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Abstract 

Tests of isospin symmetry in (n,p), (p,p') and (p,n) reactions at 280 MeV for 

populating the T = 1 isospin triads in A=6 and A=12 nuclei have been performed 

at TRIUMF. DWIA calculations for the A=12 triad where the known f t asymmetry 

is included in the analysis show good agreement with experimental (n,p) and (p,pl) 

data. Similar calculations for the A=6 triad where no asymmetry was assumed 

show that twice the (p,pt) cross sections taken in the region q = 0.2-0.35 fm-' are 

slightly ((5.1 f 2.4)%) lower compared with the (p,n) and (n,p) cross sections at 

q = 0.1 fm-'. This asymmetry may be negligible when the data are extrapolated 

to q = 0. At q = 0.67 fm-' the the (n,p) cross section is = 45% larger than the 

(p,pt) cross section. 
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Chapter 1 

Introduction 

1.1 Isospin: A Brief History 

The study of nuclear physics could be said to have begun with Rutherford's discov- 

ery (191 1) that all of the positive charge and almost all of the mass of atoms was 

concentrated in a very small volume (the nucleus), with electrons forming a sort of 

planetary system around it. In this early model an atom with atomic number Z 

and mass number A was postulated to have a nucleus consisting of A protons and 

A - Z electrons, with Z electrons orbiting around. Naturally, this model had grave 

conceptual difficulties due to the electrostatic repulsion of the protons which would 

cause the nucleus to break apart: some other "strong" force was needed in order 

to hold it toget her. This model also contradicted the experimental observation, 

revealed by the band spectrum of 14N-14N molecules, that 14N obeys Bose-Einstein 

statistics. The discovery of the neutron by Chadwick (1932) led Heisenberg [I] to 

suggest just such a force, and also to introduce the concept of the "nucleon". How- 

ever, he postulated the force as acting between neutrons and protons (n-p), but not 

between like particles ( p p  or n-n). 

This supposed property of the strong force evidently influenced Yukawa, whose 

meson theory of nuclear forces [2] (1935) originally included only charged 71- mesons. 

1 



Studies of the binding energies of 3H and 3He by Present [3] suggested the need 

for an n-n force, while "anomalous" behaviour observed in p p  scattering [4] was 

interpreted as being due to a strong p p  force. Breit et a1 [5,6] then postulated that it 

was reasonable to assume that all three of the nuclear interactions (n-p,n-n and pp )  

were the same. In fact, this conclusion had already been reached the previous year 

by Young [7], who noted that the observed predominance of even N, odd Z nuclei 

demanded that ". . .strong attractive interactions exist between paired neutrons", 

and that "In order that the balance between protons and neutrons, within the 

nucleus, be preserved, similar forces must exist between paired protons". As well, 

the proportionality of the total binding energy with A, as opposed to 2, led him to 

suggest for the first time the complete charge independence1 of the nuclear force. 

The term "isospin" is a contraction of "isotopic spin", the label first proposed 

by Wigner in 1937 [8]. The name reflects the fact that the mathematics are exactly 

the same as are used for dealing with the spin angular momentum of particles, 

and that the z-projection of the vector, $(N - Z), distinguished one isotope from 

another along an isobaric multiplet. Although by this time most of the pieces were in 

place, it was not until Kemmer [9] proposed the existence of a neutral meson, which 

would form an "isovector" triplet with its charged companions, that a potentially 

solid theoretical basis existed for the concept of charge-independence of the nuclear 

force. 

The description of the proton and neutron as two different charge states of a 

single particle [I] was not a completely alien concept when it was first introduced; 

the mathematical formalism already existed in the form of the Pauli spin matrices, 

lDiscussions of isospin symmetry are generally categorized in terms of two different but closely 
related cmcepts, charge symmetry and charge independence. The principle of charge symmetry 
states that, in the absence of Coulombic interactions, the p p  and n-n forces are identical, while the 
stronger condition of charge independence would imply that all of pp ,  n-n and n-p interactions are 
identical. 



used to distinguish the two different states of spin-112 particles. And although 

Heisenberg's original formulation was simply a labelling device, he was quite correct 

in his supposition that the spin formalism was the correct way to deal with such a 

two-state system. 

The subsequent expansion of Heisenberg's formulation to include like-particle 

forces as well as an n-p force (Wigner [S] asserted that the concept of isospin was 

"entirely useless" for charge-dependent forces) led to the understanding of many 

diverse nuclear phenomena in terms of isospin symmetry. 

1.2 Tests of Isospin Symmetry 

1.2.1 Nucleon-Nucleon Interactions 

The charge-independence of nucleon-nucleon (NN) interactions would imply that 

the only differences between the neutron and the proton were electromagnetic in 

origin. At the time these concepts were evolving this was believed to be the case. It 

was generally held that, in principle, if all of the electromagnetic effects in NN inter- 

actions could be calculated and "subtracted", then we should find the hadronic n-p, 

n-n and p-p interactions to be identical. Over the years a very large effort has gone 

into both measurements of NN interactions and calculations of the various electro- 

magnetic effects. Of course, both of these pursuits entail very significant problems: 

on the one hand the experimental quantities (particularly for n-n interactions) are 

very difficult to measure accurately; and on the other hand, the calculations of 

electromagnetic effects are model dependent, i.e. they depend particularly on the 

details of the short-range part of the hadronic force. 

The most fundamental tests of charge symmetry and charge independence are 

measurements of NN scattering lengths (aNN) and effective ranges (rNN) in p-p, n-n 



and n-p scattering at low energies. For projectile kinetic energies much less than 

x 10 MeV, the scattering is almost entirely S-wave. The total cross section is 

4n 
0, (E) = - sin2 6, 

k2 

where k is the wavenumber of the scattered particle and 6 is the phase shift induced 

by the nuclear potential. Extrapolating the particle momentum to 0 we define 

sin 6 
a lim(--) 

k+O k 

so that 

a,(O) = 47ra2 

As its name suggests, ~ N N  is a measure of how fast the potential falls off with dis- 

tance, that is, it is a measure of the range of the nuclear force. The 'So state is 

nearly bound; the scattering length has a large negative value, and significantly, 

small changes in the strength and width of the NN potential cause quite large 

changes in the scattering length (Aala), and somewhat smaller changes in the 

effective range (Arlr)  [lo]. A recent summary [11] of the best available calcula- 

tions and experimental results shows that there are indeed small but non-negligible 

charge-dependent (CD) and charge-symmetry-breaking (CSB) effects present in the 

'So NN state: 
1 N h a c ~  - -(ann + a,,) - a, = 5.83 f 0.60 fm 
2 

N A a c s ~  G a,, - a,, = 1.16 f 0.80 fm (w 

The N superscript denotes he extracted nuclear contribution after electromagnetic 

effects have been accounted for. These results imply that the difference in strength 



between the n-n and p p  forces is 1%, while the n-p coupling is M 2% stronger 

than the average of the p p  and n-n strengths [12]. Theoretical calculations suggest 

that almost 112 of AacD can be accounted for by the mass difference of the charged 

and neutral ?r mesons [12]. 

These effects would be very troubling to our picture of nuclear forces if, as 

mentioned above, the neutron and proton were indeed identical apart from elec- 

tromagnetic properties. But our current ideas concerning the structure of matter 

suggest a very plausible explanation for the observed asymmetry. It is now generally 

believed that the nucleons are not elementary particles, but are actually composed 

of more fundamental entities called quarks. In the "niiive" quark model, the pro- 

ton and neutron are both composed of three quarks, but in different combinations. 

While the proton has two "up" (u) quarks (each with charge 2/3e, e being the 

charge of the electron) and one "down" (d, charge - l/3e), the neutron has one u 

and two d's. The u and d "flavors" do not have the same mass, as evidenced by 

the proton-neutron mass difference. So the "modern" picture is that on the most 

fundamental level, that is, in uu, dd and ud quark interactions, the hadronic forces 

are identical, but there is a breaking of symmetry due to the u-d mass difference. 

It is ultimately hoped that it will be possible to quantitatively explain all of the 

nucleon-nucleon symmetry-breaking effects by this mass difference. At the present 

time our ability to calculate nucleonic properties, much less NN interactions, is not 

advanced enough to be able to do this. 

1.2.2 Isospin Symmetry in Nuclei 

Since an isospin asymmetry is observed in NN scattering, we should not be sur- 

prised if we also find asymmetries in nuclei. It seems doubtful, due to our relatively 

imprecise knowledge of nuclear structure, that we can confidently identify the nu- 

5 



clear manifestations of the x1-2% effects observed in NN interactions, although 

some attempts have been made, as will be described below. When speaking of 

symmetry-breaking effects in nuclei we almost always are referring to the "con- 

ventional" phenomena such as electrostatic energy, magnetic effects and so forth. 

Thus, at  least in the first approximation, the nuclear forces themselves are usually 

considered to be isospin invariant. 

Strong evidence for charge symmetry can be seen in the masses and energy lev- 

els of mirror nuclei, i.e. pairs of nuclei with N = Z f 1 such as 3H and 3He, 7Li 

and 'Be, and 'Be and 'B. Once electrostatic energies are accounted for, the nuclei 

of a given pair have nearly the same mass, as well as showing very close similar- 

ities in their energy level schemes. The close correspondence of energy levels in 

even-A nuclei (such as the A 4  and Ax12 triplets to be considered in this the- 

sis) are arguments supporting the stronger condition of charge independence. But 

more detailed analyses [13,14] show that, as with NN scattering, careful calculations 

and subtractions of all known electromagnetic effects are unable to completely ac- 

count for the measured mass differences between pairs of mirror nuclei (the so-called 

Nolen-Schiffer paradox). At tempts to relate these discrepancies to the more fun- 

damental NN asymmetry (e.g. Ref. [13]) have met with mixed success. Of course, 

the calculations of electromagnetic effects in nuclei are even more complicated and 

model-dependent than for free nucleons. 

In general, the symmetry-breaking effects in nuclei which we hope to measure 

and correctly identify with reasonable confidence are of the "conventional" (i.e. due 

predominantly to electrostatic effects) kind. Again, the most obvious systems to 

examine are isobaric multiplets. 

Several effects may violate the isospin symmetry within a multiplet. For in- 

stance, isospin breaking is known to occur in ,f3 decay. The f t  values for the 

6 



ground state decay of 12B and 12N provide a well-known example. The asymmetry, 

6 = f t+/ f t- - 1 = 0.13 f 0.01 [15], is consistent with the existence of a second-class 

induced-tensor weak current. However, a definitive experiment [16] which measured 

the excitation spectrum of 'Be following the @-decays of 'Li and 'B showed that 

the strength of any second-class current was negligible and that S in this case was 

almost certainly due to differences in the overlap of initial and final state wave 

functions caused by the weaker binding of the last proton compared with the last 

neutron. Blomqvist [17] subsequently showed that this effect was large enough to 

explain the A=12 f t asymmetry. 

The A=12 f t asymmetry is actually very large. Studies of superallowed (O+ + 

O+) Fermi ,fl decays, which are pure vector transitions, reveal that the f t values 

are very sensitive to small variations in the nuclear wavefunctions between different 

members of an isospin multiplet. Although model-dependent, calculations show 

[18] that differences in shell-model wavefunctions and radial overlaps are as small 

as 0.05% and 0.3%, respectively. 

1.3 Isospin Symmetry in Nuclear Scattering 

The measurement of transitions to members of an isospin multiplet from a common 

ground state is a very good method of testing isospin symmetry of the nuclear 

wave functions, as well as being a sensitive probe of the basic interaction which 

drives the transition. Cross sections for such transitions with = 1,0, -1 are 

simply related by a,,, = a,, - - 20,,,1, provided they have been corrected for Q- 

value effects and differences in distortions. The factor of two arises from the isospin 

coupling coefficients for the projectile. As well as the above-mentioned binding 

energy effects, isospin breaking effects can also be due to differences in distorted 

7 



waves for incoming and outgoing protons and neutrons; but since the transition 

densities are nearly the same for the final states in the multiplet one might expect 

this isospin breaking effect to be smaller than the overlap effects. 

The Experiment and its Motivation 

Although a more detailed description of the some of the theoretical aspects, partic- 

ularly the techniques used to model nuclear reactions, will be given later on, it is 

necessary to introduce some of the basic principles and terminology now in order 

to discuss the aims and methods of the experiment. 

1.4.1 The Nuclear Shell Model 

While the discovery of the strong nuclear force answered a number of questions, 

a detailed and precise theoretical understanding continues to elude us. Even the 

simplest possible manifestation (NN scattering) cannot be completely described. 

The fact that the two-body interaction is not understood might lead one to conclude 

a priori that the many-body problem of nuclear structure is intractable. This is 

indeed true if what is desired is a description of nuclear properties in terms of 

meson exchange. But the problem has also been attacked in a more simplistic 

way which has had remarkable success. This is the "mean field" or "shell model" 

approximation. The essential assumption is that each of the nucleons in a nucleus 

moves in an average potential due to all of the other nucleons. The quantum- 

mechanical description of such a system leads to discrete states or "orbitals" for each 

nucleon. Since the nucleons are fermions (spin-112 particles) the Pauli exclusion 

principle limits he population of each orbital to one nucleon. Large energy gaps 

between particular sets of orbitals, differing in either principal or angular momentum 

quantum numbers, give rise to the "shell" structure. Nucleons are considered to be 



either in the "core" (i.e. a filled shell) or in a "valence" state, that is an orbital in an 

unfilled shell. In the simplest models the central potential is all that is considered: 

the nucleons interact only with the mean (central) field. But more comprehensive 

models also include a spin-orbit interaction and a "residual" interaction between 

pairs of nucleons in the valence shell. The residual interaction between valence 

nucleons results in the mixing of states in the valence shell. 

The core is usually considered to be "inert", that is, it does not take part in 

nuclear interactions with other particles. In most cases this is a good approxima- 

tion because the energy difference between the highest-energy core orbital and the 

lowest-energy unfilled valence orbital is much greater than that required to excite 

a valence particle to another valence-shell orbital. This property greatly simplifies 

the theoretical modelling of nuclear reactions. 

1 A.2 Modelling Nuclear Reactions 

The two major ingredients needed in order to build a model of a nuclear reaction 

are nuclear structure and the dynamics of the interaction. The nuclear structure 

information is required to determine the transition densities between the initial and 

final nuclear states. The transition densities are a measure of the relative strengths 

of the transitions from particular components of the initial state to particular com- 

ponents of the final state, i.e. the transition densities depend on the coefficients of 

the "pure" shell model states which make up the initial and final nuclear states. 

Nuclear structures can be determined by fitting single-particle energies and two- 

body matrix elements to empirically-measured binding energies and excitation en- 

ergies for nuclei in the relevant mass region, in this case the l p  shell. The reliability 

of a nuclear structure calculation can be judged by how well the fitted matrix 

elements and ~ingle-~article energies reproduce the excitation energies and other 



nuclear properties. This point will be discussed further in Chapter 4. 

The calculations which have been used to model the reactions in this experi- 

ment use dynamical properties of the nuclear force deduced from experimental data. 

Specifically, the strengths and ranges of the various pieces of the nuclear interaction 

are determined from a phase-shift analysis of NN scattering data. This approach 

gives what is called an "effective interaction"; it merely describes the force rather 

than attempting to explain it from first It is assumed that the valence 

nucleons behave essentially like free nucleons, except for kinematic considerations. 

The reaction model used to combine the nuclear structure and the effective 

interaction to model nuclear reactions is called the Distorted Wave Impulse Ap- 

proximation (DWIA). The major assumption of this model is that elastic scattering 

is by far the dominant process, and hence inelastic scattering can be treated as a 

perturbation. This is expressed in terms of an "optical potential" which contains 

both real (elastic) and imaginary (inelastic) ~ieces. The inelastic part reflects the 

total absorptive potential: no single inelastic process is considered to be dominant. 

The incident and final distorted waves are obtained by solving Schrodinger's equa- 

tion for the optical potentials of the initial and final nuclear states, respectively. 

The optical potentials are derived by folding the effective interaction with experi- 

mentally determined matter distributions. This model assumes that the reaction is 

a single-step process i.e. impulse approximation. 

1.4.3 Isovector Transitions in A = 6 and A = 12 Systems 

The effective nuclear potential is actually a sum of several different types of interac- 

tions with different properties and selection rules. The various transition operators 

will be discussed in a later chapter. Of paramount importance to this work is one 

particular piece, the isovector (a'?) transition operator. Here, a is the spin operator 



and T is the isospin operator. The 0'7' operator changes the nuclear isospin quantum 

number T by one unit and changes T, by -1,0 and +1 for (p,n), (~ , /ppr )  and (n,p) 

reactions, respectively.* 

The Eoperator  is the same operator as for Gamow-Teller (GT) /3 decay, whose 

angular momentum selection rules are: 

The fact that the same operator is responsible for these two very different processes 

would suggest that we might expect to find some sort of proportionality between @ 

decay rates and cross sections of nuclear reactions which are mediated by the 37' 

operator. In fact, this proportionality has indeed received much attention, both 

theoretically and experimentally. Such a relationship, if it could be reliably demon- 

strated, would enable the investigation of weak-decay processes into energetically- 

forbidden regions, as well as leading to a greater understanding of nuclear reaction 

mechanisms themselves [19]. 

A recent in-depth study of the relationship of (p, n) charge exchange cross sec- 

tions at small angles to the corresponding @-decay transition states [I91 found that 

for L = 0 spin-flip transitions in the DWIA model the cross-section could be ex- 

pressed as 

opn(q,w, A, a )  = ~GT(A)F(Q,w)BGT(A, 0 )  (1.8) 

where q is the momentum transfer, w is the energy loss and a specifies the final 

state of the recoil nucleus. F(q, w) is a form factor, calculable in the DWIA model, 

which approaches unity as q and w approach 0. Since &GT (referred to as the 

2Nuclear physicists have traditionally defined t ,  = 112 for the neutron, -112 for the proton. 
Particle physicists follow the opposite of this convention. 



"unit cross-section") can also be calculated in the DWIA model, direct comparisons 

can be made between experimental measurements and theoretical predictions. An 

analogous relation exists for (n,p) reactions and ,kl+ decays. 

The original motivation for this experiment was to provide an accurate determi- 

nation of isospin violation for the Gamow-Teller (GT) matrix elements connecting 

the 6Li (JT=l+,T=O) ground state with the JT=O+, T=l isospin triad in 'jHe, 6Li and 

6Be. The forward-angle cross sections for the (n,p), (p,pt) and (p,n) reactions are 

proportional to the square of the matrix element of the UT, operator (q = -, 0, +), 

with the proportionality constant determined by the f t  value for the 'jHe P- de- 

cay. The G T  (UT~)  matrix element in %i can then be compared to the MI matrix 

element known from 'Li(e,et) experiments [20]. The MI and GT matrix elements 

are dominated by identical spin parts but differ by meson exchange current (MEC) 

and orbital contributions, the latter being absent in the GT matrix element. Both 

the orbital and MEC effects can be reliably calculated in a light nucleus such as 

6Li [21,22], and any residual discrepancies between the axial vector and M1 matrix 

elements might then be ascribed to a change in the size of the nucleon inside the 

nucleus (an EMC-related effect). Such an interpretation is compatible with the 

"cloudy bag quark model" [23] in which the magnetic moment of the nucleon scales 

with the radius of the bag, while the axial vector coupling remains roughly constant. 

Calculations done for 12C [21] have been used to deduce [24] an upper limit of 2% 

for a possible renormalization of the nucleon magnetic moment inside nuclei. 

The a'?+ matrix element determined from the accurately known P-decay rate 

of 6He (log(ft) = 2.910 f 0.002 (Ref. 25)) allows the proportionality constant de- 

termined from the (n,p) reaction to be used to calibrate the transformation of the 
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(p,pf) cross section to the matrix element of $6: 

In these expressions p is the relativistic reduced energy divided by c2, N: is a 

distortion factor representing the difference between PWIA (Plane Wave Impulse 

Approximation) and DWIA, ki and k f  are wave numbers, J,, is the volume integral 

of the (or)  component of the NN interaction, and gA/gv = 1.261 f 0.008 [25] is 

the ratio of axial vector to vector coupling constants. We do not make use of the 

factorized form of the cross section but employ instead the DW81 [26] code which 

also includes spin-orbit and tensor pieces of the NN interaction. For the pure GT 

transitions of interest, the latter account for 5 2% of the cross section at 0'. 

It is also necessary to measure the (p,n) cross section in order to determine pos- 

sible isospin violation in the three matrix elements. As mentioned previously, such 

violations arise mainly from differences in the radial overlaps of the wavefunctions, 

which in turn can be attributed to differences in binding energies. The relation of 

the a'? nuclear matrix elements to the GT /? decay matrix elements implies that 

the magnitude of any observed asymmetry in 0' cross sections would be the same 

as the f t asymmetry. For this reason, transitions in the A=12 system were also 

studied. The A=12 system has been studied much more extensively than A=6; the 

cross section measurements and comparisons with theoretical calculations here can 

be used as a "control" of both the experimental and theoretical aspects of the A=6 

system. 
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This somewhat ambitious program requires not only that the experimental quan- 

tities are measured with the highest possible precision, but also that the observed 

behaviours can be modelled and reproduced accurately. 

In the experiment to be described, cross sections for (p,p1), (n,p) and (p,n) 

transitions to the lowest T = l  multiplets have been measured from the 12C and 6Li 

ground states. Simplified energy level schemes for A = 12 and A = 6 are shown in 

Fig. 1.1 and Fig. 1.2, respectively. 

Figure 1.1: Energy level diagram for A=12. Data is from Ref. [15]. Dashed lines 
connect isobaric multiplets. The energies in brackets represent the (approximate) 
nuclear energies taken as EN = M(Z, A) - Z x M ( H )  - N x M(n) - Ec, where 
M is the atomic mass excess in MeV and Ec is the Coulomb energy (taken as 
Ec = 0.60Z(Z - I)/A'/~), minus the corresponding quantity for 12C. 

In both cases detailed theoretical calculations have been performed and compar- 



'Li +n 
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Figure 1.2: Energy level diagram for A=6. Data is from Ref. [27]. Dashed lines 
connect isobaric multiplets. The energies in brackets represent the (approximate) 
nuclear energies taken as EN = M ( Z ,  A) - Z  x M ( H )  - N x M ( n )  - Ec, where 
M is the atomic mass excess in MeV and Ec is the Coulomb energy (taken as 
Ec = 0.60Z(Z - 1)/A1f3) ,  minus the corresponding quantity for 'Li. 



isons made with the experimental data. A discussion of the peculiarities of these 

two systems will be left for a later section. 

All three reactions proceed almost entirely by the relatively well-known a'?' com- 

ponent of the N-nucleus interaction. Since the dynamics of all three interactions are 

assumed to be the same, we have attempted to account for isospin symmetry viola- 

tions in the two systems by using empirical structure parameters (where possible) 

in the theoretical descriptions of the interactions. 

We must here acknowledge the serious difficulties, both experimental and theo- 

retical, that are inherent in such an attempt to measure and explain nuclear struc- 

ture effects on the several per cent level. Experimentally, we find that comparisons 

of cross sections for the three types of reactions are subject to significant uncertain- 

ties due to the differences in normalization procedures and systematic uncertainties 

in the measurements. For example, (p,n) cross sections are usually normalized to the 

"known" 7Li(p,n)7Be(g.s. + 429 keV first excited state) cross section at 0•‹, which 

is almost constant over a wide range of energies [28], but this cross section has an 

uncertainty of x 10% [29,19]; (n,p) measurements are usually normalized to the 

(n,p) phase-shift solution of Arndt and Roper [30]. Absolute (p,pl) measurements 

at these energies are (in principle) straightforward but are subject to significant sys- 

tematic uncertainties, as will be explained later. Theoretically, we find that while 

standard nuclear structure calculations of p-shell nuclei [31] do quite well for mid- 

shell nuclei such as 12C, they disagree very significantly for masses 6-8. The reason 

for this is the rather pronounced cluster structure of these light nuclei, and the low 

t wo-particle emission thresholds (see Fig. 1.2). This in turn reduces the reliability 

of our DWIA calculations used to model the reactions. Other difficulties with the 

theoretical calculations will be discussed in a later chapter. 

The experimental apparatus and techniques will be discussed in Chapter 2. 



Chapter 3 will be mainly devoted to the data analysis, while Chapter 4 will describe 

in detail the theoretical calculations and comparison with the experimental results, 

including a discussion of sources of experimental uncertainty. A brief summary and 

conclusions will be given in Chapter 5. 



Chapter 2 

Experimental Method 

The TRIUMF cyclotron accelerates H- ions to energies continuously variable from 

183 to 520 MeV. Beams are extracted by inserting into the beam a foil which strips 

both electrons from the ion. The magnetic field in the cyclotron causes the protons' 

trajectories to bend in the opposite direction from those of the H- ions. The energy 

of the extracted beam can be changed by simply changing the radial distance of 

the extraction foil from the center of the cyclotron. The extracted beams are not 

monoenergetic; momentum spreads of Aplp = 0.15% are typical. This corresponds 

to an energy spread of A E  = 0.743 MeV at E = 280 MeV. The extracted proton 

beam is directed into an evacuated beam pipe, where it is steered and focused by a 

series of dipole and quadrupole magnets. 

All measurements were done using the Medium Resolution Spectrometer (MRS). 

The MRS is a large acceptance (Aplp x 15%) quadrupole-dipole magnetic spec- 

trometer located on beamline 4B (BL4B) in the Proton Hall at TRIUMF. The 

MRS has a vertical bend plane, a solid angle acceptance of x 2.5 msr, with an 

intrinsic energy resolution of x 100 keV. More detailed descriptions of the various 

MRS components are given elsewhere [32]. A schematic diagram showing the major 

components of BL4B and the MRS is shown in Fig. 2.1. 



Schematic layout of main elements on beamline 4B (BL. Figure 2.1: 4B) in the proton 
hall at TRIUMF. The particular details of the FEC configuration and devices in 
and around the scattering chamber differ in (p,pl) and CHARGEX modes. This is 
shown in Fig. 2.2 and Fig. 2.3. 



This experiment required the MRS to be arranged in two different configura- 

tions: small-angle (p,pt) (SAC) and charge-exchange (CHARGEX) modes. A more 

complete and detailed discussion of the CHARGEX facility can be found elsewhere 

[33]. Schematic diagrams of both configurations are shown in Fig. 2.2 and Fig. 2.3. 

2.1 Small-angle (p,p' ) Configuration 

The small-angle (p,pl) configuration can be used to measure scattering from %3O- 

16'. The target is located at the MRS pivot, in an evacuated chamber continuous 

with the beampipe. A front-end chamber (labeled FECO in Fig. 2.2) located 107 

cm downstream is ordinarily the first detector traversed by the scattered protons. 

The FEC is comprised of four wire planes, two each in the bend-plane (X) and non- 

bend plane (Y). The wire planes are labeled Xo, X;? Yo and Y; with the primed 

planes being offset from the unprimed planes by one half of the anode wire spacing. 

Drift-time interpolation allows a spatial resolution of less than .5 mm (FWHM) to 

be achieved in each direction. The FEC performs two major functions: 

It enables ray-tracing of the proton's trajectory back to the target to allow 

software gates to be set (e.g. solid angle acceptance and target position), and 

is used for making corrections arising from aberrations to improve momentum 

resolution. 

A hit in one or both of the X and Y FEC   lanes is required in the MRS 

trigger under usual running conditions. 

The principal component of the MRS detection system are two sets of vertical 

drift chambers (VDC's) separated by 39 cm and located at the top of the MRS (a 4 

m beyond the exit of the dipole) near the focal plane. The VDC's are set at an 



Figure 2.2: Schematic diagram of the TRIUMF Medium Resolution Spectrometer 
(MRS) in the (p,pl) configuration. See text for descriptions of the components. 



Figure 2.3: Schematic diagram of the TRIUMF Medium Resolution Spectrometer 
(MRS) in the Charge Exchange configuration. The rest of the MRS is the same as 
in Fig. 2.2. See text for descriptions of the components. 



angle of 45" to the spectrometer exit axis with 2 planes each in the X (bend) and 

U (30" from x) directions, labelled XI, U1, X2 and U2 in Fig. 2.2. All four planes 

have a wire spacing of 6 mm; X1 and U1 each have 160 wires while X2 and Uz each 

have 176 wires. The position information from these planes is used to calculate the 

focal-plane position of the momentum-analysed protons. Located above the VDC's 

are 10 scintillators, labelled PDo-PD9. These are used to (roughly) select the range 

of momenta to be sampled by the data acquisition system, as well as being an 

important part of the event trigger (explained further in the next section). Two 

large scintillators, S1 and S2, cover most of the solid angle subtended by the focal 

plane, and can be optionally used in the trigger. 

Optimum resolution is obtained in this configuration by using the technique 

of "dispersion-matching" which largely eliminates the beam energy-spread contri- 

bution. The beam is tuned such that it is dispersed horizontally in momentum; 

a six-quadrupole twister is used to rotate the momentum-dispersed beam by 90". 

Thus, different beam momenta are vertically dispersed at the target by an amount so 

as to match the optics of the spectrometer. The trajectories of the high-momentum 

protons at the top of the target are bent less by the MRS dipole field than the 

low-momentum protons at the bottom; the proper dispersion matching condition 

causes all of the protons to hit at the same spot on the focal plane. Briefly, dis- 

persion matching can be understood by considering a non-monoenergetic source of 

protons originating from a point on the focal plane, and traversing the MRS in 

reverse. On passing through the field of the dipole, the beam would be dispersed 

by an amount 



where Ds (Ms) is the dispersion (magnification) of the MRS, Ph  (Pk) is the highest 

(lowest) momentum of the protons, and P' = 1/2(Ph + Pi) is the average momen- 

tum. Thus for an incoming proton beam with spatial dispersion 

where DT is the beam dispersion at the target, PH (PL) the highest (lowest) beam 

momentum, and the average momentum P defined as previously, the dispersion 

matching condition is obtained by simply setting AX = AX'. In practice an ap- 

proximately correct beam tune is obtained from a beam transport program, and 

then fine-tuned by empirically adjusting the beamline and MRS magnets until the 

resolution is optimized. 

Since no current integrating device is available in this configuration, beam nor- 

malization must be done indirectly using an in-beam polarimeter (IBP) [34], whose 

primary purpose is to monitor the polarization of the incident beam, upstream of 

the target position. Incoming protons scatter elastically off a thin polyethylene 

target into two pairs of counter telescopes located to the left and right sides of the 

beam axis, and each in coincidence with a recoil counter. The total number of scat- 

tered events, less the accidental coincidences, is proportional to the beam current. 

In order to calibrate the IBP, the MRS was changed to Large Angle Configura- 

tion, in which it is possible to run the beam into a Faraday cup. The Faraday cup 

was calibrated with a current source that had itself been calibrated with a factory- 

calibrated electrometer. Beam currents were typically .3 to .5 nA for this phase of 

the experiment. The combined uncertainties in the calibration are estimated to be 

I .7%. 

The 6Li targets used in the experiment were fabricated on site. Since this ma- 

terial is very malleable it was possible to poduce targets with uniform thickness 
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by using a small rolling mill and then cutting the targets to the desired size. The 

CH2 targets were simply cut from sheets, while the 12C targets were fabricated 

commercially in the form of graphite sheets. 

Measurements of the chemical and isotopic purity of the CH2 and 'Li targets 

were performed: both the hydrogen abundance in the CH2 (measured by gas chro- 

matography) and the 7Li contamination of the 6Li (measured by nuclear magnetic 

resonance (NMR) analysis) were determined to 5 .3%. The 12C targets were actu- 

ally natural carbon with a contamination of 13C of 1.01%. 

2.2 C harge-exchange Configuration 

The same charge-exchange configuration was used for both the (n,p) and (p,n) 

measurements. In this mode (normally used only for (n,p) experiments) the pri- 

mary target is located 92 cm upstream of the MRS pivot. For (n,p) running the 

7Li(p,n)7Be(g.s. and 429 keV) reaction is used to provide a nearly monoenergetic 

neutron beam. Neutrons emerging from this target proceed downstream to the 

secondary target located over the MRS pivot, while primary beam protons are de- 

flected 20' by a sweeping magnet into a shielded beam dump. A small correction 

magnet upstream of the primary target is used to compensate for deviations in the 

primary beam trajectory caused by the fringe field of the clearing magnet. At the 

secondary target location is a segmented target box consisting of six target posi- 

tions interleaved with eight vertical wire planes, the first two of which (labelled Y,) 

act as a veto for any remaining charged particles. As well, a veto scintillator (VS) 

located immediately upstream of the target box is used to augment the wire-plane 

veto, and is also used in the trigger when the target box wire-plane efficiencies are 

measured (explained in more detail below). 
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A detailed description of the target box is given elsewhere [35]. Briefly, the 

operation is as follows. Neutrons produced in the primary target impinge upon the 

secondary targets in the target box. The proton emerging from an (n,p) charge- 

exchange reaction in one of the targets will be detected (assuming, for now, ideal 

efficiency) by all wire planes downstream of the target in which it converted. This 

allows an accurate calculation of the conversion location in all three dimensions. The 

protons from the (n,p) reaction are momentum-analyzed by the MRS exactly as in 

the (p,pf) configuration. One of the major advantages of the segmented target box 

is the capability to simultaneously take measurements for several different targets. 

This greatly reduces many potentially significant systematic uncertainties that could 

hamper the comparison of runs taken sequentially, e.g. beam integration, dead 

time and efficiency differences from run to run. The configuration of the six targets 

for the (n,p) part of this experiment, for target-of-interest X, was CH2-X-X-X- 

X-CH2(abbreviated by CH2(X)4 CH2). cross section measurements for targets X 

are taken relative to the H(n,p) cross section obtained from the SP88 phase-shift 

analysis [30]. For the (p,n) part of the experiment a stack of (CH2)6 was used. The 

background due to target gas and other material in the target box was measured 

by using a stack of ( e m ~ t y ) ~ C H ~ .  

The principal features of the segmented target box are that it can accommo- 

date a large total target thickness without greatly compromising the resolution, 

and that accurate cross sections (relative to H(~ ,P) )  can be obtained, because the 

measurements are done simultaneously with the H(~ ,P )  measurement. In (p,n) run- 

ning the target of interest is placed in the primary target position and CH2 proton 

recoil targets are located in the target box. Since the primary target is not at the 

MRS pivot, only 0' measurements can be made with this geometry. In the charge- 

exchange configuration there are two sets of FEC's, labeled FECM and FECO in 



Fig. 2.3. Position information from the two sets of FEC's is used to trace the tra- 

jectory back to the origin in the target box and compare it with the positions of the 

struck wires there. The hit co-ordinates on the struck target are used to define the 

"true scattering angle" by relating the extrapolated trace-back position vector to 

the vector whose endpoints are the center of the beam spot on the primary target 

and the hit location on the secondary target. Such a calculation is necessary both 

to enable corrections for kinematic effects due to different scattering angles, and, 

particularly in the (n,p) mode, to find the average scattering angle for a given MRS 

angle. This is a significant effect, as the reaction cross sections can vary rapidly 

with angle, even near 0". When the MRS is set at 0" the average scattering angle 

for (n,p) reactions is x 1.8". The target box wire-plane efficiencies are measured by 

inserting a thick piece ( x  1 cm) of CH2 immediately upstream of the target box. 

Protons emerging from this converter pass through the veto scintillator and all the 

planes of the box, so that the number of "misses" for a given plane divided by the 

total number of protons passing through the box determines the efficiency of that 

plane. The observed efficiencies were of the order of 98-99%. 

Beam normalization in CHARGEX mode was done directly with the beam dump 

used as a Faraday cup at the end of the beamline. Typical beam currents used for 

both the (nYp) and (p,n) measurements were 250 nA. Absolute beam normalization 

is not required in (n,p) running, as the cross sections are measured relative to the 

hydrogen (n,p) cross section, simultaneously with the (n,p) target of interest. In 

(p,n) running the relative integrated charge is required for run-to run comparisons. 

Leakage currents from the Faraday cup were measured periodically by turning the 

beam off and reversing the polarity on the Faraday cup; the leakage was consistently 



Data Acquisition and Event Triggers 

The most important criterium for the event trigger is to maximize the proportion 

of useful events written to tape. At the same time, it is also necessary to be 

able determine the effieciencies of the detectors, and the "live time" of the data 

acquisition system, that is, the proportion of the time that the acquisition system is 

available to process events. Following is a brief description of the data acquisition 

system and event triggers used in the different phases of this experiment. 

The MRS data acquisition system allows software-selectable triggers through 

the use of programmable LeCroy CAMAC (Computer Automated Measurement 

And Control) modules. This programmable trigger enables various combinations 

(in the form of logical AND'S and OR'S) to be used, depending on the particular cir- 

cumstances of the run. In general, any trigger selected can be expressed as an AND 

of the "front-end trigger" (FETRIG) and the "top end trigger" (TOPEND). The 

possible inputs to FETRIG include the FEC's, an optional front-end scintillator (in 

(p,pl) mode), and a veto scintillator (in CHARGEX mode). The minimal TOPEND 

trigger is simply a signal from any one of the 10 trigger paddles (any continuous 

range of trigger paddles can be chosen). This can be augmented by requiring an 

additional combination of hits from VDC X1 plane and the S1 and Sz scintillators. 

The combination of FETRIG and TOPEND give what is called a "master" trigger 

which is a necessary but not sufficient condition to cause the event to be written 

to tape. A signal from either of the slit veto (which defines the limits of the MRS 

aperture),or the dipole vessel veto (to reject events scattering off of the wall of the 

MRS vacuum vessel) will generate a "fast clear" pulse, i.e. the acquisition system 

will be cleared and reset without recording the event on tape. As well, there is an 

additional movable scintillator, the "elastic prescaler" which enables the system to 
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accept a specified fraction of events in a particular focal plane region. As the name 

suggests, this is primarily used to reduce the number of elastically-scattered proton 

events from being written to tape in (p,p') mode; in many cases, these events com- 

prise the overwhelming majority and so swamp the inelastic data, which is usually 

what is of interest. 

The information read by the data acquisition system consists of drift times and 

wire numbers (of hit wires only) for the wire chambers; timing and energy informa- 

tion for the scintillators. The timing and energy signals are digitized by time-to- 

digital converters (TDC's) and analog-to-digital converters ( ADC's), respectively. 

The ADC's and TDC's are read in a user-specified order by the data acquisition 

program. Although the TDC's and ADC's can simultaneously convert an event 

while the previous one is being read, they cannot themselves accept another pulse 

while the previous one is being converted; so a "busy" latch is set to inhibit further 

acquisition while conversion is in progress. 

For data events of the type described above, the data is written to tape in the 

following format: 

1. Header (3 words: event length, event type, sequence number). 

2. Digital Coincidence Register, which tells if the event is a pulser event (de- 

scribed below), and termination code. 

3. TDC readouts (followed by a termination code), including: Time-of-flight of 

proton through the MRS ( "TTB" ); RF timing signal from cyclotron; Slit veto; 

Dipole vessel veto; S1 scint illator; S2 scintillator; Elastic prescale scintillator; 

front-end veto scintillator; front-end trigger scintillator. 

4. ADC readouts from slit veto, dipole veto, trigger paddles, front-end veto, 



followed by terminat ion code. 

5. VDC Header word followed by wire numbers and drift times for all drift- 

chamber wires which time out. This portion of the data record is of variable 

length. 

Hits in wire chambers and scintillators, as well as the pulses generated by the 

various logical combinations of hits, are also counted and recorded by scalers. The 

scalers are read and written to tape periodically; typically, every 5 seconds. These 

constitute a separate event type from the data events described above. The scalers 

and scaler rates are available for the on-line monitoring of the detection and acqui- 

sition system. 

Measurements of the live time of the data acquisition system (electronics and 

computer combined) are made by generating pseudo-events with a pulser. A random 

signal generator is set in coincidence with the beam current monitor; the rate is set 

such that the number of pseudo-events generated constitutes (typically) 5-10% of 

the total trigger rate. The live time of the system is simply given by the fraction of 

pulser events that end up being written to tape. 

2.3.1 (p,pl) Triggers 

Several different triggers were used for the (p,pl) runs, depending on the angle, 

and other circumstances. The TOPEND trigger used in all cases was simply a hit 

registered on any of trigger paddles 14. Elastic prescaling was used, the prescaling 

factor depending on the angle: 1 of every 200 elastic events was selected at the 

smallest angle (4.14"central angle); 1 of every ten at the largest angle (11.33"). 

At small angles (4.14"-7.74") FETRIG required hits in both FEC7s, because the 

beam halo causes a large amount of accidental hits. At larger angles this condition 

30 



was relaxed by only requiring a hit in one of the FEC's. In order to accurately 

measure the wire chamber efficiencies, required to obtain absolute cross sections, 

some runs were also taken using the front-end scintillator (FES) as the only element 

in FETRIG. The FES was placed inside the scattering chamber and covered the 

most of the solid angle subtended by the FEC's. The trigger condition implied that 

any proton traversing the FEC's within this solid angle had to have passed through 

the FES. This trigger condition was essential to measuring absolute cross sections. 

This will be discussed in more detail later on. 

2.3.2 CHARGEX Triggers 

High beam currents require that triggers in CHARGEX mode be quite restrictive. 

Multiply-scattered protons from the primary beam cause high wire chamber rates 

in both the FEC7s and the VDC's. This in turn can lead to a large number of 

accidental triggers being written to tape. 

The TOPEND trigger required, as well as a hit in one of the trigger paddles, 

hits in both S1 and Sz, and a hit in VDC XI, while FETRIG required hits in both 

FEC7s and no signal from the veto scintillator. This trigger was used for all of the 

("'P) "d (~7") runs. 



Chapter 3 

Data Analysis 

Most of the steps used in analyzing the data were very similar for both the (p,pf) 

and CHARGEX data. Following are descriptions of the major elements in the data 

analysis and measurement of cross sections. Presented first are general procedures 

common to both data sets. Following are separate sections which detail items in 

the analysis that differed from one data set to the other. 

3.1 The LISA Data Analysis Program 

Off-line analysis of the data was done using the LISA1 data analysis program. 

Events are read and processed one at a time. LISA first determines whether the 

event is a "type 1" (scaler) or "type 2" (data) event. Type 1 events simply update 

LISA'S scaler registers. The first stage in the analysis of type 2 events is to decode 

the drift chamber wire numbers and drift times into position co-ordinates for the 

struck wires. This is performed by the DRIFT routine, which also records for each 

chamber any "missing" or "multiple" hits. Next, in a user-specified interface (called 

the INSERT routine) quantities such as angles, focal plane co-ordinates and target 

co-ordinates are calculated and corrections are applied to the co-ordinates. Next, 

a series of user-defined conditions, either simple or complex, are applied to the co- 

'LISA is an acronym that makes sense only in German. 



ordinates. A second user-specified routine can then perform further manipulations 

on some condi tion-dependent subset of the processed co-ordinates. Histograms (1 

and 2 dimensional) are then filled depending on the conditions specified in their 

definitions. 

3.2 Particle Identification 

The energy deposited in a thin scintillator by a particle with charge 2, kinetic 

energy T and momentum P is proportional to (ZT/P)2; the time of flight over 

a fixed distance (non-relativistic) is proportional to (PIT). By looking at a two 

dimensional plot of the energy deposited in the hit trigger paddle versus the time of 

flight through the MRS (taken as the time difference between the FETRIG signal 

and the trigger paddle signal) it is possible to cleanly distinguish between different 

particles (e.g. protons, deuterons, pions) and set a gate to accept only the particles 

of interest, in this case protons. 

3.3 Calculation of Secondary Co-ordinates 

As mentioned above, the INSERT routine receives as input the raw wire chamber 

hit co-ordinates from the DRIFT routine and from these calculates secondary co- 

ordinates such as focal plane positions and angles. 

A schematic diagram of the VDC is shown in Fig. 3.1. The X and U co-ordinates 

must be transformed into X and Y co-ordinates. It can be easily shown that with 

the 30" rotation of U relative to X,  we get 

In order to have Y = 0 in the center of the VDC's, we must add an offset given by 
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Figure 3.1: Geometry of VDC's and focal plane 



where Uc (X,) are the U (X) co-ordinates at the center of the VDC. For VDCl 

Xc = Uc = 8640 ; for VDC2 Xc = Uc = 10560 , using the standard 50 pm units 

of the MRS detector co-ordinates. These give offsets of 2315 and 2830 to Yl and 

Y2, respectively. A further correction is necessary to take account of the distance 

between the X and U chambers. Examination of Fig. 3.1 shows that 

DX 12 
XCORR = XUSEP(vDCDIST 1 

The fully-corrected Y is obtained by replacing XI (X2) by XI - XCORR (X2 - 
XCORR). Although in principle this same technique could be used for both the 

(p,p1) and CHARGEX data, in practice it is used only in (p,pl) analysis. The non- 

bend co-ordinate is not necessary for any of the focal plane calculations, only for 

calculating the non-bend scattering angle and target co-ordinate. The extra set of 

FEC's in CHARGEX mode renders this information superfluous. 

The calculation of the focal plane position, X F ,  is also straightforward. Consider 

a particle with trajectory P as shown in Fig. 3.1. The perpendicular distance (2 )  

from plane X1 to where the trajectory intercepts the focal plane is 

ztraj = tan(450 + e)(x IC - XF) = V D C D I S T ( ~ ~ ~  - XF) 
DX 12 (3.4) 

The focal plane is defined by 

tan6 = 
(FOCALF - ZFP) 

X F  

where ZFp is the distance from X1 to the focal plane. Setting Ztraj = Z F ~  we get 

V D C D I S T ( ~ l ~  - X F )  = FOCALF - X F  x tan6 
DX12 

Solving for X F  gives: 

X F  = 
(VDCDIST x X1C) - (FOCALF x DX12) 

VDCDIST - (DX12 x tan 6) 



The bend-plane angle 8 is calculated by taking the trigonometric identity 

tan el + tan e2 
tan(& + 82) = 

1 - tan 81 tan O2 

where tan(45' + 8) = VDCDISTIDXlP, and making use of the small angle ap- 

proximation tan6 ci 8 to get 

The angle 8 is now in units of milliradians. In order to make the range of scatter- 

ing angles independent of the momentum of the scattered protons, a momentum 

correction is applied to 6 because the bend angle is greater (less) for particles of 

lower (higher) momentum. This is accomplished by applying a rotation in the XF-8 

plane of the form 

epc = e + TPXF x (XF - XFTH) (3.10) 

The value of XFTH is usually chosen such that ePc is centered at 0. The angle in 

the non-bend plane (4) is simply 

where the small-angle approximation used previously has been applied. The units 

are again milliradians. As has been already mentioned, in CHARGEX mode #J is 

calculated from the FEC co-ordinates: 

where DFEC is the distance from FECM to FECO. 

The method used to obtain the target co-ordinates is different for (p,pl) and 

CHARGEX configurations. In CHARGEX mode the second set of FEC's makes 
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the trace-back to the target trivial, while a more complicated procedure is required 

in (p,pl) mode. In CHARGEX mode we have simply 

Yz = YM - 4FEC X F E C  (3.13) 

XI = XM - eFEC X FEC (3.14) 

Where F E C  is the distance from the secondary target to FECM, and eFEC is de- 

fined analogously to 4FEC. The distance F E C  depends on which target the (n,p) 

conversion occurred in. 

For (p,pl), in a manner analogous to the rotation in the XF-B plane, we have 

XI = (Xo + X I T P  x ePc) x X I F C  (3.15) 

Yz = (Yo + F I F C  x 4) x YIFC (3.16) 

The parameters XITP (FIFC)  rotate XI (Yz) so as to be independent of eP, (4); 

X I F C  and YIFC  are simply scale factors to reproduce the actual target size, and 

Xo and Yo are the FEC hit co-ordinates. 

A series of aberration corrections are applied to X F to optimize the resolution. 

As the focal-plane position is dependent on the target co-ordinates and scatter- 

ing angles, it follows that the aberration corrections should be functions of these 

quantities. Typically, we might have 

X F K  = X F  + + bXz + cBPcXI + d4FEC CHARGEX (3.17) 

X F K  = X F  + + bXz + c& + dY,Z (p,pl) (3.18) 

The Yo FEC measurement can be used in the second case because the small extension 

of the beam spot in (p,pl) configuration makes Yo directly proportional to 4. The 

correction coefficients can be obtained "by hand" by looking at Zdimensional plots 
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of the particular variable versus XFK, or by using a computer program which 

minimizes the width of a particular peak in the XFK spectrum as a function of all 

the variables simultaneously. 

3.4 MRS Efficiency 

The overall MRS efficiency is simply the product of the individual efficiencies of all 

the wire chambers. The simplest method to obtain the individual efficiencies is to 

measure the probability that a given chamber will detect a particle that has also 

been detected by all of the other chambers. The efficiency for, say, VDC chamber 

X1 is just the ratio of the condition counts 

Xl x X2 x U2 x Ul x XO x Yo x PROT 
EX1 = X2 x U2 x U1 x Xo x Yo x PROT 

where the "x "  implies a logical AND of hits in the specified chambers for each 

event. The condition PROT ensures that the particle has been identified as a proton 

by the particle identification criterium described above. Analogous quantities are 

defined for the other chambers. The chamber efficiencies can vary depending on 

their counting rates; typical values for this experiment were 96-98% for the VDC's 

and 95-96% for the FEC's. Taking the overall MRS efficiency as simply the product 

of the wire chamber efficiencies tacitly implies that the trigger paddle efficiencies 

(and the FES efficiency for (p,pi)) are identically unity. Although this is obviously 

not exactly true, their efficiencies are near enough to unity to make the difference 

negligible compared with the other uncertainties in efficiency. 

3.5 Momentum Acceptance Correction 

The MRS focal plane does not have a uniform acceptance for protons with different 

momenta, so it is necessary to determine the momentum acceptance function and 
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apply a correction factor to the measured number of counts in a given region in 

order to compensate. The technique is to vary the strength of the MRS dipole 

field, and measure the (yieldlincident proton) in a particular peak (usually elastic 

scattering) as it moves across the focal plane. The counts in the peak are counted 

and normalized by the product of the integrated beam current, the MRS efficiency 

and the live time. A polynomial curve is then fitted to the relative acceptance as 

a function of focal plane position. The maximum value of the acceptance curve 

is set to be unity. Although the shape of the entire acceptance function is quite 

complicated, it can frequently be described by a quadratic function over the range 

of interest for a given experiment. This was indeed the case for both the (p,pl) and 

CHARGEX data from this experiment. 

(p,pl) Analysis 

3.6.1 Angle Calibration 

The energy of protons scattered from a light nucleus falls more rapidly with in- 

creasing angle than those scattered from a heavier nucleus. Scattering from a CH2 

target is an ideal way to calibrate the MRS angle. At angles smaller than (for 

The- = 280 MeV) protons from H(p,p) scattering have higher energy than those 

from the 12C(p,p')12C(4.44 MeV) reaction, but lower energy at larger angles. Thus, 

a 2-dimensional plot of energy v. scattering angle (or equivalently, focal plane po- 

sition v. Yo) we can see where the "kinematic crossing" occurs as a function of the 

scattering angle. The value of Yo where the crossing occurs can be determined by 

eye from this plot, and compared with the calculated value of the crossing angle. 

A more accurate determination can be made, however. Plotted in Fig. 3.2 are the 

centroids of the focal plane positions of different Yo "slices" of the 12C(4.44 MeV) 



peak as a function of the central value of the Yo bin, at  a (nominal) MRS central 

angle of 7.74'. In this case, the spectrum has been kinematically "tuned" for the 

600 700 800 900 1000 1100 1200 1300 1400 
Yo (50 pm units) 

Figure 3.2: Kinematic crossing of H(p,p) and 12C(4.44 MeV) peaks. 

H(p,p) peak, i.e. the corrected focal plane co-ordinate XFPC for this reaction is 

constant over the entire range of angles. The gap in the middle is where the 12C 

peak is not resolvable from the H(p,p) peak. A quadratic function fitted to the 

centroid positions accurately shows the value of Yo where the kinematic crossing 

occurs. The center of the FEC is at channel 800; the crossing is at channel 1010 

(in 50 pm units). As a first approximation it is assumed that the nominal angle is 

correct. The crossing angle is: 



dFEC is the distance from the target to the FEC's (107 cm). The above value of 

(Yo), gives 8, = 7.18", compared with the calculated value of 7.06". Thus, we must 

correct our nominal central angle by subtracting 0.1 lo. 

3.6.2 (p,pl) Cross Sect ion Measurements 

The differential cross section for a scattering reaction can be defined as 

where A is the atomic weight of the scattering nucleus, No is Avogadro's number, T 

is the areal density of the target and A 0  is the solid angle. The number of scattered 

particles is given by 

where E is the total MRS efficiency, 1.t. the combined electronics and computer 

live time, and Acc is the momentum acceptance function for the focal plane. The 

number of incident particles Nine is obtained from the integrated beam current. The 

solid angle is calculated from cuts applied to the FEC co-ordinates Xo and Yo and 

the target-FEC distance. The areal densities T are corrected for known isotopic 

purities. 

Absolute cross section were measured for the 12C(p,p')12C(15.1 MeV; Jr=l+,T = 

1) and 6Li(p,p')6Li(3.56 MeV; Jr=O+,T = 1) transitions, and for H(p,p) elastic scat- 

tering. The targets used were 6Li (41.0 mg/cm2), CH2 (44.5 mg/cm2), 12C(44.6 

mg/cm2) and a "laminated" target consisting of CH2 and 6Li targets of thicknesses 

43.8 and 40.4 mg/cm2, respectively. Measurements for all targets were made at 

(nominal) MRS central angles of eMRS = 4.14',5.94' ,7.74'and 9.54'. 

Because the dispersed beam was wider than the targets, absolute beam normal- 

ization was done using the "achromatic" beam tune, focused to a small spot on the 
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target. This normalization was done at one angle only, 9.54". For this run the FES 

(with assumed ideal efficiency) replaced the FEC's in the front-end trigger. Only 

one such measurement was necessary because the MRS angle settings overlapped 

sufficiently to allow a "boot strapping" normalization technique from angle to angle, 

i.e. because the true yield per incident proton in the common angular region of 

adjacent MRS positions must be equal, normalization factors obtained from relat- 

ing the measured yields for these regions were used to normalize the entire angular 

distribution of cross sections from one absolute measurement. The other major 

advantage was that the absolute current normalization, efficiencies and dead time 

were required only for the achromatic measurement at the one angle. 

Absolute H(p,p) cross sections were obtained from the CH2 target, after sub- 

tracting the carbon contribution, obtained from the 12C target. For this procedure 

the 12C data were analyzed with H(p,p) kinematic corrections. The 12C spectrum 

was mormalized to the CH2 spectrum by comparing the number of counts in a 

hydrogen-free region of the CH2 spectrum with the same focal-plane region of the 

12C spectrum. For each MRS angle the data set was divided into three equal angu- 

lar bins of l.OO, except the 4.14" (central angle) data, for which the bins were 0.7' 

wide. No particular line shape was assumed; the H(P,P) peak areas were found by 

simple integration. The center of mass cross sections are given in Table 3.1. 

As a test of the reliability of the absolute measurements, the data were compared 

with other H(p,p) data in the same energy region, and with the SP88 PP  phase-shift 

solution of Arndt and Roper. Our data are in good agreement with a previous data 

set at 285 MeV [36] and are 7.5% below the SP88 PP ~hase-shift solution, as 

shown in Fig. 3.3. 

Because it is unknown whether this difference stems from uncertainties in SP88 

(there is very little experimental data near 280 MeV), or from systematic uncer- 



Table 3.1: Absolute center of mass H(p,p) cross sections. The errors include statis- 
tical and systematic uncertainties. 

This expt.; T = 280 MeV 

0 Aebischer (CERNJ976); T = 285 MeV 

- SP88 
- 

- 

- 
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6' (degrees) 
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Figure 3.3: Absolute elastic (p,p) cross sections. The error bars for data from this 
experiment include both statistical and systematic uncertainties. 



tainties in our measurement (i.e. uncertainties in the absolute value of the MRS 

momentum acceptance curve), we have normalized the (p,pl) data to agree with 

SP88. This has the added advantage of putting the (p,pl) data on an "equal foot- 

ing" with the (n,p) data, because the (n,p) cross sections are no r~d i zed  to the SP88 

N P  phase-shift solution. Also, the effective t-matrix used in N-nucleus interactions 

for the DWIA calculations [37,38] is based on the same phase-shift data. Thus, our 

assumption is that the SP88 NP and PP phase-shift solutions are correct relative 

to each other. The agreement between the 12C(p,p1) and (n,p) data (presented in 

the next section) justify this assumption. 

Cross sections for the 'Li transition were obtained from two independent normal- 

izations. The first involved using the laminated target combined with the absolute 

normalization obtained from the CH2 target at 9.54". A somewhat detailed, though 

straightforward series of comparisons was required to obtain the 'Li(3.56 MeV) peak 

area from this technique. First, it was necessary to subtract the contribution of the 

12C in the CH2 target in the region of the 'Li peak. This was done by comparing the 

12C(15.1 MeV) peak of the single CH2 target with its counterpart in the laminated 

target. The next step was to compare the 'Li peak in the laminated target with the 

same peak in the single 'Li target. All of this was done at 4.14". The net result of 

this procedure was an overall normalization factor (which included efficiencies, dead 

time etc.) which applied to the single 'Li target at that angle. Having achieved this, 

it only remained to use the above-mentioned "overlapping-angles" technique to get 

the 'Li(3.56 MeV) cross sections at the other angles, using only the single 'Li target. 

The second method was much more simple and direct. It used the achromatic-beam 

data from the single 'Li target at 9.54" to directly calibrate the dispersed-beam data 

from the same target at the same angle. After that, the cross sections at the other 

angles were obtained as previously. These two normalization methods yielded cross 



sections for the 6Li(3.56 MeV) peak that agreed to = .2%. This can be taken as an 

estimate in the run-to-run variation of beam-charge normalization, efficiencies and 

dead times. The very good agreement of these two methods of normalization also 

indicates that the target thicknesses were reliably measured. 

The 12C(15.1 MeV) peak cross sections were normalized by comparing the single 

12C target data with the 12C from the CH2 target at 9.56". Again, the overlapping- 

angles method was used to get the cross sections at the other angles. 

As with the H(p,p) data, none of the peak measurements assumed any partic- 

ular lineshape. For both the 6Li and 12C measurements, there were non-negligible 

but smooth backgrounds; these backgrounds were fitted on either side of the peak 

with a polynomial function, and subtracted analytically from underneath the peak. 

Spectra for 12C(p,p') and 'L~(P,~') at 61ab=4.10 are shown in Fig. 3.4 and Fig. 3.5, 

respectively. 

3.7 CHARGEX Analysis 

3.7.1 Corrections to (n,p) Spectra 

Data from (n,p) reactions were obtained for 6Li with the MRS at 0•‹, 3") 6" and 10"; 

for 12C at 0" and 3"; and at 0" only for the (CH2)6 stack. The previously mentioned 

effects due to the spread in scattering angles cause the average scattering angles to 

differ from the above values. The following corrections were applied to the data: 

Target box wire chamber efficiencies 

"Empty" (i.e. background) contributions from the target box 

"Leak-through7' from upstream targets due to wire-plane inefficiencies 

0 Momentum acceptance of the MRS 
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Figure 3.4: 12C(p,p') at 01ab=4.10. Spin, parity and isospin assignments for the 
states are given in Fig.l.1. The elastic peak has been scaled down by a factor of 
200. The vertical scale in the inset runs from 0 to 30 counts. 
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Figure 3.5: 6Li(p,p') at 01ab=4.10. Spin, parity and isospin assignments for the 
states are given in Fig. 1.2. The elastic peak has been scaled down by a factor of 
200. The vertical scale in the inset runs from 0 to 100 counts. 



Low-energy neutron "tail" from the 7Li(p,n)7Be reaction 

The method for obtaining the target box efficiencies was outlined in the previous 

chapter. The background contribution, due to (n,p) events in the detector gas and 

windows, was determined from data recorded with the (Empty)5CHz stack. Before 

the empty spectrum obtained in this manner is subtracted from a given target 

spectrum it is shifted by an amount corresponding to the energy loss that would 

occur if the downstream targets had been in place. The magnitude of shift in any 

given instance is determined by the observed shifts of the given target spectum 

relative to the farthest downstream target. Because of the sparseness of the empty 

spectrum for any single plane (the contribution was typically < 1% of the target 

spectrum) the contributions from all of the planes were summed (with appropriate 

energy shifts) and an average empty spectrum was obtained which was used for all 

of the target subtractions. The empty spectrum was also "spread" to reflect the 

loss of resolution that occurs as the protons traverse downstream targets, although 

in practice this has virtually no effect on the corrected peak areas. 

The "leak-through" correction is necessary because of the occasional misidentifi- 

cation of the target in which a given (n,p) conversion occurred. Consider a neutron 

converting in an upstream target for which the wire chamber immediately down- 

stream did not fire, while all other downstream chambers did. This event would be 

(incorrectly) identified by the tracking program as having originated in the target 

immediately downstream from where it actually occurred. This effect was corrected 

by subtracting a fraction (determined by the efficiency of the chamber immediately 

upstream) of the spectrum from the target immediately upstream of a given target. 

Because of the high efficiencies of the wire planes, these corrections were typically 

on the order of % 1% or less. 
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The individual target spectra are corrected for these three effects (efficiencies, 

empty contribution, and leak-through) as follows. Let the individual wire chamber 

inefficiencies (1 - e, where epsilon is the efficiency) be qa, qb, . . . , qf for wire planes 

Y,, &, . . . , Yf. The proton from a conversion in target a (upstream end) must 

be registered as a hit in all subsequent downstream planes Ya-Yf. The "cumu- 

lative efficiency" for plane Ya is then the product of the efficiencies for all planes 

downstream, and similarly for the other planes: 

If we assume that the combined inefficiency of the veto scintillator (immediately 

upstream of the target box) and the veto plane in the target box (Y,) is negligible, 

and that the empty contribution is the same for all target positions, we can obtain 

explicit expressions for each target spectrum: 

Here, A,, . . . , F, are the measured spectra, A, . . . , F are the "true" spectra and e 

is the empty spectrum. Starting with spectrum A and working down we can solve 

for the "true" spectra (neglecting terms of second order in 7): 



Typical (n,p) and (p,n) spectra (after all corrections) are shown in Fig. 3.6 and 

Fig. 3.7, respectively. 

3.7.2 (n,p) Cross Sections 

As mentioned above, (n,p) cross sections are measured relative to the 'H(nlp) cross 

section, obtained using CH2 targets. Spectra from this reaction reveal a long, low- 

energy tail in the 7Li(p,n)7Be reaction which produces the neutrons. It is necessary 

to deconvolute the contribution due to this tail from the data. First, the contri- 

bution from the 12C(n,p)12B to the CH2 spectrum is subtracted by comparing the 

CH2 and 12C(n,p) spectra. The remaining spectrum, shown in Fig. 3.8, represents 

the energy distribution of neutrons from the 7Li(p,n)7Be reaction. In practice the 

high-momentum (low bin number) end of the spectra is affected very little by the 

deconvolution: peak areas are typically reduced by 5 1%, thus introducing very 

little extra uncertainty into the cross section measurements. 

The comparison of target yields from different locations in the box presents 

a number of difficulties. As well as having to take into account the wire plane 

efficiencies, there are also non-negligible differences in the neutron flux and solid 

angle subtended by the MRS. It was found that the target stacks used in this 

experiment eliminated the need to make explicit corrections for these effects. By 

making use of the relative yields of targets from the (CH2)6 stack (from (p,n) runs 

with 6Li and 12C primary targets, as well as the (n,p) runs with the 7Li primary 

target) it was possible to map the relative yield as a function of target position. In 

this way it was found that the yield was a linear function of the target position. 

The yields varied on the average by x 4% over the length of the stack, with the 

maximum yields consistently at the upstream end. The statistical reliability of this 

procedure is demonstrated by the results shown in Fig. 3.9. The points represent 
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Figure 3.6: Typical (n,p) spectra (after all corrections) for 12C (top) and 6Li (bot- 
tom). 
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Figure 3.7: Typical (p,n) spectra (after all corrections) for 12C (top) and 6Li (bot- 
tom). 
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Figure 3.8: Neutron energy spectrum from the 7Li(p,n)7Be reaction 



the relative (n,p) yields for all runs which employed the (CH2)6 target stack. The 

yields for each run are normalized such that the average yield is unity. The data 

represent measurements taken with five different primary targets: two l2 C targets, 

two 6Li targets and one 'Li target. A linear fit to the overall average for each target 

position also fits each of the individual data sets with X 2  < 1. This effect is due 

largely to the differences in the neutron flux between the upstream and downstream 

ends of the target stack. The relative (n,p) yields for 6Li and 12C were found by 

simply taking the average yield of the four 6Li or 12C targets divided by the average 

yield from the two CH2 targets which bracketed them. The relative yield is simply 

* 7 ~ i  
Pr imary  Target : 0 lZC 

0 ' ~ i  

Downstream I 

Secondary Target Position 

Figure 3.9: Relative (n,p) yields for segmented target box 

the ratio of one cross section to another cross section. 

As with the (p,p') analysis, no particular line shape was assumed for the peaks 

of interest; as the subtractions and corrections outlined above virtually eliminated 
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the background (at least from the high-momentum end of the spectra) the peak 

areas were determined by simple integration of the peaks. Both the 6Li and 12C 

(n,p) spectra had weak non-zero regions on the low-momentum side of the peaks of 

interest, but as these were small compared with the peak area, no background was 

assumed under the peaks. However, the statistical uncertainties were in this case 

increased to take into account the difficulty in determining any possible background 

contribution. 

3.7.3 (p,n) Cross Sections 

As mentioned previously, (p,n) measurements were performed at 0' only. Since the 

(p,n) configuration was in this case identical to the (n,p) configuration most of the 

corrections applied were of a very similar nature, but two significant differences will 

be pointed out. 

First, the target-empty correction is less significant than in the (n,p) case, be- 

cause the 'H(n,p) cross section at 0' ( x  54mb/sr) is several times greater than for 

either 6Li or 12C: (u/uH)OO;lab x .38 for 6Li; x .18 for 12C. Furthermore, since com- 

parisons must be made from run to run, the VDC and FEC efficiencies, dead time 

and beam current must be taken into account. It was assumed that the target box 

efficiencies remained the same for different runs. Two sets of runs, with different 

primary targets, were done for both 6Li and 12C. The measured yields were consis- 

tent to 5 1.8% for 6Li, and to 5 1.2% for 12C. This is taken to be an estimate of 

the variation for these measurements. 

Peak areas for the 12C(p,n) spectra were found by simple integration. A small 

background, due mainly to 13C impurities, was taken into account by subtracting 

the counts over a region equal to the ~ e a k  width immediately adjacent to the peak. 

This accounted for x 2.5% of the entire peak area. 



The %i(p,n) line shape necessitated a somewhat more complicated procedure 

to obtain the peak area. Because of the unbound nature of the 6Be ground state, 

the peak had a large low energy tail. To get an estimate of how much of the peak 

area was in this tail, the lineshape was compared with that from the 6Li(n,p)6He 

reaction. The number of counts in the high-momentum side of the (n,p) peak was 

normalized to the same region of the (p,n) peak. The reliability of this procedure 

can be seen in the agreement of the background heights and shapes on the low- 

momentum side of the curve, shown in Fig. 3.10. (The second peak in the (p,n) 

spectrum is simply the "echo" caused by the carbon in the CH2 converters.) 

100 150 200 250 
B i n  Number 

Figure 3.10: Spectra for 6Li(n,p)6He (dashed) and 6Li(p,n)6Be (solid). The (n,p) 
spectrum has been smoothed, shifted and scaled so the high-momentum side of the 
peak is normalized to the same region of the (p,n) peak, in order to obtain the 
contribution from the (p,n) "tail" (hatched area). 

The technique for extracting the 6Li(p,n)6Be cross sections differs from the usual 



method used in the analyses of (p,n) experiments, which is to compare (p,n) yields 

to that from the 7Li(p,n)7Be(g.s. + 429 keV first excited state) reaction. The 

0" cross sections for this reaction have been obtained by Watson et a1 [28], who 

integrated the angular distribution at several energies between 198-400 MeV and 

normalized them to activation data by D'Auria e t  a1 [29]. Instead of comparing (p,n) 

yields with the 7Li(p,n)7Be reaction, we make use of a novel method of comparisons 

between ratios of yields from (n,p) and (p,n) reactions for 6Li and 12C. Denoting the 

yield per incident beam particle per target atom for primary target a and secondary 

target b by Y(a, b): 
Ynp(7Li,6 Li) u:? 

R1 = -- - 
Ynp(7Li,12 C) oEC 

Taking a ratio of these two quantities gives: 

If we assume that the ratio u ~ / o ~  can be reliably predicted using DWIA 

calculations we can then obtain the 6Li(p,n)6Be cross section directly. The above 

procedure was adopted for both the 0" and 3" 12C(n,p) points, and yielded 'Li(p,n) 

cross sections consistent with each other to < .7%. A test of this method is to 

compare our 12C(p,n)12N cross section with that of Watson et  al, which is based on 

the 7Li normalization. We find that our results are in good agreement, as can be 

seen in Fig. 3.11. Our normalization leads to consistency between the (p,n), (n,p) 

and (p,p1) cross sections, relative to the SP88 phase-shift solution. 

Center of mass cross sections for (p,p'), (n,p) and (p,n) reactions on 12C and 6Li 

are given in Table 3.2 and Table 3.3, respectively. 



T (MeV)  lab 

Figure 3.11: 12C(p,n)12N cross sections from Watson e t  a1[28] as a function of in- 
cident proton energy. All points have been extrapolated to 0". The curve is an 
empirical fit to Watson's and our data. The solid point is the result from this 
experiment; the error bar includes systematic uncertainties. 



Table 3.2: Center-of-mass cross sections for the reactions 12C(p,p')12C, 12C(n,p)12B 
and 12C(p,n)12N at Tlab = 280 MeV. All cross sections are normalized to the SP88 
phase shift solution. Angles are in degrees and cross sections in mb/sr (similarly 
for Table 3.3). Quoted errors are statistical only. 

Table 3.3: Center-of-mass cross sections for the reactions 6Li(p,p')6Li, 6Li(n,p)6He 
and 6Li(p,n)6Be at Tlab = 280 MeV. All cross sections are normalized to the SP88 
phase shift solution. Quoted errors are statistical only. 



Chapter 4 

Theoretical Calculations and 
Comparison with Experiment 

The quantities required to fulfill the original aims of the experiment, the 0") q = 0 

27' matrix elements for the three different reactions, are strictly nuclear structure 

properties. The need to be able to theoretically model the reactions arises from the 

fact that the measured quantities (the reaction cross sections) are taken at finite 

values of q. In order to be able to extrapolate the cross section to 0" and q = 0 the q- 

dependence of the reactions must be understood over the experimentally accessible 

range. It should be emphasized that this experiment is not a 'test" of the nuclear 

structure model or the reaction model; rather, the theory calculations are required 

to be able to make meaningful comparisons between cross sections measured at 

different values of q as well as providing an extrapolation to non-physical values of 

q. 

As stated in Chapter 1, the DWIA calculations require as input the nuclear 

structure parameters, the dynamics and q-dependence of the nuclear interaction 

and optical potentials which describe the macroscopic scattering properties of the 

nucleus. This chapter will describe in more detail how the various parts of the 

DWIA model are obtained, the specific details of the parameters used for modeling 



the A=12 and A=6 systems, and then compare the experimental results with the 

theoretical calculations. Following this will be a discussion of some of the aspects 

of the measurements and theoretical calculations which affect the reliability of the 

results. 

4.1 Shell Model Calculations 

In the absence of many-body forces the nuclear Hamiltonian may be written as: 

where < is the radius vector of the i th nucleon from the nuclear center, T ( 6 )  is the 

single particle kinetic energy operator, and V(<, 5) is the two-body NN potential. 

We can rewrite the second term as 

The term in square brackets is assumed to be small enough to be treated by per- 

turbation theory. The Hamiltonian is now 

where 

is the single particle Hamiltonian and 

In general, shell model calculations work with the energy relative to a closed shell 

rather than the total energy of the system. By considering ground state binding 

energies relative to the closed shell (assumed to be inert) and energy levels of states 

6 1 



with well-determined angular momentum (J) and isospin (T) quantum numb, s 

fit can be done to determine the two-body residual matrix elements between states in 

the valence shell. Nuclear wave functions can then be determined from these matrix 

elements, usually under the assumption that there are no admixtures of states from 

outside the valence shell. Cohen and Kurath [31] followed this ~rocedure to obtain 

the two-body matrix elements for the l p  shell. 

The wave functions for the calculations to be described below are calculated 

from two sets of l p  two-body matrix elements, derived under slightly different as- 

sumptions. The A=12 calculations use the 8-16 POT matrix elements. As the name 

suggests, these use input data from nuclei in the range Ad-16, and are calculated 

in the LS coupling representation. The A=6 calculations use the 6-16 2BME set, 

calculated in the j j  coupling representation. The main difference, apart from the 

input data used, is that the 8-16 POT fit assumes that the radial wave functions 

are the same for 1p312 and lpll2 orbitals, whereas the 6-16 2BME fit does not. To 

test the validity of the derived matrix elements the energy levels and other nuclear 

properties (e.g. the magnetic dipole moment) can be calculated for the various nu- 

clei and compared with the experimentally determined values. In each case the set 

used was the one that gave a better fit of the energy levels of the given nucleus. 

The computer code OXBASH [39] was used to calculate the nuclear wave func- 

tions and the one-body transition densities between the states. In the "second 

quantization" formalism the Hamiltonian operator H between the many-particle 

basis wave functions can be written as 

where E; is the energy of a single-particle state, a+ (ai) is the creation (annihilation) 



operator for single-particle state with the set of quantum numbers labeled by i, and 

The two-particle states li j )  have been antisymmetrized and are obtained from 

Here, the matrix elements ( j l  j21Vlj3 j4)JT are those determined by Cohen and 

Kurath. 

The initial and final nuclear states are specified by the number of valence par- 

ticles and the angular momentum and isospin quantum numbers, J and T. States 

with good J and T are projected from a basis set constructed using an m-scheme 

Slater determinant. The Harniltonian matrix is then constructed from the allowed 

states and diagonalized, which gives the eigenvalues (the single particle energies) 

and eigenfunctions (the nuclear wave functions). 

What is actually required from the shell model calculations as input for the 

D WIA calculation are the one-body transition densities (OBTD's). Although in 

general the calculations are done for many particle states, the main steps can be 

explained in a straightforward manner by considering only two particles. Start- 

ing with the antisymmetrized m-scheme wave functions (considering the angular 

momentum only) 

+ + l jmjkt)  = a j ~ m ~ a j m  I )  (4.9) 

where I )  is the vacuum state. For two particles coupled to J the antisymmetrized 



wave function (normalized to unity) is 

We make use of the Wigner-Eckart theorem which states that 

where T,(~) is a spherical tensor operator of rank k and (JI IT(*)I I J') is the reduced 

matrix element, which is independent of M and M'. Now, labelling the single- 

particle state quantum numbers by p and denoting the many-particle state with 

angular momentum J and isospin T by IF) we can define the OBTD for two states 

coupled to spin and isospin X as 

OBTD(p, p'; A) = 
1 

(FNb: @ aw') (4.12) (2X + 1)"2 

where ii, is a tensor operator which creates the "hole" state If-'); it is related to 

the standard particle annihilation operator by 

The three bars denote a "doubly reduced" matrix element, i.e. one that has been 

reduced in both spin and isospin. The input to DW81 actually requires that the 

OBTD's be modified by a factor of 

where Ti (Tf) is the isospin quantum number of the initial (final) state; T is the 

change of isospin, and T d m  (similarly for J). 

The number of transition densities required depends on the number of particles 

in the valence shell and the type of transition. A particularly simple case is 6Li, 



which has just two valence particles (1 proton and 1 neutron). The proton (or 

neutron) is either in a ~312 or a p1/2 orbital. Because there are no filled sub-shells 

there are no restrictions on the transitions; and because there are only two valence 

particles there is only one possible particle-hole coupling for a particular single- 

particle transition. So we are left with only four transition densities corresponding 

the pl/2 pl/2, P1/2 -$ &/2, P3/2 -) P1/2 and p3/2 .?%/2. Binding 

energy differences will in principle make the transition densities differ depending 

on whether the reaction is (p,pl), (n,p) or tp,n), and (for (p,pl) reactions) whether 

the nucleon participating in the reaction is a proton or a neutron. The nuclear 

structures of 6He and 6Be are not very well known. Consequently, the transition 

densities used are the same for all three reactions, that is, they assume that isospin 

symmetry is conserved. 

The situation for 12C is more complicated. There are eight valence particles 

(four protons and four neutrons) so the number of ways the single-particle states can 

couple to form the many-particle states is increased. There are also restrictions on 

some of the single-particle transitions because of filled sub-shells. Six transitions are 

allowed amongst nine single-particle states for both the protons and the neutrons. 

In addition the (p,pl) transition densities have been modified to include the (small) 

effects of isospin mixing between the 15.11 MeV Jff =l+;T = 1 and the 12.71 MeV 

Jff=l+;T = 0 states in 12C [40]. This mixing was determined from (e,el) scattering 

data and is expressed as 

where 

(T=llHcDIT=O) .140f .035MeV 
P = - - 

AE 
= .0583 f .015 

2.4 MeV 



The T = 1 transition densities are modified by 

In practice the difference in calculated cross sections is negligible using corrected 

and uncorrected transition densities. The numerical values of these coefficients for 

A=6 and A=12 are given in Table 4.1. There are two transition densities for each of 

the j i  = 312 initial states in A=12 due to coupling to different A = l l  parent states. 

Table 4.1: Transition densities used in the DWIA calculations. The notation pp-l 
(nn-' ) specifies proton (neutron) transitions. 

4.2 The Love-Franey Effective Interact ion 

Any possible formulation of the NN interaction must be some combination of 

Lorentz scalar quantities that are all invariant under parity, time reversal and co- 

ordinate rotation transformations. Of the 18 such quantities that can be formed 

from various combinations of the spin (a) angular momentum (L) and isospin (7) 

vectors only 5 are linearly independent; each of these can have isoscalar and isovec- 

tor components for a total of 10 terms. In most treatments two of these terms, the 



quadratic spin-orbit terms (isoscalar and isovector) are neglected, leaving: 

where r = r12 is the radius vector joining the two nucleons, L S is the spin-orbit 

operator for relative angular momentum L and 

The tensor operator S12 is defined as 

The starting point for building up the effective interaction is to determine the 

phase shifts and scattering amplitudes (f (E,.,., 8)) from a partial wave analysis 

of NN scattering data over a wide range of energies [41]. This analysis expresses 

the measured NN cross sections as a sum of terms for different angular momentum 

channels (e.g. triplet-odd, triplet even etc.) and determines the phase shift S 

and scattering amplitude for each term1. The free ("on-shell") NN t-matrix is 

constructed from the extracted scattering amplitudes [37] : 

where 

m is the nucleon mass and tik is the momentum of either nucleon in the center of 

momentum frame. 

'This is essentially the same data set used to determine the H(p,p) and H(n,p) cross sections to 
which the data from this experiment are normalized. 



Except for the tensor pieces, all terms of the potential are assumed to have a 

radial dependence given by Y u h  functions, e.g. 

where the p; are range parameters and the sum extends to a maximum of 4. The 

tensor pieces are described by r2xYukawa terms. The ranges and amplitudes for 

each NN angular momentum channel are fit to the experimentally derived NN t -  

matrix according to 

where Px is the space-inversion (parity) operator; the term (-)'Px, where 1 is the 

relative angular momentum in the NN system, ensures antisymmetrization. To use 

the derived effective interaction in the N-nucleus (NA) system it is necessary to 

rescale tNN kinematically by an amount 

4 
~ N A  = - ~ N N  (4.25) 

€pet 

where €0 is the total energy of the incident nucleon in the NN center of momentum 

system and ep (et) is the total energy of the incident (target) nucleon in the NA 

center of momentum frame. 

The inelastic part of the N-nucleus interaction at small angles is almost always small 

enough to be treated a .  a perturbation to the dominant process of elastic scattering. 

In the DWIA model the gross features of the nucleus encountered by the incoming 

nucleon are in the form of an optical potential which has terms that reflect the total 

elastic and inelastic scattering amplitudes: 



where the potential contains both central and spin-orbit terms. It is assumed that 

the features of the nuclear force are essentially the same in the nucleus as they are 

for free nucleons, with the radial strength of the interaction proportional to the local 

nuclear density. Thus, the optical potentials are generated by folding the effective 

NN interaction with the nuclear density distributions. 

Charge distributions for nuclei can be found from measuring the electromagnetic 

form factors determined from (e,e) scattering: the charge distribution is simply the 

Fourier transform of F(q2). Many nuclear charge distributions can be fit vary well 

to a "3-parameter Fermi" (3pF) distribution of the form 

What is required for obtaining the optical potential is not the charge distribution but 

the matter distribution. Since the proton itself is not a point particle but actually 

an extended charge source it is necessary to "unfold" the finite charge distribution 

of the protons from the measured charge distribution. The matter distribution of 

neutrons was assumed to be the same as that for protons for both 6Li and 12C. 

In general the optical potentials for the entrance channel for a reaction differ 

from those of the exit channel because the nuclear structures are different. The 

relative importance of this difference decreases with larger-A nuclei; thus we would 

expect that the difference in the entrance and exit channel optical potentials to 

be more important for reactions on 6Li than for 12C. For this reason the matter 

distributions used for both entrance and exit channel optical potentials were the 

same for the A = 12 reactions. That is, the shapes of the charge distributions 

for 12N and 12B were assumed to be the same as for 12C, with the total charge 

normalized to 7e and 5e, respectively. For the A = 6 reactions an attempt was 

made to include the differences in the matter distributions. The problem with this 



is that empirical charge distributions are not available for unstable nuclei such as 

'Be and 'He. Instead it was assumed that 'Be had the same proton distribution 

as Be9 and the same neutron distribution (assumed to be the same as the proton 

distribution) as 4He; and that 6He had proton distribution of 4He, with the neutron 

distribution taken to be the same as the protons of 'Be. 

The 12C charge distribution [42] was obtained from (e,e) data over a range of 

q = .25-2.3 fm-' fit directly to a 3pF distribution. The charge distribution for 'Li 

[43], from a range of q = .56-3.66 frn-', was originally fit to a phenomenological 

function 

from which a 3pF function was then fit. The He4 charge distribution [44] was from a 

direct 3pF fit to data over the range q = .59-2.5 fm, while the Be9 distribution was 

obtained from a 3pF fit to a harmonic oscillator parameterization of data covering 

a range of q = .26-.7 fm [45]. 

The matter distributions unfolded from the charge distributions were also pa- 

rameterized as 3pF distributions. Values of the parameters for both the charge and 

matter distributions used for the A = 6 entrance channel and A = 12 (entrance and 

exit channel) optical potentials are listed in Table 4.2 Exit channel parameters for 

the A = 6 charge exchange reactions are listed in Table 4.3. 

The optical potentials are generated by the program MAINX8 [46] which also 

includes Coulomb effects to take into account whether the incident and scattered 

particle are protons or neutrons. The (p,pl) reaction cross section for 'Lifrom the 

derived optical potential (138 mb) is in reasonable agreement with the experimental 

value (149 f 3 mb) [47] measured at 180 MeV, while the calculated (p,pl) reaction 

cross section for 12C (226 mb) also agrees well with the experimental value (199 f 20 



A = 6  
Charge Matter 

C (fm) 1.3439 1.1047 
(fm) 0.5557 0.5856 

w 0.0996 0.0242 

A = 12 
Charge Matter 
2.3550 2.1883 
0.5224 0.5126 

-0.1490 -0.1448 
(r2)1'2 (fm) 2.553 2.448 ( 2.455 2.324 

Table 4.2: Experimental charge and matter distributions used to obtain the en- 
trance (entrance and exit) channel optical potentials for A = 6 (A = 12) DWIA 
calculations. The parameters are from 3pF fits to the charge distributions. See text 
for further details. 

9Be 
(protons in 6Be, 
neutrons in 6He) 

Charge Matter 

(fm) 0.6547 0.6446 
w -0.1445 -0.1275 
(r2)'12 (fm) 2.523 2.464 

4He 
(protons in 6He, 

(neutrons in 6Be) 
Charge Matter 
0.964 1.0391 

Table 4.3: Experimental charge and matter distributions used to obtain the exit 
channel optical potentials for A = 6 DWIA calculations. See text for further details. 



mb) [48] measured at 290 MeV. 

4.4 DWIA Calculations 

The reaction cross section calculated in the DWIA model is 

where p is the relativistically-reduced energy, J is the final-state angular momentum 

and k; (kf) is the wavenumber of the incident (scattered) particle. The reaction 

transition matrix TDW is expressed as a sum of terms corresponding to the different 

pieces of the nuclear force, e.g. scalar, T ,  a?, etc.: 

The potential Va(q) is the momentum space representation of the effective inter- 

action described above, obtained by a Fourier transform. The distortion factor 

D,(k, kt; q) gives the overlap of the incoming (Xli)) and outgoing (X\r',) distorted 

waves for component a of the N-nucleus interaction 

where r, is the radius vector for the target nucleon and Opa(q) is the operator for 

component a of the interaction. The distorted waves are calculated by solving the 

Schrodinger equation with the Coulomb-modified optical potentials described above 

The final factor is the nuclear transition density 



where the first matrix element is the product of the shell model transition density 

and the overlap of the initial and final radial wave functions and the second is the 

volume integral of the NN effective interaction. 

The only parts of the DWIA calculations which have not yet been specified are 

the single-particle radial wave functions. The two most commonly used forms for 

the radial dependence of the potential are the Woods-Saxon form 

and the Harmonic Oscillator form 

where & = r o ~ ' l 3  and ro 2 1.2 fm. While the Woods-Saxon potential is gener- 

ally believed to be a more realistic shape than the Harmonic Oscillator potential, 

its eigenfunctions cannot be expressed in a closed form. The H.O. potential has 

analytic solutions for the eigenfunctions and the radial overlap integral. For many 

applications the H.O. and W.S. potentials give very similar results. 

The H.O. potential is specified in terms of a single parameter 

which can be adjusted to fit the shape of the angular distribution. The use of a 

single parameter for all three types of reaction will cause the radial overlap integral 

to be identical (unity) in all three cases. This is equivalent to assuming that the 

single-particle binding energies are the same in all three members of the final state 

multiplet. 

The W.S. well depth is determined empirically by a fit to the binding energies of 

the single-particle states, with the other parameters for the W.S. potential obtained 



from fits to electron scattering data [49]. Thus if the single-particle binding energies 

can be reliably specified for all three members of the final state multiplet, there can 

be differences in the radial overlap integral which will be reflected in the reaction 

cross sections. 

4.5 Comparison of Data with Calculations 

In Fig. 4.3 the cross sections for the A=12 system are compared with calculations 

which include the effects of isospin breaking explicitly in the form of binding energy 

differences between members of the final state multiplet. The calculations reproduce 

exactly the observed f t  asymmetry but require a normalization factor of 1.2 to 

obtain agreement with the absolute B(GT) values. An overall normalization factor 

of 1.3 was applied to the reaction calculations to force agreement with the low-q 

The large range of scattering angles for the (n,p) reactions made it necessary to 

fold the theoretical (n,p) angular distribution with the experimental MRS angular 

acceptance. For each MRS angle setting the angular acceptance was approximated 

by a Gaussian function whose width varied linearly between angles to reflect the 

changing shape of the acceptance curve. The theoretical distribution was convoluted 

at each angle with a Gaussian of the appropriate width. The effect of this procedure 

is greatest where there is the most slope; the theoretical distribution tends to flatten 

out as a result. The (n,p) scattering angle distributions for MRS angles 0•‹, 3O, 6' 

and 10" are shown in Fig. 4.1. The effects of the convolution on the theoretical 

(n,p) curves are shown in Fig. 4.2. 

The (p,n) datum was taken, according to the procedure outlined in Chapter 3, 

to be the average of the values calculated with the two 280 MeV (n,p) data points, 
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Figure 4.1: (n,p) scattering angle distributions for MRS settings of 0•‹, 3", 6" and 10". 
The distributions were approximated by Gaussians and folded with the theoretical 
(n,p) curves. 



Figure 4.2: Theoretical (n,p) curves convoluted with experimental scattering angle 
distributions for 12C(n,p) (top) and 6Li(n,p) calculations. The solid lines are the 
original calculations; the dashed lines are after convolution. 



assuming that the reaction preserves the isospin asymmetry observed in the B(GT) 

values. Because of the scarcity of (n,p) and (p,n) data at 280 MeV we also show 

an angular distribution (theory dashed) previously measured at 200 MeV [50]. The 

ratio of a,,,/ath,, is shown at the bottom of Fig 4.3. The SP88 normalization 

implies that the (n,p) data are compatible with the (~ ,p ' )  data to an accuracy of 

about f 3%. The (p,pl) angular distribution falls off more rapidly with momentum 

transfer than the calculation; since realistic radial form factors were used this could 

be attributed to the effective interaction, although the origin may also lie in the 

Cohen and Kurath transition densities. Experimental cross sections for the 280 

MeV data of Fig. 4.3 are given in Table 3.2. 

The calculations for A = 6 differed somewhat from those for A = 12. Since 

the 6Be ground state is unbound to particle emission B(GT+) is not available and 

therefore isospin symmetry was assumed in the theoretical calculations. An attempt 

was made to model the A=6 reactions with Woods-Saxon radial form factors (with 

no adjustable parameters) as was done for A=12. This procedure yielded angu- 

lar distributions that agreed very poorly with the data for both (n,p) and (p,pl) 

reactions. This technique may not be suitable for A=6 nuclei because the A=5 

parent states relative to which the binding energies are determined are themselves 

unbound. Instead, the radial form factors were obtained with a harmonic oscilla- 

tor potential whose size parameter was adjusted to a large value ( b  = 2.15 fm) to 

force agreement with the (p,pl) angular distribution; for the (n,p) and (p,n) calcu- 

lations the same oscillator parameter was adopted. It should be emphasized that, 

unlike the calculations for A=12, this procedure did not include any known isospin 

symmetry-breaking effects (i.e. binding energy differences) a priori: rather, any 

such effects would be revealed as discrepancies between theory and data. 

The data for the three reactions, which have been normalized in the same way 
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Figure 4.3: Angular distributions for the 12C(p,n) and (p,pl) reactions at 280 MeV 
and the (n,p) reaction at 200 [50] and 280 MeV populating the A=12, 1+ isospin 
triad (top). The theoretical curves are DWIA calculations which incorporate known 
isospin breaking effects (see text). The curves include the effects of finite angular 
acceptance which differ markedly for the three reactions. Also shown (bottom) are 
the ratios of experimental to theoretical cross sections for all three reactions. 



as those for the A=12 system, and theoretical calculations are shown in Fig. 4.4. 

The calculations have to be multiplied by a factor of 0.88 to reproduce B(GT-), 

and with this are in very good agreement with the (p,pl) data. The (p,pf) data fall 

below the (n,p) and (p,n) data by several per cent at finite values of q. In order to 

get a quantitative measure of this apparent asymmetry, the mean value of the ratio 

of experimental to theoretical cross sections (r) for the four most forward angle 

(p,pl) points can be compared to a "CHARGEX" average consisting of the mean 

value of the same ratio for the (p,n) datum and the two most forward angle (n,p) 

data, with the result that the CHARGEX ratios exceed the (p,pl) ratios by 

However, we note that upon extrapolation to q = 0 the asymmetry may become 

negligible. The corresponding ratio for the A=12 system (which does not include 

the (p,n) datum) is 

&A=12 = .005 f .028 (4.38) 

Theoretical estimates of isospin breaking in the A=6 system are, however, difficult 

because of the low two-particle emission thresholds (see Fig. 1.2), the particle in- 

stability of 6Be, and the cluster-like structure of the 4He+2N system. Experimental 

cross sections for the 280 MeV data of Fig. 4.4 are given in Table 3.3. The discrep 

ancy of the 'Li(n,p) points with the theoretical curve, which increases with q, is in 

part attributable to the (partially) unresolved, JT=2+;T = 1 6He state at 1.8 MeV, 

but estimates based on an anlaysis of 6Li(n,p) data taken at 200 MeV [51] suggest 

that this contribution is 2 0.5% at eMRs = 0•‹, and no more than 1% at eMRs = 6'. 

The obvious question to ask is whether the effect observed in the A = 6 triad 

is a real indication of isospin symmetry breaking, the result of some systematic or 
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Figure 4.4: Angular distributions for the 6Li(p,n) and (p,pl) reactions at 280 MeV 
and the (n,p) reaction at 200 [50] and 280 MeV populating the A=6, O+ isospin 
triad. The theoretical DWIA curves assume good isospin in the three reactions 
and include the effects of finite angular acceptance in the experiments. Also shown 
(bottom) are the ratios of experimental to theoretical cross sections for all three 
reactions. The dashed line is a linear extrapolation from the forward angle (p,p') 
data; the solid line is an extrapolation from the CHARGEX data. 



measurement uncertainty in the data, or a wrong or imprecise assumption in the 

theoretical calculations. 

4.6 Sources of Uncertainty 

4.6.1 Experiment 

Estimates of the magnitudes of some of the experimental uncertainties have been 

given in the Chapters 2 and 3. A more complete description and summary will be 

given in this section. 

Naturally, more sources of uncertainty are present for absolute measurements 

than for relative measurements. The error bars for the H(p,p) cross sections shown 

in Fig 3.3 contain (as well as statistical uncertainties of x.3-.5%), uncertainties in 

wire chamber efficiencies and electronics dead time (x.6%, combined), relative mo- 

mentum acceptance (e 1.5%), target thickness (x1  .5%), target composition (x.3%), 

absolute beam-charge normalization ( ~ 7 % )  and solid angle (el%).  All of the sys- 

tematic uncertainties added in quadrature give a combined systematic uncertainty 

of 2.5%. There is also an uncertainty (of undetermined magnitude) in the absolute 

normalization of the momentum acceptance function. This could be checked if there 

was a precisely determined cross section in our energy range with which we could 

compare our value. Unfortunately this is not the case. 

For (p,pt) cross sections measured relative to the SP88 PP phase-shift solution 

several of the sources of uncertainty are not included, namely wire chamber effi- 

ciencies, electronics dead time, beam-charge normalization and solid angle. The 

remaining quantities give a combined systematic uncertainty for the relative (p,pl) 

measurements of 2.1%. We note that the (p,pt) uncertainties listed in Table 3.2 and 

Table 3.3 are statistical only. 
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The systematic uncertainties for the (n,p) crag sections are the Mme a. for 

the relative (P,P') cross sections, with the addition of an uncertainty in the relative 

efficiencies of the target box wire planes. As this contribution is ne$gibly small 

(< - .I%) it is not considered. Again, the tabulated uncertainties are statistical only. 

Because the (p,n) cross sections depend on run-to-run comparisons of tmget 

yields, the estimated variations in beam-charge normalization, wire plane efficiencies 

and electronics dead time (w 1.8% for 'Li; w 1.2% for 12C) should be included in 

the tabulated uncertainty, but only for the 'Li(p,n) datum; the 12C(p,n) datum only 

contains experimental information from the 12C(n,p) data so the uncertainty in this 

case is derived from the (n,p) data. There may also be an uncertainty of several 

per cent in the determination of the 'Li(p,n) peak area (see Fig. 3.10); there was 

really no sound basis for determining the area in the manner described in Chapter 3. 

Taking the ~osition (for now) that the theoretical calculations for A = 6 are valid, 

the fact that the ratio of experiment to theory is greater for the (p,n) reaction than 

for (p,pl) is consistent with a slight over-estimate of the 'Li(p,n) peak area. This 

can certainly not be ruled out. There is also a JR=2+ state in 'Be at 1.67 MeV (see 

Fig. 1.2) which would only be partially resolvable with the current data, although 

it is quite plausible to expect the contribution from this state to be negligibly small 

at such a small angle. Examination of Fig. 3.10 does not reveal convincing evidence 

that this state is present with significant strength; it may be "buried" in the tail 

contribution described above. 

Two potentially very significant sources of uncertainty in the comparisons of 

(n,p), (p,n) and (p,p1) cross sections are the relative magnitudes of the SP88 PP 

and NP cross sections, and the reliability of the ratio of (p,n) to (n,p) cross sections 

in the A=12 triad. Of the former, we note that the agreement between the 12C(n,p) 

and 12C(p,p1) cross sections suggests that the SP88 PP and NP phase-shift solutions 
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are consistent with each other to apprmimately the 3% level; and also that any 

possible discrepancy between them would affect the comparisons within the A=6 

and A=12 triads in exactly the same way. Of the latter, the good agreement between 

our 12C(p,n) datum and the data of Watson e t  a1 [28] imply that this assumption 

is a reasonable one, at least to the several per cent level. In Fig. 3.11 our datum 

includes the systematic uncertainties listed above for the (n,p) data. 

In summary, the agreement of the ratios of the experimental (n,p) and (p ,~ ' )  

cross sections to the theoretical calculations supports the argument that the ob- 

served asymmetry in A = 6 is not due to some systematic uncertainty or error 

in measurement. The agreement of the 12C(p,n) "datum" (used to normalize the 

6Li(p,n) datum) with the measurements of Watson et  a1 supports the validity of the 

unorthodox normalization procedure, but the 'Li(~,n) peak area itself is difficult to 

determine and so may be of questionable accuracy. 

4.6.2 Theory 

It has already been mentioned that the shell model calculations used to find the 

OBTD's are known to be unreliable in predicting the energy levels of A = 6 nuclei. 

The restriction of the shell model to the l p  shell leads to the description of the 6Li 

ground and 3.56 MeV excited states as 

with the normalization conditions 

Several authors (e.g. [20,52]) have suggested that 6Li is "somewhat of an enigma 

among light nuclei". The ground state charge density cannot be fit to a simple 
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harmonic oscillator distribution 

unlike all other nuclei in its mass region. The 3' and 0' radial wave functions are 

inconsistent with the l p  harmonic oscillator basis 1531, and require modifications 

to the radial wave functions in order to fit the electron scattering data. It might 

be argued that the method of Cohen and Kurath used to obtain the 'Li wave 

functions would be less reliable than one in which only the properties of 6Li (as 

opposed to the entire lp-shell) were considered. Such a procedure was adopted 

by Donnelly and Walecka [54]. They required that the wave functions (in a l p  

harmonic oscillator basis) fit the ground state magnetic and quadrupole moments 

and the transverse magnetic form factors for both elastic and inelastic scattering. 

These properties are (in principle) determined only by the valence nucleons. The use 

of a single harmonic oscillator parameter to fit both the weak and electromagnetic 

data implicitly assumes isospin symmetry. The parameters obtained are very similar 

to those of Cohen and Kurath, as is shown in Table 4.4. Weak quantities such as 

the 6He p decay rate and the 6Li p capture rate calculated with their wave functions 

also agree with experimental rates. 

The Donnelly-Walecka wave functions, when used with their simultaneously fit 

harmonic oscillator parameter of b = 2.03 fm, gave a reasonable fit to the small-q 

(p,pl) data, but like the Cohen-Kurath wave functions could not simultaneously fit 

the (nip) and ( ~ , p ' )  data. 

There have been other attempts to fit the 6Li wave functions to electromagnetic 

and weak properties within the context of the shell model [20,53,55] with limited 

degrees of success. It may be instructive to consider the validity of using harmonic 

oscillator wave functions to describe the nuclear structure for the A=6 system. We 



Donnelly/Walecka -0.581 0.810 0.084 0.80 0.60 
OBTD 

11 1 3  
j f j i  - - -- 3 1 - - 3 3 - - 

2 2 2 2 2 2 2 2 
Cohen/Kurat h 0.029 0.187 -0.197 0.191 
Donnelly/Walecka 0.029 0.142 -0.134 0.2644 

Table 4.4: Comparison of shell model wave functions of Cohen and Kurath [31] 
and Donnelly and Walecka [54]. The lower part compares the one-body transition 
densities. 

note that Bergstrom et a1 [20,55] conclude that pure lp-shell harmonic oscillator 

wave functions do not describe the 6Li M1 transverse magnetic form factor very 

well, particularly at large momentum transfers. Nonetheless, they deduce a value 

of b w 1.83 fm, with the oscillator parameter constrained to reproduce the observed 

diffraction minimum at q = 1.40 fm-'. Perroud et  a1 [56], using Bergstrom's data, 

obtain a good fit over the entire range of momentum transfers (w .25 to 5 fm-') by 

introducing a linear variation into the harmonic oscillator parameter b, i.e. 

While they admit no physical justification for this procedure, the values they obtain 

(bo = 2.19 fm ; bl = - .24 fm2) give b = 2.12 for q = .3 fm , in reasonable agreement 

with b determined from our low-q (P ,~ ' )  data. Another serious drawback to using 

an harmonic oscillator potential is the inability to describe unbound states, such as 

the ground state of 6Be. 

It may be that the problem lies in the use of the shell model itself. There is much 

evidence (such as the abnormally large RMS radius, given in Table 4.2) to suggest 

that the most accurate descriptions of the 6Li structure will be given by cluster 

models. The 6Li nucleus is treated as an a-d bound state. Three harmonic oscillator 



parameters are now used to describe the system: the internal a-particle oscillator 

a; the internal deuteron parameter ,B; and y, which represents the relative motion 

of the clusters. The shell model is obtained in the limit a = P = y. A relatively 

simple model [55] has been developed which can be made to simultaneously fit all 

the electromagnetic form factors when the deuteron is allowed to deform along the 

line joining the center of masses of the clusters. The T = 0 ground (T = 1 3.56 

MeV) state is considered to be pure 3S1 ('So). Thus the transition is considered 

to be entirely a spin flip of one of the nucleons. It is pointed out that although 

the 3.56 MeV level has a P-state amplitude of F+( .5, over 90% of the transition 

amplitude is spin flip. The equivalent representation of this picture in the shell 

model would be the usual closed 1s core with two valence nucleons with diflerent 

oscillator parameters, and which mutually interact with each other with another 

independent oscillator parameter. This "residual" interaction is not present in the 

simple single-particle model. 

We may also wish to re-examine our assumptions about the optical potentials. 

For A = 12 we assumed that the matter distribution had the same shape for all 

three final-state nuclei. This appears to have been a reasonable approximation 

based on the consistency of the (n,p) and (p,pt) cross sections. The discrepancy 

between the (~,p ' )  data and theoretical angular distribution may indicate some 

inaccuracy in using the ground state density to describe the 15.1 MeV density, but 

on the other hand could be because the Love-Franey prescription for deriving the 

N-nucleus effective interaction from the NN interaction does not describe the true 

q-dependence of the N-nucleus force. 

The same argument as in the preceding paragraph could be made about the 

excited state optical potential for the 6Li(p,p') calculation. The assumptions made 

about the proton (neutron) distributions in 6He (6Be) should be quite reasonable 
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because we would expect the 4He core in the A = 6 nuclei to have essentially the 

same properties as a free 4He nucleus. This may not be the case for the neutron 

(proton) distributions in 6He ("e), which were derived from the charge density 

of 'Be. The shape and radius of the distribution depend not only on the number 

of protons, but also on the number of neutron-proton pairs in the nucleus. The 

alternative would have been to retain the same shape parameters as for 6Li as was 

done for 12C. 

Finally, we look at the Love-Fkaney effective interaction. The agreement of the 

shape of the SP88 PP phase shift solution with the angular distribution of the 

H(p,p) data would apparently indicate that the q-dependence of the effective NN 

interaction is quite good in this energy range. But as was suggested above, it is 

  rob ably reasonable to question the validity of the Love-Franey prescription for the 

transformation to the N-nucleus situation. This is apparent in the very large overall 

normalizations that must be applied to make the calculations agree with the data, 

even for a nucleus like 12C whose structure is considered to be very well known. 



Chapter 5 

Summary and Conclusions 

The original aim of this experiment was to determine the a'? nuclear matrix element 

for populating the 3.56 MeV JT=O+;T = 1 state in 6Li. If accurately determined, 

comparison of this matrix element with the M1 matrix element determined from the 

y decay width measured in (eye1) scattering could measure orbital effects and meson 

exchange currents which contribute significantly to the M1 matrix element but not 

to the a'? matrix element. These effects can be reliably calculated for 6Li, and any 

remaining discrepancy between the M1 and a'? matrix elements after subtracting 

them could be attributed to a renormalization of the nuclear magnetic moment 

inside the nucleus. In the cloudy bag quark model such a renormalization can be 

attributed to a swelling of the nucleon inside the nucleus because in that model the 

magnetic moment of the "bag" scales with its radius. This calculation has been 

done for 12C, with an upper limit for the rescaling of the nucleon magnetic moment 

placed at 2%. 

The well-known proportionality of 0•‹, q = 0 (n,p) reaction cross sections to 

Gamow-Teller P decay strength allows the calibration of the proportionality con- 

stant to be obtained by comparing the known f t  value for 6He P decay to the 

6Li(n,p)6He reaction cross section. The 6Li(p,n)6Be cross section is also required 

to determine if there is any possible isospin symmetry breaking in the multiplet. 
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Isospin symmetry breaking may be expected between the three reactions due to dif- 

ferences in binding energies in the final-state nuclei. The extraction of the matrix 

element depends on being able to accurately model the reactions in order that the 

extrapolation to the q = 0 cross section be reliable. 

Because the nuclear structure of 12C is well known, and because the observed ,d 

decay f t asymmetry has already been shown to be due to binding energy differences 

the same set of measurements was performed on 12C. The proportionality described 

above implies an asymmetry of the same magnitude as the observed ft asymmetry 

should manifest itself in the cross section measurements, and in the theoretical 

calculations if the binding energy differences are accounted for in the model. These 

measurements acted as a control on the experimental method and analysis, and 

also on the theoretical calculations where they had to demonstrate whether or not 

cross section ratios for the different reactions could be calculated to an accuracy of 

several per cent. 

We have measured (n,p), (p,n) and (p,pl) reaction cross sections for 12C and 

6Li targets to A=12 and A=6 isospin multiplets. Realistic DWIA calculations give 

values for the f t  asymmetry and ratios of (n,p) to (p,pl) cross sections for A=12 

in good agreement with data. The calculated ratio of (n,p) to (p,n) cross sections 

is the same size ( x  13%) as the observed ft asymmetry. As well as confirming the 

proportionality of GT P decay strength to forward angle nucleon-nucleus cross sec- 

tions, this result also confirms that observed asymmetries in reaction cross sections 

to members of an isospin multiplet are due to binding energy differences, as is the 

case for f t asymmetries in /3 decay. 

Similar calculations for the A=6 system which assume that isospin symmetry is 

conserved show a discrepancy of % 5% between ( n , ~ )  and (p,n) cross sections, com- 

pared with (p,pf) cross sections taken at finite q values; this asymmetry may become 
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neglible upon extrapolation to q = 0. The experimental angular distributions for 

'L~(P,P') and ' ~ i ( n , ~ )  reactions show differences versud q which are not repmduced 

by the themetical calculations. Comparison with DWIA model predictions Shms 

a discrepancy of up to 45% at q = 0.65 fm-'. This discrepancy wmants further 

investigation, both experimentally and theoretically: in the former case it would be 

very useful to measure the corresponding angular distribution for the 6Li(p,n)6Be 

reaction to see if it displays similar tendencies as the (n,p) reaction; in the latter 

case some modification to the model is required to reporduce differences of such a 

large magnitude. This reflects our uncertainty in the reaction models (tNA; optical 

potentials) and the nuclear structure (transition densities; matter distributions in 

the multiplet). The inability to accurately model the reactions for A = 6 makes 

any reliable estimates or conclusions about the a'? matrix element for the 'Li(p,pl) 

reaction difficult unless progress can be made in understanding the q-dependence 

of the (p,pt) and (n,p) data. 

A better theoretical description of the nuclear structures of the lower p-shell 

nuclei would seem to be a necessary ingredient for a better understanding of the 

various effects which may be present. In particular it appears that it is necessary 

to somehow include the efects of a-d clustering in any description of the nuclear 

structure for A = 6, or in the context of the shell model to expand the model space 

beyond the l p  shell. 

The method used to normalize the 6Li(p,n)6Be reaction, which relies on the 

ratio of (n,p) to (p,n) cross sections from a DWIA calculation, gives a value of the 

12C(p,n)12N(g.s.) cross section consistent with the absolute cross sections measured 

by Watson et al. This normalization scheme gives consistency between the (p,n), 

(n,p) and (p,pl) reaction cross sections relative to the SP88 phase shift solution. 

As a byproduct, absolute H(p,p) cross sections have been measured at 280 MeV 



over a range of e,.,. = 8-23". The shape of the angular distribution agrees very well 

with the SP88 PP phase shift solution, but the experimental cross sections, while 

agreeing with other data taken at 285 MeV, are lower than SP88 by m 7.5%. We 

believe this discrepancy to be real; however, the general difficulties in measuring 

absolute cross sections, and the lack of precise NN cross sections in this energy region 

make it hazardous to be completely confident about this. Discrepancies between 

SP88 and data at many other energies in the range of 100-500 MeV (for both 

(p,p) and (n,p) scattering) indicate that a set of accurate and consistent NN cross 

section measurements at medium energies are required in order to make reliable 

comparisons between (n,p) and (p,p1) cross sections such as were necessary for this 

experiment. 
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