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Abstract 

We present an approach to model checking Abstract State Machines, in the context of 

a larger project called CoreASM, which aims to provide a comprehensive and extensible 

tool environment for the design, validation, and verification of systems using the Abstract 

State Machine (ASM) formal methodology. Model checking is an automated and efficient 

formal verification technique that allows us to algorithmically prove properties about state 

transition systems. This thesis describes the design and implementation of model checking 

support for CoreASM, thereby enabling formal verification of ASMs. We specify extensions 

to CoreASM required to  support model checking, as well as present a novel procedure for 

transforming CoreASM specifications into Promela models, which can be checked by the 

Spin model checker. We also present the results of applying our ASM model checking tool 

to  several non-trivial software specifications. 

Keywords: abstract state machines, model checking, distributed systems, formal verifica- 

tion tools, CoreASM 
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Chapter 1 

Introduction 

This thesis presents an approach to model checking Abstract State Machines. This work was 

done in the context of a larger project called CoreASM [22, 24, 231, which aims to provide a 

comprehensive and extensible tool environment for the design, validation, and verification 

of systems using the Abstract State Machine (ASM) formal methodology. By allowing the 

execution of ASM specifications, the CoreASM engine facilitates experimental validation of 

ASM models. Executing an ASM model allows us to see the general behavior of a system 

with respect to some input or some specific initial state. However, experimental validation 

does not allow us to formally verify the overall correctness of a system with respect to all 

of its behaviors. Model checking is an automated and efficient formal verification technique 

that allow us to algorithmically prove properties about state transition systems. This thesis 

describes the design and implementation of model checking support for CoreASM, thereby 

enabling formal verification of Abstract State Machines. 

1.1 Motivation 

As the adoption of information technology continues to grow, with software pervading many 

aspects of modern life, the importance of engineering software efficiently and correctly is 

paramount. Software projects are notorious for exceeding budgeted time and resources and 

for failing to meet user requirements [16, 28, 11. Designing high quality software is extremely 

challenging, and software failures can be very costly [55, 501. By some estimates, testing 

accounts for half of the effort spent in software development [37]. Software failure in mission 

and safety critical systems can be extremely costly and in the worst cases have lead to loss 
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of human life [47]. These problems have motivated the use of f o m a l  methods in software 

engineering. Formal methods are mathematically based techniques for the specification, 

development, and verification of systems. Applying a formal method to the design of a 

system produces a precise specification of the system's requirements. One can think of 

formal specifications as being blueprints for software. By catching and fixing design errors 

and inconsistencies early in the design process, we avoid dealing with them later in the 

development process, when the cost of making changes is much higher. 

The Abstract State Machine method is one such formal method. An ASM specification 

is a set of psuedo-code-like rules describing the behavior of an abstract machine. ASMs 

are a type of state transition system, and thus provide an operational system description. 

The semantics of ASM is mathematically well defined, yet basic and relatively simple to 

understand. The state of an ASM is described as a set of universes and functions. The 

evolution of the system is specified by a set rules which produce updates. The distinguishing 

characteristic of the ASM method is that it allows a designer to specify a system at  a 

natural level of abstraction. During system design, a system can be modeled a t  a conceptual 

level, considering only the aspects of the system that are relevant to capturing the informal 

requirements. As more design decisions are made, details can be filled in, thereby refining an 

abstract model into a more concrete model, which can be implemented in a programming 

language. The effectiveness of ASM method has been proven through its application in 

industrial settings, as illustrated in works by Borger, Gurevich, Glasser, and others [4, 33, 

9, 21. 

While the rigor and structure imposed by using formal methods can help improve the 

quality of software by removing ambiguities and sharpening understanding of system re- 

quirements, software specifications are still ultimately descriptions of algorithms, which 

need to be tested in some way. Traditional software testing involves producing test cases 

in an effort to cover as much of a program's behavior as possible. As the complexity of a 

system increases this task becomes more and more difficult. Test cases are often generated 

manually in an unsystematic fashion. On the other hand, f o m a l  verification techniques 

aim to increase software quality by providing a consistent logical framework in which to 

reason about the correctness of programs. Within such a framework, a property of a system 

can actually be proven. Model checking is a formal verification technique where a system is 

modeled as a finite state transition system and a correctness property, given as a temporal 

logic formula, is checked against this model. A model checking program uses an efficient 
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search technique to determine if a property is satisfied by a model. If a model does not sat- 

isfy a property, a counterexample is produced. We believe that applying model checking to 

ASMs can be a useful tool in assuring the correctness and quality of software specifications. 

1.2 Objective and Significance 

The objective of this work is to facilitate model checking of abstract state machines. This 

work is certainly not the first of its kind and the related work will be discussed in Chapter 2 

of this thesis. More specifically, the goal of this work is to provide model checking support 

for CoreASM specifications by translating CoreASM models into Promela models, which can 

be verified by the Spin model checker. We present a novel approach to performing this 

transformation that supports distributed abstract state machines. Spin, the recipient of the 

ACM System Software Award in 2001, is a widely used automata based model checker that 

has been used extensively in the design of asynchronous distributed systems [35]. Moreover, 

we aim to provide a tool that is simple to use and well integrated with the other existing 

CoreASM tools. This thesis also illustrates the extensibility of CoreASM by presenting spec- 

ifications to CoreASM plug-ins which allow function signatures and correctness properties 

to be included as part of a specification. Overall, this work significantly progresses the 

CoreASM project towards its goal of providing an open-source and platform-independent 

tool environment for the design, validation, and verification of abstract state machines. 

1.3 Organization of Thesis 

The remainder of this thesis is organized as follows: 

0 Chapter 2 discusses related works done on model checking abstract state machines 

and characterizes how this thesis fits in that landscape. 

0 Chapter 3 introduces basic model checking concepts and describes the verification 

procedure used by the Spin model checker. 

0 Chapter 4 serves as a general introduction to Abstract State Machines. 

Chapter 5 introduces the CoreASM project and describes the extensions made to Core- 

ASM to facilitate model checking. 
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Chapter 6 describes a novel procedure for translating CoreASM specifications into 

Promela models. 

Chapter 7 presents results on using our model checking tool. 

Chapter 8 concludes this thesis and discusses possible areas of future work. 



Chapter 2 

Related Work 

A substantial amount of work has been done on model checking software specifications. 

A notable case study was done on the Traffic Alert and Collision Avoidance System I1 

System Requirements Specification [12]. In this study, requirements specified in the Re- 

quirements State Machine Language were translated into input for the Symbolic Model 

Verifier (SMV) [39], a symbolic model checker which uses binary decision diagrams (BDDs) 

to  represent functions, which made it possible to verify several safety and correctness prop- 

erties of the system. This study illustrates the feasibility of model checking large software 

specifications of real world systems. 

Del Castillo and Winter present an approach for model checking abstract state machines 

in [18]. In this work, specifications written in ASM-SL, the ASM language for the ASM 

Workbench tool [17], are translated into input for the SMV model checker. Their translation 

scheme supports most basic ASM rules (excluding import and choose ) and arbitrary n- 

ary functions. The translation works by unfolding all rules and functions into basic updates 

to  state variables. This approach is applied to the verification of the Stanford FLASH Cache 

Coherence Protocol and the Production Cell system. Moreover, Winter's PhD thesis [56] 

presents an extension to the translation procedure to produce input for a model checker 

based on multi-way decision graphs (MDGs), which subsume BDDs. This extension supports 

the use of abstract data types. A case study using the approach is presented in [31]. 

Gargantini and Riccobenne present a method for model checking ASMs using the Spin 

model checker [29]. In this work, counterexamples produced by Spin are transformed to 

generate test cases. Specifications written for the AsmGofer tool [51] are translated into 

Promela, the input language for the Spin model checker [35]. Spin is an explicit state 
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model checker that uses an optimized depth first search algorithm to perform verification. 

Gargantini's work only supports basic single agent ASMs and a restricted subset of the 

standard ASM language. The rules supported are ass ignmen t  and condit ional  rules. Also, 

only nul lary  functions are supported. These are considerable limitations on the power and 

flexibility of an ASM specification language. 

In more recent work, Tang and Ternovska present a method for bounded model check- 

ing of ASMs using Answer Set Programming [53]. In this work, ASM-SL specifications are 

translated into answer set programs. Answer Set Programming is a relatively novel declar- 

ative logical programming paradigm, which is based on stable model semantics, for solving 

combinatorial search problems. The translation supports all basic ASM rules, including 

finite use of i m p o r t  statements, as well as arbitrary n-ary functions. 

Martin Kardos has also recently developed a model checker for the Abstract State Ma- 

chine Language (AsmL) [38]. AsmL [45] was developed by the Foundations of Software 

Engineering (FSE) group at  Microsoft Research and is based on the .NET runtime envi- 

ronment. Kardos has developed a native model checker which works directly with AsmL 

specifications (instead of translating into input for an existing model checker). His model 

checker uses the explicit state exploration algorithm described in [5], which is similar to the 

algorithm used by Spin. The effectiveness of Kardos' model checker has not yet been shown 

for non-trivial specifications. 

I t  is also worthwhile to note that the FSE group at Microsoft has also developed a model 

based testing tool for AsmL called Spec Explorer [46]. However, strictly speaking, Spec 

Explorer is not a complete model checking tool, as it generates a finite state machine which 

is only an approximation of an original system model. Spec Explorer's model exploration 

technique uses heuristics based sampling. Moreover, it is only capable of verifying specific 

predefined classes of temporal properties. 

The work presented in this thesis is similar to the previously mentioned work done by 

Gargantini and Riccobenne, as our work also uses Spin to model check ASMs. However, 

the translation procedure described in this thesis extends their work in several important 

regards: 

Support for all basic ASM rules, save for import . 

Support for arbitrary n-ary functions. 

Support for d i s t r i b u t e d  abstract state machines. 
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Some of the works mentioned this chapter use the ASM-SL specification language. ASM- 

SL and its supporting tool environment the ASM Workbench are no longer being developed 

or maintained, nor is the ASM Workbench publicly available. This lack of tool support 

makes practical use of ASM-SL as a specification language much more difficult, as there is 

no way to experimentally validate models specified using ASM-SL. On the other hand, the 

open-source CoreASM tool environment is actively maintained and is being used by various 

research groups around the world. 



Chapter 3 

Model Checking Concepts 

Model checking is a method for algorithmically verifying systems. In model checking, every 

possible execution path of a program can be computed (directly or indirectly), allowing a 

full state-space exploration (search) of a program. Thus, a given property can be checked 

to see whether it holds true in every possible state of the system. More formally, the model 

checking problem can be stated as: given a model (Kripke structure) M ,  an initial state s, 

and some temporal logical property 4, decide if M, s + 4. 

The key challenge to the wide application of model checking software is the state space 

explosion problem. While model checking has been successfully applied to hardware systems 

in industrial settings, its adoption in the software world has been much less rapid because 

the state space of software systems is frequently several orders of magnitude larger than 

those of hardware systems. One strategy for addressing the state space explosion problem is 

through the use of abstraction. By modeling a system at  a level that is only relevant to the 

properties being checked, the size of the state space can be greatly reduced. Based on this 

reasoning, abstract state machines are particularly well suited for model checking software 

systems. However, one should not conflate this general idea of design abstraction, with the 

formal notion of abstraction in model checking presented by Clarke et al. in [15]. 

Generally, model checking approaches can be divided into two categories, logical ap- 

proaches based on fixed point computation, and automata theoretic approaches based on 

language containment. Each of these strategies has its advantages and disadvantages. Au- 

tomata based model checking will be the focus of this chapter, as it is the model checking 

strategy employed by Spin, the model checker used in this work. Spin was chosen because 

of the high level constructs offered by its input language Promela, and because of its strong 
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reputation in the verification of protocols and reactive systems. 

The remainder of this chapter first presents fundamental model checking concepts, 

namely Kripke structures and temporal logic, followed by a detailed explanation of the 

automata-theoretic approach to model checking. Other model checking techniques will also 

be discussed briefly. 

3.1 Kripke Structures 

Kripke structures provide the mathematical framework for reasoning about model checking 

algorithms. A Kripke structure [41], which describes a state transition system, is a four-tuple 

M = (S, I, R, L) where: 

S is a countable set of states. 

I S is the set of initial states. 

R S x S is the transition relation. This relation is total. 

L : S + 2P is a labeling function, where P is a set of atomic propositions. Each state 

is labeled with the atomic propositions which are true in that state. 

A path T in a Kripke structure is a (possibly infinite) sequence of states (so, sl, sz, . . .) 
such that for each i 2 0, (si, E R. The notation ~ ( i )  denotes the i-th state (si) of the 

path, while xi denotes the path suffix starting at  si. A path is initialized if ~ ( 0 )  E I. 

3.2 Temporal Logic 

Model checking requires a suitable logic for specifying properties of state transition systems. 

Basic propositional logic formulas can only describe a single fixed state. In order to reason 

about computations, we require a dynamic state logic that will allow us to describe the tem- 

poral properties over different states of a system. We focus our discussion on the temporal 

logic used by the Spin model checker, Linear Temporal Logic (LTL) [48]. Other temporal 

logics will also be discussed briefly. 
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3.2.1 Linear Temporal Logic 

Linear temporal logic models time as a sequence of states which extends infinitely into the 

future. As the future is not determined, we wish to reason about all possible paths. LTL 

extends standard propositional logic with temporal operators. The syntax of LTL formulas 

is defined as follows: 

where p is some atomic proposition, and X (next), F (eventually), G (always), and U 

(until) are temporal connectives. The relation that defines whether a path satisfies a LTL 

formula (.ir + 4) is defined as follows: 

.ir + F 4 iff there is some i 2 0 such that .iri + 4 

.ir + 4 U $ iff there is some i > 0 such that .iri + $ and for all j = 0 , .  . . , i - 1 we 

have .irj + 4 

The temporal operators G and F are of particular importance as they describe safety and 

liveness properties respectively. A safety property describes a condition that must always 

(or never) be met, while a liveness property describes a condition that must eventually 

be met. Another aspect to consider when checking the temporal properties of a model is 
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fairness. When modeling a system one may have implicit assumptions about fair behavior, 

such as requiring that each process in a system be run infinitely often. To handle fairness, 

a model checking procedure must restrict the state space search to the so-called fair paths 

of a system, which satisfy the fairness constraints. 

In model checking, we are generally concerned with the initialized paths of a model, 

since they are the possible execution paths starting from an initial state of a system. If all 

initialized paths of a model M satisfy a property 4, we say that M + 4. 

3.2.2 Other Temporal Logics 

Another widely used temporal logic is Computation Tree Logic (CTL) [3]. CTL is a 

branching-time logic, which models time as a tree like structure. In LTL, formulas are 

implicitly quantified over all paths, so it is not possible to directly check for the existence 

of a certain path. CTL allows for quantification over paths. In CTL, each of the tempo- 

ral operators of LTL is combined with a path quantifier A or E. A is the universal path 

quantifier ('along All paths') and E is the existential path quantifier ('there Exists a path'). 

Certain properties that can be expressed in CTL cannot be expressed in LTL, and vice 

versa. Neither of the two logics is strictly more expressive than the other. 

CTL* [14] and the mu-calculus [40] are temporal logics that subsume both LTL and 

CTL. As its name suggests, formulas in CTL* are similar to CTL formulas, but combine 

both state formulas and path formulas. The mu-calculus expresses temporal properties in 

terms of fixed-point invariants. The mu-calculus provides a single unified logic for temporal 

properties; LTL, CTL, and CTL* formulas can all be expressed in the mu-calculus. Although 

these logics are more expressive, they can be more difficult to understand and unintuitive 

when compared to LTL and CTL. Moreover, the verification procedure for these properties 

may be more complicated. 

3.3 Automata Based Model Checking 

In automata based model checking, both the model and the property to be checked are 

encoded as w-automata. The class of w-automata are automata capable of accepting inputs 

of infinite length. An w-automaton accepts an infinite input string if the automaton reaches 

an accepting state infinitely many times. The class of languages (input) w-automata accept 
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are the so called w-regular languages. The simplest w-automata are Buchi automata. Both 

Kripke structures and LTL formulas can be represented as Buchi automata. 

3.3.1 Biichi Automata 

A Biichi automaton is a tuple A = (C, S, p, S o ,  F) where: 

C is an alphabet, 

S is a set of states, 

p : S x C --t 2S is a nondeterministic transition function, 

So 2 S is a set of starting states, and 

F C S is a set of designated accepting states. 

A Kripke structure M = (S, I, R, L) over a set of atomic propositions P can be trans- 

formed into a Buchi automaton AM = (2',S,p, I,S), where, for @ E 2', s1 E p(s,p3 if 

(s, sf) E R and L(sl) = p'. 

An algorithm for translating LTL formulas to Buchi Automata was first presented in 

[54], and the on-the-fly technique used by the Spin model checker is presented in [32]. The 

algorithm computes the states of the automaton by computing the set of subformulas that 

must hold in each reachable state and in each of its successor states. The initial state 

is labeled with the full LTL formula and the remainder of the states corresponding to 

subformulas are computed recursively. 

3.3.2 The Model Checking Problem in Terms of Automata 

The computation paths of a Kripke structure can be viewed as input words for Buchi au- 

tomata. This correspondence allows us to view the model checking problem as the problem 

of computing the intersection of two languages. Let AM and A+ be Buchi automata cor- 

responding to the model M and property 4 respectively. The language accepted by AM, 

L(AM) 2 C*, corresponds to the possible runs of the system, while the language accepted by 

A+, L(A+), correspond to the runs which satisfy the given requirement. If L(AM) C L(A+), 

then every run of the system satisfies the property. Let A,+ be the Biichi automata cor- 

responding to  14 (the negation of the property) and L(A+) be the language accepted by 
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that automaton. L(Al4) corresponds to exactly those runs which violate the property 4. 
The model checking problem can be stated as proving that L(AM) n L(A14) = 0, i.e. that 

no run of the system also violates the property being checked. The intersection of the two 

languages is equivalent to the language accepted by the product automaton AM x A,$, 

which can be computed efficiently. If the intersection of the two languages is not empty, 

then the intersection provides a counterexample to the property. In summary: 

3.3.3 Computing L(AM x A + )  

A language L(A) is not empty if and only if A has an accepting state s E F that is reachable 

from an initial state and there is a cycle around s (i.e. there is a path on which ~ ( i )  = s 

holds infinitely often for i > 0). The key problem to be solved then is cycle detection. Spin 

employs a nested depth first search algorithm to compute L(AM x A,$). A depth first 

search is first run starting from the initial state to find the reachable accepting states. A 

second (nested) depth first search is starts from each accepting state to detect cycles. If 

a cycle is detected then the entire search history can be constructed by concatenating the 

initial DFS stack with the stack for the current nested search. Spin effectively accomplishes 

this search on-the-fEy by running the system automaton and property in alternation (we 

refer the reader to [32] for details). 

3.4 Other Model Checking Approaches 

A widely used model checking technique is symbolic model checking [43], which is used by 

the model checker SMV. In this approach, Kripke structures are represented as boolean 

functions in the form of ordered binary decision diagrams (BDDs). BDDs allow for effi- 

cient manipulation of boolean functions. However, certain functions cannot be represented 
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compactly as a BDD. Moreover, the size of BDD representation of a function is dependent 

on variable ordering, and the problem of determining optimal variable ordering for BDDs 

has been shown to be NP-complete. Explicit state (automata based) and symbolic (BDD 

based) model checking techniques each have their strengths and weaknesses. One case study 

comparing SMV and Spin indicated that, for larger models, Spin produced longer counter 

examples than SMV. However, Spin was able to find counterexamples faster and required 

less memory 1301. It is generally held that symbolic model checking is better at verifica- 

tion of true properties, while DFS and automata based approaches are better at producing 

counterexamples for false properties. 

Leveraging the power of state of the art SAT solvers, model checkers based on boolean 

satisfiability (SAT) have also been proposed [13]. SAT based model checkers are based 

on the concept of bounded model checking, which is another technique used to address the 

state space explosion problem. In bounded model checking, the goal is not to prove that a 

system satisfies a property, but to determine if a counterexample of a certain length (upper 

bound) exists. In this SAT based approach the state transition system, property, and bound 

are formulated as a boolean propositional formula and a SAT solver is to find a satisfying 

assignment, which corresponds to a counterexample to the property. However, the bounded 

model checking method is incomplete, as it can not prove the absence of counterexamples, 

only their presence. 

3.5 Validat ion Versus Verification 

Model checking is generally considered to be a method of formal verification, where the goal 

is to prove that an implementation conforms to a specification ("Did we build the system 

right?"). On the other hand, ASMs are geared towards experimental validation of system 

designs, as they provide an intuitive means of formalizing informal requirements ("Did we 

build the right system?"). In this sense, one can see that, when an ASM specification is 

verified with respect to some properties, this verification is part of a larger overall validation 

process . 



Chapter 4 

Abstract State Machines 

Abstract state machines provide a means of formally specifying systems at a natural level 

of abstraction. This chapter serves as a basic introduction to ASMs. We begin by defining 

basic ASMs, including definitions of states and standard rules. Then, we define distributed 

abstract state machines. The chapter finishes with an example ASM specification. For a 

more detailed and mathematically rigorous definition of ASMs we refer the reader to [ll] 

and [34]. 

4.1 Basic Abstract State Machines 

An abstract state machine is a specific formalization of a state transition system. A basic 

ASM M is given as M = (PM, SM, IM) ,  where PM is the program of M, SM is the set of 

states associated with M, and IM C SM is the set of initial states of M .  

4.1.1 Signatures and States 

A signature C is a finite collection of function names. Each function f, corresponding to 

a function name in C, has some arity n > 0. The constant nullary function names undef, 

true, and false, as well as the equality function =, are always contained in the signature. 

A state S E SM is defined as the non-empty superuniverse U, which contains elements, 

along with the interpretations of the function names in C over U. Each n-ary function name 

f in C has an interpretation f S  which is a function from Un to U. The functions undef, 

true, and false resolve to pairwise distinct elements of U. Functions are total functions and 



CHAPTER 4. ABSTRACT STATE MACHINES 16 

default to the value of undef, which represents an undetermined object. A relation is a 

function that always has the value true or false, with the default value being false. 

ASM functions can be divided into several broad categories which have useful semantics 

to a system modeler. When modeling a (reactive) system it is often beneficial to adopt 

an open system view, where we view the system as discrete entity operating within some 

environment. It is useful to distinguish between functions that are under the control of 

the system (machine) and functions that are controlled by the environment. We say that 

a function is controlled if it can only be changed by the ASM. We say that a function is 

monitored if it can only be changed by the environment. Monitored functions are used 

to model non-deterministic aspects of a system which are influenced by the environment. 

Functions whose values can not be changed are called static functions. (A static nullary 

function is also called a constant.) 

When modeling systems as ASMs, it is useful to subdivide the superuniverse U into 

smaller universes. One may wish to consider universes as being analogous to types in 

programming languages. Universes can be described by their characteristic functions. If R 

is a universe name, the elements which are members of R are exactly those e E U such that 

~ ' ( e )  = true. It is possible for an element to be a member of multiple universes. 

When designing algorithms we often think in terms of data types such as booleans, in- 

tegers, sets, strings, etc. Along with the data elements, there is often a set of standard 

functions defined over them. In ASM, these ideas are captured by the notion of back- 

grounds [6]. A background can be thought of as a static universe of elements which are 

implicitly part of the state. There may be a set of standard functions defined over those 

elements as well. For example, the Boolean background consists of the elements true and 

false and the standard Boolean operators (A,  V ,  1, etc). 

4.1.2 Locations and Updates 

A location is a pair ( f ,  (el , .  . . , e,)), where f is function name and e l , .  . . ,en are elements 

from U .  The content of location (f ,  (el , .  . . ,en)) is the value of fS(el ,  . . . , en) in any state 

S. Conceptually, locations can be seen as the memory elements of an ASM. 

An update (1, v)  is a pair where 1 is a location and v E U .  Updates change the value 

of functions - the meaning of an update is to set the content of location 1 to be the value 

v. The execution of any ASM rule produces an update set, which is a collection of updates. 

An update set Updates is said to be consistent if for any location 1, if (1, v) E Updates and 
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(1, w) E Updates then v = w. In other words an update set is consistent if it contains no pair 

of updates which assign different values to the same location. Otherwise, the update set is 

inconsistent. Firing an update set evolves the state of an ASM by applying each update 

(1,v) E Updates to the current state. If Updates is inconsistent the update set cannot be 

fired and there is no state change. 

4.1.3 ASM Rules 

The program PM of an ASM M is an ASM rule. The firing (execution) of any ASM rule 

produces an update set (which may be empty). This section will provide the definition of 

the standard basic ASM rules. As we will see, rules may be composed from other rules. 

Let A(R) denote the update set produced by firing rule R. 

a An update rule has the form: 

where each ti is a term. Terms are defined recursively as in first-order logic. Variables 

(nullary functions) are terms, and if g is an n-ary function and t l ,  . . . , t, are terms, 

then g(tl ,  . . . , t,) is a term as well. The update set produced by the update rule is 

defined as: 

where vi is the value of ti evaluated in the current state. The meaning of this update 

is that the value of the location ( f ,  (vl, . . . , v,)) will be vo in the next state. 

a When describing an algorithm is it often necessary to dynamically allocate new re- 

sources by introducing new elements. In ASMs this is accomplished using the 

import rule. 

import e do 

R [el 
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where e is a new element imported from the possibly infinite reserve universe. Reserve 

elements can not be referenced by state functions - they can only be accessed through 

the import statement (or extensions of it). 

The element e is removed from the reserve and added to the current state s ,  resulting 

in a new state s'. The rule R is evaluated with e in the new state. 

The skip rule is a no-op statement, A(skip) = 0. 

A conditional rule has the form: 

if guard then R1 else R2 

where guard is a Boolean term. The else clause may be omitted, implicitly making 

R2 = skip . 

A(R1) if the value of guard is true 
A(if guard then Rl else R2) = 

A(R2) otherwise 

Parallelism 

When modeling a system it may be beneficial to  abstract away from the order of execution 

of operations when it is irrelevant to the model. The semantics of ASM allow for rules to be 

grouped together and executed in parallel. There are two standard ASM rules which allow 

for the parallel composition of rules, the par (block) rule and the forall rule. 

The par rule has the following form: 
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It is often the case that the pa r  keyword is omitted and rules listed in sequence are 

meant to form a parallel block. Each of the Ri's is executed in parallel, so 

A( pa r  R1 . . . R,) = A(R1) U . . . U A(R,) 

0 The forall rule allows the same rule to be executed simultaneously on each of the 

members of a collection. It has the form 

forall e E C wi th  guard d o  

R[el 

where C is an enumerable collection. The rule R is executed on each member of the 

collection that satisfies the guard condition. When the wi th  clause is omitted this 

implicitly means that guard = true. 

A(foral1 e E C with guard d o  R[e]) = A(R[cl]) U . . . U A(R[c,]) 

where ci E { c I c E C, guard[c] = true ). 

Non-determinism can be useful in describing a program behavior at a high level of abstrac- 

tion. Non-deterministic constructs can be used when selection decisions, such as process 

scheduling, are arbitrary, and to model random processes. 

0 ASMs can express non-determinism through the choose rule. It has the form 

choose e E C with guard d o  

Rl [el 
ifnone 

R2 

where C is an enumerable collection. When the wi th  clause is omitted this implicitly 

means that guard = true, and when the ifnone clause is omitted this implicitly means 

that R2 = skip . 
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A ( c h o o s e  e E C w i t h  guard d o  Rl [el ifnone Rp)  = 
A(Rl[C]) if Cg # 0 

A(R2) otherwise 

where c is chosen non-deterministically from C, = { c I c E C, guard[c] = true ). 

S u p p l e m e n t a r y  R u l e  Forms  

An e x t e n d  rule has the form: 

e x t e n d  U w i t h  e d o  

R[el 

where U is a universe name. The e x t e n d  rule is an extension of the i m p o r t  rule. 

A, (ex tend  U w i t h  e d o  R [ e ] )  = { ( ( U ,  ( e ) ) ,  t r u e ) )  U A,! ( R [ e ] )  

Like the i m p o r t  rule, e x t e n d  imports a new element from the reserve and adds it to 

the current state s. In addition to this, the new element is added to the universe U 

( U ( e )  = t rue) .  The rule R is then evaluated in the new state s f .  

For the purpose of reuse and modularization, it is possible to declare named parame- 

terized rules, with n 2 0 parameters: 

A call rule has the form: 

rulename( t l ,  . . . , t,) 

where rulename is the name of a declared rule and t l ,  . . . , t ,  are arbitrary terms. The 

meaning of the call rule is to substitute each z i  with the corresponding ti and fire rule 

R .  

A ( r u l e n a m e ( t l , .  . . , t,)) = A ( R [ t l ,  . . . , t,]) 



CHAPTER 4. ABSTRACT STATE MACHINES 

4.2 Distributed Abstract State Machines 

A distributed abstract state machine (DASM) &I has a finite universe of Agents and, exactly 

as in a basic ASM, a set of states SM and a set of initial states IM.  Each agent a E 

Agents has an associated program that defines its behavior, which is defined by the value 

of the location program(a), where program is a dynamic function. The static collection of 

programs that the agents may execute make up the distributed program PM. The vocabulary 

of a distributed abstract state machine also has a special static function self, which is 

interpreted differently by each agent to refer to itself. Ebr an agent a ,  selfS = a. 

A run p of a DASM M [34], also called a partially ordered run, can be defined as a triple 

(P,  A, a) satisfying the following conditions: 

1. P is a partially ordered set of moves, where each move has finitely many predecessors, 

i.e. { y I y 5 x ) is finite. 

2. The function A associates a move in P with the agent that performs that move. (A(x) 

is the agent performing move x.) The moves of any single agent are linearly ordered, 

so every nonempty set { x I A(x) = a ) is linearly ordered. 

3. a ( X )  is the state of M produced by performing all the moves in X .  a is defined over 

all the initial segments P and on the empty set; a(@) is an initial state. 

4. The coherence condition: If x is a maximal element in a finite initial segment X of P 

and Y = X - {x), then A(x) is an agent in a (Y)  and a ( X )  is obtained from a (Y)  by 

firing A(x) a t  a (Y) .  

An immediate and useful corollary of the coherence condition is that all linearizations 

of an initial segment of a run result in the same final state. While the above definition 

is concise, understanding of the coherence condition and its implications will benefit from 

some illustration. 

Light Control Example (Adapted from [lo]) 

The light control system for a building is modeled as a DASM. The model has three 

distinct agents: the window manager (agent W),  the door manager (agent D), and the light 

manager (agent L). The state of the system is represented by the nullary Boolean functions 

window, door, and light. When the value of each of these functions is true, it has the 
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intuitive meaning of "the window is open", "the door is open" and "the lights are turned 

on" respectively. The behavior of the agents is described by the following rules: 

WindowManagerProgram = if -door then window := true 

DoorManagerProgram = if lwindow then door := true 

LightManagerProgram = if ldoor V lwindow then light := true 

Let w, d, and 1 be the moves performed by each of these agents respectively. Figure 4.1 

illustrates all possible runs of the system starting from the initial state SO, where the door 

and window are closed and the lights are off. According to the definition of partially ordered 

runs the move from SO to S6 is not permissible, since the two possible linearizations of the 

moves {dl w) do not result in the same final state. If move d is made first, resulting in state 

S1, W can not make its move to S6. Similarly, if move w is made first, resulting in state 

S3, D can not make its move to  S6. By the exact same reasoning, the move from SO to 

S7 is also not permissible. On the other hand, notice that the moves in {dl 1) and in { I ,  w) 

produce the same resultant states, S4 and S5 respectively, regardless of the ordering of the 

individual moves. 
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Figure 4.1: Partially Ordered Runs of the Light Control System 
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4.3 A Sample ASM Specification: Master-slave Agreement 

The system being modeled consists of one master process and a number of uniform slave 

processes. The problem is for the master to delegate a job to the slave processes. Before 

a job can be delegated to the slave processes, the master must query the slaves to see if 

they are free to accept the job. If all of the slave processes accept then the job is executed. 

Otherwise, the job is canceled. 

The signature of the DASM model for this system is as follows: 

Master-Slave Agreement: Signature 

Slave = I s l , .  . . ,s,) 

Agents = Slave U {master)  

M O D E  = {idle, waitingForAnswer, waitingForOrder, busy) 

R E P L Y  = {accept, ref use)  

O R D E R  = {job, cancel) 

controlled asked : Slave -+ BOOLEAN 

controlled answer : Slave -+ R E P L Y  

controlled order :-+ O R D E R  

controlled mode : Agent -+ M O D E  

In this signature, M O D E  is the background defining the possible modes of an Agent ,  

REPLY is the background defining slave responses, and O R D E R  is the background defining 

the orders that can be given by the master process. The function asked indicates if a slave 

is being queried by the master process; its value is initially false for all slaves. The function 

answer  is the response given by a slave process; its value is initially undef for all slaves. 

The function order is the order given by the master process; its value is initially undef. 

Finally, the function mode gives the current mode of an agent; its value is initially undef 

for all agents. 

The master process' program is given by the rule M a s t e r p r o g r a m .  The master process 

queries the slave processes, asking each slave if it can accept a job. The master process 

waits for all the slaves to respond and if all the slaves are able to accept a job the master 

issues the job order, otherwise the master process cancels the job request. 
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Master-Slave Agreement: Master Program 

Masterprogram G 

if mode(se1f) = idle then 

forall s E Slave do 

asked(s) := true 

mode(se1 f )  := waitingForAnswer 

if mode(se1 f) = waitingForAnswer A 'ds E Slave l ( answer ( s )  = unde f )  then 

Order Or Cancel 

mode(se1 f )  := idle 

Orderorcancel = 
if 3s E Slave with answer(s) = ref use then 

order := cancel 

else 

order := job 

forall s E Slave do 

answer(s) := unde f 

The program of the slave processes are given by the rule SlaveProgram. A slave process 

waits to be queried by the master. After being queried, a slave non-deterministically chooses 

a response. After responding, a slave waits to receive and order from the master. 



CHAPTER 4. ABSTRACT STATE MACHINES 26 

Master-Slave Agreement: Slave Program 

SlaveProgram - 
if mode(se1 f )  = idle r\ asked(se1 f )  then 

SendAnswer 

if mode(se1 f )  = waitingForOrder then 

if order = job then 

mode(se1 f )  = busy 

if order = cancel then 

mode(se1 f )  = idle 

order = unde f 

SendAnswer = 
choose r E REPLY do 

answer(se1 f )  := r 

asked(se1 f )  := false 

mode(se1 f )  := waitingForOrder 
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Extending CoreASM for Model 

Checking 

Since unbounded model checking performs a full state space search of a transition system, a 

system must be finite for unbounded model checking to  be possible. Thus to model check an 

ASM, its functions and universes, which make up its state, must be finite. However, in prin- 

ciple, ASM functions are untyped alike functions; alternately, one can view the arguments 

and values of ASM functions as all being of the same type - they are all elements from the 

superuniverse. As CoreASM follows the mathematical definition of ASMs, CoreASM func- 

tions are untyped at  the base (kernel) level. While this is desirable in initial specification 

phases focusing on exploring the problem space, the domain and range types of functions 

must be known and finite for model checking of CoreASM specifications. 

This chapter describes the Signature Plug-in which extends the CoreASM language to  

include function declarations with type information. Moreover, when performing model 

checking, one must of course specify a property to be checked. It is convenient to include 

this property as part of the specification. This chapter also describes the Property Plug-in, 

which extends the CoreASM language to  include correctness properties that are expressed 

as LTL formulas. Before presenting these two plug-ins, we first give an overview of the 

architecture of CoreASM, with a focus on the components that are relevant to  this thesis. 

Since our assertion is that the ASM method is well suited to modeling arbitrary software 

systems, it is only fitting that we specify the CoreASM engine, language semantics, and plug- 

ins using ASM. (In fact, the semantics of several well known computer languages, including 
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SDL [49], VHDL [8], Java [52], and C# [7], have been specified using the ASM formalism.) 

5.1 CoreASM: An Overview 

The material in this section borrows from work originally presented by Farahbod et al. 

[24, 23, 25, 27, 261. The CoreASM project [22] focuses on the design of a lean executable 

ASM language, in combination with a supporting tool environment for high-level design, 

experimental validation and, where appropriate, formal verification of abstract system mod- 

els. CoreASM is designed with extensibility in mind, supporting the extension of both the 

specification language and the execution engine's behavior through plug-ins. 

The CoreASM engine is composed of four components: the Parser, the Interpreter, the 

Abstract Storage, and the Scheduler (see Figure 5.11). When a specification is executed, the 

Parser first dynamically generates a parser for the specification, whose language grammar 

depends on the plug-ins that are used by the specification. This custom parser is used to 

parse the specification. Parsing of a specification produces an Abstract Syntax Tree (AST). 

The rules represented in the AST are executed by the Interpreter, producing updates. The 

Interpreter interacts with the Abstract Storage and the Scheduler to apply these updates 

thereby evolving the state of the simulated ASM. The Abstract Storage maintains a repre- 

sentation of the ASM state. The Scheduler schedules agents to be run, and coordinates the 

overall execution of ASM runs. 

The CoreASM engine adopts a micro-kernel architecture. The base machine (kernel) 

only supports two basic ASM rules, assignment and import. This is the minimal set of 

required rules, since without assignment there would be no means of evolving the state, 

and without import new elements could not be introduced into the state. The kernel also 

contains the special element undef, and the elements from the Boolean background, true 

and false, since universes are defined by their characteristic functions. Other rule forms 

(such as conditional, forall, and extend) and backgrounds are introduced through plug-ins, 

which extend conservatively from the kernel (see Figure 5.2). 

The overall process of executing a specification with the CoreASM engine consists of 

three macrosteps, each of which includes a number of microsteps as follows: 

1. Initializing the engine (Figure 5.3) 

'Figures 5.1 - 5.6 are taken from 1261 by permission. 
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(a) Initializing the lterilel 

(b) Loading the 1il)rary catalog 

(c) Loading and activating the essential (core) plli, u-111s ' 

2. Loading a CoreASM specification (Figure 5.4) 

(a)  Parsing the specification header 

(b) Loading further needed plug-ins as declarccl ill the header 

(c) Parsing the specification body 

(d) Initializing the abstract storage 

(c) Setting up the initial state 

3. Execution of the specification (Figure 5.5) 

( i ~ )  Execute a siligle step 

(b) If terminatioil condition not met. repeat fro111 3a 

Figures 5.3-5.5 are Control State ASM diagrams which outline thc opclration of thc 

enginc. Thc lower lcvcl details of the CoreASM enginc arc not required to understand 

the wurk prcsei~ted in this thesis. Wc rcfer the reader to [24] for a 111uch more dctailccl 

specification of the CoreASM en,' 0 inc. 
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Figure 5.3: Control Ststc ASM of I~iitializirlg CorcASM Engine 
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Plug-in Interface Extends Description 
Parser Ph~g-in Parser provides additional grammar 

rules to the parser 
Interpreter Plug-in Interpreter provides new semantics to the in- 

terpreter 
Operator Provider Parser, Interpreter provides grammar rules for new 

operators along with their prece- 
dence levels and semantics 

Vocab~~lary Extender Abstract Storage extends the state with additional 
functions, universes, and back- 
grounds 

Aggreg ator Abstract Storage aggregates partial updates into 
basic updates 

Scheduler Plug-in Scheduler provides new scheduling policies 
for multi-agent ASMs 

Extension Point Plug-in all components extends the control state model 
of the engine 

Table 5.1: CoreASM Plug-in Interfaces 

5.1.1 CoreASM Plug-in Framework 

Concretely, a CoreASM plug-in is a Java2 class that inherits from the base Plug-in class 

and implements one or more of CoreASM's plug-in interfaces (see Table 5.1).  With these 

interfaces a plug-in can extend the engine components and the control state model of the 

engine. We will now describe these interfaces. 

Parser Extensions 

Plug-ins can extend the parser by implementing the Parser Plug-in interface and/or the 

Operator Provider interface. These interfaces allow a plug-in to contribute new grammar 

rules and operators to the parser respectively. For any parser plug-in pp, pluginGrammar(pp) 

holds the set of all the grammar rules contributed by pp. For any operator provider op, 

pluginOperators(op) holds the descriptions (syntax) of new operators contributed by op. 

Before parsing a specification, the engine gathers all the grammar rules and operator 

descriptions provided by all parser plug-ins and operator providers. These grammar rules 

and operator tokens are then combined with the kernel grammar to build a new custom 

'parser' to parse the specification. While building the abstract syntax tree, this parser labels 

2The CoreASM Engine is implemented in Java. 
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the nodes that  are created by plug-in-provided grammar rules with the plug-in identifier; 

these labels can later be used by the interpreter to evaluate such nodes. 

Interpreter Extensions 

By implementing the Interpreter Plug-in interface and/or the Operator Provider interface, 

plug-ins can extend the interpreter component of the engine . These plug-ins provide the 

semantics of rules and operations. Traversing the abstract syntax tree, the ExecuteTree 

rule of the interpreter (see Figure 5.5(d)) uses these semantic rules to evaluate nodes that 

correspond to  the extended grammar rules. 

The semantics contributed by a plug-in p which implements the Interpreter Plug-in 

interface can be obtained through pluginRule(p). AS already mentioned earlier, nodes of the 

parse tree corresponding to grammar rules provided by a plug-in are annotated with the 

plug-in identifier. If a node refers to a plug-in, the interpreter obtains the semantic rules 

provided by that plug-in and executes it; otherwise, the default kernel interpreter rules are 

used. 

The ExecuteTree rule of the interpreter is presented below. In this rule, the current 

position in the abstract syntax tree is denoted by the nullary function pos, and assignment 

to  pos is used to move evaluation to a different node. We refer the reader to  [23, 271 for 

more details on this process. 

Interpreter 

ExecuteTree = 
if 7 evaluated(pos) then 

if plugin(pos) # undef then 

let R = pluginRule(plugin(po~)) in 

R 
else 

Kernellnterpreter 

else 

if parent(pos) # undef then 

pos := parent(pos) 
- -- 

A similar approach is also used by the Kernellnterpreter rule to  obtain semantics of 

extended operators from Operator Providers. A detailed discussion on how the engine deals 

with operators and their extensions is provided in [44]. 
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Abstract Storage Extensions 

Vocabulary Extender plug-ins can extend the vocabulary of the CoreASM state by contribut- 

ing new backgrounds, universes, and functions to  the abstract storage. Such plug-ins in fact 

extend the initial state and signature of the simulated ASM. 

In the abstract storage, the following functions bind the names of functions and universes 

in the CoreASM state to  the mathematical objects that represent them. Backgrounds are 

considered as special universes and hence are handled by the same mapping. 

state Universe : STATE x NAME + UNIVERSEELEMENT 

The value of these functions is initialized by the InitAbstractStorage rule of the abstract 

storage (see Figure 5.4). After creating the default universe and functions (i.e., "Agents", 

"program", and "self"), this rule iterates over all vocabulary extender plug-ins and extends 

the CoreASM state with the vocabulary they provide: 

Abstract Storage 

InitAbstractStorage - 
Initializestate 

forall p E specP1ugins do 

if isVocabularyExtender(p) then 

forall (blcgName, blcg) E pluginBaclcgrounds(p) do 

stateUniverse(state, blcgName) := blcg 

forall (uName, universe) E pluginUniverses(p) do 

state Universe(state, uName) := universe 

forall (fName, f )  E pluginFunctions(p) do 

stateFunction(state, fName) := f 

Plug-ins can also implement the Aggregator interface and provide aggregation rules to 

be applied on update instructions before they are submitted to  the state. Aggregators are 

used, for example, to  implement partial updates; for more detail on this issue, we refer the 

reader to  [44]. 
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Scheduler Extensions 

Policy plug-ins extend the scheduler of the engine by providing new scheduling policies 

that affect the selection of agents in multi-agent ASMs. They provide an extension to the 

scheduler that is used to determine at each step the next set of agents to execute. In practice, 

a scheduler plug-in provides a concrete implementation of a choose in the SelectAgents step 

in Figure 5.5(b). It is worthwhile to note that only a single scheduling policy can be in force 

at any given time, whereas an arbitrary number of plug-ins of the remaining types can be 

all in use at the same time. 

Extension Point Plug-ins 

In addition to  modular extensions of specific components, plug-ins can also extend the 

control state of the engine by registering themselves for Extension Points. Each mode 

transition in the execution engine is associated to an extension point. At any extension 

point, if there is any plug-in registered for that point, the code contributed by the plug-in for 

that transition is executed before the engine proceeds into the new mode. Such a mechanism 

enables arbitrary extensions to the engine's life-cycle, which facilitates implementing various 

practically relevant features such as adding debugging support, adding a C-like preprocessor, 

or performing statistical analysis of the behavior of the simulated machine (e.g., coverage 

analysis or profiling). 

5.1.2 State Representation in CoreASM 

Elements 

The base data elements used by the Abstract Storage to  represent an ASM state are simply 

referred to as ELEMENTS. All other elements of the state, including functions, universes, 

backgrounds, and rules, extend from ELEMENTS (see Figure 5.6). The following functions 

are defined over all elements of the state: 

0 bkg : ELEMENT + NAME 

is the name of the background of the given element. The default value is "Element". 
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Figure 5.6: Core Elements in the Kernel 

returns true if the two elements are equal. We have 

Val, a2 E ELEMENT 1 equalElement(al, a2) 

0 derived equal : ELEMENT x ELEMENT + BOOLEAN 

returns true if the given elements are equal. This function is defined as 

Enumerable Elements 

An element is enumerable if it can be viewed as a collection (i.e., a multiset) of other 

elements. The idea of enumerable elements provides a unique and yet simple interface to 

sets, multisets, trees, and other data structures. We define the following functions to support 

enumerable elements: 

0 controlled enumerable : ELEMENT + BOOLEAN 

holds true if the element is enumerable. 

0 derived enumerate : ELEMENT + ELEMENT -COLLECTION 

provides a collection of elements representing the internal structure of the enumerable 

element. 

enumerate(e) = enumeratebk (e) 
S(e) 
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derived contains : ELEMENT x ELEMENT + BOOLEAN 

holds true if and only if the first element is enumerable and as a collection it contains 

the second element. 

true, if enumerable(el) =trueAe2 E enumerate(el) 
contnins(el, e2) = 

false, otherwise. 

Function Elements 

Function elements represent the functions that are defined in a CoreASM state. 

FUNCTIONELEMENT, a subset of ELEMENT, is introduced to provide a core concept for state 

functions (tables) and custom-defined functions (e.g., derived functions provided by a plug- 

in, such as 'sin(x)').  The following functions and rule are defined over functions elements: 

fClass : FUNCTIONELEMENT + FUNCCLASS 

Is the class of the function, where 

FUNCCLASS == {monitored, controlled, out, static, derived) 

The default value of this function is controlled. 

fGetValue : FUNCTIONELEMENT x ELEMENT-SEQ + ELEMENT 

returns the value of this function with respect to the given arguments. The default 

value of this function is undef. 

rule FSetValue( f ,  args,  v) 

sets a new value for the function, if this is possible. By default, this rule is defined as 

follows. 

FSetValue( f ,  args, v) = 
fGet Value(f, args) := v 

signature : FUNCTIONELEMENT + SIGNATURE 

is the signature of the given function. The default value of this function is undef. 

derived flotations : FUNCTIONELEMENT + LOC-SET 

is the set of all locations for which this function has a value other than undef. 
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derived equalFunction : FUNCTIONELEMENT x ELEMENT + BOOLEAN 

where we have, 

equalhnction( f l ,  f2)  - Va E ELEMENT-SEQ fGet Value( fl ,  a )  = fGet Value( f2 ,  a )  

Vf E FUNCTIONELEMENT bkg(f) = "Function" 

Locations 

Locations within a state are pairs of function names and arguments lists. 

ZocName : Loc + NAME 

is the name of the function on which this location is defined. 

ZocArgs : Loc + ELEMENT-SEQ 

is the list of abstract object values, as arguments of the location. 

derived locFunction : Loc + FUNCTIONELEMENT 

is the function on which this location is defined. 

Signature Elements 

Signature elements represent the signatures of functions. Domain and range types (uni- 

verses) are identified by their names. SIGNATURE elements have the following functions 

defined on them: 

controlled sigDomain : SIGNATURE + NAME-SEQ 

is the ordered list of domain types for this signature. 

controlled sigRange : SIGNATURE + NAME 

is the range type for this signature. 

Universe Element 

Universe elements represent the universes that are defined in a CoreASM state. Hence, 

UNIVERSEELEMENT is a subset of FUNCTIONELEMENT. The following functions are defined on 

these elements: 
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uMember : UNIVERSEELEMENT x ELEMENT + BOOLEAN 

is the membership function of the universe. If u is a universe, then we may use the 

syntactical form u(x) for uMember(u, x). 

derived equaluniverse : UNIVERSEELEMENT x ELEMENT + BOOLEAN 

where 

equal~niverse(a, b, = equal~unction(a, b, 

Vi E UNIVERSEELEMENT bkg(i) = "Universe" 

For all v E ELEMENT and u E UNIVERSEELEMENT, we have, 

FSetValue(u, (v), b) = uMember(u, v) := b 

Background Elements 

Background elements represent backgrounds (static universes) in a CoreASM state. 

BACKGROUND is a subset of UNIVERSEELEMENT. 

controlled new Value : BACKGROUND + ELEMENT 

returns a pseudo new element of the given background; i.e., most probably returns 

a default value like an empty string for strings, or an empty set for sets, or false for 

Booleans. 

V b E BACKGROUND fClass(b) = static 

I t  is not possible to change the membership function of a background; i.e., it is not 

possible to add any element to a background or to remove any element from it. 

derived equalBackground : BACKGROUND x ELEMENT + BOOLEAN 

where 

equal~ackground(al b, = equal~niverse(a, b, 

\Ji E BACKGROUND bkg(i) = "Background" 
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Rule Elements 

Rule elements represent the ASM rules that are defined in a CoreASM state. Thus, RULE is 

a subset of ELEMENT. The following functions are defined on rule elements: 

0 ruleName : RULE + NAME 

is the name of the rule. If not undef, this name must be unique in state. 

body : RULE + NODE 

holds the body (syntax tree) of the rule. 

param : RULE + TOKEN-SEQ 

holds (in order) the parameters of the rule in squence of tokens (or strings). 

0 derived equalRule : RULE x ELEMENT + BOOLEAN 

where 

equazRule(a, b, = equaz~lement(a, b, 

Vi E RULE blcg(i) = "Rule" 

State 

The state of a simulated machine is represented as an abstract data structure. The following 

functions define the interface of such a data structure: 

content: STATE x LOC + ELEMENT 

is the value of a given location in the state. This function represents the interface of 

the state. 

0 state Universe : STATE x NAME + UNIVERSEELEMENT 

is the mapping of universe names to universe elements in the state. 

stateFunction : STATE x NAME + FUNCTIONELEMENT 

is the mapping of function names to function elements in the state. 

0 stateRule : STATE x NAME + RULE 

is the mapping of rule names to rule elements in the state. 
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The following derived functions are defined to respectively provide the set of all the universes, 

functions, rules, and locations defined in a state. 

derived universes : STATE + UNIVERSEELEMENT-SET 

universes(s) = {u I u E UNIVERSEELEMENT A (3n E NAME, stateUniverse(s, n )  = u))  

derived functions : STATE + FUNCTIONELEMENT-SET 

functions(s) = { f I f E FUNCTIONELEMENT A (3n E NAME, stateFunction(s, n )  = f ) )  

derived rules : STATE + RULE-SET 

rules(s) = {r I r E RULE A (3n E NAME, stateRule(s, n )  = r ) )  

derived locations : STATE + LOC-SET 

locations(s) = {I I 3 f ( f  E functions(s) A 1 E fLocations( f ))) 

derived isUniverseName : NAME -+ BOOLEAN 

isUniverseName(name) = universes(state, name) # undef 

derived i~FunctionName : NAME + BOOLEAN 

isFunctionName(name) = functions(state, name) # undef 

derived isRuleName : NAME + BOOLEAN 

isRuleName(name) = rules(state, name) # undef 

5.2 Signature Plug-in 

In principle, CoreASM functions are untyped alike ASM functions. While this is desirable in 

initial specification phases focusing on exploring the problem space, domain and range types 

of functions often add useful semantic information to a refined specification, for instance, 
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to  improve its understandability, to implement runtime type checking, and also to  facilitate 

model checking. The Signature Plug-in provides means to  declare functions with their 

associated signatures, thereby adding type information to  CoreASM. Moreover, it also allows 

to  define new universes and enumerated backgrounds directly in a specification, rather than 

introducing them by a separate plug-in. 

The Signature Plug-in extends the parser, the interpreter and the abstract storage. 

Extending the grammar of the CoreASM language with its own syntactic patterns, the 

Signature plug-in creates new nodes in the AST. These nodes are not evaluated during the 

execution of the ASM, since they do not represent regular rules or expressions; rather they 

are interpreted before an ASM run, when the engine is in the Initializing State  mode see 

Figure 5.4). During the initialization of the abstract storage, the engine queries plug-ins for 

the vocabulary elements they provide (see definition of InitAbstractStorage in Section 5.1.1). 

Hence, the interpretation of Signature declarations directly modifies the initial state (and 

vocabulary of the machine). 

5.2.1 Functions 

To declare functions, the Signature plug-in extends the CoreASM language with the following 

syntactic patterns3, which can appear in the header of a specification: 

Q function 

Q function 

Q function 

Q function 

Function Declaration 

xnam, : xdl * . . . * xd,,-> x, D -+ 

createFunction(xname, controlled, (xd,, . . . , xd,), x,) 

controlled xnam, : xd, * . . . * xd, -> x, D ---t 

createFunction(xnam,, controlled, (xd,, . . . , xd,), x,) 

static xnam, : zd, * . . . * xd,,-> x, D -+ 

createF~nction(x~,~,, static, (xdl, .  . . , xd,), 5,) 

monitored x, ,,,, , : xd, * . . . * xd,-> x, D skip 

Although (at the time of writing) monitored functions are not supported in the Core- 

ASM interpreter, the syntactic pattern for declaring monitored functions is included above 

3The notation we use here has been borrowed from 1271. It will suffice to say that the semantics is given 
by ASM rules guarded by syntactical patterns. Patterns are delimited by 1 D -+ symbols; inside a pattern, 
variables named x, e ,  v indicate that the corresponding node or subtree is an identifier, an expression, a 
value. An empty box indicates an unevaluated node; a boxed letter indicates an unevaluated node which is 
expected to result in the corresponding element. superscripts name 1ocations.the corresponding value in the 
pattern. 
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because monitored functions are supported in the translation of CoreASM to Promela. The 

interpretation of function declaration patterns is defined by the createFunction rule, which 

creates a new function and with the specified name, class, and signature. 

createFunction 

createFunction(name, functionClass, domain, range) = 
let f =  FUNCTIONELEM ELEMENT) in 

fClass( f )  := f unctionClass 

sigDomain(s) := domain 

sigRange(s) := range 

signature( f )  := s 

add (name, f )  to pluginFunctions(SignatureP1ugin) 

One can also specify the initial value(s) of a function in the function declaration by 

including an initialization expression at the end of the declaration. The initialization ex- 

pression may be a basic expression, for nullary functions, or a map expression, for n-ary 

functions. Before the function is created, the expression giving its initial value is evaluated. 

In the following rule fClass is either of static or controlled. 

Function Declaration with Initialization 

(I function f Class x,,,,, : xd, * . . . * xd,, -> x ,  initially am D + evaluate(cr) 

(I function f Class x,,,, : xd, * . . . * xd,, -> x ,  initially av  D + 

createFunction(x,,,,, fClass, (xd,, . . . , xd,,), x,, V )  

To support function value initialization the createFunction rule is modified as follows: 
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- -- -- 

createFunction with Initial Value 

createFunction(name, functionClass, domain, range, initialValue) - 
let f =  FUNCTIONELEM ELEMENT) in 

fClass( f )  := f unctionClass 

let s =  FUN SIGNATURE) in 

sigDomain(s) := domain 

sigRange(s) := range 

signature( f )  := s 

if initialvalue # unde f then 

setFunctionValue(f, domain, initialValue) 

add (name, f )  to pluginFunctions(SignatureP1ugin) 

The setFunctionValue rule sets the value of a function. If the function is not nullary and 

the specified value is a MAPELEMENT, each key in the map is viewed as a function location 

and the content of the  location is set to the corresponding map value. 

setFunctionValue 

setFunctionValue(function, domain, value) = 
if isMapElement(va1ue) A domain # unde f then 

forall loc E f Locations(va1ue) do 

FSetVaIue(function, locArgs(loc), f GetValue(value, locArgs(1oc))) 

else if domain = unde f then 

FSetValue(function, 0, value) 

5.2.2 Universes and Enumerations 

To declare universes, the Signature plug-in provides the following patterns: 

Universe Declaration 

universe x,,,, D --+ ~reateUniverse(x,,,,, {)) 

Q universe x,,,, = {x,, , . . . , x,,,) D + createUniverse(x,,,,, {x,, , . . . , x,,,)) 

The second pattern above allows the specification writer to  declare a universe along with 

a set of named initial member elements. Of course, a declared universe can still be extended 

using standard methods, namely by using the extend rule, which imports a new element 
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to a universe, or by setting the value of the corresponding universe membership predicate 

to true for a given element. 

The universe declaration patterns are interpreted by the createuniverse rule, which cre- 

ates a new universe with the specified name. If initial member elements are specified, for 

each member element a static function that refers to the member is also created. 

createuniverse 

createUniverse(name members) = 
let u =  UNIVERSEELEM ELEMENT) in 

add (name, u) to pluginUniverses(SignatureP1ugin) 

forall elementName E members do 

let e =  ELEMENT) in 

uMember(u, e) := t rue  

let f =  FUNCTIONELEM ELEMENT) in 

add (elementName, f )  to pluginFunctions(SignaturePlugin) 

fClass(f) := static 

FSetValue(f, 0, e) 

To declare enumerated backgrounds, the Signature plug-in provides the following pat- 

tern: 

Enumeration Declaration 

Qenum x,,,, = {x,,, . . . , xen) D + createEnumeration(x,,,,, {x,, , . . . , x,,,)) 

The createEnurneration rule is similar in spirit to createuniverse, as enumerable back- 

grounds are analogous to static universes. The rule is as follows: 
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createEnumeration 

createEnumeration(name, members) - 
let b = ENUM ENUMERATION BACKGROUND) in 

add (name ,  b) to pluginBackgrounds(Signatu~eP1ugin) 

forall elementNanze E members do 

let e =  ENU ELEMENT) in 

bkg(e) := name  

add e to enumMembers(b) 

let f =  UNCTIONELEME ELEMENT) in 

add (e lementName,  f )  to pluginFunctions(Signatu~eP1ugin) 

fClass( f )  := static 

FSetVaIue(f, 0, e )  

Background elements that are defined using the Signature Plug-in are 

ENUMERATIONBACKGROUND elements. ENUMERATIONBACKGROUND extends BACKGROUND by 

supporting the Enumerable Interface. 

0 controlled enumMembers : ENUMERATIONBACKGROUND -+ ELEMENT-SET 

is the set defining the members of the enumeration. This has a default value of {). 

5.3 Property Plug-in 

The Property Plug-in is a small plug-in that allows correctness properties for a model, ex- 

pressed as LTL formulas, to be included in the header of a CoreASM specification. Presently, 

specified properties do not have any meaning during ASM simulations (although it may be 

possible to extend the Property Plug-in to check simple global assertions). Correctness 

properties are only applicable during model checking, and are translated by our CoreASM 

to Promela translator. The details of the translation will be discussed in the next chapter 

(Section 6.5). 

Property Declaration 

1 property en D -+ skip 
1 check property an D -+ skip 
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I CoreASM Operator I Description I Expression Class I 

Table 5.2: LTL Operators Provided by the Property Plug-in 

always 
eventually 

strong until 
next 

Including the keyword check with a property declaration indicates that the property 

should be checked during model checking. The skip rule is specified as the action for these 

patterns because they have no semantics in the CoreASM interpreter. However, the property 

expressions are still included as part of the abstract syntax tree. The Property Plug-in also 

adds the LTL operators listed in Table 5.2 to the CoreASM grammar to be used in LTL 

formulas. 

One may see the Property Plug-in as indirectly improving the usability of the Spin model 

checker, since Spin does not allow LTL properties to be included directly in a specification. In 

Spin, properties are defined by describing the behavior of a property automaton. Moreover, 

Spin only allows a single property automaton in each model, while the Property Plug-in 

allows multiple properties to be specified for a single specification. 

Unary Operator 
Unary Operator 
Binary Operator 
Unary Operator 

Now that we have introduced CoreASM and extended the CoreASM language to support 

model checking, we can move on to can describing the translation of CoreASM specifications 

to input for Spin in the next chapter. 



Chapter 6 

From CoreASM to Promela 

This chapter presents a novel approach to model checking CoreASM specifications by trans- 

lating a CoreASM model into an equivalent Promela model, which can be verified using the 

Spin model checker [36]. From a high level perspective, the steps in the translation and 

verification process are as follows (see Figure 6.1): 

1. A CoreASM specification is loaded and parsed by the CoreASM engine, producing an 

Abstract Syntax Tree. 

2. The Abstract Syntax Tree is translated into Promela. 

3. Spin is invoked to generate a verifier of the Promela model, producing C code. 

4. The C code is compiled, generating a custom verifier of the CoreASM specification. 

5. The verifier is run, producing a counter example if the property being checked is 

violated. 

Using the abstract syntax tree as the basis for translation allows for structured translation 

and the straight-foward application of a recursive translation procedure. 

CoreASM specifications have a well defined structure. Function and universe declara- 

tions, as well as correctness properties, are declared in the header section, while the body 

of a specification consists of rule definitions. The different sections of a specification are 

translated in the following order: 

1. Universe declarations 
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CoreASM , Spec 

Abstract Syntax Tree 0 

Counter Example & 
Figure 6.1: CoreASM2Promela: Overall Verification Process 

2. Function declarations 

3. Correctness properties 

4. Rules 

Before describing the translation procedure, it will be useful to have a brief introduction 

to Promela. Promela (Process Meta Language), the input language of the Spin model 

checker, is a verification modeling language that is based on processes, message channels, and 

variables. Promela variables have two levels of scope: global and process local. Promela's 

syntax is similar to C and its execution semantics are also similar to those of C and other 

imperative programming languages, in that Promela statements are executed sequentially. 

However, Promela semantics differ from those of regular programming languages in several 

important regards. Unlike most programming languages, conditions (e.g. (a==b)) are 

treated as statements in Promela and are only executable when they are true. A false 

condition blocks execution of the running process. Also, selection and repetition constructs 

in Promela can be non-deterministic. 
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The remainder of this chapter presents in detail the CoreASM to  Promela translation 

procedure. 

6.1 Elements, Universes and Backgrounds 

As Spin can only check finite models, the translation scheme is limited to CoreASM spec- 

ifications which have finite state as well. Thus the translation only supports only static 

universes and finite backgrounds, which are handled in exactly the same fashion. Each ele- 

ment from a given universe or background is mapped to  an integer value, starting at zero. 

Since the Boolean elements true and false are part of the Promela language as well, the 

CoreASM Boolean background is not translated. 

The following CoreASM declarations: 

universe UniverseName = {universeElement~, . . . ,universe~lementN} 
enum BackgroundName = {backgroundElementO, . . . ,  backgroundElementN} 

are translated to  Promela as: 

Under this translation, elements from different universes may have the same underlying 

numeric value. The translator does not perform any type checking and we assume that all 

the rules and expressions contained in a specification only refer to elements from equivalent 

or compatible domains. 

The special element undef is handled by declaring a macro and we have chosen the 

convention of declaring the value of undef to be the maximum value of the Promela data 
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type that is used to represent a location. In most situations it suffices to use byte variables 

to represent locations, making the value of undef equal to 255 .  

#define undef 2 5 5  

6.2 Functions 

For the translation to be possible all functions referenced in the specification body must 

first be declared. The translation supports controlled, static, and monitored functions. 

CoreASM functions are translated as Promela global variables. 

Nullary functions are translated as basic integer variables. If f is a nullary function, f 

is simply translated as a Promela variable: 

N-ary functions are translated as multi-dimensional arrays. Each array element corre- 

sponds to a unique function location. Although Promela does not directly support multi- 

dimensional arrays, they can be created indirectly by chaining typedef statements, where 

each new type contains a single dimensional array, with array size corresponding to the size 

of the universe of each argument. If f is a a function with arity n 2 1 and with arguments 

(in order) from the universes Ul, . . . , U,, f is translated as follows: 

/ typedef L A R G n  { 

I byte ARGn 

typedef f--ARG (n-1) { 

fLARGn A R G ( n - l ) [ I U - ( n - l ) I ] ;  
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typedef f--ARGl { 

f--ARG2 ARGl[ I U-1 I ] ; 

} 

If an initial value for a controlled or static function has been specified in its declaration, 

the value is set in the initial rule of the ASM, which will be in turn translated to Promela. 

Rule translation is described in the next section of this chapter. 

A controlled function has the default initial value of undef for each of its locations. For 

each controlled function, two variables are declared, one representing the function in the 

current state and one for the next state. Updates only affect the next-state variable. The 

suffix '--P' (meaning prime) is added to the variable name to denote that it contains the 

value of the function in the next state. 

by te  f ;  

by te  f - - P  ; 

Monitored functions are updated in between each ASM step. A special inline procedure, 

monitoredupdate, which updates monitored functions, is created. This procedure is called 

at the beginning of each ASM step. A monitored function's next value is chosen non- 

deterministically from the values in its range. If g is a monitored function and the values 

vl, . . . , v, are in its range, g is updated by the following conditional statement: 

1 i n l i n e  moni toredupdate  ( )  { 



CHAPTER 6. FROM COREASM TO PROMELA 54 

If g is has arity greater than zero, each of its locations is updated non-deterministically, 

in a fashion similar to what is shown above. 

6.3 Rules 

All basic ASM rules are supported by the translation, except for those which introduce new 

elements from the reserve, such as import and extend , since these rules can potentially 

produce models with infinite state space. The possibility of extending the translation to 

support those rules will be addressed in the conclusion of this thesis. 

6.3.1 Assignment Rule 

loc := value 

The left hand side of the assignment is a location to be updated so in the equivalent 

Promela statement the primed copy of the variable corresponding to the location is updated. 

l oc - -P  = v a l u e  ; I 
6.3.2 Skip Rule 

skip 

Promela also uses skip as its no-op statement. 

I s k i p  ; 

6.3.3 Block Rule 

par rulel rule2 . . . rule, endpar 
optional 

As in most programming languages, Promela statements are evaluated sequentially. The 

parallel execution semantics of ASM rules is faithfully modeled since only the primed copy 
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of variables are modified during rule firing. From here on, the notation <<rule>> in the 

Promela code shall denote the recursive application of the translation algorithm. 

6.3.4 Conditional Rule 

if value then rulel else rulez 
optional 

As was mentioned earlier, Promela also has if statements as conditional selection con- 

structs. The translation is straight-forward. In the case with no else clause, we have: 

i f  

: :  v a l  --> <<ru l e1  >>; 
: :  e l s e  -> s k i p ;  

f i  ; 

otherwise: 

: : v a l  -> <<ru l e1  >>; 
: :  e l s e  -> <<ru le2  >>; 
f i  ; 

In the first case above, the translation requires the addition an empty else clause, as 

otherwise the execution of the statement in Promela would block when the guard value was 

false. Such behavior would not model the intended ASM execution semantics. 
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6.3.5 Choose Rule 

choose x i n  value with guard do rulel ifnone rulez endchoose 
optional optional optional 

A choose rule is translated into a non-deterministic Promela conditional statement. 

Since all universes and backgrounds must be enumerable, it is possible to enumerate all 

possible values of xin value. For each vi E value, all occurrences of xin rulel are replaced by 

vi. Each of the new rules that results from the substitution becomes a branch of the main 

conditional statement. In the code below the expression "rule[v/idlX denotes "rule" with all 

instances of the identifier id replaced with value v.  

if  

: : < < r u l e 1  [ v l / i d ] > > ;  

: : <<rule  1 [ v 2 /  i d ]  >>; 

If the choose rule has a with clause, the guard, again with the appropriate substitu- 

tions of vi for x, is added as a guard to  each of the conditional branches. A final e l s e  case 

is added to handle the case when none of the vi E value satisfy the guard condition. The 

Promela statement otherwise would block on such a condition. 

: : guard  [ v l / i d ]  -> <<ru le1  [ v l / i d ] > > ;  

: : guard [ v 2 / i d ]  -> <<ru le1  [ v 2 / i d ] > > ;  

: : guard  [ v n / i d ]  -> <<ru le1  [ v n / i d ] > > ;  I . . .  
: :  e l s e  -> s k i p ;  

f i  ; 

Finally, if an i f  none clause is provided, the associated rule (rule2) becomes the resultant 

statement for the e l s e  case. 



CHAPTER 6. FROM COREASM TO PROMELA 

i f  

: :  guard  

: : guard  

: : guard  [ v n /  id  ] -> <<rule  1 [ v n /  i d ]  > >; 
: :  e l s e  -> <<rule2 >>; 
f i  ; 

6.3.6 Forall Rule 

f  o r a l 1  x i n  value with guard do rule endf o r a l 1  
optional optional 

Similar to the case for the choose rule, a forall rule is translated by unrolling it into 

multiple statements, one for each vi E value. Again, parallel execution is modeled since only 

primed variables are updated. 

. , .  

< < r u l e  [ v n /  i d ]  >>; 

In the case that a with clause is included, each statement is translated into a conditional, 

with the appropriate substitutions made in the guard. 

i f  

: : guard  [ v l / i d ]  -> <<ru le  [ v l / i d ] > > ;  

: :  e l s e  -> s k i p ;  

f i  ; 

i f  

: : guard  [ v 2 / i d ]  -> <<ru le  [ v 2 / i d ] > > ;  

: :  e l s e  -> s k i p ;  

f i  ; 
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I : : guard  [ v n / i d  ] -> <<ru le  [ v n / i d ] > > ;  

: :  e l s e  -> s k i p ;  

f i  ; 

6.3.7 Map Assignment Rule 

Since CoreASM functions are objects, we have introduced a rule that assigns a map expres- 

sion to a function object. 

This rule is translated into multiple Promela assignment statements, one for each location 

defined in the map expression. 

f .ARGl[x-{n,  1 ) ]  . . . . .AFCh[x-{n,m)]  = y - n ;  I . . .  

6.3.8 Macro Rules 

r u l e  ruleName(arg1, . . . ,  argn) = aRule 

Macro rules are translated as Promela inline definitions, which model ASM semantics 

very well, since arguments to inline procedures are passed in a call-by-substitution manner. 

i n l i n e  ru leName(arg1  , . . .  , a r g n )  { 

<<aRule>> 

) ; 
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6.3.9 Program Rules 

rule programRuleName = aRule 

Rules which are agent programs are handled specially. The translation requires that the 

program function be declared as part of the specification signature, and that the function's 

initial value be specified. If a rule is the value of program(a) for some agent a ,  the rule is 

translated as Promela proctype declaration, which defines a new process type. The special 

function self is defined locally in each process. When a process is instantiated it is given a 

unique value for self, namely the value from the translation of Agent universe declaration. In 

Promela, statements within an atomic block are treated like a single statement. Execution 

of statements in an atomic block can not be interrupted by another process. This behavior 

models parallel atomic rule firing in ASMs. In each agent step, monitored functions are 

updated before the actual program rule is executed. After the program rule is executed, 

controlled functions are updated, thereby performing the agent's move and producing the 

next ASM state. 

p roc type  programRuleName(byte s e l f )  { 

d 0 

: : a tomic  { 

In the case that we wish to  override the purely non-deterministic scheduling policy of 

Spin, as is the case when we wish to ensure fair scheduling of processes, a mechanism to 

control the execution of the agent processes is required. Agent execution can be coordinated 

by using Promela rendezvous channels. A rendezvous channel is a message channel with 

size zero. A channel wait statement blocks a process' execution until a message is received. 

We add this channel wait statement to the main loop of an agent to provide a signaling 

mechanism for the agent. An array of rendezvous channels is defined globally, with one 
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channel for each agent. A single message type start is defined to signal the start of an 

agent's program execution. 

mtype = { s t a r t  ) ;  

chan c 2 p - s i g n a l  [ I  Agents I ]  = [ 0 ]  of {mtype) ;  

p roc type  programRuleName(byte s e l f )  { 
do 

: :  a tomic  { 

c 2 p - s i g n a l  [ s e l f  I? s t a r t  ; 

moni to redupda te  ( ) ; 

<<aRule>> 

f u n c t i o n u p d a t e  ( )  ; 

6.4 Expressions 

CoreASM2Promela supports the expression types supported in the CoreASM kernel, namely 

function term expressions and operator expressions. It also supports forall and exists ex- 

pressions. Function terms are translated into variables or array expressions. 

The translation only supports operators which are native to  Promela. Table 6.1 lists 

these operators. 

6.4.1 Forall and Exists Expressions 

f o r a l l  x in value h o l d s  guard 
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1 
mod 
< 

<= 
> 

>= 
not 
and 
or 

Promela Operator 
-- -- 

! = 

+ 
* 
1 
% 
< 

<= 
> 

>= 
1 

Description 
Equality comparator 
Inequality comparator 
Numeric addition 
Numeric subtraction 
Numeric multiplication 
Numeric (integer) division 
Modulo 
Less than comparator 
Less than or equal comparator 
Greater than comparator 
Greater than or equal comparator 
Logical negation 
Logical and 
Logical or 

Table 6.1: CoreASM to Promela Operator Conversion 

First-order universally quantified expressions are translated by expanding the expression 

into a conjunction of predicates over all of the elements in the domain which the expres- 

sion quantifies over. As is the case with forall and choose rules, value must be a static 

enumerable domain. If vl, . . . , v, are the elements in value, a forall expression is translated 

as: 

Similarly, existentially quantified expressions are translated as a disjunction of predi- 

cates. 

e x i s t s  x i n  value with guard 

( ( g u a r d  [ v l / i d ] )  I ( . . . I I ( g u a r d  [ v n / i d ] ) )  
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CoreASM Operator 
not 
and 
or 

implies 
G 
F 
u 
X 

Promela Operator 
I 

Description 
Logical negation 
Logical and 
Logical or 
Logical implication 
LTL always 
LTL eventually 
LTL strong until 
LTL next 

Table 6.2: Promela LTL Operators 

6.5 LTL Correctness Properties 

Spin does not support LTL correctness claims directly. LTL properties must be translated 

into Promela never claims, which correspond to the property automata described in Chap- 

ter 3. Only one never claim can appear in a Promela model, so only one property can be 

checked at a time (though the property may be a conjunction of other properties). Spin 

provides a tool which converts an LTL formula into an equivalent never claim. 

Spin's LTL translator only allows LTL and logical operators to appear in formulas (see 

Table 6.2), so, for example, comparison expressions cannot be included. However, Spin does 

support inclusion of complex predicates indirectly through macro definitions. Our translator 

defines these macros automatically. For example, for the following property: 

G( not (owner(resource) = agent1 and owner(resource) = agent2)) 
c2p-propoco c2p-prop0cl 

(6.1) 

the following macros are declared: 

#de f ine  c2p-propoco  (owner .ARGl[ r e s o u r c e ] = = a g e n t l  ) 

#de f ine  c2p -p rop0c l  (owner .ARGl[resource]==agent2) 

To ensure that a correctness claim is only checked in states where the ASM is properly 

initialized, a global boolean variable c2p-initialized is introduced. Without this variable, 

the model checker could produce erroneous counterexamples. The value of c2p-initialized is 

initially false and is set to true after the ASM state initialization steps (which are discussed 
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in the next section) are completed. So to restrict property checking of some property 4 to 

initialized states, we check the global implication: 

Moreover, to check that a property $ holds true in a given model using Spin, we actually 

need to check that the automaton corresponding to the negation of the property, +J, never 

accepts. Thus the property that is finally given to the Spin LTL translator is: 

Using the property listed earlier (Equation 6.1) as the example, the property actually 

given (using Promela LTL syntax) to the Spin LTL translator is: 

![] (c2pinitialized -> ([I (!(c2p_propOcO && c2p-propocl)))) 

for which the Spin LTL translator produces the following never claim: 

never { / *  ! [ I  ( c 2 p - i n i t i a l i z e d  -> 
( [ I  ( ! ( c2p-propOc0 && c2p-propocl )))) * /  

TO-ini t  : 

if 

: :  ( (  c 2 p - i n i t i a l i z e d )  && (c2p-propOc0)  && ( c 2 p - p r o p o c l ) )  

-> go to  a c c e p t - a l l  

: :  ( (  c 2 p - i n i t i a l i z e d  ) )  -> go to  T O 3 4  

: :  ( 1 )  -> go to  TO-in i t  

f i  ; 

TO34  : 

i f 

: : ( ( c2p -p ropOc0)  && (c2p-propocl )) -> go to  a c c e p t - a l l  

: :  (1) -> goto  TO-S4 

f i  ; 

a c c e p t - a l l  : 

s k i p  

1 
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6.6 DASM Simulation Model 

Every Promela model has a special initial process (which is specified using the keyword init) 

that is the first process run by Spin. In our translation from CoreASM to Promela we use 

the init process to initialize the state of the simulated ASM and, when desired, to explicitly 

schedule the execution of agents. 

In the ASM initialization section of the init process, all locations are first given the value 

undef. Then, if the function declaration section of a specification includes initial values, these 

initial values are set. Afterwards, the actual initial rule given by the specification writer is 

executed. This rule may perform any other state initialization, which may have not been 

convenient to express as part of the function declarations. Processes corresponding to the 

program of each of the agents are then instantiated, with the value of each process' self 

argument set to identify each DASM agent. Note that it is possible for multiple agents to 

share the same process type. Also, since the agent processes are launched within an atomic 

sequence, the processes can not begin execution until all the statements in the atomic 

sequence are complete. Thus all the agent processes begin their execution at the same time. 

At this point, the ASM is considered to be in its initial state, so the variable c2p-initialized 

is set to true. 

i n i t  { 

a tomic  { 

f u n c t i o n I n i t  ( ) ;  

i n i t - i n l i n e  ( ) ;  

f u n c t i o n u p d a t e  ( )  ; 

I n i t R u l e  ( )  ; 

f u n c t i o n u p d a t e  ( )  ; 

run  program1 ( agen t  1 ) ; 

r u n  program2 ( a g e n t 2  ) ; 

run  programN ( agentN ) ; 

c 2 p - i n i t i a l i z e d  = t r u e ;  

1 ;  
} 
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Spin's process scheduler is non-deterministic, so during model checking every possible 

interleaved sequence of process executions is considered. Thus, every possible sequence of 

DASM agent moves is considered. Interleaving semantics model the partially ordered runs 

of distributed abstract state machines faithfully, since the coherence condition implies that 

all linearizations of a partially ordered run result in the same final state. 

However, the shortcoming of Spin's process scheduling model is that it only supports 

weak fairness, not strong fairness. Under strong fairness a process that is enabled infinitely 

often will do infinitely many steps, while weak fairness stipulates that a process that is 

enabled infinitely long will to do infinitely many steps 1361. Consequently, because of our 

translation and Spin's statement execution semantics, it is possible for a DASM agent to 

never be run. This behavior is not desirable when one wishes to check a model for liveness 

properties, for which some assumption about fairness is usually made, i.e. all agents will 

execute infinitely often (no starvation). 

We address this problem by explicitly using a fair process scheduling policy when check- 

ing a model for liveness. We employ the simplest fair scheduling policy, round-robin. As 

was mentioned in Section 6.3.9, it is possible to coordinate the execution of Spin processes 

by signaling via message channels. In this case we add a loop to the Promela init process 

to explicitly run each agent in sequence. 

i n i t  { 

/ *  ASM i n i t i a l i z a t i o n  * /  

d o : :  { 

a tomic  { 

/ *  IAgentsI i s  t h e  number of a g e n t s  * /  
c2p-agen t  = ( c 2 p - a g e n t  + l )%( lAgen t s  I ) ; 
c 2 p - s i g n a l  [ c 2 p _ a g e n t  ] ! s t a r t  ; 

1 
) o d ;  

1 

While other fair and less restrictive scheduling policies, such as "each agent must be run 
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at least every k steps", can be implemented, doing so adds considerable complexity to the 

Promela model, producing models with much larger state space1. We leave the option of 

using custom scheduling policies open to users who are inclined to manually edit a generated 

Promela model. 

Having now presented in detail the method of translating CoreASM specifications into 

Promela models, which can be verified using the Spin model checker, we move on to pre- 

senting applications of this translation in the next chapter. 

'For example, using the "each agent must be run at  least every k steps" policy increases the state space 
by a factor of k x IAgentsl. 



Chapter 7 

Case Studies 

In this chapter we present the results of applying our model checking tool on several CoreASM 

specifications1. We compare our results against those of Winter's ASM2SMV model checking 

tool. We do not compare our tool with Gargantini's Spin based tool because the ASM 

language his tool supports is very limited and does not support DASMs, and applying the 

two tools to a simple ASM model would produce essentially equivalent Promela models. 

This would not provide an interesting comparison. We first present the specific results from 

each of the case studies and then give a general discussion and analysis of the results in 

Section 7.4. 

All tests were run on a Sun machine with a 1.2 GHz UltraSparc processor and 4 GB of 

main memory, using Spin, version 4.2.8, and NuSMV, version 2.4.1. 

7.1 Distributed Termination Detection 

Eschbach [21] presents a specification and verification of a distributed termination detec- 

tion algorithm, which was originally proposed by Dij kstra, Feijen, and van Gasteren [19]. 

Eschbach models the termination detection algorithm as an ASM and presents a manual 

proof of its correctness. In our experiments, we verify the correctness of Eschbach's ASM 

model of the termination detection algorithm using the CoreASM2Promela model checking 

tool. 

The problem to be solved is to detect the termination of a computation distributed over 
- ---  

'Several of these specifications were adapted from ASM-SL specifications presented in [53] 

67 
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several machines (computers), which are connected over a network. We assume that all 

machines are initially active in the computation. Machines become inactive once they have 

completed their part of the computation. An active (source) machine may delegate work 

to another (destination) machine by sending a message to the destination machine. After 

receiving a message an inactive destination machine becomes active again. A distributed 

computation is considered to be terminated when all machines are inactive and there are no 

messages to be processed. Each machine has no knowledge of the activity status and message 

queue of the other machines. One of the machines in the network is designated as a control 

machine which monitors the status of the computation. The termination detection algorithm 

works by sending a token, initiating from the control machine, through the network. Token 

passing is independent of message passing, and has no impact on the activity status of a 

machine. When the control machine gets the token back, it can determine if the computation 

has finished by examining the value of the token. For the details of algorithm we refer the 

reader to Appendix A.l, which contains the full ASM specification of the algorithm. 

The correctness property of most interest for this model is to verify that termination is 

always detected by the control machine once the computation has terminated. 

P I :  If the computation has terminated then termination will eventually be detected. 

Since this is a liveness property, whose correctness is dependent on fair scheduling agents, 

we use the round robin agent scheduling provided by CoreASM2Prornela (see Section 6.6). 

As originally presented, Eschbach's ASM specification for termination detection is not 

amenable to model checking since a machine may send an unbounded number of messages. 

Thus, our model is modified so that each machine may only send up to a maximum number 

of messages. In our experiments we varied two parameters, A the number of machines 

(agents) in the network, and M the maximum number of messages a machine may send. 

The model checking results are shown in Table 7.1, which lists the time taken to verify 

that the model satisfies P I .  An entry MEM in the table indicates that there was insufficient 

memory to complete verification, while T R  indicates that ASM2SMV translator failed (with 

segmentation fault). 



C H A P T E R  7. C A S E  STUDIES 

Table 7.1: Distributed Termination Detection Model Checking Results 

7.2 FLASH Cache Coherence Protocol 

The FLASH Cache Coherence Protocol coordinates the sharing of memory among the pro- 

cessing nodes of the Stanford FLASH multiprocessor [42]. Winter used the protocol as a 

case study in her PhD thesis on ASM2SMV. In the FLASH multiprocessor, distributed 

memory is partitioned into lines and each line is associated with a home-node which hosts 

the part of the physical memory where the line resides. The sharing of memory is facilitated 

by holding local copies of data a t  each node. The Cache Coherence Protocol guarantees 

that none of the nodes hold a copy of data that is out of date. The entire specification of 

the protocol is given in Appendix A.2. 

In these experiments, we use an erroneous specification of the protocol, based on the 

original model Winter used and then corrected, to elicit counterexamples from the model 

checkers, in addition to  verifying a true property. The following properties were tested: 

P2: No two nodes have exclusive access to  the same line a t  any time. 

V i V j  # j' G(l(State(nodej,  linei) = exclusive A State(nodej,, linei) = exclusive) 

P3: Every request will eventually be acknowledged. 

V iVj  G(CurPhase(nodej, linei) = wait -+ F(CurPhase(nodej, linei) = ready)) 

P4: Whenever a node obtains shared access to  a line, it will be marked as a sharer of 

the line. 
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Parameters 

N=2, 
L= l ,  
Q=1 
N=2, 
L=2, 
Q= l  
N=3, 
L=l ,  
Q=2 

Table 7.2: Flash Cache Coherence Protocol Model Checking Results 

Property 

P 2 
P3  
P4 
P2 
P 3  
P4 
P2 
P 3  
P4  

V i V j  G((State(nodej, linei) = shared + X(Sharer(linei, nodej) = true)) V 

(Sharer(linei, nodej) = true + X(State(nodej, linei) = shared))) 

P2 and P3  are not satisfied by the model, while P4 holds true. In these experiments, 

we varied three parameters: N the number of nodes, L the number of lines, and Q the 

size of the message queue a t  each node. Also, since P2 and P4 do not require scheduling 

fairness, we performed the tests both with and without CoreASM2Promela's explicit round 

robin scheduling for the sake of comparison. The results of the experiments are shown in 

CoreASM2Promela 

6s 

N/A 
196s 
85s 

N/* 
5,187s 
164s 

N/A 
MEM 

Table 7.2. 

7.3 i-Protocol 

The i-Protocol is an optimized sliding window protocol used in GP 

CoreASM2Promela 
Round Robin 

43s 
7s 

1,894s 
5,376s 
671s 

188,907s 
16,356s 

398s 
MEM 

Unix to  Unix Copy 

(UUCP). Version 1.04 of the i-Protocol contained a non-trivial error and was used as the 

basis of a comparative study of different verification tools in 1201. Due to the incorrect 

handling of negative acknowledgements, version 1.04 of the i-Protocol contains a so-called 

"livelock" error, in which a sequence of packet drops results in a loop where the receiver 

ignores all subsequent packets from the sender. The full specification of the protocol is given 

in Appendix A.3. 

To check for the presence of the live lock error, we check the model against the following 

LTL property: 

ASM2SMV 

(BDD) 
438s 
921s 
76s 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
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I Parameters I Property 1 CoreASM2Promela / ASM2SMV ] 

Table 7.3: iProtocol Model Checking Results 

W = l  

0 If the packet with sequence number [W/21 has been accepted and if eventually in the 

future there are no more data errors or packet drops, then next packet will eventually 

be accepted. 

G((accepted([W/21) A GF(1dckerr A lhcker r  A ldropped)) -+ 

F(accepted((([W/21) + 1) mod 2W))) 

P4 

In our experiments we varied the parameter W,  the size of the sendinglreceiving window. 

The results are presented in Table 7.3. 

7.4 Discussion 

Round Robin 
< IS 

The results from the Distributed Termination Detection experiments in Table 7.1 con- 

sistently show that verification using CoreASM2Promela and Spin is faster than using 

ASM2SMV and NuSMV. However, the difference in execution time may be due to  the 

strict round robin scheduling imposed by CoreASM2Promela, which greatly reduces the 

state space to  be search, as compared to  the SMV model, which considers all fair runs of 

the system. 

The results from the Flash Cache Coherence Protocol experiments (Table 7.2) show 

that Spin is faster at finding counterexamples (e.g. P2 and P 3  (N=2, L=l ,  Q=l ) )  than 

NuSMV. On the other hand, in this particular test NuSMV was faster than Spin a t  ver- 

ifying the true property (i.e. P4 (N=2, L=l ,  Q=l)) .  These results confirm the previous 

results showing that  depth-first search algorithms are particularly efficient a t  finding coun- 

terexamples [30]. There is also a notable difference in the performance of Promela models 

with non-deterministic scheduling and Promela models using round robin scheduling. The 

better performance of the model with non-deterministic scheduling may partly be explained 

by the Spin's use of partial order reductions, which can greatly reduce the state space that 

(BDD) 
MEM 
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needs to be searched during verification. Deterministic round-robin scheduling precludes 

the application of Spin's partial order reduction algorithm. 

The results from the Flash Cache Coherence Protocol and i-Protocol experiments show 

several cases where a model produced by CoreASM2Promela can be verified by Spin, while 

NuSMV runs out of memory when attempting to check the corresponding model produced 

by ASM2SMV (e.g. Table 7.2, N=2, L=2, Q=l).  This behavior may in part be attributed 

to the algorithms used by the two model checkers. Spin uses an explicit state approach where 

the reachable states of a system are actually enumerated (by "running" the model). On 

the other hand, the symbolic model checking approach used by NuSMV manipulates BDD 

representations of functions which make up the state, and reachable states are determined by 

placing extra constraints on the BDD formulas. The number of reachable states of a system 

is often far less than the number of possible states, and since BDDs become increasingly 

large as more constraints are placed on the functions, the memory usage of symbolic model 

checking can be quite high. Also, the greater amount of memory used when checking the 

SMV models may be attributed to inefficiencies in the ASM2SMV translator, which will be 

discussed ensuingly. 

It is unfortunate that more comparisons between our tool and ASM2SMV could not be 

made due to the failure of the ASM2SMV translator. ASM2SMV's translation to SMV is 

not optimal. In the ASM2SMV translation, all function locations are unfolded and repre- 

sented by individual state variables. ASM rules become guards on updates to these state 

variables. Overall, this creates very large SMV models when compared to the original ASM 

specification. Since our CoreASM2Promela translator only unfolds locations when trans- 

lating forall and choose rules, the Promela models produced are comparable in size to the 

original ASM specifications. 

In summary, the conclusions that can be drawn from our experiments are: 

0 CoreASM2Prornela/Spin finds counterexamples more quickly than 

ASM2SMV/NuSMV. 

0 CoreASM2Promela/Spin uses less memory than ASM2SMV/NuSMV, and thus it is 

possible to  verify more (larger) models using CoreASM2Promela/Spin. 

0 CoreASM2Promela is able to translate larger models than ASM2SMV. 



Chapter 8 

Conclusion and Future Work 

In this thesis we have presented a novel approach to model checking distributed abstract 

state machines. Model checking support for CoreASM provides a useful tool for ensuring 

the correctness and improving the quality of ASM software specifications. Our specific 

accomplishments are as follows: 

0 We have extended the CoreASM language to include function signatures, thereby effec- 

tively adding type information to CoreASM, thus allowing for more concrete specifica- 

tions. We have also extended CoreASM so that correctness properties can be included 

as part of a specification. 

0 We have presented a novel approach for model checking ASMs, by translating CoreASM 

specifications into Promela models, which can then be verified using the Spin model 

checker. Our translation supports a much more powerful modeling language than 

that of the previous work, and most significantly, our translation supports distributed 

abstract state machines. 

0 We have illustrated the effectiveness of CoreASM2Promela by testing properties of 

non-trivial models. Our experimental results show that, compared to previous work, 

our approach is more memory efficient and thus we are able to verify larger mod- 

els. The results also show that our tool is faster at finding counterexamples for false 

properties. 

We have created a tool that is simple to use, which leverages the power of an existing 

and widely adopted model checking tool. Our work advances the CoreASM project towards 
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its goal of providing an open and extensible tool environment for the design, validation, and 

verification of abstract state machines. 

8.1 Future Work 

There were many ideas and issues encountered during the development of the CoreASM 

Signature Plug-in and CoreASM2Promela which we did not have the time to fully explore. 

It would be worthwhile to address these ideas in the future. 

The Signature Plug-in presented in Section 5.2 could easily be extended to  implement 

runtime type checking of update sets. For each update to  a user declared function, the 

Signature plug-in would check to see that the update value matches the specified range type 

of that function. This check would occur during the engine's transition from the Aggregation 

state to the Step Succeeded state (see Figure 5.5). Moreover, the Signature Plug-in could be 

extended with a richer syntax to allow function domains and ranges to be expressed in terms 

of set operations (union, intersection, difference, etc). Also, supporting map comprehension 

expressions would provide concise and powerful means of expressing the initial values of 

functions. 

The CoreASM2Promela translation could be extended to support the dynamic introduc- 

tion of new elements through import and extend rules, though a constraint would have to 

be placed on the size of the reserve. Each element in the superuniverse would be associated 

with a unique integer. Dynamic universes could then be defined in terms of characteristic 

functions. Moreover, it is possible to support dynamic sets, by defining the contents of a set 

in terms of a binary containment predicate contains(x, y), where x is a set and y is some 

element. The practicality of supporting these constructs would need to be investigated, 

since they would add considerable overhead to a translated Promela model. 

The CoreASM2Promela translation algorithm could be optimized. Currently, all loca- 

tions are refreshed in between each ASM step, regardless of whether they have actually 

been updated by an ASM rule. This is a relatively expensive operation, which could be 

optimized by refreshing only those locations which may be updated by the active agent's 

program. Also, to make the CoreASM2Promela translator more extensible, the translator 

program could be refactored to adopt a plug-in based architecture, similar to that of the 

CoreASM engine. In such an architecture, the translation of AST nodes would be delegated 

to plug-ins, allowing the translator to accept input with an unfixed grammar. Thus, the 
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translator could easily be extended to handle new rule and expression forms. 

One important aspect of model checking ASMs that has not been addressed in this work 

is the interpretation of counterexamples. This issue is only addressed briefly in Winter's 

work. Counter-examples produced by a model checking tool are specific execution traces 

which violate the property being checked. The format of a counterexample is specific to 

the model checker which produced it. For example, SMV counterexamples begin with an 

initial state and then list state transitions in terms of updates to state variables, while Spin 

counterexamples are a complete history of the statements executed in the trace, along with 

the values of variables. Interpreting counterexamples as ASM runs is not a trivial task. 

Developing a tool to automate the mapping of model checker counter-examples to ASM 

runs would be a worthwhile endeavor. 



Appendix A 

CoreASM Specifications from Case 

Studies 

A. 1 Distributed Termination Detection 

CoreASM TerminationDetection 

use Standardplugins 

use MapSetPlugin 

use PropertyPlugin 

enum MODE = {SM,RM,P) 

enum COLOR = {black, white) 

universe Agents = {mO,ml,m2,m3) 

function controlled messages : Agents -> NUMBER 

function controlled mode: Agents -> MODE // should actually be monitored 

function controlled isActive : Agents -> BOOLEAN 

function controlled terminationDetected :-> BOOLEAN initially false 

function controlled count : Agents -> NUMBER 

function controlled color : Agents -> COLOR 

function controlled token : Agents -> BOOLEAN 
function controlled tokencolor :-> COLOR initially white 

function controlled tokenvalue :-> NUMBER initially 0 

function static nextMachine : Agents -> Agents 
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initially {m0->m3,ml->mO,m2->ml,m3->m2) 

function static id : Agents -> NUMBER 

initially {mO->O,rnl->l,m2->2,m3->3) 

function controlled initiateprobe :-> BOOLEAN 

initially true / /  deviating from paper 

function static maxMessages :-> NUMBER initially 1 

function controlled termination : -> BOOLEAN initially false 

function controlled program : Agents -> RULE 

initially {mO -> @Main,m2 -> @Main,ml -> @Main,m3 -> @Main) 

property G(not termination) 

property G(terminati0nDetected implies (G terminationDetected)) //C4 

check property G(termination implies (F terminationDetected)) //C3 

property G(terminati0nDetected implies termination) //C2 

rule UpdateEnvironment = 

Par 

if isActive (self) then 

choose b in BOOLEAN do 

isActive(se1f) := b 

endpar 

rule SendMessage = 

if (mode(se1f) = SM) then 

Par 

if isActive(se1f) and (count(se1f) < maxMessages) then 

choose send in BOOLEAN do 

if send then 

Par 
choose receivingMachine in Agents with receivingMachine!=self do 

messages(receivingMachine) := messages(receivingMachine) + 1 

count(se1f) := count(se1f) + 1 
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endpar 

endif 

endif 

mode(se1f) := RM 

endpar 

rule ReceiveMessage = 

if (mode(se1f) = RM) then 

Par 

if (messages(se1f) > 0) then 

Par 

messages (self) : = messages (self) - 1 
isActive (self) : = true 

count (self) : = count (self) -1 

color(se1f) := black 

endpar 

mode(se1f) := P 

endpar 

rule Probe = 

if (mode(se1f) = P) then 

Par 

TransmitToken 

Initiateprobe 

Nextprobe 

mode(se1f) := SM 

endpar 

rule TransmitToken = 

if token(se1f) and (isActive(se1f) = false) and (id(self)!=O) then 

Par 
token(se1f) := false 

token(nextMachine(se1f)) := true 

if color(se1f) = black then tokenColor:=black 

tokenvalue := tokenvalue + count(se1f) 
color (self) : = white 

endpar 
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rule Initiateprobe = 

if (id(se1f) = 0) and (initiateprobe = true) then 

Par 

token(nextMachine(se1f)) := true 

tokenvalue := 0 

tokencolor := white 

color (self) : = white 

initiateprobe : = false 

endpar 

rule Nextprobe = 

if (id(se1f) = 0) and token(se1f) then 

Par 
if ((count (self) + tokenvalue) = 0) and (color(se1f) = white) 

and (tokencolor = white) and (isActive(se1f) = false) 

then 

terminationDetected := true 

else 

Par 

initiateprobe := true 

token(se1f) : = false 

endpar 

endif 

endpar 

rule Main = 

Par 

SendMessage 

ReceiveMessage 

Probe 

UpdateEnvironment 

UpdateTermination 

endpar 

rule InitRule = 

Par 
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forall a in Agents do 

Par 
program(a) := @Main 

mode (a) : =SM 

isActive (a) :=true 

messages(a):=O 

count (a) : =0 

color(a):=white 

token (a) :=false 

endpar 

endpar 

rule UpdateTermination = 

termination : = ((messages (mO)+messages (mi) +messages (m2) +messages 3 = 0) 

and (forall a in Agents holds isActive(a)=false) 

A.2 FLASH Cache Coherence Protocol 

CoreASM flashProtoco1 

use Standardplugins 

use MapSetPlugin 

use PropertyPlugin 

universe Agents = ( al, a2, e ) 

function program : Agents -> RULE 

initially (al->@behavior, a2->@behavior,e->@env) 

enum TYPE = ( noMess, get, getx, inv, wb, rpl, fwdack, swb, 

invack, nack, nackc, fwdget, fwdgetx, put, putx, 

nackc2, putUswb, putxufwdack ) 

enum CCTYPE = ( ccget, ccgetx, ccrpl, ccwb ) 

enum LINE = { 11 ) 

enum PHASE = { ready, wait, invalidphase ) 

enum STATE = { exclusive, shared, invalid ) 
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funct ion s t a t i c  Home : LINE -> Agents 

i n i t i a l l y  { 11 -> a1 ) 

funct ion MessInTr : Agents -> TYPE 

i n i t i a l l y  { a1 -> noMess, a2 -> noMess ) 

funct ion SenderInTr : Agents -> Agents 

i n i t i a l l y  { a1 -> a l ,  a2 -> a1 ) 

funct ion SourceInTr : Agents -> Agents 

i n i t i a l l y  { a1 -> a l ,  a2 -> a1 ) 

funct ion s t a t i c  LineInTr : Agents -> LINE 

i n i t i a l l y  { a1 -> 11,  a2 -> 11 ) 

funct ion SenderInTrR : Agents -> Agents 

i n i t i a l l y  { a1 -> a2,  a2 -> a2) 

funct ion SourceInTrR : Agents -> Agents 

i n i t i a l l y  { a1 -> a l ,  a2 -> a1 ) 

funct ion MessInTrR : Agents -> TYPE 

i n i t i a l l y  { a1 -> noMess, a2 -> noMess) 

funct ion s t a t i c  LineInTrR : Agents -> LINE 

i n i t i a l l y  { a1 -> 11,  a2 -> 11 ) 

funct ion InSender : Agents -> Agents 

i n i t i a l l y  { a1 -> a2,  a2 -> a2 ) 

funct ion InSource : Agents -> Agents 

i n i t i a l l y  { a1 -> a2, a2 -> a2 ) 

funct ion InMess : Agents -> TYPE 

i n i t i a l l y  { a1 -> noMess, a2 -> noMess ) 
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function static InLine : Agents -> LINE 

initially ( a1 -> 11, a2 -> 11 ) 

function CurPhase : Agents * LINE -> PHASE 

initially ( (al,ll) -> ready, (a2,ll) -> ready 3 

function CCState : Agents * LINE -> STATE 

initially ( (a1,ll) -> invalid, (a2,11) -> invalid 3 

function Pending : LINE -> BOOLEAN 

initially ( 11 -> false 

function Owner : LINE -> Agents 

function Sharer : LINE * Agents -> BOOLEAN 

initially { (11,al) -> false, (ll,a2) -> false 3 

function monitored produceCCType : Agents -> CCTYPE 

property Ghat ((CCState(a1,ll) = exclusive) and 

(CCState (a2,11) = exclusive) ) ) 

property (G(((CurPhase(al,ll)=wait) implies F(CurPhase(al,ll)=ready)))) and 

(G(((CurPhase(a2,11)=wait) implies F(CurPhase(a2,11)=ready)) 1) 

property G( ((CCState(al,ll)=shared) implies X(Sharer(ll,al)=true)) or 

((Sharer(ll,al)=true) implies X(CCState(al,ll)=shared)) ) and 

G( ((CCState (a2,11)=shared) implies X(Sharer(l1, a2)=true) or 

((Sharer(ll,a2)=true) implies X(CCState(a2,11)=shared)) 

init Skip 

rule AppendToTransit(agentU, senderU, messU, sourceU, lineU) = 

if MessInTr(agentU)=noMess then 

Par 

SenderInTr(agentU1 := senderU 

MessInTr(agentU1 := messU 

SourceInTr(agentU):= sourceU 

endpar 
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rule AppendRequestToTransit(agentU, senderU, messU, sourceU, lineU) = 

if MessInTrR(agentU)=noMess then 

Par 
SenderInTrR(agentU1 :=  senderU 

MessInTrR(agentU1 := messU 

SourceInTrR(agentU):= sourceU 

endpar 

endif 

rule RlUR2UR3UR4 = 

if MessInTrR(a1) = noMess then 

Par 
if (produceCCType (self )=ccget) and (CurPhase (self, ll)=ready) then 

AppendRequestToTransit (Home(l1) ,self ,get, self, 11) 

endif 

if (produceCCType(self)=ccgetx) and (CurPhase(self,ll)=ready) then 

~ppendRequestToTransit(Home(l1),self,getx,self,l1) 

endif 

if (produceCCType (self) =ccrpl) and 

(CurPhase (self, 11) =ready) and 

(CCState (self, 11) =shared) then 

AppendRequestToTransit (Home(l1) ,self ,rpl, self, 11) 

endif 

if (produceCCType(self)=ccwb) and 

(CurPhase(self,ll)=ready) and 

e state (self, ll)=exclusive) then 

AppendRequestToTransit (Home (11) ,self ,wb, self, 11) 

endif 

endpar 

endif 

rule R5 = 

if (InMess(self)=get) and (Home(InLine(self))=self) then 

if Pending(InLine(se1f)) then 

if Mess~n~r(~nSource(self))=noMess then 
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Par 

Append~o~ransit(1n~ource(se1f),se1f1nack1 

InSource (self) , InLine (self) ) 
InMess(self):=noMess 

endpar 

endif 

else 

if Owner (In~ine(se1f)) != undef then 

if ~ess~n~r(~wner(~n~ine(self)))=noMess then 

Par 
~ppend~o~ransit(~wner(InLine(self)),self,fwdget, 

InSource (self) , InLine (self) ) 

~endin~(InLine(se1f)) := true 

InMess(self):=noMess 

endpar 

endif 

else 

if ~essInTr(In~ource(self))=noMess then 

Par 
~ppend~o~ransit(~nSource(self),self,put, 

InSource (self) , InLine (self) ) 

InMess(self):=noMess 

~harer(~nLine(self),InSource(self)) := true 

endpar 

endif 

endif 

endif 

endif 

rule R6 = 

if InMess(se1f) = fwdget then 

if ~~~tate(self,InLine(self)) = exclusive then 

if ~ome(InLine(self))=InSource(self) then 

if ~ e s s I n T r ( ~ o r n e ( ~ n ~ i n e ( s e l f ) ) )  = noMess then 

Par 
~ppendToTransit(~orne(InLine(self)),self,putUswb, 

InSource (self) , InLine (self 11 
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~ ~ ~ t a t e  (self, InLine (self 1) : =shared 

InMess(self):=noMess 

endpar 

endif 

else 

if (MessInTr(InSource(self)) = noMess) and 

(~essIn~r(Home(InLine(self))) = no~ess) then 

Par 
~~~end~oTransit(InSource(self),self,put, 

InSource (self) , InLine (self 1) 

~~~end~o~ransit(Horne(InLine(self)),self,swb, 

InSource (self) , InLine (self 1) 

CCState (self, InLine (self) ) :=shared 

InMess(self):=noMess 

endpar 

endif 

endif 

else 

if Home (InLine (self) ) =Insource (self) then 

if ~ess~nTr(Home(InLine(self))) = noMess then 

Par 
~~~end~oTransit(Horne(InLine(self)),self,nackc2, 

InSource (self) , InLine (self 
In~ess(self):=noMess 

endpar 

end i f 

else 

if (~essInTr(InSource(self)) = noMess) and 

(~ess~n~r(Horne(InLine(self))) = noMess) then 

Par 
~~~end~oTransit(InSource(self),self,nack, 

InSource (self) , InLine (self 1) 

AppendToTransit (Home(1nLine (self) ) ,self ,nackc , 
~n~ource(self),InLine(self)) 

InMess(self):=noMess 

endpar 

endif 
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endif 

endif 

endif 

rule R7 = 

if InMess(se1f) = put then 

Par 

if CurPhase(self,InLine(self)) ! =  invalidphase then 

~CState(self,InLine(self)) := shared 

endif 

~urPhase(self,InLine(self)) := ready 

InMess (self 1 : = noMess 

endpar 

endif 

rule R8 = 

if ((InMess (self) = sub) and (Home(1nLine (self)) = self) ) then 

Par 
~harer(~n~ine(self),InSource(self)) := true 

if Owner (InLine (self) ) ! = undef then 

~harer(~n~ine(self),Owner(InLine(self))) := true 

endif 

Owner(InLine(se1f)) := undef 

Pending(InLine(se1f)) := false 

InMess(se1f) := noMess 

endpar 

endif 

rule R7UR8 = 

if InMess(se1f) = putUswb then 

Par 

if CurPhase(self,InLine(self)) !=  invalidphase 

then CCState(self,InLine(self)) := shared 

endif 

~ur~hase(self,InLine(self)) := ready 

Sharer(InLine(self),InSource(self)) := true 

if Owner (InLine (self 1) ! = undef 
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then Sharer(InLine(self),Owner(InLine(self))) := true 

endif 

owner (InLine (self) ) : = undef 

Pending(1nLine (self) ) : = false 

~nMess(self) := noMess 

endpar 

endif 

rule R9 = 

if InMess(se1f) = nack then 

Par 
CurPhase (self, InLine (self) ) : = ready 

~nMess(self) := noMess 

endpar 

endif 

rule R10 = 

if ((InMess(se1f) = nackc) and (~ome(InLine(se1f)) = self)) then 

Par 
Pending(1nLine (self) ) : = false 

InMess(se1f) := noMess 

endpar 

endif 

rule R9UR10 = 

if InMess(se1f) = nackc2 then 

Par 

CurPhase (self, InLine (self) ) : = ready 

Pending(InLine(se1f)) := false 

InMess (self) : = noMess 

endpar 

endif 

rule R11 = 

if ((InMess(se1f) = getx) and (Home(InLine(se1f)) = self)) then 

if Pending(InLine(se1f)) = true then 

if MessInTr(InSource(se1f)) = noMess then 
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Par 
~~~end~o~ransit(~n~ource(self),self,nack, 

InSource(self),InLine(self)) 

InMess(self):=noMess 

endpar 

endif 

else 

if Owner (InLine (self) ) ! = undef then 

if MessInTr(Owner(InLine(se1f))) = noMess then 

Par 
AppendToTransit (Owner (InLine (self) ) ,self, f wdgetx, 

InSource (self) , InLine (self) ) 

Pending(InLine(self)) := true 

InMess(self):=noMess 

endpar 

endif 

else 

if (f orall agentU in {a1 ,a21 

holds (not(~harer(InLine(self),agentU))) ) then 

if Mess~n~r(InSource(self)) = noMess then 

Par 
~~~end~o~ransit(InSource(self),self,putx, 

InSource (self) , InLine(se1f)) 
~wner(~nLine(self)) := InSource(se1f) 

InMess(self):=noMess 

endpar 

endif 

else 

if (forall agentU in {al,a2) holds 

(not (sharer (InLine (self) , agentU) ) or 
(MessInTr(agentU1 = noMess))) then 

Par 
f orall agentU in {a1 , a2) with (Sharer (InLine (self) , agentU) ) do 

Par 
~~~end~oTransit(agentU,self,inv,InSource~self~,~n~~ne~se~f~~ 

Pending(InLine(self)):=true 

endpar 
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InMess(self):=noMess 

endpar 

endif 

endif 

endif 

endif 

endif 

rule R12 = 

if InMess(se1f) = fwdgetx then 

if ~~~tate(self,InLine(self)) = exclusive then 

if (~ome(InLine(self))=InSource(self)) then 

if ~ess~n~r(Home(InLine(self))) = noMess then 

Par 
~~~end~o~ransit(~ome(InLine(self)),self,~utxUfwdack, 

InSource (self) , InLine (self) ) 
~~~tate(self,InLine(self)):=invalid 

InMess(self):=noMess 

endpar 

endif 

else 

if (~ess~n~r(In~ource(self)) = noMess) and 

(~ess~n~r(Home(InLine(self))) = noMess) then 

Par 
AppendToTransit (InSource (self) ,self, putx, 

InSource (self) , InLine (self) ) 

AppendToTransit(Home(InLine(self)),self,fwdack, 

InSource (self) , InLine (self) ) 

~~~tate(self,InLine(self)):=invalid 

InMess(self):=noMess 

endpar 

endif 

endif 

else 

if (~ome(~n~ine(self))=InSource(self)) then 

if MessInTr(Home(InLine(self))) = noMess then 

Par 
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AppendToTransit(InSource(self),self,nackc2, 

InSource (self) , InLine (self) ) 
InMess(self):=noMess 

endpar 

endif 

else 

if (~essInTr(In~ource(self)) = noMess) and 

(~ess1nTr (Hone (InLine (self)) ) = noMess) then 

Par 

~~~end~oTransit(~n~ource(self),self,nack, 

InSource (self) , InLine (self)) 

~~~end~o~ransit(Home(~nLine(self)),self,nackc, 

InSource (self) , InLine (self ) )  

InMess(self):=noMess 

endpar 

endif 

endif 

endif 

endif 

rule R13 = 

if InMess(se1f) = putx then 

Par 

CCState(self,InLine(self)) := exclusive 

CurPhase(self,InLine(self)) := ready 

InMess(se1f) := noMess 

endpar 

endif 

rule R14 = 

if (InMess (self) = f wdack) and (Home (InLine (self) ) = self) then 

Par 

Owner(InLine(se1f)) := InSource(se1f) 

Pending(1nLine (self) ) : = false 

InMess(se1f) := noMess 

endpar 

endif 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

rule R13UR14 = 

if InMess(se1f) = putxufwdack then 

Par 

CCState(self,InLine(self)) :=  exclusive 

CurPhase(self,InLine(self)) := ready 

Owner(InLine(se1f)) := InSource(se1f) 

Pending(InLine(se1f)) := false 

InMess(se1f) := noMess 

endpar 

endif 

rule R15 = 

if InMess(se1f) = inv then 

if MessInTr(Home(InLine(self))) = noMess then 

Par 

~~~end~o~ransit(Home(InLine(self)),self,invack, 

InSource (self) , InLine (self) ) 

InMess(self):=noMess 

if ~~~tate(self,~nLine(self)) = shared then 

CC~tate(self,InLine(self)) := invalid 

else 

if CurPhase(self,InLine(self)) = wait then 

CurPhase(self,InLine(self)) : =  invalidphase 

endif 

endif 

endpar 

endif 

endif 

rule R16 = 

if (InMess (self) = invack) and (Home (InLine (self) ) = self) then 

forall agentU in Cal,a2) do 

if InSender(self)=agentU then 

Par 

Sharer(InLine(self),agentU) := false 

if ( forall otherUagentU in Cal,a2) holds 
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(otherUagentU = agentU or 

~harer(~n~ine(self),otherUagentU)=false) ) then 

if MessInTr(InSource(se1f)) = noMess then 

Par 

AppendToTransit(InSource(self),self,putx, 

InSource(self),InLine(self)) 

Pending(1nLine (self) ) :=false 

InMess(self):=noMess 

endpar 

endif 

else 

InMess(self):=noMess 

endif 

endpar 

endif 

endif 

rule R17 = 

if (InMess(se1f) = rpl) and (Home(InLine(se1f)) = self) then 

Par 
if (sharer (1n~ini (self) , InSender (self) ) = true) and 

(Pending(InLine(se1f)) = false) then 

Par 

Sharer(InLine(self),InSender(self)) := false 

CCState(self,InLine(self)) := invalid 

endpar 

endif 

InMess(self1 := noMess 

endpar 

endif 

rule R18 = 

if (InMess(se1f) = wb) and (Home(InLine(se1f)) = self) then 

Par 
if Owner(InLine(se1f)) != undef then 

Par 
Owner(InLine(se1f)) :=undef 
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CCState (self, InLine (self)) : = invalid 

endpar 

endif 

InMess(se1f) := noMess 

endpar 

endif 

rule behavior = 

Par 

RlUR2UR3UR4 

R5 

R6 

R7 

R8 

R7UR8 

R9 

R10 

R9UR10 

R11 

R12 

R13 

R14 

R13UR14 

R15 

R16 

R17 

R18 

endpar 

rule ClearMessInTr(agentU) = 

Par 

MessInTr(agentU):=noMess 

endpar 

rule SendMess(agentU1 = 

Par 

InSender(agentU):= SenderInTr(agentU1 
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InMess(agentU) := MessInTr(agentU) 

InSource(agentU):= SourceInTr(agentU) 

ClearMessInTr(agentU) 

endpar 

rule SendR(agentU1 = 

Par 
InSender(agentU) := SenderInTrR(agentU1 

InMess(agentU) := MessInTrR(agentU) 

InSource(agentU) := SourceInTrR(agentU) 

MessInTrR(agentU) := noMess 

endpar 

rule SendRequest(agentU) = 

if (MessInTrR(agentU) = get) and 

(~urPhase(SenderInTr~(agentU),LineIn~r~(agentU = ready) and 

(CCState (Sender InTrR (agentU) , ~ineInTrR (agent = invalid) then 

Par 
SendR(agentU1 

~ur~hase(SenderInTrR(agentU),LineInTrR(agentU := wait 

endpar 

else 

if (~ess~n~rR(agentU) = getx) and 

(Cur~hase(~enderInTrR(agentU),LineIn~r~(agentU = ready) then 

Par 
SendR(agentU1 

CurPhase(~ender~n~rR(agentU),LineInTrR(agentU := wait 

endpar 

else 

if (MessInTrR (agentU) = rpl) and 

(Curphase (~ender~n~r~(agentU) , LineInTrR(agentU) ) = ready) and 

(CCState (Sender~nTrR (agentU) , LineInTrR (agent = shared) then 

Par 
SendR(agentU1 

C ~ ~ t a t e ( ~ e n d e r I n ~ r ~ ( a g e n t ~ ) , ~ i n e ~ n ~ r ~ ( a g e n t U  := invalid 

endpar 

else 
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if (MessInTrR (agentU) = wb) and 

(CurPhase(SenderInTrR(agentU),LineInTrR(agentU)) = ready) and 

(CCState(SenderInTrR(agentU),LineInTrR(agentU))=exclusive) then 

Par 

SendR(agentU) 

CCState(SenderInTrR(agentU),LineInTrR(agentU := invalid 

endpar 

endif 

endif 

endif 

endif 

rule env = 

forall a in (al,a2) do 

if InMess(a)=noMess then 

if MessInTr(a) ! =  noMess then 

SendMess (a) 

else 

if (MessInTrR(a) ! =  noMess) and (InMess(a)=noMess) then 

SendRequest (a) 

endif 

endif 

endif 

rule Skip = 

skip 

CoreASM iProtocol1 

use Standardplugins 

use MapSetPlugin 

use PropertyPlugin 

universe Agents = ( send, recv, e ) 

function program : Agents -> RULE 
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i n i t i a l l y  (send -> @sendprogram, recv->@recvProgram, e->@env) 

enum TYPE = ( DATA, ACK, NAK, NOPAK ) 

enum STATE = ( IDLE, SENDuDATA, SENDuACK, ACCEPTuPAK, CHECKuMISSING, 

HANDLEuNAK, DCKERROR, TIMEOUTl, TIMEOUT2 ) 

enum MODE = { behave, sync ) 

funct ion s t a t i c  wnd :-> NUMBER i n i t i a l l y  2 

funct ion s t a t i c  hwnd :-> NUMBER i n i t i a l l y  1 

funct ion s t a t i c  des t  : Agents -> Agents 

i n i t i a l l y  ( send -> recv ,  recv -> send ) 

funct ion s t a t u s  : Agents -> STATE 

i n i t i a l l y  ( send -> IDLE, recv -> IDLE ) 

funct ion sendsequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 1 ,  recv -> 1 ) 

funct ion recsequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0, recv -> 0 ) 

funct ion rack : Agents -> NUMBER 

i n i t i a l l y  { send -> 0, recv -> 0 ) 

funct ion lack  : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0 ,  recv -> 0 ) 

funct ion recbuf : [O . . 11 -> BOOLEAN 

i n i t i a l l y  { 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion nakd : [O . . 11 -> BOOLEAN 

i n i t i a l l y  ( 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion accepted : [O . .  11 -> BOOLEAN 

i n i t i a l l y  ( 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion paktype : Agents -> TYPE 

i n i t i a l l y  { send -> NOPAK, recv -> NOPAK ) 

funct ion paksequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 1, recv -> 1 ) 

funct ion pakack : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0, recv -> 0 ) 
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function paktypeInTr : Agents -> TYPE 

initially ( send -> NOPAK, recv -> NOPAK ) 

function paksequenceInTr : Agents -> NUMBER 

initially ( send -> 1, recv -> 1 ) 

function pakackInTr : Agents -> NUMBER 

initially ( send -> 0, recv -> 0 ) 

function tmp :-> NUMBER initially 0 

function monitored dropped :-> BOOLEAN 

function monitored hckerr :-> BOOLEAN 

function monitored dckerr :-> BOOLEAN 

property G(((accepted(l)=true) and F(G(not (dropped or hckerr or dckerr)))) 

implies F(accepted(O)=true)) 

init Skip 

rule putPakToTransit(type, sequence, ack) = 

Par 

paktypeInTr(dest(se1f)) := type 

paksequenceInTr(dest(se1f)) := sequence 

pakackInTr (dest (self) ) : = ack 

endpar 

rule sendData = 

if paktypeInTr(dest(send)) = NOPAK then 

Par 

putPakToTransit(DATA,sendsequence(send),recsequence(send)) 

sendsequence(send1 := (sendsequence(send)+l)%wnd 

lack(send1 := recsequence(send) 

status(send1 := IDLE 

endpar 

else 

status(send1 := SENDuDATA 

endif 
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rule sendAck(sequence) = 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
putPakToTransit (ACK, sequence, sequence) 

lack(recv) : = sequence 

status (recv) : = IDLE 

endpar 

else 

status (recv) : = SENDuACK 

endif 

rule acceptPak(sequence) = 

Par 
accepted(sequence) := true 

recbuf (sequence) : = false 

recsequence(recv) := sequence 

if recbuf ( (sequence+l)%wnd) then 

status (recv) : = ACCEPTuPAK 

else 

if ( (sequence+wnd-lack(recv) ) %wnd) >= (hwnd div 2) then 

sendAck(sequence) 

else 

status(recv) : = IDLE 

endif 

endif 

endpar 

rule handleMissingPak(sequence) = 

if not(nakd(sequence)) and not(recbuf(sequence)) then 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
putPakToTransit(NAK,sequence,recsequence(recv)) 

nakd(sequence) : = true 

lack(recv1 : = recsequence(recv) 

if sequence = ((paksequence(recv)+wnd-l)%wnd) then 

Par 
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status (recv) : = IDLE 

paktype (recv) : = NOPAK 

endpar 

else 

Par 
tmp := (sequence+l)%wnd 

status (recv) : = CHECKuMISSING 

endpar 

endif 

endpar 

else 

Par 
tmp := sequence 

status(recv) := CHECKuMISSING 

endpar 

endif 

else 

if sequence = ( (paksequence (recv) +wnd-l)%wnd) then 

Par 
status (recv) : = IDLE 

paktype (recv) : = NOPAK 

endpar 

else 

Par 
tmp : = (sequence+l)%wnd 

statush-ecv) := CHECKuMISSING 

endpar 

endif 

endif 

rule handleDckErr = 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
put~ak~o~ransit(NAK,paksequence(recv),recsequence(recv)) 

nakd(paksequence (recv) ) : = true 

lack(recv) := recsequence(recv) 

status (recv) : = IDLE 
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paktype(recv) : = NOPAK 

endpar 

else 

status (recv) : = DCKERROR 

endif 

rule handleData = 

if ( ( (paksequence (recv) +wnd-lack(recv) )%wnd) <= hwnd) and 

(paksequence (recv) ! = lack(recv) ) then 

if dckerr then 

if not(accepted(paksequence(recv))) and 

not(recbuf(paksequence(recv))) and 

not (nakd(paksequence (recv) ) ) then 

handleDckErr 

else 

paktype(recv) := NOPAK 

endif 

else 

Par 

nakd(paksequence(recv)) := false 

if paksequence (recv) = ( (recsequence (recv) +1) %wid) then 

Par 

acceptPak(paksequence(recv)) 

paktype(recv) := NOPAK 

endpar 

else 

if not(accepted(paksequence(recv))) and 

not (recbuf (paksequence (recv)) ) then 

Par 
recbuf (paksequence (recv)) : = true 

handleMissingPak ( (recsequence (recv) +l)%wnd) 

endpar 

else 

paktype (recv) : = NOPAK 

endif 

endif 

endpar 
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endif 

else 

paktype (recv) : = NOPAK 

endif 

rule handleAck = 

if (pakack(se1f) ! = sendsequence (self) ) and 

( ( (~akack(se1f) +wnd-rack(se1f) )%wnd) <= hwnd) and 

(((sendsequence(self)+wnd-pakack(self))%wnd) <= hwnd) then 

rack(se1f) : = pakack(se1f) 

endif 

rule handleNak (currurack) = 

if self = send then 

if (paksequence(self) ! =  sendsequence(se1f)) and 

(((paksequence(self)+wnd-currurack)%wnd) <= hwnd) and 

( ( (sendsequence (self) +wnd-paksequence (self )%wnd) <= hwnd) then 

if ~aktype~n~r(dest(self)) = NOPAK then 

Par 

putPakToTransit (DATA ,@sequence (self) , recsequence (self) ) 
lack(se1f) : = recsequence (self) 

status (self) : = IDLE 

paktype (self) : = NOPAK 

endpar 

else 

status(se1f) := HANDLEuNAK 

endif 

else 

paktype (self : = NOPAK 

endif 

else 

paktype (self) : = NOPAK 

endif 

rule handlePak = 

if notchckerr) then 

Par 
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handleAck 

if paktype(se1f) = DATA then 

handleData 

else 

if paktype(se1f) = NAK then 

if (pakack(se1f) ! = sendsequence(se1f)) and 

(((pakack(self)+wnd-rack(self))%wnd) <= hwnd) and 

( ( (sendsequence (self) +wnd-pakack(se1f) ) %wnd) <= hwnd) then 

handleNak(pakack(se1f ) ) 

else 

handleNak(rack(se1f)) 

endif 

else 

paktype(se1f) := NOPAK 

endif 

endif 

endpar 

else 

paktype (self : = NOPAK 

endif 

rule handleTimeout = 

if status(se1f) != TIMEOUT2 then 

if paktypeInTr(dest(se1f)) = NOPAK then 

Par 

if self = recv then 

Par 

forall i in [0 . .  11 with (i ! =  ((recsequence(self)+l)%wnd)) do 

nakd(i) := false 

nakd( (recsequence (self) +l)%wnd) : = true 

endpar 

endif 

put~akToTransit(NAK,(recsequence(self)+l)%wnd,recsequence(self)) 

lack(se1f) := recsequence(se1f) 

if (self = send) and 

(sendsequence(se1f) != ((rack(self)+l))%wnd) then 

status (self) : = TIMEOUT2 
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else 

status (self) := IDLE 
endif 

endpar 

else 

status(se1f) := TIMEOUTl 

endif 

else 

if paktypeInTr (dest (send) = NOPAK then 

Par 

putPakToTransit(DATA,(rack(send)+1)%wnd,recsequence(send)) 

status (send) : = IDLE 

endpar 

endif 

endif 

rule sendprogram = 

Par 

if ((status(se1f) = IDLE) and 

(paktype (self) ! = NOPAK) and 

not((sendsequence(se1f) !=  rack(se1f)) and 

( ( (sendsequence (self ) +wnd-rack(se1f ) ) % w n  <= hwnd) ) ) 

then 

handlePak 

endif 

if ( (status (self) = SENDuDATA) or 

((status(se1f) = IDLE) and 

(sendsequence(se1f) !=  rack(se1f)) and 

( (  (sendsequence (self) +wnd-rack(se1f) )%wn <= hwnd) ) )  

then 

sendData 

endif 

if status (self) = HANDLEuNAK then 

handleNak (rack(se1f) ) 

endif 

if (status(se1f) = TIMEOUTI) or 

(status(se1f) = TIMEOUT2) or 
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((status(se1f) = IDLE) and (paktype(se1f) = NOPAK) and 

not((sendsequence(se1f) !=  rack(se1f)) 

and ( ( (sendsequence (self) +wnd-rack (self) ) %wnd) <= hwnd) ) ) 

then 

handleTimeout 

endif 

endpar 

rule recvProgram = 

Par 
if (status (self) = IDLE) and (paktype (self) ! = NOPAK) then 

handlePak 

endif 

if (status (self) = SENDuACK) then 

sendAck(recsequence(recv)) 

endif 

if (status (self) = ACCEPTuPAK) then 

acceptPak( (recsequence (self )+l) %wnd) 

endif 

if (status (self) = CHECKuMISSING) then 

handleMissingPak(tmp) 

endif 

if status (self) = HANDLEuNAK then 

handleNak(rack (self) ) 

endif 

if (status (self) = DCKERROR) then 

handleDckErr 

endif 

if (status (self) = TIMEOUT1) or 

((status(se1f) = IDLE) and (paktype(se1f) = NOPAK)) 

then 

handleTimeout 

endif 

endpar 

rule passPakThru = 

forall t in Agents do 
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if (paktypeInTr(t) != NOPAK) and (paktype(t) = NOPAK) then 

Par 
if not (dropped) then 

Par 

paktype(t) := paktypeInTr(t1 

paksequence(t) := paksequenceInTr(t) 

pakack(t) : = pakackInTr (t) 

endpar 

endif 

paktypeInTr (t : = NOPAK 

endpar 

endif 

rule clearAckPak = 

if lack(recv) <= recsequence(recv) then 

forall i in [O . . 11 with 

(i <= lack(recv)) or (i > recsequence(recv)) do 

accepted(i) := false 

else 

forall i in [O . . 11 with 
(i <= lack(recv)) and (i > recsequence(recv)) do 

accepted(i) : = false 

endif 

rule env = 

Par 

passPakThru 

clearAckPak 

endpar 

rule Skip = 

skip 
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