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Abstract 

Two-level factorial and fract,ional factsot-id designs have playcd a prominent role in 

the theory and pract,ice of experimental design. Though commonly used in indust.ria1 

experiments to identify the significant effects, it is often undesimble to perform t,he 

trials of a. factorial design (or, fractional factorial design) in a complet,ely random 

order. Instmead, restrictions are imposed on tJhe randomization of experirne~it~al runs. 

In recent years, considerable attentlion has been devot,ed to fact(oria1 and fractional 

fa~t~orial plans with different randomization restrict,ions (e.g., nested designs, split,-plot 

designs, split-split-plot designs, strip-plot designs, split-lot designs, and combinatiorls 

thereof). Bingham et al. (2006) proposed an approach to represent. t,he randomization 

structlure of factorial designs with randomization restri~t~ions. This thesis introduces 

a related, but more general, rcpresent,ation referred to  as randomization defining con- 

trast subspaces (RDCSS). The RDCSS is a projective geometric f~rmulat~ion of mn- 

domization defining contrast subg~oups (RDCSG) defined in Bingham et al. (2006) 

and allows for t,heoretical st,udy. 

For factorial designs with different randomization struckures, the mere existence 

of a design is not straightforward. Here, the t'heoretical results are developed for 

the existence of fact,orial designs wit,h randomization restrictions within this unified 

framework. Our theory brings t,ogether results from finite projective geomet,ry to 

establish the existence and construction of such designs. Specifically, for the existence 

of a set of disjoint, RDCSSs, several results are proposed using ( t  - 1)-spreads and 



partial (t  - 1)-spreads of PG(p- I , ? ) .  Furthermore, t'he t'heory developed here offers a 

sy~t~emat~ic approach for the const,ructtion of t,wo-level full factorial designs and regular 

fractional factsorial designs with randomization restrictions. 

Finally, when t,he ~ondit~ions for the existmeme of a set of disjoint RDCSSs are vio- 

lated, the data analysis is highly influenced fro111 the overlapping pat,tern among the 

RDCSSs. Under t,hese circumstances, a geometric structure called star is proposed 

for a set of (t - 1)-dimensional subspaces of PG(p - 1, q) ,  wherc 1 < t < p. This 

c~periment~al plan permits the assessment of a relatively larger nnmber of fact,orial 

effects. The necessary and sufficient conditions for the exist,ence of stars and a collec- 

tion of stars are d so  developed here. In particular, stars ~onsti t~ute useful designs for 

practitioners because of their flexith structure and easy construction. 
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ktroduct ion 

i the initial stages of experiment,at,ion, factorial and fra~t~ional fa~t~orial designs are 

~mmonly used t,o help assess the impact of several factors on a process. Ideally one 

.auld prefer to perform the experimental t'rials in a completely random order. How- 

ver, in ma,ny applications, experi~nenters impose restrictions on the randomization 

f the trials. These restrictions arc often due t'o linlit,ed resources or the nature of the 

~perirnent'. Thus, it is oftmen infeasible or impractical t,o completely randornizc the 

:ials. In recent, ycars, experimenters have devoted considerable atkntion to factorial 

nd regular fractional factorial layouts with restrict,ed rand~mizat~ion suc,h as blocked 

esigns, split-plot designs, strip-plot designs and split,-lot designs. The treatment, 

n c t u r e  of t,hese fact(oria1 designs is the same as that, of their completely randomized 

x~nt~erpart,  but, they differ in their randomization structure. Furthermore, because 

f the different randomization restrictions t,he factorial designs have to be analyzed 

st 

cc 

0. 

different,ly. 

A review of the literature reveals that. separate approaches have been taken t,o con- 

struct the common designs with randomization restrictions following facttorial strut- 

t,ure. For example, striy-plot designs have been constr~ct~ed using Latin square frac- 

tions (e.g., Miller, lggi'), while graphical t,echniqucs were used to construct, split'-lot. 



designs (e.g., Taguchi, 1987; Mee and Bates, 1998; Butler 2004). Blocking in dif- 

ferent factorial designs have been e~t~ensively studied using different  neth hods (e.g., 

Sitker, Chen and Feder, 1997; Mukerjee and Wu, 1999), and different split'-plot designs 

have been provided by Huang, Chen and Voelkel (1998); Bingham and Sit,t,er (1999); 

Bisgaard (2000) ; and But,ler (2004). 

Oc.c.asionally, at,tempts have been ma.de tBo st,udy factorial designs witah several dif- 

ferent, randomization restrictions in an unified framework. For instance, Pat#t,erson and 

Bailey (1978) used "design keys" to  constxuct factorial designs with randorriization 

restrictions defined by blocked, nested, crossed s t r~c t~u re  and combina,tions thereof. 

The not,ion of design keys was first introduced by Patterson (1965). R.ecently, Bing- 

ham et al. (2006) proposed an approach to represent t,he randomizat'ion st,ruct.ure of 

fadorial designs wit'li different ra.ndomization re~trict~ions. This approach unifies the 

representtation of sllch designs, a.nd can be viewed as a generali~at~ion of the block 

defining contmst subgroup (Sun, V\Tu and Chen, 1997)! except, that t,here is a random- 

iza.tion defining contrast subgroup (R.DCSG) for ea,ch st,age of ra.ndomizat,ion. The 

formulat'ion proposed in Bingham et al. (2006) uses randon~ization restriction fa,ctors 

instead of blocking factors. 

This thesis proposes a related but,, more general struct,ure referred to a,s random,- 

ization de,fining contrast subspace (R.DCSS). The RDCSS met,hodology is a projectjive 

geometric formulation of R.DCSG defined in Bingham et al. (2006), and allows for the- 

oretiml development of suc,h designs. The RDCSS formulatjion allows us to study these 

designs under this unified fra,mework. For in~t~ance, it tjurns out t,hat in some cases 

the exist,ence of good facttorial designs with randomization rest,rickions is non-trivial. 

In this thesis, we establish the necessary and sufficient, conditions for the exist,ence 

of such designs. Of course, these designs are useful from a pra~tit~ioner's viewpoint 

only if they can be constructed. Assuming the existence, we develop 

algorithms for full facttorial and regular fractional fact,orial designs with different ran- 

domization restrictions. On t,he other hand, when a desired factorial design does not, 



exist, alt,erriative designs are proposed. 

To find designs for a part,icular rand~mizat~ion struct,ure, and est,ablish u~het~her 

or not a design even exist,s, Bingham et al. (2006) had used an exhaustive computer 

search. The for~r~ulation presentled in this thesis does not require an exhaustive search 

t,o conclude the existence of a. desired design. In some cases. h t , h  t,he existence and 

construction can be ct~t~ablished direct.ly, whereas in ot,her cases, one can search for 

the desired design in a reduced search space. 

The designs obtained by Bingham et al. (2006) frequent,ly did not. allow tjhe 

assessment of all the fart(oria1  effect,^. This is because of the desire t,o use half-normal 

plot,s t,o assess t,he effects, but many of the effects have a different. variance. When there 

are t,oo few effects wit,h ident,ical null distribution one must sacrifice the assessment of 

some of t,he effects. We propose new designs called stars and galaxies that are aimed 

at assessing as many effect,s as possible. The results proposed here cover a wide range 

of settings with both small and large run-size. 

It is wort,h noting that designs with randomization rest,rict,ions oftfen have larger 

run-size than ~omplet~ely randomized designs. This is because at each strage of ran- 

domization multiple experimental units are processed ~imult~aneously, t,h~is t,ypically 

reducing cost and t,ime. For example, Jones and Goos (2007) used a 128-run D- 

optimal split-split plot design to analyze the cheese-making experiment described in 

Schoen (1999), and in the polypropylene experiment, Jones and Goos (2006) used a 

100-run design. Mee and Bates (1998) have considered 64-wafer designs aud 81-wafer 

designs for the i~itegrat~ed circuit experiment. To identify the significant fact.ors in t,he 

bat,tery cell experiment, Vivacqua. and Bisgaard (2004) performed a 64-run design. 

Bingham and Sit,ter (2001) halve used a 64-run design for t,he wood product experi- 

ment,, and Bingham et al. (2006) have used a 32-run design t,o analyze the plut,onium 

alloy experiment,. 

This thesis is organized in tthe following manner. The next chapt,er starts with an 

overview of common factsorial designs with different randomization restrictions and 



then a review of the finit,e projective geometric representatlion of factorial designs. 

Lat,er in Chapt,er 2, we elaborate on the notion of RDCSS. A framework is proposed 

in Chapter 3 that can be used tto express the response models for fact,orial designs 

with different randomimt,ion restrictions under the unified notion first introduced in 

Bingham et d. (2006). Furthernlore, the impact of RDCSS structure on the linear 

regression model for factorial designs is discussed. The main results of this chapt,er 

demonstrate that tJhe distribution of an effect estimat,e depends upon its presence in 

different, RDCSSs. This in t,urn motivates one t,o find disjoint subspaces of the effect 

space P that can be used to construct RDCSSs (where P is the set of all fact.oria1 

effects in a 2' full factorial design, or a 2n-k regular fractional factlorial design with 

p = n - k) .  In Cl~apt~er 4, conditions for t,he existence of a, set of disjoint subspaces 

of P are derived. The construction algorithms are also developed here for factorial 

dcsigns claimed tjo exist,. When t,hese necessary and sufficient condit,ions are violat,ed. 

overlapping among the RDCSSs cannot be avoided. Since tjhe a,ssessment of factorial 

ef•’'ect,s on a process is the objective of the e~periinent~at~ion, it may appear that t,he 

overlapping a,mong t,he RDCSSs is a problem. This is oft>er~ the case, but it t,urns out, 

that one can propose design strategies t,hat use the overlap among different R.DCSSs 

as an advantage. Both the existence and construction of such designs are developed 

in Chapt,er 5. 

Finally, the work done for t,his thesis focuses on full factorial layouts, however 

the main results are easily e~t~endable to regular fractional factlorial designs. This is 

briefly outlined at the end of Chapter 4. Moreover: the results developed in Chapter 

4 and 5 are presented for two-level factoria.1 designs only. These results ca,n be easily 

generalized to q-level factlorial designs. 



Chapter 2 

Preliminaries and Notations 

Two-level full fact,orial and fractional factorial designs are widely used in industrial 

(Box, Hunt,er and Hunter, 1978) and agricultural (Kempt horne, 1952; Cochran and 

Cox, 1957) experiments t,o assess the impact of facttorial effects on a process. Though 

an ideal choice, when designing a factorial experiment, it is often impossible or irn- 

practical to completely randomize the e~periment~al units. The resultsing experiment,al 

plans have randomizat,ion restrictions on the t,rials, which impacts the dat,a analysis. 

We first provide an overview of the hwelevel fact,orial and fractional factorial de- 

signs in Section 2.1. Then, a review of factorial designs wit,h common randomization 

restrictions (e.g., blocked designs, split-plot designs, strip-plot designs, split,-lot de- 

signs and combinations thereof) is presented in Section 2.2. In Section 2.3, a finit,e 

projec,t,ive geomet,ric representation of factlorial designs is outlined. This represenh- 

tion is specifically useful for unifying the factsorial and fractional factorial designs wit>h 

different randomizat,ion restrictions, which is outlined in Section 2.4. 



2.1 Factorial and fractional factorial designs 

Factorial designs are widely used in experiments involving several fact,ors where it, 

is necessary to  study the impact of t,he factors or fador combinations on a process. 

Spccial cases of the general factorial designs are widely used in scientific endeavors 

and they form the basis for ot.her designs of considcrable practical value. The most, 

importzmt among these special cases is the factJorial design with p factors, each having 

t,wo levels. These levels may be quantitative or qualitative witJh levels corresponding 

t.o the "high" and "low" levels of a factJor, or perhaps the presence and absence of 

a. chemical. A full replicate of such a design requires 2p obser~a~t~ions and is called 

a 2P full .factorial design. The set of all level combinations can be represented by a' 

2 P  x p matrix of - 1's and +l 's, where f 1's represent, the t,wo levels of each fact,or, 

respectively. 

Exompbe 2.1. Corisider a facborial design with 3 tlwo-level fact,ors. The set of all level 

combinations for the 3 independent fact,ors can be writ,t,en as: 

A B C  

-1 -1 -1 

-1 -1 1 

-1 1 -1 

-1 1 1 

1 -1 -1 

1 -1 1 

1 1 -1 

1 1 1  

In general, for p independent factors, the matrix 2) obtained in a similar fashion is 

called tJhe 2 p  .full .factorial design matrix. The set of columns corresponding t,o all the 

main effech and int,eractions is called the 2* full factoria,l model matrix, denotcd by 
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X. The corresponding model matrix X for the 23 design is given by 

ABC 

- 1 

1 

1 

-1 

1 

-1 

-1 

1 

This representa.tion of the fact,or level combinations is convenient since the columns 

of X denot>e the linear contrasts that estimate the main effects and int,eractions in 

a normal linear regression model by X1Y/2P, where Y is the vector of ob~ervat~ions 

corresponding to  t,he factor level settings of each row of D (for det,ails on the response 

model of int,erest, see Chapter 3). 

2.1.1 Fractional factorial designs 

As t,he number of fac.t,ors in a 2 P  fxt,orial design increases, the number of trials required 

for a full replicate of the design rapidly outgrows the resources mailable for many 

experimcnts. In such cases, one cannot perform a full replicate of t,he design and a 

fra~t~ional factorial design has to  be run. If the experi~nent~er can reasonably assume 

tha,t ccrtain interactions involving a large number of fact,ors a.re negligible, information 

on the lower order effects can be obtained by running a suitable fraction of the 2p  full 

factorial design. 

Two-level fractional factlorial designs are broadly divided into regular and non- 

regular fractional facttorial designs (e.g., Ta'ng and Deng, 1999). A regular fractional 
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fast,orial design can be specified in t,erms of a set of defining cont,rast,s. For example, 

if there a.re only enough resources for 2p-%xperinient'al trials: t,hen the choice of 

trials to b t  pcrformed is det,errnined by assigning X7 of t'lie factors tlo the ir~t,eract,ion 

columns of the 2P-qull fa~t~orial model matrix. These p - k factors are frequently 

called hasic factors and t8he addit,ional k factors are referred t,o as added factors (e.g., 

Franklin and Bailey, 1977; Cheng and Li, 1993; Bingham and Sitter, 1999). That is, 

a 2"-"^ regular fractional factorial design is constructled from the full factorial design 

generated from the p - k basic factors, wliid~ we call t,he base factorial design. For 

the results present,ed in this thesis, we only consider regular fractional factlorial designs. 

Ezurrr,ple 2.2. Suppose a tjwo-level facttorial design with 5 fact,ors has to be performed 

in 8 runs. That is, the design of interest is a 2"2 regular fractional factlorial design. 

The 3 basic factors in a 25-2 fra~t~ional factorial design are t8he three independent, 

factors (A ,  B,  C )  of the base fa~t~orial design (a 2"ull factorial design). The t,wo 

added fact,ors (D,  E) are assigned t,o columns chosen from the remaining columns of 

tjhe model matrix for the base factorial design. One possible assignment is D = AC 

and E = BC. That is, the level settings of D and E are determined by the columns 

corresponding t,o AC and BC,  respectively. Let I be t,he identit,y element (or, the 

colu~rl~l of 1's for t,he mean). Then, 

I = A C D  aud I =  BCE 

are called the fractional generators. From every A: independently chosen fractional 

generators, 2k - k - 1 more relations are derived. For example, I = A BD E is derived 

from I = ACD and I = BCE. The entire set of 2k - 1 relations, 

I = ACD = BCE = ABDE, 

forms the definin,g contrast subgroup, and thc t,erms ACD, B C E  and ABDE are called 

words. The number of factors in a word is called the length of a. word (or word-length). 
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Thus; a 2p-" regular fractional fact.oria1 design is co~ist~ruct~ed by k: inde- 

pendent fract,ional generat,ors from the set of all factorial effects in a 2P full factorial 

layout. Two dist,inct sets of frxtional generat,ors (or eq~ivalent~ly, defining contrast. 

subgroups) generak dist,inct 2-"ractions of a 2 p  full fact,orial design. That further 

int,roduces t.he notion of ranking among different 2-"ract,ions of a 2 p  full facttorial 

design. The ranking crit,eria are generally based on a, few operating assumptions t,hat' 

are common to many  experiment,^: 

0 T h e  eflect spa8rsity principle: only a few effects in a fa~t~orial experiment, are 

likely to be significant,. 

The  hierarchical o ~ d e r i n ~ g  prin,ciple: lower order effects are more likely t,o be 

significant t,han higher order effects. 

The  effect h,eredity principle: interactions involving significant ~nain effect,s are 

more likely t,o be active than ot,her int,erac,tiorls. 

Many of the ranking crit,eria are functions of t,he sequence of word-lengths (known 

as word-len,gth pattern) in the defining contrast subgroup. The c~nvent~ional crit,eria 

for ranking tjwo-levcl regular fractional factorial designs are (i) maximum resolut,ion 

(Box and Hunt,er, 1961), (ii) minimum aberrat,ion (Fries and Hunter, 1980), and (iii) 

maximum number of clear effect,s (Chen, Sun and Wu, 1993; Wu and Clien, 1992). 

The procedure for assessing the significance of the main effe~t~s and interactions 

does not depend on the "goodness" of the fract,ion. If the design used is a replicated 

factorial or fractional factorial design, the assessment of the factorial effects can be 

done by using the usual hypothesis tests based on t,he analysis of variance. For 

unreplicated factorial and fra~t~ional fact'orial designs, t,he significant factlorial effects 

can be identified using approaches such as half-normal plots (Daniel, 1959) or, for 

example, permutation t,ests (Loughin and Noble, 1997; Loeppky and Sitter, 2002). 

Half-normal plots were introduced by Daniel (1959) for assessing the significance 
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of factorial effect,s in unreplicat,ed 2Va1ct,orial and fractional factorial experiments. 

This is a plot of the ordered absolut,e value of effect cst,irnat,es against t,he percentiles 

( of the half-normal dist,rihut,ion, where all t,he fa,ct,orial effectts are negligible under tjhe 1 
( null hypothesis and the data is assunird to be i,i.d. rlorrnsl. In this thesis, we as- 1 
( sume that the da,t,a comes from a normal distribut,ion and the half-normal plot will be 1 

used as the main analysis tool. The following example (Montgomery, 2001) ill~strat~es 

( t,he use of a half-normal plot for identifying significant effects in a factorial experiment,. 1 

Emmyle 2.3. An unreplicated full factmial experiment is carricd out in a pilot plant 

to study the factors expected to influence tjhe filtration rate of a. chemical product 

( produced in a pressure vessel. The 4 two-level factors are t,ernperat,ure (A), pressure 1 
( (B), concentration of formaldehyde (C) and stirring rate (D) .  Table 2.1 displays I 
( the effect, est,imat,es for the 15 fa*t,orial effects obtained from t,he unreplicated 2' 1 
( completely randomized full factorial design. 

Ta,ble 2.1: Factorial effect est.irna.t,es f o ~  the c1iemic:al eiyeriment. 

EEkcts Est,irna.t,es Effects Esti1na.t.e~ 
A 21.625 B 3.12.5 
C 9.875 D 14.625 
AB 0.125 AC -18.125 
AD 16.625 BC 2.375 
BD -0.375 CD -1.125 
ABC, 1.875 ABD 4.125 
ACD 1 5  BCD -2,625 
.4BC,D 1.375 

The corresponding half-normal plot is shown in Figure 2.1. If none of t,he effects are 

(important,, the effect est,imat,es should d l  fall on a straight line. The effects det,ect,ed 1 
( t ,o  be far away from the straight, line suggested by the bulk of the estirnaks can be 1 
( considered significant. In Figure 2.1, all t'he effects except A, C,  D, AC and AD appear I 
to fall on a straight line. These five effects would be considered act,ive. 



Figure 2.1: The half-~lormal plot for the 15 fwtorial effects. 

An import,ant assumption of t,hc half-normal plot approach is that all the effects used 

in a half-normal plot have t.he same variance wit,h mean zero (i.e., urider the null 

hypothesis of no active effects, all the effect estimates are i.i.d. normal). 

For the above example, it was assumed t.hat the trials were performed in a, com- 

pletely random order, which ensures t,hat the effect estimates are independent and 

ideritically dist'ributed under the null hyp~t~hesis. Thus. only one half-normal plot is 

required to assess the significarice of all the factorial effech. If there are restrictions 

on the randomization of tshe experimental runs, the i.i.d. assumption is likely to be 

violated. To assess the significance of effects in the restricted randomization case, one 

would use separate half-normal plots for sets of effects having identical dist,ributions 

under the null hypothesis. Indeed, this a very important issue that ~notivat~es much of 



the work in t,llis thesis. As a matter of choice, one would elect t,o run n design wlier~ 

half-normal plots are constru~t~ed wit81-1 a reasonable number of effects per plot,. 

2.2 Factorial and fractional factorial designs with 

randomization restrictions 

The inabilit,y to perform ths t,rials of a factorial experiment in a ~omplet~ely random 

order is often due t,o imposed rand~mizat~ion re~trict~ions on t,he experiment t.rials. 

In recent. years, considerable at8tention has been devot,ed to factsorial and fractional 

factorial layouts with restricted randomization, such as blocked designs (Bisgaard, 

1994; Sitt,er, Chen and Feder, 1997; Sun, Wu and Chen, 1997; Cheng, Li and Ye, 

2004). split,-plot designs (Addelman, 1964; Box and Jones, 1992; Huang, Chen and 

Voelkel, 1998; Bingham and Sitter, 1999; Bisgaard, 2000; Trinca and Gilmour, 2001; 

Kowalski, Cornell and Vining, 2002; Ju and Lucas, 2002; Jones and Goos, 2006), 

strip-plot designs (Miller, 1997), and split'-lot designs (Mee and Bat>es, 1998; Butler, 

2004). Although the treat.meiit struc,t,ure of these designs are identical, thev differ 

in t,he randomization ~truct~ures. These designs are often larger than tJhc c~mplet~ely 

randomized designs. Thc following is a brief review of some common designs. 

2.2.1 Block designs 

In many sit,uat,ions it is impossible to perform all of the t,rials of an experiment under 

homogeneous condit,ions. In ot,her cases, it, might be desirable t,o deliberately vary 

the experimental conditions t,o ensure that the treatments are equally effectjive (or, 

robust,) across different situations that are likely to be en~ount~ered in practice. The 

design technique frequentfly used in such sit'uations is blocking. Because the only 

randomizatiorl of treatments is within the blocks, the blocks are said to represent tjhe 

restrictions on  ~andornization. 



Common block designs are randomized <:omplet,e block designs (RCBD), Lat.in 

square designs (LSD) and Graeco-Latin square designs (GLSD). In partji<:ular, for 

an unreplicated 2" factorial experiment, blocking induces incomplet,e block designs 

(ICBD) called blocked .fu,ctoriaZ designs. The t,echnique used for arranging the tria'ls 

of a 27' factorial design in blocks is known as confoun&ing. This t,echnique causes 

information about cert,ain facttorial effects (preferably higher order i~lt~eractions) t,o be 

confounded with blocks. To be precise, in a 2p fact,orial design wit,h blocks of size 2p-k 

each, 2k - 1 fact,orial cffect,s bec,oriie confounded with blocks. The technique used for 

partitioning the 2p experimental unit,s into 2"locks is similar to the construction of 

a 2"-k regular fractional factorial design. Indeed, Lorenzen and Wincek (1992) refer 

to bloc,king as a special case of fra~tionat~ion. The following example i1lu~t~rat.e~ the 

construction of a blocked fact,orial design. 

En;nmple 2.4. Consider a 26 factorial experiment, where the available resources consist 

of batches of only 16 ho~nogezieous experimental units. Thus, one has to run a blocked 

factlorial design in 4 blocks of size 16 units each. Let bl = ABCD and b2 = CDEF 

be the t3wo independent blockin,g .fusetors (Bisgaard, 1994; Sitter, Chen and Feder, 

1997). Then, the t,hird blocking fact,or is derived frorn the two independent ones: 

blb2 = ABEF. The resulting treatment structure is shown in Table 2.2. 

Table 2.2: The a,rrangenlent of 64 experimental units in 4 blocks. 

a cc lzc f 
ade ad f 
bce 
hde bd f 
cdef abcd 
abef al~cdef 

abce abci' 
abde abdf 
acdef 11cd 

bef bcdef 

c abc 
d ccf 

ac a f 
acde acdf 

be b f 
bcde bcdf 

def abd 
abcef abdef 

e abe 
cdo f 

ac accf 
ad adef 
be beef 
bd bdef 

c d f  abcde 
abf abcdf 

The presence of factorial structure in a blocked fact,orial design makes the analysis 



relatively easy compared t,o other in~omplet~e block designs. The blocking arrangement, 

for this example causes the 3 four-factlor int#eract,ions (bl  = ABGD, b2 = CDEF and 

b1b2 = ABEF) tjo be confounded witah t,he block effects. The ~rt~hogonalit'y among 

the columns of the model mat,rix ensures t,hat t,he error variances of the remaining 

factorial effectas are not impacted by the blocking effects. So, t,he significance of the 

remaining 60 effects can be assessed using a half-normal plot. 

2.2.2 Split-plot designs 

In many applications, an ideal choice is to run all possible t'reatment coxnbinatio~ls in 

a completely raridomized order. However, it may be difficult to change the levels for 

some of the fa~t~ors.  In such ~it~uations, the experimenter restricts the randomizatiori 

by k i n g  the levels of the hard-to-change factors and then run all combinations or a 

fraction of all combinatio~is of the remaining fact.ors. Such a strategy may lead t,o a 

split,-plot design. As a conve~ition, the hard-to-change fact,ors are called t,he whole-plot, 

facttors and t,he easy-to-change factors are called the sub-plot (or splibplot) facttors. 

This design was first developed and used for mainly agronomic experiments (k'ates, 

1937), but is applicable in many fields of experimental research. 

In a Z P  split'-plot design t,here are two types of factors: pl whole-plot. (WP) factors 

and p? sub-plot (SP) factors, where p = pl + p2. The experimental units where WP 

factors are applied are called whole-plots, and t,he experimental units where SP f x -  

tors are applied ase called sub-plots. We describe a 2p full factorial split'-plot design 

using a simple example. 

Elt.anzp2e 2.5. Consider the cheese-making example in Bingha.m, Schoen and Sit.ter 

(2004). Here, the authors studied t,he qua1it)y ~haract~eristics for the production of 

cheeses, where the cheese making process  consist,^ of two st,ages. In the first stage, 

milk is processed int,o bat,ches of curds. These curds are t,hen processed t,o produce 



cheese. The 4 two-level factors A, B, q and T were s~ispect,ed t.o be responsible for the 

poor qualit'y of cheese, where pl = 2 of these factors (A, B) affected the processing 

of t,he milk in the first stage, and the remaining p2 = 2 fact,ors (q, r )  were related 

to  the processing conditions to generat,e the curds used to make cheese. A designed 

experiment was used t,o inve~tigat~e the impact of these fact,ors on t,he resulting cheese 

quality. Since milk in a single tJank gives rise to  several bat,ches of curds, t,hey treated 

t,he milk in a tank under a randomly selected set,ting of A,  B as whole-plots, and the 

randomly selected settings of the processing conditions q, r as sub-plot fact,ors (see 

Figure 2.2). 

Figure 2.2: The split-plot design configuration. 

Here, W P l  represents the first tank of milk and SPl ,  ... ,SP4 denote t,he four batches 

of curds obt,ained from the first, tank of milk. 111 a completely randomized design, 

the variation is only due to  the variabilit,~ between plots. However. in split-plot 
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1 designs. there are two sources of variatiurr: between plot variability (WP variability) 

and wit(hi11 plot variability (SP ~ariabilit~y). In rnatrix notation, a, regression model 

( for the split,-plot experimental design is 

( where t,hr mean t e r~n  X p  consists of the regression parameters for all the fact,oriall 

( effects, and P, cSP are the whole-plot and wb-plot error vectors respectively. It 1 
( is assumed that t,he error tterms are mutually independent and normally di~t~ributed 1 

random variables. Furthermore, t,he analvsis of a split-plot design is different than 

( t,hat of t,he completely randomized design. The complet,e analysis of variance t,able 1 
for a 2 P 1 + P 2  fact,orial split-plot design with r repli~at~es is shown in Table 2.3. 

Table 2.3: The analysis of variance table for a split-plot design. 

Sources of Variation d f 
Replica t,es r - 1 
Whholc-plot andysis: 

WP effects  PI - 1 

WP*SP iiiteractio~i effect,s 2" -PI 

SP error (T - l ) ( Y -  2 P 1 )  
Tot,al 1.2" 1 

Similar to block designs, the set of n. experimental unit,s are divided into subsets 

((sub-plots). However, no prior inf~rrnat~ion is available regarding thc significance of 1 
(the factors used for partitioning t,he experimental mlits. Thus all the factorial effects 1 
have to be assessed. If the design is replicated r > 1 t,imes, then the usual ANOVA 

based hypothesis tests can be performed. If the design is ~nreplicat~ed, t,wo separate 

pdf-normal plots are required to assess the significance of the 2 P  - 1 fa~t~orial effects 1 
[one for the WP effects and one for the SP effects). 



2.2.3 Strip-plot designs 

St,rip-plot configurations can be an economically at,trac:tive option in ~it~uations where 

t,he process being investigated can be sepa.ra,t,ed int,o t,wo distinct stages, and it is 

possible to apply the second stage simultaneously t,o groups of first'-st,age outcomes. 

It. is common to represent a stripplot structure as a, rectangular array of experimen- 

t,al units where one set of factors is applied to the rows and another set of factors is 

applied to the columns (e.g., see Mead 1988). These designs are also known as row- 

column designs. Strip-plot designs are also called strip-block designs (e.g., Vivacqua 

and Bisgaard, 2004). 

Emrrqle 2.6. Consider t,he washer-dryer example in Miller (1997). Here, a, manu- 

facburer of household appliances wanted to investigate different methods of reducing 

the wrinkling of clotlhes being laundered. In the first stage of the experiment,, sets 

of cloth samples were run t,hrough one of four washing machines. Once the cloth 

samples were washed, the samples were divided into four groups such that each g o u p  

~ont~ained exact,ly one sample from each washer. In t,he sec,ond stage, each group of 

samples were assigned t,o one of four dryers. Once dry, t,he cxt,ent of wrinkling on each 

sample was evaluated. Let thc washer configuration be represented by a 22 design 

in fact.ors (A, B), and the dryer c~nfigurat~ions by a 22 design in factors (a, b). The 

design st>ruct,ure for t'his experiment is illustrated in Figure 2.3. 
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Washers 

1 

2 

3 

4 

Dryers 

Figure 2.3: The row-column design ~r.rlangm~ent. 

The entire experiment requires only four washer loads and four dryer loads, producing 

16 observations, whereas a conlplet,ely randomized design using four washer loads and 

four dryer loads would only produce four observations. That is, the strip-plot design 

allows a larger number of treatment conlbinat,ions to be investigated for t,he same 

amount of experimental resources. A model to describe this set#t,ing is 

where X,/3 is the mean t'erm consisting of the regression paramet,ers for the factorial 

effects, E' and are the error vect.ors associa.ted wit,h the rows and columns respec- 

tively, and E is the replication crror a.ssociated wit,h t,he experimental units. All three 

error terms are assumed to be mut,ually independent and normally dist,ribut,ed. UThile 

convenient in resource usage, the analysis of the dat,a obt,ained from thc experiment' 

can be relat,ively complex compa.rcd to the ca.se of a ~omplet~ely randomized design. 

The a.na.lysis of variance tJable of a replicated 2p1+p2 factorial stripplot design with pl 

row fa,ctors, p:! column factors and r replicat,es is shown in Table 2.4. 



Tahlc 2.4: Thc analysis of variai1c.e tal)lc for a strip-plot dcsign. 

Sources of iTariat,ion d f  

Row  effect,^ 2P1 - 1 
Error (row) ( T -  l ) ( P  - 1) 
Colwnsn unalyszs: 

Error (colunln) ( r  - 1)(27)2 - 1) 
Unzt an,alys7s: 

Row*Cohmm iiiteraction effects (2"' - 1)(2pz - 1) 
Error (unit ) ( r  - l ) ( P  - 1)(Y2 - 1) 
Total r2" - 1 

Similar to split-plot designs, the facttorial effects involved in the grouping of the ex- 

perimental units int.0 rows and columns are analyzed separately. 

2.2.4 Split-lot designs 

Split,-lot factlorial designs are liseful for experiments where the product is formed in 

a number of distlinct processing stages wit11 each stage containing a certain number 

of factors. This can be viewed as a generalization of strip-plot designs wit'h 2 or 

more stages. The design is set up so that the set,tings of t,he factors a t  each processing 

st,age are used on mult,iple experimental units. Consequently, at cach processing stage 

the design has a split-plot (or split-unit,) struct,ure. As with split,-plot designs, thc 

split-lot struct,ure allows for economical use of resources with some additional analysis 

complexi t,y. 

A review of the literature indicates that, split,-lot factsorial designs wcrc first con- 

sidered by Taguchi (1987) under the name of ~nultiway split'-unit designs. The con- 

st,ruct,ion of split-lot factorial designs was pioneered by Mee and Bat,es (1998). They 



used split,-lot designs for the fabrication of intJegrat,ed circuits in the semiconductor 

indust,ry. In their article, Mee and Bates found designs in cases where t,here are marly 

processing stages, with pot,ent,ially many facttors. Andher important appli~at~ion of 

split,-lot designs is in product assembly. In (Bisgaard, 1997), the processing st,ages 

were the various parts of a product and the fact,ors were certain ~pecificat~ions of eadi 

part. At, each processing stage, the design is equivalent t,o a split-plot design where 

t,he factors for t,hat st,age are tjhe whole-plot factors. The expe r i~~~e r~ t a l  units are thus 

separated at, each stage into whole-plot,s (or sub-lots), which are processed together for 

that st,a,ge. More recently, Butler (2004) proposed a construction method for split-lot, 

designs using a grid representation technique. The designs found by Butler (2004) 

have minimurn aberration under the split,-lot struct,ure and in some sense minimize 

the confounding of main effects and two-factor int,erac:tions with t,he sub-lot,s. 

Emrr~ple 2.7. Consider a 24 full factorial experiment where t,he e~periment~al units are 

processed t,ogcther in 3 stages. At Stage 1, the 16 experimental units are split int,o two 

sub-lots (Bll, B12) c~nsist~ing of eight units each. These t,wo sub-lots are processed 

separat,ely and in random order: one at the low level of A,  and the other at the high 

level of A. Once the processing is done for Stage 1, all of the experimental units move 

to Stage 2. The 16 units are again split int,o two sub-lots (B21, B22) of size eight each 

such that Bql c:onsists of four units chosen from Bll and four units randomly chosen 

from B12. Then, t,he t'wo sub-lot<s (BZ1, B22) are processed separately at the low level 

and high level of B. Similarly, a t  Stage 3, t,he sub-lots B32) of size eight each 

are formed such that BS1 consists of four units from Bll that are a combination of 

two units each from BZ1 and BZ2. Finally, the ot,her four units of B3i are from BIZ 

such t,hat there are t,wo units ea,ch from BPI and B22. A realiza,t,ion of the allotment, 

of a,ll the experimental units in differer~t sub-lots is shown in Figure 2.4. 



Figure 2.1: A split,-lot desigu struct,ure for a three-st'age process. 

The numbers (1, . .. , 16) in Figure 2.4 denot,e the 16 experimental unit,s. Although 

the design c~nfigurat~ion shown in Figure 2.4 seems simple, split,ting the experimental 

units into sub-lots using the method described can sometimes be cha.llengi11g. The 

following methodology is a general approac,h for ~plit~ting the experimental units int,o 

different sub-lots. 

In Example 2.7, let all of the 16 factor combinations be randomly assigned t,o the 

16 experimental units as indicated in Table 2.5. 



Then, the experimental units can be assigned to the sub-lots using t,he following rule: 

Table 2.5: A design matrix 

!/, 
y2 

y j  
y5 
yfj 
y 7  

y!, 
yl" 
?Ill 

y12 

g13 

v14 

y15 

ylb 

where Qd(i) is the entry in t,lie i-t,h row of the column corresponding to the factorial 

for a 24 full factorla1 experiment. 
A B C D  
-1 -1 -1 -1 
-1 -1 -1 1 
-1 -1 1 -1 
-1 -1 1 1 
-1 1 -1 -1 
-1 1 -1 1 
-1 1 1 -1 
-1 1 1  1 
1 -1 -1 -1 
1 - 1  -1 1 
1 -1 1 -1 
1 - 1  1 1  
1 1 -1 -1 
1 1 -1 1 
1 1  1 - 1  
1 1 1 1 

effect b in the model matrix X. This t,echnique can be used t,o ~onst~ruct sub-lots 

for complex ~it~uations. One ca.n view this as blocking or split,-plotting at, each stage. 

More complex examples on factorial and fractional fadorial splitl-lot designs are given 

in Chapt,er 4 and 5. The following model can be used to describe a split-lot design 

with m levels of randomiza,t,ion 

where the n x 1 vector E~ represents the error associated with the k-th st8age of 

randomization and E is the replication error vector. It is assumed that t'he 7 r ~  + 1 
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error terms are mutually independent and norma.lly di~tribut~ed. While useful for large 

experiments, t,he analysis of the data obtained becomes somewhat more complex than 

for a completely randomized design. The analysis of vasiance table for t,he 23 split,-lot 

emmple is shown in Table 2.6. 

Table 2.6: The arlalysis of variarice table for the 2%split,-lot example. 

Sources of Variation df 
Stage 1 un,alysis: 

 effect.^ (A, BC) 2 
Stagc 2 analysis: 

Effects (B, CA) 2 
Stage 3 analysis: 

Effect,s (C: AB) 2 
Other eflects: 

Effects (ABC) 1 
Tot.al m 

I 

In a 2P factorial split,-lot designs, the factorial effects used in the partitioning of n, 

experimental units into sub-lot's are analyzed t,ogether. The t,ot,al number of separat,e 

analyses depends on the structure of the sets of effects used at, each of the n7, stages 

of randomization. Nonetheless. at least m separate analyses have to be done. 

2.3 Finite projective geometric representation 

We use the finite projective geometric representation of factorial designs (Bose, 1947) 

to  develop results for the exist,ence and construction of fact,orial designs wit,h randorn- 

ization restrictions. Consider a factorial experiment involving p fact>ors Fl , . . . , F,, each 

having q levels, where q 2 2 is a prime or prime power. Let GF(q) be a finite field 

with q elements. Here q is called the order of the field. Let V,P be the p-dimensional 



vect'or spwe over GF(q), i.e., V;'' = { ( q ,  ..., 21,) : 11 ,  E GF(q) for i = 1, .... p}. The 

canonical basis elements of t,he vect,or space can be identified with the p factors of 

a qP fact(oria1 experiment A factorial effect 6 can be expressed in the form 

The effect 6 is an r-factor int,eraction if exactly r ent,ries of the vector 11 = (q, ..., up)  are 

nonzero (6 is a main effect or a fa.ct,or if r = 1). For instance, if q = 2 and p = 3, then 

(loo), (001) and (101) represent. A, C and AC respectively. Any t independent effects 

dl, ..., bt (or equivalently, t linearly independent vectors in Vg) generak a subspace of 

size qt contained in tho vect,or space y. 
The projective spme PG(p - 1, q) is the geometry whose   point,^, lines, planes, 

... , hyperplanes) are the subspaces of Vt of rank (1, 2: 3, ..., p - 1). A ( t  - 1)- 

dimensional subspace of PG(p - 1, q) is a t-dimensional subspace of V:. The 1- 

dimensional subspaces of V: are the points, and t'he 2-dimensional subspaces are t,he 

lines of PG(p  - 1, q). Each point of PG(p - 1, q) can be represent.ed by a non-zero 

vect,or 71 of VQP, provided any non-zero scalar mult(ip1e of u represents the same point. 

That is, for t,wo vect,ors u and v in I/bp, if there exists a E GF(q) and a # 0 such that 

u = cuo, then u and v are said to be equivalent. In general, t,he (t - 1)-dimensional 

objects described by t-dimensional subspaces of V,P are also known as ( t  - 1)-fiat,s or 

(t  - 1)-dimensional subspaces in PG(p  - 1, q). The number of point,s in PG(p - 1, q) 

is equal t,o (qP - l ) / ( q  - 1) = qp-' + . . . + 1, and the number of disttinct (t  - 1)-flats 

in PG(p - 1, q) ,  called the Gaussian number [:I,, is given by: 

(q" - 1) (q"-1 - 1) . . . (@-t+l - [:Ip = (qt - l)(qf-1 - 1 ) .  . . (* - 1) 
1) 

Thus, for t = 1, the number of points (or, 0-flats) in PG(p- 1, q) is [:I,. For a detailed 

discussiori on finite projective spaces, see Hirschfeld (1998). The following example 

explains t,he geomet,ric struct,ure of PG(p - 1, q). 



Emmplc  2.8. As a. simple illustra,tion consider t,he classical projective space PG(2,2) 

with the smallest finite field GF(2).  The number of ( t  - 1)-dimensional subspaces 

in PG(2,2) can be computed using the Gaussian number formula. The number of 

points (t = 1) in PG(2,2) is 7, and the number of lines (t = 2) is 7. Eadl line has 3 

points, and each point is on three lines. In addition, each pair of distinct, points is on 

a unique line, and any pair of two distinct lines meets at a unique point. The resulting 

geometric. ~truct~ure, frequently called the Fano plane, is shown in Figure 2.5. Herc, 

each line  represent,^ a 1-dimensional subspace of PG(2,2). 
I 

I Figure 2.5: Tlie Fano plane. 

The points are denoted by 3-dimensional vectors in Kj3: {(loo), ( O l O ) ,  (001), (110), . . , , 

( I l l ) ) ,  and t,he lines (1-flats) are the 2-dimensional subspaccs of V23: {(100,110,010), 

(100,101, 001), (010,011,001), . . . , (110: 011,101)). In other words, for a factorial ex- 

periment with 3 two-level factors A, B, and C, t,he point>s correspond to  {A, B ,  C, ,4B, 

. . . , ABC), and the 1-dimensional projective subspaces are {(A, AB, B) ,  (A, AC, C) ,  

(B ,  BC, C), (A, BC, ABC), (B, AC, ABC), (C, AB, ABC), (AB, BC, AC)). It, is ob- 

from Figure 2.5 that there does not exist two disjoint subspaces of size 3 

,3 full factorial layout, as that would require 2 lines that do not int,ersect. 
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For applications of projective geometry in fac,t,orial designs see Bose (1947); Dey and 

Mukerjee (1999); and hlukerjee and Wu (2001). In factorial designs, these projwtive 

points are also referred t,o as pencils. A t8ypical pencil belonging t,o a factorial effect, 

is a non-null pdiniensional vector b over GF(y). For o # 0 E G F  (q). b and ab 

represent t)he sa,me pencil carrying q - 1 degrees of freedom. A pencil h represents 

an r-factor interaction if h has exactly r nonzero elementts (e.g., Bose, 1947; Dey and 

hlukerjee, 1999, Ch.8). Therefore. the set of all p-dimensional pencils over GF(q) 

forms a (p - 1)-dimensional finit,e projective geomctry, denot,ed by PG(p - 1, q) .  

Since the two-level factorial designs are t,he most common designs in practice, this 

thesis will focus on q = 2, though most of the results presented in Cha.pt,ers 4 and 

5 hold for gcneral y. For q = 2: a pencil b with r nonzero elements corresponds to 

an unique r-factJor int,eraction in a 2 P  factorial design. Thus, the set of all effects 

(excluding the grand mean) of a 2 P  factsorial design is equivalent tjo PG(p - 1 ,2) ,  

which we call the effect space P. 

2.4 Randomization restrictions and subspaces 

Suppose a.n experiment with p factors each at t'wo levels is tlo be performed. An ideal 

choice is a 2p factlorial experiment. wit,h the trials performed in co~nplet~ely ra,ndom 

order. However, it is not always possible t,o perform t,he experimental trials in a 

completely random order, and often randomization restrictions are imposed. So far the 

bulk of the 1it)erat)ure focuses on different approaches for constructing regular fa~t~orial 

designs with different randomization restrictions. For example, Ta,guchi (1987) used 

linear graphs for the construction of split-lot designs while, Mee and Ba.t,es (1998) 

developed separat,e tools for different run-size factorial  experiment,^ undcr the split- 

lot design set,t,ing. Butler (2004) uses a grid-representation t,echnique t,o construct 

some specific split,-lot designs. Miller (1997) discusses the construction of stripplot) 
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designs via Latin square fra.ct,ions, and split'-plot designs have also bee11 found in a 

variet,y of ways (Huang, Chen and Voelkel, 1998; Bingham and Sit,t.er, 1999; Bisgaard, 

2000). Blocking in factorial and fra,ctional facttorial designs have also been studied 

in many different. ways (e.g., Sit,t,er, Chen and Feder, 1997; Mukerjee and Wu, 1999; 

Chen and Cheng, 1999). 

Imposing restrictions on the rand~mizat~ion of e~periment~al runs  amount,^ t,o group- 

ing the experimental units int,o set,s of trials. We consider t'lie usual approach of 

forming t,hese sets for fact,orial  experiment,^ by using independent effects from P .  For 

example, blocked fact,orial designs use the 2"(t < p) con~biilations o f t  blocking factors 

(independent effects' from P) to divide 2" t,rea.t,ment combinations into 2' blocks (e.g., 

Lorenzen and UTincek, 1992). 

Emmple 2.9. Consider a 2' full factorial design wit,h four blocks, where the six fac:t,ors 

are given by (A, B, ..., F). Let the two independent blocking factors be bl = ABCD 

and b2 = CDEF. Then? t,he 64 experimental unitas are partitioned into 4 blocks 

Bi, i = 1, ... , 4  of size 16 each. The block B1 consists of e~periment~al unit,s given by 

Recall that,  06(i) is the i-th row entry of the column corresponding to the effect S 

in t,he model matrix x. The remaining experimenta.1 units are assigned t,o the three 

blocks B2, B3 and B4 such thak (Obi (i), Bb2( i ) )  = (I, O ) ,  ( 0 , l )  and (1,l): respectively. 

Similarly, we consider the set,t,ing where 2 P  e~periment~al runs are partitioned intlo 

set,s of trials (e.g., blocks, batches, lots, or sub-plots) by using a set of t independent 

effects of P that represent the imposed randomization re~t~rictions, or equivalently the 

t randomization restriction factors (Bingham et al., 2006;). 

The set of all non-null linear combinations of these t randomization restriction 

factors in P over GF(2)  forms a (t - 1)-dimensional subspace of P = PG(p - 1,2). 



We define such subspaces as r,ndon~.izatian defin.in.g con,tro,st subspace (RDCSS). The 

RDCSS structure can be used t,o st,udy fact,orial and fractional fact<orial designs with 

different randomization restrictions under one framework. As an alternat,ive, but 

related, one could use "design keys" proposed by Pat,t,ersori and Bailey (1978) to st8udy 

factorial and regular fractional factorial designs with several different randomization 

restric,t,ions. 

Frequent'ly, there is more tha'n one stage of randonlizat,ion in a factPorial experi- 

ment, where the randomization structure can be chara~t~erized by its RDCSSs. For 

a 2" factorial design with m levels of randomization, the m. RDCSSs can be denoted 

by the projective subspaces S I ,  . . . : S ,  contained in the corresponding effect space 

P = PG(p - 1,2). Let the size of Si be - 1 for 0 < ti < p. Then, the experimental 

units are part'it'ioned int,o 2ti sets (e.g., batches or blocks) due to Si, where the size of 

each set, is ((PI + l)/(lSil + 1). 

Emn~ple 2.10. Consider a 25 factorial experiment with randomization struct,ure de- 

fined by a split-plot, design, where A,B are whole-plot factors, and C, D,E are subplot 

fact,ors. This is sometimes referred t,o as a 22+3 factlorial experiment (Bisgaard, 2000). 

Under this setting, the effect space is P = (A, B, C, D, E) and t,he only RDCSS, S1, 

is given by SI = (A, B) .  Here (a,l, . . . , a k )  denotes the projective spa.ce spanned by 

al ,  . . . , ak. That is, S1 = {A, B, AB). Since, IS1 ( = 22 - 1, the set of all experime~it~al 

units are partitioned into 4 subsets (bat,ches) and each subset consists of 2"22 ex- 

periment'al units. These four subsets &, &, B3 and Bq consist of experimental units 

corresponding t,o (0, (i), 0,(i)) = (0, O ) ,  (1, O ) ,  ( 0 , l )  and (1, I ) ,  respectively. 

Emmple 2.11. Consider a 25 factsorial experiment with randomization st'ruct>ure char- 

act.erized by a strip-plot design (Miller 1997), where the row configurations are repre- 

sentled by a 22 design in fact,ors (A, B), and the column configurations are represented 
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by a 23 design in factors (C, D,  E). Under this setting, the RDCSSs are S1 = (A, B), 

S2 = ((7. D, E), and the effect space is P = (A ,  B, C, D, E). 

Although the treatment, struct.ure for both examples are same, t'he randomization re- 

striction induces different error ~truct~ures (Milliken and Johnson, 1984, Ch.4). There- 

fore, the distribution of the factorial effect estimates are different. Consequently, t'he 

half-normal plot procedure for assessing the significance of the fact,orial effects in t'he 

effect space P will be different in these two examples. That, is, the number of half- 

normal plots and t'he sets of factorial effects for these plots are likely to be different,. 

We elaborate on this in t.he next chapter. 



Chapter 3 

Linear Regression Model and 

RDCSSs 

The normal linear regression model is i'ypically used for the analysis of factorial de- 

signs. These statistical models are a way of dm-a~t~erizing relationships bet,ween the 

response variable, y, and a set of p independent factors, x = (xl , . . . , x,). A regression 

model for the data is a combination of the systematic part of the relationship between 

z and y, along with the variation, or noise in the measurement of the response. 

When the experiment'al trials are performed in a completely random order, t'he 

regression model usually contains one source of ~ariabilit~y, the replication error. If 

restrictions are imposed on the randomization of the experiment, variation in the 

observations is a combination of several components. This impacts the distribution 

of the pararnet>er estimates of the regression model. It t,urns out that the distribution 

of parameter estimates can be characterized by the underlying RDCSS structure of 

t'he factorial design. 

In this chapter, we first propose a framework in Section 3.1 that can be used t,o 

express the responsc models for t'he factorial designs with different rand~miza~tion 

restxictions under the unified notion (Section 2.5) first introduced in Bingham et 
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al. (2006). Next,, the impact of the RDCSS struct,ure on linear regression models 

for factorial designs is discussed. The main result of this chapt,er indica,t,es that the 

dist'ribution of an eEect, estimate depends upon its presence in different RDCSSs. 

The corresponding analysis using half-normal plots m~tivat~es a design strat,cgy. In 

pa,rticular, we desire non-overlapping subspaces of the effect space P that can be used 

for constructing RDCSSs. This is illu~trat~ed through an example in Section 3.2. 

3.1 Unified Model 

Consider an unreplicated two-level regular full factorial design with p independent 

factors. The response model of interest is the linear regression model, 

where X denot,es the 11. x 2P model matrix and P = (Po, P1, . .. , @p-  1 )' is t,he 2p x 1 

vector of paramet#ers corresponding t80 the factorial effect's of t,he 2Vact,orial design. 

Since the trials are performed using an unreplicated full factorial design, the number 

of experi~nental units n is 2p. Without loss of generality, the c,olurnns of X can be 

written as X = {cO, ~ 1 , .  . . , cp, cp+l,. . . , c ~ - ~ ) ,  where co is a column vector of all 0's 

corresponding to the grand mean, columns labelled cl, . . . , cp, refer t,o the p indepen- 

dent factors and t,he remaining columns of X represent the interactions obtained via 

a,ddition of subsets of {cl, . . . , c,) modulo 2. For the results in t'his secttion, we recode 

the factor levels 0 and 1 as $1 and - 1, respectively. 

For a factorial design with m, levels of randomization, where the R.DCSSs are 

denoted by Si, i = 1, . . . , m., the error E in model (3.1) can be divided into m + 1 

independent error terms, E = EO + E~ + . . - + E,. The n x 1 vector EO denotes the 

replication error, and the vect,or ci (1 5 i 5 ns) is the error vector ass~ciat~ed wit'h t,he 

randomization restriction characterized by Si, where (Sil = 2ti - 1. The restriction 

defined by Si creates a partition of the set of n, experiment'al units into lSil + 1 



CHAPTER 3. LINEE4R R,EGR,ESSIO MODEL AND RDCSSS 3 2 

bat,ches (or blocks, for example). Thus, the error vector E~ (1 5 i 2 m) can be further 

simplified to Niei, where ~i is a 2ti x 1 vector corresponding to  the error associated 

with each of the Zt7 bat,ches, 

and co = EO is the veckor of replication errors. The coefficient Ni is an n x 2t1 matrix 

referred t,o as the i-th incidence matrix. with elements defined as: 

(N,)TL = 1, if r-t,h experimental unit belongs to the 2-th bat.ch at i-th 

stage of randomization, ( 3 . 4  

= 0, otherwise, 

for 2: = 1, .  . . , ns; 1 = 1, .  . . , Zt-nd r = I , .  . . , n. The following example ill~strat~es 

the different parts of the model. 

E:cnmple 3.1. Consider a 24 full factorial design with the effect space P = (A ,  B, C, D), 

where the randorrlization struckure is characterized by the subspaces S1 = (A ,  B, C) 

and S2 = (B, C, D). Under these settings, the design matrix V is given by: 
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and t,he incidence matrix, N1, for the first stage of randomization can be writ,t,en as 

Here, Blj denotes the j-th batch formed due t,o the randomization restriction defined 

by subspace S1. Since the size of S1 is 23-1 = 7, the e~periment~al units are partitioned 

into 8 batches of 2 experimental units, and t,herefore the restriction crror as~ociat~ed 

wit,h the batches formed due to S1 is t1 = (t  11, . . . , f18)'. Notme that N1 indicates which 

experimental unit, appears in which batjch. Similarly, €2 = (cZ1, . . . , ~ ~ 8 ) '  is tjhe restric- 

tion error as~ociat~ed with the bat,ches formed due t,o S2. The error associated wit,h 

the experimental units due t.o the randomization restriction defined by the subspace S1 

We now use the incidence matrices to help derive t,he di~t~ribution of parameter esti- 

mates corresponding to t,he facttorial effects in the model. The most ~lat~ural way to 

est,imate the regression paramet,ers is using t,he generalized least square (GLS) esti- 

mator ,b = (XIC;' X)-' XIC;lY, where, 
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The independence and normal it,^ assumptions among the restriction errors implies 

that the distribution of the parameter estimat.e vector f i  is normal with mean and 

variance (XfC?)-' . 
Note that finding thc distribution of individual effect, estimat,es involves computa- 

tion of the inverse of X f C ; ' X .  It turns out that one can avoid t,he inversion by using 

the ordinary least square (OLS) estimator of p, = (XrX)-'X'Y. The equa1it.y of tlic 

t'wo estimators of P can be established by verifying nec,essary and sufficierit conditions 

(Anderson, 1948; Watson, 1955; Zyskind, 1967; R.ao, 1967; Alalouf and St,yan, 1984; 

Puntanen and Styan, 1989;). In the next result,, we propose to use one such condition 

to establish the equa1it.y of tlie estimators. 

Theorem 3.1. For a n  unrepiicated 2 p  full factorial design, B =  f i  under model (3.1). 

Proof: Let X be the model matrix for tlie facttorial design and Y be the column 

vect,or of all the observations arising from model (3.1). Then, the GLS est,imator of 

Xp can be writken in terms of the OLS esti~nat~or of XP, as, 

where Cy is the variance covariance matrix ( 3 . 5 ) ,  H = X(XtX)-'X', M = I - H, 

and (AilC,hf)+ is the Moore-Penrose inverse of hfC,M (e.g., see Albert, 1973; Rao, 

1973; Pukelsheim, 1977: Baksalary and Kala, 1978 for details). For a 2 p  full facto- 

rial design, the model matrix X can be viewed as a Hadamard matrix of order n .  

Therefore, X'X = n l  and XX' = nI implies that H = I (or equivalently, M = 0)) 

i.e., HCYM = 0. Since tlie Moore-Penrose inverse of a null matrix is its transpose 

(Harville, 1997, Ch. 20). M = 0 implies that (MCyM)+ = 0. Hence, the equality of 

GLS and OLS estimators of X P  is verified. Since the model matrix X has full column 

rank and the covariance matrix C, is positive definite, then ,h = B. 0 
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Theorem 3.1 sllows that the regression coefficients of model (3.1) can be estimated 

by OLS. Consequently, the variance of the effect estimates is Var(i3) = Var(P) = 

(X'CyX)/n2,  and thus N ( @ .  X'CyX/n2). This t,heorem is useful for finding t.he 

distribut,ion of individual cffect estimat,es in so far as we now only need t,o consider 

the OLS e~timat~or.  

For a 2P fa,ctorial design with r > 1 replicatcs, the hat mat,rix, H, in Theorem 3.1 

simplifies to  $ (JTxT @ 12pX2p), where 3 is the Kronecker product,. Although M # 0 

for this case, simple calculation using a. Kronecker representation of thc corresponding 

incidence matrices (equation (3.2)- (3.4)) in the covariance matrix C, (equation ( 3 . 5 ) )  

shows that H C y M  = 0. This further implies that, HC,A4(MCyM)+ = 0. Ha,berman 

(1975) showed that the condition HCi1A4 = 0 is a necessary and sufficient ~ondit~ion 

for the equality of OLS and GLS estimators of XP. This involves inversion of the 

covariance matrix, which we wanted tJo avoid. Thus, tjhe equalit,y of OLS and GLS 

estimators is ensured from the condition used in the proof of Theorem 3.1 even if the 

design is repli~at~ed. 

The presence of NiN,I in the expression of Cy (equation (3.5)) suggests that t,he dis- 

tribut.ion of the effect estimates, or equiwlently the simplification of Var(B), depends 

on t,he overlapping structure among the Si7s. Since the Si's are subspaces contained 

in P, it ma'y be possible to have Sij = Si n Sj # (6. While not obvious a.t t,he moment, 

t,hese cases are of specific interest in our setting. It, turns out that when this condit,ion 

does not hold, the variances of the effects in Si, will be impacted by both o: and c$'. 

On the other hand, we show that. when Sij = (6, tthe variances of all t,he effects in S, are 

not functions of u;. We now propose results t,o formally explain the impact of over- 

lapping patt,erns among the R.DCSSs on the distribution of individual effect estimates. 

Theorem 3.2. Consider a 2p full factorial design, where the randomization restric- 

tions are defined by subspaces S1, .  . . , S, in  P .  Then, for any two eflects El and 



Proof: Since /? has a multiva.riat,e normal di~tribut~ion, it is enough to show t,hat, 

cov(jE1, BE2) = 0. From equation (3.5) and the fact that X'X = n.1, the variance of 

6 can be writ.t,en as a product of l / n2  and 

rn 

Let 6, denote the factorial effect corresponding t,o s-t,h column (s > 1) of X.  Then, 

by applying the definition of Ni, 

( X t N i )  = f n i  , if 6, E Si, 

= 0 , otherwise, 

where ni = 2 p - t i  is the number of 1's in each column of Ni. The positive and negative 

sign of ni varies with the columns of ATi. Thus, entries of the s-th row of XtNi are 

f ni if 5, is contained in Si, and zero otherwise. This further implies that the s-t,h 

diagonal entry of (XtNi) (N,IX) is n,%F = n - ni, if 6, E Si. For s # t ,  s ,  t > 1 ,  and 

1 5 i < m, ~rt~hogonality of the two columns X, and X ,  implies that the (s,t)-t,h 

entry of (XtNi)(NiX) is zero. That is, X'C,X is a sum of diagonal ma.trices and 

tJhus, C O V ( , ~ ~ ,  , ,BE?) = 0. 

The effect estimates, t, herefore, follow independent normd di~tribut~ions. However, 

the distributions of all the factorial effects are not necessarily identical. Next,, we 

propose the main result of this section which establishes t,he re1at)ionship bet,wccn the 

variance of the effect estimat,es and t'he presence of effects in different RDCSSs. 

Theorem 3.3. Consider a 2 p  full factorial design, where the ra,n,dom.ization restric- 

tions a,re defined bg S,, . . . , S,, in P. De.fine a sequence of index sets {TE, E E P) 
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such that TE = { i  : 1 5 t < m,, E E Si). Thxn, for m y  giuen, qffecf E E P, 

+ 0 ,  q E  E {S, U - U S , ) ,  

I (f E E P\{S1 U - .  US,), 

where u2 is the replication error lmriance and a: is the 1:-th restriction error ~iaria,nce. 

Proof: Define an 2 p  x 1 column vector q~ such that ( 7 ~ ) ~  = 1 if the s-th col- 

umn of X corresponds t,o effect E and zero otherwise. Then, for a given effect, 

E E P, qLXfNi N,'XqE = m i  whenever E E Si, for i E (1, .. . , m). From equation 

(3.5) and the multmiva,ria,tbe normal distribution of /?, we get var(BE) = ~a r (&j? )  = 

2 R + xii : i, T E 1  $ 022. If instead E E P\{g U - - U S,,), q'&YtNiN;Xqs = 0 for all i 

in {l, . . As a result, var(fiE) = <. 

Corollary 3.1. Consider a 2 p  full jactorial design, where th,e ro.n.domization. restric- 

tions are defined by subspaces S1,. . . , S,,, in, P and Si n Sj = q5 for a,lli # j .  Then,  

,for any  given egect E E P, 

Proof: Note that, for any effect E E P, there exists a unique i such t,hat E E Si. 

Thai is, T ~ J L X ' N ~ N ~ X ~ ~  is nonzero for a unique i E (1, ... , m) ,  hence the result. O 

These results show that the distribution of effect estimates depends on an effect's 

presence in different RDCSSs. For inst,ance, consider the plut,onium example setup in 

Bingham et al. (2006). Here, the authors performed a split-lot design with 3 levels of 
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randomization in a 25 full factorial experiment, whcre S1 = {A, B, AB. CDE,  ACD E, 

BCDE,ABCDE) ,  S2 = {C,AD, BE, ACD, B C E , A B D E ,  .4BCDE), S3 = {D, E, 

D E ,  ABC, ABCD,ABCE,  ABCDE),  and the effect space is P = ( A ,  B,C,  D, E) .  

Then, from Theorem 3.3, the variance of parameter e~timat~es corresponding to the 

factorial effects in S,'s are given by 

for 6 E S1\(S1 n S2 n S,) 

for 6 f S2\(S1 n S2 n S3) 
> 

for 6 E S3\(S1 n S, n S,) 

( $(a: + a,2 + o f )  + $02 for h E Sl n S2 n S3 

whereas for the rest of the effects in P, ~ a r ( 8 )  = a2/32. For effects in unreplicat'ed 

factorial experiments with randomization re~trict~ions, separat,e analyses (for instance 

half-normal plots) are required. That is, Theorem 3.3 categorizes the factorial effects 

for separat,e analyscs based on the overlapping pattern among the RDCSSs. Next, we 

discuss the impact of the size of t'he overlap among the RDCSSs on the analysis. 

3.2 Motivation for disjoint RDCSSs 

A common st,rategy for the analysis of factorial designs is the use of half-normal plots 

(Daniel, 1959). To do this, the effects appearing on the same plot must have tthe same 

error variance. From Theorem 3.3 and Corollary 3.1, m separate half-normal plots are 

required if Si's are pairwise disjoint, and P = {UP"=,~). If instead P\{uz1Si) # 4, 
m + 1 such plots have to be constructed to assess the signific.anc,e of the effects. On 

the other hand, if Sij = Si n Sj # for some i , j  E { I ,  ..., m.), then the effects in Sij 

will have a variance tha.t is a linear combinatlion of cr? and 4. 
In the plutonium cxample (Bingham et al., 2006) setup described above, since 

tthe three RDCSSs S1, S2 and S3 overlap, the effect space can be categorized int,o 

five groups GI ,  ..., G5, with effects having ident,ical dist,ribut,ions within groups, whic,h 
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should t,herefore be analyzed together (see Table 3.1). 

Table 3.1: The AKOl-A table for the 2' split-lot design in a two-stage process. 

The factorial effects in G2, GS, G4 and G5 were assessed using four separat,e half- 

normal plots. Clearly. G1 has too few effect,s for const,ruct.ing a useful half-normal 

plot. Therefore, one sacrifices the ability to assess the significance of effects in GI.  

Indeed, for unreplica.t,ed experiments, assessing the significance of effect,s in Sij 

may have t'o be sacrificed due t,o a lack of degrees of freedom. To get tjhe most out of 

the experiment it is preferable t,o have Sij = 4. That is, one prefers disjoint, RDCSSs. 

Finding such a design is equivalent t,o finding a set of disjoint subspaces that satisfies 

the experimenter's requirement. It turns out that this is not always easy. In the next 

chapt,er, we develop results that specify the conditions for t,he existence of designs 

with non-overlapping R.DCSSs. 



Chapter 4 

Factorial designs and Disjoint 

Subspaces 

Several half-normal plot,s ase required to assess the significance of the facttorial effect,s 

in an unreplicated factorial experiment with randomization restrictions. Only effects 

wit,h t,he same variance may appear together on the same plot. From thc discussion 

in Chapter 3, it is preferable to find disjoint subspaces for c~nst~ructing RDCSSs. In 

most applications, the desired number and size of the RDCSSs, or equivalently the 

subspaces of the effect space P = PG(p - 1 , 2 ) ,  are pre-determined. Surprisingly, 

determining the existence of disjoint subspaces of P for constructing RDCSSs (or 

equivalently, finding the design with the desired randomization and analysis proper- 

ties) is a fairly complex task. 

In this chapter, the conditions for the existence of disjoint subspaces of P are first 

derived. The results presented focus on the exist,ence of a set of disjoint subspaces of 

both equal and unequal sizes that span the entire effect space P of a two-level factorial 

design. Next, the main theoretical result is developed in Section 4.1.2. Construction 

methods are proposed in Section 4.2. Finally, in Section 4.3, we develop exi~t~ence 

results for regular fractional facttorial designs with randomization restrictions. The 
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results are constructive and thus allow experime~lt~ers to  find designs in practice. It, 

should b~ noted that the results presented here for twc-level fact,orial designs can 

easily be extended to q-levels. 

4.1 Existence of RDCSSs 

We first start, by exploring the available geometric structures that can be used t,o 

establish the existence of a set of disjoint subspaces. These results focus on equal sized 

subspaces or  experiment,^ with blocks (or batches) of the same size at, the m stages of 

randomization. In Section 4.1.2, new results are developed for disjoint subspaces of 

different sizes. 

I 
4.1.1 RDCSSs and ( t  - 1)-spreads 

In many applicat,ions, the number of stages of randomization (m,) is pre-specified by 

t,he experimenter. Thus, if one can obtain a set of pairwise disjoint equal sized sub- 

spaces (say S) with JSJ 2 m, an appropriate subset of S can be select,ed that ~at~isfies 

the criteria of the R.DCSSs required by the experimenter. It t.urns out t ' l~at  one can 

est,ablish conditions for the existence of a set, of disjoint (t  - 1)-dimensional subspaces 

where a set S partitions the effect space P = PG(p - 1,2). The next definit,ion is due 

to Andrit (1954). 

Definition 4.1. For 1 5 t < p, a (t - 1)-spread of the effect space P is a set S o j  

(t - 1)-dimens~:onal subspaces of P which partitions P. 

That is, every element of P is contained in exactly one of tJhe (t - 1)-dimensional 

subspaces. A (t - 1)-spread S is said t,o be nontrivial if 1: > 1. In other words, S is 

nontrivial if the size of every element of S is at least 3. When a (t  - 1)-spread of P 
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exists, the size of S is IS1 = (2" - 1)/(2" - I ) ,  which is the maximum size of a set of 

disjoint ( t  - 1)-dimensional subspaces of P. For example. in a 2"ull fact,orial design 

(or eq~ivalent~ly in PG(5,2)) ,  there exists up tjo 9 disjoint subspaces of size 7 ea,ch. 

If the required number of RDCSSs, r n ,  is less tthan IS(, t,hen one can select. a subset, 

of S t.o construct the RDCSSs. However, the existence of a ( t  - 1)-spread in general 

is not, guaranteed and depends on a necessary and sufficient condition e~t~ablislied by 

And& (1954). 

Lemma 4.1. A (t - 1)-spread S of P G ( p  - 1,2)  exists if and only if t divides p. 

That. is, if p is a prime number (e.g., in 25, 2' factorial experiments), there does 

not exist any nontrivial (t  - 1)-spread S of P. Nevertheless, the required number of 

disjoint subspaces is determined by the e~periment~al setting. If t,here does not exist, 

a (t - 1)-spread of P,  one would be interested in knowing the maximum number of 

disjoint (t - 1)-dimensional subspaces that can be obtained in the effect space P. This 

is called a partlid (t  - 1)-spread in finite projectjive geometry. 

Definition 4.2. A partial (t - 1)-spread S of th,e eflect space P is a set of ( t  - 1)- 

dimensional subspaces of P that are pairwise disjoint. 

Similar to ( t  - 1)-spreads, effort has been devoted in establishing the exist,ence of a 

mcvcimal part,ial (t - 1)-spread of P (e.g., Beut,elspacher, 1975; Drake and Freeman, 

1979; Eisfcld and Storme, 2000; Govaerts, 2005). The following result summarizes 

the upper bounds available on t,hc maximum number of pairwise disjoint ( t  - 1)- 

dimensional subspaces of P (see Govaerts, 2005). 
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Lemma 4.2. Let P be the projective spa.ce PG(p  - 1,2),  with p = kt + r ,  .for. p o s ~  

tiue integers k ,  t ,  r such th,at r < t < p, and S be a partial (t  - 1)-spreo,d 0.f 7' wit1 

IS1 = 2' zk'-l_ 
F-1 s, where s is known a,s the dqfic~:en.cy. T h e n ,  

( ~ ) s > 2 ~ - 1 ,  if r = l .  

(b) s 2 2'-' - 1; 2f r > 1 u,nd t 2 2r. 

C) $ > 2-1 - 22-t-1 ( < -  
+ 1, if r > 1 a n d t  < 2r. 

Lemma 4.2 provides upper bounds on t.he maximum number of disjoint. (t - 1)- 

dimensional subspaces of PG(p  - 1,2)  for different combinations of t and r .  This 

is of part,icular interest when no (t - 1)-spread exists (i.e., t does not divide p). It ia 

worth noting that these bounds may not be t,ight. 

Eza~nplt. 4.1. Consider a 25 full fact,orial experiment with randomization restrictions 

defined by S,, S2 and S3, such that S1 > {A, B), S2 > { C )  and S3 > {D, E}. Fron 

the discussion in Chapt,er 3, one needs at  least three half-normal plots. The exact 

number depends on the overlapping pat,tern among t,he Si's. To use a half-normal plol 

for assessing significant effects one requires at  least six or seven effects for each plol 

(Schoen, 1999). In this setking, only 1 or 2 effects are assumed t.o be more active thar 

ot'hers. Therefore, since the Si's are subspaces. one useful randomization struct,urt 
I 

would be where ISi\ = 2" 1 for all i ,  and the Si's are all pairwise disjoint,. Here, p = 5 

and t = 3, so Lemma 4.1 implies that there does not exist a 2-spread of P = PG(4,2) .  

Moreover, from Lemma 4.2, k = 1 and r = 2 implies that, the maximum number of 

disjoint 2-dimensional subspaces of P is bounded above by 2. However, there is no 

c.ertainty from the theorem regarding the existfence of even two disjoint 2-dimensional 

subspaces, indeed, there is not. 

This example motivat,es the need for further exploration of t,he subspace structure in 



P .  In the next, sect,ion, we develop results for the exist,ence of set,s of pairwise disjoint. 

(t - 1)-dimensional subspaces of P when a spread does not exist,. In practice this means 

that effects a.ppearing in multiple RDCSSs will inherent the variance component from 

each of the overlapping subspaces. Though t,he set. of disjoint subspaces ma;)i not' 

be maximal, t,he designs obtained using the results in the next. section can be easily 

constructed and are thus useful to e~periment~ers. 

4.1.2 RDCSSs and disjoint subspaces 

First, necessary a.nd sufficient condit,ions for t,lie e~ist~ence of a set of disjoint (t  - 1)- 

dimensional subspaces are established. Then, these conditions are generalized for the 

existence of sets of m disjoint subspaces of unequal sizes (i.e., different size RDCSSs). 

This latker case is important in mult,istage experiments, where the number of units in 

a batch or block are not. the same at each st,age. 

Theorem 4.1. Let P be the projective space PG(p - 1,2) and S1, S2 be two distinct 

(t - 1)-dimensional subspaces of P ,  for 0 < t < p. 

(a) If t 5 p/2, there exists S1 and S2 such that S1 n Sz = 4. 

(b)  If t > p/2, for every S1, S2 E P ,  IS1 n S21 > 22t-p - 1 and there exists S1, Sz 

such that th.e equality holds. 

The proof of Theorem 4.1 will be shown in a more general set,up (Theorem 4.3). 

Along with the conditions for the exist,ence of disjoint subspaces, t,he result proposed 

in Theorem 4.1 also provides the size of minimum overlap when there does not exist 

even t,wo (t - 1)-dimensional subspa.ces. It turns out that when t 5 p/2, one can 

obta.in more than two disjoint (t  - 1)-dimensional subspaces of P .  From Section 

3.2, it is obvious that, the subspaces required for constructing RDCSSs should be 

large enough t,o construct useful half-normal p1ot)s. This indicates that in t,wo-level 
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fa,ct,orial designs, t 2 3 is desirable, which further implies t,ha.t if t 5 y / 2 ,  t,he value 

of p is bounded below by 6. Since designs wit,h randomization restri~t~ions are often 

larger tJlian completely randomized designs, these results arc useful to a practit,ioner. 

When t does not divide p,  one can assume tJhat p = kt, + r for positjive integers 

k ,  t ,  r sat,isfying 0 < r < t < p and k 2 1. It car1 be tempting t,o work with a (t - 1)- 

sprcad So (say) of PG(X:t - 1,2) ,  which is embedded in P. The following new result, 

demonstrates the existence of a set of disjoint subspaces based on So. 

Lemma 4.3. Let P be the projective space PG(p - 1,2)  for p = k t  + r .  Th,en, 

there exists m subspaces S1,. . . , S, i n  P such that 1SZ1 = Zt - 1, i = 1, ..., m., where 

zkt - 1 m. = - 
2'-1 7 and the Si 's are po,irwise disjoint. Furthmmorc, there exists S,+] such 

th,at ISrnS1/ =2' - 1 and nSi = 4 for all i = 1 , . . . ,  77%. 

Proof of Lemma 4.3 follows from the existence of a ( t  - 1)-spread of PG(k t  - 1,Z). 

Since So is constructed from a ( t  - 1)-spread of a subspace which is a proper subset 

of P ,  t,he set of disjoint ( t  - 1)-subspaces in P can be expanded. The following result' 

due t,o Eisfeld and Storme (2000) ensures the existence of a relatively larger set of 

disjoint ( t  - 1)-dimensional subspaces of P. 

Lemma 4.4. Let P be the projective space PG(p - 1,2) ,  for p = kt + r .  Then, there 

exists a partial ( t  - 1)-spread S qf P with IS/ = 2 ' s  - 2' + 1. 

That is, there always exist,s a set of disjoint. ( t  - 1)-dimensional subspaces of cardinal- 

ity IS\. The proof developed below is more concise than the one provided in Eisfeld 

land Storm* (2000). Most irnport,antiy, thc proof is useful insofar as it outlines the 

(construction of the part(ia1 (t - 1)-spread of P claimed to exist in the lemma. 
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bounded above by 34. Lemma 4.3 guarantees the existence of only 9 disjoint, subspaces 

of size 7 each, whereas from Lemma 4.4, the existence of a partial 2-spread wit,h 33 

disjoint subspaces is ensured. Since the disjoint, subspaces obt,ained in Lemma 4.3 are 

construct,ed from a 2-spread of PG(5,2)  which is a proper subset of PG(7,2),  and 

Lcmma, 4.4 finds a set of disjoint 2-dimensional subspaces in PG(7,2) ,  there is such 

a difference. This example illustrates that either t,he bound in Lemma. 4.2(c) is not 

tight or t,here exist more disjoint 2-spaces of P. 

For t = 3 and p odd (e.g., p = 2k + 1 for some positive integer k ) ,  Addleman 

(1962) proved t,hat the bound IS1 5 (2p - 5)/3 is tight (same as (SI in Lemma 4.4). 

Thus, the bound provided in Lemma 4.2(c) is not tight at least for general t, k and 

r .  A constructtion of (2p - 5)/3 disjoint l-dimensional subspaces of P = PG(2k, 2), 

proposed in Wu (1989), is based on t,he existence of two perm~tat~ions of the effect, 

space sat,isfying certain properties. These results were e~t~ablished in the context of 

con~t~ructing 2'"4'~act~orial designs (for non-negative int,egers m and n.) using two- 

level factlorial designs. The ~onst~ruction provided in Wu (1989) is only for f = 2 and 

q = 2, whereas, Lemma 4.4 holds for gcneral t and is easily extmdable for arbit,rary 

prime, or prime power q in PG(p - 1, q). 

The result,~ discussed so far in this chapter focus on the existence of disjoint sub- 

spaces of the same size, however, it is likely t,o have requirements for disjoint subspaces 

of different sizes (e.g., the batkery cell experiment in Vivacqua and Bisgaard, 2004; 

the plutonium example in Bingham et al., 2006). Before developing c~ndit~ions for the 

existence of a set of disjoint subspaces of unequal sizes, we propose a useful interme- 

diate result,. 

Theorem 4.2. Let P be the projective space PG(p  - 1,2) an,d Si be a (ti - 1)- 

dimensional subspace of P, where 0 < t i  < p for i = 1,2. Then, I ( & ,  S2)l = 2P - 1) 



Proof: Let S denot8e a set of factorial  effect,^ (or points) ~ont~ained in the subspace S 

that generaks S,  i.e., (S) = S.  Also. for any two non-disjoint subspaces Si and Si, 

let, (Si n Sj) c Si for i f j. Then, 

are pairwise disjoint subspaces. If ISl n SS 1 = 2tlSt2-p - 1, then A2 is equivalent, t,o a 

PG( t l  + t2 - p  - 1,2) contained in t,he effect space P. Similarly, Al and Ap are equiv- 

alent to PG(p - t2 - 1,2) and PG(p - t l  - 1,2) respectively. Since Ai's are pairwise 

disjoint subspaces, the span of S1 and S2 is (S1 : S2) = (A1, AP, A3) = PG(p - 1,2). 

This theorem implies that if t l  + t2 > p and IS1 n S2( = 2t1St2-p - 1, then (S1 U S2) 

covers the ent,ire effect s p x e  P. Furthermore, it is clear from the proof that if 

ISl n S21 > 2"lSt2'-" - 1, the size of (S1 U S2) is less than 2P - 1 and t,hus (S1, S2) is a 

proper subset of P .  Next,, we develop c~ndit~ions for t,he existence of a pair of unequal 

sized disjoint subspaces of the effect space P. 

Theorem 4.3. Let P be thz projective space PG(p - 1,2) and Si be a (ti - 1)- 

d~rn~ensional subspace of P ,  where 0 < ti < p for i = 1,2. 

(a) If tl + tz <_ p, there exists S1 and S2 such that S1 n S2 = 4. 
(b) If t l  + t2 > p, for every S1, S2 in P, IS1 n S21 > 2t1St2-P - 1 and there exists 

S1, S2 suck that the equality holds. 

Proof: Let the effect space be P = (Fl, . . . , F,), where the Fi's are the independent, 

factors of a 2 p  full factorial design. Since tl  + t2 5 p, part (a) holds bv defining 

S1 = (PI, . . . , Ft, ) and S2 = (Ftl+l, . . . , Ftl+tz). For part (b) ,  S1 = (Fl, . . . , Ftl) 
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and S2 = (Fy-tz+l, . . . , Ftl , Ft, . . . , Fp) provides t,he minimum possible overlap of 

S1 n S2 = (F ,-,, +,, . . . , F,,) with ISI n S,l = (PG( t l  + t2 - p - 1,2)l = 2ti+t2-P - 1. 

In addition, if S1, S2 are such that t l  + t2 > p and IS1 n S2( < 2t1+12-p - 1, then 

according to Theorem 4.2, I(S1, S2) ( > 2P - 1. This contradicts the fact that if S1 c P 

and S2 C P, t'hen (S1, S2) should also be cont,ained in P. 

This t,heorem is directly a,pplicable for designs wit,h two st,ages of randonlization, 

for example, row-column designs, strip-plot designs, two-stage split-lot designs. For 

t l  = t2 = t, t>his t,heorem simplifies to Theorem 4.1. It is easy to verify that one 

can have a t  most one ( t  - 1)-space wit,h t > p/2. For instance, in a 25 fact,orial 

experiment. (Example 4.1), there does not exist even two disjoint subspaces of size 7 

each. Bingham et al. (2006) discovered t,his through an exhaustive computer search, 

whereas Theorem 4.1 identifies t.his directly. It  turns out that when tl + t2 5 p, one 

can cxpcct more disjoint subspaces of size 2t - 1 if t < p - max(tl,  t2).  The next' 

theorem is the main new result of t,his section. 

Theorem 4.4. Let 'P be the projective space PG(p  - 1,2) and S1 be a ( t l  - 1)-  

dimensional subspace of P with p > t l  > p/2. Then, there exists m. - 1 subspaces 

S2 , .  . .  .Sm such that ISi] = 2tt - 1 for t i  5 p - t l ,  2 5 i 5 m., and Si, i = 1 ,..., m. are 

all pairwise disjoint, where rn = 2t1 + 1. 

Proof: Define s = t l  - 1 and t = (p - t l )  - 1. Then, t,he effect space 'P is a 

P G ( s  + t + 1,2) and S1 is an s-dimensional subspace of P .  Sincc s > t ,  define 

Pf = PG(2s + 1,2) so that ' P I  > P, and let S' be an s-spread of P' that cont,ains S1. 

The const,ruction of such a spread is non-trivial, and is shown in Sect3ion 4.2.3. Then 

the set of disjoint t-dimensional subspaces of P is given by S = {S n P : S E Sf\{S1)), 

which furt,her implies that the elements of S can be denoted by S2, S3, .  . .: Sm for 
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rn. = 'PG(2sr1'2" As required, the experimenter can oht.ain R (ti - 1)-dinlensional 
IPG(s.2)) ' 

subspace of Si if t, - 1 5 t (or equivalently, ti 5 p - tl  ) for i = 2, . . . , m,. 0 

Theorem 4.4 proposes the existence of 2t1 + 1 disjoint subspaces of P wit,h one (t l  - 1)- 

dimensional subspace (tl  > p/2) and 2t1 disjoint subspaces Si's with ISi/ = 2 " ~  - 1: 

where ti  5 y - t l .  Thus, according to the requirements of the experiment,, one can 

construct designs with the randomization restriction defined by up t,o 2'' + 1 RDCSSs 

of different sizes. Furthermore, as we shall see, the proof point,s t,o a construction 

st:rategy for 2t1 $1 disjoint subspaces of unequal sizes (see Sect,ion 4.2.3 for an elaborate 

construction). Though Lemma 4.4 is not a special case of Theorem 4.4, the t,wo 

construction techniques are similar (see Sections 4.2.2 and 4.2.3). 

Thus far, we have established necessary and sufficient cmndit,ions for t,he exist,ence 

of a set of disjoint subspaces of the same and also different sizes. If the desircd number 

of stages of randorni~at~ion (m) is less than or equal t,o t,he number of subspaces 

guaranteed to exist from one of the results, one can obt,ain an appropriate subset of 

S that satisfies the restrictions imposed by the e~periment~er. Next, we propose a 

const,ruc.tion approach for factorial designs with m. levels of randomization. 

4.2 Construction of Disjoint Subspaces 

First, the construction for equal sized subspaces is presented, followed by t,he con- . 
struction of disjoint subspaces of different sizes. The subspaces themselves have no 

~t~atistical meaning until the factors have been assigned to columns of the design ma- 

t,rix, or equivalently to point,s in PG(p - 1,2). The set of disjoint subspaces obtained 

from an arbit,rary assignment, may not directly satisfy the experimenter's rest'rictions 

on RDCSSs. Consequently, we propose an algorithm that transforms a set of disjoint, 

subspaces obtained from the const,ruction to another set of disjoint subspaces that 

sa't,isfies the properties of the desired experimental design. 
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4.2.1 RDCSSs and ( t  - 1)-spreads 

When t divides p, the existence of a ( t  - 1)-spread of P = PG(p - 1,2) is g~arant~eed 

from Lemma 4.1. The construction of a. spread starts with writing the 2" - 1 nonzero 

elements of GF(2P) in cycles of length N (Hirschfeld, 1998). For any prime or prime 

power q, an element UI is called primitive if {wi : % = 0,1,  . . . , q - 2) = G F  (q)\ (0). 

A primitive element of GF(2P) is a root of a primitive polynomial of degree p for 

over GF(2) (for details see Art.in! 1991). The 2 p  - 1 elements of the effect space P,  

or equivalently, the nonzero elements of GF(2P), are uli, i = 0, ..., 2p - 2, where wi 

can be writ,ten as a linear combination of t'he basis polynomials wD, ..., wp-l. The 

element uli = Q ~ ~ I ~ - ~  + a1wP-2 + . - .  + apP1 represents an r-factor int.eraction b = 

( a o , c q ,  . . . ,+ I ) ,  for ai E GF(2),  if exactly r entries of b are nonzero. For example, 

let p = 4 and the primitive polynomial be w4 + w + I.  Then, 

0 w = 1 = (0001) = D, 

1 
Ul = Ul = (0010) = C .  

2 
U J  = u : ~  = (0100) = B, 

3 w' = w3 = (1000) = A, 

~ 1 ~ = 2 1 1 + 1  = (OOll)=CD, 

5 2 
UJ = w + w = (0110) = BC, 

U1l4 = w3 + 1 = (1001) = AD. 

Following this representation for the fact,orial effects in 'P and using shorthand notfa- 

tion k for wk, the cycles of length N can be written as shown in Table 4.1. Here, 0 is 

the nuniber of distinct cycles and the entry (i,V + j )  denot,es UI~"+J for 0 5 i 5 0 - 1, 

O < j s N - 1 .  
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Tablc 4.1: Tlic clcniciits of P using cyclic construction. 

The following result due to Hirschfeld (1998, Ch.4) presents a necessary and sufficient, 

condition for the existence of a set of (t - 1)-dimensional subspaces of size N which 

depends on the greatest common divisor (gcd) of t and p. 

Lemma 4.5. There exists a (t - 1)-space of cycle AT less than (PG(p - 1, q ) (  if and 

only if gcd(t, p) > 1. where, N = \ ~ ~ ~ ~ ; $ /  and 1 = gcd(t, p). 

Since t divides p, there exists 2t - 1 cycles of length N each. The Si's are t,herefore 

pairwise disjoint (t - 1)-dimensional subspaces of P. That is, the subspaces S1 ,... ,S,V, 

c0nstitut.e a (t - 1)-spread S of the effect space P = PG(p - 1,2). Given the spread, 

an experimenter must now assign fact,ors to the points in PG(p - 1,2) t,o achieve t,he 

desired design. 

A (t - 1)-spread of PG(p - 1,2), obtained above, distributes all the main effects 

(or fact,ors) evenly among all the 1st disjoint subspaces. However, restrictions on 

the m stages of randomization are usually pre-specified by the experimenter. Indeed, 

for a block design, an RDCSS will contain no main effects, whereas for a, split,-lot, 

design, one or more fact,ors may be assigned to the subspace representing an RDCSS. 

For example, consider a 26 full factorial experiment with the rand~mizat~ion structure 

determined by a blocked split-lot design, where the trials have t,o be run in blocks of 

size 8 each. Furt'her suppose that the experimenkr wishes t.o specify the fact,orial 

effects ABC, BDE and CEF to be confounded with the blocks. In addition, let the 

experinientfal unit,s have t,o be processed into two steps, where the restrictions imposed 
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by the experiment,er on the two st.eps of randomization are such that ST > { A ,  B )  

and S; > {D). As a, result, there are three restrict'ions on the randomization of 

the experiment, one due to blocking the experimental units and the other tjwo due 

t,o split,ting the experimental uuit,s intjo sub-lots. To use half-normal plots for the 

assessment, of the fa,ctorial effects on the process, it is dcsirable to  have three disjoint, 

subspaces of size more than six or seven each, where the subspaces should sat,isfy the 

restrictions on t'he three RDCSSs given by ST, S,' and S,' = (ABC, B D E ,  C E F ) .  It, 

burns out that one can relabel the points of P such that the spread S* obtained from 

the transformed space contains tjhree disjoint subspaces sat,isfying the e~periment~er's 

requirement. on the RDcSSs. 

Although it is tempting to use an exhaustive search tso find an appropriate rela- 

belling of P that meets the experimenter's requirement, if the number of independent, 

fact,ors is large, computation time and resources can be expensive. A simpler approach 

which works in many cases uses the ~truct~ure of a ( t  - 1)-spread t,o our advant'age and 

reduces the search space. Instead of randomly relabelling tphe points of P (or equiva- 

lently the columns of the model matrix X),  if we find a relabelling that preserves the 

geometric st,ruct,ure among the point,s, the search space is significantly reduced. For 

this purpose, a collineation (e.g., Coxet,er, 1974; Batken. 1997) of the projective space 

P is used to relabel its points. A collineation of PG(p - 1, q) is a perm~t~ation f of 

it,s points such that (t  - 1)-dirncnsional subspaces are mapped t,o (t - 1)-dimensional 

subspaces, for 1 < t 5 p, 

For example, in a 23 full factorial design, the set of seven factorial effects forms a 

PG(2.2), where the points {C1, ..., C7) can be denoted by {A, B, AB, C, ..., ABC). 

A feasible configuration for the set of lines of PG(2,2)  is {(A, B, AB), (B. C ,  BC) ,  (A, 

C, AC),  (A, BC, ABC), (B, AC, ABC), (C, AB, ABC), (,4B, BC, AC)}. Figure 4.1 dis- 

plays a collineation of tjhe projective space PG(2,2) .  



Figure 4.1: A collineat.ioi1 of PG(2,2).  

The existence of a collineation f that transforms a spread S tjo S* (or equivalently7 

the effect space P t,o P*), can be established by t,he exist'ence of a y x y matrix M,  

such t,hat for every given z  E S, there is an unique z' E S* that satisfies z M  = 2'. 

The collineatjion mat,rix for the transformation in this example is 

Since the transformatlion of a spread amounts to relabelling t,he columns of t,he model 

matrix, there may not exist an appr~priat~e collineation under several circumstanczs. 

For instance, one cannot find a collineation matrix M if t'he e~periment~er's require- 

ment. is not. achievable. For example, in a 2' full factorial split,-lot design wit,h 3 lwels 

of randomization, if the restrictions imposed on t8he three RDCSSs are S1 > { A ,  B), 

S2 > {C, D} and S3 > {E, AD), then there does not exist a colliiieation that meets 

the requirements. Moreover, if the desired set of subspaces is non-isomorphic t,o the 

spread we start,ed wit,h, then also t.here does not exist any relabelling of P to obtain 

the desired design. However, finding an appropriat,e ~ollineat~ion matrix whenever 

it, exists is also nontrivial. Next,, we propose an algorithm that finds a collirieation 

matrix M, if it exists, and concludes the nonexist.ence if one does not exist. The 

algorithm is ill~strat~ed through an example. 



Consider the earlier setup of a 2"ull factorial experiment witall the blocked split- 

lot design, where t,he RDCSSs are characterized by ST > {A, B), s,* > {D) and 

S; > {ABC, BDE, C E F ) .  For constructing useful half-normal plots, RDCSSs should 

satisfy IS,; 1 > 7, for 1 = 1, . . . , 3  and hence t = 3. Since t divides p,  there exist 7 cycles 

of lengt'h 9 each, or equivalently, 9 disjoint. subspaces of size 7 each (i.e., a 2-spread of 

P). The 2-spread S = {S1, ...: S9) obtained using the primitive polynomial, uj6 +ui + 1 

is shown in Table 4.2. 

Table 4.2: The 2-spread obtained using the cyclic construction. .. 
BDEF 

s, 
E 

.4B 
BCDE 

BCD 
AcD 
ABE 

-4CDE 

s3 

D 
-4EF 

ABCD 
-4B C 

BCEF 
ADEF 

BCDEF 

S'i 
C 

DF 
-4BCEF 

ABEF 
-4BDE 

CDF 
ABCDE 

5 5  

B 
CE 

ARDF 
ADF 

ACDEF 
BCE 

ABCDEF 

BD AC 
ACF BF 

CF BE 
BCDF ABCE 

ABD ACEF 
ABCDF ABCF 

DEF 

ABF 

Note that each element of S contains at most one main effect,. To obtain a set of 

disjoint subspaces satisfying the restrictions imposed on the 3 stages of randomization, 

one has to find an appropriate 6 x 6 collineation matrix M. An algorithm for finding 

the matrix M is outlined as follows: 

1. Select one of the (i) possible choices for a set of three disjoint subspaces from 

t'he spread S. For example, Slr S3 and S7 are chosen such t$hat, S1 - ST, 

S3 - S; and S7 - S,'. 

2. Choose two effects from S1, one effect from S3 and three effects from S7 to  

relabel these t o  the desired effects (A, B), D and (ABC, B D E ,  C E F )  in ST, S,* 
7 7 7 and S,' respectively. For example, one choice among (2) (3) different options 

is {CDE,  B C F ,  D, EF, AC, B F ) .  The collineation matrix is defined by the 

mapping induced from CDE + A, BCF -+ B, D + D, . . ., BF -+ C E F .  
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3. Construct a y% y2 mat,rix A and a. p2 x 1 vector 6 as follows. Denot,e t,he 

( i , j ) - th  entry of the p x p matrix M as zk, where k = j + (i - 1)p. Then, 

define the rows of rriatrix A and vector 6 in the order of restrictions on the 

transformation. For the example under consideration, the first (in general, s- 

th) restriction ( C D E ) M  = A can be written as: 

Then, thc first (s-th) set of six (in general p) rows of 6 are given by the right side 

of equation (4.1). The corresponding rows of A can be writtjen by first denoting 

CDE = (001110)' and defining 

Ail = 1, if 1 = i + (7 - l ) p  and the 7-th entry of (001110) is nonzero, 

= 0, otherwise, 

for y(s  - 1) + 1 5 i _< ps, 1 _< s 5 p. Similasly, all the rows of the matrix A and 

vect>or 6 can be expressed using the p restrictions on the transformation. 

4. If there exists a solution of Az = 6, reconstruct the matrix M from t'he solut,ion 

z = and exit t,hc algorithm, where A-L is a left inverse of A. 

5. If there does not exist a solution of Ax = 6, go to Step 2 and if possible, choose 

a different set of effects from the subspaces selected in Step 1. 

6. If all possible choices for the set of effects from these three subspaces have been 

exhausted. then go tJo step 1 and choose a different set of three subspaces. 

7. If all the (:) different choices for a set of subspaccs have been used and still a 

solution does not exist,, then either the t,wo spreads S and S* are non-isomorphic, 

or the experimenter's requirement is not achievable. Thus, the desired spread 

cannot be obtained from S. 



In the illustration used here, the factorial effects chosen for relabelling the columns 

t,o achieve the desired design provide a feasible solution t,o A:r = 6. The collineation 

matrix M,  reconstructed from the solut,ion r = A-L6, is given by 

For the example under consideration, an exhaustive search found that 45.7%) of all 

possible choices give a feasible solution tlo the equation dx = 6. That is, an arbitrary 

choice of p independent effects from S (according to Steps 1 and 2) results in a feasible 

design only 45.7% of tjhe time. The rest of the time, an arbitrarily chosen set of 

effects lead to an infeasible solution by turning a full factorial design int,o a replicated 

fractional fadorial design. Not'e that the search space can be furt'her reduced by 

improving Step 2 to choose independent effects compared to an arbitrary set of effects 

from the subspace Si. 

Though necessary to  search for a feasible choice of collineation matrix, the spread 

acts as a template for the search to make it faster than the exhaustive relabelling of all 

the fact,orial effects to find the design satisfying the experimenter's requirement. For 
9 7 7  this example. our algorithm may require at  most (3) (2) (') different relabellings, 

whereas an exhaustive relabelling approach can require up to (26 - l)! different, re- 

labellings. To find the proportion of feasible relabellings out of (:) (:) (:) (:) different, 

choices, our Mat'lab 7.0.4 implementation of the algorithri took almost 67 hours on a 

Pentium(R) 4 processor machine running Windows XP. The algorithm finds the first, 

fmsible collineation mat.rix in 5.34 seconds on the same madline. It is worth noting 

that t,he computation involved in the algorithm uses modular arith~net~ic. 

In many cases, whenever t does not divide p, t,here does not exist, a (t - 1)-spread 
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of P = PG(p - 1,2). However, a partial (t - 1)-spread S of P may be available. 

Recall that if the number of stages of randomization (nz) is less than IS(, then a set of 

m disjoint subspaces can be constructed that satisfies the randomization restrictions. 

Next we propose a construction for RDCSSs if m < IS], and there does not. exist. a 

(t  - 1)-spread of P. 

4.2.2 Partial ( t  - 1)-spreads 

UThen t does not divide p,  Lemma 4.4 guarantees the existence of IS1 = 2'- - 2' + 1 

disjoint (t  - 1)-dimensional subspaces of P, where p = kt + r. For constructing 

these subspaces, one can use the steps out>lined in the proof of Lemma 4.4 for the 

most part. However, the proof assumes the existence of an (si)-spread S,' of Pi that 

contains Ui, where Ui is an (si)-dimensional subspace of Pj+l, for si = it + r - 1, 

Pi = PG(2si + 1 , 2 ) ,  and P,!+, = PG(si  + t ,  2) ,  i = 1 , .  . . , k - 1. The 

of the spread S,! is nontrivial, and we develop a t,wo step construction method: (a) 

construct a (si)-spread S,I' of Pi as described in Section 4.2.1, and then (b) transform 

the spread S," to S,! by finding an appropriate collineation such that Ui E Si. Thus, we 

can construct a set of IS1 disjoint (t - 1)-dimensional subspaces, or, a partial (t  - 1)- 

spread S of P, using the recursive construction method described in the proof of 

Lemma 4.4. Finally, this partial spread S has to be transformed using an appropriate 

collineation to obtain the m. RDCSSs satisfying the experimenter's requirement. 

4.2.3 Disjoint subspaces of different sizes 

A more general setJting is when the RDCSSs are allowed t30 have different, sizes. For a 

2" full factorial design, Theorem 4.4 guarantees the existence of only one subspace S1 

of size 2" - 1 with t l  greater than p/2, and 2" subspaces of size bounded above by 

2t - 1 where t 5 p - t l .  For constructing these 2" + 1 pairwise disjoint subspaces of P, 

the proof of Theorem 4.4 requires constructing a (tl - 1)-spread Sf of PG(2tl - 1,2) 
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that contains S1. The spread Sf can be obtained by first construct.ing a (tl - 1)-spread 

of PG(2tl - 1 ,2 )  and then by applying the appr~pr ia t~e  collineation Mo found by the 

algorithm described in Section 4.2.1. After S = {S n P : S E Sf\{S1)) is obtained, 

one has to  find a suitable c~llineat~ion M1 so t,hat the final set of subspaces satisfy the 

experiment8er7s restrictions on RDCSSs. The steps of the construct,ion are illustrated 

through an example. 

Consider a 27 full factorial design with 3 stages of randomizat,ion. Let the re- 

st,rictions imposed on the three RDCSSs be S1 > {A, B, C, D}, S 2  > {E, F }  and 

S3 > {G). Following the not,ation of Theorem 4.4, since p = 7 and t l  = 4 there 

exists 17 pairwise disjoint subspaces wit,h ISi ( = 2ti - I for i = 1, . . ., 17, where t l  = 4 

and ti 5 3 for i = 2, ..., 17. Then, a 3-spread S" of PG(7,2) is constructed using 

the method described in Sect,ion 4.2.1, and an appropriate ~ollineat~ion matrix Mo is 

found which transforms S" to Sf such that Sf contains S1 = (A, B, C, D). Table 4.3 

cont,ains some of the elements of S f .  

Table 4.3: The 3-spread Sf obtained alter applying Mo on S". 

4 
A 
B 
C 
D 

AB 
BC 
CD 

ABD 
AC 
BD 

ABC 
BCD 

ABCD 
ACD 

AD 

S2 
BFGH 

DH 
CDEF 
ADFH 
BDFG 
CEFH 
ACEH 
ABGH 

BCDEGH 
-4F 

BCEG 
ACDE 

ABCDEFGH 
ABCEFG 

ABDG 

Sib 
AH 

ACDEF 
ABDFH 
BCDFG 
CDEFH 

BCEH 
ACGH 
BEGH 

BDF 
ABEG 
ABCE 

DEFGH 
ADEFG 

CG 
ABCDFGH 

SIT 
BCFGH 

H 
ABCDEF 
ABCDFH 

BCFG 
ABCDEFH 

EH 
ADGH 

ADEGH 
ABCDF 

ADEG 
E 

BCEFGH 
BCEFG 

ADG 

Given the sprea,d Sf, we first obtain S = {S n P : S E Sf\{S1)}, and then the 

collinea.tion matrix M1 is obtained to accommodate other re~t~rictions on S2, ..., Sm. 



The t,wo collineation matrices used for the t,ransforrnations are as follows: 

As a result, the three disjoint subspaces that satisfy the experimenter's requirements 

are S1 = ( A ,  B,C, D), S2 = (E, F,CG) and S3 = (G, B C F , A B C D E F ) .  Since the 

construction algoritJhm does not involve any recursion, it can be made more efficient, 

by combining the problem of finding the two ~ollineat~ion matrices into one problem. 

When transforming the 3-spread S" to  S' containing S1, we can impose other restric- 

tjiorls (S2 > {E, F} and S3 > {G}) in this stjep itself. Thus, {S n P : S E S1\{SI })us1 
contains the required set of subspaces S1, ..., 5'3, for tlhe 3 st,ages of rand~rnizat~iori. The 

grouping of effects based on its null dist,ribut,ion is shown in Table 4.4. 

The assessment of all the 127 effects can be done by using 4 half-normal plots. 

Table 4.4: The ANOVA table for the 2' full factorial design. 

The designs discussed so far in this chapter foclis on full fact,orial experiments. Nev- 

Effects 

s1 

s 2  

s3 

p\(& U SP U s3) 

ertheless, fractional factorial designs are often desirable for experiments involving a 

Variai~ce 
2 9  1 2  
70; FC 
2&2 + la" 
27 2 27 
2 j 7  1 2  
To; + 7 0  

Degrees of Freedom 
15 

7 - 
1 

98 



large number of factors. and are therefore of interest. It tjurns out that the results 

developed here for the exist,ence and construction can easily be a.dapt,ed for regular 

fractional factorial designs with different randomization re~trict~ions. In addition: the 

RDCSS structure can be used t,o unify the fractionation of t,wo-level regular factsorial 

designs with different ra.ndomization restrictions. We present a brief discussion on 

such designs in the following section. 

Fractional factorial designs 

In this section, we first establish t,he existence of two-level regular fractional factorial 

designs by construc%ing t'hese designs using tlhe existence results and construction 

t,ec,hniques developed so far in this chapkr. Then, we focus on different ways of 

fractionat'ing a 2" full factorial design. 

If the number of factors in a t#wo-level fadorial experiment is p and the resources 

are enough for only a 2-"raction of the complet,e set of 2P treatment combinat,ions, a 

2"-%regular frac,tional fa~t~orial design can be constructed. A 2"-%regular fradional 

fact.oria1 design is constructed by assigning the I; additional fact,ors (added factors) 

to the columns of the model matrix corresponding to (preferably) the higher order 

interactions of the two-level full factorial design generat,ed with p - k basic .factors. 

Recall from Chapt,er 2 that a full factlorial design with randomization restrictions 

can be characterized by its RDCSS structure. It turns out t'hat one can use the set of 

disjoint subspaces in the effect space of the base factorial design to construct a regular 

fractional fact,orial design. In some cases, the fractional generators have t,o be chosen 

from the RDCSSs of the base factorial design, whereas there are cases when a dist,inct 

disjoint subspace is preferred to choose fractional generators from. Thus, the results 

developed so fa.r for a maximal set of disjoint subspaces of both equal and unequal 

sizes can be used t.o construct regu1a.r fractional factorial designs wit,h randomization 

restrictions. The following examples illustrate the constr~ct~ion in both situat,ions. 



Example 4.3. Consider a 28-' fmctional fw.t,orial experiment, wit,li randomization 

st,ruct,ure chara~t~erized by a split,-lot design. Further suppose that the experimen- 

tal units have bo be processed in 4 stages wit,h randomizat'ion restrictions defined bv 

S1 > {A, B), S2 > {C, D), S3 > {E, F )  and S4 > {G, H}. Then, t'he 6 (or, in gen- 

eral, p - k) independent basic fact,ors and their int,eractions, P = (A, B, ... , F), form 

a 2"ull fact.oria1 split,-lot design. Lemma, 4.1 guarant'ees the existfence of a 2-spread 

of P, and the con~t~ruction method outlined in Section 4.2.1 can be used to construct, 

3 RDCSSs that ~at~isfies the restrictions defined by S1, S2 and S3. Table 4.5 shows the 

transformed spread S = {ST, ..., S,'), where S1 = S;, S2 = S,' and S3 = S;. 

Table 4.5: The 2-spread of fJG(5. 2) aft,er tl.ansforination. 

s; 
DF 

BDF 
AB 

-4I3DF 
A 
B 

ADF 

5'; ( s; I s; 
BCD I ABCEF ] BE 
BDE 
ABE 

-4CDE 
ABC 

CE 
AD 

C 
ABCDEF 

D 
CD 

ABEF 
ABDEF 

ABCDE 
BCDF 
CDEF 

ABF 
.4CD 
AEF 

CDE 
AC 

ACDEF 
.4F 
CF 

ADE 

ABCD 
DE 

BDEF 
ACEF 
ACDF 
ABCE 

EF 
E 

BCEF 
BC 

BCE 
F 

BCDE 
CDF 
ACE 
ABD 

ABCF 
BEF 

ABDE 
.4E 

CEF 
ABCDF 
BCDEF 

BD 

The collineation mat,rix used to  transform t,he 2-spread (shown in Table 4.2) obtained 

from the cyclic construction t,o S = {ST, .. . , S,') is given by 

Since a 2-spread of P consists of nine disjoint subspaces of size 7 each, S4 can be con- 

structed using a subspace from t,he remaining six disjoint subspaces, S\{S1, S2, S3). 

and then by assigning two int,eractions tjo the tjwo added fac,tfors G and H. For ex- 

ample, if we clioose S4 = Sg+ and G = CDF, H = BEF, then the fraction defining 
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coritrast subgroup (FDCS) is 

I = C D F G  = BEFH = BCDEGH, 1 
where the resulting design is of resolution IV. Of course, there are several options 

for the two generattors which furt,her leads t,o different designs. These designs can be 

ranked using different criteria, such as minimum aberration (Fries and Hunter. 1980), 

maximum number of clear effects (Chen, Sun and Wu, 1993; Wu and Chen, 1992) 

and V-crit,erion (Bingham et al., 2006). The technique used here for const,ruct,ing a 

fractional fact,orial design is simply an approach t,o label t.he higher order effects tlo 

the a,dded factors. To get all designs, or designs that are optimal according to some 

crit,erion, one can avoid all possible relabellings by using the spread struct,ure which 

serves as a t,emplate to reduce thc scarch space. 

The above example presents a scenario where the availabilit,~ of more than 3 disjoint, 

subspaces in P has been used t,o construct a regular fractional fact,orial design. In this 

setup with 6 basic facttors, one can have up t,o nine st,ages of randomization and disjoint 

RDCSSs wit,h Si's large enough to pcrform useful half-normal plots. However, if more 

than nine stages of randornizat,ion are required, overlapping among the R.DCSSs can- 

not be avoided. The next example presents a scenario where the added fact<ors have t,o 

be assigned t,o higher order fact.oria1 effects in t,he RDCSSs of t,he base factorial design. 

Emmmplc 4.4. Consider a 28-2 regular fractional factorial design with the requirement 

of 3 stages of randomizat,ion, where t,he imposed restrictions on the R.DCSSs are 

defined by S1 > {A, B) , S2 > {C, Dl E) and S3 > {F, G, H). In this case also, one 

can st,art with t,he algorithm in Section 4.2.1 t,o const,ruct a 2-sprea.d of the effect spacc 

for t,he base factorial design such that the sprea,d  consist,^ of three disjoint subspaces 

sat'isfying S1 > {A, B), S2 > {C, D,  E) and S3 > {F). After transforming the 2- 

spread (shown in Table 4.2) obtained from the cyclic construction, the resulting spread 
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S = {S1, ..., S g )  that satisfies the experimenter's requirement for the base 

design is shown in Table 4.6. 

Table 4.6: Thc 2-sprcsd of PG(5,2) afi,c>r applying tlie colliiication niat,rix M. 

B 
ABCDEF 

BCDEF 
cDEF 

AB 
ACDEF 

D 
CE 

E 
DE 
CD 

CDE 

ABCF 
BEF 

F 
ABC 

ACEF 
,4CE 

5'4 1 s5 I s6 1 s7 I s b  I & 
DF I BDF 1 BF I 4C  I BCE BDEF 

ABE 
AcF 
ACD 

BC,DE. 
ABDEF 

BCEF 

CDF 
ABDE 

AEF 
AC,DE 

BC 
ABCEF 

DEF 
ABD 
ADF 

,4E 
BDE 

ABEF 

BD 
ABDF 
BCDF 

CF 
ABCD 

AF 

ABCDF 
BCF 

EF 
ABCDE 

ADEF 
AD 

CEF 
ABCE 
ACDF 

ADE 
BCD 
ABF 

The collineation matrix M used for t,he transformation is given by 

Next,, one can fractionate the subspace S3 by choosing two generators (or points) from 

this subspace. For example, the two added factors G and H can be assigned to  the 1 
columns corresponding to int,erackions BE F and ACE respectively. As a result, the 

fraction defining contrast subgroup is 

I = BEFG = ACEH = ABCFGH. 

The fractional factorial design obtained is of re~olut~ion IV, and the word length pat- 

t,ern for t>his design is (0,2,0,1). Similar t,o Example 4.3, designs obtained as a result, 

of different choices of feasible collineation matrices and (G, H) from the corresponding 

S3's can be ranked using a criteria that suits the experimenter 



The two cases, (i) when a new R.DCSS has t,o be constructed to assign the added 

fact,ors (Example 4.3), and (ii) when t'he added fact,ors are chosen from the RDCSSs 

of the base factorial design (Example 4.4), do not cover all possible tjypes of fract,ional 

fact(oria1 design. In fact, one of the most common design, a fractional factsorial split$- 

plot. (FFSP) design is different than the previous two types of fractionation. In t'his 

czise, the added factors are assigned t,o the int,eract,ions of basic factors cont,ained 

in Si's and P\(uZ,Si), where Sils are the R,DCSSs of the base fact,orial design. For 

example, in a 2(4+4)-(1+1) FFSP design, the base fact,orial design is a 23+3 full factorial 

split8-plot design. To construct the 2(4+4)-(1+1) FFSP design, one needs to choose one 

generator each from S1 = (A, B, C)  and P\S1, where P = (A, B, C, D,  E, F ) .  If 

the t,wo added factors G and H are assigned t,o the columns of the model matrix 

corresponding to ABC and CDEF respectively, then the fraction defining contrast, 

subgroup is 

I = ABCG = C D E F H  = ABDEFGH. 

The resuhng 2(4+4)-(1+1) FFSP design is of resolution IV, and the corresponding word 

length patt,ern is (0,1,1,0,1).  

The ranking of fra~t~ional fact(oria1 designs using different criteria is oftsen compu- 

tationally expensive. Several efficient algorithms have been proposed in the past t,o 

obtain fractional fact,orial designs with randomization restrictions that are opt,imal 

in some sense (e.g., Bingham and Sitter, 1999; Butler, 2004). The R.DCSS struchre 

can be used to shortmen the computer search for finding such optimal designs. The 

complexity of the algorithm can be further reduced by using t,he c,ollineation matrices 

for relabelling the effect space. 
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4.4 Further applications 

In this section, we provide a few illustrative industrial examples. The exa,mples pre- 

sented in this section bring out some of the main features of the t,heory developed 

here tha.t can be used in practical settings. 

Examplc 4.5. Consider the bat.tery cell experiment in Vivacqua and Bisgaard (2004). 

A company manufacturing electric batteries had problems in keeping t,he open circuit, 

voltage (OCV) wit,hin specification limit. In this experiment,, the aut,hors sort,ed 6 two- 

level factors t'hat potentially could have impact on OCV. It t,urns out that the batkeries 

are manufactawed in a two-stage process: (a) assembly process, and (b) curing process. 

Vivacqua and Bisgaard (2004) performed a 26 full fact,orial experiment with 4 factors 

(A, B, C, D)  at the assembly process stage and 2 facttors (E, F) at the curing process 

stage. After investigating some options, they chose a strip-block arrangement. to 

optimize the resources. 

Note that t,he effect space for this factlorial layout is P = (A, ..., F), and t'he two 

stages of randomization are charact'erized by subspaces S1 = (A, . .. , D) and S2 = 

(E, F). Vivacqua and Bisgaard (2004) chose a design where they could not assess the 

significance of the effectjs in S2, because S2 was not large enough t.o construct. useful 

half-normal plot (see Table 4.7). 

Table 4.7: The AKOVA table for the batt.ery cell experilllent.. 

In cases like t,his, one can use the ~t~rategies developed here to construct designs that 

will allow assessment of more factorial effects. As discussed earlier in this thesis. 
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t,o construct useful half-normal plots, the set of effects with equal variance should 

cont,ain more than six or seven effects. This can be done by introducing an extra 

blocking fa.ct,or 6 at tjhe second st,age of tjhe proc,ess, i.e., S2 = (E, F, 6). However, 

from Theorem 4.3(a), there does not exist tjwo disjoint subspaces S1 and S2 of size 

24 - 1 and 2" 1 respectively. In addition, Theorem 4.3(b) indicat,es that the overlap 

between S1 and Sq is at least 24+3-6 - 1. Keeping this is mind, one chooses b t,o be a 

higher order interaction in S1, for example 6 = ABCD. The corresponding analysis 

of variance table would be as shown in Table 4.8. 

Table 4.8: Tlie grouping of factorial effects for tlle bat,tery cell experirrieilt,. 

One can use 3 separate half-normal plots to  a.ssess t,he significance of all tlle factorial 

effects, but inf~rmat~ion about t,he 4-factor interaction ABCD is sacrificed. 

Effects 

S, n S, 

Sl\(Sl n S 2 )  

S2\(Sl n S,) 

7'\(Sl u S2) 

Emmple 4.6. Consider the setsup of the chemical experiment in Schoen (1999). The 

goal of this experiment was to identify significant factors from a list of pot,ent.ial 

candidates that were slispect,ed t,o impact the yield of a catalyst synthesized on gauze. 

This e~periment~al procedure involved 5 st,ages: (i) Gauze prepa.ration (H, J), (ii) 

Mixing  component,^ (D,  E, G, P, K, L, M, N, Q), (iii) Treatment of mixture (A, B), 

(iv) Synthesis (C) and (v) End of synthesis (0, F), where the letters in the bracket, 

represent the fa.ctors as~ociat~ed with each stage of the experiment. There were a 

t,otal of 16 two-level fa.ct,ors to  be screened, and it was decided t,o run 32 trials. 

They perfor~ned a fractional factorial block design using 8 blocks of size 4 each, the 

Variance 
f 2' gl 2 + Goi 2. 7 + so2 

2 ? 2  1 2  
30, + ~ i ; "  
L~ 1 $o.: + ?a2 

1 2  
3 0  

Degrees of Freedom 
1 

14 

6 

42 
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datja collect,ed was analyzed using t.wo half-normal plot,s. The distribution of effects 

according to t,heir variance is shown in Table 4.9. 

Table 4.9: The ANOVA tablc for the chemical expcrinient . 

This experimental set,ting and its nature is an ideal scenario for a fractional fac- 

t,orial split,-lot design with 5 stages of rand~mizat~ion. The 5 stages of randomizat'ion 

can be represented by subspaces Si, ..., SL contained in the effect space P of t,he cor- 

responding base factlorial design. The 5 st,ages of the process imposes restrictions 

on the randomization of the trials: Si > {H, J), S; > {D, E, G, P, h', L, hf, N, Q), 

Si > { A ,  B), Si > {C) and SL > (0, F). In order t,o construct useful half-normal 

plots, the subspaces should contain more t<han six or seven effects, i.e., IS,'1 2 23 - 1. 

Since Si should consists of at least 9 effects, one must construct Si with IS;\ 2 24 - 1. 

However, we know from Theorem 4.3(a) that t'here does not. exist two disjoint sub- 

spac,es of size 7 each in P = PG(4,2). Thus, there does not exist an appr0priat.e 

design t,hat can be used to analyze t,his experiment in 32 runs. 

If a 64-run design is performed inst,ead, one can const,ruct a design that satisfies 

the requirements. Let, a ,  ..., f be the 6 independent basic factors, and P = (a, ..., f )  

be the effect space for t,he corresponding base factorial design. For two subspaces 

S;, S; in P with /S;I = i25 - 1 and 1S;I = 24 - 1, Theorem 4.3(b) implies that, 

IS; n S;I 2 23 - 1. The most obvious choic,e for S; and S; are S; = ( a ,  b, c, d, e) and 

S; = (a, b, c, f ) .  Now, define S2 = S; and construct Si, i = 1 ,3 ,4 ,5  from S,' such that) 

the overlaps Si f7Sj for i # j are avoided. For inst,ance, S1 = (b, d, ce), S3 = (b? e, acd), 

S4 = (b, cd, ade) and S5 = (b, de, ae)  provide t,he minimum pairwise overlap of only 

one effect,. These subspaces can now be mapped into subspaces containing the original 

factors by relabelling: a -+ D, b -+ CDEGH,  c -+ HC, d -+ H, e --+ A and f -+ E. Of 

Degrees of Freedom 
7 
1 

Effects 

Bet,ween block effects 

\-ariance 
2 ' 2  1 9  s o l  + ?o- 
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course, one could use collineation matrix approach to find an appr~pr ia t~e  relabelling 

such that the RDCSSs meet the e~periment~er's requirements. By defining S: = Si 

for all i, the subspaces Si = (CDEGH, H, ACH), Sh = (CDEGH, D, E, HC), S$ = 

(CDEGH, A,  CD), Si = (CDEGH, C, ADH) and Sk = (CDEGH, AH, AD) sat'isfy 

the size  requirement)^, which allow the assessment of significance for all t , l ~  factlorial 

effects except, CDEGH. The analysis of variance table is shown in Table 4.10. 

Taldc 4.10: The grouping of effects for thc chemical cxpc>rinient. 

Effects 
{CDEGH) 

Si\{CDEGH) 

Sh\{CD EGH) 

S,;\{CDEGH) 

Si\{CDEGH) 

Si\{CDEGH) 

P\(u:=lS,') 

Variance 

$0; - + $(0; + .; + 0; + 4) + &g2 
2 3 ' )  1 2 
~ f l i  + 
2' 2 1 ') 

30, + TO- 

2 " 2  1 2  
3 9 3  + 30 
2 3 ' )  J 2 
~q + 30 
' " 2  1 2  
$ 0 5  + =p- 

$02 

Degrees of Freedom 
1 

6 

14 

6 

G 

6 
24 

To assign the 10 additional factors to  higher order int,eract.ions in S:, i = 1, ..., 5, one 

should choose one fractional generator from Si, six from Si, one from Si and two 

from S;. Not,e that, t,he choice of generators should not include CDEGH because t,his 

effect cannot be assessed for significance. One set of generators is given by 

B = ACD, F = AH, .J = CDEG, K = CGH, L = DEG, 

Ad = CDH, N = CDEH, 0 = ACEGH, P = CEH, Q = EG. 

These generators may not be the best possible set of generators. One can choose a, 

different sets of genera.tors using the rule (one generattor from Si, six from S;, one 

from Si and two from Sk) to co~lst~ruct an optimal 2lGP6 fract.iona1 fact.oria1 split,-lot, 

design in this setting. 
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The results discussed here help an experimenter in determining when a design  exist,^, 

and how to const,ruct one if it exists. The focu  of t.his chapter u7as on results and 

algorit,hms related t,o the existence and construction of disjoint subspaces. When the 

conditions for the exist,ence of a set of disjoint subspaces are not met,, overlap among 

many pairs of subspaces cannot be avoided. Under these circumsta~lce, one must be 

careful in deciding on the size of t,he overlap as well as the factorial eflects t,hat belong 

to the intersecting set. In the next chapter, we develop fackorial and fra.ctiona1 factrorial 

designs with rand~mizat~ion restrictions where the required number of RDCSSs, m., is 

greater than the size of a maximal set of disjoint subspaces, (SI. 



Chapter 5 

Factorial Designs and Stars 

An ideal choice for the randomization structure of a 2* full factforial design is to have 

disjoint, RDCSSs such that the Si's corresponding t,o t,he RDCSSs are large enough 

to const,ruct useful half-normal plots. Often, there are limitations on the number 

and size of the disjoint, subspaces cont,ained in the effect space P = PG(p - 1,2).  

As described in the previous chapt,er, under tthese circumstances one would like to  

find a set of disjoint, subspaces for constructing RDCSSs wit,h different sizes. For tlhe 

existence of a set of m, disjoint (t  - 1)-dimensional subspaces, the ~ondit~ions developed 

in Chapter 4 are based on t,he decomposit,ion of p as p = kt + s ,  where k ,  t and s are 

nonnegative int,egers. In t,liis chapter, we assume that s is strictly positrive, i.e., t,here 

does not exist a ( t  - 1)-spread of P. 

The results developed in Chapt,er 4 focus on the factorial designs where overlaps 

among the RDCSSs are avoided. However, the desired number of disjoint subspaces 

in the effect space P ofkn can exceed the size of a maximal partial ( t  - 1)-spread, 

which further causes RDCSSs to overlap. So, a few of the RDCSSs for different stages 

of randomization must share some of t,he randomizat,ion restriction factors. This is 

the main focus of t,his chapt,er. 

When a (t - 1)-spread of PG(p - 1,2)  does not exist and m. > IS], the overlap 



CHAPTER 5. F4CTORIA L DESIGNS ,4iIiD STARS 71 

among at least a few of the RDCSSs cannot be avoided. Given t,his sit,uat,ion, one 

pos~ibilit~y is to maximize the number of disjoint RDCSSs, and t,hen obt,ain a set, 

of subspaces that minimize t,he size of t,he overlap among the non-disjoint RDCSSs. 

This ~ombinat~ion of disjoint and overlapping subspaces of PG(p - 1,2) resembles t,he 

geometric structure called a. ( t  - 1)-cover of' P (Be~t~elspacher, 1975). 

Recall that assessing the fact,orial effects for an unreplicated fact.oria1 experiment 

requires c~nst~ructing half-normal plots of size more t,han six or seven each. Since a, 

(t  - 1)-cover approach minimizes the overlap, one may have to sacrifice t,he assessment 

of factorial effects present in ~nult~iple RDCSSs. For full factorial designs, if t,he effect,s 

present in multiple RDCSSs are higher order int,eractions, one may not be t,oo con- 

cerned. However, if the number of effects in the intersection is large, t8hen the loss of 

informat,ion relating t,o lower order effectas cannot be a,voided. In this case, sacrificing 

the assessment of all the effects in t,he overlap is not desirable. 

It may appear that overlap among RDCSSs is a problem for the analysis of un- 

replicat,ed factlorial designs wit,h randomization restrictions. It t,urns out tJhat one 

can use an alternat,ive ~t~rategy that, uses overlapping among distinct subspaces as 

an ad~ant~age,  and allows one t$o assess the significance of all t,he factorial  effect,^ in 

the effect space. For this purpose, we propose a geometric structure called a star, 

which consists of a set of distinct ( t  - 1)-dimensional subspaces of PG(p  - 1,2)  wit,h 

a common overlap on a ( r  - 1)-dimensional subspace in P. 

This chapter is organized as follows. In Sect,ion 5.1, the focus is on the use of 

(t - 1)-covers of the effect space P to construct designs when m. > (SI. The existexe 

and const,ruction of stars are developed in Sect,ion 5.2.1. The relat'ionsliip bet,ween 

stars and (t - 1)-covers is established in Sect,ion 5.2.2. A closer look at, the class of 

2P factorial designs wit,h p = kt + s shows that, the designs can be classified int,o t,wo 

different groups: (a) k = 1 and (b) k > 1. In the first case, Theorem 4.1 shows 

that, there does not exist even t.wo disjoint (t - 1)-dimensional subspaces. Stars are 

specifically beneficial for such cases. For the case k > 1, the maximum number of 
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disjoint ( t  - 1)-dimensional subspa.ces available in PG(p  - 1,2)  is often large (for 

details, see Lemma 4.4). Therefore, for smaller experiments, the desired number of 

RDCSSs (m.) is usually less than the size of a ma.xima1 partial ( t  - 1)-spread S. 

In contrast, for full factlorial experiments wit,h large run-size and fractional factorial 

experiments with many factors, m, can exceed IS(. A generalization of stars which 

entertains large designs, called a finite galaxy, is proposed in Section 5.2.3. Again, 

the results developed here focus on only tjwo level fa.ctoria1 designs, but are easily 

extended for q level factlorial and regular fract,ional fact,orial designs. 

5.1 Minimum overlap 

In this section, geomet,ric st,ruct,ures available in PG(p  - 1,2) are used t50 const,ructj 

designs that maximize the number of disjoint subspaces for con~t~ructing RDCSSs, 

and minimize the size of overlaps among the int,ersecting subspaces. A closely relat.ed 

geomet,ric struct,ure is called a (t  - 1)-cover (Eisfeld and Storme, 2000) of P. A col~er 

of the effect space P is a set of dist,inct subspaces in P that conta.ins all t,he factlorial 

effects. 

Definition 5.1. A (t - 1)-cover C of PG(p - 1,2) is a set of (t  - 1)-dimensional 

subspaces of PG(p - 1,2)  which covers all the points of PG(p - 1,2).  

Finding a set of subspaces t,hat covers the entire effect space can be a stronger require- 

ment compared t,o finding a pre-specified number of distinct subspaces. Nonetheless, 

if it is easy t,o construct a larger set of subspaces, one can always obtain an appro- 

priat,e subset tJo const.ruct RDCSSs as per the requirement. For example, Lemma 

4.4 g~arant~ees the existence of 17 disjoint subspaces of size 7 eac,h in the base fac- 

torial design of a 220-13 regular fractional factorial layout. A 2-cover C of the base 
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fact,orial design wit,h maximum number of disjoint subspaces c0nsist.s of 16 disjoint, 

subspaces and a, set of 3 int,ersecting subspaces. Thus, if the experiment,er needs less 

than 19 RDCSSs, one can take an a.ppropriate subset of C. Recall that, for the dis- 

cussion in t,his chapter, m. is supposed to be larger than the size of a maxinlal partial 

(t  - 1)-spread of P. Similar to Chapter 4, the subspaces obt.ained from a standard 

(t - 1)-cover construction technique may not satisfy the requirements for RDCSSs. 

Thus, the columns of the model matrix require relabelling to get the desired design. 

From t'he definition of a (t - 1)-cover, it is apparent that there exists more than 

one set of (t - 1)-dimensional subspaces that covers the effect space P. However, we 

are interested in (t - 1)-covers t,hat maximize the number of disjoint subspaces. These 

(t - 1)-covers are called minimal (t - 1)-covers of P (Eisfeld and Storme, 2000). 

Definition 5.2. A set of (t - 1)-dimensional subspaces of P = PG(p - 1 ,2)  is said 

to be a minim8ajl (t - 1)-cover C of P if there does not exist a (t - 1)-cover C' of P 

such that C' is a proper subset of C. 

In other words, the set of subspaces in a minimal (t - 1)-cover cannot be further 

shortened and still form a cover. Consequently, a minimal (t  - 1)-cover C  consist,^ of 

a maximum number of disjoint (t - 1)-dimensional subspaces of P that forms a cover 

of P. The following result due to Eisfeld and Storme (2000) provides a lower bound 

on the size of a (t - 1)-c,over. 

Lemma 5.1. A (t - 1)-cover of P = PG(p - 1,2)  contains at least 2" kt + 1 ele- 

ments? where p = kt + s for 0 < s < t < p. 

A minimal (t - 1)-cover that at,tains this lower bound can be c~onstructed using con- 

struction techniques similar to tha,t of a partial (t - 1)-spread developed in Section 



4.2.2. The next example illustrates the use of a minimal (t - 1)-cover in construct.ing 

factorial designs when the desired number of subspaces for RDCSSs ( m )  is more than 

the maximum number of disjoint) subspaces (IS\) and less than the size of a minimal 

( t  - 1)-cover C. 

Note that, for a regular fractional fadorial design with at most 5 basic fact,ors, 

there does not exist even a pair of disjoint subspaces large enough t,o construct use- 

ful half-normal plots. The regular fractional factorial designs witah 6 basic factors is 

not considered here because there exists a 2-spread of P, which is not the focus of 

t5his chapt,er. Therefore, a two-level regular fractional factorial design, which allows 

construction of at least, two disjoint RDCSSs large enough to perform useful half- 

norrnal plots where a (t - 1)-spread does not exist, consists of at  least 7 basic factors. 

Since multiple experimental units are processed together at  each st,age of randomiza- 

tion, designs with randomization restrickions have usually much larger run-size t,han 

completely randomized designs. Therefore, t,hese designs are useful in practice. 

Emm.pde 5.1. Consider a 220-13 fractional factorial split-lot design wit,h 18 stages of 

randomization. Suppose that, the restrictions imposed by the experi~nent~er on different 

st,ages of randomization are characterized by S1 2 {Fl, F2, F3) and Si 3 {Fz+2) 

for i = 2, ..., 18. To get useful half-normal plots, each RDCSS should contain the 

necessary number of effects. Recall that the corresponding base farctorid design is the 

full factorial design constructed from the basic factors. By using Lemma 4.4 for the 

base factorial design, p = 7 and t = 3 implies that there exist only 2(63/7) - 2 + 1 = 

17 disjoint 2-dimensional subspaces. Therefore, for constructing 18 RDCSSs of size 

7 each, one can have at most 16 disjoint subspaces. The other t,wo 2-dimensional 

subspaces must overlap. 

It turns out that there exists a minimal 2-cover of P which consists of 16 disjoint 

subspaces and a set of 3 non-disjoint subspaces overlapping on a common subspace 

of size 3. Thus, 2 out of the 3 intersecting subspaces have to chosen t,o construct the 
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desired RDCSS. However, the significance of the factorial effects contained in the 2 

intersecting RDCSSs cannot be assessed if the factorial experiment. is unreplicat,ed. 

Let Si, i = 1, ..., 16 represent the disjoint RDCSSs, and S17 ,  S18 be the t'wo overlapping 

RDCSSs. Then, the analysis of variance is shown in Table 5.1. 

Table 5.1: The ,4NOVA t.a,ble for t,he 2""-l3 split,-lot. design in a 18-sttage process. 

Effects Variance 
2 2  1 s o 1  + Po2 

Degrees of Freedom 

Since the total nurnber of distinct (t  - 1)-dimensional subspaces in a minimal (t - 1)- 

cover C is less than any other (t - 1)-cover, the non-disjoint subspa.ces overlap on a, 

srnallest possible int,ersecting set,. If the size of the common overlap in Example 5.1 

was smaller (e.g., ISl7 n S181 = I ) ,  then by assigning a higher order interaction to 

the effect in the intersecting set one could sacrifice the assessment of this one effect, 

and assess the significance for the rest of the effects. Here, it is unlikely that all 

15 effects in S17 U S18 and P\ (U:~,S~) are negligible. Thus, one would not want t,o 

sacrifice the assessment, of all these effects. In particular, for constructing regular 

fractional factorial designs, it is often preferable to assign added factors t,o higher 

order interactions of the corresponding base factorial design. Therefore, it is desirable 

t,o develop a new strat,egy to assess the significance of more factorial effects. 

Overlap among the RDCSSs may appear tto cause problems in assessing the sig- 

nificance of fa.ct,orial effects if the fact,oria,l design is u~lreplica~ted. Next,, we develop 



a new overlampping stra,t,egy resulting in a geo~netric strwture called a star. When 

A: = 1 (i.e., there does not exist even a pair of disjoint (t - 1)-dimensional subspaces), 

a star is geometrically similar to a minimal (t - 1)-cover but flexible enough t,o allow 

different sizes of the common overlap. 

5.2 Overlapping strategy 

In this section, we first highlight, the features of the RDCSS ~truct~ure of a factorial 

design that are required to efficiently assess t,he significance of factorial effects. This 

furt,her motivates the geo~netric struct,ure of t,lie new design called a star. Necessary 

and sufficient conditions will be developed to establish the existence of stars. Next,, an 

algorithm is proposed for constructing stjars. Since the geometry of stars is similar to 

that of a minirnal ( t  - 1)-cover, we establish a relat,ionsllip bet,ween the two geomet,ric 

~truct~ures. Finally, the not,ion of stars is generalized to accornrnodat,e larger designs. 

In order to use the overlap among the RDCSSs to our ad~ant~age,  the size of the 

overlaps themselves should be large enough. The idea here is that when an overlap 

must occur, we shall require the number of effects in the overlap to be large enough 

t,o construct a separatJe half-normal plot. Furthermore, one must remernber that the 

variance of an effect estimate depends on its' presence in different RDCSSs (Theorem 

3.3). The following properties summarize t,he requirements of a good factorial design 

when overlap among RDCSSs cannot be avoided. 

The size of each overlap should be rn-ore than six or  seven. Recall from Chapt,er 2 

that the factorial effwts with equal variance are plot.ted on separat,e half-normal 

plot,s. In additlion, more than six or seven effects are required t,o construct an 

informative half-normal plot (Schoen, 1999). Therefore, from Theorem 3.3, the 

effects contained in an overlap have to be plott,ed t,ogether on a separat,e half- 

normal plot. If Sij = Si n Sj is non-null, then the size of Sij should be at least 
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23 - 1. As a result,, tlhe size of Si and Sj should be more than 24 - 1. 

All n.on-disjoint subspaces are preferred to hacue 0, commmn overlap. Let Si, 

S, and Sk be three R.DCSSs such that Sij, Sik and Sjk are non-empty, where 

Sili2 = Sil n Si2, for i l ,  i2 E {i, j ,  A:). Then, the factorial effectas in Si\(Sij U Sik) 

have distribution that differs from those of the factorial effects in Sij or Sik 

(Theorem 3.3). Thus, if all the pairwise intersections among tlhe 717, RDCSSs 

are different,, ( y )  + m separate half-normal plots are required. The geomet,ric 

stmcture formed as a result is known as t,he conclave of plmes (Shaw and Maks, 

2003). If all tlhe overlaps are identical, only m + 1 dist,inct half-normal plots are 

needed to  assess the significance of facttorial effects contained in tjhe RDCSSs. 

In addition t,o the inefficiemy in assessing the factorial effectas on a process, a mini- 

mal (t  - 1)-cover approach addresses subspaces of equal size only. The R.DCSSs are 

often characterized by the experimenters and are likely t,o be of different sizes. The 

next example (Vivacqua and Bisgaard, 2004) presents a scenario where subspaces of 

different sizes are desirable. 

E:r;an/,ple 5.2. Consider t,he battery cell experiment described in Example 4.5. Here, 

the experimenter had t,o sacrifice the assessment of the effect, in overlap bet,ween S1 

and S2. There exists a better strategy t.hat uses the overlapping bet,ween subspaces as 

an ad~ant~age,  and leads one to  constmct a design that allows the assessment of all t,he 

fact,orial effects in the effect space. Of course, this is not a big issue because it is likely 

that the 4-fact,or interaction (ABCD) is negligible. However, if this was an 8-factor 

design with 64 runs with two additional facttors G and H in the curing stage, one 

would have t,o choose t'wo fractional generat,ors from S2. Under these cir~urnst~ances, 

assigning two int,eractions from S2 = (E, F, A BCD) , considered in Example 4.5, may 

cause ABCD to be aliased with a 2-fact,or interaction. Since t,he size of overlap 

bet,ween S1 and S2 is too small to c,onstruct half-normal plots, one would have t,o 
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sacrifice information on a 2-fact,or interaction. Inst,ead, one ca,n allow a larger overlap 

between S1 and S2 tlo construct useful half-normal plots. For example, by defining 

S1 = (A, BC, CD,  AB) and S2 = (E; F, BC, CD,  AB) with t,he addit,ional factfor being 

G = A B E F  and H = CDF, the result,ing design allows more enlight,ening analysis. 

The grouping of effect,s based on their distribution under the null hypothesis is shown 

in Table 5.2. Specifically, not,ice that all of the factorial effects can be assessed using 

4 half-normal plots. 

Table 5.2: The distribution of factorial effects for the battery cell experiment . 

Other than the tJwo properties described above, it is preferable t,o have a fact(oria1 

design that entertains unequal sized RDCSSs. Considering the t,hree feat>ures (t2wo 

propert,ies on the overlapping pattern among the RDCSSs, and the flexibility among 

the sizes of the different RDCSSs), we propose st,ars for full factorial and regular 

fract)ional factorial designs with p basic fact,ors. 

5.2.1 Stars 

The notlion of stars was first introduced by Shaw and Maks (2003) in a specific cor~t~ext, 

for a set of 1-dimensional subspaces with a common overlap on a point in P. In 

t,his section, we formalize the notion of stars and further generalize this concept for 

(t  - 1)-dimensional subspaces of P = PG(p - 1,2).  First,, we discuss the different 

components of a sta,r for both equal and unequal sized subspaces, t,hen t,he existence 

and con~truct~ion of st,ars are established. 
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A stjar consists of t,wo components: (a,) a set of (t - 1)-dimensional subspaces 

(r t 's)  in P, that are referred t,o as rays of the star, and (b) the common overlap on a, 

(r - 1)-dimensional subspace (T,) is called the nucleus of the star, where r < t. The 

star formed from these subspaces (or rays) constlit,ut,es a (t  - 1)-cover of P if these 

subspaces span the effect space P. Next, we define the geometric. structxre called a 

star in a general setup. 

Definition 5.3. A star St (p ,  T,, T,) is a set ofp rays consisting of (t - 1)-dimensional 

subspaces (rt 's) in P, and the nucleus T,, a ( r -  1)-dimensional subspace: where r < t .  

If a stjar St (p ,  n,, n,) exists, the maximum number of rays in St (p ,  n,, n,) is given by 

p = (2p - 2T)/(2t - 2,). Consequently, the smaller the nucleus is, the fewer the number 

of rays ( p ) .  The following example ill~strat~es the details of stars. 

Example 5.3. Consider the set,up of the plutonium example in Bingham et al. (2006). 

The authors performed a designed experiment t,o identify the factors which have sig- 

nificant impact on the plut,onium alloy. They used a 25 full factorial design wit,h 3 

stages of randornization charact,erized by S1 > {A, B), S2 > {C) and S3 > {D, E). 

The factors (A, B) represent the casthg mechanism for creating a t>ype of plutonium 

alloy, and (C, D! E) are t,he heat t,reatment,s applied to the three stages of the manu- 

facturing process. The data analysis using a half-normal plot approach requires each 

RDCSS t'o have more than six or seven effects. From Theorem 4.1 , it is obvious that, 

t,here does not exist even two disjoint subspaces of size 7 each in this effect space. 

Bingham et al. (2006) used an exhaustive computer search to reach t,his conclusion. 

They chose to sacrifice the assessment of one effect. ABCDE. The design proposed 

by Bingham et al. (2006) is equivalent t,o a St(5,7r3, nl) .  By defining the nucleus of 

a star to be the 0-dimensional subspace, 7rl = {ABCDE), and assuming that, the 
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rays of the star ase 2-dimensional subspaces of P, the maximum number of rays is 
2"71 

LL = - 2 ~ 2 1  = 5. The five rays S1 = ( A ,  B, T,), S2 = (C, AD, T,), S3 = (D,  E, T,), 

S4 = (AC, AE,  T,) and S5 = (BC, B D ,  T,) constitate the star. The data analysis was 

done using four separate half-normal plots for the four sets of effects given by Si\rT, 

for i = 1, ..., 3 and P\(u?=,Si) (see Table 5.3). 

Table 5.3: The ,4NOIrA t,able for the plutonium alloy esperiment. 

Effects 

S,\{ABCDE) 

S2\{ilBCDE) 

S3\{.4BCDE} 

{ABCDE) 

P\(S1 u 5'2 u S,) 

Inst,ead of sacrificing the assessment of one effect, if all the factorial effects are tjo be 

assessed, the size of the common overlap among the RDCSSs has to  be large enough, 

e.g., IT,(  2 7 and that, further implies that ISi( _> 15. It turns out that one can 

construct a star with the desired features. For T = 3 and t = 4, the number of rays 

25-23 - 3. Let the nucleus be T, = (AB, D E ,  ACD). is bounded above by p = - 

Then, one feasible choice for the set of three rays is S1 = (A ,  T,), S2 = (C,T,) and 

S3 = (D, T,). Since the resulting st,ar St(3, T,I, T,) covers P,  only 4 half-normal plots 

are required t,o analyze the data. The analysis of variance is shown in Table 5.4. 

Va,riance 
2 " 7  1 2  
~ f l i  + $0 
2' 2 1 2  
?.;a2 + ~a 
q 2 2  1 2  
ga, - + 3 0  

z2 2 
&I + a; + a:) + +a2 

1 a2 - 
2" 

Degrees of Freedom 
C; 

G 

6; 

1 

12 

Ta,ble 5.4: The set,s of effects having equa.1 variance in the 25 split'-lot design. 

Effects 

s1 \.irT 

S2 \x, 

s3\.ir, 

T , ~  

Variancc 
2 1 2  
$0; + 30 

$aa; + +a2 
, I 2  1 2  
5503 + 

"1 2 2 'I + (0, + a, + a:) + &a2 

Degrws of Reedom 
8 

8 

8 - 
I 
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The overlapping among the R.DCSSs turned out t,o be an advantage for the assessment, 

of fact.oria1 effects. However, the effects in the common overlap (r,) have relatively 

large variance. That is, there is a tradeoff between the abi1it.y tfo assess the significance 

of fa~t~orial effects and the variance of the effect estimates. Thus, if the design under 

consideration is an unreplicated full factorial, one may prefer to sacrifice a few effects 

by minimizing the overlap. In some cases, availabilit,~ of stars with different sized 

nuclei can be useful. For instancz, when a regular fractional factorial design has to be 

constructed from the base factorial design (e.g., in a three-stage 26-' split,-lot design), 

the added factors are assigned to the columns corresponding to preferably higher order 

interactions of the basic factors. 

The notion of stars can be further generalized for a set of subspaces of unequal 

sizes with a common overlap. Without loss of generalit'y, let pi be the number of 

(ti - 1)-dimensional rays in P = PG(p - 1,2) ,  for i = 1, ..., k ,  and the common 

overlap be a ( r  - 1)-dimensional subspace in P. Such a star can be denoted by 

St(pl ,  ..., pk, rt,, , ..., r t k ,  r,). Recall that if t i  +tj  < p for any pair i, j ,  then there exists 

a set of disjoint subspaces (Theorem 4.3), which is not the focus in t,his chapt,er, and 

thus we assume that 0 < r < ti < p and ti > p/2 for all i E (1, ..., k ) .  

A star is said t,o be balanced if all of its rays are of same size, while a star with 

different sized rays is called an unbalan,ced star. The geometric structure of two stars 

can be compared by ordering their ra,ys according t,o its size. Without loss of gen- 

eralit,y, let Q be a star St (pl ,  ..., pk, r,,, ..., rt,, r,) in P = PG(p - 1,2)  such that 

r < t l  < t2 < - . < t k  < p. Next, we develop the geometric equivalence bet.ween two 

stars Q1 and Q2. 

Definition 5.4. Two stars 12, and Q2 in PG(p - 1,2),  with nuclei of same size, are 

said to  he geometrically equivalent zj 

(1) (1) - (2)  ('4 (1) (2) 
( t  , . t ) - ( t  , . , ) and (pi1), ..., p, ) = (#, ..., p, ). 
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Here, the superscripts (1) and (2) correspond t,o the paramet.ers of sttar R1 and R2 

respectively. Although the st,ars have a flexible geometric st8ructjure that uses over- 

lapping among t,he R.DCSSs to our advanhge, and are generalizable for subspaces of 

different dimensions, the existence of stars is non-t,rivial. Even for a balanced star, the 

exist,ence of a star St (p ,  rt, rT) is not guaranteed for any t and r .  For example, there 

does not exist a balanced st,ar with 5-dimensional rays and a 2-dimensional nucleus 

that covers the effect space P = PG(6,2).  

Next, we propose conditions for the existence of stars. As illustrated in Example 

5.3, if there exists a star t,hat covers the entire effect space, one can select an appropri- 

ate subset of rays to construct the desired set of RDCSSs. Thus, the result presented 

here focus on the existence of stjars that cover P. 

Theorem 5.1. If th,ere exists a sta.r St (pl ,  ..., pk, rtl, ..., rtk, rT) in P = PG(p  - 1,2) .  

the positive integers p i ,  ti, i = 1, ..., k and r satisfy the following rela,tion: 

Proof: Suppose t,here exists a st,ar S t  ( p l ,  . .., pk, rtl, ... , rtk, rT) that is also a cover of 

the effect space P. Then, 

k which simplifies to (2p-T - 1) = x i = 1  Pi (2t,t-T - 1). 0 

The t,ot,al number of rays in a star S t (p l ,  ..., PI;, nil,  ..., rtk, rT) is p = p1 + . . . + p,k. 

That is, at most p distinct RDCSSs can be constructed using the rays of a star 

S t  (pl ,  . . . , pk, rtl ., . . . , rtk , rT ) .  Note that the condition in Theorem 5.1 is a necessary 

condition and ma.y not be sufficient. That is, the existence of positive integers pi, ti 

for i = 1, ..., k and r which satisfy (2p-' - 1) = pi (2t,t-T - 1) does not guarantee 
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t,he existence of a star St (pl ,  ..., pk, rt,, ..., rt,, r,). The following example ill~strat~es 

the underlying reason. 

Excl.n~,ple 5.4. Consider a 26 full factorial design with 3 stages of randomi~at~ion. Let, 

the RDCSSs be such that ISl 1 = 7 and 1,921 = IS3 I = 15. Fkom Theorem 4.1, 

it is obvious that overlapping among the RDCSSs cannot be avoided. Although 

the quantities p1 = 1, ,LL~ = 4, t l  = 3, t2 = 4 and r = 1 satisfy the relation: 

2P - 1 = p1 (2t1 - 2') + - 2T) + 2T - 1, there does not exist a S t ( l , 4 ,  7r3, r4, TI) .  

This is obvious from Theorem 4.1, which says that the minimum overlap bet.ween t,he 

two subspaces S2 and S3 is at  least 3. However, as we shall see, all is not. lost. 

By imposing a ~t~ronger condition to the special case (tl  = . . . - - tk = t ) ,  t,he result can 

be further refined to become bot,h nec.essary and sufficient. This modified result has 

similar spirit. as the nec,essary and sufficient condition (Andrk 1954) for the exist,ence 

of a ( t  - 1)-sprea.d of PG(p - 1,2). 

Theorem 5.2. There exists a star S t (p ,  rt, 7rT) in P = PG(p - 1,2),  if and only l,f 

(t - r )  di71ides (p - r ) ,  for 0 < r < t 5 p. Furthermore, if (t - r )  divides (p - r ) ,  the 

number of rays is p, = (2p-' - 1)/(2t-T - 1). 

Proof: If there exists a star St (p ,  .rrt, 7rT) in P, then the maximum number of rays is 

Notme that. p, is an int,eger if and only if (t - r )  divides (p - r). Since ,u(I PG( t  - 1,2)1 - 

( P G ( r  - 1,2)1) + ( P G ( r  - 1,2)1 = (PG(p-  1,2)1, the star St( /( ,  7rt, 7rT) is a ( t  - 1)-c.over 

of P = PG(p  - 1,2).  
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From Theorem 4.3, there exists an ( r  - 1)-dimensional subspace U1 in P = 

PG(p  - 1 ,2)  that is disjoint from an (p - r - 1)-dimensional subspace U2 in P. When 

(t - r) divides (p - r) ,  Lemma 4.1 determines the e~ist~ence of a (t  - r - 1)-spread S 

of a U2 with IS1 = (2P-' - l ) / ( P T  - 1) = p. Thus, the p distinct (t  - 1)-dimensional 

rays of St (p ,  rt, r,) can be ~onstruct~ed by combining the individual elements of the 

spread S with t,he nucleus r, = Ul. 0 

Corollary 5.1. For positive integers t < p and r = t - 1, there alu~a,ys exists a star 

St (p ,  nt,  r,) contained in P, where p = (PG(p  - t ,  2) 1 .  

For instance, both sets of parameters in Example 5.2 (t = 3 , r  = l , p  = 5 and 

t = 4, r = 3 ,p  = 5) satisfy the condit,ion (t - r) divides (p - r ) .  Of course, these 

new designs called stars are useful to a pra~tit~ioner only if they can be const,ruct,ed. 

Assuming the existence of a st,ar, we propose an algorithm t80 construct a star R, 

where all the p rays are ( t  - 1)-dimensional subspaces of PG(p - 1,2).  

Construction 5.1. Let R be a star in P = PG(p - 1, 2), which consists of y rays 

denoted by {Si)r=l, and a nucleus r,, where ISiI = 2t - 1, for all i and r < t .  The 

following is the out,line of an algorit,hm for c,onstructing the star R. 

1. Choose r independent fact,orial effects from t,he effect space P to construct the 

nucleus r, of size 2' - 1. 

2. Construct a star Ro = St(pO, r ,+~, rr) by defining a nucleus Ro = r, and 

po = 2'-' - 1 distinct rays Rj = (6,, n,), where 6, E P\ (u;:: RI) , j = 1, ..., PO. 

There exists a set of hi's such that U2 = {dl, ..., dP,) is a (p - r - 1)-dimensional 

subspace of P that is disjoint from r,. This can instead be obtained by arbi- 

trarily coiist,ructing a (p - r - 1)-dimensional subspace U2 that is disjoint from 

Ul = rr,  and then by relabelling the points of P to get the desired rays. 



3. Since (t - r )  divides (p - r ) ,  there exists a, (t  - r - 1)-spread S of U2 with 

IS1 = (2Ppr - 1)/(2t-r - 1) = p. Let J1, . .. , J ,  be the elements of S.  This spread 

S can be construct'ed using the technique shown in Section 4.2.1. 

4. The required set of p rays are Si = (Ji, r,,.), i = 1, ..., p. 

The resulting struct'ure is the desired star R = St(p,  rt, r,). One might be tempted 

t,o take a similar approach for constructing an unbalanced star. Instead of using a. 

spread of U2, if a sequential approach is taken for constructling a set of disjoint Ji's 

from the elements of U2, it may lead to overlap among the Ji's. The following example 

illust,rates the construction of a balanced star St(p,  rt, r,,.). 

E u m p l e  5.5. Consider the set,up in Example 5.3. Here, the exist,ence of a stjar 

St(3, r4,r3) in P = PG(4,2) is g~arant~eed since it, satisfies the sufficiency condi- 

tjion ( t  - r )  divides (p - r )  of Theorem 5.2. The experimenter's requirement for 

the three R.DCSSs were S1 > {A, B), S2 > {C) and S3 > {D, E ) .  Thus, hav- 

ing tjhe freedom t,o construct tjhe nucleus first,, one can choose r independent higher 

order effects to construct a ( r  - 1)-dimensional subspace. For example, consider 

Ro = r, = (AB, DE ,  ACD) . The effects dl ,  . . . , 63 can be chosen seq~ent~ially as de- 

scribed in Step 2. Considering the experimenter's requirement the obvious choice for 

dl E P \Ro  would be dl = A. Then, 62 E P\ (Ro  U R1) can be chosen to be 62 = C, 

which matches the requirement imposed on the RDCSS defined bv S2. Lastly, the 

effects in P\(Ro u R1 uR2) forms a subspaces that satisfies the desired criterion on the 

third RDCSS. As a result,, the subspaces S1 = (61, r,), S1 = (62, n,.) and S1 = (63, r,,.) 

const,itjute a star St(3, r4, r3) .  

This stjar can also be constructed by selecting the two disjoint subspaces U1 = 

(AB, D E ,  ACD) and U2 = (A, C) as ment,ioned in the proof of Theorem 5.2. Since 

p - r = 2 and t - r = 1, the only O-spread of U2 is the trivial spread, the set of all 

points of U2. Hence, t'he rays of the star would be S1 = (A, Ul), S1 = (C, Ul) and 
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S1 = (AC. U 1 ) ,  which is the same as above. 

In Exa~nple 5.5, the choice of Ul and U2 do not have to be so specific. One can st,art 

with an obvious choice and then use an appropriat,e relabelling to get the desired 

design. For the rays construct,ed here, all of the factorial effect,s (hi's) were chosen t,o be 

main effects. However, based on the imposed restrictions one can choose main effects 

or interactions. Different choices of factorial effects in the con~t~ruction of RDCSSs 

lead t,o different randomization restrictions. For example, in block designs RDCSSs 

do not contain main effects, whereas for a split,-lot designs, one or more fact,ors are 

assigned to the subspaces repre~ent~ing RDCSSs. The const,ruct,ion provided above is 

very useful, because one can use the restrictions imposed on the RDCSSs t,o choose 

t,he factorial effects for constructing rays of a stmar. 

Alt,hough the e~periment~er has some control over the choice of effects in construct,- 

ing a nucleus rT and the st,ar 0" = St(pO, rT+l, rT), the construction of spread required 

in Step 3 limits the choices t.o some ext,ent,. Thus, if nec,essarv, one can find an ap- 

propriate relabelling in a similar manner as described in Section 4.2.1 tlo transform 

the star (0) such that the resulting star (0') sat'isfies the desired features. The next, 

example demonstrates the usefulness of stars in a real application. 

Example 5.6. In the chemical experiment present,ed in Example 4.6, t'he original exper- 

imental setting required I S,'J 2 23 - 1 for i = 1 ,3 ,4 ,5  and IS; I 2 24 - 1. Assuming that, 

the allowed run-size is 64, Theorem 5.2 guarantees the existfence of a star S t  (5, r4, r2) .  

The rays of this star can be used to construct Si's for the base factorial design. Any 

two distinct Si overlaps on t,he 1-dimensional nucleus of the star. One can use tJhe 

fra~t~ionation technique described in Section 4.3 to choose a good set of fractional gen- 

erat,ors. The ANOVA table is shown in Table 5.5. This design is specifically bettter if 

suppose more additional factors are introduced in other stages of the process. In the 
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design proposed in Example 4.6, only S2 contains enough int,eractions to clioose frac- 

t,ional generat,ors from. While, in the design proposed here, one can choose fractional 

generat,ors from any of the five RDCSSs. 

Table 5.5: The AKOITA table for the battery cell esperinient,. 

Since the common overlap is not large enough t,o construct useful half-normal plots, 

one has t,o sacrifice the assessment of the three effects contained in r)f=5=1Sz(. The 

significance for the rest of the effects can easily be assessed using half-normal plots. 

The construction of Si's for the five stages of rand~mizat~ion follows from Const,ruct,ion 

5.1. The algorithm starts by first choosing a, 1-dimensional nucleus 7r2. Wit,hout loss 

of generality, let 7rz = (e, f ) .  Then, S,!, = ( a ,  b, c, d) is disjoint from 7r2. Lemma 4.1 

implies that there exists a 1-spread S of S;. The elements of the 1-spread S are shown 

in Table 5.6. 

Variance 
1 2  $[of + .  . .g:) + FD 

2 ' I  1 2 
3 D i  
2l  2 1 ') 

5 0 2  + ~ 0 -  

P ' ,  1 2  
3g i  + ~g 
2 2 4  1 7  
5 0 4  + ~ g -  

1 2  $&; + ~ c 7  

Table 5.6: The elenients of S using cyclic construction. 

Degrees of Freedom 

3 

12 

12 

12 

12 

12 

I hc / ah / ocd I Od 1 uc / 
bcd abc abcd ah$ ad 

The subspaces Si = (Sll, 7r2) for i = 1, . . . , 5 ,  are 3-dimensional subspaces of P,  and 

the pairwise overlap among Si's is 7r2. To bring this construction into our sett,ing, we 
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relabel the fact,ors as: a -+ C, b -+ A, c -+ D: d -+ H, e -+ HDO and f -+ ACDE. 

This relabelling results in n; = (HDO, ACDE).  Not,e that the relabelling is not, 

arbitrary, and it depends on the requirement on the restrictions on different stages of 

randomization in t,he experiment. The relabelled spread S* is present,ed in Table 5.7. 

Table 5.7: The elenmit,s of the relambelled spread. 

/ AD 1 .4C I C D H  I 4 H  I CD 1 
ilDH ACD ACDH ACH C H  

The required R.DCSSs S:, i = 1, ..., 5 are now given by Sl = (ST, n;), for all i .  Lastly, 

these S:s have to be fractionated by choosing 1 genera.tor from Si, 7 from Si, 1 from 

Si and 1 from Si.  The resulting structure is the required design. Of course, one has 

to be careful in selecting these fractlional generators, because they will impact the 

word-length pat,t,ern and hence the optimalit'y criteria.. As mentioned earlier, assess- 

ment on only three effects (HDO, ACDE, ACEHO) have tlo be sacrificed, and the 

rest of tjhe factorial effect,~ in P can be a.ssessed using 5 half-normal plot,s. 

So far in t,his section, we assumed t,hat there does not exist even two disjoint R.DCSSs 

in the effect space. For equal sized R.DCSSs, this is equivalent tjo t,he assumption 

k = 1, where the effect space is tfhe set of all factorial effects in a 2 P  full fact,orial 

layout for p = kt + s and 0 < s < t .  As a result,, all the (t - 1)-dimensional subspaces 

in any (t - 1)-cover are also non-disjoint,. Under these circumst,a,nces, the geometric 

struct,ure of a minimal (t - 1)-cover is similar t,o that of a balanced star that covers 

t,he effect space P. Next, we establish the relat,ionship betaween minimal (t - 1)-covers 

and balanced stars. 
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5.2.2 Balanced stars and minimal (t - 1)-covers 

This section focuses on the relationship bet,ween balanced stars and minimal (t  - 1)- 

c,overs of PG(p - 1.2). In a 2p factorial layout with p = kt + s,  if k = 1 then we 

show that a minimal (t - 1)-cover C of PG(p - 1,2) is a special case of a balanced 

star St (p ,  rt, T ~ ) .  That is, there exists a positive integer r such that ( t  - r )  divides 

(p - r ) ,  and any two elements of C intersect, on a common subspace of size 2' - 1. 

First, we est,ablish the relationship between the two geometric: s tr~ct~ures.  Then, for 

t,he k > 1 case, we propose the use of balanced stars to modify a minimal (t - 1)-cover 

to construct designs that, are more efficient than a standard minimal (t  - 1)-cover for 

assessing the significance of the factorial effects. 

Theorem 5.3. For a projectwe space P = PG(p  - 1,2),  if p = kt + s and t > p/2 

then a minimal (f - 1)-cover of P is equivalent to a star St(2S + 1, rt, rt-,) i n  P. 

The proof is shown in a more general set,up (Theorem 5.4). According t,o t,his the- 

orem, a minimal (t  - 1)-cover of P, for t > pl2, is geometrically equivalent to a 

star. Subsequently, the requirement for the geometric structure we call a star may 

seem q~est~ionable. Recall tjhat, a minimal (t - 1)-cover assumes t,hat the smaller 

the size of the overlap is, the smaller t,he requirement. is for the number of distinct 

(t  - 1)-dimensional subspaces to cover the entire effect space. Therefore, a minimal 

(t  - 1)-cover consists of minimum size overlap (Int-,I). This overlap may not be large 

enough to obtain a useful half-normal plot for t,he assessment of factorial effects if the 

experiment is unreplicated. In contrast,, the stjars wit,h different sized nuclei provide a 

variet,y of good designs. The following example illustrates the benefits of a star over 

a minimal (t - 1)-cover of P. 
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En:am,ple 5.7. Consider a, 27 full fa.ct.oria1 experiment where the desired RDCSSs a.re 

chara.ct,erized by S1, ..., S1,, where ISi] = 24 - 1 for all i. From Theorem 4,l(b), 

ISi n SjI 2 28-7 - 1, for all i # j .  According tjo Lemma 5.1, the number of dist,inct 

3-dimensional subspaces in a minimal 3-cover of P is 23 + 1, and Theorem 5.3 implies 

that the common overlap (say So) among all these distinct subspaces is of size 1. To 

assess the impact of factorial effects on t,he process, one has to plot m. half-normal 

plot,s of size 14 each for the effects in Si\So, i = 1, ..., m, and one half-normal plot of 

size (14(9 - m.)) for the effects not contained in any of the RDCSSs. On the down- 

side, the assessment, for t,he effect in t,he common overlap has to be sacrificed, and the 

maximum number of levels of randornizat,ion is bounded above by 9. This can be im- 

portant for constructing fractional factorial designs with 7 basic factors arid Si's witjh 

4 ISi 1 = 3 - 1, i = 1, ..., m.. Inst,ead of using a minimal (t  - 1)-cover, a star St (p ,  7r4, 7r3) 

can be used t,o construct up tfo 15 R.DCSSs in a fractional factorial set,up. In addition, 

the size of tJhe common overlap (So) is 7, which allows assessment of all the factsorial 

effects in P. The assessment of factorial effects is done by using m half-normal plots 

of size 8 each for t,he effects in (Si\So)'s, one plot of size 7 for the  effect,^ in the overlap, 

and one half-normal plot of size (8(15 - m.)) for rest of the effects in P. 

In summary, t,he RDCSSs constructed using minimal ( t  - 1)-covers of P are forced 

t,o have a fixed sized overlap ( T ~ - ~ ) ,  whereas stars provide different sized overlaps for 

R.DCSSs. Furthermore, the number of ( t  - 1)-dimensional rays in a star with nucleus 

larger t,han 17rt-,l, is greater than the number of ( t  - 1)-dimensional subspaces in a 

( t  - 1)-cover of P G ( t  + s - 1,2).  More imp~rt~antly, different size RDCSSs can be 

constructed using st.ars, whereas the minimal cover approach focuses on equal size 

subspaces. Thus, stars support a bigger class of factorial and fractional factorial 

designs with randomization restrictions. 

It turns out that the geometric structure of a minimal (t - 1)-cover of PG(kt  + 
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s - 1,2) ,  for k > 1, is also related to a balanced stcar in a particular wa,y. Before going 

in to t,lie details of the role of a balanced stcar in a minimal (t - 1)-cover of P wit,h 

k > 1, it should be noted that we are interested in R.DCSSs of size greater than or 

equal to 23 - 1, i.e., t 2 3. This is required for constructing useful half-normal plots t,o 

assess the significance of factlorial effects. Under the assumption that there does not 

exist, a (t  - 1)-spread of P, p must be at least 7 (i.e., k = 2, s = 1). This implies t,hat 

factorial experiments of at, least 128 runs are of interest. So far in this chapt,er, most 

of the results focused on designs with small run-sizes. Here onwards, the  result,^ and 

discussion are targeted to designs that allow at least, i27 experimental trials. These 

designs can be useful for applications where the number of units can be quite large 

(e.g., microchip industries and microarrav experiments). 

The next result establishes the relationship bet,ween a balanced star St(p., rt, T,) 

and a minimal (t  - 1)-cover of the effect space P = PG(kt  + s - 1,2).  Although 

the result holds for any set of positive int,egers k, t and s, the theorem has useful 

applications for large factorial designs. 

Theorem 5.4. A m,inimal (t  - 1)-cover C of P = PG(kt  + s - 1,2) ,  for k > 1 and 

0 < s < t ,  is a union of 2' (- - 1) disjoint ( t  - 1)-dimensional subspaces of P 

and a sta,r St(2' + 1, rt, T~-,) conta,ined in P. 

Proof: From the construction shown in Sec,t,ion 4.2.2, the effect space PG(p- l , 2 ) ,  for 

p = kt+s, can be written as a disjoint union of 2' - - 2' disjoint (t  - 1)-dimensional 

subspaces and a (t  + s - 1)-dimensional subspace U contained in P. From Theorem 

5.2, there exists a star S t  ( p ,  T ~ ,  T~-,) contained in U, that is also a cover of U. Since 

the maximum number of rays in this stjar is jr. = (2t+s - 2t-s)/(2t - 2t-s) = 2" + 1, all 

the disjoint ( t  - 1)-dimensional subspaces and the star St(2" + 1, ~ t ,  rt-,) ~onstit~utes 

a minimal (t  - 1)-cover of P (Lemma 5.1). 
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Theorem 5.3 is a special case of this t,heorem. Since the common overlap among t,he 

non-disjoint elements of C is a (t - s - 1)-dimensional subspace, if t - s = 1 for a 

full fact(oria1 design, one can assign a higher order interaction t,o the effects in the 

overlap and assume it to be negligible. In a regular fractional factorial design, or a 

full fact(oria1 design wit>h t - s = 2, one would not want to sacrifice the assessment. 

of all the factorial effect's in the overlaps. In fact, t,he assessment of other factorial 

effects can also be affected (see Example 5.1). To avoid this problem, we propose a 

similar structure to a (t  - 1)-cover but not minimal. 

If the star St(2S + 1, .irt, .irt-,) in a minimal (t - 1)-cover C is replaced by a star 

with larger nucleus, the number of disjoint subspaces may decrease. However, the 

size of the overlap among the non-disjoint subspaces will become large enough for t,he 

assessment of all the fa~t~orial effects in P. We call this a m,odified rninim,al (t - 1)- 

cover of the effect space P. In additlion to the abilit8y of assessing the significance of 

more factorial  effect,^, replacement of the star in a minimal (t  - 1)-cover by a st,ar wit,h 

bigger nucleus increases the total number of (t  - 1)-dimensional subspaces. This can 

be used t,o construct more R.DCSSs if required. 

Consider a 27 factorial setup witah minimal 2-cover. For instance, in Exaniple 

5.1, U is a 3-dimensional subspace of P,  and thus the overlap bet,ween any pair of 

2-dimensional subspa,ces contained in U is at least 23+3-4 - 1 (Theorem 4.1). The size 

of the overlap for t,his minimal 2-cover cannot be increased, because t,lie dimension of 

any ray is one more than the dimension of the nucleus. Thus, we have to consider 

t = 4 instead of t = 3 tJo gain the advantage of a modified minimal (t  - 1)-cover. 

Lemma 4.1 guarantees the existence of a 3-spread of PG(7,2).  Since this chapter 

focuses only on the case when (t - 1) does not divide (p - I ) ,  we are not discussing 

t,he t = 4 case. Moving up the ladder, if we consider a factorial setup with p = 9 

and t = 4, a minimal 3-cover consists of 33 disjoint 3-dimensional subspaces and a 

star St(3,574, . irg). The effects in the common overlap (or nucleus) for this case can 



CHAPTER 5. E4C'TORIA.L DESIGNS AND STARS 9.1 

easily be assessed using one half-normal plot bemuse the overlap contains 7 fact,orial 

effects. Thus, there is no need for improvement. The importance of the modified 

minimal (t  - 1)-cover over a minimal (t  - 1)-cover becomes apparent for the first, 

time in a 21•‹ factorial set,up. A minimal 3-cover of the corresponding effect space P 

consists of 65 disjoint 3-dimensional subspaces and a star St(5, ~ 4 ,  7r2). If we use a 

star St(7, ~ 4 ,  7r3) instead of a star St(5, ~ 4 ,  7r2), t,he resulting geometric structure is 

not a minimal 3-cover but allows t,he assessment of all the factsorial effects in P. 

Not,e that the new proposed design may not be very useful for experiments in say 

the auto industry or chemical industries. These designs have pot,ential applicat.ions 

in microchip industries or perhaps microarray experiments where the number of units 

can be quite large. The a~ailabilit~y of large numbers of trials (or points in P) allows 

construc.tion of different designs. In the next section, we propose one such structure 

called a finite galaxy. A finite galaxy is a collection of disjoint stars wit,h sonie useful 

statistical properties. As an alternative t,o a modified minimal (t  - 1)-cover, we 

propose finite galaxies for constructing full factorial and regular fractional factlorial 

designs where IS1 is large. Although t,he resu1t.s proposed in the next section focus on 

balanc.ed st,ars, they are easily extended to unbalanced stars. 

5.2.3 Finite galaxies 

In this section, we first establish the necessary and sufficient conditions for t,he exis- 

t,ence of a maximal set of disjoint st,ars. This provides a set of (t  - 1)-dimensional 

subspaces that can be relatively larger than the one obtained from a modified minimal 

( t  - 1)-cover of P. Then, an algorithm is developed for constructing these sets of dis- 

joint stars. We define a finite galaxy to be a collection of stars with specific properties. 

Definition 5.5. A finite galaxy G is a set of disjoint stars contained in th.e effect 

space P = PG(p - 1 , 2 )  that covers P. 
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A finite galaxy G is said t,o be homogeneous if all t,he stars in G are geometrically equiv- 

alent (Definition 5.4). All t,he stars in a finite galaxy are assunied t,o be balanced. 

Denot,e a homogeneous finite galaxy G by G (v, t* - 1, t - 1), where v = (2" - 1) / (2" - 1) 

is t,he number of disjoint st,ars with (t - 1)-dimensional rays and ( r  - 1)-dimensional 

nuclei for suitable posit,ive int,egers r < t and t* 5 p. Each star St (p ,  rt, rT) in 

G(v, t* - 1, t - 1) is assumed to be a (t  - 1)-cover of PG(t*  - 1,2)  C P .  As expected, 

the existence of such a geometry is not so trivial, and requires verification of a nec- 

essary and sufficient, condition. The followirig result establishes the existence of a. 

homogeneous finitme galaxy that is also a (t - 1)-cover of the effect space P .  

Theorem 5.5. There exists a hom,ogen,eous finite ga,la,xy G(v, t* - 1, t - 1) in P = 

PG(p- 1 ,2)  with v = (2p- 1) / (2~* - 1) disjoint sta,rs if and only if there exists positive 

integers t and t* such t h t  t < t* 5 $ and t* divides p. 

Proof: Suppose there exists a homogeneous finik galaxy G that spans t,he effect 

space P, then the number of disjoint st,ars in G ,  

is an integer. Since every stjar St (p ,  T ~ ,  r,) is a (t - 1)-cover of PG(t*  - 1,2) C P for 

some t < t* 5 p, ISt(p, T,, T,)) = IPG(t*-1,2)1, and thus v is equal to ( 2~ -1 ) / (2~*  -1). 

Furthermore, (2p - 1) / (2~* - 1) is an integer if and only if t* divides p. C~nsequent~ly, 

t* 5 p/2 and hence the existence of desired positive integers t and t*. 

On the other hand, if there exists positive integers t and t* such that t < t* 5 p/2 

and t* divides p, then there exists a (t* - 1)-spread of P (Lemma 4.1). From Theo- 

rem 5.2 and Corollary 5.1, tjhere exists a star S t (p ,  r,, T,) in PG(t* - 1, 2) for at least, 

one clioice of r .  Hence, the existence of a finit,e galaxy G(v, t*- 1, t-1) is established. 0 



For constructing large factorial and fractional facttorial designs, use of a homogeneous 

finit,e galaxy instead of a modified minimal ( t  - 1)-cover can sometimes be more ad- 

vantageous. Recall that for constructing a minimal (t - 1)-cover, one has to search 

for c~llineat~ion matrices in a recursive manner. Inst,ead, the construction of stars 

is relatively ~traight~forward and does not require any search for finding collineation 

matrices. For constructing RDCSSs, the number of subspaces obtained from a homo- 

geneous finite galaxy can be much larger than from a minimal (t  - 1)-cover of P. The 

following example illustrates the difference bet,ween the t,wo geometries. 

Example 5.8. Consider a 215-5 regular fractional factorial design with blocked split,-lot 

stjruct,ure. Let the RDCSSs be defined by Si, i = 1, ... , m, where ISi ( = 24 - 1 for all i. 

Here, the number of base factors p is 10, and the size of each RDCSS is 24 - 1. Since 

t = 4 and t* = 5 satisfy the ~ondit~ions in Theorem 5.5, there exists a homogeneous 
21•‹-1 finite galaxy G(v, 4,3). There exists v = = 33 disjoint st,ars, where every star 

S t  (p, 7r4, x T )  is contained in a PG(4,2) of P. These stars ~onsti tut~e a (t* - 1)-spread 

of P. From Theorem 5.2, there exists a star St (p ,  7r4, 7rr) in PG(4,2) if and only if 

(4 - r) divides (5 - r) .  That, is, there exists only one geometric,ally distinct balanced 

star, given by r = 3. The number of rays in each stjar is / L  = (25-3 - 1)/(2 - 1) = 3. 

As a result, up to p .  v = 99 distinct R.DCSSs of size 15 each can be constructfed using 

this galaxy. The size of overlap for any pair of intersecting R.DCSSs is 7, which is tjhe 

same as tlhe size of t,he nucleus of a star St(3, 7r4, 7rj). 

The size of a, minimal 4-cover in a. 21•‹ factorial layout is 69, and if modified by a star 

St(7, 7r4, 7r3) instead of a star St(5, 7r4, 7r2), the size of the modified minimal 4-cover 

obtained would be 71. A total of 99 subspaces are ~bt~ained using a. homogeneous 

finit,e galaxy in Example 5.8. Therefore, if the number of RDCSSs required by tjhe 

experimenter is large, a finite galaxy can be more useful. 
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Even t,hough the constru~t~ion of stars is straightforward and does not require 

searching for collineation matrices, the c,onstruction of a finite galaxy ~at~isfying the 

e~periment~er's requirement involves constructing a (t* - 1)-spread of P. Sinc,e the 

spread construction technique shown in Section 4.2.1 oft,en requires transformation of 

P tto get the desired design, the construction of a finite galaxy may involve relabelling 

of columns of the model matrix (or equivalently, the points of P ) .  

Construction 5.2. Recall that the existence of a finite homogeneous galaxy G(v, t* - 

1, t - 1) assume t,hat t arid t* satisfy (a) t < t* < p/2, and (b) t* divides p. The 

following steps can be used to construct a G(v! t* - 1, t - 1). 

1. Construct a (t* - 1)-spread S of P using the methodology shown in Sec,tion 

4.2.1. Define S = (S1, ..., S,). 

2. Set i = 1. 

3. Const,ruc,t a star fli = St ( p ,  nt, n,) such t,hat fli c Si, and Ri is a cover of Si. 

4. Stop if i = v, otherwise assign i = i + 1 and go to Step 3. 

Certainly, the experimenter has some control over the assignment of factorial effects 

in the RDCSSs t,hat come from the construction of v disjoint stars. However, the 

construction technique shown in Section 4.2.1 for a (t* - 1)-spread distribuks all the 

main effects evenly among the elements of the spread. This feature is not desirable 

in many cases. As a, result,, one may need t,o use a collineation matrix to relabel the 

columns of the model matrix, or equivalently the points of PG(p - 1, q) ,  to get the 

desired design. The following example illustrates the algorithm for constructing a 

homogeneous finite galaxy. 

Emmple 5.9. Consider a 21•‹-* fractional fact,orial design with m. st,ages of random- 

ization. The corresponding base factorial design has 6 basic factors. Since t* = 3 and 
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collineation matrix for transforming the 2-spread S = {S1, ... , Sy), or equivalently, 

the fi~lit~e galaxy constructed using S. Nonetheless, one must remember that at most 

p independent relabellings can be done for tJhe transformation of the projective space 

PG(p  - 1, 2). Thus, one should use the flexibility in the c~onstructiori of stars t,o get 

a good design. For instance, in Example 5.9 the nuclei of all the stars is the largest 

possible interaction in each star. 

5.3 Discussion 

Though the e~ist~ence results discussed in this chapt,er focus 011 t>wo-level fact,orial 

designs, all t,he results and their proofs can be generalized to q levels simply by 

replacing PG(p  - 1,2)  with PG(p - 1, q) . For example, in Theorem 5.2, there exists a 

st,ar St (p ,  Ti, r,) witch p = (qPPT - 1) / (qt-T - 1) rays in PG(p- 1, q) if and only if (t  - r) 

divides (p - r ) .  In addit,ion, the c~nst~ruction of a stcar St(p,  rt, r,) in P G ( p  - 1, q) is 

also similar to the one shown for t,he q = 2 case in Const,ruction 5.1. 

In short, for assessing the significance of effects in factorial designs with small 

run-size or fewer RDCSSs, stcars are more efficient than minimal (t  - 1)-covers. In 

 experiment,^ wit,h large t.wo-level full factorial or regular fract,ional factsorial designs, 

one should either use a modified minimal cover, or a finit,e galaxy depending on the 

 requirement,^ of the experiment,. The result,~ proposed for the exi~t~ence and const,ruc- 

tion of finite galaxies focus on the homogenous balanced stmars. However, tjhe existence 

results can easily be extended to the heterogeneous case where stars are not neces- 

sarily geometrically equivalent. These results are also adaptable to the homogeneous 

case with unbalanced stars. The algorithms described in Constructions 5.1 and 5.2 

can also be exknded for both of these cases. 

For example, consider a 215-5 fractional fact,orial experiment with m, stcages of 

rand~mizat~ion SI , ... , S,, where ISi 1 > 7. Let P be the effect space for t,he corre- 

sponding base factorial design. For t* = 5, t,here exists a (t* - 1)-spread S of P with 
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IS1 = 33. Distinct. stars can be used t,o cover each element of S. Since the desired 

RDCSSs must cont,ain at  least 7 factorial effects, we will focus on stars wit,h at least 

2-dimensional rays. Following the notation in Theorem 5.2, the options for balanced 

stars are St(3,7r4, 7r3), St(5, 7r3, 7r1) and St(7,7r3,7r2). The geometric structure of these 

stjars is shown Figure 5.2. 

Figlire 5.2: Balanced stars: The numbers {1.3.4.6,7,8) represent the number of 
eff'ects in the ra1.s and the common overlap. 

Due to limitation of the space, the factorial effects are not explicitly writ,ten in the 

figures displayed here, and therefore have different representations than t,he one used 

for Figure 5.1. The stmar on the left, is a St(3, 7r4! n3) with a common overlap of size 7, 

the one in the middle is a St(5,7r3, 7rl)  wit,h t,he overlap of size 1, and t,he stmar on the 

right, represents a St(7, 7r3, 7r2). Recall that a useful half-normal plot requires more 

tJhan six or seven factorial effects. If a star in the finite galaxy is a balanced star 

St(5,7r3, x i ) ,  one would have t,o sacrifice the assessment of only one factorial effect per 

such star. If the star S t ( 7 , ~ 3 ,  7r2) is used for constructing a finitme galaxy, none of the 

effects can be assessed. This turns out t,o be t,he worst case among all three options. 

In conclusion, for this part(icu1ar example, the t,wo stmars St(3,7r4, 7r3) and St(5,7r3, x i )  

seem to be the bet)t,er choices for ~onst~ructing a finite galaxy. 



Chapter 6 

Summary and Future Work 

Two-level full factorial and regular fractional factlorial designs have played a promi- 

nent role in t,he theory and practice of experimental design. In the init,ial stages of 

experimentlation, these designs are commonly used to help assess t,he impact of several 

factors on a process. Ideally one would prefer to perform t,he experimental trials in 

a ~omplet~ely random order. In many applications, re~t~rictions are imposed on the 

randomization of e~periment~al runs. This thesis has developed general results for 

t8he exist,enc,e and construction of designs witah randomi~at~ion restrictions under the 

unified framework first introduced by Bingham et al. (2006). 

Results for the linear regression model are developed in Chapter 3 that express the 

response rnodel for factorial designs with different randomization restrictions under 

the unified framework. Under the assumptions of model (3.1), the main result of 

this chapter (Theorem 3.3) demon~trat~es how the distribution of an effect estimate 

depends upon its presence in different RDCSSs. This in turn motivates one to find 

disjoint subspaces of tjhe effect space P that can be used to const,ruct RDCSSs. 

Though preferred, the existence of a set of m, disjoint subspaces of the effect 

space P may not be possible. In Chapter 4, c~ndit~ions for the existence of a set 

of disjoint subspaces of P are derived. In the general case, Theorem 4.4 presents a 



sufficient condit,ion for the existence of a. set of disjoint subspace of different sizes. 

These subspaces are t8hen used to construct RDCSSs of both equal and unequal sizes 

that are often needed by the experimenter. The designs obtained here are specifically 

useful tJo practitioners as the construction algorithms are also developed. 

When the existence conditions for a set of disjoint subspaces are violated, overlap 

among the RDCSSs cannot be avoided. Since the assessment of factorial effects on 

a process is the objective of the experimentation, in Chapt,er 5, we propose designs 

that allow for the assessment of significance of as many effects as possible. The design 

~t~rat~egies (stars and galaxies) proposed in this chapter use the overlap among different' 

RDCSSs as an advantage, which seemed like a problem using the minimal ( t  - 1)- 

cover approach. The existence conditions are proposed for balanced stars, unbalanced 

stars and finite galaxies. Significantly, construction algorithms are developed for the 

designs obtained from stars and galaxies. The experimenter has more control on 

the construction of these designs compared t,o the construction developed in Section 

4.2. Since the designs obtained using finite galaxies are typically big, one might 

question the usefulness of such designs in practice. Not,e that tjhe large designs may 

be uncommon in full fact(oria1 and fractional factorial designs if the trials are performed 

in a completely random order. If randomization restrictions are imposed on the trials, 

large designs are useful in many applications (e.g., Vivacqua and Bisgaard, 2004; Jones 

and Goos, 2006; Jones and Goos, 2007). 

There are a few addit,ional issues that require further rnention. Firstly, the designs 

used in t,his dis~ert~ation for illustrating both the existence results and ~onst~ruction 

algorithms are all two-level full factorial and regular fractional factorial designs. The 

existence results and their proofs in Chapters 4 and 5 can be easily generalized to q 

levels by replacing PG(p - 1,2)  with PG(p - 1, q) and some minor modifications. In 

addition, the c~nst~ruction of a ( t -  1)-spread of PG(p- 1, q) is similar to the q = 2 case 

shown in Section 4.2.1. The construction of stars and galaxies are also generalizable 

to q-level factorial designs, where q > 2. However, there are some results that may 



be non-trivial t,o establish. For example, the results developed in Chapt,er 3 use the 

properties of Hadamard matrix repre~ent~akion of the model matrix X. To establish 

similar results for the distribution of t,he effect estimates in q-level full factorial and 

regular fractional factorial designs, one may have to  use some of the results on more 

general orthogonal arrays. 

Secondly, the results developed for the distribution of effect estimates assume that 

the underlying designs are full factorial and regular fract,ional factorial designs. If 

one considers some non-regular designs, we cannot use the geometric structare of 

a full factorial design tto categorize the factorial effects into sets of effects having 

equal variance for performing half-normal plots. To understand the complexity of 

tlhe problem it is wortah noting that there does not even exist a corresponding base 

factoria,l design. Moreover, the results on t,he distrib~t~ion of effect, estimates developed 

in Chapt,er 3 may not hold either. For instance, it is unlikely t,hat, the two e~timat~ors 

OLS and GLS of regression coefficients are equal. Under these circumstances, one 

has t80 work with the GLS estimator which requires t,he inversion of the covariance 

matrix C,. It turns out t.hat the inverse of C, can be writsten in a closed form, 

conditional on some assumptions on the overlapping pat,tern among RDCSSs. 

The result developed in Theorem 5.1 only provides a necessary condition for the 

existence of an unbalanced star. The sufficiency condition for tlhe exist,enc.e needs 

furt,her exploration. However, considering the nature of the necessary and sufficient' 

condition for a balanced star (Theorem 5.2), one suspects that the sufficiency of an 

unbalanced star St (pl ,  ..., pk, t l ,  ..., tk ,  n,) should depend on "g(tl -r, ..., tk  -T)  divides 

(p - T)", for some function g. It is expected that once the existence of an unbalanced 

star is established its construction should be fairly straightforward. 

Furthermore, the results developed for finite galaxies (Section 5.2.3) focus on ho- 

mogeneous stars. The necessary and sufficient conditions for the exist,ence of a heb 

erogeneous galaxy requires further investigation. Stars are specifically useful t,o the 

practitioner because of their easier construction. 



Finally, construct,ion algorithms for bot,h overlapping and disjoint subspaces of 

equal and different sizes are proposed. One of tlhe important steps of these algorithms 

is to transform a, set of disjoint subspaces (ofken a. (t - 1)-spread of t,he effect space 

P = PG(p - 1, q)) to another set of disjoint subspaces such that tlhe transformed 

set has the features of tlhe desired design. St,arting with the ( t  - 1)-spread obt,ained 

from the cyclic ~onst~ruction method (Section 4.2.1), it is possible that none of the 

collineation matrices 1ea.d to the desired set of subspa.ces. This does not imply that the 

experimenter's requirement is impossible to meet,. This occurs when the two spreads 

(tJhe one we sta,rted with and the one we are searching for) are non-isomorphic, a.nd 

t,hus the desired spread cannot be obtained by a linear transformation. Consequently, 

a lurking mathemat,ical problem is tlo find all non-isomorphic spreads, or if easier, 

one can first find all possible spreads and then use c~ollineation matrices t,o filt,er out 

tlhe isomorphic ones. In the special case of t = p/2, some results are known for the 

complete classification of spreads (e.g., Dempwolff 1994). 

The set of all non-isomorphic (t  - 1)-sprea.ds of PG(p - 1, q) is also required for 

finding regular fra~t~ional factorial designs that are optimal under different crit,eria, 

such as minimum aberration (Fries and Hunter, 1980), ma.ximum number of clear 

effech (Chen, Sun and Wu, 1993; Wu and Chen, 1992) and the V-criterion (Bing- 

ha.m et al., 2006). Tradit,ionally, some of the c~ommonly used good designs have been 

catalogued for the convenience of practitioners. To provide such a catalogue for frac- 

tional fac,torial designs with different randomization restrictions, one needs t,o find all 

possible designs and then rank them using the desired criterion. 

As an alkrnative, one might consider the search t,able approach developed in 

Franklin and Bailey (1977) which can be generalized to generate candidate designs 

in our setting. The sequential updating approach developed in Chen, Sun a.nd Wu 

(1993) can be used to avoid an exhaustive search. The use of these t8wo approaches 

tlo more efficiently construct a catalogue of fractional factorial split-plot designs is 

shown in Bingha,m and Sitt,er (1999). These algorithms require isomorphism checks 



for a candidate design. It. turns out tha.t the isomorphism check is comput,a.tiona.lly 

expensive, and efficient algorithms have been developed tmo improve the efficiency of 

the isomorphism check algorithm (e.g., Clark and Dean. 2001; Lin and Sit'ter, 2006). 

Furthermore, the RDCSS s t r~c t~u re  can be used to shorten tlhe candidat.e designs 

and generalize the isomorphism check algorithm for fractional factorial designs with 

different randomization restrictions. Future work will focus on developing an efficient, 

isomorphism check algorithm for generating the set of all non-isomorphic fract,ional 

factorial designs for specific randomization structures. 
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