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Abstract 

Duality inequalities are pervasive in modern optimization; Fenchel duality and the Mean 

Value theorem are two prominent examples. This thesis surveys some recent duality results 

pertaining to nonsmooth functions, and examines some interesting corollaries thereof. One 

of these results is a somewhat surprising nonsmooth generalization of both the classical Mean 

Value theorem and the standard Fenchel duality theorem. Another gives rise to a variety 

of nonsmooth analogs to Rolle's theorem. Fixed point theory is central to the development 

of these results, and it is interesting to ask whether variational proofs might exist for some 

duality results. The answer to this question is mixed: some results admit variational proofs, 

whereas for others such a proof is unlikely. In particular, we show by counterexample that 

a certain Rolle-type duality theorem does not hold, even in EX2. 
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Chapter 1 

Introduction and Preliminaries 

A duality inequality, broadly speaking, is an inequality that expresses a relationship between 

elements in a linear space X and elements of the topological dual space X* of all continuous 

real linear functions on X. For instance, we may consider the derivative f1(xo) of a function 

f : R 4 R at xo to be a linear functional that, when translated, approximates f near zo. 

Thus one central duality equality in analysis is the classical mean value theorem (see, e.g. 

[Wad95]) : 

Theorem 1.1 (Classical Mean Value Theorem) Let f be continuous on a closed bounded 

nondegenerate interval [a, b] and differentiable on (a, b). Then 

for some xo E (a, b). 

In the above, (x*, x) for x E X and x* E X* denotes x*(x). The mean value theorem, of 

course, extends in a straightforward way to multiple dimensions: 

Theorem 1.2 Let f : Rn -+ R be differentiable on a neighborhood of [a, b] = {Xu + (1 - 

X)b I X E [0, I]). Then 

f(b) - f(a)  = (Vf(xo),b - a) 

for some xo E (a, b) = Xa + (1 - X)b I X E (0, l ) ) .  

Another example of a duality inequality comes from convex analysis (see [Roc97], [BLOO] , 
[HUL93a], [HUL93b]) in the form of the classical Fenchel duality theorem. Given functions 
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f and h on X ,  we consider the problem 

p = inf {f (x) + h(x)}. 
xEX  

The dual problem to finding p is given by 

d = sup {- f*(x*) - h*(-x*)) 
%*EX*  

where f * and h* are certain convex functions on X*. Weak Fenchel duality asserts that 

p 2 d, and strong Fenchel duality says p = d provided f and h satisfy certain constraints. 

In this thesis, we examine several recent duality inequalities from the field of nonlinear 

and nonsmooth analysis. In Chapter 2 we examine a powerful nonsmooth duality result 

developed in [CL94], [LR96] and [BFOI] that extends both Fenchel duality and the mean 

value theorem. In Chapter 3, we consider a related result by Borwein and Fitzpatrick that 

leads to a variety of nonsmooth Rolle-type inequalities. As in [BFOI], we then use Ekeland's 

variational principle to improve certain results. We conclude with Chapter 4, in which a 

counterexample (see [BKW02]) is constructed to a conjectured Rolle-type duality inequality. 

The central results, Theorem 2.1 and Theorem 3.3 draw on many analytical and topo- 

logical results in their proofs. The rest of this chapter reviews the necessary background 

material for chapters 2 and 3. 

1.1 Notation 

The natural setting for many of the results we use is Banach space, that is, a complete 

normed space. If a proposition is inherently a Banach space fact, we prove it or cite it in 

that setting, even if we only apply it to Rn. We use X for a general Banach space, and 

X* for its dual. Furthermore, elements of the primal space are represented with lower case 

letters, as in "x E X", and elements of the dual are represented as starred lower case letters, 

as in "x* E X*". We often use this notation even when X = Rn, to stress the role of 

subgradients and gradients, e.g., as members of the dual space. The norm on X is denoted 

by 11 . 1 1  and the closed unit ball by B. The dual norm and unit ball are denoted by 1 1  - 11, 
and B*, repectively. [FHHSO1] is a good reference for Banach space theory. 

A function X -+ is convex if 
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for any x, y E X and A E [ O , l ] .  We allow functions to take the extended real values +GO 

and -00, and denote R U {+GO) by R. By the epigraph, epi( f ) ,  of a real-valued function f ,  

we mean those points in X x IW that are above the graph of f : 

epi(f) := {(x,t)  E X x R 1 f (x )  5 t). 

Likewise, the hypograph of f are the points below the graph: 

f is said to be closed if epi(f) is a closed set. This is equivalent to f being lower semicon- 

t inuous on X :  

lim inf f (x,) 2 f (x) 
n+co 

for every sequence {x,) that converges to x, for every x E X. The domain of a function 

f ,  dom f ,  is the set of points for which f is finite; we say a function is proper if dom f # 0 
and f never takes the value -GO. A point x E X is a local m i n i m u m  for f if there exists a 

neighborhood U of x such that 

f (x) 5 f (x') for all x' E U. 

The interior of a set S we denote by int S, the closure by cl S, and the boundary by 

3s. The convex hull of S, convS, is the smallest convex set containing S, and the closed 

convex hull, m S ,  is the closure of conv S. For sets S1 and S 2 ,  the closed interval [S1, S2] 

is defined to be EfiV(S1 U S2). A point x is in the core of S, core S, if for every direction 

d E X there is an E > 0 such that [x, x + ~ d ]  C S. Clearly, int S C core S. Finally, by S1 + S2 

we mean the set of all sums of an element in S1 and an element in S2. 

1.2 Convex and Nonsmooth Analysis Facts 

A real-valued function f : X + R is Giteaux  differentiable at a point x E X if there is a 

gradient V f (x) E X* such that 

for all d E X. If this limit exists uniformly for d in bounded sets, then f is Fre'chet 

dzfferentiable at x. We call the limit on the left hand side of this equation the directional 
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derivative of x in the direction dl and we denote it by f l (x;  d). We say that f is continuously 

differentiable or C1 if the gradient mapping x + V f (z) is a continuous mapping from X to 

x*. These notions of differentiability can also be applied to functions f : X -+ Y, where Y 

is an arbitrary Banach space; in this case, the gradient becomes the derivative f l (x)  at x, 

where f l (x)  is a linear transformation from X to Y. 

The classical derivative imposes a strong restriction on functions at points of differen- 

tiability: there must be a unique tangent functional at such points. This condition may fail 

for otherwise well-behaved functions, e.g. f (x) = 1x1 for x = 0. The natural solution to 

this problem is to allow a set-valued derivative, or subdifferential df (x) : X -+ 2 X * ,  whose 

elements, called subgradients, capture the local variational behaviour o f f .  For example, one 

possible definition of df (x) for f = 1 . 1  might be 

In fact, this is the convex subdifferential of f = 1.1,  which we now define. 

1.2.1 The Convex Subdifferential 

Let f be a convex real-valued function on a Banach space X. Then the convex subdiflerential 

is defined by 

af(:) := {x* E X* I (x*, x - :) + f(:) 5 f (x )  vx E XI 

That is, the subdifferential is the set of slopes of affine functions that meet f at : and 

minorize f everywhere (see Figure 1.1). f is subdifferentiable at x if df (x) is not empty, 

i.e. there exists a subgradient at x. The set of points of subdifferentiability of f is called 

the domain of d f ,  dom df . If f is convex and x is in the interior of dom f , then dom d f (x) 

is nonempty, so int dom f c domdf (see [BLOO] or [Roc97]). The subdifferential has an 

intuitive characterization in terms of the directional derivative: 

Proposition 1.3 Let f be convex, and let : E dom(f). Then x* E df (T)  if and only if 

(x*, d) 5 fl(:; d) for all d E X. 

Suppose f is convex and Giiteaux differentiable at  x. Then for any x* E 8 f (x) and direction 

d we have 

i f l (x ;d)  = (Vf ( 4 7 4  
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Figure 1.1: A convex subgradient, x* 

and 

so the convex subdifferential reduces to the gradient in this case: 

On the other hand, if x E core dom f and df ( x )  = { x * )  then x* = V f (x), by Corollary 

3.1.10 in [BLOO]. 

We will primarily be interested in the convex subdifferential because of its interaction 

with the Fenchel conjugate f *, discussed in section 1.3. It  is the natural subdifferential to 

consider for convex functions, but i f f  is not convex, then df is often not a useful object-it 

can be empty everywhere even for very well behaved functions, like f = - 1 1  [ I2 on a normed 

space X. The alternate definition of the subdifferential supplied by Proposition 1.3 allows us 

to generalize the subdifferential by generalizing the definition of the directional derivative. 

Among the many choices of directional derivatives (see, e.g., [BLOO]), we consider the Clarke 

directional derivative. 
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1.2.2 The Clarke Subdifferential 

A function f : X + R is said to be Lipschitz with constant K on a set Y c X if there exists 

a K > 0 such that 

I f  ( Y )  - f (Y1)l  I KllY - Y'll 

for every y, y' E Y .  If f is Lipschitz on a neighborhood of x E X, then we say that f 

is locally Lipschitz around x .  f is locally Lipschitz on Y if it is locally Lipschitz at every 

point of Y. Locally Lipschitz functions are a broad class of functions, and a natural class 

to consider in analysis and optimization. For instance, a convex function on Rn is locally 

Lipschitz on the interior of its domain (see [BLOO]). 

The Clarke directional derivative f " ( x ;  d)  of a function f : X + at a point x in the 

direction d is defined by 

f O  ( x ;  d)  := lim sup f ( Y  + td) - f ( Y )  

y+x,tLO t 

Following Proposition 1.3, we define the Clarke subdifferential, a f ,  of f at x by 

a f ( x )  := {x* E X* I ( x* ,d )  5 f O ( x ; d )  for all d E X). 

Proposition 1.4 Let f : X + R be locally Lipschitz with constant K near x .  Then 

(a) The function d -+ f ' ( x ;  d) is finite and sublinear, that is 

for all a, ,O > 0 and dl,d2 E X .  Furthermore, f O ( x ;  .) is bounded by a multiple of the 

norm: 

I f  O(x; d)I L Klldll. 

(b) fO(x ; -d )  = ( - f ) " ( x ; d ) .  

(c )  a f is closed (in fact w*-closed) convex and nonempty, and f c KB*  

Proof: (a) If y is near x and t > 0 is small, then y + td is near x ,  so 

Thus it follows that I f  " ( x ;  d ) (  I K(ld( ( .  
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To show sublinearity, we must prove that the function is subadditive and positively 

homogeneous. Positive homogeneity is easy: take s  > 0 and note 

f O  ( x ;  s d )  = lim sup f (Y  + t s d )  - f (Y) 
y+x,tLO t 

= limsup f (Y + t 'd)  - f ( Y )  

y+x,tl\o ( t ' l s )  

= s  limsup f ( Y  + t ' d )  - f ( Y )  
y+x,tl\o t' 

= s f O ( x ;  d ) .  

For any sequence x n  + x ,  tn \ 0 and E > 0, we have 

and 

f (xn + t n d l )  - f ( x n )  I f O ( x ;  d l )  + E 
t n 

for all large n. Adding these two, and letting n + m we have 

Since E was arbitrary, the result follows. 

(b) 

f O  ( x ;  -d )  = lim sup f ( Y  - t 4  - f ( y )  

y+x,tLO t 
f  (u  + t d  - t d )  - f  (U + t d )  

= limsup 
u-+x,tLO t 

= limsup ( - f ) ( u + t d )  - ( - f ) ( u )  = ( - f ) o ( x ; d )  
u+x,t\o t 

(c) Since f O ( x ;  .) is finite and sublinear, there exists a linear functional x* E X* that 

minorizes it everywhere by the Hahn-Banach theorem; see, e.g., Theorem 4.14.5 in [FK70]. 

But then x* E d f (x). 

Closure and convexity are immediate, since d f  is the intersection of w*-closed halfspaces 

Hd defined by 

Hd = { x *  E X* I ( x * , d )  5 f O ( x ; d ) ) .  
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Finally, x* E a f (x) implies 

for all d, so 
(""4 < K. 11x*11 = sup - 

d#O l l d l l  
rn 
Since d f  is bounded and w*-closed when f is locally Lipschitz, d f  is w*-compact, by 

Alaoglu's theorem (see, for example, [FHHSO1]). In particular, d f  is norm compact if 

X is finite dimensional. 

The following result shows that there is no real ambiguity to using df  to mean both 

the convex subdifferential and the Clarke subdifferential. The second part shows that the 

Clarke subdifferential is also compatible with differentiability : 

Proposition 1.5 ([Cla83]) Let f : X + R be locally Lipschitz at x E X .  

1. I f f  is convex on an open set U C X with x E U ,  then the convex and Clarke subdif- 

ferentials coincide at x, and 

f "(x; d)  = f '(x; d )  for all d E X .  (1.1) 

2. Suppose X is finite dimensional, and let Rf be the points where f is not diflerentiable. 

Then for any set S of Lebesgue measure 0 the following holds: 

In particular, i f f  is C1 on a neighborhood of x, then 

I f f  satisfies equation (1.1), then f is said to be regular at x. 

The Clarke subdifferential obeys a number of useful calculus rules that we will need 

later. The proofs of these rules may be found in [Cla83]. For the Cartesian product rule 

below, we need to introduce the notion of a partial Clarke subdifferential. Given a point 

(2'9) E X x Y and a real function G on X x Y, we define dlG(x, y) to be the subdifferential 

of the function G(., y) at x. a2G(x, y) is defined similarly. 
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proposition 1.6 ([Cla83]) Let f , g  : X -+ R be locally Lipschitz. Then the following 

c a l c ~ l ~ ~  rules hold: 

Scalar Multiplication d(s  f )  = sd  f for s real. 

Fermat 's Rule If f attains a local minimum at x, then 0 E d f (x). 

Sum Rule d(f + g) C df + dg. 

Cartesian Product Rule If G is regular at (x, y), then dG(x, y) c dlG(x, y) x 

d2G(x, 9) 

Upper Semicontinuity If X is finite dimensional, then for every E > 0 there is a 

S > 0 such that 

a f ( x + S B )  c df(x)  +EB*. 

Note that upper semicontinuity implies the following sequential closedness property: 

In fact, if f : Rn + R is locally Lipschitz at x then df (x) is bounded by a multiple of the 

ball, so the previous implication is equivalent to upper semicontinuity in this case. 

1.3 Fenchel Conjugacy 

Given a function f : X -+ $ we define the Fenchel conjugate f * : X* + R of f by 

Similarly, we define f * *  : X + R by 

so that f ** = (f *)*  for reflexive spaces. It is easily seen that f *  is convex and lower 

semicontinuous, as it is the supremum of a collection of affine functions. Furthermore, 

f ** is (pointwise) the greatest convex lower semicontinuous function that minorizes f .  In 

particular, f ** = f when f is convex and lower semicontinuous. f * is also related to f and 

the convex subdifferential d f via Fenchel's inequality: 
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Theorem 1.7 (Fenchel's Inequality) If x  E X is in the domain of a function f : X --, 
$ the following inequality holds for all x* E X*:  

Furthermore, the preceding holds with equality if and only if 

X* E a f ( ~ ) .  

Proof: The inequality is immediate: 

Now x* E a f ( x )  holds if and only if 

for all y E X. Taking the supremum over all y , this is equivalent to 

which gives the result. . 
Another important property of the Fenchel conjugate can be easily obtained from Fenchel's 

equation: for proper closed convex functions, the subdifferential of f * is the inverse of the 

subdifferential of f .  

Proposition 1.8 For f : X + E, 

hrthermore, the converse is true i f f  is convex and closed. 
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proof: If x* E df (x) then by Theorem 1.7 

f *(.*I + f (x) = (x*, x), 

for all y* E X*. Taking the supremum over all x on the right hand side gives 

f *(x*) + (y* - x*, x) I f *(y*) 

for all y* E X*, so x E df *(x*). If f is closed and convex, then x E d f *(x*) implies 

(x, x*) = f *(x*) + f **(x) 

= f*(x*)  + f (4, 

The centerpiece of Fenchel conjugacy theory is Fenchel duality. As alluded to in the 

introduction, for real functions f and h we pair the primal problem, 

p := inf {f (x) + h(x)),  
2 E X  

with the following dual problem 

d := sup {- f *(x*) - h*(-x*)). 
X ' E X *  

Fenchel duality asserts that these two problems are equivalent, provided a certain a con- 

straint qualification holds: 

Theorem 1.9 (Fenchel Duality [BLOO]) Let f and h be real functions on a Banach 

space X ,  with values in R IJ {+oo). Then p 2 d .  

Furthermore, i f f  and h are convex and 

0 E core (dom h - dom f )  

then p = d and the dual value is attained when finite. 
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Proof: 

for all x E X and x* E X*,  so taking the supremum over x* and the infimum over x gives 

P 2 d. 

Suppose f and h are convex and that (1.3) holds. Define the value function v : X + R 

by 

v(u) := inf {f (x) + h(x + u)}. 
xEX 

v is convex, for if r, s E X and X E [O,1] then 

v(Xr+ (1 - X)s) = inf {f(x)  + h ( x + X r +  (1 - X)s)} 
XEX 

= inf {f(Xx + (1 - X)y) + h(X(x + r )  + (1 - X)(y + r))}  
x,YEX 

Now we claim that domv = domh - dom f .  To see this, suppose u E domv. This is true 

if and only if there exists x E X such that f (x) + h(x + u) < oo. But this is equivalent to 

x E d o m f  a n d w = x + u E d o m g .  That is, u = w - x f o r s o m e  ~ E d o m h a n d x ~ d o m f .  

If v(0) = p is infinite, there is nothing to prove; if it is finite then v is proper (see [BLOO], 

Lemma 3.2.6) and the constraint qualification (1.3) implies that v has a subgradient -x* 

at 0: 

v(0) 5 v(u) + (-x*, u) 

5 f (x) + h(x + u) - (x*, u) 

5 [f (x) - (x*,x)] + [h(x + u) - (-x*,x + u)] 

for all x, u E X. Taking the infimum over x and then over u, we get 

so p = d and the dual attains its supremum at x*. W 
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1.4 Essential Smoothness and Essentially Strict Convexity 

We say a real-valued function f on Rn is essentially smooth if df is single-valued when it is 

non-empty; that is, f it is Giiteaux differentiable on domdf. A function f on Rn is said to 

be essentially strictly convex if it is strictly convex on any convex subset of df.  There is a 

striking relationship between these two concepts: 

Theorem 1.10 Let f be a proper closed convex function o n  Rn. Then  f is  essentially 

smooth if and only i f f  * i s  essentially strictly convex, and f i s  essentially strictly convex i f  

and only i f f  * is essentially smooth. 

Proof: Let f be Giiteaux differentiable at a point x  E Rn, so that df ( x )  = {x* ) ,  where 

x* = V f ( x ) .  First we wish to show that 

f * ( z* )  > f * ( x * )  + (2 ,  X* - x*) (1.4) 

for all points z* in Rn distinct from x*. Since x* E d f ( x ) ,  we have x  E d f * ( x* ) ,  so that 

by the subgradient inequality. Now suppose 

f * ( X * )  = f * ( x * )  + (5 ,  z* - x*) 

for some z*. Then 

( z* , x l )  - f ( x l )  I f * ( x* )  = f * ( x * )  + (x ,z* - x * )  

( z* ,  x') - f (x ' )  5 - f ( x )  + (x* ,  x )  + ( x ,  x* - x*) 

(.*,XI) - f (x ' )  I -f (4 + (z*,  4 
(z* ,  x' - x )  + f ( x )  I f ( X I )  

for every x' E Rn. But then z* E df ( x )  = {x*), i.e. z* = x*, contrary to assumption. So 

we have proven 1.4. 

We now prove that f * is essentially strictly convex. Let C C dom(df *) be convex and 

choose distinct x*, y* in C and X E ( 0 , l ) .  Let w* = Ax* + ( 1  - X)y*, and note that 
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w* E dom 8 f *, so there exists z E 8 f * (w*). Since f is essentially smooth, w* = V f (z), and 

we may apply (1.4) to the points x* and y*, which are distinct from w*: 

Xf *(x*) > X(f*(w*) + (z, x* - w*)) 

(1 - A) f *(y*) > (1 - X)(f *(w*) + (z, y* - w*)). 

Adding these two equations yields 

so f * is essentially strictly convex. 

Conversely, if f is not essentially smooth then there exists a point x in Rn such that 

there are y*, z* E 8f (x) with y* # z*. But then x E df*(y*) n df*(z*). The subdifferential 

inequality gives 

(x,u* - Y*) 5 f*(u*)  - f*(y*) 

(x, v* - z*) 5 f *(v*) - f *(z*) 

for all u*, v* E E*. Substituting u* = z* and v* = y* gives 

(x, z* - y*) = f *(z*) - f *(y*). 

For X E [ O , l ] ,  we have 

Xf*(y*)+( l  -X)f*(z*) = Xf*(y*) +( I -X)( (x ,z*  -y*)  + f*(y*)) 

= f *(y*) + (2, ((1 - X)z* + Xy*) - y*) < f *(Xy* + (1 - X)z*). 

Thus f * is not essentially strictly convex. 

Finally, f * is essentially smooth if and only if f ** is essentially strictly convex, and 

f** = f ,  since f is closed and convex. W 

The concepts of essential smoothness and essentially strict convexity can be extended 

to general Banach spaces by adding a local boundedness condition to 8 f and (8 f )  -'; for a 

thorough discussion in of these concepts in a general setting, see [BBCOl]. We now use the 

preceding result to approximate a convex function f on a bounded domain with a function 

whose conjugate is continuously differentiable. 
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1.5 Smoothing Devices 

Our technique in the Chapters 2 and 3 will be to prove results first for smooth functions, and 

then use a limiting argument to prove their nonsmooth analogs by smooth approximation. 

In particular, we use Proposition 1.11 to smoothly approximate the conjugate of a proper 

closed convex function, and Proposition 1.12 to smoothly approximate a Lipschitz function. 

Proposition 1.11 Let f : Rn -+ [-GO, oo] be a proper convex lower semicontinuous function 

with d o m ( f )  C Rn bounded, and let f ,  := f + . [ I 2 ,  E > 0. Then f,* is continuously 

diferentiable on Rn . 

Proof: Since f is convex and 1 1  . 1 1 2  is strictly convex, f ,  is strictly convex. By Theorem 

1.10, then, f,* is essentially smooth. We need only show that dom f,* = Rn , since dom 3 f,* > 
int domf,*. To this end, take x* E Rn, and let M = supxEdo, IIxlI. Then 

5M.11x*11- inf f ( x ) < c c  
xgdom f 

since f is lower semicontinuous on the compact set M . B .  So f * is everywhere finite, and 

therefore { V  f * ( x * ) )  = 3 f * (x*)  exists everywhere. 

Since f * is convex, finite and differentiable on Rn, V f * is everywhere continuous, by 

Corollary 25.5.1 in [Roc97]. 

Proposition 1.12 Let g be Lipschitz and real valued on B ( x ;  E )  c Rn, and let 4, be a 

nonnegative continuously differentiable function with support contained in B(0; E )  and in- 

tegral equal to 1. Then g, = +, * g is continuously diferentiable, lg, - gl < E Lip(g), and 

Vg,(x)  E EZiTag(B(x; E ) ) .  

Proof: The continuous differentiability of the convolution is well-known. A suitably general 

proof may be found in [Eva98]. 
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To show that g, approaches g uniformly as E + co, we compute 

To show that Vg,(x) E EZEb'g(B(x; E)), we note that Theorem 2.7.2 in [Cla83] says 

that 

where 1.5 is to be interpreted as follows: For every x* E ag,(x) there exists a mapping 

C : B(0; E) + Rn such that 

almost everywhere in B(0; E). Furthermore, the composite mapping ([(y), v) is integrable 

on B(x;  E) and 
F 

(x* , V) = JB(O;E) UY). 44, (y)dXn(y) 

for every v E Rn. In particular, taking v to be the canonical unit basis vectors gives 
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1.6 Jensen's Inequality 

We will need to use two forms of the well-known Jensen's inequality, one for sets and one 

for functions. Let C be a convex subset of X and choose XI, 22,. . . , xn E C and nonnegative 

X I ,  X 2 , .  . . , An with Cy=l Xi = 1. The set version of Jensen's inequality, Proposition 1.13, is 

a finite-dimensional extension of the fact that 
n 

For f : C + @ convex the functional version, Proposition 1.14, generalizes the following 

fact: 

Proposition 1.13 (Jensen's inequality on sets) Let p  be a positive measure on a a- 

algebra in a set R  with p(R) = 1. Furthermore, let u  : R + C c Rn have the property that 

( v ,  u ( . ) )  is integrable for every v E Rn . Then 

Proof: Corollary 11.5.1 in [Roc971 says that the closed convex hull of a set C is the 

intersection of all closed halfspaces containing C: 

Where 

so that supcEc (a,, c) 5 b, . For a given a E A, 

for all x E R. Integrating over R gives 
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So x' E Ha. As a was arbitrary, we have 

x' E n Ha = EiWC. 
&A 

rn 
In particular, we will apply Proposition 1.13 to the usual Lebesgue measure on Rn. 

Proposition 1.14 (Jensen's inequality on a function) Let F : Rm + RU {oo) be con- 

vex, with u : [a, b] C R + dom (F) C Rm summable. Then 

Proof: dom(F) is convex, so 

- u := - Lb z~(t)dt E cl dom(F) 
b - a  

by the previous proposition. We prove the result for the case dF(E) # 0, for instance if 
- 
u E int dom F .  Then there is a a* E Rm such that 

u (t) dt ~(&h" 

for all y E Rm . Letting y = u(t),  we integrate (1.7) over s E [a, b] to get 

(b  - a ) F  (1 b - a  [ u(t)dt) 

6 6 b - a  
(1.8) 

5 1 (F 0 u)(t)dt - (a*, l u(t)dt - - 1' ti(t)dt) . 
b - a  

Dividing by (b - a)  gives the result. H 

1.7 Schauder's Fixed Point Theorem 

A mapping f from a set S into itself is said to have a fixed point x if f (x) = x. There is an 

extensive fixed point theory that seeks to determine which properties of sets and functions 

guarantee the existence of fixed points. In particular, Schauder's fixed point theorem is 
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central in our development of duality inequalities. We follow the method of proof provided 

in [GK90] by proving Schauder's result from Brouwer's fixed point theorem, which we merely 

state. In the following, Bn denotes the unit ball in Rn . 

Theorem 1.15 (Brouwer) Every continuous function f : Bn -+ Bn has a jixed point. 

First, we prove a slightly more general version of Theorem 1.15: 

Corollary 1.16 Let C c Rn be closed, bounded and convex. Then  every continuous func- 

tion f : C + C has a fixed point. 

Proof: Let C be as above. Then given x E IF?, there exists a unique y E C such that 

IIx - yll = infzEc IIx - 211. The existence of y is due to the continuity of llx - ./I over the 

compact set C ,  and uniqueness comes from the convexity of C and the strict convexity of 

the square of the Euclidean norm. Indeed, if 1 1  x - 2 [ I 2  = 1 1  x - y l l  for some z # y in C ,  then 

a contradiction. Thus the map T defined by T(x) = argminyEc IIx - yll is well defined. It 

is easy to see that llT(x) - T(xl) 1 1  5 Ilx - x'll for x, x' E Rn , so T is continuous (in fact, 

nonexpansive). Also, T(x)  = x for any x E C. 

Without loss of generality, we may suppose that C c Bn. Let f : C -+ C be continuous, 

and define 5 : Bn -+ Bn by 5 = f o T.  Since 5 is continuous, it has a fixed point x, by 

Theorem 1.15. Since F(Bn) C C,  x E C. Thus f (x) = f (T(x)) = ?(x) = x, so x is a fixed 

point of f .  . 
Now we are ready to prove the main fixed point result: 

Theorem 1.17 (Schauder) Let C # 8 be a compact convex subset of a Banach space X .  

Then  every continuous map from C into C has a fixed point. 
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Proof: Choose E > 0 and let A = {al, a2, . . . ,ap)  be an &-net for C, that is C c A + EB . 
Define real-valued functions mi, i = 1,2, .  . . , p  by 

Now define a mapping 4 : C + Co = span A n C by 

Then 4 is continuous, since the denominator in the definition of 4 can never be zero, and 

for any x E C we have 

Let T : C + C be continuous. Then the mapping T : Co + Co defined by T = 4 o T has a 

fixed point xo, by Theorem 1.16. This yields 

Since E was arbitrary, we can construct a sequence { x , ) , ~ ~  such that T(x,)  - x,  -+ 0 as 

n + oo. C is compact, so x,  has a convergent subsequence x,, + xo E C ,  and we have 

T ( x o )  = lim T(x,, ) = lim x,, = xo. 
k + m  k - t m  

In Chapters 2 and 3, we apply Schauder's fixed point theorem to an operator on a set of 

functions in the uniform norm topology. As the theorem requires a compact set, our next 

theorem provides a compactness condition (see [Rud73] and [FK70]). Consider subsets S1 

and S2 of two Banach spaces X and Y. We denote the space of continuous functions x from 

S1 to S2 with norm 

llxll = max llx(4lI 
s E S l  
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by C(S1, S2). Let W be a collection of functions in C(S1, S2). Then W is said to be 

uniformly equicontinuous if for every E > 0 there exists a 6 > 0 such that 

for every s, st E S1 and x E W. W is uniformly equibounded if 

The compactness result we require is as follows: 

Theorem 1.18 (Ascoli-Arzela) Let S1, S2 be compact subsets of Banach spaces X and 

Y .  Then a collection of functions D C C(S1, S2) is compact if and only if it is uniformly 

equibounded and uniformly equicontinuous. 



Chapter 2 

Duality Results on Three Functions 

In this chapter, we prove a central duality inequality given in [BFOl], which we demonstrate 

to be equivalent to a nonsmooth mean value inequality given in [CL94], and to a Fenchel-like 

sandwich theorem given in [LR96]. We initially prove the result for smooth functions, and 

then extend it to locally Lipschitz functions, by uniformly approximating these with smooth 

functions. 

The main nonsmooth result is as follows: 

Theorem 2.1 (Borwein, Fitzpatrick) Let C be a nonempty compact convex subset of 

Rn, and let f ,  h be proper convex lower semicontinuous with dom( f )  U dom(h) C C. Then 

for any g : C + R, Lipschitz on a neighborhood of C, there is a z* E ag(C) such that 

min( f - g) + min(h + g) 5 - f * (z*) - h* (-z*) <_ min( f + h). (2.1) 

This rather formidable looking result has two interesting specializations: the Clarke- 

Ledyaev two set Mean Value Inequality (see [CL94]), and the Lewis-hlph sandwich theorem 

found in [LR96]. We will discuss these further after we have proven the main result. 

First, we introduce a smooth version of the left hand inequality in Theorem 2.1: 

Theorem 2.2 (Borwein, Fitzpatrick) Let C be a nonempty compact convex subset of 

Rn, and let f ,  h be proper convex lower semicontinuous with f * and h* continuously differen- 

tiable, and dom( f )  Udom(h) c C.  Then for any function g that is continuously differentiable 

on a neighborhood of C,  there is a z E C such that 

max (g - f )  + max (-9 - h) 2 f * (Vg(z)) + h* (-Vg(z)). (2.2) 
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To prove this result, we introduce a continuous operator T on a compact convex subset 

W  of a certain function space. We then deduce the existence of a fixed point for this operator 

using Schauder's fixed point theorem, Theorem 1.17. The bulk of our efforts are devoted 

to proving that T and W  meet the criteria required by Theorem 1.17; once this is proven, 

Theorem 2.2 is obtained more easily. 

In the setting of Theorem 2.2, define the set W  by 

W = { x :  [0,1] + C  I Lip(x) 5 M), (2.3) 

where M = 2sup (llcj1 I c E C ) ,  and endow W  with the topology induced by the uniform 

norm, so that 

for x E W. Thus W  consists of arcs in C whose "speed" is limited by M. Next we introduce 

the following nonlinear operator T : W  -+ W :  

V f * o Vg o x + Vh* o (-Vg) o x. 

2.1 Properties of T and W 

Proposition 2.3 For T given by (2.4) and W given by  (2.3), the following are true: 

1. W  is convex and nonempty, and it is compact in the uniform norm topology, 

2. T is a continuous self-map on W .  

Proof: W is clearly nonempty, since any constant trajectory, x(t) = c for some c E C, is in 

W .  Turning to convexity, take x, y E W  with z = Ax + (1 - X)y for some X E [ O , l ] .  Then 

for t E [0, I] we have x(t), y(t) E C, and C is convex, so 

For s E [ O , l ] ,  we also have 
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so Lip(z) 5 M ,  and thus W is convex. 

Endowing W with the uniform norm topology 

x E W =j IIxII = SUP IIx(t)ll, 
tE [OJ l  

the Ascoli-Arzela theorem, Theorem 1.18, says that W is compact if it is uniformly equicon- 

tinuous and uniformly equibounded. Since W is a collection of functions sharing the same 

Lipschitz constant, equicontinuity is easy: Let x E W, E > 0. Then 6 = E / M  gives a constant 

independent of x such that 

On the other hand, equiboundedness is guaranteed by the compactness of C :  

for all x E W and t E [0, 11, since x ( t )  E C .  So W is compact. 

Turning now to the operator T ,  again let x E W. We wish to show that T x  E W, so we 

must show T x ( t )  E C for t E [ O , l ] ,  and Lip(Tx) 5 M .  Fixing t E [ O , l ] ,  let 

V f * o V g o x ( s )  O < s < t  
c(s) = 

Vh*  o ( -Vg)  o x ( s )  t 5 s 5 1 

To show that T x ( t )  E C ,  we notice that c(s)  E C for all s E [0, 11, since V f  * ( y ) ,  Vh*(y )  E C 

for all y. So 

V f * o V g  o x(u)du + Vh* o (-Vg) o x(u)du 

and T x ( t )  E EEiVC = C by Proposition 1.13. 

Now let s,  t E [0, 11, and denote 
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Then 

IITx(s) - Tx(t)II = V f * 0 Vg 0 x(u)du + Vh* 0 (-Vg) 0 x(u)du 11IS 

but V f * (y), Vh* (y) E C for all y, so 

Since Tx(t) E C for all t E [O, 11 and Lip(Tx) 5 M, we have obtained Tx E W, or 

T(W) c W. 

Let E > 0. To show that T is continuous on W, we must show that there exists a 6 > 0 

such that 

1 1 %  -yll < 6 * l P - T y l l  < E 

Since f* ,  h* and g* are continuously differentiable, both F and H are continuous. In fact, 

F and H are uniformly continuous on C ,  since C is compact. Thus there exists 6 > 0 such 

that llx - yII < 6 and x, y E C imply 

Let x ,y  E W with llx - yll < 6, so that 



CHAPTER 2. DUALITY RESULTS ON THREE FUNCTIONS 

for all t E [0, 11. Then 

for all t E [O,l]. Therefore ((Tx - Ty(( < & and T is continuous. H 

We are now ready to prove our smooth three-function duality inequality: 

Proof of Theorem 2.2: Since T and W satisfy the requirements of Schauder's fixed 

point theorem, we conclude that there is an x E W such that x = Tx, that is 

for all t E [O,l]. Then, since Vx = V f * o Vg o x - Vh* o (-Vg) o x, we have the following: 

where (2.6) follows from (2.5) by Fenchel's equation, Theorem 1.7 as follows. For Fenchel's 

Equation to hold for f ,  we require that 

v g o x  E a f ( v f *  0 V g o x ) .  (2.7) 
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Since f is proper convex lower semicontinuous, we know that 

x* E d f ( x )  iff x E d f * ( x * ) .  

Since f * is continuously differentiable, we have 

and therefore (2.7) holds, by Proposition 1.8, and the same argument holds for h. Continuing 

from (2.6), we have 

+ 1' ( h * ( - v g )  0 x + h(Vh* o ( - V g )  o x ) )  
0 

1 +L V h * o ( - V g ) o x + h  (11 Vh*  0 ( -Vg)  o x 

Equation (2.9) follows from (2.8) by Jensen's inequality, Proposition 1.14, and using 

(2.10) we know there is a z = x ( t )  E C such that 

By taking the maxima over C we get 

2.2 A Nonsmooth Duality Result on Three Functions 

We are now ready to prove Theorem 2.1: 
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Proof of Theorem 2.1: The right hand equality is just weak Fenchel duality, as follows: 

- f*(z*) - h*(-z*) = inf{f (x) - (z',x)) + inf{h(y) - (-z*, y)) 

5 inf{f (4 + h ( 4 )  

= min(f + h), 

where the infimal attainment is due to f and h being lower semicontinuous on a compact 

set C (see, e.g., [FK70]). To prove the other inequality, first set 

From Theorem 2.2, we know that there exists z E C such that 

That is, there exists z; E Vg(C) such that 

Remembering that Vgn(x) E conv ag(B(x; l l n ) ) ,  we note the following inclusions: 

where Cn = C + B(x; l l n ) .  

Since g is Lipschitz on a neighborhood of C ,  g must be Lipschitz on Cn for n large, 

which implies that dg(x) c B (0; Lip(g)) for all x E Cn. 

Of course, this implies 

s a g ( c n )  C B(O; Li~(g ) ) ,  

so that m a g ( C n )  is compact for n large. Therefore (2:) has a subsequence converging to 

some z*. We continue to denote this subsequence by (2;). 
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Now z; E m d g ( x n  + (1ln)B) for some x, E C. Without loss of generality, we may 

assume x, converges to x E C .  Then 

for some A, + 0. Thus 

z i  E EZiG'g(x + ( l l n  + X,)B). 

By upper semicontinuity, for any E > 0 we can take N large enough so that 

whenever n 2 N. Since E was arbitrary, 

We have established that there is z& E dg(C) such that 

max(g - fm)  + max(-g - h,) 2 fA(zL) + hk(-2;) (2.11) 

Thus there exists xm E C such that z; E dg(xm). Lip(g) . B* x C is compact in the product 

topology and z7*, E Lip(g) . B*, so (z&, x,) has a subsequence converging to some (z*, x). 

Consider (z&, x,) to be this subsequence. Then z& + z* , x, + x and z; E Eg(xm), 

which implies that z* E dg(x). 

Note that fm converges uniformly to f on C,  since 

and C is compact. But then f& converges uniformly to f *, since 

Thus both sides of (2.11) must converge to the respective sides of (2.1). W 
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2.3 The Lewis-Ralph and Clarke-Ledyaev Inequalities 

From Theorem 2.1, we obtain the following well-known duality results as corollaries: 

Theorem 2.4 (Lewis-Ralph Sandwich Theorem) Let C be a nonempty compact con- 

vex subset of Rn , and let f ,  h be proper convex lower semicontinuous with dom( f )  ~ d o m ( h )  C 

C. Then for any Lipschitz function g such that -h 5 g 5 f there is a z* E ag(C) such that 

Proof: By Theorem 2.1, there is a z* E dg(C) such that 

Theorem 2.1 is actually equivalent to Theorem 2.4, since we can recover the former from 

the latter: Setting f = f - min(f - g) and h = h - min(h + g), we have 

since 

f - g  2 min(f - g) and h + g  2 min(h +g) .  

By Theorem 2.4, there exists a z* E ag(C) such that 

which is the result in Theorem 2.1. 

As noted in [LR96] and [LLOO], the Lewis-Ralph sandwich theorem has the following 

interpretation: If g is a Lipschitz function between -h and f ,  then there is an affine function 

k(x) = (x*, x) + b separating -h from f (see Figure 2.1). Furthermore, this affine function 

is parallel to g at some point x: 

x* E ag(x). 

To see this, suppose f and -h are affinely separated by x*. Then there exists a real b such 

that 

f (4 2 (x*, 4 + b 2 -h(x) (2.12) 
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Figure 2.1: The Lewis-Ralph sandwich theorem 
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for all x. Subtracting (x*, x) from both sides, this is clearly equivalent to 

for some real b. Such a b exists if and only if 

The Lewis-Ralph sandwich theorem guarantees this, with the added information that 

It is not known whether this conclusion can be strengthened so that the affine separator is 

tangent to g rather than merely parallel. If this were so, we could take b in equation (2.12) 

to be 

b = g(x*) - (x*, x'), 

where x* E dg(xl). 

For f and h as above the Fenchel duality theorem, Theorem 1.9, says that there is a 

point x* E Rn such that 

- f*(x*) - h*(-x*) 2 inf {f (x) - (-h(x))) 2 0, 
xERn 

provided 

0 E core(dom h - dom f ) . 

By the above discussion, for any b E [h* (-x*), - f * (x*)] # 0 the affine function k(x) := 

(x*, x) + b separates f and -h. The Lewis-Ralph sandwich theorem can therefore be viewed 

as an extension of Fenchel duality, where the existence of a globally Lipschitz separator g 

takes the place of the constraint qualification (2.13). 

Theorem 2.1 also gives us the following striking multidirectional mean value inequality, 

due to Clarke and Ledyaev ([CL94]): 

Theorem 2.5 (Clarke-Ledyaev Mean Value Inequality) Let X and Y be compact con- 

vex subsets of IWn and g : [X, Y] + R be Lzpschztz. Then there is z* E dg([X, Y]) such that 

(z*,x - y) 5 maxg - ming 
X Y 

(2.14) 

for all X E  X and Y E  Y .  
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Proof: Define the indicator function Is of a set S by 

{ 
0 X E S  

Is (5) := 
+oo 2 4 s  

and let f = Ix and h = Iy in Theorem 2.1. Then we have the following: 

max g - min g = - min( f - g) - min(- h - g) 
X Y 

= sup (z*, x) + sup(-z*, y) 
xEX YEY 

> (z* ,x-y) ,  

for a l l x  E X and Y E  Y. H 

Note that by setting X = {x) and Y = {y) we recover the classical two point Mean 

Value theorem, since Theorem 2.5 gives us z E [x, y] and z* E ag(z) such that 

(z*,x - y) 5 maxg - ming = g(x) - g(y). 
X Y 

In particular, when g is differentiable we have 

Reversing the roles of x and y, we see there is z' E [x, y] with 

When g is differentiable, the function g[x,yl(t) = g(tx + (1 - t)y) is differentiable on [O,1]  

with derivative 

s;,,,](t) = m ( t x  + (1 - t)Y) 7 x - Y). 

Furthermore, the derivative has the Darboux property (see [Spr70], p. 197): if 

then there is a point t3 between t l  and tz with 
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For a = g(x) - g(y), equations (2.15) and (2.16) and the Darboux property show that there 

is a point z" E [x, y] with 

(Vg(ztl), x - Y) = g(x) - d y ) .  

The following example from [CL94] illustrates the improvement that the Clarke-Ledyaev 

mean value inequality provides over the classical Mean Value theorem. The classical theorem 

is essentially linear in its conclusion: it doesn't allow us to specify the behaviour of the 

gradient of a function in multiple directions simultaneously at a single point. As the example 

shows, with Theorem 2.5 we can obtain multidimensional control on the gradient. 

Example 1. 

Let 

X = ((0, x) E R2 1 x E [0, I]), 

Y = ((1, Y) E It2 1 Y E [O, 11) 

and let f : [X, Y] -+ R be continuously differentiable, with f l x  = 0 and f l y  = 1 (see, e.g. 

Figure 2.2). Then there is a point z E [X, Y] such that 

Proof: By Theorem 2.5 there are points u, v E [X, Y] such that 

(Vf (u ) ,y -x )  2 minf -maxf  = 1 
Y X 

and 

(Vf(v) ,x  - y) 2 min f - max f = -1 
X Y 

for all x E X and y E Y. Define the function g : IR2 -+ IR by 

min (v,y - x). 
= rEX,ySY 

Then 
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Recalling Equations (2.17) and (2.18), we have 

Since g and Of are continuous on [X, Y], there is a point x in [u, v] 

g(Vf ( 4 )  = f x 4  - Ifb(z)I = 1 

by the Intermediate Value theorem. 

with 

Figure 2.2: A possible function f .  

Following the development in [LR96], we conclude this chapter by showing that the 

Lewis-Ralph sandwich theorem can be obtained from (2.14) as well, so these two theorems 

and Theorem 2.1 are all equivalent. First we introduce a technical result that, given a closed 

convex function f and k 2 0, provides a globally k-Lipschitz minorant to f .  This minorant 



CHAPTER 2. DUALITY RESULTS ON THREE FUNCTIONS 36 

fk, called the Lipschitz regularization of f, is defined by the infimal convolution of f with a 

multiple of the norm: 

Intuitively, fk is the function whose epigraph is the set sum of the epigraph of f and the 

epigraph of kll . 1 1 .  

Proposition 2.6 (Lewis, Ralph) Let f : Rn + be closed, proper and convex with 

bounded domain. Then fk is convex and everywhere finite with global Lipschitz constant k, 

and fk(x) 5 f (x) for every x. Furthermore, suppose g : Rn + R is globally k-Lipschitz on 

a set C containing dom f ,  and that g I f on C. Then g I fk on C as well. 

Proof: For x, y E Rn and X E [O,1] we have 

So fk is convex. Furthermore, 

for all x. Since there exists an x' E dom f, this gives us fk (x') < +m. On the other hand, 

f is bounded below, say f > m, so 

and therefore x' E dom fk . 
For x, y E Rn we have 
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and interchanging x and y gives the desired Lipschitz bound. Since f k  is globally Lipschitz 

and finite at x', it is everywhere finite. 

Finally, if g(x) > fk(x) then there exists a y E dom f such that 

which contradicts the Lipschitz bound on g. . 
In the setting of Theorem 2.4, then, we may find continuous functions fk  and hk such 

that 

f ( 4  2 f k ( 4  2 9(x) > -hk(x) > -h(x) 

for all x. Applying the theorem to fk ,  g and hk, and noting the order-reversing property of 

conjugation, we see that there is a x* E ag(C) such that 

0 > f;i* (x*) + hi(-x*) 1 f (z*) + h* (-x*). 

We may therefore assume without loss of generality that the f and h are continuous on C. 

Proof that Theorem 2.5 implies Theorem 2.4: As in the previous dicussion, assume 

f and h are continuous on C. Then a = supc h and P = supc f are both finite, since C is 

compact. Define sets X and Y by: 

X = {(y,t) E IRnS1 I - a 5 t 5 -h(x)) 

Y = {(x, s )  E RnS1 I f (x) 5 S 5 P). 

That is, X is the truncated hypograph of -h on C and Y is the truncated epigraph off  on C. 

Y is closed and convex, since it is the intersection of a closed halfspace and the epigraph of 

a closed convex function. It is also bounded, as it is contained in the cylinder C x [infc f ,  PI, 
and it is clearly nonempty. Similarly, X is also compact, convex and nonempty. 

Now define G : X x R + R by G(x, t)  = -g(x) + t for x near C. The scalar multiplication 

and cartesian product rules of Proposition 1.6 apply to G as follows: 

Then 

inf G = inf{-g(x) + t I f (x) < t < P) 
Y 

= i$f ( 4  - d x ) }  2 0 
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and 

By Theorem 2.5 and the above computation of aG, there exists (c ,  t )  E C  x R with -c* E 

ag(c) such that 

( ( - c * , l ) , ( y , s )  - ( x , r ) )  2 i n f G - s u p G L O  
Y X 

for all x ,  y  E C  and s ,  t  with f ( y )  5 s  5 p and h ( x )  5 -r 5 a. But then 

for all x ,  y  E C ,  so 

f * (c*)  + h* (-c*) 2 0. 



Chapter 3 

Duality Inequalities on Two 

Functions 

Modifying the operator T and set W given in the previous chapter, Borwein and Fitzpatrick 

proved a two-function nonsmooth duality result, given by Theorem 3.3. In this chapter, we 

provide a proof for this result and then examine several Rolle-type corollaries. We then 

introduce Ekeland's variational principle, and use it to obtain an approximate maximum 

principle for Lipschitz functions on the unit ball. Applying this variational result to the 

setting of one of our Rolle-type corollaries provides a much stronger result. However, not all 

of these results are as amenable to a variational treatment, as a conjectured improvement 

on another Rolle-type result turns out to be false. 

As in the previous chapter, we first prove a smooth result, and then obtain the nonsmooth 

result by smooth approximation. 

Theorem 3.1 (Borwein, Fitspatrick) Let C be a nonempty compact convex subset of 

Rn, and let f be proper convex lower semicontinuous with f * continuously differentiable, 

and dom(f) c C.  If a # 1 and g : [C, aC] -+ R is  continuously digerentiable then there are 

z E [C, aC] and a E C such that 

To prove this result, we again consider a nonlinear operator T on a function space W. 

Let M = (1 + [at) supzEc IIxII, define W by 

W = {x : [ O , l ]  + [C, aC] I Lip(x) 5 M ) ,  (3.1) 
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and define an operator T by 

Then these modified T and W still satisfy the requirements of Schauder's fixed point theo- 

rem, Theorem 1.17: 

Proposition 3.2 For T given by (3.2) and W given by (3.1), the following are true: 

I. W is convex and nonempty, and it is compact in the unijorm norm topology, 

2. T is a continuous self-map on W. 

Proof: The proof is entirely parallel to the proof of Proposition 2.3. H 

Proof of Theorem 3.1: From Schauder's theorem we know that there is a path x E W 

such that x = Tx. Parallel to the development of Theorem 2.2, we have the following: 

Again, we use Fenchel's equation here. Jensen's inequality, Proposition 1.14 then yields 

Letting a = x(0), there must be a z = x(t) E [C, aC]  such that 

( S ( 4  - g ( 4 )  / ( a  - 1) - f ( 4  2 f*(Vg(z)). 
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3.1 A Nonsmooth Duality Inequality on Two Functions 

As before, the smooth result gives rise to an analogous nonsmooth inequality. 

Theorem 3.3 (Borwein, Fitzpatrick) Let C be a nonempty compact convex subset of 

Rn, and let f be proper convex lower semicontinuous with dom(f) c C.  If a # 1 and 

g : [C, cuC] -+ R is Lipschitz then there are z* E ag([C, aC])  and a E C such that 

Proof: By setting 

this follows from the smooth version in the same way that Theorem 2.1 follows from Theo- 

rem 2.2. . 
3.2 Corollaries to the Two Function Result 

Theorem 3.3 gives rise to a host of interesting specializations: 

Corollary 3.4 Let C be a nonempty compact convex subset of Rn, and let f be proper 

convex lower semicontinuous with dom(f) C C. If g : [C, -C] -+ iR is Lipschitz then there 

are z* E ag([C, -C]) and a E C such that 

Proof: Set a = -1. . 
Note that, in particular, f *(z*) 5 0 if f dominates the odd part of g on C. 

Corollary 3.5 Let C, f be as above. If g : [C,O] -+ R is Lipschitz then there are z* E 

ag([C, 01) and a E C such that 

Proof: Set cu = 0. . 
In particular, f * (z*) 5 0 if f dominates g - g(0) on C 
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3.3 Unit Ball Corollaries 

With C = B and f = IB ,  we get particularly interesting inequalities relating g and the size 

of some z* E ag(B): 

Corollary 3.6 Let B be the closed unit ball of Rn and g : B + R be Lipschitz. Then for 

a E [ - I ,  1 )  there is x* E ag(B) such that 

Proof: If a E [ - I ,  I ) ,  then [C, aC] = B. Since f = IB,  f is proper convex lower semicon- 

tinuous and f * (x*)  = sup{(x*, x) I x  E B )  = IIx*ll*. Then there are x* E dg(B) and a E B 

such that 

The maximum must be still greater. H 

Two specializations of this last corollary are immediate upon setting a = -1 and a = 0, 

respectively. 

Corollary 3.7 Let B be the closed unit ball of Rn and g : B + R be Lipschitz. Then there 

is,x* E ag(B) such that 

IIx*II* I max ( d 4  - g(-a))/2. 
a E B  

The right hand side of this corollary is a measure of g's evenness; one consequence of this 

result is the well-known fact that if g is even on the unit ball then 0 E ag(B), i.e. g has a 

critical point on B. 

Corollary 3.8 Let B be the closed unit ball of Rn and g : B + R be Lipschitz. Then there 

is x* E ag(B) such that 

IIx*II* I maxg(a) - d o ) .  
aEB 

This result guarantees the existence of small Clarke subgradients, when g does not greatly 

exceed g(0) on B. 
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It is perhaps instructive to examine the fixed point arc x of the operator T given by 

(3.2) in the setting of Corollaries 3.7 and 3.8: suppose f is the indicator function of C = B, 

g is continuously differentiable, and cu = 0 or cu = -1. In this case 

and 

W := {x : [O ,1 ]  + B I Lip(x) L 1 + la[). 

The conjugate of the indicator function of the ball is the dual norm; if we consider B to be 

the Euclidean ball, then f*(x)  = IIxII* = IIxII, and Vf*(x) = x/llxll for x # 0. If Vg(x) = 0 

at some point x in the ball, then Corollaries 3.7 and 3.8 hold automatically, so let us assume 

Vg(x) # 0 for any x E B.  The fixed point arc of T satisfies 

x(t) = T x ( t )  = a  Vf*  o V g o x +  Vf*  o V g o x  6' 
For cu = -1, the fixed point arc satisfies 

Evaluating at 0 and 1 gives 

so the fixed point arc stops at  the opposite point on the ball to where it started. Furthermore, 

the condition M = 1 + la1 = 2 shows that the arc length of x is less than 2. In particular, 

if Ilx(0) 1 1  = 1 then x(1) is diametrically opposite on the sphere, and thus x is a straight line 

connecting the two points. If Ilx(0) 1 1  < 1, then the strict convexity of the Euclidean ball 

shows that Ilx(t) 1 1  < 1 for a11 t E [0, I]. Differentiating x with respect to t ,  we see that x 

satisfies the following differential equation: 

In summary, the fixed point arc starts at a point a ,  moves with speed 2 in the direction of 

greatest decrease of g, and stops at the opposite point -a. 
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On the other hand, for a = 0 the fixed point arc satisfies 

It is clear that x(1) = 0, and M = 1 + la[ = 1 implies that the arc length of x  is less than 

1. Differentiating equation (3.4) with respect to t gives 

as well. So x  is a smooth path of length 1 that moves with unit speed in the direction of 

greatest decrease of g, and stops at the origin. 

In the next section, we give a result strengthening Corollary 3.8 whose proof employs 

Ekeland's variational principle. 

3.4 Ekeland's Variational Principle 

Given a function F and a point that is nearly infimal for F ,  a variational principle guarantees 

the existence of a nearby point that is the strict minimum of a slightly perturbed function. 

In the case of Ekeland's theorem, we perturb the function by a scaled translate of the norm. 

There are other useful variational principles that perturb F by smoother functions, like sums 

of powers of the norm, or Fr6chet bump functions-see [DGZ93] and [BP87] for details. 

Ekeland's variational principle is a powerful tool in optimization and analysis, with appli- 

cations to fixed point theory, partial differential equations and nonlinear analysis. Although 

Ekeland's theorem holds for any complete metric space, for clarity we will consider the case 

of interest to us, Banach space (see [Eke74]). 

Theorem 3.9 (Ekeland) Let F : X -+ RU {+w) be a proper lower semicontinuous func- 

tion o n  a Banach space X ,  with F bounded below on  X .  Given E, X > 0 and a point u  such 

that 

F (u )  5 i n f F  + E, 

there exists a point v E X such that: 
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3. and 

F(w) > F(v) - ~/Xllv - wll 

for all w # v. 

To prove this, consider a relation 4 on X x R by 

for some fixed a > 0. Then 4 is reflexive, since 

The relation 4 is also antisymmetric: if (x1,tl) 4 (xz, t2)  and (x2, t2) 4 (x l , t l )  then 

and 

and adding these two inequalities yields 

so XI = 22. But then 0 < t2 - t l  5 0, SO t l  = t2. Finally, 4 is transitive: if (xl, t l )  4 (22 ,  t2) 

and ( x 2 , t ~ )  4 ( x ~ ,  t3) then 

so ( ~ 1 , t l )  -4 (2343). 

Note also that 4 is continuous in the sense that sets of the form 

are closed, where (y, s)  is a fixed element of X. For if (x,, t,) E S for all n, with x, + x 

and t, + t ,  then 

tn - s + aIIxn - 1~11 5 0 

for all n. Taking limits gives 

t - s + allx - yll 5 0. 

Before we prove Theorem 3.9, we introduce a technical lemma: 
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Lemma 3.10 (Ekeland) Suppose S C X x IR is closed and bounded below: there is an 

m E IR such that 

( x , t )  E S ===+ t > m .  

Then for every ( x ,  t )  E S there is a (z , t )  E S that is maximal in S with respect to 4, and 

(z,  t )  + ( x ,  t )  . 

Proof: We will recursively construct a sequence (x,, t,) as follows. Given (x,, t,), define 

Sn and m ,  by 

m,= inf t .  
(x , t )€S ,  

Note that m ,  > m, since t m for all ( x , t )  E Sn C S .  NOW pick ( ~ , + ~ , t , + ~ )  E Sn to 

satisfy 

( tn  - tn+l) L 1 /2(tn - mn) . 

This yields 

Itn+l - m,+ll = tn+i - m,+l I tn+l - m ,  

I 1/2(tn + m,) - m ,  = 1/2(tn - m,) I 1/2,(t1 - m ) .  

For any ( x ,  t )  E Sn+l we have 

mn+l L t 2 tn+1 

This shows that the diameter of S, goes to 0,  but Sn+l c S,  and each S, is closed and 

nonempty, so there is a unique element (z ,  t )  in 

Furthermore, by definition 
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for all n; in particular, this is true for n = 1. Now suppose ( 2 ,  i) + (Z, t). Then (5, i) + 
(x,, t,) for all n, by transitivity, and 

So (T, t) is maximal. W 

To prove Theorem 3.9, we now apply Lemma 3.10 to 

S = epi(F) = {(x,t)  E X I F(x) I t ) ,  

and 

S is closed, since F is lower semicontinuous. We conclude that there is a maximal (v, t)  E 

epi(F) with (v, t)  + (u, F (u)). Since (v, t) is maximal and (v, F (v)) + (v, t)  for any (v, t )  E 

epi(F), it must be that t = F(v).  Furthermore, (v, F ( v ) )  + (u, F (u ) )  implies that 

and 

implies 

F(v)  > inf F 2 F(u)  - E 
X 

Finally, if w # v then (w, F(w)) + (v, F(v))  by the maximality of (v,  F(v): 

3.5 A Nonsmooth Maximum Principle 

Our next result uses Ekeland's variational principle to link the growth of a Lipschitz function 

on the boundary of a set S to the size of its smallest subgradient on the interior of S. 
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Theorem 3.11 (Borwein, Fitzpatrick) Let S be the closure of a nonempty open bounded 

set in a Banach space X and let g : S -+ R be Lipschitz. If x E int S and 

t := inf {llz*II* I Z* E dg(z), z E int S) > 0 

then 

Proof: Let 0 < a < t and 0 < E < t - a .  Setting h(y) = ally - xll - g(y), we see 

where D = supzEs IIxlI. Since h is bounded below, we may apply Ekeland's Principle. Thus, 

there is u E S such that 

h(u) 5 h(y) + E I I U  - yII for all y E S. 

Suppose u E int S .  u minimizes h + ~ l l u  - over S, so 

using the properties of the Clarke subdifferential (Proposition 1.6). Thus, 0 E -ag(u) + 
(a + E)B*, SO there is u* E ag(u) with Ilu*Il* 5 ( a  + E) < t. This contradicts the definition 

~ f t ,  so E a s .  

Since u minimizes h + ~ l l u  - we have h(u) 5 h(x) + ~ l l u  - xll, or 

This implies that 
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Letting cr -+ t will make E -+ 0, and the result follows by uniform convergence. H 

The condition t > 0 means that g has no approximate critical points on the interior of 

S, and the conclusion says that for every E > 0 and x E int S there is a point u on the 

boundary of S such that 

g(u) - ~ ( 4  2 tllu - 211 - E 

so Theorem 3.11 imposes a kind of minimum growth condition on g. Among other things, 

it is immediate that 

hence the term "nonsmooth maximum principle". When g is constant on the boundary of 

S, we can use Theorem 3.11 to show that g has an approximate critical point: 

Corollary 3.12 In the setting of Theorem 3.11, suppose that 

g ( x )  = a vx E as. 

Then 

t := inf {llz* I I *  I Z* E dg(z) ,  z E int S) = 0. 

Proof: Note that i f f  := -g then af = - a g ,  so 

inf {llz*II* I Z* E af ( z ) , z  E int S )  = t .  

Now suppose that t > 0. Then we may apply Theorem 3.11 to f ,  g and some x E int S to 

get 

sup {g(u)  - tllu - 4 )  2 d x )  
u€aS 

and 

Adding these two together, we see 
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Now x E int S, so there is an M > 0 such that Ilu - X I [  > M for all u E 8 s :  

a - t M  = sup g(u) - t M  2 sup {g(u) - tllu - X I [ )  
U E ~ S  ~ E a s  

2 inf {g(u) + tllu - X I [ )  2 inf g(u) + t M  = a + tM 
U E ~ S  U E ~ S  

So t 2 0, contradicting our assumption. W 

Several similar variationally derived theorems treating Ggteaux differentiable functions 

can be found in [AGJ97]. 

3.5.1 A Variational Improvement to Corollary 3.8 

We can also use Theorem 3.11 to get the following corollary, upon setting S = B and x = 0: 

Corollary 3.13 Let B be the closed uni t  ball in a Banach space X and let  g : B + R be 

Lipschitz. T h e n  

Proof: The left hand side of (3.6) equals t, since S = B. If t > 0 then Theorem 3.11 gives 

us: 

supg - t = sup{g - t )  
aB aB 

=  SUP^ - tll . -011) 
aB 

2 d o )  

SO that t 5 supaB(g - g(0)). . 
Note that this result substantially strengthens Corollary 3.8, since the supremum is taken 

over the boundary of the ball rather than over the whole of the unit ball. In [BFOl], Borwein 

and Fitzpatrick noted this refinement made possible by Ekeland's theorem, and wondered 

if Corollary 3.7 could be strengthened in a similar way. That is, they asked whether or not 

the following conjecture is true: 
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Conjecture 1 Let B be the closed unit ball of Rn and g : B -+ JR be Lipschitz. Then there 

is x* E ag(B) such that 

Such a result would be a striking multidimensional version of Rolle's Theorem. Indeed, for 

n = 1 the conjecture actually is Rolle's Theorem, so it is true in that case. It is well known, 

however, that this version of Rolle's Theorem is not true in infinite dimensions. In [Fer96], 

for example, Ferrer constructed a continuously differentiable globally Lipschitz operator T 

on the Hilbert space l2 of square summable real sequences such that f = 0 on the unit 

sphere of 12, but Vf # 0 anywhere on the unit ball. We reproduce his construction in 

the next section. Then, in the next chapter, we construct a very strong counterexample to 

Conjecture 1, showing it to be false even in JR2. This suggests that a variational proof of 

Corollary 3.7 is unlikely to be discovered. 

3.6 Ferrer's Construction 

Let L, R : 12 -+ l2 be the linear operators on l2 defined by 

for sequences x E 12. That is, L and R are the left and right shift operators, respectively. 

They are clearly bounded, since 1 1  LxII 5 IIxII and 1 1  RxII = 11x11, SO they are continuous. They 

are also adjoint to each other, since 

(x, Ru) = (Lx, u) 

for all x, u E 12. Now define the continuous function T : 12 + l2 by 

T(x) = (112 -  el + Rx, 

where el = (1,0,0,0, .  . .) E 12. If T(x)  = x for x E 12, then 

so 1 1 ~ 1 1 ~  - 112 # 0 implies limn,, # 0, contrary to the assumption that x E 12. On the 

other hand, if 1 1 ~ 1 1 ~  - 112 = 0, then Equation (3.7) implies x = 0, so 
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a contradiction. Therefore T has no fixed points in 12. 

The function f : l2 + R referred to at the end of the previous section is defined by 

Then f is continuous, since it is the quotient of continuous functions, and the denominator 

on the left hand side of Equation (3.8) is never zero. Clearly f Is = 0, where S is the 

unit sphere in 12. We wish to show that f is FrQchet differentiable, and to determine the 

gradient V f of f .  The function x + llx112 is F'rdchet differentiable, with gradient 22, and a 

continuous linear operator A : 12 + 12 has FrQchet derivative A, so both the numerator and 

denominator of f are differentiable, since they sums and compositions of these two kinds 

of functions. But then f is clearly F'rdchet differentiable, being the quotient of two FrQchet 

functions whose denominator is never zero. To compute the gradient, first note that 

The quotient rule for f gives: 

for any x, u E 12. Since L is the adjoint of R, (T(x), el)  = 112 - 11x)12 and L(T(x)) = x, we 

have 

(x - T(x),  u - T1(x)u) = (x - T(x),  u) + (x - T(x),  2(x, u)el - Ru) 

= (x - T(x),  u) + 2(x, u)xl - 2(x, u)(1/2 - / / ~ 1 1 ~ )  - (x - T(x), Ru) 

= (x - T(x) + 2xlx - x(1 - 2 ) ) ~ ) ) ~ )  - L(x - T(x)),  u) 

= ((1 + 2x1 + ~ ( ( x / ( ~ ) x  - T(x) - L x , ~ ) .  

Thus 



CHAPTER 3. DUALITY INEQUALITIES ON TWO FUNCTIONS 53 

Suppose there is a sequence x in the interior of the unit ball of l2 such that V f (x) = 0. 

Then 

Lx + T(x) = sx, 

where 

Applying L to both sides gives 

L ~ X  - sLx + x = 0, 

so x satisfies the second-order linear recurrence relation 

whose characteristic equation is 
2 t - s t + 1 = 0 .  

There are three types of solutions to the recurrence, depending on the discriminant of the 

characteristic equation: 

Case 1: Is1 = 2. 

Then the sequences u, = (s/2),-' and v, = (n - 1) (s/2),-' are basic elements of ~ e r ( ~ ~ x -  

sLx + x). So there are real constants C1, C2 such that 

But x E 12 implies liw,, x, = 0, so C1 = C2 = 0. Then x = 0, and yet Vf (0) = 16el, 

contrary to assumption. 

Case 2: Is1 < 2 

In this case, the roots of the characteristic equation come in conjugate pairs 

where sin0 # 0. Then for x E ~ e r ( ~ ~ x  - sLx + x) there are complex constants C1 and C2 

such that 

x, = ~ l d - ~ + ~ 2 / 3 ~ - ' ,  n >  1. 
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Since x  is a real sequence, there exist real constants C3 and C4 such that 

using DeMoivre7s theorem. But sin0 # 0 implies this sequence has no limit, contrary to the 

assumption that x E 12. 

Case 3: Is1 > 2. 

In this case, the characteristic equation has two distinct real roots a and p whose product 

is 1. Without loss of generality, let la1 > 1, I,BI < 1. Then 

for some real C1 and C2. But liw,, x, = 0 implies C1 = 0, so x  is the geometric sequence 

Also, the familiar formula for the geometric series gives 

and 

From Lx + T ( x )  - sx = 0 and ,f3 + = s we have the following quadratic equation in x1 

But then 

SO 
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Substituting these values into the definition of s, Equation (3.9), we get 

upon collecting terms we get 

There are two solutions to the quadratic equation (3.10). If 

then Equation (3.11) gives 0 < j3 - 2x1 < 1, since llxll < 1 implies xf + P2 < 1. But then 

0 < (1 + J ~ ) / P  < 1, which is impossible, since IPI < 1. On the other hand, suppose 

Rearranging Equation (3.10) gives 

so putting these two values into Equation (3.11) gives 

which is a contradiction, since the left side of the last line above is positive, but the right 

side is negative. 



Chapter 4 

A counterexample to a conjecture 

by Borwein and Fitzpatrick 

At the end of the previous chapter we considered a problem posed by Borwein and Fitz- 

patrick in [BFOl]; namely, can we strengthen the Rolle-type duality inequality: 

Corollary 3.7 Let B be the closed unit ball of Rn and g : B + R be Lipschitz. Then there 

is x* E ag(B) such that 

IIx*Il* 5 z; M a )  - g(-a))/2 (4.1) 

so that the maximum is taken over the unit sphere, aB, instead of the unit ball? Suppose 

that such a restriction is possible and let G : B + R be Lipschitz and even on the the 

sphere: 

G(x)  = G(-x) for all x E aB. 

Then 

max (G(a) - G(-a))/2 = 0, 
aEaB 

so there would have to be x E B with 0 E aG(x). However, in [BKW02] Borwein, Kortezov 

and Wiersma construct a C1 function G on the unit ball in El2 such that G is even on the 

unit circle, but V G  is nowhere 0 on the ball. Thus, the answer to the question is strongly 

negative: We cannot restrict the maximum to the sphere, even when G is continuously 

differentiable and n = 2. Since our conjecture is false, it seems likely that no variational 

proof of Corollary 3.7 will be found: the result seems to rely strongly on a fixed point 
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argument. Recall that Corollary 1 compares the norm of a subgradient of g to the odd part 

of g, which suggests a link with the Borsuk-Ulam theorem (see [BLOO]): 

Theorem 4.1 (Borsuk-Ulam) For any positive integers m < n, if the function f : Sn + 
Rm is continuous then there is a point x in S, satisfying f (x) = f (-x). 

In the above, Sn is the Euclidean unit sphere in Rn. Since the Borsuk-Ulam theorem 

implies Brouwer's fixed point theorem, we have further evidence of the inherently fixed- 

point theoretic nature of Corollary 3.7 

The remainder of this chapter is devoted to constructing the counter-example function 

G alluded to before. 

4.1 Notation 

Throughout this chapter 1 1 . 1 1  refers to the 2-norm in lR2. We denote by B the closed unit 

2-ball centered at 0, by 0 the interior of B, and S = B\O. Whenever x E R2 is expressed 

as x = (., .), we mean its polar coordinates, whereas x = (., .), will be used for Cartesian 

coordinates. For E $ let s(4)  E S denote the point of argument 4: 

As in previous chapters, for x, y E R2, [x, y] denotes the closed line-segment with endpoints 

x and y. Finally, xs denotes the characteristic function of the set S :  

1 X E S  
x s b )  := 

0 otherwise 

4.2 Construction 

The desired function G is constructed in two stages: first we define a function Go with no 

critical points on the sphere, and then we apply Lemma 4.2 to Go in order to even it out 

on S without introducing any new critical points on B. The construction is quite technical 

and so we accompany all steps with pictures. 
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4.2.1 Defining Calderas 

We start by defining a function Fe that generates a caldera-shaped graph, and we center 

translates of Fe at three different points in the plane: at A = (a, n/4), B = (A, n),  and 

C = (a, 3 ~ 1 2 )  (Figure 4.2). Fe is defined as follows. 

Let f : [0, + m )  + JR be defined by 

Note that: 

Given some 6 E $ define Fe E C1(JR2) by 

This defines a caldera centered at (a, 6) (Figure 4.1). Let 

this defines one upright caldera centered at A and two inverted calderas at B and C (Figure 

4.3). Since calderas B and C are inverted, the critical points of F in the first quadrant are 

exactly the critical points of F; , i.e. the rim of caldera A. 

In the second quadrant, the critical points of F are a subset of the critical points of F,, 

since caldera C removes those critical points of F, that are within the support of F k .  By 
2 

symmetry, the critical points of F in the fourth quadrant are exactly those critical points 

of Fk not in the support of F,. 
2 

In the third quadrant, we have a critical point only at (1, $). 
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Figure 4.1: The function FB, translated to the origin 

Figure 4.2: The three calderas are centered at A, B and C ,  and the rim of each caldera is 
indicated with solid arcs. The support of each caldera is delimited by two dashed arcs. 
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Figure 4.3: F, the sum of three calderas. 

4.2.2 Removing Critical Points 

Each of the four quadrants contain critical points that we wish to remove. In the first 

quadrant, we add a thin rising ridge to the top of caldera A. In the second and fourth 

quadrants, we add a narrow gorge to the bottom of calderas B and C .  The following 

function fo will serve as the radial component of these topographical features. 

Define fo : [0, +m)  + R by 

c0s2 ( 5 0 4 ~ -  1)) p E [0.99,1.01] 

p E [O, 0.991 U [1.01, +m) 

Then we have: 

2. fA(p) > 0 for p E (0.99, I ) ,  

3. fA(p) < 0 for p E (1,1.01), 

In the second quadrant, there is a flat section on a region of B + S. We add a narrow cir- 

cular valley to the rim of caldera B to remove these critical points. The angular component 

of this valley is defined by the following function. 

Let pl E C1(R) be a 2~-periodic function such that: 
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Figure 4.4: The function pl. 

4. pl(+) = 7 - 4 for 4 E [: - 0.01,2] 

(see Figure 4.4). Define G1 E c1(R2) by 

This determines a gorge on the bottom of caldera B, which slopes down from a height of 

-$  at B + (1, 2) to a height of -1 at B + (1, -2) (Figure 4.5). Note that we only care 

about the values of pl on the interval [-;,%I, since this is the angular range of the region 

( B  + S) fl B. In the fourth quadrant, we define a gorge on the flat spots of caldera C by 

taking the mirror image of G1 along the y = x line of the plane. Let p2(4) := pl (; - 4) 
and define G2 E c1(R2) by 

By symmetry, this defines a gorge on the bottom of caldera C that takes a value of - $  at 

C + (1, 2 )  and decreases to - 1 at C + (1, $). 

The first quadrant has critical points along the length of the rim of caldera A, that is, 

on (A + S) n B. To remove these points, we put a ridge on A + S rising upward along the 

arc from A + (1, n) to A + (1, F). Let pg E C1 (R) be a 2~-periodic function such that 
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Figure 4.5: The function GI 

(see Figure 4.6). 

We create the desired ridge with the function G3 E C1(R2) defined by 

In the third quadrant, we must remove the critical point at (1, $). To accomplish this 

we add a function G4 that has positive slope at (I ,?)  in the direction (1, 2). The definition 

of G4 is as follows. 

Let p4 t C1(R) be a 2s-periodic function such that p41[o,ai 2 0, pb[o,fl < 0, and 

p4 1 [ E  = 0. We use p4 to generate the angular component of G4 (Figure 4.6). 
8' 8 

We define G4 E C1(R2) piecewise on a partition of B.  On ( B  + B) n B, G4 is defined by 

On ( C  + B) n B, G4 is defined by 
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Figure 4.6: The function p3. 

- 

-0 1 
1 2 9 1 5 6 7 

Figure 4.7: The function p4. 
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Figure 4.8: The function G3. 

Finally, for (x, y), 6 ({B, C )  + B), we define G4 by 

If C is a circle tangent to the line segment [B, C] at the midpoint M = (-&/2, -&/2) , 
of B and C, then (4.2) makes G4 constant on the arc D defined by the intersection of C with 

B \ ({B, C) + 0) (Figure 4.9). To see why this is so, consider Figure 4.10. For any point 

P = (x, y)* E D ,  there is a unique circle C as above. The center of this circle, Z = (z, z ) , ,  

satisfies I(Z - MI1 = llZ - PII, which means that 

We wish for G4 to be constant on D ,  and we require that G4(D) = G4(P1) where P1 is the 

point of intersection of D and B + S. Since ABMZ is right angled, the angle 4 satisfies 

Since the angle L M B P '  is double the angle 4, the argument of p4 in (4.2) is the same as 

that of PI. The moduli also coincide, since the modulus of P1 is 1. Of course, the definition 

of G4 guarantees that G4(P1) = G(P1'), where PI1 is the point of intersection of D and 

C + S. 
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Figure 4.9: The dashed curves are arcs of circles tangent to the line BC at (I,?). G4 is 
constant along these arcs. 

Figure 4.10: Geometry for G4 
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Figure 4.11: The function G4. 

We have shown that G4 is continuous; it remains to show that it is continuously differ- 

entiable. To see that Gq remains a C1 function after the gluing of the pieces, we observe 

that: 

for each x = B + (1, q5), the directional derivative in direction (1,q5) is zero on both 

sides and is continuous there, while that in direction (1, q5 + 5) equals fo(l)pk($ + 2) 
on both sides and is continuous there; 

for each x = C + (I, +), a symmetric argument applies. 

The definition also guarantees that supp G4 is contained in the third quadrant. 

Now let Go E C'(R~) be defined by 

To summarize, Go is composed of the sum F of the three calderas, with the gorgeslridges 

GI, Gz and G3 added to remove the critical points on the rims of the three calderas, and 

the bump Gq added to remove the critical point at ( 1 , q ) .  

4.2.3 Verifying that Go has no Critical Points. 

We begin at caldera A. Note that Go(%) = F; (x) + G3(x) whenever x = A + (p, 4) for any 

p E [0,1.01] and q5 E [T, F]. The components GI, Gz and Gq are identically zero in the first 
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quadrant of B, and 

= 1.01 + max llB - d supp Gill 
= 1.01 + max JIC - d supp G2 ( 1 ,  

so F, and F3ii are identically zero for x as above. Since Go (x) = F: (x) + G3 (x) , and we 

have: 

(1-1) &GO(A + ( l ,$ ) )  > 0, for 4 E [0, 1) U (1,1.01], and 

(1-2) $ G ~ ( A  + (p,  4)) < o for p E (0.4,l). 

Near caldera B, we have 

whenever x = B + (p, 4) with p E [O, 1.011 and 4 E [-:, :]. Again, this is true by a similar 

argument to (4.5). On the rim of caldera B, Go is strictly increasing in the clockwise 

direction, i.e. & G ~ ( B  + (1,d)) > 0. To see this, note that 

(11-2) $ F ~ ( B  + (I ,#)) 5 0 and is strictly positive whenever $ E (-$,0]; 

(11-3) & G ~ ( B  + (I ,$)) 2 0 and is strictly positive whenever $ E (0, 21; 

(11-5) $ G ~ ( B  + (I,$)) > 0 and is strictly positive for q5 = - $. 

For points less than one unit away from B,  that is, for points B + ( p ,  4) E B n ( B  + O) ,  the 

radial slope is strictly negative: 

d 
- G o P  + (P, 4)) < 0 
d~ 

To see this, note that for such points: 
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Near caldera C ,  we have a symmetric situation. At points of distance one from C ,  Go 

is strictly increasing in the counterclockwise direction: 

and for points less than one unit away from C the radial slope is strictly negative: 

The final piece to check is the set of points whose distance from {A, B,  C )  is greater 

than one. Let x E R = B \ ({A, B ,  C )  + B). Then the slope at x in the direction (1, 1). is 

strictly positive: 

VGO(X) (1, 1). > 0. 

We verify this fact as follows: 

(IV-1) VF; (x) . (1, I), 2 0 and is strictly positive on R fl ( A  + 1.5B); 

(IV-3) V(-F,)(x) - (1, I), 2 0 and is strictly positive on R n ( B  + 1.5B); 

(IV-5) V(-Fk + G2) (x) (1, I), > 0 and is strictly positive on R n ( C  + 1.5B); 
2 

(IV-6) VG2(x) .( l ,  1). 2 0, on Rn (C+  l.5B); Since R c A,  B, C +  l.5B, we have accounted 

for all of R. 

4.2.4 Making Go Even on the Sphere 

The constructed function Go has no critical points inside B, but it requires some additional 

work in order to be made even on S. We introduce a lemma that allows us to even out the 

boundary: 
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Figure 4.12: A lunette L 

Lemma 4.2 Let x E $ x = (a, x), and L := Bn(x+B) (see Figure 4.12). Let h E cl(IR) 
satisfy 

3. h'(#) > 0 for # E (X - 2 , ~ )  and 

Then there exists a function H E C1(IR2) such that: 

1.  H(s(#)) = h(#) for all 4 E [x- :,x+ 21; 

2. ~ H ( X  + (p, $)) 5 0 for p 5 1 and $ E [-x - 2 ,  -X + $1 (that is, in the right sector & 
of x + B containing L); 

3. H(x) = 0 for all x I$ (1,m)L. 

Proof: Let f E C1[O, +m) satisfy f (0) = f '(0) = f '(1) = 0,  f lp,+m) = 1 and f' > 0. For 

any # E [x- :,x+ 21, define 

p(#)  := &! cos(# - x) - 



Figure 4.13: p(4) = min{p I (p, 4) E L} 

CHAPTER 4. A COUNTEREXAMPLE 

This defines p(4) to equal min{p > 0 : (p, 4) E L); note that p(4) E [a - 1,l) whenever 

4 E (X - 2 ,  x + 2 )  (see Figure 4.13). Now let: 

1 

09- 

08- 

0 7 -  

06- 

0 5 -  

0 4  
-08 

h(4)f (P, 4) E (1, m)L  

otherwise 

-08 4 4  -02 0 02 04 08 I 

Note that H ((p(+), 4)) = 0 and H ((1,4)) = h(4) for all 4 E [X - 2,  x + $1. The definition 

guarantees that H is C' everywhere except possibly on the boundary of the two sets; on 

the other side, it is directly checked that H' equals zero at all points of the boundary and 

is continuous there (due to the facts that f (0) = f '(0) = 0 and h(x) = h(x  + $) = h' (x) = 

h'(x + $) = 0). Then (I)  and (3) follow from the definition; to see (2), note that, for a fixed 

$J, H(x  + (p, $I)) is non-increasing in direction p since f '  > 0, h'(q5) 2 0 for 4 E (X - 2, X) 

and h'(4) 5 0 for 4 E (x, x + 2).  

As an example of how Lemma 4.2 works, Figure 4.14 shows the graph of H when 

h(4) = cos2(24) and x = 0. We will use H to smoothly reshape the function Go on one 

portion of the sphere at  a time, leaving values outside the associated lunette unchanged. 

Define go by go (4) := Go ((1,d)).  Then go E C1 is a 2~-periodic function that traces Go 

over the sphere S (Figure 4.15). It is readily checked that 
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Figure 4.14: Graph of H, with h(4) = cos2(24) and x = 0. 

and 

The reflective definition of Gz and the overall symmetry guarantees that 

57r 57r 7r 
so(, - 4) = so(, + 4) for 4 E [O, 21. (4.6) 

Similarly, 

Denote 

2. m := go($) > 0, 

3. 1 := so(%) = g(F) < 0 and 

4. L := so(%) < 0. 

Then M is the greatest height of the ridge on caldera A, m is the lowest height on that 

ridge, I is the depth of the shallowest point of the gorges on the inverted calderas B and C ,  
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Figure 4.15: The function go. 

Figure 4.16: The function g 
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and L is the depth of the deepest point (Figure 4.15). We want to use Lemma 4.2 to remold 

Go along its rim, making the function T-periodic along the rim (i.e. even on the sphere), 

without adding any critical points to the function. 

Choose some T-periodic g E C1 (R), such that: 

(we use here (4.6), (4.7), (4.8)), and 

This is possible since here g0(4 + T) < 0 < go (4) and 

j.rr go(-) = 0 for all j E N 
4 

The last implies also that 
37r 

9(4) 2 90(4) for 4 E [T, 

We now have a T-periodic function g that agrees with go on [-:,O] U [ z ,  21, and we 

wish to make go agree with g on the remainder of the unit circle. To this end, we use (4.9), 

(4.10) and apply Lemma 4.2 three times to get HI,  H2, H3 E C' (R2), using 

?T 37r 
:= -, ~2 := IT and ~3 := -; 

4 2 

21 := A, 2 2  := B and 23 := C ;  

and 

hi := (g - ~ o ) x [ ~ ~ - ~ , ~ ~ + $ I ,  i = 1,2,3. 

In each of the three cases, hi E C1(R) since (4.11) and the definition of g assure us that 

h l ( ~ i  - ') 4 = h i ( ~ i  - 5) = h:(xi + 5 )  = hi(xi + 5)  = 0. AS a result, we obtain functions 

Hi E C1(R2), i = 1,2,3, such that: 



- -- 
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Figure 4.17: The composite function G. 

(V-4) $HI(% + (p, $)) > 0 for p 5 1 and $ E [T, F]; 
(V-5) $H,(x+ (p,$)) 5 0 for p 2  1 and $ E [-xi - ;,-xi + 41, i = 2,3; 

(V-6) Hi(x) = 0 for all x 4 (1, w)(B n (xi + B)),  i = 1,2,3. 

Let G := Go + H1 + Hz + H3.  Then the previous calculations for Go and the properties 

of Hi above guarantee that G has no critical points. 

Let ij(4) = G(1,4). Then 

so G is even on the sphere. Figure 4.17 provides a view of the composite function, viewed 

from the second quadrant. 
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4.3 Even-valuedness on a Neighborhood of S 

Although the preceding construction shows that Conjecture 1 is false, it is very nearly 

true when g : R2 4 R is C1: the next result from [BKW02] shows that if g is even on a 

neighborhood of the unit circle, then Vg = 0 for some point in the open unit ball 0. For a 

continuous vector field v : U -+ R2 on an open subset U of the plane, and a smooth oriented 

curve C c IR2, define the winding number rot(v,C) of v through C to be the number of 

counterclockwise rotations performed by v over the curve C. The following fact may be 

found in [Dei85] and [Pri95]: 

Proposition 4.3 Let v and C be as above. Then 

1. If C is closed then 

rot(v,C) E N 

If v # 0 on U and C is closed and contractible, that is, homeomorphic to a point, 

then 

rot(v, C) = 0. 

2. If C is the join (see [Pri95]) of oriented curves C1 and C2 then 

Roughly speaking, the join of two oriented curves C1 and C2 is constructed by attaching 

the end of the curve C1 to the start of C2. 

Proposition 4.4 Let f : U C IR2 -+ R be a C1-function defined on a neighborhood U of B. 

I f f  is even in  some neighborhood W of S ,  then there is some xo E B such that V f  (xo) = 0. 

Proof: Suppose v = B f does not vanish on the ball. Let C be the unit circle, oriented 

counterclockwise, let Cl be the part of C in the upper halfspace, and let C2 be the part in 

the lower halfspace. Since f is even on a W, for any x E S and d E IR2 we have 

(V f (x), d)  = lim 
f (x + t 4  - f (4 

t h o  t 

= lim f (-x + t(-d)) - f (-4 
t = -(of ( - 4 , d L  

t h o  
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so v(-x) = -v(x). But then v((-1, O),) = -v ( ( l ,  O),), so clearly 

and 

for some m, n E N. But f is even on W, so m = n. By Proposition 4.3, 

But this contradicts part 2 of Proposition 4.3. So Vf = 0 at some point on the ball. . 
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