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Abstract 

Achieving k-coverage in wireless sensor networks has been shown before to be NP-hard. We 

propose an efficient approximation algorithm which achieves a solution of size within a log- 

arithmic factor of the optimal. A key feature of our algorithm is that i t  can be implemented 

in a distributed manner with local information and low message complexity. We design and 

implement a fully distributed version of our algorithm. Simulation results show that our 

distributed algorithm converges faster and consumes much less energy than previous algo- 

rithms. We use our algorithms in designing a wireless sensor network for early detection of 

forest fires. Our design is based on the Fire Weather Index (FWI) System developed by the 

Canadian Forest Service. Our experimenta.1 results show the efficiency and accuracy of the 

proposed system. 



To the wandering sou1 of the desert 



"We feel free because we lack the very hnguage to articulate our unfreedon." 
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Chapter 1 

Introduction and Background 

In this chapter, we briefly introduce the coverage problem in wireless sensor networks and 

describe the related work. We also look into applications of wireless sensor networks to early 

detection of forest fires. Finally, we summarize the contributions of this thesis. 

1.1 Introduction 

Mass production of sensor devices with low cost enables one to deploy large-scale sensor 

networks for real-life applications such as forest fire detection and vehicle traffic monitoring. 

A fundamental issue in such applications is the quality of monitoring provided by the net- 

work. This quality is usually measured by how well deployed sensors cover a set of tasget 

points. In its simplest form, coverage means that every point is monitored by, i.e., within 

the sensing range of, a t  least one sensor. This is called 1-coverage. In this paper, we consider 

the more genera.1 k-coverage ( k  2 1) problem, where each point should be within the sensing 

range of k or more sensors. 

Covering each point by multiple sensors is desired for many applications, because it 

provides redundancy and fault tolerance. Furthermore, k-coverage is necessary for the 

proper functioning of many other applications, such as intrusion detection [3,40], data 

gathering [32,60], and object tracking [20]. To illustrate, consider an intrusion detection 

system in military applications, where k-coverage is essential to  identify intruding objects of 

different sizes. A tank, for instance, is detected by many sensors, while a soldier is detected 

by only a few. A high degree of coverage makes the classification more precise [3], because 

of errors in the measurement and the susceptibility of sensors to failure and power shortage. 
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When deployed sensors are dense, point coverage approximates area coverage. That  is, 

if all sensor locations are covered by the set of activated sensors, the entire area is covered. 

In this paper, we address the problem of selecting the minimum set of sensors to activate 

from an already deployed set of sensors such tha,t all locations a.re k-covered. Achieving 

a minimal set of sensors is critical, because it reduces total energy consumption, and thus 

prolongs the lifetime of the whole network. 

The  problem of selecting the minimum number of sensors, however, is NP-ha.rd [54].' 

We propose an efficient approximation algorithm for it, which achieves a solution of size 

within a logarithmic factor of the optimal and terminates quickly (in the order of seconds in 

most cases). Although the approximation factor is logarithmic, it is only a worst-case upper 

bound and our simulation results show a better performance. We take a novel approach in 

solving the k-coverage problem. In pa.rticular, we model the problem as a set system for 

which an optimal hitting set corresponds to an optimal solution for coverage. Finding the 

optimal hitting set is NP-hard [18], but there is an efficient approximation algorithm for 

it [9]. Our k-coverage algorithm is inspired by the approximation algorithm for the optimal 

hitting set problem. We prove that our algorithm is correct and analyze its complexity. 

We implement our a lg~r i t~hm and compare it against other centralized algorithms in the 

literature. Our comparison reveals that our algorithm is about four orders of magnitude 

faster than the currently-known k-coverage algorithms. 

A key feature of our centralized k-algorithm is that it can be implemented in a distributed 

manner with local information and low message complexity. We design and implement a 

fully distributed version of our algorithm. Our distributed algorithm does not require sensors 

to know their locations. Comparison with two other distributed algorithms in the literature 

indicates that our algorithm: (i) converges much faster than the others, (ii) activates near- 

optimal number of sensors, and (iii) significantly prolongs the network lifetime because it 

consumes much less energy than the other algorithms. We also extend our distributed 

algorithm to provide hot spot coverage which is required for some applications where more 

importa.nt areas such as human neighborhood need a higher coverage degree. Simulation 

results verify that  our algorithm indeed achieves the required coverage degree for different 

regions inside the field. 

We also address the coverage problem in relation with forest fire detection and show how 

'Note that this problem is different from the problem of placing sensors in an area to cover it, which can 
be solved efficiently 1291. 
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to apply our distributed k-coverage algorithm to such a.pplications. We provide the design 

of a wireless sensor network for early detection of forest fires based on the Fire Weather 

Index (FWI) System. The FWI System designed by Canadian Forest Service [12] is backed 

by several decades of forestry research. It uses weather observations to produce a set of fire 

weather indexes which indicate the likelihood of the current weather condition to cause a 

fire. We present a new aggregation paradigm to efficiently calculate the fire weather indexes 

in a wireless sensor network. More importantly, we establish a relationship between the 

desired accuracy of the system and the required coverage degree. 

1.2 Previous Work 

1.2.1 K-Coverage Algorithms 

The problem of verzfying k-coverage is studied in [28]. Each sensor is modeled as a disk and 

it is proved that the area is properly k-covered if the perimeter of all disks are k-covered. 

The running time of the algorithm is O(n210gn) in the worst case for a set of n sensors. 

An improved modeling is presented in [48], where the authors use the concept of order- 

k Voronoi diagrams [44] to build a verifier algorithm. They show that if all vertices of a 

bounded Voronoi diagram is sufficiently covered then the whole area is covered. The running 

time of the algorithm is bounded by the construction time of the Voronoi diagram which is 

O(n log n + nk2) [34]. These works do not address the problem of ensuring k-coverage and 

they do not propose distributed algorithms. 

Meguerdichian et al. [39] consider a slightly different definition of covera.ge: finding 

maximal support and maximal breach paths for which the observability is maximum and 

minimum, respectively. Authors in [40] improve the work in [39] and present a more efficient 

algorithm. These aJgorithms are not applicable to our k-coverage problem. 

The authors of [53] propose a distributed Coverage Configuration Protocol (CCP), which 

provides different degrees of coverage requested by applications. CCP is based on a proof 

that if the intersection points between all sensors are kcovered, the whole area is k-covered. 

Unlike our distributed algorithm, CCP assumes that nodes know their locations. 

In [13], the authors formulate the k-coverage problem of a set of n grid points as an 

integer linear programming. They assume two types of sensors with different sensing ranges 

and costs. The problem is to determine the minimum cost of sensors to cover all grid 

points. The authors show that the problem is NP-had since it is a generalized version 
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of the minimum-cost satisfiability problem [18]. Small instances of the problem are solved 

using the branch and bound method, which takes exponential time in the worst case. For 

large instances, a divide and conquer scheme is provided. 

The closest work to ours are [54] and [61]. In [54], the authors address the problem 

of selecting the minimum number of sensors to activate from a set of already deployed 

sensors for k-coverage. They prove that the problem is NP-hard since it is an extension 

of the dominating set problem [18]. They formulate the problem and provide a centralized 

approximation solution based on integer linear programming. The  algorithm works by 

relaxing the problem to ordinary linear programming, where the variables may take real 

values. They also design a distributed algorithms, PKA, which uses pruning to reduce the 

number of active sensors. The  work in [61] presents a centralized algorithm that works by 

iteratively adding a set of nodes which maximizes a measure called k-benefit to an initially 

empty set of nodes. The authors also present a distributed algorithms, DPA, that works 

by pruning unnecessary nodes and putting them into sleep. We compare our algorithms 

against the algorithms in [54,61]. 

1.2.2 Applications of Wireless Sensor Networks 

Sensor networks have several appealing characteristics to be used in environmental moni- 

toring applications such as habitat monitoring [37], and forest fire detection systems [15,21, 

49,571. 

For example, in [37], the authors apply wireless sensor networks to habitat monitoring. 

A set of system requirements are developed and a system architecture is proposed to ad- 

dress these requirements. They discuss different issues such as deployment, data collection, 

and communication protocols and provide design guidelines. The  system architecture is 

comprised of patches of sensor nodes connected to a base station through gateway nodes. 

Each sensor reports its readings to the base station. The  base station is connected to the 

internet and exposes the collected da ta  t o  a set of web based appljcations. They present 

experimental results from a habitat monitoring system consisting of 32 nodes deployed on 

a small island off the coast of Maine. The sensors were placed in burrows to collect temper- 

ature data which are used to detect the presence of nesting birds. In this work, we target a 

different application: forest fire detection. 

The  authors of [15] show the feasibility of wireless sensor networks for forest fire monitor- 

ing. Experimental results are reported from two controlled fires in San Francisco, California. 
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The  system is composed of 10 GPS-enabled MICA motes [45] collecting temperature, hu- 

midity, and barometric pressure data. The data is communicated to a base station which 

records it in a database and provides services for different applications. The  experiments 

show that most of the mot,es in the burned area were capable of reporting the passage of 

the flame before being burned. The system in [15], collects and reports raw weather met- 

rics. In contrast, our system processes weather condition based on the Fire Weather Index 

System [ll] and reports more useful, summarized, fire indexes. 

A forest fire detection system based on neural networks is designed in [57]. In this 

system, sensor nodes organize themselves into clusters. Each sensor measures weather data 

such as temperature and relative humidity and reports its readings to the cluster head. 

Cluster heads use the da ta  as input to a neural network which produces a weather indexe 

based on United States National Fire Danger Rating System (NFDRS) [42]. These indexes 

indicate the likelihood of the weather condition to cause a fire. The cluster heads report 

their indexes to a sink which is connected to a manager node. The  main role of the manager 

node is to facilitate forest fire detection by analyzing the indexes. The mana,ger node is also 

involved in the neural network learning process by calculating new values of neural network 

parameters using the collected data. These parameters are then propagated to the cluster 

heads through the sink. Simulation results show the effectiveness of the neura.1 network 

approach in reducing the communication overhead. Our system design is similar to the 

one in [57], however we do not use a neural network based approach. In addition, we take 

advantage of two fire indexes which better describe the fire potential as well as intensity. 

In [21], the authors address the problem of studying fire behavior rather than fire de- 

tection. They present FireWxNet, a portable fire sensor network to study the weather 

conditions surrounding active fires. The  system is comprised of sensor nodes, webcams, and 

long range communication base stations. FireWxNet is deployed a t  the fire site to study the 

fire behavior using weather da ta  measurements and visual images. Temperature, relative 

humidity, wind speed and direction axe reported every half an hour while cameras provide 

a continuous view of the current fire condition. The  experimental results indicate that the 

system is capable of providing useful data for fire behavior analysis. Our system is designed 

for a different application which is forest fire detection. 

A Forest fire Surveillance System is designed in [49]. The  authors provide a general 

structure for sensor networks and provide details for a forest fire detection a.pplication. The 

sensor types, operating system and routing protocol are discussed. In their design, sensor 
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nodes use a minimum cost path forwarding to send their packets to a sink node which is 

connected to the internet. The  data is reported to a middleware which calculates the forest 

fire risk level according to formula defined by forestry service. The  calculation is depending 

on the values of relative humidity, precipitation, and solar radiation of the day. The results 

are recorded in a database that can be accessed by web a,pplications over the internet. We 

propose using a clustered network to calculate fire indexes a t  cluster heads where the data 

is more likely to be correlated. Thus, instead of communicating all sensor readings to the 

sink, we only report a few packets to save more energy. 

1.3 Thesis Contributions 

In this thesis we present efficient solutions for the problem of selecting the minimum number 

of sensor nodes from a set of already deployed ones to achieve k-coverage. We also apply our 

algorithms to design a wireless sensor network for early detection of forest fires. Specifically, 

our contributions [23-261 can be summarized as follows. 

We develop a centralized k-coverage algorithm, RKC, which achieves a solution of size 

~ ( f i  log f i ) ,  where fi is the minimum number of sensors required for k-coverage [25]. 

MJe implement our algorithm and compare it against two others in the literature. The 

logarithmic factor is only a worst-case upper bound and our simulation results show 

a better performance. i\/Ioreover, comparison with other A:-coverage algorithms in the 

literature shows that our algorithm runs four orders of magnitude faster. 

A key feature of our algorithm is that it can be implemented in a distributed manner 

with local information and low message complexity. We design and implement a fully 

distributed version of our algorithm [24]. Our distributed algorithm, DRKC, does 

not require that  sensors know their locations. Comparison with two other distributed 

algorithms in the literature indicates that our algorithm: (i) converges much faster 

than the others, (ii) activates near-optimal number of sensors, and (iii) significantly 

prolongs (almost doubles) the network lifetime because it consumes much less energy 

than the other algorithms. We extend our distributed algorithm to provide hot spot 

coverage. This is a highly desired feature for wireless sensor network applications that 

need to emphasize certain areas over others. For example, in a forest fire detection 

system, area near residential neighborhood may need a higher coverage degree that 
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others. Simulation results verify that our algorithm indeed achieves the requested 

coverage degrees at different regions of the monitored area. 

We design a wireless sensor network for early detection of forest fires [26]. Our system 

is based on the Fire Weather Index (FWI) System developed by the Canadian Forest 

Service [12]. The FWI System uses weather observations to produce a set of indexes 

which indicate the likelihood of the current weather conditions to cause a fire. We 

present a new aggregation paradigm to efficiently calculate the fire weather indexes in 

a wireless sensor network. In addition, we establish a relationship between the desired 

accuracy of the system and the required coverage degree. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 describes the k-coverage problem 

and our solution approach. We show the correctness of our algorithm, evaluate its per- 

formance, and compare it against other works in the literature. In Chapter 3, we provide 

the design of a wireless sensor network for early detection of forest fires and show how our 

algorithms can be applied to such applications. Cha.pter 4 summarizes the conclusions of 

this thesis and outlines future directions for this research. Appendix A lists the equations 

used in the Fire Weather Index System. 



Chapter 2 

K-Coverage Algorithms and 

Evaluation 

In this chapter, we describe the k-coverage problem and present our solution. Then we 

show the correctness of our algorithm, evaluate its performance, and compare it against 

other works in the literature. 

2.1 The K-Coverage Problem and Our Solution Approach 

In this section, we state the kcoverage problem in wireless sensor networks, and provide a.n 

overview of our solution. Our problem is to select a minima.1 subset of nodes for activation to 

ensure tha.t all sensor locations are k-covered by the set of activated nodes. The  k-coverage 

problem can formally be stated as follows. 

P r o b l e m  1 (k-Coverage P r o b l e m )  Given n already-deployed sensors in a target area, 

m d  a desired coverage degree k 2 1 ,  select a minimal subset of sensors to cover all sensor 

locations such, that every location i s  within th,e sensing range of at leas k different senuors. 

It i s  assumed that the sensing range of each sensor i s  a disk with radius r ,  and sensor 

deployment can follow any  distribution. 

The above k-coverage problem is proved to be NP-hard by reduction from the minimum 

dominating set problem in [54]. The proof idea is to model the network as a graph where 

there is an edge between any two nodes if they are within the sensing range of each other. 
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Figure 2.1: Modelling the k-coverage problem as a set system ( X , R ) .  (a) shows the set 
of points which constitute X. (b) shows only three subsets of R that are associated with 
the three highlighted points in (a).  (c) shows a hitting set {cl,  c2)  that 1-covers the three 
subsets in (b). (d) shows one 3-flower that 3-covers only one subset in R. 

Finding the minimum number of nodes to 1-cover the set of all sensor locations is equivalent 

to finding the minimum dominating set for the graph. Since Problem 1 is a generalization 

of this problem, it is also NP-hard. We propose an efficient approximation algorithm for 

solving the k-coverage problem. We start describing our solution approach with the following 

definition of set systems and hitting sets [9]. 

Defini t ion 1 (Set  S y s t e m  a n d  H i t t i n g  Se t )  A set system (X,R) is composed of a set 

X and a collection R of subsets of X .  W e  say that H 2 X is a hitting set i f  H has a 

non-empty intersection with every element of R ,  that is, V R  E R we have R n H # 0. 

Our solution does not require a grid deployment, and any node deployment such as 

uniform or Poisson distribution can be used. We define X to be the set of all sensor 

locations. Thus, we have 1x1 = n. We define the collection R as follows. For each point p 

in X,  we draw a circle of radius r centered at  p. All points in X that  fall within that circle 

constitute one set in R .  Fig. 2.l(b) shows only three elements of R that  correspond to the 

three highlighted points pl , p2,p3 in Fig. 2. l (a) .  Now the minimum hitting set problem on 

( X , R )  is to find the minimum set of points in X that hit (intersect) all elements (disks) 

of R .  Fig. 2.l(c) shows a possible hitting set for the three disks of R shown in Fig. 2.l(b).  

The  hitting set has two points cl and c2. If we consider cl and c:! to be locations of sensors, 

we will ensure that  points pl,p2 and ps are 1-covered, because each of them is within the 

sensing range of at least one of the sensors located a t  cl and c2, as shown in Fig. 2.l(c). 
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For k-coverage, elements in the hitting set are not locations for individual sensors. 

Rather, each element in the hitting set is a center of what we call a k-flower, which is 

a set of k sensors that a11 intersect at  that center point. Fig. 2.l(d) shows one 3-flower 

centered at  point c that 3-covers point pa. Details of constructing k-flowers are discussed in 

Section 2.2. The kcoverage problem now reduces to finding a minimum hitting set where 

elements in that  set are the centers of k-flowers. Finding the minimum hitting set is NP- 

hard [18], thus we try to find a near optimal hitting set. We propose an approximation 

algorithm that uses the concept of €-nets [22], which is defined as follows. 

Defini t ion 2 (€-Net )  Let 0 < E 5 1 be a constant. The  set N C_ X i s  called a.n €-net for 

the set sys tem (X,  R )  if N has a non-empty intersection with every element of R of size 

greater than or equal to  ~ 1 x 1 ,  that is ,  VR E R such that IRI 2 EIX( we have R n N # 0. 

The definition of €-net is similar to that of the hitting set, except that the €-net is required 

to hit only large elements of R (ones that are greater than or equal to EIXI),  while the hitting 

set must hit every element of R .  This similarity is exploited by our approximation algorithm 

to find a near optimal hitting by finding €-nets of increasing sizes (i.e., decreasing E )  until one 

of them hits all elements of R. For this to work, we clearly need to efficiently: (i) compute 

€-nets, and (ii) verify coverage. We use a simple verifier that checks all points in O ( n )  

steps. Computing €-nets can be done efficiently for set systems with finite VC-dimensions 

(defined below). Specifically, Haussler and Welzl [22] show that  for any set system ( X , R )  

with a finite VC-dimension d l  randomly sampling m, 2 max (: log $, log $) points of X 

constitutes an €-net with a probability at  least 1 - 6, where 0 < 6 < 1. Notice that m does 

not depend on the size of X, which allows X to be arbitrarily large with no effect on the size 

of the €-net. Brijnnimann and Goodrich [9] further extend the concept of €-net by assigning 

weights to  elements of X. Weights accelerate the process of finding a near optimal hitting 

set, and help in establishing an upper bound on its size, as we discuss in Section 2.2. 

We now present the definition of the VC (Vapnik and ~ervonenkis)  dimension of a set 

system and the associated concept of set shattering [9,22]. 

Defini t ion 3 (Se t  S h a t t e r i n g  and VC-dimension) Consider a set sys tem ( X , R )  and 

a set Y g X .  Y is  said to be shattered by R if for any A c Y there exists a set B E R such, 

that Y n B = A. Furthermore, the ca,rdin,al.ity of the largest set that can be sh,o,ttered b y  R 
i s  called the VC-dim,ension of the set system ( X ,  R ) .  
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Figure 2.2: The concept of set shattering: (a) Two points shattered by four disks, and (b) 
three points shattered by eight disks. 

Informally, Y is shattered by R if all subsets of Y ca.n be constructed by intersecting Y 

with some set in R. For instance, Fig. 2.2 (left) shows two points shattered by four disks, 

each disk contains only one subset of the four possible subsets that can be created by the 

two points. 

The VC-dimension of our set system is proved to be 3 by the following lemma [19]. 

Lemma 1 Consider the set system (X ,  R), where X is the set of points, and R contains a 

disk of radius r for each point in X .  This set system has a VC-dimension of 3 [19]. 

To summarize, we model the k-coverage problem as a set system ( X , R )  where X is 

the set of sensor locations and R is the collection of subsets of X created by intersecting 

disks of radius r with points of X .  This set system has a VC-dimension of 3, therefore, 

we can efficiently implement a net-finder algorithm to find €-nets of various sizes. Our 

approximation algorithm for the k-coverage problem employs the net-finder to compute 

€-nets of increasing sizes, and for each €-net i t  verifies the coverage until all points are 

sufficiently covered. We assign weights to points of X to  guarantee termination and to 

bound the approximation factor of the output solution. Finally, each element in the output 

represents the center of what we call a k-flower, which is a set of k sensors that all intersect 

a t  that center point and should be activated for k-coverage. 

2.2 Centralized K-Coverage Algorithm 

In the previous section, we presented the theoretical foundations of our k-coverage algorithm. 

In this section, we present the details of the algorithm and analyze its complexity. A very 
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important feature of the algorithm is that it can be implemented in a distributed manner 

with local information and low messa.ge complexity. The  distributed version of the algorithm 

is presented in the next section. 

The  pseudo code of the k-covemge algorithm, which we call RKC (Randomized I;- 

Coverage algorithm), is given in Fig. 2.3. The algorithm takes as input the set of sensor 

locations X ,  sensing range of sensors r ,  and required degree of coverage k. If the algorithm 

succeeds, it will return a subset of nodes to activate in order to ensure k-coverage. The  

a.lgorithm mqy only fail if activating all sensors is not enough for k-coverage because of low 

density. The minimum required density can be calculated as follows. If every point is to 

be k-covered, it has to be in the sensing range of at  least k sensors. Thus, for each node p, 

there should be a t  least k other nodes inside a disk of radius r centered at  p. 

In every single iteration of the while loop, the algorithm tries up to 4clog(n/c) $-nets 

one at  a time (the for loop in lines 5-11). Each $-net is computed by the net-finder (Section 

2.2.1), and hits all disks with weight greater than or equal to f 1x1. For each net, the verifier 

checks whether this net is a hitting set, i.e., it completely k-covers all points. We use a simple 

verifier that checks all points in O ( n )  steps.' If a net is a hitting set, the algorithm returns 

it and terminates. Otherwise, the algorithm doubles the weight of a point that was under 

covered by that  net. Then, the algorithm chooses another ;-net. Points with increased 

weights will have higher probability of being included in t8he new net. The size of each 

returned ;-net is O(c1og c) (see the description of the net-finder algorithm for details). The 

reason behind trying up to 4clog(n/c) nets is that a result (Lemma 3.4) in [9] states that 

if there is a hitting set of size c, the weight doubling process cannot iterate more than 

4c log(n/c) times. This also means if we iterate beyond 4c log(n/c) without finding a hitting 

set, it is guaranteed that there is no hitting set of size c [9]. This helps us to establish the 

following bound on the number of sensors required to achieve k-coverage. 

Lemma 2 The solution returned by the k-coverage algorithm is of size ~ ( f i  log E ) ,  where 

% is the optimal number of sensors required to k-cover all sensor locations. 

Proof: Suppose that the algorithm terminates with c and the optimal number of nodes 
A 

required for k-coverage is N I: c. This mems that the algorithm has failed to find a 

'Asymptotically more efficient verifiers are possible to design using order-k Voronoi diagrams [48]. How- 
ever, these verifiers are complex to implement in practice, and the performance gain is not significant due to 
the large constmts  in the time complexity. 
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Randomized K-Coverage: RKC(X, r ,  k)  

c = 1; // sets the initial size of €-net 
whi le  (net-size(;) 5 n )  d o  

set weights of all points to 1; 
E = 1/c; 
for .i = 1 to 4clog 

N = net-finder(X, k, E ,  r);  
u = verifier (X, N, k ,  r ) ;  
if (u  == null) 

return N; 
else 

double weight of u; 
c = 2 x c ;  

return 0; 

Figure 2.3: A centralized approximation algorithm for the k-coverage problem. 

solution for c/2. Since the algorithm iterated 4(c/2) log(n/(c/2)) times, doubling weights 

of uncovered points in each iteration, then by Lemma 3.4 in [9], there is no hitting set of 

size c/2. That  is, we must have fi > c/2. Therefore, we have c < 2 5 .  Since the size of the 

;-net is O(c1og c), the size of the solution is 0(1q log 5 ) .  

Our simulation results (Section 2.4) show that the upper bound in this lemma is indeed 

very conservative, and usually our algorithm produces better results. 

Next, we prove the time complexity of the algorithm in the following lemma. 

Lemma 3 The k-coverage algorith,m terminates in time O ( n  log n(TF +TI,)), where TF and 

Tv are the running times of th,e net-finder and verifier algorithms, respectively. 

Proof: Since c is doubled a t  each step, the number of iterations of the while loop (lines 

2-12) is a t  most logn, and the algorithm indeed terminates. Furthermore, the algorithm 

iterates for 4clog(n/c) steps for each c (lines 5-11). Since c < n ,  the number of iterations 

is bounded by O(n) .  Thus the algorithm running time is logn [T, + O(n) (TF + TV + Td)], 

where Ti and Td w e  the cost of initializing and doubling weights, respectively. T, for all 

points takes no more than steps and Td takes O(1) steps. Substituting, we get the running 

time as O(n log n(TF + Tv)) .  
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1. 6 = lo-'; 
2. net = 0; // net of k-flowers 
3. for i = 1 to net-size(€) 
4. q = getRandomPoint(X); //biased 
5. f = createFlower(X, q, k, r ) ;  
6. a.dd f to net; 
7. r e t u r n  net; 

Figure 2.4: The net finder algorithm. 

2.2.1 The Net-Finder Algorithm 

The idea of the net-finder algorithm is based on Corollary 3.8 in [22], which states that 

randomly selecting at  least max ($ log $, log +) points of the set X yields an €-net with 

a probability at  least 1 - 6, where 0 < S < 1. Selecting a small 6 = 10-"vill yield an €-net 

with probability almost 1. 

The pseudo code of the net-finder algorithm is given in Fig. 2.4. Note that the term 

net- size(^) denotes the number of k-flowers in the €-net, which is equal to log $ as shown 

in Lemma 4 below. The algorithm iterates for net-sixe(~) steps, and in every iteration, 

selects a random point q biased based on the weights. Then it finds a k-flower centered at 

q and adds i t  to  the net. Any point q is selected with probability w(q)/w(X), where w is a 

function which assigns weights to points. The weight of a set is the summation of weights 

of all points in that  set. After the center point q of the k-flower is selected, k other points 

p l ,  . . . , p,+ are selected uniformly inside a disk of radius r centered a t  q. The  location of 

each of these points is given by: pi = (x, + di cos Bi, yq + di sin Oi,), where x,, and y, a.re 

coordinates of q, and Oi and di a.re selected at  random from [O12.rr] and [O,r], respectively. 

We explore different ways of choosing di, and 4 in Section 2.4. 

The following lemma provides the time complexity of the net-finder algorithm, a.nd the 

size of the net returned. 

Lemma 4 The algorithm net-finder  terminate.^ in O(n log n,) steps, and returns an €-net of 

size O(+ log i). 
Proof: The  algorithm iterates for net-size(€) steps. In each iteration, one point is 

selected based on weights as follows. Weights are ma.intained in a cumulative list. Each 
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entry in the list contains the sum of all weighs from the head of the list up to and including 

the current entry. We generate a uniform random number between 1 and the sum of weights 

of all points. Then, we perform a binary search on the cumulative field, choosing the closest 

point that has cumulative weight greaker than or equal to the random number. This selection 

process takes O(1ogn) steps. After selecting the center point, k other points (k-flower) are 

selected in constant time. Since net-size(€) can be at  most n ,  the net-finder iterates up to 

O(n )  times. Therefore, the total running time of the net-finder is O(n1ogn). 

From Corollary 3.8 in [22], randomly selecting m 2 max (q  log $,  2;?. log ?) points yields 

an €-net with a probability at  least 1-5. If we set 5 to a very small value lo-', the probability 

of finding an €-net will be almost 1, and the second term in max(.) will dominate the first 

term. Thus, the number of k-flowers added to the net variable during the for-loop in Fig 

2.4 will be a t  most ? log F .  Since each k-flower contributes a t  most k sensors, the €-net 

will have no more than k(? log F )  = o(; log $) sensors. 

Remark: A more efficient net-finder algorithm, i.e., one that  returns an €-net of size 

o(;), is possible to design [38]. However, the constant in this linear bound is quite high. 

Moreover, the algorithm involves triangulation which requires sensors to be awa,re of their 

locations, and more importantly, it is not clear how the algorithm can be implemented in 

a distributed manner. Therefore, although the efficient net-finder in [38] would make our 

RKC algorithm produce a solution that is a constant factor from the optimal, we opt to use 

the simpler net-finder algorithm because it can be implemented in a distributed manner, 

and it produces near-optima.1 results on the average, as shown by our simulations in Section 

2.4. 

2.2.2 Algorithm Correctness and Complexity 

The  following theorem proves that our algorithm is correct, provides its time complexity, 

and proves the upper bound on the solution. 

Theorem 1 The k-coverage algorithm (RKC) in Fig. 2.3 guarantees that every point in 

the area is k-covered, terminates in O(n2 log2 n )  steps, and returns a solution of size at most 
A o(E log fi), where N is the minimum number of sensors required for k-coverage. 

Proof: Suppose that the algorithm terminates by providing a set S of sensor locations. 

By construction, this set of points is guaranteed to hit every disk of radius r. Since for our 

set system (X, R), we put  a disk in R for each point p E X, there should be at  least one 
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element (i.e., a k-flower) in S that hits the disk centered at  p. In addition, the center of 

each sensor in the k-flower is within a distance r from p (see Section 2.2.1 for details on 

constructing k-flowers). Therefore, p is k-covered by sensors of this k-flower. Hence, all 

points are k-covered by sensors in S. 

The time complexity follows from Lemmas 3, and 4, and by using a simple verifier that 

checks all n points in O(n)  steps. The  bound on the solutions size follows from Lemma 2. 

2.3 DRKC: Distributed Randomized K-Coverage Algorithm 

In the previous section, we presented a centralized algorithm for the k-coverage problem. A 

ley feature of this algorithm is that it does not rely heavily on global information. Therefore, 

it can be implemented in a distributed manner. In this section, we present a decentralized 

version of our k-coverage algorithm. We start with an overview describing how the decen- 

tralized algorithm emulates the centralized one. Next, we present the details and the pseudo 

code of the distributed algorithm. Then, we analyze the communication complexity of the 

distributed algorithm. 

2.3.1 Overview of DRKC 

Our centralized k-coverage algorithm (shown in Fig. 2.3) maintains two globa.1 varia,bles: the 

size of the current €-net, and weights of all points. At every iteration of the outer loop, the 

size of the +net is doubled, and a t  every iteration of the inner loop, the weight of one under- 

covered node is doubled. The  basic idea of our distributed algorithm, which we call DRKC 

(Distributed Randomized k-coverage algorithm), is to emulate the centralized algorithm by 

keeping local estimates for these two global variables. To simplify the presentation, we first 

assume that  all nodes are time-synchronized. In Section 2.4, we show through simulations 

that only coarse-grained time synchronization is sufficient for our algorithm. 

The e n e t  size is estimated as follows. All nodes keep track of the desired €-net size 

using the local variable netsize,  which is initially set to 1. Since nodes execute the same 

loop iteration at  about the same time, they can get an accurate estimate of the desired 

size of the e n e t  for the current round. This is because the €-net size is simply doubled in 

every iteration. Knowing the desired €-net size enables nodes to independently contribute 

to the current +net in a way when all contributions are added up, the desired global €-net 

is produced. 
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Distributed K-Coverage Algorithm (DRKC) 

D R K C  S e n d e r  
1. while  (true) { 

/* initialize parameters */  
weight = 1, totalVVeight = n, ne t s i z e  = 1;  
curcoverage = 0, state = TEMP; 
whi le  ( n e t s i z e  < n) { 

/* activate neighbors to achieve k coverage */ 
( n e t s i z e  x (weight / totalWeight)  > r a n d ( ) )  { 
state = ACTIVE; 
reqCoverage = k - curcoverage; 
Pa = reqCoverage/(neighborSize - cz~rCoverage); 
broadcast an ACTIVATE message containing Pa and reqCoverage to n.eighhors; 

wait for NOTIFY messages; 
/* verify k-Covergae */ 
if (curcoverage > k) { break ;  } 
/* update variables for next iteration */ 
if ( l / ( n  - n e t s i z e )  > r a n d ( ) )  { weight = weight x 2 ;  ) 
n e t s i z e  = n e t s i z e  x 2; 
total We igh t  = total Weight  + total Weiglz t ln;  

1 
if (s tate  # ACTIVE ) ( state = SLEEP; } 
wait until end of round; 

D R K C  Receiver  
/*  upon receiving a message msg  */ 
1. if (msg.type == ACTIVATE and msg .P ,  > r a n d ( ) )  ) /* chosen to be active */  
2. /*  wait random time to reduce collision */  
3. send a NOTIFY message to msg.source after int-rancl(0, m,sg.reqCoverage) x T, 
see; 
4. state = ACTIVE; 

5. 1 
4 .  update (neiyhborSize, curCouerage); /* based on msg.source */ 

Figure 2.5: A distributed algorithm for the k-coverage problem. 
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Node weights are used in the nebfinder algorithm (Fig. 2.4) to add nodes to the current 

€-net biased on their weights. That  is, a node becomes part of the €-net with a. probability 

proportional to its weight relative to total weight of all nodes. To make this decision locally, 

a node does not need to know the weight of every other node. Rather, a node needs only 

the aggregate weight of all nodes in the network. A node uses the variable totalWeigh,t to 

estimate this aggregate. totalweight is initialized to the number of nodes in the network 

n .  In the centralized algorithm, in every iteration of the inner loop, the weight of only 

one under-covered node is doubled. In the distributed algorithm, an under-covered node 

doubles its weight with probability l ln, ,  where n,, is the number of under-covered nodes 

in the network. n, is approximated locally as (n  - n,etSize). Thus, the expected number 

of nodes that double their weights is equal to 1 in each loop iteration, which is the same 

as in the centralized case. Now since the total weight is increased by the weight of a single 

under-covered node in each iteration, a node can estimate the total weight by adding the 

average weight of nodes ( totalweightln)  to its own current value of totalweight. 

Estimating the current €-net size and the total weight in the network allows a node to 

decide (locally) whether it should be a member of the €-net. A node decides to be part of 

the €-net with a probability p = (weight/totalWeight) x ne ts ize .  If a node is chosen, it 

will activate k other nodes to create a I;-flower as in the centralized algorithm. 

Finally, k-coverage verification in the centralized algorithm is done by checking all nodes 

one by one. In the distributed algorithm, each node independently checks its own coverage by 

listening to messages exchanged in its neighborhood, and counting number of active nodes. 

A node terminates the algorithm if it is sufficiently covered. Otherwise, it doubles its weight 

with probability 1/12,, and starts another loop iteration. A node may also terminate the 

algorithm if it has been looping for logn steps without getting sufficiently covered, which 

can occur because of low node density. 

2.3.2 Description of DRKC 

DRKC works in rounds of equal length. The round length measured in real time is chosen to 

be much smaller than the average lifetime of sensors. In the beginning of each round, every 

node runs DRKC independent of other nodes. A number of messages will be exchanged 

between nodes to determine which nodes will be active during the current round, and which 

will sleep until the beginning of the next round. We denote the time it takes the DRKC 

protocol to determine active/sleep nodes as the convergence tim,e. After convergence, no 
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node changes its s tate  and no protocol messages are exchanged until the beginning of the 

next round. 

The pseudo code of DRCK is given in Fig. 2.5. A node can be in one of three states: 

ACTIVE, SLEEP, and TEMP. In ACTIVE state, all modules (transmission, receiving, and 

sensing) are turned on, while all modules are turned off in SLEEP state. The TEMP 

state is a transient state in which transmission and receiving modules are on. The sensing 

module is set to its state in the immediate preceding round. This is done to avoid any 

coverage outage during round transitions. A node starts a round in the TEMP state, where 

it initializes parameters such as netsize,  weight, and totalweight. The neighborsize 

variable is updated during each round, and its value is retained across rounds. 

After initialization, the algorithm iterates up to logn times in the while loop, or until 

it achieves k coverage. In each iteration, a node decides to be a member of the current 

e n e t  with a probability proportional to its weight, as described in the previous subsec- 

tion. If a node is chosen, it broadcasts an ACTIVATE message to its neighbors in or- 

der to increase its own coverage to be k. The ACTIVATE message includes two parame- 

ters: reqCoverage and Pa. The first parameter determines the number of additional nodes 

needed to achieve k coverage a t  the sender of the ACTIVATE message. Pa is calculated as 

reqCoverage/(n,eighborSize - curCoverage), where curCoverage is the current degree of 

coverage a t  the node. When a neighbor receives an ACTIVATE message, it becomes active 

with probability Pa. Pa is so chosen to make the expected number of newly activated nodes 

equal to reqCoverage. If a node decides to be a,ctive, it broadcasts a NOTIFY message 

informing all its neighbors that it has become active. To reduce collisions between NOTIFY 

messages, a node waits a random period between 0 and reqcoverage x T,, where T, is the 

average transmission time of a message. After waiting enough time to receive NOTIFY mes- 

sages, a node verifies its own coverage. If the node is sufficiently covered, it terminates the 

algorithm in the current round and waits until the beginning of the next round. Otherwise, 

another loop iteration is needed. Before starting the new iteration, a node doubles its weight 

with probability l / ( n  - nets ize) ,  and updates the n,etS.ize and totalweight vasiables. 

2.3.3 Communication Complexity of DRKC 

In the following theorem, we provide the average- and worst-case communication complex- 

ities of the DRKC protocol. We note that the two types of messages exchanged in the 
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protocol (ACTIVATE and NOTIFY) have fixed sizes. Therefore, we analyze the communi- 

cation complexity in terms of number of messages exchanged. 

Theorem 2 T h e  number of messages sent b y  a node in any round of the DRKC protocol 

i s  O(1og n,) in the worst case, O(1.) on  average (over all nodes). 

Proof: In the worst case, a node iterates up to logn times in the while loop (lines 5-20 in 

Fig 2.5), and it may send one ACTIVATE message in each iteration. Thus, the maximum 

number of ACTIVATE messages sent by a node in a round is O(logn,). A node can also 

reply by a NOTIFY message to ACTIVATE messages sent by its immediate neighbors. A 

node broadcasts a NOTIFY message if it decides to become active which may only occur 

once in each round. Therefore, the worst-case message complexity is O(1ogn). 

For the average-case analysis, we consider the whole network, and assume that nodes 

are time synchronized. In each iteration of the while loop, the algorithm chooses netsize 

number of nodes to send ACTIVATE messages. Since nets ize  starts a t  1 and is doubled in 

every iteration, the total number of ACTIVATE messages is a t  most xyj: 23 = 2n - 1. 

Each ACTIVATE message generates up to k NOTIFY messages in response. Thus, the total 

number of messages sent in the whole network in a round is O(n). Furthermore, because 

nodes in an €-net are chosen randomly, €-nets in different rounds are expected to contain 

different nodes. Therefore, across rounds, the total message load is distributed over all n 

nodes. Thus, the average number of messages sent by a node in a round is O(1). 

2.4 Performance Evaluation 

In this section, we evaluate various aspects of our k-coverage algorithms. We start by show- 

ing that our centralized algorithm ensures that the requested covemge degrees are satisfied, 

produces close to optimal results, and runs much faster than other centralized algorithms in 

the literature. Then, we analyze the performance of our decentralized algorithm, and show 

that its performance is close to the centralized one, converges in a short period of time, 

does not require fine-grained timing synchronization , and outperforms all other distributed 

k-coverage algorithms. Before presenting our results, we discuss our experimental setup and 

the algorithms implemented. 
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2.4.1 Algorithms Implemented and Experimental Setup 

The closest works to ours are [61] and [54], which we choose for comparison. Thus, we 

implemented six algorithms in total: three centralized and three distributed. We imple- 

mented our RKC and DRKC algorithms in Figs. 2.3 and 2.5. The  centralized algorithm 

in [61] works by iteratively adding nodes to an initially empty set based on a measure called 

k-benefit. We refer to this algorithm as CKC. The implementation of CKC is provided by 

its authors. For CKC, we set the communication range of sensors as twice the sensing range 

to allow the algorithm to find any solution for k-coverage without incurring the overhead of 

ensuring connectivity. The  decentralized algorithm in [61.], called DPA, employs a localized 

pruning technique: All nodes start marked active and try to unmark themselves by checking 

the connectivity and coverage in their neighborhood. We implemented DPA without the 

connectivity condition. We validated our implementation by running the same experiments 

as in [61] and obtained the same results. The centralized algorithm in [54], called, LPA, 

solves the k-coverage problem by modeling it as an integer linear program and then relaxing 

it to a linear program. We use LPSOLVE [36] to solve the linear program. LPSOLVE is an 

open source tool for solving mixed integer linear programming problems. The distributed 

algorithm in [54], called, PKA, uses a similar pruning idea as DPA. We implemented PKA 

and validated our implementation by comparing the results with those in [54]. 

To conduct fair comparisons, we use the same experimental set up as in [61.]: We ran- 

domly deploy 5,000 sensors in an area of 40m x 40m with a uniform distribution. We vary 

coverage degree Ic between 1 and 8 in our simulation. Sensing range of sensors is fixed a t  

4 meters. We set the round length for our DRKC algorithm a t  50 seconds. All running 

times are measured on a Xeon (P4) machine with 3.6 GHz CPU and 4 GB of RAM. The 

operating system is Linux Suse 10.0. 

We employ the energy model in [55] and [59], which is based on the Berkeley Mote hard- 

ware specifications. In this model, the node power consumption in transmission, reception, 

idle and sleep modes are 60, 12, 12, and 0.03 mW, respectively. As in [59], we express the 

energy model as ratios: 20 : 4 : 4 : 0.01. The initial energy of a node is assumed to be 60 

Jules which allows a node to operate for about 5,000 seconds in reception/idle modes. 

We assume that the size of a packet containing one integer value (e.g., node's ID) is 40 

bytes, and each integer value added to the packet increases its size by 4 bytes. The wireless 

channel capacity is assumed to be 32 Kbps, therefore the transmission time is 10 ms for a 



CHAPTER 2. K-COVERAGE ALGORITHMS AND EVALUATION 22 

message of size 40 bytes. For DPA and PKA, we ignore the overhead of the priority field 

included in messages exchanged between sensors. Therefore, when a node broadcasts its 

neighborhood information, the size of the message is assumed to be 40 + 41 bytes, where 1 

is the number of its neighbors. DRKC does not broadcast neighborhood information and 

therefore uses fixed size messages of 40 bytes each. 

Unless otherwise specified, the above parameters are used, and each experiment is re- 

peated 10 times with different seeds and the average over all of them is reported. 

2.4.2 Evaluation of our Centralized K-Coverage Algorithm (RKC) 

Our first set of experiments studies the coverage degrees achieved by our centralized algo- 

rithm. We vary the requested coverage degree k between 1 and 8 and observe the achieved 

coverage a t  every single point in the area. Some of the results are shown in Fig. 2.6, where 

the x-axis shows the observed coverage degree and the y-axis shows the percentage of points 

that achieve that degree. The figure shows that while the RKC algorithm achieves the goal: 

100% of the points are sufficiently covered, the percentage of points with observed coverage 

degree higher than k decreases fast. This is important because, while coverage redundancy 

might be desirable, it should be controlled in order to reduce interference. 

In the next set of experiments, we compare our centralized RKC algorithm against two 

other centralized k-coverage algorithms which are the closest to our work: CKC [61] and 

LPA [54]. As shown in Fig. 2.7(a), RKC runs several order of magnitudes faster than LPA 

and CKC. For insta.nce, for k = 4, our algorithm terminates in less than 1 second, while 

LPA takes 3 minutes and CKC takes 2 hours. Notice that y-axis is shown in logarithmic 

scale. Moreover, a s  shown in Fig. 2.7(b), the percentage of active sensors resulted by our 

algorithm is consistently lower than that of LPA and is very close to that  of CKC for all 

values of I;. 

In the above experiment we could not use large network sizes in the comparison, because 

CKC took very long time in some cases and it did not even terminate in others. Our 

algorithm is designed for large-scale sensor networks, thus we need to study its efficiency 

in these networks. By efficiency we mean how close the number of active sensors computed 

by our RKC algorithm is to the optimal number of sensors. Since the optimal number of 

active sensors are prohibitively expensive to  compute (NP-hard problem), we compare the 

results of our RKC algorithm aga.inst the asymptotic necessa,ry and sufficient conditions for 

k-coverage proved in [32] for uniformly deployed sensors. These conditions are obtained for 
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shows the achieved coverage distribution for various requested coverage degrees: (a) k = 1, 
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Rcqucstcd coverage dcgrcc, k 

Figure 2.7: Comparing the performance of our centralized k-coverage algorithm (RKC) 
versus two others: (a) Running time, and (b) Percentage of active sensors. 

networks with sensors that can fail (or sleep) with a probability 1 - p, and they require the 

existence of a slowly growing function $(np). For our comparison, we set p = 1, i.e., sensors 

are always on. Then we compute the minimum number of sensors that are necessary to 

achieve k-coverage, and the minimum number of sensors that are sufficient to achieve k- 

coverage. We set $(np) = d m ,  which is the function used by the authors of [32] 

in their simulations. We use a large area of size 1000m, x 1000m, with 30,000 nodes and 

vary the sensing range r. The results for k = 4 are shown in Fig. 2.8, where Nec-cond a.nd 

Suff-cond denote the necessary and sufficient conditions, respectively. The figure shows that 

our algorithm does not unnecessazily activate too many sensors, because its output is very 

close to the necessary condition. The results of this experiment show that the worst-case 

logarithmic factor proved in Theorem 1 is very conservative, and on average our centralized 

algorithm produces near-optimal number of active sensors. 

Our last experiment studies the effect of k-flower selection strategy on the performance 

of the RKC algorithm. Two different strategies can be used in the net-finder algorithm. In 

the first strategy which we call uniform, all k center points of sensors are selected randomly 

inside a circle of radius r centered at  the reference point. The  other strategy, called min- 

overlap, is to choose the k furthest points which are placed regularly around the reference 

point as shown in Fig. 2.9. This is done by selecting k center points a t  distance r a t  angles 
2lr 

i- for 0 5 i 5 k. This strategy minimizes the overlap between sensors of a k-flower. As 
k 

shown in Fig. 2.10, min-overlap strategy outperforms uniform strategy in term of percentage 
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Figure 2.8: Efficiency of our centralized k-coverage algorithm (RKC). The figure com- 
pares the number of active sensors produced by our RKC algorithm versus the necessary 
(Nec-cond) and sufficient (Suf-cond) conditions proved in [32]. 

of active sensors which verifies the intuition that  decreasing intra-flower overlap will reduce 

the number of active sensors. 

2.4.3 Evaluation of our Distributed K-Coverage Algorithm (DRKC) 

We start by verifying that the DRKC algorithm achieves the requested coverage degree. As 

in the case of the centralized algorithm, we vary the requested coverage degree k between 1 

and 8 and observe the achieved coverage a t  every point in the x e a .  The  results for k = 1 , 4  

Figure 2.9: A 3-flower with minimum overlap between sensors. 
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Figure 2.10: The  impact of using different k-flower selection strategies on the performance 
of the RKC algorithm. 

and S are shown in Fig. 2.11. The  figure confirms that 100% of the points meet the coverage 

requirements. 

Next we compare the number of active sensors resulted from the distributed DRKC 

algorithm versus the number of sensors resulted from the centralized RKC algorithm, which 

was shown to be close to the optimal number in the previous section. In Fig. 2.12(a), we 

vary the requested coverage degree k and fix all other parameters for both the centralized 

and distributed algorithms. And in Fig. 2.12(b), we vary the number of deployed sensors 

(i.e., sensor density) while fixing everything else (k = 4 in this case). Both figures show that 

the performance of the distributed algorithm is very close to that of the centralized one, 

especially for high-density networks. This means that  the distributed algorithm is expected 

to activate close-to-optimal number of sensors to achieve A7 coverage. 

In Section 2.3, we assumed that sensors start a round of the DRKC algorithm a t  the same 

time, i.e., they axe time-synchronized. In this experiment, we examine the effect of clock 

drift on the performance of DRKC. By clock drift we mean that  sensors may start a round 

a t  different points in time. We add a random offset to the clock of each sensor. This offset is 

uniformly distributed between 0 and 500 ms. The  requested coverage degree is fixed at  k = 4 

for this experiment. Fig. 2.13 summarizes the impact of clock drift on the performance on 

the DRKC algorithm. As Fig. 2.13(a) shows, the k-coverage of the area was not seriously 

impacted: The  percentage of points that achieved less than the requested coverage degree is 
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Figure 2.11: Correctness of our distributed k-coverage algorithm (DRKC). The  figure shows 
the achieved coverage distribution for various requested coverage degrees: (a) k = 1, (b) 
k = 2, (c) k = 4, and (d) k = 8. 
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Figure 2.12: Comparing the number of sensors activated by the distributed DRKC algorithm 
versus that of the centralized RKC algorithm for different: (a) coverage degrees, and (b) 
sensor densities. 

less than 2% for clock drifts as large as 400 ms. Furthermore, by investigation the coverage 

distribution of all points in the area, we found that these under covered nodes are near the 

borders of the area. Fig. 2.13(b) indicates that only a minor increase in the average number 

of messages exchanged between sensors may result from large clock drifts. In addition, 

as shown in 2.13(c), the convergence time of the DRKC algorithm did not suffer much. 

Convergence time is defined as the time it takes the algorithm to decide the final state for 

each and every sensor (either active or sleep) in a round, and i t  is desired to be small. Even 

with large clock drifts, the convergence time of our algorithm is less than 1.5 seconds. The 

results of this experiment confirm that our distributed k-coverage algorithm does not require 

fine-grained synchronization mechanisms, which may be costly t o  implement in large-scale 

networks. 

Now we compare our distributed DRKC algorithm against two other distributed k- 

coverage algorithms: DPA [61] and PKA 1541 along various performance metrics. We first 

vary the coverage degree k and compute the number of sensors activated by each algorithm 

to achieve the requested coverage degree. We normalize the number of active sensors by the 

total number of deployed sensors. We also determine the convergence time of each algorithm. 

The  results are given in Fig. 2.14. Fig. 2.14(a) indicates that the DRKC dgorithm converges 

much faster than the other two algorithms: It  converges in less than 1 second compared 

to 25 seconds for the others. Short convergence times are desirable because the network 
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Figure 2.13: The  impact of clock drift on the performance of our distributed k-coverage 
algorithm: (a) Percentage of under covered points, (b)  Average number of messages sent 
per node, and (c) Convergence time. 

reaches steady state faster. This reduces the energy consumed by sensors as we will show 

later in this section. Fig. 2.14(b) shows that DRKC always results in much smaller numbers 

of activated sensors. For a coverage degree of 4, for instance, DRKC activates about 5% of 

the deployed sensors while the other two algorithms activate a t  least double that number 

(more than 12%). 

In the next set of experiments, we compare the energy consumption of the DRKC, DPA, 

and PKA distributed k-coverage algorithms. In Fig. 2.15(a), we plot the total remaining 

energy in all sensors in the network as the time progresses. The  figure clearly shows that 

DRKC consumes energy a t  a much lower rate than the other two algorithms. This can 

be explained by the results in Fig 2.14, which show that  the DRKC algorithm puts a 

larger fraction of sensors in sleep mode and converges much faster t h m  the other two 

algorithms. The  results in Fig. 2.15(a) were obtained a t  a specific sensor density. In the 

next experiment, we vary the number of deployed sensors and measure the average per- 

node energy consumption. As shown in Fig. 2.15(b), the amount of energy consumed per 

node is much lower (about one-fifth) in DRKC t h m  the other two algorithms. Moreover, 

the difference between the per-node energy consumption in the DRKC algorithm and the 

other two algorithms grows larger as the network density increases. This is because messages 

exchanged between sensors in both DPA and PKA algorithms grow in size and number as the 

average number of neighbors per node grows. Our algorithm uses fixed-size messages. Larger 

messages require longer tra,nsmission times, increases chances of collision, and ultimately 

consum more energy. 

In the last experiment, we look a t  the lifetime of the sensor network under different 
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Figure 2.14: Comparing the performance of our DRKC algorithm versus two other dis- 
tributed Ic-coverage algorithms for various coverage degrees: (a) Convergence time, and (b) 
Percentage of active of sensors. 

distributed algorithms. Fig. 2.16 compares the percentage of alive sensors as the time 

progesses for the three algorithms. The figure clearly demonstrates that our algorithm 

prolongs (almost doubles) the lifetime of the network, bemuse it consumes much smaller 

amount of energy than the other two algorithms, as shown in the previous experiment. 
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Figure 2.15: Comparing the energy consumption of our DRKC algorithm versus two other 
distributed k-coverage algorithms: (a) Totd  remaining energy, and (b) Average per-node 
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Chapter 3 

Applying K-Coverage to Forest 

Fire Detection 

In the previous chapter, we presented our k-coverage algorithms and evaluated its perfor- 

mance. In this chapter, we show how our algorithms can be  used for real life applications 

such as forest fire detection. We describe the design of a wireless sensor network for early 

detection of forest fires. 

3.1 Introduction 

Forest fires, also known as wild fires, are uncontrolled fires occurring in wild areas and cause 

significant damage to natural and human resources. Wild fires eradicate forests, burn the 

infrastructure, speed up the extinction of species, aggravate the g~eenhouse effect, harm the 

ozone layer, and may result in high human death toll near urban areas. Common causes 

of forest fire include lightning, human carelessness, and exposure of fuel to extreme heat 

and aridity. I t  is known that in some cases fires are part of the natural ecosystem and 

they are important to the natural life cycle of indigenous habitats. However, in most cases, 

the damage caused by fires to public health and safety and natural resources is intolerable 

and early detection and suppression of fires deem crucial. For example, in August 2003, a 

wild fire was started by a lightning strike in the Okanagan Mountain Park in the province 

of British Columbia, Canada. The fire was spread by the strong wind and within a few 

days it had turned into a firestorm. The fire forced the evacuation of 45,000 residents and 
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Table 3.1: Wild fires in the ~rovince  of British Columbia. Canada. since 1995 171. 

burned 239 homes. Wlost of the trees in the Okanagan Mountain Park were burned, and 

the park was closed. Although 60 fire departments, 1,400 armed forces troops and 1,000 fire 

fighters took part in the fire fighting operation, they were largely unsuccessful in stopping 

the disaster. The  official reports estimate the burned area as 25,912 hectares and the total 

cost as $33.8 million [6]. 

In the province of British Columbia alone, there have been 2,590 wild fires during 2006 [7]. 

These burned 131,086 hectares and costed about $156 million. Table 3.1 summarizes the 

extent and cost of wild fires in BC in previous years. Regretfully, other reports from Ministry 

of Forests and Range show that on average 45% of fires are caused by human activities, hence 

about half of unwanted wild fires were preventable. 

Apart from preventive measures, early detection and suppression of fires is the only 

way to minimize the damage and casualties. Different methods for early detection of wild 

fires have been developed based on local conditions and advances in related technologies. 

Such systems include fire lookout towers, automatic video surveillance systems, firewatch 

aeroplanes, satellite imagery, and wireless sensor networks. In this chapter we present the 

design of a wireless sensor networks for early detection of forest fires. Our design is based 

on the Fire Weather Index (FWI) System designed by the Canadian Forest Service [12]. 

L J 

Year 

2006 
2005 

Total Fires 

2,590 
976 

Total 
Hectares 
131,086 
34,588 

Total Cost 
(millions) 

$156 
$47.2 

AverageHectares 
per Fire 

50.6 
35.4 

Average Cost 
per Hectare 

$1,190 
$1.365 
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Figure 3.1: A fire lookout tower near Nelson, BC 

3.2 Evolution of Forest Fire Detection Systems 

Traditionally, forest fires have been detected using fire lookout towers usually located at  high 

points. A fire lookout tower houses a person whose duty is to look for fires using special 

devices such as Osborne fire finder [17]. Osborne fire finder is comprised of a topographic 

map printed on a disk with graduated rim. A pointer aimed a t  the fire determines the 

location and the direction of the fire. Once the fire location is determined, the fire lookout 

alerts fire fighting crew. Fire lookout towers are still in use in many countries around the 

world including USA, Australia, and Canada [5]. Fig. 3.1 shows a fire lookout tower near 

Nelson, BC, Canada. 

Unreliability of human observations in addition to the difficult life conditions for fire 

lookout personnel have led to the development of automatic video surveillance systems 

[8,16,31]. Fig. 3.2 shows the typical structure of an automatic surveillance system. Most of 

the systems use Charge-Coupled Device (CCD) cameras and Infrared (IR) detectors installed 

on top of towers. CCD cameras use jmage sensors called CCD which contain an array of light 

sensitive capacitors or photodiodes. In case of fire observation or smoke activity, the system 

alerts local fire departments, residents, and industries. Current automatic video surveillance 

systems used in Germany, Canada, and Russia are capable of scanning a circular range of 

10 km in less than 8 minutes [16]. The accuracy of these systems is largely affected by 

weather conditions such as clouds, light reflection, and smoke from agricultural or industrial 

activities. 

Automatic video surveillance systems cannot be applied to large forest fields easily and 

cost effectively, thus for large forest areas either aeroplanes or Unmanned Aerial Vehicles 
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Figure 3.2: An automatic fire surveillance system. 

(UAV) are used to monitor forests for fires. Aeroplanes fly over forests and the pilot alerts 

the base station in case of fire or smoke activity. UAVs, on the other hand, carry both video 

and infrared cameras and transmit the collected data. to a base station on tohe ground that 

could be up to 50 km away. UA4Vs can stay atop for several hours and are commanded by 

programming or joystick controls [I.]. 

More advanced forest fire detection systems are based on satellite imagery. Advanced 

Very High Resolution Radiometer (AVHRR) [4] was launched by (National Oceanic and 

Atmospheric Administration) NOAA in 1998 to monitor clouds and thermal emission of 

the Earth. Moderate Resolution Imaging Spectroradiometer (MODIS) [41.] was launched 

by NASA in 1999 on board of the Aqua satellite to capture cloud dynamics and surface 

racliation from the Earth. MODIS uses its 36 spectral bands to provide a complete image 

of the Earth every 1 to 2 days. 

Current satellite-based forest fire detection systems use data. from these instruments 

for forest fire surveillance. The minimum detectable fire size is 0.1 hectare, and the fire 

location accuracy is 1 km [33,35]. The accuracy and reliability of satellite based systems 

are largely impacted by weather conditions. Clouds and rain absorb parts of the frequency 

spectrum and reduce spectral resolution of satellite imagery which consequently affects the 

detection accuracy. Although satellite based systems can monitor a large area, relatively 

low resolution of satellite imagery means a fire can be detected only after it has grown 

large. More importantly, long scan period-which can be as long as 2 days-indicates that 

such systems cannot provide timely detection. 

To summarize, the most critical issue in a forest fire detection system is immediate 
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response in order to minimize the scale of the disaster. This requires constant surveillance of 

the forest area. Current medium and large-scale fire surveillance systems do not accomplish 

timely detection due to low resolution and long period of scan. Therefore, there is a need for 

a scalable solution that can provide real time fire detection with high accuracy. We believe 

that wireless sensor networks (WSN) can potentially provide such solution. 

Recent advances in Wireless Sensor Networks support our belief that they make a promis- 

ing framework for building near r e d  time forest fire detection systems. A wireless sensor 

network, is a network of small devices usually referred to as motes. Motes are tiny com- 

puters, with processors, RAMS, and run an operating system ( e g  TinyOS [51]). Each 

mote is also equipped with two modules: a radio communication module, and a sensing 

module. The sensing module can sense a variety of phenomena including relative humidity, 

temperature, and smoke which axe all helpful for fire detection system [11,45]. The collected 

data are then excha.nged between motes and/or relayed to a processing facility using the 

communication module. Sensor nodes can operate for months on a pair of AA batteries 

to provide constant monitoring during the fire season. Moreover, sensor nodes are capable 

of organizing themselves into a self-configuring network. Therefore, large-scale surveillance 

systems can be easily deployed using aeroplanes at  a low cost compared to the damages and 

loss of properties caused by forest fires. In this work we present the design of a wireless 

sensor network for early detection of forest fires. 

3.3 Understanding and Modelling Forest Fires 

Forests cover large areas of the earth and are often home to  many animal and plant species. 

They function as soil conserver and play an important role in the carbon dioxide cycle. To 

assess the possibility of fires starting in forests and rate by which they spread, we adopt one 

of the most comprehensive forest fire danger rating systems in North America. We use the 

Fire Weather Index (FWI) System developed by the Canadian Forest Service (CFS) [12], 

which is based on several decades of forestry research [47]. 

The FWI System estimates the moisture content of three different fuel classes using 

weather observations. These estimates are then used to generate a set of indicators showing 

fire ignition potential, fire intensity, and fuel consumption. The daily observations include 

temperature, relative humidity, wind speed, and 24-hour accumulated precipitation, all 

recorded at noon Local Standard Time (LST). The system predicts the peak fire danger 
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Figure 3.3: Structure of the Fire Weather Index (FWI) System. 

potential a t  4:00 p m  LST. Air temperature influences the drying of fuels and thus affects the 

heating of fuels to ignition temperature. Relative humidity shows the amount of moisture 

in the air. Effectively, a higher value means slower drying of fuels since fuels will absorb 

moisture from the air. Wind speed is an important factor in determining fire spread for 

two main reasons: (a) it controls combustion by affecting the rate of oxygen supply to the 

burning fuel, and (b) it tilts the flames forward, causing the unburned fuel to be heated [46]. 

The last factor, precipitation, plays an important role in wetting fuels. 

As shown in Fig. 3.3, the FWI System is comprised of six components: three fuel codes 

a.nd three fire indexes. The  three fuel codes represent the moisture content of the organic 

soil layers of forest floor, whereas the three fire indexes describe the behavior of fire. In 

the following two sections, we briefly describe these codes and indexes. In Section 3.3.3, we 

present how these codes and indexes can be interpreted and utilized in designing a wireless 

sensor network for early forest fire detection. 

3.3.1 Fuel Codes of the  FWI System 

The forest soil can divided into five different layers [12,14] as shown in Fig. 3.4. Each 

layer has specific characteristics and provides different types of fules for forest fires. These 

characteristics are reflected in fuel codes of the FWI System. Related to  each fuel type, there 
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Figure 3.4: Forest soil layers. 

is a. drying rate a t  which the fuel loses moisture. This drying rate, called timelag, is the time 

required for the fuel to lose two-thirds of its free moisture content with a noon temperature 

reading of 21•‹C, relative humidity of 45%, and a wind speed of 13 km/h [14]. Also, each 

fuel type has a fuel loading metric, which describes the average amount (in tonnes) of that 

fuel that  exists per hectare. 

There are three fuel codes in the FWI System: Fine Fuel Moisture Code (FFhJC), Duff 

Moisture Code (DMC), and Drought Code (DC). FFMC represents the moisture content of 

litter and fine fuels, 1-2 cm deep, with a typical fuel loading of about 5 tonnes per hectare. 

The  timelag for FFMC fuels is 16 hours. Since fires usually s tar t  and spread in fine fuels [14], 

FFMC can be used to indicate ease of, ignition, or ignition probability. 

The  Duff Moisture Code (DMC) represents the moisture content of loosely compacted, 

decomposing organic matter,  5-10 cm deep, with a fuel loading of about 50 tonnes per 

hectare. DNIC is affected by precipitation, temperature and relative humidity. Because 

these fuels are below the forest floor surface, wind speed does not affect the fuel moisture 

content. DMC fuels have a slower drying rate than FFMC fuels, with a timelag of 12 

days. Although the DMC has an open-ended scale, the highest probable value is about 

150 [14]. The  DMC determines the probability of fire ignition due to lightning and also 

shows the rate of fuel consumption in moderate depth organic layers. The  last fuel moisture 

code, the Drought Code (DC), is an indicator of the moisture content of the deep layer 

of compacted organic matter, 10-20 cm deep, with a fuel loading of about 440 tonnes 

per hectare. Temperature and precipitation affect the DC, but  wind speed and relative 

humidity do not have any effect on it due to the depth of this fuel layer. DC fuels have a 

very slow drying rate, with a timelag of 52 days. The DC is indicative of long-term moisture 

conditions, determines fire's resistance to extinguishing, and indicates f ~ ~ e l  consumption in 
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Table 3.2: Summary of Fuel Codes in the FWI  System [14]. 

deep organic material. The  DC scale is also open-ended, although the maximum probable 

value is about SO0 [14]. 

Table 3.2 summarizes the features of the three fuel codes in the FWI System. 

Item 

Fuel Association 

Fire 
Indicator 

3.3.2 Fire Indexes of the FWI System 

Fire indexes of the FWI System describes the spread and intensity of fires. There are 

three fire indexes: Initial Spread Index (ISI), Buildup Index (BUI), and Fire Weather Index 

(FWI). As indicated by Fig. 3.3, IS1 and BUI are intermediate indexes and are used to 

compute the FWI index. The  IS1 index indicates the rate of fire spread immediately after 

ignition. It combines the FFMC and wind speed to predict the expected rate of fire spread. 

Generally, a 13 km/h increase in wind speed will double the IS1 value. The  BUI index is 

a weighted combination of the DMC and DC codes, and it indicates the total amount of 

fuel available for combustion. The  DMC code has the most influence on the BUI value. 

For example, a DIvIC value of zero always results in a BUI value of zero regardless of what 

the DC value is. DC has its strongest influence on the BUI a t  high DMC values, and the 

greatest effect that the DC can have is to ma.ke the BUI value equal to twice the DMC 

FFMC 

Litter and other 
organic fine fuels 

Ease of ignition 

value. 

The  Fire Weather Index (FWI) is calculated from the IS1 and BUI to provide an estimate 

of the intensity of a spreading fire. In effect, FWI indicates fire intensity by combining the 

rate of fire spread with the amount of fuel being consumed. Fire intensity is defined as 

Timelag 
Value Range 

Spring Start Value 

DMC 
Loosely compacted 
layers of moderate 
depth 

Probability of lightning 
fires, Fuel consumption 
in moderate layers 

DC 

Deep compacted 
organic layers 

esistance to 
extinguishing, 
Consumption 
in deep layers 

16 hours 
0-99 
85 

12 days 
0-150 

6 

52 days 
0-800 

15 
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(a) Probability of ignition as a function of the FFMC (b)  Fi1.e intensity a s  a [unction of the FWI index 
code 

Figure 3.5: Using two main components of the Fire Weather Index System in designing a 
wireless sensor network to detect and combat forest fires. Figures are produced by interpo- 
lating data from [14]. 

the energy output measured in kilowatts per meter of flame length at  the head of a fire. 

The head of a fire is the portion of a fire edge showing the greatest rate of spread and fire 

intensity. The  FWI index is useful for determining fire suppression requirements as well as 

being used for genera.1 public information about fire danger conditions. Although FWI is 

not directly calculated from weather data, it depends on those factors through IS1 and BUI. 

3.3.3 Interpreting and Using the FWI System 

There are two goals of the proposed wireless sensor network for forest fires: (i) provide early 

warning of a potential forest fire and, (ii) estimate the scale and intensity of the fire if it 

materializes. Both goals are needed to decide on required measures to combat a forest fire. 

To achieve these goals we design our sensor network based on the two main components 

of the FWI System: (i) the Fine Fuel Moisture Code (FFMC), a.nd (ii) the Fire Weather 

Index (FWI). The  FFMC code is used to achieve the first goal and the FWI index is used 

to achieve the second. We justify the choice of these two components in the following. 

The FFMC indicates the relative ease of ignition and flammability of fine fuels due to 

exposure to extreme heat. To show this, we interpolate data from [14] to plot the probability 

of ignition as a function of FFMC. The results are shown in Fig. 3.5(a). The  FFMC scale 

ranges from 0-99 and is the only component of the FWI System without an open-ended 
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Table 3.3: Ignition Potential Based on the FFMC code. 

Very High 88-91 
1 Extreme 1 91f  1 

(a) Moderate surface fire (FWI = (b)  Very intense surface fire (FWI (c) Developing active fire (FWI = 

14) = 24) 34 

Figure 3.6: Experimental validation of the FWI index. Pictures shown from experiments 
conducted by Alberta Forest Service [2]. 

scale. Generally, fires begin to ignite at  FFI\/IC values near 70, and the maximum probable 

value that will ever be achieved is 96 [14]. Table 3.3 summarizes the potential of fire ignition 

based on FFMC value ranges. Low values of FFMC are not likely to be fires and can be 

simply ignored, while larger values indicate more alarming situations. 

The FWI index indicates the fire intensity by combining the rate of fire spread (from the 

Initial Spread Index, ISI) with the amount of fuel being consumed (from the Buildup Index, 

BUI). A high value of the FWI index indicates that in case of fire ignition, the fire would 

be difficult to control. This intuition is backed up by several experimental studies. For 

example, in 1974, the Alberta Forest Service performed a short term study of experimental 

burning in the jack pine forests of north eastern Alberta. Snapshots of the resulting fires 

and the computed FWI indexes are shown in Fig. 3.6 for three fires with different FWI 

values [2]. Furthermore, the study [14] relates the fire intensity with the FWI index. We 

plot this relationship in Fig. 3.5(b) by interpolating data from [14]. Finally, Table 3.4 

provides a classification of fire danger based on the values of FWI [12]. 
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Table 3.4: Potential Fire Danger Based on the FWI index. 
FWI Class Range g 

Both of the FFMC code and the FWI index are computed from four basic weather 

conditions: temperature, relative humidity, precipitation, and wind speed. These weather 

conditions can be measured by sensors deployed in the forest. The accuracy a.nd the distri- 

bution of the sensors impact the accuracy of the FFMC code and the FWI index. Therefore, 

we need to quantify the impact of these weather conditions on FFMC and FWI. Using this 

quantification, we can design our wireless sensor network to produce the desired accuracy 

in FFMC and FWI. To do this, we contacted the Canadian Forest Service to obtain the 

closed-form equations that describe the dependence of the FFMC and FWI on the weather 

conditions. We were given access to these equations as well as a program that computes 

them [52]. We used this program to study the sensitivity of FFMC and FWI to air tem- 

perature and relative humidity. Sample of our results are shown in Fig. 3.7 and Fig. 3.8. 

Fig. 3.7 shows the sensitivity of FFMC to temperature and relative humidity for fixed wind 

speed at  5 km/h and precipitation level of 5 mm. And, Fig. 3.8 shows the sensitivity of FWI 

to temperature and relative humidity under similar conditions. We will use these figures to 

bound the errors in estimating FFMC and FWI in the next section. 

In summary, the FFMC code and FWI index provide quantifiable means to detect and 

respond to forest fires. Low values of FFMC are not likely to be fires and may be ignored. 

In case of higher FFMC values, where a fire is possible, based on the values of FWI, some 

fires might be left to burn, some should be contained and others need to be extinguished 

immediately. We design our wireless sensor network for forest fire detection based on the 

FFMC code and FWI index. Our system uses weather data collected by sensor nodes to 

calculate these indexes. 
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(a)  F F M C  versus tempera ture  
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Figure 3.7: Sensitivity of the FFMC code to basic weather conditions. 
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Figure 3.8: Sensitivity of the FFMC code to basic weather conditions. 
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Data Processing Fire De~artlnenl 

Local Residents 

Figure 3.9: Forest fire detection system architecture. 

3.4 Wireless Sensor Networks for Forest Fire Detection 

3.4.1 Overview 

Our design for forest fire detection system is based on the FWI system which uses weather 

measurements to produce a set of fire weather indexes that indicate the ease of fire igni- 

tion, initial rate of fire spread, and fire intensity. In particular we are interested in two 

of the indexes namely FFMC which indicates the probability of ignition and FWI which 

shows the fire intensity. Weather measurements are used to produce these indexes accord- 

ing to formulas provided by Canadian Forest Service 1521 which are obtained by private 

communication. 

The general architecture of our system is shown in Fig. 3.9. A la.rge number of sensor 

nodes are densely deployed in the forest field to measure weather data such as temperature. 

The sensor nodes are assumed to know their location through GPS or localization protocols 

[lo].  The nodes organize themselves into clusters using clustering protocols [56]. Every 

sensor node reports its readings to its cluster head. The cluster heads aggregate the readings 

by calculating fire weather indexes. The indexes along with cluster head location information 

are communicated to the data processing center. The indexes are then used to determine 

the potential fire danger and to decide appropriate actions for fighting the fire. If the indexes 

show a high risk of fire, the local residents, industries, and fire departments are alarmed. 
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3.4.2 Clustering, Aggregation, and Routing 

In forest fire detection systems, most of the da.ta collected by sensor nodes are likely to 

be geographically correlated. Therefore, these readings can be efficiently aggregated into a 

few packets to be communicated to the data processing center. We propose an application 

specific aggregation which includes calculating fire weather indexes and reporting these 

indexes instead of individual sensor readings. We use clustering algorithms to organize 

sensor nodes into small clusters [27,56]. Each cluster head aggregates all the sensor readings 

inside the cluster into two fire weather indexes namely FFMC and FWI. We recommend 

using HEED [56] as the clustering algorithm. HEED achieves a fairly uniform distribution of 

cluster heads across the network without any assumption about the homogeneity of sensor 

deployment. I t  also uses cluster head rotation to balance the load on nodes due to cluster 

head operations. 

The large size of the forest field removes the possibility of single-hop communication 

between cluster heads and the da ta  processing center. Therefore cluster heads use multi- 

hop routing to communicate to the da.ta processing center. Routing based on location 

information [30,58] is more suitable for forest fire detection systems for several reasons. 

Geographic routing protocols are helpful in exploiting the correlation between collected 

data and supporting geographic queries. In a forest fire detection system, users may prefer 

to query a small geographical region rather than the entire network. In addition, such 

routing schemes operate on local information without requiring global transfer of routing 

tables. Recent research in localization protocols have made it easy to obtain precise location 

information in GPS-less sensor networks [lo]. 

3.4.3 K-Coverage for Forest Fire Detection 

Many sensor network applications including forest fire detection require a high degree of 

coverage to increase the detection accuracy and measurement reliability. Having multiple 

sensors report an event helps removing false readings. In addition, some areas in the forest 

with high fire potential and human neighborhoods are more important and need to be 

monitored with a higher coverage degree. 

We establish a relationship between the coverage degree k ,  and the desired error margin 

in weather da ta  readings. In addition, since calculation of fire weather indexes only depend 

on these factors, we are able to relate the coverage degree to the desired error margin in 
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calculating fire weather indexes. Therefore, given a desired accuracy for fire weather indexes, 

the required coverage degee  can be obtained. 

Aside from sensor characteristics, the effective sensing range of sensors is ruled by field 

conditions such as vegetation type. Thus, on site experiments with conservative assumptions 

are required for sensing range estimation. We assume that the minimum sensing range of 

all sensors is r,. Consider a disk of radius r, centered a t  arbitrary point p. Since this disk 

is small, we can assume that the weather readings are stable in the disk and represented 

by the values a t  point p. We use the temperature for the discussion, however, the same 

argument is applicable to other factors. Define random variable T, as the reading of an 

individual sensor inside the disk. The statistical population is the set of all readings from 

sensors inside the disk. Each sample reading is thus drawn from a normal distribution with 

mean LLT and standard deviation CJT, where p~ is the mean of all sensor readings, and OT 

depends on the error in readings. 

Calculating the exact value of p ~ ,  which also represents the temperature at  point p, 

requires averaging over all readings from infinite number of sensors inside the disk. However, 

an  estimate can be easily obtained by sampling a number of readings. The  estimate known 

as sample mean, p:T, is calculated as the average of all samples. 

where tis are the individual sensor readings and k is the number of samples. As the number 

of samples is increased, the sample mean becomes closer to the exact value of the population 

mean. The  error between the sample mean and the population mean, hT = JpT - cTI, is 

calculated as follows [50] 

where z is the standard normal distribution, a is the length of the confidence interval, OT 

a can be derived from the is the population standard deviation, and k is the sa,mple size. zT 

table of standard normal distribution. Rearranging the formula, we can solve for the sample 

size necessary to produce results a.ccurate to a specified confidence and error margin. 

Now, given a confidence value of 100(1 - a)%, and standard deviation of OT, we can 

determine the sample size required to estimate the population mean p~ within +JT error 
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margin. p~ depends on the current temperature a t  point p, and UT depends on the error in 

readings and is ruled by sensor specifications. For example, the Sensirion S H T l l  tempera- 

ture sensor used in fireboard has an error margin of 3~0.5"C. The  error is usually interpreted 

as 2uT, thus in this case we have fJT = 0.25. 

The number of required samples can be interpreted as the number of required sensors 

inside the disk of radius r,. Since each sensor is not more than distance r ,  from point p, 

the number of required sensors is equal to the coverage degree a t  point p. The following 

example verifies and illustrates the above analysis. 

Assume fireboards are used in the forest fire detection system. From sensor specifications, 

it is known that  the error in temperature readings is 0.5"C, thus UT = 0.25. Suppose that 

we need to measure the temperature with maximum error of 0.25"C with a confidence value 

Assume the temperature is 30•‹C. We generate 4 random samples from the normal distribu- 

tion with mean p~ = 30, and standard deviation UT = 0.25 as follows. 

The sample mean is ~T = 30.07 and thus the error is (pT  - @TI = 0.07 which is within the 

required error bound. To verify the confidence interval, the experiment is repeated 1000 

times, and it is observed that in more than 95% of the times, the error is within the required 

range verifying the confidence value. 

F'rom the above argument it is easy to see that the required coverage degree impacts 

the accurate measurement of weather data and consequently fire weather indexes. Since the 

formulas for ca.lculating fire weather indexes are quite complicated, a simple closed form 

relationship cannot be derived 1521. However, we can calculate the error bound numerically. 

Accuracy in Fire Weather Indexes 

The coverage degree k, influences the accuracy of weather da ta  measurement and thus 

calculation of fire weather indexes. In this section we study the relationship between coverage 

degree and errors in calculation of fire weather indexes. Therefore, given a desired accuracy 

for fire weather indexes, the required coverage degree can be obtained. As indicated by 

Fig. 3.7 and 3.8, a small change in temperature causes different amount of displacement in 
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Figure 3.11: A field with two hot spots. 

FFMC and FWI calculations based on the current value of relative humidity. This can be 

related to the slope of the tangent line on the corresponding curve. We choose the range 

a t  which the slope is maximum a,nd calculate the errors in measurement of temperature 

and relative humidity. We use these values to compute the maximum errors in fire weather 

indexes. Fig. 3.10 shows the observed error in FFMC and FWI for various coverage degrees. 

As indicated by the figure, a higher coverage degree results in smaller errors in calculation of 

fire weather indexes. Therefore, given a desired error margin, the required coverage degree 

can be obtained. 
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(a) k = 1 (b) k = 4 (c) k = 8 

Figure 3.12: Coverage achieved in the field and host spots. 

Hot spot Coverage 

In forest fire detection systems, some areas with higher fire potential and human neighbor- 

hoods are considered more important and thus should be monitored with higher coverage 

degrees. These areas are commonly referred to as hot spots. We extend our distributed 

k-coverage algorithm, DRKC, to provide different degrees of coverage in different areas as 

required by the application. This requires sensor nodes to know their locations through 

GPS or localization algorithms [lo].  The location of the hot spots, and the required cover- 

age degrees are specified by the application a.nd communicated to all nodes. Knowing the 

location of the hot spots, each node can determine the required coverage degree for itself. 

For example, in Fig. 3.11, nodes inside the small polygon choose a coverage degree of 4. 

In DRKC, the initial weights of sensor nodes are assigned based on their required coverage 

degree. Each node decides to activate some of its neighbors unless it finds itself sufficiently 

covered. Thus, the required coverage degrees can be achieved in a straightforward manner. 

A sample result of the algorithm is shown in Fig. 3.12, where it is required to 1-cover the 

field while two regions in the middle (hot spots) need higher coverage degrees, 4 and 8. The 

figure shows the percentage of points inside each region which achieve the required coverage 

degree. The results indicate that in each spot, our DRKC algorithm indeed achieves the 

required coverage degree while it provides 1-coverage in the rest of the area. 

3.4.4 Hardware and Software Requirements 

For our design, we recommend using MICAz motes, MPR2400, manufactured by Crossbow 

Technology Inc. [45]. The mote platform as shown in Fig. 3.13(a), hosts the processor, 

memory modules, and radio transceiver. Sensor boards are connected to the mote platform 
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Figure 3.13: (a) The  Crossbow MICAz mote platform, and (b) The  Crossbow fireboard 
(MTS420) 

via a 51-pin connector. Fig. 3.13 (b) shows the sensor board, WITS420, commonly known 

as fireboa,rd. Fireboard is compatible with MICAz and has temperature and humidity, 

barometric pressure, GPS, ambient light sensors, and dual-axis accelerometer. The GPS 

module on fireboard is optional and is not present in MTS400 model. While Mica motes 

are mechanically robust by design, to protect them from damage, we use MIH2400 housings 

manufactured by Crossbow. While protecting the mote, the housing does not obstruct 

sensing and communication functionality. 

The  Crossbow mote platform runs TinyOS [51] which is an open source, component- 

based, event-driven operating system for sensor node with very limited resources. TinyOS 

is largely written in nesC [43] programming language. TinyOS provides a set of libraries 

for controlling radio communication, and operating various sensor boards connected to the 

mote. The biggest advantage of TinyOS is providing application code portability meaning 

that application level code is independent of the underlying mote platform. Thus changing 

the platforn~ requires simply recompiling the source code for the new platform. All the 

protocols need to be implemented in nesC and compiled for the specified mote platform. 

The  protocols can use higher level services provided by TinyOS in order to implement their 

functionality. 

The  da ta  processing center runs a relational database to record the data reported by 

cluster heads. The database is available to remote clients and web based applications. The 
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applications provide remote access to the forest field for experimental, data  analysis, and 

management purposes. 



Chapter 4 

Conclusions and Future Work 

This chapter summarizes the conclusions of this thesis and outlines some future research 

directions for this research. 

4.1 Conclusions 

We presented a novel approach to solve the k-coverage problem in wireless sensor networks. 

We modelled the k-coverage problem as a set system for which an optimal hitt,ing set 

corresponds to an optimal solution for k-coverage. We proposed an approximation algorithm 

for computing near-optimal hitting sets efficiently. We proved that  our algorithm produces a 

solution that is a t  most a logarithmic factor from the optimal. We compared our algorithm 

against the currently-known k-coverage algorithms and showed that  it runs up to four orders 

of magnitude faster, while producing same or better solution sizes than the other algorithms. 

The target of our k-coverage algorithm is large-scale sensor network applications such 

as forest fire detection systems deployed over wide areas. However, it is difficult to control 

such applications in a centralized manner. Thus, we designed our algorithm in a way 

that minimizes the reliance on global information, and therefore, can be implemented in 

a distributed ma.nner. We designed and implemented a fully distributed version of our 

algorithm that uses only local information. Our distributed algorithm has low message 

complexity and it does not require sensors to know their locations. Location unawareness is 

a valuable feature especially for large-scale networks where many sensors are deployed. This 

is because sensors do not need to  be equipped with GPS systems, a significant cost saving. 

Moreover, while localization protocols exist for sensors without GPS, these protocols impose 
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communication and computation overheads on sensors. Our k-coverage algorithm saves 

these overheads by not requiring localization protocols. We implemented our distributed 

k-algorithm and compared it against two other distributed algorithms in the literature. 

Our comparison showed that our algorithm: (i) converges much faster than the others, 

(ii) activates near-optimal number of sensors, and (iii) significantly prolongs the network 

lifetime because it consumes much less energy than the other algorithms. We also extend 

DRKC to provide hot spot coverage which is required for some applications where more 

important areas such as human neighborhood need a higher coverage degree. Simulation 

results verify that  our algorithm indeed achieves the required coverage degree for different 

regions inside the field. 

Finally, we presented the design of a wireless sensor network for early detection of for- 

est fires. Our design is based on the Fire Weather Index (FWI) System designed by the 

Canadian Forest Service [12]. The FWI System uses weather observations to produce a set 

of indexes which indicate the likelihood of the current weather conditions to cause a fire. 

We presented a new aggregation paradigm to efficiently calculate these indexes in a wireless 

sensor network. We established a relationship between the desired accuracy of the system 

and the required coverage degree. 

4.2 Future Work 

The research presented in this thesis can be extended in several directions. We summarize 

some of these directions below. 

In this work, we used a disk sensing model which is widely used in the literature for its 

simplicity. In this model, the sensing capability of a sensor node is represented by a 

disk and assumed to be uniform in all directions. An event that occurs within the disk 

is always detected with probability 1 while any event outside the disk goes undetected. 

This model, does not effectively reflect the probabilistic nature of sensing. Thus, 

several probabilistic sensing models have been developed by the research community. 

These models may help design a more realistic framework for coverage algorithms. 

Experimental studies need to be carried out to study the sensing behavior of various 

sensor in order to verify and customize these models. 

We used the necessary and sufficient node density for k-coverage presented in [32]. 
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These bounds, however, are not tight to provide a good measure for evaluation and 

comparison of k-coverage algorithms. Providing better bounds could be another di- 

rection for our future research. 

While simulation provides a good starting point for evaluation and comparison of 

algorithms, many factors are not revealed until a practical experiment is carried out. 

Implementation of our algorithm and building a prototype of our design will provide 

valuable insights by studying the performance of the system in action. 

In forest fire detection, most of the data reported by sensors are likely to be corre- 

lated. Thus aggregation models axe extremely helpful in reducing the communication 

overhead and energy consumption. Studying and modelling the data correlation helps 

designing a better correlation scheme. In addition, aggregation may be integrated 

with routing to further exploit such correlations. 

Finally, addressing environmental concerns are important directions for future re- 

search. Although there has been a vast amount of research on sensor network appli- 

cations, little has been done to address the environmental pollution caused by sensor 

networks themselves. Ironically, one of the applications of sensor networks is environ- 

mental study and pollution monitoring. The  effect of sensor network deployments on 

wild life and natural habitat is largely ignored. Unless sensor nodes are equipped with 

a continuous energy source such as solar power, they need to be undeployed to clean 

the field for a new deployment. The question of how to undeploy sensor networks has 

not been considered by the research community yet, while there has been a lot of work 

on deployment algorithms and strategies. 



Appendix A 

Equations for the Fire Weather 

Index System 

This Appendix lists all equations of the FWI System used in this thesis. These equations 

are from [52] and are reproduced here for the sake of completeness of the thesis. 

A.1 Symbols in the Equations 

All quantities in the numbered equations are represented in the following list by single let- 

ters, sometimes with subscripts. The symbols are arranged in groups according to their 

place in the whole. 

W e a t  her 

T - noon temperature, O C  

H - noon relative humidity, % 

W - noon wind speed, Km/h 

r, - rainfall in open, measured once daily a t  noon, mm 

T J  - effective rainfall, FFMC 

r., - effective rainfall, DMC 

rd - effective rainfall, DC 

Fine Fuel M o i s t u r e  Code ( F F M C )  
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m, - fine fuel moisture content from previous day 

m,, - fine fuel moisture content after rain 

m, - fine fuel moisture content after drying 

Ed - fine fuel EMC for drying 

E, - fine fuel EMC for wetting 

k, - intermediate step in calculation of lid 

kd - log drying rate in FFMC, loglo mlday 

kl - intermediate step in ca.lculation of k, 

k,, - log wetting rate, loglo mlday 

F, - previous day's FFMC 

F - FFMC 

Duff Mois tu re  C o d e  ( D M C )  

Ado - duff moisture content from previous day 

lVIT - duff moisture content after rain 

M - duff moisture content after drying 

K - log drying rate in DMC, loglo M/day 

L, - effective day length in DMC, hours 

b - slope variable in DMC rain effect 

Po - previous day's DMC 

P, - DMC after rain 

P - DMC 

Drought  C o d e  (DC)  

Q - moisture equivalent of DC, units of 0.254 mm 

Q, - moisture equivalent of previous day's DC 

Q, - moisture equivalent after rain 

V - potential evapotranspiration, units of 0.254 mm water /day 

Lf - day length adjustment in DC 

Do - previous day's DC 

D, - DC after rain 

D - D C  
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Fire Behavior Indexes (ISI, BUI, FWI) 

f (W) - wind function 

f (F) - fine fuel moisture function 

f (D) - duff moisture function 

R - Initial Spread Index (ISI) 

U - Buildup Index (BUI) 

B - FWI (intermediate form) 

S - FWI (final form) 

A.2 Equations and Procedures 

Fine Fuel Moisture Code ( F F M C )  

Ed + (m, - Ed) x 10-lid 

Ew - (Ew - m,) x 

59.5(250 - m,)/(147.2 + m )  
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Table A. l :  Effective day lengths (L,) for DMC. 
?\/Ionth Jan Feb Mar A m  May June Julv Aun S ~ D  Oct Nov Dec 

Table A.2: Day length factors (Lf)  for DC. 
Month Jan  Feb Mar  AD^ Mav June Julv AUE S ~ Q  Oct Nov Dec 

Duff Moisture Code (DMC) 

re = 0 . 9 2 ~ ~ - 1 . 2 7  

n/lo = 20 + e(5.6348-Po/43.43) 

I 100/(0.5 + 0.3P0) if Po 5 33 

b = 14-1.31nPo if 33 < Po 5 65 

6.2 In Po - 17.2 if Po > 65 

M,. = A&, + 1000re/(48.77 + br,) 

P,. = 244.72 - 43.431n(n/l, - 20) 

K = 1.894(T + 1.1)(100 - H)L, x 

P = P, + 100K 

Drought Code (DC) 
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Initial Spread Index (ISI) 

f ( W )  = 
e0.05039MI 

f (F) = 91.9e-0.'"sm [1 + m5.31 /(4.39 x lo7)] 
R = O.2O8f(W) f ( F )  

Buildup Index (BUI) 

U = 

Fire Weather Index (FWI) 
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