
THE SEMANTICS AND APPROXIMATION FOR THE

SKYLINE OPERATOR

by

Wen Jin

M.A., Southeast University, 1995

Ph.D Candidate, Fudan University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

© Wen Jin 2007

SIMON FRASER UNIVERSITY

Summer 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Wen Jin

Degree: Doctor of Philosophy

Title of thesis: The Semantics and Approximation for the Skyline Operator

Examining Committee: Dr. Qianping Gu

Chair

Dr. Jiawei Han, Senior Supervisor

Dr. Martin Ester, Supervisor

Dr. Ke Wang, Supervisor

Dr. Binay Bhattacharya, Supervisor

Dr. Wo-Shun Luk, SFU Examiner

Dr. Joerg Sander, External Examiner,

Professor of Computer Science,

University of Alberta

Date Approved: 06/1 2 (2 0 0 6

ii

~.~.: SIMON FRASERI-1brary
~ UNIVERSITY

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright isdeclared on the title page ofthis work, has granted toSimon Fraser
University the right to lend this thesis, project orextended essay tousers of the Simon Fraser University
Library, and tomake partial or single copies only for such users or in response toa request from the library
ofany other university, orother educational institution, on its own behalf orfor one of its users.

The author has further granted permission toSimon Fraser University tokeep ormake a digital copy for use
in its circulating collection (currently available to the public atthe "Institutional Repository" link of the SFU
Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the
content, totranslate the thesis/project orextended essays, if technically possible, toany medium orformat
for the purpose ofpreservation ofthe digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may
be granted by either the author or the Dean ofGraduate Studies.

It isunderstood that copying orpublication of this work for financial gain shall not be allowed without the
author's written permission.

Permission for public performance, or limited permission for private scholarly use, ofany multimedia
materials forming part of this work, may have been granted by the author. This information may be found on
the separately catalogued multimedia material and inthe signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in
the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

The skyline operator of a d-dimensional dataset, which returns the points that are not

dominated by any other point on all dimensions, has been well recognized its importance in

preference queries and multi-criteria decision making applications. Many existing algorithms

have been developed to improve the efficiency in computing the exact skyline objects in the

full space. However, few previous work involves the following problems: (1) Why and in

which subspaces is (or is not) an object in the skyline? (2) How to approximate the skyline

objects in a reasonable way? (3) Can the notion of skyline operator facilitate other database

operators? (4) How could skyline be computed efficiently over multiple relational tables?

In this work, we explore the semantics of skyline in subspaces, study the approximate

skyline objects in databases, apply the notion of skyline to the efficient processing of other

database operations such as ranked queries, and propose solutions to implement skyline

operator on multiple relations. We develop a class of novel and efficient methods to fulfill

these tasks in large databases. A comprehensive performance study on both synthetic

datasets and real datasets demonstrates that our proposed methods are not only efficient

but also effective.

III

Acknowledgments

First of all, my deep gratitude goes to my supervisor and mentor, Dr. Jiawei Han, for

his continuous encouragement, guidance and support during the course of this work. His

creative thinking and vision and as well as his persistence and industriousness has been

inspiring me during my study and will always give me strength in my future career.

I am very thankful to my supervisor, Dr. Martin Ester, for his insightful comments

and support during the discussions about research, for his valuable advices and suggestions

about career development as a mentor. I am very fortunate to have his help in introducing

me to become a Christian.

I wish to express my thanks to my committee members, Dr. Ke Wang and Dr. Binay

Bhattacharya. Their helpful discussions enable me to make improvements to this thesis.

My gratitude and appreciation also goes to Dr. Wo-Shun Luk and Dr. Joerg Sander in

University of Alberta for agreeing to serve as examiners and for their remarks that help me

to better present the results of my research and improve the quality to the thesis.

Part of this work is done in collaboration with Dr. Jian Pei, Dr. Yufei Tao in the Chinese

University of Hong Kong and Dr. Anthony K. H. Tung in National University of Singapore.

I thank them for the knowledge and skills they imparted through the collaboration. Working

with them is always so enjoyable and fruitful.

I also want to thank Mr. Richard Frank for proofreading my thesis. I would also like to

thank many people in our department, support staff and faculty, for always being helpful

over the years. A particular acknowledgement goes to Rong Ge, Zengjian Hu, Haiming

Huang, Flavia Moses, Benjamin C. M. Fung, Val Galat, Fereydoun Hormozdiari, Junqiang

Liu, Yuelong Jiang, Benkoczi Robert, Qiaosheng Shi, Yabo Xu and Senqiang Zhou.

Finally, my warmest thanks go to my parents for their patience, support and love in my

whole life.

iv

Contents

Approval

Abstract

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction

1.1 Motivation of the Thesis

1.2 Thesis Plan .

2 Background and Related Work

2.1 Full Space Skyline Computation Approach .

2.1.1 Basic Divide and Conquer Approach (BDC) .

2.1.2 Extension to BDC .

2.1.3 External Algorithms for BDC

2.1.4 Basic Block Nested Loop (BNL)

2.1.5 Sort-Filter-Skyline Computation (SFS) .

2.1.6 Linear Elimination Sort For Skyline (LESS)

2.1.7 B-tree Minimum Value Index Approach (MVI)

2.1.8 R-tree Nearest Neighbor Approach (NN) ..

2.1.9 R-tree Branch and Bound Approach (BBS)

v

ii

iii

iv

v

x

xi

1

1

3

4

5

5

6

7

7

8

9

9

11

13

2.1.10 The Bitmap Index Approach 15

2.2 Subspace Skyline Computation . . . 16

2.2.1 Computing Subspace Skylines via Multiple Anchors 17

2.2.2 Computing SKYCUBE with Sharing Strategies. . . 18

2.2.3 Updating SKYCUBE with the Compressed Structure 19

2.2.4 Mining Frequent Skylines in Subspaces . 20

2.2.5 Mining Strong Skylines in Subspaces 21

2.3 Miscellaneous Approach 21

2.3.1 Skyline Algorithms for Distributed Environments. 21

2.3.2 Skyline Computation in Mobile Environments. 22

2.3.3 Skyline Computation in Data Streams 22

2.3.4 Skyline Computation in Time Series Databases 23

2.3.5 Skyline Computation with Partially-Ordered Domains 24

2.3.6 Cooperative Database Retrieval Using High-Dimensional Skylines. 24

2.3.7 K-Dominant Skylines Computation. 25

2.3.8 Skyline Cardinality Estimation 26

3 The Semantics of Skyline

3.1 Motivation .

3.2 Multidimensional Subspace Skyline and a Unique-Value Case

3.2.1 Subspace Skyline .

3.2.2 Subspace Skylines in Unique Value Data Sets: A Simple Case

3.3 Skyline Semantics .

3.3.1 Key Observations and Ideas.

3.3.2 Skyline Groups and Decisive Subspaces

3.3.3 Semantics of (Subspace) Skyline Objects.

3.3.4 Answering Skyline Membership Queries

3.4 Subspace Skyline Analysis

3.4.1 Intuition

3.4.2 Skyline Group Lattice

3.4.3 Skyline Groups and Skyline Objects

3.4.4 OLAP Analysis on Skylines

3.5 Subspace Skyline Computation ..

vi

27

28

31

32

32

33

34

35

38

39

40

40

41

42

44

45

3.5.1 Finding Skyline by Sorting .

3.5.2 Top-down Subspace Enumeration Tree

3.5.3 Algorithm Skyey

3.6 Experimental Results ..

3.6.1 Results on Real Data Set Great NBA Players' Statistics

3.6.2 Results on Synthetic Data Sets

3.7 Summary

4 Approximate Skyline: Thick Skyline Operator

4.1 Motivation .

4.2 The Thick Skyline Operator .

4.2.1 Problem Definitions .

4.2.2 The Task of Mining Thick Skylines.

4.3 A Sampling-and-Pruning Method

4.3.1 Sampling Strategies ...

4.3.2 Strong Dominating Relationship and the Algorithm

4.4 An Indexing-and-Estimating Method .

4.4.1 Bounding e-neighbors in Minimum Value Index

4.4.2 Slide Windows and the Algorithm

4.5 Microcluster-based Method

4.5.1 CF-tree and Microclusters .

4.5.2 Skylining Microclusters and the Algorithm

4.5.3 Thick Skyline Operator and Data Mining Applications .

4.6 Experimental Results.

4.6.1 Efficiency Tests

4.6.2 Effectiveness Tests

4.7 Summary .

5 Skyline and Database Ranked Queries

5.1 Introduction.

5.2 Foundations.

5.2.1 Top-k Ranked Queries and Skylines

5.2.2 MBR and Microcluster .

5.3 Computing and Indexing Layered Skylines .

Vll

45

46

46

50

50

53

56

58

59

62

62

63

64

64

66

69

69

71

75

75

77

81

82

82

85

86

88

88

91

91

94

95

5.3.1 A Naive-based Method .

5.3.2 A Topology Sorting-based Method

5.4 A KNN-based Sweeping Approach for Top-k Queries

5.4.1 Sweeping over Blocks .

5.4.2 Sweeping within Layered Blocks

5.5 A Grid-based Sweeping Approach for Top-k Queries

5.5.1 Shell Grid Partition of CF-tree

5.5.2 Ranking Algorithm .

5.5.3 Error Bound in Approximate Solution

5.6 Experimental Results .

5.6.1 Evaluations of Algorithms BBR and SGR

5.6.2 Comparing with Algorithms of Onion and PREFER

5.7 Revisit of Top-k Ranked Queries

5.8 Summary .

6 The Multi-Relational Skyline Operator

6.1 Introduction.

6.2 Preliminaries

6.3 Algorithms for Skylines over a Single Join

6.3.1 A Naive Approach for Skyline Join

6.3.2 Integrating with Sort-Merge Join .

6.3.3 Integrating with Nested-Loop Join

6.4 Cardinality Estimate of Joined Skylines

6.4.1 Problem of a Naive Solution.

6.4.2 The Model .

6.4.3 The Size of the Join Table.

6.4.4 The Expected Number of Skyline Objects in the Join Table

6.4.5 Upper Bound

6.4.6 Lower Bound

6.5 Extending to Multiple Joins

6.6 Experimental Evaluation.

6.7 Conclusion .

Vlll

95

96

97

97

· 101

· 103

· 103

· 106

· 110

· 111

· 112

· 114

· 117

· 119

121

· 121

· 125

· 128

· 128

· 128

132

134

· 134

· 135

· 135

135

136

· 138

· 138

· 139

· 142

7 Summary and Conclusions

7.1 Summary of the Thesis.

7.2 Conclusion .

8 Ongoing and Future Work

8.1 Answering Subspace Skyline Queries by Materializing Signatures

8.2 Mining Subspace Thick Skyline Objects

8.3 Mining Interesting Non-Skyline Objects

8.4 Mining Microeconomic Dominating Neighbors .

Bibliography

ix

143

· 143

· 145

146

· 146

· 147

· 147

· 148

149

List of Tables

2.1 Minimum Value Index 10

2.2 Heap Contents 15

2.3 The Bitmap Approach 16

3.1 A Set of Objects as Our Running Example 35

3.2 Some Skyline Players and the Corresponding Decisive Subspaces 52

3.3 Number of Skyline Players in Subspaces with Different Dimensionality 52

3.4 Number of Skyline Objects in Subspaces on Synthetic Data Sets 55

4.1 The Index Approach

4.2 Thick Skyline Size .

5.1 Example of Expanding Nodes in R-tree (1)

5.2 Example of Expanding Nodes in R-tree (2)

6.1 Customer(C) Table .

6.2 Order(O) Table .

6.3 Joined Table of Customer and Order (1)

6.4 Joined Table of Customer and Order (2)

6.5 Group-by D1 (CNum) in Customer.

6.6 Group-by D5 (CNum) in Order

6.7 Customer'

6.8 Order' ..

6.9 Sort Customer by D 2 (Age)

6.10 Sort Order by D6 (Quantity)

6.11 Cardinality of Different Datasets

x

70

86

· 100

· 103

· 123

· 123

· 124

· 124

· 126

· 126

· 131

· 131

· 133

· 133

· 140

List of Figures

2.1 Illustration of BDC .

2.2 Example Data.

2.3 Discovery of i .

2.4 Discovery of a .

2.5 NN Partitioning for 3-dimensions..

2.6 Recursion Tree

2.7 R-tree example

2.8 An Anchor Al

2.9 More Anchors.

5

10

12

12

13

14

14

17

17

3.1 An Example Showing the Intuition . 28

3.2 The Algorithmic Framework of Searching Subspace Skylines in No-sharing

Data Sets . 34

3.3 The Subspaces Where Object q in Table 3.1 Belongs to the Skyline. 39

3.4 Skyline Group Lattice for Table 3.1 44

3.5 A Top-down Subspace Enumeration Tree 46

3.6 The Skyey Algorithm. 50

3.7 Runtime vs. Cardinality on Independent Data Sets 54

3.8 Runtime vs. Cardinality on Correlated Data Sets . 54

3.9 Runtime vs. Cardinality on Anti-Correlated Data Sets 54

3.10 Runtime vs. Dimensions on Independent Data Sets . 56

3.11 Runtime vs. Dimensions on Correlated Data Sets. . 56

3.12 Runtime vs. Dimensions on Anti-Correlated Data Sets 56

4.1 Skyline Query of New York Hotels . 59

xi

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Thick Skyline Pattern of New York Hotels

Sampling Objects to Pruning..

Evaluate Neighborhood Scope.

Evaluate Neighborhood Scope in 3-d Case

Microclusters of CF-tree .

Time vs. Dimensions on Independent Data Sets .

Time vs. Dimensions on Correlated Data Sets . .

Time vs. Cardinality Dimensions on Independent Data Sets

Time vs. Cardinality Correlated Data Sets

Time vs. Eps on Independent Data Sets . .

#of Comparisons vs Cardinality on Independent Data Sets

#of Thick Skyline vs. Cardinality on Independent Data Sets

#of Thick Skyline vs. Eps on Independent Data Sets .

Effects of Microclusters(I)

Effects of Microclusters(II)

60

66

72

73

76

83

83

83

83

83

83

84

84

84

84

5.1 Top-k Objects vs. Skyline

5.2 Multilayer Skyline

5.3 Contact Points to a CF-tree Microcluster

5.4 Sweeping over R-tree Blocks.

5.5 Layered-Skyline in Block N4 .

5.6 Linked List for Layered Skyline in a Block .

5.7 Sweeping Multilayered Skyline in R-tree

5.8 Shell-Grid Partition of Microclusters

5.9 2D SG-Partition and 3D SG-Partition

5.10 Sweeping a Shell Grid

5.11 Error Bound of Grid-based Answer

5.12 Query Time vs #of Results in Correlated Data Set

5.13 Query Time vs #of Results in Independent Data Set

5.14 Effect of Eps(l)

5.15 Effect of Eps(2)

5.16 Effect of Eps(3)

5.17 Preprocessing Time.

XII

90

93

98

99

· 102

· 102

· 102

· 104

· 105

· 107

· 110

· 111

· 111

· 112

112

113

· 113

5.18 Index Size vs #of Layers on Correlated Data Set .

5.19 Index Size vs #of Layers on Independent Data Set

5.20 Query Time vs #of Results on Correlated Data Set.

5.21 Query Time vs #of Results on Independent Data Set.

5.22 #of Tuples Visited vs #of Results on Independent Data Set

5.23 #of Tuples Visited vs #of Results on Correlated Data Set

5.24 Coverage Rate vs #of Results on Independent Data Set

5.25 Coverage Rate vs #of Results on Correlated Data Set .

6.1 Comparing a; EB bj with Skylines Found So Far in Joined Table

6.2 The Size of Data Sets and #of Skylines

6.3 Runtime vs Cardinality

6.4 Runtime vs Dimensions

6.5 #of Skylines Estimate .

Xlll

· 113

· 113

· 114

· 114

· 114

· 114

· 115

· 115

· 132

· 141

· 141

· 142

· 142

Chapter 1

Introduction

1.1 Motivation of the Thesis

The skyline operator was introduced to the database systems by applying the problem of

finding the maxima of a set of points. Given a dataset with d-dimensions, the skyline is

defined as a subset which contains exactly all interesting objects. An object A is said to

be interesting if there is no other object that is better in at least one dimension and not

worse in all remaining dimensions than A. If we are traveling on vacation, for instance, it

is very useful to find a hotel which is cheap and yet in close proximity to a beach. The

hotel, by definition, would be considered part of the skyline as long as it is not worse than

any other hotel with regard to price and distance. Skyline operator is very important in

many applications such as multi-criteria decision-making and preference queries [13]. There

are many algorithms which have been developed to improve the efficiency in computing the

exact skyline objects in a full space. However, there are still many interesting problems

related to the skyline which have not been carefully solved. In this work, we aim to explore

the semantics of skyline in subspaces, study the approximate skyline objects in databases,

apply the notion of skyline to the efficient processing of other database queries such as

ranked queries, and extend the single table skyline operator to the multi-relational skyline

operator.

In the first major part of this thesis, we focus on the the fundamental problem on the

semantics of skylines: Why and in which subspaces is (or is not) an object in the skyline?

Practically, users may also be interested in skylines in any subspaces. Then, what is the

relationship between the skylines in the subspaces and those in the super-spaces? How

1

CHAPTER 1. INTRODUCTION 2

can we effectively analyze the subspace skylines? Can we efficiently compute skylines in

various subspaces? We investigate the semantics of skylines, propose the subspace skyline

analysis, and extend the full-space skyline computation to subspace skyline computation.

We introduce a novel notion of skyline gmup which essentially is a group of objects that

are coincidentally in the skylines of some subspaces. We identify the decisive subspaces

that qualify skyline groups in the subspace skylines. The new notions concisely capture the

semantics and the structures of skylines in various subspaces. Multidimensional roll-up and

drill-down analysis is introduced. We also develop an efficient algorithm to compute the set

of skyline groups and, for each subspace, the set of objects that are in the subspace skyline.

A performance study is reported to evaluate our approach.

In the second major part of this thesis, we focus on the computation of the approximation

of skyline objects. As the typical skyline query only gives users thin skylines, i.e., objects

satisfying skyline evaluation conditions. This may not be desirable in many real applications

because some non-skyline objects are almost as good as skyline objects and still attract

users. We propose a novel concept, called thick skyline, which recommends not only skyline

objects but also their nearby neighbors within E-distance. Efficient computation methods

are developed including Sampling-and-Pruning method, Indexing-and-Estimating method

and Microclusier-based method. The first two methods take advantage of the statistics or

indexes in large databases for computing thick skylines. The Microcluster-based method uses

data summarization to save computation cost and also provides a concise representation of

the thick skyline in the case of high cardinalities. Our experimental performance study

shows that the proposed methods are both efficient and effective.

In the third major part of this thesis, we focus on the efficient processing of ranked

queries based on skylines. Given a linear monotone score function s, the top-k ranked query

retrieves the best k objects according to the values of s. Existing methods for processing such

queries employ the techniques of sorting, updating thresholds, materializing views or pre­

computing convex structures etc. Motivated by the interesting relationship between the top­

k tuples and the skyline objects, we propose the novel idea of sweeping the line/hyperplane

of the score function towards the layered skyline, and quickly locate the answer points

during the sweeping. We develop efficient algorithms for the exact top-k ranked query and

the approximate top-k ranked query, and illustrate these methods can easily be plugged

into typical multi-dimensional database indexes. We experimentally demonstrate that the

proposed algorithms outperform the existing ones from different evaluating aspects.

CHAPTER 1. INTRODUCTION 3

In the fourth major part of this thesis, we focus on efficient computation of skyline over

multiple relational tables. End users may be interested in getting skyline objects from data

involved in several relations, but the cost on computing skylines on the joined table can

be increased dramatically due to its potentially increasing cardinality and dimensionality.

How to develop efficient methods to share the join processing with skyline computation is

central to the skyline query optimization on multiple relations. We systematically study the

skyline operator on multi-relational databases, and propose solutions aiming at seamlessly

integrating state-of-the-art join methods into skyline computation. To further extend the

query optimizer's cost model to accommodate skyline operator over joined tables, we also

theoretically estimate the size of joined skylines. Our experiments not only demonstrate that

the proposed methods are efficient, but also show the promising applicability of extending

skyline operator to other typical database operators such as join and aggregates.

1.2 Thesis Plan

In the next chapter, we present background materials and previous works that relate to

the central topic of this thesis. These include an introduction to the skyline operator

and previous works in computing skyline objects and its variants of this problem in large

databases. In Chapter 3, we study the semantics of skylines, propose the subspace skyline

analysis, and extend the full-space skyline computation to subspace skyline computation. In

Chapter 4, we present a new thick skyline operator which not only returns skyline objects but

also some non-skyline objects in their e-neighborhoods. Furthermore, we develop efficient

methods for mining thick skylines. In Chapter 5, we study the relationship between the

ranked queries and skyline objects, and propose efficient algorithms based on the novel

idea of sweeping the line/hyperplane of the score function towards the layered skyline, and

quickly locating the answer points during the sweeping. In Chapter 6, we propose new

methods in computing skyline over joined relational tables. In Chapter 7, we summarize

the contribution of the thesis. In the last chapter some possible future works based on this

thesis will be presented.

Chapter 2

Background and Related Work

The skyline computation [13] originates from the maximal vector problem in computational

geometry, which was proposed by Kung et al. [57J. Basically, let V be a set of n d­

dimensional vectors and for any vector v E V, let Xi (v) denote the ith component of v. A

dominating relationship ~ is defined on V in a natural way, that is, for v, U E V, v ~ U

if and only if Xi(V) ~ Xi(U) for all i = 1, ... , d. For v E V, v is defined to be a maximal

element 1 of V if there does not exist U E V such that v ~ u and u 1- v [57]. Earlier work

[9, 10, 65, 84] on computing the skyline was algorithmic in nature where all the data was

assumed to be available in memory, and no attention was paid to making the algorithms

external. Borzsonyi et al. first introduced the maximal vector as a notion of the "skyline

operator" to the databases community [13]' and studied the efficient ways of computing

skyline in the context of large datasets. It attracted much attention by researchers and

many algorithms were developed on this topic.

This chapter surveys existing approaches for computing skylines and the variants of

this problem in large databases, namely: (1) full space skyline computation approach; (2)

subspace skyline computation approach and (3) miscellaneous approach.

1In the original definition, all criteria in dimensions are to be maximized, while many algorithms are
designed for the criteria to be minimized. The minimum criteria and maximal criteria are actually equivalent
to some extent by a reversal of axis.

4

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Full Space Skyline Computation Approach

2.1.1 Basic Divide and Conquer Approach (BDC)

5

Kung et al, present a basic divide-and-conquer algorithm (BDC) for maximal vector [57],

which works as follows: (1) Sort dataset V in each of k dimensions and that the sorted

dataset V = {VI, ... , vn } is arranged as a sequence VI :::; V2 :::; ... :::; Vn along one of the

dimensions (say di) . Choose the median mi of V in di , and partition V into two parts

PI = {V1, ... ,Vnj2} and P 2 = {V nj2+1,""Vn } , with respect to the the sorted order over

di (here mi is Vnj2). (2) Find skyline 51 of Hand 52 of P 2 recursively partitioning PI and

P2 until one partition contains only one tuple. (3) Find the overall skyline as the result of

merging 51 and 52 by eliminating those tuples of 52 which are dominated by a tuple in 51.

Note that none of the tuples in 51 can be dominated by a tuple in 52 because a tuple in 51

is better in dimension dp than every tuple of 52.

Figure 2.1: Illustration of BDC

As shown in Figure 2.1, the trick is to partition both 51 and 52 according to the me­

dian mj for some other dimension d), and here four partitions 5 1,1, 5 1,2, 52,1 and 52,2 are

obtained. Now, it needs to merge 51,1 and 52,1, 5 1,1 and 5 2,2, 5 1,2 and 52,2, Note that it

actually need not merge 51,2 and 52,1 since the tuples of these partitions are incomparable.

Merging 5 1,1 and 52,1 (and the other pairs) is done recursively. That is, 51,1 and 5 2,1 are

again partitioned. The recursion of the merging function terminates if all dimensions have

been considered, or if one of the partitions is empty, or contains only one tuple.

BDC method is theoretically the best known algorithm for the worst case, in the order

of O(n(log(n))k-2) for k 2: 4 and O(nlog(n)) for k = 2,3. Unfortunately, this is also the

complexity of the algorithm in the best case.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Extension to BDC

6

Kung et al. proposed an algorithm [10, 76] which achieved expected running time linear in

n for the dataset under the CI assumptiorr'. To find the maxima of a set V of n vectors,

the algorithm partitions V into two sets A and E, each having n/2 vectors. It recursively

finds the maxima of A and E, call MA and ME respectively. The set of maxima vectors of

V is the set of maxima of MA U ME. To find the set of maxima of MA U ME, BDC method

is applied to MA U ME. Unlike the sorting process performed for partitioning the dataset in

BDC, this method need not sort the data. It stores the vectors in an n x d array of scalar

values, and each vector is initially represented as a pair of integers which define the top and

bottom endpoints of a segment in the array. Partition into further sub-partitions can be

accomplished by taking the arithmetic mean of the endpoints as defining two new segments

[10].

Bentley et al. applied virtual point technique to BDC approach and developed a fast

linear expected time (FLET) [9]. Under the UI assumption'', a virtual point x not necessarily

an actual point in the set is determined so that the probability that no point from the set

dominates it is less than lin. The set of points is then scanned, and any point that is

dominated by x is eliminated. It is shown that the number of points x will dominate, on

average, converges on n in the limit, and the number it does not is o(n). It is also tracked

while scanning the set whether any point is found that dominates x. If some point did

dominate x, it does not matter that the points that x dominates were thrown away. Those

eliminated points are dominated by a real point from the set anyway. BDC is then applied

to the o(n) remaining points, for a O(kn) average-case running time. This happens at least

(n - l)/n fraction of trials. In the case no point was seen to dominate x, which should

occur less than lin fraction of trials, BDC method is applied to the whole set. However,

BDC's O(nlogk-2(n)) running time in this case is amortized by lin, and so contributes

O(logk-2(n)), which is o(n). Thus, the amortized, average-case running time of FLET is

O(kn). FLET is no worse asymptotically than BDC in worst case.

2Consider the following properties of a set of points: (a) (independence) the values of the points over
a single dimension are statistically independent of the values of the points along any other dimension; (b)
(distinct values) points (mostly) have distinct values along any dimension; and (c) (uniformly) the values of
the points along anyone dimension are uniformly distributed. The properties of independence and distinct
values are called component independence (CI).

3The properties of uniformly distributed, independence and distinct values are called uniform indepen­
dence (VI)

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.3 External Algorithms for BDC

7

The BDC method is efficient only for small datasets. If the entire dataset can not fit in

memory then the algorithm performs terribly since it needs to read and write the dataset

multiple times simply for the partitioning process until a partition fits into main memory.

An easy way to improve this is to divide the whole dataset into m partitions so that each

partition can fit into main memory [13]. For each partition, BDC algorithm can be applied

to compute the skyline for that partition. Pairwise merging has to be done for each partition

to compute the final result in a bottom-up way. During the merging for each two partitions,

multi-way partitioning has to be done again to make sure that the two sub-partitions can be

merged in main memory. Although the I/O behavior of the BDC algorithm can be improved

to some extent, it is still not ideal as an external algorithm. Furthermore, this method is

not suitable for on-line processing since it cannot produce any skyline until the partitioning

phase completes. Another simple extension to the BDC algorithm is as follows: (1) load as

many tuples as fit into the available main-memory buffers; (2) apply the BDC algorithm to

this block of tuples in order to immediately eliminate tuples which are dominated by others.

Here this is referred to as an "Early Skyline". Clearly, applying an "Early Skyline" incurs

additional CPU cost, but it also saves I/O because less tuples need to be written and reread

in the partitioning steps. In general an Early Skyline is attractive if the result of the whole

skyline objects is small.

2.1.4 Basic Block Nested Loop (BNL)

A straightforward way to compute skyline is to compare each data object with all the other

objects. The naive blocked nested loop-based (BNL) approach is developed to achieve this

goal. In the context of large scale database where all the data cannot be loaded to the

memory at the same time, every tuple may have to be processed with multiple rounds. An

improved method is to keep a window of incomparable tuples during the comparison in

main memory as a list of skyline candidates [13]. When the algorithm starts, the first data

point is added to the list, while for each subsequent point p, three cases can occur: (1) if

p is dominated by any tuple in the list, it is eliminated as it is not possible to be a skyline

object; (2) if p dominates one or more points in the list, it is inserted, and all the dominated

points by p are removed; and (3) if p is neither dominated by, nor dominates, any point

in the list, it is inserted into the window if the memory capacity permits, otherwise, p is

CHAPTER 2. BACKGROUND AND RELATED WORK 8

written to a temporary file on disk. If the temporary file is not empty after an iteration is

finished, a new iteration has to be started to process the tuples in the temporary file. The

process has to be repeated until there are no tuples being written to the temporary file in

that iteration. In regards to when to output the tuples in the window as the final skyline

objects after each iteration finishes, only the tuples inserted into the window before the first

tuple is written to the temporary file can be output since those tuples have been compared

to all the tuples in the dataset. The remaining tuples in the window have to be compared

with the data in the temporary file. A technical detail during the computation is: each

time if a point dominates other points being added, it is moved to the top of the list. This

utilizes the heuristics that the new tuple being added could dominated more tuples than

the existent ones so that less number of comparisons need to be conducted.

2.1.5 Sort-Filter-Skyline Computation (SFS)

Depending on the size of main memory, BNL may require a number of passes to finish the

processing and the I/O cost could be very high. Furthermore, it requires the scanning of the

whole dataset to output the first skyline object. Chomicki et al. suggested an improvement

by proposing an algorithm called Sort-Filter-Skyline(SFS) [27]' which makes a topological

sorting of the data according to a monotonic score function. The advocated sorting is by

volume descending n7=1 t[d;] or entropy descending I:7=1In t[d;] [27, 28] where t[d;l refers

to the value of tuple t in dimension i. Similar to BNL, SFS maintains a window and

adopts multi-pass processing. The rational of topological sorting is that tuples with a lower

score have higher possibility to dominate a larger number of tuples. So if these lower score

tuples are inserted to the candidates list first, the number of comparisons can be largely

reduced that makes the pruning process much quicker. In addition, when a tuple is added

to the candidate list of the window, it is for sure a skyline point since this tuple cannot

be dominated by any tuple that has not yet been presented due to the sorting. Such a

presorting approach also enables the progressive output of skylines while BNL has to wait

till all tuples are being compared. In regards to the window operation, SFS is also better

since there is no need to replace the tuples already in the window.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.6 Linear Elimination Sort For Skyline (LESS)

9

The LESS (linear elimination sort for skyline) method [39J combines features of SFS, BNL

and FLET. LESS is similar to SFS in that it filters the records via a filter window. It sorts

the tuples by their entropy scores. The major change from SFS is that LESS combines

some computation into the external sorting process. In the first pass of the external sorting,

it uses an elimination-filter (EF) window to eliminate tuples quickly. During the sorting,

tuples with the best entropy scores seen so far are kept in the EF window. Each time when a

block of tuples are read in for sorting, they are compared with the tuples in the EF window

first. If being dominated by any tuple in it, they are dropped. At the same time, tuples

currently in the EF window are dropped if they are worse than the best of the surviving

tuples in the current block. Another combination with the external sorting is that during

the last pass of the sorting, skyline filtering starts to be conducted as well. This will always

save a pass for computing skylines. In case of an overflow of the SF window happens, LESS

requires multiple passes to be done just like SFS.

Due to the filtering in the first pass of the sorting, LESS produces less tuples for skyline

computation. At the same time, it is possible that one more pass is needed for the sorting

than the normal procedure since some memory is allocated to the EF window. If the data

is uniformly distributed along any dimension and also the values of the tuples over a single

dimension are statistically independent of the values along any other dimension, LESS has

an average-case runtime of o((kn)).

All these nested loop based methods have to scan the entire data file to return a complete

skyline, since a skyline point could have a very large score due to the large values in all

dimensions except one dimension which has a lowest value and thus appear at the end of

the sorted list. Also in regard of output order the skyline objects, all these methods have

the same fixed order which is decided by the sort order.

2.1.7 B-tree Minimum Value Index Approach (MVI)

The approaches introduced in previous subsections perform the computation of skylines

"on-the-fly", and they must basically read the whole database at least once. Now in the

remaining of this section, we summarize those index-based methods which need to visit only

a fraction of the dataset.

The Minimum-Value-Index (MVI) approach [85, 30] organizes a set of d-dimensional

CHAPTER 2. BACKGROUND AND RELATED WORK 10

points in the form of P = (PI, P2, ... ,Pd) into d lists along each dimension. A point is

assigned to the ith list (1 ::; i ::; d), if and only if its coordinate Pi on the ith axis is the

minimum among all dimensions. So if point P is in the ith list, Pi ::; Pj for any j i- i. Table

2.1 shows the index for an example dataset (chosen from [72]) in Figure 2.2. Each list is

sorted in ascending order of the points' minimum coordinate (minC, for short) and indexed

by a B-tree along that dimension. Points that have the same ith coordinate (i.e., minC) in

the ith list are called a batch. In Table 2.1, it is easy to see that points in list 2 are divided

into five batches {k}, {i,m}, {h,n}, {I}, and {J}, while each point of list 1 constitutes an

individual batch because all x coordinates are different.

Figure 2.2: Example Data

Table 2.1: Minimum Value Index

List! List2
a(1,9) minC = 1 k(9, 1) minC = 1
b(2,10) minC = 2 i(3, 2), m(6, 2 minC = 2
c(4,8) minC = 4 h(4,3), n(8, 3) minC = 3
g(5,6) minC = 5 1(10,4) minC = 4
d(6, 7) minC = 6 f(7,5) minC = 5
e(9,1O) minC = 9

k

n 10

c
o

I -j
0'--;----,-1- I I-I I I 11- x distance

I 2 3 4 5 6 7 8 9 10

price

YI O"':' (1
91 a
8 ""'I
71
6j
:1
3l
2"""

To compute the skyline, the first batch of each list is loaded by the algorithm, and the

one with the minimum minC is processed first since that is the one that has most potential

to be a skyline. The processing of a batch involves two steps: (1) the skyline points inside a

batch are computed first; (2) the skyline points are compared with the current final skyline

points list, and if they are not dominated by any of the existent skyline, they are added to

the final skyline list. After a batch in a list is processed, it moves to the next batch in the

list. The scanning of the batches keeps moving on until a batch is reached which produces a

skyline having all the coordinates smaller than the next batch (after the current batch being

processed for that list) of all the lists. To illustrate the procedure with the example index

in Table 2.1, the first batches being processed are {a}, {k} which have identical minC = 1,

in which case the algorithm handles the batch from list 1. Point a is added to the skyline

list since the current list is empty. The algorithm then loads the next batch in list 1 {b}

which has minC = 2. Since batch {k} from list 2 has a smaller minC than band k is not

CHAPTER 2. BACKGROUND AND RELATED WORK 11

dominated by a, it is inserted in the skyline. Similarly, the next batch handled is {b} which

is discarded since it is dominated by {a}. When the algorithm proceeds with batch {i, m}

and adds i to the skyline, it does not need to proceed further, because both coordinates of i

are smaller than or equal to the mine of the next batches (i.e., {c}, {h, n}) of lists 1 and 2,

hence all the remaining points (in both lists) are dominated by i. This technique can return

skyline points quickly at the top of the lists, and the order in which the skyline points are

returned is fixed. Furthermore, as indicated in Kossmann et al. [56], the index built for d

dimensions cannot be used to retrieve the skyline on any subset of the dimensions because

the list that an element belongs to may change according the subset of selected dimensions.

An exponential number of lists must be precomputed to support the queries on arbitrary

dimensions,in general.

2.1.8 R-tree Nearest Neighbor Approach (NN)

Nearest Neighbor(NN) processes the regions partitioned by the nearest-neighbor search

recursively. A monotonic distance function f of the points to the origin of the axis (e.g.

Euclidean distance in Ll form, which equals to the sum of the coordinates of p) is fed to the

algorithm as a criteria to select the nearest neighbor. The first nearest neighbor is a skyline

object since if it is dominated by another object then the other object should be the first

nearest neighbor of the origin. R-tree [41.] and its variants R+-tree [81], R*-tree [7] are used

as index structures since they are suitable for calculating nearest neighbors. As an example

to show the algorithm of NN, let us take a look at the application of the algorithm to the

2-d example dataset (chosen from [72]) in Figure 2.2 indexed by a R-tree. NN performs

a nearest-neighbor query using function f from the beginning of the axes (point 0) on the

R-tree. This can be done with any of the existing algorithms [78,43]. Point i is the nearest

neighbor to the origin with the minimum distance (mindist) of 5 and it is part of the skyline.

With this skyline object generated, all the points in the dominance region of i (shaded area

in Figure 2.3) can be pruned from further consideration. The remaining space is split into

two partitions based on the coordinates (ix,i y) of point i: (i) [O,ix) [0,00) and (ii) [0,00)

[0, iy) . In Figure 2.3, the first partition contains subdivisions 1 and 3, while the second one

contains subdivisions 1 and 2. These resulting partitions are inserted into a to-do list since

they are the only regions that need to be processed to find further skyline objects. While

the to-do list is not empty, NN removes one of the partitions from the list and repeats the

same process recursively. For instance, point a is the nearest neighbor in partition [0, i x)

CHAPTER 2. BACKGROUND AND RELATED WORK

Y10
~ 0 Y10 7 'ag, 0

o e e
9 9a c a c
8 0 8 0

7
o " 4 7 °dd

6 0
f o

6 0
f o5 3

g
5

g

4 h n 10 4 h n 10
3 0 0 3 0 0

2

d
2

d1 m 2 1 5 6 m

0 I , -,--,1 I , I-----o-x 0 I -r---.---r'--r- 1 ,--x
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Figure 2.3: Discovery of i Figure 2.4: Discovery of a

12

[0,(0), which results in the partitions [0,ax) [0,(0) (subdivisions 5 and 7 in Figure 2.4) and

[0, i x) [0, ay) (subdivisions 5 and 6 in Figure 2.4) being inserted into the to-do list. If a

partition is empty, it can be simply discarded.

High dimension creates more complications for this method. Figure 2.5(a) shows a three­

dimensional (3D) example (chosen from [56, 72]), where point n with coordinates (n x , ny,

n z) is the first nearest neighbor (i.e., skyline point). The NN algorithm will be recursively

called for the partitions (i) [0, n x) [0, (0) [0, (0) (Figure 2.5(b)), (ii) [0, (0) [0, n y) [0, (0)

(Figure2.5(c)) and (iii) [0,(0) [0,(0) [O,n z) (Figure2.5(d)). In general, for ad-dimensional

data-space, a new skyline point causes d recursive applications of NN. In particular, each

coordinate of the discovered point splits the corresponding axis, introducing a new search

region towards the origin of the axis. In the case of 3 dimensions, one subdivision (the

eighth in figure 2.5) among eight will not be searched by any query since it is dominated by

the newly discovered skyline. However, each of the remaining subdivisions will be searched

by two queries, for example, a skyline point in subdivision 2 will be discovered by both

the second and third queries. To eliminate the duplication, Kossmann et al. [56] proposed

the following elimination methods: (1) Laisser-faire: All the found skyline points so far are

stored in a hash table in main memory. When a new skyline point p is discovered, it is

probed to check whether it already exists in the hash table, and it is then either discarded

or inserted into the hash table. Though this technique removes duplicates with little CPU

overhead, it incurs very high I/O cost since large portion of the space will be accessed by

multiple queries. (2)propagate: To prevent duplicates from occurring, when a skyline point

p is found, the to-do list is scanned so that all the partitions containing p are removed

CHAPTER 2. BACKGROUND AND RELATED WORK 13

and repartitioned according to p. The new partitions are inserted into the to-do list. This

method has high CPU cost since the to-do list is scanned each time a skyline point is

discovered. (3) Merge: The main idea is to merge partitions in to-do list to reduce the

number of queries that have to be performed. Partitions contained in other ones can be

eliminated in the process. This method also incurs high CPU cost since it can be expensive

to find good candidates for merging. (4) Fine-grained partitioning: Instead of generating

d partitions after a skyline point is found, an alternative approach is to generate 2d non­

overlapping subdivisions (excluding number 1 and 8 in Figure 2.5). But this generates a

more complex problem of false hits, that is, it is possible that points in one subdivision

(e.g., subdivision 4) are dominated by points in another (e.g., subdivision 2) which makes

the algorithm impractical to produce the right results. According to the experimental

evaluation of Kossmann et al. [56], propagate method was significantly more efficient than

others (with fine-grained partitioning not implemented), but the best results were achieved

by a hybrid method combining propagate and laisser-faire.

~axis z.5. 6,
1-- _ 2 ax/sy

axis x

(a) First skyline point

(c) Second query [O,oo)[O,ny)[O,oo)

~8~-J~~4
(b) First query [O,ny),[O,oo) [0,00)

~~--;:
(d) Third query [O,oo)[O,oo)[O,nz)

Figure 2.5: NN Partitioning for 3-dimensions.

2.1.9 R-tree Branch and Bound Approach (BBS)

Branch and Bound Skyline (BBS) algorithm [72, 73] which has been proved to be I/O

optimal, takes a similar branch-and-bound paradigm as NN using an R-tree to index data.

To cope with the disadvantages of NN, BBS takes a different way to create the to-do list.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

The to-do list is a heap containing a list of MBRsjpoints. The heap is sorted according to

the minimum distance (in L1 form) of the MBRsjpoints to the origin of the axis. At the

beginning, BBS accesses the root node of the R-Tree and inserts all the entries in the root

node to the heap first, then it begins the expanding and pruning process. This is illustrated

in an example (chosen from [72]) with the data depicted in Figure 2.2 indexed by an R-tree

shown in Figure 2.7. Firstly, entries e6, e7 are inserted into the heap. Then entry e7 is

removed from the heap and expanded. e7's children e3, e4, es are then inserted into the

heap. When e3, which has the minimum distance in the heap, is expanded, the first skyline

point i is discovered and it is inserted into the skyline list. The algorithm proceeds with the

next entry e6. Among all the children of e6, only the ones that are not dominated by any

of the points in the current skyline list are inserted which results in e2 being pruned. The

next entry being processed is point h which is also pruned due to the dominance by i. The

algorithm continues in this way until the heap is empty. Figure 2.2 shows the processing

steps in a table.

Figure 2.6: Recursion Tree

R

Figure 2.7: R-tree example

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2: Heap Contents

15

Action Heap contents Skyline
points

Access root < e7,4 >< e6,6 > 0
Expand e7 < e3, 5 >< e6, 6 >< es, 8 >< e4, 10 > 0
Expand e3 < i,5 >< e6,6 >< h,7 >< es,8 >< e4, 10 >< g, 11 > {i}
Expand e6 < h,7 >< es,8 >< el,9 >< e4, 10 >< s, 11 > {i}
Expand ei < a, 10 >< e4, 10 >< s, 11 >< b, 12 >< e, 12 > {i, a}
Expand e4 < k, 10 >< g, 11 >< b, 12 >< e, 12 >< i, 14 > {i,a,k}

2.1.10 The Bitmap Index Approach

Bitmap technique [85] relies on the fact that bitmap operations are fast, and it encodes a

data point P (p = (PI, P2, ... ,Pd), where d is the number of dimensions) in bitmaps so that

whether this point is a skyline point can be simply decided from the bitmaps. Information

encoded in the bitmap contains the order of a point at each dimension while the real value

is not important any more. Each bitmap representing a point is an m-bit vector, where m

is the total number of distinct values over all dimensions. If there are m; distinct values at

dimension i, then m = ~(m;). As shown in the example of 2-d dataset (chosen from [72])

in Figure 2.2, there are 10 distinct values on each dimension and m = 20. Each value on

the ith dimension is represented by m, bits. If Pi is the jith smallest number on the ith

axis, then its rightmost (ji - 1) bits are 0, and all the remaining ones 1. Table 2.3 contains

the bitmap for points in Figure 2.2, where point a has the smallest value (1) on the x axis,

so all bits for x value of a are 1. Similarly, since y value of a is the ninth smallest on the

y axis, the rightmost 8 bits are O. To decide whether a point is a skyline point, a new bit

string needs to be created for that point. For example, point e has bitmap representation

(1111111000, 1110000000) and note that the rightmost fourth and the eighth bits equal to 1

on dimensions x and y respectively. By juxtaposing the fourth and eighth bit of every point,

the algorithm creates two bit-strings, eX = 1110000110000 and eY = 0011011111111. Each

of these bit-strings has 13 bits with one bit from each object in the dataset (with the order

from top object a to bottom object n) and each bit is highlighted in bold. The Is in the

result of eX&eY = 0010000110000 represents those points that dominate e, which are e, h,

and i in this case. Apparently, if the number is greater than 1, the considered point is not

a skyline point. To compute the whole set of skyline points, this process has to be done for

every point in the dataset.

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.3: The Bitmap Approach

id Coordinate Bitmap Representation
a (1,9) (1111111111,1100000000)
b (2,10) (1111111110,1000000000)
c (4,8) (1111111000,1110000000)
d (6,7) (1111100000,1111000000)
e (9,10) (1100000000,1000000000)
f (7,5) (1111000000,1111110000)
g (5,6) (1111110000,1111100000)
h (4,3) (1111111000,1111111100)
i (3,2) (1111111100,1111111110)
k (9,1) (1100000000,1111111111)
I (10,4) (1000000000,1111111000)
m (6,2) (11111000001,111111110)
n (8,3) (1110000000,1111111100)

16

The efficiency of bitmap relies on the speed of bit-wise operations. However, if the

number of distinct values is very large, representing the points in bitmaps will consume huge

space. In addition, if the dataset is large, each of the bit-strings constituted for deciding

the skyline-ness of a point will contain a large number of bits which could make the bit-wise

operation slow. Also a cost to build these bit-strings requires the scanning of the whole

dataset. In terms of skyline points output order, this approach depends on the data point

insertion order just like BNL and SFS. In the case of dynamic datasets where insertions or

deletions happen, this technique can not be applied since the rankings of attribute values

could be changed during the data updates.

2.2 Subspace Skyline Computation

In a multi-dimensional dataset, skyline queries provide the best points with consideration

to all dimensions, while in reality, various user groups may issue queries on only a subset

of dimensions that they are interested in. So how to efficiently compute skyline objects in

subspaces becomes an interesting topic.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

At
1---------

." F- -.l
Al.' .

P:>:y.··.•

.1

.... .41
P:kil-·· •

(InS;er Sl •••

o

...... ..
.);

x

Figure 2.8: An Anchor A 1 Figure 2.9: More Anchors

2.2.1 Computing Subspace Skylines via Multiple Anchors

SUBSKY is a technique which focuses on the problem of answering the query in an arbitrary

subspace with a low dimensionality [87]. The core of SUBSKY is a transformation that

converts multi-dimensional data to one dimension values so that effective pruning heuristics

can be applied. Assuming a unit d-dimensional full space where each dimension has domain

[0,1]' and use the term maximal corner (anchor) for the corner A C of the data space having

coordinate 1 on all dimensions. Each point P is converted to a 1D value f(p) which equals

to the Loo distance between p: f(p) = mix (1 - p[i])
,=1

Given a full space skyline point Psky in subspace SUB, if f(p) < min (1- Psky[i]), then
iESUB

P can not belong to the skyline of SUB since the minimum value among all dimensions

of P is still larger than the maximum value among all dimensions of the skyline point. To

compute skyline objects of a subspace SUB, each point P is accessed in descending order

of f(p), and meanwhile (i) the current set Ssky of skyline points among the data already

examined, and (ii) a value U corresponding to the largest min (1 - Psky[i]) for the points
iESUB

Psky E Ssky. The algorithms terminates when U is larger than the f(p) of the next P to be

processed.

In the case of uniform data distribution, f(p) is always computed with respect to one

anchors for the dataset (chosen from [87]) as shown in Figure 2.8. However, in practice

where data are usually clustered, the f(p) of various P should be calculated with respect

to different anchors to achieve greater pruning power as shown in Figure 2.9. For example,

with skyline point Psky, using maximal corner as the anchor could not prune any point in

the upper left cluster Sl though it could prune all points in S3, while choosing point A 1

as the anchor for points in Sl is a much better choice since the square area produced by

CHAPTER 2. BACKGROUND AND RELATED WORK 18

min(AI[i] - Pskyli]) covers most points in St. So multiple anchors need to be created and

points should be assigned to the appropriate anchors.

To find multiple anchors, SUBSKY projects all the data points onto the major perpen­

dicular plane (the d-dimensional plane passing the maximal corner and perpendicular to

the major diagonal of the data space) and partitions the points by clustering the projected

points into m (the predefined number of anchors) clusters. Finding an anchor for a cluster

is to decide a point so that the (hyper-)square composed by the bottom-left point of the

cluster(in the original space and that anchor point covers every point in the cluster.

Overall, SUBSKY first obtains m anchors as stated in the previous paragraph on a

random subset of the database. f(p) (with the assigned anchor) of each point is managed

with a B-tree that separates the points assigned to different anchors. Then the algorithm

identifies the maximum f(p) among all anchors. The algorithm then scans all the points

assigned to each anchor in descending order of f(p) values and updates the skyline list. The

pruning capability of SUBSKY decreases very fast in the query of a high sub-dimensionality.

However, there are two problems in SUBSKY: (1) the anchor points are never modified after

the initial computation. Since the pruning power is largely decided by the choice of the

anchor points, SUBSKY is not suitable for dynamic data where the data distribution may

change over time. (2) The pruning ability of SUBSKY deteriorates fast with the increase

of query dimensionality, which makes it inappropriate for computing the skylines of all

subspaces.

2.2.2 Computing SKYCUBE with Sharing Strategies

Yuan et al. [95] proposes to compute a SKYCUBE, which consists of skylines of all possi­

ble non-empty subsets of a given set of dimensions for answering multiple subspace skyline

queries, in order to achieve minimal response time. Naively computing the 2d_l skyline re­

sults independently can be extremely expensive, so [95] focuses on the efficient construction

of the SKYCUBE based on the sharing strategies in identifying the computation dependen­

cies among multiple related skyline queries. In the SKYCUBE, the set of skyline points in

each subspace is termed as a cuboid. Two approaches were proposed: the BUS(Bottom-Up

Skycube) and the TDS(Top-Down Skyline). BUS takes two sharing strategies by sharing the

result and the sorting. Under the distinct value condition where values at each dimension

of the dataset are different, it extends SFS by sharing d sorted lists of objects during the

CHAPTER 2. BACKGROUND AND RELATED WORK 19

computation and each time the sorted dimension is picked for the subspace as the dimen­

sion that has largest domain value among all dimensions in that subspace. It computes

each cuboid level by level from bottom to the top. Sharing the result means that the lower

level cuboids (the set of skyline points in that subspace) are merged to form part of the

upper level parent cuboids since the union of child cuboids belongs to the parent cuboids.

If the distinct condition does not hold, it needs to check whether a subspace skyline object

is really a superspace skyline object.

TDS relies on an extended DC algorithm and computes multiple related skyline queries

by sharing the partitions and merging along a path of cuboids. This derives from the

fact that in the unique value dataset, computing the skyline for a superspace includes the

computing of skyline for the subspaces. While the merging process in the superspace includes

the merging of its subspace. This is done by splitting the skyline of superspace into a skyline

set in one subspace plus the remaining skyline set. For example, skylines for superspace

ABC can be divided into skylines for subspace AB and the skyline tuple set not in AB.

In particular, a structure called skylist is utilized in TDS. A skylist represents the skylines

of a path without duplications in any subspace. The list contains a number of elements

each storing the skyline points uniquely for the corresponding cuboid. For example, for a

path c along the lattice structure c = (A, AB, ABC), if the skylist is {P3,P2,PS,pd, then

it means subspace AB has a set of skyline points {P2,P3,PS} while subspace ABC has a set

of {Pl,P2,P3,PS}. Operations of split, union and filter are defined for the skyline list. To

compute the skycube, TDS first constructs (d) skylists/paths that can cover every
Id/2l

node in the lattice, and then each cuboid can be computed along the path in the shared

BDC as described above. To handle the case of duplicate values in the datasets, it needs to

compare each tuple with the superspace skylines to find in which dimensions the tuples to

have the same values with the superspace skylines.

2.2.3 Updating SKYCUBE with the Compressed Structure

Compared to the context of static data used in [95], Xia et al. [94] investigate the impor­

tant issue of updating the SKYCUBE in a dynamic environment, which focus on supporting

concurrent and unpredictable subspace skyline queries in frequent updated databases. Ob­

viously, the naive method that SKYCUBE is recomputed upon each update, is extremely

inefficient and in turn affects the query performance severely.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

To improve the storage of the SKYCUBE to support efficient update, they propose a

new structure called the Compressed SKYCUBE, based on the concept of the minimum

subspaces. The compressed SKYCUBE concisely represents the complete SKYCUBE and

preserves the essential information of subspace skylines. Each skyline object is stored only

in the cuboids which correspond to its minimum subspaces, and the compressed skycube

contains only non-empty cuboids. Compared to the original SKYCUBE [95]' the compressed

SKYCUBE has much less duplicates among cuboids, and does not need to contain all

cuboids. Since recomputing everything upon updates is obviously unacceptable because

of the expensive costs of cuboid computations and disk accesses in retrieving objects. To

minimize such costs during the updates of objects, they propose the object-aware update

scheme for the compressed SKYCUBE. More specifically, they differentiate various cases

such as when an update needs to retrieve new objects from the disk, when existing objects

in the compressed SKYCUBE are affected, and etc.

2.2.4 Mining Frequent Skylines in Subspaces

In a high dimensional space, skyline points no longer provide any meaningful insights to the

user as there are too many of them. A new metric called skyline frequency is introduced

to rank the interesting skyline points among all produced. Skyline frequency is counted as

how many times the skyline point is returned as a skyline in subspaces. On the other side,

dominating frequency is the number of times a point being dominated in subspaces. Top-k

frequent skyline query is to find the best k such skylines (with highest frequencies). The

algorithm framework is quite straightforward: for every point pin D, count the subspaces

it has been dominated and maintain the top-k points after every point is tested [19].

Let D5(p, q) = (U, V) denote the set of all subspaces for which point p dominates q

(dominating subspaces of p over q), where U are the dimensions p is better than q, and

V are the dimensions p is equal to q. Given two collections of subspaces 51, 52 ~ 5, 51

covers 52 if 51 ::? 52. A D5 of (V', V') is covered by (U, V) if and only if (i) the union

of U and V can cover the union of U' and V'. (ii) U can cover U'. D5(p, q) is defined as

a Maximal Dominating Subspace Set (MDSS) for point q if there does not exist a point p'

that D5(p', q) can cover D5(p, q). So counting the dominating subspaces is to count the

subspaces covered by those maximal dominating subspace sets. The algorithm maintains a

threshold () to keep track of the k th smallest dominating frequency among all the process

points and it is initialized to 2d - 1. A top-k frequent skyline set R is also maintained

CHAPTER 2. BACKGROUND AND RELATED WORK 21

for storing the result. For each point p in the dataset, the algorithm first compute the set

M of all the maximal dominating subspace sets of p which is done by comparing all the

other points with p on all dimensions. Then the dominating frequency of p is computed

by counting the total number of subspaces that are covered by the maximal dominating

subspaces in AI. Exact counting can be time-consuming due to the large size of AI, so an

approximate counting method is also given by providing solution similar to DNF counting

problem. The counting result is then compared with () and if it is less than () or the size of

set R is less than k, the new point is inserted or updated in R.

2.2.5 Mining Strong Skylines in Subspaces

With the aim at mining a set of interesting skyline points in high dimensional space, Zhang

et al. [97] proposed strong skyline points as follows: given a space 5, a subspace is said to

be o-subspace if its skyline contains less than 0 points. The union of the skyline points in all

o-subspace of 5 are called strong skyline points. Intuitively, such skyline points are strong

in two reasons: (1) they represent points which are most difficult to dominate even when the

number of dimensions being considered is reduced. While weaker skyline points are being

removed due to the reduction of dimensions, only the strongest skyline points survive. (2)

Since all other points are dominated by these small set of points, they are also considered

strong in term of the ability to dominate points. In general, the number of strong skyline

points is much less than the original skyline points.

Based on the property of o-subspace which is very similar to Apriori property of fre­

quent itemset [1.], two subspace search algorithms with breadth first strategy and depth first

strategy respectively, are developed to find those o-subspaces. The existing BNL algorithm

[13] is also improved to efficiently determine whether a given subspace is o-subspace by

exploiting the properties of strong skyline points.

2.3 Miscellaneous Approach

2.3.1 Skyline Algorithms for Distributed Environments

In [5] and [4], the authors present an approach for computing skylines in distributed web

information systems and show how it can be optimized for categorical data. Data is said

to be categorical if the values for some attributes are chosen from a rather limited number

CHAPTER 2. BACKGROUND AND RELATED WORK 22

of alternatives (=categories). Consider, for example, hotel rooms: The "smoke" attribute,

which can only set to either smoking or non-smoking, or a rating measured by one to five

stars are examples for categorical attributes. The algorithm is based on a central mediator

system. Attributes of the objects that should be queried (for example some ratings in

Zagat [zag], the distance to a local point determined by MapQuest [map]) are fetched from

different sources sorted according to respective score functions. Based on that sorted access,

the central skyline engine computes the skyline and incrementally presents its results to the

user.

2.3.2 Skyline Computation in Mobile Environments

With more and more applications in mobile environments, the skyline computation faces

more challenges. Authors in [46] study the skyline queries under this circumstance by

assuming (1) each mobile device only holds a portion of the entire dataset; (2) devices com­

municate through MANETs; (3) and mobile users posing skyline queries are only interested

in data pertaining to a limited geographical area, although the queries involve data stored

on many mobile devices due to the storage limitations of the devices.

To improve the efficiency of skyline queries, two most important costs are considered:

the cost of the communication among the mobile devices and the cost of query execution

on the mobile devices. For reducing the communication cost, a distributed query processing

strategy is proposed that takes advantage of the skyline dominance relationship to elim­

inate non-qualifying intermediate tuples, thus reducing the amount of data transmitted.

For reducing the latter, on each mobile device involved, the local query processing is opti­

mized using a hybrid storage model for the tuples, which have both spatial and non-spatial

attributes.

2.3.3 Skyline Computation in Data Streams

Lin et al. focus on computing the skyline against the most recent n of N elements in a

data stream [60]. They developed an effective pruning technique to minimize the number

of elements to be kept. It can be shown that on average storing only O(logd N) elements

from the most recent N elements is sufficient to support the precise computation of all

"n of N" skyline queries in the d-dimensional space if the data distribution on each di­

mension is independent. Then, an encoding scheme is proposed, together with efficient

CHAPTER 2. BACKGROUND AND RELATED WORK 23

update techniques, for the stored elements, so that computing an "n of N" skyline query in

the d-dimensional takes O(logN + s) time that is reduced to O(dloglogN + s) if the data

distribution is independent, where s is the number of skyline points.

Tao et al. [86] study skyline computation in stream systems that consider only the

tuples that arrived in a sliding window covering the W most recent timestamps, where W is

a system parameter called the window length. The stream is append only, meaning that a

tuple is not replaced before its expiry. Their objective is to maintain the skyline over the live

data, and continuously output the skyline changes. Two general frameworks for maintaining

stream skylines are proposed: (1) Lazy method handles two situations associated with the

skyline changes (i) a new tuple arrives, or (ii) some skyline point expires. (2) Eager method

aims at (i) minimizing the memory consumption by keeping only those tuples that are or

may become part of the skyline in the future, and (ii) reducing the cost of the maintenance

module, which is responsible for expunging the obsolete (i.e., dead) data from the database,

and outputting the skyline stream.

2.3.4 Skyline Computation in Time Series Databases

Morse et al. consider the continuous time-interval skyline [23] operation involves data points

that are continually being added or removed. Each data point has an arrival time and an

expiration time associated with it that defines a time interval for which the point is valid.

The task for the DBMS is to continuously compute a skyline for the data points that are

valid at any given time. Basically, the skyline in the continuous case may change based on

one of two events: (i) some existing data point i in the skyline expires, or (ii) a new data

point j is introduced into the dataset. An algorithm, called LookOut is developed, based

on the idea that: in the case of an expiration, the dataset must be checked for new skyline

points that previously may have been dominated by i. These points must then be added

to the skyline if they are domianted by some other existing skyline points. In the case of

the insertion, the skyline must be checked to see if j is dominated by a pint already in the

skyline. If not, j must be added to the skyline and existing skyline points checked to see if

they are dominated by j. If so, they must be removed.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.5 Skyline Computation with Partially-Ordered Domains

24

Chan et al. [16, 17] study the evaluation of skyline queries with partially-ordered attributes

which include interval data (e.g., temporal data), type/class hierarchies, and set-valued

domains. Because such attributes lack a total ordering, traditional index-based evalua­

tion algorithms (e.g., NN and BBS) that are designed for totally-ordered attributes can no

longer prune the space as effectively. Their solution is to transform each partially-ordered

attribute into a two-integer domain that allows to exploit index-based algorithms to com­

pute skyline queries on the transformed space. Based on this framework, three algorithms

are proposed: BBS+ is a straightforward adaptation of BBS, and SDC (Stratification by

Dominance Classification) and SDC+ are optimized to handle false positives and support

progressive evaluation. Both SDC and SDC+ exploit a dominance relationship to organize

the data into strata. While SDC generates its strata at run time, SDC+ partitions the data

into strata offline. Two dominance classification strategies (MinPC and MaxPC) are also

designed to further optimize the performance of SDC and SDC+. The experimental results

show that the proposed techniques outperform existing approaches by a wide margin.

2.3.6 Cooperative Database Retrieval Using High-Dimensional Skylines

Balke et al. [6] propose to combine the advantages of intuitive skyline queries and man­

ageable top k answer sets for cooperative retrieval systems by introducing an interactive

feedback step presenting a representative sample of the (high-dimensional) skyline to users

and evaluating their feedback to derive adequate weightings for subsequent focused top k re­

trieval. Hence, each users information needs are conveniently and intuitively obtained, and

only a limited set of best matching objects is retrieved. However, the huge size of skyline

sets and the necessary time for their calculation remains an obstacle to efficient sampling

for getting user feedback. Therefore they propose a sampling scheme to give users a first

impression of the optimal objects in the database that is representative of the skyline set,

manageable in size and efficient to compute, without computing the actual skyline. They

also prove these characteristics and show how to subsequently estimate a users compen­

sation functions by evaluating feedback on objects in the sample. Such a approach paves

the way to overcome the drawbacks of todays cooperative retrieval systems by utilizing the

positive aspects of skyline queries in databases.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.7 K-Dominant Skylines Computation

25

Considering the original definition of skyline, a huge number of skyline objects will be

produced in the situation of high dimension as it is getting harder for a point to be dominated

by some other points in all dimensions. k-dominance is proposed to narrow down the number

of skylines so as to make the result skylines more meaningful. It defines k-dominant skylines

[18] as those points that are not k-dominated by any other object. A point p is said to k­

dominate q if there are k sub-dimensions in which p is better than or equal to q and better

in at least one of those k dimensions. Due to the feature that a non-(k-dominant skyline)

point is not necessarily be k-dominated by any k-dominant skyline point (which is different

from a normal non-skyline point), the usual pruning procedure (such as BNL) can not be

directly applied. To find the set of all k-dominant skyline points, the authors [18] proposed

three algorithms: One-Scan algorithm, Two-Scan algorithm and Sorted-Retrieval algorithm.

The One-Scan algorithm compares a point with full space skylines (free skylines) to

determine whether the point is k-dominant. This is due to the following property: if a point

is not a k-dominant skyline, then there must exist a free skyline point that k-dominates

that point. One-Scan algorithm maintains two lists (R and T) during the scan to store

intermediate k-dominant skylines and non-k-dominant skylines respectively (these two sets

constitute the whole set of free skylines). It takes a similar way as SFS by sorting the points

first and starting to find full space skyline progressively. During the process, each point is

compared with the so-far found free skylines in T first, if it is dominated, then there is no

chance for it to become a k-dominant skyline. Otherwise, it is checked whether this point

k-dominates any point in R (which contains temporary k-dominant skylines so far), or being

k-dominated by any point in R. Depending on the result, the point is inserted into R or T.

Those points being swapped out from R are inserted back to T since they are free skylines.

One-Scan algorithm needs to maintain free skyline points for the comparison, and the

sets of free skyline points could consume large amount of space since the number is very

big. Two-Scan algorithm computes the temporary k-dominant candidates (stored in a set

R) in the first scan just like a normal SFS does but replacing" dominate" operation with" k­

dominate" operation. But due to the unusual feature (from a full space skyline computation)

as stated above, the result can have false positive points. So in the second scan, to determine

whether a point p in R is actually k-dominant, it is sufficient to compare p with each point

p' which is not in Rand p' occurs earlier than p in the original sorted list since all the later

CHAPTER 2. BACKGROUND AND RELATED WORK 26

ones have already been compared with p in the first scan.

The third algorithm is "Sorted Retrieval" by first sorting all the points in each dimension

which produces d sorted arrays (where d is the number of dimensions). Each sorted array

has a cursor pointing to the current batch being processed (a batch is a set of points with

the same value on the sorted dimension). Set T is initialized with the whole dataset as

candidates list for k-dominant skylines. The real ones are progressively moved to set R

while non-e-dominant skyline points in T are progressively removed. The algorithm chooses

one sorted list with the smallest batch value (just like the Minimum-Value-Index method

[85] introduced before) to process next until T is empty. Two steps are taken to process

the batch. In the first step, if a currently processed point p in the batch k-dominates any

point in T, then that point is removed from T. Since each point could be processed Ildll
times, a counter is associated with each point. A point being processed from the current

list increases its counter with one. In the second step, if we find the point p is in T and

also the value of the counter is (d - k + 1), then p is for sure to be a k-dominant skyline

and it is moved to R. This is based on the observation that if there is a point p' such that

k-dominates p, then p can be processed in an earlier batch of points than p' in at most

(d - k) iterations. (i.e. p is better than p' in (d - k) dimensions maximally).

2.3.8 Skyline Cardinality Estimation

Bentley et al. [10] established that the average number of skyline tuples is O((In n)d-l) where

n is the number of tuples and d is the number of skyline attributes, under the VI assumption.

Godfrey [38] proved that expected skyline cardinality is 8((ln n)d-l j(d - I)!) under the

assumptions of sparseness over attributes' domains (namely that there are virtually no

duplicate values) and statistical independence across attributes. Chaudhuri et al. [23]

aimed to relax the strong assumptions of previous work on skyline cardinality estimate,

such as assuming attribute value independence, all attributes are unique and completely

ordered etc. They also derive cardinality estimates for categorical attributes.

Chapter 3

The Semantics of Skyline

The skyline operator is important for multi-criteria decision making applications. Although

many recent studies developed efficient methods to compute skyline objects in a specific

space (usually the full space), the fundamental problem on the semantics of skylines remains

open: Why and in which subspace is (or is not) an object in the skyline? What is the

relationship between the skylines in the subspaces and those in the super-spaces? How can

we effectively analyze the subspace skylines? Practically, users may also be interested in

the skylines in any subspaces depending on the specific application requirements. Then can

we efficiently compute skylines in various subspaces?

We explore the above questions in this chapter, investigate the semantics of skylines,

propose the subspace skyline analysis, and extend the full-space skyline computation to

subspace skyline computation. To the best of our knowledge, this is the first study on the

semantics of skylines and the subspace skyline analysis [75]. We introduce a novel notion

of skyline group which essentially is a group of objects that are in the skylines of some

subspaces coincidentally. We identify the decisive subspaces that qualify skyline groups in

the subspace skylines. The new notions concisely capture the semantics and the structures of

skylines in various subspaces. Multidimensional roll-up and drill-down analysis is introduced

in exploring the semantics. We also develop an efficient algorithm, Skyey, to compute the

set of skyline groups and, for each subspace, the set of objects that are in the subspace

skyline. A performance study is included to evaluate our approach.

27

CHAPTER 3. THE SEMANTICS OF SKYLINE 28

3.1 Motivation

The skyline operator is important for multi-criteria decision making applications and this

has been well recognized by the community of data analysis. A very classic illustrative

example of skyline query is to search for hotels in Nassau (Bahamas) which are cheap and

close to the beach [13]. Suppose each hotel has two attributes: the price and the distance

to the beach. In the context of this example query, hotel HI dominates hotel H2 (or, HI

is a better choice than H2) if H1.price :::; H2.price, H1.distance :::; H2.distance and at

least one inequality holds. The skyline hotels are formed by those that are not dominated

by others in terms of price and distance to the beach. In other words, the skyline hotels

provide candidates for all the possible trade-offs between price and distance to the beach

that are superior to other hotels.

There are many recent studies on efficient methods for skyline computation (please refer

to Chapter 2 for a brief review). However, the fundamental questions about the semantics

of skyline remain open.

Example 1 (Intuition) Let us take a look at the example in Figure 3.1 with the dataset

containing 5 objects in 2-d dataspace (X, Y). It is easy to verify that objects p, q and w

are in the skyline in space (X, Y) since none of them is dominated by any other objects.

Y
o s(1,4)

0p (1, 3f t (3,3)

o q (3, 2)

o 0 'f:J,4)
{p, s} (1) {q,t} (3) X

Projection in space X

w (1) {p, t} (3)
o 0 0 O.

q(2) s(4) Y
Projection in space Y

o
w (4,1)

X
Space (X, Y)

Figure 3.1: An Example Showing the Intuition

In the same figure, we also plot the projections of the objects on dimensions X and Y,

respectively. The projections of p and s collapse in subspace X, and both of them are in the

subspace skyline of X. In subspace Y, the projection of w is in the subspace skyline. As

the comparison under trivial subspace 0 is usually meaningless to the user, hereafter, we use

the term "subspace" to refer to only non-empty ones except when specifically mentioned.

Although p, q and ware all skyline objects in the full space (X, V), there are differences

CHAPTER 3. THE SEMANTICS OF SKYLINE 29

in terms of how they become part of the skyline and this is worth to study carefully in order

to discover other important features. Both p and w have projections that are part of the

subspace skylines (i.e., in subspaces X and Y, respectively), but for any possible subspaces,

no projection of q is in subspace skyline. A closer look reveals that p is already sufficient to

qualify as a skyline object by taking a value of 1 on dimension X. Similarly, the value 1 of

w on dimension Y is a determining factor for the skyline membership of w. On the other

hand, q is a skyline object only if both dimensions X and Yare considered - it needs two

dimensions to qualify.

Although both sand t are not in the skyline in space (X, Y), they are still subtly

different if we look at the subspaces. The projection of s is in the skyline in subspace X

but t has no projection belonging to a subspace skyline. s is dominated by p, nevertheless,

the dominance is "partial" - s takes the same value as p in dimension X and thus has the

chance to be in the skyline in subspace X. •

With the involvement of only a two dimensional space and a few objects, the skyline in

the example of Figure 3.1, is simple and easy to be perceived, while the general situation may

be much more complicated when dimensionality is high and dataset is large. Nevertheless,

the observations in the above example reveal one important intuition: whether an object

is in the skylines of the full space or of some subspaces is determined by the values of the

object in some decisive subspaces. The decisive subspaces and the values in those subspaces

vary from object to object in the skyline. For a particular object, the values in its decisive

subspaces justify why and in which subspaces the object is in the skyline - the semantics of

the object with respect to skyline.

Why should we care about the semantics of skylines? Semantics is important to under­

stand the data. For example, Section 3.6.1 analyzes a real data set which contains 17,226

records of Great NBA Players' seasonal performance from 1960 to 2001. Wilt Chamber­

lain's performance in 1960 is in the skyline of the full space, which can be identified by the

conventional skyline computation methods. However, one may wonder which merits really

make Wilt that outstanding. The semantics analysis in Section 3.6.1 shows that Wilt was

outstanding in total rebounds in the season of 1960 by achieving the record of 2149 in the

NBA history. The attribute of total rebounds is the decisive subspace that establishes his

superior status. In fact, he was not exceptional in any other factors such as total assists.

As another example, Michael Jordan does not hold any record high in any single attribute.

CHAPTER 3. THE SEMANTICS OF SKYLINE 30

However, his performance in 1988 is in the skyline of subspaces of (total points, total re­

bounds, total assists) and (games played, total points, total assists), and also in the skyline

of the full space. Those two subspaces are decisive, and explain why Michael Jordan is

an outstanding player. Clearly, such information cannot be captured by traditional skyline

computation and analysis in the full space, hence it is hard to get people understand what

is/are the key factor(s) that makes an object outstanding.

The concepts of skyline groups and decisive subspaces can also be used immediately for

efficient query answering. For example, given an object or a group of objects, the skyline

membership queries is to determine the subspaces where the object(s) are in the subspace

skylines. On the other hand, given a subspace, the subspace skyline query finds the set of

objects whose projections are in the subspace skyline.

The investigation of skylines in subspaces naturally introduces the problem of subspace

skyline analysis and computation: for a set of subspaces, find the objects and their projec­

tions that are in the skylines of these subspaces, and analyze their relationship. This type

of query is interesting and useful in practice since, more often than not, a user may want to

interactively examine the skylines with respect to different combinations of attributes.

Motivated by the above observations, in this chapter, we study the problem of multidi­

mensional subspace skyline computation and analysis. We make the following contributions.

• We develop a theoretical framework to answer the question about semantics of skyline:

Why and in which subspaces is an object in the skyline? The semantics of skyline

objects is concisely captured by the novel notions of skyline groups and the corre­

sponding decisive subspaces. The subspaces, where an object (or a set of objects) is

in the skyline, can be effectively determined by the skyline groups that the object

belongs to and their decisive subspaces.

• We investigate the problem of subspace skyline analysis. Skylines in subspaces can be

concisely summarized by skyline groups. Moreover, skyline objects in the full space

can be selected as the representatives in skyline groups. They catch the "contour"

(i.e., technically, the projections) of the skylines. The multidimensional roll-up and

drill-down analysis is useful to support the online analytic processing of skylines.

• We present efficient algorithms for subspace skyline computation. We develop an

algorithm to compute both the set of skyline groups and, for each subspace, the

CHAPTER 3. THE SEMANTICS OF SKYLINE 31

set of objects that are in the subspace skyline. The algorithm makes good use of

the findings in the semantics research and recursively reduces the set of objects to

be searched. Moreover, a local sorting technique is developed so that computing

skylines in subspaces can be substantially faster than a naive method running a skyline

computation algorithm on every subspace from scratch.

• We develop effective methods to index skyline groups and their decisive subspaces, and

use them in query answering. Particularly, we address two types of queries: skyline

membership queries and subspace skyline queries. We show that the queries can be

answered efficaciously by the proper materialization of the skyline groups and their

decisive subspaces.

• A performance study using both synthetic and real data sets is conducted to evaluate

our approach. We showcase some interesting findings in the skyline semantic analysis

using the real data set about technical statistics of NBA players, and justify why they

are meaningful in practice. Moreover, we use benchmark synthetic data sets to test

the efficiency and the scalability of our algorithm.

The rest of this chapter is organized as follows. In Section 3.2, we extend the concept of

skyline to multidimensional subspaces, and examine the subspace skylines in unique value

data sets, a simple case where objects do not share values on any dimensions. In Section 3.3,

we introduce the notion of skyline groups and decisive subspaces, and justify how the new

notions capture the semantics of objects with respect to skyline. In Section 3.4, we tackle the

problem of subspace skyline analysis. In Section 3.5, we present an algorithm for subspace

skyline computation. An extensive performance study is reported in Section 3.6. Section 3.7

summarizes the whole chapter.

3.2 Multidimensional Subspace Skyline and a U nique-Value

Case

In this section, we first extend the concept of skyline to multidimensional subspaces, and

then examine a simple case where on any dimension, no two objects share the same value

on that dimension.

CHAPTER 3. THE SEMANTICS OF SKYLINE

3.2.1 Subspace Skyline

32

Hereafter in this chapter, we consider a set of objects S in an d-dimensional space V =

(D1, ... ,Dd) by default, where dimensions D 1, ... , Dd are in the domain of numbers and

usually they are continuous integers as 1, ... ,d. For the easiness and clarity in description,

sometimes we also use enumeration of letters such as A, B, C In the rest of the chapter,

we often do not explicitly mention S and V when they are clear in the context for the sake

of brevity.

For objects p, q E S, p is said to dominate q if p.D; :::; q.D; for 1 <i < d and there exists

at least one dimension D j such that p.Dj < q.D]. Object p is a skyline object if p is not

dominated by any other objects in S.

The notion of skyline can be naturally extended to subspaces.

Definition 3.2.1 (Subspace skyline) A subset of dimensions H <;;; V (H i- 0) forms a

(non-trivial) IHI-dimensional subspace of 'O. For an object p in space V, the projection of

p in subspace H, denoted by PB, is a IHI-tuple (p.D;} , ... ,P.D;IBI)' where D;}, ... ,D;IBI E H

and il < ... < ilBI.

The projection of an object p (p E S) in subspace H <;;; V is in the subspace skyline (of H)

if PB is not dominated by any qs in H for any other object q E S. p is also called a subspace

skyline object (of H). •

For example, in Figure 3.1, the projections of both p and s are in the subspace skyline

in subspace X, and the projection of w is in the subspace skyline in subspace Y.

3.2.2 Subspace Skylines in Unique Value Data Sets: A Simple Case

In this subsection, we consider the unique value data sets where for any objects p, q and any

dimension D;, p.D, i- q.Di, Clearly, in a unique value data set, there does not exist two

objects that share the same projection in any subspace.

Interestingly in this case, the subspace skyline objects have the monotonicity property

as follows.

Theorem 3.2.2 (Monotonicity of skyline membership in unique value data sets)

In a unique value data set, if an object p is in the skyline of subspace H, then for any su­

perspace H' =:J H, p is also in the subspace skyline of H'.

CHAPTER 3. THE SEMANTICS OF SKYLINE 33

Proof. We prove by contradiction. Suppose there exists a superspace B' :J B such that p

is not in the subspace skyline of B'. There must be another object q such that q dominates

pin B'. In other words, for any dimension D, E B C B', q.D, :::; p.D i . In a unique data set,

according to the definition, «o, =I- «o.. Thus, «t: < p.Di . That means q dominates p in

B, which leads to a contradiction to the the assumption that p is in the subspace skyline of

B. -
Theorem 3.2.2 discloses the structure of subspace skylines in a unique value data set:

every subspace skyline object must be a projection of some global skyline object.

Proposition 3.2.3 (Subspace skyline objects in unique value data sets) For any ob­

ject p and subspace B, pe is in the subspace skyline of B only if p is a skyline object in the

full space.

Proof. Trivially, B ~ V where V is the full space. According to Theorem 3.2.2, u must be

in the skyline of V. The proposition holds immediately. _

The monotonicity in the unique value data sets suggests a straightforward framework to

compute subspace (true subspaces excluding full space) skylines: we take the set of skyline

objects in the full space as seeds and project them into subspaces in the order of descending

dimensionality. The recursive projection of a super space skyline object stops once it is not

in the subspace skyline of some subspace B. In other words, we do not need to search any

subspaces of B. The framework is shown in Figure 3.2. We assume that the size of dataset

is greater than a (which is always true in the practical cases), and this guarantees that the

set of skyline objects in full space is not empty.

The algorithmic framework in Figure 3.2 can be implemented efficiently. For example,

we can enumerate the subspaces systematically using the subspace enumeration tree which

will be discussed in Section 3.5.2, such that each subspace should be checked only once.

The correctness and the completeness of the algorithmic framework immediately follows

Theorem 3.2.2 and the proposition.

3.3 Skyline Semantics

Starting from this section, we consider general data sets which may not have the property of

unique value. In other words, two objects may share the same values on some dimensions.

CHAPTER 3. THE SEMANTICS OF SKYLINE

Input: A unique value data set of objects S in space V;
Output: for each subspace, the set of objects in the subspace skyline;
Method:
1: find Lv, the set of skyline objects in the full space;
2: IF IVI > 1 THEN
3: FOR EACH (IVI - Ij-dimensicnal subspace B, call recursive-search(B, Lv);

Function recursive-search(B, L)
4: find L[3, the set of skyline objects in subspace B and in set L;
5: output L[3 as the skyline in subspace B if L[3 -I- 0;
6: IF IBI = 1 DR L[3 = 0THEN RETURN;
7: FOR EACH (IBI - Lj-dimensional subspace B'
8: IF B' has not been searched before THEN call recursive-search(B', L[3);

9: RETURN;

34

Figure 3.2: The Algorithmic Framework of Searching Subspace Skylines in No-sharing Data
Sets

As will be shown soon, the situations are much more complicated than the simple case

discussed in Section 3.2.2.

In this section, we first show some observations that inspires the ideas. Then, we intro­

duce the new notions. Last, we elaborate on how the new notions capture the semantics of

skyline objects and answer skyline membership queries.

3.3.1 Key Observations and Ideas

To find the relationship of skyline objects among different subspaces, first let's look at one

interesting question: if an object p is in the skylines of subspaces C1 and C2 such that Cl C C2 ,

can we make an extrapolation that p is also in the skyline of any subspace C in between, i.e.,

Cl C C C C2? As shown in Section 3.2.2, this property is appealing since it may extremely

simplify the determination of skyline membership in subspaces. Unfortunately, the general

situation is far from being so simple.

Example 2 (Key Observations) Consider the objects in Table 3.1 as our running exam­

ple. We obtain the following two observations.

First, object q is in the skylines of full space (A, B, C, D) and of subspace A. However,

it is not in the skyline of subspace (A, B), since its projection, (2,5, *, *), is dominated by

CHAPTER 3. THE SEMANTICS OF SKYLINE

Table 3.1: A Set of Objects as Our Running Example

p 2 5 7 8
q 2 5 6 8
s 2 4 7 8
t 3 4 6 9

35

(2,4, *, *), the projection of s. This demonstrates that, in general, for subspaces C1 , C2 and

C such that C1 c C C C2 , even though an object is in the subspace skylines of C1 and C2 , it

may not be in the subspace skyline of C.

Second, objects p, q and s collapse in subspace (A, D). The projection (2, *, *,8) is in

the subspace skyline of (A, D). Thus, any values on the dimensions in subspaces (A), (D)

or (A, D) that qualifies p as a subspace skyline object in those subspaces also results in the

same qualification for q and s, and vice versa. In other words, if a group of objects collapse

in a subspace B and the shared projection is in the subspace skyline of B, then the objects

in the same group share the skyline membership in all subspaces of B. •

The observations in Example 2 lead to the following ideas.

• Generally, the skyline membership is not monotonic - being in the skyline of subspace

B does not automatically makes that object in the skyline of super-spaces of B. The

object may be dominated in the super-spaces of B by some other objects which have

the same values in B as the current object.

• Objects coincide and form groups in subspaces. The skyline memberships in subspaces

are shared by all objects in the same group. The convergence and divergence of groups

from subspace to subspace play critical roles in forming skylines of various subspaces.

Therefore, it is critical to capture groups of objects of which the shared projections

are in the skylines of the projected subspaces.

3.3.2 Skyline Groups and Decisive Subspaces

Following the ideas stated in the previous section, let us consider objects that collapse in

subspaces. They form groups that are critical in our multidimensional subspace skyline

analysis.

CHAPTER 3. THE SEMANTICS OF SKYLINE 36

Definition 3.3.1 (C-group) Let G ~ S be a subset of objects and B ~ D be a subspace.

(G, B) is a coincident group (or c-gmup for short) if for each dimension in B, all objects in

G share a same value. The projection of the group in B, denoted by GB, is UB where u E G.

A c-group (G, B) is maximal if there do not exist any other objects v E (5 - G) that

share the same values as those in G on dimensions in B, and objects in G do not share the

same value on any other dimension D E (D - B). B is called the signature subspace of G.•

Example 3 (C-group) Consider objects p, q and s in Table 3.1. They share the same

value on dimension A. Thus, p, q and s form a coincident group (or c-group for short) on

A.

We can not add new objects into the group ({p, q, s}, A) since no other objects have

the same value of 2 on dimension A, but it can be expanded by including more dimensions

according to the definition of maximal C-Group. p, q and s share the same values on

dimension A and D. Thus, we can maximize the group to include dimension D. The

maximal c-group is ({p,q,s}, (A,D)). •

Given a subset of objects G, we define I(G) as the maximal set of dimensions that all

objects in G share the same values. That is,

I(G) = {DID E D, Vu, v E G : u.D = v.D}.

Moreover, for a subspace B and a set of objects G, we define O(G, B) as the maximal set of

objects that share the same values on dimensions in B as objects in G. That is,

O(G, B) = {vlv E 5, VD E BVu E G: v.D = u.D}.

Using the two operators defined above, maximal c-groups can be derived for any given

subset of objects, or a subset of objects and a subspace that forms a c-group. The following

lemma gives the derivation, and it holds immediately based on the related definitions.

Lemma 3.3.2 (C-group) For a given subset of objects G, (O(G,I(G)),I(G)) is a max­

imal c-group. For a given c-group (H,B), (O(H,B),I(O(H,B))) is a maximal c-group.

•
To understand why the cases for unique value data set are simple, we observe the prop­

erty below which derives directly from the definitions of unique value data sets and c-groups.

CHAPTER 3. THE SEMANTICS OF SKYLINE 37

Lemma 3.3.3 (C-group in unique value data sets) In a unique value data set, for

any subset of objects G t- 0,

{
V if IGI = 1

I(G) = 0 iflGI> 1

For any subset of objects H t- 0 and subspace B t- 0,

()
{

H if IHI = 1
OHB=

, 0 if IHI > 1

For any maximal c-group (G, B), IGI = 1 and B = V if B t- 0. -
We are particularly interested in maximal c-groups whose projections are in the skyline

of some subspaces. Intuitively, we want to capture the subsets of values in their projections

that are decisive to their skyline memberships.

Definition 3.3.4 (Skyline group and decisive subspace) Maximal c-group (G,B) is

called a skyline group if Ge is in the subspace skyline of B.

For skyline group (G, B), a subspace C <;;; B is called decisive if (1) Gc is in the subspace

skyline of C; (2) O(G, C) = G; and (3) there exists no proper subspace C' c C such that

conditions (1) and (2) also hold for C'.

The signature of skyline group (G, B) is written as Sig(G, B) = (Ga,C1 , ... ,Ck), where

C1, ... ,Ck are all decisive subspaces of the skyline group. _

Conditions (1) and (3) are straightforward. Condition (2) requires that the decisive

subspaces are exclusive to the group G. This reflects our intension to catch the decisive

factors for a group of objects that are in the (subspace) skylines. We will revisit this point

soon when we discuss the semantics.

Example 4 (Skyline group) Consider the objects in Table 3.1 again. In the full space,

q, sand t are skyline objects, therefore, each of them forms a maximal c-group in space

(A, B, C, D). Each group contains only one object.

For group (q,ABCD), where q and ABCD are shorthands for set {q} and subspace

(A, B, C, D), respectively, subspace CD is decisive. Please note that AD is not a decisive

subspace for the group, since q collapses with p and s in AD and the maximal c-group in AD

CHAPTER 3. THE SEMANTICS OF SKYLINE 38

contains three objects, i.e., O(q, AD) = pqs. In other words, condition (2) in the definition

is violated. Another decisive subspace for this group is AC. Thus,

Sig(q,ABCD) = ((2,5,6,8),AC,CD).

As another example, for group (pqs, AD), its projection is in the subspace skyline of

AD. The group has two decisive subspaces, namely A and D. Thus,

Sig(pqs, AD) = ((2, *, *,8), A, D).

Similarly, we have Sig(qt, C) = ((*, *,6, *), C).

3.3.3 Semantics of (Subspace) Skyline Objects

-
Now we study the question about the semantics: For a given object or a group of objects,

can we determine the subspaces where the projections of the object(s) are in the subspace

skyline?

Theorem 3.3.5 (Decisive subspace) For skyline group (G,B), if C is a decisive sub­

space, then for any subspace C' such that C ~ C' ~ B, GCI is in the subspace skyline.

Proof. We prove by contradiction. Suppose GCI is not in the subspace skyline, and IS

dominated by an object WC' in subspace C'. Then, w if. G. For each dimension D E C',
w.D s:: G[3.D and the inequality holds on at least one dimension. On the other hand, since

C is decisive, Gc is not dominated by the projections of any other objects. Thus, Gc = Wc.

That means, O(G, C) ::J G, which violates condition (2) in Definition 3.3.4. _

Theorem 3.3.5 indicates how decisive subspaces capture the semantics of skyline objects:

The skyline membership of an object or a group of objects is established by its decisive sub­

spaces. Comparing with what we have found in observation 1 in section 3.3.1, Theorem 3.3.5

shows a nice feature for deciding subspace skylines.

Example 5 (Semantics) As shown in Example 4, Sig(q, ABCD) = ((2,5,6,8), AC, CD).

Thus, q is in the skyline of subspaces inclusively bordered by ABCD, AC and CD, as shown

in Figure 3.3(a). This also explains why we opt for the representation of signature. _

The signature of skyline group (q, ABCD) explains why and in which subspaces q is

in the skyline without any accompanying coincident objects. q coincides with p, sand t in

some subspaces and thus may jointly be in some subspace skylines. This is captured by the

corresponding skyline groups.

CHAPTER 3. THE SEMANTICS OF SKYLINE 39

~
A~D

AC CD

(a) Subspaces determined
by group (q, ABCD)

(b) Subspaces where q is in
the subspace skyline

Figure 3.3: The Subspaces Where Object q in Table 3.1 Belongs to the Skyline.

Theorem 3.3.6 (Semantics) An object u is in the skyline of subspace C if and only if there

exists a skyline group (G, B) and its decisive subspace C' such that u E G and C' ~ C ~ B.

Proof. (Direction if). Following Theorem 3.3.5, Gc is in the subspace skyline. Since u E G,

Uc is also in the subspace skyline.

(Direction only-if). Consider the group of objects O(u,C). All objects in the group

are in the subspace skyline of C since they share the same values as u on dimensions in C.

Following Lemma 3.3.2, (O(u,C),I(O(u,C))) is a maximal c-group. Furthermore, it is easy

to see that the group must be in the skyline of subspace I(O(u, C)). Thus, the group is a

skyline group. We notice that subspace C satisfies conditions (1) and (2) of Definition 3.3.4.

Thus, if C is minimal, then C itself is decisive, i.e., C' = C. Otherwise, there must exists a

C' C C that C' is decisive. _

3.3.4 Answering Skyline Membership Queries

To answer skyline membership query which is: given an object or a group of objects, deter­

mine the subspaces where the object(s) are in the subspace skylines, Theorem 3.3.6 provides

a generic framework with the use of skyline groups and their signatures.

The framework is simple. Suppose the set of skyline groups and their signatures are

materialized. (The algorithm for computing skyline groups and their signatures will be

given in Section 3.5.) Then, instead of searching all possible subspaces, we only need to

check the skyline groups in which the object is a member. This is effective since only the

signatures of the skyline groups are needed. Moreover, the skyline groups can be indexed

by their signatures to speed up the search. To illustrate, we give an intuitive example here.

CHAPTER 3. THE SEMANTICS OF SKYLINE 40

Example 6 (Semantics - continued) Continued from Example 5, q is a member of sky­

line group (pqs, AD), which has decisive subspaces A and D. Thus, q is also in the subspace

skylines of A, D and AD. Similarly, as a member of group (qt, C), q is in the subspace sky­

line of C. The complete set of subspaces where q is in the skyline is shown in Figure 3.3(b) .

•

3.4 Subspace Skyline Analysis

The notion of skyline groups naturally leads us to explore skylines in subspaces. When

skylines in all subspaces are considered, it is imperative to ask: How are the subspace

skylines formed and what is the relationship among them?

3.4.1 Intuition

We try to decipher some elegant structures embedded in the subspace skylines.

Skylines in subspaces consist of projections of objects. For a projection that is in the

skyline of a subspace, the set of objects that share the same projection form a c-group. By

the c-group containment relationship, a concise lattice structure is formed for the projections

in subspace skylines. The lattice is called the skyline projection lattice (Theorem 3.4.1 in

Section 3.4.2) .

The projection lattice may contain redundant information. The critical point here is

that some projections in skylines of different subspaces may be made by the same maximal

group of objects. Conceptually, a skyline group is a maximal group of objects that coincide

in some subspaces and whose projections are also in the subspace skyline. Therefore, we

can use skyline groups to derive a concise representation. The lattice of skyline groups

is called the skyline group lattice and is a quotient lattice of the skyline projection lattice

(Theorem 3.4.2 in Section 3.4.2).

Manipulating groups of objects all the time is still inconvenient. Ideally, we would like

to select some representatives for the skyline groups. Fortunately, this is achievable since

each skyline group must contain at least one object that is in the skyline of the full space.

This indicates that the full space skyline casts the contours of skylines in subspaces.

CHAPTER 3. THE SEMANTICS OF SKYLINE

3.4.2 Skyline Group Lattice

41

For U E 5, a projection Us is called a skyline projection if it is in the skyline of 8. We

can define a relation [;;; on the set P of all skyline projections: for r, h E P that are in the

subspace skylines of 8 1 and 8 2 , respectively, r [;;; h if 8 1 :2 8 2 and rS 2 = h.

Theorem 3.4.1 (Skyline projection lattice) Let P be the set of all skyline projections

with respect to a set of objects 5. (P, [;;;) is a complete lattice ij i»; *, ... , *) and 0 are treated

as the two trivial skyline projections for the unit element and the zero element, respectively.

Proof. Obviously, \: is a partial order on P. We also notice that 0 is the projection of any

objects in subspace 0 (the trivial subspace), and (*, *, ... , *) is the projection of an empty

set of objects on all dimensions. They are trivial and just technically make up the lattice.

The completeness of the lattice follows from the fact that the number of skyline projections

is limited. _

To characterize that multiple skyline projections may be made by one maximal group of

objects, we define an equivalence among skyline projections as follows. For any projection r

in subspace 8, define the pre-image of r as the set of objects that have r as the projection in

8, denoted by pre(r) = {ulu E 5, Us = p}. For two skyline projections rand h in subspaces

8 1 and 8 2 , respectively, they are equivalent (in terms of being generated by the same group

of objects), denoted by r"-' h, provided pre(r) = pre(h).

Theorem 3.4.2 (Skyline group lattice) Let 59 be the set of all skyline groups. (59, [;;;)

forms a complete lattice where [;;; is on the projections in the groups. Moreover, (59, [;;;) =
(P, [;;;)/ r-«.

Proof. The claim follows from the fact that a skyline group also expands to include all pos­

sible dimensions where the objects share the same projections. For any skyline projections

r in subspace 8 1 and h in subspace 8 2 such that r "-' h, let C = pre(r) = pre(h). We show

rand h are in fact in the same skyline group.

According to Lemma 3.3.2, (O(C,I(C)),I(C)) is a maximal c-group. From the defini­

tion of pre-image, we know O(C,I(C)) = C, 8 1 <;;;; I(C) and 8 2 <;;;; I(C). Now, we show

that (C, I(C)) is a skyline group by contradiction.

Suppose (C,I(C)) is not a skyline group, i.e., CI(G) is not in the skyline of subspace

I(C). Then, there must exists an object u =J C such that uI(G) dominates CI(G) , i.e., for

CHAPTER 3. THE SEMANTICS OF SKYLINE 42

each dimension D E I(G), u.D ::::; v.D where v E G. However, since GB! is in the skyline of

subspace B I , uB! = VB!. In other words, u E pre(p) = G. That leads to a contradiction.

Thus, rand h are in fact the projection of skyline group (O(G,I(G)),I(G)) on B I and

B2 , respectively. That means rand h belongs to the same skyline group. _

Theorem 3.4.2 shows that skyline groups capture skyline projections in subspace skylines

effectively, and the signatures of skyline groups serve as the summarization. Immediately,

we know that the number of skyline groups is at most the number of skyline projections.

Practically, is the summarization using skyline groups meaningful? In practice, data is

more or less correlated. Thus, objects may share values in some dimensions and form groups.

In addition to capturing the semantics of skyline objects, skyline groups also summarize data

records collapsing in some subspaces and appearing in some subspace skylines.

3.4.3 Skyline Groups and Skyline Objects

Although skyline groups provide a succinct summarization of the skylines in various sub­

spaces, it can still be inconvenient and costly to manage all group members if a data set

contains a large number of objects. Can we select some representative objects from the

skyline groups?

Encouragingly, we observe that each skyline group contains at least one skyline object

in the full space.

Theorem 3.4.3 (Skyline object) For any skyline group (G,B), there exists at least one

object u E G such that u is in the skyline of full space V.

Proof. Let u be an object in G such that, in the full space V, u is not dominated by any

other objects in G. Such an object exists provided G of- 0. We show that u is a skyline

object in V with respect to the set of all objects S.

Suppose u is dominated by v '!- G in the full space V, then two cases may arise. First,

UB = VB, then v E G and it contradicts the assumption that u is not dominated by any

other objects in G. Second, if there exists a dimension DEB that u.D > v.D, then given

u is dominated by v in the full space, UB is dominated by VB. That leads to a contradiction

to the definition of skyline group that UB is in the subspace skyline. _

Theorem 3.4.3 indicates that the skyline objects in the full space play critical roles in the

construction of subspace skylines - their projections are sufficient to represent the "contour"

CHAPTER 3. THE SEMANTICS OF SKYLINE 43

of the skyline, i.e., the dimension values of the projections in the subspace skyline. In other

words, an object that is not in the skyline of full space can be in the skyline of some subspace

only if it collapses to some full space skyline objeet (s) in those dimensions.

Please note the pre-condition of Theorem 3.4.3 that group (G, B) is a skyline group (not

just a maximal group) is important. Generally, a maximal c-group that is not a skyline group

may still have a skyline object in the full space as a member. For example, in Figure 3.1,

the group (pt, Y) is a maximal c-group and p is a skyline object in the full space (X, Y),

but the group itself is not a skyline group.

For a data set S, we can obtain the set SK of skyline objects in the full space. An object

u is in the skyline of subspace B in S if and only if there exists an object v that is in the

skyline of the full space such that UB = VB and v is also in the skyline of the same subspace

Bin SK.

Moreover, for a data set S, let SK be the set of skyline objects in the full space and let

5ys and 5YSK be the skyline group lattices on data sets Sand SK, respectively. On the

relationship between subspace skyline groups in S and the subspace skyline groups in its

set of full space skyline objects SK, we have the result that 5YSK is a quotient lattice of

5Ys.

This can be verified from two directions. First, according to Theorem 3.4.2, both 5y S

and 5YSK are complete lattices. For any objects u, v E SK, if u and v are in a skyline group

(G, B) in 5ys, then we have UB = VB. Therefore, u and v must also be in the skyline on

set SK. On set SK, let G' = O({u,v},B) and B' = I(G'). (G',B') is a maximal c-group.

Since U and v are in the skyline of B, (G',B') is also a skyline group on SK. According

to Theorem 3.4.3, every skyline group on S must contain at least one skyline object in

the full space. Thus, any skyline group (G, B) on S can be mapped to a skyline group

(O({u,v},B),I(G')) on SK.

On the other hand, for any skyline group (Gil, B") on SK, skyline group (O(G", B"), B")

on S is mapped to the group on SK. Thus, the mapping is a surjection from 5ys to 5YSK.

The claim that 5YSK is a quotient lattice of 5ys follows.

Together with Theorems 3.4.3, the above result immediately have two practically useful

applications. First, efficient algorithms can be derived for subspace skyline computation,

which will be discussed in Section 3.5. Second, they can also lead to a novel OLAP style

analysis of subspace skylines, which will be showcased in Section 3.4.4.

If we are only concerned with the projections in the subspaces skyline, only the skyline

CHAPTER 3. THE SEMANTICS OF SKYLINE

unit element

((2,5,6,8), q, AC, CD) ((2,4,7,8), s, AB, BD) ((3,4,6,9), t, BC)

((2,*,*,8), pqs, A, D) ((*,*,6,*), qt, C) ((*,4,*,*), st, B)

44

zero element

Figure 3.4: Skyline Group Lattice for Table 3.1

objects in the full space are needed for the analysis. In such a case, we do not need to

manipulate all objects. This potentially leads to a significant reduction in the computational

cost.

3.4.4 OLAP Analysis on Skylines

Since the skyline groups form a complete lattice, it is natural to introduce the multidimen­

sional roll-up and drill-down analysis on skyline groups.

Example 7 (OLAP analysis) Figure 3.4 shows the skyline group lattice in our running

example (Table 3.1). For each node in the lattice, the projection, the skyline objects, and

the decisive subspaces are shown.

By browsing Figure 3.4, the following structural information about the subspace skylines

can be presented.

• Subspace skylines. The information is recorded in the signatures.

• Relationships between skylines in subspaces. For example, from the figure, we know

that an object is in the subspace skyline of C if it has value 6 on C. There are two

ways to further qualify the object as a skyline object in the full space: either having

value 4 on B (i.e., object t), or having value 2 on A or 8 on D (i.e., object q). The

latter two values (A = 2 and D = 8) always come together.

• Closure information. From the figure, we can learn that it is impossible to have an

object in the subspace skyline of BCD, but not in the subspace skyline of ABCD.

Although a naive method to derive this information has to check all objects in the

data set, we derive this information from only the skyline groups. _

CHAPTER 3. THE SEMANTICS OF SKYLINE 45

In practice, why are such roll-up and drill-down operations useful? Suppose all objects

in our running examples are stock data and the user is not only interested whether a stock

is good in general, but also in which attributes it is specially good. For example, when a

user examines subspace C, she finds that both q and t are subspace skyline objects. This is

interesting to her, but she would like to find out further in what other subspaces q is also

good and is better than t. Then, she finds AC and CD and their super-spaces through a

roll-up.

Clearly, the online roll-up and drill-down analysis is not available in the traditional

skyline analysis.

3.5 Subspace Skyline Computation

Given a data set, the problem of subspace skyline computation is to compute, for each non­

empty subspace, the set of objects that are in the skyline of the subspace. At the same

time, we also want to compute the complete set of skyline groups and their signatures as

the summarization of the skylines.

3.5.1 Finding Skyline by Sorting

A lexicographic order can be defined on the set of objects S. For any objects u, v E S. u --< v

if there exists an io (1 ~ io ~ n) such that u.D, = o.D, for (1 ~ i < io) and u.Dio < v.Dio .

u :::S v if u --< v or u = v. Apparently, the lexicographic order :::S is a total order.

As shown in [27], skyline objects in the full space V can be found in two steps, as

illustrated in the following example.

Example 8 (Skyline computation by sorting) Let us compute skyline objects in space

(X, Y) for the objects in Figure 3.1. In the first step, we sort all objects in the lexicographic

order. The sorted list is p(1,3), s(1,4), q(3, 2), t(3,3), w(4, 1).

The second step is as follows. We initiate the set of skyline objects as empty. Then, we

scan the sorted list once. For each object u in the list, we compare u against the current

set of skyline objects. If u is not dominated, then u is a skyline object and is inserted into

the set.

For example, since p(l, 3) is the first one in the sorted list, it is not dominated and is

inserted into the set. The next object, s(1,4), is dominated by p(l, 3) in the current set of

CHAPTER 3. THE SEMANTICS OF SKYLINE 46

{Dl,D 3,D4}

{DI~~~
{D~ {DI\3} {D2,D3} {Dj,D4} {D2,D4} {D3,D4}

{DI} {D2} {D3} {D4}

Figure 3.5: A Top-down Subspace Enumeration Tree

skyline objects, and thus is discarded. The third object, q(3,2), is compared with p(l, 3),

and is not dominated. Thus, q is also inserted into the set as a new skyline object. t(3,3)

is discarded since it is dominated by p(l, 3). Last, w(4, 1) is inserted into the set since it is

not dominated by either p or q. The set of skyline objects {p, q, w} is returned. _

3.5.2 Top-down SUbspace Enumeration Tree

In order to search for skylines of all subspaces thoroughly, we search subspaces in a depth­

first manner. The complete set of subspaces can be enumerated systematically using a

(top-down) subspace enumeration tree. For example, Figure 3.5 shows a tree enumerating

subspaces of space (D 1 , D 2 , D3 , D 4) .

A top-down subspace enumeration tree is a variation from a conventional set enumeration

tree [79] in the way of enumeration. In a conventional set enumeration tree, search starts

from the empty set, and each child adds a new element to the parent set. This is bottom-up.

In the top-down subspace enumeration tree here, we start from the full space, and each child

explores a proper subspace with one less dimension. In other words, a top-down subspace

enumeration tree can be regarded as a bottom-up compliment set enumeration tree. The

reason for this arrangement is that the search from super-spaces to subspaces enables us to

recursively use Theorem 3.4.3 to prune the set of objects under consideration. This point

will become clear in Section 3.5.3.

3.5.3 Algorithm Skyey

Given a set of objects S in space T) as input, Algorithm Skyey returns the set of skyline

groups (in the form of signatures) and, for each non-empty subspace, a list of objects that

are in the corresponding subspace skyline. We first describe the algorithm. An example

(Example 10) will follow.

CHAPTER 3. THE SEMANTICS OF SKYLINE

Finding Skyline Objects in Full Space

47

As a first step, Skyey sorts all objects in the lexicographic order and finds the set of skyline

objects in the full space, as illustrated in Example 8. The list of skyline objects in the full

space can be output. Every distinct full space skyline object forms a skyline group. In other

words, if two objects u and v have exactly the same value in all dimensions of D, and both

of them are in the full space skyline, then they share the same skyline group.

After the set of skyline objects in the full space is found, Skyey makes one scan of all

the other objects (i.e. objects that are not in the skyline of full space). Each non-skyline

object is compared with the skyline objects. For each non-skyline object u and a skyline

object v, if the maximal set of dimensions on which u and v share common values (i.e., the

set of dimensions I({u, v})) is non-empty, then a tag of (u, I({u, v})) is attached to v. The

tag means u and v coincide in subspace I({u, v}).

After this step, all non-skyline objects can be discarded. We do not need to access

them anymore in the rest of the algorithm. The rest of Skyey searches the subspaces by a

depth-first traversal of the subspace enumeration tree (Section 3.5.2).

Efficient Local Sorting

During the traversal of the su bspace enumeration tree, a node is going to be visited. Suppose

the current node corresponds to a subspace B. To identify the objects in the subspace skyline

of B, a naive method is to sort the skyline objects in the parent node. However, repeatedly

sorting objects for different subspaces can be expensive if there are many objects and many

subspaces. Interestingly, we can reuse the sorted list in the parent node, which can reduce

the sorting cost substantially.

Example 9 (Local sorting) Suppose the skyline objects in the full space (D" D 2 , D 3 , D 4)

is evaluated by sorting. In order to find the objects in the subspace skyline of (D 1 , D 2 , D3)

(i.e., the first child of the root node in Figure 3.5), we do not need to sort the objects - they

are already sorted since a sorted list by (D 1 , D 2 , D3 , D4) is also a sorted list by (D 1 , D 2 , D3) .

In fact, we do not need to do any extra sorting when we search the subspaces in the leftmost

branch of the subspace enumeration tree.

Now, let us consider the second leftmost leaf node in Figure 3.5, D2. The objects are

sorted by (D 1 , D2) in the parent node. Instead of a complete sorting, merge sort can serve

the same purpose and save the computation cost. The idea is as follows.

CHAPTER 3. THE SEMANTICS OF SKYLINE 48

The sorted list by (D1, D2) can be regarded as divided into groups according to D 1.

Within each group, objects are sorted by D 2 . We only need to merge the groups according

~~. .
Finding Objects in Subspace Skylines

Once the objects are sorted in the subspace, the objects in the subspace skyline can be

identified easily. Please note that we only sort the list of skyline objects in the parent node.

To make the list of objects in the subspace skyline of the current node complete and the

decisive subspace accurate, we need to find the objects that are not in the skyline of the

parent node, but are in the skyline of the current subspace. This is because not all the

subspace skyline objects are in the skyline objects set of its super space. The finding can be

achieved by examining the information recorded in the tags using the following two rules .

• Identifying objects that are not in the skyline of the parent node, but are in the skyline

of the current subspace. For an object v (a skyline object from the parent node) that

is also in the skyline of the current subspace H, we check the tags attached to v. For

any tag (u, C) such that H ~ C, u should also be output as an object in the skyline of

the current subspace, and is put in the same skyline group where v is in. The reason

is that u shares the same values as v on all dimensions in H.

• Identifying decisive subspaces. For each skyline group G, we check whether the number

of objects in the skyline of the current subspace is the same as the number of objects

in the parent node subspace. If the number of objects changes, that means the group

changes, i.e., O(G, H) ::) O(G, H'). Then, we add the parent subspace as a temporary

decisive subspace to group G, and create a new group for G' = O(G, H), and GB is

recorded in the signature of the new group. If the group already has a temporary

decisive subspace that is a super-space of the newly inserted one, then the super-space

should be removed.

The depth-first search proceeds recursively. According to Theorem 3.4.3, only objects

that are in the skyline of the current subspace should be passed to the children. Tags should

be created for those objects that are in the skyline of the parent subspace but not in the

skyline of the current subspace.

CHAPTER 3. THE SEMANTICS OF SKYLINE 49

Example 10 (Algorithm Skyey) We demonstrate the algorithm Skyey using our running

example (Table 3.1).

As the first step, we sort all four objects in the lexicographic order and identify three

objects q, s, t in the skyline of the full space (A, B, C, D) and tags are created. We create a

skyline group for each object and each group has ABCD as their temporary decisive space.

Then, we go to subspace (A, B, C). We do not need to sort the objects since the sorted

list in the root node can be reused. Again, in this subspace, all the three full space skyline

objects are in the subspace skyline, and the groups do not change.

We further go to subspace (A, B). Again, we reuse the sorted list. In this subspace, q and

t are dominated by s. Thus, ABC should be added to the groups of q and t, respectively, as

temporary decisive subspace. Two tags, (p, AD) and (t, B), should be created and attached

to s. Later, temporary decisive subspace ABC for group q will be removed when another

decisive subspace AC is inserted into the group.

We turn to subspace A, where s is still in the subspace skyline. However, the group

needs to be expanded, since the tag (pq, A) indicates p and q are also in the subspace

skyline. Thus, the parent subspace, AB should be added to group s as a temporary decisive

subspace. A new group, pqs is created. Since p, q and s share values on dimensions A and

D, the signature of group pqs should include dimension D as well, i.e., (pqs, (2, *, *, 8)).

The other subspaces are searched recursively. _

The algorithm is summarized in Figure 3.6. The correctness and the completeness of

the algorithm follows from the above discussion.

Comparing to a brute-force search, algorithm Skyey has two major advantages. First, by

Theorem 3.4.3, Skyey recursively reduces the set of skyline objects that need to be searched

- only those objects in the skyline of the current node will be passed to the children. Often,

only a small subset of objects in a set is in the skyline. The recursive reduction is effective

in practice. Second, the adaptive local sorting can reuse the sorted list of the parent node

to avoid sorting at all in some nodes, and also use merge sort which is practically more

efficient than sorting from scratch.

Since Skyey needs to output the skyline of each non-empty subspace, it has to search

every subspace once. In fact, if a user is interested in only the skyline groups but not the

detailed lists of objects in the skyline of every subspace, the search can be further sped up.

CHAPTER 3. THE SEMANTICS OF SKYLINE

Input: A set of objects S in space V;
Output: (1) the set of skyline groups, and (2) for each

subspace, the set of objects in the subspace skyline;
Method:

Call Skyey(S, V);

50

Function Skyey(S', V')
1: Sort S' in lexicographic order, try to reuse the existing sorted list as shown in Section 3.5.3;
2: identify objects in the subspace skyline of V';
3: for each skyline group in the parent node, check whether a temporary decisive subspace

should be added; if necessary, create new groups and tags, remove minimal temporary
decisive subspaces (Section 3.5.3);

4: let S" be the set of subspace skyline objects in the current subspace;
5: for each (IV'I- l)-d subspace V" call Skyey(S", V")
6: return;

Figure 3.6: The Skyey Algorithm

3.6 Experimental Results

We conducted an empirical study of our method using both a real data set and the bench­

mark synthetic data sets. We evaluated the meaningfulness of skyline groups and their

decisive subspaces, as well as the efficiency and the scalability of our approach to subspace

skyline computation by comparing with the approach in in different aspects.

All algorithms were implemented using Microsoft Visual C++ V6.0. Experiments were

conducted on a PC with an Intel Pentium 41.6 GHz CPU, 512 M main memory and a 40GB

hard disk, running the Microsoft Windows XP Professional Edition operating system.

3.6.1 Results on Real Data Set Great NBA Players' Statistics

We downloaded from the NBA official website (www.nba.com) the Great NBA Players'

technical statistics from 1960 to 2001. In total there are 17,265 records. Each record is the

statistics of a player in a season. We selected six attributes: the number of games played

(GP), total points (PTS), total rebounds (REB), total assists (AST), total blocks (BLK),

total turnovers (TURNOVER). In this data set, the larger the attribute values, the better.

That is, player A dominates player B if A's attribute values are not less than B's, and A

has at least one attribute better than B.

CHAPTER 3. THE SEMANTICS OF SKYLINE 51

Finding the skyline in this players' statistics data set makes excellent sense in practice.

People are often interested in finding the skyline players - players who have some outstanding

merits that are not dominated by some other players. Moreover, finding the semantics of

skyline in this application is of great interest - we not only want to know who are the

great players, but also want to know exactly on which combinations of factors a player is

dominating the other players.

The knowledge of subspace skylines has immediate applications. For example, if a coach

wants to find a player with the best total points and rebounds, he should look at the skyline

players in the subspace (PTS, REB), instead of all skyline players.

In this data set, we found 166 skyline records in the full 6-d space. The total number

of corresponding decisive subspaces is 333, and the average dimensionality of the decisive

subspaces is 2. We list some skyline players and their decisive subspaces in Table 3.2.

The first six records are in the skyline since each of them takes the maximum value in one

dimension. Interestingly, Wilt Chamberlain's performance in 1961 was also outstanding in

some combinations of attributes. Michael Jordan's performance in 1988 was not exceptional

in terms of any single attribute. However, it is in the skyline once attribute combinations

are considered. Actually he is a skyline object in so many different attribute combinations

such as (PTS, REB, AST), (GP, PTS, AST) etc. which show he is an outstanding player.

Similar case applies to Gary Payton's performance in 2001 as he is in the skyline when

multiple attributes are considered. For Clyde Drexler, his performance in 1990 is in the

skyline only if all the attributes are considered.

Clearly the decisive subspaces provide more insightful information than just the list of

skyline players in the full space.

We found skyline records in all non-empty subspaces. Some of them may not be skyline

records in the full space. The numbers of subspace skyline objects and the skyline groups in

subspaces with the same number of dimensions are listed in Table 3.3. These numbers can

be explained by the different number of subspaces associated with the given dimensionality

and by the fact that the number of skyline records increases with increasing dimensionality.

We also counted the total number of subspaces where a record is in the skyline. This is an

interesting measure, which can show the different importance of each subspace. Intuitively,

if a player is in the skylines of more subspaces, he has a better overall capability in terms

of combinations of attributes. We found that, in addition to dominating all others in

total points (PTS), Wilt Chamberlain's performance in 1961 has the highest number, 44,

CHAPTER 3. THE SEMANTICS OF SKYLINE 52

Table 3.2: Some Skyline Players and the Corresponding Decisive Subspaces

~ TURNOVER I Decisive subspaces

Wilt Chamberlain (1960) 79 3033 2149 148 0 0 (REB)

Wilt Chamberlain (1961) 80 4029 2052 192 0 0 (PTS), (GP, REB), (REB,

AST)

Chuck Williams (1973) 90 1113 250 557 11 256 (GP)

John Stockton (1990) 82 1413 237 1164 16 298 (AST)

Mark Eaton (1984) 82 794 927 124 456 206 (BLK)

George Mcginnis (1974) 79 2353 1126 495 56 422 (TURNOVER),

(PTS,REB,AST), (REB,

AST,BLK)

Michael Jordan (1988) 81 2633 652 650 65 290 (BLK, AST), (AST, PTS,

GP), (TURNOVER, PTS,

GP), (AST, REB, PTS),

(TURNOVER, REB,

PTS), (TURNOVER,

AST, PTS),

(TURNOVER, BLK,

PTS), (TURNOVER,

AST, REB, GP)

I
Gary Payton (2001) 82 1815 396 737 26 209 (GP, PTS, REB, AST),

(BLK, AST, PTS, GP)

Clyde Drexler (1990) 82 1767 546 493 60 232 (GP, PTS, REB, AST,

BLK, TURNOVER)

I Player

Table 3.3: Number of Skyline Players in Subspaces with Different Dimensionality

1 6 0
2 107 0
3 465 0
4 799 0
5 598 0
6 166 166

I Dimensionality I # of players I # of skyline groups I

CHAPTER 3. THE SEMANTICS OF SKYLINE 53

of subspaces where it is in the skyline. On the other hand, although John Stockton's

performance in 1990 dominates all others in total assists (AST), which is decisive, it is only

in the skyline of 32 subspaces.

From the preliminary analysis on the real data set, we obtained the interesting and

meaningful observations that cannot be derived from the traditional skyline computation.

This demonstrates the meaningfulness of the proposed subspace skyline analysis.

3.6.2 Results on Synthetic Data Sets

Using the data generator provided by the authors of [13], we generated three types of data

sets as described in [13]:

• Independent data sets where the attribute values of the generated records are uniformly

distributed;

• Correlated data sets where if a record is good in one dimension, it is likely that it is

also good in other dimensions; and

• Anti-correlated data sets where if a record is good in one dimension, it is unlikely to

be good in other dimensions.

For the details of the data generator, please refer to [13]. For each type of data distri­

bution, we generated data sets with different sizes (from 100, 000 to 1, 000, 000 tuples) and

with dimensionality varying from 2 to 10. As the data generated by the tool are in the

range of [0,1] with the precision of 6 digits in the fraction part, we discretize the data to

allow for duplicates (with a degree of 10, i.e. in dimension, the value of a tuple could be the

same with the other 9 tuples), which is more conforming to the real world dataset.

We investigate different aspects of our approach mainly in terms of the features of skyline

group and signature for different types of dataset, the efficient representation of subspace

skylines using skyline groups, the runtime and the space needed for the processing.

We compare the processing time of skyline group computation as well as the computation

for all subspace skyline objects. As there is no previous work on skyline group and signature

computation, for the purpose of comparison, we implemented a naive bottom-up algorithm

as a baseline method to compare with the top-down algorithm Skyey. The basic idea is to

compute skyline objects from the l-d subspaces to the full space. A depth-first search using

CHAPTER 3. THE SEMANTICS OF SKYLINE

700 90
Bottom-up method~ Bottom-up method ___

600 Skyey method~ 80 Skyey method~

70
500

U- U- 60
~ 400 ~

" " 50
E E·E 300 E 40

" "0:: 0:: 30
200

20
100

10

0 0
0 4 6 8 10 0 2 4 6 8 10

Cardinality(x 100k) Cardinality(x 100k)

6000

54

5000

U- 4000
~

" 3000E
E
"0:: 2000

1000

0
0

Bottom-up method --­
Skyey method~

4 6 8 10

Cardinality(x 100k)

Figure 3.9: Runtime vs. Cardinality on
Anti-Correlated Data Sets

the traditional set enumeration tree [79] is used. For example, given a dataset of attributes

(D 1 , D 2 , D 3 , D4) , we first compute the skyline in a single dimension subspace D 1 by sorting

all objects by dimension D 1 . After the sorting, with one scan we can immediately determine

the skyline objects in the subspace D 1 . To compute the skyline objects in subspace (D 1 , D2) ,

we need to sort the objects by dimensions (D 1 , D 2) . We apply the local sorting technique to

reduce the cost of sorting. We also capture the skyline groups by monitoring objects splitting

into different groups as new dimensions are added in. Since the search is bottom-up, once

a new group is formed, the decisive subspace is caught.

We evaluated the scalability of algorithm Skyey and the bottom-up method with respect

to the number of tuples in the data sets. The dimensionality was fixed to 6. The results on

the three types of data sets are shown in Figures 3.7,3.8 and 3.9, respectively. Clearly, both

methods are scalable with respect to the size of data sets, but Skyey is far more efficient

CHAPTER 3. THE SEMANTICS OF SKYLINE

Table 3.4: Number of Skyline Objects in Subspaces on Synthetic Data Sets
Dimen- # of skyline objects (groups)

sionality Independent Correlated Anti-correlated
1 7 (1) 611 (6) 304 (6)
2 94 (0) 45 (1) 134 (3)
3 269 (0) 703 (1) 2706 (1)
4 306 (0) 3007 (0) 16062 (0)
5 164 (0) 4559 (0) 36087 (0)
6 34 (34) 2239 (2239) 21694 (21694)

55

than the bottom-up method. Among the three data sets, the computation on the correlated

data sets is the fastest, and the computation on the anti-correlated data sets is the slowest.

To further understand the effect of different distributions on the number of skyline

objects and skyline groups, in Table 3.4, we list the number of skyline objects in subspaces

found on synthetic data sets with 6 dimensions and 100, 000 tuples. For this example, the

data value is discretized with a duplicated degree of 100 in each dimension.

As can be seen, on the correlated data sets, the number of skyline objects in subspaces is

always the smallest among the three types of data sets, while the number of skyline objects

on the anti-correlated data sets is always substantially larger than the other two types. This

also clearly explains the difference in runtime.

We also tested the scalability of Skyey and the bottom-up method with respect to the

dimensionality. We show in Figure 3.10, 3.11 and 3.12 the results on the data sets with

different data distribution. The size of the data sets was fixed to 100, 000 records.

We observed that Skyey is much more scalable than the bottom-up method. In our

experiments, Skyey is 4 - 6 times faster than the bottom-up method when the dimensionality

is 6. The speed-up factor is increasing with increasing dimensionality.

While Skyey is quite efficient when the dimensionality is not very high, we note that

neither method is linearly scalable with respect to dimensionality. This observation is con­

sistent with the results in previous studies (e.g., [72]), which showed that the dimensionality

curse is still a grand challenge for skyline computation. The same applies to subspace sky­

line computation. How to conduct efficient subspace skyline computation and analysis on

high dimensional data (e.g., with dimensionality over 100) is still an open problem.

CHAPTER 3. THE SEMANTICS OF SKYLINE

100 30

90
Bottom-up method ----...- Bottom-up method ----...-

Skyey method -+- Skyey method -+-
80 25

U
70

20U
Q) 60 Q)

'" '"~ 50 ~ 15E §
'E 40 C::> ::>a:

30 a: 10

20

10

0 0
0 2 4 5 6 7 8 0 2 4 6 7 8

Dimensionality Dimensionality

Figure 3.10: Runtime vs. Dimensions Figure 3.11: Runtime vs. Dimensions
on Independent Data Sets on Correlated Data Sets

1400 ,-----,--,----,--,------,-,------,------,.

56

Bottom-up method ----...­
Skyey method -+-1200

1000
U
Q)

'" 800
~
E
~ 600
::>
a:

400

200

0
0 2 4

Dimensionality

6 8

Figure 3.12: Runtime vs. Dimensions
on Anti-Correlated Data Sets

3.7 Summary

In this chapter, we answered the questions about semantics of skyline objects by introducing

the novel notions of skyline groups and decisive subspaces. To the best of our knowledge,

this is the first study on the semantics of skylines and the subspace skyline analysis [75].

We proposed the problem of subspace skyline analysis and computation. On the subspace

skyline analysis side, a novel roll-up and drill-down analysis of skylines in various subspaces

was introduced. On the subspace skyline computation side, an efficient algorithm Skyey

was developed. A performance study using both real and synthetic data sets was con­

ducted to verify the meaningfulness and the efficiency of our approach. The experimental

results suggest that the semantics of skyline objects and subspace skyline analysis are highly

meaningful in practice, and algorithm Skyey is efficient and scalable.

CHAPTER 3. THE SEMANTICS OF SKYLINE 57

This study also suggests quite a few interesting research problems. First, optimizing

the algorithms for subspace skyline computation, subspace skyline query answering and

subspace skyline membership query answering is an important issue. Proper index structures

should be developed as well. For example, it would be interesting to explore how to integrate

the algorithmic contributions in [95] and this Skyey to develop more efficient methods for

skyline group computation. Second, the concept of skyline groups can be generalized to

fuzzy or approximate skyline groups. This will introduce some interesting opportunities

for further summarization and compression of skylines, as well as stronger query answering

capability. Last but not least, it is interesting to construct an online analytic processing

(OLAP) system for subspace skyline analysis. The real applications of such a system will

provide tremendous insights into the skyline analysis and computation problem.

Chapter 4

Approximate Skyline: Thick

Skyline Operator

The skyline operator returns the objects that are not dominated by any other objects with

regard to certain measures in a multi-dimensional space. An example is to find the hotels

with no others having better price and shorter distance to the beach. Recent work on the

skyline operator [13, 85, 56, 72, 5] as we introduced in the related work of Chapter 2 focuses

on improving the computation efficiency of skyline in large relational databases. However,

the result from these computation gives users only thin skylines, i.e., single objects w.r.t.

certain measurement criteria of dimension combination. This may not be desirable in many

real applications since some non-skyline objects are almost as good as skyline objects and

they are still very attractive to users. In this chapter, we propose a novel concept, called thick

skyline, which recommends not only skyline objects but also their nearby neighbors within a

E distance. Three efficient methods with different technical strengths are developed including

(1) Sampling-and-Pruning method and Indexing-and-Estimating method to find such thick

skyline with the help of sampling technique or index structure in large databases, and (2)

Microcluster-based algorithm for mining thick skyline. The Microcluster-based method not

only provides efficient computation but also provides a concise representation of the thick

skyline in the case of high cardinalities. Empirical evaluations demonstrate the efficiency

and effectiveness of our proposed methods.

58

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 59

2.0

~
1.5

]
oS

1.0

9

~ 0.5
is

0.0

\
.,: .:.:..; .

a • • •••.-:.-. .­. .- ..~
b~: . .. ;. :.. : .
C~i\· : .

d~ ••: ••• :.

~,~: .. ~.

50 100
Price($)

150 200

Figure 4.1: Skyline Query of New York Hotels

4.1 Motivation

In many situations, a database user is not interested in a list (possibly very long) of all

answers that are stored in the database. Instead, they are interested only in a small num­

ber of highly-ranked answers which can provide them additional important information for

making a decision. The paradigm of rank-aware query processing has recently received a lot

of attention in the database system community. The skyline operator [13] is a very typical

one that has been proposed recently, which aims to compute those objects that are not

dominated by any other objects.

A typical example is a dataset about hotels which we mentioned in the previous chapter.

Figure 4.1 shows the skyline of hotels among a set of hotels with dimensions of the Distance

(to the beach) and the Price. The hotels (a, b,c, d, e, J) are the skyline of hotels for which

there is no other hotel that is better on both Price and Distance than any of them. Usually

these skyline hotels are ranked as the best or most satisfying hotels.

The skyline operator can be represented by an (extended) SQL statement in SQL: SE­

LECT * FROM Hotels WHERE city='New York' SKYLINE OF Price min, Distance min

where min indicates that the Price and the Distance attributes should be as small as possi­

ble. For simplicity, we assume that skylines are computed with respect to min conditions

on all the dimensions. That is, the "good", or "better" standard is evaluated by minimum

condition. However, in general, it can be combined with other conditions, such as max [13]

in the query.

The skyline operator are very useful in many areas, including database rank query com­

putation, distributed query optimization, data visualization [13], convex hull computation,

with application examples such as customer information service, stock analysis, resource

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 60

2.0

10

s
~
f1 0.5
is

• I •
• e. • • ._.. •.:. :.:.,.. :...

• .e •
• e. •
. ..

'0 100
Price($)

Figure 4.2: Thick Skyline Pattern of New York Hotels

management decision making etc.. Most existing work on skyline queries has been focused

on efficient computation of skyline objects in large databases [13, 85, 56, 72, 5].

Although skyline queries provide useful information, the results obtained by the skyline

operator may not always contain satisfiable information for users. Let's look at an example.

Example 11 (Intuition) Given the hotel example in Figure 4.1, a conference organizer

needs to decide the conference location. He/She usually will be particularly interested in the

following questions:

1. Can we find a bunch of good choices of hotels (in terms of price and closeness to the

beach) which are nearby so as to provide preferable choices to conference attendees?

2. If a good (skyline) hotel has no room available, is there any nearby hotel which, though

not ranked as high as a skyline hotel, can still be a good candidate?

•
Since the skyline operator can only return a set of skyline objects as the query result,

such as the skyline hotels (a, b,c, d, e, 1), there is little choice for users's requests such as in

question 1 or 2 above. For example, if hotel f is full, while the user has higher preference

in the distance attribute (i.e., close to the beach as much as possible), other skyline hotels

actually provide too few choices for his preference. In this case, those non-skyline hotels

which are close to f are more likely to meet the user's requirement. Another problem

in most of the existing studies is that they are based on the assumption of small skyline

cardinality [72, 13, 56]. However, there could exist a large amount of skyline objects in a

dataset, making it inconvenient for users to browse and manually select interesting ones.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 61

To address the problem of either "two few" or "too many" skyline objects, it seems to be

natural to consider a compact and meaningful structure to represent the skyline and its

neighborhood.

In this chapter, we propose an extended definition of skyline, develop a novel data mining

technique to skyline computation, and study the interesting patterns related to the skyline.

The concept of skyline is extended to thick skyline by pushing a user-specific constraint

into skyline search space. For simplicity, the user-specific constraint is defined as the E:­

neighbor of any skyline object. The thick skyline objects are classified into three categories:

(1) a single skyline object, called outlying skyline object, (2) neighboring skyline objects,

called dense skyline objects, and (3) neighboring skyline and non-skyline objects, called

hybrid skyline objects. In particular, we are more interested in thick skyline objects which

are composed of all the dense skyline and hybrid skyline objects.

Based on this notion, the questions in Example 11 can be answered as the follows. If a

customer is given the knowledge of hotel sets A, B, C, D, E and F in Figure 4.2, such that

each set consists of one skyline hotel as well as its E: (say 20, where the value of distance and

price can be normalized for the computation) neighbors, he can easily move from one hotel

to a neighboring one in the same set. Suppose that he desires to live in a skyline hotel b

($40, lkm) in B, or the skyline hotel e ($135,0.15km) in E, but both of them are full. He

can then choose any other skyline hotel in B, such as hotel c ($45, 0.7km), which is as good

as the occupied skyline hotel in B (since $40 < $45, but lkm > 0.7km); or choosing any

non-skyline hotel in E, say hotel ($136, 0.155km), which is actually "almost" as good as the

occupied skyline hotel e.

Mining the thick skyline is computationally expensive since it has to handle skyline

detection and nearest neighbors search, which both require multiple database scans and

heavy computation. Can we design algorithms that remove the computational redundancy

in skyline detection and nearest neighbors search as much as possible? Furthermore, different

configurations may be required for different applications in their database system. For

example, some may only allow the dataset to be stored in a single file, others may have

additional support of standard index, such as B-tree, while still others may require a special

index structure, such as R-tree or CF-tree. To obtain good performance in these situations,

how can we exploit the related technique and develop efficient approaches that are most

suitable to the different configurations respectively?

Our contributions in this topic are as the follows:

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 62

• A novel model of thick skyline is proposed that extends the existing skyline operator

based on the distance constraint of skyline objects and their nearest neighbors.

• Three efficient algorithms, 5ampling-and-Pruning, Indexing-and-Estimating and

Microcluster-based, are developed under three typical scenarios, for mining the thick

skyline in large databases. Especially, the Microcluster-based method not only leads

to efficient computation but also provides a concise representation of thick skyline in

the case of high cardinalities.

• Our experimental performance study shows that the proposed methods are both effi­

cient and effective.

The remaining of the chapter is organized as the follows. Section 4.2 proposes the

problem definition of a thick skyline. Section 4.3, Section 4.4 and Section 4.5 proposes

three algorithms, Sampling-and-Pruning, Indexing-and-Estimating, and Microcluster-based

respectively, for mining thick skyline over large databases. The results of our performance

study are analyzed in Section 4.6. Section 4.7 concludes the chapter with a summary and

discussion of future research directions on this topic.

4.2 The Thick Skyline Operator

In this section, the concept of the thick skyline and its properties are introduced. To

be complete, we first briefly revisit the related notions of skyline, which is built on the

dominating relationship between pairs of data objects. Then we give the definition of 10­

neighbor of an object.

4.2.1 Problem Definitions

Definition 4.2.1 (Dominating Relationship) Given a d-dimensional database 5, an

object p E 5 dominates another object q E 5, denoted as p >- q, if P is as good or better in

all dimensions and better in at least one dimension. On the other hand, q is a dominated

object. _

Definition 4.2.2 (Skyline) Given a d-dimensional database 5 containing n objects, the

skyline is the set of objects {Sl' S2, ... ,sm} in 5 such that they are not dominated by any

object in 5. _

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 63

Definition 4.2.3 (c-neighbor of an object) The c-neighborhood of an object PES,

denoted by N e(p), is defined by N, (p) = {q E S Idist(p, q) ::::: e }. •

Here, the "good", or "better" standard in the dominating relationship is again evaluated

by minimum condition, and the distance function dist(p, q) simply uses L 2 distance, i.e.,

dist(p,q) = V"£t=llpi - qil 2 .

As illustrated in Example 1, some non-skyline hotels are actually almost as good as

skyline hotels in terms of the Price and the Distance, and they can be recommended as

reasonable replacements for their nearby skyline counterparts. Thus, the criterion of an

object being a skyline can be extended to a more general notion as follows.

Definition 4.2.4 (Thick Skyline) Given a d-dimensional database S and the skyline =

{s 1, S2, ... , sm}, the thick skyline is the set of all the following objects:

• the skyline objects, and

• the non-skyline objects which are e-neiqhbors of a skyline object.

•
Note that a thick skyline object must belong to one of the following three categories: (a)

an outlying skyline object which does not have any e-neighbors, (b) a dense skyline object,

which is in a set of nearby skyline objects, and (c) a hybrid skyline object, which is in a set

of objects consisting of a mixture of nearby skyline objects and non-skyline objects.

From the data mining point of view, we are particularly interested in identifying the

patterns of skyline information represented by clusters of types (b) and (c) as object of type

(a) is already presented in the result of a normal skyline query.

Note that a skyline object must be a thick skyline object, but a non-skyline object can

still be a thick skyline object.

4.2.2 The Task of Mining Thick Skylines

As the task of mining thick skylines is to find the set of skyline objects and their e-neighbors,

intuitively we can apply any existing algorithm such as [13, 56, 72, 85] to identify every

skyline object p, and executing a range search to find neighboring objects Ne(p) (within the

distance of c) to each skyline object p. If there are no objects in Ne(p), the object p would

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 64

be an outlying skyline object. If every neighbor in Nc:(p) is a skyline object, then each of

Nc:(p) is a dense skyline object. Finally, if the neighbors of Nc:(p) are a mixture of skyline

objects and nearby non-skyline objects, each of Nc:(p) would be of a hybrid skyline object.

The cost of mining thick skyline depends on the cost of (1) finding the skyline, and

(2) finding the corresponding e-neighbors. As the major cost of part (1) is evaluating the

"skylineness" of each object which is usually done in a progressive manner, reducing the

number of unnecessary comparisons between the potential skyline objects found so far and

the remaining objects, is important. The cost of part (2) can be reduced by combining the

phase of identifying e-neighbors into part (1) as much as possible.

In the remaining sections, we will explore different approaches to mining the thick skyline

under three typical situations. The first approach applies sampling and pruning technique

for the pure relational files, and exploits the statistics in the relational database system.

The second approach estimates and identifies the range of the thick skyline based on gen­

eral index structures in the relational databases, which is not only suitable for the thick

skyline recommendation, but also combinable with other relational operators. The third

approach exploits the special summarization structure of microclusters which is widely used

in data mining applications, and finds the thick skyline by employing bounding and pruning

techniques.

4.3 A Sampling-and-Pruning Method

4.3.1 Sampling Strategies

Sampling-and-Pruning algorithm runs with the support of the database system where statis­

tics, such as order statistics and quantile in each dimension, can be obtained from the system

catalog.

For any single file, the identification of thick skyline objects relies on the comparisons

between objects. Clearly, the access order of objects in the comparisons crucially determines

the number of comparisons. For example, the access order of objects (1, 1), (2,4), (4,2) and

(3,3) needs 3 comparisons to find skyline (1,1), while the access order of objects (2, 4), (4,2),

(3,3) and (1, 1) needs 6 comparisons. Obviously, we wish to pick some objects with a high

dominating capacity at the beginning to prune many dominated objects, thus reducing the

overall number of object comparisons and accesses. Motivated by this, a sampling method

is developed to achieve a good pruning performance with a rather limited cost.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 65

The basic idea of the Sampling-and-Pruning method is as follows. We first randomly

populate a set X with sample of k objects with high dominating capacity as initial "seeds"

and compare them with the remaining objects. For example, in Figure 4.3, PI, P2 and

P3 are three sampled objects. Several criteria are required during the sampling step: (1)

it prefers to choose objects with smaller values in dimension domains which appear to be

more dominating, and (2) the k objects are not dominated by each other (it is equivalent

to first randomly sampling a subset of objects M from the dataset, then finding k skyline

objects from M).

Each object of X (usually k « 151, where 151 is the size of the database) can be taken

temporarily as a "skyline" object. Afterwards, we compare the objects of 5 with each object

of X to update those temporary "skyline" objects, and determine the final thick skyline

objects with less number of comparisons by a useful early-pruning technique.

If the values in each dimension are distributed independently, an alternative but more

aggressive sampling method [9] can be also applied to construct k sampling objects by

choosing d (smaller) values in each dimension (i.e., such k objects may not necessarily

exist in the dataset). The sampling step is very efficient since the k objects are built

immediately after picking smaller order statistics in each dimension. The pruning capacity

of this sampling can be analyzed probabilistically. Figure 4.3 shows a 2-dimensional hotel

dataset partitioned into regions 1, 2, 3 and 4 by a randomly sampling point PI in this way.

The objects in region 4 are dominated by the objects in region 1. Assuming there are n

objects and the largest values in Price axis and Distance axis are sand t respectively (in

Figure 4.3, s = 230 and t = 2.5), that is, sand t are the n-th largest value in the Price and

Distance axis respectively. Obviously, if PI is chosen properly, region 1 should not be empty,

which will lead to the pruning of region 4. Otherwise, it means that PI is a poor sampling

object. Suppose the constructed coordinate of PI is (u,v). Then the probability of PI in

region 2, 3 or 4, i.e., the probability of region 1 being empty, is (s.t:;tv)n = (1 - ~:nn =

(1 - ¥. ¥)n, if u and v are chosen according to the first criterion above. For example, if

u is chosen as the Ivnlnnlth value in Price, and v is chosen as the Ivnlnnl-th value in

Distance, which means u and v are relatively small values in the corresponding axis, then

the probability is (1- v'n~nn. v'n~nn)n = (l-/!if- ./!if-)n = (1- l:n)n < e- 1n n [67] = ~.

That is, the chance of PI not being a good sampling object is very small. In addition,

we sample k points instead of 1 which decreases the possibility that none of the sampling

objects are good.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 66

2.5

2.0

~ 1.5

j
-5 1.0

9

~
;; 0.5
is

0.0

cps I

.i ':': '1'

. :. '. "4"a ••
" " " " ' " "" .-.. .

P, .' :..~. .. " "..
" " " " ".... . . -: ." . .

2 b<1 .- - -. --- - - - - - --- - ~ - - - i<1'.
\~c " " " c..' " .

,<1 P, .: " "" " ". .
"""1 3 e &!I' P, .
if<1

ps

50 '00
Price(S)

150 200 230

Figure 4.3: Sampling Objects to Pruning.

4.3.2 Strong Dominating Relationship and the Algorithm

As the thick skyline objects are not exactly the skyline objects, those non-skyline objects

need to be investigated during the comparison step. For instance, if object q is dominated

by object P, and q is not an E-neighbor of any skyline objects found so far, q could still be a

thick skyline object since q may be an E-neighbor of some other skyline objects which are to

be identified in the remaining comparisons. In other words, q has to be kept and compared

with every newly identified skyline objects(even temporarily). Basically, the dominating

relationship and distance comparisons cannot determine the complete E-neighbors of skyline

unless all the skyline objects have been confirmed first. Although none of the skyline objects

can be missed during the comparisons, the dataset to be used in the comparisons can be

pruned to a large extent by removing those objects which definitely cannot become the E­

neighbors of any skyline objects. So in order to avoid unnecessary comparisons, we introduce

a strong dominating relationship which is used to prune many non E-neighbors of any skyline

objects in the course of comparisons.

Definition 4.3.1 (Strongly Dominating Relationship) Given a d-dimensional database

S, an object pES strong dominates another object q E S, noted as pI> q, if p + E is as good

or better in all dimensions and better in at least one dimension than q, i.e. Vi, 1 :::; i :::; d,

Pi + E :::; qi, and Pi + E < qi in at least one dimension. On the other hand, q is a strong

dominated object. •
The strong dominating relationship is illustrated by Figure 4.3, where those objects

strong dominated by Pi are in the dashed-lines rectangle which is a sub-region of region 4.

Based on the definition of strong dominating relationship, we have the following lemmas.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 67

Lemma 4.3.2 Given a dataset S, objects p, q, rES, the following properties are satisfied:

1. if P [> q, q [> r , then p [> r;

2. if p »- q, q [> r , then p [> r .

•
Lemma 4.3.2 illustrates the transitive property of strong dominating relationship be­

tween the objects.

Lemma 4.3.3 Given a dataset S, objects p, q E S, if p [> q, then q cannot be a thick skyline

object.

Proof. (1) If p is a skyline object, by the definition of the strong dominating relationship,

q apparently can not be an s-neighbor of p. Assuming q is a s-neighbor of another skyline

object p', based on the definition, J"£~=l Iqi - p:12 ::; E. We show this does not hold by

contradiction. Since p' and p are skylines, so they can not dominate each other. Without

loss of generality, we assume P: < Pi and pj > Pj (i =I- j). Since p [> q, so Pi + E < qi, hence

p~ + E < Pi + E < qi, then we have qi - p~ > E which leads to J"£~=llqi - p~12 2: E. This

contradicts to our assumption. Thus no p' exists such that q is a E-neighbor of p'. (2) If p

is not a skyline object, p must be dominated by some skyline object p"; »"> p, since p c- q,

based on Lemma 4.3.2, we have p" [> q, which means q can not be an e-neighbor of v". The

remaining proof is similar to (1). •

Lemma 4.3.3 shows the property that if any object q is strong dominated by another

object p, which could even be a non-skyline object, q will never be a thick skyline object.

Thus q can be pruned immediately whenever it is identified as being strong dominated by

any other object, and the unnecessary comparisons for s-neighbors will be largely reduced.

The pseudo-code for the Sampling-and-Pruning algorithm is as follows.

Algorithm 4.3.1 A Sampling-and-Pruning Method.

Input: A dataset S of n objects, distance threshold E

Output: The thick skyline in T.

Method:

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 68

1. Sampling k objects X which do not dominate each other;

2. Label 'skyline' for X; / /assuming objects in X are skylines temporarily

3. T=X;

4. FOR each object Si E S DO

5. IF any 'skyline' object x(E X) >- Si THEN

6. IF XI>Si THEN;

7. Continue;

8. ELSE

9. T=TU{s;};

10. ELSE IF s, >- x THEN

11. X=X-x;

12. X=XU{s;};T=TU{s;};

13. IF Si I> x THEN;

14. T = T - x;

15. ELSE / / x and s, cannot dominate each other

16. X = Xu {s;};

17. T = TU {s;};

18. Update X with the skyline objects computed from list X;

19. Prune objects in T that are not e-neighbor of any objects in X;

20. Output T;

In line 1 of the algorithm, we collect sampling data X from the catalog statistics in the

database, in particular, the order statistics and quantile statistics in picking/composing up

objects that have stronger dominating capability. As depicted above, such sampling can

provide a reasonable guarantee for constructing a good pruning space. X is temporarily

added into the thick skyline list in line 2. If an object Si is strong dominated by an object

x in X (lines 5-7), it can be removed. Otherwise, it is either a e-neighbor of s, or it is an

e-neighbor of some other object, or not be the e-neighbor of any other object at this stage.

In either case, this object should be added to the candidate thick skyline list T (lines 8-9).

In the case that x does not dominate Si, but Si dominates x, then x should be removed

from the candidate skyline list X and s, should be added into the list (lines 10-12). Note

that in this case, we can not remove x from T since x could be a thick skyline although it

is dominated by another object (in the simplest case, x could be an e-neighbor of the newly

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 69

added skyline object candidate if this object turns out to be a final skyline object). Of

course, if Si strong dominates x, x is removed from T (line 14). If Si cannot be dominated

by any x, update both X and T with Si (lines 15-17). After the pruning process, the final

skyline object set can be identified from a small candidate list X (line 18). The thick skyline

object candidate set T is updated to contain the final right objects (line 19). Note that it

need not perform any s-neighborhood search to find all the neighbors of the x EX, but

only need check whether any t E T locates within e-distance of x. Thick skyline objects are

output at line 20.

4.4 An Indexing-and-Estimating Method

Most commercial database systems support index structures, such as B-tree or Hash table.

Based on these index techniques, by combining range estimate of the batches on the "Mini­

mum Value Index" [85] with an elaborate search technique, we can find the skyline and the

corresponding s--neighbors within at most one scan of the database elegantly.

4.4.1 Bounding E-neighbors in Minimum Value Index

Assuming that the objects of S are partitioned into a set of d lists such that an object

P = (pi, P2, ... , Pd) is assigned into the i-th list (1 SiS d) if and only if the value of Pi

on the i-th coordinate is the minimum among all dimensions. Table 4.1 shows the lists

for a simple dataset {a(2,1O), b(2,13), c(4,1l), d(5,6), e(6,8), 1(7,7), g(8,15), h(lO,ll),

i(ll, 13), j(13, 2), k(9, 3), l(13, 4), m(8, 5), n(lO, 5),0(12, 9)}. Objects in each list are sorted

in ascending order of their minimum coordinate (minC, for short) and indexed by a B-tree.

A batch in the i-th list consists of objects that have the same i-th coordinate minCo In

Table 4.1, {a,b} of list 1 forms a batch while every other object constitutes an individual

batch since all their first coordinates are different; while objects in list 2 are divided into 5

batches {j}, {k}, {m,n}, {l} and {o}.

Let us have a look about how skyline objects (or "thin" skylines to discern the thick

skylines we are studying) are produced first. Basically the algorithm scans the batches

in each list in an interleaving way. Processing a batch involves (1) computing the skyline

inside the batch, and (2) among the objects computed from the first step, adding those not

dominated by any of the already-found skyline objects into the skyline list.

During the identification of skyline, the position of their s-neighbors can be located by

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR

Table 4.1: The Index Approach

List! List2
a(2, 10), minC = 2 j(13,2) minC = 2
b(2, 13)
c(4, 11) minC = 4 k(9,3) minC = 3

d(5,6) minC = 5 1(13,4) minC = 4
e(6,8) minC = 6 m(8,5), minC = 5

n(10,5)

f(7,7) minC = 7 0(12,10) minC = 10

g(9, 15) minC = 9
h(10, 11) minC = 10
i(11,13) minC = 11

70

taking advantage of the sorted feature of each list. The following lemma gives the range of

E-neighbors for each skyline object in the d lists.

Lemma 4.4.1 Given a dataset X indexed by d lists, and a skyline object P = (Pi, P2, ... ,

Pd) is in the batch minC = Pi of the ith list, then:

(a) the e-tieiqhbors of P can only possibly exist in the batch range [Pi - E,Pi + E] of the i-th

list; and the batch range [Pj - E,Pj + .12] of the j-th list (1 ::::: j ::::: d and i -I- i):

(b) P does not have any E-neighbor in any jth lists (1 ::::: j ::::: d and i -I- i) if (Pj -Pi) > yI2'E.

Proof. (a) Suppose any E-neighbor of P in the j-th list is pi = (p~, p~, ... , p~). The

proof of bounds in the i-th list and the proof of the lower bound in the j-th list can be

straightforwardly proved. For the upper bound in the j-th list, assuming the E-neighbor pi

can exist in some batch with larger value than Pj + .12 in the j-th list, that is, the batch

of the j-th list with minC = pj > Pj + .12. Since Pi and pj are the minimum values of P

and pi in the i-th list and j-th list respectively, P; > pj > Pj + .12 > Pi + ~, so we have

Ip; - Pil > Ip~ - pjl > .12. On the other hand, Ipj - pjl > .12, so V2:.t=l Ip~ - Pil 2 > E.

Thus, pj cannot go beyond the batch Pj + .12 in the jth list, i.e., pj < Pj + .12. (b) As

shown in Figure 4.4 (Eps in the figure represents E), all the objects in the j-th list can

only appear in area I, while those in the i-th list are in area II, and the diagonal equally

partitions I and II. Also, q is the intersection point of the diagonal line and the line starting

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 71

from P paralleled to j-axis, dist(p, q) = Pj - Pi, and the distance between P and its possible

nearest neighbor 0 in I, dist(p, 0), is the shortest distance from P to the diagonal (plane).

If dist(p, 0) > c, which means dist(p, q) > V2 . e, then it is impossible for any object in I

(such as object s) to be the s-neighbor of p. •

Though it looks like that Figure 4.4 only shows a two dimensional case, it is actually

a representation of higher dimensional situation in terms of measuring minimum distance

between a point in list i and a point in list j. The reason is that when calculating the

possible minimum distance, the optimal case is that the values of all the other dimensions

(except i and j which we are studying at) of the point in list j have the same value as

the point being studied in list i. Any difference in value in those dimensions will relax the

condition. Figure 4.5 illustrates the same situation in three dimension.

4.4.2 Slide Windows and the Algorithm

Based on Lemma 4.4.1, when a skyline point is found in i-th list, the s-neighbor search of

this point in the j-th list (1 ::; j ::; d, and i oF j) will go toward two directions" around"

batch minC = Pj if condition (b) in Lemma 4.4.1 is not satisfied. The search toward

upper bound direction is in [Pj,Pj + ~], and the search toward lower bound direction is

in [pj - C,Pj]. Suppose the batch currently processed in the j-th list is minCj . For every

skyline object P detected in the i-th list, batch minC = Pj (Pj 2:Pi) could be located at any

position of the j-th list. So it could scan many objects in the j-th list, from the currently

processed batch minCj to the batch around minC = Pj, in order to find s-neighbors. As

such, for the e-neighbors search of all the skyline objects, there could be many scans of

the lists. To avoid this situation, a length of c sliding window around the current batch

minCj (denoted as SWminCj) is maintained for each list during the sequential scan of the

lists. In other words, the batch number minC within the slide window SWminCj satisfies

minCj - c < minC < minCj . Since e is usually a relatively small value, the memory space

O(d- c) used by slide windows is small too. Clearly, we can leave the upper bound search to

the remaining sequential scan of the lists without incurring any extra cost, but only focus

on the search of lower bound part [pj - C,Pj] since it could lead to the repeated backwards

scans of the list and incur more overhead.

We demonstrate by the following lemma that the s-neighbor search in the j-th list toward

the lower bound direction only needs to be done within the slide window of minC).

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR

Listj List i

72

I

w

s _, II

Figure 4.4: Evaluate Neighborhood Scope

Lemma 4.4.2 Given a dataset X indexed by d lists stated above, and a skyline object

P = (PI, P2, ... , Pd) is in the current processing batch minC = Pi of the i-th list. Suppose

the last processed batch in the j-th list is minCj (1 S j S d and i -=I- j). The c-neiqhbors of

P in range [Pj - C,Pj] of j-th list can only be found in the slide window SWminCj"

Proof. Since batch minCi in the i-th list is the one the algorithm is currently processing,

so minCi 2': minCj (because the algorithm requires to process the batch in the ascending

order of batch number). While P is a skyline object in the i-th list, we have Pj > Pi

and Pi = minCi. If Pj - e > minCj, it means that the search will involve the batches

after current batch minCj in the j-th list, so we can leave it as well to the remaining

sequential scan of the j-th list. Otherwise, Pj - E S minCj. In the meantime, we have

Pj - e > Pi - E = minCi - e 2': minCj - e, so minCj - e < Pj - e < minCj. It shows that

the e-neighbors of P in range [pj - C,Pj] are covered by the slide window SWminCj' •

Lemma 4.4.2 also ensures an important property: whenever an object, if it cannot be

identified as a skyline object or an e-neighbor during its "life span" in the current slide

window, it will never become an e-neighbor for any skyline object in the remaining lists.

Motivated by this property, we can find thick skylines within one scan of lists: initializing

minCI , minC2, ... , minCd and building d slide windows of minCi. In the ascending order

of batch number among d lists, comparing every object P in the minimum minCi with the

thin skyline objects found so far. If P is a skyline object, the range of its e is determined.

The different batch upper bounds of s-neighbors for skyline objects can be recorded (and

have a maximum batch upper bound). Later on, the search of p'S e-neighbors towards the

lower bound can be done immediately in the slide window of each list; while the search of

p'S s-neighbors toward upper bound can be carried out during the remaining sequential scan

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR

1

73

I

I
I
I

I I
I
1

1/
iL0/.

/ ',">,

/ "
/ .

/ - - r -

// q

J

Figure 4.5: Evaluate Neighborhood Scope in 3-d Case

of the lists. If p is not a skyline object, check whether p is the s-neighbor of any skyline

object if it is within the recorded upper bound minC limit to be checked. If it is, p is a thick

skyline object; otherwise scanning forward to find any new skyline object until p moves out

of the current slide window. With the increasing minC; in each list, the slide window will

move to the next batch until the batch number in each list reaches the maximum batch

upper bound.

Let us take a look at the example dataset shown in Table 4.1. We aim to find thick

skyline objects with e equal to 4. Initially, the first batches of all the lists are accessed and

the one with the minimum minC is processed. Let the minimum current batches in both

lists are minCl and minC2 respectively. Since batch {a, b} and {j} have identical minC,

i.e., minCl = minC2 = 2, the algorithm picks {a, b} and computes the skyline objects in

the batch, it then add the skyline object a to the skyline list. Since 10-2=8 is greater than

4· V2, we are sure a does not have e neighbor in list 2 (Lemma 4.4.1). But object b in the

current batch is a € neighbor of a, so b is added to the thick skyline list. As the next batch

{c} in list 1 has minCl = 4, {j} in list 2 with minC2 = 2 is processed and inserted into

the skyline list since it is not dominated by a. Again j does not have € neighbor in list 1

due to the same reason as a. Then, the next batch handled is {k} in list 2, and it is added

to the skyline list without e neighbor search in list 1. It searches the € window of local list

2 and j is not its e neighbor. The next batch being processed is l (it has the same minC

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 74

as the current batch in list 1). I is dominated by a j, but I is an E-neighbor of j, so it is

added to the thick skyline list. The algorithm processing now goes back to batch c of list 1,

c is dominated by a, but an E neighbor of a as well, so it is part of the thick skyline. The

next batch to process is d (since the next batch in list 2 has same minC as d), and it is

added to the skyline list. There is no E neighbor for d in the E window of list 1 and neither

does that exist in E window (from the current batch I) of list 2. The algorithm moves to

next batch m, n of list 2 and discovers that m is a skyline object and n is an E neighbor

of m (once discovered being an E neighbor of any skyline object such as m, n does not to

be checked with other skyline objects although it is also a neighbor of k). Moving back to

list 1, it turns out that e and fare E neighbors of d. Up to this point, no further batches

need to be processed, because both coordinates of d are smaller than the minC1 and minC2

of next batches of list 1 and list 2, which means that the remaining objects are dominated

by d. In addition, there is no thick skyline objects which could exist further in either list

since minC of both 0 and 9 have passed (or reached) the E upper bound window of the last

possible skyline objects (m and d respectively) that could have them as E neighbors.

The pseudo-code of the Indexing-and-Estimating algorithm is as follows.

Algorithm 4.4.1 An Indexing-and-Estimating Method.

Input: B-tree of d lists index and distance threshold E.

Output: The thick skyline T.

Method:

1. S = 0; T = 0;
2. FOR i = 1 to d DO;

3. SW; = 0; minC; = min list;; upper; = minC; + E;

4. WHILE (minC1 < upperd V ... V (minCd < upperd) DO;

5. Choose the batch minC; (with minC; = min minC1 , ... , minCd);

6. Check each object p in batch minC;;

7. IF p is a skyline object THEI\!

8. S=SU{p};

9. Check SWj for list j such that ((Pj - Pi) :::; J2. E);

10. IF any q is a E neighbor THEN

11. T = Tu {q};

12. Update upper; = max{minC; + E, upper;};

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 75

13. Update upperj = maxlp, + -h' upperj};

14. ELSE IF p is an s-neighbor THEI\J

15. T=TU{p};

16. Update minCl , ... , minCd and SWl , ... , SWd ;

17. T=TuS;

18. Output thick skyline T;

The algorithm creates a skyline objects list and e-neighbors list (line 1), current batches

and slide windows in each list (line 2-3). Each object p in the minimum minC; is compared

with the skyline list (line 6). If p is a skyline object (line 7-8), the slide window of each

related list is checked for finding its e-neighbors, and the range of the upper bound window

of each list is updated (line 12-13). Part of piS e-neighbors will be left to the remaining

access of the lists (line 14). If p is not a skyline object, it is checked with the skyline list and

add it to T if it is an s-neighbor of a skyline object (line 14-15). The slide windows will move

to the next batch (line 16) and keep moving until the batch number in every list reaches

the maximum batch upper bound (line 4). Finally, it will output both skyline objects and

z-neighbors (line 17-18).

4.5 Microcluster-based Method

In order to scale-up data mining methods to large databases, a general strategy is to apply

data compression or summarization. A typical approach is to summarize the database into

microclusters based on CF-tree [96, 52] in which data is organized in a balanced tree with

branching factor B and a threshold T. Each internal node of the tree has at most B entries

and the diameter of all entries in a leaf node is at most T. An illustration is shown in

Figure 4.6). These microclusters can be built from a hierarchical cluster feature tree (CF­

tree) which is one of the most frequently used index structure in data mining tasks. The

detailed process of building microclusters can be referred to [96, 52].

4.5.1 CF-tree and Microclusters

The formal definition of microcluster is given below. For an object Xi, Xf represents the

value on its pth dimension.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR

..... '. . -.,

Figure 4.6: Microclusters of CF-tree

76

Definition 4.5.1 (Microcluster) A microcluster for a set of d-dimensional objects X =

Xl ... X n is defined as a tuple (CFIX, CF2x, CF3x, n), where om«, CF2 x, and CF3x

each corresponds to a vector of d entries. The definition of each of these entries is as the

follows:

• For each dimension, the sum of the data values is maintained in C Flx. Thus, C Fl X

contains d values. The p-ili entry of C FlXis equal to 2:.';=1 XJ.

• For each dimension, the sum of the squares of the data values is maintained in C F2 x.

Thus, CF2x contains d values. The p-th entry of C F2 X is equal to 2:.';=1 (X%)2.

• For each dimension, the minimum of data values is maintained in C F3 x . Thus,

CF3x contains d values. The p-th entry of CF3x is equal to minj'=l(XJ). The

C F3x can work as a best possible vector in the microcluster in terms of dominating

relationship.

• The number of data points are maintained in n.

•
The centroid X a of a microcluster mCa can be represented by CFlx as: X a = CFlX

n

and the radius ra of a microcluster mc., can be represented by X a and CFlx and CF2x

vectors as

T a =

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 77

The minimum distance mdist.; between each microcluster and the origin can be easily de­

termined by C F3 x . With the data organized by microclusters, we can limit the search space

of the complete e-neighbors of an object by first examining the neighborhood relationship

between microclusters. Suppose object p is in a microcluster mCa, the distance between mc.,

and any microcluster mci, is represented as: distm(mca, mCb) = dist(Xa, Xb) - Ta - Tb. If

distm(mca, mCb) < s, then the objects in tncs, and mCa are candidates of s-neighuors of p.

The CF-vector values in a microcluster also satisfy additive property: if CFj (X) =

(CFlf, CF2f, CF3f, nl)

and

CF2(X) = (CFl:, CF2:, CF3:, n2)

are the CFs for sets of objects X and X' respectively then

CH + CF2 = (CFlf + CFl:, CF2f + CF2:, min(CF3f,CF3n, nl +n2)

is the microcluster feature vector for the sets X and X'.

In order to facilitate the task of mining thick skyline, the database can be partitioned

into a set of microclusters with radius r, (for example, it could be r; ::; e) in the leaf nodes

of CF-tree, where each non-leaf node represents a larger microcluster consisting of all the

sub-microclusters represented by its entries, and the first level microclusters are represented

by root node entries shown in Figure 4.6. Notice that there may exist overlapping between

some microclusters and methods such as those in [42], [52] can be used to remedy this

problem.

Some spatial index such as R-tree [72] can be still applied in data partitioning. However,

such partitioning lacks the inherent statistics information and the additive property as the

microcluster does. Specifically, sphere-like structure of a microcluster is more suitable in

handling the problem of thick skyline with the searching of e-neighbors. The microcluster

structure in CF-tree can provide a hierarchical, compact representation of the thick skyline

distribution for future query refinement. Moreover, the cost of building a CF-tree is very

cheap and only need a linear scan of database.

4.5.2 Skylining Microclusters and the Algorithm

Based on the property that each microcluster can be represented by the statistics in its

CF-vector, the basic idea of mining thick skyline is by taking two steps. Firstly, instead of

accessing every object in the dataset, we only need to identify the microclusters that could

contain skyline objects (called skylining microciusterei, then find which microclusters are

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 78

their s-neighbors. In the second step, the thick skyline objects can finally be determined

from those microclusters. Using these skylining microclusters to represent a group of skyline

objects and nearby objects is an appropriate summarization of thick skyline in the case of

large number of skylines. It is also a good structure to maintain the skyline in dynamic

dataset, where the skyline can vary from time to time.

With the data represented in microclusters, the dominating relationship can be be ap­

plied to the microclusters, that is, for any two microclusters tnc., and mCb, we compare their

centroid vector and CF3x respectively (since centroid vector represents the average case of

all the objects in the microcluster while CF3 x represents the best possible point similar to

the bottom left corner of MBR in an R-tree). If X a >-- CF3b, then mc., >-- mci; that is, the

objects in mCb must be dominated by some objects in mCa. As the number of microclusters

is much less than the total number of objects in the dataset, the computation cost is very

low.

Now we apply the nearest neighbor search to find thick skylines based on the statistics

in microclusters. The algorithm starts at the root node of the CF-tree and searches for

the microclusters in the ascending order of distance mdist-; All the visited microclusters

are added to a heap h sorted by the distance mdisi.; Initially, the microcluster with the

minimum distance to the origin is selected from the first level microclusters. Since the

CF-tree is a hierarchical structure, the corresponding entry in the root node can be quickly

located, and the search then goes further to its sub-microclusters and recursively goes on

until the expected microcluster me, is located in a leaf node. me; is a skylining microcluster

and is added into a heap hi sorted by the distance mdisi.;

Next, the algorithm continues to expand the microclusters in heap h and selects the

next one with the minimum distance to the origin. If the CF3x vector of the next selected

microcluster is dominated by the centroid vector of any microcluster in hi, it means that the

objects of the selected microcluster are dominated by some objects in a microcluster in heap

hi and the selected microcluster cannot contain skyline objects. This microcluster can be

certainly skipped for skyline objects consideration. Furthermore, if it is strong dominated

by any microcluster in hi which means its containing objects are not possible to become

any e-neighbors of any skyline object, it can be pruned without any further consideration.

This is in a similar situation as we show in Lemma 4.3.3 in the first method. Otherwise, the

selected microcluster should be added into hi as the thick skyline object candidates. The

algorithm continues selecting the remaining microclusters until all of them are visited or

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 79

prunned. Here only the statistics instead of every object in the microcluster being accessed

for evaluating whether it is a skylining microcluster, thus the cost is low.

Afterwards, the algorithm visits the heap hI which only now contains a small number of

microclusters, and again expands them according to the points/rnicroclusters' mdisi.; We

process the expanding in a batch way. The general idea is that all the objects in a expanded

microcluster have to be identified as either a skyline object or not before a s-neighbors search

is launched for that/those microclusters. If there is any object that is still in an undefined

status (i.e. it is not sure whether it is a skyline object or not), the next best microcluster is

expanded.

At the beginning, all the objects in the microcluster with the smallest mdist.; are ex­

panded. Object p at the top of heap hI (if the top element is a microcluster, then that

microcluster is expanded until the top element is a single object) which is nearest to the

origin is the skyline object, and the remaining objects are examined in the order of nuiist;

and see whether they are skyline objects (this property guarantees that whenever an object

is not dominated by skyline objects found so far, it is a skyline object [56]). Notice that the

skyline objects in the microclusters expanded so far are maintained in a skyline list. To save

the on-the-fly search of s-neighbors for each skyline object, a group s-neighbors search of all

the skyline objects in the expanded microcluster(s) is launched whenever it is discovered that

all the objects in an expanded microcluster m< have been inspected. If there exists skyline

objects in microcluster me;, the neighboring microclusters of m< are also examined. As we

know previously, for any microcluster mCa, if distm(mca, mcD = dist(xa, xD - Ta - T~ ::; E,

it may contain the s-neighbors of mc~. The hierarchical structure of CF-tree provides an

efficient way to the search of the neighboring microclusters. We simply use a top-down

traversing approach by checking whether m< intersects with some first level microclusters

in the root node, then with the non-leaf nodes, and finally locate the desired microclusters

in the leaf nodes. The search complexity which is bounded by the tree height and the

intersected number of microclusters in the tree, is practically small. The objects in these

neighboring microclusters are examined whether they are s-neighbors of skyline objects in

mc~. All the object in microcluster mc~ are then removed from hI, and hI is updated. The

algorithm repeats the expanding process and any of the expanded objects/rnicroclusters are

pruned if they are strong dominated by any object in the current skyline list. The algorithm

terminates when hI is empty.

The pseudo-code for the Microcluster-based algorithm is as follows.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 80

Algorithm 4.5.1 A Microcluster-based Method.

Input: CF-tree with m leaf microclusters, and the distance threshold E.

Output: The thick skyline.

Method:

1. S = 0; T = 0; heap, = 0;
2. heap = first level nodes of the CF-tree;

3. WHILE heap is not empty DO

4. WHILE top node mci; is not a leaf node

5. IF (mcj E heap, >-- mCk) THEN

6. Remove mq;

7. ELSE Expand top node in heap;

8. Extract top node mCi;

9. IF ,(mcj E heap, >-- mCi) THEN

10. Add me, to heapv;

11. WHILE heao, is not empty DO

12. WHILE top element mci, of heap; is not an object

13. IF (p E S >-- mcd THEN;

14. Remove mCk;

15. ELSE Expand mcc; lastExpandedMC = mCk;

16. lastExpandedMcSet U= mcc;

17. WHILE there exist microclusters before the last object in lastExpandedl'vlc DO

18. Expand those microclusters and add fully expanded MCs to lastExpandedl'vlcSet;

19. WHILE top elements of heap, is an object DO

20. Extract object P at the top of heapl;

21. IF ,(p E S >-- p) THEN;

22. Add P to S;

23. Find neighboring microclusters of each me; in lastExpandedMcSet;

24. Add E-neighbors of skyline in mc; to T;

25. Output thick skyline S U T;

Lines 2-10 identifies skylining microclusters and thick skyline candidates microclusters.

Starting from line 11, thick skyline objects are being identified. Lines 12-15 find the first

microcluster that contains the first skyline object which is the one has the closest distance

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 81

to the origin and this microcluster is remembered in the variable lastExpandedMc. Lines

16-18 continues the expanding until all the objects in lastExpandedMc are listed in the

front end of the heap than any microclusters. All the fully expanded microclusters during

this expanding are recorded in the set of lastExpandedMcSet. Then skyline objects are

evaluated for all the fully expanded microclusters so far based on N N property (lines 19-22).

The group search is performed to locate the neighboring microclusters, and the s-neighbors

of skyline are determined (lines 23-24).

4.5.3 Thick Skyline Operator and Data Mining Applications

Interestingly, the task of mining the thick skyline can be regarded as a by-product of some

typical data mining tasks by naturally pushing the skyline constraint into the mining process.

Recent studies in [53, 22] encourage a unified framework of data mining in that not only the

input of one data mining operation can be the output of another, but also multiple mining

operations can be properly integrated. Here we discuss the usability of this approach. Many

data mining tasks, tend to find large patterns which means every object is a member of the

patterns. For instance, DBSCAN is a popular density-based clustering method [31] to find

arbitrarily shape clusters in databases. The thick skyline can be regarded as a small pattern,

which consists of groups of special objects. So it is cost-saving to extract a small pattern

of thick skylines along with the process of mining large patterns of clustering.

DBSCAN chooses one object p as a seed and starts a s-neighbors range search to find

neighboring objects Ne(p). If the number of objects in Ne(p) satisfies MinPts threshold,

Ne(p) and p will be merged into a local cluster, and the cluster expands with further range

search and continues to go on. Basically, every object in the database will be involved

in s-neighbors search. So we can neither enforce any extra database access, nor violate

any clustering target, only need to push the constraint of (strong) dominating relationship

into the s-neighbor search to check whether the retrieved object is dominated by the query

object. Thus the skyline and its neighbors can be identified after the whole clusters are

identified. Obviously, if taking advantage of the microcluster technique, it would be easier

to find both clusters and the thick skyline.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR

4.6 Experimental Results

82

In this section, we report the results of our experimental evaluation in terms of efficiency and

effectiveness. Section 4.6.1 shows the runtime performance and the number of comparisons

needed for computing the thick skyline. Section 4.6.2 evaluates several factors that affect

the size of thick skylines including the choice of the value of E: and the using of microclusters.

Here, we focus on the cost of mining thick skylines in the computing stage instead of pre­

processing stage such as the index building or the CF-tree creation.

Following similar data generation methods in [13], we employ two types of datasets:

independent databases where the attribute values of the tuples are generated using uniform

distributions and anti-correlated datasets which contain tuples whose attribute values are

good in one dimension but are bad in one or all of the other dimensions. The dimensionality

of datasets d is in between 2 and 5, the value of each dimension is in the integer range of [1,

1000] and the number of data objects(cardinality) N is between lOOk (100,000) and 2000k

(2000,000). We have implemented the Sampling-and-Pruning, Indexing-and-Estimating and

Microcluster-based methods in C++. All the experiments were conducted on an Intel

1.6GHZ processor with 512M RAM, 40G hard disk, running on Windows 2000.

4.6.1 Efficiency Tests

Runtime Performance. We first investigate the runtime issue in the case of different

dimensionality. For the independent data distribution, we use a dataset with the cardinality

N of 1000,000, while for the anti-correlated dataset, the cardinality is much smaller with

the number of 100,000 since it generally takes longer time to compute the skyline in anti­

correlated distribution and more skyline objects are generated, but this does not affect the

relative comparison of the algorithms. E: in both cases equal to 5. Figures 4.7 and 4.8

depict the results of the runtime w.r.t various dimensionality in the independent and anti­

correlated distribution respectively. In both cases, the Indexing-and-Estimating method

achieves as good performance as that for the Microcluster-based method in case of small

dimensionality(d = 2, 3), due to its sorted list structure is most suitable to the relative small

dimension so that the E: neighbors do not scatter in too many lists that needs to search.

Microcluster-based method is getting better towards larger dimensionality (d > 3) and when

the skyline size becomes larger. The Sampling-and-Pruning method ranks the third due to

its lack of index structure and all the computation needs to be done online.

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 83

5432

lndexinq-ano-Estimatinq ---J<-­
Sarnpllnq-and-Prurunq ---><-­

MicroCluster·based --+--

180

160

140

0 120
Q)

"' 100Q;'
.§ 80
C
:>

60a::

40

20

5
0

0432

Indexing-and·Estimating ---J<-­
Samplinq-and-Pruninq -----*­

MicroCluster·based --+--

90 ,----~--~--~--~------,

80

70

o 60
Q)

~ 50

~ 40

~ 30

20

10

OL----'-------'-------'-------'----------'
o

Dimensions Dimensions

Figure 4.7: Time vs. Dimensions on In- Figure 4.8: Time vs. Dimensions on
dependent Data Sets Correlated Data Sets

20050 100 150

Cardinailty(x 1k)

lndexinq-and-Estirnatinq --+-­
Sampllnq-and-Prunlnq ---x-·­

MicroCluster·based",.

200 ,-------.-------:,--------,-----,

180

160

140

120

100

80

60

40

2~ L-=~==:±===~:==:J
o

o
Q)

"'Q)
E
~
:>

a::

2000500 1000 1500

Cardinality(x 1k)

Indexing-and-Estimating __
Sarnplinq-and-Prunlnq ---><-­

MicroCluster-based --+--

100 ,-------r----,-------.--------,

90

80

70

60

50

40

30

20

1~ ~b~::::::;~==~==:::::J
o

Figure 4.9: Time vs. Cardinality Di- Figure 4.10: Time vs. Cardinality Cor­
mensions on Independent Data Sets related Data Sets

45 11

40 U 10
Q) 9E

35 0 8
0 Q;

7Q) 30 a.

"' "' 6Q) c
25 0§ "' 5

C
20

.~

:> 0- 4a:: E
15

0 3

~
o
(; 2

10 .. 1

5 0
0 5 10 15 20 25 30 0 500 1000 1500 2000

Eps Cardinality(x 1k)

Figure 4.11: Time vs. Eps on Indepen- Figure 4.12: #of Comparisons vs Car-
dent Data Sets dinality on Independent Data Sets

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 84

3-d 1M Independent dataset --+----12000 25000
Eps=1 __

10000
Eps=5 __

20000Eps= 15 --+----
Ql Ql.5 8000 .5>.
'" >. 15000
en '"
'" 6000

en
c '":.c: o

10000f- :.c:
'0 4000 ~..

2000
5000

0
500 1000 1500 2000 0

Cardinalily(x 1k)

5 10 15 20

Eps

25 30

Figure 4.13: #of Thick Skyline vs. Car- Figure 4.14: #of Thick Skyline vs. Eps
dinality on Independent Data Sets on Independent Data Sets

542

Dimensionality

of Thick Skyline Microciusle __
of Thick Skyli --+----

14000

12000

10000

:;; 8000
"'E
:::> 6000z

4000

2000

0
2000 0500 1000 1500

Cardinality(x 1k)

01b<==ll=:=.2.-_---'---__L.-__

o

7000 r---~--~--~--~

2000

1000

6000

3000

4000

5000

Figure 4.15: Effects of Microclusters(I) Figure 4.16: Effects of Microclusters(II)

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 85

Figures 4.9 and 4.10 show the runtime w.r.t. various number of tuples in independent and

anti-correlated distributed 3-d datasets respectivelyfz = 5). Again, due to the same reason

as stated in previous paragraph, we tested independent dataset with the scale to 2000,000,

while for anti-correlated dataset, we test the dataset with maximum size of 200,000. In

both cases, we can see that the Indexing-and-Estimating method is better than Microcluster­

based method in run time when the cardinality is relatively small (600K for the independent

dataset and around lOOK for the anti-correlated dataset). After that, Microcluster-based

method starts to run faster than the Indexing-and-Estimating method due to its region

pruning capability of microclusters and good scalability of the hierarchical structure. Since

there is no traditional or specialized index to facilitate computation, Sampling-and-Indexing

still ranks the third in the comparisons, but the run time is not bad even when the cardinality

is very large.

N umber of Comparisons. In order to examine the average number of comparisons per

object(equivalent to the total number of comparisons divided by the number of objects), we

test the three methods on different sizes of 3-d independent distributed datasets (with 10 = 5).

Figure 4.12 shows the result and it indicates that both the Indexing-and-Estimating and

the Microcluster-based methods have the similar number of comparisons per object(about

one time), since many objects are pruned earlier or later. Sampling-and-Pruning method

(with the sample size of 30) has at most 10 comparisons for each object.

4.6.2 Effectiveness Tests

The Effect of 1O. Obviously, the choice of 10 values will affect the size of thick skylines,

and this is related to the specific applications. Some applications would want to output

more choices for the user, hence a relatively bigger 10 is chosen, while other applications

may want to have a more refined set of choices thus a smaller value of 10 is selected. But

in general, 10 is practically a small value w.r.t. the domain values, which reflects the "local

neighborhood". The choice of value can also be recommended by the system as an initial

parameter for the future user interaction. When we increase 10 value from 1 to 30 in 1000,000

independently distributed 3-d dataset, Figure 4.14 (here denote the number of thick skyline

as "TSkyline") shows that the number of thick skyline objects increases, and Figure 4.11

shows the run time of the three algorithms also increase. In particular, Microcluster-based

method is always the best and keeps good scalability. Indexing-and-Estimating method

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 86

is still better than Sampling-and-Pruning method in runtime W.r.t E, but we can see that

the Indexing-and-Estimating method increases faster than the sampling method with the

increase of E due to the fact that it needs to scan a bigger window in each list.

The Effect of Dimensionality and Cardinality. The change of dimensionality will

affect the size of thick skylines, this can be illustrated in Table 4.2. For example, if E is

chosen as the square root of sum of 0.3% of the maximum value in each dimension, Table

4.2 shows the size of thick skylines (cardinality of lOOK tuples) in different dimensions,

where the number in brackets is the number of skyline objects, which can be small in some

case. We notice that if increasing dimensionality, both independent and anti-correlated

distributed dataset will increase the number of the thick skyline objects, and the latter will

increase more. The affect of cardinality is shown in Figure 4.13 (here denote the number of

thick skyline as "TSkyline") that the number of thick skyline increases W.r.t the large size

of datasets.

Table 4.2: Thick Skyline Size

Dimension Independen Anti-Corelated
2 65(10) 187(41)
3 161(19) 1075(353)
4 892(134) 7436(2084)
5 1435(328) 26486(9320)

The Effect of Microclusters. Finally, we examine the compact results of using thick

skylining microclusters which contain the skyline objects and their e-neighbors to represent

all thick skyline objects. Figure 4.15 shows that in a 3-d independent distributed dataset,

when E = 3, the number of microclusters maintained is always far less than that of the thick

skyline objects. This effect is especially evident when data size tends to be larger. We have

the similar compact effect W.r.t. the change of dimensionality in a N = 1M, independent

distributed datasetfs = 5) shown in Figure 4.16.

4.7 Summary

The paradigm of rank-aware query processing has recently received a lot of attention in the

database systems community. In particular, the new skyline operator has been proposed. In

CHAPTER 4. APPROXIMATE SKYLINE: THICK SKYLINE OPERATOR 87

this chapter, we proposed a novel notion of the thick skyline based on the distance constraint

of a skyline object from its nearest neighbors [51]. The task of mining thick skylines is to rec­

ommend skyline objects as well as their nearest neighbors within e-distance. We also develop

three algorithms, Sampling-and-Pruning, Indexing-and-Estimating, and Microcluster-based,

to find such thick skylines in large databases. Our experimental evaluation demonstrates

the efficiency and effectiveness of our algorithms. We believe the notion of thick skyline and

mining methods not only extends the skyline operator in database query, but also provides

interesting patterns for data mining tasks. This studies also suggests several interesting

topics by pushing the data mining operation into the skyline concept. For example, we can

investigate the task of (1) mining subspace thick skylines; (2) mining the most interesting

subspaces for the thick skyline objects or (3) mining the exceptional thick skyline objects

in the full space or subspaces and so on.

Chapter 5

Skyline and Database Ranked

Queries

Given a linear monotone score function I, the top-k ranked query retrieves the best k

objects according to the values of f. Existing methods for processing such queries employ

the techniques of sorting, updating thresholds, materializing views and convex hull. In

this chapter, motivated by the interesting relationship between the top-k tuples and the

skyline objects, we propose two novel index-based techniques for top-k ranked query: (1)

indexing the layered skyline, and (2) indexing microclusters of objects into a grid structure.

We develop efficient algorithms for ranked queries by locating the answer points during the

sweeping of the line/hyperplane of the score function over the indexed objects. Both methods

can be easily plugged into typical multi-dimensional database indexes. The experimental

results from different evaluating aspects are also reported.

5.1 Introduction

Rank-aware query processing has become more and more important for database users.

The answer to the top-k ranked query is a set of k resulting tuples ordered according to a

specific score (preference) function that combines the value of each input (attribute). The

combined score function is usually linear and monotone with regard to the individual input.

For example, given a hotel database with attributes of distance to the beach (x axis), price

(y axis) and the score function f(x, y) = O.3x + O.2y, the top-3 hotel records are the best

88

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 89

three hotels that minimize t .
A straightforward method to answer top-k ranked queries is to first calculate the score of

each tuple during the scan of the dataset, then output the top-k tuples from all the calculated

ones by comparison or sorting. This fully ranked approach obviously is undesirable for

querying a relatively small number k out of a large number of objects. Thus, several methods

towards improving the efficiency of top-k ranked queries over databases have been developed.

Fagin et al. a set of dynamic threshold-based scanning algorithms are introduced in [33,

48, 47]' and Natsev et al. [68] provides a solution for combining the results of multiple

top-k queries based on user-specified join predicates. Recent work includes materializing

techniques based on pre-computing ranked views and convex hulls etc [44, 21, 89]. But

these methods are either specific to joined relations of two dimensions, or incompatible with

other database indexing techniques, or computationally expensive.

In this chapter, we propose novel solutions to the ranked query problem motivated by

the relationship between the top-k ranked objects and the skyline objects. Let us first look

at the following example.

Example 12 (Top-k ranked queries) Consider a set of hotels with attributes of distance

(x axis) and price (y axis) as shown in Figure 5.1. The points marked as triangles (a, b,c, d, e, f)

are skyline hotels as there is no other hotel that is better on both price and distance than

any of them. Suppose a score function! (x, y) = a1x + a2Y where 0 :::; aI, a2 :::; 1, is used to

rank top-k hotels. From geometry point of view, ranking top-k hotels can be regarded as

the process of sweeping the line a1x + a2Y in the plane as shown in Figure 5.1 (illustrated

with the lines sweeping from Fo ---+ F1 ---+ H ---+ F3 ---+ ...), and intersecting the hotel points

during the sweeping. The order that the first k points are intersected is the order that top-k

objects are ranked. _

Note that in practice, users might be interested in different score functions, so that a1

and a2 could be arbitrarily changed and the angle of the sweeping line to the axis is changed

correspondingly. Furthermore, the same process can be applied to high dimensional cases

as well. When d (d > 2) attributes are involved in the score function of a1 . Xl + ... + ad' Xd

where 0 :::; a, :::; 1, querying the top-k objects is equivalent to sweeping ad-dimensional

hyperplane representing the score function !(X1, ',Xd) = 2:.1=1 ai' Xi and finding the first k

objects intersecting with it.

Obviously, the sweeping process naturally captures the order of ranking top-k objects

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 90

. e_._ .:. :.-;.- .:. .-:•. . . •• e...
:. :..- .,.:

e •• • :

. '.
..

.... . .
2.0 \.·•• ··:.1.

a ••. .
E 1.5 .. • ••- '".... ..i3 "', • • •
~

.,g ''b..

~ l.0 r ',~,', ,
~ ,,', ',e _I_
~ 05 "':....,,';' •• -
6 . d ""',"', :.

0.0

50 I', ,,~;J 150

F: al"X+a2"Y F~F/
200

Pricc($)

Figure 5.1: Top-k Objects vs. Skyline

and it only retrieves the least number of objects needed from the database in the ideal case.

Furthermore, we have the general observations as follows.

1. The dominating relationship actually decides the ranking order between a pair of

objects. That is, if an object p dominates object q, then p ranks higher than q w.r.t.

any above score functions.

2. The top-1 object is always a skyline object no matter how the function changes; for

example, in Figure 5.1 the best hotel is the skyline hotel d. The ith best object is

either another skyline object or an object dominated by at least one of the top-(i-1)

objects.

3. If multi-layer skylines [70, 29J are constructed where each object in some layer is

dominated by at least one object in its previous layer, the top-k ranked objects must

be contained in the first k skyline layers.

We can see that although the skyline objects (and their different layers) are independent

of any chosen score functions, the higher dominating capacity of skyline objects leads to the

higher ranking of skyline objects over non-skyline objects.

Motivated us by these observations, we propose two novel index-based approaches for

top-k ranked queries. The first approach is indexing the layered skylines, and the second

approach is indexing microclusters of objects into a grid structure. We also develop efficient

algorithms for ranked queries by locating the answer points during the sweeping of the

line/hyperplane of the score function over the indexed objects. Both approaches can be

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 91

easily plugged into typical multi-dimensional database indexes. For example, the layered

skyline can be maintained in a multi-dimensional database index structure with node blocks

described by (1) MBR(Minimum Bounded Rectangle) such as R-tree[41]' R*-tree[7] and X­

tree[12]' or (2) spherical Microcluster such as CF-tree[96]' SS-tree[91] and SR-tree[54].

Our contributions on top-k ranked queries can be summarized as the follows.

1. We propose a framework to process top-k ranked queries by indexing skyline layers or

indexing microclusters;

2. We propose efficient sweeping algorithms for the exact top-k ranked queries and ap­

proximate top-k ranked queries, and illustrate the instantiations applied for different

index structures;

3. The comprehensive experiments not only demonstrate that our algorithms provide

better performance than state-of-the-art methods, but also illustrate that the appli­

cation of data mining technique (microclustering) is a useful and effective solution for

database query processing.

The rest of the chapter is organized as follows. Section 5.2 presents the problem defini­

tions. Several algorithms on computing multi-layer skylines are given in Section 5.3. Section

5.4 and Section 5.5 give the KNN-based and Grid-based sweeping algorithms for the exact

and approximate ranked queries respectively, and illustrate their plug-in adaptations for R­

trees and CF-trees respectively. In Section 5.6, we perform a comprehensive experimental

evaluation, and Section 5.7 briefly reviews the work of top-k ranked queries. We conclude

the chapter in Section 5.8.

5.2 Foundations

In this section, we introduce the important definitions and properties that will be used

through this chapter.

5.2.1 Top-k Ranked Queries and Skylines

Similar to the previous chapters, we denote any d-dimensional dataset as X, and also de­

note any linear monotone score function as f. To represent users' preferences on different

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 92

attributes in a dataset, different weights at each attribute are set for the ranked queries.

Typically, a weighted score function is specified to combine all the preferences as the follows.

Definition 5.2.1 (Score Function) Given any d-dimensional dataset X, and the linear

monotone score function f on d attributes is: f(x) = 'f:-~=I a; . Xi where x E X, a.; is the

weight on the attribute value Xi where a :s; ai :s; 1. _

Without loss of generality, we assume the lower the score value, the higher rank the

object has. The concept of the above score function can be used to define the top-k ranked

query as follows:

Definition 5.2.2 (Top-k Ranked Query) Given a dataset X and the linear monotone

score function f on d attributes, a top-k ranked query returns a collection T C X of k

objects ordered by f ascendingly, such that for any t E T, there does not exist x E X and

x 1. T, such that f(tl,"" td) :s; f(xI, ... , Xd). -

Since the dominating relationship(c-}, which is defined in Definition 4.2.1, describes a

min/max preference on all the attributes between objects. That is, the smaller the value,

the better ranking for the object. Therefore, it can be used to identify the ranking order

between any pair of objects as the follows.

Lemma 5.2.3 Given a dataset X and the linear monotone score function I, for any objects

p EX, q EX, if P >- q then f (PI, ... ,Pd) < f (ql, ... , qd).

Proof. The proof is easy, since P >- q, we have Pi :s; qi(1 :s; i :s; d) and at least for one

dimension say i. Pj < qj, thus f(P1, ... ,Pd) < f(q1, ... ,qd) due to the fact that f is a

monotone function. _

The skyline operator [13] is based on the dominating relationship among the dataset.

Interestingly, the following notion of multi-layer skyline [70, 29] is built on top of the skyline

operator and can be regarded as a stratification of the dominating relationship in the dataset.

Definition 5.2.4 (Multi-layer Skyline) Given a dataset X, the multi-layer skyline is

organized as the follows:

1. The first layer skyline L 1 is the set of regular skyline objects of X.

2. For i > 1, the ith layer skyline L, is the set of skyline objects in X - Uj:~ Lj.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

.. -. -.. .
a\··~·..::1.: . . ._.. .

'. ~ : -. :..;... :..........., .-.. .. .-:
-" ". '. . .-

b .~•..• '. I. -.

93

c

Figure 5.2: Multilayer Skyline

•
As shown in Figure 5.2, layer L1 , L2,L3,L4 (in dashed lines) are the four layers of skyline

objects. We can observe that no points in this figure the can dominate points in L 1 , and

only points in L1 can dominate points in L2. Any point in L3 is dominated by at least one

point in L2 (and of course L1) , while points in L4 can only dominate points in layers after

L 4 ·

We can generalize this dominating containment property of the multi-layer skyline as

follows:

Lemma 5.2.5 Given a dataset X and score function f, for any i < i, if object q E L j ,

there exists at least one object P E L, S. t. f (PI, ... ,Pd) < f (ql' ... , qd)'

Proof. Suppose there is no object in L; that can dominate q, then q must belong to the

layer of L;, .'. the assumption does not hold. Thus there exists at least one object in L, say

p>- q. Based on Lemma 5.2.3, f(Pl,'" ,Pd) < f(ql,"" qd). •

Clearly, q in some layer is always ranked after some other object P in its previous layer.

On the other hand, q may not be dominated by some other objects in its previous layer and

may be ranked higher than them.

Hence, the multi-layer skyline provides relevant references for evaluating the ranking or­

ders between objects in different layers. It partitions the whole dataset into different parts

with different dominating capacities, which can measure not only the dominating relation­

ship between skyline objects and non-skyline objects, but also the dominating relationship

between non-skyline objects.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 94

Lemma 5.2.5 also implies a useful property that the results of the top-k ranked query

locate in the first k layer skylines. Actually, the set of first k layer skylines is a worst-case

guarantee to obtain the correct answer. In many cases, the top-k ranked tuples can be found

in less than k skyline layers.

Assuming that we know J(, the maximum value of the regular user-preferred k in ranked

queries (as an example J(= 100 in [89]), all top-k ranked queries in large databases can be

processed using the first J(skyline layers.

Theorem 5.2.6 Given J(layers of skyline L 1, ... , LK, any iop-k tuples w. r. t. f must be

contained in the objects set Uf==l Lj , i. e. in the first J(skyline layers.

Proof. If i < i, according to Lemma 5.2.5, if the rank query number k does not exceed K

which we assume is the upper bound of the normal rank queries, each object q in L j ranks

lower than at least some object p in L;. In the worst case, q only ranks lower than exact

one object, say h in L;, and if this is the same case for h and all the upstream dominating

layers, then each of the top-k tuples just locates at each of the k layers of the skyline. While

in the normal cases, it may take much less than k layers to finish the top-k query. _

5.2.2 MBR and Microcluster

As mentioned in the introduction section, the layered skyline can be organized into rectangle­

like and sphere-like blocks, hence supported by both types of multi-dimensional database

indexes. We choose R-tree and CF-tree as the typical representatives of these two types of

indexes. The basic storage of a block in R-tree is a Minimum Bounding Rectangle(MBR)

in a leaf node. On the other hand, the basic storage of a block in a CF-tree is a sphere-like

microcluster in the leaf nodes.

The microcluster C used in this chapter is represented as (n, CF1(C), CF2(C), r), which

is a simplification version of Definition 4.5.1, where CF3(C) is no more required.

Since the typical top-k query applications usually involve up to ten dimensions [21], [44],

under such circumstance, both R-tree and CF-tree can provide good performance during

the data access and processing. Without any specification, in this chapter block is used as

a general term for either a MBR in the R-tree or a sphere Microcluster in the CF-tree.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

5.3 Computing and Indexing Layered Skylines

95

In the preprocessing step for the top-k ranked queries, we compute the K(k :s: K) layers of

skyline objects out of the dataset.

Note that the skyline computation has much less worst-case complexity (O(n(log(n))d-2))

(d> 3) [57] than the convex points computation (O(nd/ 2)) (d > 4) [26] for a typical size of

databases (say n :s: 106 , d :s: 10). If the number of layered skyline objects is much smaller

than the size of the database, for example, in a five dimensional dataset with 100,000 tuples

where the distribution in each dimension is correlated, the total number of skyline objects

is around 840 [85] while there are about 100 layers of skylines in this dataset. Hence, we

just store these layered skyline objects as blocks in the leaf nodes of index structures. If the

number of layered skyline happens to be large, considering the fact that databases usually

has already been maintained by multi-dimensional indexes to support its query operations,

we only need to make some minor modifications to the original index structure for the

sweeping processing when answering top-k queries.

5.3.1 A Naive-based Method

Intuitively, we can apply any existing algorithm such as [13], [85], [56] or [72] to identify and

output skyline L1 in X, then removing L 1 from X to iteratively find skyline L2 in X - L 1

and so on. The top-k layer skylines can thus be obtained. The pseudo-code of naive-based

algorithm is given as follows:

Algorithm 5.3.1 A naive-based method for multi-layer skyline.

Input: a dataset X, layer threshold k.

Output: top-k layer skyline T.

1. T = 0;
2. FOR i = 1 to k DO;

3. Find t; in X;

4. T = Tu L i ;

5. X = X - Li;

6. Output top-k layer skyline T;

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 96

Obviously, this naive-based method needs multiple scans of the database, and incurs

more I/O overhead.

5.3.2 A Topology Sorting-based Method

In many database systems, queries and applications are supported by indexes (B+tree index

or Hash index). Without loss of generality, supposed the dataset X is stored in the leaf nodes

of B+tree in the order of topology sorting, that is, for any tuple u, v EX, U = (UI' U2, ... , Ud),

v = (VI, V2, ... , Vd), we say (UI' U2, ... , Ud) <:: (VI ,V2 , ... ,Vd) if UI :S VI and (U2' ... , Ud) <:: (V2

, ... , Vd). Obviously, this order is defined recursively.

We can take advantage of the information in the topology sorting index and propose

the corresponding algorithm to identify multi-layer skylines. To facilitate the search of the

skyline layer for each object, we use k linked lists: i-List (1 :S i :S k) to represent top-k layer

skyline objects, at the beginning, these lists are empty and are updated during the scan of

X = {Xl, ... , X N} in a topology sorting order. The basic idea of this algorithm is: we start

from the first object in X, obviously Xl is a skyline object and inserted into l-List. We then

compare X2 with Xl, if X2 is dominated, it is inserted into 2-List, otherwise it is inserted into

l-List and so on. Suppose Xi is accessed, and there are j non-empty lists at this moment.

We first compare Xi with the objects in l-List, if it is not dominated by all the objects in

l-List, insert it into l-List. Otherwise, whenever it is dominated by some object in l-List,

stop comparing with remaining objects in this (layer)list, and start the comparisons with

with objects in 2-List. This process may continue until it finishes comparisons with objects

in j-List. Like SFS [27] where the object can be determined whether it is a skyline or not by

only comparing with the objects appearing before this object in the sorting order, here the

skyline layer at which an object locates only relies on the comparisons with those objects

appearing before this object in the topology sorting order. The pseudo-code of the topology

sorting-based method is in the following:

Algorithm 5.3.2 A topology sorting based method for multi-layer skyline.

Input: a dataset X in the topology sorting order, layer threshold k.

Output: top-k layer skyline I-List, ... , k-List.

1. FOR i = 1 to k DO

2. i-List= 0;
3. FOR i = 1 to N DO

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

4. j=l; LocateLayer = True;

5. WHILE NOT LocateLayer DO

6. IF every object p E j - List cannot dominate Xi

7. THEN j-List=j-List U {xd;

8. LocateLayer = False;

9. ELSE j = j + 1;

10. Output top-k layer skyline I-List, ... , k-List;

5.4 A KNN-based Sweeping Approach for Top-k Queries

97

In this section, we apply the strategy of k nearest neighbor (KNN) search to examine those

nodes in index trees with potentially best scores, prunes those nodes which cannot contain

top-k objects and retrieves the objects layer-by-layer.

The proposed methods include two levels of sweeping: (1) sweeping over blocks such

that the I/O cost of accessing blocks is aimed to be minimized; and (2) sweeping within a

block such that the CPU cost of retrieving objects within a block is aimed to be minimized.

5.4.1 Sweeping over Blocks

During the sweeping process, the hyperplane which represents the weighted score function

always contacts the best point first, the next best point second and so on. Based on the

indexed K skyline layers, we develop an efficient branch-and-bound algorithm to answer the

top-k rank query by using the optimal K N N search paradigm [12, 43, 78, 89]. That is, in

each step those data blocks with potentially the best scores are examined first, meanwhile

the blocks which cannot contain any top-k object will be pruned. Since the lowest point

of a data block represents the point which has the smallest score in that block and the

highest point of a block is the one that has the highest score. Thus, if the lowest point of

a data block M is dominated by the current kth ranked object, then none of the objects

in M can be a top-k answer. During the examining process, a list is maintained for all the

current/temporary top k points.

While for a sphere Microcluster in CF-tree, the lowest and highest points in the CF-tree

case can be accurately captured by using the two contact points of the sweeping hyperplane

that contacts the sphere of the microcluster. This is shown in Figure 5.3 with points p and

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 98

. \ ,, \. .

\. aX+bY

'0\, '. " .q, . ,, . , ., . ,, \. . ", . , ., . ,, . ,, .
\ . \

Figure 5.3: Contact Points to a CF-tree Microcluster

q. Details of how to compute the coordinates of contact points is given at the end of this

su bsection.

In the algorithm, a sorted queue Q is used to maintain the processed points and blocks

in the ascending order according to their score values. For an object, the score is the value

of the score function with the coordinates of the object as the input, while for a data block,

the score is the function value of its lowest point. The algorithm starts from the root node

and inserts all its contained blocks to the queue. The first block entry in the queue will

then be expanded, if the entry is at the leaf node, we will access the data points in it with

some strategy. In the expanding process, we also keep track of how many data points are

already presented, and if an object or a block is dominated by enough (> k) objects (single

objects and objects in some blocks) lining in the queue before it, then it can be pruned. The

expanding process stops when the queue has k continuous data objects in the front. The

pseudo-code of the algorithm is described below. In the algorithm, we assume there are at

least k tuples in the dataset.

Algorithm 5.4.1 Branch-and-Bound Ranking(BBR) Method.

Input: A multi-dimensional index tree, k

Output: Top-k answers in Q

Method:

1. Q :=Root Block;

2. WHILE top-k tuples not found DO;

3. F:=the first non-object element from Q;

4. 5 := SweepIntoBlock(F); /5 is a set of blocks and/or objects

5. FOR each block/object sin 5 Do

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

I

Distan c \
I

99

I

I __ 4

I

I

\

I
3

2

0.5

N6

I

\

50 .100 I 150
. I.
I I
., 20X+Y

Nil

200 Price

Figure 5.4: Sweeping over R-tree Blocks

6. IF more than k objects in Q having smaller scores than 8

7. Discard 8;

8. ELSE

9. Insert 8 to Q;

10. Output k objects from Q;

In line 4 of the algorithm description above, S is a set of blocks and/or points. Here,

the k "better" objects in line 6 refer to single data points or points in a block whose highest

point has a lower score than the current entry 8. The insertion of 8 to Q is according to the

score of its lowest point if 8 is a block in line 9.

For the sweeping process SweeplntoBlock, Algorithm 5.4.1 can have different imple­

mentations when we sweep into leaf blocks. The straightforward approach is to simply

expand the block and access all the objects contained (noted as method BBRl). It incurs

unnecessary computational cost as each time it has to expand and access all the points in

the leaf block, even if many of these points are actually impossible to be part of the top-k

answer. In order to avoid processing these unnecessary objects in each block, we make

use of the property of the layered skylines since they give a contour of the data distribu­

tion, and develop an efficient sweeping within-layered-blocks method (noted as BBR2), as

a procedure SweeplntoBlock in Algorithm 5.4.1. Details will be introduced in the next

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

subsection.

100

Lets look at an example of applying the Algorithm 5.4.1 to the dataset using the R­

tree index when the implementation of SweepIntoBlock is to expand all the points in a

leaf MBR each time. Assume we want to find top 7 tuples according to the score function

20X +Y(a = 20, b = 1) as illustrated in Figure 5.4. The algorithm starts from the root node

and inserts all its entries Ng , NlO , Nll into the queue sorted w.r.t. their scores. We then

start to expand node Ng . The lowest point of a block in this case is the lower-left corner

point of the MBR. The whole expanding steps in finding the top-7 tuples are shown below

in Table 5.1. The first seven objects in the priority queue are the results.

Table 5.1: Example of Expanding Nodes in R-tree (1)
Contents of priority queue Expanded MBR

Ng , NlO , ».. Root
NI , NlO , N 2 , N6,Nll Ng

a,NlO,N2,b, N6 , j, ».. N I

a,N4,N2,b,N3 , N 6 ,j , N ll NlO(N7 pruned)
a,N2,b,N3,e,f,g,o,N6 , N 4

h, n, q, p, Ns,
a, b, c, N 3 , e, d, i, l, k, 9 N 2(N6,h,NI I

pruned)
a, b, c, d, e, i, i, l N 3

The algorithm can also be easily applied to the dataset using the index structure of

CF-tree. The crucial point is how to find the accurate lowest and highest points in a sphere

microcluster for the score function. Given a sweeping hyperplane y and a microcluster F

with radius R centered at the origin as below:

To find the contact points, we only need to solve the following equation together with (1).

\7F(x~, ""xd) = c· A (2)

In (2), vector A = aI, ... , ad, and c is a free variable. \7F(Xl, ... , Xd) is the gradient of

F at point X(x~, ..., xd) representing the directional derivative and it is ad-vector ([3]):

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 101

There are totally (d+ 1) equations and (d +1) variables to solve. Within only a constant

computation time O(d), the two contact points representing the lowest point and highest

point are obtained.

5.4.2 Sweeping within Layered Blocks

In this subsection, we propose a layered accessing technique for the SweeplntoBlock proce­

dure in Algorithm 5.4.l.

For each block in a leaf node with any index built in subsection 5.3, we create some

additional data structures. Suppose the block contains m layers of skylines, we maintain

the lowest and highest object as well as the total number objects for that layer. The lowest

and highest points in each layer correspond to the lower-left and higher-right points of

the minimum bounding hyper-rectangle of the skyline objects in that layer. As shown in

Figure 5.5 which is an enlargement of the block N4 in Figure 5.4, objects e, j, 9 and hare

layer 1 skyline objects in node N4, and all these skyline objects in layer 1 are minimally

bounded by a hyper-rectangle (see the red dashed box, called a pseudo node) denoted as

L1_N4 (as used in the algorithm description example below). The same way applies to layer

2 skyline objects 0, q bounded by a pseudo node denoted as L2_N4 , and similarly, layer

3 skyline objects n, p are bounded by a pseudo node denoted as L3_N4 . The linked list

storage structure for the layered skylines is shown in Figure 5.6, where the header is the

summarization information of the pseudo node which links to its bounding skyline objects.

Now if a leaf block is chosen from the queue, we only expand the pseudo nodes in it that

has the best lowest point according to the score function instead of all the objects.

Let us see an example of how BBR2 is applied in R-tree. The same dataset in Figure

5.4 now has been organized into pseudo nodes shown in Figure 5.7. The whole expanding

steps in finding top-7 tuples are shown in Table 5.2, and it is clear to see that less objects

are accessed compared to the objects in Table 5.l.

The case of applying BBR2 to CF-tree is similar to the processing in subsection 5.5.2,

and we omit the details here.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 102

\

~
layer 2 : L2 N4

Figure 5.5: Layered-Skyline in Block N4

Figure 5.6: Linked List for Layered Skyline in a Block

Distan e \,

Price

NIl

200\50

N9

,,,

•
N6

2

O.

'.'.
SO, \100

, ,
',20X+Y

, ,, ,
",4\

, a'--~~

'.,,
3

Figure 5.7: Sweeping Multilayered Skyline in R-tree

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

Table 5.2: Example of Expanding Nodes in R-tree (2)
Contents of priority queue Expanded MBR

(l)Ng , NlO' n.. Root

(2)N1 , N lO , N2, N6,Nll Ng

(3)a, N lO , N2, b, L2_N1 , N6, N1

Nll
(4)a, N 4 , N2, b, N3 , L2_N1 , N lO(N7 prunned as N2
N6, Nll and N3 dominate it with

enough objects)
(5)a, N2, b, N3 , e, I, L2_N4 , N4

L2_N1, s, N6, h, Nll
(6)a, b, c, N3 , d, e, L2_N2, N2 (N6, h, n.. pruned al-

I, L2_N4 , L2-N l ' 9 ready enough tuples dom-
inate them)

(7)a, b, c, d, e, L2_N2, i, i N3(L2_N4 , L2_N1 , k, g,

L3_N3 pruned)
(8)a, b, c, d, e, I, i, I L2_N2

5.5 A Grid-based Sweeping Approach for Top-k Queries

103

Although the KNN-based approach can efficiently obtain the top-k objects, it may still visit

and compare all the objects in a block even when the layering technique is applied. In

this section, we present an alternative grid-based method for more efficiently organizing the

objects. Since the user-specified weights of a score function will often have a fuzzy rather

than a crisp semantic, approximate query processing seems to be acceptable if this allows

significantly improved response time.

The basic idea is to build a grid-like partition of the blocks and access the objects within

a block along the grid. For CF-tree, a shell-grid partition is made over microclusters. The

microclusters are then assigned to the grid cells, and the sweeping algorithm is applied.

This approach reduces the number of comparisons, but it may lead to a non-exact result if

k answer objects are found before a further grid cell with better objects is accessed. Since

any MBR can be bounded in a sphere, we only illustrate the case of microclusters.

5.5.1 Shell Grid Partition of CF-tree

We first have an overview of a CF-tree with the extension of shell grid partition shown in

Figure 5.8, where Figure 5.8(b) depicts the anatomy of the intermediate microcluster node

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 104

'-----_~, -~.dO

~\V P3

sector and subsector
I d)

shell gridcell
(c)

15050

1.0

1.5

0.5

0.0 '-----__'-----_~-'-------'--------'-'--

2.0

aX+bY

Figure 5.8: Shell-Grid Partition of Microclusters

D in Figure 5.8(a). The shape of a single shell grid cell (or cell) is shown in Figure 5.8(c).

The microclusters can be obtained during the construction of the CF-tree[96], where one

threshold parameter to input is the diameter T for the entries in a leaf node. We can enforce

the this parameter to be smaller than a value of c.

In order to obtain the shell-grid partitions described as above, we develop a novel par­

titioning method motivated by the technique of the Pyramid indexing [11]. The partition

made is in partial shells (i.e. from a high dimensional point of view, the base of the parti­

tion is a part of the (d-l)-dimensional spherical surface) and the center of the sphere/circle

is the pre-computed center using the statistics of CF-vector. We partition the space in a

more granular fashion as described below. Assuming the sphere center a of a node has

coordinates (00, 01, ... , ad-I), the spherical data space will be split into 2d- l . 2d fan-like

partitions, with each partition having the sphere center as the top, and 1/(2d- l ·2d) part

of the (d-l)-dimensional spherical surface as the base. The detailed partitioning process is

given as the follows.

First, we split the sphere into 2d sectors as Po, . . . ,P2d- l according to the square cube

with 2d surfaces (dashed square in Figure 5.8(b) that encloses the sphere in the two dimen­

sional case), as P3 in Figure 5.8(d)). Then we use the hyperplane perpendicular to each axis

and passing through the sphere center to split the whole space. As a result, each sector Pi

is divided into 2d
-

l subsectors as Pio, Pil , ... , Pi(2d-I_l). Then the whole space is divided

with parallel complete spherical shells starting from the center. For example, in Figure

5.8(b) the shell numbering/level 3 (in thick lines) refers to the outmost shell, and the one

with 2 refers to the middle layer shell while the one with 1 refers to the innermost shell.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 105

P3 dI

dO

PI

;dl~PO_
H-BJ1l-+-:-l P2 P ,

P2 : ~~_

(a) (hi (e)

Figure 5.9: 2D SG-Partition and 3D SG-Partition

Figure 5.8(b) or Figure 5.9(a) shows a 2-dimensional case, and Figure 5.9(c) illustrates the

scenario of 3-dimensional partition. Finally, the intersections of sectors and shells form into

cells as shown in Figure 5.8(c).

We observe that any object x with coordinates (xo, ... , xd-d in sector Pi has the

following property:

Lemma 5.5.1 For any object x in sector Pi where i < d, it satisfies: for any dimension

i, 0 ::::: j < d, i =I- j, 10i - XiI 2: 10j - Xj I,. for sector Pi where i 2: d, it satisfies: for any

dimension j, 0::::: j < d, j =I- (i - d), 10i-d - Xi-dl 2: 10j - xjl.

Proof. Based on the construction of shell grid, it is clear to derive that for any point in Pi

sector, the distance of its ith coordinate (if i < d) or i-dth (if i > d) from the coordinate of

the center of the sphere is greater than the distance of all the other coordinates. _

For example, for q,w in Figure 5.9(b), it satisfies 100 - qol 2: 101 - q11. This is the same for

w. With this property, when we want to check which sector Pi an object belongs to, it only

needs to calculate the dimension number i for this object whose coordinate has the largest

distance to that of the center. If its coordinate value in i is less than that of the center, the

sector number is i, otherwise it is i + d.

The data objects in every subsector in Pi certainly follow the Lemma 5.5.1. We further

number these subsectors j (for subsector Pij) from 0 to 2d- 1 - 1 in (d-1) bits of binary

format so, ... , Sd-1. If i < d, then the bit Si does not exist in the binary string, and if

i 2: d, then the bit Si-d is excluded. For each subsector number with the above numbered

scheme, if the bit Sj = 1, then points in that subsector have the property of Xj > Xi, and it

is opposite for Sj = O. As an example, subsectors in sector Po are numbered with a single

bit Sl since bit So is excluded from the 2-bit string so, Sl. If Sl is equal to one (i.e. the

subsector is Pol), then any point X in this subsector has the property Xl > XO.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 106

Note that each subsector has 2d- I_l direct neighbors in the same sector, and (d-l) ·2d- 2

ones in the neighboring sector. For example, in the 2-d case shown in Figure 5.8(b), POI

has one neighbor subsector Poo in the same sector Po, and another neighbor PlO in its

neighboring sector Pl. From now on, all the partitions we mentioned will be implicitly

subsectors. To facilitate the grid index building, we also define the height of a microcluster

in the shell partition.

Definition 5.5.2 (Height of a Microcluster) Given a microclusier me with its statis­

tical information and the center O(xo, ... , Xd-l) of the node where mc resides, the height of

the microclusier Hm c in the grid index is defined as: H m c = dist(center(mc), 0), where

center(mc) denotes the center of mc. _

For the leaf microcluster nodes, we set the grid shell width as E so that no microclusters

can stay across more than two shells as shown in Figure 5.8, and the center point can only

reside in a single shell. Each microcluster has a high and low shell number between which

it resides (a microcluster could reside right within one shell layer or run across two layers

where high and low shells are the two layers it runs across). From the definition of the

height of a microcluster, we can easily compute which shell(s) a microcluster resides in.

Based on all the above definitions and Lemma 5.5.1, with CF-tree as an input, we can

start the hierarchical internal node grid index building process. The the microcluster entries

in a node are scanned and their subsector number and shell number are computed (according

to the center of the node and the microcluster). Then in each partition, microclusters are

stored in a linked list so that they can be accessed in a shell ascending/descending way

during the sweeping process. The largest shell number of microclusters in each node are

also recorded.

5.5.2 Ranking Algorithm

We now present the sweeping algorithm for the top-k ranked query, and illustrate that the

error bound is within E. The main idea of our algorithm is to utilize the shell grid partition

and provide direction on how to expand necessary cells. To start the sweeping, we calculate

which sector the sweeping hyperplane contacts first, and the corresponding sector number

applies to any level of internal nodes. As described in subsection, within only a constant

computation time O(d), the coordinates of the two contact points Land H representing the

lower point and higher point are obtained.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 107

(d)

(b)

A

AA

Figure 5.10: Sweeping a Shell Grid

Afterwards, we can easily find which sector the lower point belongs to according to the

coordinates of the contact point. In Figure 5.10(a), the sweeping line will contact sector POI

first.

One useful property in the sweeping algorithm is as follows:

Property 5.5.3 The sweeping process first explores the outmost shell grid cell of the par­

tition which the sweeping hyperplane tangent contacts, then goes to its directed neighboring

cells in the same level of shell. If there is no data in those neighboring cells, sweeping should

go to the inner cell in the same partition directly. _

This property is illustrated in an example shown in Figure 5.10. Microcluster A has

the shell number 5 which is the largest of this node. During the sweeping process, the

hyperplane touches sector POI first shown in Figure 5.1O(a) and there is no data in this cell

with shell number 5 in partition POI, then we should access Paa next (i.e. access microcluster

A and D) shown in Figure 5.10(b). Assuming A and D are not there, then we should access

microcluster B in the inner cell of the current partition POI next (since PlO contains no

data) instead of going further along the same shell to partitions PH and P31 shown in

Figure 5.10(b). According to the score function represented by the sweeping hyperplane,

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 108

cells with shell number 5 (cells P lO and Poo) could be as good or better than the cell in

POl with shell number 4. Here the" good or better" means the score of the lowest point of

the microcluster in the cell is equal or smaller. In the example, the sweeping process shown

in Figure 5.10(c) and Figure 5.10(d) continues as more neighboring cells are accessed until

top-k objects are found.

Now let us describe the sweeping algorithm. Assuming we have already calculated out

the two standard contacting points and the partition number Pm n that the sweeping plane

contacts first, the sweeping process works in a hierarchical way. A sorted queue is used to

store the expanding entities including the intermediate microclusters, leaf microclusters, a

pseudo node (as introduced below) and any shell of a node. These entities are put in the

sorted queue according to the score of their standard contacting point.

We start from the outmost spherical shell of the root node, then expand this entity based

on Property 5.5.3. To illustrate this, we use Figure 5.10(a) again as an example. The symbol

PijJ denotes the cell in shell level l of subsector Pij and PSl denotes the whole spherical

shell of l. First we expand the microclusters in the cell of subsector Pm n (POl in this case,

or if no data exists there, then we go to its directly neighboring cells (POO_5 and P lO_5). At

the same time, the inner spherical shell (PS4) is added to the queue too. Besides expanding

on the subsector Pm n (POl in the example) and its direct neighboring cells (POO_5 and PtO_5

in the example), the sweeping process also needs to decide when to expand the unvisited

cells of other subsectors (such as those in P31 and PH). To handle this, in the sweeping

process we add to the queue a special pseudo entity which has the subsector number and

shell number recorded in it. A typical pseudo entity is to use a special copy of the worst

microcluster entry in the expanding cell, so that when that entry is being scanned, we know

that it has potential to explore cells in its neighboring sector. An example in Figure 5.10 is

that when POO_5 is being expanded, microcluster A and D are inserted into the queue, but

in addition, a copy entry of D (which is the worst in this cell) De is also inserted to indicate

that the cell in its neighboring subsector P31 should be explored before expanding some

worse microclusters in POL3 or the shell PS2 . If there is no data in the current expanding

cell, we can relax the Property 5.5.3 a bit in the implementation by finding its neighboring

cells that contain data.

When using the standard contacting points of a shell in the sweeping process, a little

detail needs to be taken care of. Before the sweeping passes the half sphere (shell number

decreases to 1), the lowest contacting point is used to compute the score, while after passing

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 109

the half sphere (shell number increases again from 1) , the highest contact point is used

instead. Actually when k is not a big value, the sweeping hardly needs to pass over the half

sphere. Moreover, after passing the half sphere, we access microclusters in a cell in the order

of from a lower shell to a higher shell which is easily done through the doubly linked list. In

the sweeping process, when a leaf entry microcluster appears in the front of the queue, we

remove it off and put in an output list. When the total data objects number contained in the

list begins to exceed k, the sweeping process stops. The following pseudo-code describes the

processing of the approximate top-k query. MC is used as an abbreviation of microcluster.

Algorithm 5.5.1 A Shell-Grid Ranking(SGR) Method.

Input: CF-tree with Grid Shell Partitions, k.

Output: Top-k answers in list T.

Method:

1. Calculate standard contacting points and the contained

subsector number Pm n ;

2. Q = 0; T = 0;
3. Insert into Q the outmost cell of root node of CF;

4. WHILE the first k tuples are not found DO;

5. Remove the first entity E in Q;

6. IF E is a cell

7. Insert its microclusters in subsector Pm n and its direct

neighbors as well as the pseudo-entities;

8. ELSE IF E is an intermediate node;

9. Insert into Q the outmost cell of E;

10. ELSE IF E is a pseudo-entity;

11. Insert into Q microclusters in its neighbor subsectors

of the same cell and the pseudo entities;

12. ELSE IF E is a leaf node

13. Add entries in E to Q;

14. ELSE IF E is a leaf entry

15. Add E to T;

16. Output k points from T;

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

5.5.3 Error Bound in Approximate Solution

110

To analyze the corresponding error bound which is measured in the score difference of the

resulting objects and the actual objects which should be in the result set in the exact result

case.

We observe that in the sweeping process shown in Figure 5.11, some objects in other

microclusters(i.e. MC2) are better than the objects in the current selected microcluster (i.e.

MCl). In the extreme case, point q is computed as part of the answer instead of point w

whose score is just a little bit larger than that of p. The following lemma gives the error

bound of the approximate solution in SG R.

Lemma 5.5.4 The maximum error in the approximate top-k objects is O(E).

Proof. Assuming the coordinates of point p is (Xl, ... , Xd) while those of point q is (x~, , x~),

then the score difference of q and w is: f(q) - f(w) < f(q) - f(p) = al . (x~ - Xl) + +ad'

(x~ - Xd) < E' L o.; = E. •

So the score difference between the worst point in the selected microcluster and the best

point in the unexplored one is less than E. Apparently this is the extreme case, while in

many circumstances of the sweeping process, the error is much smaller or no error at all.

On the other hand, there is a tradeoff between the choice of accuracy and the index cost.

A large radius will affect the computation accuracy, but can save index space and facilitate

fast processing, while a small radius can bring higher level of accuracy in the cost of high

indexing cost.

~
aX+bY

Figure 5.11: Error Bound of Grid-based Answer

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

5.6 Experimental Results

III

In this section, we report the results of experimental evaluation for our algorithms and other

related algorithms. The evaluation investigates different aspects including preprocessing

time, query time, error bound and the number of tuples retrieved.

We implement the proposed methods and Onion in C++, and obtain PREFER in

unmu.db.ucsd.edurprefer. The experiments were run on a Intel 883MHZ machine with 512M

RAM running Windows 2000.

For a fair comparison of the algorithms, we use the data generator in [13] to generate

two types of synthetic relational datasets of 100,000 records with 5 attributes. As the same

as that described in the Onion technique [21] and PREFER system [44]' the attributes of

the first type of dataset are independently distributed, and the attributes of the second

type of dataset are correlated. For comparison purpose, all the attribute values are scaled

to positive integer values (with the value domain of each dimension between 1 and 1000) as

the PREFER system application only accepts this type of data.

The experiment consists of two parts: (1) the comparisons of our algorithms BBR and

SGR. More specifically, "BBRl" refers to the Branch-and-Bound Ranking with sweeping of

all objects in a MBR, "BBR2" refers to the Branch-and-Bound Ranking with sweeping of

objects layer-by-layer in a MBR and "SGR" refers to the Shell Grid Ranking algorithm with

microclusters indexed in a CF-tree. We also show how the query time and the size choice of

the microclusters affect the results. (2) The comparisons of our algorithms with the most

related rank query work on the algorithms of the Onion technique and the PREFER system.

~----

»e"
.x·---------

30
BBR1 --+-
BBR2 ----x----

25 SGR .. ;.IE•..

U 20"U>

" .- .'

~ 15 .' .'

z- ...
" 10 .'::l w·a ;.("---------

5
_x-~----·---

'".X-". ··w··
0

0 100 200 300 400 500

40
BBR1 --+-

35 BBR2 ----x---
SGR "'.

30
U

" 25U>

"~ 20

z-
15"::la
10

5

200 300 400 500

of results

Figure 5.12: Query Time vs #of Results
in Correlated Data Set

of results

Figure 5.13: Query Time vs #of Results
in Independent Data Set

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 112

Similar to our method, Onion and PREFER use the pre-computing approach to facilitate

ranked query, where Onion materializes the layers of convex hull while PREFER materializes

the views of answer sets of the ranked queries. A more detailed description is given in the

section of the related work. The evaluation is based on the issues of preprocessing time,

top-k rank query time, the number of objects retrieved for answering the query and the

approximation quality.

5.6.1 Evaluations of Algorithms BBR and SGR

Runtime Comparison. We show the results of the runtime for the three algorithms w.r.t

various number of resulting objects (k). Figure 5.12 and 5.13 show the results for the cor­

related and independent dataset respectively. The number of attributes used in this experi­

ment is 4. In general, all the algorithms for correlated data have relative better performance

than in independent distribution data since there are less number of MBRs/Microclusters to

be accessed in correlated distribution. BBR2 method is much faster than the BBR1 method

because of its visiting less objects (in the experiment we only pre-computed layered skylines

for K =200 and we found that is enough for answering the top-k query for k increasing to

as big as 500). While the SGR method (here the e used in this experiment is 10) is faster

than BBR2 due to the fact that it always checks for the most relevant data.

The Effect of e on SGR Method. Next we investigate how the query time and error

rate change with different choices of the value of c. We set e as the value of 5, 10 and

15 respectively and perform tests on the 4-d 100,000 records correlated dataset. The error

rate is computed as the ratio of the average resulting score difference from that of the true

Epsilon=5 --+-­
Epsilon=10 ---x ­
Epsilon=15 .. ,.

50 100 150 200 250 300 350 400 450 500

of results

Epsilon=5 -+-­
4 ",·'iEpsilon=10 -,--lii:.,-­

Epsilqp-15 .,..

1 l-'---.L--'----'----...L..-"":=:::L==c:==d­
o 50 100 150 200 250 300 350 400 450 500

of results

3.5

OJ 3
~

o 2.5 "'"::: ------x,
UJ '",1: ~,,---x- _

10 ,--,---.------,~--.-----.------,-_,_____r_--,~

9

8
_ 7

U
ill 6

¥ 5
.~ 4

Ii 3

2

1

O'-=---'--------'------'--'-------'-------'--'-------'---'------.J
o

Figure 5.14: Effect of Eps(l) Figure 5.15: Effect of Eps(2)

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 113

5

of dimensions

120
BBR2 --+-
Onion ----x---

<Ii 100 REFER .,
c: SGR 0E
Q) 80
-~

'" 60c
'iii

'"Q)
c 40e
a.
~ 20e,

0
0 2 3 4

--,--

-x -)E-----

50 100 150 200 250 300 350 400 450 500

of results

Epsilon=5 --+­
Epsilon=10 ----)C-­

Epsilon=15

95 ,-----,------;r----,-----,-,----r--,------,--r="..,.

90

65

~ 85
Q)

1§ 80
Q)

g' 75

,~~ 70

Figure 5.16: Effect of Eps(3) Figure 5.17: Preprocessing Time

answer set to the average score of the true answer set.

We also measure the coverage rate which is defined as the percentage of the true top-k

points covered by the approximate answer tuples. The independent dataset is used in the

comparisons. The result of Figure 5.14, Figure 5.15 and Figure 5.16 show that when the

value of E becomes larger, the runtime becomes shorter due to the decreasing number of

microclusters that need to be accessed, and the error rate as well as the coverage rate are

getting relatively higher due to the increasing size of microclusters. But for the same E,

with the number of requested objects increasing, the error rate decreases and coverage rate

increases since more truely top-k ranked objects are found in the resulting microclusters

(i.e. most of the early returned microclusters contains fully the actual top ranked objects).

So the approximate method is in favor of a large k.

30000 ,-----,-------,------.------;-

:>c
---x------

0
x-"

0 50 100 150 200

of layers

25000

20000
i1J
'iii
x 15000
Q)
-o
.s

10000

5000

Onion --+-­
BBR2 ----x----

80000

70000

60000

Q) 50000
N
'iii
x 40000
Q)
-o
.!: 30000

20000

10000

0
0

Onion --+-­
BBR2 ----x----

-x--------------
>E: }(--------------x--·· .--_.--

50 100 150 200

of layers

Figure 5.18: Index Size vs #of Layers
on Correlated Data Set

Figure 5.19: Index Size vs #of Layers
on Independent Data Set

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 114

---.~ ..

250

o

200150

_. .-.-.11'-··
.•.•..••.Jit.-.

1/5""/'1" 0

50 100

Onion -----+----­
REFER ----x--­

BBR2,.
SGR 0

50 ,---.-----,-----,---,---.-------,

45

40

U 35
Q)

~ 30
.§ 25

i5 20
(5 15

10

5
OL...O=--'---_--'--_--'-_---'-__L------'

o 300300

35
Onion --+----

30 REFER ----x----
BBR2 .* ...
SGR 0

U 25
Q)

'" 20Q)

.§
e- 15
Q)
=>a 10

5 0
0

of results # of results

Figure 5.20: Query Time vs #of Results
on Correlated Data Set

Figure 5.21: Query Time vs #of Results
on Independent Data Set

5.6.2 Comparing with Algorithms of Onion and PREFER

We compare our algorithms with the Onion technique and the PREFER system from differ­

ent aspects. The Onion technique does not need any specific parameters, while the PREFER

needs the number of views to be pre-materialized and the depth value of tables where the

small values for both input can easily lead to the large size of storage. There are two factors

to be considered as the criterion of the evaluations. First, we need to examine the prepro­

cessing time which refers to the index building time for each method as all these methods

has the pre-computing process. Second, we need to consider the query answering time and

how many records each method retrieves to answer the top-k ranked query.

Preprocessing Time Comparison. We compare the preprocessing time of the BBR2

method, SGR method, the Onion technique and the PREFER method. For the PREFER,

60000 5000BBR2 --+-- BBR2 --+----
Onion ----x-- --- 4500 Onion --x--- ..

50000 REFER ,. .-_.-_.-
[PREFER*..- 4000

'" SGR 0
'" SGR 0"E .i->

0 40000 «-: "E 3500
o 0

~
u 3000~

"0 30000 x
..

s "0 2500s'iii 'iii.S' .S' 2000 .'
'Q 20000

'Q 1500 .x·.. x" ..
10000 1000 .x-

X >< .--:.1('-..•..•»: 500
" .. lI:

.. '
.. ,

0 0
0 50 100 150 200 0 50 100 150 200

of results # of results

Figure 5.22: #of Tuples Visited vs #of
Results on Independent Data Set

Figure 5.23: #of Tuples Visited vs #of
Results on Correlated Data Set

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES

85 90PREFER --+- ---------- PREFER--+-
80 SGR ----x---- ---~-------_._- 85 SGR ----x----

x---------- _x;-0--
80 ---~-

----~--

75
.& .& 75

__.X: -

X x-
I!! 70)(I!! 70)(
<1l <1l

'" 65 '" 65I!! I!!<1l <1l> 60 > 600 0o o 5555
50

50
45

45 40
0 100 200 300 400 500 0 100 200 300 400 500

of results # of results

115

Figure 5.24: Coverage Rate vs #of Re­
sults on Independent Data Set

Figure 5.25: Coverage Rate vs #of Re­
sults on Correlated Data Set

as there is no estimated number of tuples needed to store in each view for answering the

top-k query, we have to choose the view depth as the same as the dataset size which results

in very long building time for each view. Also the views building time depends on how

many views are to be built, and the number of views needed will increase dramatically with

the dimension increasing in order to achieve good performance since the pre-built views are

tending to cover all the possible queries. Our SGR does not have this problem because

it always starts from the right point/partition no matter how the coefficients of the score

function change. In addition, a large number of views each with a high depth cost huge

amount of disk space, which is not acceptable for very large database. We compare the

time to construct K layers of skylines for BBR method and K layers of convex hulls for

the Onion method w.r.t. K = 200 as well as the shell index building for the SGR method.

As index building takes a very long time to finish for the Onion technique especially in

high dimension, so we restrict the number of dimension within 5. We experiment with the

correlated dataset with size of 100,000 records and dimensions of 2,3,4 and 5 respectively.

For each dimension, the number of views constructed for the PREFER are 3, 10, 30, 80

respectively.

Figure 5.17 shows the preprocessing time in minutes for these four techniques. It is clear

that the SGR method has the least preprocessing time among all the methods since it only

naturally does one scan of the data when building the CF-tree with extended shell grid

index. The preprocessing time of BBR2 is much faster than the Onion technique, especially

when the dimension getting higher. When more dimensions involve, the preprocessing time

for the PREFER starts to increase more than BBR2 in this correlated dataset.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 116

Size of Materialization Comparison. The relationship between the index size and the

maximum number of requested objects (the number of layers is equal to this number) is

shown in Figure 5.18 and Figure 5.19 which depict the comparison results of BBR2 and

Onion in the case of correlated and independent dataset respectively. The dataset size is

100,000 and the dimension is 5. The PREFER system is not listed for comparison, because

it has no notion of layer as an input and basically the materialized size is the number of

views times the whole dataset size. From the Figure 5.18 and Figure 5.19, it verifies that

the correlated dataset always contains smaller number of skylines, so it requires smaller

materialized space than the independent dataset, and in each case BBR2 builds smaller size

of index than the Onion does.

Query Time Comparison. The comparison of the query time of the BBR2, the Onion

technique, the PREFER system and the SGR w.r.t. various number of requested objects

k in independent dataset and correlated dataset are present in Figure 5.20 and Figure

5.21 respectively. The dataset size is 100,000 and the dimension of the dataset is 5. The

computation of the BBR2 method and the Onion technique are based on the index building

from the previous paragraph. Similarly, we can see that the results of the correlated dataset

outperforms that of the independent dataset. From the results, we can also see that our

SGR method has apparent advantage over the other three methods, BBR2 ranks second

and PREFER is better than Onion in query time.

Comparison of the Number of Tuples Retrieved. Figure 5.22 and Figure 5.23 show

the number of retrieved tuples visited under the independent dataset and correlated dataset

respectively, to answer the top-k query for the BRR2, the Onion, the PREFER and the SGR.

The experiment setting is the same as that for the query time comparison. We observe that

the Onion method retrieve much more tuples than the other two, and both the SGR method

and the BBR2 method show a better performance over the PREFER and the Onion. Also,

the independent dataset does not work as good as correlated dataset.

Quality of the Approximate Answer. As the PREFER system uses materialized views

to speed up the ranked query, the size of the materialized views determines the accuracy

of the results. In case of limited space is given for storing the pre-materialized views, the

PREFER can only give partial correct answers which we take as approximate answers. So

based on the same size for the materialized objects or views, we compare the quality of

approximate answers of the SGR and the PREFER. Figure 5.24 and Figure 5.25 show the

cases for the independent dataset and the correlated dataset respectively. When k increases,

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 117

the quality of the top-k answers evaluated by the coverage rate for the SGR becomes much

more higher than that of the PREFER. In fact we can see that the coverage rate increases

for the SGR while that for the PREFER degrades quickly. Also from the Figure 5.24 and

Figure 5.25 we know, the distributions in two dataset do not make much difference to the

result of the approximate ranked queries.

From the above experiments, it shows that our sweeping algorithms outperform the

Onion and the PREFER in a variant of tests, and demonstrates the efficiency and the

effectiveness of our algorithms.

5.7 Revisit of Top-k Ranked Queries

In database systems, the nearest-neighbors query, rank query and skyline query are very

common and related query operations. The nearest-neighbors query corresponds to a query

object q and returns k objects which are closest to q. Implicitly, each attribute has the same

weight in calculating the overall similarity of each object to q. The skyline query returns

a set of objects which are not dominated by any other object. If the dimensionality is not

high, say less than 5, the cardinality of skyline is usually much smaller than the size of the

dataset. Compare the top-k query and nearest-neighbor query, no weights are assigned for

skyline query.

Agrawal et. al. in their pioneering work [2] put the notion on preferences into perspective

and introduce a framework for their expression and combination. The top-k ranked query

problem was formally raised by Fagin in multimedia database systems in [32]. Methods can

be basically categorized into the following types:

• Sorted Accessing and Ranking: this approach mainly applies some strategies to

sequentially searching the sorted list of each attributes until the top-k tuples has been

retrieved.

The authors in [32] assume independent sub-systems handle each atomic top-k query,

and a middleware is responsible for combining these results for a final result. Wirn­

mers et. al. [92] describe the implementation of Fagin's algorithm for merging ordered

streams of ranked results in the Garlic multimedia middleware system. The MARS

system [71] uses variations of Fagin's algorithm and views queries as binary trees.

Guntzer et. al [36] proposed an incremental method to compute and output top-k

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 118

query. Compared to Fagin's algorithm, they develop an improved termination condi­

tion in tuned combination with heuristic control flow adopting itself narrowly to the

particular score distribution.

In [33], Fagin develops a "threshold algorithm (TA)" , which scans all query-relevant

index lists in an interleaved manner, and maintains the worst score among the current

top-k results and the best possible score for all other candidates and items not yet

encountered. Nepal and Ramakrishna [69] define an algorithm that is equivalent to

TA, but the notion of optimality is weaker. The paper [88] focuses on providing

approximate TA variants based on probabilistic arguments. The main purpose is to

prune candidate items and to reduce the index scans with high probability, and the

authors provide solutions in different distributions such as uniform, Poisson etc.

• Random Accessing and Ranking: this approach supports mainly random access

over the dataset until the top-k tuples has been retrieved.

The work in [82] proposes an approximate method of top-k ranked query in terms of a

score vector and a weight vector. Whether a tuple matches the query is expressed in

a weighted cosine similarity between the query and tuple score vector. The accuracy

criteria is based on the sum score ratio of the results to the accurate ones and the

overlapping tuples in the two sets. The paper [40] uses foot-rule distance to measure

the two rankings and model the rank problem as as the minimum cost perfect matching

(mcpm) problem. A Hungarian Algorithm (HA) and a Successive Shortest Paths (SSP)

algorithm are given to solve the top-k query.

Chang and Hwang [20] developed M Pro, a method to optimize the execution of ex­

pensive predicates for top-k queries. While [25] proposes a way to translate the top-k

query into a range query of the relational database. A score Sq is determined heuris­

tically by database statistics. Then a range query, composed of the provided scoring

function, Sq and the query object, retrieves all the tuples with score greater than Sq

and gives the final result. [63] presents an algorithm for web-based top-k query, which

interleaves both random access and sorted access.

• Materialization and Rank Indices: this approach organizes the tuples in a spe­

cial way or pre-computes answers for a set of ranked queries as views, then applies

similarity match for the answer of any new ranked query.

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 119

An index technique for any linear optimization queries is introduced in [21] with the

geometry property that the optimal value is achieved at some vertices in convex hull.

The index is constructed by building layered convex hulls for all the data points.

Queries are evaluated from the most outward convex to inner side until the top k are

found. Building such index for very large databases costs expensive due to the convex

hull finding complexity.

To overcome the drawbacks of [21], authors in [44, 45] proposes a method based on the

pre-materialized views to answer top-k query. When the query's preference function is

close to that of a view's, a small number of the tuples in the view is necessary for the

top tuples. Then the query result is produced in a pipelined fashion by excluding the

top tuples found previously from the view and repeating the process until all answers

are identified. As there is no guarantee how many tuples should each view stores to

answer top-k query, it usually ends up with storing the whole data set in each view

in a sorted manner, which costs huge space, but is unavoidable when the number of

requested tuples is large. Also the number of views will increase dramatically with

the dimension increases in order to cover the whole space.

Tsaparas et.al.[S9] proposes a ranked index to support top-k query (k ::; K) where

the point with coordinates value of the two weights forms a vector together with the

origin coordinate. When this vector sweeps the positive quadrant of the plane, it

partitions the plane into regions where two adjacent regions have different set of top­

K tuples and all these top-/(tuples are materialized as index for later query search.

The drawback is that it only applies to 2 dimensions practically and a huge number

of materialized partitions could exist.

5.8 Summary

Rank-aware query processing, where the system returns only the top-ranked answers w.r.t.

user-defined weights of the different attributes, has recently emerged as an important paradigm

in database systems. Only few existing methods for ranked queries exploit pre-materialization

and index structures. In this chapter, we introduce a novel approach based on the observa­

tion that for any score function (weights) the top-k ranked answers must be contained in the

first k skyline layers [49]. These skyline layers can be efficiently determined and are stored

in existing multi-dimensional index structures that are enhanced by special data structures

CHAPTER 5. SKYLINE AND DATABASE RANKED QUERIES 120

representing the different skyline layers. As a consequence, we propose indexing layered sky­

lines and indexing shell-grid microclusters for top-k ranked queries, and present methods for

sweeping the hyperplane of the score function over the indexed objects. Our methods can be

easily adapted to the existing multi-dimensional index structures. The experimental results

demonstrate the strength of our methods and the usefulness of the microclustering technique

in top-k query processing. This study suggests the following interesting topics for future

research. The choice of an appropriate maximum number K of layers to be materialized,

e.g. based on query statistics, deserves further attention. The proposed methods for ranked

queries are generic and independent from the particular index structure. They should be

implemented and experimentally evaluated also in the context of other index structures.

Finally, it would be interesting to investigate the impact of high-dimensional data, where

only a small number of attributes would be assigned non-zero weights, on ranked queries

and the performance of the methods presented.

Chapter 6

The Multi-Relational Skyline

Operator

Most of the existing work on skyline query has been extensively used in decision support,

recommending systems etc, and mainly focuses on the efficiency issue for a single table.

However the data retrieved by users for the targeting skylines may often be stored in multiple

tables, and requires to perform join operations among tables. As a result, the cost on

computing skylines on the joined table will be increased dramatically due to its potentially

increasing cardinality and dimensionality. How to develop efficient methods to share the

join processing with skyline computation is central to the skyline query optimization on

multiple relations. In this chapter, we systematically study the skyline operator on multi­

relational databases, and propose solutions aiming at seamlessly integrating state-of-the-art

join methods into skyline computation. To further extend the query optimizer's cost model

to accommodate skyline operator over joined tables, we also theoretically estimate the size

of the joined skylines. Our experiments not only demonstrate that the proposed methods

are efficient, but also show the promising applicability of extending skyline operator to other

typical database operators such as join and aggregates.

6.1 Introduction

The skyline query has been recently proposed and extensively studied as an important query

operator for preference queries, decision support and recommending systems in database

121

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 122

communities. However, most of the existing work on skyline queries for databases mainly

discusses the computation efficiency in one single relational table. While in many database

applications, users are often interested in querying skylines from multiple relational tables

which requires join operations. Formally, we call the skyline operator over a multi-relational

joined table Al ~ A 2 ... ~ A k as the multi-relational skyline operator, or simply as the

skyline join operatorI , denoted by Al ~s A2 ... ~s Ak where AI, ... ,Ak are relations.

The following example skyline queries aim to find model customers in TPC-D datasets

(www.tpc.org) for the company such that the higher the account balance, the lower the age

of a customer (in relation customer), and also the higher the quantity of parts and the

amount of price (in relation order) this customer orders, the "better" this customer.

Example 13 Given customer table Customer (eNurn, Age, Account Balance) (as shown

in Table 6.1) and part order table Order (ONum, CNum, PNum, Quantity, Amount) (as

shown in Table 6.2). Consider the following queries:

Question (1): Who are those young customers with high account balance and having ONE order with

high quantities of parts and high amount of price?

Question (2): Who are those young customers with high account balance and high quantities of parts

order with high TOTAL amount of price (over all orders of this customer)?

Answer: The SQL statements for answering the above questions are as follows:

SELECT *
FROM Customer C, Order 0

WHERE C.CNum = O.CNum

SKYLINE OF G.Age Min, C.AccountBalance Max, O.Quantity Max, O.Amount Max;

SELECT C.C N um, SUM(0 .Quantity) , SUM(0 .Amount)

FRO M Customer C, Order 0

WHERE C.CNum = O.CNum

SKYLINE OF G.Age Min, C.AccountBalance Max, O.Quantity Max, O.Amount Max

GROUP By C.CNum;

The join results and the skyline objects in Customer ~ Order where (1) attributes CNum of C

and CNum of 0 are join attributes; (2) attributes Age, AccountBalance, Quantity and Amount

1 In this chapter, terms of "multi-relational skyline operator", "skyline join operator" or "joined skylines"
all refer to the skyline objects in the joined table

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 123

are descriptive attributes participating in skyline evaluation (under shaded regions), are shown in

Table 6.3 and Table 6.4 respectively (skyline objects are in bold fontp. The joined skylines

may contain tuples that are not in the skyline of the individual input tables, such as the tuple with

D1 = 105. Notice that the skyline queries w.r.t. (1) and (2) return different answers due to the

effect of the aggregate constraints being pushed on descriptive attributes. A customer may be a best

buyer according to the quantity and price for one sale, but may not be a best buyer if considering all

the orders he/she made.

Table 6.1: Customer(C) Table
CNum Age Account Balance ($)
101 35 90k
102 40 40k
103 50 78k
104 35 90k
105 58 90k

Table 6.2: Order(O) Table
ONum CNum PNum Quantity Amount($)
1 101 001 1 274
2 101 001 6 1644
3 102 002 10 1999.9
4 103 003 1 400
5 104 004 5 900
6 104 004 6 1080
7 105 005 2 1900

The join operation in Example 13 is non-reductive [15] (this assumption holds in the

remaining of the chapter) in terms that the size of joined table is larger or equal to that

of any table participating in the join operation. Also the tuples have higher dimensions, so

that the cost of applying skyline operator after joins would be much more expensive'. For

arbitrary join operations, since both the cardinality and dimensionality of the joined table

might increase, so the cost of finding skylines in the joined table will be even larger. How to

2 For simplicity, we denote C.CNum as variables D 1 , Age as D2 , AccountBalance as D3 , ONum as
D4 , O.CNum as D5 , Quantity as D6 and Amount as D7 (for simplicity here we omit PNum in the joined
table), and these notations are used in the remaining of this chapter.

3The cost of skyline computation methods increases w.r.t. the increase of dimensionality.

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

Table 6.3: Joined Table of Customer and Order (1)
D1 D2 D3 D4 D5 D6 D7
101 35 90k 1 101 1 274
101 35 90k 2 101 6 1644
102 40 40k 3 102 10 1999.9
103 50 78k 4 103 1 400
104 35 90k 5 104 5 900
104 35 90k 6 104 6 1080
105 58 90k 7 105 2 1900

Table 6.4: Joined Table of Customer and Order (2)
D1 D2 D3 D5 SUM(D6) SUM(D7)
101 35 90k 101 7 1918
102 40 40k 102 10 1999.9
103 50 78k 103 1 400
104 35 90k 104 11 1980
105 58 90k 105 2 1900

124

develop efficient methods to share the join processing with skyline computation is central

to the skyline query optimization on multiple relations.

Motivated by the above observations, in this chapter, we systematically study the multi­

relational skyline operator and make the following contributions:

• We study the problem of skyline computation with or without aggregate constraints

in multiple tables when join operation works on them.

• We propose different approaches which aim to combine state-of-the-art join meth­

ods into skyline computation for any single join operation and extend to the case of

multiple join operations.

• We present an effective method to estimate the size of skylines over joined relations,

which can help to optimize join operations in the case of the skyline operator being

involved.

• Our experiments on TPC-D benchmark demonstrate the efficiency and scalability of

our proposed methods.

The rest of the chapter is organized as follows. Section 2 introduces the preliminaries,

and Section 3 introduces the approaches of answering skylines over single join. Section 4

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 125

gives an method for estimating the skyline size in the joined table. Section 5 extends the

methods in Section 3 to the case of multiple joins. We present experimental results in section

6 and conclude the chapter in section 7.

6.2 Preliminaries

Let denote a relation X in an n-dimensional space D = (D1 , .•. , Dn) , where dimensions

D 1 , •.• , Dn are in the domain of numbers. For any p >- q, q is called a dominated object, and

denote the set of objects dominating q as Dom(q). We also have the following definition:

Definition 6.2.1 (Join Attributes and Descriptive Attributes) Given two relations

A(dl, ... ,di,di+l, ... ,dnl) and B(d~, ... , dj, dj+l' ... , d~2)' where attributes d1, ... ,di

in A and d~, ... , dj in B are called join attributes such that they are only used in the

join operaiioni . Attributes di +1, ... , dn1 in A and attributes dj+l' ... , d~2 in B are called

descriptive attributes that participate in the evaluation of skylines.

Corresponding to the scenarios in Example 13, we generalize two typical skyline problems

as follows.

Problem 1 (Skyline Join Problem) Given two relations A(d1, ... , di, di +1 , ... , dn1) and

B(d~, ... , dj, dj+l' ... , d~2)' find skylines over the joined table A ~ B excluding the join

attributes.

Problem 2 (Skyline Join with Aggregate Constraint Problem) Given two relations

A(d1 , ... , di, di +1 , ... , dn1) and B(d~, ... , dj, dj+l' ... , d~2)' find skylines over the joined

table A ~ B where aggregate constraints on descriptive attributes in B are applied on cor­

responding tuples in A. Here the aggregates include Max, Min, COUNT, SUM and AVG

etc.

We assume the join operator to be non-reductive [15] i.e. the join has the following

properties:(I) the predicate is of the form x = y, where x is an expression computable from

one table and y is an expression involving the other table; (2) it can be inferred that i) x

cannot be null, and ii) for each x there must exist at least one y such that x = y holds.

4 It is often the case that join attributes refer to the primary key in A and foreign key(s) in B. However,
in generalcase a join attribute could be any attribute. For ease of analysis, we assume whenever an attribute
participates in the join, it does not participate in skyline evaluation.

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 126

In general, an SQL-like statement for expressing a skyline join query based on the SKY­

LINE OF clause [13] is given as follows:

SELECT Ri.DjIAGG(Ri.Dj)

FROM R 1, R2 , .•. , Rm

WHERE join.condition (R 1, R 2 , · · · , Rm)

GROUP BY. ..

HAVING...

SKYLINE OF [DISTINCT] Rl.D~'l [MINIMAXIDIFF], ..., Rm.D~,", [MIN[MAXIDIFF]

ORDER BY...

Here, (1) Ri.Dj refers to any attribute in Ri, Ri.D~'i refers to the descriptive attributes in

u; and (2) AGG E {MIN, MAX, SUM, COUNT, AVG}.

~ 2 \ 1900 I LS(N) I

I 5 I 1041 5 900 LN(N)
I 6 I 1041 6 1080 LS(N)

Table 6.6: Group-by D5
(CNum) in Order

~ D51 D61 tn

~ 1999.91 LS(S) I

~ 400 I LS(N) I

I 1 I 1011 1 274 LN(N)I
I. 2 I 101[6 1644 LS(N) I

I

Table 6.5: Group-by
D1 (CNum) in Cus­
tomer

~I
~LS(S)I

~LS(N)1

~LS(N)'

~LS(S)1

~LS(N)I

In each table, we can group tuples according to the values of join attributes in ascending

order. As shown in Table 6.5 and Table 6.6, relations Customer and Order are grouped by

join attributes D 1 and Ds respectively. Every tuple belongs to one of three cases: (1) LS(S)

means this tuple is a local jikyline in its group and also a jikyline in the whole table, such as

tuple (101, 35, 90k) in Customer. (2) Label LS(N) means this tuple is only a local jikyline

in the group but not a skyline in the whole table. For example, tuple (2, 101, 6, 1644) in

Order is a local skyline but it is not a global skyline since it is dominated by another tuple

(3,102, 10,1999.9). (3) Label LN(N) means this tuple is locally not a skyline in the group

(and of course it is not a skyline in the whole table), such as the tuple (1, 101, 1 , 274) in

Order since it is dominated by the tuple (2, 101, 6, 1644) in the same group. If we use

symbol "EB" to denote the concatenate operator to combine two joinable tuples in A and B

into a joined tuple, then each joined tuple in the Table A ~ B has the following six cases:

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 127

LS(S) ffiLS(S), LS(S) ffiLS(N), LS(S) ffiLN(N), LS(N) ffiLN(N), LN(N) ffiLN(N) and

LS(N) ffi LS(N). Note that the join operator is symmetric so that the order of its argument

does not matter. We have the following properties:

Lemma 6.2.2 The joined tuple LS(S) ffi LS(S) or LS(S) ffi LS(N) is also a skyline in

A ~ B. The joined tuple LS(S) ffi LN(N), LS(N) ffi LN(N), LN(N) ffi LN(N) cannot be

a skyline in A ~ B.

Proof: (1) The proof for the case of LS(S) ffi LS(S) is straightforward, to prove the case of

LS(S) ffiLS(N). Let a E A be labeled LS(S) in A which means no other tuple can dominate

a, and b E B labels LS(N) which means no other tuple can dominate b in the same group

but there exists some tuple dominating b. If there exists a joined tuple in A ~ B which can

dominate a ffi b, it must be in the form a ffi b', since no other tuple in A can dominate a.

Thus, we have b' E Band b' >- b. In particular, b' must have the same joined attribute value

with b in order to be joinable with a. That is, band b' are in the same group, so b cannot be

labeled as LS(N), which contradicts the assumption. (2) For the proof of the second part,

let a E A be labeled as LN(N), which means in the same group, there must exist at least

another tuple a' such that a' >- a. We assume that a ffi b, b E B, is the skyline of A ~ B.

Since a' has the same value on the join attribute as a, a' ffi b is also in A ~ B. a >- a implies

a' ffi b >- a EB b which contradicts the assumption. Therefore, a ffi b is not in the skyline of

A~B.

This lemma can help us easily identify the skyline if one tuple participating is a local

skyline and the other tuple is a global skyline when they meet the join condition.

Property 6.2.3 The joined tuple LS(N)ffiLS(N) may be or may not be a skyline in A ~ B.

In this case, whether the joined tuple a ffi b in A ~ B is a skyline or not depends on the

successful "matching" on the join attribute values between their dominators.

In this chapter, we mainly focus on the skyline computation over A ~ B where a one­

to-many relationship [77] exists between A and B such that the join operation is performed

if A has a primary key matching a foreign key in B. The case of the join operation over A

and B with many-to-many relationship [77] can be solved by introducing a third table C

including attributes of B and join attribute of A, then perform join between A and C, and

join between the join results and B.

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

6.3 Algorithms for Skylines over a Single Join

128

We present in this section different approaches of integrating the skyline computation into

state-of-the-art join algorithms. Basically, motivated by the properties discussed in Section

2, we can apply a skyline algorithm to A and B, then perform a selective join of A and B.

Without loss of generality, assuming the join operation between A and B corresponds to one­

to-many relationship, attribute d; in A and attribute dj in B are join attributes respectively.

Denote the Boolean function of evaluating join condition between pEA, q E B as B(p, q).

6.3.1 A Naive Approach for Skyline Join

A naive approach for the skyline join operator works as follows: we first compute the join,

then apply existing skyline algorithms on the joined relation to find the corresponding

skyline objects.

As the join operation is assumed to be non-reductive [15], the number of attributes of

the joined table is larger than that of each single table participating in join operation, so

the cost of running skyline algorithm in the entire joined table is much more expensive than

in any single table. If we consider the common case of the increase in both cardinality

and dimensionality of the joined table, the cost of the naive approach would be even more

expensive.

6.3.2 Integrating with Sort-Merge Join

Basic Approach

As illustrated in the previous section, the basic idea of this approach is that without com­

puting skyline in the entire joined table, we can process the joined skyline only based on

the property of being skyline or dominated for tuple pEA and q E B, to quickly identify

the skyline object for the joined tuple p EB q during the join processing. Lemmas 6.2.2 can

be exploited to efficiently determine skyline and non-skyline objects based on the labels of

the input tables only.

The only difficult case is as described in Property 6.2.3 when two tuples participating

in the join are both labeled as "LS(N)". The following lemma identify whether the joined

tuple is a skyline object.

Lemma 6.3.1 Let pEA and q E B be joinable tuples labeled as "LS(N)", if B(p', q')

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 129

false for all pi E Dom(p),q' E Dom(q), thenpffiq is a joined skyline object; otherunse p os q

cannot be a joined skyline object.

Proof: If B(p', q/) = false, then none of pis dominator can match up qls dominator in join

attribute, so in the joined table, p ffi q cannot be dominated by any other joined tuple, thus

it is a joined skyline object.

We now introduce how to find joined skylines by integrating with the sort-merge join

algorithm [77]. Essentially, according to the label of "LS(S)", "LS(N)" or "LN(N)" for

tuple pEA and q E B, we decide whether the joined tuple pffiq is a skyline object in A M B

depending on whether they satisfy the properties illustrated in Lemma 6.2.2 and Lemma

6.3.1. The pseudo-code of the Sort-Merge based algorithm is shown as follows.

Our skyline computation strategy which consists of (1) pre-processing (lines 1-4) and (2)

skyline identification in A M B (lines 17-30) can be seamlessly embedded into the sort-merge

join algorithm (lines 5-16 and lines 32-33). The above method generates complete skyline

objects in AM B.

Algorithm 6.3.1 Input: A, B, join attributes of d; E A and dj E B;
Output: Skyline in A M B

Method:

1. Find8kyline (A); / fusing existing skyline computation algorithms

2. Label(A); / /label each tuple in A

3. Find8kyline(B); / fusing existing skyline computation algorithms

4. Label(B); / /label each tuple in B

5. Ta = first tuple in A;

6. Tb = first tuple in B;

7. G b = first tuple in B;

8. WHILE 'I'; 1= eo! AND Gb 1= eo! DO{

9. WHILE Ta ; < Gb j DO;

10. Ta = next tuple in A after Ta ;

11. WHILE Ta , > Gb j DO;

12. Gb = next tuple in B after Gb ;

13. Ti, = G b ;

14- WHILE Ta ; == Gbj DO{

15. n = c.,
16. WHILE n, == T,,; DO{

17. IF Ta , t; both labeled "L8(8)" THEN

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

18. Add skyline Ta EB Ti; to result;

19. IF r; t: each labeled "L8(8)", L8(N) THEN

20. Add skyline T; EB n to result;

21. IF one alTa, t: labeled "LN(N) " THEN

22. t: EB t: is not a skyline in A N B;

23. IF r; Tb both labeled "L8(N)" THEN

24- Fla9 = F AL8E;

25. IF there are p E Dom(Ta) and q E Dom(Tb)

26. with (}(p,q) = TRUE THEN

27. Ftao = TRUE;

28. IF --.Fla9 THEN

29. Add skyline Ta EB Ti, to result;

30. ELSE t; EB Tb is not a skyline in A N B;

31. Ti, = next tuple in B after Tb;}

32. Ta = next tuple in A after Ta;}

33. G b = Tb ; }

34. Output result as the skyline in A N B;

130

The non-trivial cost in this method is the search and match of dominators, so the opti­

mization work is to reduce the cost in these two aspects. To quickly output the match of

dominators (Dorn(p) and Dorn(q)) (lines 25-30), we build linked list (as a temporary data

structure) to maintain their dominators in ascending order of values of the join attribute

from the skyline computation process. The cost used for checking the matching of any pair

of dominators of p,q labeled as "LS(N)" , is O(IDorn(p)1 + IDorn(q)I). For the efficient

searching of dominators, different strategies will be introduced in the remaining sections.

The above algorithm SSMJ addresses our Problem 1, for Problem 2 which includes some

aggregation operator can be solved with a slightly modified algorithm by first treating the

tuples in the same group as a single tuple with the aggregated values, then applying the

same procedure to identify skylines.

Efficient Dominators Match Using R-trees

As discussed in previous section, in order to know whether pEEl q is a skyline object where

p, q are labeled as "LS(N)", we need to obtain Dorn(p) and Dorn(q). However, computing

the dominators Dorn(p)/Dorn(q) for each tuple p with label "LS(N)" is not trivial when

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 131

the dataset is large. To overcome this problem, we propose an R-tree-based approach to

facilitate the search of dominators.

Basically, the descriptive attributes of each tuple in each table is indexed in R-tree (as

a typical multi-dimensional index structure, R-tree has been widely used). The dominators

of any object can be easily obtained by range queries in R-tree, then the dominators are

sorted with respect to values of the join attribute, and the match of dominators is tested.

To facilitate the match, we can record the range of join attribute in each MBR node, and

prune the unnecessary comparisons where join attribute value range does not overlap as

much as possible.

Comparing with Joined Skylines During Join Process

To eliminate the need for dominating test, in this section we propose a method for the

computation of joined skylines based on comparing each LS(N) E9 LS(N) tuple efficiently

with the joined skylines found so far in the join process. Here we still follow the strategy

of sort-merge join, but adopt two modifications: (1) we discard tuples with label "LN(N)"

since they have no contribution to the final skylines in the joined table. (2) we sort each

table as follows: (a) the primary sorting for each table is by the order of LS(S) < LS(N),

so tuples with label "L8(8)" are placed before tuples with label "L8(N)" in each table, as

shown in Figure 6.1; (b) within each group of "L8(8)" and "L8(N)" obtained by (a), the

secondary sorting is performed by the join attribute value of each tuple. The reason of these

modifications is that we can determine which tuples in the joined table are skylines as early

as possible, and also can reduce the sizes of input tables as small as possible.

Table 6.7 and Table 6.8 show the modified tables Customer' and Order' after modi­

fications (1) and (2) are made to tables Customer and Order in Table 6.5 and Table 6.6

respectively.

Table 6.7: Customer'

~I
~LS(S)I

~LS(S)I

~ 40k\ LS(N)I

I 1031 50 1 78kl LS(N]

1105\58~]

Table 6.8: Order' _
~D71 I

~ 1999.91 LS(S) I

~ 1644 1 LS(N)I

[TI 103\ 1 1 400 1 LS(N)I

~ 1080 I LS(N)I

~ 1900 1 LS(N)I

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 132

f-Ul"---------i' 1st 3rd
phase: phase

f-Ul.L-----I'1 -c; j i

i
Ls(Nf -------'

... - - - - I I

-------j , '
103 ... "
103'" : 4th :
f-------i 2nd i phase

~
04 ... phase: '
104'" ", ', '... <_ - _. I

<-------"

101 ... -~
105 ...

[07

- 102 ... _~

[03 ...
e

104

106 ...

....,.

Customer(C) Order(O)

:m:,~,~S 'k'T::.U.1.·~F-rI00-5[------' ~~~~ ,- ---i
: 2nd: phase

:pha~e ~09...
, ', '
~.:-_~~-L-S~ ...

1- - -

I : 3rd
: 4th: phas
;Phas~,,

I

, '
'- - -~------~

Figure 6.1: Comparing ai EB bj with Skylines Found So Far in Joined Table

Now the sort-merge join consists of four phases. The first three phases are LS(S) EB

LS(S), LS(S) EB LS(N) and LS(N) EB LS(S), are indicated by those dashed lines in Figure

6.1.

The above tuples which can be simply combined if they match up, are skylines S (labeled

as "LS(S)") in the joined table, and they are sorted with entropy value in ascending order

for quickly identify dominating relationship later. The fourth phase is LS(N) EB LS(N) (as

shown in Figure 6.1 for the dashed lines with number 4). If any "LS(N)" matches "LS(N)",

compare with the joined tuple in S, if dominated, it cannot be a joined skyline; otherwise

output to the temporary set S'. In the future, any new LS(N) EB LS(N) will compare with

Sand S'.

6.3.3 Integrating with Nested-Loop Join

Motivated by the idea of comparing with joined skylines during the join process in Section

6.3.2, we now propose a method integrating with the nested-loop join [77]. The intuition is

that if the joined tuples obtained during the join process keep an "order" in some descriptive

attributes, then if a new joined tuple is not dominated by joined skylines found so far, it is

easily identified as a joined skyline.

Here we sort each join table in one of descriptive attributes, and meanwhile maintain

the information about different labels as described in the previous section. Note that, those

labels are obtained in the Group-By operation with respect to join attributes in each table.

Table 6.9 and Table 6.10 show the same tuples as Table 6.5 and Table 6.6 but with the

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 133

Table 6.9: Sort Cus­
tomer by D2 (Age)
~,.--=--c--I

I 1011 35 I 90k LS(S)
I 1041 35 I 90k LS(S)

~LS(N)I

~LS(N)I

~LS(N)I

sorting order in D2 (Age) and D6 (Quantity) respectively. Note that Table 6.7 is sorted

in ascending order while Table 6.8 is sorted in descending order due to the criterion of "the

less the better" in attribute Age and "the more the better" in attribute Quantity in the

query.

Lemma 6.3.2 Given relations A, B sorted by one of descriptive attributes and each tuple

in A and B is labeled as "LS(S)" "LS(N)" and "LN(N)" according to join attributes in each

table as described in Section 2. A joins B in the nested loop approach. If tuple a E A, b E B

meet the join condition 8(a,b) == TRUE and both have a label "LS(N)", then aEBb can

only be dominated by c EB d where c E A, dEB, 8(c, d) == T RU E and c, d appear before

a, b respectively in the sorted tables.

This lemma illustrates that if any pair of joinable, "LS(N)" tuples is not dominated by any

skyline found in joined table so far, it is a skyline in the joined table and need not compare

with any joined tuple in the future since it will never be dominated by a joined tuple appearing

after itself. The pseudo-code of integrating the skyline processing with the nested-loop join

algorithm is shown as follows.

Algorithm 6.3.2

Input: A, B, join attributes of d; E A and dj E B;

Output: Skyline A ~ B

Method:

1. FindSkyline(A); / /using existing skyline computation algorithms

2. Label(A); / /label each tuple in A

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

3. Find8kyline(B); //using existing skyline computation algorithms

4. Label(B); / /label each tuple in B

5. FOR each tuple a E A DO

6. FOR each tuple b E B DO

7. IF a, == bj THEN

8. IF Ta , t; both labeled "L8(8) " THEN

.9. Add skyline Ta EB n to result;

10. IF Ta , t: each labeled "L8(8)" and LS(N) THEN

11. Add skyline T'; EB Ti, to result;

12. IF r; Tb both labeled "L8(N) " THEN

13. Compare Ta EB Tb with each skyline in result;

14. IF NO tuple in result dominates T; EB n THEN

15. Add skyline Ta EB Tb to result;

16. ELSE t; EB Tb is not a skyline in A r"1 B;

17. Output result in A r"1 B;

134

The algorithm consists of (1) pre-processing (lines 1-4) and (2) skyline identification in

A C><I B (lines 8-18) can be seamlessly embedded into the nested-loop join algorithm (lines

5-7).

6.4 Cardinality Estimate of Joined Skylines

In order to provide the query optimizer with more efficient plans for evaluating skyline

queries with joins, it is important to estimate the skyline size over any joined table. For

example, the query optimizer can adjust the join order among multiple relations so that the

tables with smaller estimate size of joined skyline cardinality will join before tables with

larger estimate size etc.

6.4.1 Problem of a Naive Solution

One might think of estimating the number of skyline objects in a join table by first cal­

culating the size of the join table, and then applying some classic skyline size estimation

method, e.g., in [37]. Unfortunately, this naive solution does not work. Recall that the clas­

sic skyline size estimation method requires that first, all attributes are independent, second,

all values in the same attribute are distinct. Both conditions are violated in the case of the

multi-relational skyline operator since the value of the primary key determines the values

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 135

of the remaining attributes and one tuple in A in general has several matching tuples in

B so that the attribute values of the A tuple are repeated multiple times. Hence, we need

to estimate the number of skyline objects directly from the original tables. Authors in [80]

study the cardinality estimation of join T i ~ T2 in a very special case that only attributes

in Ti participate in skyline evaluation. However, it is more meaningful to estimate the

cardinality of skylines over joined table in general case when attributes in both T i and T2

participate the skyline evaluation.

6.4.2 The Model

Let A, B denote two tables consisting of d i and d2 descriptive attributes, respectively. A, B

each has one join attribute. There are two basic assumptions: First, every data attribute

of A, B is drawn randomly from some probability distribution and is distinct. Second, all

attributes (including both descriptive and join attributes) of A, B are independent (note

that this is only for the input tables but not for the output table).

The join attributes of A, B both range on some discrete set n = {Wi, ... wt}. Note

that A ~ B consists of di + d2 descriptive attributes and one join attribute. Our goal is

to estimate the number of skyline records in A ~ B solely on the descriptive attributes.

'VI :s; i :s; t, let Ai denote the set of records in A whose value on the join attribute is Wi.

We have A = U~=i Ai and 'VI :s; i, j :s; t, i f- i, Ai nAj = ¢. We define B, similarly. Let

a; = IAil and b, = IBil. 'Vu E A (or B), we write Ai (or Bi) >- u, if there is some record in

Ai (or Bd except for u itself that dominates u,

6.4.3 The Size of the Join Table

Since every record in A joins with each record in B with the same value on the join attribute,

A ~ B = Ui Ai ~ B, and IA ~ BI = Li ai . bi .

6.4.4 The Expected Number of Skyline Objects in the Join Table

To estimate the number of skyline objects, we fix an arbitrary record r = x ~ Y E Ai ~ B,

where x = {Xi, ... Xd,} E Ai,Y = {Yi, ... Yd2 } E B i. Next, we calculate the probability that

r is skyline (i.e., none of the records in A ~ B except for r dominates r).

Note that for r to be a skyline object, none of the records in Ai except for x dominates

x and none of the records in B, except for Y dominates Y (see Lemma 6.3.1). Besides, for

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 136

any j -=1= i, none of the records in A j dominates x, or none of the records in B j dominates y.

Integrating over x and y, we get Prjr is skyline] =

1:00

•••1:00

j=U#i {Pr[-,(A j >- x) or -,(Bj >- y)]} .

dl d2

Pr[-,(A i >- x) and -,(Bi >- y)] II dF(Xk) II dF(Yk)'
k=l k=l

(6.1)

Unfortunately, it is difficult to solve the above integration directly. We shall prove the upper

and lower bounds instead. Let p(m, d) be the probability that a random d-dimensional record

()
(logm)d-l . []is skyline among m random records. Note that p m, d ;:::j m(d-l)! ' according to 14.

6.4.5 Upper Bound

To show the upper bound, we need the following lemma which can be proved using the

majorization technique in [64].

Lemma 6.4.1 'VO < p,q < l,k 21,(1- p)k + (1- q)k - (1- p)k. (1- q)k::; (l_pq)k.

By inclusion-exclusion and Lemma 6.4.1, we get 'Vj -=1= i, Pr[-,(Aj >- x) or -,(Bj >- y)]

<

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 137

dl d2

II dF(Xk) II dF(Yk)
k=l k=l

< J,' ... l'Jt (1-DXk II Yk) m;o{o,b,l

(1- DXJ-' (1- IIYkr' DdXk II dYk

{l (1- DXkDYkf' (1- DXkf'

(1- II Ykr'DdXkIldYk
1 1 (d 1 d2) 8-1 d 1 d2

< 1···1 1 - IT Xk IT Yk IT dXk IT dYk

p(s - 1, d1 + d2) .

Finally, since there are IA ~ BI records in the join table, the expected number of skyline

objects in A ~ B is upper bounded by IA ~ BI . p(s - 1, d1 + d2) .

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

6.4.6 Lower Bound

By Equation 6.1, Pr[r is skyline]

> r: i:= Pr[--.(Bi »- y)] . Pr[--.(Ai »- x)] .

t d1 d2

II {Pr[--.(A j »- x)} II dF(xk) II dF(Yk)
j=1,j#i k=} k=}

J+OO J+= t_= ... _= Pr[--.(Bi »- y)] .D{Pr[--.(A j »- x)}

138

Consequently, the number of skyline objects in A M B is lowerbounded by p(IAI, d1) .

L~=l aibip(bi, d2).

In summary, the number of joined skylines is between p(IAI,d1) · L~=l aibip(bi,d2) and

IA M BI .p(s - 1, d1 + d2) .

6.5 Extending to Multiple Joins

The previous section presents the methods for querying skyline in the joined table where

the participating tables for a single join have a one-to-many relationship. We can apply

these methods for the many-to-many relationship by multiple joins.

Example 14 Given the table Customer and table Order described in Example 13, we have

another table Part (PNurn, PQuantity, Price). Consider the following queries.

Question (1): Who are those young customers with high account balance and having ONE

order of part with high quantities in stock and and high amount of price?

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 139

Question (2): Who are those young customers with high account balance and high quantities

of in-stock parts he/she ordered, with high TOTAL amount of price (over all orders of this

customer)?

Answer: We can basically answer the above queries by performing similar SQL statements as

Example 13 (we omit details due to the space limitation) over Customer ~ Order ~ Part

which first finds skyline over C = Customer ~ Order, then over C ~ Part.

6.6 Experimental Evaluation

In this section, we report the results of our experimental evaluation.

Experimental Design All methods proposed in this chapter were implemented using Mi­

crosoft Visual C++ V6.0, including (1) the improved sort-merge join based skyline methods

by (i) using R-tree MBRs (noted as SMJSl), and by (ii) comparing with joined skylines

during the join process (noted as SMJS2); and (2) the block nested-loop join based skyline

method (noted as NLJS). For the purpose of comparison, we also implemented the naive­

based skyline algorithm (noted as Naive) including a sort-merge join process and a skyline

computing method LESS in [39] which computes skylines over joined tables. We choose

LESS due to its good average performance. Note that like the average complexity analysis

in most of skyline computation methods, the analysis of LESS makes the assumption UI

5[39]. However, it is difficult to achieve the same performance in practice since each table

has duplicate values, and the joined table have even more duplicate values in each attribute.

Experiments were conducted on a PC with an Intel Pentium 4 1.6 GHz CPU, 512 M main

memory and a 40 GB hard disk, running the Microsoft Windows XP operating system.

Testing Datasets Using the data generator provided by www.tpc.org, we generated several

types ofTPC-D benchmark tables: Customer' (each tuple has 44 bytes), Order7 ((each tuple

has 84 bytes)) and Part!' (each tuple has 60 bytes). For each type of table, we generated

data sets with different sizes (from 10,000 to 1,000,000 tuples).

5The properties of uniformly distributed, independence and distinct values are called uniform indepen­
dence (VI)

6Customer relation has 3 descriptive attributes: account balance, salary, age)

7 Order relation has 7 descriptive attributes: quantity, total price, priority, discount, ship cost, tax, delivery
duration)

8Part relation has 5 descriptive attributes:quantity, price, cost, discount range, weight, size

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR

Table 6.11: Cardinality of Different Datasets
Datasetl C,20k 0, 100x1k P, 20x1k
Dataset2 C,50k 0,200x1k P, 50x1k
Dataset3 C, lOOk 0,500x1k P, 100x1k
Dataset4 C,200k 0, 1000x1k P, 200x1k

140

By choosing four different datasets as shown in Table 6.11, the physical sizes of Customer,

Order Part, Customertn Order and Customersc Orderte I'art are listed in Figure 6.2(a) with

respect to different cardinalities". On the other hand, Figure 6.2(b) illustrates the number

of skylines in C,O and P, C~O and C~O~P illustrated in Figure 6.2(b).

We observe that in both cases, the size differences are evident and become larger when the

cardinality increases significantly, and when more relations participate the join operation.

The experiments are conducted in different aspects as follows.

Run Time The time cost for Naive method includes applying the sort-merge join to obtain

the joined table and then applying LESS to obtain skylines. SMJSl, SMJS2 and NLJS

also use LESS to find skylines in each table and labeling'". Additionally SMJS2 moves

"L8(8)" tuples ahead of other tuples. The time used in join process for SMJSl, SMJS2

and NLJS shares with the time in computing joined skylines. The computation of joined

skylines with aggregate constraints uses less time due to the smaller size of input tables

after the aggregation.

The run time comparisons of different methods for computing joined skylines with/without

aggregate constraints with respect to different sizes of the joined table C~ 0 (with totally

10 descriptive attributes) are depicted in Figure 6.3(a) and Figure 6.3(b) respectively. Here,

we typically test the "8UM" aggregate as mentioned in Example 13. In both cases, our

proposed methods run much faster than Naive method. In particular, SMJS2 finishes

first, and SMJSl takes less time than NLJS.

To study the relationship between run time and the dimensionality of the joined table, we

compare with the run time of different methods for computing joined skylines with/without

aggregate constraints as shown in Figure 6.4(a) and Figure 6.4(b) respectively. The joined

table is obtained from the joining of 0 of 500,000 records and P of 100,000 records. Each

gIn the legend of figures, C-Customer, O-Order, P-Part, CjoinO-CM 0, C join 0 join P-C M OM P

lOThe LESS method can be easily adapted to label "L8(8)" as well as "L8(N)" and "L8(8)" in the order
of join attribute value.

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 141

time we choose 2, 3, 4 and 5 dimensions per table respectively to participate join operation,

thus the joined table has the dimensionality of 4, 6, 8 and 10 respectively. It shows the

same ranks of run time as the test of run time w.r.t. different sizes of joined tables.

Test of Cardinality Estimate It is also interesting to compare the actual size of joined

skylines with the expected size of the joined skylines by our proposed estimator (we choose

the upper bound estimate). Figure 6.5(a) and Figure 6.5(b) give the results of our method

and the classical estimator [37] in different sizes of joined tables (with totally 10 descriptive

attributes) and different dimensionality (with 500,000 joined records) respectively, and show

that our method can always provide better estimate results.

Summary From the experimental evaluations, we conclude that our proposed skyline join

algorithms are efficient and scalable to large databases, and also our joined skyline estimator

can provide a good estimate of the correct size.

160000 l

140000

., 120000
S
~ 100000

"Qj' BOOOO

.~ 60000
:ll
~ 40000

20000

OC
.p
00

DeMO

.CMOMP

600000

500000

III 400000
.~
~ 300000

: 200000

100000

cC
.P
00

DCMO

.eM-OMP

datasets1 datas etsz datasels3 datasets4 datasets1 datasets2 dalasels3 datasets4

Dataaets
(a) Size of Data Sets

Datasets
(b) Number of Skylines

Figure 6.2: The Size of Data Sets and #of Skylines

500

Naive ---a-NLJS _______

2000 SMJS1 -----¥-----­
SMJS2 -+--

2500 r--~--~-~r--~

'if
~ 1500.i 1000
0:

o 0 ILI~~====:=====1
o 200 400 600 800 1000 0 50 100 150 200

Joined lable cardinality{xk) Joined table cardinality (x k)

(a) Joined Skylines w.o. Aggregates (b) Joined Skylines with Aggregates

9000
Naive ----a---

8000 NUS __________

7000
SMJ$1 -.I-<-

SMJS2 -+-

~ 6000

~
~ 5000.
~

4000

&' 3000

2000

1000

Figure 6.3: Runtime vs Cardinality

CHAPTER 6. THE MULTI-RELATIONAL SKYLINE OPERATOR 142

1600
Naive ---e-

1400 NLJS --ll--

SMJS1 ---1200 SMJS2 --+-

~ 1000
~. 800
5c 600
it

400

200

3500
Naive ---e-

3000
NUS ________

SMJS 1 -----¥-

2500
SMJS2 -----+--

~
~ 2000.
E 1500

~ 1000

500

0
0 10

oL-_~__""",E-:=l------.J

o
Joinedtable Dimensionality Joined table Dimensionality

(a) Joined Skylines w.o. Aggregates (b) Joined Skylines with Aggregates

Figure 6.4: Runtime vs Dimensions

~
. ,

~" ...•,':.,..:..~.:.;..,.•
t±";f~

200 10

C/l(;tuCiI size

• Our esurnate

80000

70000

~ 60000 0 Classical esumate..
1::::: !

i 30000 'j
~ 20000

10000]1 ~
o .~_._~I__L..

4 6 81000500

120000 I [] Pc'ual size

100000 1 · Our as timate
~ 0 Classical estimate

~ 80000 I

~ 60000 I'

~ 40000

~

2ooo:L~

100

Joined table cardinality (x1 000)

(a) Change of Data Size
Joined table dimenaionality

(b) Change of Dimensions

Figure 6.5: #of Skylines Estimate

6.7 Conclusion

In this chapter, we study the skyline operator over multi-relational tables, and propose so­

lutions by incorporating state-of-the-art join methods into skyline computation [50]. We

also showed that the current methods for cardinality estimations are not adequate for the

scenario of multiple tables involved with join operations, and provided a method to theoret­

ically estimate the size of joined skylines. The experiments on TPC-D datasets demonstrate

the efficiency and scalability of the proposed methods. We believe that this research does

not only meaningfully extend the skyline operator to the multi-relational database systems,

but also indicate the interesting topics such as joined skylines in the case of updated data

and other types of aggregates.

Chapter 7

Summary and Conclusions

In this chapter, we summarize our results and present our conclusions. In the following

chapter, we suggest areas for future work, including some topics for which we are now

working.

7.1 Summary of the Thesis

The notion of skyline operator has been demonstrated its importance in many applications

such as multi-criteria decision making, data mining and visualization and user-preference

queries. Most previous studies focus on the improvement in computational efficiency of

finding skyline objects in a full space. However, there still exists the following crucial

questions: (1) Why and in which subspaces is (or is not) an object in the skyline? (2) How

to reasonably approximate the skyline objects, i.e., mining "approximate skyline objects"?

(3) Can the notion of skyline operator facilitate other database operators? (4) How to

efficiently compute skyline on multiple relations? In this thesis, we propose a class of

methods for answering these questions the and make the following contributions.

• We answered the question about semantics of skyline objects by introducing the novel

notions of skyline groups and decisive subspaces. We proposed the problem of subspace

skyline analysis and computation. On the subspace skyline analysis side, a novel roll­

up and drill-down analysis of skylines in various subspaces was introduced. On the

subspace skyline computation side, an efficient algorithm Skyey was developed. Our

performance study using both real and synthetic data sets was conducted to verify the

143

CHAPTER 7. SUMMARY AND CONCLUSIONS 144

meaningfulness and the efficiency of our approach. The experimental results strongly

suggest that the semantics of skyline objects and subspace skyline analysis are highly

meaningful in practice, and algorithm Skyey is efficient and scalable.

• We answered the question of the approximate skyline objects by proposing a novel no­

tion of thick skyline based on the distance constraint of a skyline object from its nearest

neighbors. The task of mining thick skyline is to recommend skyline objects as well

as their nearest neighbors within s-distance. We also develop Sampling-and-Pruning

algorithm, Indexing-and-Estimating algorithm and Microcluster-based algorithm to

find such thick skylines in large databases. Our experimental evaluation demonstrates

the efficiency and effectiveness of our algorithms. We believe the notion of thick sky­

line and mining methods not only extends the skyline operator in database query, but

also provides interesting patterns for data mining tasks.

• We answered the third question listed above by introducing materializing layered sky­

lines for ranked queries processing. Such a novel approach is based on the observation

that for any score function (weights) the top-k ranked answers must be contained

in the first k skyline layers. These skyline layers can be efficiently determined and

are stored in existing multi-dimensional index structures that are enhanced by special

data structures representing the different skyline layers. For this purpose, we propose

indexing layered skylines and indexing shell-grid microclusters for top-k ranked query,

and present methods for sweeping the hyperplane of the score function over the in­

dexed objects. Our methods can be easily adapted to the existing multi-dimensional

index structures. The experimental evaluation demonstrates that our methods clearly

outperform state-of-the-art methods of rank-aware query processing in terms of effi­

ciency and, as far as approximate methods are concerned, accuracy.

• We answered the question of how to achieve skyline query optimization on multiple

relations by developing efficient methods to share the join processing with skyline

computation. We also theoretically estimate the size of the joined skylines to extend

the query optimizer's cost model to accommodate skyline operator over joined tables.

The experiments not only demonstrate that the methods proposed are efficient, but

also show the promising applicability of extending skyline operator to other typical

database operators such as join and aggregates.

CHAPTER 7. SUMMARY AND CONCLUSIONS

7.2 Conclusion

145

In conclusion, the analytic and experimental results presented in this thesis have shown

the reason of objects being skylines in different subspaces, the degree to which of a skyline

object being approximated by a non-skyline object, the usage of skyline objects by speeding

up typical database operations such as ranked-aware queries, and the extension to the multi­

relational skyline operator.

Hopefully, this thesis has convinced the reader that skyline objects are meaningful se­

mantically, and can provide useful support for data mining and database operations.

Chapter 8

Ongoing and Future Work

Although the goal of this thesis has been met, there still remain several aspects that are wor­

thy of consideration and exploration in many related problems, extensions and applications.

Some of them are listed here.

8.1 Answering Subspace Skyline Queries by Materializing

Signatures

In general, the skyline queries in databases can be categorized into two types:

• Subspace Skyline Query SS-query:

1. Given a subspace s, find all objects that are skyline objects in s;

2. Given a subspace s, find all objects that are skyline objects in all the subspaces

of s;

• Dominating Subspace Query DS-query:

1. Given an object 0, find whether 0 is a skyline object in any subspace; if so, list

all such subspaces;

2. Given an object 0, find skyline objects that dominate 0 in any subspace s.

Based on the properties in Chapter 3, the skyline in every subspace can be derived by

the signatures of skyline groups, and the size of signatures is usually smaller than size

of subspace skyline objects in every subspace. So we can compress the skyline objects of

146

CHAPTER 8. ONGOING AND FUTURE WORK 147

different subspaces into a set of signatures of skyline groups and materialize these signatures

for the skyline queries in arbitrarily subspace. Based on the different requirements on the

time and space used in pre-processing, we can devise different materializing schema: (1)

indexing signatures of every subspace, and build inverse index on the decisive subspaces

occurred in each signature of the skyline groups; (2) indexing signatures in the full space,

each node indexed by a decisive subspace stores the corresponding subspace skyline groups

in the full space; and (3) hybrid indexing method which aims to find a tradeoff between (1)

and (2). Accordingly, different search techniques can be developed to search the indexes

and retrieves the subspace skyline objects.

8.2 Mining Subspace Thick Skyline Objects

A natural extension of the thick skyline operator is applied to the case of any subspace. For

example, users would be like to see the thick skyline objects only for the attributes of "price"

(price) and "distance to the beach" (distance) among many attributes of the hotel database.

To find thick skyline objects in any subspace, we can integrating the E: neighborhood search

into the Skyey algorithm. We can take an alternative approach by indexing signatures in

every subspace, then locate the corresponding entry in the index for the input subspace and

find its skyline group, finally execute the E: neighborhood search for output thick skyline

objects.

8.3 Mining Interesting Non-Skyline Objects

Many existing methods focus on the notion of skyline and its properties, however, it lacks

the work in mining interesting non-skyline objects. For example, even neither Hyatt hotel

nor Hilton hotel is a skyline hotel among all the hotels in New York city with respect to

attributes of price and distance. People often want to know how "good" these non skyline

hotels are? Which hotel is better, Haytt or Hilton? Moreover, since the set of skyline

objects often occupies a small portion of the database, it is very meaningful to measure

the importance (factor) of those non-skyline objects. Typically, each non-skyline object

has its dominating degree (to which this object dominates other objects) and dominated

degree (to which this object is dominated by other objects). Based on the gradient feature of

multi-layered skylines, the dominating degree and the dominated degree can be meaningfully

CHAPTER 8. ONGOING AND FUTURE WORK 148

quantified. Therefore, by combining both dominating degree and dominated degree of each

non-skyline object, we can measure each object including non-skyline objects in a reasonable

way and mining the most interesting non-skyline objects in large databases.

8.4 Mining Microeconomic Dominating Neighbors

Current methods on skyline objects have only considered so-called minimax attributes like

price and quality which a user wants to minimize or maximize. However, objects can

also have spatial attributes like x, y coordinates which can be used to represent relevant

constraints on the query results. We introduce novel skyline query types taking into account

not only minimax attributes but also spatial attributes and the relationships between these

different attribute types [90]. Such kind of queries supports a micro-economic approach to

decision making, considering both the quality of query objects and the cost of solutions.

We investigate two alternative approaches for efficient query processing, a symmetrical one

based on off-the-shelf index structures, and an asymmetrical one based on index structures

with special purpose extensions. Our experimental evaluation using a real dataset and

various synthetic datasets demonstrates that the new query types are indeed meaningful

and the proposed algorithms are efficient and scalable.

Bibliography

[1J R. Agrawal and R. Srikant. Fast algorithm for mnung association rules in large
databases. In Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB), pages 487-499, 1994.

[2J R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 297-306, 2000.

[3] Rodin B. Calculus and Analytic Geometry. Prentice-Hall, Inc, 1970.

[4] W.-T. Balke and U. Guntzer. Multi-objective query processing for database systems.
In Proceedings of the Thirtieth International Conference on Very Large Data Bases
(VLDB), pages 936-947, 2004.

[5] W.-T. Balke, U. Guntzer, and J. X. Zheng. Efficient distributed skylining for web
information systems. In Proceedings of 9th International Conference on Extending
Database Technology (EBDT), pages 256-273, 2004.

[6] W.-T. Balke, J. X. Zheng, and U. Guntzer. Approaching the efficient frontier: Coop­
erative database retrieval using high-dimensional skylines. In Proceedings of the 10th
International Conference on Database Systems for Advanced Applications (DASFAA),
pages 410-421, 2005.

[7] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 322-331, 1990.

[8] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient and
robust access method for points and rectangles. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 322-331, 1990.

[9] J. L. Bentley, K. 1. Clarkson, and D. B. Levine. Fast linear expected-time alogrithms for
computing maxima and convex hulls. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 179-187, 1990.

149

BIBLIOGRAPHY 150

[10] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average
number of maxima in a set of vectors and applications. Journal of the ACM (JACM),
25(4):536-543, October 1978.

[11] S. Berchtold, C. Bhm, and H.P. Kriegel. The pyramid-technique: Towards breaking the
curse of dimensionality. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 1998.

[12] S. Berchtold, D. A. Keirn, and H. P. Kriegel. The x-tree: An index structure for
high-dimensional data. In Proceedings of 22th International Conference on Very Large
Data Base (VLDB), pages 28-39, 1996.

[13] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of
the 17th International Conference on Data Engineering (ICDE) , pages 421-430,2001.

[14] C. Buchta. On the average number of maxima in a set of vectors. Inf. Process. Lett.,
33(2):63-65, 1989.

[15] M. Carey and D.Kossman. On saying "enough already!" in sql. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages "219-230",
1997.

[16] C. Y. Chan, P. K. Eng, and K. L. Tan. Efficient processing of skyline queries with
partially-ordered domains. In Proceedings of the 21st International Conference on Data
Engineering (ICDE) , pages 190-191, 2005.

[17] C. Y. Chan, P. K. Eng, and K. L. Tan. Stratified computation of skylines with partially­
ordered domains. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 203-214, 2005.

[18] C. Y. Chan, H. V. Jagadish, K. L. Tan, K. H. Tung, and Z. J. Zhang. Finding k­
dominant skylines in high dimensional space. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages" 503-514", 2006.

[19] C. Y. Chan, H. V. Jagadish, K. L. Tan, K. H. Tung, and Z. J. Zhang. On high
dimensional skylines. In Proceedings of the 10th International Conference on Extending
Database Technology (EDBT), pages 478-495, 2006.

[20] K. C. Chang and S. W. Hwang. Minimal probing: supporting expensive predicates
for top-k queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 346-357, 2002.

[21] Y. C. Chang, L. D. Bergman, V. Castelli, C. S. Li, M. L. Lo, and J. R. Smith. The
onion technique: Indexing for linear optimization queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 391-402,2000.

BIBLIOGRAPHY 151

[22] S. Chaudhuri. Data mining and database systems: Where is the intersection. IEEE
Data Enginerring Bulletin, 21(1):4-8, 1998.

[23] S. Chaudhuri, N. Dalvi, and K. Raghav. Robust cardinality and cost estimation for
skyline operator. In Proceedings of the 22nd IEEE International Conference on Data
Engineering (ICDE) , 2006.

[24] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic ranking of database
query results. In Proceedings of 30th International Conference on Very Large Data
Bases (VLDB), pages 888-899, 2004.

[25] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In Proceedings of 25th
International Conference on Very Large Data Bases (VLDB), pages 397-410, 1999.

[26] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Com­
putational Geometry, 10.

[27] J. Chomicki, P. Godfrey, J. Gryz, and D. M. Liang. Skyline with presorting. In
Proceedings of the 19th International Conference on Data Engineering (ICDE), pages
717-816, 2003.

[28] J. Chomicki, P. Godfrey, J. Gryz, and D. M. Liang. Skyline with presorting: Theory
and optimizations. In Intelligent Information Processing and Web Mining, Proceedings
of the International Intelligent Information Systems:IIPWM'05, pages 595-604, 2005.

[29] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, sec­
ond edition. The MIT Press, 55 Hayward Street Cambridge, MA 02142-1315, September
2001.

[30] P. K. Eng, B. C. Ooi, and K. 1. Tan. Indexing for progressive skyline computation.
Data Knowl. Eng., 46(2):169-201, 2003.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov­
ering clusters in large spatial databases with noise. In Proceedings of the Second A CM
International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
226-231, 1996.

[32] R. Fagin. Fuzzy queries in multimedia database systems. In Proceedings of the twen­
tieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
(PODS), pages 1-10, 1998.

[33] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Princi­
ples of database systems (PODS), pages 102-113, 200l.

[34] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. The
MIT Press, Springer, 1996.

BIBLIOGRAPHY 152

[35] F. Geerts, H. Mannila, and E.Terzi. Relational link-based ranking. In Proceedings
of the Thirtieth International Conference on Very Large Data Bases (VLDB), pages
552-563, 2004.

[36] U. Gntzer, W.-T.Balke, and W. Kieling. Optimizing multi-feature queries for image
databases. In Proceedings of 26th International Conference on Very Large Data Bases
(VLDB), pages 419-428, 2000.

[37] P. Godfrey. Cardinality estimation of skyline queries: Harmonics in data. Technique
Report CS-2002-03, York University, Computer Science Department, October 2002.

[38] P. Godfrey. Skyline cardinality for relational processing. In Proceedings of Founda­
tions of Information and Knowledge Systems, Third International Symposium (FolKS),
pages 78-97, 2004.

[39] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In
Proceedings of the 31st International Conference on Very Large Data Bases (VLDB),
pages 229-240, 2005.

[40] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging the results of approximate
match operations. In Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB), pages 636-647, 2004.

[41] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 47-57,
1984.

[42] A. Hinneburg and D. A. Keirn. Optimal grid-clustering: Towards breaking the curse
of dimensionality in high-dimensional clustering. In Proceedings of 25th International
Conference on Very Large Data Bases (VLDB), pages 506-517, 1999.

[43] G. R. Hjaltason and H.Samet. Distance browsing in spatial databases. ACM Tran­
sanction of Database System, 24(2):265-318, 1999.

[44] V. Hristidis, N. Kondas, and YPapakonstantinou. Prefer:a system for the efficient
execution of multi-parametric ranked queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 259-270, 2001.

[45] V. Hristidis and Y Papakonstantinou. Algorithms and applicatins for answering ranked
queries using ranked views. The VLDB Journal, 13(1):49-70,2004.

[46] Z. Huang, C.S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mobile lightweight
devices in manets. In Proceedings of the 22nd IEEE International Conference on Data
Engineering (ICDE) , 2006.

[47] I. F. Ilyas, R. Shah, W.G.Aref, J.S.Vitter, and A.K.Elmagramid. Rank-aware query
optimization. In Proceedings of the ACM SIGMOD International Conference on Man­
agement of Data, pages 203-214, 2004.

BIBLIOGRAPHY 153

[48] 1. F. Ilyas, W.G.Aref, and A.K.Elmagramid. Supporting top-k join queries in relational
databases. In Proceedings of 29th International Conference on Very Large Data Bases
(VLDB), pages 754-765,2003.

[49] W. Jin, M. Ester, and J. W. Han. Efficient processing of ranked queries with sweeping
selection. In Proceedings of the 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases(PKDD), pages 527-535, 2005.

[50] W. Jin, M. Ester, Z. J. Hu, and J. W. Han. The multi-relational skyline operator. In
Proceedings of the 23rd International Conference on Data Engineering (ICDE) , 2007.

[51] W. Jin, J. W. Han, and M. Ester. Mining thick skylines over large databases. In
Proceedings of the 8th European Conference on Principles and Practice of Knowledge
Discovery in Databases(PKDD), pages 255-266, 2004.

[52] W. Jin, Anthony K. H. Tung, and Jiawei Han. Mining top-n local outliers in large
databases. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge Discovery and Data Mining (KDD) , pages 293-298, 200l.

[53] T. Johnson, L. V. S. Lakshmanan, and R. T. Ng. The 3w model and algebra for unified
data mining. In Proceedings of 26th International Conference on Very Large Data Bases
(VLDB), pages 21-32, 2000.

[54] N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional
nearest neighbor queries. In Proceedings ACM SIGMOD International Conference on
Management of Data, pages 369-380, 1997.

[55] E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based outliers. In
Proceedings of the 25th International Conference on Very Large Data Bases (VLDB),
pages 211-222, 1996.

[56] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an online algorithm
for skyline queries. In Proceedings of 28th International Conference on Very Large Data
Bases (VLDB), pages 275-286, 2002.

[57] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
Journal of the ACM (JACM), 22(4):469-476, October 1975.

[58] L. Lakshmanan, J. Pei, and J. W. Han. Quotient cube: How to summarize the semantics
of a data cube. In Proceedings of 28th International Conference on Very Large Data
Bases (VLDB), pages 778-789, 2002.

[59] C. P. Li, B. C. Ooi, K. H. Tung, and S. Wang. Dada: A data cube for dominant
relationship analysis. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages "659-670", 2006.

BIBLIOGRAPHY 154

[60] X. M. Lin, YD.Yuan, W. Wang, and H.J. Lu. Stabbing the sky:efficient skyline com­
putation over sliding windows. In Proceedings of the 21st International Conference on
Data Engineering (ICDE) , pages 502-513, 2005.

[61] H. X. Lu, Y Luo, and X. M. Lin. An optimal divide-conquer algorithm for 2d skyline
queries. In Proceedings of Advances in Databases and Information Systems, 7th East
European Conference (A DBIS) , pages 46-60, 2003.

[62] Y Luo, H. X. Lu, and X.M. Lin. A scalable and i/o optimal skyline processing algo­
rithm. In Proceedings of Advances in Web-Age Information Management: 5th Interna­
tional Conference (WAIM), pages 218-228, 2004.

[63] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-accessible
database. ACM Transactions on Database Systems, 29(2):1-44, June 2004.

[64] A. W. Marshall and 1. Olkin. Inequalities: Theory of Majorization and Its Applications.
New York: Academic Press.

[65] J. Matousek. Computing dominances in en. Information Processing Letters, 38(5):277­
278, 1991.

[66] M. Morse, J. M. Patel, and W. Grosky. Efficient continuous skyline computation.

[67] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
The Pitt Building, Trumpington Street, Cambridge, United Kingdom, October 1995.

[68] A. Natsev, Y C. Chang, J. R. Smith, C.S. Li, and J. S. Vitter. Supporting incremental
join queries on ranked inputs. In Proceedings of 27th International Conference on Very
Large Data Bases (VLDB), pages 281-290, 2001.

[69] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In Proceedings of the 15th International Conference on Data Engineering
(ICDE) , pages 22-29, 1999.

[70] F. Nielsen. Output-sensitive peeling of convex and maximal layers. Information Pro­
cessing Letters, 59(5):255-259, 1996.

[71] M. Ortega, Y. Rui, K. Chakrabarti, K.Porkaew, S. Mehrotra, and T.S. Huang. Sup­
porting ranked boolean similarity queries in mars. IEEE Transactions on Knowledge
Data Engineering, 10(6):905-925, 1998.

[72] D. Papadias, Y Tao, G. Fu, and B. Seeger. An optimal and progressive algoroithm
for skyline queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 467-478, 2003.

[73] D. Papadias, Y Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems, 2005.

BIBLIOGRAPHY 155

[74] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proceedings of 7th International Conference on Database Theory
(ICDT), pages 398-416, 1999.

[75] J. Pei, W. Jin, M. Ester, and Y.F. Tao. Catching the best views of skyline: a semantic
approach. In Proceedings of 31st International Conference on Very Large Data Bases
(VLDB), pages 253-264, 2005.

[76] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, August 1993.

[77] R. Ramakrishnan and J. Gehrke. Database Management Systems. 3rd Edition,
McGraw-Hill.

[78] N. Roussopoulos, S.Kelley, and F.Vincent. Nearest neighbor queries. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 71-79,
1995.

[79] R. Rymon. Search through systematic set enumeration. In Proceedings of the Inter­
national Conference on Principle of Knowledge Representation and Reasoning (KR) ,
pages 539-550, 1992.

[80] N. Dalvi S. Chaudhuri and R. Kaushik. Robust cardinality and cost estimation for
skyline operator. In Proceedings of the 22ndt International Conference on Data Engi­
neering (ICDE) , pages 64--74,2006.

[81] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for
multi-dimensional objects. In Proceedings of the Thirteenth International Conference
on Very Large Data Bases (VLDB), pages 507-518, 1987.

[82] P. K. C. Singitham, M. Mahabhashyam, and P. Raghavan. Efficiency-quality tradeoffs
for vector score aggregation. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases (VLDB), pages 624-635, 2004.

[83] R. Steuer. Multiple Criteria Optimization. John Wiley, New York, 1986.

[84] I. Stojmenovic and M. Miyakawa. An optimal parallel algorithm for solving the maximal
elements problem in the plane. Parallel Computing, 7(2):249, 1988.

[85] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In
Proceedings of 27th International Conference on Very Large Data Bases (VLDB), pages
301-310, 2001.

[86J Y. Tao and D. Papadias. Maintaining sliding window skylines on data streams. IEEE
Transactions on Knowledge and Data Engineering (TKDE) , 18(3):377-391, 2006.

BIBLIOGRAPHY 156

[87] Y. Tao, X. K. Xiao, and J. Pei. Subsky: Efficient computation of skylines in sub­
spaces. In Proceedings of the 22nd IEEE International Conference on Data Engineering
(ICDE) , 2006.

[88] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic
guarantees. In Proceedings of the Thirtieth International Conference on Very Large
Data Bases (VLDB), pages 648-659, 2004.

[89] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked join in­
dices. In Proceedings of the 19th International Conference on Data Engineering (ICDE),
pages 277-290, 2003.

[90] Anthony K. H. Thng, W. Jin, and M. Ester. On dominating your neighborhood prof­
itably. In Submit to Conference, 2006.

[91] D. A. White and R. Jain. Similarity indexiug with the ss-tree. In Proceedings of the
12th International Conference on Data Engineering (ICDE) , pages 516-523, 1996.

[92] E. L. Wimmers, 1. M. Haas, M. T.Roth, and C.Braendli. Using fagin's algorithm
for merging ranked results in multimedia middleware. In Proceedings of the Fourth
IFCIS International Conference on Cooperative Information Systems (CoopIS) , pages
267-278, 1999.

[93] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E. Abbadi. Paralleliz­
ing skyline queries for scalable distribution. In Proceedings of the 10th International
Conference on Extending Database Technology (EDBT), pages 112-130, 2006.

[94] T. Xia and D. H. Zhang. Refreshing the sky: The compressed skycube with efficient
support for frequent updates. In Proceedings of the ACM SIGMOD International Con­
ference on Management of Data, 2006.

[95] Y. D. Yuan, X. M. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation
of the skyline cube. In Proceedings of 31st International Conference on Very Large Data
Bases (VLDB), pages 241-252, 2005.

[96] T. Zhang, R. Ramakrishnan, and M. Livny. Birch:an efficient data clustering method
for very large databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 103-114, 1996.

[97] Z. J. Zhang, X. Guo, H. Lu, K. H. Tung, and N. Wang. Discovering strong skyline
points in high dimensional spaces. In Proceedings of the 2005 ACM CIKM International
Conference on Information and Knowledge Management (CIKM) , pages 247-248, 2005.

