candidate) Given a set of descriptive attributes S in database

D and a consequence attribute A, a derivable candidate Cd is a set of descriptive attributes

defined as C« ~ S - A such that 3x E C«, X ...L A I T where T ~ (Cd - x).

Definition 4.7 (generating candidate) Given a set of descriptive attributes S in data­

base D and a consequence attribute A, a generating candidate Cd is a set of descriptive

attributes defined as Cd ~ S - A such that 3x E Cd, VT ~ (Cd - x), x ...L A I T does not

hold.

Our goal is to remove derivable candidates from the complete candidate sets. The

difference between the complete candidate set and the derivable candidate set is called

the generating candidate set. Detecting derivable candidates involves checking whether

x ...L A I T where x is an element in set Cd and T is a subset of Cd. As introduced in section

3.3, the Bayes-Ball algorithm is efficient for determining whether a conditional independence

statement, XA ...L X B I Xc is true, where XA, XB and Xc are any possible disjoint sets of

nodes in the network.

4.4 PRM-Based Association Rule Miner: PARM Algorithm

In this section, we introduce our PRM-Based Association Rule Miner (PARM) for generating

the non-redundant single consequence association rule set. The PARM algorithm consists

of three phases: the candidate generation phase, the rule generation phase and the rule

pruning phase. The candidate generation phase first finds a set of generating candidates
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by removing the derivable candidates from the complete candidate sets. An advantage of

this step is to avoid generating candidates that lead to rules omitted by the non-redundant

rule set. The rule generation phase then proceeds to evaluate the generating candidates

selected in the candidate generation phase. More precisely, it calculates the confidences for

all the rules that can be derived from the given candidate, and then reports rules whose

confidence is greater than or equal to minimum confidence. As the last step, the rule pruning

phase removes the redundant rules. Please note that in this section, the term "node" and

"attribute" are used interchangeably.

The PARM algorithm enumerates all the subsets of the antecedent attribute set, where

each subset is called an antecedent candidate. For each candidate, the PARM algorithm

tests whether it is a derivable candidate or a generating candidate. The derivable candidates

are discarded in the candidate generation step, and the generating candidates are kept for

further evaluation. We want to remove as many derivable candidates as possible during the

candidate generation phase. Recall that a derivable candidate must contain a node that is

independent of the consequence node conditionally on an existing candidate. This means

that the candidates tested earlier should "d-separate" as many other nodes as possible from

the consequence node A. Based on the definition of "d-separation", only nodes that are in

the path of any node An to A can "d-separate" An from A. Therefore, candidates consisting

of closer nodes from A should be tested before the candidates consisting of farther nodes.

First, we calculate d(Ai, A) for each node Ai (excluding the consequence node A) in the

graph, where d(Ai, A) is defined as the length of the shortest path from Ai to A. Then all the

nodes are sorted in increasing order of d(Ai, A). An enumeration tree is then constructed.

Figure 4.2 illustrates the complete candidate enumeration tree for antecedent attribute set

{AI, A2 , A3 , A4 } , where AI, A2 , ... , A4 are sorted in increasing order of d(Ai, A).

PARM is a level-wise algorithm, which starts by considering all the candidates consisting

of one attribute, then proceeds by considering all the candidates consisting of two attributes,

and so on, until all the candidates have been processed. Any candidate in the enumeration

tree satisfies the following conditions.

• The candidate has one more attribute Ai than its parent candidate.

• Ai has a larger distance from A than any attributes of the parent candidate.

• All the subsets of the candidate are in the previous levels.
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Figure 4.2: A candidate enumeration tree example

This processing order guarantees that the candidates consisting of closer (to the target

node) nodes have been processed before farther nodes, which implies that the existing

candidate is more likely to "d-separate" the newly added attribute Ai from A. It also

ensures that the candidates generated at later iterations cannot be subsets of the candidates

generated previously.

As illustrated in Algorithm 2, PARM performs the following operations at each level.

• The Candidate-gen method discovers a set of generating candidates.

• The Rule-gen method calculates the Local Confidence Table (LCT) for each generating

candidate, and outputs the rules such that the confidence of each rule is great than or

equal to minconf.

• The Rule-pruning method removes the rules omitted by the non-redundant rule set.

For each rule generated at this level, if a more general rule with the same or higher

confidence has already been discovered, then the new rule will be removed from the

resulting rule set.

The Candidate-gen method, the Rule-gen method and the Rule-pruning method are ex­

plained in detail in Section 4.4.1, Section 4.4.2 and 4.4.3 respectively.

4.4.1 Candidate Generation

The Candidate-gen method works as follows. For each candidate X n in level n, let N

denote the additional node that is added to its parent Parent(Xn ) . We test whether N .L
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Input: A relational database D, PRM G, minimum confidence threshold minconf, conse­
quence attribute A.

Output: A set of non-redundant rules R with confidence that is greater than or equal to
minconf

1: Initialize R f-- 0
2: Let d(Ai, A) be the length of the shortest path from node Ai to A in G, find the d(Ai, A),

for every Ai where Ai E Vertices(G) and Ai =I=- A
3: Sort all nodes in 8 in increasing order of d(Ai, A)
4: Construct the candidate enumeration tree
5: Initialize n = 1
6: Co f-- 0
7: for each level in the enumeration tree do
8: P f-- all the candidates at level n
9: Cn f-- Candidate-gen(P, A)

10: Rn f-- Rule-gen(Cn , A)
11: Nn f-- Rule-pruning'(Ji.,, R)
12: R f-- R u »;
13: n f-- n + 1
14: end for
15: return R

A I Parent(Xn ) . If N is independent from A given Parent(Xn ) , then the X n is a derivable

candidate. Otherwise, X n is a generating candidate. The generating candidates will be

passed to the Rule-gen method and the derivable candidates are discarded.

The method illustrated above implies an exhaustive testing over all the possible candi­

dates, i.e. all subsets of the antecedent attribute set. Figure 4.3 shows two examples of the

following cases, which demonstrates that an exhaustive testing is necessary.

• A3 ..l A I Al does not guarantee that A3 ..1 A I {AI, A 2 } is true. Therefore, although

{AI, A3} is a derivable candidate, testing {AI, A 2 , A3} is still necessary.

• A 2 ..1 A I Al does not guarantee that A3 ..l A I {A I,A2 } is true. Therefore, although

{AI, A 2 } is a derivable candidate, testing {AI, A 2 , A3} is necessary as well.

The algorithm of the Candidate-gen method is illustrated in Algorithm 3. The pruning

step is achieved in line 4. If the new node is independent of the consequence node A

given Parent(Xn ) , then X n is not included in the generating candidate set. We can safely

prune this candidate because of the following reasons. First, Parent(Xn ) has been tested in
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Figure 4.3: Examples where exhaustive testing is necessary

the last iteration. Either Parent(Xn ) or a subset of Parent(Xn ) has been included in the

generating candidate set. Second, given that Parent(Xn ) or a subset of Parent(Xn ) already

exists, the knowledge of attribute N would not help to predict the behavior of attribute A.

Algorithm 3 Candidate-gen(P, A)

Input: A set of candidates at level ti S and the consequence attribute A.
Output: A set of generating candidates for the consequence node A at level n,

1: initialize Cn +-- (/)

2: for each candidate X n in S do
3: N +-- X n - Parent(Xn )

4: if N is not independent of A given Parent(Xn ) then
5: C« +-- c; U X n

6: end if
7: end for
8: return C;

We will use the university database as a running example to illustrate the work flow of

the Candidate-gen method. The PRM dependency graph of our university domain is shown

in Figure 4.4.

Suppose that our consequence attribute is Ranking and the candidate node set S is

{Grade, Intelligence, Satisfaction, Difficulty, Rating, Teaching-Ability, Popularity}. S is

sorted by the increasing order of deN, A). At the first level, we check all the candidates

consisting of a single attribute in increasing order of d(Ai • A). For example, Grade will be
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Course Student

Figure 4.4: The PRM structure of university domain

checked first because it is the closest node, then Intelligence (the next closest node), until

all the candidates consisting of a single attribute are processed.

In the next iteration, we will consider all the candidates consisting of two attributes. The

child of the candidate {Grade} is {Grade, Intelligence}. The Candidate-gen checks whether

Intelligence is independent of Ranking given Grade. If true, {Intelligence, Grade} is a

derivable candidate. Otherwise, {Intelligence, Grade} is a generating candidate. The next

candidate to be checked is {Grade, Satisfaction}, and so on, until all the candidates at the

second level of the enumeration tree have been processed.

Given that there are seven nodes in the university example, if no pruning step is carried

out, the number of candidates would have been 27 = 128. At the end of the Candidate-gen

execution, the number of generating candidates is reduced to 28. Instead of the original 128

candidates, now only 28 candidates need to be evaluated by the Rule-gen method. In addi­

tion, the Candidate-gen method favors candidates of smaller size, and discards candidates of

larger size. Considering that evaluating a candidate involves checking all the combinations

of the (attribute, value) pairs, a larger set would generate more attribute value combinations

to be tested in the rule generation phase. The computational effort is further reduced by

pruning candidates of larger size.

The candidate generation method tests all the combinations of the nodes in the graph.

The total number of generating candidates increases exponentially with the number of nodes

to be processed. We can also reduce the number of generating candidates by limiting the
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number of candidate nodes. One meaningful and condensed candidate node set is the Markov

blanket of the consequence node. The Markov blanket of a node is interesting because it

identifies all the nodes that shield off the node from the rest of the network. This means that

the Markov blanket of a node is the only knowledge that is needed to predict the behavior

of the consequence node.

Definition 4.8 (Markov Blanket) A Markov blanket of a node A is a minimal set of

nodes MB(A) such that A is conditionally independent of any other node B given MB(A).

The Markov blanket for node A in the directed acyclic graph is defined as:

M B(A) = parent(A) U child(A) U {w : child(w) n child(A) =I- 0}

Essentially, the Markov blanket of A encompasses A's parents, children, and the parents

of A's children but not A itself. From the definition of Markov Blanket, we know that

all the nodes in MB(A) must have a greater impact on the value of consequence node A.

So, instead of considering all the nodes in the graph, we can only consider those that are

inside M B(A), thus reducing the search space and the number of generating candidates.

Our second method of candidate generation is to discover all the candidates in the form

of X -----+ A, such that X is a subset of M B(A). The Markov-Candidate-gen algorithm is

illustrated in Algorithm 4.

Algorithm 4 Markov-Candidate-gen(A)

Input: A PRM G, the consequence node A.
Output: The power set of MB(A) C.

1: Find M B(A)
2: for every Y ~ M B(A) do
3: C -----+ CU {Y}
4: end for
5: return C

We simply treat the powerset of the MB(A) as the candidate set. This method allows

us to evaluate fewer candidates than the PARM approach. An obvious weakness of the

Markov-Candidate-gen is its incapability to discover all the high confidence rules. M B(A)

shields off the node A from all the rest nodes in the network. But if any node from M B(A) is

missing, then the incomplete M B(A) can not shield the node A from the rest of the network.
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In this case, a node outside M B(A) may be dependent on A. For example, M B(Ranking)

only contains one node Grade in the university domain. If the value of Grade is known,

any other node is independent with Ranking. However, if the value of Grade is unknown,

then Ranking may depend on the other nodes in the network, such as Course. Difficulty or

Student. Intelligence.

The choice of the Markov-Candidate-gen method and the Candidate-gen method ulti­

mately depends on the user's preference. If the dataset is large and the user prefers to find

top rules efficiently, then the Markov approach is recommended. On the other hand, if the

user is interested in finding all the high confidence rules, then the Candidate-gen method

should be a better choice.

We can also utilize the Markov blanket to speed up the discovery of all generating

candidates in candidate generation phase. When checking whether node N and A are

independent given a set of nodes X, if X is a superset of the M B(A), then we can assert that

N is conditionally independent of A without running the Bayes-ball algorithm. Therefore,

the candidate-gen method only needs to run the Bayes-Ball algorithm 2n - 2n - m times,

where n is the total number of nodes and m is the number of nodes in M B(A). In our

university example, the M B(ranking) contains only one node, namely Grade. For every

candidate which is a superset of {Grade}, we can safely discard it without running the

Bayes-Ball algorithm.

4.4.2 Rule Generation

A generating candidate discovered from the candidate generation phase is a antecedent

attribute set that the consequence attribute may depend on. In the rule generation phase,

our goal is to find the corresponding value of each attribute for a generating candidate.

We need to calculate the local confidence tables (LCT) for the consequence attribute A by

querying the database.

Definition 4.9 (Local Confidence Table) Given a candidate (attribute set) X and the

consequence node A, the Local Confidence Table defines the distribution over the node A

given each combination of the candidate values: P(A I X).

The definition of LCT is similar to the conditional probability distribution (CPT) defined

in the bayesian network. In a bayesian network, each node is associated with one CPT

specifying the conditional probability of this node given its parents. In our case, each node
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is associated with a number of generating candidates, and each generating candidate has

its own LCT specifying the conditional probability of the node given the candidate. In the

association rule context, the LCT of a given candidate is actually a collection of confidences

of the rule X = x --+ A = a over the combination of antecedent attribute values.

Suppose we have the LCT for the node Grade given the candidate Student. intelligence

as follows:

Table 4.1: LCT of the generating candidate {intelligence}
Intelligence P(Grade = AlI) P(Grade = BII) P(Grade = GII)

H 4/6 2/6 0
M 1/4 2/4 1/4
L 1/7 1/7 5/7

Since the intelligence node and the grade node are in two different tables, we need

to define the conditional probability P(Gradellntelligence) first. If two attributes are

dependent upon each other and they are in two different tables, then there must be a

foreign key chain connecting these two tables. To compute the LCT of the candidate

{student. intelligence}, we simply need to execute a foreign-key join of the table Registration

and the table Student. The size of the joined table is exactly the size of Registration table

based on referential integrity. Then we use "count" and "group by" queries to get the

statistics in the LCT.

The support and confidence of the rule Intelligence = i --+ Grade = g is formulated

using relational algebra notations, where (J denotes a select operation and [X] denotes a

natural join operation.

supp(R.Grade = g, 5.Intelligence = i) =
I(JR.Grade=g,S.Intelligence=iR [X] 51

IR [X] 51
I(JR.Grade=g,S.Intelligence=iR [X] 51

IRI

I(JS.lntelligence=iR [X] 51
supp(5.Intelligence = i) = IRI
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conf(S.Intelligence = i ---. R.Grade = g) = P(R.Grade = glS.Intelligence = i)

IcrR.Grade=g,S.Intelligence=iR [XJ 51
IcrS.Intelligence=iR [XJ 51

51

The relational algebra notations for calculating the confidence values can be easily trans­

lated into SQL queries. For example, the confidence calculation for the rule 5.Intelligence =

i ---. R.Grade = 9 consists of three steps. The first step is to join related tables. The second

step is to query the support of 5.Intelligence = i and 5.Intelligence = i 1\ R.Grade =

g. The third step is to calculate the confidence based on the support values obtained

from the second step. The SQL statement for querying the support of SIntelligence =

i 1\ R.Grade = 9 is as follows:

SELECT COUNT (*)

FROM Registration R, Student S

WHERE RstudentID = S.ID

AND RGrade = g

AND S.Intelligence =i

We can also speed up the calculation of LCT by using "count" and "group by" operators

in the query. For example, we can obtain the count of all the attribute value combinations

for the example candidate {5.Intelligence} by executing the following SQL query:

SELECT S.Intelligence, R.Grade, COUNT (*)

FROM Registration R, Student S

WHERE RstudentID = S.ID

GROUP BY S.Intelligence, R.Grade

This query will return the count information for all the value combinations of 5.Intelligence

and R.Grade (Table 4.2), from which we can easily calculate all the entries in the LCT of

candidate {5.Intelligence} (Table 4.1).
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Table 4.2: Query Result
R.Grade S.Intelligence count

1 A High 4
2 B High 2
3 A Middle 1
4 B Middle 2
5 C Middle 1
6 A Low 1
7 B Low 1
8 C Low 5

52

From the LCT specified in Table 4.1, the Rule-gen method reports the following rules if

the minCan! is set to 50%.

S.Intelligence = high --* R.Grade = A

S.Intelligence = middle --* R.Grade = B

The detailed algorithm of Rule-gen is illustrated in Algorithm 5.

Algorithm 5 Rule-gen(C, A)

Input: A set of generating candidates C, the consequence attribute A.
Output: The rule set R that satisfies the minCan! with the consequence attribute A.

1: Initialize R +-- 0
2: for each candidate c E C do
3: Compute the LCT of P(AIX)
4: for all (x, a) such that P(A = alX = x) 2': minConf do
5: r +-- X = x --* A = a
6: R +-- RU {r}
7: end for
8: end for
9: return R

4.4.3 Rule Pruning

In this section, we describe the rule pruning method that removes redundant rules generated

in the rule generation phase. In the candidate generation phase, a set of derivable candidates

that lead to the generation of redundant rules have been discarded from our candidate set.

However, the rules derived from the generating candidates may still contain the rules that
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should be ignored by the non-redundant rule set. Assuming the consequence attribute is

S.Ranking, both {S.lntelligence} and {S.lntelligence, C.Dif ficulty} are the generating

candidates because S.lntellegence cannot "d-separate" C.Difficulty and S.Ranking. Thus,

we have the two following rules:

R 1 : S.lntelligence = Low ---+ S.Ranking = Low confidence = 0.6

R2: S.lntelligence = Low, C.Dif ficulty = Low ---+ S.Ranking = Low confidence = 0.5

If R 1 is known, then R 2 should be removed because there exists a more general rule R 1 in

the resulting rule set. The detailed algorithm of Rule-pruning is illustrated in Algorithm 6.

Algorithm 6 Rule-pruningfE., R)

Input: A rule set generated by the Rule.gen at level i Ri, a non-redundant rule set gener­
ated so far R.

Output: The non-redundant rule set N i .

for each r E R; do
if 3r/ E R such that rt C rand conf(r/) 2:: conf(r) then

remove r from R;
end if

end for
N, f- R;
return Ni

We check the redundancy of a given rule based on an obvious observation: if rule rt is

more general than rule r , then the antecedent attribute set of rt must be a subset of the

antecedent attribute set of r. Therefore, the pruning proceeds as follows. First, we find the

corresponding antecedent attribute set C of r, and then we iterate through all the generating

candidates that have been evaluated so far. If generating candidate C/ is a subset of C, then

we look up the confidence of the rule with the same attribute values as r in the associated

LCT of C/o If the confidence is greater than or equal to that of r, then r is removed. In

order to improve the efficiency of this procedure, the hash table data structure is used for

storing both the candidate set and the LCTs, which facilitates fast searching for the subsets

of a given candidate and the confidence value for a specific rule.

Assuming that the PRM dependency structure accurately models the dependency re­

lationships between the descriptive attributes for a given database, we claim that PARM

generates the non-redundant association rule set correctly. We prove our claim based on
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the definition of the non-redundant association rule set.

Firstly, we need to show that the generated rule set is a subset of the complete association

rule set and satisfies the minconf constraint. This is trivial because the rule generation

phase computes the confidence of each rule and only reports rules with confidence greater

than or equal to the minconf. Also, the rule set generated by PARM must be a subset of

the complete rule set.

Secondly, we need to show that for every rule pruned by PARM, there exists a more

general rule in the resulting rule set. In the candidate generation phase, we enumerate all

the possible attribute combinations as our candidates. All the attribute value combinations

for a given attribute set are also enumerated in the rule generation phase. This guarantees

that all possible patterns defined by our pattern language have been considered by PARM.

Now let us consider rules pruned by PARM. The candidate generation phase prunes a set

of derivable candidates based on the conditional independence relationships encoded in the

PRM dependency structure. From our analysis in Section 4.3, all the rules derived from a

derivable candidate can be safely pruned because the confidence of such a rule equals the

confidence of a rule derived from a generating candidate. This condition also holds for rules

pruned by the rule pruning phase, because a rule is pruned only when PARM finds a more

general rule from the existing rule set.

Thirdly, we need to show that for every rule r in the rule set R generated by PARM,

there does not exist a rule rt in R such that rf is more general than r . When the rule pruning

phase checks the validity of rule r, if there exists a more general rule in the existing rule set,

then rule r is pruned from R. Therefore, it is guaranteed that no rule is more general than

r in the rule set that is generated before r. Also, all the rules generated at later iterations

cannot be more general than r because the candidates generated at later iterations cannot

be a subset of the antecedent attribute set of r . This proves that for every rule r in R, there

does not exist a rule that is more general than r .

In summary, PARM generates the non-redundant rule set correctly.



Chapter 5

Implementation and Experiments

To test the PARM algorithm, we implemented it in Java 1.4.2.07 under Microsoft Windows

XP Professional Edition and ran it on a PC with an Intel Pentium 4, 1.4GHz CPU, 1GB

main memory and a 20GB hard disk. We used the well known financial database from

Discovery Challenge at PKDD'99 [1] as our dataset. A high level overview of the system

architecture is shown in Figure 5.1.

MS200SDBMS Rule_Generator

Candidate_Generator

Figure 5.1: PARM System Architecture
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The financial database comes from real world data generated and used by a Czech bank. It

has 5369 clients and 4500 accounts. The data is stored in 8 tables as described below.

• The loan table describes a loan granted to a given account.

• The account table describes the static characteristics of an account.

• The client table describes the characteristics of a client.

• The disposition table relates a client to an account.

• The order table describes the characteristics of a payment order.

• The transaction table describes one transaction on an account.

• The credit card table describes a credit card issued to an account.

• The demographic data describes the demographic characteristics of a district.

For the purpose of validating our algorithm, only portions of the data will be used. One

of the problems we would like to solve is to indicate whether or not the loan is successful

before it is created. The data shows that about 11 percent of loans are unsuccessful. Here

an unsuccessful loan means that either the loan was not paid when the contract was finished,

or the client was in debt. Thus we choose the attribute "status" in the Loan table as one of

our consequence attribute. This status attribute describes the payment status of the loan.

The domain of status consists 4 values: 'A', 'B', 'C' and 'D'.

• Value A stands for a contract that was finished without any problems.

• Value B stands for a contract that was finished, but the loan was not paid.

• Value C stands for a running contract, OK so far.

• Value D stands for a running contract with a client in debt.

Another consequence attribute chosen for our experiment is the loan. amount. This

attribute describes the total loan amount applied for by the client. The numerical values of

this attribute are discretized into 3 categorical values: S; 80000, 80000-160000 and 2 160000.
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During the preliminary investigation of our original financial database, some interesting

features were found. These features will help us to better understand the dataset so as to

make appropriate decisions at the pre-processing step.

• Each client can access only one accousit.Id while one account can be associated with

one or two clients.

• If two clients share the same account, then one of them has the owner right to the

account while the other has user privileges.

• There is at most one credit card issued for each account.

• There are a total of 682 loan contracts issued. 30% of them with the status value

'A' (loan finished without problem), 59% with the status 'C'(in progress, running OK),

4.5% with the status 'B' (loan contract finished, but loan not paid), 6.5% of them with

status 'D' (in progress, but client is in debt).

The features listed above were obtained by querying the preliminary database using

some simple SQL queries.

5.1.2 Attributes Selection

As not all the data in the databases are related to our mining task, in this step we select

task related data from the original data source. The main task is to select task related

tables and attributes. We pre-calculate some monthly-based attributes from the existing

attributes. The following existing attributes, that may affect the value of loan. status, are

selected: loon.loosi.id, loan.accounLid, loan.amount, client.clienLid, client.clientType,

card.card.id, card.cardType. In addition, four new attributes are computed based on the

original data (see Figure 5.2 for the schema):

• client.age is derived from client.birth.riumber,

• client.accounLid is obtained by joining the client and the disposition table. Since

each client can access only one account, no potential information loss would be caused

by joining these two tables.
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Figure 5.2: The schema of post-processed financial database

• Two new attributes were introduced for each account: account.monthlu.deposit de­

scribes the average monthly deposit amount in 1998. This attribute is computed by

aggregating the transaction.amount for this account with the transaction type 'de­

posit' within year 1998. account. trumihlu.balance is the difference between the aver­

age monthly deposit and average monthly withdrawal. A negative monihlubalomce

value indicates more withdrawals than deposits on a monthly basis.

5.1.3 Data Discretization

PARM algorithm is designed to handle nominal data only. This entails pre-processing all the

numerical attributes into categorical equivalents based on fixed numeric thresholds (global

discretization). Two commonly used global discretization methods include Equal Width

Discretization (EWD) and Equal Frequency Discretization (EFD). EWD divides the number

of values into k intervals of equal width and EFD divides the sorted values into k intervals so

that each interval contains approximately the same number of values. Although these two

methods may be deemed simplistic, they are commonly used in practice. In our experiment

we use the EFD method to transform the continuous values of account.monthlu.deposit;

account.motithlubalomce, client.age and loan.amount into categorical values.

5.1.4 PRM Structure

The input of the PARM algorithm contains the PRM structure of the target database. In

order to experiment with PARM on the Financial database, we extend the Bayesian network
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implementation BNJ1 for implementing a PRM structure trainer. Our implementation is

based on OpenJGraph which is a commonly used open source Java package for graphs",

The execution time of training the PRM is around 3 seconds for the financial database,

which is ignorable in comparison with the execution time of PARM. The resulting PRM

structure graph is illustrated in Figure 5.3

I - - - - - - - - - - - - - - - - - - - - - - -I

I I
I I
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I
I
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---r- --_
, I

,
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I

I
I

I,
I

credit-card

Figure 5.3: PRM structure of financial database

5.2 Experiments

We performed a number of experiments on the Financial database. Although this is a well

known data set and a few analyses have been conducted on this data set [5] [20] [15], few

results were comparable with ours due to the different rule format or different preprocessing

strategy. Rather, we will show PARM's performance under various conditions. Apart from

experimental comparison choices, an efficient implementation is needed in order to achieve

better performance and result quality. The following decisions have been made in our

implementation.

• Attributes with numeric values need to be discretized beforehand. We chose to use

the EFD method to divide a range of continuous value into several intervals. A large

number of intervals would generate a large number of candidates. Too many candidates

1 Bayesian Network tools in Java, http://bnj.sourceforge.net/

2http://bnj.sourceforge.net
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in turn would result in a performance degradation and many similar patterns, which

would only differ slightly in a single attribute. Therefore, we chose to use 3-6 intervals

for numeric attributes.

• Two consequence attributes were chosen in our experiments. One is loan.status and

the other is loan.amount. In addition, we performed two separate sets of experiments

on the loan status test. One is for successful loans which contain two target values

(loan.status = A and loan.status = C), and the other is for unsuccessful loans, which

contain target values Band D. This decision was rooted from our initial investigation

of existing data. Among 682 loan cases, only 11% were unsuccessful and 89% were

successful. As the percentage of successful loans is approximately 9 times larger than

that of the unsuccessful loans, a uniform confidence threshold will leave out many

interesting rules of unsuccessful loans. In our experiment, two different threshold

values were set: one for successful loan rules and the other for unsuccessful loan rule.

The minimum confidence for successful loan rules is 0.5 and the minimum confidence

for unsuccessful loan rules is 0.1 .

• Confidence and lift are two rule measures supported by PARM:

confidence(A -t B) = P(A IB)
. (A ) P(AB)lift -t B = P(A).P(B)

5.2.1 Experimental Results

We performed three sets of experimental evaluations on the financial datasets. Each tar­

gets one of the successful loans, the unsuccessful loans, and the loan amount. To show

the improved performance of PARM, we compare PARM with a Non-Pruning PARM algo­

rithm (NP-PARM). The Non-Pruning PARM simulates an association rule mining algorithm

which does not perform PRM-based candidate pruning (i.e. assuming the PRM structure

is a complete graph of all the descriptive attributes in the database). We also compare

our Markov Blanket-based algorithm (MB) with PARM and NP-PARM for performance

evaluation. Table 5.1, Table 5.2 and Table 5.3 depict the summary of our test results under

two interestingness measures (confidence and lift) for successful loans, unsuccessful loans

and loan amounts, respectively. In these tables, Minimum Score refers to the user-defined

threshold for rules to be reported. Best Score is the score of the best rule. Number of

rules refers to the number of rules generated. This number depends on the user-defined
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minimum score. The tables additionally indicate the number of candidates (attribute set)

to be evaluated. Finally, the running time in seconds is given.

Table 5 I: Financial database result on successful loans..
confidence lift

NP-PARM PARM MB NP-PARM PARM MB
best score 1 1 1 3.36 3.36 2.83
minimum score 0.5 0.5 0.5 1.5 1.5 1.5
number of rules 942 313 51 374 170 19
number of candidates 63

I

42

I

7 63

I

42 7
Iexecution time 473 137 8 472 158 11

Table 5 2' Financial database result on unsuccessful loans.---- ..
confidence lift

NP-PARM PARM MB NP-PARM PARM MB
best score 1 1 1 28.33 28.33 18.88
minimum score 0.1 0.1 0.1 1.5 1.5 1.5
number of rules 219 126 10 349 242 19
number of candidates 63 42 7 63 42 7
execution time 433 69 7 432 70 11

Table 53· Financial database result on loan amount
confidence lift ~

NP-PARM PARM MB NP-PARM PARM MB
best score 1 1 1 3.55 3.55 3.33
minimum score 0.5 0.5 0.5 1.5 1.5 1.5
number of rules 775 307 101 707 350 92
number of candidates I 63 43 15 63 43 15 I

execution time I 789 136 30 745 199 30 i

The results show that PARM achieved about a 40% reduction in the number of can­

didates, a 60% reduction in the number of rules and 70% reduction in the execution time

compared with NP-PARM . The improved efficiency is due to the fact that PARM gener­

ates fewer candidates and accesses the database fewer times. Further more, the reduction

in the execution time is much larger than the reduction in the number of candidates to be

tested. This is because PARM avoids generating many long candidates which would take

more time to evaluate. Assuming that each attribute has m distinct values on average, and
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the cardinality of a candidate is n, then the number of rule hypotheses to be tested for this

candidate is m", Therefore, the number of rule hypotheses is exponential in the cardinality

of the candidate. All the derivable candidates (omitted by PARM) for the loan status are

listed in Table 5.4, We can see that the cardinalities of the derivable candidates in general

are quite large considering that the maximum cardinality of a candidate in the financial

database is 6.

The MB-based algorithm generates only 24% and 35% of candidates compared with

NP-PARM and PARM, respectively. Hence the execution time and the number of rules are

only a small fraction of what is generated by the PARM family. But the rule set discovered

by MB is only a subset of the rule set discovered by the PARM family and the completeness

power is lost.

We perform another set of experiments to show the impact of the minimum confidence

threshold on the size of rule sets and the performance. Figure 5.4 shows the sizes of rule

sets generated by MB, PARM and NP-PARM for successful loans under different minimum

confidence settings. The size difference between the PARM rule set and the NP-PARM

rule set becomes more prominent as the minimum confidence decreases. This is because the

length of rules becomes longer when the minimum confidence decreases, and longer rules

are likely to be omitted by PARM algorithm than shorter rules. The same comparisons are

conducted on the unsuccessful loans and loan amounts. The results are shown in Figure 5.5

and Figure 5.6, respectively.
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Figure 5.4: The comparison of sizes of rule sets for successful loans
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Figure 5.6: T he com parison of sizes of rule sets for loan amo unt

Fi gure 5.7 shows th e executio n t ime comp ar ison (in seconds) for suc cessful loans. As

expected , there is no significant pe rformance difference amo ng various minimu m confidence

settings. This is because our perform ance imp rovement is achieved by the ca nd idate pruni ng.

'When the numbe r of candidates is fixed, different mini mum confidence th reshol ds would

not cause significant change in performance . T he same comparison for bad loan s and loan

amounts are shown in Figure 5.8 an d F igure 5.9.
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Figure 5.7: The comparison of execu tion t ime for successful loans
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5.2.2 Support Distribution Analysis

Apri ori-based assoc iation rule mining approaches use a uniform minimum support and mini ­

mum confidence during th e min ing process. This app roach may miss those rules involves the

minority class , which may be the class that we are int erested in . In the financia l database,

the rule set with respect to the unsuccessful loans is a good example of this case. In order to

find the low coverage rules, the Apriori-based algorit hms have to set the minimu m support

very low, which may cause performance degrad ation. To illustrate this problem , we output

both the support and t he confidence of each rul e for successful loans generated by PARM.

Figure 5.10 shows th e support and confide nce dist ribu t ions for th e 313 discovered rules.

• confidence

- -- support

•

••
'I II
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rules

Figure 5.10: The supp ort and confid ence dist ribution for successful loan rules

T he x-axis in Fig ure 5.10 represents the rule index and th e y-axis repr esents the sup port

and confidence values. All th e rules are sorted by th eir support values. From th e res ult

shown above , we observed a skewed support distri bution of th e discovered rules. 313 rules

in total were discovered by PARM when the minimum confidence was set to 50%. Among

th e 313 discovered rules, the support valu es ranged from 0.1209% to 49.4%. 43% of the

rules had support less th an 1% and approximately 90% of the rules had support less th an

10%. If we set the minimum support to 10%, then 90% of the high confid ence rules would

be undiscovered. T he skewed support distribution also makes choosing a proper minimum

support threshold more challenging.
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Another interesting observation is that the lower support rules tend to have higher

confidence values whereas the higher support rules tend to have lower confidence values. A

closer investigation shows that most of the high confidence rules are longer rules. Longer

rules usually have lower supports due to the multiple rounds of the refinement. In this case,

an improper minimum support threshold would not only miss rules exceeding the confidence

threshold, but also would miss rules with top confidences.

5.2.3 Conceptual Comparison with Safarii

Safarii is a Data Mining package which provides an implementation of multi-relational rule

discovery. Interestingly, Safarii also finds rules with a previously specified consequence

without minimum support requirement, and it is used to perform a number of experiments

on the same financial database for loan prediction. However, a quantitative comparison with

Safarii is not possible because of two reasons. First, as we introduced in Chapter 2, Safarii

uses selection graphs as its pattern language, which is different from our pattern language.

Different pattern languages may discover different sets of patterns. Second, PARM and

Safari pre-process the dataset differently and their pre-processing methods are not available

to us. Rather, we list the relevant experimental results produced by Safarii and compare

PARM to Safarii conceptually.

The basic algorithm of Safarii works as follows. It continues considering candidate rules

in the order specified by the search strategy with the guide of the selection graph until all

available candidates have been exhausted. The efficiency is achieved by using a Client/Server

architecture to separate the search process and the candidate evaluation process through

data mining primitives. "Data mining primitives are data structures of statistical informa­

tion concerning some aspects of the contents of the database." [15]. Safarii implements a set

of predefined primitives and the candidate evaluation is only through the use of primitives

instead of the direct access to the database. One primitive can provide statistical informa­

tion for evaluating multiple patterns, thus optimizing the database accessing time. PARM,

on the other hand, focuses on pruning candidates algorithmically. Efficiency is achieved by

eliminating derivable candidates based on the conditional independence relationships among

the attributes.

Table 5.5 and Table 5.6 are the result summary of Safarii from [15]. The results were

produced with a refinement-depth of 5 and the best-first search strategy. Since Safarii system

does not perform candidate pruning, a large number of hypotheses need to be tested. As
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Table 5.5: Financial database result on successful loans (Safarii)
confidence leverage

best score 0.989 0.0375
minimum score 0.889 0.02
number of rules 511 164
number of primitives 2001 2043
number of hypotheses 113236 173604
execution time 786 918

Table 5.6: Financial database result on unsuccessful loans (Safarii)
confidence leverage

best score 0.176 0.0219
minimum score 0.111 0.02
number of rules 489 8
number of primitives 1776 1897
number of hypotheses 114122 135771
execution time 1454 1844

69

shown in the results above, an average of above 120,000 hypotheses are generated in one test

run. Another weakness of Safarii is the lack of redundant rule checking and eliminating step,

so it tends to report interesting patterns in multiple copies. "Thus far the rules discovered

have been treated as an independent rule set, with the disadvantage of having many similar

rules" [15]. Multiple copies of logically equivalent rules require another post-pruning phase

for redundancy elimination.

5.2.4 A Sample Run

In this section, we show PARM at work for the unsuccessful loan example used throughout

this chapter. The PRM structure is presented in Figure 5.3 and the confidence threshold

is set to 10%. Given these inputs, PARM reports 126 rules in total. Assuming that all

attributes in the database can be uniquely identified without using table names, Table 5.7

lists the top 28 rules with confidence above 25%. The attribute names in the list are

explained below:
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• age: is the age of the client, and the value domain is {20 - 40,40 - 60, > 60}.

70

• amount: is the total loan amount the client applies for, and the value domain is

{< 80000,80000 - 160000, > 160000}.

• clientType: is the type of the client, and the value domain is {owner, user}.

• balance: is the abbreviation of monihlsj.balance, which stands for the difference be­

tween average monthly deposit and average monthly withdrawal of each account, and

the value domain is {< -600, -600 - 0,0 - 900, > 900 }.

• cardType: is the credit card type, and the value domain is {junior, classic, gold}

• deposit: is the abbreviation of monihlii.deposii, which stands for the average monthly

deposit amount of an account, and the value domain is {O -7000, 7000 - 20000,20000­

82000}.

We can interpret the first rule as follows. If a client is older than 60, has a loan with an

amount of more than 160000, has an average monthly balance between 0 and 900, and has

an average monthly deposit between 7000 and 20000, then his loan contract was finished

with loan not fully paid. The second rule says: if a client has a loan with an amount of

more than 160000, and his average monthly deposit is between 0 and 7000, then his loan

contract is still running, but the client is in debt. From these two sample rules, we can see

that the discovered rules are very useful and can provide guidance of risk analysis for future

loan applications.
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Chapter 6

Conclusion

In this chapter, we conclude the thesis with an overall review and a general discussion on

future works.

6.1 Summary

In this thesis, we focused on the association rule discovery in the context of relational

database perspective of data mining. We started by investigating current approaches for

discovering association rules from relational databases and revealed their limitations, such

as the problem associated with the minimum support requirement. We explored the in­

dependency relationship presented by the PRM structure and delved into the correlation

between the conditional independency and the confidence measure of the rules. Inspired by

our findings, we developed the PARM algorithm for discovering single consequence attribute

association rules from relational databases without a minimum support threshold. We con­

sider this approach to be an interesting alternative because for some applications, minimum

support is a constraint primarily required for the efficient computation purpose. The PARM

algorithm adopts the attribute-oriented pruning approach based on the PRM structure, in­

tegrates database operations with the learning processes, and provides an efficient way of

extracting non-redundant association rules.

The PARM algorithm is designed for learning single consequence attribute association

rules from relational databases. Fundamentally different from the minimum support driven

approach, the PARM algorithm prunes antecedent attribute sets based on the conditional
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independency relationships. We have defined a new candidate set, namely generating can­

didate set, which excluded all the derivable candidates from the candidates set. In addition,

a novel algorithm has been proposed to filter out the derivable candidates and create the

generating candidates at the candidate generation step. Only the generating candidates

need to be evaluated at the next step, thus saving the evaluation time for the derivable

rules. By eliminating the derivable candidates, the final rule set contains a smaller number

of more general and non-redundant rules. Our experimental results demonstrated that the

rule set generated by PARM is significantly smaller than that generated by the non-pruning

PARM, and the improved efficiency is the consequence of fewer candidates generated and

fewer database accesses required by PARM.

6.2 Future Works

PARM finds a set of rules with a single fixed consequence attribute. The format of the

discovered rule is similar to the rules from an associative rule-based classifier. In addition,

the associative classification approach evaluates a rule by its coverage and accuracy measure.

The coverage measurement of a rule R is the percentage of tuples that are covered by the

rule antecedent and the accuracy of a rule R is the percentage of correctly classified tuple

among all the tuples covered by the antecedent of the rule. In the context of association rule

mining, the accuracy of a rule is actually the confidence, and the coverage is the support.

As such, the output of the PARM algorithm is a perfect candidate as a rule base for the

associative classification method under multi-relational settings. The remaining problem is

how the rules generated by PARM should be analyzed and used for the associative classifier.

This can be one of the future works of this thesis.

Although the PARM algorithm can efficiently learn a set of association rules with pre­

defined consequence attribute based on the PRM structure, one major restriction inherited

from the probabilistic model is the domain type restriction. So far all the numerical values

have to be discretized in the preprocessing step before learning the PRM structure from

the database. Our approach uses the simple Equal-Depth discretization method at the

data preprocessing step. One possible improvement of dealing with the numerical attribute

value is to adaptively partition a numerical attribute into a set of disjoint intervals with a

suitable domain cardinality. For example, using the clustering technique for finding suitable

intervals. Another solution is to incorporate the Hybrid Bayesian networks [21] technique
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into our PRM structure learning step. Hybrid Bayesian network is an extension of the

traditional BN learning that can deal with both numerical and categorical data. Either of

the approaches mentioned above would be an interesting direction for future work.

The PARM algorithm requires at least one threshold of the interestingness measure (e.g.

minimum confidence or minimum lift). However, in our financial database experiment, two

different threshold values need to be set: one for successful loan rules and another one

for unsuccessful loan rules. This is because in general, the unsuccessful loan rules have

much lower confidence than the successful loan rules. It is clearly an obstacle for automatic

rule generation. Hence, further research on the interestingness measures under the multi­

relational setting and how to automatically choose the suitable thresholds remains a crucial

step for multi-relational interesting rules mining.

The PARM algorithm presented in this thesis is efficient due to the use of the attribute­

oriented pruning strategy. As an important source of efficiency is lost (the monotonic

property of the minimum support), the efficiency of the algorithm highly relies on the PRM

structure learned from the database. Specifically, the execution time of the PARM algorithm

grows exponentially relative to the number of edges in the PRM network. If the resulting

PRM structure contains many edges, the performance may not be satisfactory for industrial

sized databases. Hence, incorporating other techniques, (i.e. sampling, parallel techniques

or client-server architecture proposed by MRDM) into our current approach to speed up

rule mining process is another interesting topic for future works.

Although rule generation has been studied for many years, incorporating and adapting

current algorithms into the rich structured data mining is still a challenging problem and

will draw a lot more attention in the coming years. The algorithm proposed in this thesis is

an attempt to employ a wide spectrum of statistical analysis, machine learning and graph

theories to solve a typical problem in data mining: multi-relational rule discovery. The

problems outlined above suggest that more research needs to be conducted to find more

efficient and effective ways of generating meaningful patterns from relational databases.
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