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Abstract 

Next generation wireless communication protocols must provide for higher bandwidths, 

more suitable quality of services and the ability to accommodate more users. Orthogonal 

frequency division multiplexing (OFDM), as a broadband modulation technique, is one 

of the prime candidates for simultaneously reaching these goals. Whether, however, we 

achieve these promises fully or at least partially in practice depends on a sensible design of 

transceiver signal processing algorithms. One such class of algorithms that is of considerable 

importance is the process of accurate channel estimation. Another class of techniques, that 

has only recently been the subject of intense research, is the use of channel state information 

and feedback to improve various performance measures of wireless links. The objective of 

this thesis is to find ways of combining these subjects in the hopes of optimizing channel 

estimation in OFDM systems with feedback. To reach this goal we begin by presenting 

a brief background in conventional open-loop OFDM channel estimation. Next we derive 

a general mathematical model for OFDM channel estimation using non uniformly spaced 

pilots in the presence of feedback. The effort here will be to maximize the average signal-to- 

noise ratio at  the data frequencies while allowing for acceptable channel estimation errors. 

Our formulation leads to an interesting optimization problem in which we present two simple 

sub-optimum closed form solutions. Next, and for sake of completeness, we reformulate our 

problem and tackle it as a combinatorial optimization problem. Here, we seek the help of 

evolutionary strategies and the genetic algorithm to solve the original problem. Further, we 

look at  more elaborate compression methods, and namely vector quantization, for reducing 

the stringent feedback required by our solution(s). Finally, and with practicality in mind, 

we extend what we have learned to modern multiple antenna systems such as candidate 

models for the IEEE 802.16 WiMAX protocol. At each stage we present comprehensive 

computer simulations and, when feasible, theoretical confirmation. 



To  all m y  teachers, ... and t o  the best of them; to  m y  family. 



"If we knew what it was we were doing, it would not be called research, would it?" 

- Albert Einstein 
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Preface 

As engineers we erljoy creating problerns. My thesis is essentially about thc creation and 

solut,ion of a problem in wireless com~nunications. To do so I will follow what I believe to be 

the systematic steps in solving problerns in engineering. I begin t)y presenting a problem in 

using- pilot syrnbols for the channel estimation of OFDM systerns with feedback. To do so, I 

first rnotivat,e the reader by giving an int,roduction t,o OFDM (Chapter 1) and to the various 

issues regarding channel estimation for OFDM (Chapter 2). Next, I mat,hernatically formu- 

late and classify a problem in pilot allocat,ion as an optimization problem of co~nbinatorial 

nature (Chapter 3) .  I proceed to give a solution to my problem and in doing so introduce 

the methodology used in solving the problem (Chapt,er 4). No engineering problem is ulti- 

mately beneficial unless it finds direct or indirect applications in our everyday lives. Hence 

in Chapter 6 I extend and combine my proposed solut,iori to more modern digital comrnuni- 

cation t,echnologies such as multiple-input multiple-out,put (MIMO) systems and space-time 

block codes (STBC). Such technologies have already been considered for integration into 

next generation (4G) wireless telecommunication protocols. 

Finally I would like to note that the following journal paper has been approved for pub- 

lication (under ininor revisions) based on the results and analysis given in Chapter 3 of this 

thesis. 

[J l ]  A. Yazdan-Panah, B. N. Makouei and R. G. Vaughan, "Non-Uniform Pilot Syrnbol 

Allocation for Closed-Loop OFDM," (approved on .June 13th, 2007) IEEE Trama,ctions on 

Wireless Communications. 
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Chapter 1 

OFDM Preliminaries 

As a candidate for next generation (4G) high-speed digital wide-band communications, 

orthogonal frequency division multiplexing (OFDM), first introduced in [40], has already 

been used in European digital audio broadcasting (DAB) [35], digital video broadcasting 

(DVB) systems [34], high performance radio local area networks (HIPERLAN) and the 

IEEE 802.11 family of wireless local area networks (WLAN) [14]. OFDM is a particularly 

attractive scheme for broadband systems which encounter large channel delay spreads. In 

this chapter, we review OFDM modulation starting with the general broadband mobile 

channel model. After presenting the OFDM baseband transmitter and receiver models, we 

review a channel estimation method commonly referred to as pilot symbol-aided channel 

estimation (PSACE), also known as pilot symbol-aided modulation (PSAM) in the context 

of OFDM signaling. 

1.1 Channel Model 

Consider a single-input single-output (SISO) wireless link operating over a multi-path time- 

dispersive channel with bandwidth B. Such a channel is conventionally modeled in continuous- 

time with a wide-sense-stationary uncorrelated scattering (WSSUS) impulse response 

where is the l t h  path delay and a l ( t )  is the corresponding complex gain. Sampling 

this channel at  1/B z Ts intervals and normalizing the delays by the symbol duration Ts 
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(71 = 0, L = Lrm,,/TsJ), we have in discrete-time for t = k and j = 1,2, .  . . , L 

With adequate scattering, and due to the central limit theorem, the complex path gains 

can be modeled as wide-sense stationary (WSS) independently complex Gaussian random 

processes with non time-varying moments give by (1 = 1,2,.  . . , L) 

E { a l )  = 0 (1.3) 

4, = E {a:} = P(~,C) (1.4) 

IE {(m%') = 0, (n  # m) (1.5) 

where p(1, C) is the power delay profile and is adopted to be an exponential function of the 

form p(1,C) = ~ e ( s ) .  The parameter C may be used to control the rate of decay (time 

constant) while K  is a normalizing constant to assure ~ f = ~  lp(1, ()I = 1 for any C. Using 

(1.2) and (1.5), such a normalization lead to the statistical normalization of 

where hk is the length-L channel impulse response (CIR) vector at time k. The length-N 

channel frequency response (CFR) vector is related to the CIR through a subset of the 

unitary N x N DFT matrix F, where F = [fl, f2 , .  . . , fN] and for m, n = 1,2,.  . . , N 

Defining G = f i  [fl , f2, . . . , f ~ ]  we have 

Hk = Ghk. (1.8) 

Using (1.6), (1.8) and the fact that GHG = NIL, we have the statistical normalization in 

the frequency domain as 
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Correlation Functions 

The OFDM channel described above is correlated in time and in frequency. Using (1.5), the 

frequency correlation function at the nth sub-carrier is 

Hence in vector form we have 

Rf = G ~ & ,  

2 where Xh = [a:, , a,, , . . . , o:,lT. The time correlation function, on the other hand, is a 

function of the Doppler frequency, following the Jakes model: 

Using (1.12) and (1.8) the time correlation function at the nth sub-carrier is 

Since El a:, = 1 from (1.6). Jo (.) is the zeroth-order Bessel function of the first kind 

with Jo (0) = 1 and Jo(x) = $ J: COS(X sine) do. Ts is the symbol rate and fd is the channel 

Doppler frequency given by fd = fcv/c, where v is the receiver speed, fc is the carrier 

frequency and c is the prorogation speed of light. Here we assume that the channel is 
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quasi-static, changing only from OFDM symbol to symbol. Therefore, we define the OFDM 

normalized Doppler frequency as Fd = fdTsN. This is, in effect, the Doppler felt by a N 

successive modulated symbols (or one OFDM symbol). 

1.2 Transceiver Model 

Consider at time k,  the transmission of N baseband complex independent and identically dis- 

tributed (i.i.d.) symbols s(n),  n = 1,2,.  . . , N from a single antenna at the transmitter (Mt = 

1). The symbols are drawn from a M-PSK constellation M so the power is constrained by 

IE {ls(n)12) = 1. Denote the transmitted vector by s k  = [sk(l),  sk(2), . . . , sk(N)IT with 

correlation matrix given by Rs = & {sHs = IN. Then the total power is constrained by 
k k )  

t r  {Rs) = N. We describe the OFDM transmitter and receiver separately in more detail 

below. 

1.2.1 The Transmitter 

The OFDM transmitter is shown in Fig. 1.1. The transmission stream is first multiplexed 

into N parallel streams, followed by a unitary N-point inverse discrete Fourier transform 

(DFT). This yields the vector xk = [xk(l),  xk(2), . . . , x k ( ~ ) I T  given by 

where F is defined in (1.7). In practice N is chosen to be a power of 2 to allow for efficient 

implementation using the inverse fast Fourier transform (IFFT). Note that owing to the 

central limit theorem for large N, since the elements of s k  are i.i.d. distributed, the elements 

of xk can be assumed to be Gaussian. Assuming the L-tap channel model of (1.2), a prefix 

is constructed consisting of the last L - 1 symbols of xk. This prefix is conventionally called 

the cyclic prefix(CP) (or guard interval), and as we will see, will eliminate the need for an 

equalizer at the OFDM receiver. Hence the final transmitted signal is a length ( N  + L - 1) 

vector 
cyclic pre f ix data 

A C. 

it = G k ( ~  - L + 2), . . . , x k ( ~ j , k k ( l ) , x k ( 2 ) ,  . . . , x k ( ~ j ] ~ .  (1.15) 

The elements of this vector are transmitted serially through a frequency selective channel 

hk  in a total OFDM symbol duration time of T : ~ ~ ~  = ( N  + L - l)Ts = ( N  + L - l ) /B ,  

where B is again the channel bandwidth. 
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... 011010 

Input Stream 

Add 
Cyclic Prefm 

Figure 1.1 : OFDM baseband transmitter model 

1.2.2 The Receiver 

The corresponding OFDM receiver is shown in Fig. 1.2. The transmitted vector Xk is 

convolved with the L-tap CIR as it propagates through the multi-path channel hk, resulting 

in the length (N + 2L - 2) received vector yk. 

This convolution may be written in terms of a Toeplitz matrix representation of the channel 

to 
Parallel 

- Detection 
Output Stream Serial - 

Figure 1.2: OFDM baseband receiver model 
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at time k 
- ( toepli tz)  - 

Y k  = C k  xk + iik 

where iik is the zero-mean Gaussian noise vector with correlation matrix u ~ I ( ~ + ~ ~ - ~ )  and 

The receiver next ignores the first L - 1 symbols of yk (the CP containing ISI) and gathers 

the next N samples yk = [ijk ( L ) ,  i j k  ( L  + I ) ,  . . . , i j k  ( N  + L - I )]* ,  which from (1.19) satisfies 

with 

- 
C k  = 

From (1.15), the first L - 1 samples of Z k  are identical to the last L - 1 samples on account 

of the CP. Therefore (1.20) may be simplified to 

yk = Ckxk + nlk 

where 
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Note that C k  = [cl, cz, . . . , cN] is a circulant matrix hence has the eigen-decomposition of 

where F  is the unitary DFT matrix of (1.7) and Ak is a diagonal matrix with elements given 

by the Fourier transform (non-unitary) of the first column of C  

Ak = Gel 

Since cl is in fact the (zero padded) CIR, we have from (1.8) 

Taking the fast Fourier transform (FFT) of (1.22) 

where we have used (1.24) and FHF = IN which also results in nk = Fntk having the 

same distribution as ntk with a correlation matrix of 021,. Using (1.26) this result may be 

rewritten as 

Rk = SkHk + nk (1.28) 
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or using (1 .8)  

Rk = S k G h k  + Ilk 

where G = f l E '  and Sk = d iag  { s k  ( 1 ) ,  s k ( 2 ) ,  ..., sk  ( N ) )  is an N x N  diagonal matrix of 

transmitted symbols taken from the constellation space M ,  Rk = d iag  { r k  ( I ) ,  rk ( 2 ) ,  ..., rk ( N ) )  

is the received vector and H k  = [ H k ( l ) ,  H k ( 2 ) ,  ..., H ~ ( N ) ] ~  is the vector representing the 

CFR at time k. 

1.3 Chapter Summary 

We reviewed the concept of baseband OFDM modulation from a mathematical point of view. 

We showed how IS1 in broadband communications may be completely eliminated by using a 

cyclic prefix and the discrete Fourier transform. We also reviewed the wide-sense-stationary 

mobile channel model. This model will be used extensively in subsequent chapters where 

the focus will be primarily on channel estimation in time and in frequency. 



Chapter 2 

OFDM Channel Estimation 

Pilot-symbol aided channel estimation (PSACE), also known as pilot-symbol aided mod- 

ulation (PSAM), was first analyzed by Cavers in [8] as a simple and effective means of 

estimating multi-path mobile channels. In PSAM, a set of known symbols commonly re- 

ferred to as pilot tones are multiplexed into the transmission stream prior to transmission 

and used at the receiver to estimate, and if need be, track the communications channel. 

Since its introduction, PSAM has been rigorously analyzed and optimized both in terms 

of average error rates [8], [37], [9], [27], [6] and average throughput performances [29], [30] 

for slow and fast-fading environments. The robustness of the technique and its simplicity 

have resulted in a multitude of applications for the use of PSAM in coherent digital and 

wireless communications. One such application is the channel detection of systems using 

orthogonal frequency division multiplexing (OFDM) where the wideband channel is divided 

into several parallel narrowband sub-channels [5], [40]. Multiplexing known data symbols 

into the time-frequency transmission grid gives the OFDM receiver the ability not only to 

estimate the mobile channel (see e.g. [28], [12], [38]), but with proper design, also to track 

its fluctuations (see e.g. [36], [20] and references therein). 

OFDM channel estimation for time-frequency multiplexed pilot tones is generally a two 

step process. The first step involves the statistical estimation of the channel at the pilot- 

tones. Statistical methods generally include classical linear least mean squares (LLMS) and 

minimum mean square error (MMSE) estimators [38] with adaptive techniques reported 

in [31]. The channel within the sub-bands is subsequently determined by interpolation such 

as linear, second order, and time domain interpolations [13]. Although appealing in terms of 

computational complexity, such non-statistical interpolation techniques, suffer considerable 
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performance losses (mainly due to irreducible error floors). In particular, the method pro- 

posed in [33] provides channel estimates based on piecewise-constant and piecewise-linear 

interpolations between pilots. It is simple to implement, but it needs a large number of 

pilots to get satisfactory performance [26]. 

A different approach is to directly incorporate the interpolation into the estimation pro- 

cess leading to a one step channel estimation process. Maximum likelihood interpolation 

(MLI) and minimum mean square error interpolation (MMSEI), exploit certain channel 

statistics such as time and or frequency correlation functions in the entire time or fre- 

quency band to estimate the channel in a single step. The average error rate performance of 

both these approaches are compared by simulation in [13], [26] and theoretically analyzed 

in [27], [37], [26] and [lo], concluding the superiority of the latter approach (see e.g. the 

results in [26]). We therefore choose the maximum likelihood interpolator (MLI) as the 

OFDM channel estimator throughout this work unless explicitly stated otherwise. 

2.1 The Maximum Likelihood Interpolator 

In this section we follow the analysis of [26] for PSAM-OFDM. The derivations and nota- 

tions here will be used in subsequent sections when we consider non-uniformly located pilot 

symbols. 

The receiver of Fig. 1.2 must obtain a reliable estimate of the channel frequency re- 

sponse to perform coherent detection. To this end we assume that known pilot symbols 

are multiplexed into the data stream, and channel estimation is performed by interpola- 

tion between the pilots locations at the receiver. A total of N, data carrying symbols 

{sd E M; 1 5 d 5 N,) are inserted in the OFDM symbol at data locations given by the 

data index vector nd = vee {ni}z, E Zd where Zd is the finite set of all possible nd vectors. 

Also, N, pilots, {s, E M; 1 5 p 5 N,), are multiplexed into the OFDM symbol at  known 

locations given by the pilot index vector np = {n,(l), . . . , np(Np)} = vee {ni )z ,  E 4. We 

assume that all sub-carriers are active (used for transmission) so N = N, + Np. The Np- 

dimensional output vector at  the pilot locations is R(P) = [R(np(l)) ,  R(np(2)), . . . R ( ~ ~ ( N , ) ) ] ~  

and from (1.29) 
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where B is an Np x L subset matrix of G with entries 

Bp,k = e-j2r(n~(~)-1)(k-1)/N. 1 5 5 Np , 1 < k 5 L (2.2) 

Pilot symbols are taken from the MPSK constellation M so lsPl2 = 1. Pre-multiplying both 

sides of (2.1) by ( ~ ( p ) ) ~  produces 

The noise vector w(p) = ( ~ ( p ) ) ~  n(p) has the same distribution as n(p). The goal is to 

estimate H from the observation vector ~ ( p ) .  The maximum likelihood solution is based on 

the assumption that h is deterministic but unknown. Using (2.3) and the fact that w(p) is 

Gaussian distributed, the solution is (zero-forcing solution) 

L = argmin ~lY(p) - Bh(l; = D - ~ B ~ Y ( ~ )  
h 

where D is an L x L square matrix 

Using (1.8) and the invariance property of the maximum likelihood estimator [26] the CFR 

estimation is 

H = GZ;. 

Finally substituting (2.4) into (2.6) and using (2.3) we get 

Defining 

P = G D - ~ B ~  

as the N x Np interpolating matrix and using (1.8), (2.7) we have 

H = H + PW(P). 

Substituting (2.9) into (1.29) we get for the output 
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total noise 

= SH+'  SPW(P) " ,  + & .  
interpolation noise A W G N  

This expression shows two distinct sources of noise. One is the AWGN inherent in the 

receiver and the second is AWGN at the pilot locations distributed to all sub-carriers via the 

interpolation. As before, n is white Gaussian noise with covariance matrix give by (same as 

correlation since the noise is zero mean) C. = IE {nnH) = o:I~, with total average power 

P. = tr {E {nnH}) = NO:. 

2.1.1 Cramer-Rao Lower Bound 

Treating the channel H as deterministic but unknown it is easy to see from 2.9 that the 

MLI is unbiased 

since the noise w is zero mean on all sub-carriers. The covariance of the estimate is 

We would be hard pressed to further simplify this expression since the interpolating 

matrix P is a function of the pilot index np and hence a function of the channel. Assuming 

equi-spaced pilots, P is constant and using the definitions in (2.8) and (2.5) we have 
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Similarly for h we have 

C- = a i ~ - l  
h (2.20) 

Denote by Be {h) = h, and Jm {h) = hi the real and imaginary parts of h and define 

<P = (h,hT)T. The components of the Fisher matrix are give by the log-likelihood function 

of (2.3) 

where L(Y(P); <P) is the likelihood of the received vector at the pilot locations given <P 

Substituting (2.22) into (2.21) yields 

and 

The Cramer-Rao lower bound (CRLB) is by definition given by CRLB(h) = tr  ( 9 - I } .  

Using the fact that D is Hermitian, we have from (2.24) 

Comparing this result with the covariance matrix of the channel given by (2.20), we 

conclude that the covariance of the MLI coincides with the CRLB [26]. 
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sub-canier 

t--l 

T 

N sub-carriers (one OFDM symbol) 

Figure 2.1: An example of comb-type pilot symbol allocation 

2.1.2 Performance of Equi-Spaced Pilots 

Consider the case where the pilot symbols are equi-spaced in frequency. In other words if N 

is the total number of sub-carriers per OFDM symbol and Np denotes the number of pilots 

per OFDM symbol then, np(i  + 1) - np(i) = LN/NpJ, for any i where 1 5 i 5 N - 1. An 

example of such an arrangement is shown in Fig. 2.1 where Np = 4 pilots are uniformly 

inserted in between N = 8 sub-carriers of every other OFDM symbol. Such an arrangement 

of pilots is typically called "comb-type pilot allocation". The parameter Pf in Fig. 2.1 

denotes the horizontal (frequency) pilot separation which in the uniform case equals N/Np 

and Pt denotes the vertical (time) pilot separation which is necessary due to the Doppler 

occurred from a moving receiver. These parameters will be quantified in the forthcoming 

simulations on a need be basis. 
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Mean Square Error and the  Optimality of  Uniform Pilots 

To see the optimality of uniformly allocated pilots we must go back to the ZF solution of 

(2.4). From (2.4) and (2.5) we have 

where Bt = (BHB)- lBH is by definition the psedo-inverse of B .  Such an inversion requires 

that B be full rank or Np > L. This means the number of pilots must be greater than the 

number of channel taps. We will call the minimum number of pilots, Np = L, the Nyquist 

pilot rate (NPR). The total channel mean square error (MSE) is 

~ ( h )  ~ { j ~ i i - h l l ; )  

= E {tr { B ~ w ( ~ ) ( w ( ~ ) ) ~ ( B ~ ) ~ ) )  

= tr {E { w ( ~ ) ( w ( ~ ) ) ~ ( B ~ ) ~ B ~ } }  

= tr { o ; ~ , ~  { ( ~ t ) ~ ~ t ) )  

= o;lE {tr { (BHB)- l ) )  

= .;e {tr {D-l))  

= o;tr {D-') (2.27) 

The expectation was dropped at the last step based on the assumption that information 

regarding the channel (also known as channel state information1 (CSI)) is not available at 

the transmitter. In any case, this result is basically the derivation of (2.20) in the previous 

section2. Note that D depends on the pilot locations, i.e. np thus the objective is to find 

np that minimizes the channel MSE, or from (2.27) a pilot allocation that minimizes the 

trace of the inverse of D(np) .  

L 

nPopt = arg min tr D(n,)-') = arg min A;' 
"P € 1 ~  "PEIP k = l  

where Xk is the kth eigenvalue of D .  Also from the definition in (2.2) we have 

'Also known as channel state information at transmitter (CSIT) 
2 ~ o t e  from (2.27) and (2.25) how m ( h )  = CRLB(h). 
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therefore the diagonal entries of D are unity regardless of n,. Hence we have the constraint 

that X k  = NpL and the optimization in (2.28) can be rewritten as 

optimize : npOPt = arg min 1 X i 1  
n ~ E Z ~  k = l  

L 

subject t o  : 1 X k  = NpL 
k = l  

Since D is non negative definite, all the eigenvalues are non negative. Hence the mini- 

mization occurs when all the eigenvalues are equal which can only occur for ~ ( n , @ )  = NpIL 

or equi-spaced pilots (also called uniform allocation). Substituting this result into (2.27) we 

In Appendix A. we derive the same result by considering the per-carrier MSE. Note 

that as expected with uniform pilot allocation, the channel MSE is not a function of 

the sub-carrier index and for the worst case of Np = L the MSE equals the noise vari- 

ance a:. Note that without loss of generality we may set np ( l )  = 1 since as long as 

np(i + 1) - np(i) = ININ,], the orthogonality of D(n,) holds regardless of the location of 

initiating pilot3. An immediate result from (2.31) is: 

"MLI with the lowest possible number of pilots, Np = L, incurs a 3 dB penalty in SNR 

due to interpolation and A WGN. " 

Proof: for Np = L from (2.31) we have: m = a: (k) = a:, therefore the total noise 

on each sub-carrier is 20: which translates to a 3 dB loss in signal power. In Chapter 3 

we show how uniform pilots also maximize the average SNR per OFDM symbol (see Fig 3.2). 

3 ~ n  effect since we do not consider suppressed (virtual) sub-carriers there is no "windowing" problem 
associated with the channel estimation process and the location of the first and last pilots is irrelavent to 
the either edges of the OFDM symbol. 
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2.1.3 The Interpolating Functions 

From ( 2 . 4 )  and ( 2 . 6 ) ,  the estimated channel on the nth sub-carrier is in general a weighted 

sum of the received signal on the pilot location 

with 

For the uniform case we know from the results of ( 2 . 3 0 )  that D-' = LIL. Hence 
NP 

B+ = L B H  and (2 .33)  can be further simplified using the definition of B in ( 2 . 2 )  
NP 

where for uniform allocation we used np(m) = $ ( m  - 1 )  + 1 .  Note that for the Np = L 

case, from the definition of P in ( 2 . 8 )  we have P = G D - ~ B ~  = GB-' hence using the fact 

that B-' = 'BH we have N P  
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which shows that the columns of the interpolating matrix, which form a total of L inter- 

polating functions, are orthogonal. Fig. 2.2 shows an illustration of these functions for this 

case. 

* pilot symbol - interpolating functions 

sub-carrier (n) 

Figure 2.2: Interpolating functions for N = 256, L = 4 and Np = L = 4. 

Simulation 

To assess the performance of an OFDM system using uniform PSACE we simulated the 

baseband system models of Fig. 1.1 and Fig. 1.2. At each time instance, N baseband 

symbols are randomly drawn from a MPSK constellation space denoted by M. These 

symbols form Sk = dzag {sk(l) ,  sk(2), ..., sk(N))  and the underlying OFDM system equation 

of (1.29). As before, the subscript k represents discrete-time and is an indication of the kth 

OFDM symbol. A group of K subsecutive OFDM symbols will be called an OFDM frame. 
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Each OFDM symbol in a frame experiences a different channel Hk as it propagates through 

the wireless environment. However for simplicity and to avoid inter-channel interference, 

the channel is assumed to be constant at each time k (quasi-static). The channel model is 

essentially that of which is explained in Section 1.1. For consistency, the power decay factor 

of the power delay profile p ( r ,  [) is set to [ = 2 here and in all subsequent simulations4. For 

accuracy, the channel itself is simulated using a computationally efficient modification of the 

"Smith method" for generating correlated Rayleigh random variables as explained in [41]. 

Fig. 2.3 shows an example of the time evolution of a 4-tap frequency selective channel used 

in the simulations. The signal-to-noise ratio (SNR) at each sub-carrier is from (1.29) and 

R k  (n) = Sk (n)Hk (n) + nk (n) given by 

SNR gf SNRk(n) = {Isk(n)Hk(n)12} )_ 1 - 
IE{lnk(n)12) 0:' 

since IE{ISk(n)I2) = 1, E { l ~ ~ ( n ) ( ~ )  = 1. Fig. 2.4 shows the performance of PSACE- 

OFDM using uniform pilot allocation for various number of pilot symbols Np. The figure 

on the top left shows the channel MSE as a function of SNR from both simulation and from 

(2.31). The plot on the top right shows the average symbol error rate (SER) performance 

as a function of S N R ~ .  The channel is assumed to be constant within the OFDM symbol 

and changing independently from one OFDM symbol to the next, i.e. E { H F H ~ + ~ )  = 0. 

In terms of the parameters of Fig. 2.1, this would account to letting Pt = 0 meaning that 

each OFDM symbol has an arrangement of comb-type pilots. QPSK modulation is used for 

both plots and 1 lo4 channel realizations are simulated per SNR value. The total number 

of sub-carriers is N = 512 and the channel length is constant at  L = 4 taps. From the SER 

curves we see roughly a 1.5 dB improvement in SNR by using Np = 2L pilots instead of 

Np = L and another 1 dB improvement in using Np = 4L. Interestingly while the MSE 

curves show a steady decrease in MSE as Np increases, the SER curves show diminishing 

returns. This is of course due to the fact that the SER is a complicated non-linear function 

of Np and SNR while the MSE is, from (2.31), inversely related to both the SNR and to 

Np. The bottom figures are examples of the resulting MLI output for Np = L = 4. 

4Such a tapered power profile is more consistent with indoor environments such as the WLAN channel 
model. 

5Here, by symbol we mean individual symbols drawn from the constellation M, i.e. sk(n), and not the 
entire OFDM symbol, i.e. S k .  The latter is more commonly referred to as vector error rate. 
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2.2 Chapter Summary 

We gave a complete analysis of maximum likelihood interpolation for channel estimation for 

OFDM systems. We presented a general mathematical model for the interpolation process 

and analyzed the case of equi-spaced pilots in detail. We derived the channel MSE and 

showed that it coincides with the CRLB for unbiased estimators. We showed how the entire 

interpolation process can be simply modeled by a projection matrix denoted by P operating 

on the pilot locations. The major results in these chapter are summarized below, including 

some addition comments: 

The Method: MLI is a simple yet effective means of estimating an L-tap frequency 

selective channel. The maximum likelihood solution is essentially the solution of a 

set of linear equations in the channel gains hk(l) for 1 5 I 5 L. By allocating a 

total of N, pilots for each OFDM symbol, we arrive at  a total of Np equations in L 

unknowns6. The solution is found in the linear least mean square sense by using a 

projection matrix (or interpolating matrix) and the pseudo-inverse. 

Number of Pilots: The MLI computes a matrix inverse (or pseudeinverse) of a full 

rank matrix which requirs the number of equations to be greater than the number of 

unknowns, i.e. Np 2 L. 

Position of Pilots: If CSI is not made available to the transmitter the optimum pilot 

positions in terms of minimizing the channel MSE is uniformly spaced pilot allocation 

(equi-spaced pilots). 

MSE: For optimum pilots the MSE is uniform across the sub-carriers and is equal to 

o: (k), where o: is the noise variance on each subcarrier. Also, MLI with the lowest 

possible number of pilots, Np = L, incurs a 3 dB penalty in SNR due to interpolation 

and AWGN. 

Performance: Clearly at  any SNR level, both the SER and the channel MSE decrease 

as the number of uniform pilots increases. What's important to note however is that 

the SER curves show diminishing returns at  higher Np values while the MSE curves 

do not. 

 ore precisely 2Np equations in 2L if we consider the fact that the channel gains are complex. 
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Frequency (n) oX0 Time (k) 

Figure 2.3: (left) An example of 1000 realizations of a wireless channel impulse response 
(time-delay grid) with L = 4, N = 64 and normalized Doppler frequency of Fd = 0.002. 
(right) Corresponding time-frequency response. 
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S N R  dB 

I 1 pilot symbol I 
- - - . true channel - estimated channel 

I 
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SNR (dB) 

100 200 300 400 5C 
sub-carrier (n) 

Figure 2.4: Performance of uniform pilot allocation for various N,. (top left) Channel 
MSE vs. SNR. (top right) Average SER vs. SNR. (bottom left) Channel magnitude with 
Np = L = 4. (botton right) Channel phase (unwrapped radians). 



Chapter 3 

Non Uniform Pilot Allocation 

The previous chapter discussed the details of OFDM channel estimation with emphasis on 

open-loop systems where CSI is not available at  the transmitter. We now consider a scenario 

in which the transmitter has some form of knowledge regarding the multi-path channel gains. 

The actual method in which this information is acquired at the transmitter depends on the 

type of duplexing we assume on the wireless link; namely time division duplexing (TDD) or 

frequency division duplexing (FDD). Each method has its own way of acquiring CSIT. The 

objective here is to somehow obtain the downlink channel prior to transmission. 

TDD : A situation where the uplink (UL)' and downlink (DL)' are celocated in fre- 

quency. Channel feedback conceptually does not apply here since assuming a relatively 

slow channel, i.e. low Doppler frequency, the DL channel may simply be estimated 

using PSAM on the UL. 

FDD : A situation where the UL and DL simultaneously transmit in time but are 

separated in frequency. To avoid cechannel interference a frequency guard interval is 

often inserted between the respective passbands. With the uplink-downlink separation 

being greater than the coherence bandwidth of the channel, the respective channels 

in the UL and DL will fade independently and the concept of channel feedback can 

be applied. Here, PSAM is only applied in the downlink direction. Once the channel 

is estimated at the receiver, it is relayed back to the transmitter through a dedicated 

'Mobile to base station. 

2 ~ a s e  station to mobile. 
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feedback bandwidth3. Again assuming a slow channel, with instantaneous error-free 

feedback, the transmitter proceeds to use the relayed information as the CSI for the 

next signaling period. 

It is well known that with CSIT the performance of OFDM can be optimized in terms of 

symbol error rate (SER) or average capacity by power loading on the sub-carriers 1231, 1171. 

Power loading techniques rely on the general understanding that if the transmitter has a- 

priori knowledge regarding the channel (channel state information), then it may pre-equalize 

the transmitted symbols to combat the adverse effects of the channel. The transmitter may 

for instance allocate more power to the sub-carrier experiencing deep fades. The authors 

in 1171 derive the optimum (and sub-optimum) power loading algorithm for minimizing the 

average OFDM symbol error rate while the authors in 1231 provide further insight into the 

feedback requirements of such a technique. In all cases however, it is assumed that the 

channel is either completely known at the receiver and transmitter without error or that the 

channel is estimated using PSAM and uniform pilot locations throughout the sub-carriers. 

As we illustrated in the previous chapter, for OFDM systems without channel information 

feedback, the optimal pilot tone allocation is equal-power uniformly located pilots (see 1301 

and [28] for similar proofs). For OFDM systems with channel information feedback, on 

the other hand, the optimal pilot tone allocation is optimum power loading on the sub- 

carriers while the pilot locations for the this case has yet to be investigated in literature and 

constitutes the main contribution of this chapter. 

In this chapter we present an alternative approach to power loading for closed-loop 

OFDM systems with channel information feedback where instead of changing the actual sub- 

carrier powers we propose the use of non-uniformly located pilot tones with equal-power. 

Similar to conventional power loading, the pilot locations are allocated in an attempt to 

increase the average signal-to-noise ratio at  the receiver output. We begin by analyzing the 

received power in a baseband OFDM system. 

3.1 Average SNR Maximization 

Since the pilots are not information carrying symbols, the average symbol error rate (SER) 

may be calculated only at the data locations. We propose a pilot allocation strategy based 

3 ~ n  addition to it being used for coherent detection 
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on the maximization of the average signal-to-noise ratio. Denoting the data locations by 

( d ) ,  the average output signal-to-noise ratio as defined on the data symbols at time k is 

from (2.10) 

Note that the pilot index vector np  is chosen based upon the channel estimate at time 

k - 1 and used for transmission at time k. Therefore the receiver has the additional task 

of forward predicting the channel. The reliability, hence optimality of np,  depends on the 

accuracy of this prediction or on how fast the channel fluctuates in time. For small Doppler, 

the channel time variations is slow, i.e. fdTs << 1, so the channel at k - 1 may be used at the 

receiver to attain a reliable prediction of the channel at k. Since the focus of this work is on 

pilot allocation, full Doppler analysis is not attempted here and we simply use fik f i k - 1  

as the channel prediction. Faster Doppler will obviously degradate the performance of the 

system as can be seen in Fig. 3.7. More importantly, such channel prediction eliminates the 

expectation operation over the channel and allows for the simplification of the numerator 

of (3.1) 

This expression is simplified further in the Appendix, rewriting the final result (B.6) 

Again since fik = fik-1, (3.3) may be written as 

where SNRccr = 1/02 is the SNR for a system with complete channel information (CCI) 

i.e. no interpolation. We define the average SNR gain as 
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mk - a ( ~ k - 1 ,  n d )  
R k b ,  P )  = mccr - 

P b d )  
(3.5) 

where a and p are scalar functions. Note that a is a function of the CFR as well as the 

vector n d .  p on the other hand is only a function of nd4. 

- (4 
a! ( H k - I ,  n d )  = ( H f i 1 )  HkWl 

Note also that the interpolating matrix is a direct function of the pilot locations, i.e. 

PI, = P (nd) and that a! and P can readily be rewritten as functions of n, 

and P(np) can be further simplified for the MLI explained in the previous section. Using 

(2.8) we have 

1 1 ~ 1 1 ;  = tr  { p H p }  

= tr { B D - ~ G ~ G D - ~ B ~ }  

= tr  { D - ~ B H B D - ~ G ~ G }  

= Ntr  {D- ' }  

where we have used the trace identity tr  { A B )  = tr  { B A ) ,  the fact that G H G  = N I L ,  and 

the definition of D in (2.5). Substituting this result into (3.7) 

P(np) = Ntr  { ~ ( n , ) ; ' }  + ( N  - Np - L).  (3.9) 

Since the average signal-to-noise ratio is a direct function of the pilot locations or n,, we 

seek to maximize (3.3), which is equivalent to maximizing the average SNR gain Rk(a ,  P )  
- 

defined in (3.5) since SNRccI is not a function of n,. This optimization is summarized 

below: 

4Since nd is a function of the CFR, 10 is also implicitly a function of the CFR. 
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optimize : npoPt = arg max 
"PC=, 

I subject to : t r  { D ( n p ) k }  = NpL 

I where : 

I P = ~ t r  { ~ ( n , ) ; ' }  + ( N  - Np - L ) .  

The expressions in (3.10) present a nonlinear optimization problem in n p .  The solution 

set Zp, is however finite and the optimum solution npOPt may be found by exhaustive search 

through this set. The cardinality of this set is = ( N ,  which can grow very large even for 
NP 

moderate values of N .  We therefore seek suboptimal solutions with acceptable performance 

losses in terms of SNR. 

3.1.1 The Case of No Feedback 

Cioffi et.al [28] prove that for a transmitter without CSI, the optimum pilot allocation is 

equal power loading and uniform pilot distribution across the sub-carriers. In the context 

of our problem the SNR maximizing pilot allocation is given by (3.10) for the case where ,. 
Hk-1 is known at the receiver and used to search for npOPt which is subsequently relayed 

to the transmitter. Without CSI, however, ~ k - 1  is random to the transmitter and must be 

averaged out of a in (3.6) .  So E a Hk-1, n p  = N - Np,  which is not a function of n,. { (-  ) I  
Therefore (3.10) is maximized by minimizing P ( n p )  or equivalently t r  { D ( n p ) i l )  and 

L 

npoPt = arg min t r  D ( n p ) i l )  = arg min A;' 
np €1, n ~ E Z ~  k-1 

where X k  is the kth eigenvalue of D with the constraint c ~ L , ~  X k  = NpL.  The optimum 

eigenvalues can easily be shown to be all equal to Np which means D(npoPt )  = NpIL and 

n p  is uniform, i.e. n p  ( i  + 1 )  - n p  ( 2 )  = LN/Np J , 1 5 i  5 N - 1 ,  where by convention we set 

n p ( l )  = 1 .  Substituting this result into (3.10) and simplifying, we reach 
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max  -  uniform - N - Np 
Rk - k - 

N L / N p + N - N p - L  

Substituting Np = L in (3.12) we get R y  = Runi f orm 
k = 112. This shows that a 

uniformly pilot-allocated open-loop OFDM system using coherent ML channel interpolation 

with a minimum number of pilots tones, incurs, on average, a 3 dB SNR loss compared to 

a system with complete channel information. Such an observation is also confirmed by 

computer simulation in Section IV (see Fig. 3.2). 

3.1.2 The Case of Feedback - Suboptimal Solutions 

The optimum gain factors cropt and ,BOPt  are coupled in (3.10) through a complicated expres- 

sion in n p .  We propose a decoupled sub-optimum strategy and two solutions where a and 

,B are disjointly optimized to maximize R. The problem is stated as 

Problem: 

Find the optimum pilot index vector in terms of maximizing the average SNR gain Rmax 

given that Rmax = R(aOPt, B o p t )  = R(amax,  ,Bmin) .  

Proposed  Solution #1 - Decoupled Equal Power  O p t i m i z a t i o n  ( D E P O )  

Given a total of Np pilot symbols suppose NE pilots are allocated to the task of optimizing 

a and N/ are used for ,B so that Np = NE + N/ 

z) Optimum a: From (3.10) and without regard to ,B: 

NP 2 

= arg n p E T p .  min x l ~ ~ - ~ ( n , ( i ) )  1 
z=1 

which has the obvious solution of sorting the gain values (from smallest to greatest) 

l ~ ~ - ~  1, and selecting the first N r  index values. Denote such a solution as n , ~ p ~ ( ~ ) .  
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ii) Optimum /3: From (3.10) and using the result of (3.11), Popt = pmin at: 

opt@) = uniform 
n~ n~ 

which is the uniform pilot allocation scheme (the case of no feedback). 

iii) (Sub)optimum np: To reach a compromise between npopt(a) and np0pt(B) set 

which is a length Np vector that is comprised of both solutions (assuming no overlap). The 

values assigned to NF and N! may also be viewed as optimizing weighting parameters. Set- 

ting NF = 0, for instance, would result in the optimization process weighing totally in favor 

of /3 and vis versa. Fig. 3.8 illustrates an example of this pilot allocation for a length 4 

channel at 1/c: = 0 dB and the curves in Fig. 3.5 show how NF = Np - L and N! = L 

minimize the error rate performance. Note that i n  this case there is no power loading on the 

sub-carriers. The power is instead eflectively distribute8 by distributing the pilot locations. 

Proposed  Solution #2 - Decoupled on/off Power Optimization (DOPO)  

Consider again the previous proposed solution (DEPO) along with Fig. 3.5 and Fig. 3.8. 

This solution allocates L uniform pilots to N/ and the rest (NF = Np - L) to the (locally) 

minimum channel gain locations. Note, however, that the entire set of pilots is ultimately 

used for maximum likelihood channel interpolation. Intuitively, since the pilot set NF is 

occupying the channel minimum, hence fade locations, the better parts of the channel (higher 

gain) will be available for data transmission. On the other hand, the pilot set NF is also 

consuming transmitter power that may have otherwise been used for data transmission. 

Note that there is an underlying trade-off present here since the mere presence of more 

pilots as a result of NF is expected to yield better channel interpolation i.e. lower ,B values. 

To investigate this trade-off and to complement the DEPO solution, suppose that the pilot 

set NF is completely eliminated and its power (which on average is equal to (Np - L) is 

evenly distributed amongst the rest of the sub-carriers. In other words the transmitter sends 

' ~ ~ u a l i z e d  in a  sense.  
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Table 3.1: Summary of simulation parameters and notations 

Average SNR (m) 

Active sub-carriers 

Channel length 

Number of pilot-tones 

Nyquist pilot rate 

Normalized Doppler frequency 

Average SNR gain 

Decoupled Equal Power Optimization 

Decoupled on/off Power Optimization DOPO 

N 

L 

N~ 

N, = L 

F d  = fdNTs 

L uniform pilots along with (Np - L) null symbols at n , ~ p ~ ( ~ ) .  We call this solution the 

decoupled on/off power optimization (DOPO) technique. 

3.2 Numerical Results 

Computer simulations are used to evaluate the average symbol error rate performance of 

the proposed feedback scheme in Fig. 3.1. MPSK modulation is used throughout the 

simulations with an L-tap time-dispersive channel model given by (1.1). The normalized 

Doppler frequency is Fd = fdNTs, where fd is the channel Doppler frequency and Ts is 

the symbol rate. Simulations are carried out for a range of per carrier signal-to-noise ratios 

(llo;) and for various Doppler frequencies. For simulation purposes, Table. 3.1 summarizes 

the various notations used in this paper. 

3.2.1 Determination of NF and N! (optimizing weighting parameters) 

The value assigned to N! can be determined by inspection. Note that since the maximum 

likelihood interpolator of (2.4) is essentially the solution of an overdetermined set of linear 

equations it can only be designed at or above the Nyquist rate (Np 2 L). Simple inspection 

of (3.12) reveals that the decoupled /3 solution for uniform allocation has a global minimum 

at the uniform allocation vector. A logical choice for N! in (3.15) is therefore L, which 

gives NF = NP - N! = 12 for Np = 16. This observation is confirmed in Fig. 3.5, where 
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Table 3.2: Gain values for N, = 2 L  

the average SER of the DEPO solution is plotted as functions of N r  for BPSK modulation 

over N = 128 sub-carriers. 

3.2.2 Symbol Error Rate 

The optimum pilot allocation vector may be attained from the optimization problem of 

(3 .10)  by exhaustive search. Fig. 3.3 compares the SER performance of this optimum 

solution with the proposed solution #1 (DEPO) at Np = 2 L .  The performance loss is 

roughly 1 dB at sufficiently low SER. The SER performances of the proposed solutions 

(DEPO and DOPO) are compared with uniform allocation and with each other in Fig. 

3.4. The simulation is run for both Np = 2 L  and Np = 4 L  with QPSK modulation. The 

superiority of the DEPO method is an indication that for the DOPO method, the increase 

in p, more than offsets the increase in SNR gain it achieves through the increase in a. The 

aggregate effect is a loss in average 52 and also SER performance. The numerical gain values 

are shown in Table 3.2. 

3.2.3 Doppler Frequency 

Through computer simulations, the authors in [22] observed that certain non-uniform pilot 

allocations yield smaller SER at high Doppler frequencies. Fig. 3.6 shows the SER com- 

parison of an OFDM system with uniform pilot allocation (open-loop) and the proposed 

decoupled solution (DEPO) for BPSK modulation. As the Doppler increases the channel 

prediction becomes more and more obsolete causing performance degradation for the pro- 

posed scheme. The proposed scheme is rather resilient to Doppler, showing about 1 dB loss 

for a twenty fold increase in Doppler frequency at high SNR with superior performance com- 

pared to the uniform allocation. Our simulation of the SER performance of the proposed 

scheme (DEPO) in Fig. 3.7 confirms this observation where the SER is plotted versus the 

normalized Doppler frequency. 
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3.3 Chapter Summary 

In this chapter we presented a new perspective on the application of feedback for wire- 

less OFDM systems. While conventional feedback schemes concentrate on equalizing the 

channel by redistributing the transmitter power through the sub-carrier we proposed the 

redistribution of pilot tone locations without the necessity of knowing the channel gains at 

the transmitter. To this end, we derived the average SNR gain at the OFDM receiver and 

proposed a combinatorial optimization problem in finding the SNR maximizing pilot tone 

locations. Simulations showed considerable improvements in terms of average error rates 

compared to open-loop OFDM systems. The feedback scheme also exhibited robust behav- 

ior under moderately high Doppler spreads. As noted in section 3.1 the number of feedback 

bits for the optimum pilot allocation is 1 log, ( N p  ) ]  bits per feedback slot, which can be large 

even for moderate values of N and N,,. In the next chapter we use the concept of limited 

feedback communications and the generalized Lloyd algorithm as a means of reducing this 

overhead. 
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MPSK 

... 011010 Serial 
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Channel Estimation 

Remove 

Figure 3.1: Closed-loop OFDM system model 
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10 
SNR dB 

Figure 3.2: Average SER performance of uniform allocation compared to a system with 
complete channel information (CCI) with Np = 4, L = 4,  N = 64 and BPSK modulation. 
There is a 3 dB penalty in using uniform pilots at the Nyquist rate ( N p  = L)  and M L  
interpolation. 
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Figure 3.3: Average SER performance of optimum solution of (3.10) and proposed solutions 
#1 (DEPO) with Np = 4, L = 2, N = 16 and QPSK modulation. The optimum solution 
was found by an exhaustive search at each SNR. 



CHAPTER 3. NON UNIFORM PILOT ALLOCATION 

I - - - -  
uniform allocation Np= 2L 
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Figure 3.4: Average SER performance of proposed solutions #1 (DEPO) and #2 (DOPO) 
compared to uniform allocation (case of no feedback) with L = 4, N = 64 and QPSK 
modulation. 
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Figure 3.5: Average SER of proposed solution #1 (DEPO) as a function of N: = Np - N/ 
at various SNR with Np = 16, L = 4, N = 128 and BPSK modulation. The point of 
minimum SER (point of interest) occurs at (N:, N!) = (12,4) 
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Figure 3.6: Average SER performance of the proposed solution #1 (DEPO) compared to 
uniform allocation at various (normalized) Doppler frequencies with Np = 8, L = 4, N = 64 
and using BPSK modulation. 
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uniform allocation 

proposed #1 (DEPO) 

Figure 3.7: Average SER versus Doppler frequency at 110: = 20 dB with Np = 8, L = 4, 
N = 64 and BPSK modulation. Note how the proposed system converges to uniform 
allocation at high Doppler due to the increasing uncertainty present in the forward channel 
prediction. 
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Figure 3.8: Actual (true) CFR and its estimate using the proposed pilot allocation (DEPO) 
at 1/0: = 0 dB with Np = 16(NF = 12, N! = 4), L = 4, N = 512 and a Doppler of 
Fd = 0.1. The vertical lines indicate pilot tone locations. Notice how 4 pilots (L = 4) are 
allocated uniformly and the rest of the pilots at clustered at the channel minimum point. 
As the channel fluctuates in time (solid black to dashed black line) the channel minimum 
moves slightly to the left but is still partially covered by the clustered pilots allocated at 
time k. 



Chapter 4 

An Evolutionary Approach to 

Optimization 

"As for a future life, every man must judge for himself between conflicting vague probabilities." 

-Charles Darwin 

In Chapter 3 we derived an optimization problem for determining the optimum pilot 

locations for SNR maximization. As noted there, the proposed problem is highly non-linear 

on the search domain and thus a closed form solution seems out of reach. The search do- 

main of (3.10) is the Np-dimensional space of positive integer numbers which we will denote 

here as z?. The optimal pilot index vector we seek is some npWt E z?. For instance, 

n, = {1,4,19,20) corresponds to the selection of the 1,4,19 and 2oth subcarriers as pilot 

symbols in each OFDM symbol. Clearly we are dealing with a class of optimization prob- 

lems commonly referred to as "Integer Programming" or "Combinatorial Optimization" in 

mathematical literature. 

Combinatorial optimization is a diverse branch of applied mathematics that finds a mul- 

titude of applications in solving real life problems such as network and graph problems, 

rule-based scheduling problems, capital budgeting problems, etc. Given their integer na- 

ture, the description of combinatorial optimization problems is often an.easy task. Solving 

these problems on the other hand can in general be extremely difficult. The difficulty arises 

from the fact that unlike linear programming (continuous), for example, whose feasible re- 

gion is a convex set, in combinatorial problems, one must search a lattice of feasible points. 

Thus, unlike linear programming where, due to the convexity of the problem, we can exploit 
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the fact that any local solution is a global optimum, integer programming problems may 

have many local optima. There are several approaches in solving combinatorial optimization 

problems and a detailed examination of these techniques is beyond the scope of this work. 

Instead, here we will utilize a branch of techniques that aims to mimic the natural evolution 

of biological life referred to as "Evolutionary Strategies " [24], [2]. 

Evolutionary computation algorithms are stochastic optimization problems; they are 

conveniently presented using the metaphor of natural evolution: a randomly initialized pop- 

ulation of individuals evolves following a crude parody of the Darwinian principle of survival 

of the fittest [2]. The genetic algorithm [25] is sub-class of these evolutionary algorithms that 

due to its simplicity has found a broad range of applications in function optimization. The 

principal idea behind the genetic algorithm (GA) is simple: the probabilistic simulation of 

biological evolution. After briefly introducing the method we will see how the GA is directly 

applicable in solving our optimization problem for non-uniform pilot locations. 

4.1 Introduction to the Genetic Algorithm 

The idea of the GA appeared first in 1967 in J. D. Bagleys P.hD. thesis "The Behavior of 

Adaptive Systems Which Employ Genetic and Correlative Algorithms" [3]. The theory and 

applicability was then strongly influenced by J. H. Holland (and later his students), who can 

be considered as the pioneers of genetic algorithms. An exhaustive treatment of the subject 

is beyond the scope of this work but since we are dealing with an integer maximization 

problem, we will examine the GA as it is applied to a general combinatorial maximization 

problem of the form: 

Find an xOPt E X such that the function f is maximal on the search domain X ,  

where f : X + R is an arbitrary real valued (and assumed positive) function such that 

f (xqt> = =g max ,~x  f (XI. 

In the GA, the search space X is seen as a direct analogy to the set of competing 

individuals in the real world. Each element in this search space is viewed as a biological entity 

with a certain genome structure. All living beings consist of cells, and each cell contains 

identical sets of one or more "chromosomes". Confining to this evolutionary terminology, 
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here, we also call each xi E X a "chromosome". Each chromosome has two attributes: 

1. An "evaluation" which is f (xi) and 

2. A (9tness" which is a measure of how the evaluation of xi compares with the evaluation 

of all other chromosomes. The fitness is therefore dependent on the evaluations of all 

other chromosomes in the population and can simply be defined as the fractional 

quantity f (xi)/?, where 7 is the mean evaluation of the entire population1. 

Here we are dealing with a combinatorial problem, hence we can assume without loss 

of generality that X z:. In the real world, reproduction, adaptation and ultimately 

evolution is carried out on the level of genetic information (DNA and RNA). This infor- 

mation resides in long genetic sequences or "genes" and not in whole integer numbers. 

Consequently, GAS do not operate directly on the chromosomes in the search space X, but 

on some coded versions of them. Therefore before the GA can initiate, the search domain 

X must adequately be coded (discretized) in an a priori fashion. Conventionally, for dis- 

crete search spaces such as 237, a simple binary representation suffices. For example the 

chromosomes 1,3,5, ... are represented by the strings (or genes) 0001,001 1,0101, ..., so on 

and so forth. The actual evolution of a genetic algorithm involves three stages: selection, 

crossover2, and mutation. 

Selection: In this stage candidate chromosomes are selected for reproduction. The 

fitter the chromosome, the more likely it is to be selected. 

Crossover: This is the actual reproduction stage between pairs of chromosomes. In 

real life organisms sexual reproduction is the result of the amalgamation of parent 

genomes. Similarly here, parent candidate chromosomes are split at  a random loca- 

tion3, swapped and re-merged to create two new offspring4. To account for the fact 

that two parents might not crossover at  all, we denote the crossover probability as 

p c  which is typically close to unity, p c  Z 1. For example the two parents 0110100 

and 1110110 may cross over at  the second bit location from the right to produce the 

'~ i tness  can also be assigned according to a strings rank in the population [4]. 
2Also known as mating or combination 

3The point of crossover is irrelevant and is chosen from a uniform distribution. 

4Such a powerful reproduction mechanism is one of the primary reasons why sexual organisms have 
adapted much faster than asexual ones. 
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offsprings 01101 10 and 1110100. Once crossover has occurred, the two parents are 

eliminated from the population and are replaced by their offsprings. 

Mutation: Mutation is the mechanism that accounts for the environmental factors5 

that influence crossover or mating. In mutation, and after crossover, each bit within 

the child gene is randomly complemented with a probability of p M .  The probability of 

mutation is usually very small p~ << 1. For example the child string 0111110 mutated 

on the third bit from the right gives 0111010. 

The GA we adopt here is the Simple Genetic Algorithm (SGA) where the genetic process 

is broken down into two steps [39]. In a SGA a group of chromosomes form a current 

population. Selection is subsequently applied to this population based on fitness values to 

create an intermediate population. Finally crossover and mutation (as described above) 

are applied to the intermediate population to arrive at a next population of chromosomes. 

Such a process is shown in its simplest form in Fig. 4.1. The selection method of choosing 

chromosomes from the current population for inclusion in the intermediate population is 

typically based on the concept of "remainder stochastic sampling". For each string xk, 

the integer portion of the fitness f (xk)/f determines how many copies of xk are placed in 

the intermediate population (deterministic selection). Subsequently, all strings are copied 

into the intermediate population with a probability equal to the fractional part of f (xk)/f 

(random selection). For example a string with fitness of 2.09 will be duplicated twice and 

will have a 9% chance of placing an additional copy. The SGA therfore work as follows: 

1. Randomly generate an initial population of M chromosomes each corresponding to an 

N-bit string. These are candidate solutions to the optimization problem. 

2. Calculate the fitness of each chromosome in the population using the optimization 

objective function. 

3. Perform selection, as described above using remainder stochastic sampling, to reach 

an intermediate population. 

4. Randomly pair the chromosomes in the intermediate population and perform crossover 

with probability p c .  If no crossover occurs duplicate the parent chromosomes exactly. 

5Such as radiation 
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5. Mutate the offsprings with probability p~ << 1. The resulting population is called the 

next population. 

6. Replace the current population with the next population. 

7. Evaluate the termination criteria and proceed to step 2 to continue the algorithm, 

otherwise terminate. 

Each iteration of this process is called a generation. The entire set of generations is 

called a run. The termination criteria can simply be a total number of generations. 

current population intermediate population 

Figure 4.1: SGA diagram. 

The science of evolutionary computation is a very diverse and versatile field. We have 

only brushed on the surface of a branch of evolutionary computational techniques, namely 

the genetic algorithm. Although we have not gone into the depth of the subject the iterative 

tool described above prepares us to employ the SGA to solve for the optimization problem 
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of Chapter 3 without resorting to brute-force approaches. As is evident from the discussion 

above, the search space of the problem must first be represented in "binary" form. We must 

therefore reformulate the derivations of Chapter 3. 

4.2 Reformulation 

Consider again the general baseband OFDM received signal model 

where G = fi [fi, f2,. . . , fL] and fi is the ith column of the N x N unitary DFT matrix. 

S = diag {s(l),  s(2), ..., s (N))  is an N x N diagonal matrix of transmitted symbols taken 

from the MPSK constellation space M. R = diag {r (1), r (2), ..., r (N))  is the baseband 

received vector and h = [h(l) ,  h(2), ..., h ( ~ ) ] ~  is the vector representing the CIR at time k. 

The transmission matrix S contains both pilot (known) and data symbols. The location 

of the pilot symbols, and hence the data symbols, can be uniquely determined through the 

pilot index vector n, = [np(l),  . . . , nP(~ , ) lT .  Alternatively, the pilots can be represented 

by a (diagonal) matrix X = diag {x(l),  x(2), . . . , x(N)),  where x( j )  E {O,1) for 1 5 j 5 N. 

If the jth sub-carrier is a pilot symbol then x( j )  = 1 and x( j )  = 0 otherwise. (4.1) can now 

be decoupled into pilot and data signals as 

R =  pilot) +  data) 

 pilot) = XR = S X G ~  + X n  (4.2) 

R ( ~ ~ ~ ~ )  = (I - X ) R  = S (I - X ) G h +  (I - X ) n  

The maximum likelihood solution to the pilot locations is the zero forcing solution 

substituting (4.2) into (4.3) 

7 

interpolation noise 

substituting (4.4) into (4.2) 
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where we define J = S (I - X) G(SXG)~X. 

Assuming a deterministic channel, the average SNR is from (4.5): 

signal power 
r-  

- 
SNR = 

11s (1 - XI ~ 1 1 ;  
B {11 J~II:} + p: {II (1 - x) nil&} - P 

interpolation noise AWGN 

- - H ~ H  - H ~ X H  
No:tr {JHJ) + (N - Np)a: 

H ~ H  - H ~ X H  
= .....I ( Ntr {JHJ) + N - Np 

where mccI = l/ai is the SNR for a system with complete channel information (CCI) 

i.e. no interpolation. We define the average SNR gain as 

- 
SNR 

Q(X) = - - 
H ~ H  - H ~ X H  

SNRccI Ntr {JHJ) + N - Np 

The J-matrix may be further simplified using the facts that SHS = IN,  GHG = NIL 

and XX = X. With some mathematical manipulations we can show that the interpolation 

noise term can be written as: 

Ntr { J ~ J }  = Ntr {(GHxG)-'} - L (4.11) 

Hence going back to (4.10) and with Q(X) as a global objective function, we have the 

following (integer) optimization problem: 

optimize : XoPt = arg max R(X) 
z,,={O,l) 

subject to  : tr {X) = Np 

H ~ H  - H ~ X H  
where : Q(X) = 

Ntr {(GHXG)-l) + N - Np - L 
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Comparing this problem with (3.10), we clearly see that they are identical. Except, 

here, the optimization is over the N-dimensional binary search space instead of the Np- 

dimensional integer search space z?. In other words the coding or discretization step of 

the genetic algorithm has already been implemented and the SGA described in section 4.1 

can directly be applied to solve for the optimal X variable. 

4.3 More on Feasibility and on Constraints 

Constraints: 

The optimization of (4.12) is an NP-hard constrained combinatorial optimization problem. 

The constraint is obviously in the number of pilots and is denoted by t r  {X) = Np > L. 

Interestingly this constraint does not directly enter the derivation of the objective function. 

Hence with little effort we can reformulate (4.12) and reach the more "relaxed" problem of: 

optimize : xoPt = arg max R(X) 
zi;={O,l) 

subject t o  : t r  {X) > L 

where : R(X) = 
H ~ H  - H ~ X H  

N t r  {(GHXG)-I) + N - t r  {X) - L 

Note here that the number of pilots is not fixed to a specific value and is optimized along 

with the objective (cost) function. In other words not only do we seek the optimal pilot locations, 

we also seek the optimal number of pilots. We will refer to this problem as the "relaxed" 

optimization problem6 . 

Feasibility: 

Given a constrained optimization problem such as (4.12), the optimum solution must be 

within the feasible region, i.e. t r  {X) = Np. The simple genetic algorithm described above 

does not account for this constraint as it iterates to find the optimum solution. For example 

' ~ o t e  that we still have the general constraint that tr {X) 2 L. 
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two parent chromosomes that both lie in the feasible region will not necessarily create 

offspring that also lie within the feasible region. The general approach to remedy this 

situation is to invoke a penalty for each child chromosome not in the feasible region. One 

way to penalize the offspring is to reduce it's fitness function by a value in accordance to its 

distance to the feasible region (see for example [32]). A more common approach would be 

to invoke the "death penalty" and completely discard such offspring. Given the simplicity, 

we will use the latter approach for our constrained optimization. 

4.4 Numerical Results 

We simulated a wireless OFDM link drawing baseband signals from an MPSK constellation 

space. For each channel realization the GA, as explained above, is run with the objective 

(cost) function of a(X) in mind. As noted before in order to properly estimate an L-tap 

channel, at least Np = L pilots are required in frequency. The structure of the optimization 

in (4.12) implicitly assumes this condition by assuming a fixed number of pilots with Np 2 L. 

The optimization in (4.13), on the other hand, relaxes this condition and searches for the 

optimal number of pilots as well. To see the efficiency of the GA in solving both these 

combinatorial problems we conducted independent experiments, each explained below. 

Constrained Single Channel Realization 

Here we simulated a single realization of a frequency selective channel according to the 

model given in Chapter 1. The channel length is L = 4 and the total number of sub-carriers 

is fixed at N = 32. The CFR is shown in the top-left corner of Fig. 4.2. Also shown in Fig. 

4.2 is the performance of the constrained optimization of (4.12). The GA was run using an 

initial population of M = lo2 chromosomes and the probability of cross-over and mutation 

were set at p c  = 0.7 and p~ = respectively. The final result is shown in the top right 

corner of Fig. 4.2. 

Interestingly the optimum solution tends to put more clustered pilots near the channel 

minimums (fades), much in the same way that the sub-optimum DEPO solution of Chapter 

3 does. Also note that as we would expect, the total average objective (cost) function of 

the population increases with each iteration (or generation) indicating that the population 

of chromosomes are on average creating better (more fit) offspring. From the analysis 

in Chapter 3 and from (3.12) we know that had the pilots been allocated uniformly in 
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frequency the average objective (cost) function would be: RUniform = N-Np  
N L / N p + N - N p - L '  

Substituting with N = 32, Np = 8, L = 4 leads to RUniform = 0.4615 which is also shown 

in Fig. 4.2 as a reference and for comparison. Note how the GA surpasses this value after 

roughly 50 generations. Also shown in this figure is the (instantaneous) variance of the 

objective function calculated at each generation. As expected, the variance of the objective 

function decreases with each generation which is a clear indication that the population 

fitness is saturating and the algorithm is converging. Here, the entire run consists of a total 

of G = 100 generations, however thresholding the objective function variance can be an 

alternative method of terminating the GA generations. 

Relaxed Single Channel Realization 

We again simulated a single frequency selective channel with length L = 4 and with N = 32 

sub-carriers. The GA was first run under constrained conditions and then re-run using the 

same channel but with relaxed conditions. For the relaxed optimization the initial popu- 

lation was set to M = lo4 chromosomes while the constrained optimization was initialized 

with M = lo6 chromosomes. Both GAS were run with p c  = 0.9 and p ~  = and a total 

of G = 50 generations. The results after the 5oth generation (final) are shown in the top 

plots of Fig. 4.3. As is evident from this figure, the relaxed optimization has filled nearly 

all the sub-carriers with pilots leaving only the maximum channel gain frequency open for 

data transmission. Although such an arrangement has led to considerably higher objective 

(cost) function (higher SNR gain) as is apparent from the bottom plot of Fig. 4.3, such 

a stringent condition of scarce data transmission sub-carriers renders this particular result 

useless in practical high data rate applications. 

SER Performance 

Finally, we simulated an OFDM system with N = 16 sub-carriers and a slowly time-varying 

channel of length L = 2. For each channel realization the GA was run to find the optimum 

pilot locations with M = lo4, p c  = 0.7, p ~  = and G = 25. The constrained optimiza- 

tion with Np = 4 was considered and Fig 4.4 shows the resulting average SER calculated at 

each SNR. Clearly the GA improves upon uniform allocation and works very close to the 

optimum solution from brute force search. 
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4.5 Chapter Summary 

By converting the search space of the optimum pilot locations into binary form, we were able 

to apply the genetic algorithm to find the best variable candidate. The genetic algorithm is 

a branch of evolutionary computations that aims to model the optimization using biological 

and genetic evolutions. Reformulating our problem into binary form revealed two optimiza- 

tion problems. One was the constrained optimization where we only seek the position of 

a fixed number of pilots. Much like the DEPO solution, we saw that the GA in this case 

tends to allocate pilots to the minimum channel gain frequencies (sub-carriers) while allow- 

ing for a number of dispersed pilots. For the relaxed problem, on the other hand, the final 

GA solution tends to fill nearly all the sub-carriers with pilots; keeping only the very high 

gain channel frequencies open for data. Finally, we simulated the SER performance of the 

constrained GA and compared the performance with a conventional brute force searching 

method. 
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Figure 4.2: Constrained GA results on single channel realization. Np = 8, N = 32 and L = 
4. (top-left) Original CFR. (top-right) Pilot locations from constrained GA. (bottom-left) 
average population objective function per generation. (bottom-right) variance of objective 
function within population at each generation 
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Figure 4.3: Relaxed GA results on single channel realization, N = 32 and L = 4. (top-left) 
Relaxed optimization (top-right) Constrained optimization. (bottom) Average cost function 
per generation for relaxed and constrained optimizations. 
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Figure 4.4: Average SER performance of (constrained) GA. 



Chapter 5 

Limited Feedback Communications 

In Chapter 3 we derived the optimum pilot locations to maximize the average SNR at 

the OFDM receiver (see (3.10)). The idea is to simply allocate the to the fading 

locations of the channel (maximize a) while maintaining an acceptable channel estimation 

error (minimize p). Although the closed form solution of the optimization in Eq. 3.10 

was not derived, we presented two sub-optimum solutions; namely the DEPO and DOPO 

methods of Section 3.1.2 and compared their performances. We also looked at the actual 

optimum solution using evolutionary computations in the previous chapter. In this chapter, 

we change direction to take a closer look at the overhead associated with the actual feedback 

link. Our effort here will be to examine methods of reducing this overhead while maintaining 

acceptable levels of performance in terms of average SERs. To motivate our discussion we 

first answer the following questions: 

1. What  exactly is the type of information that is fed back? 

2. How much feedback is needed and how often does i t  need to  be updated? 

3. Can we possibly reduce the amount  feedback with acceptable performance losses? 

5.1 Types of Information Feedback 

The most obvious and perhaps most prevalent use of feedback in OFDM systems is the 

concept of power loading. In power loading the total available transmitter power is opti- 

mally (or at  times sub-optimally) distributed within the sub-carriers (tones) to optimize a 
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performance criterion. The optimizing criterion is usually the minimization of SER or the 

maximization of capacity1. We will briefly examine both cases. 

Consider again the general baseband received signal model of (1.28) at time k, Rk = 

SkHk + nk. In power loading the transmitted signal on each sub-carrier, sk(n),  is pre- 

multiplied by a weight wk (n) for 1 5 n 5 N. Therefore we can remodel the received signal 

as 

R k  = SkWkHk + nk (5.1) 

where Wk = diag {wk (1), wk (2), ..., wk (N)} = diag {wk} is an N x N diagonal matrix of 

weights and wk = [wk (I),  wk (2), ... wk ( N ) ] ~  is the weight vector. 

The total instantaneous transmitted power is 

and the average total power is 

since for MPSK modulation E {lsk(n)12) = 1. For fairness in comparisons with the non- 
N power loaded case, we assume En=, lwk(n)I2 = 1lwklli = 1. The challenge is to design the 

weight vector as a function of the channel wk = 3 (Hk).  We do not go into the details of 

power loading here since it is not the subject of this work. The results are however presented 

below for completeness. 

5.1.1 SER Minimization 

The authors in [17] show that the symbol error rate2 minimizing solution is SNR equalization 

given by3 

where gk = [(HI (1) I - ' ,  IHk (2) I-', ..., 1Hk (N) 1 - 1 1 ~  is the inverse channel gain response. 

' Uncoded capacity. 

'vector error rate to be more precise. 
3 ~ t  high SNR. 
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5.1.2 Capacity Maximization 

Capacity based power loading is usually combined with bit loading (i.e., varying the number 

of bits transmitted on each tone) in order to match the per-subcarrier capacity [23]. S' ince an 

OFDM system is essentially N flat-fading parallel sub-channels, the instantaneous capacity 

with power loading is 

The weight vector we seek is: WY) = arg m a w k  C(wx). When full channel knowl- 

edge is available at the transmitter, the optimal unquantized solution for power loading 

design is waterfilling [23]. An interesting observation here is how the above solutions con- 

tradict each other. The SER criteria allocates more power to fading subcarriers while the 

capacity maximizing criteria (waterfilling) allocates more power to stronger channels. 

5.1.3 Non Uniform Pilot Allocation 

Note that regardless of the criteria and associated solutions above, the underlying approach 

in power loading is to distribute the transmitter power by directly increasing (or decreasing) 

the transmitted power on each sub-carrier. The non uniform pilot allocation introduced in 

Chapter 3 works differently. 

For example, assume that a certain frequency is experiencing a deep fade. In an effort 

to protect the symbol from this fade, the SER criteria aims at boosting the power on 

this frequency. Our approach is different; we simply relocate the symbol altogether and 

consider sending a pilot symbol at that location. This task is done by properly choosing the 

pilot locations, leaving the more suitable (higher gain) locations for data transmission. In 

other words we ask "Since we know where the fades are why bother to send data on those 

frequencies to begin with? W h y  not send pilots on those locations?". In doing so, we are 

in a sense indirectly equalizing our transmission stream. One must however be cautious 

since pilots in fades render very poor channel estimates. Hence we observed in Chapter 

3, that the non-uniform pilot allocation is a delicate process of reaching an equilibrium of 

channel estimation error and SNR gain; an effort which ultimately concluded in performance 

enhancements. 

Finally, note that the information given by feedback in our scheme lies not in the channel 
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gains (or inverse gains) but rather in the pilot locations. This information is given by 

the pilot location vector defined in Chapter 3 and denoted by np. Such a structure has 

the immediate advantage of "robustness" . Any feedback scheme that relies directly on 

the channel gain values (such as the SER and capacity criteria above), will suffer from 

degradation due to information quantization. This is due to the continuous nature of the 

channel gains, HI, E ( C N .  The pilot allocation feedback scheme on the other hand enjoys an 

inherent quantized information space since np E i Z N p  where (CN and i Z N p  are the complex 

and integer vector spaces, respectively. 

5.2 Amount of Feedback 

In Chapter 3 we presented three solutions to the SNR optimization problem of Eq. 3.10; 

optimum solution, DEPO, DOPO. Each has an associated feedback overhead per channel 

realization: 

* Optimum Solution : Requires an exhaustive search of the solution set Zp. The car- 

dinality of this set is &I = ( N )  hence the number of feedback bits amounts to 
NP 

[log2 ( k ) ] .  For example a system with N = 32 sub-carriers and N, = 4 pilots would 

require [log2 (?)I = 16 bits of feedback. Such an overhead is overwhelming even for 

the most flexible feedback standards! 

* DEPO and DOPO Solutions : These solutions depend directly on the OFDM channel 

H gains, which is dynamic by nature. Hence an exact numerical value of feedback is 

not tractable here. Note however that in these methods half the pilots are allocated 

uniformly (to reduce interpolation noise). Hence the search state is of the order of 

[log2 which is strictly less than the optimum solution (9 bits for the example 

above). 

5.3 Feedback Reduction 

The Concept of Limited Feedback 

With each channel realization a new pilot index vector must be determined at the receiver by 

solving the optimization problem of Eq. 3.10. This problem can either be optimally solved 

be exhaustive search (or the GA algorithm of Chapter 4) at the receiver or sub-optimally 
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determined by the DEPO (Sec. 3.1.2) or DOPO (Sec. 3.1.2) methods. Regardless of the 

method, once np has been chosen it must be relayed to the transmitter for pilot allocation. 

Since the feedback lies in a finite integer field of variables (z?), the actual data values 

of np, {np(l), ..., np(Np)), need not be transmitted from the receiver. Obviously both the 

transmitter and receiver have offline knowledge of this finite integer field and the receiver 

may simply transmit the index, i.e. j, of the chosen vector within this finite field using a to- 

tal of B = log2(j) bits. The optimum solution, for instance, would transmit B = [log2 ($1 
bits per feedback transmission. 

Example: Assume that for Np = 4 the channel is such that the optimum pilot index is 

determined to be np = [I, 8,9,15] for N = 16. The cardinality of Zp is (g) = 1820 which 

can be represented with 11 bits. The vector np = [I, 8,9,15] may for instance be represented 

by 00101000101, known before hand4 by the transmitter and receiver5. 

The concept described above is generally referred to as limited feedback communications 

in literature. In limited feedback, the receiver and transmitter are equipped with identical 

look-up tables that are constructed offline. These look-up tables have the form of finite set 

codebooks. For our case, for example, the codebook can be denoted by a set of Q = (Zpl 

vectors of length Np each 

c = {n!), 4 1 , .  . . , niQ)}, I c ~  = Q. (5.6) 

The receiver first determines the optimum vector6, n p )  = nf ) ,  from this codebook 

and subsequently relays the index q to the transmitter using [log2 Q1 bits of feedback. 

Reducing Feedback by Clustering 

We propose the concept of codebook clustering as a means of reducing the feedback. The 

idea in codebook clustering is to partition the original codebook of (5.6) into a total of say 

Q' sub-sets where Q' 5 Q and construct a new, lower order codebook such as: 

4With perhaps a look-up table. 
'Note that this representation is different from the N-bit pilot representation of Chapter 4. 

' ~ o t e  that give the finite nature of z?, npt) is guaranteed to lie in the codebook. 
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where each fig) in the new codebook of (5.7), is a representation of several original ng)  in 

the old codebook of (5.6). More precisely each np is a function of several np 

Therefore to construct a clustered reduced-order codebook we must determine the operators 

and parameters of (5.8), which can be done in two steps: 

1. Determine a partitioning or selection criteria to determine ngl ) ,  n p ) ,  ... for each rep- 
- (') resentative np . 

2. Determine the mapping function 5 1.) thats acts on the partitioned vectors nf l) ,  ng2),  .... 

5.3.1 Vector Quantization - Generalized Lloyd Algorithm 

Vector quantization is a technique often used in lossy data compression in which the basic 

idea is to code values from a multidimensional vector space into values from a discrete sub- 

space of lower dimension. Vector quantization can be efficiently implemented using the well 

known generalized Lloyd algorithm (GLA) [16], [21] and [18] (with enhancements reported 

in [ l l ] ) .  The GLA is basically an extension of the theory of non-uniform quantization to 

vectors and matrices. Instead of giving a full treatment of the subject we look at how the 

GLA can be used in the context of our problem; codebook clustering. The GLA method 

is an iterative quantization method that converges to an optimum quantization while mini- 

mizing some user defined distortion function. The distortion function is design specific, and 

here we choose the minimum mean square error function given by 

The design of an optimal quantizer is to seek the codebook that minimizes the average dis- 

tortion over all possible codebooks. It can be easily shown that the optimal quantizer must 

satisfy the following two conditions [18]: First, it must be a nearest neighbor quantizer, i.e., 

it assigns to an arbitrary vector the codeword that is closest to it (the selection criteria 

above). Second, for a given partition of the feature space, it must satisfy the centroid con- 

dition, i.e., each codeword must be the centroid of the vectors that are mapped to it (the 

7 ~ h e  elements of each n, vector are sorted from smallest to greatest to render the Euclidean distance 
meaningful. 
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mapping function above or 5 ( -1) .  

We will design our vector quantizer to satisfy both these condition. The clustering 

algorithm is summarized below: 

Training: Randomly generate a codebook of channel gains 7-l = {H('), ~ ( ~ 1 ,  ..., H ( ~ ) }  

according to the complex Gaussian channel model. 

For each channel within this codebook determine the corresponding optimum (or sub- 
(1) (2) optimum) pilot index vector and construct C = {np , np , . . . , nLM)}. 

Of the M pilot index vectors of C randomly choose Q' to construct the initial8 pilot 
(1) (2) index codebook Cb = {lP,,, l,,, . . . , n , ,  

-(Q')}- 

Set i = 1 as the iteration counter. 

Clustering: Partition the vectors of C into a total of Q' Voronoi regions (quantization 

regions) using a minimum distance criteria. The nth region is defined as 

Construct a new codebook Ci, with the nth vector given from the nth Voronoi region 

as 

where the last step is an approximation by choosing the center of mass (centroid) of 

the Voronoi region. 

If V(Ci) - V(C{-l) 5 e or i 2 I, terminate the algorithm. Otherwise set i = i + 1 and 

go to step 5. The distortion function V(.) is defined in (5.9) and can be approximated 

with the centroid similar to step 6, (5.10). 

 his is one of the many ways of initialization and not necessarily the optimal. 
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8. Since the approximation of (5.10) leads to ii?) f z?, the pilot index vectors of the 

final codebook will not necessarily lie in z N p  as required. Hence as a final step we 

round the codebook to the lowest (or highest) integer valuesg: Ci = round {Ci). 

Note that we leave the rounding operation for after the termination of the iterations to 

avoid excessive and unnecessary errors at  the intermediate steps. In other words we relax 

the integer condition of np in the iterations but reinstate it after termination1'. 

Another parameter of interest in the vector quantization process is the entropy of the 

quantizer at  each iteration which gives a feeling of how many bits are necessary to reach a 

given precision for the quantizer. Since the total number of training symbols is M (step I),  

at  each iteration i, the probability of a training vector (step 2) belonging to the qth Voronoi 

region is 

where IQ,~(~) is the cardinality of region q at the ith iteration. The entropy is defined as 

5.4 Numerical Results 

5.4.1 Codebook Design 

The GLA described above was run with an initial training set of 5 x lo4 randomly 

generated OFDM channels. A total of 4 separate codebook where designed with each case 

corresponding to 1,2,3 and 4 bits of feedback, i.e. Q' = {1,4,8,16). Fig 5.2 shows the 

respective entropy and distortion functions calculated at each iteration for each codebook. 

The GLA terminated after 5 iterations due to the saturation in the entropies as is evident 

from Fig 5.2. 

'Assuming here that the GLA has iterated a total of I times. 
''We simulated both situations where the codebook is rounded per iteration and the case where the 

rounding is left to after the iterations. The results showed nearly identical results. 
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5.4.2 SER Performance 

To test the performance of the GLA codebooks of Fig 5.2, we simulated an OFDM system 

using a QPSK modulation scheme with a channel length of L = 4. The total number of 

pilots (uniform and non-uniform) in all cases was set to twice the NR or Np = 8. N = 64 

sub-carriers are used and the channel is practically static in time by setting Fd = << 1. 

The SER curve shows considerable degradation in using the quantized codebooks designed 

above. However in all cases the performance is still better than the uniform allocation. Note 

also, the vast amount of feedback reduction in using the codebooks. For example a pure 

DEPO solution (the unquantized curve of Fig. 5.3) would require on the order of 19 bits of 

feedback per channel change. Finally we note from Fig. 5.3 that the SNR conservation per 

increase in feedback is roughly 1 dB per bit, which might be of importance in power limited 

application. Given a total power constraint the system designer may allocated a codebook 

ranging from a few to several bits of feedback to meet these requirements. 

5.5 Chapter Summary 

In the light of the often huge feedback requirements in using (sub)optimal pilot allocation 

in OFDM systems, we suggested the use of vector quantization to reduce the feedback 

overhead. We tailored the GLA using a MMSE distortion function to design finite bit 

codebooks for the determination of the pilot locations. The designed codebooks converged 

after 5 iterations reaching acceptable output entropy rates in all cases. We also simulated 

the SER of such codebooks and compared the performance with uniform allocation and also 

unquantized solutions. We noted that with each one bit of feedback roughly 1 dB power 

may be conserved at the transmitter. 
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Figure 5.1: OFDM system model with limited feedback pilot allocation 
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Figure 5.3: SER performance of non-uniform pilot allocation (DEPO) with limited feedback. 



Chapter 6 

Extension to Multiple Antennas 

The multi-path nature of wireless channels often leads to the destructive addition of signals, 

leading to what is commonly referred to as deep fades. Signals received on, or near, the 

fade locations suffer from very high phase derivatives and low amplifications which often 

renders their correct detection hopeless. "Diversity" is one of the most sought out features 

in modern wireless communication systems for alleviating such a phenomenon1. OFDM- 

based systems, for instance, carry with them an inherent diversity in the frequency domain. 

Two sub-carriers separated by the coherence bandwidth will on average experience inde- 

pendent fading. From a simplistic point of view, hence, it may be desirable to transmit 

the same signal on these frequencies in the hopes that at  least one will survive deep fading. 

In practical single-antenna OFDM systems, frequency diversity is obtained by coding and 

interleaving across the sub-carriers; a technique also known as bit-interleaved coded modu- 

lation (BICM) [7]. We will not be dealing with BICM here, nor do we tackle the problem of 

diversity maximization and coding. As of the year 2007, the combination of multiple-input 

multiple output (MIMO) systems and OFDM technology, i.e. MIMO-OFDM, seems to be 

the most promising proposal for fourth-generation mobile cellular system air interface. In- 

spired by this movement, in this chapter, we will extend the non-uniform pilot allocation 

scheme introduced in the previous chapters to a simple MIMO-OFDM system employing 

two transmit and one receive antennas. To exploit space-time diversity we opt to employ 

the Alamouti space-time block code (STBC) first introduced in [I]. The Alamouti diversity 

'Mathematically, the diversity order determines the slope of the probability of error versus SNR curve in 
a log-log scale at asymptotic SNR. 
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scheme is well known and fully analyzed in literature. Omitting trivial observations, we 

immediately begin by deriving the channel estimation process for Alamouti STBC-OFDM 

with general pilot locations. We finish with simulated results and comments. 

6.1 Alamouti STBC-OFDM 

An Alamouti space-time block coded OFDM (ASTBC-OFDM) system is shown in Fig. 6.1. 

Consider two successive OFDM symbols Sk and Sk+1 in time. Following the notation of [19], 

denote the first symbol as the odd symbol So and the second as the even symbol S,. For 

the first antenna, So is transmitted during the first time slot followed by -Sz in the second 

time slot. For the second antenna, Se is transmitted first followed by S z .  Since at each time 

instance two OFDM symbol are transmitted into the channel, to make future comparisons 

with single antenna systems fair in terms of power, we reduce the power of each symbol by 

half. Equivalently these symbols are encoded in space and in time to form the transmission 

matrix: 

where the columns and rows of G2 represent temporal and spatial (antenna) dimensions 

respectively. Assume that HI and H2 are the CFRs between the single receiver antenna 

and the first and second transmitting antennas respectively. Also assume that these channels 

are constant and independent of each other during the two consecutive OFDM time slots. 

The received signals in the corresponding time slots are 

which can conveniently be shown in matrix form: 

where N1 and N2 are uncorrelated AWGN with identical correlation matrices of ailN. 
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Figure 6.1: Alamouti 2 x 1 STBC employing OFDM, transmitter and receiver models. 

Channel Estimation 

Assume as in Chapter 4 that the pilots locations can be represented by a (diagonal) matrix 

X = diag {x(l), x(2), . . . , x(N)) ,  where x( j)  E {0,1) for 1 5 j 5 N. If the jth sub-carrier 

is a pilot symbol then x ( j )  = 1 and x( j )  = 0 otherwise. Therefore the received signals at  

the pilot locations only are 
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N1X 

where [ :: ] = [ ] and s, is a known pilot symbol and we have defined 
N2X 

Multiplying both sides of (6.5) by 1 s H  and considering the CIR on the right hand side we JZ p 

The zero-forcing solution to (6.6) is 

Data Detection 

Once the channel has been estimated, data detection can be performed by rewriting (6.2) 

as2 

H  

multiplying both side by 

'we understand that H I  and H2 here are N x N diagonal matrices and So and S, are length N column 
vectors. 
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where W1 and Wg are independent AWGN with covariance matrix of 2NaEIN. The trans- 

mitted symbols are disjointly decoded using this final set of equations3. 

6.2 Numerical Results 

We simulated an A-STBC-OFDM system4 with 2 transmit and 1 receive antenna (2 x 1). 

The channel length is L = 4 and the number of sub-carriers was set to N = 64. A total of 

N, = 8 pilot tones are distributed within the sub-carriers for channel estimation purposes. 

In one scenario the pilot are allocated uniformly and in another scenario they are allocated 

using the DEPO method of Section. 3.1.2. Fig. 6.2 shows the average SER performance of 

both scenarios including the single antenna case of the previous chapters in a wide range 

of SNRs. In the low SNR regime (5  10 dB), the performances of both uniform and non- 

uniform schemes are essentially equivalent. In the high SNR regime where fading is the 

dominant factor, there is considerable improvements using non-uniform pilots both for the 

1 x 1 and the 2 x 1 case. This is mainly due to the fact that the non-uniform technique(s) 

masks or fills these fade locations with pilots. For example, at an error rate of the 

non-uniform 2 x 1 allocation scheme can save on average 5 dB in transmitter power compared 

to uniform 2 x 1 allocation. Interestingly, a comparison of the slope of the SER curves is 

an indication that the non-uniform pilot allocation is also enjoying frequency diversity in 

addition to space-time diversity from the Alamouti STBC. 

6.3 Chapter Summary 

We extended the framework of non-uniform pilot symbol to MIMO-OFDM systems. In 

particular we looked at a 2 x 1 Alamouti STBC and derived an expression for the channel 

estimation using arbitrary pilot locations. Finally we simulated the SER performance of the 

non-uniform pilot allocation in conjunction with this multiple antenna configuration. The 

results show considerable improvements in SER, especially at high SNR where diversity is 

the primary factor in performance. 

3 S ~ ~  calculation is of course carried out only on the data location given by the (I - X) matrix. 

4The IEEE 802.16 or WiMAX protocol has a transceiver mode similar to this configuration. 
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Figure 6.2: SER performance of Alamouti STBC-OFDM with non-uniform pilot allocation. 



Chapter 7 

Conclusion 

The primary focus of this thesis was to improve conventional OFDM channel estimation 

when feedback is made available to the transmitter. The objective function, i.e. cost 

function was the average SNR at the OFDM receiving antenna. Basic fundamentals of 

OFDM and the mathematical foundations of conventional PSACEOFDM were the subject 

of the first two chapters. Chapter 3 showed how in the case of feedback, the optimum pilots 

are not necessarily equi-spaced. Subsequent novel contributions included: 

The utilization of a branch of evolutionary computational mathematics called genetic 

algorithms to solve for the optimum pilot locations (Chapter 4). 

Reduction in the feedback overhead using codebook clustering and the generalized 

Lloyd algorithm (Chapter 5) .  

Extensions to MIMO-OFDM and Alamouti STBCs with mathematical derivations 

(Chapter 6). 

Simulations were carried out to assess the performance of the new PSACE scheme in both the 

single antenna and in the MIMO-OFDM cases. Significant improvements were seen in both 

cases as a result of using optimum and even sub-optimum solutions to the pilot locations. 

When possible, these numerical results were validated with theoretical derivations. 



Appendix A 

Alternative Derivation of MSE 

In this appendix we derive the MSE as a function of sub-carrier index and also the total 

MSE for each OFDM symbol. 

From (2.9) the per-carrier channel mean square error (MSE) is 

For uniform allocation we have 
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Using (A . l ) ,  (A.2) and the fact that  ( G G H ) ( ~ , ~ )  = L we have 

and the total MSE is 

which is identical to  (2.31). 



Appendix B 

Average SNR derivation 

We derive an expression for the average SNR at the OFDM receiver. Rewriting the average 

SNR from (3.2) 

The first noise power terms in (B.l) depends on the interpolation. Using (2.10) 
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where we have used the norm definition 1 1 ~ 1 1 ;  = tr AHA and the identity tr {AB) = { 1 
tr {BA) with repeated use of the interchangeability of the trace and expectation operators. 

We also used the assumption that Hk is deterministic to assume that the interpolating 

matrix PI is also a deterministic (but unknown) function of Hk, i.e. IE {P$P~}  = P ~ P ~ .  

The second noise power in (B.l) is 

The expression in (B.l) therefore simplifies to 
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This result can be further simplified by using the fact that 

Substituting (B.5) into (B.4) we get the final result for the predicted average signal to noise 

ratio of the output at time k 
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