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Abstract

There has been a substantial interest in longitudinal studies, particularly for monitoring

changes in profiles of specific sub-sectors of society, for example, Statistics Canada's Cana­

dian National Longitudinal Study of Children and Youth (Statistics Canada, 1996), the

Women's Health Australia national longitudinal study (Women's Health Australia, 2005)

and the U.S. National Longitudinal Surveys on Labor Statistics (National Longitudinal Sur­

veys Handbook, 2005). For these and many longitudinal studies, so-called panel data are

collected, with information gathered between specific follow-up times. When interest focuses

on multiple or recurrent episodes of an event of interest, recurrent event panel data arise,

where only information on the number of recurrences between follow-up times is recorded.

Such data collection designs are typical in clinical studies where it is not possible to record

exact event times, for example, if examinations are invasive or occur too frequently as in

the study of chronic diseases such as epilepsy (Thall and Vail, 1990) or certain incidences

of tumors in cancer patients (Abu-Libdeh et al., 1990).

This thesis discusses semiparametric methods for the analysis of recurrent event panel

data and offers a comprehensive framework for such analysis requiring only minimal dis­

tributional assumptions. The basic model assumes that the counts for each subject are

generated by a mixed nonhomogeneous Poisson process (NHPP) where frailties account for

heterogeneity common to this type of data. The generating intensity of the counting process

is assumed to be a smooth function modeled with splines. Covariate effects are also repre­

sented as splines; this permits covariate effects to change over time. The development offers

several special limiting cases which are common, for example, a constant intensity, or fixed

covariate effects. The thesis also considers discrete mixtures of these mixed NHPP mod­

els accommodating dusters of hidden sub-populations which generate counts with differing
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intensity functions. Several recent applications investigated suggested a need for accom­

modating such unobservable sub-populations. For example, in the motivating application

that is used throughout this thesis, moth matings in the summer seem to be generated by

emergence of at least two types of moths in the spring: those which overwinter in the pupal

stage and emerge earlier in the spring, and those which overwinter in the egg stage; the

finite mixture approach accommodates this type of behavior. The thesis concludes with a

discussion of several areas for further investigation in this important field of study.
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Chapter 1

Introduction

The development of methods for longitudinal data analysis has seen tremendous growth

over the last few decades. In particular, methods which incorporate smoothers and time­

varying coefficients have provided more flexible and realistic methods for data analysis.

Much of this work has been in the context of multivariate normal data, or data which may

be approximated by normality assumptions. Studies of a longitudinal nature abound in

many applications, from health to economics and in many instances such longitudinal data

arise as counts, with the processes being monitored giving rise to recurrent events. This field

may also be considered as an extension of survival analysis, where, instead of monitoring

the time to a (typically crucial or terminal) event, times to recurrences are available and it

is of interest to determine intensity functions generating such recurrences.

This thesis develops methods for the analysis of longitudinal count data arising from

such recurrent event processes. There are special features which will be considered and one

major feature is that of missing information as typical when processes are not continuously

monitored but observed at specific time periods.

We begin with a review of some preliminary ideas that are the building blocks of the

models developed in later chapters followed by an outline of the material presented in these

chapters.

1.1 Recurrent Event Panel Data

In recurrent event studies objects or subjects are each observed for a period of time and

the number of recurrences of a phenomenon of interest is recorded. For the ith subjeet, let

1



CHAPTER 1. INTRODUCTION 2

[TiD' Tie;) denote the total observation period and let Til < Ti2 < Ti3 < ... < Tie; where

Tij E (TiD' Tie.], j = 1,2, ... .ei, denote followup times, the times at which the subjects are

examined for recurrences. Let I denote the number of individuals under study so i ranges

from 1 to I. In general the start of the observation period TiD may not be the same for all

individuals, but here, they are all set to zero as the time scale of interest is time from TiD and

marks a particular intervention such as diagnosis, surgery or entry into the study. In some

cases, it is important to work with calendar time, rather than or in addition to time from

TiD' Note that the followup times Tij may be different for each individual to accommodate

different followup schedules as well as drop-out.

Ideally the type of data one would like to collect are the exact times of the events of

interest for each individual i that occur in [TiD' Tie)' To collect such data each individual

needs to be monitored continuously. Such monitoring can be costly, considered as overly

intrusive, particularly in human health studies that do not involve chronic care, or simply

not possible as may be the case with animal populations for instance. Instead what is

commonly done in such situations is to simply collect the number of events, Nij , that occur

in each observation window or panel [Ti,j-l, Tij). For each individual a vector of counts

N, = [Nil, ... ' Nie,jT is recorded. Panel count data of this form is the type that will be

considered in this thesis as it is quite generally the type of data that is collected. In fact,

one could argue that in practice all data are collected in this fashion as we do not measure

time continuously but record events by the second or microsecond which would then define

the lengths of the panels for the study. Of course, if these observation windows are fine

enough so that the counts are simply the presence or absence of an event then the use of

models based upon exact event time responses is reasonable.

1.2 The Nonhomogeneous Poisson Process Model

The Poisson process is a stochastic process that counts the number of randomly occurring

events over time. It is treated in detail in most books on stochastic processes such as

Karlin and Taylor (1975) and Ross (1996). A nonhomogeneous Poisson process (NHPP)

is a modification of a Poisson process which allows the intensity of the process to be time

dependent. Let N[t, t + h) be the number of events occurring in the time interval [t, t + h),

where t ~ 0 and h ~ 0 and let N(t) = N[O, t). Then a process {N(t), t ~ O} is said to be a
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nonhomogeneous Poisson process with intensity )"(t) if

3

1)

2)

3)

4)

N(O) = 0

{N (t), t 2: O} has independent increments

P{N(t, t + h) = O} = 1 - )..(t)h+ o(h)

P{N(t, t + h) = 1} = )"(t)h + o(h)

(1.1)

(1.2)

(1.3)

(1.4)

where )..(t) 2: 0 is called the intensity function of the process and o(h) denotes a remainder

quantity g(h) which approaches zero faster than h, i.e. limh-+o~ = O. The intensity

function )"(t) is continuous and

A(t) = 11

)..(u)du

is called the cumulative intensity function. Conditions (1.3) and (1.4) imply that P{ N[t, t +
h) 2: 2} = o(h) and that the occurrence of events prior to time t does not affect those

in [t, t + h). This gives rise to the property that counts in non-overlapping intervals are

independent of one another or more succinctly that the process is memoryless. It can also

be shown (Ross, 1996) that 1.1-1.4 imply that N[t, t + h) follows a Poisson distribution:

(J/+h )..(u)du)n exp { _ ftt+h )..(u)du}
P{N[t,t+h)=n}= , ,n=O,1,2, ....

n.

Thus N(t) is distributed as a Poisson random variable with mean A(t). For this reason the

cumulative intensity A(t) is often referred to as the cumulative mean function.

1.3 Spline Smoothing

Suppose there exists data (Yi, ti), i = 1, ... , n where I < it < ... < t; < u and the 1'i's are

independently distributed N(f(ti),a2 ) random variables. The relationship between the Yi's
and the ti's is then simply expressed as follows

where yT = {YI , ... , Yn }, fT = {J(tl),'" ,f(tn )} and ET = {EI,... ,En} rv Nn(O,In a2
) ; In

is the n x n identity matrix. Further assume that f(·) is some unknown smooth function of

which an estimate is desired. One simple approach would be to assume that f E P d where
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P d is the space of polynomials of degree d. The function f (.) can then be expressed as a

linear combination of the basis functions {L x, x 2 , ... ,xd } which span P d-

Estimates of the function f(·) are then easily obtained by finding the values of 'l/JT
{'1/)1, ... ,'lj)m+l} that minimize IIV- fl1 2 by least squares. Unfortunately when d << n < 00

polynomials are not flexible enough to fit slowly varying functions or those that fail to be

extremely smooth which results in poor approximating power for general smooth functions

fe). Polynomials however are known to have very good local approximating properties

(Schumaker, 1981) and so it is logical to partition the data into segments and fit different

polynomials to each of these subintervals. These piece-wise polynomials can fit a much

larger class of functions. Piece-wise polynomials however can be discontinuous at the break

points between segments, which will be referred to as knots. As estimation of a smooth

function is the goal, discontinuities are unexpected in both the function and its derivatives.

To overcome this problem smoothness is imposed by requiring (d - 1) derivatives to match

at all the knots. The set of all possible piece-wise polynomials with this imposed continuity

form the spline space.

Definition 1.3.1 Spline Space

Let ~o = l < 6 < ... < ~k < u = ~k+l and an integer d?l be given then

where

Cr[a,b] = {f: the r th derivative fer) is continuous on [a,b]}

is the space of polynomial splines of degree d with k fixed knots 6, ... ,~k'

As with the polynomial space, the spline space is linear (de Boor, 1978). Bases constructed

for this space will have dimension d + k + 1. Thus d + k + 1 functions are needed to span

the space: d + 1 basis functions to specify the d-degree polynomial in the first interval and

one extra function for each of the other k intervals as they all have d restrictions due to the

d - 1 continuous derivatives. Two common bases {bi (t), ... , bd+k+1 (t)} for Sd,e are the:

a) Truncated Power Basis
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where (x)+ = xl(x > 0) with 1 the indicator function. Though a very intuitive basis,

this basis suffers from poor numerical conditioning when the knots ~i are dense in [l,u].

b) B-spline Basis

{Bd._d(t), B1,-d+l (t), ... , Bd,O(t), Bd,1 (t), ... ,Bd,dt)} ,

a numerically stable basis constructed by defining 2d + 2 exterior knots

~-d ::::: ... ::::: ~o = l < 6 < ... < ~k < U = ~k+1 ::::: ... ::::: ~d+k+l

and taking the (d + 1)th divided differences of (t - ·)i giving

where

det

1

1

~h

~h+l

(t - ~h)i

(t - ~h+di

1 ~h+d+l

1 ~h

1
det

1 ~h+d+l
Cd cd+l
"h+d+ 1 "h+d+1

(Note: strict inequalities are required for the interior knots else the number of con­

tinuous derivatives drops by one and hence the function f would no longer be a spline

by definition 1.3.1). The numerical stability attributed to B-splines arises from the

divided differences since Bd,h(t) = 0 for t ¢ (~h, ~h+d+l]' An equivalent recursive re­

lationship that is numerically efficient and useful in practice (de Boor, 1978) can be

derived as follows:

Let Bo,o, ... BO,k be

Then for d :::: 1 the basis functions can be calculated recursively as

t - ~h ~h+d+ 1 - t
Bd.h(t) = Bd-1.h(t) + . Bd-l,h+l(X).

~h+d - ~h . ~h+d+ 1 - ~h+ 1
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Transforming between these two equivalent bases for Sd,k; B-spline basis, useful for numerical

computing, and the Truncated Power basis, useful for testing, can be accomplished via a

linear transform constructed from the following useful relationships. If.f E Sd,t; then

d k

f(t) = L f(i) (O)tdji! + L[f(d)(~n - f(d)(~j)J(t - ~j)ijd!

i=O j=l

(1.5)

where f(i)(t) = 8if(t)j8ti. So if we express f as a B-spline, f(t) = L~~~ 'lp"Bd,h- 4(t ) then

an equivalent representation from (1.5) in Truncated Power form

d k

f(t) = LY'h+l th + LY'h+d+l(t - ~h)i
h=O h=l

is obtained via the transformation cp = Tt/J where

Bd,-d(O) Bd,-d+l (0) Bd,k(O)
B(1) (0) (1) B(1)(0)d,-d Bd,-d+l (0) d,k

B~~~d(0)j2! B~~~d+l (0)j2! B~~k(0)j2!

T=
B~~~d(O)jd! B~~~d+l (0) j d! B~~k(O)jd!

D~~~d(6)jd!
(d)

D~~k(6)jd!Dd,-d+l (~djd!

D~d~d(~k) j d! D~~~d+l (~k)jd! D~~k(~djd!

(1.6)

~/. - [.1 .1, ]T - [ JT D(i) (C ) - B(i) (C+) B(i) (C-) d B(i) ( ) ­
'f/ - 'IJI,···, 'l'd+k+l ,cp - Y'l,"" Y'd+k+l , d,h 'o,i - d,h 'o,i - d,h 'o,i an d.b. t -

8iB
d,h(t)j8t

i (Note: The B~~2(t)'s are step functions with jumps at the ~i'S so the D~~2(~i)'S

are simply the vertical difference in the B~~2(t)'s at the knots ~i)'

Fitting the data (Yi, ti) using splines is very simple. Assume that f E Sd,t; so that f can

be expressed as a linear combination of the basis functions

d+k+l
f(ti) = L 'l/Jhbh(t;)

h=l

then f (.) can be estimated by solving

min IIY - fl1 2 = min IIY - Bt/J11 2

,pEIRd+k+l
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where

7

bd+I.:.~l (tJ) ] .

bHd+l(tn )

(1.7)

The problem reduces to least squares estimation so the solution is

and thus the estimated fit given by

(1.8)

This is an attractive feature of using splines as they provide a closed form method of esti­

mation. Unfortunately the problem is complicated by recalling that constructing B requires

specifying the number and placement of knots as well as the degree of the spline. All of these

have an affect on the estimated fit and thus requires some consideration. Linear splines form

piece-wise linear segments which are not suited for capturing curvature. Splines of degree

d ~ 2 will give smooth fits to the data. The cubic spline (d = 3) is often used as it is

sufficiently flexible and higher order splines typically give overly erratic fits. To improve

the fit of a spline it is better to increase the number of knots rather than its degree. The

number of knots used reflects the amount of smoothing as increasing the number of knots

in any region of the domain of f reduces the amount of smoothing that is being applied in

that region. The number and position of the knots turns out to have a strong effect on the

resulting estimates and so careful attention needs to be taken if one desires a high order of

approximation. Two main approaches to this problem have been proposed in the literature.

The first approach is to consider the number and position of the knots as variables that

need to be estimated or the so-called free-knot approach (Jupp, 1978; Kooperberg et al.,

1997; Mao and Zhao, 2003). The second is the roughness penalty approach (Wahba, 1990;

Green and Silverman, 1994; Eilers and Marx, 1996; Ruppert et al., 2003) which uses a

large number of knots and a penalty term to control the oscillatory behavior of the esti­

mated function. Several hybrid approaches that combine both penalty terms and careful

knot selection have also been considered (Schwetlick and Schiitze, 1995; Luo and Wahba,

1997; Lindstrom, 1999). In the following two sub-sections the two main approaches will be

discussed briefly.
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1.3.1 Free Knot Splines

8

(1.9)

In this approach the knots ~ = [6, ... ,~kV are considered parameters that require estima­

tion. First assume that the number of knots k is known so the problem becomes

min IIY- B{""11 2

1/J,{

subject to ~ E Gk(l, u) where Gk(l, u) = {~= [6,··· ,~kV : 1 < 6 < ... < ~k < u}. From

(1.8) ;p is the unique solutions to the least squares problem in "" and hence"" will be profile

out of (1.9). This is the so-called variable projection method (Golub and Pereyra, 2003)

and results in the following constrained nonlinear least squares problem:

Unfortunately the objective function in (1.10) is rather irregular which was first noted

in Jupp (1978) where he refers to this behavior as "lethargy". This problem is caused

by two different properties of the objective (1.10). The first has to do with a symmetry

resulting from constraining the knots to lie in the simplex Gk(l, u). To see why this occurs

consider the case in which k = 2 and take two points ~1 = [6,6V E G2(l,U) and ~2 =
[6,6]T 1- G2 (l , u ). Clearly Ile(~1)112 = Ile(~2)112 and hence the objective surface of (1.10)

in G2[l,U] is a reflection of the one in (l,u) x (1,u)nG2(l,u)c. The result of this is that

the gradient of (1.10) at any point on the boundary of G2(1, u) points along this boundary.

So as two knots move closer together the attraction between them becomes strong and

draws them onto the boundary where many local optima occur. This is undesirable as

the solution may be quite far from the global minimum of (1.10) and will not preserve the

assumed level of "smoothness" of the underlying function since coincident knots reduce the

number of absolutely continuous derivatives. Also, if the solution is near the boundary this

"boundary effect" causes a great deal of instability in optimization algorithms. The second

problem is a result of the fact that small perturbations in ~ result in values of e(~) that

are similar. A direct consequence is that the objective function in (1.10) is not smooth and

has many plateaus which makes the solution difficult to obtain using standard methods.

Using computationally demanding global optimization methods such as branch and bound

can provide the true global solution (Beliakov, 2004). Using such a method the optimal

number and position of the knots can be obtained by solving (1.10) for different values

of k and selecting the best model using criteria such as the Cp Mallows statistic or AIC.
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Another approach is to employ a stochastic type optimization algorithm on a dense grid of

possible candidate knots such as using insertion-deletion (Hansen and Kooperberg, 2002) or

a genetic algorithm (Pittman, 2002) but neither of these techniques will guarantee a global

optima.

The free knot approach results in very flexible estimators that have a high order of

approximation (Schumaker, 1981), without requiring too many degrees of freedom, making

them very attractive in many situations. In the context of normal linear regression presented

here the computational methods described can be implemented fairly efficiently. However

extensions of such approaches to more complicated situations such as the recurrent event

analysis considered in this thesis may be computationally burdensome.

1.3.2 Penalized Splines

The knot selection problem can be avoided by choosing a maximal set of knots, such as a knot

at each data point so that';i = ti, i = 1, ... ,n or alternatively some dense subset of times.

To control the complexity and the inherently ill-posed nature of the resulting estimation

problem regularization is used. This regularization takes the form of some assumption on

the class of functions one would like to approximate. For instance, if one assumes that

f E Sd,{ an estimate can be found by minimizing

(1.11)

where B is a design matrix of basis functions (1. 7) on the dense knot grid, <5 is the smoothing

parameter and P = {Pij} is the penalty matrix where p., = Jtb~d-l)(t)b]d-l)(t)dt. Clearly

here the form of the penalty is chosen to regulate the assumed amount of curvature of f. The

point that should be noted is that use of regularization has effectively reduced the problem

of selecting the number and position of knots to finding an appropriate value of <5. If <5 --; 00

then (1.11) reduces to d - 2 degree polynomial regression and if <5 = 0 then f becomes an

interpolator. For any fixed value of <5 the solution to (1.11) is given by 1;; = (BTB+<5P)-l B T

so that

where 88 is the so-called linear smoother operator (Buja et al., 1989). The trace of 88 is

referred to as the effective degrees of freedom (Wahba, 1990) and is conceptually analogous

to degrees of freedom in regression, however, it will not be integer valued in general due to
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the regularization. For computational convenience the smoothing operator can always be

expressed as

hy taking the singular value decomposition of B = UDyT, forming the matrix G =
D-IyTpYD-I and taking its eigen decomposition G = ErET where U a n x (d + k + 1)

matrix with orthogonal columns, Y a (k + d + 1) x (d + k + 1) orthogonal matrix, D =

diag {81, ... , Sd+k+ I}, E the orthonormal eigenvectors of G, r = diag {1'1, ... , 1'd+I.,+ I} its

eigenvalues and A = UE so that ATA = I.

Selection of the smoothing parameter 0 is crucial in the penalized spline approach to

smoothing. For a review and assessment of the many proposed approaches such as cross

validation or unbiased risk see Gu (2002). One of the most popular approaches is the

so-called generalized cross validation (GCV) which selects 0 by minimizing

yT [I- B(BTB + OP)-1 BTl Y
n (17, _ tr{Sd)2

where tr {Sd = 'Lttt+l1/(1 + hi)' This was originally proposed by Craven and Wahba

(1978). Another approach is to minimize the generalized maximum likelihood

yT [I- B(BTB + OP)-1 BTl Y

TI7==-11 [1/(1 + 01'i)] n-~-2
(1.12)

which is a restricted maximum likelihood (REML) estimator in the normal linear model

context with a Gaussian process prior assumption. For penalized spline smoothing with

normally distributed residuals, GCV is preferred, however in the case of non-normal error

distributions a REML/GML approach is recommended (Gu, 2002). In (1.12) the last d - 2

eigenvalues II > 1'2 > ... > 1'd+k+l are equal to zero reflecting the unpenalized d - 2

polynomial component.

It should he noted that to be consistent with the rest of the presentation in this section

a B-spline approach has been used; however, other approaches to penalized smoothing could

also be considered, such as smoothing splines (Green and Silverman, 1994; Gu, 2002), and

would result in a similar framework. The difference in practice would be the choice of

basis and form of the penalty with smoothing splines being derived via reproducing Hilbert

kernel spaces. The estimating procedure that is proposed herein does not depend on the

choice of the basis-penalty combination, whether hy linear differential arguments (Heckman
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and Ramsay, 2000) or otherwise, and would be carried out equivalently independent of this

decision.

1.4 Estimating Equations

In statistics, methods such as least-squares, maximum likelihood and minimum chi-squared

estimation have a common property that they involve constructing and solving a system of

estimating equations:
- - - T

g(O, y) = [91(0, y), ... ,9p(0, y)] = 0

where y = [Yl"'" Yn]T is observed data with distribution governed by some unknown

parameters 0 = [01 " " , opjT. Due to this commonality among methods it is logical to

consider properties of g, the estimating function

g: e x Y ---'> jRP

where e and Y are the parameter and sample spaces respectively. It will also be assumed

that det {E[g(0, Y)g(0, Yf I OJ} < 00 for all 0 which ensures that the second moments

conditional on 0 of each 9q(0, V), q = 1, ... ,p are finite. The goal is to determine a estimator

8(Y) which is the solution to g(8, Y) = O. It is required that the estimating function be

unbiased in the sense that E[g(O, Y) I 0] = 0 for all 0 in the sample space e. This extends

the notion of unbiasedness since every unbiased estimator with finite variance is the root of

an unbiased estimating function (Kendall, 1951; Kendall, 1952). It should be noted however

that not every root of an unbiased estimating function is itself unbiased.

An idea that is central to estimating equation theory is that of Godambe efficiency

(Godambe, 1960) which is conceptually analogous to the idea of a minimum variance unbi­

ased estimator in that we would like to find an unbiased estimating equation that has the

smallest variance. It can be shown (Chandrasekar and Kale, 1984) that the following three

conditions are equivalent for determining Godambe efficiency of an estimating function g*:

1. effo(g*) - effo(g) is non-negative definite for all g and 0

2. trace {effo(g)} :s: trace {effo(g*)} for all g and all O.

3. det{effo(g)}:s: det{effo(g*)} for all g and allO.
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where

effe(g) = E[8g(0, Y)/80T I O]TE [g(O, Y)g(O, Yf I 0] -1 E[8g(0, Y)/80T I 0].

12

An intuitive interpretation of the Godambe efficiency effe(g) is as the inverse of the variance­

covariance of the standardized estimating function

E ( {E[8g(0, Y)/80T I Or1g(0, Y)} {E[8g(0, Y)/80T I Or1g(0, Y)}TIO)

E[8g(0, Y)/80T I Or 1E [g(O, Y)g(O, yf I 0] E[8g(0, Yf /80 I Or1(1.13)

which is useful for developing asyrnptotics for the equations.

A special type of estimation function used extensively in this thesis is the so-called quasi­

likelihood (Wedderburn, 1974). The quasi-likelihood approach is quite useful in that it only

requires partial parametric specification, that both the mean J.L(O) and variance-covariance

Y(O) are some known functions of O. Given these limited assumptions and considering the

class of unbiased estimating functions of the form

A(O) [Y - J.L(O)]

the only value of A that results in a Godambe efficient estimating function is A(0)

D(B)TY(O)-l (Heyde, 1997) where D(O) = 8J.L(0)/80T. An estimator can then be found

by solving

D(O)TY(O)-l [Y - J.L(O)] = O.

It can be show that vn (0 - 0) ~ N(O,:E) (White, 1982) where E is given in (1.13) pro­

viding a framework for inference robust against model misspecification as only low moment

assumptions are required.

1.5 Continuous and Discrete Mixture Models

The term mixture distribution refers to a distribution arising from a hierarchical structure.

More clearly, a random variable Y is said to have a mixture distribution if the distribution

of Y depends on a quantity that itself has a distribution. So if YI8 '" H(8) and 8 '" M

then Y has a mixture distribution with density

f(y) = Jh(y; B) dM(B) (1.14)



CHAPTER 1. INTRODUCTION 13

where M is the mixing distribution and h denotes the probability density or probability

mass function of the distribution H. If the mixing distribution M is continuous then (1.14)

becomes

f (y) = Jh(y; B)m(B) dB

where 111 is the probability density function of M. As an example, consider the case where

YI8 = B is distributed as a Poisson random variable with mean Band 8 is a gamma

distribution depending on parameters z and IL with density

The unconditional distribution of Y in this case becomes negative binomial

(1.15)

y = 0, 1, ... with mean IL and variance IL + T 1L2 . The negative binomial is a common method

of modeling heterogeneity in count data. It occurs when the standard Poisson assumption

cannot accommodate the variance exhibited by the data and is commonly referred to as

extra-Poisson variation or overdispersion (Dean, 1995). If overdispersion is ignored the

resulting analysis can be misleading as standard errors can be severely underestimated.

Given a random sample Y1, ... , Yn from (1.15) with covariate information Xi, related to the

means through a monotone function 9 such that lLi = g(x[ (3), f3 the covariate effects, one

obtains a regression model for analyzing overdispersed count data (Lawless, 19S7b). This

model belongs to a class of models arising from continuous mixture distributions referred to

as mixed models (Demidenko, 2004). Such models are prevalent throughout the discipline

of statistics as they provide an intuitive framework for the incorporation of correlation

structures into standard methods such as generalized linear models (McCullagh and Nelder,

1999) that assume independence.

In the case where the mixing distribution M is discrete, say a discrete distribution with

c points of support such that Pj = P(8 = Bj), j = 1, ... ,c then (1.14) is given by

c

f(y) = LPjh(y;Bj).
j=1

(1.16)

Such a mixing distribution is referred to as a finite mixture distribution. Finite mixture

distributions are used primarily for modeling unobserved clusters and have many practical
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applications (McLachlan and Peel, 2000). To illustrate, following the example given in the

continuous mixture case, assume that Y1, ... , Yn are a random sample with probability mass

function (1.16) where ril8 = ej are assumed to be independent Poisson random variables

with mean ej . The log likelihood function can then be expressed as

n (c o» exp{ -ej})
l(O,p;y) = Llog L. Pj J,

Y,·
i=1 J=1

(1.17)

where 0 = [el, . . . , ecV and p = [PI, ... ,PcV. The interpretation here is that each }i belongs

to one of c distinct Poisson distributions with some specific probability. Maximizing (1.17)

over 0 and p is not a simple optimization problem as the log likelihood is not additive.

Estimation would be trivial if the duster to which each observation belonged was known

since in this case the likelihood would have a simple multinomial form

n c ( et exp {-eJ }) ZiJ

II II Pj Yi!
1,=1 J=1

where Zij = 1(8 = ej) and L:j=1 Zij = 1 so that the log likelihood becomes proportional to

11, C

L L Zij [log(pj) + Yi log(ej) - ej] .
i=1 j=!

The maximum likelihood estimates given the Zij'S have closed form solutions

L:~1 Zij Yi

L:7=1 Zij

L:~1 Zij
n

(1.18)

in this simple case.

More generally the Zij'S are unknown and need to be imputed. This can be accomplished

by computing the posterior expectation of cluster membership via Bayes rule

_* _ Pj et exp {-ej}
"'ij - 'l\'C Yi { } .L-j=1 Pj ej exp -ej

(1.19)

Estimates iJ and p that maximize (1.17) can then obtained by iteratively updating (1.18) and

(1.19) until convergence which is the so-called Expectation-Maximization (EM) algorithm

(Mcl.achlan and Krishnan, 1997). Although the EM algorithm is simple in this case it still
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requires specifying the number of components c which requires some consideration. Further,

finding the true global maximum of (1.17) is not trivial for a fixed value of c due to the

presence of multiple local maxima (Bohning, 2003) and special modifications to the basic

EM algorithm need to be made to handle this problem. The EM algorithm can also be fairly

slow to converge compared to direct Newton type methods which converge quadratically to

the nearest local maximum (Nocedal and Wright, 1999).

1.6 Outline of Thesis

This thesis consists of three projects. Each of Chapters 2, 3 and 4 is written in a style

similar to that for publication. As a result some introductory material is repeated as well

as the description of a motivating data set.

1.6.1 Chapter 2

In this Chapter we consider a semiparametric model for the analyses of longitudinal studies

where data are collected as panel counts. The model is a nonhomogeneous Poisson process

with a multiplicative intensity incorporating covariates through a proportionality assump­

tion. Heterogeneity is accounted for in the model through subject-specific random effects.

The key feature of the model is the use of regression splines to model the distribution of

recurrences over time. This provides a flexible and robust method of relaxing parametric

assumptions. In addition, quasi-likelihood methods are proposed for estimation, requir­

ing only first and second moment assumptions to obtain consistent estimates. Simulations

demonstrate that the method produces estimators and standard errors of the intensity with

low bias and whose distributions are well-approximated by the normal. The usefulness of

this approach, especially as an exploratory tool, is illustrated by analyzing a study designed

to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the

Cherry Bark Tortrix moth.

1.6.2 Chapter 3

An adaptive semiparametric model for analyzing longitudinal panel count data extending

the model of Chapter 2 is discussed. The counts are assumed to arise from a mixed nonho­

mogenous Poisson process where frailties account for heterogeneity common to this type of



CHAPTER 1. INTRODUCTION 16

data. The generating intensity of the counting process is assumed to be a smooth function

modeled with penalized splines. A main feature is that the penalization used to control

the amount of smoothing, usually assumed to be time homogeneous, is allowed to be time

dependent so that the spline can more easily adapt to sharp changes in curvature regimes.

Penalized splines are also used to model covariate effects relaxing the proportional intensity

assumption. Penalized quasi-likelihood (PQL; Breslow and Clayton (1993)) is used to derive

estimating equations for this adaptive spline model so that only low moment assumptions are

required for inference. Both jackknife and bootstrap variance estimators are developed. The

finite sample properties of the proposed estimating functions are investigated empirically

by simulation. Comparisons with a model assuming a time homogeneous penalty are made.

The methods are used in an analysis of data from an experiment to test the effectiveness

of pheromones in disrupting the mating pattern of the cherry bark tortrix moth. Recom­

mendations are provided on when the simpler model with a time homogeneous penalty may

provide a fair approximation to data and where such an approach will be lacking, calling

for the more complicated adaptive methods.

1.6.3 Chapter 4

A flexible semiparametric model for analyzing longitudinal panel count data arising from

mixtures is presented. The model assumes that the counts for each subject are generated

by mixtures of nonhomogeneous Poisson processes with smooth intensity functions modeled

with penalized splines. Time dependent covariate effects are also incorporated into the

process intensity using splines. Discrete mixtures of these nonhomogeneous Poisson process

spline models extract functional information from underlying clusters representing hidden

subpopulations. The motivating application is an experiment to test the effectiveness of

pheromones in disrupting the mating pattern of the cherry bark tortrix moth. Mature

moths arise from hidden, but distinct, subpopulations and monitoring the subpopulation

responses was of interest. Within-cluster random effects are used to account for correlation

structures and heterogeneity common to this type of data. An estimating equation approach

to inference requiring only low moment assumptions is developed and the finite sample

properties of the proposed estimating functions are investigated empirically by simulation.

The method is also illustrated on several additional examples.
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1.6.4 Chapter 5

The thesis closes with a discussion of topics for future exploration.

17



Chapter 2

Mixed NHPP Regression Spline

Model

Recurrent events arise where subjects experience multiple occurrences of an event of interest.

In many situations, and especially for chronic diseases, continuous followup providing the

times of occurrence of events is either too invasive or not possible and repeated counts are

collected as the number of events which have occurred within specific time periods. Such

longitudinal count data is referred to as panel data. For each individual these counts are

stochastically ordered and typically correlated. In addition, they are subject to censoring,

where data may be missing within specific time periods or panels, or data within consecutive

panels may be aggregated. Also, the times of followup for different individuals may not be

coincident, and are often subject-specific.

Parametric regression methods for analyzing longitudinal data have been developed by

Lawless (1987a), Lawless and Nadeau (1995), Pepe and Cai (1993), Jiang et al. (1999),

and Thall (1988), for example. Lawless (1987a) provides a thorough analysis of mixed

Poisson process data using a gamma-frailty and a Weibull rate. Jiang et al. (1999) use a

similar approach and account for overdispersion and measurement error through the use of

robust variance estimates instead of the gamma frailty. Thall (1988) provides a likelihood

analysis of panel data using gamma subject-specific effects and with the form of the rate

being a specified function of time. Although parametric methods are very useful, especially

in that they can accommodate all the features of recurrent event data mentioned above,

they require parametric specification of the rate over time. This can be difficult in practice

18
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unless the process under investigation is well-understood. Pepe and Cai (1993) and Lawless

and Nadeau (1995) instead model the mean and rate functions for recurrent event data and

provide methods for regression analyses. The theory behind their developments is refined

in a more recent paper by Lin et 801. (2000).

For the analysis of panel data, Staniswalis et al. (1997) use a semiparametric estimator

of the rate function, keeping a gamma frailty for random effects. They use the generalized

profile likelihood method of Severini and Wong (1992). Lawless and Zhan (1998) and Bal­

shaw and Dean (2002) also use a semipararnetric estimator for the rate function, modeling

the rate as a piece-wise constant. Sun and Wei (2000) and Hu et al. (2003) model the

mean function of the cumulative number of recurrent events. Importantly, Sun and Wei

consider the situation where both observation and censoring times depend on covariates,

and develop estimating equations for regression parameters. Balshaw and Dean (2002) use

quasi-likelihood methods for estimation so only mean and variance assumptions regarding

the subject-specific random effects are required. Lawless and Zhan (1998) use estimating

equations based on a Poisson process, and account for heterogeneity using robust variance

estimates.

Non-parametric estimates of the rate function derived from methods above generate a

step-function estimator. Here we discuss the semiparametric analysis of recurrent event

panel data using regression splines to model the rate function. Regression splines are a

natural extension of the piece-wise constant models described above and have been used

recently in survival analysis using the Cox model. For example, Sleeper and Harrington

(1990) model covariate effects using fixed-knot regression splines, Rosenberg (1995) applied

cubic regression splines for estimating the baseline hazard function and Kooperberg et 801.

(1995) use linear splines and their tensor products to estimate one or more covariate effects

in the log-hazard function. More recently, Molinari et al. (2001) use low order regression

splines and one or two free knots, which are estimated, for determining thresholds in the

covariate space. Through the use of splines, we retain here simultaneously the advantage of

non-parametric estimation, in that a flexible, non-parametric form for the rate is assumed,

and the advantage of parametric estimators, in that a continuous estimate of the rate is

obtained.

The main contributions of the chapter are two-fold: the use of the flexible, robust and

efficient combination of spline smoothing for the rate function along with the retention of
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simple quasi-likelihood methods for estimation, the latter achieved through the parameter­

ization adopted and through straightforward adaptations of usual estimating equations for

the analysis of recurrent event data. The model proposed herein is similar to the propor­

tional intensity overdispersed Poisson parametric model except that the baseline is estimated

via regression splines. In addition, distributional assumptions concerning random effects are

relaxed to second order moment assumptions and quasi-likelihood estimation is adopted for

covariate effects. Our objective is to provide a tool that is simple to use yet able to provide

smooth estimates and reliable inference for panel data exhibiting all of the features of re­

current event data mentioned above. We show that the method requires simple adaptations

of quasi-likelihood regression functions conventionally used for count data analysis.

In Section 2.1, quasi-likelihood estimation and inference using regression splines is de­

scribed. An analysis of an entomological experiment which motivated the development of

these methods is presented in Section 2.2. In the example, which considers the mating ac­

tivities of the Cherry Bark Tortrix moth, the rate function is of prime scientific significance.

None of the usual parametric models provide a reasonable approximation since the rate is bi­

modal. We have investigated the accuracy of the proposed spline estimators of the rate and

cumulative rate functions and the coverage of point-wise confidence intervals, and results of

our studies are presented in this section. The results show that, unless there is substantial

local curvature, the regression splines are able to recover a variety of smooth shapes typical

of rate functions, and the proposed quasi-likelihood estimators perform well with moderate

sample sizes. The chapter concludes with a discussion of the proposed method.

2.1 Semiparametric Analysis of Recurrent Event Panel Data

with Regression Splines

Let N 1 (t), N 2(t), ... ,NI(t) be independent random variables where Ni(t) is a counting pro­

cess denoting the number of events experienced by the ith individual during (Tio, TieJ Given

subject specific random effects Vi, the conditional intensity, Ai(t), governing each Ni(t) is

assumed to be multiplicative and is of the form

where Ao(t) = ef30A~(t) is the baseline intensity, f3 are regression parameters, and Xi is a

vector of covariates for individual i. Conditional on Vi, Ni(t) follows a Poisson process. The
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random variables Vi account for heterogeneity; i/; > 0 is assumed to follow a distribution

with density p(Vi;T); E(Vi ) 1 without loss of generality and variance V(Vi ) = e", a

measure of the overdispersion.

In many studies it is either too costly, overly intrusive or simply impossible to contin­

uously monitor individuals in the study. Instead, individuals i are examined at a set of

follow-up times, Til < Ti2 < li3 < ... < liei where Tij E (Tio, Tie;], j = 1,2, ... .e, and the

number of occurrences, N iJ, within each of these follow-up periods (Ti(j-l), lij] is recorded.

Data collected in this fashion is said to have a panel structure. A likelihood based on these

panel counts {Nij = N, (Ti(j_1), Tij)}, j = 1, ... .e, has the form

I {( N ) ei ( ) Nij } cL= II. . i . II l1iJ [Vil1i]Niexp{-Vil1;}P(Vi;T)dvi
N tl , ... , N te. I1t 0

t=l ' J=l

(2.1)

where l1ij = E[Nij ] = [Ao(Tij) - Ao(Ti(j_1))]exTI3 , Ao(t) = J~ Ao(u)du, the cumulative

baseline rate, and l1i = E[Ni] = I:;~ll1ij = Ao(lieJexT13 . This likelihood is a product of

two terms (Lawless, 19870.): the first is the conditional kernel of the panel counts N ij given

Ni, the total number of events observed for the ith individual, which follows a multinomial

distribution; the second term is the mixed Poisson kernel for the total number of events

N, which, for example, is negative binomial under a gamma frailty distribution for Vi. If

event times are recorded, then the likelihood (2.1) can easily be modified to reflect this by

simply changing the form of the first term, the conditional kernel, so that it becomes the

distribution of order statistics from a sample of size N, from a distribution with density

Ao(t)/Ao(TieJ, 0 :s t :s liei' If data are unavailable in certain panels so the followup

period for the ith individual is not continuous through (Tio,Tie;] but a union of disjoint

intervals, then l1i above would be modified accordingly and the first term would become

a product over the panels for which data are recorded. Finally, time dependent covariates

are straightforward to handle under certain simplifying assumptions on the nature of the

covariate process; in this case, the representation of the likelihood as a product of mixed

Poisson distributions over panels and individuals (c.f. Dean, 1991) is more convenient.

It is common to assume a Weibull parametric form (Lawless, 19870.; Dean and Balshaw,

1997), for the baseline rate so A~(t) = atO'-l. The Weibull admits a variety of monotone

increasing and decreasing shapes for the rate as well as the constant case corresponding to

a homogeneous process. Although the Weibull is indeed a flexible distribution there may be

situations, for example when the rate is bimodal as in the illustration considered later, where
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it does not provide an adequate fit. In this situation, Lawless and Zhan (1998) and Balshaw

and Dean (2002) suggest modeling the rate as piece-wise constant. To provide a smooth

yet highly flexible estimator of the rate, we suggest here that splines offer a very convenient

alternative. Splines are piece-wise polynomials of degree d with continuity imposed at the k

specified joining points, referred to as knots. They form linear spaces spanned by d + k + 1

basis functions (Schumaker, 1981). A convenient basis for this space is the B-spline basis

whose elements are easily computed via a recursive relationship (de Boor, 1978). Choice

of the spline order and the sequence of knots will complete the specification of the model.

Cubic splines ensure continuity of the cumulative rate and its derivatives and are often

sufficiently flexible to handle a wide variety of shapes. Because of the inherent smoothness

of most cumulative rate functions, knot placement is not usually crucial for modeling the

cumulative rate and a small number of interior knots should suffice. These should be placed

so as to ensure a moderately large number of counts between knots and more knots where

steep changes are detected in the empirical cumulative rate function.

The cumulative baseline rate is then modeled as

A"(t) ~ exp {f3" + ~(t)} ~ exp {f3" +~ 'hBh- 3(t )}

i'(t) being an intercept-free cubic B-spline where the Bh_3(t)'S are the B-spline basis func­

tions and the 'Ij)h'S are the B-spline coefficients. This parameterization is convenient because

the logarithm of the cumulative rate and therefore the mean function for the ith individual

is linear in both the covariate and spline parameters. Hence, with a small number of knots,

estimation can proceed in a traditional fashion using maximum likelihood based on (2.1) or

more robust quasi-likelihood methods. Quasi-likelihood will be adopted here as it requires

few moment assumptions, has been shown to perform well (Lawless, 1987b; McCullagh and

Nelder, 1999) and is commonly used. Implementation of such regression splines in usual

statistical packages can easily be incorporated into the regression component of the model,

as will be seen shortly.

Note that the likelihood factorization in (2.1) can be written as £1 ('l/J )£2(j3, 'l/J, T), where

rr
I

{( N ) rrei (1I. .. )Nij

}£1 = ' ~,
. Nil, ... , N i e . f-Li
,=1 ' )=1

and
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All the information about {3 and T is provided in the total counts Ni, i = 1, ... ,I, i.e., in

£2. Usual quasi-likelihood estimating equations for estimating the covariate effects {3 based

on the number of events observed over an interval may therefore be employed. These take

the form D~V-l(N - J.L) where N = {N;} Ix I, J.L = {Jld Ix I, the end-of-followup counts and

their means respectively, V = Var(N) = diag {Jli(l + e" Jli)}lxI and DI3 = OJ.L/o{3T. Since

the logarithm of the cumulative rate is modeled as a cubic B-spline, the mean Jli can be

written Jli = exp {f3o + I:~:~ 'ljJhBh-3(t) + xT{3} and the logarithm OfJli is therefore linear

in the spline parameters 'ljJj, an advantageous feature of the use of B-splines for modeling the

cumulative means. Based only on £2, the quasi-likelihood estimating equation for 1j; would

then similarly take the form D~V-l(N - J.L) where D,p = OJ.L/o1j;T. This is the basis for

our quasi-likelihood approach; for the estimation of 1j; we add the component olog£r/o1j;

which arises from the conditional kernel of the panel counts given N, and does not depend

on the distribution of random effects Vi. Hence estimation of {3 and 1j; requires assumptions

only on the mean and variance of the Vi'S. The quasi-likelihood estimating equations for {3

and 1j; simplify to

(2.2)

(2.3)

where Q = diag{l +eJl;}IxI; X = {Xij}Ixp, the design matrix; B = {Bij}IX(3+k)' B ij =

B j-3(TieJ, the elements of the B-spline design matrix; and r = a log £r/o1j; = {rhh3+k)Xl'

The estimating equations for {3 (2.2) and 1j; (2.3) are also the maximum likelihood estimating

equations under a gamma frailty. However they are used here without the assumption of a

gamma frailty and so standard errors will be different from those obtained under such an

assumption. For estimating T, the pseudo-likelihood equation proposed by Davidian and

Carroll (1987) may be used:

(2.4)
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Here hi is the ith diagonal of the hat matrix, W~C(CTWC)-lCTW~where W = diag{fLd(l+

e fLi)} IxI and C = [X B]Ix(p+k+3); representing a small sample correction. This equation

is derived under the assumption of normally distributed residuals N, - tu, The estimat­

ing equations for f3 and 'IjJ are asymptotically independent of that chosen for T. Jorgensen

and Knudsen (2004) terms this type of combination of estimating functions as 'nuisance

parameter insensitive'. This has several important properties in common with conventional

parameter orthogonality, such as the nuisance parameter causing no loss of efficiency for

estimating the parameters of interest, and a simplified estimation algorithm. Alternative

estimating equations for T may also be employed. For example, Breslow (1984) suggests

setting the Pearson statistic equal to its degree of freedom.

The quasi-likelihood estimates Bare obtained by solving the system of equations 98 = 0

where 98 = [9f3T,9..pT,g'TjT. It can be shown (White, 1982) that as I --> 00 under mild

regularity conditions n(B - 0) has a multivariate normal distribution with mean 0 and

covariance

[
1098]-1 [ 1 T] [ 1098T]-1

E - lim -- E lim -9898 E - lim --
1->00 looT 1->00 I 1->00 I 00

Finite sample empirical variance estimates are obtained by substituting 0 with Band omit­

ting the limits so that

[ ]

- 1 [T]-l~ - 098 r T 098
Var(O) = E - OOT E 19898 ] E -7iiJ 8=8

This covariance is generally referred to as the sandwich variance estimator (Liang and

Zeger, 1986) and protects against variance misspecification as well as reduces the number

of moments required for inference. The matrix of expected negative derivatives of the

estimating equations 98 is

partitioned conforming to the partitioning of 98, with

W d· { fLi }= lag .
1 + e fLi lxI'

{
1 + 2e'T fLi 'T}

z= l+efLi·
e

IX1;
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[
"] J ( T )2E _ ugT = e Jli .
OT ~ 1 + eTJli '

and
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R = {Rhu}(3+k:)X(3+k:j,

Rhu = {t t exTf3 [Bh_3(Ti j)BU_3(Tij)e'Y(TiJ) - Bh_3(TiU_1))Bu_3(Ti(j_1))e'Y(TiU-l))

t=l j=l

_ [Bh_3(Tij)e'Y(Tij) - Bh_3(Ti(j_l))e'Y(TiU-l))] [BU_3(Tij)e'Y(Tij) - BU_3(Ti(j_1))e'Y(TiU-l))]] }
e'Y(T'J) _ e'Y(T'(J-l)) .

A test for a specific parametric form can easily be constructed using a likelihood ratio

(LR) statistic based on the conditional multinomial kernel of (2.1). Similarly a likelihood

ratio test, once again based on the conditional multinomial kernel of (2.1) similar to that

of Lawless (1987a), can be constructed to test the proportional intensity assumption. This

assumption can also be checked heuristically by fitting the model to different strata in the

sample separately and plotting the resulting cumulative baseline rates. Finally, a quasi-score

test for overdispersion (Balshaw and Dean, 2002) can be constructed and has the following

asymptotically standard normal test statistic, So = ~{=1 [ (ni - JLi)2 - JL;] / /2 ~{=1 {J,72

where {J,7 = exp{,B~ + ~~~~;j;hBh-3(t) +xTI3*}, asterisks denoting quasi-likelihood esti­

mates under the limiting case hypothesis of no overdispersion with V(Vi ) = 0 'Vi, i.e. a

nonhomogeneous Poisson process model. In the next section we illustrate the flexibility and

efficiency of the proposed methods.

2.2 Illustration and Simulation

2.2.1 Cherry Bark Tortrix Moth Study

This experiment was designed to test the effectiveness of pheromones in disrupting the

mating patterns of the Cherry Bark Tortrix Moth (Enarrnonia fomosana). The pheromone

in question had been shown to be competitive with caged virgin females in luring males

into traps. It was hypothesized that the release of the pheromone would confuse mate

seeking males from locating females in the trees. To test this hypothesis, 20 cherry trees

were outfitted with pheromone-baited traps, attached in similar locations in each tree. All
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of the trees were fitted with scent dispensers, but ten were selected at random and their

dispensers were filled with female pheromones (treatment trees), the remaining ten were

used as controls. Males were attracted to the female bait in all of the traps but were

frustrated in their attempts to find the traps in the treatment trees. Approximately once a

week the traps were emptied and the number of moths caught were counted. Thus the data

arise in a panel structure of 19 followup intervals generating approximately weekly counts

over the followup period of 18 weeks. At three week intervals the baits were refreshed.

To analyze this data the semiparametric quasi-likelihood regression spline model was fit,

as well as the fully parametric quasi-likelihood Weibull model (Dean and Balshaw, 1997)

for comparison. A non-parametric estimator of the cumulative rate function (Balshaw and

Dean, 2002) was computed to determine knot sequencing. Knots were placed at 9.0, 36.0,

54.0, 72.0, 90.0, and 119.0, where time is in days. Two covariates were included: the first to

represent the treatment, and the second being a time-dependent covariate reflecting the age

of the bait. The regression spline and Weibull models both result in identical values of the

treatment effect /31, 3.68 (s.e. 0.354), bait refreshing effect /32, -0.191 (s.e 0.0696) reflecting

the decreasing potency of the pheromone through time and the overdispersion parameter

i , -0.473 (s.e. 0.427). For 'balanced' designs as observed here with no dropouts and with

identical scheduled followup times for each individual, Dean and Balshaw (1997) show that

with a proportional rate model and regardless of the form of the baseline (Weibull, or

spline, for example), the estimate of the treatment effect is the logarithm of the ratio of the

mean number of events observed over all individuals in the treatment group to that in the

control group. The quasi-score test for overdispersion results in a test statistic with observed

significance level p < 0.0001 implying that heterogeneity is present; the proportional rates

assumption is supported by its LR test with p > 0.4 (9 d.f.). Although it is interesting to

note the high effectiveness of the pheromone, the shape of the rate function is of scientific

interest here. It depicts the wave or cycle of adult moth prevalence over the summer and

is discussed further below. We focus on estimation of the rate noting that the LR test for

a Weibull form yields an observed significance level p < 0.001 (8 d.f.) indicating severe

inappropriateness of that form.

Figure 2.1 plots the estimated baseline rates and cumulative baseline rates along with

their associated 95% point-wise confidence bands (obtained using the delta method) for both

the regression spline and Weibull models. The baseline rates, Ao(t) = 8Ao(t )jOt are easily

computed using the parameterization offered here as the time dependent components are the
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Bvspline basis functions Bh(t)'S which are polynomials of degree 3. The fitted Weibull model

suggests a constant rate over time, a = 0.999 (s.e. 0.029). The regression spline model, on

the other hand, indicates that Cherry Bark Tortrix moths mate in two consecutive waves.

These waves have biological significance as the smaller first wave corresponds to larvae who

overwinter in the developmental state ("instar" stage) and are ready to breed earlier than

larvae hatched in early summer corresponding to the second larger wave. The Weibull model

is unable to match these changes in the rate over time. Ifa full parametric model is preferred,

the resulting spline fit can provide direction for choices of parametric: functional forms for the

baseline rate that can accommodate multiple peaks. Here, a two-point mixture model would

likely be reasonable as it would reflect the biological interpretation of the two peaks. In

particular, a mixture of two lognormal distributions seems to provide a fair approximation to

the estimated baseline rate function. Figure 2.2 shows the least squares fit of the lognormal

mixtures to the baseline rate estimated from the spline fit. The corresponding cumulative

rates are also displayed.

2.2.2 Knot Placement

Kooperberg et al. (1995, 1997) have suggested some useful procedures for selecting knots.

Their algorithm includes insertion and deletion steps using Akaike's Information Criterion,

for example, for assessment of the fit. Implementing their insertion-deletion algorithm for

random effects non-homogeneous Poisson processes requires sophisticated computational al­

gorithms which are quite complex. However, by using an adaptation of their knot placement

strategy we can evaluate knot placement for our panel study. Let S, the set of all panel

followup times T i j , as well as the midpoint of panel intervals (Ti{j-l) + T i j)/2, be considered

as the set of candidate knot values. Under the constraint of using 6 knots, and having at

least 2 panel times between each knot (inclusive of the knots themselves), there are 715 pos­

sible sets of knot placements within S. The second constraint above ensures that there are

sufficient data values between knots to avoid extreme local smoothing with the spline fitting

the data exactly between knots. Each of these 715 candidates was used to fit the spline

model to the data. Optimality of knot placement was ranked using the log likelihood based

on the gamma distribution for the random effects. Table 2.1 displays summary statistics

for the 715 values of the maximized log likelihoods. The log-likelihood corresponding to the

simple strategy for knot placement adopted in the previous section is -3657.86 which is the

97th percentile.
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Figure 2.1: Plots of the B-spline estimates ( -- ) and 95% point-wise confidence bands
( ) of the cumulative baseline rate Ao(t) and baseline rate Ao(t) as well as the cor-
responding fully parametric Weibull rate estimates ( .-.- ) and 95% point-wise confidence
bands ( - - - ) for the Cherry Bark Tortrix Data.
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Figure 2.2: The B-spline estimates ( -- ) and 95% point-wise confidence bands ( )
of the cumulative baseline rate Ao(t) and baseline rate >'o(t) as well as the least squares fit
of a lognormal mixture ( - - - ) to the baseline rate estimated from the B-spline fit.
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Minimum -3780.425
Ist Quartile -3723.941

Median -3695.592
Mean -3702.043

3rd Quartile -3678.084
Maximum -3648.645
Std. Dev. 31.507
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Table 2.1: Summary statistics of the log-likelihoods of the 715 possible knot sequences.

Figure 2.3 compares the fitted spline from Section 2.2.1 with that using the knot place­

ment yielding the highest log-likelihood (with knots at 9.0, 21.0, 45.0, 70.0, 87.5 and 119.0

days). If the rate function is fairly smooth, a wide variety of knot placements generally lead

to satisfactory estimates for the examples we have studied. Plots of the non-parametric

step function estimate of the rate function (Balshaw and Dean, 2002) are very helpful in

suggesting knot placement and how many knots are required for an adequate fit. Using

Kooperberg's criterion or investigating all possible placements within some reasonable sub­

set of knots provides a fair strategy for optimal allocation.

2.2.3 Small Sample Properties of Estimators

Simulation studies were conducted to investigate how well standard errors and confidence

intervals are estimated for the spline methods proposed and the ability of the semiparametric

quasi-likelihood regression spline analysis to recover different smooth shapes of cumulative

baseline rates. The first simulation was designed to mimic the Cherry Bark Tortrix data

and focuses on evaluating biases in the estimation procedure and the performance of usual

asymptotic normal confidence intervals. Five thousand data sets were generated using the

"thinning" algorithm (Ross, 1990) assuming a conditional Poisson intensity with only one

covariate, the treatment, with the same spline form as in the analysis of the Cherry Bark

Tortrix data, and with gamma subject-specific effects. The true values of all parameters

were assigned to be close to those obtained in the Cherry Bark Tortrix analysis. The true

rate function is displayed in Figure 2.4. Two cases were considered: Case 1: 20 trees (I = 20)

similar to the original data, 10 treatment and 10 controls, and Case II: 200 trees (I = 200),

100 treatment and 100 controls, to investigate the properties of larger samples. The data
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Figure 2.3: Plots of the B-spline estimates ( - ) of the cumulative baseline rate Ao(t)
and baseline rate Ao(t) of the original model with knots at (9.0,36.0,54.0,72.0,90.0,1l9.0)
as well those of the B-spline fit yielding the highest log-likelihood ( - - - ) with knots ·at
(9.0,21.0,45.0,70.0,87.5,119.0).
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were binned according to the panel structure for the Cherry Bark Tortrix data with 19

intervals over 18 weeks of follow-up, generating the panel counts. Each dataset was then

analyzed as in Section 2.2.1 using a cubic spline with identical knots as previously. The

quasi-likelihood estimates of 0 were computed as well as their robust standard errors.

Table 2.2 contains the the true generating values (True), simulated mean values (Mean),

simulated standard errors (Simulated SE), robust standard errors (Robust SE) computed us­

ing the sandwich variance estimator and 95% coverage probabilities (CP) for PI, T and Ao(t)

at t = 10,50,90.126 for both cases. Even for Case I the estimates are quite close to their

target values. The robust standard errors for this case are somewhat lower than the simu­

lated ones resulting in undercoverage. When I is increased to 200 the differences between

the simulated and robust standard errors are negligible. Coverage probabilities are quite

close to the nominal 95% level except for the parameter T which displays undercoverage.

Similar results for estimation of overdispersion parameters have been reported elsewhere

(Dean and Lawless, 1989; Breslow, 1990). Figure 2.4 displays the simulated mean values

for the baseline and cumulative rates along with their associated simulated 95% point-wise

confidence bands. This plot indicates that the estimators of the baseline and cumulative

rates have low bias, though the bias increases when t > 80 for Case I. Several other simu­

lations have been conducted to investigate the use of regression splines to model recurrent

events collected as both event times and panel data. Briefly, the methods discussed herein

seem to be able to capture a variety of simple smooth shapes including constant rates or

rates which are increasing linearly with time.

2.3 Discussion

This chapter presents a flexible and robust method of incorporating regression splines into

the quasi-likelihood analysis of recurrent event data to provide smooth estimates of the

mean and baseline rates. Quasi-likelihood only requires low order moment assumptions and

also allows for efficient methods of dealing with the heterogeneity often encountered when

analyzing counts. In the framework developed, regression splines are used to model the

cumulative baseline rate so that the parameters (3 and 1/J enter the logarithm of the mean

in a linear fashion leading to a straightforward interpretation. Only simple adaptations

of traditional quasi-likelihood estimating functions for the analysis of longitudinal counts

are required with this parameterization; it also seems fairly robust with regard to knot
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Case 1: I = 20
Parameter True Mean Simulated SE Robust SE CP

(31 3.321 3.335 0.390 0.351 0.909
T -0.478 -0.638 0.421 0.383 0.908

Ao (lO) 0.050 0.049 0.019 0.018 0.866
Ao(50) 1.928 1.942 0.568 0.529 0.870
Ao(90) 4.993 5.033 1.464 1.361 0.872

Ao(126) 5.100 5.142 1.495 1.390 0.871

Case II: I = 200
Parameter True Mean Simulated SE Robust SE CP

(31 3.321 3.320 0.118 0.119 0.953
T -0.478 -0.494 0.143 0.133 0.915

Ao(10) 0.050 0.050 0.006 0.006 0.944
Ao(50) 1.928 1.930 0.174 0.174 0.940
Ao(90) 4.993 4.999 0.447 0.449 0.942

A,,(126) 5.100 5.106 0.457 0.459 0.942
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Table 2.2: Mean values of estimates, simulated standard errors, robust standard errors and
coverage probabilities for 95% confidence intervals of the Cherry Bark Tortrix simulation
for both I = 20 and I = 200.
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Figure 2.4: The true baseline rate Ao(t) and cumulative baseline rate Ao(t) denoted by solid
lines (-), for the Cherry Bark Tortrix simulation; the average corresponding simulated
estimates denoted by dot-dash lines (.-.-) for I = 20 and long-dash lines (- -) for I = 200,
along with their associated 95% confidence bands denoted by dashed lines (- - -) and dotted
lines ( ) respectively.
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placement. The flexibility offered by this approach can provide considerable insight into the

underlying recurrence rate.

In cases where the sample size is quite small and recurrences are very sparse estimates of

the cumulative rate may not be strictly monotone. In the following chapters rnonotonicity is

imposed by modeling the baseline intensity with a log linear form and numerical quadrature

is used to evaluate the cumulative rate. This adds computational complexity and requires

the development of specialized software but eliminates the possibility of this behaviour in

the sparse data scenario.



Chapter 3

Adaptive Functional Mixed NHPP

Model

In longitudinal studies it is not unusual that each object or individual under study may

experience multiple occurrences of some primary event of interest and where the munber of

such events between scheduled followup times is recorded. A common approach for analysis

of such recurrent events is the use of counting process models, such as the Poisson (Andersen

et al., 1995) or related quasi-likelihood techniques (Heyde, 1997). The nonhomogeneous

Poisson process (Lawless, 1987a) is also popular for handling situations when its intensity

is not constant over time. In addition, random effects or frailty models (Hougaard et al.,

1997) have been developed to handle the heterogeneity common to count data analysis.

These methods have wide application in econometrics (Hausman et al., 1984), environmetrics

(Burnett et al., 1994) and medicine (Abu-Libdeh et al., 1990). For a thorough review of

methods for recurrent event analysis see Cook and Lawless (2002).

In some situations modeling the intensity function generating the counting process as a

smooth function is of interest. Here we consider the use of penalized spline smoothing with a

penalty that varies over time permitting the spline to adapt to temporal changes in smooth­

ness. In addition, we also develop methods for covariate effects which vary smoothly over

time or are incorporated in a simple proportional intensity framework, resulting in a highly

flexible spline estimator. We offer comparisons with the special case of the methodology

where the penalty is constant, which is the traditional approach in smoothing methods for

36
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continuous data (Wahba, 1990; Green and Silverman, 1994). In the context of the regres­

sion analysis of normal data the use of an adaptive penalty has been considered by Ruppert

and Carroll (2000) who model the penalty as a piece-wise linear function and Pintore et al.

(2006) who consider a piece-wise constant penalty.

In Section 3.1, the adaptive spline method is developed. The penalized quasi-likelihood

estimating functions are derived in Section 3.2. In Section 3.3, we discuss relaxing the

proportional intensity assumption used in Section 3.2. Inference based on both jackknife

and bootstrap procedures is presented in Section 3.4. A simulation study to evaluate the

performance of the proposed estimating equations is discussed in Section 3.5 where com­

parisons are made with the estimator derived under a simpler constant penalty assumption.

Section 3.6 considers the use of the methods in an analysis of an entomological study to illus­

trate the proposed methodology. The chapter concludes with a discussion of the techniques

developed.

3.1 Adaptive Functional Mixed NHPP Model

Suppose that data are collected as a vector of counts in contiguous non-overlapping time

intervals or panels for each member of a group of subjects under observation. Let N, =

(Nil,'" ,Nie,)T, i = 1, ... , I denote the independent random vector of these counts for sub­

ject i where Nij is the number of events observed to occur in the jth time panel [Ii,j -I, Iij),

j = 1, ... ,ei with Iio < IiI < ... < Tic; and set TiD = O. In order to simplify the develop­

ment of the model we express each of these followup times as a multiple of some common

unit of time denoted by te , so that the panel TiJ - Ti,j-l = Cijte , with CiJ being the number

of these time units occurring in the jth time panel. Panel times are often neatly structured

and are always recorded in a common unit of measure such as days or weeks in which case te

could represent any sub-unit of measurement such as a minute or second for example. These

counts are assumed to be generated from a underlying counting process, {Ni(t), t > O}, with

proportional intensity

UiAi (t; Xi) = ViAo(t) exp {xi13} = V; exp {Po(t) + xi13} (3.1)

where Ao(t) = exp {Po(t)} is the baseline intensity with Po(t) being an unknown smooth

function, Xi = [XiI, ... ,XiPV is an known vector of covariates, 13 = [PI, ... , PpV is its

coefficient and the subject-specific effects ui, i = 1, ... , I, are frailties that are assumed
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to be independent and identically distributed random variables from an unknown mixing

distribution with mean 1 and variance T. These frailties account for possible heterogeneity

reflecting all the information not contained in Xi. Denote N ij k , k = 1, ... , C;j as the number

of events that occur in (Ti,j-1,k-1, T i,j-1,k] where Tijk = Ti,j +/'>tc so that N ij = L~:~l N ij k .

Conditional on the unknown frailties N, (t) is assumed to be a nonhomogeneous Poisson

process (NHPP) so that conditionally N ij k is Poisson distributed with mean

rTU-l. k

I/i [Ai (T i ,j - 1,iJ - Ai (T i ,j - 1,k - 1) ] = l/i exp {xT.I3} J7 .' >'o(t) dt
Ti,J- J.k-l

(3.2)

where A;(t) = j~ >.;(u) du and similarly define Ao(t) = J~ >'o(u) drz, The unconditional mean

and variance of the vector of responses for subject i are given by E[N;] = J,L; = [tLi1, ... ,tLie.JT

and V[NiJ = diag {J,LJ + TJ,LiJ,LT where

(3.3)

To complete the specification of the model it will be assumed that 13o(t) exists in the space

of quadratic splines (de Boor, 1978; Ruppert et al., 2003) on the defining knot sequence

o < 6 < ... < ~s < ~s+1 = max{TieJ (3.4)

assumed here to be an equally spaced grid. The spline space is linear and so can be repre­

sented as a linear combination of basis functions that span this space

s

13o(t) = 0:0 + O:l t + o:zt2+ Laj(t - ~j)~
j=l

where a = [0:0,0:1, O:Z]T and a = [ai,"" as]T are vectors of spline coefficients, and :1:+ =

xl(x > 0); 1 is the indicator function. The truncated power basis is used here for ease

of presentation but in practice any basis that spans this spline space defined on the knot

sequence (3.4) can be used; a popular choice is the numerically fast and stable B-spline

basis (de Boor, 1978; Eilers and Marx, 1996). The number of interior knots s will be chosen

so that knots are relatively dense, for example close to the upper limit of the number of

followup time max{e;}. As a rule of thumb we suggest s ~ 0.75· max{e;} which ensures an

overparameterized model.

In order to control the degrees of freedom and hence the flexibility of the baseline spline

130 a quadratic form penalty, aT .6.a, is used to regularize the fit. The simplest and most
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common penalty (Ruppert et al., 2003) when using the truncated power basis would be

II = oIs leading to the standard penalized spline. The assumption of a time homogeneous

penalty term may not be reasonable in some situations. For example, if the function (30

oscillates rapidly in the first half of its domain and is quadratic or linear in the second

half, then using a fixed penalty will likely lead to over-smoothing in the first part and

under-smoothing in the second part. With a constant penalty, the amount of flexibility

allowed is determined over the full domain of the function (Wand, 2000). Here we allow the

penalty term to vary over time giving the spline the flexibility to adapt to differing degrees

of smoothness/curvature over its domain. This is in the spirit of Ruppert and Carroll (2000)

who permit the penalty term to vary over time as a linear interpolation of a set of initial

penalty terms at a subset of times. Here, however, the log of o(t), the time dependent

smoothing term will be assumed to be a spline itself with

s-1

log [o(t)] =IO+llt+ Lbj-l(t-~j)+
j=2

where, = lIO'II]T the non-regularized and b = [b l , ... , bs-2V the regularized spline coef­

ficients with penalty p Is. The penalty for the baseline spline (3o(t) in this case is then of

the form a = diag {O (6), ... 0(~s)}. It will be assumed that p is known and will be fixed

at a value so that few effective degrees of freedom are used to estimate o(t). The goal here

is to allow the penalty to vary over time permitting local adaptation of the baseline spline

and so only determining the general temporal trend of o(t) is of interest. Fixing p is not

unreasonable in this situation and is akin to using a fixed knot regression spline for log[o(t)]

with a small number of knots. Using many knots with a penalty dampens the importance

of knot position while simultaneously keeping the effective number of parameters low, if the

value of p is suitably large. Though an estimate of o(t) is not of primary interest it will

give an indication of where AO(t) is deviating from the assumption of a uniform level of

smoothness.
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3.2 Penalized Quasi-likelihood Estimation
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Estimates of (} = [,I3T, aT]T and a are obtained by solving the following estimating equations

1

ge LD~,iV;l(Ni- J-LJ = 0
i=l

1

ga = L DLV;l(Ni - J-Li) - da = 0
i=l

(3.5)

where D y i = OJ-L,/ByT, V;-l = diag{l/p,iJ}x . - T/(l + Tp,i+) J e , J e a e; x ei matrix of
, (, (, €t e t 1. t

ones and P,i+ = Lj~l P,ij' For a simple homogeneous Poisson model where !3o(t) = 0:0, go

reduces to the Poisson maximum likelihood estimating equations; with overdispersion intro­

duced through the frailty terms, these are the usual quasi-likelihood estimating equations

(Thall, 1988).

To compute the expected number of events per panel, {l'ij, the non-analytic integral

values in (3.3) are evaluated as te exp{!3od for suitably small te with !30k = !30(Ti,j-1,k) so

that in the limit as t; ----> 0, (3.3), becomes

Ci.i

P,ij = t; exp {xT,13} L exp {!3od .
k=l

(3.6)

How small a value of te is used depends on the precision desired which can be verified

during computation by halving the value of te , re-computing P,ij, and evaluating the absolute

difference between the two values. This process can be repeated until the specified level of

precision is obtained. Solutions to the set of equations (3.5) can be obtained by using

Fisher's scoring by iteratively solving

where NT = N, - J-Li + De,i(} + Da,ia, with J-Li' Vi, De,i and Da,i all evaluated at the

current value of (} and a. The linear system (3.7) can be recognized as the linear mixed

model equations (Harville, 1977). Connections between penalized quasi-likelihood and linear

mixed models have been discussed by Breslow and Clayton (1993) while similar links between

penalized splines and linear mixture models has been well documented by Lin and Zhang

(1999) and Ruppert et al. (2003) for example. The use of penalized splines and penalized
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quasi-likelihood creates a structure where estimators are obtained within similar frameworks

and which mimic well known linear mixed model estimators.

To estimate the variance parameters, the overdispersion parameter T and the penalty

spline coefficients T and b we develop estimators again within the penalized quasi-likelihood

framework (Breslow and Clayton, 1993) where the unknown likelihood component of this

function is replaced with Pearson's chi-squared statistic. An approximate penalized like­

lihood or penalized quasi-likelihood function used for estimation is obtained by taking a

Laplace approximation (Tierney et al., 1989) with respect to () and a where () is assumed

to have a diffuse prior:

J s

ql(iJ, a, T' b) = - L(Ni - iLifV;I(Ni - iLi )+L log [c5(~j)] _aTAa- pbTb-log IHI (3.8)
i=l j=1

where iJ and a are the solutions to the system of equations in (3.7), iLi is J-Li evaluated at

this solution and H = L;=1 Hi with

for notational convenience denote the inverse of H as

WI ~ [::: ::: r~ [::: :::] (3.9)

with H 12 = H11 where H conforms to the partitioning of Hi. From (3.8) the estimating

equation for T is given by

(3.10)

where

r. ~ tr { WI ( H, - [~ ~])}

a first-order correction term, Ni+ = Lj~1 Nij and Jli+ = Lj~1 Jlij· This estimating equa­

tion is equivalent to the so-called 'pseudo-likelihood' equation of Davidian and Carroll

(1987). The effective degrees of freedom of the baseline spline estimate, a quantity used



CHAPTER. 3. ADAPTIVE FUNCTIONAL MIXED NHPP MODEL 42

in the evaluations of Section 3.5, can be obtained from the Ti'S and is given by ~{=1 Ti - p.

Estimating equations for 1 and b are similarly derived and given by

g-y
[

8 - aT~a - tr {H22~ } ]
=0

~j=1 ~j - aT~")'1a - tr {H22 ~")'1}

[i ) 6' - ~j)+ - aT~bka - tr {H22~b'}] - 2p b = 0

J=1 (s-2) x 1

(3.11)

respectively where ~y = a~/fJy = diag{<5(~k)· fJlog [<5(~k)] /fJY}(s-2)X(S-2).

To control the amount of smoothing of the penalty spline, <5(t), the smoothing parameter

p is selected such that

K-y,b ] -1 [ K-y,-y

Kb,b + 2 pIs - 2 K~,b
(3.12)

(3.13)
p = bTb + tr {K-1}

the effective degrees of freedom is set to d, some value much less than s - 2 and is determined

using bracketing and bisection as there is a one-to-one correspondence between p and d (i.e.

for fixed values of p one can solve for all the other parameters, compute the effective degrees

of freedom (3.12) for each of these values, find a bracketing interval for the desired d, and

obtain the solution via bisection).

Alternatively, if a large amount of data is available, an estimate of p can also be obtained

if desired by taking another Laplace approximation about the solution to the equations in

(3.11) and results in the following updating step

8-2

which is iterated with solutions to the estimating equations (3.5), (3.10) and (3.11) until

convergence.
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3.3 Relaxing the Assumption of Proportional Intensities
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The proportional intensity assumption for incorporating covariate effects is not always rea­

sonable. Where time varying coefficients are postulated, model (3.1) may be replaced with

where Xi is a known p - q vector of covariates, f3 the associated time homogeneous covariate

effects, poet) is an adaptive spline and Pr(t) are quadratic splines

s

Pr(t) = Ora + Or1 t + Or2t2+ Larj(t - ~j)~
j=l

(3.14 )

with Or and a, being the spline coefficients. Here again, the baseline spline /30 will be con­

sidered to have a time varying penalty. This spline models the overall trend in the counting

process intensity; hence determining deviation from the assumption of global smoothness is

most important for this spline term. The treatment spline effects Pr(t) will be modulated

by simple penalties of the form PrIg. Estimates of 0 = [00 , . . . ,OqJT and 3 = [ao, ... ,3qV
can then be obtained in a similar fashion as in the previous section by solving the system

of equations

where Da,i = [Da,i1 ... Da,iq] with Dy,is = 8f.Ld8y; and

The smoothing parameters Pr for each of the time varying coefficient splines Pr(t), r

1, ... ,q are obtained iteratively by using the following updates

S

Pr = T Te; a; + 1 u;
(3.16)

where u = [uo, U1, ... , uqV = diag {H22
} with H 22 being the seq + 1) x seq + 1) lower right

block matrix of of the inverse of H. These PQL estimates of the smoothing parameters

are equivalent to the generalized maximum likelihood estimates proposed by Gu (2002).

Estimation of the penalty spline for poet), oCt), is carried out as previously.
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I

'"""' D T V~lL....t a.z l

i=l

(t,D~'iVi1De'i) e

(t D r'i,V ; lDa'i + p) a, =
,=1

With very large datasets solving (3.15) can become prohibitive. In such cases the Gauss­

Seidel method can be used by cyclically solving

I

LD~,iV;l(N? - Dia)
;=1

(
N ? - De,ire - t Da,isas), r = 1, ... , q

s=l, sIr

often referred to as the so-called backfitting algorithm (Buja et al., 1989). The backfit-

ting procedure, although computationally less burdensome, can lead to fairly slow conver­

gence. To improve this situation only a few complete cycles of the backfitting algorithm

are performed followed by quasi-newton secant updates (Nocedal and Wright, 1999); secant

updating is initialized by

and provides sequentially improving approximations to the inverse of H leading to fast

quadratic convergence near the solution that is computationally tractable for very large

systems. This resulting inverse approximation can by used to compute H 22 for the update

steps (3.16) so that inverting the potentially large matrix H is avoided.

3.4 Inference using Resampling Methods

Let r.p = [eT,aT,T,nT, bT]T, ge,o = [g~,gr,gT,g~,gb]T and denote fp as the solution to

ge,o = O. It can be shown that VJ(fp - r.p) ~ N(O, :E). An estimator for :E is the one-step

Jackknife

I ! { [ (-i)] -1 [ (-i) T] -I}:E = Li=l (ei ~ ri)- d - 1 L E 8:e,oT (g~-i) g~-i) T) E ---'8g=....:~__
Li=l e, i=l r.p r.p_

e,o=e,o
(3.17)

proposed by Lipsitz et al. (1994) which is asymptotically equivalent to the robust variance

estimator of White (1982); g~-i) denotes the estimation equations evaluated with data from

the ith individual removed.
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Bootstrap estimators (Wu, 1986; Efron, 1987) may also be computed. The following

bootstrap procedure uses a one-step estimator for estimation in each bootstrap sample and

hence offers computational efficiency:

.. (b) (b) (b) (b) .
1) Draw a sample of SIze I without replacement (N1 ,Xi ), ... , (NI ,XI ) from (N1, Xi), ...•

(NJ,XI).

2) Compute:

(3.18)[
(b)]-l

- (b) _ - + E ogcp (b)
<p - <p O<pT gcp

cp=ip

where g~) are the estimating equations evaluated on the bootstrap re-sample (Nib), x;b)), ... ,

(N}b),X}b)).

3) Repeat 1) and 2) for b = 1, ... ,B.

The bootstrap distribution ct>* of <p obtained from this process can then be used to test

hypotheses and construct confidence intervals for ip, The main benefit of this method over

standard bootstrapping techniques is that the one-step linearization (3.18) does not require

fully solving g~) = 0 at each bootstrap iteration. We evaluate these estimators in the

following section.

3.5 Simulation Study

In order to evaluate the performance of the adaptive spline model a simulation study was

performed by generating five thousand data sets from mixed NHPP models with intensity

functions h (t) and h (t) as displayed in Figure 3.1. The forms of the intensity were selected

to reflect a situation where the constant penalty should perform well enough, h(t), as well

as one where the use of a constant penalty may not be appropriate, h(t), as this intensity

has several regimes in which the curvature of the function is changing. The simulation was

performed as a two by two factorial experiment with factors being the number of individuals

with levels I = 30, 50 and panels with levels of equally spaced panels e = ei = 40,80 i =

1, ... ,I; the amount of overdispersion was set to a moderate amount, T = 0.3. To each

generated dataset both the adaptive spline mixed NHPP model of Section 3.1 and the

constant penalty model were fit for comparison. In addition, both resampling methods of

inference discussed in Section 3.4 were performed.
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Figure 3.1: Intensity functions considered in the simulation study: h (t) - top panel and
h(t) - bottom panel.
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Figures 3.2 and 3.3 present the mean of the simulated estimates of both the adaptive and

the constant penalty model overlaying each of the two true generating intensities respectively

at all levels of number of individuals (I) and panels (e). The results for generating intensity

h (t) suggest that both methods are doing a reasonable job of estimating the underlying

functional form for all levels of the experiment. It was originally postulated that the adaptive

penalty method may be susceptible to over-fitting when the extra flexibility of this approach

is unnecessary; results for h (t) suggest that this is not the case. Figure 3.3 indicates that

the adaptive method is better able to detect regions of high curvature particularly when

less data are available. As the amount of data increases however both methods seem able

to capture the form of the underlying generating intensity. These results are an overall

summary and provide the mean behavior over all fits.

Figure 3.4 displays estimates for both the adaptive (dashed line) and constant penalty

(solid grey line) models overlaying the true generating intensity (solid line) h(t) as well as

plots of the log of their corresponding penalty functions, log[J(t)], of a single run of the

experiment at two levels with the least (I = 30, e = 40) and most (I = 50, e = 80) amount

of data. This figure shows more clearly how the adaptive method is better able to handle

changes between regions of low and high curvature, particularly in the case with more data,

as the constant penalty fit oscillates in the smooth sections since it is unable to adapt. In

the low data scenario the constant penalty method always fails to detect the sharp changes

and simply smoothes them out while the adaptive approach is occasionally able to pick

up this trend as illustrated. Note a value of J(t) above the estimate from the constant

penalty model indicates more smoothing relative to the fixed penalty model at that time

and that below the estimate from the constant penalty model corresponds analogously to

less smoothing. The plots of log[J(t)] show dearly how the adaptive method modulates the

flexibility of the spline intensity.

An overall summary of these observations are shown in Figure ~j.5 which presents box

plots of the integrated squared error, ISE[f;(t)] = Jdlfi(t) - !i(t)F dt, i = 1,2 for both

the adaptive and constant penalty models at all levels of number of individuals I = 30,50

and numbers of panels e = 40,80. It indicates that the adaptive and constant penalty

models perform equivalently under generating intensity h (t) while the adaptive approach

has superior performance for h(t). It is interesting to note that use of an adaptive penalty,

although requiring extra degrees of freedom to estimate J(t), on average uses fewer effective

degrees of freedom to fit the intensity functions. Table 3.1 presents the average estimated
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Figure 3.2: Plots of the simulated mean values for estimates based on the adaptive spline
(dashed line) and constant penalty spline (solid gray line) overlaying the true value (solid
line) of the intensity h(t) for all levels of number of individuals I = 30,50 and numbers of
panels e = 40,80.
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Figure 3.3: Plots of the simulated mean values for estimates based on the adaptive spline
(dashed line) and constant penalty spline (solid gray line) overlaying the true value (solid
line) of the intensity Jz(t) for all levels of number of individuals 1= 30,50 and numbers of
panels e = 40,80.



CHAPTER 3. ADAPTIVE FUNCTIONAL ]l/fIXED NHPP MODEL

Penalty
Indiv. Panel b(t) b(t) = b

h(t) 30 40 6.84 7.58
h(t) 30 40 7.23 7.00
h(t) 30 80 7.29 8.36
h(t) 30 80 16.13 22.31
h(t) 50 40 7.18 8.14
h(t) 50 40 13.98 14.95
h(t) 50 80 7.69 9.03
h(t) 50 80 17.54 28.15

50

Table 3.1: Average estimated effective degrees of freedom for the baseline spline from the
fits of the adaptive and the constant penalty spline (b(t) = b) models over the simulations
for both functional forms of the intensity (Figure 3.1) at all levels of individuals I = 30, 50
and number of panels e = 40,80.

effective degrees of freedom for the baseline spline of the fitted models for all levels of the

simulation experiment. It seems that the adaptive method is able to perform as well as,

and for generating intensity h(t) better than, the constant penalty model while generally

using fewer effective degrees of freedom.

A comparison of the coverage probabilities based on the one-step jackknife and one-step

bootstrap variance estimators are displayed in Figures 3.6 and 3.7 for generating intensities

h(t) and h(t) respectively. The coverage probabilities for generating intensity h(t) are for

the most part on target, particularly for larger numbers of panels (e = 80). The jackknife and

bootstrap intervals tend to perform similarly with the jackknife having the slight advantage

in this case. For h(t) the coverage probabilities are fairly poor when e = 40 which can

be largely attributed to the large bias. As the number of panels increases however the

performance of the coverage probabilities improves and for the case with I = 50 individuals

and e = 80 coverage probabilities approach the nominal level in general. Note that the

coverage is going to be poor for very steep increases or decreases in the presence of even

small amounts of bias which can be seen clearly in this plot.

Simulations were also run at various levels of the overdispersion parameter but only

the case of T = 0.3 is presented here since the spline estimates of the intensity are fairly

robust to changes in this parameter. Of interest however is that the bootstrap intervals for

this nuisance parameter seem to provide better performance, in terms of coverage, than the
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Figure 3.4: [Top Panels] Plots of estimates for one sample run under two scenarios (left
column I = 30 and e = 40; right column I = 50 and e = 40) for both the adaptive spline
(dashed lines) and constant penalty spline (solid gray lines) models overlaying the true value
(solid lines) of the intensity h(t). [Bottom Panels] Estimates of the log of the penalty spline
log[o(t)] (dashed lines) and the log of the estimate under the assumption that o(t) = 0 (solid
gray lines) for both scenarios.
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of the form afc.I,e .



CHAPTER 3. ADAPTIVE FUNCTIONAL MIXED NHPP MODEL 53

Jackknife Bootstrap

0.0 0.2 0.4 0.6 0.8 1.0

I: 50
Panel: 40

~
:a
ctl.ce

ll..
Q)

~
~oo
Q)
I/)

.~ 0.95
I

C
'0
ll..
~

~ 0.90

0.85

0.80

0.75

I: 30
Panel: 40

:'
I

I: 30
Panel 80

0.95

0.90

0.85

0.80

0.75

0.0 0.2 0.4 0.6 0.8 1.0

Time (t)
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simulated data analysis for the adaptive model. All levels of numbers of individuals I
30, 50 and numbers of panels e = 40, 80 are displayed.
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jackknife interval, which tend to be too large. This is likely the result of the skewness of the

distribution of the overdispersion estimator which the bootstrap approach is better able to

accommodate.

3.6 Cherry Bark Tortrix Experiment

This experiment was designed to test the effectiveness of pheromones in disrupting the

mating patterns of the cherry bark tortrix moth (Enarmonia fom.osana). It was postulated

that the release of the pheromone would confuse males from locating and mating with

females in the trees thereby hindering reproduction. Twenty cherry trees were outfitted

with pheromone-baited traps, attached in similar locations in each tree. All of the trees

were fitted with scent dispensers, but ten were selected at random (treatment trees) and

their dispensers were filled with female pheromones; the remaining ten were used as controls.

Approximately once a week for 19 weeks the traps were emptied and the number of moths

caught were counted. The baits were refreshed at three-week intervals.

The model presented in Section 3.1 was fit to the data using both an adaptive spline

penalty t5(t) with five effective degrees of freedom as well as with a constant penalty for

comparison. Increasing the effective degrees of freedom provides little differences in the

estimated fits. Estimates for the treatment effect, 3.321 (s.e. 0.343), indicate the the

treatment is effective and overdispersion parameter, 0.662 (s.e. 0.114), that heterogeneity is

present; these estimates are identical for the two fits. Figure 3.8 displays plots of the baseline

intensity for both the adaptive spline, the solid line, and the constant penalty model, the

dashed line, along with their 95% point-wise confidence intervals as well as plots of 10g[t5(t)]

for both models. These plots are also overlaid with empirical step function estimates as

described in Lawless and Zhan (1998)). These authors model the intensity function as a

proportional intensity model with a random frailty term and with the baseline intensity

being piecewise constant. This figure shows that moths mate in two bimodal waves, the

first corresponding to moths that over-winter in a "instar' pupal state and are ready to mate

earlier than moths that hatch in the early summer represented by the second wave. The

model with the constant penalty seems to provide a reasonably flexible fit in this situation

with regard to the differences in the three fits. The adaptive penalty allows the intensity

estimate somewhat more flexibility for the first wave and less in the last third of the time

period where the intensity approaches zero. This is clear in the bottom panel, a plot of the
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estimate of log[o(t)] overlaying the log of the estimate of the penalty when held constant,

o(t) = o. All three methods are in general agreement.

3.7 Discussion

This chapter presents a method of incorporating both adaptive and regular penalized spline

smoothing into the quasi-likelihood analysis of recurrent event panel data and compares

these two approaches under various scenarios. The adaptive approach provides some gains

when there is sharp curvature or abrupt changes between regions of high oscillation to regions

that are fairly fiat. In many of the cases considered however the use of a constant penalty

provides a fairly good approximation to the underlying functional form. In situations where

it is believed that sharp changes in the derivative of the intensity function exist then the

added complexity may be beneficial. This approach might be useful for monitoring extreme

events in climate change, for example, where accurate definitions of peaks are important

or in extensions for spatio-temporal analysis where cliffs in the intensity may occur in the

spatial domain.

An alternative approach to adaptive penalized splines for modeling mixed NHPP inves­

tigated here would be to optimally select the number and position of the knots, breakpoints

between connecting polynomial sections, commonly refereed to as the free knot approach

(Jupp, 1978; Mao and Zhao, 2003). This approach, even in the normal regression context,

requires far more computationally complex methods such as insertion-deletion (Kooperberg

et al., 1997) algorithms or stochastic optimization (Pittman, 2002) because of many local

optima. Hybrid approaches that combine careful knot selection and penalties have also been

studied (Luo and Wahba, 1997; Lindstrom, 1999). The development of such methods may

be useful for the analysis of massive datasets where the overparameterized basis required

for the penalty methods may become prohibitive and lower dimensional adaptive analogue

to the penalized approach may be required.



CHAPTER 3. ADAPTIVE FUNCTIONAL MIXED NHPP MODEL

0

LO
C\I
ci

0
C\I
ci

LO

ci--0-«
0

ci

LO
0
ci

0
0
0

LO

o

LO
I

o
~

I

LO
~

I

20 40 60 80 100 120

o
C\I

I

o 20 40 60 80 100 120

Figure 3.8: [Top panel] Estimated overall baseline intensity >"o(t) (--) with corresponding
95% point-wise confidence intervals (...... ) overlaid with the estimates under the assumption
that <5(t) = <5 (- - --) along with piecewise constant estimates. [Bottom panel] Estimated
log of the penalty spline log[<5(t)] (--) as well as the log of the estimate under the
assumption that <5(t) = <5 (- - --).



Chapter 4

Clustered Mixed NHPP Spline

Model

Basic methods for the analysis of panel count data are fairly well-established; Cook and

Lawless (2002) provide an excellent review. A common and flexible approach uses an as­

sumption of a proportional intensities model - the intensity function governing the rate of

occurrence of events has the form A(t) = AO(t) exp(xT(3) where AO is the so-called 'baseline

intensity function', x is a vector of covariates and f3 the regression coefficients. Parametric

forms for the baseline intensity function may be used; for example, the Weibull (Lawless,

198780) is popular. Semi-parametric methods have also been employed: Lawless and Zhan

(1998) and Balshaw and Dean (2002) adopt a piece-wise constant baseline intensity.

Several recent applications by the authors exhibit a number of features for which meth­

ods are currently unavailable. In this chapter, we extend the current methodology in two

main directions within a unified framework. The extensions emerge out of, and impact,

collaborative work in medicine and biological sciences which drive our conceptual position­

ing. We model heterogeneity through discrete mixtures of mixed Poisson distributions,

accommodating clusters as well as individual frailties. The discrete mixtures can be viewed

as hidden sub-populations of individuals whose counting processes are being generated via

an unknown group-specific intensity process. Indeed, for several applications we have con­

sidered there is scientific reasoning that hypothesizes such hidden clusters generating the

counts which may react differentially to treatments. The motivating application described

in this chapter is an experiment to test the effectiveness of pheromones in disrupting the

58
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mating patterns of the cherry bark tortrix moth. Moths mate in the summer in two dis­

tinct phases: the first corresponds to those moths that overwinter in a developmental pupal

state, while the second correspond to those that overwinter as eggs. Mature moths from

these sub-populations cannot be distinguished, but it is of interest to determine whether

the treatment has differential effects on them. More broadly, the authors have used the

methods herein on analysis of medical data where there is evidence of differential response

to a treatment with constant and with decreasing response counts over time for distinct

sub-populations. In addition, the focus here is on joint estimation of the baseline intensity

and the effects of covariates, both of which are modeled as smooth functions using splines.

Hence the simple case of a single-cluster model derived herein also provides a flexible, useful

approach for the analysis of panel count data. Note that outside of the mixture context and

for data arising from continuous followup, splines have been used previously for the analysis

of longitudinal data and have been shown to offer great flexibility for such modeling (see,

for example Lin and Zhang (1999) and Ruppert et al. (2003)).

With an emphasis in the literature on quasi-likelihood methods for analysis of count

data, and the benefits and flexibility of such estimation schemes, the approach taken here

imposes fairly weak distributional assumptions to provide robustness to model rnisspecifica­

tion. Since we focus on methods for the analysis of panel data, this brings the need to handle

additional features such as missing data over panels, aggregation of counts over panels, and

non-identical times of follow-up for individuals or clusters; all of these are accommodated

by the methodology developed.

In Section 4.1 we develop the clustered mixed nonhomogeneous process spline model.

Section 4.2 develops an algorithm for quasi-likelihood estimation utilizing a scheme analo­

gous to EM (Estimation-Maximization; Mcl.achlan and Krishnan, 1997) which is a special

case of the Expectation-Solution (ES) algorithm of Rosen et al. (2000). Inference and a

brief discussion on identifiability is considered in Section 4.3; robust variance estimates are

provided. Section 4.4 applies the proposed methodology to several data sets beginning with

the motivating example. Simulation studies in Section 4.5 probe how well components are

recovered when there is high variability and few panels, and how well variance estimates

and their small sample distributions perform in their ability to provide confidence interval

coverage. The chapter closes with a discussion of the methods and the rich opportunities

for future work in recurrent event analysis.



CHAPTER 4. CLUSTERED MIXED NHPP SPLINE MODEL GO

4.1 Spline Model for Clustered Overdispersed Longitudinal

Counts

Let {Ni(t), t E [0,Tie,)} be a counting process governing the number of events experienced by

individual i = 1, ... ,I and assume that for each individual the process, Ni(t) = L~=l ZgiCgi(t),

arises from one of several subprocesses Cgi(t) where Zgi = I {i E 9g}; I {-} being the indica­

tor function and 9g , 9 = 1, ... ,G denoting the unobservable cluster from which the subpro­

cesses are generated. Given a mixing distribution rng, each Cgi(t) is assumed to be a nonho­

mogeneous Poisson process (NHPP) with conditional intensity denoted by Agi(tll/gi) where

I/gi are within cluster random effects, I/gi i.f.:..,d. mg, that account for possible within cluster

heterogeneity. Let AU represent the cumulative intensity function, A(t) = J~ A(u. )du. Data

for each individual are assumed to be collected at follow-up times 0 :::; Til < Ti2 < ... < Tie;;

let Nij = NdTi(j-1), Tij), the number of events experienced by individual i between Ti(j-1)

and Tij, j = 1, ... .e, and define Tio = O.

The conditional intensity governing the generation of counts Nij = N, [Ti(j -1), Tij) for

individual i, given group membership, Zgi = 1, and the individual-specific sub-group frailty

term I/gi, is I/giAgi(t) I {t E [Ti(j_J),Tij)} where

(4.1)

with the .Tiq'S representing covariate information for the ith individual, and rgq being group­

specific spline effects, q = 0, ... ,p, assumed to have absolutely continuous second derivatives.

The term rgO(t) reflects what could be called in this context the logarithm of the baseline

spline function. Several possible spline basis functions could be effectively utilized; cubic

B-splines are used here for their numerical stability (de Boor, 1978) yielding the represen­

tations:
4+k

rgq(t) = L'l/JgqhBh-4(t) = b(t)T1/Jgq
h=l

where 1/Jgq is the vector of B-spline coefficients 'If'gq., q = 0, ... .p, corresponding to the

qth spline effect in the gth group, b(t) is the vector of cubic B-spline basis functions

B.(t), and k is the number of breakpoints or knots defining the basis. The uncondi­

tional distribution of the vector of observations N i = (Nil, ... , NieJT for individual i is

P(Nd = L~=l ]IgPg(Ni) with expectation J-Li = (/.Li1,'" ,/.LieJT where p., = E[l {i E 9g}] =
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P(i E 9.'1)' ~q(Ni) = I TIj~l ~q(Nijh,)mg(vgi)dVgi, Pg(Nijlvgi) is distributed as Poisson

with mean VgilIgij, IIgi] = Agi(T;j) - Agi(T;(j-l)), fLij = I:-~=lPgfLgij and Agi is the cu­

mulative intensity corresponding to Agi' The random multiplicative components l/gi model

within-cluster overdispersion. We assume that l/gi has mean 1, without loss of generality,

and denote its variance a.', Tg . As scaling terms, they also ensure that clustering identi­

fies subgroups with intensities of varying functional form rather than simply differences in

magnitude.

The number and position of the knots defining the B-spline basis have a strong impact on

the possible shapes that the spline can approximate and hence require careful consideration.

The approach taken here is to use penalized splines where a large number of knots are used,

such as all unique panel midpoints {(T;j + Ti(j-l))/2}, and a penalty term is added to

control the amount of fitting of the resulting over-parameterized model. In the case of a

few coincident panels over individuals, the naive method of using a few fixed knots usually

works sufficiently well in practice (Nielsen and Dean, 2005). Alternatively, one could use a

small number of well-chosen knots or a "free knot" approach (Jupp, 1978; Mao and Zhao,

2003). The advantage of such an approach is that an adaptive spline basis can adjust to

local changes in variability of the underlying function resulting in better approximations

in cases where such heterogeneity is present. These adaptive methods do require more

intensive computational algorithms such as knot insertion-deletion (Kooperberg et al., 1997;

Hansen and Kooperberg, 2002). Adaptive splines are particularly useful when event times

are recorded. For the analysis of panel data, the rough time grid over which the panel

process is observed can dampen the gains in flexibility afforded by such an approach since

this aggregation of the data into panels can effectively mask any sharp changes that may

exist in the intensity.

There are advantages to the form of the "link" function chosen in (4.1) above. It reduces

to the usual log linear form when the observations consist of end-of-follow-up counts. It also

ensures that Agi(.) remains positive providing the required monotonicity in the cumulative

intensity. However, this representation results in a non-analytic cumulative intensity func­

tion. In practice, even simple approximations to the integral perform well in this context

of panel data analysis. Here, the integral is approximated using a 4-point Legendre-Gauss

quadrature rule which allows exact computation of the integral of up to a 7-degree poly­

nomial for each panel. Such an approximation seems sufficient for applications that are

encountered in practice. Other possible "links" for the intensity function (4.1) could be
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envisioned. For example, with the identity link, the resulting model would be additive in­

stead of multiplicative which may aid in the interpretation of the estimated effects in some

situations. The cumulative intensity is also analytic in this case and if one were to ignore

the need for constraints on the spline coefficients to impose monotonicity in the cumulative

intensities, inference using the estimating equations developed in the next section would be

straightforward. In fact, such a simple approach will often yield satisfactory results provided

there are a moderate number of events per individual and that these events do not oscillate

too rapidly from panel to panel.

4.2 Estimation

Let 0 = (¢T,pTf denote all the parameters of interest where ¢ = (¢1' ... '¢C)T, ¢g =

('IPJ, Tg)T, the parameters of the gth subpopulation, v, = ('l/JJo,'l/JJl, ... ,'l/JJpf and p =

(PI,··· ,PC).

Case 1: G fixed

Given initial values for the component indicators Zgi, estimates of 'l/J9 are obtained by solving

penalized quasi-likelihood equations (Breslow and Clayton, 1993)

I

g1/J
g

= L ZgiD~V;I(Ni - J-Lgi) - (diag{<5g } ® P) 'l/Jg = 0, 9 = 1, ... , G (4.2)
i=1

where J-Lgi = (/-l9il, ... ,/-lgie;f, Dgi = 8J-Lgd8'l/JJ, V;1 = diag{l//-lg ij }e; xe; - TgJej(l +
Tg/-lgi+), Je, = {l}e;xe;, /-lgi+ = Lj~1 /-lgij, <5g = (bgo, bg1, ... , bgp)T, the smoothing parame­

ters for the baseline and spline covariate effects, and

rr' TiC}
P = J

o
' b'(t)b'(tfdt, (4.3)

the penalty matrix, which shrinks the spline covariate effects to a constant as bgq ---+ 00 or

results in an interpolating spline as bgq ---+ O. Hence, if bgq ---+ 00 so that rgq(t) ---+ rgq, for

all q E {I, ... ,p}, then Agi (t) is of the proportional intensity form; if, in addition, bgo ---+ 00,

then the model for the gth component becomes overdispersed Poisson regression. Note that

(4.2) can be derived equivalently using penalized negative binomial maximum likelihood

under the assumption of gamma distributed frailties.
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(4.6)

The vector of smoothing parameters 8g are updated using the so-called GML estimator

of Gu (2002),

J = tr [Rgqq] (4.4)
gq - T - ,«r-:

where R gqq are the (k + 4) x (k + 4) block diagonal elements of

R, ~ (Ry, ,,) ~ [t, z"D~v;i D" + diag{",} 09 p] -, (t, z"D~V;i D,,) , (4.5)

s, v = 1, ... , p. This is a restricted maximum likelihood estimator (REML) for 8g . The

update of the smoothing parameter on the right-hand side of (4.4) is an empirical Bayes

estimator, evaluated at the current value of the estimates. It is a ratio of the overall residual

variation within subgroup, which under the model is one, to the estimated variance of the

contrast induced by the penalty P on 'l/Jgq' This contrast is expressible as U-'l/Jgq where

U- corresponds to the non-zero rows of the matrix U = E~ST, E~ being the diagonal of

the square root of the eigenvalues, and S, the normalized eigenvectors, of P.

To estimate T g , we use restricted maximum likelihood under the assumption of normally

distributed residuals, N ij - Pgij, leading to the estimating equations

_ ~.,. . (NH - PgH)2 - P9i+(l + TgPgH) + rgi _ 0 - 1 G
979 - ~ ~g' (1 + T .)2 - ,9 - , ... , ,

i=l gPg,+

where

r" ~ I., [Z" (t, z"D~V;;" D" + <liag{",) 09 P) -1 D~v;iD,,]
and N H = Lj~l Nij . The estimating equation (4.6) is the so-called 'pseudo-likelihood'

equation of Davidian and Carroll (1987) with the inclusion of a first-order correction term,

To update Zgi, we adapt a scheme proposed by Rosen et al. (2000) called the ES algo­

rithm, which uses the posterior estimator

-* _ [ {' } I ] - pgPg(Ni)
"'gi - E 1 z E 9g N, - C '

L g= l pgPg(Ni)

where Pg(Ni) is computed assuming mg(l/gi) i:i::f r(l/Tg , Tg). Lastly, the estimates of the

probability of group membership are computed by solving

J (_* *)"'gi zCi
9P9 = L - - -. = 0, 9 = 1, ... ,G - 1,

i=l pg PC
(4.7)
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which has an explicit solution pg = L{=l =;dI, g = 1, ... , G - 1. This process of quasi­

likelihood estimation and imputation with empirical posterior Bayesian estimates for the

unknown component membership quantities is iterated until convergence. The ES algorithm

is not guaranteed to converge from arbitrary initial configurations like the EM algorithm;

however, if the estimating scheme does converge then the method will result in unbiased

estimating equations (Rosen et al., 2000). In practice it has been found that the ES algo­

rithm is quite robust to initial parameter specification and converges relatively quickly for

fair starting values.

Case 2: G unknown

To obtain an estimate of the number of components we develop an algorithm leveraging

theory from non-parametric maximum likelihood (NPML) estimation which states that for

a finite number of components G < I the log-likelihood of the finite mixture distribution

will be convex (Lindsay, 1983). It has been found to be efficient and reliable for a variety

of applications considered.

Algorithm:

1) Fit a One-Component Model. Set c = 1 and compute ¢l' the estimates from the

one-component model, by solving equations (4.2) and (4.6) with =li = 1, i = 1, ... ,I.

Evaluate Pl(Nil¢d and set hi to Pl(Nil¢I), i = 1, ... ,1.

2) Obtain Initial Values for the (c + I)-Component Model. Perform a univariate grid

search over 0' (0 < 0' < 1) to obtain a new mixing weight 0" and component pa­

rameters ¢c+l (0") which maximize

NIP

Llog {(1- O')!ci + O'Pc+1(Nil¢c+d} - 2L6(c+l)q 1/Jfc+l)qP1/J(C+l)q
i=l q=O

where Pc+1 is the postulated (c + l j-component of the model. Set !c+l,i = (1 ­

O")!ci + O"Pc+I(Nil¢c+l(O"))· These values are used as initial values for estimating

the parameters of the (c + 1)-component mixture.

4) Fit a (c + I)-Component Model. With the number of components set as c+ 1, the pa­

rameters in the (c+ 1)-component mixture model are estimated using the ES algorithm
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detailed in Case 1 with initial values from the previous step. Set fgi to Pg(Nil¢g),

9 = 1, ... , c + 1 and i = 1, ... ,I.

5) Stopping Rule. When Pc+1 -> 0, set the number of components to G = c, update the

c-component model parameters using the ES algorithm and exit; else return to step 2

and set c = c + 1.

In general, for the application considered here and several others not presented, the algo­

rithm tends to select models with few components, less than four and in some cases only

one component.

4.3 Inference

Inference here is developed for the case of G fixed and under usual assumptions that the

design matrix X = {Xiq}]Xp is of full rank and the Jacobian matrix 8gfJ !f.)(F is non­

singular. These assumptions are discussed in 4.3.1 below. With estimates 0 obtained by

solving ~ = (gI , ... ,gI ,gpTf = 0 where gA. = (g!:. ,gr f it can be shown (White,
'1'1 wc '1'9 '1'9 9

1982) that, ,jJ(iJ - 0) ~ N(O, ~), where

~ ~ E [:~] -, (t,g,.gT,.) E [881] -ll.~.·

This is the "sandwich" variance estimate (Liang and Zeger, 198G) where gi,fJ is the contri­

bution of the ith individual to the estimating function gfJ.

An asymptotically equivalent estimator of ~ (Lipsitz et al., 1994) can be constructed

using a jackknife approach to improve its finite sample properties. Let iJ(-i) be the estimates

obtained by the method described in the previous section with the ith individual removed,

i = 1, ... ,I. The jackknife estimate of ~ would then be given by

(4.8)

where r = I:~=1 tr {Rg } + 2G -1 with R g given in (4.5). A simple one-step approximation

to (4.8) can be obtained by taking one Newton step from the overall estimate iJ as

iJ + E [ t 8g j:]-1
j=l,if-j 80
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which results in the expression

66

(4.9)

Very little computational overhead is incurred in computing E* using (4.9) since it is easily

obtained from values calculated while solving for o. The fully iterated jackknife (4.8) is

preferable in general; however, it is useful to compute this simple one-step approximation

as a comparison since it should be fairly close to the fully iterated form. If this is not the

case this might suggest that the solution iJ is highly affected by a single individual or that

the objective surface at iJ is not 'elliptical', an indication that inference procedures may be

suspect. It should also be noted that the jackknife estimates themselves, O(-i) 's, are useful

for diagnostics.

4.3.1 Identifiability

For the simpler case of finite mixtures of Poisson distributions with covariates, Wang et al.

(1996) show that a sufficient condition for identifiability is that the design matrix, X, is of

full rank. Assessment of local identifiability is also useful here and is common in the study

of latent class models. A numerical check is performed at convergence of the algorithm pre­

sented in Section 4.2 by computing the eigenvalues of 8ge/80T evaluated at iJ and verifying

that they are all non-zero. If this is the case then the model is locally identifiable (Bandeen­

Roche et al., 1997). In addition, note that the algorithm protects against boundary cases

by removing the gth component if Pg ----> O.

4.4 Illustrations

4.4.1 Cherry Bark Tortrix Moth Study

This experiment was designed to test the effectiveness of pheromones in disrupting the

mating patterns of the cherry bark tortrix moth (Enamwnia fomosana). The pheromone

in question was considered to be competitive with caged virgin females in luring males

into traps. It was postulated that the release of the pheromone would confuse males from

locating and mating with females in the trees. It was also postulated that the appearance

of mate-seeking males over the summer would arise from at least two types of hatching,
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representing hidden components. This is discussed later. Twenty cherry trees were outfit.t.ed

with pheromone-baited t.raps, attached in similar locations in each tree. All of the t.rees were

fitt.ed wit.h scent dispensers, but. ten were selected at. random (treatment trees) and their

dispensers were filled with female pheromones; the remaining ten were used as controls.

Approximat.ely once a week, over a 19 week period, the traps were emptied and t.he number

of moths caught were counted. The baits were refreshed at. three-week int.ervals.

The model derived in the previous section was fit to this data resulting in the ident.ifi­

cation of a three-component model; the treat.ment group was assigned to the baseline. The

est.imates of the smoothing parameters for the spline covariate effects diverge t.o infinity

resulting in the sub-group treatment splines being constants, ')'gl(t) = ')'gl, so that each

component has a proportional intensity form. Table 4.1 presents parameter estimates for

t.he treatment effects ')'gl, overdispersion parameters 7 g, group membership probabilities Pg

and their associat.ed estimated jackknife standard errors. The covariate estimates for all

components are large and significant. Note that the est.imate of the covariate effect for

component one is about. half that for the other two components indicating a differential

treatment effect among the groups. The est.imates of the within-group dispersion parame­

t.ers 7 g are significant at. t.he 5% level so all the subpopulations are exhibit.ing heterogeneity.

Each group is well represent.ed in the sample with estimated subpopulation membership

probabilities between 30%-40%. Residual plots and jackknife diagnostics showed no glaring

discrepancies in model fit.

Figure 4.1 a) and b) show t.he plots of the estimat.ed overall baseline intensities, AO(t) =

L:~=1 PgAgO(t), and cumulative baseline intensities, Ao(t) = L:~=1 pgAgo(t), along with their

associated 95% jackknife point-wise confidence bands. The form indicat.es that. the cherry

bark t.ort.rix mot.hs mat.e in two waves. The first wave in the overall intensit.y corresponds

to maturity of the so-called "inst.ar" moth larvae that overwint.er in a developmental pupal

st.at.e. These are ready t.o breed earlier than those that overwint.er as eggs, which generally

hatch in early summer, and contribut.e mostly to the second wave of breeding between 50 to

70 days into t.he summer. The second wave itself appears t.o be generat.ed by t.wo tight waves

occurring around a fortnight apart.. These observations are distinctly evident in t.he within­

subpopulation baseline and cumulative baseline intensity est.imates displayed in Figure 4.1

c) and d). Of particular interest is t.he intensity of group 1 that. has a pronounced early

first wave suggest.ing that this group represent.s predominantly t.he "instar" mot.hs. Furt.her,

t.here is a subst.antial difference in the treatment. effects for group 1 and the other two
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Estimate (s, e.)

08

One-Component Model
Treatment 111

Dispersion 71

Three-component Model
Treatment 111

121

131

Dispersion 71

72

73

Probability P1

P2
P3

3.321 (0.384)
0.662 (0.205)

1.710 (0.771)
3.642 (0.669)
3.697 (0.474)
0.681 (0.299)
0.676 (0.185)
0.559 (0.221)
0.314 (0.134)
0.311 (0.144)
0.375 (0.143)

Table 4.1: Estimates and estimated jackknife standard errors of the treatment effects Ig1,

overdispersion parameters 7 g and the probabilities of group membership Pg from the fit of
the one- and three-component mixture to the cherry bark tortrix data.

groups suggesting that an attempt to eradicate the moth population may require differential

treatments or, perhaps different doses, over the summer.

A one-component model was also fit to the data for comparison. As in the three­

component case the fit results in a proportional intensity model as the smoothing parameter

for the treatment effect diverges. Table 4.1 provides the estimates and their estimated

jackknife standard errors for the treatment effect and overdispersion parameter; both of

which are significant at 5%. The estimates themselves are similar to those of component

two and three of the three-component mixture model. The baseline intensity and cumulative

baseline intensity are displayed in Figure 4.2 and show the same trend as the overall baseline

intensity and cumulative baseline intensity of the three-component model. For comparison,

the step function estimates of Lawless and Zhan (1998) are provided as asterisks at the

panel midpoints; both agree very well. The results obtained from both the one- and three­

component models are in general accord. The three-component model, however, is helpful

in distinguishing the differential effects for moths that overwinter in the "instar" phase, a

question of interest in this study.
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Figure 4.1: [a) and b)] Estimated overall baseline intensity Ao(t) and cumulative intensity
Ao(t) represented by a solid curve (--) along with their corresponding 95% point-wise
confidence intervals (- ..... ). [c) and d)] Estimated baseline intensities Ago(t) and cumulative
intensities Ago(t) of the three components. The solid curve (--) corresponds to group 1,
the dashed curve (- - - -) to group 2 and the dotted curve (.....) to group 3.
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Figure 4.2: Estimated baseline intensity AO(t) in the top panel and the estimated cumula­
tive intensity Ao (t) in the lower panel represented by solid curves (--) along with their
corresponding 95% point-wise confidence intervals ( ). The two plots are overlaid with
Lawless and Zhan's (1998) step-function estimates (*) placed at the panel midpoints.
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4.4.2 Rat Carcinogenesis Experiment

71

This study was conducted by Thompson et al. (1978) to test whether the continued use of

retinoids inhibits tumor recurrence. The experiment was carried out by injecting seventy-six

rats with a carcinogen and subsequently administering retinyl acetate to prevent cancer for

60 days. After 60 days, the 48 rats that remained cancer-free were randomly assigned to

a control group, or to a treatment group which carried on with retinoid prophylaxis. The

rats were followed for 182 days after the initial injection and palpated for tumors every 2

to 5 days. Figure 4.3 gives a graphical summary of this data. Here Tio = 0 represents 60

days after injection with the carcinogen, resulting in a total follow-up of 122 days for each

individual, with 25 individuals in the control group and 23 in the treatment group. The

follow-up times were recreated as all unique times of occurrence of events since exact times

of follow-up were not provided. This resulted in panels of average length of 3.70 days and

standard deviation of 0.95 days with a maximum panel length of 6 days; this mimics closely

the described 2-5 day gap between examinations as stated in the description of the study.

The data was obtained from Table 1 in Gail et al. (1980).

The clustered overdispersed NHPP model developed in the previous section was fit to

this data with a resultant fit of a single component model. The estimates of the smoothing

parameters for both the baseline and treatment effect diverge to infinity, indicating that

a proportional intensities assumption seems to hold and that the baseline is homogeneous.

Figure 4.4 shows the estimated baseline and cumulative baseline intensity with 95% point­

wise confidence intervals; empirical step-function estimates of the baseline and cumulative

baseline intensity (Balshaw and Dean; 2002) are also provided for comparison. In the

figure, the empirical step function estimates are replaced by point estimates at the panel

midpoint rather than horizontal lines across the panels. Fitting the standard Weibull model

(Lawless, 1987) with cumulative baseline Ao(t) = t Q yielded an estimate of a of 0.97 (s.e.

0.076), with no evidence against homogeneity (a = 1). Table 4.2 provides estimates of the

treatment effect and the overdispersion parameter. The three variance estimators are very

similar and indicate that the treatment is effective in reducing tumor recurrence and that

overdispersion is present. This example illustrates the utility of the chosen penalty (4.3) for

selecting simple models in non-informative situations as well as the ability of the clustering

procedure to isolate a simple one-component model where appropriate.
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Figure 4.3: Data summary plot for the rat carcinogenesis data. The solid lines (--)
represent time under observation, the light grey vertical lines are the panel follow-up times,
the tick marks (I) indicate a count within the marked panel, spaced to be visually distinct,
and the column labeled Cnt. represents the end of follow-up counts for each individual in
the control and treatment groups.
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Estimate Robust SE Jackknife SE One-step SE

Baseline h0) -3.828 0.150 0.157 0.156
Treatment (1'1) 0.823 0.197 0.206 0.205
Dispersion (T) 0.286 0.051 0.066 0.052

74

Table 4.2: Parameter estimates and estimated robust, jackknife and one-step jackknife
standard errors of the baseline log-intensity I'o(t), corresponding to the control group, the
treatment effect 1'1 (t) and the overdispersion parameter T from the fit of the one-component
model to the carcinogenesis rat data.

4.4.3 Codling Moth SIR Study

The codling moth (Cydia pomonella L.) is a key pest of pear and apple trees globally. In

particular, they have been a cause of lost revenue for the fruit farmers of the Okanagan

Valley in the Canadian Province of British Columbia. The codling moths were controlled

in the 50's and 60's by repeated use of a wide variety of insecticides; however advances in

the use of anticidal control, pheromone trapping and mating disruption have changed the

method of controlling this pest over the past 30 years. In particular, anticidal control or

"sterile insect release" (SIR), where the mass release of sterilized male moths are used to

over-flood the population in an attempt to make the number of viable matings rare, has

been quite successful. The purpose of this study was to monitor the efficacy of anticidal

control by pheromone trapping.

The data consist of counts of moths collected in baited traps installed on 506 trees

scattered over the Okanagan valley. Each trap was counted and emptied once per week over

the 20-week breeding period for several years. Clearly, the method of analysis presented in

the previous sections is not appropriate for this data given its potential for spatial structure.

In fact, it was of interest to see if there was any spatio-temporal difference in the breeding

pattern of moths over the region. Here, as a preliminary analysis, one year of data using

only un sterilized moths was analyzed using the methods presented in Section 4.2. Four

components were identified. The estimated probabilities of group membership and their

associated jackknife standard error estimates are 0.292 (0.290), 0.221 (0.166),0.358 (0.404)

and 0.129 (0.120) respectively. The estimates of the overdispersion parameters for all groups

were quite large. Figure 4.5 presents the estimated baseline intensities for the four groups

and shows that the moths breed in multiple waves. The four groups represent time-shifts of
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this basic pattern with varying magnitudes of the breeding rate. The spatial position in the

Okanagan valley of trees that strongly associate with each of the group-specific curves are

displayed in Figure 4.6. An estimated group probability of pg > 0.6 was chosen as a cutoff

for determining that a tree is strongly associated with group g. This plot shows evidence of

spatial clustering which merits further investigation.

4.5 Simulation Studies

To evaluate the estimators derived in Section 4.2, a simulation experiment was performed

with two factors: the number of individuals with levels I = 25,50, 100 and the number of

panels with levels e = e; = 25,50, i = 1, ... , I. The panel follow-up times were equally

spaced and concurrent for all individuals over the interval t E [0,1). In a complete factorial

design, ten thousand datasets, {Ni) , i = 1, ... , I, j = 1, ... , e}, were generated from the

counting process model with intensity

2

L /Jg,ZgiAgi(t) 1 {t E [Tj - 1, Tj )}

g=1

h i.i.d. B lZ'( 0 4) 1 i.i.d. reo ') 1/0 2) . 1 i.i.d.were Zli rv er'nou, Z PI = . ,Z2i = - Zli, VIi rv .~, • gIven Zli = ,V2i rv

r(0.6,1/0.6) given Z2i = 1, and Ag;(t) = exp {"'(ga(t) + 1 {i E Stratum I} rgl(t)}. Figure 4.7

shows the selected functional forms for the intensities. These represent smoothly decreasing

and bimodal recurrence rates, with associated treatment group effects as a constant or

which decrease the rate of recurrence linearly. The specific goal considered first is to test

the performance of the quasi-likelihood estimating equations. Here we focus on whether the

penalty method performs well, whether the splines are accurately estimating the recurrence

rates and how good coverage probabilities are in small samples. The probabilities of group

membership were set at PI = 0.4 and P2 = 0.6 so as not to have too few individuals per

cluster, leaving control of sample size to I. The overdispersion parameters were chosen to

represent a low level of dispersion (71 = 0.2) and a high level (72 = 0.6). The clustered

overdispersed NHPP model was fit to each dataset.

Figure 4.8 presents the mean of the simulated estimates overlaying the true values for the

baseline and treatment spline effects for both groups at all levels of number of individuals

(I) and panels (e). The results presented in this plot suggest that the method is doing a

good job of estimating the underlying functional forms. To see clearer how the estimates of
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the spline effects, iqg(t), are affected by the factors of the experiment a similar plot of the

biases is presented in Figure 4.9. This plot shows that the method performs better a." the

number of panels and individuals increases, as would be expected. However, it seems that

increasing the number of panels reduces the bias at a faster rate than increasing the number

of individuals. A comparison of the performance of the robust, jackknife and one-step

jackknife standard error estimates of the spline effects for confidence interval construction

is presented in Figure 4.10. To focus on differences amongst estimators, the coverage-axis

ranges between 0.84 and 0.96. In general, coverage probabilities are on target when I is

large. The performance seems to depend more strongly on the number of individuals than

the number of panels. The jackknife and one-step jackknife estimators give similar coverage

and perform better than the robust estimator.

Table 4.3 presents the mean values of estimates, simulated standard error estimates and

mean estimated standard errors of the group probabilities Pg and overdispersion parameters

7 g , 9 = 1,2. All estimates of the probabilities of group membership and their estimated

standard errors are on target in all levels of the experiment. The same is not true for the

estimates of the overdispersion parameters, however, which seem to improve as the number

of individuals or number of panels increases, but more so for increasing I. The coverage

probabilities of estimates of these parameters, also provided in the table, are poor for the

case when there is a small sample size (1 = 25) and improves only slowly with increasing

I. That estimators of overdispersion parameters tend to behave poorly in small samples is

not new; for example, recommendations that inference for these parameters be carried out

by score tests have been made (Breslow, 1990; Dean and Lawless, 1989).

An extra run of this experiment was performed using inverse Gaussian distributed ran­

dom effects instead of the the gamma random effects previously described. Importantly,

there was no noticeable difference in point or interval estimates of the spline effects or the

group probabilities, providing some evidence of robustness of the methods developed. The

estimates of the overdispersion parameters, however, were affected, as would be expected

since the Inverse Gaussian distribution has heavier tails than the gamma. Here we only

present results concerning this parameter. These are displayed in Table 4.3 marked (IG),

showing the tendency of some bias in these estimators.

An analogous simulation to investigate performance of the approach in the important

one-component special case was also carried out using the true intensity as the intensity

function of group 1 of the previous experiment, at various levels of overdispersion, 7 =
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Figure 4.9: Plots of the simulated bias of the spline effects ,gq(t), t = 0.1, ... ,0.9 for groups
9 = 1,2 and treatments q = 0,1 for level of number of individuals I = 25,50,100 and
number of panels e = 25,50. The first row displays results for ,21 (t), the second row for
,11 (t), the third row for ,20 ( t), and the last row for ,10 ( t).
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Figure 4.10: Point-wise coverage probabilities for 95% confidence intervals constructed from
the robust (.), jackknife (.~) and one-step jackknife (*) standard errors estimates of the
spline effects ')'gq(t), t = 0.1, ... ,0.9 for groups 9 = 1,2 and treatments q = 0,1 from the
simulated data analysis. All levels of numbers of individuals I = 25, 50, 100 and numbers of
panels e = 25,50 are displayed. The first row displays results for ')'21 (t), the second row for
')'ll (t), the third row for ')'20 (t), and the last row for ')'10 (t).
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Panels I True Mean Sim. SE SE (Rb.IJk.IOs.) 95% (Rb.iJk.IOs.)
PI 25 25 0.4 0.418 0.103 (0.104 I 0.104 I 0.108) (0.934 I 0.937 I 0.944)

50 0.4 0.415 0.074 (0.074 I 0.073 I 0.074) (0.942 I 0.941 10.944)
100 0.4 0.411 0.050 (0.053 I 0.052 I 0.052) (0.950 I 0.949 0.950)

50 25 0.4 0.411 0.099 (0.098 I 0.101 10.103) (0.937 0.940 0.943)
50 0.4 0.407 0.071 (0.070 I 0.071 I 0.071) (0.941 0.944 0.944)
100 0.4 0.409 0.050 (0.050 I 0.050 I 0.050) (0.948 0.950 0.950)

P2 25 25 0.6 0.582 0.103 (0.104 I 0.104 I 0.108) (0.934 I 0.937 I 0.944)
50 0.6 0.585 0.074 (0.074 I 0.073 I 0.(74) (0.942 I 0.941 I 0.944)
100 O.G 0.589 0.050 (0.053 I 0.052 I 0.052) (0.950 I 0.949 I 0.950)

50 25 0.6 0.589 0.099 (0.098 I 0.101 I 0.103) (0.937 I 0.940 I 0.943)
50 0.6 0.593 0.071 (0.070 I 0.071 I 0.071) (0.941 I 0.944 I 0.944)
100 0.6 0.591 0.050 (0.050 I 0.050 I 0.050) (0.948 I 0.950 I 0.950)

71 25 25 0.2 0.171 0.100 (0.096 I 0.107 I 0.123) (0.730 I 0.791 10.758)
50 0.2 0.195 0.080 (0.078 I 0.080 I 0.082) (0.858 I 0.875 I 0.868)
100 0.2 0.208 0.059 (0.059 I 0.057 I 0.060) (0.925 I 0.925 I 0.929)

50 25 0.2 0.165 0.093 (0.086 I 0.097 I 0.111) (0.709 0.7771 0. 736)
50 0.2 0.189 0.071 (0.067 I 0.072 I 0.070) (0.842 0.864 I 0.853)

(IG) 50 0.2 0.280 0.070 (0.066 I 0.069 I 0.069) (0.906 0.919 I 0.930)
100 0.2 0.203 0.055 (0.054 I 0.053 I 0.055) (0.912 I 0.916 I 0.914)

72 25 25 0.6 0.590 0.191 (0.181 10.199 I 0.193) (0.819 I 0.869 I 0.827)
50 0.6 0.581 0.166 (0.176 I 0.161 10.181) (0.854 I 0.865 I 0.860)
100 0.6 0.575 0.127 (0.147 I 0.121 10.148) (0.893 I 0.871 I 0.895)

50 25 0.6 0.601 0.195 (0.180 I 0.205 I 0.193) (0.831 I 0.882 I 0.845)
50 0.6 0.591 0.158 (0.171 I 0.161 I 0.176) (0.870 10.885 I 0.877)

(IG) 50 0.6 0.562 0.193 (0.191 10.172 I 0.197) (0.804 I 0.788 I 0.812)
100 0.6 0.585 0.122 (0.144 I 0.121 10.146) (0.905 I 0.892 I 0.908)

Table 4.3: Mean values of estimates, simulated st.andard errors, (Robustl.Iackknifel'One-
Step Jackknife) st.andard error estimat.es and corresponding coverage probabilities of 95%
confidence intervals for t.he group probabilities Pg and overdispersion paramet.ers 7 9, 9 = 1,2.
Results are included for all levels of numbers of individuals I = 25, 50, 100 and numbers of
panels e = 25, 50 as well as the single run with data generat.ed from the Inverse Gaussian
overdispersion (IG) model.
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0.2, 0.4, 0.6. Similar good performance of the methods was observed. In addition, the

performance of the robust variance estimator improves, though the jackknife and one-step

jackknife standard error estimators are still superior to the robust estimators for small

samples.

To investigate the ability of the model to distinguish between similar component func­

tional forms another simulation was conducted by generating data from shifted sinusoids

for the group-specific intensities, AgO(t) = exp {3sin(37rt + 8 g) + lL g}. Data was generated

from a three-component model with 60 individuals and 25 panels in a manner analogous

to the previous experiment with group one having no shift lLl = 81 = 0, the second group

having only a horizontal shift (82 =1= 0,1L2 = 0) and the third group having only a vertical

shift (83 = 0,11,3 =1= 0). Ten thousand replicates were generated per selected shift level. In

this experiment the overdispersion parameters were fixed at 7 g = 0.2 and ])g = 1/3 for

all groups. These settings were selected to minimize the impact of these parameters since

increasing the overdispersion simply increases the values of the shifts 8 g and lL g at which the

method performs poorly, and the use of identical group probabilities eliminates the need for

considering subgroup sample size as a factor. Results indicate that the model is quite good

at distinguishing the differing functional forms even for these similar shapes. The method

breaks down as 82 ----+ a and 1L3 ----+ a as would be expected, yielding, in these cases, a fit of

a one-component model. However, surprisingly good differentiation of groups occurs when

the shifts are quite close. For example, Figure 4.11 displays plots of the true component in­

tensities along with their estimated simulated meal} values for two levels (82 = 7r /2,113 = 2;

82 = 7r/4,1L3 = 1).

We also considered how well the proposed algorithm (Section 4.2, Case 2) identifies

the appropriate number of sub-components as 82 ----+ a and 1L3 ----+ O. Table 4.4 shows the

proportion of times a g-component model is estimated, for the cases with (82 = 7r /2, 1L3 = 2)

and (82 = 7r /4, 1L3 = 1). There seems to be good differentiation of the three-subcomponent

intensities; as these sub-group intensities converge, 82 ----+ a and 1L3 ----+ 0, the number of

components selected also tends to decrease.
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Figure 4.11: Plots of the sinusoidal intensities for the three groups, AgO(t)
exp{3sin(37ff+sg)+ug}, 9 = 1,2,3, represented by solid (--), dashed (- - - -) and
dotted ( ) curves overlaid with their respective simulated mean estimates (.), (.)
and (&). In the upper panel s = (0,7f/2,0) and u = (0,0,2) while in the lower panel
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# of Components (g)
2
3
4

5
G
7

Proportion of g-Component Models
(a) (b)

0.159 0.451
0.490 0.347
0.2GG 0.1G8
0.07G 0.030
0.008 0.004
0.001 0.000

Table 4.4: Proportion of times a g-component model was selected for a) 82 = 7r /2, U3 = 2
and b) 82 = 7r / 4, U3 = 1.

4.6 Discussion

Discrete mixtures of overdispersed nonhomogeneous Poisson process spline models are a

powerful tool for analyzing recurrent event panel data. They provide a means of incorporat­

ing the complex within- and between-individual correlation structures common to this type

of data, extracting information on the underlying functional mechanisms that are driving

the observed recurrence pattern and allow for the modeling of unobservable subpopulations

that generate these observed recurrences. In addition, the single cluster model itself is a

useful, flexible tool for the analysis of longitudinal panel count data. This chapter presents

a method of estimation and inference for the broad framework of mixtures of such non­

homogeneous counting process models requiring only low moment assumptions. The finite

sample properties of the proposed estimating functions are also investigated.

Note that smooth forms are assumed for the underlying process governing the generation

of events. Also, if the intensity oscillates more in the first half of the domain and is, say,

linear in the second half then the method will tend to under-fit the function in the first

regime and over-fit in the second. An adaptive penalty as discussed in Chapter 3 would be

more suitable for this situation although such an extension would add further complexity

to the model.

The mixture model presented can shed light on clusterings of individuals and differential

behavior between unobserved sub-groups with regard to treatment effects. It is particularly

useful as an exploratory tool or when scientific evidence provides evidence for the use of

mixtures. More general models within the broad framework introduced here could also
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be envisioned. For example, the authors have moth data akin to the cherry bark tortrix

example discussed in Section 4.4.1 at several hundred sites over the Okanagan valley of the

Canadian province of British Columbia. In this case it would be of interest to determine

if sub-population behavior differs not only in time but also over space. Spatial correlation

can also be incorporated into the current framework by considering spatially correlated

random effects in the intensity. The discrete mixture methods developed here may also

be adapted for survival analysis where the intensity (4.1) would represent group-specific

hazard functions. These might be appropriate in cure-rate analysis where a proportion of

individuals experience a cure or in the analysis of events pertaining to harsh treatments

where a sub-population experiences early failure after treatment. These ideas are currently

being investigated.



Chapter 5

Future Work

5.1 Extended Overdispersion Model

In much of the work presented in this thesis only first and second moment assumptions

were made on the mixing distribution tn, This is useful as it allows for the modeling of

overdispersion without explicit distributional assumptions, and inference procedures dis­

cussed offer consistency in estimates of regression parameters and full efficiency in certain

common cases for balanced designs (Dean and Balshaw, 1997). Here efficiency is with re­

spect to maximum likelihood assuming full distributional assumptions for tn, In Chapter 4

when estimating an individuals affinity to a particular sub-group, that is, estimation of the

Zgi'S, relies on the correctness of a gamma assumption for the within-cluster mixing distri­

butions mg. Although it has been found that the gamma distribution is sufficiently flexible

in many situations a method of assessing the validity of this assumption is desirable.

Let N-1(7, W, c) denote the generalized inverse Gaussian distribution with density,

(5.1)

where K T ( · ) is the modified Bessel function of the second kind (Abramowitz and Stegun,

1984) and

{

{ (W, <:; ) : W 2': O' <:; 2': O}' 7>0

GT = {(W'. <:;): W> 0, <:; > O}, 7 = 0

{(w, c}: W 2': 0, < > O}, 7 < 0

Some useful identities for KT(w), 7 E 1R and W > 0 are given by:

88
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1) KT(w) = 110
00 tT- 1exp {-1w(t + r 1)} dt

2) KT(w) = K_T(w)

89

3) K T+ 1(w) = ::KT(w) + K T- 1(w)

4) J~KT(W) = EKT(w) - KT+1(w) = -EI\T(w) - KT-1(w) = -~KT+l(W) - ~KT-l(W).

Using these identities it is straight-forward to show by manipulating the moment generating

function that the moments of Y '" N-1(7, W, c) are given by

E[y k ] = KT.+k( (~) (k, k = 1,... (5.2)
AT w

This is a very flexible class of distributions that includes as special cases: the gamma

(w ----+ 0, 7 > 0), the reciprocal gamma (w ----+ 0, 7 < 0), the inverse Gaussian (7 = -1/2),

the reciprocal inverse Gaussian (7 = 1/2) and the hyperbola distribution (7 = 0). It should

be noted that some care needs to be taken in the limiting cases when w ----+ O. Similarly

when 7 = 0 and either of w or < is small, (5.1) is numerically unstable and requires high

precision arithmetic to be computed in practice. Another useful and little known property

of the generalized inverse Gaussian distribution is that this distribution is conjugate in the

Bayesian sense for the Poisson distribution. So if N /Y = y '" Po'is(yp) and Y '" N- 1(7, W, c)

then YIN = n '" N- 1(7 + n,w(,w/( + 2p) with mean

E[YIN = n] = RT+n+1 (Jw2 + 2w(p) ( W( )
Jw2 + 2w(p

where RT(w) = K T+ 1(w)/ KT(w). Conjugacy here aids in computation both for the Bayesian

approach because of the explicit posterior distribution and in the frequentist approach due

to a closed form of the M-step required to implement EM type algorithms. For further

information on the generalized inverse Gaussian distribution and its properties see Jorgensen

(1982).

Assume that NilVi = Vi, i = 1, ... , I are independently Poisson distributed with mean

ViPi and that Vi i.'!:..,d. N- 1(7,w,( = 1) with density given in (5.1); here the pi's will be

assumed known for simplicity of presentation. The unconditional distribution of each N, is

then given by

P(Ni = ti; 17,w) 100 (ViPi)ni exp {-vipd ( . 1) d
, 1n Vi, 7, W, < = Vi

o ni·

p~; ( w ) T+ni K T+ni ( ~W2 + 2wPi)

tu: Jw2 + 2WPi I\T(w)
(5.3)
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for n; = 0, 1,... . This is the so-called Sichel distribution (Sichel, 1974) with mean E[Ni ] =

Rr(W)J.Li and variance F[Ni] = Rr(W)J.Li + (Kr+2(w)/Kr(w) - R r(w)2) J.Lr Special cases of

this mixed Poisson distribution of interest are the Negative Binomial

(5.4)T>O

lim P(Ni = ti; I T,W)
w-o
rr )

( )
ni ( ) rni + T J.Li T

ni! q T) T + fl'i T + J.Li

and Poisson inverse Gaussian distributions (T = -1/2). Denote l(T,W) = 'L;=llogP(Ni =

ti, I T,W) and lnb(T) = 'L;=llogPnb(Ni = ti; I T) as the log-likelihood of the Sichel and

negative binomial respectively. The hypothesis that the mixing distribution m is gamma

distributed (Ho : T > 0, W ---7 0) can be assessed using the test statistic

T = l(f,w) -lnb(fnb)
l(f,w)/(I - 2)

(5.5)

where f and ware the solutions to the equations

a
awl(T,W)

a
aTl(T,W)

and fnb the solution to

~lnb(T) = ~ [1I'(ni + T) - 1I'(T) - log (_T_)] = 0,
aT L T+ ti;

i=l

with 1I'(T) being the digamma function. The test statistic T (5.5) is asymptotically F­

distributed with 1 numerator and 1-2 denominator degrees of freedom. There is no closed

form expression for aKr(W)/aT but it can be computed accurately via a series expansion.

Alternatively a finite difference approximation

~K ( ) = -Kr+2h (w) + 8Kr+h (w) - 8Kr-h (w) + K r- 2h (w) O(h4)
Br r W 12h + '.

may be used and this has been found to be sufficiently accurate in practice for a suitably

small h (square root of machine precision). Similarly, a test for the hypothesis that m is

inverse Gaussian can also be constructed by replacing lnb(fnb) in (5.5) with l(T = -1/2,wg )

where wg is the solution to (5.6) with T fixed at -1/2.
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The use of a hroader family for the mixing distribution presented here could he extended

to the more complex case considered in Chapter 4 and such an extension woule! he useful

in model validation. Alternatively, the method could be used directly to obtain a suitable

within-cluster mixing distrihution contained within the Poisson generalized inverse Gaussian

family.

5.2 Spatial Extensions

A current area of investigation is the extension of the functional counting process methods

developed herein to the analysis of spatio-temporal data. Consider as a motivating example

the codling moth sterile insect release (SIR) data. The goal of this study was to assess the

effectiveness of anticidal control, the mass release of sterilized male moths (SIR) to over­

flood the population in order to reduce viable matings. The data displayed in Figure 5.1

consist of counts of moths collected in baited traps installed on 506 trees scattered over

the Okanagan valley in the Canadian province of British Columbia. The data at each tree

site in the study is similar in structure to the cherry bark tortrix data and consists of trap

counts collected weekly for twenty weeks over a summer. Clearly here it is not only of

interest to model the rate of change of recurrences over time but also through space while

simultaneously taking into account potential spatial variation likely to exist in data collected

over a region. A method of incorporating such spatial correlation into the counting process

framework discussed here would be through the use of multiplicative spatial random effects.

In this case the intensity generating the spatio-temporal counting process would have the

following form

>'(s, t) = exp{g(s)}¢(s, t)

where s = [x, y, z]T a vector containing the spatial coordinates, g(s) a mean zero stochastic

spatial process with specified correlation structure and ¢ a smooth function over time and

space. The space-time relationship ¢ could be modeled using multivariate smoothing tech­

niques such as kernel methods like kriging, thin plate or tensor product splines (Schimek,

2000). Extensions of univariate smoothing to the multivariate setting required for such a

modeling strategy are in general intuitive and straightforward. These methods however face

practical computational challenges requiring careful and efficient implementation since large

datasets are quite common in this area of study.
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Figure 5.1: The spatial location of trees (.) in the codling moth SIR study.
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5.3 Design of Recurrent Event Experiments

93

(5.7)

A topic of practical importance that has received very little attention in the literature is the

design of recurrent event experiments. Dean and Balshaw (1997) explore the loss of efficiency

in the analysis of end-of-follow-up counts versus event times in recurrent event studies and

established conditions for full efficiency. An investigation of the loss of efficiency from the

analysis of panel data panel data versus full event times was considered by Balshaw and

Dean (2001). Extending such considerations to the models considered in this thesis would

be useful. In addition, it would be helpful to develop strategies for optimal allocation of

followup times and sample size at the various followup times. Some individuals may be

observed less frequently than others to provide a scheme whereby the data is rich at specific

times and less so where it need not be.

The functional approach developed here is particularly suited for determining efficient se­

lection of followup times based on a priori information on the expected form of the recurrence

rate. Such information may be available from pilot studies, for example. A more compli­

cated scenario might involve adapting the study design after a fixed number of enrollments

and based on preliminary analysis of the data adapt the followup schedule accordingly.

To illustrate suppose that a small exploratory study were conducted which indicated that

the recurrence rate of individuals in this cohort were observed to follow a specific functional

form f(t). Further suppose that we were going to model f using a cubic spline so that f

would be expressed as
k+4

f(t) = L tjJhBh.e(t)
h=l

where Bh,e(t) denotes the cubic spline basis functions with defining knot sequence ~ =

[6, ... ,~k]T, k the number of knots and tjJh the spline coefficients. The question of optimal

number and position of follow-up times is now related to the "free-knot" spline smoothing

approach discussed in Chapter 1. The idea being that one would want shorter followup

when there is higher expected curvature in the rate function which is also where extra

knots are warranted. Figure 5.2 gives a graphical demonstration of the postulated best knot

positions for fitting a hypothesized recurrence pattern. The optimal number of knots may

be determined by adding knots until a desired precision is obtainable. It seems reasonable

that these knots could be used as a guideline for scheduling followup times. The exact

relationship between knots and followup schedule and how this interaction may lead to



CHAPTER 5. FUTURE WORK

more efficient design is worthy of further theoretical investigation.
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Figure 5.2: Plot of a hypothetical recurrence function displayed by the thick grey line
along with the best fitting six knot B-spline approximation (--) with the knot positions
indicated by the dotted vertical lines.
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