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Abstract 

We report the development of a computational model for the growth of multicellular tissues 

based on cellular automata to study the tissue growth rates and population dynamics of 

multiple populations of proliferating and migrating cells. Cell migration is modeled using 

a Markov chain approach and each population of cells has its own division and motion 

characteristics based on experimental data. The extended model contains a number of 

parameters that permits the study and analysis of cell population dynamics. This allows 

us to  explore their effects on the overall tissue growth rate and the frequency of cell-cell 

interactions due to collision and aggregation. In addition to a sequential implementation, we 

developed a parallel algorithm and implemented it on a Beowulf Cluster using the Message 

Passing Interface. We present the sequential and parallel simulation results and analyze the 

performance of the parallel algorithm in terms of speedup and efficiency. 

Keywords: cellular automata; tissue growth; three-dimensional model; parallel algorithm 
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Chapter 1 

Introduction 

1.1 Motivation 

Each year, millions of surgical procedures are performed to relieve patients who are affected 

by tissue loss, due to burns and injuries, or organ failure. Operations treating patients using 

tissue reconstruction and organ transplantation have been highly successful. However, the 

number of patients treated by these therapies is small due to the limited number of donors 

available. The primary focus of tissue engineering is the growth of three-dimensional tissues 

with proper structure and function. Tissue engineers combine knowledge from the areas of 

biochemistry, medical sciences, and engineering to develop bioartificial tissue substitutes or 

to induce tissue remodelling in order to  repair, replace, or enhance tissue functions [33, 461. 

Natural tissues are multicellular and have a specific three-dimensional architecture. This 

structure is supported by the extracellular matrix (ECM). The ECM often has the form of 

a three-dimensional network of cross-linked protein strands. In addition to  determining the 

mechanical properties of a tissue, the ECM plays many important roles in tissue develop- 

ment. Biochemical and biophysical signals from the ECM modulate fundamental cellular 

activities, including adhesion, migration, proliferation, differentiation, and programmed cell 

death [57]. Recent studies of biomaterials have provided ways to manipulate some of these 

cellular activities through the use of targeted fabrication [22] or modification of bioartificial 

scaffolds [42, 261. 

Tissue engineers grow bioartifical tissue substitutes by reproducing the structural com- 

ponents of naturally grown tissues. However, tissue growth is a complex process affected by 
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many contributing factors such as the type of cells, initial seeding densities, spatial distri- 

bution of the seed cells and the culture conditions [52]. The dynamic process for generating 

cellularized tissue substitutes can be described as follows: 

0 A small tissue sample is harvested from the patient or donor. 

Cells are isolated, cultured and seeded into a three-dimensional scaffold with the proper 

structure and surface properties. The scaffold may contain growth factors to induce 

and maintain the proper differentiated cellular function. 

0 The cells migrate in all directions and proliferate to populate the scaffold. Cell mi- 

gration speeds and proliferation rates are controlled by the surface properties and 

morphology of the scaffold. Bioactive agents may also be used to regulate cell migra- 

tion and proliferation. 

The bioartificial tissue substitute is implanted in the patient. 

Wound healing is the process by which cells surrounding the wound proliferate into the 

wound area and, over a period of time completely cover it. Tissue engineering is used in 

wound healing. A biocompatible matrix or scaffold is utilized to fill the wound. This scaffold 

induces neighbouring cells to migrate into it, proliferate and produce their own extra cellular 

matrix. This process forms a new tissue with the right differentiation and, thus, heals the 

wound. 

Scaffold properties, cell activities like adhesion or migration, and external stimuli that 

modulate cellular functions are among the many factors that affect the growth rate of 

tissues. Hence, the development of bio-artificial tissue substitutes involves extensive and 

time-consuming experimentation. The availability of computational models with predictive 

abilities will greatly speed up progress in this area. 

This research focuses on the development of a computational model to simulate the 

growth of three-dimensional tissues consisting of more than one cell type. Specifically, this 

model can be used to study how the overall tissue growth rate is affected by: 

0 cell migration speed; 

the initial density of the seed cells; and 

their spatial distribution. 
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The success of models that describe the dynamic behaviour of cell populations, however, 

will depend on our ability to accurately describe the migration and proliferation of different 

cell types in various environments. Such data are obtained in experiments in simpler and 

therefore, easier to control systems. 

1.2 Modeling and Simulation Approaches 

Modeling is the process of establishing interrelationships between important entities of a 

system, where models are represented in terms of goals, performance criteria and constraints. 

Computer simulation is the discipline of designing a model of an actual or theoretical physical 

system, executing the model on a computer, and analyzing the execution output. Simulation 

embodies the principle of learning by doing. To understand reality, nature and all of their 

complexities, we must build artificial objects and dynamically act out roles with them [34]. 

Simulation is a tightly coupled and iterative three component process composed of model 

design, model execution, and execution analysis. The first step to building a simulation 

model of a real system is to gather data associated with that system. From the data and 

knowledge of past experiments with similar systems, we formulate the model. Models must 

be converted to algorithms to run on a digital computer serially. Parallel simulation meth- 

ods, while generally applicable and far reaching, are used on parallel machine architectures. 

In order to develop a model to study a real-world system scientifically, a set of assump- 

tions are required. These assumptions, which usually take the form of mathematical or 

logical relationships, constitute a model that is employed to gain some understanding of the 

behaviour of the corresponding system. If the relationships describing the model are simple 

enough, an analytical solution can be obtained by using mathematical modeling. However, 

most real-world systems are too complex to allow analytical evaluation, thus, enforcing the 

simulation approach. In this methodology, a computer is used to evaluate a model numeri- 

cally, and gathered data is used to estimate the characteristics of the model. In particular, 

modeling deals primarily with the relationships between real systems and models, while 

simulation refers to the relationships between computers and models. 

There are two primary strategies to evaluate the correctness of a model. They are 

verification and validation [34]. 

Definition 1.1 Verification. Checking that the simulation program performs correctly 

and as intended. This involves checking, for instance, whether the implementation is 
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free of errors and consistent with the model. 

Definition 1.2 Validation. Determining whether the simulation model, correctly imple- 

mented, is an accurate representation of the system under study. That is, is the model 

a sufficient close approximation to reality for the intended application? 

Although the concepts of verification and validation are distinct, in practice they may 

overlap to a considerable extent. When a simulation produces erroneous output, it is not 

always clear whether this is due to errors in the model, implementation errors, or the use of 

faulty input data. Model development, verification, and validation should be done hand-in- 

hand throughout the simulation study. A worthwhile model must generate predictions that 

are then corroborated by observations of, or experiments with, the real system. 

1.3 Cellular Automata Concepts 

Cellular automata (CA) were originally introduced by John von Neumann and Stan Ularn as 

a possible idealization of biological systems with a particular purpose of modeling biological 

self-reproduction [62]. This approach has been used since then to study a wide variety of 

physical, chemical, biological, and other complex natural systems. 

We consider d-dimensional cellular automata consisting of an array D of lattice cells 

covering a finite domain. Any cell c is uniquely identified by d integer coordinates ( i l ,  in,  

. . . , id), where 1 < i l  < N1, 1 < i2 < Nz, . . . , and 1 < id <_ Nd. Let 52 be the set of all 

computational sites in the cellular space. 

Definition 1.3 A cellular automaton satisfies the following properties: 

[P-1] Each cell c interacts only with its neighbour cells defined by a neighbourhood 

relation that associates with the cell c a finite list of neighbour cells c + vl, c + vz, . . . , c + vk. 

In general, the neighbourhood vector (or neighbourhood index), V = [vl, v2,. . . , vk], may 

vary from one cell to another. 

[P-21 Each cell can exist in one of a finite number of states. This finite list of states will 

be listed by Q. In the simplest case of two-state automata, Q = (0 , l ) .  

[P-31 Each function X : 52 + Q defining an assignment of states to all cells in the cellular 

space il is called a configuration. Then, x, is called the state of the cell c under configuration 

X. 
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[P-41 For any cell c in the cellular space, there exists a local transition function (or rule) 

fc,  from Q~ to Q ,  specifying the state of the cell c a t  time level t + 1 as a function of the 

states of its neighbours at time level t (x;+l = qt+l(c)) , i.e., 

xt+l = 
c fC(~:+vl i X;+V~, . . . i ~:+vk). 

[P-51 The simultaneous application of the local transition functions (or rules) f, to all 

the cells in a cellular space defines a global transition function F which acts on the entire 

array transforming any configuration xt to a new configuration xt+l according to 

These properties imply that each cellular automaton is a discrete dynamical system. 

Starting from an initial configuration xO, the cellular array follows a trajectory of configura- 

tions defined by the global transition function F .  All the possible configurations z of the cel- 

lular automaton define a set @ whose cardinality can be quite large. For N1 = N2 = N3 = 5 

and Q = (0, I ) ,  for example, @ contains 25x5x5 = 2125 z 4.2535 x configurations. 

We can now define parallel discrete iterations for a cellular automaton as follows: 

XO = is given in @ 

xt+l = F ( X t )  

for t = 0, 1, 2, . . .or, equivalently 

xo - - ( z l ,  0 0  x2, . . . , x&) is given in @ 

t x;" = f,(xl, x i , . .  . , x;,J1 

for t = 0 ,1 ,2 , .  . . and i = 1,2 ,3 , .  . . , N. The preceding two equations (or rules) imply 

that the parallel discrete iterations update the states of all the cells a t  the same time. A 

cellular automaton is said to be uniform if the neighbourhood relation and the transition 

function are the same for every cell. The transition functions of cellular automata need not 

be algebraic in form and may be rule-based. 

Advantages and Drawbacks of Cellular Automata 

The use of cellular automata in modeling various systems including biological ones has 

significant advantages and certain drawbacks. We list a number of advantages below: 



C H A P T E R  1. INTRODUCTION 6 

a Cellular automata provide a computationally proficient technique for analyzing the 

collective properties of a network of interconnected cells. 

a Models based on cellular automata provide an alternative approach involving discrete 

coordinates and variables to represent the complex dynamic system. 

a The model behaviour is completely specified by a simple operating mechanism in terms 

of local relations, which is sufficient to support a whole hierarchy of structures and 

phenomena. 

a This simple method of representing complex systems offers the ability to describe all 

the parameters governing the growth and motion of cells in a computationally efficient 

way. 

a Algorithms based on cellular automata are also suitable for parallel processing. 

Using cellular automata is not without its drawbacks. Some problems identified by 

Wolfram in [62] are listed below: 

a In order to  closely approximate a continuum of results, it is necessary to process 

cellular automata using a sufficient number of sites and over a sufficient number of 

time steps. 

a Imperfections (for example, those due to probabilistic rules or heterogeneous process- 

ing of the cellular automaton lattice) can have a large effect over time. 

I t  is not known how to reconstruct the initial state of a cellular automaton from the 

random patterns of temporal sequences generated after a finite number of time steps. 

1.4 Research Objectives and Contributions 

This research sets out to extend the functionality of previously developed three-dimensional 

cellular automata based models for the study of population dynamics of migrating and 

proliferating mammalian cells. One of the primary goals of this research is to study the 

competing behaviours when multiple mammalian cell populations are proliferating in the 

same cellular space. The objective of this model is to be able to compute the tissue growth 

rate and predict the time to reach volume coverage when the different properties of cell 
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migration and division are known. With proper experimental validation, such a model has 

the potential to be a predictive tool. 

The model discussed in this thesis is based on an earlier model implemented in FOR- 

TRAN. Our extended model was implemented using the C++ programming language. We 

employed object-oriented programming techniques to enhance the flexibility and extensi- 

bility of the implementation. In addition to our sequential algorithm, we implemented a 

parallel algorithm that runs on a Beowulf Cluster. The performance of the parallel algorithm 

is analyzed in terms of speedup and efficiency. 

Models with predictive capability are a necessary prerequisite for developing systems 

control strategies for biotechnological processes involving the growth of multicellular tissues. 

The significance is that this three-dimensional model will have implications in speeding up 

progress in the area of tissue engineering where the development of bioartificial tissues 

involves extensive and time-consuming experimentation. 

1.5 Overview of the Thesis 

This chapter provides a brief introduction to Tissue Engineering, modeling and simulation 

approaches, and cellular automata. It outlines the need to have a simulation approach to  

our model and how the use of cellular automata simplifies the simulation approach. 

In Chapter 2, we review previous work by discussing the different types of models used to 

study and analyze the proliferation and migration of anchorage dependant contact-inhibited 

endothelial cells. Next, Chapter 3 describes the basic processes of cell proliferation, migra- 

tion, collision and aggregation. A description of our extended three-dimensional model for 

cell locomotion and division using a discrete-time Markov chain approach and based on cel- 

. lular automata is also included. The sequential algorithm and its corresponding flowcharts 

are presented in Chapter 4. In Chapter 5, we discuss the reasons for implementing the 

algorithm in a parallel computing environment and present the parallel algorithm using a 

slab decomposition technique. 

Chapter 6 presents a subset of the simulation results obtained from both the sequential 

and parallel implementations of the model for different cell topologies and distributions. 

Additional simulation results are presented in Appendix A. In Chapter 7, we analyze the 

performance of the parallel simulations on a Beowulf Cluster. Here, we discuss the speedup 

and efficiency of our implementation for different processor numbers and cellular array 
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sizes. We then present our conclusions and future work in Chapter 8. Finally, we provide 

in Appendix B a glossary of terms used in this research. 



Chapter 2 

Previous Work 

This chapter reviews previous studies related to our area of research. Different types of 

models used to analyse the proliferation and migration of anchorage-dependent contact- 

inhibited endothelial cells, a type of mammalian cell, are presented. The description of each 

model and its limitations are given. 

Various modeling approaches have been used to simulate the population dynamics of 

proliferating cells. The models reviewed in this chapter can be classified as: deterministic, 

stochastic, and based on cellular automata. Early attempts to model cell population growth 

were limited to nonmotile cells and the study of contact inhibition phenomena on the prolif- 

eration of anchorage-dependant endothelial cells. Endothelial cells are intricately involved 

in many important pathological and physiological processes [31]. The thin monolayer of 

endothelial cells, which lines the entire vascular system, regulates the exchange of nutrients 

and waste products between the blood vessels and surrounding tissues. Endothelial cells 

create an adaptable life support system by pervading the blood vessels of every region of 

the body [35]. These models limited growth to two dimensions [64], or to microcarriers [24]. 

Later models added cell locoinotion and extended the modeling to three dimensions. A 

summary of these models is shown in Table 2.1. 

2.1 Deterministic Models 

Frame and Hu developed a model based on an empirical approach to  describe the effects of 

contact inhibition on the growth rate using one cell type [18]. They imposed the following 

three criteria on the model: 



CHAPTER 2. PREVIOUS W O R K  

Table 2.1: Summary of models developed for predicting the migration and/or proliferation 
cells. Note that the cellular automata models are also stochastic. 

Author (s )  1 T y p e  I M a i n  Fea tures  I Limitat ions 
Frame and Hu 1 Deterministic I 0 Specific growth rate 1 0 Cells considered to be 

/ l No colony mergings. 
Lim and Davies / Stochastic I 0 Random direction of I 0 Restricted assumptions 

(1988) 1181 

Cherry and Papoutsakis Deterministic 
(1989) 1111 

cell division. on cell-cell interactions. 
0 Cells represented as Cell motion not 

1 irregular polygons. 1 accounted for. 
Ruann, Tsai, and Tsao / Stochastic 1 0 Density-dependent I 0 Cell motion was 

was given in terms of cell 
density. 
0 Included perimeter cell 
growth into growth rate. 

equally contact-inhibited. 

Assumed colonies to be 
circular. 

(1994) [24] I micro-carrier. 
Lee, Kouvroukoglou, I Cellular I All essential features of I 0 Two-dimensional. 

(1993) [54] 

Zygourakis, Bizios, and Cellular 
Markenscoff Automata 
(1991) [64] 
Forestell, Milne, and Cellular 
Behie Automata 
(1992) [16] 
Hawboldt, Kalogerakis, Cellular 
and Behie Automata 

(2000) [28] I .Three-dimensional. ] 0 No cell migration. 
Chang, Gilbert, I Cellular I 0 Three-dimensional. I 0 No cell migration. 

growth. 
0 Cell motility and 
change in cell size. 
0 Contact inhibition 
during all stages of 
proliferation. 

Cell growth on 
micro-carriers. 

0 Usable with any cell 
line or type of 

McIntire, and Zygourakis Automata 
(1995) [36] 
Ben Youssef Cellular 
(1999) 131 Automata 
Kansal, Torquato, Harsh, Cellular 
Chiocca, and Deisboeck Automata 

restricted. 
0 Division simplified. 

0 Cell motion not 
included. 

0 Number of cells and 
their neighbours 
restricted. 
0 No cell motion. 
0 Synchronous growth. 

(2005) [lo] I aggregation. 
Cickovski et al. ( Cellular I Simulates ( 0 No cell migration. 

cell motion and division. 

0 Three-dimensional. 
0 Motion and division. 
0 Studies the growth of 
tumours 

Eliashberg, and Keasling Automata 
(2003) 191 
Cheng, Ben Youssef, Cellular 
Markenscoff, Zygourakis Automata 

(2005) [12] Automata morphogenesis. 
0 Processes multiple cell 

0 One cell per square. 

0 Cell size does not vary. 

0 Simplified cell 
representation. 

0 Division and death. 

0 Three-dimensional. 
0 Enables cellular 

0 No contact inhibition. 

0 A single cell type. 

O u r  model: 
Tang and Ben Youssef 
(2006) [59] 

types. 

0 Multiple cell types. 
0 Allows the formation of 
multicellular aggregates. 

Cellular 
Automata 

0 Cell size does not vary. 
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1. At low cell density, the specific growth rate is constant. 

2. At confluence, the specific growth rate is zero 

3. Between these two extremes, the specific growth rate makes a smooth transition. 

This model considers each cell to be equally contact inhibited. However, only cells on 

the interior of a patch are actually contact inhibited. The cells on the perimeter grow at 

the normal rate. 

Cherry and Papoutsakis presented an improved deterministic model in [ l l ] .  This model 

takes into account different growth rates based on the location of the cell in the patch. The 

following criteria were used: 

1. Cells on the interior of a cell patch have a zero growth rate. 

2. Cells on the perimeter of a cell patch grow at the normal rate. 

3. Patches of cells are assumed to be circular with particular dimensions based on the 

shape of the growth surface. 

This model overpredicts the growth rate. To compensate for the overprediction, the 

growth rate changes based on the number of cells per patch. When the number of cells per 

patch is low, the model uses an exponential growth pattern. Once the cell patch reaches a 

certain size, the model switches to a zero growth rate. 

The deterministic models discussed in this section provide insight into simple cell pop- 

ulation dynamics. However, these models overpredict the growth rate, and consider a cell 

patch to be of a circular shape. They do not compensate for the growth rate in the case of 

irregular shaped patterns. In addition, neither of these models incorporates cell locomotion 

nor considers the topological configuration of the cell populations. 

2.2 Stochastic Models 

To address the issue of cell topology, Lim and Davies developed a stochastic model where 

the cell shape and cell removal from the colony are taken into consideration [41]. The 

cell topology is modelled as a matrix of irregular polygons partitioned using the Voronoi 

tessellation technique. Each polygon represents a single cell containing one nucleus. Each 
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site is either free or occupied by a cell. A cell can only divide if a neighbouring site is free. 

The model also follows these assumptions: 

1. The cells are flatt'ened and the shapes can be represented by external irregular poly- 

gons. 

2. The positioning of the nuclei of a cell is placed randomly on the substrate a t  seeding. 

3. The maximum cell density at confluence is fixed for the type of cells and the culture 

conditions. 

4. The division time of a perimeter cell is represented by a normal probability distribu- 

tion. 

This model accounts for the formation and the merging of cell colonies. Unlike the model 

by Cherry and Papoutsakis, it does not assume the shape of the cell colonies to be circular. 

The removal of cells from the colony by shear forces or death was also considered in the 

model and found to affect cluster shapes. This two-dimensional model made some restrictive 

assumptions on cell-cell interactions and did not take into account cell locomotion. 

Ruaan, Tsai, and Tsao proposed a stochastic model for the simulation of density- 

dependent growth of anchorage-dependent cells on flat surfaces [54]. They based their 

model on experimental observations of Chinese hamster ovary (CHO) cells obtained using 

time-lapse video microscopy techniques. Their model attempted to incorporate the effects of 

cell motility and considered that the cell sizes varied with time. Based on their experimen- 

tal observations, the model of Ruaan et al. assumed that cell migration (or displacement) 

occurs only during a short period of time after division. Thus, the daughter cells that find 

themselves in close proximity to each other after a division are displaced and can appear at 

low-density areas within a circle defined by the average motility and the doubling time. One 

of the limitations of this model is its assumption that cells move within the first hour after 

cell division in accordance with the experimental observations on the movement of CHO 

cells. However, this assumption is not valid for other types of cells. In addition, this model 

did not take into account the cell-cell interactions and collision phenomena. 
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2.3 Cellular Automata Models 

Zygourakis, Bizios, and Markenscoff developed a two-dimensional model based on cellular 

automata [64, 651. This model allows for contact inhibition during the proliferation process. 

A cellular automaton is defined as a two-dimensional network of computational sites. Each 

site is a two state automaton that can be either occupied by a living cell or free and available 

for cell growth. 

Using the cellular automata concept, Forestell, Milne, and Behie [16] as well as Hawboldt, 

Kalgoreakis and Behie [24] modelled cell growth on microcarriers. In the former model, 

the sites are labelled as occupied and unoccupied. In addition, a site that is set for cell 

division on the next iteration is marked as newly occupied. There are two key rules in the 

implementation: 

1. A site which was occupied at the beginning of the current time step remains occupied 

at its end. 

2. If an occupied site had one or more unoccupied sites in its neighbourhood, then one 

of the unoccupied sites was selected at random and marked newly occupied. 

In the model proposed by Hawboldt, Kalgoreakis and Behie [24], the surface of a microcarrier 

was described in the form of a neighbour table, which is a matrix defining a cell and its 

neighbouring cells. A site may have one of the four states: unoccupied, occupied, newly 

occupied, and inhibited. 

Further, Lee, McIntire and Zygourakis showed the importance of cell motility and cell- 

cell interaction in describing the cell proliferation rates [35]. Any comprehensive model for 

tissue growth must consider these processes and account for the growth factors that regu- 

late their rates. Their experimental studies also elucidated the fundamental mechanisms of 

endothelial cells motility and proliferation. Lee, Kouvroukoglou, McIntire and Zygourakis 

followed this work with a new model [36] that described the locomotion of migrating en- 

dothelial cells in two-dimensions using a set of parameters that included the speed of cell 

locomotion, the expected duration of cell movement in a given direction, the probability 

distribution of turn angles which decides the next direction of the cell movement, and the 

frequency and duration of cell stops. 

Building on these early models, Ben Youssef developed the first three-dimensional cellu- 

lar automata model for tissue growth [3]. This work also utilizes a Markov chain approach to 
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model the trajectories of migrating cells [4] and is focused prirrlarily on the study of a single 

population of proliferating and migrating cells. It  forms the basis for our model. Cheng, 

Ben Youssef et al. enhanced this model by accounting for the slowing of cells resulting from 

cell-cell interactions. The model used a second stationary state to represent the "sticki- 

ness" of cells. The "stickier" the cells are, the higher their tendency to form multicellular 

aggregates. 

Chang and co-workers developed a 3-D cellular automata based model to represent the 

growth of microbial unit cells 191. This model considers the effects of bacterial cell division 

and cell death. I t  does not consider, however, contact inhibition and cell migration. Here, 

cells can divide into one of 26 directions, corresponding to all the possible adjacent cubes 

of a dividing mother cell. When a cell divides, space for a daughter cell is made by pushing 

the entire line of cells between the dividing cell and the closest free space until the adjacent 

space becomes available. In the event of cell death, the dead cell remains in its former 

location. As pressure from dividing cells persists, the dead cell eventually breaks down into 

a free space and is no longer part of the structure formed by the biofilm. 

Cellular automata based models have also been used to  solve more specific modeling 

problems. Kansal et  al. developed a model to simulate brain tumour growth dynamics 

[28]. Their model utilizes a few automaton cells to represent thousands of real cells. While 

this reduces the computational requirements of the model, it also eliminates the ability to 

control the state of individual cells and prevents their tracking in the cellular space. Another 

cellular automata based model was used by Cickovski and co-workers in a simulation to 

model morphogenesis [12]. This model, called COMPUCELL3D1 uses a hybrid approach 

to simulate the growth of an avian limb. COhIPUCELL3D uscs a cellular automaton to 

govern the cell interactions while using reaction-diffusion equation solvers to determine the 

concentration levels of surrounding chemicals. The model simulates the following cellular 

processes: cell migration, division, death, and cell-cell adhesion, where a cell can span 

multiple lattice sites. This model is focused on simulating morphogenesis in nlulticellular 

and unicellular organisms. 

2.4 Chapter Summary 

The objective of this chapter was to  present and review previous studies and research that 

were related, at  one level or another, to our work. An emphasis on the different types of 
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models used to simulate tissue growth was put forth. In particular, the class of cellular 

automata based models was shown to play key roles in the simulation of cell population 

dynamics, tumour growth, as well as the regeneration of limbs. 



Chapter 3 

3-D Modeling of Cell Migration 

and Proliferat ion 

The migration and proliferation of mammalian cells are important processes in biological 

systems. In this model, we represent a cell as a cubic computational element. This discrete 

model incorporates the primary features of cell division and locomotion including the com- 

plicated dynamic phenomena occurring when cells collide. The model simulates the growth 

of tissue comprised of multiple cell types where each cell population has its own division and 

migration characteristics. I t  also models cell aggregation which takes place during cell-cell 

interactions. 

In the three-dimensional model, each computational site interacts with its neighbours 

that are to its north, east, west, south (NEWS), and immediately above it or below it as 

shown in Figure 3.1. This is the von Neumann neighbourhood in three dimensions. In 

this case, the neighbourhood radius is equal to one. The choice of this type of neighbour- 

hood has the impact of reducing the algorithm/programming complexity and possibly its 

computational time requirements. 

3.1 Modeling of the Biological System 

In biological systems, there are many processes operating a t  the cellular and tissue lev- 

els. Our model focuses on those processes involved in cell migration and proliferation. In 

particular, it focuses on the following four cell activities: 
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Ccll division. 

Ccll motion. 

a Cell collision? and 

Cell aggrcga tion. 

3.1.1 Cell Division 

hIaninlaliail cells are anchorage-dependcl~t and require n substrate or a scaffold in which 

t,hcy can grow. The growth of cclls is cllnract.crizcd by the formation of confluent layers 

in which neigllbouring cells troucll one anothcr. As cell division occurs, two ncwly forw.xl 

daughter cells arc born. Cell division continues until a cell is con~plct~cly surrou~ldctl by 

other cclls. This is kllown as contact ~:n.hibition. As confluent patches of cells form, only 

cells at  the outer edges of the patches can divide while cells inside the patches are contact 

inhibited. The effects of contact inhibition can be reduced with cell motion as increascd 

motility can significantly enhance cell proliferation rates. Thesc two competing proccsscs 



CHAPTER 3. 3-0 MODELING OF CELL MIGRATION AND PROLIFERATION 18 

and their opposing effects complicate the dynamics of cell population 

We model cell division as a two-step process: 

1. If there are vacant sites in a cell's neighbourhood, then the cell divides and two new 

cells of the same type are created. One daughter cell occupies the original site, and 

the other daughter cell occupies a vacant neighbouring site. 

2. Assign to each of the daughter cells new parameters based on its own cell population 

characteristics. These are described in a later section. 

The position for a daughter cell is chosen according to a random algorithm based on the 

growth probabilities. The time interval between the division of a cell and its subsequent 

division is called the cell cycle time. The cell cycle time is known to follow a wide distri- 

bution, resulting in the asynchronous proliferation of cells. Once a cell has been contact 

inhibited, it remains so unless more area becomes available. 

3.1.2 Cell Motion 

Cell locomotion is an important function of mammalian cells. Cell motility is vital for many 

physiological processes such as wound healing. It  also counterbalances the effects of contact 

inhibition. Increasing the speed of cells has a positive effect on the proliferation rate of the 

cell populations, and in the case of wound healing, this aids in the healing process [44]. To 

model cell motion, we must characterize the trajectories traversed by individual cells. 

In earlier studies concerning cell motion trajectories, the common method used was 

to observe the initial and final cell positions. Such approaches do not provide detailed 

information on how individual cells move and are incapable of evaluating the important 

locomotory parameters (such as individual cell speed, persistence, etc.) [3]. Using time-lapse 

recording techniques, the authors of [65] were able to observe and analyze the migration of 

bovine pulmonary artery endothelium cells. They noted that  these cells moved in a random 

manner, and implemented a cellular automaton model based on random walk theory to 

describe the locomotion of these cells. Later studies have shown that these cells execute a 

persistent random walk [19, 231. Cells executing such persistent random walks move in a 

certain direction for a fixed duration of time, and then suddenly turn and move in another 

direction. Changes in direction can be the result of cell collision or as a response to some 

intracellular activity. In order to model the characteristics of cell migration, we require a t  
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least the following parameters: turning angles, preferred direction, individual cell speed, 

and persistence. 

Although the persistent random walk model has been successful in assaying and com- 

paring the motility of cells, it does not provide all the locomotory parameters necessary for 

a detailed characterization of the cell migration process. The authors of [36] have developed 

a Markov chain model to characterize the locomotion of endothelial cells in two dimensions. 

This was later extended to three dimensions [3, 41. Our model uses this approach to describe 

the movements of individual mammalian cells. To characterize cell migration in a way that 

is suitable for a computer implementation of a discrete model, the following information is 

required: 

1. The speed of cell migration 

2. The expected duration of cell locomotion in any particular direction. 

3. The probability distribution of turning angles to determine the next direction of cell 

movement. 

4. The frequency of cell stops. 

5 .  The duration of cell stops. 

3.1.3 Cell Collision 

Mammalian cells move in a certain direction for some period of time and, then, they turn 

and migrate in another direction. Cell collision occurs when a cell moving in a certain 

direction encouters another cell of a different type in its path. When a cell of one type 

collides with a cell of a different type, the cell slows down for a period of time and then 

changes its direction. The duration of time a cell stays in the stationary state after a cell 

collision is based on its type [37, 321. Once the cell is ready to resume its motion, it migrates 

in a new direction. The modeling steps used in the cell collision process are described below: 

The cell stops for a number of steps. 

The cell changes its direction and resumes motion. 

In this model, cell collisions can occur either when a cell is moving in a given direction, 

or when a cell is changing its direction and encounters another cell of a different type. 
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3.1.4 Cell Aggregation 

Cell aggregation is a feature of tissue formation that allows the binding of cells of the same 

type. It is this specific grouping of cells that enables the tissue to perform its intended 

purpose. Cell aggregation is the combination of two cellular functions: cell-to-cell recog- 

nition and cell adhesion. The self-recognition quality lets cells identify cells of the same 

type. When cells of the same type encounter each other, they adhere to one another and 

form a cellular aggregate [61]. As more cells of the same cell type encounter the cellular 

aggregate, the cellular aggregate becomes larger forming a cluster of cells. The adhesion 

can be strengthened by aggregation factors that are sometimes secreted by the cells [15]. As 

a result of aggregation, the cell slows down, "sticks" to another cell of the same type, and 

changes its direction of motion. The basic steps used to model the process of cell aggregation 

are listed below: 

The two cells stop for a number of steps, thereby entering an aggregation state. 

The two cells change their direction and resume locomotion. 

We limit cell aggregation to cells of the same type. Cell aggregation occurs when a 

motile cell "collides" with another similar cell. 

3.2 Markov Chain Theory 

We follow the same Markov chain approach used in [36] to model the trajectories of motile 

cells. Let C(x, y, z) be the coordinates of a cell C at  time t in a three-dimensional Cartesian 

coordinate system. In Figure 3.2, Cf(x,  y,O) represents the projection of C onto the xy-plane. 

The same figure also shows that an angle 9 is formed by C' and the positive x-axis, while 

an angle 4 is formed by C and the positive z-axis. 

In three dimensions, the two angles 9 and 4 can be used to completely describe the 

direction of the motion of a cell. We can further illustrate this in Figure 3.3. Here, we 

decompose the state space into two subdomains. In Figure 3.3(a), we define a reference axis 

for the first domain formed by an angle equal to -(7r/4) with the positive x-axis. Cell C is 

in state j, j E N, when the angle 9 is in the interval 9j-1 5 9 < O j .  The second subdomain 

displayed in Figure 3.3(b) has a reference axis perpendicular to the z-axis, and is formed 
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Figure 3.2: The location of a cell, C ,  in relation to two three-dimensional coordinate systems 
(the Cartesian and spherical ones). 

a t  an angle of 7r/2 with the positive z-axis. Cell C will be in state ( j  + 4) if the angle 4 lies 

in the interval 5 4 < q53. 

In our Markov chain model, we define the six directional states as combinations of the 

state spaces defined by the two angles 8 and 4. This means that the state space of 2~ defined 

by the angle 8 is divided into four equal parts to yield the first four directional states. In 

addition, the other state space of 2~ defined by the angle 4 is then divided into two equal 

parts to yield the last two directional states. Therefore, cell C is in state 1, if it moves in a 

direction with angle 8 in the range 0 5 8 < ~ / 2 .  The same cell will be in state 2, if 8 is in 

the range ~ / 2  5 8 < T, and so on. Applying this definition to  angle 4, cell C is in state 5 

(= 1 + 4) if 4 is in the range 0 5 4 < T and will be in state 6 (= 2 + 4) if 4 is in the range 

T 5 4 < 2 ~ .  The above decoupling assumes that there is no simultaneous changes in 8 and 

4. In addition to  the above states, a cell is said to be in a stationary state (state 0) if it 

does not move more than a half of a cell diameter between two consecutive time intervals. 

This is known as the half-cell diameter rule [47]. 

Next, we define the parameters used in the Markov chain model to describe the trajec- 

tories of mammalian cells. These are as follows: 

0 Transition-state probabilities: These probabilities characterize the turning behaviour 
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Figure 3.3: Illustration of the states of the discrete-time Markov chain model. The two state 
spaces of 27r each are divided into (a) one with four equal parts where each section spans 
n/2 radians, and (b) another with two equal parts where each section spans IT radians. In 
both parts, the reference axis/plane is labelled with 0. 
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of cells by quantifying the frequency at which the cells move from one state to another. 

0 Waiting times: These are the average times cells spend in a particular state. 

We let X be the set of all states of a Markov chain, where X contains the six directional 

states and the two stationary states (state 0 and state 7). We will describe each cell tra- 

jectory as a stochastic process [Xt, t > 01, where Xt is a random variable a t  time t that can 

take any value from the set of possible states X .  Let 1 E X .  

Below, we define the memoryless property of the Markov chain as given in [4]: 

Definition: A stochastic process [Xt, t 2 0] is a discrete time Markov chain if for all times 

0 < t l  < t2 < . . . < tn < t and r 2 0, the transition probabilities pi1 are given by 

P ( X ~ + ~  = llXt = i ,  Xt, = i n , .  . . , Xtl = i l )  = p(Xt+, = llXt = i ) ,  

for any states ( i l l  i 2 , .  . . , i n ,  i, and 1). 

This property states that at time t + r the probability of a cell being in state 1 is 

independent of how it entered state i at time t.  This memoryless property of Markov chains 

can be summarized as follows: The probability that the process will be in a given state at 

the next time step is deduced from its state at the present time and does not depend on the 

history of the process. 

Let Ti be a random variable defining the time a cell spends at state i every time it 

visits that state. For Markov processes, the random variable Ti, called the waiting time in 

state i ,  has an exponential distribution with parameter X(i). This exponential probability 

distribution function can be expressed by 

From the properties of the exponential distribution [29], the expected value of Ti is given 

by 

Both the expected values of the waiting times and the transition state probabilities are input 

parameters for our model whose values can be experimentally determined. Another prop- 

erty of Markov chains is the possession of stationary time-invariant transition probabilities 
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p,(lli). This probability is illustrated by the following equation: 

p,(lli) = p(Xt+, = llXt = i),Vt 2 0, where T 2 0 is fixed. 

This is a statement that the probability of switching from state i to state 1 at time t + r is 

not dependent on how long the process was in state i. 

3.2.1 Computation of Cell Locomotion Parameters 

The speed of migration can be calculated using the cell trajectory data. If di, i = 1,2 ,  . . . , N, 

are lengths of the cell trajectory segments travelled between time t i -1 and ti (ti = t i -1  +At) ,  

then the cell speed of migration in the direction of displacement di over the time increment 

At can be calculated by: 

The average speed over the time interval [0, N (At)] is given by: 

The population-average speed of locomotion can be computed by averaging the speed of 

all cells. We can simplify the calculations by defining the size of a computational site, h, as 

the average size of a living cell. For our simulations, we base the size of the computational 

site on the average area of mammailan cells at  confluence. This sets the length of a side 

for each computational site to be 10pm. If At  = 0.2hr, then the instantaneous speed of a 

migrating cell moving in any one of the six specified directions is 50pmlhr. By adjusting the 

value of At, a new instantaneous speed of locomotion can be calculated. These calculations 

can be used to monitor the temporal evolution of the average speed of the individual cell 

populations. After every iteration, the sum of distances covered by all migrating cells is 

calculated. At that instant, the population-average speed of locomotion is computed by 

dividing the sum by the total number of cells, migrating or not, by the time interval At. 
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3.3 New Features of the Model 

We enhanced the existing model by adding new features that allow for the modeling of the 

proliferation and migration of multiple cell types. These features are described below. 

3.3.1 Cell Aggregation 

In addition to implementing cell collision, we modelled cell aggregation by adding a second 

stationary state (j = 7). Two colliding cells of the same cell type will enter the aggregation 

state and stick together for a defined period E(T7). The value of E(T7) indicates the 

likelihood for the cells to form multicellular aggregates. When a cell collides with another 

cell of the same type already in the aggregation state, then the first cell will enter the 

aggregation state and both cells will reset their persistence counters to E(T7)/At .  Once 

the waiting time E(T7) has expired, the two cells can move away in randomly assigned 

directions. 

3.3.2 Cell Topologies 

This thesis considers two types of initial seeding topologies: uniform topology and "wound" 

seeding topology. Each topology was chosen for its applicability to research conducted in 

laboratories. In the uniform topology cells are randomly seeded in the cellular space. This 

topology simulates the migration and proliferation of cells in a sparsely and uniformly seeded 

environment with the objective of simulating tissue regeneration. In the "wound" seeding 

topology, an empty cylinder at  the centre of the cellular space is surrounded by seeded cells 

in the remainder of the space. Cells bordering the empty core migrate into the centre and 

proliferate. With each of the above two cell seeding topologies, we have associated two types 

of cell distributions as described below. 

Segmented Distribution 

The first cell distribution is the segmented distribution. Here, each cell type is seeded in a 

separate area of the cellular space. During the simulation, cells can migrate freely in the 

cellular space, and can enter areas that were originally designated for a particular type of 

cell during the initial cell seeding. Figures 3.4 and 3.5 show an example of a segmented 
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clistribution in the case of uriiform and "wound" seeding topologies of two cell types, re- 

spectively. In t.he l~niform seediug t,opology, the sceding density indicates the pcrccntage of 

sites occ~~p ied  by cells a t  the start  of the sinlul;~tion. 

Figure 3.4: An esamplc of a uniform topology wing two cell popu1atk)ns in a scgmcxited 
distribution wit11 a t,ot,al initial seeding density of 0.3%. This exalllple is based on a 20 x 
20 x 20 cellular array. 

Mixed Distribution 

The other seeding dist,ributjion associated wit,ll the cell secding topologies is tlie mixed d i .7 -  

trzbuk~:on. Here, the different cell types are seeded together in a rando~n order according t.o 

the cell t,opology. Figure 3.6 shows t,he  nixed distribution of two cell types in a unifolm 

seeding topology, while figure 3.7 shows two types of cells in a mixcd dist~rihution in tho 

case of a "wound" seeding topology. 

3.4 A Cellular Automaton 

Our cellular automaton model pcrforms tlie siinulations on a tllrce-dimensioi~nl array of 

co~nputat~ional sites. A computational site can coutain a single r n a ~ ~ i i i ~ a l i a ~ l  (~11. Each cell 
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Figurc 3.5: An cwmple of a  wound" seeding t,opology with two cell populations in a 
segnientecl ciistribution. This exanlple is hasetl on a 20 x 20 x 20 celluli~r array. For the 
wound, a d i a~ r~e t~e r  of 10 and a height of 20 are used. 

Figure 3.6: An example of a rmiform topology using two cell populations i l l  a ~nixctl distri- 
but,ion wit,h a total initial seeding density of 0.5%. This example is based on a 20 x 20 x 20 
cellular usray. 
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Figure 3.7: A11 e x m ~ p l e  of a "wound" seeding t80pology with two cell populations in u mixed 
distribution. This esample is based on a 20 x 20 x 20 cellr~lar array. For t8hc wmnd: a 
clianieter of 10 and ii Iieight of 20 are used. 

can be in one of a finite number of states and can interact with a finite number of neighbours. 

At any inst,unt in t i ne ,  the coniputational state of t,he sitc describes thc cl~nrartcristics of 

the cell a t  a part,icdar time. At discrete t h e s ,  t,he roniputat,ionnl sitm rliange states by 

interacting with ncighboliring cells. 

In modeling the proliferation and migration of mammalian cells, each site can 1x2 eit,ller 

occupied by a living ccll, or be free and available for cell illovenlent and division. The statc 

of cach comput,at,ional sitme delii~eat~es the properties of a cell: while the collcct,ive states of 

all sit'es denot,e the stat,e of the cellular antoiiiat,on. 

3.4.1 States of the Cellular Automaton 

Our irlodel is a discrete spst,enl operating in a cellular space that is comprised of N = 

A T x  x lVy x iVZ comput,ational sitcs. The cells in t,he ccllular space interact with t,hrir 

neighbours a t  equally spaced time intervnls t ':  t? .. . . : tP '  t r + l :  . . . (where tr i  ' = t r  + At for 

all r ) .  

The  cellular a u t o ~ ~ l a t o n  is a dynaniic system evolving with discrete parallel iterations. 
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Each occupied computational site must describe the current state of a given cell. In this 

model, we define a set of values to represent the state of a cell. These values must describe 

asynchronous proliferation and persistent random walks of multiple cell types. In building an 

adequate state definition, sufficient information must be provided about the history so that 

given the current state, the past is statistically irrelevant for predicting all future behaviour 

pertinent to the application a t  hand [7]. This is consistent with the definition of state in 

a Markov-chain setting. According to these specifications, the state xi of an automaton 

containing a living cell must specify the following set of parameters: 

1. The type of cell. 

2. The direction of cell motion. 

3. The speed of the cell. 

4. The time remaining until the next direction change. 

5. The time remaining until the next cell division. 

The average speed of migrating cells is controlled by varying either the value of the time 

interval, At, or the speed factor. This is due to the fact that migrating cells cover a fixed 

distance in each step. Another means of regulating the speed of locomotion is the ability to 

adjust the transition probability for the stationary state. Therefore, a migrating cell of type 

j in automaton i must only specify the direction of locomotion and the times remaining 

until the next direction change and the next cell division in its state xi. The state xi of 

an arbitrary automaton i, then, takes values from the following set of eight digit integer 

numbers: 

T = {klmnpqrsIk, 1, m,  n , p ,  q , r ,  and s E N), 

where k is the cell type. The direction of motion is identified by the direction index 1 (see 

Table 3.1). When 1 is equal to 0, the cell is in the collision stationary state. When the 

value of 1 ranges from 1 - 6, it represents one of six directions the cell is currently moving 

in. When the value of 1 is 7, it enters an aggregation stationary state where it "sticks" to 

another cell of the same type potentially forming cellular aggregates. The digits mn  denote 

the persistence counter. I t  is the time remaining until the next change in the direction of 
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cell movement. The cell phase counter is represented by the digits pqrs. The cell phase 

counter is the time remaining before the cell divides. 

Table 

North 11 South 

6 Down 

0 7 I Stationary (Aggregation) 1 

3.1: The direction index for migrating cells and the corresponding direction of motion. 

The initial value of the cell phase counter pqrs is randomly assigned to each new cell 

based on the cell division time distribution for that cell's population type. The division 

time distribution for each population is obtained from available experimental data [35]. 

During each iteration in the simulation, the phase counter for each cell is decremented by 

one. Once, the phase counter reaches zero the cell divides. The persistence counter mn is 

assigned after each direction change. It is assigned the value of the average waiting time 

based on the application of Markov chain analysis to the cell trajectory data. The persistence 

counter for each cell is decremented at  each iteration, and the cell changes direction when 

the persistence counter reaches zero. 

] 
1 

3.5 Mixed Cell Cultures and Tissue Architecture 

Most tissues consist of several types of cells that organize themselves in very specific spatial 

patterns [48]. This three-dimensional architecture is what endows tissues with the special 

functions of organs. While previous studies have focused on single types of cells, our model 

allows for simulating multiple cell types, with each type having its own migratory and 

proliferation characteristics. 

The model allows for the organization of cell populations into specific spatial patterns. 

Tissue engineers are attempting to achieve this goal by using microlithographic techniques 

Direction Index (k) 

0 

1 

Direction of Motion 

Stationary (Collision) - 

East 
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to create surfaces with heterogeneous characteristics and solids with specific pore structure. 

When micro-patterned surfaces are used, different cells will migrate at  different rates on 

different parts of the surface. Thus, we can guide cells of certain type to cluster in specific 

areas only. These areas may be surrounded by cells of another type. 

3.6 Chapter Summary 

In this chapter, we described the modeling steps of the biological system beginning with 

the processes of mammalian cell proliferation, migration, collision, and aggregation. We 

also reviewed the Markov chain approach used to model the trajectories of locomoting cells. 

We then discussed the new features of the model and presented the states of the cellular 

automaton to be employed in the model. 



Chapter 4 

Sequential Algorithm 

This chapter discusses the sequential algorithm used to implement the three-dimensional 

model. We present the main parameters used to run the model and explain the related 

algorithmic details. 

4.1 Sequential Algorithm for Cell Proliferation and Migra- 

t ion 

The algorithm is based on an earlier version that deals with a single cell population developed 

by Ben Youssef [3]. The simulation begins by populating the cellular space with cells based 

on the cell distribution, seeding topology and density. The states for each cell are randomly 

assigned based on the population characteristics defined for that cell type. Each cell is 

assigned values for its type, the direction of motion, the cell persistence and cell division 

counters based on experimental data. In the following subsections, we describe the input 

parameters used by the algorithm to characterize the cellular space and simulate the growth 

of tissue. 

4.1.1 Input Parameters 

Below, we provide a description of the input parameters used to start the simulation. Note 

that the values of these parameters are chosen either according to experimental data ob- 

tained from previous models [3, 4, 361, or are specified by the user. 
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Global Parameters 

The global parameters define the simulation details of the cellular space and the different 

types of cell populations. 

Computational Array. Three parameters denoted by N,, N,, and N, specify the number 

of computational sites in each of the three dimensions. 

Surface. This is the type of surfaced used (fixed boundaries, wraparound in one, two or 

three dimensions). 

Cell Population Parameters. The following cell parameters define the characteristics 

for each cell population to be seeded into the cellular array. 

Cell Type. This is a unique identifier for each cell population. 

Speed Factor. This parameter indicates the number of time steps between move- 

ments. It controls the cell speed. 

Nwait. This is the average duration of time a cell spends migrating in a direction 

of motion indicated as a number of time steps. 

NwaitO. This is the average duration of time a cell spends in the stationary state 

indicated as a number of time steps. 

Nwait7. This is the average duration of time a cell spends in the aggregation 

stationary state indicated as a number of time steps. 

Hist. This is a set of values indicating the percentage of cells in a population that 

divide in a specified period of time. 

Awg(l:6). This is the cell division probability into each of the six neighbouring 

sites, respectively. 

Seeding Parameters 

The seeding parameters define the initial cell seeding distributions in a subsection of the 

cellular space. 

Seed Topology. This is the topology of the seeded cells. 
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Seed Area and Location. These define the size and location of the localized seeding 

area. 

Overall Seeding Density. This is the total number of seed cells as a percentage of the 

total number of computational sites in the local seeding area. 

Seeded Population. This denotes the type of cells to be seeded into the local seeding 

area. 

Cell Type Seeding Density. This defines the percentage of the seeding density of a 

given cell type in the local seeding block. 

4.2 Algorithm 

4.2.1 Initial Condition: 

1. Read in the initial parameters from the input data file. 

2. Select the computational sites to be occupied by the cells a t  the start of the simulation 

based on the seeding shape, the seeding pattern, and the population density. 

3. For each occupied site, we assign a cell state based on the population characteristics 

of that cell type. The direction index is randomly selected, the persistence counter is 

assigned a properly chosen value, and the cell phase counter is set based on experi- 

mentally determined cell division data. 

4.2.2 Iterative Operations: 

At each time step tr+' = t' + At,  r = 0 , 1 , 2 .  

1. Randomly select a computational site. 

2. If this site is occupied by a cell, c, and the phase counter is zero then it is time for 

this cell to divide and the division routine is called (see Section 4.2.3). 

3. If this site is occupied by a cell, c, and the persistence counter is zero, then it is time 

for this cell to change directions and the direction change routine is called (see Section 

4.2.4). 
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4. Otherwise, the cell, c, is occupied and both the phase and persistence counters are 

not zero. Attempt to move this cell to a neighbouring site in the direction indicated 

by the direction index of its current state. 

If c is eligible to move during this time step (the motion step is true), attempt 

to move c into a neighbouring computational site. 

- If this neighbouring site is free, then mark the site to contain c at the next 

step and decrement the phase and persistence counters by one. 

- If this neighbouring site is occupied by a cell from a different cell type, then 

the cell remains in the current site and enters the stationary state. The per- 

sistence counter is set to nwait0, and their phase counters are decremented 

by one. 

- If this neighbouring site is occupied by a cell from the same cell type, then the 

cell remains in the current site and both cells enter the aggregation stationary 

state. The persistence counters for both cells are set to nwait7, and their 

phase counters are decremented by one. 

5 .  Select another site and repeat steps 2-4 until all sites have been examined. 

6. Update the states of all sites so that the locations of all cells are set for the next time 

step. 

4.2.3 Division Routine 

1. Determine if there are free adjacent sites surrounding the dividing cell. If all of the 

adjacent cells are occupied, then the cell is contact inhibited and will not divide. The 

phase counter is assigned a new value. 

2. If there are free sites in the neighbourhood, then select one of these sites by using a 

random algorithm based on the growth probabilities. 

3. Mark the chosen site to prevent other cells from occupying it. This is the site of one 

of the daughter cells. The other daughter cell will occupy the current location. In 

the next iteration, assign to the new cell the same cell type index as the parent, a 

randomly chosen direction index, and new persistence and phase counter values. 
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4.2.4 Direction Change Routine 

1. Determine if there are free adjacent sites surrounding the migrating cell. If all of the 

adjacent cells are occupied, then the cell remains in its current location, and it is 

assigned a new persistence counter. 

2. If there are free adjacent sites in the neighbourhood, randomly select one of the un- 

occupied sites based on the state-transition probabilities p(ilj),  i, j = 0 ,1 , .  . . ,7 .  

3. Mark the selected site that will contain the cell in the next time step to prevent other 

cells from occupying it. Set the persistence counter to its appropriate initial value, 

and decrement the cell phase counter by one. 

4.3 Flowcharts 

The following figures contain the flowcharts of the sequential algorithm. The cellular space 

is assumed to  have a fixed boundary. 

4.3.1 Main Module 

The main module is described in Figures 4.1, 4.2, 4.3, 4.4 and 4.5. 

4.3.2 Division Routine 

The division routine is depicted in Figure 4.6. 

4.3.3 Direction Change Routine 

The direction change routine is illustrated in Figure 4.7. 
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Figure 4.1: Flowchart illustrating the main module of the sequential algorithm (part 1 of 

5). 
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Execute Direction 

Figure 4.2: Flowchart illustrating the main rnodule of the sequential algorithm (part 2 of 

5). 
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Figure 4.3: Flowchart illustrating the main module of the sequential algorithm (part 3 of 

5). 
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Figure 4.4: Flowchart illustrating the main module of the sequential algorithm (part 4 of 

5). 
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Figure 4.5: Flowchart illustrating the main module of the sequential algorithm (part 5 of 
5 ) .  
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Figure 4.6: Flowchart illustrating the Division Routine. 



CHAPTER 4. SEQUENTIAL ALGORITHM 

available 4 
Randomly select one of 
the free sites based on 

the state-transition robabilities L+ 
1 Mark the chosen site Li 

for the cell's position in the 

Assign a new persistence 

No Free 

sites 

' 1. Cell will not change direction I\\ 
2. Assign a new persistence /" 

Decrement the cell's 

Figure 4.7: Flowchart illustrating the Direction Change Routine. 
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4.4 Other Implementation Details 

At every iteration, our model updates the states of all the computational sites. If these 

sites are scanned in a fixed sequential order, then the processing of the cellular array will 

be biased based on the fixed ordering. It would be possible, for example, for cells in certain 

computational sites to be prioritized over other computational sites. This can lead to cells 

being forced to move in certain directions based on the fixed order in which the cells are 

being scanned. To eliminate such artifacts, the computational sites must be scanned in a 

different random ordering at each iteration. 

In this model, a random ordering of the computational sites is created at the beginning 

of each iteration. To create a direct random ordering for a N x N x iV cellular array 

would require N~ calls to the random number generator. This represents computational 

overhead that can be reduced by using an alternate ordering scheme. We can simplify 

the computational requirements by creating random orderings for only the N rows, the N 

columns and the N indices in the third dimension of the array at each iteration. The sites 

are then scanned by rows according to the random ordering. Within each row, scanning 

proceeds based on the computed random ordering of the columns. And within each row- 

column pair, we scan the sites using third dimension indices based on the random ordering of 

this index. At the beginning of each new iteration, a new random ordering of computational 

sites is computed. This alternate approach to site ordering requires only 3N calls to the 

random number generator. We expect that there would be no differences in the simulation 

results obtained by using either of the two random ordering approaches, also known as 

complete and partial random orderings, respectively. 

4.5 Random Number Generation 

The selection of random numbers is a significant aspect of our model. The model relies 

on a sequence of uniformly distributed random numbers to determine, for instance, the 

ordering of computational sites, cell motion, and cell direction. We decided to implement 

an established algorithm for random number generation rather than using the one provided 

by the C++ libraries. 
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4.5.1 Rationale 

The choice to implement a random number generator is based on the fact that random 

number generators provided by most programming language libraries are not very good [50]. 

Most developers assume that the random number generator they use is sufficiently random, 

and thus do not question the validity or the underlying algorithm behind it. In addition, the 

random number generator can vary based on the compiler used and the operating system the 

application is running on. By implementing a carefully chosen random number generator, 

the user is afforded control over the implementation, randomness quality, and periodicity 

of the generator. This choice also enhances the debugging of the code and facilitates its 

parallelization [3]. 

4.5.2 Method Used 

Our algorithm uses a random number generator based on the method proposed by D. H. 

Lehmer known as the multiplicative linear congruential generator [38]. This technique is 

simple and effective in producing uniformly distributed values between 0 and 1. It begins 

with the careful selection of two fixed integer parameters: 

1. A modulus: rn, a large prime integer, 

2. A multiplier: a ,  an integer ranging from 2 , 3 , .  . . , rn - 1, 

and the subsequent generation of the integer sequence X I ,  xp, x3. . . via the iterative equa- 

tion, 

xn+l = f (x,), for n = 1 , 2 , .  . . , 

where the generating function f () is defined for all x in 1 , 2 , .  . . , m - 1 as 

f (x) = ax mod m. 

The sequence x, must be initialized by correctly choosing the initial integer value XI. This 

value, known as the seed, is selected from 1 , 2 , .  . . , m - 1. The sequence is then normalized 

to the unit interval via division by the modulus operator to produce the real sequence 

u1, ~2,113;. . . , where 
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u, = x,/m, for n = 1 ,2  , . . . .  

The choice of rn as a prime number ensures that the values of u would vary from 6 to 1 - 

and more importantly prevents the sequence from collapsing to zero. Also, the normalization 

step does not affect how random the sequence appears. By observing the sequence of x,, we 

can determine the overall quality of the randomness. As a result, by properly selecting the 

multiplier and prime modulus, the resulting sequence can be statistically indistinguishable 

from a sequence drawn a t  random (without replacement) from the set 1,2,  . . . , m - 1 [50]. In 

our model, we use the Mersenne prime number m = 231 - 1 = 2,147,483,647 as a modulus, 

and the multiplier is set to a = 62,089,991. 

4.6 Chapter Summary 

In this chapter, the sequential algorithm describing the three-dimensional model was dis- 

cussed and its representative flowcharts were later given. We also elaborated on other 

aspects of the sequential algorithm related to the implementation of the random processing 

of computational sites in the cellular array and the choice of a random number generator. 
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Parallel Algorithm 

This chapter discusses the parallel implementation of the model on a distributed-memory 

parallel machine. In particular, the steps necessary to parallelize the sequential algorithm 

using the Message Passing Interface (MPI) are described. This is followed by presenting the 

flowchart for a single node program as well as the computing platform. 

5.1 Motivation for Parallelizat ion 

One of the main objectives of using parallelism is to reduce the overall time required to 

carry out and complete given computations. This is usually referred to as the wall clock 

time since we are not really interested in some internal measure of performance but rather 

in the time that we have to wait to obtain the results [3]. Parallelism overcomes some 

of the constraints imposed by uniprocessors. Besides offering faster solutions, applications 

that have been parallelized can solve bigger, more complex problems whose input data or 

intermediate results exceed the memory capacity of a single-CPU computer. Simulations 

can be run at finer resolutions. Physical phenomena can be modelled more realistically. 

5.2 Parallelization and Optimization of the Model 

A parallel program is produced by applying the following three steps ([6]): 

Decomposition. The division of the program into a set of parallel processes and data. 

Mapping. The way processes and data are distributed among nodes. 
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Tuning. Alteration of the application to improve performance. 

Inherent in this process are certain principles that are guides to designing an efficient 

program. These principles help us determine each of the steps specified above: 

Balancing the computational load. 

Minimizing the comn~unication to computation ratio. 

Reducing sequential bottlenecks. 

Making the program scalable (independent of the actual number of available nodes). 

Our application is loosely synchronous [49]. The amount of computation can vary from 

one partition and time step to the other as it depends on the amount of useful data. Paral- 

lelism is introduced by dividing the work among multiple nodes a t  each time step. When all 

nodes finish their part's of the problem, they exchange intermediate results before proceed- 

ing to the next time step. Each node has to make sure that the other nodes are ready for 

exchange of data so that useful data are not overwritten. Between these points the nodes 

proceed at their own rates. Since the workloads vary temporally and spatially, they have to 

be distributed evenly amongst the nodes. 

5.2.1 Domain Decomposition 

We employ a slab decomposition technique to divide the cellular space along the z dimension 

into smaller and more manageable subdomains. The resulting "slabs" are logically mapped 

to a linear array of nodes. Figure 5.1 illustrates the resulting mapping of the cellular array 

onto P = K processors. If K divides N,, then the subdomains will be of equal dimensions, 

where each subdomain is N, x Ny x %. When N, = c,K + r,, the array is divided into r, 

subdomains of size N, x Ny x ( L$]+ 1) and K - r, subdomains of size N, x Ny x 121. The 

area of the boundary between two neighbouring subdomains is equal to N, x Ny sites. Except 

for the subdomains at both ends of the decomposition, all the remaining subdomains have 

two neighbours. In this decomposition, varying the number of processors P (or, subdomains 

K ) ,  does not change the size of the boundary area between two adjacent subdomains. We 

use the slab decomposition for both the uniform and "wound" seeding topologies. 
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Figure 5.1: Slab decomposition of a N, x N, x N, cellular array on P = K processors. The 
dotted lines denote shared boundaries with neighbouring processors. The node IDS vary 
from 0 to P -  1. 

5.2.2 Mapping 

While the decomposition of the problem determines whether it is possible to balance the load 

for deterministic algorithms, mapping is the step that directly determines the load balance. 

Ideally, all nodes dedicated to an application should be busy during the entire time the 

application is running. When the work load is not equally distributed among the nodes, 

nodes with smaller loads would sit idle while nodes with the larger workloads continue to 

process data. 

In addition, there are managerial tasks that are required to be completed. In our algo- 

rithm, each node needs to calculate the local volume coverage, cell locomotion speed, and 

growth rates. An efficient way to collect these data and prepare them for output is to assign 

a single node (in this case, node 0 called the master) to preform these functions. This 

maintains a fairly well-balanced load. 

Our algorithm is scalable, in that it can be run on any number of nodes. It is generally a 

poor approach to create parallel applications for specific number of nodes. The availability 
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of nodes on a cluster can often dictate how many nodes an application can use a t  a given 

time. This availability can vary due to the number of users, removal of nodes, or even 

node failures. Making the application independent of the current number of available nodes 

makes the software less dependent on the exact configuration of the hardware. 

MPI provides a collection of routines to aid in the development of scalable applica- 

tions. In particular, there are routines that determine the number of nodes in the system 

and one that uniquely identifies the current node. These are called MPI-COMM-SIZE0 and 

MPI-COMMRANKO , respectively. Using this information, a logical topology can be created 

based on this naming scheme. In the slab decomposition, we order the nodes from node 0 to 

node P - 1 ,  where P is the number of available processors. While we can establish different 

logical processor topologies using MPI, this does not reflect the exact topology of the under- 

lying physical hardware. The virtual topology can be exploited by the runtime system in the 

assignment of processes to physical processors, if this helps to improve the communication 

performance on a given machine. In our application, the linear array topology reflects the 

logical communication pattern of the processes. 

5.2.3 Tuning 

We know that  sequential processing is a bottleneck. While some sequential processing is 

required, some of it can be avoided. A way of reducing some of the serial processing is 

by utilizing global reduction operations to compute needed simulation parameters requiring 

data from all nodes. For example, the global summing operation iteratively pairs nodes to 

exchange their current partial sums. Each partial sum received from another node is added 

to the sum at the receiving node. Next, this new sum is then sent out in another round of 

message exchange. The master node, node 0, then performs the final operation, be it an 

addition or division. 

In global reduction routines, not every node communicates directly with every other 

node. Accumulated totals are received a t  each node, processed and the new accumulated 

value is distributed in the next message passing round. Only logz(P), where P is the number 

of nodes, rounds of message exchanges are required to complete the operation. By handling 

the communications in parallel, between pairs of nodes, fewer rounds of message passing 

are needed. This parallelism reduces the effective number of messages, thus enhancing the 

performance. Using the global summing routine to count the number of cells in the cellular 

space, for instance, makes the message passing more efficient, more readable, and minimizes 
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the communication to computation ratio. 

MPI defines a set of collective communication operations known as reduction operations. 

In a global reduction operation, all the processes contribute data that are combined using 

a binary operation. Some of these binary operations include sum, max, and logical AND, 

etc. The MPIREDUCEO function performs such global reduction operations in MPI. The 

MPI-Op argument in the MPIREDUCEO function call allows the user to specify the type of 

operation to be performed. Some examples of MPI-Op operators are MPI-SUM, MPI-MAX, and 

MPILAND. When multiple processors require the final result, the MPIALLREDUCEO function 

can be used to return the final value to all nodes. 

5.3 Flowchart of a Node Program 

Figures 5.2 through 5.11 depict the flowchart of the parallel algorithm. The same copy of 

the parallel program runs on every node of the cluster, as per the SPMD (Single Program 

Multiple Data) programming model. We also assume the cellular space to have a fixed 

boundary. 

5.3.1 Main Module 

The main module is shown in Figures 5.2, 5.3, 5.4, 5.5, and 5.6. 

5.3.2 Division Routine 

The division routine is depicted in Figure 5.7 

5.3.3 Motion and Direction Change Routines 

The motion and direction change routines are illustrated in Figures 5.8, 5.9, and 5.10. 

5.3.4 Collision Resolution Routine 

The collision resolution routine is illustrated in Figure 5.11. 



CHAPTER 5. PARALLEL ALGORITHM 

/ Map and identify 

1 boundary sites with 

Randomly order 
the sites 

1 Include received 
boundary sites into local 

Figure 5.2: Flowchart illustrating the main module of the parallel algorithm (part 1 of 5). 
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Figure 5.3: Flowchart illustrating the main module of the parallel algorithm (part 2 of 5). 
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Figure 5.4: Flowchart illustrating the main module of the parallel algorithm (part 3 of 5). 
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Figure 5.5: Flowchart illustrating the main module of the parallel algorithm (part 4 of 5). 
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Figure 5.6: Flowchart illustrating the main module of the parallel algorithm (part 5 of 5). 
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Figure 5.7: Flowchart illustrating the Division Routine of the parallel algorithm. 
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Figure 5.8: Flowchart illustrating the Motion Routine of the parallel algorithm (part 1 of 

2). 
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Figure 5.9: Flowchart illustrating the Motion Routine of the parallel algorithm (part 2 of 

2). 



CHAPTER 5. PARALLEL ALGORITHM 

available 1 No Free 

Randomly select one of 9 the free sites based on 1: 
1 the state-transition probabilities ( 

1 ' .  

Mark the chosen site 

sites 

1. Cell will not change direction 

2. Assign a new persistence 

Figure 5.10: Flowchart illustrating the cell Direction Change Routine of the parallel algo- 
rithm. 
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Figure 5.11: Flowchart illustrating the Collision Resolution Routine of the parallel algo- 
rithm. 
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5.4 Load Balancing 

Load balancing can be done statically or dynamically. Static load balancing is done at the 

start of the simulation. Each node is responsible for a fixed part of the problem domain. 

The advantage of the static method is that the entire overhead of the load-balancing process 

is incurred a t  compile time, resulting in higher efficiency. Dynamic load balancing allows 

for the adaptation to application requirements during run time. However, such strategies 

incur a run-time overhead due to load information transfer among processors, the decision 

making process for the selection of processes and processors, and communication delays due 

to task migration. 

We chose static load balancing. The choice is based on the fact that the behaviour of cells 

is random. The computational load fluctuations within a subdomain tend to average out, 

thus maintaining a load-balanced computation. The processing of an occupied site is kept 

local because it depends only on the state of its neighbourhood index. Our parallel algorithm 

preserves the locality property of the algorithm, which guarantees that all neighbours of a 

cell in the cellular space are stored either on the same processor, or on a processor that is 

physically an immediate neighbour to it. 

5.5 Parallelization of Random Number Generation 

Our choice to use the Lehmer generator for random numbers was based not only on the 

quality of the generated random numbers but also on its amenability to be parallelized in 

such a way to ensure the reproducibility of simulation runs and assume an adequate degree 

of independence of the parallel streams of random numbers. 

The generator is defined as: 

x,+1 = ax, mod m ,  (5.1) 

where x, is the nth member of the sequence of random numbers before normalization, m is 

a large prime number, and a is an integer ranging from 2 and m - 1. Given Equation (5.1), 

we can obtain the (n  + k)th member of the sequence in terms of the nth: 

x,+k = Ax, mod m ,  (5.2) 

where 
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Assume that we have access to a parallel machine consisting of P processors connected 

by some communication network. The idea is then to have each processor compute random 

numbers using Equation (5.2) with k = P. Since the value of P is fixed for a given run and 

easily obtainable, the value of A can be computed once and stored. We give the processors 

a staggered start to prevent their respective sequences from overlapping. Let y l  denote the 

seed of the sequential algorithm, chosen as described before. Sequentially and before the 

normalization step, the following sequence is obtained: 

Y1 = Y1 

y2 = a y l  mod m 

y3 = ay2 mod m 

yn = ayn-1 mod m 

We set the seeds in the processors of the parallel machine in the following way, where a 

subscript denotes the position in the random number sequence and a superscript denotes a 

processing node, 

The staggered start is thus defined. Each processor then uses Equation (5.2) to calculate 

the next member of its sequence where k is now replaced with P. Consequently, we have 

and 
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and so on [17]. We illustrate the above method in Figure 5.12, for P = 4 processors. We 

observe from the figure how the start of the processors is staggered and how the nodes jump 

ahead one another in computing the next random number. Hence the name leaping method 

is used. A nearly exact correspondence is seen between the single sequence obtained on a 

serial machine and the interleaved one on P processors. 

The new multiplier is chosen so as to produce large leaps or hops of P through the 

sequence of random numbers. Computing the multiplier efficiently is made easier thanks to 

the associativity of the modulo operation with respect to multiplication. The seeds of the 

P processors can be rewritten as 

x(4  - y .  - ai-l 
1 - - yl mod m = (ai-' mod m)yl mod m 

x ( p )  = 
1 Y P  = aP-l yi mod m = (aP-' mod m ) y l  mod m 

Knowing the initial seed of the sequential run, y l ,  as well as the values of a, m, and i 

for 1 5 i 5 P - 1 allows us to directly compute the above seeds for the parallel run. The 

latter values of i correspond to processor identification numbers and are easily obtainable 

via local library functions. Next, each processor i; 1 5 i < P, computes its own sequence 

of j random numbers using the following formulae which take advantage of Equation ( 5 . 2 ) ,  

with k = P, 

(4 - P x2 - Y [ ~ + P ]  = Ayi mod m = a y; mod m = 

( a P  mod m ) ~ ,  mod m = ( a P  mod m ) x  j') mod m, 
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(4 (aP mod r n ) ~ [ ~ + ~ ]  mod nl = (aP  mod m)z2 mod m, 

z(z) - P 
I - Y[i+(j-1)P] = Y[(i+(j-2)P)+P] = a Y[i+(j-2)P] rn = 

( a P  mod m ) y l i + ( j - 2 ) p j  mod m = (aP  mod m)s(') mod nl. 
( j -1)  

Thus, we adopt a single generator, a copy of which resides in the local memory associated 

to each processing node. The parallel generation of random numbers is interleaved in such 

a way that is reproducible and to avoid memory conflicts. I t  is based on the number of 

available processors. Choosing a single generator gives us also the flexibility to select its 

parameters and to use knowledge gained thus far in determining and understanding its 

statistical properties. 

Serial computer sequence Four-processor parallel computer sequence 

Figure 5.12: A comparison of sequential and parallel random number generation using the 
leaping method for P = 4 processors. 
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5.6 The Beowulf Cluster 

The computing platform used to implement the model, sequentially and in parallel, is the 

Beowulf cluster, Nebula. It  is located in the InfoNet Media Centre a t  Simon Fraser University 

Surrey. The cluster consists of 128 interconnected nodes using Gigabit Ethernet. Each node 

uses an Intel P4  3.0-GHz processor with 1 GB of RAM. These nodes run the Gentoo Linux 

operating system with a GCC compiler version 3.4.4 and a LAM-MPI version 7.1.1. 

5.7 Message Passing Interface 

The Message Passing Interface (MPI) was selected as the parallel programming specifica- 

tion to implement the parallel algorithm. As an established standard for distributed-memory 

parallel machines, MPI is a versatile Application Programming Interface (API) that allows 

for efficient message passing between interconnected nodes [63]. It is based on the Single 

Program Multiple Data (SPMD) paradigm, where a single program is employed to process 

multiple pieces of data. MPI provides facilities for interprocessor communication, synchro- 

nization, virtual topologies, global reduction operations, timing, and many others 1511. 

5.8 Chapter Summary 

In this chapter, we discussed the steps required for the parallelization of the three-dimensional 

model on a cluster using the message-passing programming model via MPI. We also pre- 

sented a sample flowchart for a node program and elaborated on the parallelization of the 

used random number generator. Lastly, we introduced the computing platform and briefly 

reviewed the MPI programming specification. 



Chapter 6 

Simulation Results 

6.1 Introduction 

Various parameters in the model permit a detailed study of the population dynamics of 

migrating and proliferating mammalian cells of different types. The flexibility of the model 

allows us to explore the influence of several system parameters and different cell population 

characteristics on the tissue growth rate and other aspects of cell behaviour such as the 

average cell speed and average collisions. The primary parameters of our simulations are 

the following: 

1. Initial volume coverage. 

2. Cell motility. 

3. Seeding Distribution. 

4. The number of cell populations and their population characteristics 

In this thesis, we report results obtained in the case of two cell populations only. UTe 

next present the simulation parameters used in our experiments. 

6.2 Simulation Parameters 

Size of the Cellular Array: Both the serial and parallel simulations were carried 

out on three-dimensional computational grids containing N 3  sites, where N was varied 
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from 150 to 330. This value is dictated by the memory capacity of a node. The 

maximum value of N that we can use also depends on the number of processors. Each 

occupied computational site is assumed to represent a living mammalian cell of size 

1 0 p m  in each dimension. 

Number of Processors: Due to limitations of the memory capcity of a single node, 

we restrict the number of processors P to vary from 2 to 25. Using larger values of P 

allows us to simulate tissue growth on larger cellular array sizes. However, this makes 

the comparison of performance results between the sequential and parallel algorithms 

unfeasible. 

Confluence: Confluence is attained at a value of 1.0 indicating 100% volume coverage. 

Seeding Topologies and Initial Volume Coverage: Two seeding topologies are 

examined in the simulations, namely, a uniform topology and a "wound" seeding 

topology. In the former, the initial volume coverage is varied from 0.1% to 10%. In 

the latter, all computational sites outside of the denuded wound area are seeded with 

cells. 

Seeding Distributions: The seeding distributions examined include a mixed dis- 

tribution and a segmented distribution. In the former, the different cell types are 

uniformly distributed in the cellular space. In the latter, each cell type is seeded in a 

separate area of the cellular space. 

Diameter and Height: These only apply to the "wound" seeding topology. The 

diameter and height of the cylindrical wound take values from 1 to N. 

Cell Division Time Distribution: Two cell types are simulated and each type has 

a different cell division time distribution. Each division time distribution is associated 

with a given cell population as follows: 

- For Cell Population 1 - 64% of the living cells have division times between 

12 and 18 hours, 32% of the living cells have division times between 18 and 24 

hours, and 4% of the living cells have division times between 24 and 30 hours. 

- For Cell Population 2 - 4% of the living cells have division times between 12 

and 18 hours, 32% of the living cells have division times between 18 and 24 hours, 

and 64% of the living cells have division times between 24 and 30 hours. 
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The cell division time distributions for the two populations of cells are summarized in 

the Table 6.1. 

Table 6.1: Cell Division Time Distributions for the Two Cell Populations. 

Time Step: The value for each time step is varied based on the speed of cell loco- 

motion. 

Average Waiting Times: These define the average number of time steps that a 

migrating cell can spend in each of the six directions and the two stationary states. 

0 Growth Probabilities: They indicate the probability that a cell will divide and the 

daughter cell will occupy the empty computational site if it is the only free site in the 

neighbourhood. 

0 State-Tkansition Probabilities: They denote the likelihood of a cell in a directional 

state j will enter state k (k, j = 0, 1, 2, ... 7). When a cell's persistence counter reaches 

zero, the state-transition probabilities are used to determine the next direction of 

motion. 

Cell Heterogeneity: We define the heterogeneity measure, H ,  as the ratio of the 

initially seeded number of cells from population 1 to that from population 2. The 

ratio H is given by: 

initial number of cells from population 1 
H =  

initial number of cells from population 2 '  

That is, when H = 9, there are 9 cells from population 1 for every cell from population 

2 in the cell seeding density. In our simulations, cells of population I are the faster 

moving cells, while the cells of population 2 are the slower moving cells. 
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6.2.1 Cell Population Dynamics 

Starting with a total number of seed cells equal to No, the cellular automata rules described 

in Chapter 3 transform the cellular array to  simulate the dynamic process of tissue growth. 

At some time t  after the start of the simulation, Nc(t)  sites of the cellular automaton are 

occupied by cells. A measure to indicate the volume coverage a t  time t  is the cell volume 

fraction k ( t )  defined below: 

I i=l 

where Nt is the size of the cellular space (= N, x N, x N,), Nci ( t )  is the number of occupied 

computational sites by cell type i  at  time t ,  Nci(0) is the number of seed cells of type 

i ,  and n is the number of cell types (n > 1). For the uniform seeding, the cell volume 

fraction inidcates the fraction of cells occuping the cellular space and in the wound seeding, 

it indicates the fraction of cells occupying the wound area. 

The overall tissue growth rate is the increase in volume coverage with respect to time. 

To compute this measure, we use the following two formulae: 

k ( t )  = ( 

( C [Nci( t )  - Nc,(t - At)]  

C NCi ( t )  
Nc ( t )  - - i=l , for a uniform seeding topology 

Nt n Nt 

1 INCi ( t )  - NCi (0)I 
Nc ( t )  - NO - i=1 - 

n , for a wound seeding topology 
Nt - No 

Nt - C NCi (0)  

for a uniform topology and a wound seeding topology, respectively. Here, k( t )  is the cell 

volume fraction a t  time t  as given above and At is the time step in days. In the uniform 

seeding topology, the tissue growth rate applies to the entire cellular space; while in the 

wound seeding topology, it appiles to the wound area only. 
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The simulation continues until all sites are occupied by cells, that is until k(t) equals 

one. The movement of cells will slow down due to breaks in the persistent random walks, 

cell collisions, and cell aggregations. Thus only a fraction of the cells Nc(t) will move in the 

time interval [t, t + At] and the effective speed of migration, S,, in uniform seedings can be 

calculated as: 

where Nm(t) refers to the number of cells that were moving in the time interval [t, t + At] 

and S is the cell "swimming" speed. For wound seeding runs, we need to count the number 

of migrating cells, Nm,,(t), located inside the cylindrical wound. The effective speed of 

migration, S,,, (t),  is then obtained via: 

where N,,,(t) is the number of occupied computational sites in the wound area at  time t. 

Below, we present the simulation results from both the serial and parallel implementa- 

tions of the model. These results may have significant implications for the design of the 

laboratory experiments aimed at  studying the roles of the previously mentioned parameters 

on the rates of tissue growth. 

6.3 Serial and Parallel Results 

The simulations for the sequential and parallel implementations were obtained using a 200 x 

200 x 200 cellular array, a 99.99% confluence parameter, and average waiting times of 2 hours 

for the six directional states and 1 hour for the two stationary states, respectively. In the 

wound seeding topology, the empty cylinder has a diameter of 100 and a height equal to the 

height of the cellular array of 200. Unless specified otherwise, the migration speeds of cells 

in populations 1 and 2 are equal to 10 pmlhr  and 1 pmlhr ,  respectively. In the parallel 

simulations, the results were obtained using the slab decomposition technique for both the 

uniform and wound seeding topologies. Eight processors of the cluster were utilized in this 

case. This means that each node processed a local cellular array of size 200 x 200 x 25. 

All remaining parameters were kept the same as for the serial simulations. We note that 

all the parallel results are similar to the serial ones and hence the same discussion applies. 
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Our objective in this work is not to evaluate the accuracy of the parallel results, but to 

obtain such results that behave macroscopically the same way as the sequential ones. As 

the parallel results will show shortly, we believe that we have achieved this goal rather 

consistently. 

6.3.1 Uniform Seeding Topology 

Segmented Distribution 

Effects of varying the ratio H 

Figure 6.1 shows the cell volume fraction versus time for different values of the ratio H. 

This ratio indicates a measure of heterogeneity in the initial cell distribution. The volume 

coverage increases with time until it reaches confluence. In these simulation runs, H is 

equal to 1, 3, 5, 7 and 9 while the total initial seeding density is maintained at  0.5%. For 

instance, with H = 9 the faster moving population of cells initially are seeded in 90% of 

the cellular space while the slower moving population are seeded in the remaining 10%. We 

observe that as H increases, the time taken to reach confluence decreases. This is because 

for larger values of H ,  the population of faster moving cells dominates the proliferation. 

This is clearly depicted in Figure 6.2 and Figure 6.3 where a higher tissue growth rate is 

observed as H is increased. Faster moving cells spread out in the cellular space preventing 

the formation of cell colonies; thus allowing for confluence to be reached sooner. 

Figure 6.4 and Figure 6.5 show the average number of collisions per hour versus time 

for cell population 1 and cell population 2 for various values of H ,  respectively. For cell 

population 1, as H is increased the average number of cell collisions increases and reaches 

a higher peak value due to an increase in the number of fast cells in its segment of the 

cellular space, which leads to more cell-to-cell interactions. Because cells in population 2 

have a lower speed of 1 pmlhr, they tend to form more localized clusters. When combined 

with the fact that an increase in the ratio H also reduces the size of the segment for this 

population (and the number of slow cells), this results in fewer and fewer collisions as H is 

increased. The latter results are depicted in Figure 6.5. 
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Uniform Topology, Segmented Distribution, Seeding Density = 0.5% 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Segmented Distribution, Seeding Density = 0.5% 

0 2 4 6 8 10 12 

Time, Days 

(b) Parallel Results 

Figure 6.1: The effects of varying the ratio H on the cell volume fraction. 



CHAPTER 6. SIMULATION RESULTS 

Uniform Topology, Segmented Distribution, Seeding Density - 0.5% 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Segmented Distribution, Seeding Density = 0.5% 

0 2 4 6 8 10 12 

Time, Days 

(b) Parallel Results 

Figure 6.2: The overall tissue growth rate as the ratio H is varied from 1-5. 
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(a) Sequential Results 

Number of  Processors P = 8 
Uniform Topology, Segmented Distribution, Seeding Density = 0.5% 
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(b) Parallel Results 

Figure 6.3: The overall tissue growth rate as the ratio H is varied from 7-9. 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Segmented Distribution, Seeding Density = 0.5% 
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(b) Parallel Results 

Figure 6.4: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 1. 
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(b) Parallel Results 

Figure 6.5: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 2. 
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Cell distribution profiles at different time steps 

In order to observe the growth of both cell populations in the uniform segmented distri- 

bution, we view their profiles on an ( a ,  y)  plane at different time steps ranging from 33% 

of confluence to 99% of confluence as a function of the third dimension (z-axis). A ratio 

H of 1 and an initial seeding density of 0.5% are utilized as inputs. We observe in Figure 

6.6 that initially (at t = O), the two populations are located in their respective areas of 

the cellular space: the faster moving cells of population 1 in the lower half and the slower 

moving cells of population 2 in the upper half of the cellular array. As the cells proliferate, 

both profiles change over time. We observe that the faster cells start diffusing into the area 

initially occupied by the slower cells whereas the slower cells tend to mostly remain in their 

area. As confluence is reached, the faster cells completely cover the lower half of the cellular 

space and also penetrate into the upper half where the slower cells reside. For readability 

purposes, the presented cell distribution profiles were obtained for a 100 x 100 x 100 cellular 

array. 
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Figure 6.6: Profiles of cell populations 1 and 2 at different confluence values for H = 1 and 
a seeding density of 0.5%. Cells in populations 1 and 2 move at speeds of 10 pm/hr and 1 
pm/hr, respectively. A dotted vertical line is included to highlight the diffusion of each cell 
type from one half of the cellular space t o  the other. 
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Mixed Distribution 

Effects of varying the ratio H 

The effects of varying the ratio H on the cell volume fraction and the tissue growth rate 

in a mixed distribution were also studied and are shown in Figure 6.7 and Figure 6.8, 

respectively. In these simulations, the total seeding density is 0.5%. We observed similar 

results to the ones obtained when using a segmented distribution, that is increasing H 

yields both a decrease in the time to reach complete volume coverage and an increase in the 

overall tissue growth rate. Faster moving cells spread out in the cellular space preventing 

the formation of local clusters and hence have faster proliferation as H increases. 

Figure 6.9 and Figure 6.10 show the average number of collisions for populations 1 and 

2, respectively, for different values of H given a fixed cell seeding density of 0.5%. For 

cells in population 1, during the first two days and as H is increased, the average number of 

collisions per hour increases due to an increase in cell-cell interactions between fast and slow 

moving cells early in the proliferation process. Figure 6.11 and Figure 6.12 clearly illustrate 

this phenomenon. These two figures depict not only the total average number of collisions 

but also the average number of collisions between cells of the same type (or homotypic) as 

well as between cells of different types (or heterotypic) for H = 1 and H = 9, respectively. 

After the first two days, this component of the average number of collisions decreases rapidly 

as H is increased. Given that the average number of collisions between fast cells of the same 

type increases with time until it reaches a maximum for all values of H, the combined effect 

of these two observations leads to a reversal of behaviour. That is, the average number of 

collisions per hour decreases as H is increased after the first two days for cells in population 

1. For cells in population 2, the average number of collisions decreases as H is increased 

due to the decrease in the seeded number of slow cells. This results in a smaller number of 

cell clusters, which in turn impacts negatively the number of cell-cell interactions between 

slow cells. 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Mixed Distribution, Seeding Density = 0.5% 
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Time, Days 

(b) Parallel Results 

Figure 6.7: The effects of varying the ratio H on the cell volume fraction. 
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(b) Parallel Results 

Figure 6.8: The effects of varying the ratio H on the overall tissue growth rate. 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Mixed Distribution, Seeding Density = 0.5% 

Time, Days 

(b) Parallel Results 

Figure 6.9: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 1. 
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(a) Sequential Results 

Number of Processors P = 8 
Uniform Topology, Mixed Distribution, Seeding Density = 0.5% 
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Time, Days 

(b) Parallel Results 

Figure 6.10: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 2. 
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(a) Sequential Results 
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(b) Parallel Results 

Figure 6.11: The temporal evolution of the average number of collisions per hour for cell 
population 1 and its two components for H = 1. 
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(a) Sequential Results 
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(b) Parallel Results 

Figure 6.12: The temporal evolution of the average number of collisions per hour for cell 
population 1 and its two con~ponents for H = 9. 
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6.3.2 Comparison of Uniform Cell Seeding Distributions 

Figures 6.13 and 6.14 show comparisons between the cell volume fraction and tissue growth 

rates obtained by using the segmented and mixed uniform seeding distributions. Here, two 

different values of the ratio H were used, H = 1 and H = 9, while the total seeding density 

is 0.5%. In Figure 6.13, we observe that when H = 1 the mixed distribution takes less time 

to reach full volume coverage and yields a higher tissue growth rate. The mixed distribution 

yields a higher maximum value of the tissue growth rate than the segmented one (0.46 versus 

0.32). This may be attributed to the fact that contact inhibition has less of an effect in the 

mixed distribution where faster cells have more nearby empty spaces to move and divide 

into which in turn frees up sites for the slower-moving cells as well. Increasing H to 9 shows 

a stronger positive impact on the time to reach confluence and tissue growth rate in the case 

of the segmented distribution than the mixed one. The increased number of faster moving 

cells allows them to disperse in the cellular space and dominate the proliferation, resulting 

in similar overall tissue growth behavior for both distributions. In this case, the distinction 

between the two seeding distributions is less apparent. 
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Figure 6.13: Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. Here, the ratio H is equal to 1. 
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Figure 6.14: Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. Here, the ratio H is equal to 9. 
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6.3.3 Wound Seeding Topology 

Segmented Distribution 

Effects of varying the ratio H 

Figure 6.15 shows the effects of varying the ratio H on the cell volume fraction in a segmented 

wound-seeding distribution. In these simulations, cells in population 1 have a speed of 10 

pm/hr while cells in population 2 have a speed of 1 pm/hr. As expected, when the value 

of H is increased, the time to reach full volume coverage is decreased. The corresponding 

growth rate curves when H is varied from 1 to 9 are shown in Figure 6.16 and Figure 6.17. 

We observe that higher values of H yield higher growth rates due to the fact that faster 

moving cells spread out in the denuded wound area preventing the formation of local clusters 

and hence proliferate faster. 

Figure 6.18 and Figure 6.19 show the effects of varying the ratio H on the average number 

of collisions for populations 1 and 2, respectively. As time progresses, the average number 

of collisions increases initially and then decreases as cell colonies merge and confluence 

is reached. In Figure 6.18, as H decreases, there is a gradual decrease in the number of 

collisions. This is due in part to the fact that, for a lower value of H ,  the number of fast cells 

in population 1 proliferating into the empty cylinder is reduced. As time progresses, and 

due to their high speed, the cells proliferate into the cylinder and dominate the cell-to-cell 

interactions resulting in sustained collisions. In Figure 6.19, as H increases, the number of 

slow cells decreases, thus resulting in a smaller number of cell colonies being formed. This 

has a direct effect on reducing the average number of collisions for this cell population. 
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(b) Parallel Results 

Figure 6.15: The effects of varying the ratio H on the cell volume fraction. 
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(b) Parallel Results 

Figure 6.16: The overall tissue growth rate as the ratio H is varied from 1 to 5. 
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(b) Parallel Results 

Figure 6.17: The overall tissue growth rate as the ratio H is varied from 7 to 9. 
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Figure 6.18: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 1 . 
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(b) Cell Population 2 

Figure 6.19: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 2. 
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Cell population profiles at different time steps 

Figure 6.20 shows the cell population profiles of two simulation runs using a segmented 

wound seeding distribution and two different values of the ratio H (H = 1 and i, respec- 

tively). These profiles are exhibited as 2D cross sections of the wound area and at  different 

levels of wound coverage. We observe the following: 

0 At 33% of wound coverage, faster cells cover larger portions of the wound than slow 

cells as most of the growth appears in the lower partition of both seeding examples. 

There is also sporadic diffusion of fast cells into the upper partitions. 

0 At 66% of wound coverage, nearly most of the two lower partitions are covered while 

the upper portions remain mostly empty. In particular, when H = i, the lower 

partition is completely covered whereas the top segment is sparsely occupied by cells 

when H = 1. 

At 99% of wound coverage, the fast cells have penetrated to the top of the cellular 

space and have completely covered the denuded area at  the bottom. Slow cells appear 

to mostly proliferate toward the center of the wound in the form of radial waves causing 

a cone-shaped funnelling of the diffusion of fast cells into the upper area of the wound. 
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Figure 6.20: Cell population profiles shown 

total coverage 

as 2D cross sections of two simulation runs a t  
t = 0 and at  33% of wound coverage for H = 1 and H = k, respectively. For illustration 
purposes, we included a horizontal line to distinguish between the two cell populations (Part 
1 of 2). 
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Figure 6.21: Cell population profiles shown as 2D cross sections of two simulation runs 
at  66% and 99% of wound coverage for H = 1 and H = i, respectively. For illustration 
purposes, we included a horizontal line to distinguish between the two cell populations (Part 
2 of 2). 
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Mixed Distribution 

Effects of varying the ratio H 

Figure 6.22 shows the effects of varying the ratio H on the cell volume fraction in a mixed 

wound seeding distribution. In these simulations, cells in population 1 have a speed of 10 

p m l h r  while cells in population 2 have a speed of 1 pmlhr .  As the ratio H is increased, the 

time taken to reach confluence decreases. For values of H > 5, the relative impact of further 

increases becomes less discernible. This is also confirmed in Figure 6.23 and Figure 6.24 

where the temporal evolution of the overall tissue growth rate is depicted for different values 

of H. Figure 6.25 and Figure 6.26 display the average number of collisions per hour versus 

time for cell population 1 and 2, respectively. Increasing the ratio H reduces the number 

of slow moving cells around the periphery of the wound which decreases the number of cell 

collisions as a result of fewer cell colonies formed. Faster moving cells take advantage of this 

setting by passing the slower cells and invading most of the wound area unobstructed. 
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Figure 6.22: The effects of varying the ratio H on the cell volume fraction. 
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Figure 6.23: The overall tissue growth rate as the ratio H is varied from 1 to 5. 
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Figure 6.24: The overall tissue growth rate as the ratio H is varied from 7 to 9. 
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Figure 6.25: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 1. 
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Figure 6.26: The effects of varying the ratio H on the average number of collisions per hour 
for cell population 2. 
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6.3.4 Comparison of Wound Seeding Cell Distributions 

Figures 6.27 and 6.28 show comparisons between the cell volume fractions and the tissue 

growth rates obtained by using the segmented and mixed wound seeding distributions. Two 

different values of the ratio H were used, H = 1 and H = 9. On the other hand, the 

migration speeds of cells in population 1 and population 2 were kept constant at  10 pmlhr  

and 1 pmlhr ,  respectively. When H = 1, the mixed distribution yields a faster proliferation 

rate and a higher tissue growth rate. Increasing H further to a value of 9 produces a stronger 

positive impact on the proliferation and tissue growth rates for the segmented distribution 

than the mixed one. 
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Figure 6.27: Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. Here, the ratio H is equal to 1. 
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Figure 6.28: Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. Here, the ratio H is equal to 9. 
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6.4 Chapter Summary 

In this chapter, we presented our serial and parallel simulation results. These results were 

obtained by studying the effects of different seeding distributions, initial volume coverage, 

cell speeds, and cell heterogeneity on the proliferation and tissue growth rates of mammalian 

cells. In particular, we applied the slab decomposition technique for both the uniform and 

wound seeding topologies to obtain the parallel simulation results. The results from the 

parallel algorithm were found to be close to the results of the serial algorithm. 

For both uniform and wound healing topologies, our simulations showed that increasing 

the ratio H of fast to slow cells enhanced tissue growth rates. For lower values of H (H < 5), 

the mixed cell distribution for both seeding topologies provided better results than the 

segmented one. As this ratio of cell heterogeneity increased beyond H FZ 5, the segmented 

cell distribution benefited far more than the mixed one in terms of higher tissue growth 

rates and faster times to reach confluence. This conclusion has significant implications for 

the design of experiments that can test the efficacy of cell heterogeneity and cell seeding 

distributions designed to enhance the overall tissue growth rate. To achieve these goals, it 

is recommended that assays based on these factors be adopted. 



Chapter 7 

Performance Analysis 

We study the speedup and efficiency of our implementation of the slab decomposition tech- 

nique for different processor numbers and cellular array sizes. The performance results 

were obtained by running both the sequential and parallel implementations on the Nebula 

Beowulf Cluster. 

7.1 Measurement Conditions and Metrics 

The following testing conditions were observed on the Nebula Beowulf cluster in order to 

generate consistent timing results in our simulation experiments: 

0 Use the best available resources. While access to the Nebula Beowulf cluster is 

allowed 24 hours a day, particular care was taken to run our simulations when the load 

on the cluster is the smallest (most experiments were run between 2:00 am and 8:00 

am). The Portable Batch System (PBS) server handles the job management by allo- 

cating nodes to the various jobs, thereby freeing the user from processor management 

issues. 

0 Use the best complier options. We compiled our programs using 

mpic++ - 0 2  -march=pentium4 program.cpp - for the parallel program, 

and 

g++ - 0 2  -march=pentium4 program.cpp - for the sequential program. 
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The - 0 2  option provides the highest optimization level in the g++ complier without 

introducing errors into the application. The -march=pentium4 option instructs the 

compiler to generate Intel Pentium 4 processor-efficient code. Without it, the compiler 

would generate code with the generic PentiumPro instruction set, common to all i386 

family chips. 

Use high-level, portable C++ code. Except for the standard 110, timer libraries, 

and MPI, no other libraries or assembly code were used. We also did not rely on the 

system libraries to generate random numbers. Instead, we implemented our own ran- 

dom number generator, both sequentially and in parallel (see Chapter 4 and Chapter 

5, respectively). 

Measure both the execution and communication times. We measured the ex- 

ecution time of the sequential program using the clock0 function, which we monitor 

at  a resolution of one microsecond. For parallel programs, we measure both the CPU 

and communication times using the MPI function MPI-Wtime 0. Each program was 

executed at least four times (and at  most eight times), and the best time result was 

used in our analysis, because it corresponds to the simulation run experiencing the 

least interference from the operating system. 

We define below some performance metrics used in our work. The terminology is consis- 

tent with that provided in the parallel processing literature ([20] and [51]). For our program, 

we applied the following performance metrics: 

Definition 9.1 T h e  Sequential Execution T i m e ,  T ( 1 ) ,  i s  the fastest total execution t ime  ( in  

seconds) of the sequential program running o n  one node. 

Definition 9.2 The  Parallel Execution T i m e ,  T ( P ) ,  i s  the fastest total execution t ime ( in  

seconds) of a parallel program running o n  P nodes, including communication t ime .  

Definition 9.3 T h e  Speedup, S ,  and E f i c i ency ,  E, are defined by the ratios S = and 
T(1) - S E = - F ,  respectively. 

Definition 9.4 T h e  Total Communicat ion  T i m e ,  T,,,, (P ) ,  i s  the total t i m e  spent by a 

parallel program running o n  P nodes performing communication operations. 



CHAPTER 7. PERFORMANCE ANALYSIS 111 

There are three types of communication operations on the cluster: point-to-point com- 

munication, collective communication, and aggregated computation. In a point-to-point 

communication, only two nodes, the sender and the receiver, are involved. In a collective 

communication operation, tasks in a group send messages to one another, and the time is a 

function of both the message length and the number of nodes. In a broadcast operation, a 

single node sends an m-byte message to the remaining P - 1 nodes. Other examples include 

gather and scatter operations. In an aggregated computation, tasks in a group synchronize 

with one another or aggregate partial results. The time for such an operation is a function 

of the group size, but not of the message length, as the message length is fixed. For example, 

in a barrier operation, a group of tasks synchronize with one another, that is, they wait 

until all tasks execute their respective barrier operation. In a reduction operation, a group 

of tasks aggregate partial results, one from each task, into a final result. Examples include 

finding the maximum of P values and performing a parallel prefix or scan operation. 

7.2 Performance Results and Discussion 

The time complexity of our implementation of the sequential algorithm is of the order 

of o ( N ~ ) .  In addition, our implementation of the parallel algorithm based on the slab 

decomposition has the time complexity of the order of 0($).  Speedup and efficiency are 

two of the most commonly accepted performance measurements of an application running 

on a parallel computer system. The sequential execution time is obtained by running the 

serial algorithm on a single node of the cluster. 

We were limited by the available memory capacity per node on the cluster. For instance, 

the largest cellular array size for the sequential runs was 330 x 330 x 330. The following 

performance results were obtained for a uniform segmented distribution with an initial 

seeding density of 0.5%, a ratio H = 1, and cell migration speeds of 10 p m l h r  and 1 p m l h r  

for cell population 1 and cell population 2, respectively. We note that similar performance 

results were obtained by the other three types of cell seeding distributions. 

For each cellular array size, we vary the number of processors P from 2 to 25 and for 

each selected number of processors in this range, we vary the size of the cellular array 

such that N E (150,200,250,300,330). The execution time, speedup, efficiency, and the 

communication time for different cellular array sizes and numbers of processors are shown 

in Tables 7.1 to  7.4. Moreover, Figures 7.1 to 7.4 show a comparison of the values of 
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the speedup and efficiency for various cellular array sizes and numbers of processors. The 

performance results show that for a given number of processors and as the cellular array 

size increases, the speedup and efficiency values increase as well. This is due to the fact 

that as the size of the cellular array increases, the ratio of the execution time over the 

communication time of each node increases as clearly indicated by Table 7.2 and Figure 7.6. 

In addition, the performance results show that for a fixed cellular array size and as the 

number of processors increases, the speedup value increases while efficiency decreases. The 

increase in speedup is due to the fact that increasing the number of processors yields, for 

most cases, smaller execution times. On the other hand, the decrease in efficiency is due 

to the fact that increasing the number of processors increases the communication time for 

a given problem size (N) and, thus increases its related overhead. These two effects are 

depicted in Figure 7.5. This overhead may comprise idling, communication, and excess 

computation. It is interesting to note that for the cellular array of 150 x 150 x 150, the 

speedup reaches its maximum value of approximately 3.94 when P is in the range from 10 to 

20 processors and then starts to decrease for larger values of P as a consequence of Amdahl's 

law. Here, we observe that the communication time dominates the parallel execution time 

and accounts for 83% of it as shown in Table 7.2. As a result, the parallel execution time 

at P = 25 starts to increase and is noticeably greater than the parallel execution time at  

P = 20 as illustrated in Table 7.1. For N = 150, the parallel algorithm has a performance 

sweet spot defined by P E [lo, 201. 

Table 7.1: Execution times in seconds for various cellular array sizes and different numbers 
of processors. 

1 1 Cellular Number of Processors I I 
Array 1 1  2  1 4  1 8  1 1 0 1 2 0 [ 2 5  
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Table 7.2: Communication times in seconds (and percent communication) for various cellular 
array sizes and different numbers of processors. Percent communication is the percentage 
of the parallel execution time spent in communications. 

Table 7.3: Speedup values for various cellular array sizes and different numbers of processors. 

Cellular N u m b e r  of Processors  
Ar ray  1 1  2 1 4 1 8  1 1 0 ( 2 0 1 2 5  

U Cellular 
Array 

Table 7.4: Efficiency values for various cellular array sizes and different numbers of proces- 

Number of Processors 
2 4 8 10 20 25 1 

sors. 
Cellular 
Ar ray  

N u m b e r  of Processors  
1 1  2  1 4  1 8  ) l o 1 2 0 1 2 5  - 
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Number of Processors (P) 

Figure 7.1: Comparison of speedup curves for various cellular array sizes. Each curve plots 
the speedup versus the number of processors for a given cellular array size. 

160 180 200 220 240 260 280 300 320 340 

Size of Cellular Array (N) 

Figure 7.2: Comparison of speedup curves for various number of processors. Each curve 
plots the speedup versus the size of the cellular array for a fixed number of processors. 
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Number of Processors (P) 

Figure 7.3: Comparison of efficiency curves for various cellular array sizes. Each curve plots 
the efficiency versus the number of processors for a given cellular array size. 

160 180 200 220 240 260 280 300 320 340 

Size of Cellular Array (N) 

Figure 7.4: Comparison of efficiency curves for various number of processors. Each curve 
plots the efficiency versus the size of the cellular array for a fixed number of processors. 
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Figurc 7.5: Plot of parallel esrcutioil t,ime and total comnlunication time versus nunlbcr of 
proccssors (P) fbr a cellular array size of 200 x 200 x 200. 

P = 10 Processors 
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Figurc 7.G: Plot of parallel execution time and total comml~nication time versus cellular 
array size (N) for P = 10 proccssors. 
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The presented performance results in terms of speedup and efficiency are good especially 

for cellular array sizes of 200 x 200 x 200 and larger (up to N = 330) as well as for numbers 

of processors between 2 and 25. Given these results, we make the following observations: 

1. For a given cellular array size, as the number of processors is increased, we get a better 

speedup. By increasing the number of processors, each processor is required to process 

a smaller subdomain and the total execution time decreases resulting in an increased 

speedup. 

2. For a given number of processors, as the cellular array size increases, we get a better 

speedup. By increasing the cellular array size, each processor is required to process 

a larger subdomain. The ratio of execution time over the communication time is 

increased resulting in a higher speedup value. 

3. For a given number of processors, as the cellular array size increases, the efficiency 

increases. By increasing the cellular array size, there is an increased ratio of processing 

time to communication time. This leads to an increase in the time portion during 

which the processor is effectively employed, thus resulting in greater efficiency. 

4. For a given cellular array size, as the number of processors is increased, the efficiency 

decreases. By increasing the number of processors, the communication time is in- 

creased due to an increase in overhead introduced with the addition of processors. 

This results in a decrease in the time during which the processors are effectively em- 

ployed, thus yielding lower efficiency values. 

7.3 Chapter Summary 

We presented the speedup and efficiency results of our implementation of the slab decom- 

position method for different processor numbers and cellular array sizes. The obtained 

performance results were good especially for moderate and larger cellular array sizes. In 

particular, for a fixed number of nodes the slab decomposition scheme exhibited improved 

speedup and efficiency as we increased the size of the cellular array. 



Chapter 8 

Conclusion 

8.1 Contributions 

The main contribution of this research work is the extension of a previously developed 

three-dimensional model by Ben Youssef [3] and its parallel implementation on a distributed- 

memory Beowulf Cluster. The extended model incorporates multiple cell types and accounts 

for cell aggregation. The thesis presents the sequential and parallel results related to two 

populations of cells each with its own migratory and division characteristics. 

8.1.1 The Three-Dimensional Model 

The three-dimensional model uses a discrete approach based on cellular automata to study 

the tissue growth rates and population dynamics of migrating and proliferating mammalian 

cells. Cell migration is modelled using a discrete-time Markov chain approach. We have two 

populations of cells in the three-dimensional cellular space, each with its own division and 

motion characteristics. Both of these cell types have different division characteristics based 

on experimental data. The aggregation of cells of the same type was also accounted for. 

The algorithm was implemented sequentially and then parallelized using the slab de- 

composition method. We were able to achieve our objective to predict the time required to 

reach complete volume coverage when we know the properties of mammalian cell locomotion 

and division. The motion and division characteristics of the two populations of cells are 

varied at  the beginning of the simulation to study their effect on the tissue growth rate and 

population dynamics of cells. 
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The research will help speed up progress in the area of tissue engineering where the devel- 

opment of bio-artificial tissues involves extensive and time-consuming experimentation. It 

also extends the existing features of the model to incorporate features that more realistically 

simulate the process of cell migration and proliferation. 

8.2 Future Work 

The growth of three-dimensional tissues with specific cellular structure and function is a 

complicated process affected by many physical and biological parameters. The morphology 

(pore structure, roughness, connectivity of pores, etc.) and surface composition of the 

scaffolds affect cell migration and proliferation. At the same time, cell growth and function 

is affected by external stimuli like growth factors or cytokines and by the availability of 

specific nutrients. The present research can be extended to more complex models that take 

into account cell death and nutrient limitations. Other work will involve modifying the 

tissue growth model to simulate tumour growth and integrating with the current model and 

succeeding ones a corresponding visualization solution. 

8.2.1 CellDeath 

Previous models, including the one presented in this thesis, accounted for the motion and 

proliferation of cells but did not take into consideration the death of cells, also known as 

apoptosis (one of the main types of programmed cell death). By taking into account the 

death of cells, we can more realistically model the proliferation of cells, tissue growth, and the 

time to reach confluence. The death of cells may be incorporated into the model as follows: 

cells die after a certain number of divisions dependent on an initial generation number and 

a death counter both of which can be randomly selected from normal distribution data. 

When a cell dies it stays in its position in the cellular space for a fixed amount of time, 

called decomposition time, after which the cell decomposes and the site it occupies is free 

for a neighbouring cell to migrate to. 

8.2.2 Nutrient Limitations 

Due to the diffusional limitations of nutrients in a scaffold, the maximum thickness of tissues 

grown in non-vascularized scaffolds does not exceed 0.1 to 0.2 millimetres. Our ability to 
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grow large tissues or organs will depend on whether we can increase nutrient availability in 

the interior of the scaffold either by flowing media through it or by pre-vascularizing the 

scaffold. 

Simulations can be used to assess the effect of these two approaches. Using known 

mass transfer correlations, we can solve the problem of diffusing nutrients with and without 

fluid flow through the scaffold. The cell growth models will then be adjusted to account for 

nutrient limitations, i.e.? the models will assume that cells migrate and proliferate only where 

the nutrient concentration is above a certain threshold. Since the cells consume nutrients, 

there will be a maximum cell density that can be supported for each nutrient concentration 

level. 

We will also consider the case where blood vessels start forming a t  the periphery of an 

implanted scaffold and move inside, bringing more nutrients to the interior of the scaffold. 

Thus, the nutrient concentration profiles become much more complicated and can only be 

treated numerically. The cellular automata approach is ideally suited to treat such problems 

with complicated geometry. 

8.2.3 Tumor Growth 

Most cancers derive from a single abnormal cell that has undergone a change in its DNA 

(DeoxyriboNucleic Acid) sequence via mutation [I]. If the mutation enables cells to prolif- 

erate in defiance of normal restraints and invade and colonize territories normally reserved 

for other cells, a cancer results. Depending on whether or not they can invade the sur- 

rounding tissue, tumors are defined as invasive (malignant) or noninvasive (benign). The 

progression of invasive cancer is often categorized as Stage I,  11, 111, or IV [ 2 ] .  Stages I and 

I1 are considered the early stages in the sense that the tumor has not yet spread to distant 

parts of the body through the blood stream or lymphatic vessels to form secondary tumors 

(metastasis). Most mathematical modeling of tumor growth focuses on this stage because 

that is when the tumor is still well defined and treatments are likely to be most effective. 

In order to invade the surrounding tissue, cancer cells must have competitive phenotypes 

enabling them to outgrow, or suppress the growth of, normal cells. In addition, it has been 

also presented that cancer cells preferentially convert nutrients (such as glucose) to lactic 

acid. This phenotype results in a several fold increase in glucose uptake and lactic acid 

production in tumor cells versus normal cells. In fact, the increase is so marked it is now 

routinely used to diagnose many types of tumors and to monitor early tumor response to 
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therapies [27]. As normal cells die and decompose, tumor cells can proliferate and take 

over their position in the tissue (tumor invasion). This mechanism of acid-mediated tumor 

growth (AMTG) has been supported by many recent reports that high lactate levels are 

directly correlated with the likelihood of metastases, tumor recurrence and restricted patient 

survival 1601. 

We believe that a quantitative understanding of AhlTG can help scientists better un- 

derstand the effects of the aforementioned key factors on tumor growth and, thereby, design 

more effective cancer treatment medicines/strategies. The complexity of the process ne- 

cessitates a systematic approach similar to the one we undertook to model tissue growth. 

The help of predictive computational models is even more important here because clinical 

trials in this area usually involve human subjects and are thus much more expensive and 

time-consuming than in vitro tissue growth. 

8.2.4 Visualization 

An important future task includes extending the real-time visualization of tissue growth to 

support multiple types of cells. As we delve into the visualization of multi-cellular tissues, 

a new set of challenges is presented to the visualization process. The use of direct, three- 

dimensional, volume rendering algorithms becomes necessary in order to be able to show 

the internal structures as well as the global features of the newly grown tissue 181. Moreover, 

there is currently a large number of tunable parameters for the simulation model. Therefore, 

the use of high-level parameter abstraction to reduce the size of the parameter space would 

enhance the usability of the visualization tools planned for development. Other supporting 

features for the design space exploration that can be added include undo, redo, and fast 

tissue growth preview capabilities. 

8.2.5 Other Parallel Architectures 

In Chapter 7, we showed that, in the case of our parallel model, the communication time is a 

significant bottleneck in the performance of the parallel algorithm. Using a shared-memory 

architecture may yield faster overall execution times. In a shared-memory multiprocessor, 

the architecture is characterized by a single global memory that is shared by multiple nodes. 

This is enabled by a fast interconnection network. For a multi-threaded application, each 

thread is executed on a dedicated processor. Since the threads are running asynchronously, 



CHAPTER 8. CONCLUSION 

care must be taken to synchronize the processors a t  each time step. Moreover, mutual 

exclusion may be required to access critical regions of memory where data are shared. 

Shared-memory systems are complicated by the fact that multiple processors may attempt 

to access the same memory address. To maintain correctness, a node will be required to mark 

the cell that is being processed along with the six neighbouring sites. Once processed, the cell 

and its six neighbouring sites can be released and can be accessed by other processors. This 

will prevent multiple processors from simultaneously writing to the same computational 

site. There are two observations when using a shared-memory architecture. First, the 

communication overhead is anticipated to be low. Second, the communication performance 

may only be limited by the bandwidth of the interconneciton network. 



Appendix A 

Additional Simulation Results 

In the following sections of this appendix, we present additional serial and parallel simulation 

results. In these simulations, we compute the tissue growth rates for various initial seeding 

densities and cell population 1 speeds for the mixed uniform cell distribution. Next, the 

cell speeds of cell population 1 and cell population 2 are varied to compare their effects for 

both the segmented and mixed uniform distributions. In the last set of results, the effects of 

varying cell population 1 speeds are observed in the wound-seeding topology using a mixed 

distribution. As previously noted, all the parallel results are similar to the serial ones and 

therefore the same discussion applies. 

A. 1 Uniform Seeding Topology 

A.l .1  Mixed Distribution 

A.1.2 Effects of varying seeding density 

Figure A . l  and Figure A.2 show the effects of varying the seeding density on the cell volume 

fraction and the tissue growth rate, respectively. Here, cells from both populations are 

seeded in a mixed distribution using a uniform topology with a ratio H equal to 1. The 

total seeding density is varied from 0.1% to 10%. That is, the initial seeding density of both 

cell populations has values that varied from 0.05% to 5%. 

As expected, the time required to reach confluence decreases with increasing the initial 

seeding density. For very low initial volume coverage, the curves have a very long induction 

period because of slow growth of isolated colonies dominating the process. As the initial 
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volume coverage increases, this induction period disappears. For high seeding densities, the 

volume coverage and the tissue growth rate increase rapidly as the cells reach confluence 

within a few divisions and before isolated colonies can form. 

For higher seeding densities, the impact of cell division can be readily observed by the 

presence of multiple peaks on the corresponding growth rate curve. Figure A.3 illustrates 

this phenomenon in the case of a seeding density of 10%. According to the division time 

distributions of population 1 and population 2, 64% and 4% of cells, respectively, will divide 

between 12-18 hours. This is depicted by the first plateau on the three shown curves. Ad- 

ditional plateaus are observed at  later times reflecting the succeeding waves of cell divisions 

occurring during the proliferation process. The subsequent waves of cell divisions include 

not only seeding cells giving birth to new cells but also daughter cells going through their 

own mitotic cycles. 

Figure A.4 and Figure A.5 show the effects of varying the seeding density on the average 

number of collisio~ls for the two populations of cells. There is a small number of collisions at 

the beginning of the simulations due to the fact that cells are initially seeded in a random 

and sparse fashion. Then, as the volume coverage increases, the average number of collisions 

also increases due to an increase in cell-cell interactions. Shortly after reaching 75-80% of 

confluence, the average number of collisions starts to decrease rapidly due to the merging of 

small cell colonies. As the initial seeding density increases, the average number of collisions 

for both cell populations increases while the peak value and the drop to zero occur sooner. 
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Figure A. l :  The effects of varying the total cell seeding density on the cell volume fraction. 
The ratio H is held constant at 1. 
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Figure A.2: The effects of varying the total cell seeding density on the overall tissue growth 
rate. The ratio H is held constant at 1. 
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(a) Sequential Results 
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(b) Parallel Results 

Figure A.3: The overall tissue growth rate is shown as the sum of the growth rate of cell 
population 1 and cell population 2 in the case of a seeding density of 10%. 
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(b) Parallel Results 

Figure A.4: The effects of varying cell seeding density on the average number of collisions 
per hour for cell population 1 for varying seeding densities. 
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Figure A.5: The effects of varying cell seeding density on the average number of collisions 
per hour for cell population 2 for varying seeding densities. 
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A.1.3 Effects of varying migration speed of cell population 1 

The effects of varying the speed of cells on the cell volume fraction and the tissue growth 

rate in a mixed seeding distribution are shown in Figure A.6, Figure A.7 and Figure A.8. 

In these simulations, the cell speed of population 1 is assigned values of 1, 2, 5, 10, and 50 

pmlhr while the migration speed of cells in population 2 is fixed at 1 pmlhr. In addition, 

the total seeding density is fixed at  0.5% and the ratio H is set to 1. We observe that as 

the motility of cells in population 1 increases, the cell volume fraction and the overall tissue 

growth rate increases while confluence is attained faster. Higher motility of cells decreases 

the negative impact of contact inhibition on the proliferation rate because it eliminates the 

formation of cell colonies. 

Figure A.9 and Figure A.10 show the temporal evolution of cell population 1 effective 

speed of locomotion. The speed of motion remains high initially when cell densities are low. 

An increase in cell density leads to an increase in the number of cell-cell interactions which 

in turn drives the effective speed of migration to lower levels. 
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(b) Parallel Results 

Figure A.6: The effects of varying the cell speed of population 1 on the cell volume fraction. 
Cells in population 2 move at a fixed speed of 1 pmlhr . 
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Uniform Topology, Mixed Distribution, Seeding Density = 0.5% 
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Figure A.7: The effects of cell motility on the overall tissue growth rate for cell speeds 
ranging from 1 to 5 pmlhr. 
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(b) Parallel Results 

Figure A.8: The effects of cell motility on the overall tissue growth rate for cell speeds 
ranging from 10 to 50 pmlhr. 
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(b) Parallel Results 

Pigure A.9: The effects of population 1 cell motility on its effective migration speed, S,, for 
ell speeds ranging from 1 to 5 prnlhr. 
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Time, Days 

(b) Parallel Results 

Figure A.lO: The effects of population 1 cell motility on its effective migration speed, S,, 
for cell speeds ranging from 10 to 50 pmlhr. 
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A.2 Comparison of Uniform Cell Seeding Distributions 

Figures A . l l  (a) ,  A.11 (b), A.12 (a) and A.12 (b) show comparisons between the cell volume 

fractions and the tissue growth rates obtained by using the segmented and mixed uniform 

distributions. Here, H = 1 and a seeding density of 0.5% are used. In Figure A.11, 

the cells from population 1 and population 2 have a migration speed of 10 pm/hr and 1 

pmlhr,  respectively. While in Figure A.12 (a), the difference in the migration speed of 

the two cell populations is increased such that the cells from population 1 and population 

2 have a migration speed of 50 pm/hr and 0.5 pm/hr, respectively. We observe that the 

mixed distribution takes less time to reach confluence and yields higher tissue growth rates. 

However, as cell speeds of population 1 increase, the difference between both seeding modes 

diminishes. Higher cell motility allows cells in the segmented distribution to move far away 

from their original seeded sites and disperse in the cellular space to minirrlize the impact 

of contact inhibition, thus creating a transient distribution that resembles more and more 

the one induced by the mixed distribution. Moreover, with mixed seeding, the effects 

of increasing cell speed are less pronounced. For instance, the tissue growth rate curves 

are nearly identical for both population 1 speeds when a mixed distribution is used as in 

both cases confluence is reached in about 8 days and their growth rate curves are very 

similar. Increasing population 1 speeds to very large values is more beneficial in the case of 

a segmented distribution where an enhanced tissue growth rate and a reduction in the time 

to  reach confluence are both observed. 
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Figure A . l l :  Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. The cell migration speed of population 
1 and population 2 is 10 pmlhr and 1 pmlhr,  respectively. 
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(a) Sequential Results 
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(b) Parallel Results 

Figure A.12: Comparison of (a) the cell volume fraction and (b) the overall tissue growth 
rate for segmented and mixed seeding distributions. The cell migration speed of population 
1 and population 2 is 50 pmlhr and 0.5 pmlhr,  respectively. 
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A.3 Wound Seeding Topology 

A.3.1 Mixed Distribution 

A.3.2 Effects of varying migration speed of cell population 1 

The proliferation rate curves in Figure A.13 demonstrate the effects of motility on the cell 

volume fraction in the case of a wound-seeding topology using a rnixed distribution with 

H = 1. Again, in these simulation runs, the cell speed of population 1 is varied from 1, 

2, 5, 10 and 50 prnlhr while the migration speed of population 2 is fixed a t  1 prnlhr. We 

observe that as the motility of the cell increases, the proliferation rate increases and hence 

confluence is attained faster; thus, healing the wound. Higher motility of cells decreases 

the impact of contact inhibition on the proliferation rate as it reduces the formation of 

cell colonies. Furthermore, Figure A.14 illustrates the impact of varying the cell speed of 

population 1 on the overall tissue growth rate. The figure clearly depicts that increasing 

the cell migration speed leads to higher rates of tissue growth. Increasing cell migration 

speeds even to very large values continues to impact positively both the tissue growth rate 

and the time to reach confluence in the case of a wound seeding topology. Figure A.15 

and Figure A.16 depict the temporal evolution of the effective migration speed, S,, in the 

denuded area (that is, the initially empty cylinder) for different cell-population 1 speeds. 

At the beginning of the simulations, cells move into the "wound" a t  their peak speeds. The 

overall cell speeds drop rapidly as the "wound" becomes congested with new daughter cells 

and collisior~s become more frequent. The average speed decreases with time and shows a 

drastic decrease as confluence is attained due to the formation of local clusters. 
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(b) Parallel Results 

Figure A.13: The effects of varying the cell speed of population 1 on the cell volume fraction. 
Cells in population 2 move at a fixed speed of 1 pm/hr . 
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(b) Parallel Results 

Figure A.14: The effects of varying the cell speed of population 1 on overall tissue growth 
rate. Cells in population 2 move at a fixed speed of 1 pmlhr  . 
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Figure A.15: The effects of cell motility on the effective migration speed, S,, for (population 
1) cell speeds ranging from 1 to 5 pmlhr. 
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(b) Parallel Results 

Figure A.16: The effects of cell motility on the effective migration speed, S,, for (population 
1) cell speeds ranging from 10 to 50 pm/hr. 



Appendix B 

Glossary 
In this appendix, we provide the definitions of some of the terms used throughout this thesis. 

Anchorage-dependant. This term describes cells that proliferate when attached to 

inert surfaces. 

Biofilm. This term refers to an aggregation of cells grouped by a protective adhesive 

matrix. 

Cell migration. This term denotes the active movement of a cell from a position to 

another. This term is used interchangeably with cell locomotion, and cell motility. 

Cell locomotion. see cell migration 

Cell motility. see cell migration 

Cell proliferation. This term describes the growth of cells in a population through 

cell division. 

Confluence. This term denotes that cells occupy all (or nearly all as in the case of 

99.99% confluence) of the available growth surfacc. 

Contact inhibition. This term describes the inhibition of cell motility and growth 

following contact with other cells. 

Endothelial cell. This term denotes a type of a mammalian cell which lines the entire 

circulatory system and also forms a thin lining around blood vessels. 

Mitotic cycle. This term describes the process in which a single mother cell duplicates 

its chromosomes, and separates into two identical daughter cells. 
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