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Abstract 

A hard problem is one which cannot be easily computed by efficient algorithms. Hardness 

amplification is a procedure which takes as input a problem of mild hardness and returns 

a problem of higher hardness. This is closely related to the task of decoding certain error- 

correcting codes. We show amplification from mild average case hardness to  higher average 

case hardness for nondeterministic logspace and worst-to-average amplification for nonde- 

terministic linspace. Finally we explore possible ways of improving the parameters of our 

hardness amplification results. 
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To Ma for initiating and inspiring 

To Bapi for showing the way ... 



((Chance doesn't mean meaningless randomness, but historical contingency. 

This happens rather than that, and that's the way that novelty, new things, come about." 
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Chapter 1 

Introduction 

A problem is hard if it cannot be solved exactly by any algorithm (of certain complexity). 

We speak of hard problems with respect to a particular complexity class because with more 

resources in hand more problems become solvable. A problem is said to  be worst-case hard 

for a certain complexity class if every algorithm working within the restrictions of that class 

makes mistake on at least one input. Average-case hardness means the problem cannot be 

solved on a significant fraction of inputs. 

Hardness amplification is the procedure for increasing the "hardness" of a problem. Main 

motivation for amplifying hardness is the requirement to  generate pseudorandom strings. 

We want to define a function which will accept as input a small seed of truly random bits 

and output a longer string which looks random to a computationally bounded test. Such 

functions are known as pseudorandom generators. Blum, Micaly and Yao [BM84, Yao821 

discovered that some average case hard functions can be used to  design pseudorandom 

generators. Nisan and Wigderson [NW94] showed that Boolean functions of high average 

circuit complexity can be used to derandomize BPP algorithms. For instance functions 

of very high average case circuit complexity can be used to  derandomize all randomized 

polynomial time algorithms. 

Proving lower bounds of any kind is difficult but a t  first glance it might appear proving 

worst case lower bounds is easier than proving average-case lower bounds. Hardness am- 

plification breaks this myth by giving an equivalence between the worst case and average 

case hard functions for certain complexity classes. We need average case hard functions to 

completely derandomize probabilistic polynomial time algorithms ( that is the class BPP).  

So the above equivalence shows us that BPP = P may follow from worst case hardness 
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assumptions. 

One of the most standard methods of increasing hardness of a problem is Yao's Direct 

Product construction. The idea is fairly simple: if we have a hard problem then finding the 

solution to the problem on several independent instances should be proportionately harder. 

A function f is said to be &hard for a complexity class C if every algorithm of C makes 

mistake on at least 6 fraction of inputs. Intuitively if f is somewhat hard then computing 

k copies of that function on independent strings should be exponentially harder in k. An 

almost equivalent formulation is the Yao's XOR lemma which states that if f is as defined 

above then computing f (xl)$. . .$ f (xk) on more than E fraction of the k-tuples (xl,  . . . , xk)  

is harder and E is approximately (1 - ~ 5 ) ~ .  

Direct product lemmas generate non-Boolean functions. Such a function can be viewed 

as an error-correcting code. The error correction property is used for the purpose of hardness 

amplification. As we will discuss later in details, our amplified functions undergo two layers 

of encoding: the first one is the direct product function, followed by a suitably chosen error- 

correcting code. The error-correcting codes we use in our construction and those used in 

the past in related work are expander graph based codes. Our constructions are similar to 

the ones given in [ABN+92, GIO1, GI02, GI03, TreO3, GK061. 

In particular we use the expander based constructions of Trevisan in [TreOS] and Gu- 

ruswami and Kabanets in [GK06]. Trevisan used it to obtain error-correcting codes from 

direct product constructions and vice versa. [GK06] use their construction to amplify hard- 

ness against algorithms in LINSPACE.  We use each of their techniques to demonstrate 

amplification against uniform logspace algorithms. The analysis is new and it uses ideas of 

Chiu et a1 [CDLOl], Gutfreud, Viola[GV04] and Fortnow, Klivans[FKO6] who show that we 

can walk on a 2n sized expander graph using as little as O(1ogn) space. 

The central problem of this thesis is to amplify hardness of Boolean functions in small 

nondeterministic space classes; in particular nondeterministic logspace (NL). We also look 

at  the problem in the setting of nondeterministic linear space (NLINSPACE) .  We try to 

achieve the target hardness in two stages. In case of N L  we show, if there is a problem in 

N L  that cannot be solved by any deterministic logspace algorithm on more than 1 - 

fraction of size n inputs, then there is another problem in NL that cannot be solved by 

any deterministic logspace algorithm on more than constant fraction of inputs. For our 

constructions we need a derandomized direct product lemma which works with a seed length 
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n+logn. For N L I N S P A C E  we are able to amplify a worst case hard function to a constant- 

hard function. Pushing hardness beyond quarter fraction requires a direct product result 

which is efficiently list decodable. The derandomized aspect of these constructions is crucial 

since we are working with limited space. 

Hardness amplification results exist for other classes like NP,  E X P  and PSPACE.  

Trevisan proved in [Tre05]that if we have a problem in N P  that cannot be solved by B P P  

algorithms on more than a 1 - l/poly(n) fraction of inputs. Then there is a problem in 

N P  that cannot be solved by B PP algorithms on more than a 112 + l/(log n)' fraction of 

inputs, where c > 0 is an absolute constant. 

This work is done jointly with my supervisor Dr Valentine Kabanets as part of the 

Masters thesis. This thesis is organized into six chapters excluding this Introduction. 'Pre- 

liminary' introduces the basic notions and ideas we will be using throughout. The next 

chapter on Hardness Amplification talks about the background of the problem, relevant 

work and the tools necessary for our construction. 'Hardness amplification in small space' 

introduces our problem in details, the difficulties in attaining the desired result in small 

space and the use of the derandomized direct product lemma. The main technical contri- 

bution is divided into two chapters, one about hardness amplification in nondeterministic 

logarithmic space and the other one about nondeterministic linear space. We end with con- 

clusions where we discuss possible ways of extending our results beyond a quarter fraction 

and related open questions. 



Chapter 2 

Preliminary 

When we talk about space complexity in general, it is understood that our Turing machine 

model includes a read-only input tape (and, in the case of machines computing functions, a 

write-only, semi-infinite output tape); furthermore, only the space used on the work tape(s) 

will contribute towards determining the space used by the machine. This allows us to 

meaningfully talk about sub-linear space classes. 

Some space classes will be used frequently throughout and so we will define them formally 

and use the commonly used notations to  refer to  them in the future. 

Definition 1 

SPACE(s )  = {LI some O(s) space TM decides L} 

NSPACE(s )  = {LI some O(s) space nondeterministic TM decides L} 

We define L = SPACE(1ogn) and N L  = NSPACE(1ogn) 

and similarly, L I N S P A C E  = SPACE(n )  and N L I N S P A C E  = NSPACE(n )  

While working with nondeterministic space bounded complexity classes, we will exploit the 

closure under complementation property. A stark difference to  time bounded space classes 

like N P  and coNP  where we do not know if N P  = coNP. 

Before we can formally state this result as a theorem, we need to  know the notion of 

space constructibility. Most common functions we come across like polynomials, exponents 

and logarithms are space-constructible. 

Definition 2 A function f : N -+ N is space constructible if f (n) > log n and there exists 

a Turing machine which on input In computes the function f (n) in space O(f (n)) .  



Theorem 1 ([Imm88,  Sze8'7l) For any space constructible function s ( n ) ,  

N S P A C E [ s ( n ) ]  = c o N S P A C E [ s ( n ) ]  

2.1 Chinese Remainder Theorem 

Suppose nl, n2, . . . , n k  are integers which are pairwise coprime. Then, for any given integers 

a l ,  a2 , .  . . , ak there exists an integer x solving the system of simultaneous congruences. 

x z a1 ( m o d  nl)  

x a2 ( m o d  n2) 

x ak ( m o d  n k )  

Furthermore, all solutions x to this system are congruent modulo the product N = 

n l n 2 . .  . n k .  

We will denote the length of the binary representation of a number a as la\. If la1 = Ibl = 

n , then [ ( a  + b) I 5 O ( n ) .  Number of primes between 1 . . . 2, is approximately $. We can 

choose t such that n : = l  pi > 2,, that is t 2 n where p l , p z , .  . . ,p t  are the first t primes. We 

take the first n primes pl , . . . , p, these must lie in the range [l . . . n log n] so \pi I 5 O(1og n) 

for each i .  A n-bit integer x can be represented by its Chinese remainder representation: 

C R T ( x )  - x m o d  p l ,  x m o d  p z , . . . ,  x m o d  pn)  ( 
Note that each of the prime moduli can be represented in log n bits. This CRT representa- 

tion allows us to work in logspace. Chiu, Davida and Litow show that the CRT and binary 

representations are interchangeable in O(1og n)  space. 

The model of computation is one where given x ,  p, i we output the ith bit of x m o d  p. 

Given C R T ( x )  and i,  we output the ith bit of the binary representation of x .  The following 

theorem makes this formal. 

Theorem 2 (Chiu, Davida, Litow [CDLOl], Fortnow, Klivans [FK06] and Gutfreund, Viola 

[GVOd]) Let a l ,  . . . , a1 be the Chinese Remainder  Representation of a n  integer m with respect 

t o  primes p l ,  . . . , pl. There exists a log-space algorithm D such that o n  input a l ,  . . . , a1 
primes pl , . . . , pl and index i ,  D outputs the i t h  bit of the binary representation of the integer 

m. 



2.2 Expander Graphs 

Expander graph family is an infinite family {Gi) of (multi) graphs each of which is a Di- 

regular graph of Ni vertices. These graphs are well connected despite being sparse. 

1. Gi is sparse : Di grows slowly with Ni, ideally Di = D, a constant independent of Ni. 

2. Gi is "well-connected" : The notion of well-connectedness is captured by vertex ex- 

pansion (K,  A )  if b'S C G of size IS1 < K, 

A random constant degree graph is an expander with very high probability. For ap- 

plications to be discussed later we want efficient deterministic constructions. In the above 

definition we would like K to be R(N) and A as close to D as possible. Well connectedness 

of expanders is captured by the eigenvalue distribution of the corresponding adjacency ma- 

trix. If the graph is of degree d then the largest eigenvalue of the adjacency matrix is d and 

each entry of the matrix is at most d. If we normalize the matrix by dividing each entry by 

d we obtain a matrix whose entries are in the interval [0, 11. On ordering the eigenvalues 

in decreasing order of absolute value, the difference between the first and second eigenvalue 

gives the eigenvalue gap. The larger the gap the better the connectivity of the graph. From 

now on we will denote the second eigenvalue of the normalized matrix as X2 and as discussed 

before XI  = 1. A graph G is said to have spectral expansion X if IX2(G)J 5 A. 

There is a theorem which says we can obtain spectral expansion from vertex expansion. 

Theorem 3 ([Alo86]) For every /3 > 0 and d > 0, there exists y > 0 such that if G i s  a 

d-regular (N/2,1+ P) vertex expander, then i t  is also (1 - y) spectral expander. Speczfically, 

we can take y = R(P2/d). 

Expander graphs have many useful properties. The number of edges between any 2 sets 

of vertices is not far from the expected number of edges between sets of those sizes. The 

difference can be bounded by an expression involving A. Below e(S, T) denotes the number 

of edges between S and T , p(S) for any S S V is the density of S in V i.e #. 



Lemma 1 ( E x p a n d e r  M i x i n g  L e m m a ) F o r  any expander G = (V, E) with spectral ex- 

pansion A, 

The most useful property of expanders for the purpose of derandomization is that they 

enable sampling with fewer random bits. We use an expander on 2n vertices and each vertex 

is labeled by a n length string. Walking on such an expander and collecting the vertex labels 

at every step of the walk is referred to here as sampling. The bits that constitute each vertex 

label are the sampled bits. An expander graph bears a close resemblance to  a random graph 

and hence the sampled bits from the former is a close approximation to  uniform bits obtained 

from the latter. 

Vertices on a length t random walk on an expander graph are like t independently chosen 

vertices. Sampling t random vertices in a n vertex graph requires t logn bits but if we do 

an expander walk on a degree d graph we need (log n + ( t  - 1) log d )  bits. For every step on 

the walk the next vertex is chosen from the neighborhood of the current vertex which is of 

size d.  In cases where d is constant this amounts to (log n + O ( t ) )  bits, which is significantly 

smaller than t log n .  

Theorem 4 ( H i t t i n g  P r o p e r t y  o f  E x p a n d e r  Graphs) Let G be any d-regular expander 

o n  n vertices, with Az(G) 5 A. Let B V be any subset of vertices of density P = y. Then  

the probability that a random walk on  a graph G starting from uniformly random vertex will 

stay inside B for t steps of the random walk i s  5 ( A  + ,B) t .  

Note that for decreasing values of As and higher values of t the resulting probability will 

decrease which means that with high probability the walk will move out of S.  This captures 

the notion that an expander walk "mixes" well. 

The next section is about some well known expander graphs. These graphs are often 

the starting point for construction of new expanders. Before that we need to make precise 

what we mean when we say constructible. 

Definition 3 1. A family of  expanders {Gi)i>l - i s  called mildly explicit if there is a 

po2ynomial t ime algorithm that given 1' generates Gi. 



2. A family of expanders {Gi} i21  is called very explicit if there is an  algorithm that given 

(i ,  v ,  k ) ,  (where i E N ,  v E V and k E ( 1 ,  . .  . , d }  generates the k t h  neighbor of v in 

Gi . 

3. A family of expanders {Gi} i l l  i s  called implicitly constructible zf there is an  algorithm 

that given ( i ,  v ,  j ,  k ) ,  (where i E N ,  v E V and j ,  k E ( 1 ,  . . . , d }  generates the k t h  bit 

of the jth neighbor o f v  i n  Gi. 

Unless otherwise specified when we talk of constructible or explicit expanders we will be 

referring to very explicit expanders. 

2.2.1 Some well known Expanders 

In this section we will discuss some well known explicitly constructible expanders. 

Definition 4 (Gabber-Galil, [GGgl] ) G = (Vl H V2, E ) ,  Vl = V2 = Z2n x Z2n where 

Vl H V2 stands for disjoint union. The degree of the graph is 5 .  The  neighbors indexed by i 

are defined as follows: 

( a , b )  E K : 

N l  ( a ,  b) = ( a ,  b) 

N2(a,  b) = ( a ,  a + b) 

N3(a,  b) = ( a ,  a + b + 1 )  

N4 ( a ,  b) = ( a  + b, b) 

N s ( a ,  b) = ( a  + b + 1, b) 

A11 additions are done modulo 2n. 

2.2.2 Small space constructible expander walks 

For any graph we can associate each vertex with a string of 0s and 1s. If the graph has vertex 

set of size 2n then each vertex can be labeled by a binary string of length n. An expander 

walk can be described as an ordering of a subset of vertices where every vertex is a neighbor 

of the previous vertex. This is informally described as taking a walk. We can visualize this 

operation as walking around in a city( graph) of various landmarks ( vertices) connected by 

roads (edges). We can not jump from one landmark to another if it is not connected by a 



road. The roads define the possible next destinations. Limiting the degree of the graph to 

a constant keeps the neighborhood set within a manageable size, so that picking the next 

vertex only involves picking an index which points to a vertex in the neighborhood. Indexing 

a set of d elements require log d bits for each index, d being constant makes O(1) or constant 

size indexing possible. At the very first step, we need to use log IVI bits to  choose the first 

vertex, and subsequently we need logd bits to  choose vertices. 

The amount of space required to compute the next vertex and store it on the work tape 

determines the space complexity of the algorithm. Normally in a graph of size 2n the binary 

representation requires O(n)  bits. We want to be able to do better by using less space. 

The result that features prominently in our constructions is the possibility of linear length 

expander walks computable in space which is logarithmic in the vertex length i.e, O(1ogn). 

The following theorem will be invoked several times in the chapters to come. 

Theorem 5 ([GVOq, FK061) There exists an O(log(n))-space algorithm for taking a walk 

of length O(n)  on a Gabber-Gallil expander graph with 2•‹(n) nodes if the algorithm has 

access to an initial vertex and edge labels describing the walk via a two-way read-only advice 

tape. 

Proof Sketch : Let G = Z2n x Zzn be the vertex set of the graph with degree 5. Let 

2n = m < nf=, pi for some k .  The pi are distinct and O(1og n)  bits long. Each vertex can 

be written in its Chinese Remainder Theorem representation as ( a l , .  . . , ak )  x (bl, . . . , bk) 

where each ai, bi E Zpi and the binary representation of each ai and bi are O(1ogn) bits 

long. 

To walk on this graph we need to only remember the residues ai, bi E Zp, and the index 

i of the prime pi of length O(1og n).  For every number, we only store the Chinese Remainder 

representation of the number by the prime moduli and the index of the corresponding prime. 

We need to update this information as we move around in the graph. The edge relation of 

Gabber-Gallil graph only involve component-wise addition. 

When we add ai + bi the binary representation may increase by one bit. Depending on 

the size of the walks the binary representation of the additions may grow by one bit at every 

step. Since we only want additions modulo 2n, we will ignore all the significant bits beyond 

size n.  The number of primes we need will be determined by the size of the walk. If the 

walk is of length O(n) then after all the additions the size could grow as large as O(n2) bits. 

If we have as many as O(n2) primes we can do all the operations within the allowable space. 



The first n2 primes will be in the range [ I .  . . 2n2 log n] and each of them can be represented 

in O(1og n) bits. 

As we mentioned before there is a result due to  Chiu,Litow and Davida which states 

that there exists a log-space algorithm that on input X I , .  . . , xl the Chinese Remainder 

representation of a number m and primes pl ,  . . . , pl and index i , can output the i th  bit of 

the binary representation of the integer m. Using that algorithm we can compute the label 

of the next vertex in the walk. 

2.3 Hardness 

Definition 5 (Hardness of a function with respect t o  logspace algorithms :) A 

Boolean function f : (0, lIn -+ { O , l )  is S-hard ( S 5 +) with respect to logspace algorithms 

if for any algorithm A using logarithmic space the following conndition holds true. 

where Un denotes the uniform distribution on n-bit strings. 

1. If 6 = & it  is known as Worst-case hard 

it is known as Mild Average case hard 2. If 6 = &igq 

3. If 6 = O ( 1 )  it  is known as Constant Average case hard 

1 4.  If 6 = - & it  is known as Very Hard 

Hardness of family of functions { fn)n20 is defined either as almost everywhere &hard 

or infinitely often &hard. 

Definition 6 (Almost everywhere (a.e)  6-hard) There exists no such that V n  2 no, fn  

is S-hard. 

Definition 7 ( Infinitely often ( i .e)  6-hard) There exists infinitely many n such that 

f n  is 6-hard. 

Our results apply to  both the settings. 



2.4 Error-Correcting Codes 

Error-Correcting Codes are combinatorial objects used for transmitting messages over com- 

munication lines. This often induces errors in the messages and it is necessary for the 

receiver to "decode" the received word to obtain the original message. Since we want to 

recover the original message this decoding should be as unambiguous as possible. 

In order to facilitate this the message is first encoded and the resulting codeword is 

transmitted through the communication channel. The encoding scheme is supposed to be 

such that even after several corruptions the received codeword will unambiguously yield the 

original message. 

The quality of the code depends on how accurately it can decode the received codeword. 

A coding scheme is specified by its encoding and decoding algorithms.If the number of errors 

are few, the decoding algorithm is expected to generate exactly one message. If the number 

of corruptions are far too many one may want a decoding algorithm that would generate a 

list of possible messages, one of which is the correct message. 

Definition 8 ( Error correcting code, ECC) A n  error correcting code C over alphabet 

[q] is given by a pair of algorithms E n c  - Dec. Where E n c  : [ q ] k  -+ [qln is the encoding 

algorithm and Dec : [qln -+ [qlk is a decoding algorithm. 

A good encoding scheme will ensure that the codewords are far spaced, i.e every two 

codeword is different in many positions. This will ensure than when we are decoding a cor- 

rupted codeword, there are enough unaltered positions from which we can find the message. 

This is why codes with large minimum distance are desirable. If the fraction of error is at 

most half the minimum distance of the code then this is possible. Intuitively a good coding 

scheme is one where information of the message is evenly spread out over the entire length of 

the codeword. This ensures that when the corruptions are introduced during transmission 

they are evenly spread out and few corrupted blocks will not adversely affect the recovery 

procedure. 

Definition 9 Distance or Hamming Distance between two codewords x and y is the number 

of positions on  which they differ. It is denoted by d ( x ,  y ) .  

Relative Hamming distance is the fraction of positions on  which they vary. 



Definition 10 

Distance of a code C is defined as the m i n i m u m  Hamming distance between any two distinct 

codewords. It  i s  denoted by d(C) .  

Even though we want to spread out the information of the message along the entire 

length of the codeword, we do not want to introduce too many redundancies. That means 

we would like the encoding length to be as close to the message length as possible. 

Definition 11 ( R a t e )  For an  error-correcting code C ,  C : [qIk -+ [qIn The  ratio of the mes- 

sage length to  the encoding length is  known as rate of the error-correcting code. Rate (C)  = 5 

The use of error-correcting codes in our construction is essential. The restriction on 

small space necessitates the codes to be efficiently constructible and encodable-decodadable 

in small space. We use Spielman's code for our constructions. 

Theorem 6 ([Spi96]) There exists a constant rate and constant relative distance binary 

error-correcting code, with encoding algorithm E n c  and decoding algorithm Dec  computable 

in logspace, such that Dec decodes the correct message in the presence of a constant fraction 

of errors. 



Chapter 3 

Hardness Amplification 

Hardness of an explicit function f is specified by two complexity classes C1 and C2. 

1. Expliciteness: f is in the complexity class C1 

2. Hardness: f is &hard for C2 which means that the best algorithm in C2 makes mistakes 

on a t  least 6 fraction of inputs, i.e, Pr,[A(x) # f (x)] > 6 where A is an algorithm in 

c2. 

Then f is said to be 6 hard with respect to C2. 

Hardness amplification is the process by which we increase the hardness of a function. 

We start with a function f of low hardness with respect to some complexity class. After 

the amplification procedure the resulting function is of higher hardness. Depending on the 

adversary, circuit or algorithm, the amplification is said to be in the non-uniform or uniform 

setting respectively. 

Hardness amplification has been demonstrated in the non-uniform setting when C1 = 

E X P  or PSPACE by [Yao82, BFNW93, IW97, Imp95, STV991 and for C1 = N P  in 

[O'D04, HVV041. 

3.1 Uniform Hardness Amplification 

Impagliazzo and Wigderson in [IWOl] investigated hardness amplification in the uniform 

setting. One starts with a Boolean function family that is mildly hard on average to compute 



by probabilistic polynomial-time algorithms, and use it to define a new Boolean function 

family that is much harder on average. 

One starts with a function of hardness for a fixed polynomial p(n) and ends with a 
1 Yao's XOR function in the same complexity class with - t hardness for some t = w. 

lemma amplifies hardness of a Boolean function family in the uniform setting but only with 

oracle access to f .  The oracle access can be eliminated if f is downward self-reducible or 

random self-reducible. Uniform hardness amplification results have been proved for # P  in 

[IWOl] and for PSPACE and EXP in [TV02]. 

Trevisan considers the problem of uniform hardness amplification in NP  in [TreOS, 
1 TreOS]. [TreOS] provides hardness amplification from & to I - &J. Ideally one 

1 would like to have an amplification procedure up to 4 - -. 
Intuitively the Direct Product lemma amplifies hardness of a function because if f is 

hard to compute on one input then computing it on several independent input strings should 

be proportionately harder. This idea is formalized in the Direct Product Lemma. Trevisan 

noted in [TreOS] that any Direct Product lemma(DPL) and its equivalent Yao's XOR lemma 

can be viewed as a way of obtaining error-correcting codes with good list decoding algorithms 

from error-correcting codes with poor unique decoding algorithms. List decoding can be 

viewed as a relaxed version of unique decoding. List decoding algorithms generate a list of 

possible messages one which is the correct message. For any q-ary error correcting code the 

fraction of errors allowed is 1 - a .  The maximum fraction of errors that a unique decoding 

algorithm can correct is - L. That is why a binary code is uniquely decodable up to 
2q 

a quarter fraction. So it is hardly a surprise that to increase hardness via Direct product 

beyond a quarter fraction one needs better decoding algorithms. 

Some codes have the important property of local decodibility. Codes whose decoded 

messages can be implicitly represented are known as locally decodable codes. The decoding 

algorithm has oracle access to the corrupted received codeword r and an index i .  It returns 

the i th symbol of the decoded message. Locally list decodable codes are a generalization of 

the local decodable codes. The decoding algorithm produces a list of algorithms each with 

an oracle access to r )  so that one of the algorithms correctly computes the message. The 

smaller the list the better the code. The code described in [STV99] is a locally list decodable 

code. Codes described over the binary alphabet are known as binary codes. 

Direct Product constructions can be viewed as error-correcting codes going from 

binary to non-binary alphabet. For instance, if f : (0, lIn + {0,1) is a function then 



f k  : ( (0 ,  l ) n ) k  + ( (0 ,  l ) ) k  is defined by f k ( x l ,  . . . , xk )  = ( f  ( x l ) .  . . f ( x k ) ) .  Here the alpha- 

bet is ((0,  I ) ) ~  instead of ( 0 , l ) .  

The connection holds in the opposite direction as well. Let C : M + (0,  l ) N  be an 

error-correcting code having a decoding algorithm that can correct up to 6N errors. For 

a message M  E M and an index x  E [ N ] ,  C ( M )  [ X I  stands for the xth bit of the encoded 

message M .  One can define a new code C1 : M -+ ( (0 ,  l ) k ) N k ,  the length of this new code is 

N~ and the alphabet is (0,  ilk. We index the positions of the new code with k-sized tuples 

over [ N ] .  

C1(M)[x l ,  . . . , xk] = ( c ( M ) [ x I ]  . . . C ( M ) [ X ~ ] )  for a message M  

We can define an expression like this for every k positions of C ( M ) .  We note that if 

we associate C ( M )  with the function f : [ N ]  + ( 0 , l )  then C1(M) is ( f  ( X I )  . . . f ( x k ) ) ,  the 

function f k  : [ N ] ~  + (0,  l)lc defined in the direct product lemma. 

Error-correcting codes obtained from Direct Product Lemmas can be seen as a special 

case of a general method to  obtain error- correcting codes with large minimum distance from 

error-correcting codes with small minimum distance. This method was first introduced by 

Alon et a1 [ABN+92] and subsequently used by Guruswami and Indyk in [GIOl, GI02, GI031. 

Every output of f is encoded by a second layer of code Enc as follows :g (x l , .  . . , x k )  = 

Enc(f ' ( X I , .  . . , x k ) )  where g : ( ( 0 ,  l ) n ) k  + (0, 1ICk. TO convert this into a Boolean 

function we take the projection map h  : ( (0 ,  l ) n ) k  x [ck] + (0,  I ) ,  h ( x l ,  . . . , xk, j )  = 

E n c ( f k ( x l , .  . . , xk)) j .  

To prove the correctness of our construction we use a contra-positive argument: if there 

exits an algorithm A  which breaks the hardness bound of function f k  then we can design 

an algorithm B (making subroutine calls to A )  which breaks the hardness assumption of f ,  

there by reaching a contradiction. 

Intuitively, we can view the table of output generated by A  as a table which resembles 

the truth table of f k .  They are not identical since A  does not completely solve f k .  The 

table of values generated by algorithm B is similar to the truth table of f .  Basically the 

algorithm B approximately decodes the received word, which in this case is the table of 

output of A. This process works fine and B is able to recover a table which is close to the 

truth table of f if there are not too many corruptions in the received word. To ensure this 

we encode the function f with a second layer of code. Now if an adversary introduces any 

errors then it would be in the truth table of g instead of the truth table of f k .  If Enc is a 



good error-correcting code then its decoding algorithm will be able to  correct many errors 

and obtain a table which will be very close the original truth table of f k .  Now if we apply 

the algorithm B it will work fine. In essence, the second layer of encoding for the purpose 

of preserving the values of the second table . 



Chapter 4 

Hardness Amplification in small 

space 

Hardness Amplification in N L  with respect to L : We start with a Boolean function 

f : (0, l I n  -+ ( 0 , l )  which is computable in N L  and is mildly hard with respect to  algorithms 

in L. We want to  find a Boolean function h which will be harder than f with respect to 

algorithms in L. Ideally we would want f to  be & hard and h to  be 1 - r hard. 

To this end we use the tool called Direct Product followed by an encoding by a 'good' 

binary error-correcting code. As we discussed in the previous chapter the direct product 

function f k  : ((0, l)n)k + {O, l)IC is defined as (f (xl) ,  . . . , f (xk)).  In our constructions we 

will prove h(xl,  . . . , x k ;  j )  = ~ n c ( f ~ ( x 1 ,  . . . , x ~ ) ) ~  is O(1)-hard against logspace algorithms. 

The correctness of the construction is proved by a contra positive argument. We start by 

assuming there exists an algorithm A working within L which computes h on more than a 

constant fraction of inputs. Using that we design another algorithm B in L which computes 

f on more than 1 - l/poly(n) fraction of inputs thereby arriving a t  a contradiction. To 

design the algorithm B we need to  be able to  decode the concatenated codes inside out. 

That is, we first decode the binary error-correcting code followed by the direct product code. 

We need some kind of a "voting scheme" by which we can predict the value of f on every 

input. Note that the direct product function is viewed as an error-correcting code in the 

manner we discussed in the previous chapter. The voting scheme requires us to  generate 

k-tuples from a smaller string in a space efficient manner. Writing down the entire tuple 

explicitly on the tape would require nk tape cells. We need a space efficient deterministic 



function G which takes a seed of size n+O(log n) and generates k, n length strings implicitly. 

The input string is of size n and we are allowed an additional O(1og n)  bits. We expect the 

tuple generated by G to have some dependence. However we do hope that f k ( ~ )  will have 

approximately the same average case hardness as f k  on completely independent xi's. 

Apart from N L  we also look at the problem of hardness amplification in NLINSPACE.  

Here the starting function f can be worst case hard against algorithms in LINSPACE.  

4.1 Limitat ions 

If a problem is hard then several independent instances of the problem should be propor- 

tionately harder. An algorithm trying to compute a hard function on several inputs is likely 

to make many more mistakes than it would on a single input. 

The problems we are addressing in this thesis, namely hardness amplification in non- 

deterministic linear space and nondeterministic logspace require a pseudorandom generator 

since we cannot afford to use kn space for any non constant k. For NL we only have log- 

arithmic space on the work tape and for N L I N S P A C E  there is an additional O(n) space 

on the tape. So for a non constant k, the use of a pseudorandom generator is imperative. 

Ideally we would like to prove that there is a way to pick k pseudo random instances of 

a hard problem/function using fewer than kn random bits and the direct product of f (xi)s 

is still just as hard to  compute as if the instances were independent. The standard N W  

generator and simple use of expander walks do not give the desired result. 

When the computation is time bounded as opposed to space bounded , we have more 

flexibility to use space. Clearly the amount of used space cannot exceed the total computa- 

tion time, for instance in N P  one has at disposal polynomial amount of space. The generator 

can now use polynomial length seed to generate the instances. However for space bounded 

classes especially in sub-linear classes like N L  the generator seed plays a crucial role. The 

value of k depends on the hardness we are trying to achieve. If we want the final hardness to 

be around 1/2+ (1 - 26)k then this is approximately equal to 1/2+ l/poly(n) if k = O(1og n).  

The one advantage that nondeterministic space bounded classes have over time bounded ones 

are the property of closure under complementation, NSPACE(s(n))  = coNSPACE(s(n)). 

This property ensures that the new function remains within the old class. 

The known generators like the one suggested by Imapgliazzo and Wigderson in [IW97] 

, which is a combination of two previously known generators, namely Nisan-Wigderson 



generator and expander walk generator do not meet our requirements. A crucial aspect 

of their construction is the use of "designs". The problem with this construction is that 

for those parameters which are of interest to us there are no designs! Hence one needs to 

construct a generator possibly from scratch which meets our criterion. 

4.2 Our Result 

In the next two chapters we will discuss our constructions in details. We are able to show 

for both N L  and N L I N S P A C E  amplification up to a constant fraction. We use two tech- 

niques one due to Trevisan as suggested in [Re031 and the other one due to Guruswami 

and Kabanets as in [GK06]. Both the techniques are derandomized expander based direct 

product construction and they yield the same result. Trevisan construction looks at neigh- 

borhood of a vertex and applies the function on the vertex labels of the neighborhood set 

where as the other technique applies the function to every vertex appearing on expander 

walks starting at a given vertex and specified by edge labels. For LINSPACE we are able 

to go from worst case to average case hardness without using a derandomized direct product 

construction. We simply apply a suitably chosen error-correcting code and that alone gives 

the required amplification result. 



Chapter 5 

Construct ions in Nondeterministic 

Logarithmic Space 

In this chapter we discuss ways to construct a function with constant hardness starting from 

a function with inverse polynomial hardness. 

We use two different construction techniques and compare the parameters achieved by 

each. The first technique is as suggested by Trevisan in [TreOS] and the second one follows 

in the line of [GK06]. 

The general scheme is: 

1. Define an expander based direct product using the input function. 

2. Encode each output of the direct product function with a suitable binary error- 

correcting code. 

3. Transform to a Boolean function by concatenating all binary strings output by the 

function in step (2) .  

We start off by introducing notations we will be using in this chapter. The ith neighbor 

of a vertex x  in some graph G is denoted by Ni(x ) ,  the underlying graph G will be clear 

from the context. The degree of the graph is denoted by d. For ease of notation we may 

use N ( x ; i )  instead of Ni(x ) .  If x  is the j th  neighbor of some vertex y then we will use 

N ( x ;  i )  = (y; j) to denote that. Since we will be dealing with undirected graphs or 

bidirectional graphs at all times, adjacency relation is symmetric. The kth bit of string 

x  is denoted by xk. A t length path starting at x  and indexed by ( i l , .  . . , i t )  is denoted 



by (x; i l ,  i2, . . . , i t ) .  In other words the walk can be described as (x, x l ,  x2,. . . , xt) where 

xl = N(x,  i l ) ,  x2 = N(x l ;  i2) = N(N(x  ; i l )  ; i2) and so on. The constructions use some 

error-correcting code whose encoding function will be commonly denoted by Enc. 

5.1 Construction Techniques 

The direct products for a function f in the constructions can be described in two ways. One 

which uses the neighborhood of a given vertex and the other which uses a expander walk 

starting from a vertex. 

The first one evaluates f on all the neighbors of a given vertex to define the first direct 

product. We will be referring to  this as Neighborhood construction (I) or Trevisan's con- 

struction. The second one deals with expander walks indexed by the edge labels (21, . . . , i t )  

and will be referred to as Walk construction (11) or Guruswami-Kabanets technique. 

One important aspect that is common to both the techniques and both the classes is 

that the resulting function h belongs to the same class as the initial function f .  

A Boolean function f is in a complexity class C if and only if the associated language 

Lf = { X I  f (x )  = 1) is also in C. To say a Turing machine computes a non-Boolean 

function g : {0,1)* + (0, I)* in nondeterministic O(s(n)) space means that there exists a 

nondeterministic Turing machine using O(s(n)) space which on every input (xl ,  . . . , xt) has 

at least one accepting computation. The work tape a t  the end of each accepting computation 

contains the exact same string which is the value of g on that input. 

5.2 Mixers 

In the constructions to follow, we will first show amplification using Trevisan's technique 

followed by the one suggested by Guruswami and Kabanets. For each we will discuss the 

proof of correctness of the respective algorithms and how the bounds can be achieved within 

the allowable space. 



The crucial aspect of the (I) construction is the use of mixers. 

Definition 12 A d-regular bipartite graph G = (L, R, E) where ILI = IRJ = N,  N = 2n is 

an (E, 6) mixer if for every subset B C R of vertices such that IBI 5 ( a  - E)N there are at 

most 6N  vertices v in L such that Ir(v) n BI > 2 where r (v )  is the set of neighbors of v. 

For constructions in N L  we need an implicit representation of the neighborhood, that 

is the algorithm computing the neighborhood will take as input a vertex v and two indices 

i ,  j and output N ~ ( v ) ~  the jth bit of the ith neighbor of v. 

One way to increase the connectivity of the graph G is by powering. The graph G~ 

is the ith power of G if all vertices connected by walks of length i in G are neighbors in 

G ~ .  The adjacency matrix of G~ is the i th power of the adjacency matrix of G. If A is 

the adjacency matrix of G then Ai is the adjacency matrix of Gi. Analogously, if X is the 

spectral expansion of G then Xi is the spectral expansion of Gi. 

For each eigenvalue of the normalized adjacency matrix, its absolute value is an eigen- 

value of the graph. The normalized adjacency matrix is symmetric and so by results in 

Linear Algebra the eigenvalues are all real. 

The eigenvalue gap is the difference between the first and second value. Regular Bipartite 

graphs have eigenvalue 1 with multiplicity 2, as both d and -d are eigenvalues of the 

adjacency matrix. As a result the eigenvalue gap of a regular bipartite matrix is 0. 

For the neighborhood construction we need mixers whose eigenvalue gap satisfies a cer- 

tain relation. By definition a mixer is a regular bipartite graph and so the eigenvalue gap 

should be 0. To fix this problem we can convert the graph to a non-Bipartite graph without 

changing the graph too much. For every vertex in Vl we can associate a vertex on the 

right and to make it a regular graph we can add self loops. This new graph will retain the 

property essential for our proofs to work and yet produce a non-zero eigenvalue gap. 

For the parameters of our interest we will have to prove a result of the following kind. 

Lemma 2 There are (E, 6)-mixers with degree d = poly(:, i) 

Proof: The vertex set of a Gabber-Gallil graph is (Z2n x Zp, Z p  x Z p ) .  We will prove that 

a constant degree modified Gabber-Galil graph on 2~~ vertices is a mixer if its eigenvalue 

gap satisfies a certain relation. 

A degree d bipartite graph does not have an eigen value gap since its first two eigen values 

is ]dl. To convert the Gabber-Galil graph into a non bipartite graph we asociate each vertex 



in Vl to a vertex in V2. Since originally it was a degree 5 graph the new graph has degree 

at most 8. One can add self loops to each vertex to make this a degree d graph for some 

d > 5. This new graph will retain the constant vertex expansion property of the original 

graph , since the neighborhood of each vertex has (possibly) expanded by a constant. Using 

theorem 3 we conclude that constant vertex expansion implies constant spectral expansion. 

The mixing property of expander graphs gives us the following: 

We want to construct a (E,  6)-mixer for a given E and 6. We take T G V2 such that 

IT1 5 (112 - e)N2 as defined in the definition of mixers and S to be {v E & I  IN(v) f l  TI > 
d/2) G Vl implying that e(S, T )  > q. We obtain this following relation, 

If ($$$)2(1 -2') <- 6 then we obtain IS1 5 6N2 as required by the definition of mixers. 

On simplifying the above relation we get 

We start with a degree 5 Gabber-Glil graph, convert it into a constant degree non- 

bipartite graph and then power it to a suitable exponent so that the spectral expansion of 
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that graph will satisfy the above condition. Now we convert this graph back to a bipartite 

graph by creating an identical copy of the vertex set and for every edge between a pair of 

vertices vl  and v2 in the non-bipartite graph we replace with an edge between vl and v2 in 

the left and right bipartition respectively. 

The bipartite graph so formed will be the required ( E ,  6 )  mixer. 

0 

In what follows, we will discuss in two separate sections hardness amplification in N L .  

We will discuss in details the neighborhood construction as well as the walk construction. 

The first one requires implicitly constructible mixers but the walk construction can be 

applied to any constant degree expander. 

5.3 Constructions in nondeterministic O(1og n) space 

5.3.1 Trevisan's construction 

Theorem 7 Given a Boolean function f E N L ,  such that f is & hard (r is constant) with 

respect to L ,  we can obtain a Boolean function h E N L  such that h is O(1)  hard with respect 

to L using the direct product construction described in [Tre03]. 

Proof: We will define a non-Boolean function g from which we will obtain the Boolean 

function h which meets the hardness requirement. 

The direct product is defined by f d  : (0 ,  l In -+ (0 ,  l ) d ,  f d ( x )  = f ( N l ( x ) )  . . . f ( N d ( x ) ) .  

The concatenated code is defined by g : (0 ,  l Id -+ (0 ,  g (x )  = ~ n c ( f ~ ( x ) ) .  To convert 

to a Boolean function we take a projection map h : (0,  l jd  x [cd] -+ {0 ,1)  which is defined 

as h ( x , i )  = g(x) ,  , 1 5 i _< cd where Enc is an error correcting code. 

We will first show that f d  is a - E hard for a small consant E .  The application of the 

error-correcting code will reduce the hardness by a constant factor. 

2. Existence of ( E ,  l / n r )  mixers on ( [ N ] ,  [ N ] )  vertex set for E = 0.1 . 

In the constructions to follow the parameters 6 and 61 are respectively the hardness of 

the initial function and the hardness of the encoded Direct product function. Therefore 

we want 6 = l / n r  for a constant r and = 112 - E and that makes the degree of the 

mixer to be poly(n). 



3. Decoding algorithm uses a voting scheme, we need to show that it works. 

The proof of correctness of decoding algorithm will prove this. 

Claim 1 There exists a ( E ,  l /nT)  mixer which is implicitly constructible in O(1ogn) space. 

Proof: We will argue that we can use Gabber Galil graphs to construct (r, l /nT)  mixers 

of degree poly(n). Instead of computing the polynomial degree graph ( call it G2) from the 

constant degree G1, we will compute the neighborhood function of G2 implicitly. 

To obtain G2 from GI we need to walk on GI for O(1ogn) steps. Edge labels in GI 

need O(1) bits and by using the logarithmic space algorithm due to Chiu-Litow-Davida, 

Fortnow-Klivans and Gutfreud-Viola (Theorem 5) we can find the final vertex on such 

paths in O(1ogn) space. This algorithm finds the vertices implicitly and so we compute 

the neighborhood relation of G2 implicitly. That is, given (x, i ,  j )  where x E (0, l In and 

i E [dl, j E [n] we can find the j th  bit of the ith neighbor of x . Lemma 2 says we can 

construct the required mixer if we use the powering operation on a Gabber-Galil graph such 

that the resulting graph's spectral expansion satisfies a relation. 

For our construction we would need a set S to be of size at most $$ and T to be of size 

at most (4 - t ) ~ ' .  The graph would then satisfy the relation 

This simplifies to X < & (1 + 2r)(l  + r) if 6 = &. 

The above claim proves that we can implicitly construct (6, l/poly(n))-mixers on ([N], [N]) 

vertex set where E is a constant. We will use that graph for our construction. 

Lemma 3 If h is as defined before then it is computable in nondeterministic logspace. 

Proof: We will argue that g is computable by a nondeterministic Turing machine and since 

h is just a projection map of g it must be true that h is also computable by a nondeterministic 

machine. 

Define Lf = { X I  f (x )  = 11, NL = coNL implies if Lf is in NL then coLf is also in NL.  

Then there must exist two nondeterministic logspace machines Ml and Mz computing Lf 

and coL respectively. 

We design a machine M which computes g as follows: 



Input : x 

Output: g(x) = ~ n c  (f (xl)  . . . f (xd)) where Ni(x) = xi for each 1 5 i 5 d. 

For each i from 1 to d, 

Step 1: Nondeterministically guess computations for MI and M2. 

Step 2: Simulate the computations of M1 and M2 and set the value of bi as follows, 

1. If M1 accepts then set bi = 1. 

2. If M2 accepts then bi = 0. 

3. Else if both M1 and M2 end in rejection then set bi = 0 and reject. 

Step 3: Collect all the answers bi for each xi, 1 5 i 5 d. Run the error-correcting code 

Enc on (bl bk) and output the answer and end in accepting state. 

Clearly this is a nondeterministic machine. For every input (xl,  . . . , xk)  the machine ends 

in a t  least one accepting run. And every time that happens the value on the work tape is 

Enc(f  (21) . . . f ( ~ d ) ) .  

We need to argue that g can be encoded in logspace. Since g(x) is of polynomial length 

we will need to represent it implicitly. That is on input (x, i )  the algorithm must generate 

the i th bit of g(x), which is nothing but h(x, i ) .  So if g is in N L  then so must be h. 

The logspace constructibility of g follows from our choice of error-correcting code which 

is logspace encodable and decodable (Spielman code, theorem 6) and the availability of a 

logspace neighborhood finding algorithm. We generate fd(x) bit-by-bit. The input bits 

to the encoding function Enc  is generated on the fly, say if it requires kth bit of the i th 

neighbor then we find f (Ni(x))k by reusing all the space that was used before. At any given 

time we do not store anything, we simply compute it from scratch. 

Therefore g is in N L  and as discussed before that implies h is in N L  too. 0 

To argue the correctness of the construction we will first show that if there exists an 

algorithm Afd such that Afd solves f d  on more than 112 + E fraction of inputs in space 

O(1og n)  then there exists an algorithm Af which solves f on more than 1 - l / n r  fraction 



of inputs in O(1ogn) space. We finish by proving that h must be of constant hardness. We 

start with the following. 

Claim 2 f d  is (+ - E) hard against logspace algorithms given that f is & hard in L. 

Proof: Assume f d  can be computed on more than 112 + E fraction of inputs by a logspace 

algorithm A j d .  In order to  reach a contradiction we will design an algorithm Aj which will 

be break the hardness assumption of f .  

On input x : Do the following. 

For i going from 1 to d: 

1. Compute Ni(x). 

2. Find bi = A jd (Ni ( x ) ) ~  where f (x) is in the kth position of f d ( ~ i ( x ) ) .  

Writing down the whole string Ni(x) is not possible since we are only allowed O(1og n) 

space. We use the logspace algorithm by Fortnow, Klivans and Chiu , Litow, Davida 

which gives the implicit representation of such a vertex. In other words we generate 

Ni(x) bit by bit as and when the algorithm Ajd requires it. 

3. Output Majorityi{bi} as the predicted value of f (x). 

To be able to do majority vote in O(1ogn) space we keep track of three values: i, 

number of 0s seen so far and number of 1s seen so far. Since i 5 poly(n) these values 

can be represented and updated in O(1ogn) space. At the end of all the votes we have 

the number of 0s and Is. Which ever is more is the predicted value of f (x). 

The correctness of the algorithm A j d  follows from the mixer property of the graph. Let 

the set of strings on which A j d  makes a mistake be defined as 

Bad = {x I A j d  (x) # f d(x)). 

By assumption Ajd solves f d  on more than 112 + E fraction of inputs so 

and similarly we define 



For any x to be in B a d f ,  A f d  must be wrong on majority of neighbors of x .  That is at 

least ( d l 2  + 1)  neighbors of x are in B a d f  d . 

Using the definition of mixer we conclude that lBadf  1 5 $. 
Therefore the fraction of inputs on which As is correct is at least ( 1  - l /nT) .  This is a 

contradiction to the assumption that f is l /nT hard and so we conclude that f d  must be 

(112 - E )  hard. 

0 

Claim 3 If h is as defined before, then it  is dlp/2-hard with respect to  L given that f d  is 

&-hard with respect to  logspace algorithms where p is the constant relative distance of the 

error- correcting code. 

Proof: Assume there exist an O(1ogn)  space algorithm Ah which computes h .  We can 

design an algorithm A which can compute f d  implicitly. 

On input x ,  do the following: 

R u n  the decoding algorithm Dec o n  A h ( x ,  j )  bit by bit where j goes from 1 to  cd. 

This can only be an implicit algorithm since we cannot write down the whole string f d ( x )  

on the work-tape as it will take O ( d )  = poly(n)  bits. This is clearly a logspace algorithm if 

E n c  - Dec is chosen to be a logspace encodable-decodable code and Ah works in O(1ogn)  

space. 

Define Badh to be 

{ ( x i  i )  lh(xi i )  # A h ( ~ 7  2 ) )  

and 

For each x E Bad the string 

is at least $ relative Hamming distance away from the actual ~ n c ( f ~ ( x ) ) .  



Therefore , number of strings on which Ah makes a mistake is v. This makes the 

fraction of mistakes to be = q:. By assumption f d  is 61-hard SO > 61 and 

so the fraction of inputs on which Ah makes a mistake is > $dl. Hence the claim holds true. 

0 

In claim 2 we had proved that f d  is 4 - E hard and so claim 3 implies that h is $(a - E) 

hard against algorithms in L. E and p < 112 (for Spielman code [Spi96]) are constants and 

so h has constant hardness approximately equal to 2 - 5 < i. 
0 

5.3.2 Guruswami-Kabanets construction 

Theorem 8 Given a Boolean function f E NL, such that f is & hard with respect 

to L, using the construction (11) described in [GK06], we can obtain a Boolean function 

h E N L  such that h is O(1) hard against algorithms in L. 

Proof: We can use f to define a non-Boolean function g which evaluates f on each vertex 

on an expander walk. We encode the function g with any error-correcting code of constant 

relative distance and then take a projection map. Even a code with brute force decoding 

algorithm will suffice, in particular the one given by Justesen in [Jus72] can be used. 

The direct product is defined by g : (0, lIn x [dlt -+ {O,l)t+l, g(x; i l ,  . . . , i t )  = 

f (x)  f ( x l ) .  . . f (xt) where Nij(xj-1) = xj,  xo = x and 1 5 j 5 t. In order to obtain a 

Boolean function we take the projection map of the encoded function Enc(g(x, il, . . . , i t)) ,  h : 

{0,1)" x [dlt x [c(t+ 1)] --t (0, I) ,  h(x; il, . . . , it; j )  = Enc(g(x; il, . . . , i t ) ) j ,  1 I j 5 c(t+ 1) 

where Enc is a a code with constant relative distance p. 

As we mentioned in the previous section we can compute N(x, i)j = yj that is the ith 

neighbor of x is y and its jth bit is yj in O(1ogn) space where the vertex set is of size 2n. 

There is an algorithm which on looking at  the CRT decomposition of (a + b) can generate 

the jth bit of (a + b) in O(1ogn) space. Using that algorithm we can implictly generate 

the neighbors of each vertex. For example in the Gabber-Gallil graph if x = (a, b) then 

N((a ,  b), 2)j = (a, a + b)j. 

In order for us to be able to  walk around in the graph we need to  store the vertex labels. 

We do not have enough space to store the current vertex label, if this could be done in 

the space provided then we may be able to execute everything in O(1ogn) space. We will 



compress the vertex labels by storing the value modulo a sufficiently big prime such that 

the vertex can be now be represented in O(1ogn) space. 

Since x is given as the input, we can calculate f (x)  in O(1ogn) space. We can not 

write down X I ,  the next vertex on the walk, explicitly on the tape. The Turing machine 

only requires to know one bit at a time so we generate the required bit using the implicit 

representation of XI. The relation N(x,  i l ) k  for each k does that. This works for xl  since 

x is present in the input tape and to  generate each bit of xl  which is a neighbor of x the 

tape head can look up x on the input tape. But to calculate xt even bit by bit , we need 

the explicit representations of X I ,  2 2 ,  . . . , xt-1. That is why we store xi mod p for each i 

between 1 and t .  The prime p is chosen such that it can be represented in O(1ogn) bits 

and so xi mod p does not require more than logarithmic space. As and when we require 

a particular bit of xi we invoke the logspace Chinese Remainder representation to implicit 

binary representation algorithm (Theorem 2) and after we are done we restore xi mod p. 

To prove the theorem we need to argue the following things: 

1. h E NL. 

2. Proof of correctness of the construction , that is h is indeed constant hard with respect 

to L. 

Lemma 4 If f is nondeterministic logspace computable then h is also nondeterministic 

logspace computable. 

Proof: To prove that g is in N L  we follow the same argument as the one we gave for 

Trevisan's construction. The only difference here is the definition of xis. There they were 

neighbors of x and here they are vertices on a walk passing through x. Other than this all 

other details remain the same. 
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In order to prove the correctness of the construction one needs to show that if there 

exist a logspace algorithm Ag which can solve g on more than 1 - 26 fraction then we can 

design an algorithm in L which can solve f on more than 1 - 6 fraction of inputs. The above 

discussion about logspace computable walks ensure that all the necessary computations can 

be carried on in logspace. 

We will give an informal description of the decoding algorithm and then follow it up by 

a formal algorithm. 



Claim 4 Suppose f is 6-hard for logspace. Let t 5 then the function g defined above is 

R(tb) -hard for logspace. 

Proof: Assume there exists an algorithm Ag which solves g on more than 1 - b' fraction of 

inputs for the least possible value of 6'. One can use Ag to design an algorithm to compute 

f .  
Informal Idea : On input x E (0, l jn for each i E (0, . . . , t), we record the predicted 

majority value bi for all possible t step walks which pass through x in the i th step. Using 

our above notations that would mean the majority taken over all values (Ag(w))i where w 

is a t-step walk in the graph G that passes through x in the ith step and (Ag(w))i is the 

ith bit in the (t  + 1)-tuple output by the algorithm Ag on walk w. Now we take another 

majority vote over all bis ( 1 5 i < t). This value is the predicted value of f (x). What this 

does is place x in each position of all possible t length walks in the graph and keep count 

of the predicted value of f on them. Then we take a double majority vote and that is the 

predicted value of f on the input x. See below for a presentation of this algorithm. 

Each element of the tuple (kl, . . . , kt) indexing a walk can be generated one by one in 

O(1ogn) space and then the space can be reused for the next element. This is a constant 

degree expander and so to store each label we only require O(1) bits. By assumption Ag(w)i 

takes logarithmic space, so everything can be done in O(1ogn) space. 

On input x E (0, l jn 

GOAL : To compute f (x) 

2. for each i = 0 to t 

4. for each t-tuple (kl, kg, . . . , kt) E [dlt 

5. Compute the vertex y reached from x in i steps by taking edge labeled kl, . . . , ki. 

7. end for 

8. if c2 2 dt/2 then cz = cl + 1 



9. end if 

10. end for 

11. if cl 2 t / 2  then RETURN 1 or else RETURN 0. 

Proof of correctness of A f  follows in the same line as the proof presented in [GK06]. We 

will skip the detailed calculations. The conclusion is that 6' 2 R( t )  Pr,[Af ( x )  # f ( x ) ]  2 

R(t)6. 
0 

Lemma 5 Suppose g is &-hard against logspace algorithms. Then the function h is h1p/2 

hard for algorithms in L were p is the constant relative distance of Enc. 

Proof: Let us assume Ah computes h on more than 1 - 6' fraction of inputs for the least 

possible 6' achievable by algorithms in L. 

Algorithm Ag follows : On input ( x ;  i l ,  . . . , i t ;  j )  compute Ah(x;  i l ,  . . . ,it; j )  for all 

j  E [c(t + l ) ]  where as always l / c  is the rate of Enc. Apply Dec to the obtained string 

and output the decoded string. Since t  and c are constants we can do this computation in 

logspace. 

Now we will analyze the fraction of inputs on which Ah makes mistake. Let us con- 

sider the set Bad = { ( x ;  i l ,  . . . , i t ) lAg((x;  i l ,  . . . , i t ) )  # g( (x ;  i l ,  . . . , i t ) ) ) ,  basically the 

set of inputs on which Ag makes a mistake. For each ( x ;  i l ,  . . . ,it) E Bad , the string 

[Ah(x;  21,. . . , i t ) l , .  . . , Ah(x;  i l ,  . . . , it)c(t+l)] is at least p/2 relative Hamming distance away 

from the actual encoding Enc(g(x; i l ,  . . . , i t ) ) .  Number of inputs on which Ah makes a 

mistake is at least JBadl$c(t + 1). This means the fraction of inputs on which Ah makes 

mistakes is where 2" x dt x c(t + 1) is the total number of possible inputs 

to Ah. After canceling out common terms from the numerator and denominator we get 
I Bad1 P 

2 x 2 " x d  ' 

If g is 61 hard then 2 61 therefore fraction of inputs on which Ah makes mistakes 

is 2 gw = 9. We took Enc to be a constant distance code so 9 = R(61). 

0 

Note that we have obtained amplification from 6 to t6p/2 as 61  = R(t6).  If we apply 

this construction repeatedly, the hardness increases constant time with every iteration. At 



the end of s steps we go from 6 to (!f)'6. Since t and p are constants we can choose s to be 

log? = O(1og f )  in order to obtain the final constant hardness. 

We conclude that the construction does meet the hardness bound, or in other words we 

can amplify from inverse polynomial to  constant hardness against logspace algorithms. 

0 

One aspect where Trevisan's construction scores over the other is the input length. 

Input length of the starting function is n bits. After applying the Guruswami-Kabanets 

construction we obtain a function whose input size is n + t  log d+log(c(t+ 1)) = n+O(t  log i) 
bits. In Trevisan's construction the input length of the final function is n + log c(t + 1) bits. 

The following table gives a comparison between the two constructions. 

Table 5.1: The two methods a t  a glance 
Neighborhood Construction Walk Construction 

Size of input n n + k [log dl 

Size of Direct Product P O ~ Y ( ~ )  o(l> 
Amplification 6 + 0 ( 1 )  6 -+ 26 



Chapter 6 

Construction in Nondeterministic 

Linear space 

Given a function f of hardness & we want to generate a function h which is of constant 

hardness. 

This amplification does not require a Direct product construction. We will encode the 

function with a suitable error-correcting code and then take the projection map to obtain 

the Boolean function. 

Theorem 9 Given a Boolean function f : (0, l j n  + {0,1), f E NLINSPACE,  such 

that f is A- hard with respect to LINSPACE,  we can obtain a Boolean function h E 

NLINSPACE such that h is O(1) hard with respect to LINSPACE. 

Proof: We concatenate it with an logspace encodable/decodable error-correcting code Enc 

like in [Spi96]. Enc : (0, 1j2" + (0, 1jC2" where l / c  is the constant rate and p is the 

constant relative distance of the code. We define a string X which is the encoding of the 

truth table of f ,  i.e, X = Enc(TT( f ) ) .  In order to convert this into a Boolean function we 

take the projection map h : [ ~ 2 ~ ]  + (0, I),  h ( j )  = E ~ c ( T T ( ~ ) ) ~ .  

Claim 5 If h is as defined before then it is computable in nondeterministic O(n)  space. 

Proof: The truth table of f can be viewed as a message of size 2n. The encoding of this 

message will be a string of size ~2~ for a constant c. The error-correcting code is logspace 

encodable and decodable, so we only require O(n)  space to implicitly compute X. 
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Since N L I N S P A C E  = c o N L I N S P A C E  and f E N L I N S P A C E  we can use the same 

argument as we did in our previous constructions to conclude that g is in N L I N S P A C E  

and consequently h is a Boolean function which is computable by nondeterministic linear 

space algorithms. 

0 

Claim 6 Let h and f are as defined before. Given f be &-hard then h must be y-hard 

where y is the fraction of errors corrected by the error-correcting code. 

Proof: A linear space algorithm Ah computes h correctly on some fraction of inputs. We 

will use this to design an algorithm which computes f .  

On each input x do the following : 

1. Find A h ( i )  for every 1 5 i < ~2~ and run the decoding algorithm Dec on the implicitly 

generated string A h ( l ) A h ( 2 )  . . . A h ( d n ) .  

2. Output the bit which corresponds to the value of f (x), we denote that by 

Dec[Ah( l )  . . . A h ( ~ 2 ~ ) ] ~ .  

Since f is worst case hard , there exists at least one string x for which Dec[Ah( l )  . . . Ah ( ~ 2 ~ ) ] ~  

is different from f ( x ) .  The fraction of errors that the Dec algorithm can correct, i.e the 

fraction of positions in the string A h ( l )  . . . A h ( d n )  which are different from h(1)  . . . h ( ~ 2 ~ )  

is at most y. Let us define the set Badh as {il Ah( i )  # h ( i ) ) ,  so if lBadhl < 7 ~ 2 ~  then the 

value of D e c [ A h ( l ) .  . . A h ( ~ 2 ~ ) ]  at position x is correct. Therefore h must be y hard. 

0 

If we use an error-correcting code which corrects a constant fraction of errors like the 

Spielman code [Spi96] then h is O ( 1 )  hard and as discussed in a previous chapter for binary 

codes error correction can be at most up to a quarter fraction. 

0 



Chapter 7 

Conclusion 

In order to push the hardness beyond the 114 fraction in both N L  and NLINSPACE,  we 

need to devise new derandomized direct product results. Derandomization is crucial, since 

due to the lack of space we cannot write k instances of n length string on the tape. We would 

like to have a generator G which will take a small seed to generate a tuple (xl,  . . . , xk) ,  on 

which we will define the new direct product construction. 

The length of x cannot exceed n + log n.  

There are a few derandomized direct product lemmas. The one used in [IW97] is a 

combination of two generators, expander walk generator EV(v, 2) and Nisan-Wigderson 

generator NW.  They combine the two generators together to form a new XOR generator 

XG(r;  r'; v; d) as follows: Use r to select a (yn, n)-design where the universe is the set 

(1, . . . , d). Then N W  (x) = (xIsl, . . . , XIS,) and E W(V, 2) = (vl, vz, . . . , vk). The resulting 

generator XG[r;r1; v, d] = (xlsl @ vl, xlsz @ va, . . . , xlsk @ v,). In order to use this we need 

C = {S1, . . . , Sk), a family of subsets of [dl of size n. For every i # j ,  JSi nSj I 5 yn for some 

constant y. Let r E (0, l Id and S = {sl, . . . , s,) C [dl. Then let the restriction of r to S, rls 

be the n-bit string rls = r,,r,, . . .r,,,. Then for a y-disjoint C, ND' : (0, lIrn --t ((0, l )n )k  

is defined by: N D' ( r )  = r Is, . . . r 1 sk. The parameters of interest to us are d = n + log n 

but then the condition ISi nSj( 5 yn for a constant y is impossible. As after the first set S1 

has been selected, the number of unpicked elements is logn and hence any subsequent set 

Si will have at least n - logn intersections with previously picked sets. So a random walk 

on graphs in conjunction with combinatorial designs will not yield the desired generator. 



CHAPTER 7. CONCLUSION 37 

The first encoding step of the direct product needs to be followed by another layer of 

encoding by a suitably chosen error-correcting code. Since we are trying to push hardness 

past quarter fraction the error correcting code needs to be list decodable. This is because 

unique decoding for binary codes beyond quarter fraction is not possible. Any list decodable 

code will not suffice, it needs to be a locally decodable code. While working in logarithmic 

sized space, writing down entire codeword or message is not possible, yet we want to generate 

the list of messages which may have generated a particular codeword. To facilitate this we 

allow implicit representation of codewords and messages. Locally decodable codes allow us 

to do this. As an input the decoding algorithm takes a codeword and an index i and outputs 

a list of algorithms one of which finds the ith symbol of the message which gave rise to the 

codeword. 

The error-correcting code suggested by Sudan, Trevisan and Vadhan in [STV99] is a 

multivariate polynomial based code. Part of the construction requires finding polynomials 

of degree d in the field F .  Such polynomials can be indexed by d log IF[ bits. The size of F is 

roughly equal to O(n2). Due to the restriction in space we cannot write down a polynomial 

which is super linear in n. As a result we cannot use this code. 

Our future course of action is to find a derandomized direct product result for seed 

length n + O(1og n). In particular we would like to know if the two expander based direct 

products we have used in our constructions may be sufficient to amplify hardness beyond a 

quarter fraction. Even without the restriction on space can we find a derandomized direct 

product which pushes the hardness beyond ? 
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