
MODEL CHECKING SUPPORT FOR CoreASM:

MODEL CHECKING DISTRIBUTED ABSTRACT STATE

MACHINES USING SPIN

George Ma

Bachelor of Science with First Class Honors, University of Alberta, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E D E G R E E O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ George Ma 2007

SIMON FRASER UNIVERSITY

Summer 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

George Ma

Master of Science

Model Checking Support for CoreASM: Model Checking Dis-

tributed Abstract State Machines Using Spin

Examining Committee: Mr. Bradley Bart

Chair

Date Approved:

Dr. Uwe Glaesser, Senior Supervisor

Dr. David Mitchell, Supervisor

Dr. Dirk Beyer, SFU Examiner

S I M O N FRASER U N I V E R S I T Y
L I B R A R Y

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make
a digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to
translate the thesis/project or extended essays, if technically possible, to any medium
or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of
any multimedia materials forming part of this work, may have been granted by the
author. This information may be found on the separately catalogued multimedia
material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in part,
and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Summer 2007

Abstract

We present an approach to model checking Abstract State Machines, in the context of

a larger project called CoreASM, which aims to provide a comprehensive and extensible

tool environment for the design, validation, and verification of systems using the Abstract

State Machine (ASM) formal methodology. Model checking is an automated and efficient

formal verification technique that allows us to algorithmically prove properties about state

transition systems. This thesis describes the design and implementation of model checking

support for CoreASM, thereby enabling formal verification of ASMs. We specify extensions

to CoreASM required to support model checking, as well as present a novel procedure for

transforming CoreASM specifications into Promela models, which can be checked by the

Spin model checker. We also present the results of applying our ASM model checking tool

to several non-trivial software specifications.

Keywords: abstract state machines, model checking, distributed systems, formal verifica-

tion tools, CoreASM

To my parents Guo Liang and Yong Mei Ma

Acknowledgements

First of all, I wish to thank my senior supervisor Uwe Glasser for his guidance and support

throughout my Masters studies. I appreciate his confidence in giving me the freedom to

explore my research as I desired.

A million thanks go to my friend and colleague Roozbeh Farahbod for helping me in

every aspect of my work. He provided a constant supply of encouragement, thoughtful

criticism, and good humor.

I thank all my colleagues in the Software Technology Lab, past and present, for providing

such a friendly and engaging environment in which to work.

I also wish to thank the Natural Sciences and Engineering Research Council of Canada

(NSERC) for their financial support during a part of my graduate studies.

Most of all, I thank my family for their enduring love and support, which have shaped

and inspired my being.

Contents

. . Approval 11

Abstract iii

Dedication iv

Acknowledgements v

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Significance . 3

1.3 Organization of Thesis . 3

2 Related Work 5

3 Model Checking Concepts 8

3.1 Kripke Structures . 9

3.2 Temporal Logic . 9

3.2.1 Linear Temporal Logic . 10

3.2.2 Other Temporal Logics . 11

3.3 Automata Based Model Checking . 11

. 3.3.1 Biichi Automata 12

. 3.3.2 The Model Checking Problem in Terms of Automata 12

. 3.3.3 Computing C(Abf x A+) 13

. 3.4 Other Model Checking Approaches 13

. 3.5 Validation Versus Verification 14

4 Abstract State Machines 15

. 4.1 Basic Abstract State Machines 15

. 4.1.1 Signatures and States 15

. 4.1.2 Locations and Updates 16

. 4.1.3 ASM Rules 17

. 4.2 Distributed Abstract State Machines 21

. 4.3 A Sample ASM Specification: Master-slave Agreement 24

5 Extending CoreASM for Model Checking 2 7

. 5.1 CoreASM: An Overview 28

. 5.1.1 CoreASM Plug-in Framework 33

. 5.1.2 State Representation in CoreASM 36

. 5.2 Signature Plug-in 42

. 5.2.1 Functions 43

. 5.2.2 Universes and Enumerations 45

. 5.3 Property Plug-in 47

6 From CoreASM to Promela 49

. 6.1 Elements. Universes and Backgrounds 51

. 6.2 Functions 52

. 6.3 Rules 54

. 6.3.1 Assignment Rule 54

. 6.3.2 Skip Rule 54

. 6.3.3 Block Rule 54

. 6.3.4 Conditional Rule 55

. 6.3.5 Choose Rule 56

. 6.3.6 Forall Rule 57

. 6.3.7 Map Assignment Rule 58

vii

. 6.3.8 Macro Rules 58

. 6.3.9 Program Rules 59

. 6.4 Expressions 60

. 6.4.1 Forall and Exists Expressions 60

. 6.5 LTL Correctness Properties 62

. 6.6 DASM Simulation Model 64

7 Case Studies 6 7

. 7.1 Distributed Termination Detection 67

. 7.2 FLASH Cache Coherence Protocol 69

. 7.3 i-Protocol 70

. 7.4 Discussion 71

8 Conclusion and Future Work 73

. 8.1 Future Work 74

A CoreASM Specifications from Case Studies 76

. A.l Distributed Termination Detection 76

. A.2 FLASH Cache Coherence Protocol 80

. A.3 i-Protocol 95

Bibliography 106

viii

List of Tables

. 5.1 CoreASM Plug-in Interfaces 33

. 5.2 LTL Operators Provided by the Property Plug-in 48

. 6.1 CoreASM to Promela Operator Conversion 61

. 6.2 Promela LTL Operators 62

. 7.1 Distributed Termination Detection Model Checking Results 69

. 7.2 Flash Cache Coherence Protocol Model Checking Results 70
. 7.3 iProtocol Model Checking Results 71

List of Figures

Partially Ordered Runs of the Light Control System 23

Overall Architecture of CoreASM . 29

Layers and Modules of the CoreASM Engine 29

Control State ASM of Initializing CoreASM Engine 31

Control State ASM of Loading a CoreASM Specification 31

Control State ASM of a STEP command . 32

Core Elements in the Kernel . 37

CoreASM2Promela: Overall Verification Process 50

Chapter 1

Introduction

This thesis presents an approach to model checking Abstract State Machines. This work was

done in the context of a larger project called CoreASM [22, 24, 231, which aims to provide a

comprehensive and extensible tool environment for the design, validation, and verification

of systems using the Abstract State Machine (ASM) formal methodology. By allowing the

execution of ASM specifications, the CoreASM engine facilitates experimental validation of

ASM models. Executing an ASM model allows us to see the general behavior of a system

with respect to some input or some specific initial state. However, experimental validation

does not allow us to formally verify the overall correctness of a system with respect to all

of its behaviors. Model checking is an automated and efficient formal verification technique

that allow us to algorithmically prove properties about state transition systems. This thesis

describes the design and implementation of model checking support for CoreASM, thereby

enabling formal verification of Abstract State Machines.

1.1 Motivation

As the adoption of information technology continues to grow, with software pervading many

aspects of modern life, the importance of engineering software efficiently and correctly is

paramount. Software projects are notorious for exceeding budgeted time and resources and

for failing to meet user requirements [16, 28, 11. Designing high quality software is extremely

challenging, and software failures can be very costly [55, 501. By some estimates, testing

accounts for half of the effort spent in software development [37]. Software failure in mission

and safety critical systems can be extremely costly and in the worst cases have lead to loss

CHAPTER 1. INTRODUCTION 2

of human life [47]. These problems have motivated the use of f o m a l methods in software

engineering. Formal methods are mathematically based techniques for the specification,

development, and verification of systems. Applying a formal method to the design of a

system produces a precise specification of the system's requirements. One can think of

formal specifications as being blueprints for software. By catching and fixing design errors

and inconsistencies early in the design process, we avoid dealing with them later in the

development process, when the cost of making changes is much higher.

The Abstract State Machine method is one such formal method. An ASM specification

is a set of psuedo-code-like rules describing the behavior of an abstract machine. ASMs

are a type of state transition system, and thus provide an operational system description.

The semantics of ASM is mathematically well defined, yet basic and relatively simple to

understand. The state of an ASM is described as a set of universes and functions. The

evolution of the system is specified by a set rules which produce updates. The distinguishing

characteristic of the ASM method is that it allows a designer to specify a system at a

natural level of abstraction. During system design, a system can be modeled a t a conceptual

level, considering only the aspects of the system that are relevant to capturing the informal

requirements. As more design decisions are made, details can be filled in, thereby refining an

abstract model into a more concrete model, which can be implemented in a programming

language. The effectiveness of ASM method has been proven through its application in

industrial settings, as illustrated in works by Borger, Gurevich, Glasser, and others [4, 33,

9, 21.

While the rigor and structure imposed by using formal methods can help improve the

quality of software by removing ambiguities and sharpening understanding of system re-

quirements, software specifications are still ultimately descriptions of algorithms, which

need to be tested in some way. Traditional software testing involves producing test cases

in an effort to cover as much of a program's behavior as possible. As the complexity of a

system increases this task becomes more and more difficult. Test cases are often generated

manually in an unsystematic fashion. On the other hand, f o m a l verification techniques

aim to increase software quality by providing a consistent logical framework in which to

reason about the correctness of programs. Within such a framework, a property of a system

can actually be proven. Model checking is a formal verification technique where a system is

modeled as a finite state transition system and a correctness property, given as a temporal

logic formula, is checked against this model. A model checking program uses an efficient

CHAPTER 1. INTRODUCTION 3

search technique to determine if a property is satisfied by a model. If a model does not sat-

isfy a property, a counterexample is produced. We believe that applying model checking to

ASMs can be a useful tool in assuring the correctness and quality of software specifications.

1.2 Objective and Significance

The objective of this work is to facilitate model checking of abstract state machines. This

work is certainly not the first of its kind and the related work will be discussed in Chapter 2

of this thesis. More specifically, the goal of this work is to provide model checking support

for CoreASM specifications by translating CoreASM models into Promela models, which can

be verified by the Spin model checker. We present a novel approach to performing this

transformation that supports distributed abstract state machines. Spin, the recipient of the

ACM System Software Award in 2001, is a widely used automata based model checker that

has been used extensively in the design of asynchronous distributed systems [35]. Moreover,

we aim to provide a tool that is simple to use and well integrated with the other existing

CoreASM tools. This thesis also illustrates the extensibility of CoreASM by presenting spec-

ifications to CoreASM plug-ins which allow function signatures and correctness properties

to be included as part of a specification. Overall, this work significantly progresses the

CoreASM project towards its goal of providing an open-source and platform-independent

tool environment for the design, validation, and verification of abstract state machines.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows:

0 Chapter 2 discusses related works done on model checking abstract state machines

and characterizes how this thesis fits in that landscape.

0 Chapter 3 introduces basic model checking concepts and describes the verification

procedure used by the Spin model checker.

0 Chapter 4 serves as a general introduction to Abstract State Machines.

Chapter 5 introduces the CoreASM project and describes the extensions made to Core-

ASM to facilitate model checking.

CHAPTER 1. INTRODUCTION 4

Chapter 6 describes a novel procedure for translating CoreASM specifications into

Promela models.

Chapter 7 presents results on using our model checking tool.

Chapter 8 concludes this thesis and discusses possible areas of future work.

Chapter 2

Related Work

A substantial amount of work has been done on model checking software specifications.

A notable case study was done on the Traffic Alert and Collision Avoidance System I1

System Requirements Specification [12]. In this study, requirements specified in the Re-

quirements State Machine Language were translated into input for the Symbolic Model

Verifier (SMV) [39], a symbolic model checker which uses binary decision diagrams (BDDs)

to represent functions, which made it possible to verify several safety and correctness prop-

erties of the system. This study illustrates the feasibility of model checking large software

specifications of real world systems.

Del Castillo and Winter present an approach for model checking abstract state machines

in [18]. In this work, specifications written in ASM-SL, the ASM language for the ASM

Workbench tool [17], are translated into input for the SMV model checker. Their translation

scheme supports most basic ASM rules (excluding import and choose) and arbitrary n-

ary functions. The translation works by unfolding all rules and functions into basic updates

to state variables. This approach is applied to the verification of the Stanford FLASH Cache

Coherence Protocol and the Production Cell system. Moreover, Winter's PhD thesis [56]

presents an extension to the translation procedure to produce input for a model checker

based on multi-way decision graphs (MDGs), which subsume BDDs. This extension supports

the use of abstract data types. A case study using the approach is presented in [31].

Gargantini and Riccobenne present a method for model checking ASMs using the Spin

model checker [29]. In this work, counterexamples produced by Spin are transformed to

generate test cases. Specifications written for the AsmGofer tool [51] are translated into

Promela, the input language for the Spin model checker [35]. Spin is an explicit state

CHAPTER 2. RELATED WORK 6

model checker that uses an optimized depth first search algorithm to perform verification.

Gargantini's work only supports basic single agent ASMs and a restricted subset of the

standard ASM language. The rules supported are ass ignmen t and condit ional rules. Also,

only nul lary functions are supported. These are considerable limitations on the power and

flexibility of an ASM specification language.

In more recent work, Tang and Ternovska present a method for bounded model check-

ing of ASMs using Answer Set Programming [53]. In this work, ASM-SL specifications are

translated into answer set programs. Answer Set Programming is a relatively novel declar-

ative logical programming paradigm, which is based on stable model semantics, for solving

combinatorial search problems. The translation supports all basic ASM rules, including

finite use of i m p o r t statements, as well as arbitrary n-ary functions.

Martin Kardos has also recently developed a model checker for the Abstract State Ma-

chine Language (AsmL) [38]. AsmL [45] was developed by the Foundations of Software

Engineering (FSE) group at Microsoft Research and is based on the .NET runtime envi-

ronment. Kardos has developed a native model checker which works directly with AsmL

specifications (instead of translating into input for an existing model checker). His model

checker uses the explicit state exploration algorithm described in [5], which is similar to the

algorithm used by Spin. The effectiveness of Kardos' model checker has not yet been shown

for non-trivial specifications.

I t is also worthwhile to note that the FSE group at Microsoft has also developed a model

based testing tool for AsmL called Spec Explorer [46]. However, strictly speaking, Spec

Explorer is not a complete model checking tool, as it generates a finite state machine which

is only an approximation of an original system model. Spec Explorer's model exploration

technique uses heuristics based sampling. Moreover, it is only capable of verifying specific

predefined classes of temporal properties.

The work presented in this thesis is similar to the previously mentioned work done by

Gargantini and Riccobenne, as our work also uses Spin to model check ASMs. However,

the translation procedure described in this thesis extends their work in several important

regards:

Support for all basic ASM rules, save for import .

Support for arbitrary n-ary functions.

Support for d i s t r i b u t e d abstract state machines.

CHAPTER 2. RELATED WORK 7

Some of the works mentioned this chapter use the ASM-SL specification language. ASM-

SL and its supporting tool environment the ASM Workbench are no longer being developed

or maintained, nor is the ASM Workbench publicly available. This lack of tool support

makes practical use of ASM-SL as a specification language much more difficult, as there is

no way to experimentally validate models specified using ASM-SL. On the other hand, the

open-source CoreASM tool environment is actively maintained and is being used by various

research groups around the world.

Chapter 3

Model Checking Concepts

Model checking is a method for algorithmically verifying systems. In model checking, every

possible execution path of a program can be computed (directly or indirectly), allowing a

full state-space exploration (search) of a program. Thus, a given property can be checked

to see whether it holds true in every possible state of the system. More formally, the model

checking problem can be stated as: given a model (Kripke structure) M , an initial state s,

and some temporal logical property 4, decide if M, s + 4.

The key challenge to the wide application of model checking software is the state space

explosion problem. While model checking has been successfully applied to hardware systems

in industrial settings, its adoption in the software world has been much less rapid because

the state space of software systems is frequently several orders of magnitude larger than

those of hardware systems. One strategy for addressing the state space explosion problem is

through the use of abstraction. By modeling a system at a level that is only relevant to the

properties being checked, the size of the state space can be greatly reduced. Based on this

reasoning, abstract state machines are particularly well suited for model checking software

systems. However, one should not conflate this general idea of design abstraction, with the

formal notion of abstraction in model checking presented by Clarke et al. in [15].

Generally, model checking approaches can be divided into two categories, logical ap-

proaches based on fixed point computation, and automata theoretic approaches based on

language containment. Each of these strategies has its advantages and disadvantages. Au-

tomata based model checking will be the focus of this chapter, as it is the model checking

strategy employed by Spin, the model checker used in this work. Spin was chosen because

of the high level constructs offered by its input language Promela, and because of its strong

CHAPTER 3. MODEL CHECKING CONCEPTS

reputation in the verification of protocols and reactive systems.

The remainder of this chapter first presents fundamental model checking concepts,

namely Kripke structures and temporal logic, followed by a detailed explanation of the

automata-theoretic approach to model checking. Other model checking techniques will also

be discussed briefly.

3.1 Kripke Structures

Kripke structures provide the mathematical framework for reasoning about model checking

algorithms. A Kripke structure [41], which describes a state transition system, is a four-tuple

M = (S, I, R, L) where:

S is a countable set of states.

I S is the set of initial states.

R S x S is the transition relation. This relation is total.

L : S + 2P is a labeling function, where P is a set of atomic propositions. Each state

is labeled with the atomic propositions which are true in that state.

A path T in a Kripke structure is a (possibly infinite) sequence of states (so, sl, sz, . . .)
such that for each i 2 0, (si, E R. The notation ~ (i) denotes the i-th state (si) of the

path, while xi denotes the path suffix starting at si. A path is initialized if ~ (0) E I.

3.2 Temporal Logic

Model checking requires a suitable logic for specifying properties of state transition systems.

Basic propositional logic formulas can only describe a single fixed state. In order to reason

about computations, we require a dynamic state logic that will allow us to describe the tem-

poral properties over different states of a system. We focus our discussion on the temporal

logic used by the Spin model checker, Linear Temporal Logic (LTL) [48]. Other temporal

logics will also be discussed briefly.

CHAPTER 3. MODEL CHECKING CONCEPTS

3.2.1 Linear Temporal Logic

Linear temporal logic models time as a sequence of states which extends infinitely into the

future. As the future is not determined, we wish to reason about all possible paths. LTL

extends standard propositional logic with temporal operators. The syntax of LTL formulas

is defined as follows:

where p is some atomic proposition, and X (next), F (eventually), G (always), and U

(until) are temporal connectives. The relation that defines whether a path satisfies a LTL

formula (.ir + 4) is defined as follows:

.ir + F 4 iff there is some i 2 0 such that .iri + 4

.ir + 4 U $ iff there is some i > 0 such that .iri + $ and for all j = 0 , . . . , i - 1 we

have .irj + 4

The temporal operators G and F are of particular importance as they describe safety and

liveness properties respectively. A safety property describes a condition that must always

(or never) be met, while a liveness property describes a condition that must eventually

be met. Another aspect to consider when checking the temporal properties of a model is

CHAPTER 3. MODEL CHECKING CONCEPTS 11

fairness. When modeling a system one may have implicit assumptions about fair behavior,

such as requiring that each process in a system be run infinitely often. To handle fairness,

a model checking procedure must restrict the state space search to the so-called fair paths

of a system, which satisfy the fairness constraints.

In model checking, we are generally concerned with the initialized paths of a model,

since they are the possible execution paths starting from an initial state of a system. If all

initialized paths of a model M satisfy a property 4, we say that M + 4.

3.2.2 Other Temporal Logics

Another widely used temporal logic is Computation Tree Logic (CTL) [3]. CTL is a

branching-time logic, which models time as a tree like structure. In LTL, formulas are

implicitly quantified over all paths, so it is not possible to directly check for the existence

of a certain path. CTL allows for quantification over paths. In CTL, each of the tempo-

ral operators of LTL is combined with a path quantifier A or E. A is the universal path

quantifier ('along All paths') and E is the existential path quantifier ('there Exists a path').

Certain properties that can be expressed in CTL cannot be expressed in LTL, and vice

versa. Neither of the two logics is strictly more expressive than the other.

CTL* [14] and the mu-calculus [40] are temporal logics that subsume both LTL and

CTL. As its name suggests, formulas in CTL* are similar to CTL formulas, but combine

both state formulas and path formulas. The mu-calculus expresses temporal properties in

terms of fixed-point invariants. The mu-calculus provides a single unified logic for temporal

properties; LTL, CTL, and CTL* formulas can all be expressed in the mu-calculus. Although

these logics are more expressive, they can be more difficult to understand and unintuitive

when compared to LTL and CTL. Moreover, the verification procedure for these properties

may be more complicated.

3.3 Automata Based Model Checking

In automata based model checking, both the model and the property to be checked are

encoded as w-automata. The class of w-automata are automata capable of accepting inputs

of infinite length. An w-automaton accepts an infinite input string if the automaton reaches

an accepting state infinitely many times. The class of languages (input) w-automata accept

CHAPTER 3. MODEL CHECKING CONCEPTS 12

are the so called w-regular languages. The simplest w-automata are Buchi automata. Both

Kripke structures and LTL formulas can be represented as Buchi automata.

3.3.1 Biichi Automata

A Biichi automaton is a tuple A = (C, S, p, S o , F) where:

C is an alphabet,

S is a set of states,

p : S x C --t 2S is a nondeterministic transition function,

So 2 S is a set of starting states, and

F C S is a set of designated accepting states.

A Kripke structure M = (S, I, R, L) over a set of atomic propositions P can be trans-

formed into a Buchi automaton AM = (2',S,p, I,S), where, for @ E 2', s1 E p(s,p3 if

(s, sf) E R and L(sl) = p'.

An algorithm for translating LTL formulas to Buchi Automata was first presented in

[54], and the on-the-fly technique used by the Spin model checker is presented in [32]. The

algorithm computes the states of the automaton by computing the set of subformulas that

must hold in each reachable state and in each of its successor states. The initial state

is labeled with the full LTL formula and the remainder of the states corresponding to

subformulas are computed recursively.

3.3.2 The Model Checking Problem in Terms of Automata

The computation paths of a Kripke structure can be viewed as input words for Buchi au-

tomata. This correspondence allows us to view the model checking problem as the problem

of computing the intersection of two languages. Let AM and A+ be Buchi automata cor-

responding to the model M and property 4 respectively. The language accepted by AM,

L(AM) 2 C*, corresponds to the possible runs of the system, while the language accepted by

A+, L(A+), correspond to the runs which satisfy the given requirement. If L(AM) C L(A+),

then every run of the system satisfies the property. Let A,+ be the Biichi automata cor-

responding to 14 (the negation of the property) and L(A+) be the language accepted by

CHAPTER 3. MODEL CHECKING CONCEPTS 13

that automaton. L(Al4) corresponds to exactly those runs which violate the property 4.
The model checking problem can be stated as proving that L(AM) n L(A14) = 0, i.e. that

no run of the system also violates the property being checked. The intersection of the two

languages is equivalent to the language accepted by the product automaton AM x A,$,

which can be computed efficiently. If the intersection of the two languages is not empty,

then the intersection provides a counterexample to the property. In summary:

3.3.3 Computing L(AM x A +)

A language L(A) is not empty if and only if A has an accepting state s E F that is reachable

from an initial state and there is a cycle around s (i.e. there is a path on which ~ (i) = s

holds infinitely often for i > 0). The key problem to be solved then is cycle detection. Spin

employs a nested depth first search algorithm to compute L(AM x A,$). A depth first

search is first run starting from the initial state to find the reachable accepting states. A

second (nested) depth first search is starts from each accepting state to detect cycles. If

a cycle is detected then the entire search history can be constructed by concatenating the

initial DFS stack with the stack for the current nested search. Spin effectively accomplishes

this search on-the-fEy by running the system automaton and property in alternation (we

refer the reader to [32] for details).

3.4 Other Model Checking Approaches

A widely used model checking technique is symbolic model checking [43], which is used by

the model checker SMV. In this approach, Kripke structures are represented as boolean

functions in the form of ordered binary decision diagrams (BDDs). BDDs allow for effi-

cient manipulation of boolean functions. However, certain functions cannot be represented

CHAPTER 3. MODEL CHECKING CONCEPTS 14

compactly as a BDD. Moreover, the size of BDD representation of a function is dependent

on variable ordering, and the problem of determining optimal variable ordering for BDDs

has been shown to be NP-complete. Explicit state (automata based) and symbolic (BDD

based) model checking techniques each have their strengths and weaknesses. One case study

comparing SMV and Spin indicated that, for larger models, Spin produced longer counter

examples than SMV. However, Spin was able to find counterexamples faster and required

less memory 1301. It is generally held that symbolic model checking is better at verifica-

tion of true properties, while DFS and automata based approaches are better at producing

counterexamples for false properties.

Leveraging the power of state of the art SAT solvers, model checkers based on boolean

satisfiability (SAT) have also been proposed [13]. SAT based model checkers are based

on the concept of bounded model checking, which is another technique used to address the

state space explosion problem. In bounded model checking, the goal is not to prove that a

system satisfies a property, but to determine if a counterexample of a certain length (upper

bound) exists. In this SAT based approach the state transition system, property, and bound

are formulated as a boolean propositional formula and a SAT solver is to find a satisfying

assignment, which corresponds to a counterexample to the property. However, the bounded

model checking method is incomplete, as it can not prove the absence of counterexamples,

only their presence.

3.5 Validat ion Versus Verification

Model checking is generally considered to be a method of formal verification, where the goal

is to prove that an implementation conforms to a specification ("Did we build the system

right?"). On the other hand, ASMs are geared towards experimental validation of system

designs, as they provide an intuitive means of formalizing informal requirements ("Did we

build the right system?"). In this sense, one can see that, when an ASM specification is

verified with respect to some properties, this verification is part of a larger overall validation

process .

Chapter 4

Abstract State Machines

Abstract state machines provide a means of formally specifying systems at a natural level

of abstraction. This chapter serves as a basic introduction to ASMs. We begin by defining

basic ASMs, including definitions of states and standard rules. Then, we define distributed

abstract state machines. The chapter finishes with an example ASM specification. For a

more detailed and mathematically rigorous definition of ASMs we refer the reader to [ll]

and [34].

4.1 Basic Abstract State Machines

An abstract state machine is a specific formalization of a state transition system. A basic

ASM M is given as M = (PM, SM, IM) , where PM is the program of M, SM is the set of

states associated with M, and IM C SM is the set of initial states of M .

4.1.1 Signatures and States

A signature C is a finite collection of function names. Each function f, corresponding to

a function name in C, has some arity n > 0. The constant nullary function names undef,

true, and false, as well as the equality function =, are always contained in the signature.

A state S E SM is defined as the non-empty superuniverse U, which contains elements,

along with the interpretations of the function names in C over U. Each n-ary function name

f in C has an interpretation f S which is a function from Un to U. The functions undef,

true, and false resolve to pairwise distinct elements of U. Functions are total functions and

CHAPTER 4. ABSTRACT STATE MACHINES 16

default to the value of undef, which represents an undetermined object. A relation is a

function that always has the value true or false, with the default value being false.

ASM functions can be divided into several broad categories which have useful semantics

to a system modeler. When modeling a (reactive) system it is often beneficial to adopt

an open system view, where we view the system as discrete entity operating within some

environment. It is useful to distinguish between functions that are under the control of

the system (machine) and functions that are controlled by the environment. We say that

a function is controlled if it can only be changed by the ASM. We say that a function is

monitored if it can only be changed by the environment. Monitored functions are used

to model non-deterministic aspects of a system which are influenced by the environment.

Functions whose values can not be changed are called static functions. (A static nullary

function is also called a constant.)

When modeling systems as ASMs, it is useful to subdivide the superuniverse U into

smaller universes. One may wish to consider universes as being analogous to types in

programming languages. Universes can be described by their characteristic functions. If R

is a universe name, the elements which are members of R are exactly those e E U such that

~ ' (e) = true. It is possible for an element to be a member of multiple universes.

When designing algorithms we often think in terms of data types such as booleans, in-

tegers, sets, strings, etc. Along with the data elements, there is often a set of standard

functions defined over them. In ASM, these ideas are captured by the notion of back-

grounds [6]. A background can be thought of as a static universe of elements which are

implicitly part of the state. There may be a set of standard functions defined over those

elements as well. For example, the Boolean background consists of the elements true and

false and the standard Boolean operators (A, V , 1, etc).

4.1.2 Locations and Updates

A location is a pair (f , (el , . . . , e,)), where f is function name and e l , . . . ,en are elements

from U . The content of location (f , (el , . . . ,en)) is the value of fS(el , . . . , en) in any state

S. Conceptually, locations can be seen as the memory elements of an ASM.

An update (1, v) is a pair where 1 is a location and v E U . Updates change the value

of functions - the meaning of an update is to set the content of location 1 to be the value

v. The execution of any ASM rule produces an update set, which is a collection of updates.

An update set Updates is said to be consistent if for any location 1, if (1, v) E Updates and

CHAPTER 4. ABSTRACT STATE MACHINES 17

(1, w) E Updates then v = w. In other words an update set is consistent if it contains no pair

of updates which assign different values to the same location. Otherwise, the update set is

inconsistent. Firing an update set evolves the state of an ASM by applying each update

(1,v) E Updates to the current state. If Updates is inconsistent the update set cannot be

fired and there is no state change.

4.1.3 ASM Rules

The program PM of an ASM M is an ASM rule. The firing (execution) of any ASM rule

produces an update set (which may be empty). This section will provide the definition of

the standard basic ASM rules. As we will see, rules may be composed from other rules.

Let A(R) denote the update set produced by firing rule R.

a An update rule has the form:

where each ti is a term. Terms are defined recursively as in first-order logic. Variables

(nullary functions) are terms, and if g is an n-ary function and t l , . . . , t, are terms,

then g(tl , . . . , t,) is a term as well. The update set produced by the update rule is

defined as:

where vi is the value of ti evaluated in the current state. The meaning of this update

is that the value of the location (f , (vl, . . . , v,)) will be vo in the next state.

a When describing an algorithm is it often necessary to dynamically allocate new re-

sources by introducing new elements. In ASMs this is accomplished using the

import rule.

import e do

R [el

CHAPTER 4. ABSTRACT STATE MACHINES 18

where e is a new element imported from the possibly infinite reserve universe. Reserve

elements can not be referenced by state functions - they can only be accessed through

the import statement (or extensions of it).

The element e is removed from the reserve and added to the current state s , resulting

in a new state s'. The rule R is evaluated with e in the new state.

The skip rule is a no-op statement, A(skip) = 0.

A conditional rule has the form:

if guard then R1 else R2

where guard is a Boolean term. The else clause may be omitted, implicitly making

R2 = skip .

A(R1) if the value of guard is true
A(if guard then Rl else R2) =

A(R2) otherwise

Parallelism

When modeling a system it may be beneficial to abstract away from the order of execution

of operations when it is irrelevant to the model. The semantics of ASM allow for rules to be

grouped together and executed in parallel. There are two standard ASM rules which allow

for the parallel composition of rules, the par (block) rule and the forall rule.

The par rule has the following form:

CHAPTER 4. ABSTRACT STATE MACHINES 19

It is often the case that the pa r keyword is omitted and rules listed in sequence are

meant to form a parallel block. Each of the Ri's is executed in parallel, so

A(pa r R1 . . . R,) = A(R1) U . . . U A(R,)

0 The forall rule allows the same rule to be executed simultaneously on each of the

members of a collection. It has the form

forall e E C wi th guard d o

R[el

where C is an enumerable collection. The rule R is executed on each member of the

collection that satisfies the guard condition. When the wi th clause is omitted this

implicitly means that guard = true.

A(foral1 e E C with guard d o R[e]) = A(R[cl]) U . . . U A(R[c,])

where ci E { c I c E C, guard[c] = true).

Non-determinism can be useful in describing a program behavior at a high level of abstrac-

tion. Non-deterministic constructs can be used when selection decisions, such as process

scheduling, are arbitrary, and to model random processes.

0 ASMs can express non-determinism through the choose rule. It has the form

choose e E C with guard d o

Rl [el
ifnone

R2

where C is an enumerable collection. When the wi th clause is omitted this implicitly

means that guard = true, and when the ifnone clause is omitted this implicitly means

that R2 = skip .

CHAPTER 4. ABSTRACT STATE MACHINES

A (c h o o s e e E C w i t h guard d o Rl [el ifnone Rp) =
A(Rl[C]) if Cg # 0

A(R2) otherwise

where c is chosen non-deterministically from C, = { c I c E C, guard[c] = true).

S u p p l e m e n t a r y R u l e Forms

An e x t e n d rule has the form:

e x t e n d U w i t h e d o

R[el

where U is a universe name. The e x t e n d rule is an extension of the i m p o r t rule.

A, (ex tend U w i t h e d o R [e]) = { ((U , (e)) , t r u e)) U A,! (R [e])

Like the i m p o r t rule, e x t e n d imports a new element from the reserve and adds it to

the current state s. In addition to this, the new element is added to the universe U

(U (e) = t rue) . The rule R is then evaluated in the new state s f .

For the purpose of reuse and modularization, it is possible to declare named parame-

terized rules, with n 2 0 parameters:

A call rule has the form:

rulename(t l , . . . , t,)

where rulename is the name of a declared rule and t l , . . . , t , are arbitrary terms. The

meaning of the call rule is to substitute each z i with the corresponding ti and fire rule

R .

A (r u l e n a m e (t l , . . . , t,)) = A (R [t l , . . . , t,])

CHAPTER 4. ABSTRACT STATE MACHINES

4.2 Distributed Abstract State Machines

A distributed abstract state machine (DASM) &I has a finite universe of Agents and, exactly

as in a basic ASM, a set of states SM and a set of initial states IM. Each agent a E

Agents has an associated program that defines its behavior, which is defined by the value

of the location program(a), where program is a dynamic function. The static collection of

programs that the agents may execute make up the distributed program PM. The vocabulary

of a distributed abstract state machine also has a special static function self, which is

interpreted differently by each agent to refer to itself. Ebr an agent a , selfS = a.

A run p of a DASM M [34], also called a partially ordered run, can be defined as a triple

(P, A, a) satisfying the following conditions:

1. P is a partially ordered set of moves, where each move has finitely many predecessors,

i.e. { y I y 5 x) is finite.

2. The function A associates a move in P with the agent that performs that move. (A(x)

is the agent performing move x.) The moves of any single agent are linearly ordered,

so every nonempty set { x I A(x) = a) is linearly ordered.

3. a (X) is the state of M produced by performing all the moves in X . a is defined over

all the initial segments P and on the empty set; a(@) is an initial state.

4. The coherence condition: If x is a maximal element in a finite initial segment X of P

and Y = X - {x), then A(x) is an agent in a (Y) and a (X) is obtained from a (Y) by

firing A(x) a t a (Y) .

An immediate and useful corollary of the coherence condition is that all linearizations

of an initial segment of a run result in the same final state. While the above definition

is concise, understanding of the coherence condition and its implications will benefit from

some illustration.

Light Control Example (Adapted from [lo])

The light control system for a building is modeled as a DASM. The model has three

distinct agents: the window manager (agent W), the door manager (agent D), and the light

manager (agent L). The state of the system is represented by the nullary Boolean functions

window, door, and light. When the value of each of these functions is true, it has the

CHAPTER 4. ABSTRACT STATE MACHINES 22

intuitive meaning of "the window is open", "the door is open" and "the lights are turned

on" respectively. The behavior of the agents is described by the following rules:

WindowManagerProgram = if -door then window := true

DoorManagerProgram = if lwindow then door := true

LightManagerProgram = if ldoor V lwindow then light := true

Let w, d, and 1 be the moves performed by each of these agents respectively. Figure 4.1

illustrates all possible runs of the system starting from the initial state SO, where the door

and window are closed and the lights are off. According to the definition of partially ordered

runs the move from SO to S6 is not permissible, since the two possible linearizations of the

moves {dl w) do not result in the same final state. If move d is made first, resulting in state

S1, W can not make its move to S6. Similarly, if move w is made first, resulting in state

S3, D can not make its move to S6. By the exact same reasoning, the move from SO to

S7 is also not permissible. On the other hand, notice that the moves in {dl 1) and in { I , w)

produce the same resultant states, S4 and S5 respectively, regardless of the ordering of the

individual moves.

CHAPTER 4. ABSTRACT STATE MACHINES

Figure 4.1: Partially Ordered Runs of the Light Control System

CHAPTER 4. ABSTRACT STATE MACHINES 24

4.3 A Sample ASM Specification: Master-slave Agreement

The system being modeled consists of one master process and a number of uniform slave

processes. The problem is for the master to delegate a job to the slave processes. Before

a job can be delegated to the slave processes, the master must query the slaves to see if

they are free to accept the job. If all of the slave processes accept then the job is executed.

Otherwise, the job is canceled.

The signature of the DASM model for this system is as follows:

Master-Slave Agreement: Signature

Slave = I s l , . . . ,s,)

Agents = Slave U {master)

M O D E = {idle, waitingForAnswer, waitingForOrder, busy)

R E P L Y = {accept, ref use)

O R D E R = {job, cancel)

controlled asked : Slave -+ BOOLEAN

controlled answer : Slave -+ R E P L Y

controlled order :-+ O R D E R

controlled mode : Agent -+ M O D E

In this signature, M O D E is the background defining the possible modes of an Agent ,

REPLY is the background defining slave responses, and O R D E R is the background defining

the orders that can be given by the master process. The function asked indicates if a slave

is being queried by the master process; its value is initially false for all slaves. The function

answer is the response given by a slave process; its value is initially undef for all slaves.

The function order is the order given by the master process; its value is initially undef.

Finally, the function mode gives the current mode of an agent; its value is initially undef

for all agents.

The master process' program is given by the rule M a s t e r p r o g r a m . The master process

queries the slave processes, asking each slave if it can accept a job. The master process

waits for all the slaves to respond and if all the slaves are able to accept a job the master

issues the job order, otherwise the master process cancels the job request.

CHAPTER 4. ABSTRACT STATE MACHINES 25

Master-Slave Agreement: Master Program

Masterprogram G

if mode(se1f) = idle then

forall s E Slave do

asked(s) := true

mode(se1 f) := waitingForAnswer

if mode(se1 f) = waitingForAnswer A 'ds E Slave l (answer (s) = unde f) then

Order Or Cancel

mode(se1 f) := idle

Orderorcancel =
if 3s E Slave with answer(s) = ref use then

order := cancel

else

order := job

forall s E Slave do

answer(s) := unde f

The program of the slave processes are given by the rule SlaveProgram. A slave process

waits to be queried by the master. After being queried, a slave non-deterministically chooses

a response. After responding, a slave waits to receive and order from the master.

CHAPTER 4. ABSTRACT STATE MACHINES 26

Master-Slave Agreement: Slave Program

SlaveProgram -
if mode(se1 f) = idle r\ asked(se1 f) then

SendAnswer

if mode(se1 f) = waitingForOrder then

if order = job then

mode(se1 f) = busy

if order = cancel then

mode(se1 f) = idle

order = unde f

SendAnswer =
choose r E REPLY do

answer(se1 f) := r

asked(se1 f) := false

mode(se1 f) := waitingForOrder

Chapter 5

Extending CoreASM for Model

Checking

Since unbounded model checking performs a full state space search of a transition system, a

system must be finite for unbounded model checking to be possible. Thus to model check an

ASM, its functions and universes, which make up its state, must be finite. However, in prin-

ciple, ASM functions are untyped alike functions; alternately, one can view the arguments

and values of ASM functions as all being of the same type - they are all elements from the

superuniverse. As CoreASM follows the mathematical definition of ASMs, CoreASM func-

tions are untyped at the base (kernel) level. While this is desirable in initial specification

phases focusing on exploring the problem space, the domain and range types of functions

must be known and finite for model checking of CoreASM specifications.

This chapter describes the Signature Plug-in which extends the CoreASM language to

include function declarations with type information. Moreover, when performing model

checking, one must of course specify a property to be checked. It is convenient to include

this property as part of the specification. This chapter also describes the Property Plug-in,

which extends the CoreASM language to include correctness properties that are expressed

as LTL formulas. Before presenting these two plug-ins, we first give an overview of the

architecture of CoreASM, with a focus on the components that are relevant to this thesis.

Since our assertion is that the ASM method is well suited to modeling arbitrary software

systems, it is only fitting that we specify the CoreASM engine, language semantics, and plug-

ins using ASM. (In fact, the semantics of several well known computer languages, including

CHAPTER 5. EXTENDING COREAS M FOR MODEL CHECKING 2 8

SDL [49], VHDL [8], Java [52], and C# [7], have been specified using the ASM formalism.)

5.1 CoreASM: An Overview

The material in this section borrows from work originally presented by Farahbod et al.

[24, 23, 25, 27, 261. The CoreASM project [22] focuses on the design of a lean executable

ASM language, in combination with a supporting tool environment for high-level design,

experimental validation and, where appropriate, formal verification of abstract system mod-

els. CoreASM is designed with extensibility in mind, supporting the extension of both the

specification language and the execution engine's behavior through plug-ins.

The CoreASM engine is composed of four components: the Parser, the Interpreter, the

Abstract Storage, and the Scheduler (see Figure 5.11). When a specification is executed, the

Parser first dynamically generates a parser for the specification, whose language grammar

depends on the plug-ins that are used by the specification. This custom parser is used to

parse the specification. Parsing of a specification produces an Abstract Syntax Tree (AST).

The rules represented in the AST are executed by the Interpreter, producing updates. The

Interpreter interacts with the Abstract Storage and the Scheduler to apply these updates

thereby evolving the state of the simulated ASM. The Abstract Storage maintains a repre-

sentation of the ASM state. The Scheduler schedules agents to be run, and coordinates the

overall execution of ASM runs.

The CoreASM engine adopts a micro-kernel architecture. The base machine (kernel)

only supports two basic ASM rules, assignment and import. This is the minimal set of

required rules, since without assignment there would be no means of evolving the state,

and without import new elements could not be introduced into the state. The kernel also

contains the special element undef, and the elements from the Boolean background, true

and false, since universes are defined by their characteristic functions. Other rule forms

(such as conditional, forall, and extend) and backgrounds are introduced through plug-ins,

which extend conservatively from the kernel (see Figure 5.2).

The overall process of executing a specification with the CoreASM engine consists of

three macrosteps, each of which includes a number of microsteps as follows:

1. Initializing the engine (Figure 5.3)

'Figures 5.1 - 5.6 are taken from 1261 by permission.

CHAPTER, 5 . EXTENDING COREASM FOR MODEL CHECKING

Interpreter n

@Roozbeh Farahbod: 2006, by pcrrnission

Figure 5.1: Overall Architecture of CoreASM

/ Parser 1 1 Interpreter 1 Abstract Storage j Scheduler j
I I

@Roozbch Farahbod, 2006, by pcrn~ission

v

G y
E ' { 5

Figure 5.2: Layers a d Modules of the CoreASM Engine

I -
POIICIC~

Sets

...
Round-robin

Pseudo-random

For-all (..I
Rationals

...
Priority Based

Always-first

Probabilistic Choose 1 , [...I
-I i- - _ 1

CHAPTER 5. EXTENDING C 0 R EAS M FOR MODEL CHECI<INC:

(a) Initializing the lterilel

(b) Loading the 1il)rary catalog

(c) Loading and activating the essential (core) plli, u-111s '

2. Loading a CoreASM specification (Figure 5.4)

(a) Parsing the specification header

(b) Loading further needed plug-ins as declarccl ill the header

(c) Parsing the specification body

(d) Initializing the abstract storage

(c) Setting up the initial state

3. Execution of the specification (Figure 5.5)

(i ~) Execute a siligle step

(b) If terminatioil condition not met. repeat fro111 3a

Figures 5.3-5.5 are Control State ASM diagrams which outline thc opclration of thc

enginc. Thc lower lcvcl details of the CoreASM enginc arc not required to understand

the wurk prcsei~ted in this thesis. Wc rcfer the reader to [24] for a 111uch more dctailccl

specification of the CoreASM en,' 0 inc.

CHAPTER 5. EXTEIWIING CO R EAS M FOR MODEL CHECKING

ORoozbch Farahbod, 2006, by pcr~nission

Figure 5.3: Control Ststc ASM of I~iitializirlg CorcASM Engine

ParseHeader

ABSTRACT S'fOKAGE SCI IEDLII.I:R

Figure 5.4: Control State ASM of Loadi~ig a CoreASM Specification

C H A P T E R 5. EXTENDING' COREASM FOR MODEL CHEC:IUNC:

e--;.r;-+

ldlc <-dG
Schhdulcr

SIC,, -i- Not~fySuccess
: Succccdcd

C o N ' n w L API ..' ".............. ..

(b) Sclwllilcr

'. .. ABSTRACT STORAGE ..

(c) Abstract Storage

(d) 1nt.erpreter

ORoozbch Ftmihborl. 2006, by pcrrnission

Figurc 5.5: Contml State ASM of a STEP coiri~nand

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

Plug-in Interface Extends Description
Parser Ph~g-in Parser provides additional grammar

rules to the parser
Interpreter Plug-in Interpreter provides new semantics to the in-

terpreter
Operator Provider Parser, Interpreter provides grammar rules for new

operators along with their prece-
dence levels and semantics

Vocab~~lary Extender Abstract Storage extends the state with additional
functions, universes, and back-
grounds

Aggreg ator Abstract Storage aggregates partial updates into
basic updates

Scheduler Plug-in Scheduler provides new scheduling policies
for multi-agent ASMs

Extension Point Plug-in all components extends the control state model
of the engine

Table 5.1: CoreASM Plug-in Interfaces

5.1.1 CoreASM Plug-in Framework

Concretely, a CoreASM plug-in is a Java2 class that inherits from the base Plug-in class

and implements one or more of CoreASM's plug-in interfaces (see Table 5.1). With these

interfaces a plug-in can extend the engine components and the control state model of the

engine. We will now describe these interfaces.

Parser Extensions

Plug-ins can extend the parser by implementing the Parser Plug-in interface and/or the

Operator Provider interface. These interfaces allow a plug-in to contribute new grammar

rules and operators to the parser respectively. For any parser plug-in pp, pluginGrammar(pp)

holds the set of all the grammar rules contributed by pp. For any operator provider op,

pluginOperators(op) holds the descriptions (syntax) of new operators contributed by op.

Before parsing a specification, the engine gathers all the grammar rules and operator

descriptions provided by all parser plug-ins and operator providers. These grammar rules

and operator tokens are then combined with the kernel grammar to build a new custom

'parser' to parse the specification. While building the abstract syntax tree, this parser labels

2The CoreASM Engine is implemented in Java.

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 34

the nodes that are created by plug-in-provided grammar rules with the plug-in identifier;

these labels can later be used by the interpreter to evaluate such nodes.

Interpreter Extensions

By implementing the Interpreter Plug-in interface and/or the Operator Provider interface,

plug-ins can extend the interpreter component of the engine . These plug-ins provide the

semantics of rules and operations. Traversing the abstract syntax tree, the ExecuteTree

rule of the interpreter (see Figure 5.5(d)) uses these semantic rules to evaluate nodes that

correspond to the extended grammar rules.

The semantics contributed by a plug-in p which implements the Interpreter Plug-in

interface can be obtained through pluginRule(p). AS already mentioned earlier, nodes of the

parse tree corresponding to grammar rules provided by a plug-in are annotated with the

plug-in identifier. If a node refers to a plug-in, the interpreter obtains the semantic rules

provided by that plug-in and executes it; otherwise, the default kernel interpreter rules are

used.

The ExecuteTree rule of the interpreter is presented below. In this rule, the current

position in the abstract syntax tree is denoted by the nullary function pos, and assignment

to pos is used to move evaluation to a different node. We refer the reader to [23, 271 for

more details on this process.

Interpreter

ExecuteTree =
if 7 evaluated(pos) then

if plugin(pos) # undef then

let R = pluginRule(plugin(po~)) in

R
else

Kernellnterpreter

else

if parent(pos) # undef then

pos := parent(pos)
- --

A similar approach is also used by the Kernellnterpreter rule to obtain semantics of

extended operators from Operator Providers. A detailed discussion on how the engine deals

with operators and their extensions is provided in [44].

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

Abstract Storage Extensions

Vocabulary Extender plug-ins can extend the vocabulary of the CoreASM state by contribut-

ing new backgrounds, universes, and functions to the abstract storage. Such plug-ins in fact

extend the initial state and signature of the simulated ASM.

In the abstract storage, the following functions bind the names of functions and universes

in the CoreASM state to the mathematical objects that represent them. Backgrounds are

considered as special universes and hence are handled by the same mapping.

state Universe : STATE x NAME + UNIVERSEELEMENT

The value of these functions is initialized by the InitAbstractStorage rule of the abstract

storage (see Figure 5.4). After creating the default universe and functions (i.e., "Agents",

"program", and "self"), this rule iterates over all vocabulary extender plug-ins and extends

the CoreASM state with the vocabulary they provide:

Abstract Storage

InitAbstractStorage -
Initializestate

forall p E specP1ugins do

if isVocabularyExtender(p) then

forall (blcgName, blcg) E pluginBaclcgrounds(p) do

stateUniverse(state, blcgName) := blcg

forall (uName, universe) E pluginUniverses(p) do

state Universe(state, uName) := universe

forall (fName, f) E pluginFunctions(p) do

stateFunction(state, fName) := f

Plug-ins can also implement the Aggregator interface and provide aggregation rules to

be applied on update instructions before they are submitted to the state. Aggregators are

used, for example, to implement partial updates; for more detail on this issue, we refer the

reader to [44].

C H A P T E R 5. EXTENDING COREASM FOR MODEL CHECKING

Scheduler Extensions

Policy plug-ins extend the scheduler of the engine by providing new scheduling policies

that affect the selection of agents in multi-agent ASMs. They provide an extension to the

scheduler that is used to determine at each step the next set of agents to execute. In practice,

a scheduler plug-in provides a concrete implementation of a choose in the SelectAgents step

in Figure 5.5(b). It is worthwhile to note that only a single scheduling policy can be in force

at any given time, whereas an arbitrary number of plug-ins of the remaining types can be

all in use at the same time.

Extension Point Plug-ins

In addition to modular extensions of specific components, plug-ins can also extend the

control state of the engine by registering themselves for Extension Points. Each mode

transition in the execution engine is associated to an extension point. At any extension

point, if there is any plug-in registered for that point, the code contributed by the plug-in for

that transition is executed before the engine proceeds into the new mode. Such a mechanism

enables arbitrary extensions to the engine's life-cycle, which facilitates implementing various

practically relevant features such as adding debugging support, adding a C-like preprocessor,

or performing statistical analysis of the behavior of the simulated machine (e.g., coverage

analysis or profiling).

5.1.2 State Representation in CoreASM

Elements

The base data elements used by the Abstract Storage to represent an ASM state are simply

referred to as ELEMENTS. All other elements of the state, including functions, universes,

backgrounds, and rules, extend from ELEMENTS (see Figure 5.6). The following functions

are defined over all elements of the state:

0 bkg : ELEMENT + NAME

is the name of the background of the given element. The default value is "Element".

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

Element

Rule Function

7

Universe

Data
7 Elements

Background

Figure 5.6: Core Elements in the Kernel

returns true if the two elements are equal. We have

Val, a2 E ELEMENT 1 equalElement(al, a2)

0 derived equal : ELEMENT x ELEMENT + BOOLEAN

returns true if the given elements are equal. This function is defined as

Enumerable Elements

An element is enumerable if it can be viewed as a collection (i.e., a multiset) of other

elements. The idea of enumerable elements provides a unique and yet simple interface to

sets, multisets, trees, and other data structures. We define the following functions to support

enumerable elements:

0 controlled enumerable : ELEMENT + BOOLEAN

holds true if the element is enumerable.

0 derived enumerate : ELEMENT + ELEMENT -COLLECTION

provides a collection of elements representing the internal structure of the enumerable

element.

enumerate(e) = enumeratebk (e)
S(e)

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

derived contains : ELEMENT x ELEMENT + BOOLEAN

holds true if and only if the first element is enumerable and as a collection it contains

the second element.

true, if enumerable(el) =trueAe2 E enumerate(el)
contnins(el, e2) =

false, otherwise.

Function Elements

Function elements represent the functions that are defined in a CoreASM state.

FUNCTIONELEMENT, a subset of ELEMENT, is introduced to provide a core concept for state

functions (tables) and custom-defined functions (e.g., derived functions provided by a plug-

in, such as 'sin(x)'). The following functions and rule are defined over functions elements:

fClass : FUNCTIONELEMENT + FUNCCLASS

Is the class of the function, where

FUNCCLASS == {monitored, controlled, out, static, derived)

The default value of this function is controlled.

fGetValue : FUNCTIONELEMENT x ELEMENT-SEQ + ELEMENT

returns the value of this function with respect to the given arguments. The default

value of this function is undef.

rule FSetValue(f , args, v)

sets a new value for the function, if this is possible. By default, this rule is defined as

follows.

FSetValue(f , args, v) =
fGet Value(f, args) := v

signature : FUNCTIONELEMENT + SIGNATURE

is the signature of the given function. The default value of this function is undef.

derived flotations : FUNCTIONELEMENT + LOC-SET

is the set of all locations for which this function has a value other than undef.

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

derived equalFunction : FUNCTIONELEMENT x ELEMENT + BOOLEAN

where we have,

equalhnction(f l , f2) - Va E ELEMENT-SEQ fGet Value(fl , a) = fGet Value(f2 , a)

Vf E FUNCTIONELEMENT bkg(f) = "Function"

Locations

Locations within a state are pairs of function names and arguments lists.

ZocName : Loc + NAME

is the name of the function on which this location is defined.

ZocArgs : Loc + ELEMENT-SEQ

is the list of abstract object values, as arguments of the location.

derived locFunction : Loc + FUNCTIONELEMENT

is the function on which this location is defined.

Signature Elements

Signature elements represent the signatures of functions. Domain and range types (uni-

verses) are identified by their names. SIGNATURE elements have the following functions

defined on them:

controlled sigDomain : SIGNATURE + NAME-SEQ

is the ordered list of domain types for this signature.

controlled sigRange : SIGNATURE + NAME

is the range type for this signature.

Universe Element

Universe elements represent the universes that are defined in a CoreASM state. Hence,

UNIVERSEELEMENT is a subset of FUNCTIONELEMENT. The following functions are defined on

these elements:

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

uMember : UNIVERSEELEMENT x ELEMENT + BOOLEAN

is the membership function of the universe. If u is a universe, then we may use the

syntactical form u(x) for uMember(u, x).

derived equaluniverse : UNIVERSEELEMENT x ELEMENT + BOOLEAN

where

equal~niverse(a, b, = equal~unction(a, b,

Vi E UNIVERSEELEMENT bkg(i) = "Universe"

For all v E ELEMENT and u E UNIVERSEELEMENT, we have,

FSetValue(u, (v), b) = uMember(u, v) := b

Background Elements

Background elements represent backgrounds (static universes) in a CoreASM state.

BACKGROUND is a subset of UNIVERSEELEMENT.

controlled new Value : BACKGROUND + ELEMENT

returns a pseudo new element of the given background; i.e., most probably returns

a default value like an empty string for strings, or an empty set for sets, or false for

Booleans.

V b E BACKGROUND fClass(b) = static

I t is not possible to change the membership function of a background; i.e., it is not

possible to add any element to a background or to remove any element from it.

derived equalBackground : BACKGROUND x ELEMENT + BOOLEAN

where

equal~ackground(al b, = equal~niverse(a, b,

\Ji E BACKGROUND bkg(i) = "Background"

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

Rule Elements

Rule elements represent the ASM rules that are defined in a CoreASM state. Thus, RULE is

a subset of ELEMENT. The following functions are defined on rule elements:

0 ruleName : RULE + NAME

is the name of the rule. If not undef, this name must be unique in state.

body : RULE + NODE

holds the body (syntax tree) of the rule.

param : RULE + TOKEN-SEQ

holds (in order) the parameters of the rule in squence of tokens (or strings).

0 derived equalRule : RULE x ELEMENT + BOOLEAN

where

equazRule(a, b, = equaz~lement(a, b,

Vi E RULE blcg(i) = "Rule"

State

The state of a simulated machine is represented as an abstract data structure. The following

functions define the interface of such a data structure:

content: STATE x LOC + ELEMENT

is the value of a given location in the state. This function represents the interface of

the state.

0 state Universe : STATE x NAME + UNIVERSEELEMENT

is the mapping of universe names to universe elements in the state.

stateFunction : STATE x NAME + FUNCTIONELEMENT

is the mapping of function names to function elements in the state.

0 stateRule : STATE x NAME + RULE

is the mapping of rule names to rule elements in the state.

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 42

The following derived functions are defined to respectively provide the set of all the universes,

functions, rules, and locations defined in a state.

derived universes : STATE + UNIVERSEELEMENT-SET

universes(s) = {u I u E UNIVERSEELEMENT A (3n E NAME, stateUniverse(s, n) = u))

derived functions : STATE + FUNCTIONELEMENT-SET

functions(s) = { f I f E FUNCTIONELEMENT A (3n E NAME, stateFunction(s, n) = f))

derived rules : STATE + RULE-SET

rules(s) = {r I r E RULE A (3n E NAME, stateRule(s, n) = r))

derived locations : STATE + LOC-SET

locations(s) = {I I 3 f (f E functions(s) A 1 E fLocations(f)))

derived isUniverseName : NAME -+ BOOLEAN

isUniverseName(name) = universes(state, name) # undef

derived i~FunctionName : NAME + BOOLEAN

isFunctionName(name) = functions(state, name) # undef

derived isRuleName : NAME + BOOLEAN

isRuleName(name) = rules(state, name) # undef

5.2 Signature Plug-in

In principle, CoreASM functions are untyped alike ASM functions. While this is desirable in

initial specification phases focusing on exploring the problem space, domain and range types

of functions often add useful semantic information to a refined specification, for instance,

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 43

to improve its understandability, to implement runtime type checking, and also to facilitate

model checking. The Signature Plug-in provides means to declare functions with their

associated signatures, thereby adding type information to CoreASM. Moreover, it also allows

to define new universes and enumerated backgrounds directly in a specification, rather than

introducing them by a separate plug-in.

The Signature Plug-in extends the parser, the interpreter and the abstract storage.

Extending the grammar of the CoreASM language with its own syntactic patterns, the

Signature plug-in creates new nodes in the AST. These nodes are not evaluated during the

execution of the ASM, since they do not represent regular rules or expressions; rather they

are interpreted before an ASM run, when the engine is in the Initializing State mode see

Figure 5.4). During the initialization of the abstract storage, the engine queries plug-ins for

the vocabulary elements they provide (see definition of InitAbstractStorage in Section 5.1.1).

Hence, the interpretation of Signature declarations directly modifies the initial state (and

vocabulary of the machine).

5.2.1 Functions

To declare functions, the Signature plug-in extends the CoreASM language with the following

syntactic patterns3, which can appear in the header of a specification:

Q function

Q function

Q function

Q function

Function Declaration

xnam, : xdl * . . . * xd,,-> x, D -+

createFunction(xname, controlled, (xd,, . . . , xd,), x,)

controlled xnam, : xd, * . . . * xd, -> x, D ---t

createFunction(xnam,, controlled, (xd,, . . . , xd,), x,)

static xnam, : zd, * . . . * xd,,-> x, D -+

createF~nction(x~,~,, static, (xdl, . . . , xd,), 5,)

monitored x, ,,,, , : xd, * . . . * xd,-> x, D skip

Although (at the time of writing) monitored functions are not supported in the Core-

ASM interpreter, the syntactic pattern for declaring monitored functions is included above

3The notation we use here has been borrowed from 1271. It will suffice to say that the semantics is given
by ASM rules guarded by syntactical patterns. Patterns are delimited by 1 D -+ symbols; inside a pattern,
variables named x, e , v indicate that the corresponding node or subtree is an identifier, an expression, a
value. An empty box indicates an unevaluated node; a boxed letter indicates an unevaluated node which is
expected to result in the corresponding element. superscripts name 1ocations.the corresponding value in the
pattern.

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 44

because monitored functions are supported in the translation of CoreASM to Promela. The

interpretation of function declaration patterns is defined by the createFunction rule, which

creates a new function and with the specified name, class, and signature.

createFunction

createFunction(name, functionClass, domain, range) =
let f = FUNCTIONELEM ELEMENT) in

fClass(f) := f unctionClass

sigDomain(s) := domain

sigRange(s) := range

signature(f) := s

add (name, f) to pluginFunctions(SignatureP1ugin)

One can also specify the initial value(s) of a function in the function declaration by

including an initialization expression at the end of the declaration. The initialization ex-

pression may be a basic expression, for nullary functions, or a map expression, for n-ary

functions. Before the function is created, the expression giving its initial value is evaluated.

In the following rule fClass is either of static or controlled.

Function Declaration with Initialization

(I function f Class x,,,,, : xd, * . . . * xd,, -> x , initially am D + evaluate(cr)

(I function f Class x,,,, : xd, * . . . * xd,, -> x , initially av D +

createFunction(x,,,,, fClass, (xd,, . . . , xd,,), x,, V)

To support function value initialization the createFunction rule is modified as follows:

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 45

- -- --

createFunction with Initial Value

createFunction(name, functionClass, domain, range, initialValue) -
let f = FUNCTIONELEM ELEMENT) in

fClass(f) := f unctionClass

let s = FUN SIGNATURE) in

sigDomain(s) := domain

sigRange(s) := range

signature(f) := s

if initialvalue # unde f then

setFunctionValue(f, domain, initialValue)

add (name, f) to pluginFunctions(SignatureP1ugin)

The setFunctionValue rule sets the value of a function. If the function is not nullary and

the specified value is a MAPELEMENT, each key in the map is viewed as a function location

and the content of the location is set to the corresponding map value.

setFunctionValue

setFunctionValue(function, domain, value) =
if isMapElement(va1ue) A domain # unde f then

forall loc E f Locations(va1ue) do

FSetVaIue(function, locArgs(loc), f GetValue(value, locArgs(1oc)))

else if domain = unde f then

FSetValue(function, 0, value)

5.2.2 Universes and Enumerations

To declare universes, the Signature plug-in provides the following patterns:

Universe Declaration

universe x,,,, D --+ ~reateUniverse(x,,,,, {))

Q universe x,,,, = {x,, , . . . , x,,,) D + createUniverse(x,,,,, {x,, , . . . , x,,,))

The second pattern above allows the specification writer to declare a universe along with

a set of named initial member elements. Of course, a declared universe can still be extended

using standard methods, namely by using the extend rule, which imports a new element

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 46

to a universe, or by setting the value of the corresponding universe membership predicate

to true for a given element.

The universe declaration patterns are interpreted by the createuniverse rule, which cre-

ates a new universe with the specified name. If initial member elements are specified, for

each member element a static function that refers to the member is also created.

createuniverse

createUniverse(name members) =
let u = UNIVERSEELEM ELEMENT) in

add (name, u) to pluginUniverses(SignatureP1ugin)

forall elementName E members do

let e = ELEMENT) in

uMember(u, e) := t rue

let f = FUNCTIONELEM ELEMENT) in

add (elementName, f) to pluginFunctions(SignaturePlugin)

fClass(f) := static

FSetValue(f, 0, e)

To declare enumerated backgrounds, the Signature plug-in provides the following pat-

tern:

Enumeration Declaration

Qenum x,,,, = {x,,, . . . , xen) D + createEnumeration(x,,,,, {x,, , . . . , x,,,))

The createEnurneration rule is similar in spirit to createuniverse, as enumerable back-

grounds are analogous to static universes. The rule is as follows:

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING 47

createEnumeration

createEnumeration(name, members) -
let b = ENUM ENUMERATION BACKGROUND) in

add (name , b) to pluginBackgrounds(Signatu~eP1ugin)

forall elementNanze E members do

let e = ENU ELEMENT) in

bkg(e) := name

add e to enumMembers(b)

let f = UNCTIONELEME ELEMENT) in

add (e lementName, f) to pluginFunctions(Signatu~eP1ugin)

fClass(f) := static

FSetVaIue(f, 0, e)

Background elements that are defined using the Signature Plug-in are

ENUMERATIONBACKGROUND elements. ENUMERATIONBACKGROUND extends BACKGROUND by

supporting the Enumerable Interface.

0 controlled enumMembers : ENUMERATIONBACKGROUND -+ ELEMENT-SET

is the set defining the members of the enumeration. This has a default value of {).

5.3 Property Plug-in

The Property Plug-in is a small plug-in that allows correctness properties for a model, ex-

pressed as LTL formulas, to be included in the header of a CoreASM specification. Presently,

specified properties do not have any meaning during ASM simulations (although it may be

possible to extend the Property Plug-in to check simple global assertions). Correctness

properties are only applicable during model checking, and are translated by our CoreASM

to Promela translator. The details of the translation will be discussed in the next chapter

(Section 6.5).

Property Declaration

1 property en D -+ skip
1 check property an D -+ skip

CHAPTER 5. EXTENDING COREASM FOR MODEL CHECKING

I CoreASM Operator I Description I Expression Class I

Table 5.2: LTL Operators Provided by the Property Plug-in

always
eventually

strong until
next

Including the keyword check with a property declaration indicates that the property

should be checked during model checking. The skip rule is specified as the action for these

patterns because they have no semantics in the CoreASM interpreter. However, the property

expressions are still included as part of the abstract syntax tree. The Property Plug-in also

adds the LTL operators listed in Table 5.2 to the CoreASM grammar to be used in LTL

formulas.

One may see the Property Plug-in as indirectly improving the usability of the Spin model

checker, since Spin does not allow LTL properties to be included directly in a specification. In

Spin, properties are defined by describing the behavior of a property automaton. Moreover,

Spin only allows a single property automaton in each model, while the Property Plug-in

allows multiple properties to be specified for a single specification.

Unary Operator
Unary Operator
Binary Operator
Unary Operator

Now that we have introduced CoreASM and extended the CoreASM language to support

model checking, we can move on to can describing the translation of CoreASM specifications

to input for Spin in the next chapter.

Chapter 6

From CoreASM to Promela

This chapter presents a novel approach to model checking CoreASM specifications by trans-

lating a CoreASM model into an equivalent Promela model, which can be verified using the

Spin model checker [36]. From a high level perspective, the steps in the translation and

verification process are as follows (see Figure 6.1):

1. A CoreASM specification is loaded and parsed by the CoreASM engine, producing an

Abstract Syntax Tree.

2. The Abstract Syntax Tree is translated into Promela.

3. Spin is invoked to generate a verifier of the Promela model, producing C code.

4. The C code is compiled, generating a custom verifier of the CoreASM specification.

5. The verifier is run, producing a counter example if the property being checked is

violated.

Using the abstract syntax tree as the basis for translation allows for structured translation

and the straight-foward application of a recursive translation procedure.

CoreASM specifications have a well defined structure. Function and universe declara-

tions, as well as correctness properties, are declared in the header section, while the body

of a specification consists of rule definitions. The different sections of a specification are

translated in the following order:

1. Universe declarations

CHAPTER 6. FROM COREASM TO PROMELA

CoreASM , Spec

Abstract Syntax Tree 0

Counter Example &
Figure 6.1: CoreASM2Promela: Overall Verification Process

2. Function declarations

3. Correctness properties

4. Rules

Before describing the translation procedure, it will be useful to have a brief introduction

to Promela. Promela (Process Meta Language), the input language of the Spin model

checker, is a verification modeling language that is based on processes, message channels, and

variables. Promela variables have two levels of scope: global and process local. Promela's

syntax is similar to C and its execution semantics are also similar to those of C and other

imperative programming languages, in that Promela statements are executed sequentially.

However, Promela semantics differ from those of regular programming languages in several

important regards. Unlike most programming languages, conditions (e.g. (a==b)) are

treated as statements in Promela and are only executable when they are true. A false

condition blocks execution of the running process. Also, selection and repetition constructs

in Promela can be non-deterministic.

CHAPTER 6. FROM C O R E A S M TO PROMELA 51

The remainder of this chapter presents in detail the CoreASM to Promela translation

procedure.

6.1 Elements, Universes and Backgrounds

As Spin can only check finite models, the translation scheme is limited to CoreASM spec-

ifications which have finite state as well. Thus the translation only supports only static

universes and finite backgrounds, which are handled in exactly the same fashion. Each ele-

ment from a given universe or background is mapped to an integer value, starting at zero.

Since the Boolean elements true and false are part of the Promela language as well, the

CoreASM Boolean background is not translated.

The following CoreASM declarations:

universe UniverseName = {universeElement~, . . . ,universe~lementN}
enum BackgroundName = {backgroundElementO, . . . , backgroundElementN}

are translated to Promela as:

Under this translation, elements from different universes may have the same underlying

numeric value. The translator does not perform any type checking and we assume that all

the rules and expressions contained in a specification only refer to elements from equivalent

or compatible domains.

The special element undef is handled by declaring a macro and we have chosen the

convention of declaring the value of undef to be the maximum value of the Promela data

CHAPTER 6. FROM COREASM T O PROMELA 5 2

type that is used to represent a location. In most situations it suffices to use byte variables

to represent locations, making the value of undef equal to 255 .

#define undef 2 5 5

6.2 Functions

For the translation to be possible all functions referenced in the specification body must

first be declared. The translation supports controlled, static, and monitored functions.

CoreASM functions are translated as Promela global variables.

Nullary functions are translated as basic integer variables. If f is a nullary function, f

is simply translated as a Promela variable:

N-ary functions are translated as multi-dimensional arrays. Each array element corre-

sponds to a unique function location. Although Promela does not directly support multi-

dimensional arrays, they can be created indirectly by chaining typedef statements, where

each new type contains a single dimensional array, with array size corresponding to the size

of the universe of each argument. If f is a a function with arity n 2 1 and with arguments

(in order) from the universes Ul, . . . , U,, f is translated as follows:

/ typedef L A R G n {

I byte ARGn

typedef f--ARG (n-1) {

fLARGn A R G (n - l) [I U - (n - l) I] ;

CHAPTER 6. FROM COREASM TO PROMELA 5 3

typedef f--ARGl {

f--ARG2 ARGl[I U-1 I] ;

}

If an initial value for a controlled or static function has been specified in its declaration,

the value is set in the initial rule of the ASM, which will be in turn translated to Promela.

Rule translation is described in the next section of this chapter.

A controlled function has the default initial value of undef for each of its locations. For

each controlled function, two variables are declared, one representing the function in the

current state and one for the next state. Updates only affect the next-state variable. The

suffix '--P' (meaning prime) is added to the variable name to denote that it contains the

value of the function in the next state.

by te f ;

by te f - - P ;

Monitored functions are updated in between each ASM step. A special inline procedure,

monitoredupdate, which updates monitored functions, is created. This procedure is called

at the beginning of each ASM step. A monitored function's next value is chosen non-

deterministically from the values in its range. If g is a monitored function and the values

vl, . . . , v, are in its range, g is updated by the following conditional statement:

1 i n l i n e moni toredupdate () {

CHAPTER 6. FROM COREASM TO PROMELA 54

If g is has arity greater than zero, each of its locations is updated non-deterministically,

in a fashion similar to what is shown above.

6.3 Rules

All basic ASM rules are supported by the translation, except for those which introduce new

elements from the reserve, such as import and extend , since these rules can potentially

produce models with infinite state space. The possibility of extending the translation to

support those rules will be addressed in the conclusion of this thesis.

6.3.1 Assignment Rule

loc := value

The left hand side of the assignment is a location to be updated so in the equivalent

Promela statement the primed copy of the variable corresponding to the location is updated.

l oc - -P = v a l u e ; I
6.3.2 Skip Rule

skip

Promela also uses skip as its no-op statement.

I s k i p ;

6.3.3 Block Rule

par rulel rule2 . . . rule, endpar
optional

As in most programming languages, Promela statements are evaluated sequentially. The

parallel execution semantics of ASM rules is faithfully modeled since only the primed copy

CHAPTER 6. FROM COREASM TO PROMELA 55

of variables are modified during rule firing. From here on, the notation <<rule>> in the

Promela code shall denote the recursive application of the translation algorithm.

6.3.4 Conditional Rule

if value then rulel else rulez
optional

As was mentioned earlier, Promela also has if statements as conditional selection con-

structs. The translation is straight-forward. In the case with no else clause, we have:

i f

: : v a l --> <<ru l e1 >>;
: : e l s e -> s k i p ;

f i ;

otherwise:

: : v a l -> <<ru l e1 >>;
: : e l s e -> <<ru le2 >>;
f i ;

In the first case above, the translation requires the addition an empty else clause, as

otherwise the execution of the statement in Promela would block when the guard value was

false. Such behavior would not model the intended ASM execution semantics.

CHAPTER 6. FROM COREASM TO PROMELA

6.3.5 Choose Rule

choose x i n value with guard do rulel ifnone rulez endchoose
optional optional optional

A choose rule is translated into a non-deterministic Promela conditional statement.

Since all universes and backgrounds must be enumerable, it is possible to enumerate all

possible values of xin value. For each vi E value, all occurrences of xin rulel are replaced by

vi. Each of the new rules that results from the substitution becomes a branch of the main

conditional statement. In the code below the expression "rule[v/idlX denotes "rule" with all

instances of the identifier id replaced with value v.

if

: : < < r u l e 1 [v l / i d] > > ;

: : <<rule 1 [v 2 / i d] >>;

If the choose rule has a with clause, the guard, again with the appropriate substitu-

tions of vi for x, is added as a guard to each of the conditional branches. A final e l s e case

is added to handle the case when none of the vi E value satisfy the guard condition. The

Promela statement otherwise would block on such a condition.

: : guard [v l / i d] -> <<ru le1 [v l / i d] > > ;

: : guard [v 2 / i d] -> <<ru le1 [v 2 / i d] > > ;

: : guard [v n / i d] -> <<ru le1 [v n / i d] > > ; I . . .
: : e l s e -> s k i p ;

f i ;

Finally, if an i f none clause is provided, the associated rule (rule2) becomes the resultant

statement for the e l s e case.

CHAPTER 6. FROM COREASM TO PROMELA

i f

: : guard

: : guard

: : guard [v n / id] -> <<rule 1 [v n / i d] > >;
: : e l s e -> <<rule2 >>;
f i ;

6.3.6 Forall Rule

f o r a l 1 x i n value with guard do rule endf o r a l 1
optional optional

Similar to the case for the choose rule, a forall rule is translated by unrolling it into

multiple statements, one for each vi E value. Again, parallel execution is modeled since only

primed variables are updated.

. , .

< < r u l e [v n / i d] >>;

In the case that a with clause is included, each statement is translated into a conditional,

with the appropriate substitutions made in the guard.

i f

: : guard [v l / i d] -> <<ru le [v l / i d] > > ;

: : e l s e -> s k i p ;

f i ;

i f

: : guard [v 2 / i d] -> <<ru le [v 2 / i d] > > ;

: : e l s e -> s k i p ;

f i ;

CHAPTER 6. FROM COREASM TO PROMELA 58

I : : guard [v n / i d] -> <<ru le [v n / i d] > > ;

: : e l s e -> s k i p ;

f i ;

6.3.7 Map Assignment Rule

Since CoreASM functions are objects, we have introduced a rule that assigns a map expres-

sion to a function object.

This rule is translated into multiple Promela assignment statements, one for each location

defined in the map expression.

f .ARGl[x-{n, 1)] AFCh[x-{n,m)] = y - n ; I . . .

6.3.8 Macro Rules

r u l e ruleName(arg1, . . . , argn) = aRule

Macro rules are translated as Promela inline definitions, which model ASM semantics

very well, since arguments to inline procedures are passed in a call-by-substitution manner.

i n l i n e ru leName(arg1 , . . . , a r g n) {

<<aRule>>

) ;

CHAPTER 6. FROM COREASM TO PROMELA

6.3.9 Program Rules

rule programRuleName = aRule

Rules which are agent programs are handled specially. The translation requires that the

program function be declared as part of the specification signature, and that the function's

initial value be specified. If a rule is the value of program(a) for some agent a , the rule is

translated as Promela proctype declaration, which defines a new process type. The special

function self is defined locally in each process. When a process is instantiated it is given a

unique value for self, namely the value from the translation of Agent universe declaration. In

Promela, statements within an atomic block are treated like a single statement. Execution

of statements in an atomic block can not be interrupted by another process. This behavior

models parallel atomic rule firing in ASMs. In each agent step, monitored functions are

updated before the actual program rule is executed. After the program rule is executed,

controlled functions are updated, thereby performing the agent's move and producing the

next ASM state.

p roc type programRuleName(byte s e l f) {

d 0

: : a tomic {

In the case that we wish to override the purely non-deterministic scheduling policy of

Spin, as is the case when we wish to ensure fair scheduling of processes, a mechanism to

control the execution of the agent processes is required. Agent execution can be coordinated

by using Promela rendezvous channels. A rendezvous channel is a message channel with

size zero. A channel wait statement blocks a process' execution until a message is received.

We add this channel wait statement to the main loop of an agent to provide a signaling

mechanism for the agent. An array of rendezvous channels is defined globally, with one

CHAPTER 6. FROM COREASM T O PROMELA 60

channel for each agent. A single message type start is defined to signal the start of an

agent's program execution.

mtype = { s t a r t) ;

chan c 2 p - s i g n a l [I Agents I] = [0] of {mtype) ;

p roc type programRuleName(byte s e l f) {
do

: : a tomic {

c 2 p - s i g n a l [s e l f I? s t a r t ;

moni to redupda te () ;

<<aRule>>

f u n c t i o n u p d a t e () ;

6.4 Expressions

CoreASM2Promela supports the expression types supported in the CoreASM kernel, namely

function term expressions and operator expressions. It also supports forall and exists ex-

pressions. Function terms are translated into variables or array expressions.

The translation only supports operators which are native to Promela. Table 6.1 lists

these operators.

6.4.1 Forall and Exists Expressions

f o r a l l x in value h o l d s guard

CHAPTER 6. FROM COREASM TO PROMELA

1
mod
<

<=
>

>=
not
and
or

Promela Operator
-- --

! =

+
*
1
%
<

<=
>

>=
1

Description
Equality comparator
Inequality comparator
Numeric addition
Numeric subtraction
Numeric multiplication
Numeric (integer) division
Modulo
Less than comparator
Less than or equal comparator
Greater than comparator
Greater than or equal comparator
Logical negation
Logical and
Logical or

Table 6.1: CoreASM to Promela Operator Conversion

First-order universally quantified expressions are translated by expanding the expression

into a conjunction of predicates over all of the elements in the domain which the expres-

sion quantifies over. As is the case with forall and choose rules, value must be a static

enumerable domain. If vl, . . . , v, are the elements in value, a forall expression is translated

as:

Similarly, existentially quantified expressions are translated as a disjunction of predi-

cates.

e x i s t s x i n value with guard

((g u a r d [v l / i d]) I (. . . I I (g u a r d [v n / i d]))

CHAPTER 6. FROM COREASM TO PROMELA

CoreASM Operator
not
and
or

implies
G
F
u
X

Promela Operator
I

Description
Logical negation
Logical and
Logical or
Logical implication
LTL always
LTL eventually
LTL strong until
LTL next

Table 6.2: Promela LTL Operators

6.5 LTL Correctness Properties

Spin does not support LTL correctness claims directly. LTL properties must be translated

into Promela never claims, which correspond to the property automata described in Chap-

ter 3. Only one never claim can appear in a Promela model, so only one property can be

checked at a time (though the property may be a conjunction of other properties). Spin

provides a tool which converts an LTL formula into an equivalent never claim.

Spin's LTL translator only allows LTL and logical operators to appear in formulas (see

Table 6.2), so, for example, comparison expressions cannot be included. However, Spin does

support inclusion of complex predicates indirectly through macro definitions. Our translator

defines these macros automatically. For example, for the following property:

G(not (owner(resource) = agent1 and owner(resource) = agent2))
c2p-propoco c2p-prop0cl

(6.1)

the following macros are declared:

#de f ine c2p-propoco (owner .ARGl[r e s o u r c e] = = a g e n t l)

#de f ine c2p -p rop0c l (owner .ARGl[resource]==agent2)

To ensure that a correctness claim is only checked in states where the ASM is properly

initialized, a global boolean variable c2p-initialized is introduced. Without this variable,

the model checker could produce erroneous counterexamples. The value of c2p-initialized is

initially false and is set to true after the ASM state initialization steps (which are discussed

C H A P T E R 6. FROM COREASM T O PROMELA 63

in the next section) are completed. So to restrict property checking of some property 4 to

initialized states, we check the global implication:

Moreover, to check that a property $ holds true in a given model using Spin, we actually

need to check that the automaton corresponding to the negation of the property, +J, never

accepts. Thus the property that is finally given to the Spin LTL translator is:

Using the property listed earlier (Equation 6.1) as the example, the property actually

given (using Promela LTL syntax) to the Spin LTL translator is:

![] (c2pinitialized -> ([I (!(c2p_propOcO && c2p-propocl))))

for which the Spin LTL translator produces the following never claim:

never { / * ! [I (c 2 p - i n i t i a l i z e d ->
([I (! (c2p-propOc0 && c2p-propocl)))) * /

TO-ini t :

if

: : ((c 2 p - i n i t i a l i z e d) && (c2p-propOc0) && (c 2 p - p r o p o c l))

-> go to a c c e p t - a l l

: : ((c 2 p - i n i t i a l i z e d)) -> go to T O 3 4

: : (1) -> go to TO-in i t

f i ;

TO34 :

i f

: : ((c2p -p ropOc0) && (c2p-propocl)) -> go to a c c e p t - a l l

: : (1) -> goto TO-S4

f i ;

a c c e p t - a l l :

s k i p

1

CHAPTER 6. FROM COREASM TO PROMELA

6.6 DASM Simulation Model

Every Promela model has a special initial process (which is specified using the keyword init)

that is the first process run by Spin. In our translation from CoreASM to Promela we use

the init process to initialize the state of the simulated ASM and, when desired, to explicitly

schedule the execution of agents.

In the ASM initialization section of the init process, all locations are first given the value

undef. Then, if the function declaration section of a specification includes initial values, these

initial values are set. Afterwards, the actual initial rule given by the specification writer is

executed. This rule may perform any other state initialization, which may have not been

convenient to express as part of the function declarations. Processes corresponding to the

program of each of the agents are then instantiated, with the value of each process' self

argument set to identify each DASM agent. Note that it is possible for multiple agents to

share the same process type. Also, since the agent processes are launched within an atomic

sequence, the processes can not begin execution until all the statements in the atomic

sequence are complete. Thus all the agent processes begin their execution at the same time.

At this point, the ASM is considered to be in its initial state, so the variable c2p-initialized

is set to true.

i n i t {

a tomic {

f u n c t i o n I n i t () ;

i n i t - i n l i n e () ;

f u n c t i o n u p d a t e () ;

I n i t R u l e () ;

f u n c t i o n u p d a t e () ;

run program1 (agen t 1) ;

r u n program2 (a g e n t 2) ;

run programN (agentN) ;

c 2 p - i n i t i a l i z e d = t r u e ;

1 ;
}

CHAPTER 6. FROM COREASM TO PROMELA 65

Spin's process scheduler is non-deterministic, so during model checking every possible

interleaved sequence of process executions is considered. Thus, every possible sequence of

DASM agent moves is considered. Interleaving semantics model the partially ordered runs

of distributed abstract state machines faithfully, since the coherence condition implies that

all linearizations of a partially ordered run result in the same final state.

However, the shortcoming of Spin's process scheduling model is that it only supports

weak fairness, not strong fairness. Under strong fairness a process that is enabled infinitely

often will do infinitely many steps, while weak fairness stipulates that a process that is

enabled infinitely long will to do infinitely many steps 1361. Consequently, because of our

translation and Spin's statement execution semantics, it is possible for a DASM agent to

never be run. This behavior is not desirable when one wishes to check a model for liveness

properties, for which some assumption about fairness is usually made, i.e. all agents will

execute infinitely often (no starvation).

We address this problem by explicitly using a fair process scheduling policy when check-

ing a model for liveness. We employ the simplest fair scheduling policy, round-robin. As

was mentioned in Section 6.3.9, it is possible to coordinate the execution of Spin processes

by signaling via message channels. In this case we add a loop to the Promela init process

to explicitly run each agent in sequence.

i n i t {

/ * ASM i n i t i a l i z a t i o n * /

d o : : {

a tomic {

/ * IAgentsI i s t h e number of a g e n t s * /
c2p-agen t = (c 2 p - a g e n t + l)%(lAgen t s I) ;
c 2 p - s i g n a l [c 2 p _ a g e n t] ! s t a r t ;

1
) o d ;

1

While other fair and less restrictive scheduling policies, such as "each agent must be run

CHAPTER 6. FROM COREASM T O PROMELA 66

at least every k steps", can be implemented, doing so adds considerable complexity to the

Promela model, producing models with much larger state space1. We leave the option of

using custom scheduling policies open to users who are inclined to manually edit a generated

Promela model.

Having now presented in detail the method of translating CoreASM specifications into

Promela models, which can be verified using the Spin model checker, we move on to pre-

senting applications of this translation in the next chapter.

'For example, using the "each agent must be run at least every k steps" policy increases the state space
by a factor of k x IAgentsl.

Chapter 7

Case Studies

In this chapter we present the results of applying our model checking tool on several CoreASM

specifications1. We compare our results against those of Winter's ASM2SMV model checking

tool. We do not compare our tool with Gargantini's Spin based tool because the ASM

language his tool supports is very limited and does not support DASMs, and applying the

two tools to a simple ASM model would produce essentially equivalent Promela models.

This would not provide an interesting comparison. We first present the specific results from

each of the case studies and then give a general discussion and analysis of the results in

Section 7.4.

All tests were run on a Sun machine with a 1.2 GHz UltraSparc processor and 4 GB of

main memory, using Spin, version 4.2.8, and NuSMV, version 2.4.1.

7.1 Distributed Termination Detection

Eschbach [21] presents a specification and verification of a distributed termination detec-

tion algorithm, which was originally proposed by Dij kstra, Feijen, and van Gasteren [19].

Eschbach models the termination detection algorithm as an ASM and presents a manual

proof of its correctness. In our experiments, we verify the correctness of Eschbach's ASM

model of the termination detection algorithm using the CoreASM2Promela model checking

tool.

The problem to be solved is to detect the termination of a computation distributed over
- ---

'Several of these specifications were adapted from ASM-SL specifications presented in [53]

67

CHAPTER 7. CASE STUDIES 68

several machines (computers), which are connected over a network. We assume that all

machines are initially active in the computation. Machines become inactive once they have

completed their part of the computation. An active (source) machine may delegate work

to another (destination) machine by sending a message to the destination machine. After

receiving a message an inactive destination machine becomes active again. A distributed

computation is considered to be terminated when all machines are inactive and there are no

messages to be processed. Each machine has no knowledge of the activity status and message

queue of the other machines. One of the machines in the network is designated as a control

machine which monitors the status of the computation. The termination detection algorithm

works by sending a token, initiating from the control machine, through the network. Token

passing is independent of message passing, and has no impact on the activity status of a

machine. When the control machine gets the token back, it can determine if the computation

has finished by examining the value of the token. For the details of algorithm we refer the

reader to Appendix A.l, which contains the full ASM specification of the algorithm.

The correctness property of most interest for this model is to verify that termination is

always detected by the control machine once the computation has terminated.

P I : If the computation has terminated then termination will eventually be detected.

Since this is a liveness property, whose correctness is dependent on fair scheduling agents,

we use the round robin agent scheduling provided by CoreASM2Prornela (see Section 6.6).

As originally presented, Eschbach's ASM specification for termination detection is not

amenable to model checking since a machine may send an unbounded number of messages.

Thus, our model is modified so that each machine may only send up to a maximum number

of messages. In our experiments we varied two parameters, A the number of machines

(agents) in the network, and M the maximum number of messages a machine may send.

The model checking results are shown in Table 7.1, which lists the time taken to verify

that the model satisfies P I . An entry MEM in the table indicates that there was insufficient

memory to complete verification, while T R indicates that ASM2SMV translator failed (with

segmentation fault).

C H A P T E R 7. C A S E STUDIES

Table 7.1: Distributed Termination Detection Model Checking Results

7.2 FLASH Cache Coherence Protocol

The FLASH Cache Coherence Protocol coordinates the sharing of memory among the pro-

cessing nodes of the Stanford FLASH multiprocessor [42]. Winter used the protocol as a

case study in her PhD thesis on ASM2SMV. In the FLASH multiprocessor, distributed

memory is partitioned into lines and each line is associated with a home-node which hosts

the part of the physical memory where the line resides. The sharing of memory is facilitated

by holding local copies of data a t each node. The Cache Coherence Protocol guarantees

that none of the nodes hold a copy of data that is out of date. The entire specification of

the protocol is given in Appendix A.2.

In these experiments, we use an erroneous specification of the protocol, based on the

original model Winter used and then corrected, to elicit counterexamples from the model

checkers, in addition to verifying a true property. The following properties were tested:

P2: No two nodes have exclusive access to the same line a t any time.

V i V j # j' G(l(State(nodej, linei) = exclusive A State(nodej,, linei) = exclusive)

P3: Every request will eventually be acknowledged.

V iVj G(CurPhase(nodej, linei) = wait -+ F(CurPhase(nodej, linei) = ready))

P4: Whenever a node obtains shared access to a line, it will be marked as a sharer of

the line.

CHAPTER 7. CASE STUDIES

Parameters

N=2,
L= l ,
Q=1
N=2,
L=2,
Q= l
N=3,
L=l ,
Q=2

Table 7.2: Flash Cache Coherence Protocol Model Checking Results

Property

P 2
P3
P4
P2
P 3
P4
P2
P 3
P4

V i V j G((State(nodej, linei) = shared + X(Sharer(linei, nodej) = true)) V

(Sharer(linei, nodej) = true + X(State(nodej, linei) = shared)))

P2 and P3 are not satisfied by the model, while P4 holds true. In these experiments,

we varied three parameters: N the number of nodes, L the number of lines, and Q the

size of the message queue a t each node. Also, since P2 and P4 do not require scheduling

fairness, we performed the tests both with and without CoreASM2Promela's explicit round

robin scheduling for the sake of comparison. The results of the experiments are shown in

CoreASM2Promela

6s

N/A
196s
85s

N/*
5,187s
164s

N/A
MEM

Table 7.2.

7.3 i-Protocol

The i-Protocol is an optimized sliding window protocol used in GP

CoreASM2Promela
Round Robin

43s
7s

1,894s
5,376s
671s

188,907s
16,356s

398s
MEM

Unix to Unix Copy

(UUCP). Version 1.04 of the i-Protocol contained a non-trivial error and was used as the

basis of a comparative study of different verification tools in 1201. Due to the incorrect

handling of negative acknowledgements, version 1.04 of the i-Protocol contains a so-called

"livelock" error, in which a sequence of packet drops results in a loop where the receiver

ignores all subsequent packets from the sender. The full specification of the protocol is given

in Appendix A.3.

To check for the presence of the live lock error, we check the model against the following

LTL property:

ASM2SMV

(BDD)
438s
921s
76s

MEM
MEM
MEM
MEM
MEM
MEM

CHAPTER 7. CASE STUDIES

I Parameters I Property 1 CoreASM2Promela / ASM2SMV]

Table 7.3: iProtocol Model Checking Results

W = l

0 If the packet with sequence number [W/21 has been accepted and if eventually in the

future there are no more data errors or packet drops, then next packet will eventually

be accepted.

G((accepted([W/21) A GF(1dckerr A lhcker r A ldropped)) -+

F(accepted((([W/21) + 1) mod 2W)))

P4

In our experiments we varied the parameter W, the size of the sendinglreceiving window.

The results are presented in Table 7.3.

7.4 Discussion

Round Robin
< IS

The results from the Distributed Termination Detection experiments in Table 7.1 con-

sistently show that verification using CoreASM2Promela and Spin is faster than using

ASM2SMV and NuSMV. However, the difference in execution time may be due to the

strict round robin scheduling imposed by CoreASM2Promela, which greatly reduces the

state space to be search, as compared to the SMV model, which considers all fair runs of

the system.

The results from the Flash Cache Coherence Protocol experiments (Table 7.2) show

that Spin is faster at finding counterexamples (e.g. P2 and P 3 (N=2, L=l , Q=l)) than

NuSMV. On the other hand, in this particular test NuSMV was faster than Spin a t ver-

ifying the true property (i.e. P4 (N=2, L=l , Q=l)) . These results confirm the previous

results showing that depth-first search algorithms are particularly efficient a t finding coun-

terexamples [30]. There is also a notable difference in the performance of Promela models

with non-deterministic scheduling and Promela models using round robin scheduling. The

better performance of the model with non-deterministic scheduling may partly be explained

by the Spin's use of partial order reductions, which can greatly reduce the state space that

(BDD)
MEM

CHAPTER 7. CASE STUDES 72

needs to be searched during verification. Deterministic round-robin scheduling precludes

the application of Spin's partial order reduction algorithm.

The results from the Flash Cache Coherence Protocol and i-Protocol experiments show

several cases where a model produced by CoreASM2Promela can be verified by Spin, while

NuSMV runs out of memory when attempting to check the corresponding model produced

by ASM2SMV (e.g. Table 7.2, N=2, L=2, Q=l). This behavior may in part be attributed

to the algorithms used by the two model checkers. Spin uses an explicit state approach where

the reachable states of a system are actually enumerated (by "running" the model). On

the other hand, the symbolic model checking approach used by NuSMV manipulates BDD

representations of functions which make up the state, and reachable states are determined by

placing extra constraints on the BDD formulas. The number of reachable states of a system

is often far less than the number of possible states, and since BDDs become increasingly

large as more constraints are placed on the functions, the memory usage of symbolic model

checking can be quite high. Also, the greater amount of memory used when checking the

SMV models may be attributed to inefficiencies in the ASM2SMV translator, which will be

discussed ensuingly.

It is unfortunate that more comparisons between our tool and ASM2SMV could not be

made due to the failure of the ASM2SMV translator. ASM2SMV's translation to SMV is

not optimal. In the ASM2SMV translation, all function locations are unfolded and repre-

sented by individual state variables. ASM rules become guards on updates to these state

variables. Overall, this creates very large SMV models when compared to the original ASM

specification. Since our CoreASM2Promela translator only unfolds locations when trans-

lating forall and choose rules, the Promela models produced are comparable in size to the

original ASM specifications.

In summary, the conclusions that can be drawn from our experiments are:

0 CoreASM2Prornela/Spin finds counterexamples more quickly than

ASM2SMV/NuSMV.

0 CoreASM2Promela/Spin uses less memory than ASM2SMV/NuSMV, and thus it is

possible to verify more (larger) models using CoreASM2Promela/Spin.

0 CoreASM2Promela is able to translate larger models than ASM2SMV.

Chapter 8

Conclusion and Future Work

In this thesis we have presented a novel approach to model checking distributed abstract

state machines. Model checking support for CoreASM provides a useful tool for ensuring

the correctness and improving the quality of ASM software specifications. Our specific

accomplishments are as follows:

0 We have extended the CoreASM language to include function signatures, thereby effec-

tively adding type information to CoreASM, thus allowing for more concrete specifica-

tions. We have also extended CoreASM so that correctness properties can be included

as part of a specification.

0 We have presented a novel approach for model checking ASMs, by translating CoreASM

specifications into Promela models, which can then be verified using the Spin model

checker. Our translation supports a much more powerful modeling language than

that of the previous work, and most significantly, our translation supports distributed

abstract state machines.

0 We have illustrated the effectiveness of CoreASM2Promela by testing properties of

non-trivial models. Our experimental results show that, compared to previous work,

our approach is more memory efficient and thus we are able to verify larger mod-

els. The results also show that our tool is faster at finding counterexamples for false

properties.

We have created a tool that is simple to use, which leverages the power of an existing

and widely adopted model checking tool. Our work advances the CoreASM project towards

CHAPTER 8. CONCLUSION AND FUTURE W O R K 74

its goal of providing an open and extensible tool environment for the design, validation, and

verification of abstract state machines.

8.1 Future Work

There were many ideas and issues encountered during the development of the CoreASM

Signature Plug-in and CoreASM2Promela which we did not have the time to fully explore.

It would be worthwhile to address these ideas in the future.

The Signature Plug-in presented in Section 5.2 could easily be extended to implement

runtime type checking of update sets. For each update to a user declared function, the

Signature plug-in would check to see that the update value matches the specified range type

of that function. This check would occur during the engine's transition from the Aggregation

state to the Step Succeeded state (see Figure 5.5). Moreover, the Signature Plug-in could be

extended with a richer syntax to allow function domains and ranges to be expressed in terms

of set operations (union, intersection, difference, etc). Also, supporting map comprehension

expressions would provide concise and powerful means of expressing the initial values of

functions.

The CoreASM2Promela translation could be extended to support the dynamic introduc-

tion of new elements through import and extend rules, though a constraint would have to

be placed on the size of the reserve. Each element in the superuniverse would be associated

with a unique integer. Dynamic universes could then be defined in terms of characteristic

functions. Moreover, it is possible to support dynamic sets, by defining the contents of a set

in terms of a binary containment predicate contains(x, y), where x is a set and y is some

element. The practicality of supporting these constructs would need to be investigated,

since they would add considerable overhead to a translated Promela model.

The CoreASM2Promela translation algorithm could be optimized. Currently, all loca-

tions are refreshed in between each ASM step, regardless of whether they have actually

been updated by an ASM rule. This is a relatively expensive operation, which could be

optimized by refreshing only those locations which may be updated by the active agent's

program. Also, to make the CoreASM2Promela translator more extensible, the translator

program could be refactored to adopt a plug-in based architecture, similar to that of the

CoreASM engine. In such an architecture, the translation of AST nodes would be delegated

to plug-ins, allowing the translator to accept input with an unfixed grammar. Thus, the

CHAPTER 8. CONCLUSION AND FUTURE WORK

translator could easily be extended to handle new rule and expression forms.

One important aspect of model checking ASMs that has not been addressed in this work

is the interpretation of counterexamples. This issue is only addressed briefly in Winter's

work. Counter-examples produced by a model checking tool are specific execution traces

which violate the property being checked. The format of a counterexample is specific to

the model checker which produced it. For example, SMV counterexamples begin with an

initial state and then list state transitions in terms of updates to state variables, while Spin

counterexamples are a complete history of the statements executed in the trace, along with

the values of variables. Interpreting counterexamples as ASM runs is not a trivial task.

Developing a tool to automate the mapping of model checker counter-examples to ASM

runs would be a worthwhile endeavor.

Appendix A

CoreASM Specifications from Case

Studies

A. 1 Distributed Termination Detection

CoreASM TerminationDetection

use Standardplugins

use MapSetPlugin

use PropertyPlugin

enum MODE = {SM,RM,P)

enum COLOR = {black, white)

universe Agents = {mO,ml,m2,m3)

function controlled messages : Agents -> NUMBER

function controlled mode: Agents -> MODE // should actually be monitored

function controlled isActive : Agents -> BOOLEAN

function controlled terminationDetected :-> BOOLEAN initially false

function controlled count : Agents -> NUMBER

function controlled color : Agents -> COLOR

function controlled token : Agents -> BOOLEAN
function controlled tokencolor :-> COLOR initially white

function controlled tokenvalue :-> NUMBER initially 0

function static nextMachine : Agents -> Agents

APPENDIX A. CORE AS M SPECIFICATIONS FROM CASE STUDIES

initially {m0->m3,ml->mO,m2->ml,m3->m2)

function static id : Agents -> NUMBER

initially {mO->O,rnl->l,m2->2,m3->3)

function controlled initiateprobe :-> BOOLEAN

initially true / / deviating from paper

function static maxMessages :-> NUMBER initially 1

function controlled termination : -> BOOLEAN initially false

function controlled program : Agents -> RULE

initially {mO -> @Main,m2 -> @Main,ml -> @Main,m3 -> @Main)

property G(not termination)

property G(terminati0nDetected implies (G terminationDetected)) //C4

check property G(termination implies (F terminationDetected)) //C3

property G(terminati0nDetected implies termination) //C2

rule UpdateEnvironment =

Par

if isActive (self) then

choose b in BOOLEAN do

isActive(se1f) := b

endpar

rule SendMessage =

if (mode(se1f) = SM) then

Par

if isActive(se1f) and (count(se1f) < maxMessages) then

choose send in BOOLEAN do

if send then

Par
choose receivingMachine in Agents with receivingMachine!=self do

messages(receivingMachine) := messages(receivingMachine) + 1

count(se1f) := count(se1f) + 1

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

endpar

endif

endif

mode(se1f) := RM

endpar

rule ReceiveMessage =

if (mode(se1f) = RM) then

Par

if (messages(se1f) > 0) then

Par

messages (self) : = messages (self) - 1
isActive (self) : = true

count (self) : = count (self) -1

color(se1f) := black

endpar

mode(se1f) := P

endpar

rule Probe =

if (mode(se1f) = P) then

Par

TransmitToken

Initiateprobe

Nextprobe

mode(se1f) := SM

endpar

rule TransmitToken =

if token(se1f) and (isActive(se1f) = false) and (id(self)!=O) then

Par
token(se1f) := false

token(nextMachine(se1f)) := true

if color(se1f) = black then tokenColor:=black

tokenvalue := tokenvalue + count(se1f)
color (self) : = white

endpar

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

rule Initiateprobe =

if (id(se1f) = 0) and (initiateprobe = true) then

Par

token(nextMachine(se1f)) := true

tokenvalue := 0

tokencolor := white

color (self) : = white

initiateprobe : = false

endpar

rule Nextprobe =

if (id(se1f) = 0) and token(se1f) then

Par
if ((count (self) + tokenvalue) = 0) and (color(se1f) = white)

and (tokencolor = white) and (isActive(se1f) = false)

then

terminationDetected := true

else

Par

initiateprobe := true

token(se1f) : = false

endpar

endif

endpar

rule Main =

Par

SendMessage

ReceiveMessage

Probe

UpdateEnvironment

UpdateTermination

endpar

rule InitRule =

Par

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

forall a in Agents do

Par
program(a) := @Main

mode (a) : =SM

isActive (a) :=true

messages(a):=O

count (a) : =0

color(a):=white

token (a) :=false

endpar

endpar

rule UpdateTermination =

termination : = ((messages (mO)+messages (mi) +messages (m2) +messages 3 = 0)

and (forall a in Agents holds isActive(a)=false)

A.2 FLASH Cache Coherence Protocol

CoreASM flashProtoco1

use Standardplugins

use MapSetPlugin

use PropertyPlugin

universe Agents = (al, a2, e)

function program : Agents -> RULE

initially (al->@behavior, a2->@behavior,e->@env)

enum TYPE = (noMess, get, getx, inv, wb, rpl, fwdack, swb,

invack, nack, nackc, fwdget, fwdgetx, put, putx,

nackc2, putUswb, putxufwdack)

enum CCTYPE = (ccget, ccgetx, ccrpl, ccwb)

enum LINE = { 11)

enum PHASE = { ready, wait, invalidphase)

enum STATE = { exclusive, shared, invalid)

APPENDIX A. CO REASM SPECIFICATIONS FROM CASE STUDIES

funct ion s t a t i c Home : LINE -> Agents

i n i t i a l l y { 11 -> a1)

funct ion MessInTr : Agents -> TYPE

i n i t i a l l y { a1 -> noMess, a2 -> noMess)

funct ion SenderInTr : Agents -> Agents

i n i t i a l l y { a1 -> a l , a2 -> a1)

funct ion SourceInTr : Agents -> Agents

i n i t i a l l y { a1 -> a l , a2 -> a1)

funct ion s t a t i c LineInTr : Agents -> LINE

i n i t i a l l y { a1 -> 11, a2 -> 11)

funct ion SenderInTrR : Agents -> Agents

i n i t i a l l y { a1 -> a2, a2 -> a2)

funct ion SourceInTrR : Agents -> Agents

i n i t i a l l y { a1 -> a l , a2 -> a1)

funct ion MessInTrR : Agents -> TYPE

i n i t i a l l y { a1 -> noMess, a2 -> noMess)

funct ion s t a t i c LineInTrR : Agents -> LINE

i n i t i a l l y { a1 -> 11, a2 -> 11)

funct ion InSender : Agents -> Agents

i n i t i a l l y { a1 -> a2, a2 -> a2)

funct ion InSource : Agents -> Agents

i n i t i a l l y { a1 -> a2, a2 -> a2)

funct ion InMess : Agents -> TYPE

i n i t i a l l y { a1 -> noMess, a2 -> noMess)

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

function static InLine : Agents -> LINE

initially (a1 -> 11, a2 -> 11)

function CurPhase : Agents * LINE -> PHASE

initially ((al,ll) -> ready, (a2,ll) -> ready 3

function CCState : Agents * LINE -> STATE

initially ((a1,ll) -> invalid, (a2,11) -> invalid 3

function Pending : LINE -> BOOLEAN

initially (11 -> false

function Owner : LINE -> Agents

function Sharer : LINE * Agents -> BOOLEAN

initially { (11,al) -> false, (ll,a2) -> false 3

function monitored produceCCType : Agents -> CCTYPE

property Ghat ((CCState(a1,ll) = exclusive) and

(CCState (a2,11) = exclusive)))

property (G(((CurPhase(al,ll)=wait) implies F(CurPhase(al,ll)=ready)))) and

(G(((CurPhase(a2,11)=wait) implies F(CurPhase(a2,11)=ready)) 1)

property G(((CCState(al,ll)=shared) implies X(Sharer(ll,al)=true)) or

((Sharer(ll,al)=true) implies X(CCState(al,ll)=shared))) and

G(((CCState (a2,11)=shared) implies X(Sharer(l1, a2)=true) or

((Sharer(ll,a2)=true) implies X(CCState(a2,11)=shared))

init Skip

rule AppendToTransit(agentU, senderU, messU, sourceU, lineU) =

if MessInTr(agentU)=noMess then

Par

SenderInTr(agentU1 := senderU

MessInTr(agentU1 := messU

SourceInTr(agentU):= sourceU

endpar

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

rule AppendRequestToTransit(agentU, senderU, messU, sourceU, lineU) =

if MessInTrR(agentU)=noMess then

Par
SenderInTrR(agentU1 := senderU

MessInTrR(agentU1 := messU

SourceInTrR(agentU):= sourceU

endpar

endif

rule RlUR2UR3UR4 =

if MessInTrR(a1) = noMess then

Par
if (produceCCType (self)=ccget) and (CurPhase (self, ll)=ready) then

AppendRequestToTransit (Home(l1) ,self ,get, self, 11)

endif

if (produceCCType(self)=ccgetx) and (CurPhase(self,ll)=ready) then

~ppendRequestToTransit(Home(l1),self,getx,self,l1)

endif

if (produceCCType (self) =ccrpl) and

(CurPhase (self, 11) =ready) and

(CCState (self, 11) =shared) then

AppendRequestToTransit (Home(l1) ,self ,rpl, self, 11)

endif

if (produceCCType(self)=ccwb) and

(CurPhase(self,ll)=ready) and

e state (self, ll)=exclusive) then

AppendRequestToTransit (Home (11) ,self ,wb, self, 11)

endif

endpar

endif

rule R5 =

if (InMess(self)=get) and (Home(InLine(self))=self) then

if Pending(InLine(se1f)) then

if Mess~n~r(~nSource(self))=noMess then

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

Par

Append~o~ransit(1n~ource(se1f),se1f1nack1

InSource (self) , InLine (self))
InMess(self):=noMess

endpar

endif

else

if Owner (In~ine(se1f)) != undef then

if ~ess~n~r(~wner(~n~ine(self)))=noMess then

Par
~ppend~o~ransit(~wner(InLine(self)),self,fwdget,

InSource (self) , InLine (self))

~endin~(InLine(se1f)) := true

InMess(self):=noMess

endpar

endif

else

if ~essInTr(In~ource(self))=noMess then

Par
~ppend~o~ransit(~nSource(self),self,put,

InSource (self) , InLine (self))

InMess(self):=noMess

~harer(~nLine(self),InSource(self)) := true

endpar

endif

endif

endif

endif

rule R6 =

if InMess(se1f) = fwdget then

if ~~~tate(self,InLine(self)) = exclusive then

if ~ome(InLine(self))=InSource(self) then

if ~ e s s I n T r (~ o r n e (~ n ~ i n e (s e l f))) = noMess then

Par
~ppendToTransit(~orne(InLine(self)),self,putUswb,

InSource (self) , InLine (self 11

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

~ ~ ~ t a t e (self, InLine (self 1) : =shared

InMess(self):=noMess

endpar

endif

else

if (MessInTr(InSource(self)) = noMess) and

(~essIn~r(Home(InLine(self))) = no~ess) then

Par
~~~end~oTransit(InSource(self),self,put, 

InSource (self) , InLine (self 1) 

~~~end~o~ransit(Horne(InLine(self)),self,swb, 

InSource (self) , InLine (self 1)

CCState (self, InLine (self)) :=shared

InMess(self):=noMess

endpar

endif

endif

else

if Home (InLine (self)) =Insource (self) then

if ~ess~nTr(Home(InLine(self))) = noMess then

Par
~~~end~oTransit(Horne(InLine(self)),self,nackc2, 

InSource (self) , InLine (self 
In~ess(self):=noMess 

endpar 

end i f 

else 

if (~essInTr(InSource(self)) = noMess) and 

(~ess~n~r(Horne(InLine(self))) = noMess) then 

Par 
~~~end~oTransit(InSource(self),self,nack, 

InSource (self) , InLine (self 1)

AppendToTransit (Home(1nLine (self)) ,self ,nackc ,
~n~ource(self),InLine(self))

InMess(self):=noMess

endpar

endif

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

endif

endif

endif

rule R7 =

if InMess(se1f) = put then

Par

if CurPhase(self,InLine(self)) ! = invalidphase then

~CState(self,InLine(self)) := shared

endif

~urPhase(self,InLine(self)) := ready

InMess (self 1 : = noMess

endpar

endif

rule R8 =

if ((InMess (self) = sub) and (Home(1nLine (self)) = self)) then

Par
~harer(~n~ine(self),InSource(self)) := true

if Owner (InLine (self)) ! = undef then

~harer(~n~ine(self),Owner(InLine(self))) := true

endif

Owner(InLine(se1f)) := undef

Pending(InLine(se1f)) := false

InMess(se1f) := noMess

endpar

endif

rule R7UR8 =

if InMess(se1f) = putUswb then

Par

if CurPhase(self,InLine(self)) != invalidphase

then CCState(self,InLine(self)) := shared

endif

~ur~hase(self,InLine(self)) := ready

Sharer(InLine(self),InSource(self)) := true

if Owner (InLine (self 1) ! = undef

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

then Sharer(InLine(self),Owner(InLine(self))) := true

endif

owner (InLine (self)) : = undef

Pending(1nLine (self)) : = false

~nMess(self) := noMess

endpar

endif

rule R9 =

if InMess(se1f) = nack then

Par
CurPhase (self, InLine (self)) : = ready

~nMess(self) := noMess

endpar

endif

rule R10 =

if ((InMess(se1f) = nackc) and (~ome(InLine(se1f)) = self)) then

Par
Pending(1nLine (self)) : = false

InMess(se1f) := noMess

endpar

endif

rule R9UR10 =

if InMess(se1f) = nackc2 then

Par

CurPhase (self, InLine (self)) : = ready

Pending(InLine(se1f)) := false

InMess (self) : = noMess

endpar

endif

rule R11 =

if ((InMess(se1f) = getx) and (Home(InLine(se1f)) = self)) then

if Pending(InLine(se1f)) = true then

if MessInTr(InSource(se1f)) = noMess then

APPENDIX A. COREAS M SPECIFICATIONS FROM CASE STUDIES

Par
~~~end~o~ransit(~n~ource(self),self,nack, 

InSource(self),InLine(self)) 

InMess(self):=noMess 

endpar 

endif 

else 

if Owner (InLine (self) ) ! = undef then 

if MessInTr(Owner(InLine(se1f))) = noMess then 

Par 
AppendToTransit (Owner (InLine (self) ) ,self, f wdgetx, 

InSource (self) , InLine (self) ) 

Pending(InLine(self)) := true 

InMess(self):=noMess 

endpar 

endif 

else 

if (f orall agentU in {a1 ,a21 

holds (not(~harer(InLine(self),agentU))) ) then 

if Mess~n~r(InSource(self)) = noMess then 

Par 
~~~end~o~ransit(InSource(self),self,putx, 

InSource (self) , InLine(se1f))
~wner(~nLine(self)) := InSource(se1f)

InMess(self):=noMess

endpar

endif

else

if (forall agentU in {al,a2) holds

(not (sharer (InLine (self) , agentU)) or
(MessInTr(agentU1 = noMess))) then

Par
f orall agentU in {a1 , a2) with (Sharer (InLine (self) , agentU)) do

Par
~~~end~oTransit(agentU,self,inv,InSource~self~,~n~~ne~se~f~~ 

Pending(InLine(self)):=true 

endpar 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

InMess(self):=noMess 

endpar 

endif 

endif 

endif 

endif 

endif 

rule R12 = 

if InMess(se1f) = fwdgetx then 

if ~~~tate(self,InLine(self)) = exclusive then 

if (~ome(InLine(self))=InSource(self)) then 

if ~ess~n~r(Home(InLine(self))) = noMess then 

Par 
~~~end~o~ransit(~ome(InLine(self)),self,~utxUfwdack, 

InSource (self) , InLine (self))
~~~tate(self,InLine(self)):=invalid 

InMess(self):=noMess 

endpar 

endif 

else 

if (~ess~n~r(In~ource(self)) = noMess) and 

(~ess~n~r(Home(InLine(self))) = noMess) then 

Par 
AppendToTransit (InSource (self) ,self, putx, 

InSource (self) , InLine (self) ) 

AppendToTransit(Home(InLine(self)),self,fwdack, 

InSource (self) , InLine (self) ) 

~~~tate(self,InLine(self)):=invalid 

InMess(self):=noMess

endpar

endif

endif

else

if (~ome(~n~ine(self))=InSource(self)) then

if MessInTr(Home(InLine(self))) = noMess then

Par

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

AppendToTransit(InSource(self),self,nackc2,

InSource (self) , InLine (self))
InMess(self):=noMess

endpar

endif

else

if (~essInTr(In~ource(self)) = noMess) and

(~ess1nTr (Hone (InLine (self))) = noMess) then

Par

~~~end~oTransit(~n~ource(self),self,nack, 

InSource (self) , InLine (self)) 

~~~end~o~ransit(Home(~nLine(self)),self,nackc, 

InSource (self) , InLine (self))

InMess(self):=noMess

endpar

endif

endif

endif

endif

rule R13 =

if InMess(se1f) = putx then

Par

CCState(self,InLine(self)) := exclusive

CurPhase(self,InLine(self)) := ready

InMess(se1f) := noMess

endpar

endif

rule R14 =

if (InMess (self) = f wdack) and (Home (InLine (self)) = self) then

Par

Owner(InLine(se1f)) := InSource(se1f)

Pending(1nLine (self)) : = false

InMess(se1f) := noMess

endpar

endif

APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES

rule R13UR14 =

if InMess(se1f) = putxufwdack then

Par

CCState(self,InLine(self)) := exclusive

CurPhase(self,InLine(self)) := ready

Owner(InLine(se1f)) := InSource(se1f)

Pending(InLine(se1f)) := false

InMess(se1f) := noMess

endpar

endif

rule R15 =

if InMess(se1f) = inv then

if MessInTr(Home(InLine(self))) = noMess then

Par

~~~end~o~ransit(Home(InLine(self)),self,invack, 

InSource (self) , InLine (self) ) 

InMess(self):=noMess 

if ~~~tate(self,~nLine(self)) = shared then 

CC~tate(self,InLine(self)) := invalid 

else 

if CurPhase(self,InLine(self)) = wait then 

CurPhase(self,InLine(self)) : =  invalidphase 

endif 

endif 

endpar 

endif 

endif 

rule R16 = 

if (InMess (self) = invack) and (Home (InLine (self) ) = self) then 

forall agentU in Cal,a2) do 

if InSender(self)=agentU then 

Par 

Sharer(InLine(self),agentU) := false 

if ( forall otherUagentU in Cal,a2) holds 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

(otherUagentU = agentU or 

~harer(~n~ine(self),otherUagentU)=false) ) then 

if MessInTr(InSource(se1f)) = noMess then 

Par 

AppendToTransit(InSource(self),self,putx, 

InSource(self),InLine(self)) 

Pending(1nLine (self) ) :=false 

InMess(self):=noMess 

endpar 

endif 

else 

InMess(self):=noMess 

endif 

endpar 

endif 

endif 

rule R17 = 

if (InMess(se1f) = rpl) and (Home(InLine(se1f)) = self) then 

Par 
if (sharer (1n~ini (self) , InSender (self) ) = true) and 

(Pending(InLine(se1f)) = false) then 

Par 

Sharer(InLine(self),InSender(self)) := false 

CCState(self,InLine(self)) := invalid 

endpar 

endif 

InMess(self1 := noMess 

endpar 

endif 

rule R18 = 

if (InMess(se1f) = wb) and (Home(InLine(se1f)) = self) then 

Par 
if Owner(InLine(se1f)) != undef then 

Par 
Owner(InLine(se1f)) :=undef 



APPENDIX A. CO REASM SPECIFICATIONS FROM CASE STUDIES 

CCState (self, InLine (self)) : = invalid 

endpar 

endif 

InMess(se1f) := noMess 

endpar 

endif 

rule behavior = 

Par 

RlUR2UR3UR4 

R5 

R6 

R7 

R8 

R7UR8 

R9 

R10 

R9UR10 

R11 

R12 

R13 

R14 

R13UR14 

R15 

R16 

R17 

R18 

endpar 

rule ClearMessInTr(agentU) = 

Par 

MessInTr(agentU):=noMess 

endpar 

rule SendMess(agentU1 = 

Par 

InSender(agentU):= SenderInTr(agentU1 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

InMess(agentU) := MessInTr(agentU) 

InSource(agentU):= SourceInTr(agentU) 

ClearMessInTr(agentU) 

endpar 

rule SendR(agentU1 = 

Par 
InSender(agentU) := SenderInTrR(agentU1 

InMess(agentU) := MessInTrR(agentU) 

InSource(agentU) := SourceInTrR(agentU) 

MessInTrR(agentU) := noMess 

endpar 

rule SendRequest(agentU) = 

if (MessInTrR(agentU) = get) and 

(~urPhase(SenderInTr~(agentU),LineIn~r~(agentU = ready) and 

(CCState (Sender InTrR (agentU) , ~ineInTrR (agent = invalid) then 

Par 
SendR(agentU1 

~ur~hase(SenderInTrR(agentU),LineInTrR(agentU := wait 

endpar 

else 

if (~ess~n~rR(agentU) = getx) and 

(Cur~hase(~enderInTrR(agentU),LineIn~r~(agentU = ready) then 

Par 
SendR(agentU1 

CurPhase(~ender~n~rR(agentU),LineInTrR(agentU := wait 

endpar 

else 

if (MessInTrR (agentU) = rpl) and 

(Curphase (~ender~n~r~(agentU) , LineInTrR(agentU) ) = ready) and 

(CCState (Sender~nTrR (agentU) , LineInTrR (agent = shared) then 

Par 
SendR(agentU1 

C ~ ~ t a t e ( ~ e n d e r I n ~ r ~ ( a g e n t ~ ) , ~ i n e ~ n ~ r ~ ( a g e n t U  := invalid 

endpar 

else 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

if (MessInTrR (agentU) = wb) and 

(CurPhase(SenderInTrR(agentU),LineInTrR(agentU)) = ready) and 

(CCState(SenderInTrR(agentU),LineInTrR(agentU))=exclusive) then 

Par 

SendR(agentU) 

CCState(SenderInTrR(agentU),LineInTrR(agentU := invalid 

endpar 

endif 

endif 

endif 

endif 

rule env = 

forall a in (al,a2) do 

if InMess(a)=noMess then 

if MessInTr(a) ! =  noMess then 

SendMess (a) 

else 

if (MessInTrR(a) ! =  noMess) and (InMess(a)=noMess) then 

SendRequest (a) 

endif 

endif 

endif 

rule Skip = 

skip 

CoreASM iProtocol1 

use Standardplugins 

use MapSetPlugin 

use PropertyPlugin 

universe Agents = ( send, recv, e ) 

function program : Agents -> RULE 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

i n i t i a l l y  (send -> @sendprogram, recv->@recvProgram, e->@env) 

enum TYPE = ( DATA, ACK, NAK, NOPAK ) 

enum STATE = ( IDLE, SENDuDATA, SENDuACK, ACCEPTuPAK, CHECKuMISSING, 

HANDLEuNAK, DCKERROR, TIMEOUTl, TIMEOUT2 ) 

enum MODE = { behave, sync ) 

funct ion s t a t i c  wnd :-> NUMBER i n i t i a l l y  2 

funct ion s t a t i c  hwnd :-> NUMBER i n i t i a l l y  1 

funct ion s t a t i c  des t  : Agents -> Agents 

i n i t i a l l y  ( send -> recv ,  recv -> send ) 

funct ion s t a t u s  : Agents -> STATE 

i n i t i a l l y  ( send -> IDLE, recv -> IDLE ) 

funct ion sendsequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 1 ,  recv -> 1 ) 

funct ion recsequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0, recv -> 0 ) 

funct ion rack : Agents -> NUMBER 

i n i t i a l l y  { send -> 0, recv -> 0 ) 

funct ion lack  : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0 ,  recv -> 0 ) 

funct ion recbuf : [O . . 11 -> BOOLEAN 

i n i t i a l l y  { 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion nakd : [O . . 11 -> BOOLEAN 

i n i t i a l l y  ( 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion accepted : [O . .  11 -> BOOLEAN 

i n i t i a l l y  ( 0 -> f a l s e ,  1 -> f a l s e  ) 

funct ion paktype : Agents -> TYPE 

i n i t i a l l y  { send -> NOPAK, recv -> NOPAK ) 

funct ion paksequence : Agents -> NUMBER 

i n i t i a l l y  ( send -> 1, recv -> 1 ) 

funct ion pakack : Agents -> NUMBER 

i n i t i a l l y  ( send -> 0, recv -> 0 ) 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

function paktypeInTr : Agents -> TYPE 

initially ( send -> NOPAK, recv -> NOPAK ) 

function paksequenceInTr : Agents -> NUMBER 

initially ( send -> 1, recv -> 1 ) 

function pakackInTr : Agents -> NUMBER 

initially ( send -> 0, recv -> 0 ) 

function tmp :-> NUMBER initially 0 

function monitored dropped :-> BOOLEAN 

function monitored hckerr :-> BOOLEAN 

function monitored dckerr :-> BOOLEAN 

property G(((accepted(l)=true) and F(G(not (dropped or hckerr or dckerr)))) 

implies F(accepted(O)=true)) 

init Skip 

rule putPakToTransit(type, sequence, ack) = 

Par 

paktypeInTr(dest(se1f)) := type 

paksequenceInTr(dest(se1f)) := sequence 

pakackInTr (dest (self) ) : = ack 

endpar 

rule sendData = 

if paktypeInTr(dest(send)) = NOPAK then 

Par 

putPakToTransit(DATA,sendsequence(send),recsequence(send)) 

sendsequence(send1 := (sendsequence(send)+l)%wnd 

lack(send1 := recsequence(send) 

status(send1 := IDLE 

endpar 

else 

status(send1 := SENDuDATA 

endif 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

rule sendAck(sequence) = 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
putPakToTransit (ACK, sequence, sequence) 

lack(recv) : = sequence 

status (recv) : = IDLE 

endpar 

else 

status (recv) : = SENDuACK 

endif 

rule acceptPak(sequence) = 

Par 
accepted(sequence) := true 

recbuf (sequence) : = false 

recsequence(recv) := sequence 

if recbuf ( (sequence+l)%wnd) then 

status (recv) : = ACCEPTuPAK 

else 

if ( (sequence+wnd-lack(recv) ) %wnd) >= (hwnd div 2) then 

sendAck(sequence) 

else 

status(recv) : = IDLE 

endif 

endif 

endpar 

rule handleMissingPak(sequence) = 

if not(nakd(sequence)) and not(recbuf(sequence)) then 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
putPakToTransit(NAK,sequence,recsequence(recv)) 

nakd(sequence) : = true 

lack(recv1 : = recsequence(recv) 

if sequence = ((paksequence(recv)+wnd-l)%wnd) then 

Par 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

status (recv) : = IDLE 

paktype (recv) : = NOPAK 

endpar 

else 

Par 
tmp := (sequence+l)%wnd 

status (recv) : = CHECKuMISSING 

endpar 

endif 

endpar 

else 

Par 
tmp := sequence 

status(recv) := CHECKuMISSING 

endpar 

endif 

else 

if sequence = ( (paksequence (recv) +wnd-l)%wnd) then 

Par 
status (recv) : = IDLE 

paktype (recv) : = NOPAK 

endpar 

else 

Par 
tmp : = (sequence+l)%wnd 

statush-ecv) := CHECKuMISSING 

endpar 

endif 

endif 

rule handleDckErr = 

if paktypeInTr(dest(recv)) = NOPAK then 

Par 
put~ak~o~ransit(NAK,paksequence(recv),recsequence(recv)) 

nakd(paksequence (recv) ) : = true 

lack(recv) := recsequence(recv) 

status (recv) : = IDLE 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

paktype(recv) : = NOPAK 

endpar 

else 

status (recv) : = DCKERROR 

endif 

rule handleData = 

if ( ( (paksequence (recv) +wnd-lack(recv) )%wnd) <= hwnd) and 

(paksequence (recv) ! = lack(recv) ) then 

if dckerr then 

if not(accepted(paksequence(recv))) and 

not(recbuf(paksequence(recv))) and 

not (nakd(paksequence (recv) ) ) then 

handleDckErr 

else 

paktype(recv) := NOPAK 

endif 

else 

Par 

nakd(paksequence(recv)) := false 

if paksequence (recv) = ( (recsequence (recv) +1) %wid) then 

Par 

acceptPak(paksequence(recv)) 

paktype(recv) := NOPAK 

endpar 

else 

if not(accepted(paksequence(recv))) and 

not (recbuf (paksequence (recv)) ) then 

Par 
recbuf (paksequence (recv)) : = true 

handleMissingPak ( (recsequence (recv) +l)%wnd) 

endpar 

else 

paktype (recv) : = NOPAK 

endif 

endif 

endpar 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

endif 

else 

paktype (recv) : = NOPAK 

endif 

rule handleAck = 

if (pakack(se1f) ! = sendsequence (self) ) and 

( ( (~akack(se1f) +wnd-rack(se1f) )%wnd) <= hwnd) and 

(((sendsequence(self)+wnd-pakack(self))%wnd) <= hwnd) then 

rack(se1f) : = pakack(se1f) 

endif 

rule handleNak (currurack) = 

if self = send then 

if (paksequence(self) ! =  sendsequence(se1f)) and 

(((paksequence(self)+wnd-currurack)%wnd) <= hwnd) and 

( ( (sendsequence (self) +wnd-paksequence (self )%wnd) <= hwnd) then 

if ~aktype~n~r(dest(self)) = NOPAK then 

Par 

putPakToTransit (DATA ,@sequence (self) , recsequence (self) ) 
lack(se1f) : = recsequence (self) 

status (self) : = IDLE 

paktype (self) : = NOPAK 

endpar 

else 

status(se1f) := HANDLEuNAK 

endif 

else 

paktype (self : = NOPAK 

endif 

else 

paktype (self) : = NOPAK 

endif 

rule handlePak = 

if notchckerr) then 

Par 



APPENDIX A. COREASM SPECIFICATIONS FROM CASE STUDIES 

handleAck 

if paktype(se1f) = DATA then 

handleData 

else 

if paktype(se1f) = NAK then 

if (pakack(se1f) ! = sendsequence(se1f)) and 

(((pakack(self)+wnd-rack(self))%wnd) <= hwnd) and 

( ( (sendsequence (self) +wnd-pakack(se1f) ) %wnd) <= hwnd) then 

handleNak(pakack(se1f ) ) 

else 

handleNak(rack(se1f)) 

endif 

else 

paktype(se1f) := NOPAK 

endif 

endif 

endpar 

else 

paktype (self : = NOPAK 

endif 

rule handleTimeout = 

if status(se1f) != TIMEOUT2 then 

if paktypeInTr(dest(se1f)) = NOPAK then 

Par 

if self = recv then 

Par 

forall i in [0 . .  11 with (i ! =  ((recsequence(self)+l)%wnd)) do 

nakd(i) := false 

nakd( (recsequence (self) +l)%wnd) : = true 

endpar 

endif 

put~akToTransit(NAK,(recsequence(self)+l)%wnd,recsequence(self)) 

lack(se1f) := recsequence(se1f) 

if (self = send) and 

(sendsequence(se1f) != ((rack(self)+l))%wnd) then 

status (self) : = TIMEOUT2 



APPENDIX A. COREAS M SPECIFICATIONS FROM CASE STUDIES 

else 

status (self) := IDLE 
endif 

endpar 

else 

status(se1f) := TIMEOUTl 

endif 

else 

if paktypeInTr (dest (send) = NOPAK then 

Par 

putPakToTransit(DATA,(rack(send)+1)%wnd,recsequence(send)) 

status (send) : = IDLE 

endpar 

endif 

endif 

rule sendprogram = 

Par 

if ((status(se1f) = IDLE) and 

(paktype (self) ! = NOPAK) and 

not((sendsequence(se1f) !=  rack(se1f)) and 

( ( (sendsequence (self ) +wnd-rack(se1f ) ) % w n  <= hwnd) ) ) 

then 

handlePak 

endif 

if ( (status (self) = SENDuDATA) or 

((status(se1f) = IDLE) and 

(sendsequence(se1f) !=  rack(se1f)) and 

( (  (sendsequence (self) +wnd-rack(se1f) )%wn <= hwnd) ) )  

then 

sendData 

endif 

if status (self) = HANDLEuNAK then 

handleNak (rack(se1f) ) 

endif 

if (status(se1f) = TIMEOUTI) or 

(status(se1f) = TIMEOUT2) or 



APPENDIX A. CORE AS M SPECIFICATIONS FROM CASE STUDIES 

((status(se1f) = IDLE) and (paktype(se1f) = NOPAK) and 

not((sendsequence(se1f) !=  rack(se1f)) 

and ( ( (sendsequence (self) +wnd-rack (self) ) %wnd) <= hwnd) ) ) 

then 

handleTimeout 

endif 

endpar 

rule recvProgram = 

Par 
if (status (self) = IDLE) and (paktype (self) ! = NOPAK) then 

handlePak 

endif 

if (status (self) = SENDuACK) then 

sendAck(recsequence(recv)) 

endif 

if (status (self) = ACCEPTuPAK) then 

acceptPak( (recsequence (self )+l) %wnd) 

endif 

if (status (self) = CHECKuMISSING) then 

handleMissingPak(tmp) 

endif 

if status (self) = HANDLEuNAK then 

handleNak(rack (self) ) 

endif 

if (status (self) = DCKERROR) then 

handleDckErr 

endif 

if (status (self) = TIMEOUT1) or 

((status(se1f) = IDLE) and (paktype(se1f) = NOPAK)) 

then 

handleTimeout 

endif 

endpar 

rule passPakThru = 

forall t in Agents do 



APPENDIX A.  COREASM SPECIFICATIONS FROM CASE STUDIES 

if (paktypeInTr(t) != NOPAK) and (paktype(t) = NOPAK) then 

Par 
if not (dropped) then 

Par 

paktype(t) := paktypeInTr(t1 

paksequence(t) := paksequenceInTr(t) 

pakack(t) : = pakackInTr (t) 

endpar 

endif 

paktypeInTr (t : = NOPAK 

endpar 

endif 

rule clearAckPak = 

if lack(recv) <= recsequence(recv) then 

forall i in [O . . 11 with 

(i <= lack(recv)) or (i > recsequence(recv)) do 

accepted(i) := false 

else 

forall i in [O . . 11 with 
(i <= lack(recv)) and (i > recsequence(recv)) do 

accepted(i) : = false 

endif 

rule env = 

Par 

passPakThru 

clearAckPak 

endpar 

rule Skip = 

skip 



Bibliography 

[I] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change (2nd Edi- 
tion). Addison-Wesley Professional, 2004. 

[2] C. Beierle, E. Borger, I. Durdanovic, U. Glasser, and E. Riccobene. Refining Abstract Machine 
Specifications of the Steam Boiler Control to Well Documented Executable Code. In J.-R. 
Abrial, E. Borger, and H. Langmaack, editors, Formal Methods for Industrial Applications. 
Specifying and Programming the Steam-Boiler Control, number 1165 in LNCS, pages 62-78. 
Springer, 1996. 

[3] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic of branching time. In 
POPL, pages 164-176, 1981. 

[4] A. Benczur, U. Glkser,  and T .  Lukovszki. Formal Description of a Distributed Location Service 
for Ad Hoc Mobile Networks. In E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract 
State Machines 2003 - Advances in Theory and Practice, volume 2589, pages 204-217. Springer, 
2003. 

[5] Girish Bhat, Rance Cleaveland, and Alex Groce. Efficient model checking via buchi tableau 
automata. In Computer Aided Verification, pages 38-52, 2001. 

[6] A. Blass and Y. Gurevich. Background, Reserve, and Gandy Machines. In P. Clote and 
H. Schwichtenberg, editors, Computer Science Logic (Proceedings of CSL 2000), volume 1862 
of LNCS, pages 1-17. Springer, 2000. 

[7] E. Borger, N. G. Fruja, V. Gervasi, and R. F. Stark. A high-level modular definition of the 
semantics of C#. Theoretical Computer Science, 336(2/3):235-284, May 2005. 

[8] E. Borger, U. Glkser ,  and W .  Miiller. Formal Definition of an Abstract VHDL'93 Simulator 
by EA-Machines. In C. Delgado Kloos and P. T .  Breuer, editors, Formal Semantics for VHDL, 
pages 107-139. Kluwer Academic Publishers, 1995. 

[9] E. Borger, P. Pappinghaus, and J .  Schmid. Report on a Practical Application of ASMs in 
Software Design. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor, Abstract 
State Machines: Theory and Applications, volume 1912 of LNCS, pages 361-366. Springer- 
Verlag, 2000. 

[lo] E. Borger, E. Riccobene, and J. Schmid. Capturing Requirements by Abstract State Machines: 
The Light Control Case Study. Journal of Universal Computer Science, 6(7):597-620, 2000. 

[ll] E. Borger and R. Stark. Abstract State Machines: A Method for High-Level System Design and 
Analysis. Springer-Verlag, 2003. 



BIBLIOGRAPHY 107 

[12] William Chan, Richard J .  Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David 
Notkin, and Jon D. Reese. Model Checking Large Software Specifications. IEEE Transactions 
on Software Engineering, 24(7):498-520, July 1998. 

[13] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking 
using satisfiability solving. Formal Methods in System Design, 19(1):7-34, 2001. 

11.21 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons 
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52-71, London, 
UK, 1982. Springer-Verlag. 

[15] Edmund M. Clarke, Orna Grumberg, and David E.  Long. Model checking and abstraction. ACM 
Transactions on Programming Languages and Systems, 16(5):1512-1542, September 1994. 

[16] Alistair Cockburn. Selecting a project's methodology. IEEE Softw., 17(4):64-71, 2000. 

1171 G. Del Castillo. Towards Comprehensive Tool Support for Abstract State Machines. In D. Hut- 
ter, W. Stephan, P. Traverso, and M. Ullmann, editors, Applied Formal Methods - FM-Trends 
98, volume 1641 of LNCS, pages 311-325. Springer-Verlag, 1999. 

[18] G. Del Castillo and K. Winter. Model Checking Support for the ASM High-Level Language. In 
S. Graf and M. Schwartzbach, editors, Proceedings of the 6th International Conference TACAS 
2000, volume 1785 of LNCS, pages 331-346. Springer-Verlag, 2000. 

1191 Edsger W. Dijkstra, W. H. J .  Feijen, and A. J .  M. van Gasteren. Derivation of a termination 
detection algorithm for distributed computations. Inf. Process. Lett., 16(5):217-219, 1983. 

[20] Yifei Dong, Xiaoqun Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. 
Smolka, Oleg Sokolsky, Eugene W.  Stark, and David Scott Warren. Fighting livelock in the 
i-protocol: A comparative study of verification tools. In Tools and Algorithms for Construction 
and Analysis of Systems, pages 74-88, 1999. 

[21] Robert Eschbach. A termination detection algorithm: Specification and verification. In World 
Congress on Formal Methods (2), pages 1720-1737, 1999. 

[22] R. Farahbod et al. The CoreASM Project. h t t p  : //www . coreasm . org. 

[23] R. Farahbod, V. Gervasi, and U. Gliisser. CoreASM: An extensible ASM execution engine. In 
Proc. of the 12th Int'l Workshop on Abstract State Machines, 2005. 

[24] R. Farahbod, V. Gervasi, and U. Glkser. Design and Specification of the CoreASM Execution 
Engine. Technical Report SFU-CMPT-TR-2005-02, Simon Fraser University, February 2005. 

[25] R. Farahbod, V. Gervasi, and U. Glkser.  Design and Specification of the CoreASM Execution 
Engine. Technical report, Simon Fraser University, October 2005. Revised version of SFU- 
CMPT-TR-2005-02, February 2005. 

[26] R. Farahbod, V. Gervasi, and U. Glkser.  Design and Specification of the CoreASM Execution 
Engine, Part 1: the Kernel. Technical Report SFU-CMPT-TR-2006-09, Simon Fraser University, 
May 2006. Also available from www . coreasm. org. 

[27] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glasser. CoreASM: An extensible ASM execu- 
tion engine. Fundamenta Informaticae, (77), March/April 2007. (to be published). 

[28] Martin Fowler. The new methodology. Software Development magazine, December 2000. 



B I B L I O G R A P H Y  108 

[29] A. Gargantini and E. Riccobene. ASM-based Testing: Coverage Criteria and Automatic Test 
Sequence Generation. Journal of Universal Computer Science, 7(11):1050-1067, 2001. 

[30] Angelo Gargantini and Constance L. Heitmeyer. Using model checking to generate tests from 
requirements specifications. In ESEC / SIGSOFT FSE, pages 146-162, 1999. 

[31] A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool. In E.  Borger, 
A. Gargantini, and E.  Riccobene, editors, Abstract State Machines 2003-Advances in Theory 
and Applications, volume 2589 of Lecture Notes in Computer Science, pages 278-292. Springer- 
Verlag, 2003. 

[32] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic 
verification of linear temporal logic. In Protocol Specification Testing and Verification, pages 
3-18, Warsaw, Poland, 1995. Chapman & Hall. 

[33] U. GlLsser, Y. Gurevich, and M. Veanes. Abstract communication model for distributed systems. 
IEEE Trans. on Soft. Eng., 30(7):458-472, July 2004. 

[34] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E.  Borger, editor, Specification and 
Validation Methods, pages 9-36. Oxford University Press, 1995. 

[35] Gerard J .  Holzmann. The model checker SPIN. Software Engineering, 23(5):279-295, 1997. 

[36] G.J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley, 
Reading, Massachusetts, 2003. 

[37] Capers Jones. Programming productivity. McGraw-Hill, Inc., New York, NY, USA, 1986. 

[38] Martin Kardos. An approach to model checking asml specifications. In  Proceedings of the 12th 
International Workshop on Abstract State Machines, pages 289-304, 2005. 

[39] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, 1992. 

[40] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333-354, 
1983. 

[41] S. A. Kripke. Semantic analysis of modal logic I: Normal modal and propositional calculi. 
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 967-96, 1963. 

[42] J. Kuskin, D. Ofelt, M. Heinrich, J.  Heinlein, R. Simoni, K. Gharachorloo, J .  Chapin, 
D. Nakahira, J .  Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J .  Hennessy. The stanford 
flash multiprocessor. In ISCA '94: Proceedings of the 21ST annual international symposium on 
Computer architecture, pages 302-313, Los Alamitos, CA, USA, 1994. IEEE Computer Society 
Press. 

[43] Kenneth Lauchlin McMillan. Symbolic model checking: an  approach to the state explosion 
problem. PhD thesis, Pittsburgh, PA, USA, 1992. 

[44] Mashaal A. Memon. Specification language design concepts: Aggregation and extensibility in 
coreasm. Master's thesis, Simon Fraser University, Burnaby, Canada, April 2006. 

[45] Microsoft FSE Group. The Abstract State Machine Language. Last visited June 2003, http: 
//research.microsoft.com/fse/asml/. 

[46] Microsoft FSE Group. Spec Explorer. Last visited January 2007, http : //research. microsof t . 
com/specexplorer/. 

[47] Bashar Nuseibeh. Soapbox: Ariane 5: Who dunnit? IEEE Software, 14(3):15-16, 1997. 



BIBLIOGRAPHY 109 

[48] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science, 1345-60, 
1981. 

[49] R. Eschbach and U. Glkser  and R. Gotzhein and M. von Lowis and A. Prinz. Formal Definition 
of SDL-2000: Compiling and Running SDL Specifications as ASM Models. Journal of Universal 
Computer Science, 7(11):1024-1049, 2001. 

[50] RTI. The economic impacts of inadequate infrastructure for software testing. Planning Report 
02-3, National Institute of Standards and Technology, Gaithersburg, MD, May 2002. 

[51] Joachim Schmid. Executing A S M  Specitications with AsmGofer. Last visited Sep. 2005, www. 
tydo.de/AsmGofer/. 

[52] R. S t k k ,  J .  Schmid, and E. Borger. Java and the Java Virtual Machine: Definition, Verification, 
Validation. Springer-Verlag, 2001. 

[53] Calvin K. Tang. Model checking abstract state machines with answer set programming. Master's 
thesis, Simon Fraser University, Burnaby, Canada, April 2006. 

[54] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. 
In  Proc. 1st Symp.  o n  Logic i n  Computer Science, pages 332-344, Cambridge, June 1986. 

[55] J .  Christopher Westland. The cost of errors in software development: evidence from industry. 
J. Syst.  Softw., 62(1):1-9, 2002. 

[56] K. Winter. Model Checking Abstract State Machines. PhD thesis, Technical University of Berlin, 
Germany, 2001. 


