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ABSTRACT 

With the growing complexity of today's integrated circuit designs, engineers have 

abandoned the use of pure functional test vectors wherever possible, and adopted 

various DFT solutions to make their designs more test-friendly. The most common DFT 

approach for digital designs is scan insertion and automatic test pattern generation 

(ATPG). ATPG is performed based on fault models associated with the design or gates 

within the design. Traditionally, the most popular model is the stuck-at model. However, 

as transistor size continues to shrink, new defect mechanisms start to appear that affect 

the speed of the design, and so can no longer be properly modelled by this model. 

Consequently, a new fault model called transition-delay fault models is created to allow 

ATPG to detect at-speed defects. Another model called path-delay fault model is also 

created for speed-gradinglbinning and I10 timing characterization on scan-inserted 

designs. 

As part of an ongoing DFT development for PMC-Sierra Inc., a suite of 

automation flows have been implemented to perform AC-Scan ATPG. This includes 

transition-delay ATPG with DC top-up ATPG for delay defect detection, path-delay 

ATPG for speed-gradinglbinning and I10 timing characterization, and AC-scan ATPG for 

RAM interfaces with multi-load algorithm. 



DEDICATION 

To my parents, my wife and my unborn child. 



ACKNOWLEDGEMENTS 

I would like to thank Dr. Karim S. Karim for his supervision during the progress of 

this project. His willingness to take on the supervisory duties and meaningful advices 

during the course of this project is most appreciated. I would also like to thank Dr. Karim 

Arabi for his constant supervision and mentoring during the progression of this project 

and the past four years. I would not have been able to become a qualified and 

successful DFT engineer without his guidance. 



TABLE OF CONTENTS 

. . 
Approval ........................................................................................................................ 11 

... 
Abstract ........................................................................................................................ III 
Dedication ..................................................................................................................... iv 

Acknowledgements ....................................................................................................... v 

Table of Contents ........................................................................................................ vi 
... 

List of Figures ............................................................................................................ VIII 

List of tables ............................................................................................................ ix 

List of Abbreviations ..................................................................................................... x 

Chapter 1 
1 . 1 
1.2 

1.2.1 
1.2.2 

1.3 

Chapter 2 
2.1 

2.1 . 1 
2.1.2 
2.1.3 

2.2 

Chapter 3 
3.1 
3.2 

3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 

3.3 
3.4 

3.4.1 
3.4.2 
3.4.3 

INTRODUCTION AND BACKGROUND .................................................. 1 
General Overview of Integrated Circuit Testing ............................................ 1 
Automated Testing: Scan Insertion and Automatic Test Pattern 

................................................................................................... Generation 3 
.............................................................................................. Scan Insertion 4 

Automatic Test Pattern Generation (ATPG) ................................................. 5 
Need for At-Speed Testing .......................................................................... 7 

PROJECT DESCRIPTION ....................................................................... 9 
Project and Report Overview ....................................................................... 9 
Develop AC-Scan ATPG flow for physical defect detection .......................... 9 
Develop AC-Scan ATPG flow to qualify operating speed of devices .......... 10 
Develop AC-Scan ATPG flow for at-speed test of RAM interface ............... 10 
Project significance .................................................................................... 10 

................................................................. TRANSITION-DELAY ATPG 12 
......................................................... Transition-Delay ATPG Methodology 12 

................................................... Transition-Delay ATPG Flow Description 14 
Generate all files to automate flow ............................................................. 15 
Identify and group functional clock domains ........................................ 16 
Performing ATPG in AC transition-delay mode .......................................... 18 

........................................................... Fault grading in AC and DC modes 18 
Perform ATPG in DC (stuck-at) mode for coverage top-up ........................ 19 

............................................................................................... Benchmarks 19 
............................................................ Scan Strategy for AC-Mode ATPG 20 

........................................................................ Pin sharing for scan clocks 20 
Testability with block-level ATPG ............................................................... 21 

............................................................................... Launch-on-shift ATPG 23 



Chapter 4 
4.1 
4.2 

4.2.1 
4.2.2 
4.2.3 
4.2.4 

4.3 
4.3.1 
4.3.2 
4.3.3 

4.4 
4.4.1 
4.4.2 
4.4.3 

Chapter 5 
5.1 

5.1.1 
5.1.2 

5.2 
5.2.1 
5.2.2 
5.2.3 

5.3 

Chapter 6 

Chapter 7 

PATH-DELAY ATPG ............................................................................. 25 
Path-Delay ATPG Methodology for Speed-GradingIBinning ...................... 25 
Path-Delay ATPG Methodology for Input~Output Characterization ............. 28 
Input setuplhold characterization ............................................................... 29 
Output data propagation characterization .................................................. 31 
Output tristate characterization: 1 C + Z  .................................................... 32 
Output tristate characterization: 0 C +Z .................................................... 34 
Path-Delay ATPG Flow Description ........................................................... 35 
Generate all files to automate flow ............................................................. 36 
Performing ATPG in AC path-delay mode ................................................. 37 
Pattern post-processing ............................................................................. 38 
AC Path-delay ATPG Issues ...................................................................... 38 
Acceptable test coverage ........................................................................... 39 
Clock source for I10 characterization ......................................................... 40 
Path Selection Issues Related to Speed-GradingIBinning .......................... 40 

AT-SPEED ATPG ON RAM INTERFACE .............................................. 43 
Overview of RAM Interface ........................................................................ 43 
MEB: Active-Low Module Enable .............................................................. 44 
OEB: Active-low Output Enable ................................................................ 45 
At-Speed ATPG Methodology for RAM Interface ....................................... 45 
Testing DIN of RAM ................................................................................... 45 
Testing ADDR of RAM ............................................................................... 47 
Testing DOUT of RAM ............................................................................... 49 
RAM ATPG Issue(s) .................................................................................. 52 

TEST-CASE RESULTS ......................................................................... 53 

CONCLUSION .................................................................................... 56 

................................................................................................................ Bibliography 59 



LIST OF FIGURES 

Figure 1 : Scan insertion through replacement and stitching of flip-flops ....................... 4 

Figure 2: AC-Scan Transition-delay ATPG example .................................................. 13 

Figure 3: AC-Scan Transition-delay ATPG flow chart ................................................ 15 

........................................................................ Figure 4: Clock sharing in scan mode 21 

....................................................... Figure 5: Launch-on-capture VS . launch-on-shift 23 

........................................................... Figure 6: AC-Scan path-delay ATPG example 27 

Figure 7: AC-Scan input setuplhold characterization ................................................. 30 

................................... Figure 8: AC-Scan output data-propagataion characterization 32 

.................................................... Figure 9: Output tristate characterization (1 and Z) 33 

Figure 10: AC-Scan output tristate characterization (0 and Z) ...................................... 34 

Figure 11 : AC-Scan path-delay ATPG flow-chart ......................................................... 36 

Figure 12: Simplified diagram of RAM interface ........................................................... 44 

Figure 13: Testing DIN of RAM .................................................................................... 46 

Figure 14: Testing ADDR of RAM ................................................................................ 48 

Figure 15: Testing DOUT of RAM ................................................................................ 50 

Figure 16: AC Transition-delay coverage VS . pattern count ........................................ 55 



LIST OF TABLES 

Table 1 : Test-case results for AC-scan Transition-delay ATPG .................................... 53 

Table 2: Test-case results for AC-scan Path-delay ATPG ............................................ 55 



LIST OF ABBREVIATIONS 

ATE 
ATPG 
BlST 
DFT 
DLL 
DUT 
EDA 
110 
IC 
PI 
PLL 
PO 
RAM 
SE 
s o c  
STA 

Automated Test Equipment 
Automatic Test Pattern Generation 
Built-in Self Test 
Design for Testability 
Delay Lock Loop 
Device under Test 
Electronic Design Automation 
InpuVOutput 
Integrated Circuit 
Primary Input 
Phase lock Loop 
Primary Output 
Random Access Memory 
Scan-Enable 
System-on-a-Chip 
Static Timing Analysis 



CHAPTER 1 INTRODUCTION AND BACKGROUND 

1.1 General Overview of lntegrated Circuit Testing 

A majority of today's digital electronic components consists of collections of 

Silicon-based lntegrated Circuits (ICs). Generally speaking, each piece of IC is 

designed to perform certain digital or logical functions at a particular speed. However, 

manufacturing process variations and/or contaminations during IC fabrication may cause 

the actual silicon to deviate from the targeted performance or malfunction altogether. 

Hence, it is important that every fabricated piece of IC be thoroughly tested to guarantee 

its quality. This is the driving force behind a variety of IC test approaches. 

Similar to testing of any system, the basic idea of digital IC testing is to apply 

stimuli to the device under test (DUT), and compare the actual output of the DUT with 

the expected response. The collection of input stimuli and associated expected output 

responses are called test vectors. More specifically, in a set of test vectors, different 

combinations and sequences of logic zeroes and ones are applied onto the primary input 

(PI) ports of the DUT. These sequences are meant to sensitize portions of the DUT's 

internal circuitry, causing it to change the logic states of related primary output (PO) 

ports. The vectors contain the expected response of a working DUT based on the input 

stimuli, and compares the actual output logic values with the expected values. A 

mismatch between the expected and actual circuit behaviour would indicate that a faulty 

DUT has been detected and that it is to be discarded. 



To measure the effectiveness of a set of test vectors, the notion of test coverage 

needs to be introduced. Test coverage is a measurement of the percentage of the 

circuit's total gates that is properly tested with the test vectors. Ideally, this needs to be 

100% such that every gate in the design is tested to guarantee that the DUT is validated 

in its entirety. However, this is not always a realistic goal. In general, 95% is considered 

acceptable for ICs implemented in older technologies, and 97%-99% is needed for ICs in 

more current technologies. 

A piece of IC is tested by being placed on an automated test equipment (ATE), 

also called production tester.[l] The I10 ports of the IC are connected to tester channels 

of the tester. Furthermore, test vectors are stored in the tester, which applies the stimuli 

to the IC's input ports and compares the output response from the IC's output ports 

through the tester channels. There is only a finite amount of storage space in an ATE, 

meaning that the desired test coverage must be achieved by a finite number of test 

vectors. This number, defined as vector count, must be less than the physical memory 

limitation of the tester to be fully loaded into it. In a way, vector count is a benchmark of 

the vector efficiency. Older testers can store up to eight million test vectors while newer 

ones have memory upper bounds at 32 million vectors or higher. Aside from avoiding 

reaching the tester memory limit, it is always good practice to keep the vector count low 

due to the high cost of tester time. 

Before the advent of any structured testing approaches, test vectors are often in 

the form of manually written functional testbenches. These testbenches are designed to 

sensitize as many gates in the design as possible through functional operations of the 

device. They are usually derived from simulation vectors written as part of design 

verification to confirm behavioural specification of the design. [I] This kind of test 

approach is often inefficient and ineffective due to the difficulties to cover all corner 



cases of the design with limited availability of vector space and manpower, especially for 

today's multi-million gate designs. A large part of the inadequacies of these manually 

written vectors, also called functional test vectors, is due to the existence of sequential 

elements such as flip-flops and latches which create depth in the design: In an edge- 

triggered design, in order to test a gate embedded in the core of a block of digital circuit, 

the input stimuli must traverse through multiple layers of flip-flops to sensitize the gate, 

and similarly the output of the gate must travel through multiple layers of flip-flops before 

arriving at a primary output to be observed. As designs increase in complexity and 

levels of sequential elements grow, vector count increases exponentially due to the 

limited number of 110s available to traverse the depth of the core logic. It is clear that IC 

testing will become unmanageable without a more structured as well as more automated 

approach. 

1.2 Automated Testing: Scan Insertion and Automatic Test 
Pattern Generation 

As ICs become increasingly more difficult to test through conventional functional 

vectors, IC engineers start to design test structures into digital circuits to help ease the 

burden of testing. This concept of making circuits more testable is called Design-for- 

Testability (DFT). As mentioned, the major contributor to the complexity of the functional 

test vectors is the existence of flip-flops and the stages of pipelines they create. 

However, this issue can be resolved if the flip-flops can be made directly controllable 

and observable. This idea is realized through scan-insertion, a conceptually simple and 

highly automated DFT implementation method, and one of the most useful solutions 

offered by DFT to make digital IC testing manageable. In today's IC design industry, a 

large part of quality assurance of digital ICs is based on running scan test vectors 

through a scan-inserted (also called scan-stitched) design. [ I ]  From the view of a 



designer, this involves two main steps: scan insertion, and automatic test pattern 

generation (ATPG). 

1.2.1 Scan Insertion 

Figure 1: Scan insertion through replacement and stitching of flip-flops 

DIAGRAM A: 
pre-scanned 
gate-level 
description 

scan h P  qqjqT 

post-scanned 

port 

Assume all CP pins of all flops are toggled 
by the same clock source 

SE diagram B is the scan-inserted version of 

~~nnnn r u m  diagram A. 

diagram B contains a single scan chain 
shift capture shift stitching together all 5 flops (see gray line) 

SE=O for diagram B to operate identically 
to diagram A 

The following is a description of scan insertion: After a design has been 

synthesized down to a gate-level description (also called a netlist), an electronic-design- 

automation (EDA) tool such as DFTAdvisor from Mentor Graphics or DFTCompiler from 



Synopsys Inc. is used to link together all edge-triggered sequential elements to form 

long chains of shift registers called scan chains. [2] This process requires the 

introduction of a DFT-specific input pin called scan-enable (SE). [ I ]  Usually, an SE- 

controlled Multiplexer is inserted onto the data input of every D-flop such that the 

functional input is routed into the flop when SE is assigned '0' and another scan-mode 

data input, normally called scan-in, is routed in when SE is assigned '1 '. The scan-chain 

is constructed by connecting the output of one flop to the scan-in of the next flop, 

forming a long shift-register when SE equals '1 '. The scan-in of the first flop in the chain 

is driven by a device-level scan-in port; and the output of the last flop in the chain drives 

a device-level scan-out port. SE is held at '0' while the device is operating in functional 

mode so that functional data paths are carrying data across. Above is a diagram 

depicting scan insertion. 

1.2.2 Automatic Test Pattern Generation (ATPG) 

With the scan chains constructed, the flops are transformed from deeply 

embedded internal nodes of the circuits into control and observe points for testing. This 

is accomplished by asserting SE to '1' and pumping data onto each flop in the scan 

chain(s), with continuous clock pulses, from the device-level scan-in port(s). The data 

shifted into the flops (also called scan cells) are the input stimuli that launch into the 

functional paths from the flops' outputs and arrive at the data-input of other scan cells, 

sensitizing combinational gates along the way. Then, SE is de-asserted to break the 

scan chains and connect the functional paths, and clock signals are pulsed to capture 

the data traversed through the functional paths onto the scan cells. Finally, the same 

shift operation is done to pump the captured data out through the scan-out port. The 

data shifted out make up the device's response to the input stimuli from the shift-in 



operation and are compared for mismatches. Because of the structured nature of scan- 

testing, today's EDA tools, such as FastScan from Mentor Graphics or TetraMAX from 

Synopsys Inc., make use of this shift-and-capture sequence to automatically create test 

patternslvectors to validate the circuits efficiently, usually achieving 95% test coverage 

or higher at reasonable vectorlpattern count. Because of its consistent delivery of 

results, the approach of using EDA tools to automatically generate scan vectors is the 

mainstream method of creating test vectors today. 

At this point, it is worthwhile to define some of the commonly used terms for 

ATPG: Each clock pulse while SE equals '1' forms a shift vector; Each clock pulse 

while SE equals '0' is called a capture vector or capture cycle; The entire sequence of 

continuous shift operations that fully load andlor unload the scan chains in the design is 

called a shift sequence or loadlunload operation; A shift-sequence and the capture 

vector(s) immediately trailing it together form a test pattern or scan pattern. 

In order to perform test patternlvector generation, the ATPG tools use fault 

models to describe the behaviour of physical defects. Traditionally, the most commonly 

used model is called the stuck-at model, which translates all physical defects of digital 

circuits into particular nodes or pins of digital gates being unable to make transitions and 

so permanently "stuck" at a particular logic level. [3] Since the model assumes that 

faulty gates are permanently connected to VDD or VSS, scan-testing can be done at 

very low speed as the stuck-at values are always present without regards to clock 

frequency. This model has been one of the best tools for testing IC, but its usefulness is 

diminishing as IC technology makes its advances into 0.1 3um and 90nm. 



1.3 Need for At-Speed Testing 

As advancements are made to design, development and fabrication of ICs, chips 

are made to run faster and faster and are designed to contain more and more complex 

functionalities. [4] This drive for faster performance and System-On-a-Chip (SoC) 

design structure pushes the boundary of IC fabrication, reducing the transistor size. 

From a test perspective, the ever-shrinking transistor in deep-submicron technology has 

caused the emergence of new defect mechanisms such as resistive via. Faulty gates 

with this type of defect mechanism exhibit the behaviour of very slow data transitions. [5] 

In other words, the gate still correctly makes the transition, just not at a high enough 

speed. To detect this type of faults, a new DFT strategy is needed to test the device at 

its functional operating frequency. [6] One has been derived from the conventional 

scanIATPG approach: at-speed scanIATPG, also called AC-scanIATPG. To distinguish 

itself from AC-Scan, the conventional scanIATPG methodology with stuck-at fault model 

is also called DC-ScanIATPG. 

Clearly, this new type of defects cannot be modelled by "permanently stuck-at" 

logic levels, and so requires a set of new "temporarily stuck-at" fault models that 

accomplish scan-testing at or close to the device's functional frequency of operation. 

There are two fault models introduced: transition-delay model, and path-delay model. [7] 

The current industry trend is to use these models to augment stuck-at models. 

However, they soon will become the dominant fault models. 

With Transition-delay fault model, a digital gate is modelled such that a transition 

(0-to-1 or 1 -to-0) on its inputs must result in a corresponding transition on the output. [7] 

The ATPG tool running with this type of modelling creates test patterns to launch a 

transition (rather than a constant value as in the case of DC-scan) into the targeted input 



of the gate, then captures the corresponding post-transitioned value of the gate's output 

onto a scan-cell, and finally shifts out the scan-cell value to verify the transition. Path- 

delay fault model is similar to transition-delay model. The difference is that, with path- 

delay model, the transition is defined on an entire path (i.e. from source flop to 

destination flop through all combinational gates in between). This fault model is used to 

characterize an entire path. It is ideal for speed-binning or speed-grading in which the 

critical paths are selected to be sensitized by the ATPG tool. The tool then tests if a 

transition on the source flop can result in a corresponding transition on the destination 

flop within the specified speed. A failure does not necessarily mean physical defect, but 

rather than the "faulty" chip may belong to a lower grade of ICs and sold as a less 

expensive part. 



CHAPTER 2 PROJECT DESCRIPTION 

2.1 Project and Report Overview 

The project to be described by this report is on the implementation of an industry- 

standard AC-Scan and ATPG automation flow to enable at-speed test for PMC-Sierra 

Inc.. PMC-Sierra is a "fabless" semiconductor design house. Its core technology 

revolves around developing ICs that enables transmission, processing and storage of 

Internet data, as well as general-purpose microprocessors. The project enables at- 

speed testing of ICs using existing DFT structures contained within the ICs, including 

scan-flops and various clock gating architectures to provide clock controllability during 

testing. This project is further broken down into the following components each of which 

will be discussed in detail in a later chapter of this report: 

2.1.1 Develop AC-Scan ATPG flow for physical defect detection 

This component requires the implementation of a push-button automation flow to 

automatically create test patterns with the transition-delay fault model. It is described in 

Chapter 3. From the perspective of this report, issues related to design partitioning in 

the context of AC-scan is of more interest than the actual coding of scripts to run the 

ATPG tool. Therefore, the discussion will focus on the design intrusions, automation 

flow and pitfalls. 



2.1.2 Develop AC-Scan ATPG flow to qualify operating speed of devices 

This component is discussed in Chapter 4. There are two sub-components in the 

discussion both of which revolve around ATPG with path-delay fault models: One is the 

normal ATPG of internal (flop-to-flop) data paths for speed-gradinglbinning. The other is 

AC-Scan ATPG on paths connected fromlto device-level primary 110s to verify their 

timing specifications on silicon (also called 110 characterization). There are some design 

related issues here such as access of delay-locked loop (DLL) in AC-Scan mode that 

are also explored. Also, the choice of data-paths for speed-grading is discussed. 

2.1.3 Develop AC-Scan ATPG flow for at-speed test of RAM interface 

Neither of the two components above supports at-speeding testing of RAM 

interfaces due to the complexity of the ATPG algorithm when testing RAMs. Chapter 5 

describes an ATPG flow based on AC-Scan that specifically targets data and address 

buses of RAMs. More specifically, the ATPG algorithm of the ATPG tool itself is 

described, and some design-related issues are also discussed. 

2.2 Project significance 

This project bares a high degree of significance to PMC-Sierra. In a cost-driven 

business environment, it is important to keep every working part to maintain good profit 

margin for the company, and discard every defective part to ensure customer 

confidence. This means there is to be no or at least next-to-none test-escapes and 

false-rejects. This need is further magnified by the lower yields due to immaturity of the 

newer technologies. Lower yield increases the likelihood of faulty parts and therefore 

the opportunity for test-escapes, hence placing a tougher constraint on test coverage 

which is directly proportional to vector count. Even though the financial benefits of 



testable designs are not easy to quantify [8], the use of structured tests will shorten the 

design cycle and result in overall savings to the company. [9] The generation and use of 

test patterns is a major contributor to the overall cost of IC development. ATPG itself is 

a non-recurring cost that only applies during the design phase. [9] This includes cost of 

human engineering resource, license cost for the usage and maintenance of ATPG 

tools, computer resources. The more major cost here is the actual test time of each 

fabricated silicon as it is a recurring cost that applies to every piece of IC to be shipped 

to customer or discarded due to detected defects. [9] Therefore, it is vital that a straight- 

forward ATPG flow is put in place to ensure efficient vector count at acceptable test 

coverage. 



CHAPTER 3 TRANSITION-DELAY ATPG 

3.1 Transition-Delay ATPG Methodology 

As mentioned, Transition-delay fault model is used to detect at-speed 

manufacturing defects on silicon. With this fault model, a digital gate is modelled such 

that a transition (0-to-1 or 1 -to-0) on its inputs must result in a corresponding transition 

on the output. The ATPG tool is designed to understand the model, and creates two 

consecutive clock pulses at fast clock frequency to make up the capture cycles, a 

procedure called double-pulse. [I  01 Using shift-in operation, it first presets the input of 

the gates with the pre-transition value in preparation for the double-pulse, then launches 

the post-transition value into the gate from a scan cell with the first clock pulse to cause 

a transition on the gate's output, and tries to capture the final value on the gate's output 

with the second pulse onto a scan cell connected to the output of the gate. Finally, 

contents of the scan chains are shifted out for comparison. Please note that the model 

itself does not specify the propagation speed of the input transition to the output, but 

rather just specifies the values before and after the transition. As long as a transition on 

the gate of interest is properly launched and captured through the double-pulse of the 

clock, the fault is considered to be detected at-speed. This way, it is up to the designer 

to choose a clock frequency for the double-pulse and the tool to implement it. The 

following diagram provides an example of transition-delay ATPG and the method of 

detecting at-speed faults using double-pulse of the clock. 



Figure 2: AC-Scan Transition-delay ATPG example 

flop A (value on Q) flop D (value on Q) 
after shill 1 after shill 0 
after launch pulse don't care after launch pulse 1 
after capture pulse don't care after capture pulse don't care 

scan out port 
I=> 

flop E (value on Q) 
after sh~ft don't care 
after launch pulse 0 
after capture pulse 1 

flop B (value on Q) flop C (value on Q) 
after sh~ft 1 after shlft 1 
after launch pulse don't care after launch pulse 1 
after capture pulse don't care after capture pulse don't care 

The diagram above shows five scan flops linked together into one single scan 

chain. SE pin of all flops are connected together, as with CP pins. The 0+1 transition 

on the input of the AND gate connected to Q of flop D is targeted transition-delay ATPG. 

The basic idea here is that the pattern must launch a 040-1 transition on the targeted 

input of the AND gate; all other inputs to the AND gate must stay transparent to allow 

the targeted transition through the gate; finally the destination flop must capture the post- 

transitioned value so that it can be shifted out. Here is how the test is accomplished in 

detail: A '0' is shifted into flop D to drive the targeted input of the AND to '0'; A '1' is 

shifted into flop C such that the OR gate drives a '1 ' into the non-targeted input of the 

AND, hence allow the preset value '0' to be observed by flop E. Then SE (also called 

scan-en) drops to '0' to activate functional paths. The launch clock pulse launches the 



'1' shifted into flop A across flop D to start the propagation. This pulse also launches the 

'1 ' shifted into flop 6 across flop C to maintain the '1 ' on the OR gate. The capture 

pulse, which follows immediately after the launch pulse to form the at-speed clock 

period, captures the '1' through the AND gate from flop D onto flop E. Then the shift-out 

operation will pipe the data on flop E out to the scan-out port for observation. In the 

presence of an at-speed defect on the targeted input of the AND gate, the transition 

launched from flop A would have been too slow to register the '1' on flop E, causing a 

mismatch. 

3.2 Transition-Delay ATPG Flow Description 

With the concept of AC-Scan transition-delay ATPG understood, an automation 

flow is created to generate test transition-delay patterns on designs requiring at-speed 

defect detection. Generally speaking, the flow specifies design-specific double-pulse 

sequences and relies on the ATPG tool to generate patterns accordingly, but there are 

more details involved. The diagram below is a flow chart of AC-Scan ATPG flow for 

Transition-Delay model. It is broken down into 6 stages each of which is described more 

closely in the paragraphs following: 



Figure 3: AC-Scan Transition-delay ATPG flow chart 
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3.2.1 Generate all files to automate flow 

This is stage one of the flow. Since the flow is automated and generic across all 

designs, user only needs to enter information needed by the flow in a design-info file. 

This file is fed into a script that generates all files necessary to accomplish downstream 

tasks. There are several advantages to this type of design methodology: 

Automated design flow shortens development time and increases efficiency, allowing 

designers to concentrate on tasks specific to the design. 



A single data file at the start of the flow creates a clear point of intrusion, making 

debugging easier. 

Running through ATPG requires expertise in the area of DFT. The flow is designed 

to provide a higher level of abstraction to allow designers without relevant knowledge 

andlor experience to still accomplish their jobs. In essence, automation flows are 

designed to shield designers from the intricate details of the tools contained within. 

This creates more clear-cut knowledge boundaries and better technical organization. 

3.2.2 Identify and group functional clock domains 

This is stage two of the flow. In this stage, static timing analysis tool is used to 

classify different branches of the scan-mode clock source into functional clock domains. 

A piece of integrated circuit can be partitioned according to the clock source of a 

collection of sequential elements. A group of flops driven by the same clock source in 

normal functionalloperational mode, along with the combinational logic surrounding the 

flops, forms a single partition, called a functional clock domain. Each functional clock 

domain toggles at its own specified speed according to design requirements. Therefore, 

to perform at-speed test, it is necessary to be able to exercise each domain at its own 

clock frequency. This presents a unique challenge in scan-mode as, due to pin limitation 

and characteristics of clocking strategy, several functional domains may be driven from 

the same scan-mode clock sourcelpin, making it hard to target only a particular portion 

that corresponds to a functional domain. To be more specific, if a scan-mode clock pin 

toggles two functional clock domains, one at 77MHz, the other at 31 1 MHz, testing the 

31 1 MHz portion of the flop collection at-speed would result in massive false failures in 

the 77MHz portion because data paths formed by the flops in the 77MHz domain are not 



designed to run at any higher speed. Alternatively, testing the entire collection of flops at 

77MHz would mean that the 31 1 MHz portion is not stressed enough to present realistic 

test coverage. 

Therefore, this stage of the flow tries to partition and cleverly group the different 

functional domains within the scan-mode clock source(s), and then builds the ATPG 

invocation files to help target only a single group of non-conflicting functional domains for 

each ATPG run coming up later. Each invocation file targets a particular domain group 

by masking out all flops not in the targeted group. 

The grouping of functional domains depends on pin equivalency of the scan- 

mode clock sources/pins. The default behaviour is that domains can only be grouped 

together within a single ATPG run if they are all driven from different scan-mode clock 

pins and none of the clock pins are pin-equivalent (i.e. none are forced to toggle at the 

same time during capture mode of scan operation). The following example illustrate this 

idea better: 

A block of circuits has five functional clock domains (A, B, C, D and E ) and three 

scan mode clock pins (clkl, clk2 and ecbi-wrb), and following configurations: 

Clkl controls functional domain A during scan testing. 

Clk2 controls functional domains B, C during scan testing. 

Ecbi-wrb controls functional domain D, E during scan testing. 

Clkl and clk2 are pin-equivalent (i.e. they are to toggle in identical fashion). 

Therefore, according to the rules above, here are the clock groups: 



group 1 : toggle clkl and ecbi-wrb to target domains A and D respectively. 

group 2: toggle clk2 and ecbi-wrb to target domains B and E respectively. 

group 3: toggle clk2 to target domain C 

Each group will become an ATPG run in the next stage. 

3.2.3 Performing ATPG in AC transition-delay mode 

This is stage three of the flow. In this stage, ATPG is run for each group of 

functional clock domains using the generated files from stages one and two. If run 

successfully, each ATPG will result in the generation of a pattern file containing AC-scan 

transition-delay patterns targeting a specify group of clock domains. 

3.2.4 Fault grading in AC and DC modes 

In this stage, the patterns generated from the previous stage is fed back into the 

ATPG tool to find the total coverage offered by the entire collection of patterns. This is a 

process known as fault-grading. Even though the intended targets of all ATPG runs are 

mutually exclusive, some tested faults, such as the faults in the scan chains, are still 

accounted for in more than one run. Therefore, fault-grading is not as simple as 

summing together the coverage number of all runs. 

Fault-grading is performed with AC transition-delay fault model to produce the 

final AC coverage percentage, as well as with DC stuck-at fault model to produce the 

achieved DC coverage embedded in the AC pattern. [7] Also, a list of DC-mode non- 

testable faults is written out in preparation for DC (stuck-at) pattern top-up. 



3.2.5 Perform ATPG in DC (stuck-at) mode for coverage top-up 

Stage four of the flow created coverage percentage of the AC patterns in DC 

mode as a side benefit. At the same time, a list of non-testable faults is in DC mode 

generated. In stages five and six, this list is collected to form the target fault list for DC- 

mode pattern top-up. The purpose of this top-up is to save tester memory and test time 

by avoiding generating full DC patterns. In stage six, ATPG is invoked in DC mode 

using the generated invocation files from stage one and the fault list from stage five. 

The run should result in the generation of a DC pattern file targeting the fault list. The 

final total DC coverage is recorded in the log file. This completes the flow. 

3.3 Benchmarks 

Typical AC coverage for a block with 95% DC coverage is between 60% to 85%. 

AC patternlvector count is usually between three to five times of the DC counterpart. 

Here are some of the reasons for the lower coverage in AC when compared to DC: 

Reset lines are not tested. This is acceptable because reset typically only requires 

DC coverage. 

Cross-clock paths are not tested. Since ATPG targets each functional clock domain, 

data paths traversing through the domains are not tested. This is usually an 

acceptable limiting factor in coverage target as well, because cross-clock paths are 

usually false-paths and not qualified at a particular clock frequency. 

Block boundaries are hard to test due to the double-capture scheme. This 

characteristic will be explained further in detail in the next section. 



4. Transition-delay model is a more complex model than the stuck-at model because it 

involves setting up a targeted node with two opposing logic values to test for any one 

fault, whereas stuck-at model only requires a single value to be propagated onto the 

node. This added complexity inherently results in negative impact on the 

performance of the ATPG tools and therefore pattern generation efficiency and 

effectiveness. [7] 

5. This flow does not test RAM interfaces. RAM testing requires a more elaborate 

ATPG algorithm called multi-load ATPG. In multi-load ATPG, data is written into 

selected locations of the RAM in at-speed fashion in one pattern, then is retrieved in 

at-speed fashion from the same locations in a later pattern. This requires the ATPG 

tool to keep track of the content of RAM at all times. To ensure pattern efficiency on 

the logic away from RAM interfaces, RAMS will be tested in a completely separate 

AC-scan ATPG run and the coverage gained from there is additive to the results 

obtained in this flow. 

3.4 Scan Strategy for AC-Mode ATPG 

This section introduces some of the scan strategies to enable AC transition-delay 

ATPG and DFT in general. More specifically, the necessity of scan clock sharing is 

described as well as strategies for coverage increase such as block-level ATPG and 

launch-off-shift ATPG. 

3.4.1 Pin sharing for scan clocks 

As mentioned earlier, a device can be partitioned according to functional clock 

domains. Flops inside each functional clock domain are driven by the same clock 

source. There are two classes of clock sources, those coming directly from device-level 



input ports, and those driven internally by phase-lock-loops (PLLs), clock dividers, or 

interrupts which are in the forms of clock lines driven by output of a flop. The lack of 

direct top-level pin controllability in the second class of clock sources poses a DFT 

problem since a flop without a clock port at device-level cannot be inserted into scan 

chains. Therefore, non-timing-critical data ports are selected to multiplex into the clock 

path in scan mode and serve as the clock source (see diagram below). This allows the 

flops in a clock domain with internal functional clock source to be scanned, hence 

increases testability of the device. 

Figure 4: Clock sharing in scan mode 
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3.4.2 Testability with block-level ATPG 

Netlists with gate count beyond 1.5 Million are usually too large a target for any 

of the currently available ATPG tools. Therefore, to make DFT possible for large 

devices, hierarchical DFT is used such that sub-blocks of the device are targeted 

individually for scan insertion and ATPG. ATPG creates test vectors which, in essence, 



is a testbench containing stimuli to the DUT and expected response from it. In order to 

ensure that patterns generated at block level can still be applied at device-level, 

functional 110s of the block need to be masked out such that the only useable 110s are 

scan-related pins such as scan-in bus, scan-out bus, scan-enable (also referred to as 

SE), and scan mode clocks. This type of pin masking is necessary because the only 

pins that can be guaranteed by a generic DFT implementation methodology to map one- 

to-one from block-level to the device are scan-related pins. All connections of block- 

level functional 110s are design-dependent and cannot be used during block-level ATPG 

because their top-level wiring is unknown at this stage. 

Masking out functional 110 results in a testability hit because inputs will be 

launching 'X' into the boundary interface and output cannot be used to observe data 

coming out of them. Though, with DFT-friendly partition practices, design can be broken 

into block in which the block-level functional 110s are immediately registered by flops on 

the boundary of the block. This will minimize the negative impact of testability drop due 

to uncontrollable/unobservable functional 110s in DC scan mode since there is minimal 

logic on the edge of the block. 

However, providing registers for functional 110s alone is not sufficient for 

maintaining reasonable AC scan coverage. Because testing circuit at-speed requires 

two consecutive clock pulses, the X's on the inputs are launched across the boundary 

flops and contaminates logic between the boundary flops and core flops. The impact on 

test coverage by this behaviour depends on the amount of logic contaminated by the X's 

and can be quite significant. To resolve this issue, the following workaround is 

introduced: Scan input boundary flops of the block into a standalone scan chain with a 

dedicated scan-enable (SE). For block-level AC-scan ATPG, hold scan-enable of the 

input boundary scan chain constantly high such that chain structure is maintained 



through the double-pulse of the scan clock(s). This way, value launched into the logic 

after an input boundary flop will be data shifted into the previous scan element in the 

chain, instead of the 'X' from functional input. Note that since the scan chain is 

maintained, scan paths in the chain will be targeted for at-speed test. Therefore it is 

important to either specifically exclude the scan paths in ATPG or synthesize the input 

boundary scan paths at functional speed. 

3.4.3 Launch-on-shift ATPG 

So far, the double-pulse clocking scheme discussed is termed as broadside or 

launch-on-capture. The name comes from the fact that scan-enable (SE) falls to '0' long 

before the start of the launch pulse and stays at '0' through both clock pulses. [7] This 

approach best mimics the functional behaviour of the DUT. However, it places strains 

on the ATPG tool to back-track through potentially large logic cones to place onto the D 

input of flops the correct logic value so that a properly transition can be launched 

through the double-pulse. This peculiarity, depending on the capability of the ATPG tool, 

can limit test coverage and result in long run time. 

Figure 5: Launch-on-capture VS. launch-on-shift 
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The launch-on-shift scheme (as shown in the above diagram) offers a slightly 

different way of controlling scan-enable (SE). With this method, scan-enable is held high 

through the launch pulse and drops before the capture pulse. Its advantage is that the 

launch data becomes the output of the previous scan-element in the scan chain rather 

than the output of logical cones in the functional path. This makes ATPG much easier 

on the tool because the launch pulse becomes the final shift cycle and the tool can avoid 

traversing clouds of combinational logic to derive launch values. The problem with this 

approach is the strain put into building a tight clock tree for scan-enable (SE). Because 

the double-pulse is issued at-speed, most of the time there is only a few nanoseconds 

between the pulses. This is not a lot of time to have scan-enable fully propagated into 

the SE pin of every flop in the design. Balancing such a large clock-tree is quite 

challenging, and much of the time impossible given the area constraints and routing 

congestion. Therefore, launch-on-shift is not widely adopted in the industry. 



CHAPTER 4 PATH-DELAY ATPG 

4.1 Path-Delay ATPG Methodology for Speed-GradingJBinning 

Before diving into the specifics of the speed-gradinglbinning with scan vectors, it 

is worthwhile to discuss the specific characteristics of test vectors used for speed- 

binninglgrading. A synchronous digital design consists of sequential elements such as 

flip-flops and data-paths linking the sequential elements to each other and to device- 

level I10 ports. For the discussion of speed-gradinglbinning, the definition of a data-path 

can be simplified to be a passage from a source flop to the destination flop through a 

collection of combinational gates. Within a clock domain, upon a clock edge, all flops 

simultaneously sample data fed into them by the data-path attached to their inputs, and 

launch that same data to the paths connected to their outputs. This means that data 

sent out from the source flop on a clock edge must arrivekettle at the destination flop 

before the next clock edge, or a setup timing violation has occurred. Since data-paths 

vary in length, the longest path, called the critical path, determines the gap between two 

consecutive clock edges and therefore the operational frequency of the device. 

Typically, speed-gradinglbinning vectors are designed to exercise the critical paths in the 

design through consecutive clock pulses. By shrinking the duration between the clock 

pulses, the exercised paths will have less time to complete their data propagation from 

the source flop to the destination flop. The minimum gap between the clock pulses, or 

the minimum clock period, such that data can still be transferred across the targeted 

data-paths marks the speed or grade of the device. Therefore, for speed-grading, the 

same set of test vectors are run on the DUT multiple times, each time with an 



incrementally shorter clock period until mismatches occur between the DUT's actual 

response and expected outcome. Then the DUT is said to be graded for the most recent 

passing clock periodlfrequency. A speed-binning operation is similar to speed-grading, 

except with only a few steps of clock period increments. During speed-binning, critical 

paths of a DUT is subjected to testing with the same vectors multiple times, each at a 

different prescribed clock speed. Each clock speed defines a class of the same device 

capable of operating at a specified operation frequency. Therefore, the DUT passing 

one speed specification or "bin" but failing the next is placed into the passing bin. 

In order to create speed-gradinglbinning test vectors efficiently and automatically, 

scan chains must be utilized to convert all flops into control and observe points. This 

way, ATPG tool can be used to generate the test vectors automatically. In order to do 

that, a new fault model is required: Path-delay fault model. 

Path-delay fault model models an entire data path with two faults: A slow-to-rise 

fault that states a 040-1 transition on the source flop's output pin must invoke a transition 

on the input of the destination flop within a clock period. A slow-to-fall fault that states a 

1 -to-0 transition on the source flop's output pin must invoke a transition on the input of 

the destination flop within a clock period. [ I  11 

Today's ATPG tool is designed to support the path-delay model, and creates two 

consecutive clock pulses at fast clock frequency, a procedure called double-pulse. This 

process is similar to transition-delay ATPG. Using scan-shifting, it first loadslpresets the 

source flop's output with the pre-transition value and its data-input with the value to be 

transitioned, then with SE de-asserted, launches the transition value with the first clock 

pulse of the double-pulse, and tries to capture the transition value with the second pulse 

on the destination flop. Then content of the destination flop (which is a scan cell inside a 



scan chain) is shifted out for comparison. Please note that the model itself does not 

specify the clock speed, but rather just specifies the values before and after the 

transition. As long as a transition on the data-path of interest (most likely a critical path) 

is properly launched and captured through the double-pulse of the clock, the path is 

considered to be sensitised at-speed. This way, it is up to the designer to choose a 

clock frequency of the double-pulse and the tool to implement it. The following diagram 

provides an example of path-delay ATPG and the method of detecting at-speed faults 

using double-pulse of the clock. 

Figure 6: AC-Scan path-delay ATPG example 
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The diagram above shows five scan flops linked together into one single scan 

chain. SE pin of all flops are connected together, as with CP pins. The targeted fault is 

the slow-to-rise fault on the data-path from flop C to flop E through the OR gate and the 

AND gate. To test for this fault, a 0+1 transition on the Q of flop C needs to be created 



and launched through both OR-AND gates through double-pulse of the clock, and the 

post-transition value ('1 ') needs to be captured into flop E after the end of the double- 

pulse. Therefore, here are the values on the flops after shift-in: 

A '0' is stored in flop C through scan shifting to serve as the pre-transition value. 

A '1' is stored in flop B also through scan shifting, and therefore appears at data- 

input of flop C, to serve as the post-transition value. When SE drops to 'O', this '1' is 

launched across flop C during the first pulse of the double-pulse, then propagates 

through the OR and AND to be captured onto flop E on the second pulse of the 

double-pulse. 

A '1' is stored through scan shifting in flop D to hold the AND gate transparent. 

A '1' is stored in flop A through scan shifting, and therefore appears at data-input of 

flop D, to be launch across flop D during the double-pulse. This maintains the 

transparent state of the AND gate so that data can propagate through it from flop C. 

4.2 Path-Delay ATPG Methodology for Input/Output 
Characterization 

In order for a piece of IC to fit into a board-level system, it must respect the input 

and output timing of its neighbouring ICs to properly communicate with them. For 

example, data-out bus of a device is usually specified to send out new bits close to the 

rising edge of the clock-output signal. The gap between clock edge and the data-edge is 

usually part of the timing specification and is strictly enforced by the design of the 

device. With this timing behaviour clearly defined, the downstream module receiving 

data from the device can be designed to sample its corresponding inputs accordingly 

based on clock arrival. In order to verify that all I t0  timing specifications have been 



satisfied, test vectors need to be created to sensitize the data-paths on the boundary of 

the device. 

I10 characterization vector creation on a device with scan chains properly 

constructed can be accomplished by extending the capability of AC-Scan path-delay 

ATPG. With minor modifications to the ATPG tool's invocation and some post- 

processing of the pattern files generated, one can characterize device-level 110s by 

feeding to the ATPG tool data-paths from inputs to flops andlor from flops to outputs. 

When patterns are created to properly sensitize these boundary paths, Test Engineer 

can move the data edges of the 110s to properly characterize their timing. 

The following shows the exact operation of the various types of I10 

characterization. The actual pattern generation will follow the waveforms described 

here. In general, the patterns follow the sequence of multi-cycle shift-in operations, then 

a launch cycle followed by a capture cycle to drivelsample the 110s and the associated 

flops, then finally a multi-cycle shift-out operation. 

4.2.1 Input setuplhold characterization 

Timing of data transmitted into a device's input ports is usually specified 

as time between data transition before the clock edge (setup time) and after the 

clock edge (hold time). Patterns need to be generated to verify that the device 

can properly sample incoming data on the input ports when they are sent in 

according to the setup and hold timing specifications. 



Figure 7: AC-Scan input setuplhold characterization 
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The diagram above shows the operations of input characterization. During input 

characterization, the shift-in operation usually sets up the data-path from the functional 

input to the destination flop such that this path can be sensitized properly when SE 

drops to '0'. Then SE is set to '0' at the beginning of the (empty) launch cycle. Then in 

the capture cycle, with the data-path ready to be sensitized, a 01)11)0 or 1 1)01)1 data 

sequence is applied to the functional input such that the triggering clock edge is situated 

in the middle value of the sequence. The middle logic value is captured into the 

destination flop by the clock pulse. Finally, the captured value is shifted out for 

comparison. The test pattern is generated with the data edges far away from the clock 

edges to guarantee that the pattern passes. Then test engineer will rerun the test 

pattern by moving the data edges closer to the clock edge until a failure occurs. The 

shift out 



location at which the failure occurs provides the setup and hold time achieved by the 

device. This can then be compared with the timing specification intended by the design. 

4.2.2 Output data propagation characterization 

Timing of data transmitted out of a device's output ports is usually specified as 

the maximum allowed time delay of the data-out value compared to a clock signal 

(output propagation time). In cases where an entire data bus is transmitting, there is 

usually also a timing specification on the maximum skew among every index of the bus, 

i.e. all output transition must occur relatively close to each other within a time window. 

To verify either timing specification, patterns need to be generated to sample the output 

ports after a clock edge. Then, the longest delay subtracting the shortest delay provides 

the skew measurement. 

The diagram below shows the operations of output data transition 

characterization, where the data path from the flop to the output port through CLI is to 

be timed. During this characterization, the shift-in operation loads the data-out flop with 

the value before the transition (in case of 0-to-1 transition, '0'). Also, the values loaded 

into the scan chains (not shown in diagram) provide the post-transition value onto the D 

pin of the data-out flop. This way, during the launch cycle, when SE drops to '0' and the 

clock is pulsed, the value on the D input is launched across the flop to start the 

propagation. A strobe point is placed in the capture cycle to sample the post-transition 

value on the output port. A test engineer can move the strobe point forward in time to 

find the time of failure. The time of failure is the measured output timing on the port and 

can be compared with the intended timing specification. 



Figure 8: AC-Scan output data-propagataion characterization 
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Throughout both the launch and capture cycles, the patterns generated by the 

ATPG tool need to hold the active-low output-enable at '0' to ensure that the values on 

data-out can propagate out without obstruction. The placement of this type of 

sensitization behaviour can be done in the ATPG tool through provision of ATPG 

constraints within the tool. 

I I 

4.2.3 Output tristate characterization: 1 C + Z  

Often for tri-stateable output ports or bi-directional ports, there are timing 

specification on the time needed to enableldisable the output. In this characterization 

exercise, transition between tristate and '1' of the port can be timed. 



Figure 9: Output tristate characterization (1 and Z) 
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The above diagram shows the operations of characterization tristate-to-one and 

one-to-tristate timing on an output port, where the data path from the flop to the output 

port through CL2 is to be timed. During this characterization, the shift-in operation loads 

the output-enable flop with the value before the transition ('1' for case of Z-to-1 

transition, '0' for case of 1 -to-Z transition). Also, the values loaded into the scan chains 

(not shown in diagram) provide the post-transition value onto the D pin of the output- 

enable flop. This way, during the launch cycle, when SE drops to '0' and the clock is 

pulsed, the value on the D input is launched across the flop to start the propagation. A 

strobe point is placed in the capture cycle to sample the post-transition value on the 

output port. Test engineer can move the strobe point forward in time (possibly into the 

launch cycle) to find the time of failure. The time of failure is the characterized output 

timing on the port. 



Throughout both the launch and capture cycles, the patterns generated by The 

ATPG tool need to hold the data-out port at ' I  ' to ensure that the device-level port 

registers a '1' when output is enabled. The placement of this type of sensitization 

behaviour can be done in the ATPG tool through provision of ATPG constraints. In fact, 

due to the tool's inability to directly handle data-paths through output-enable of tristate 

buffers, pattern is generated at block-level with O t +  1 transitions on the block-level 

output-enable port. Then the pattern is post-processed to convert the 0  t + 1 transitions 

into 1 t +Z transitions. 

4.2.4 Output tristate characterization: OC+Z 

Figure 10: AC-Scan output tristate characterization (0 and Z) 
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Similar to the above section, this operation is to time transition between tristate 

and '0' on an output or bi-directional port. The above diagram shows the operations of 

characterization tristate-to-zero and zero-to-tristate timing on an output port, where the 

data path from the flop to the output port through CL2 is to be timed. 

During this characterization, the shift-in operation loads the output-enable flop with 

the value before the transition ( ' I '  for case of Z-to-0 transition, '0' for case of 0-to-Z 

transition). Also, the values loaded into the scan chains (not shown in diagram) provide 

the post-transition value onto the D pin of the output-enable flop ('0' for case of Z-to-0 

transition, ' I '  for case of 0-to-Z transition). This way, during the launch cycle, when 

scan-en (SE) drops to '0' and the clock is pulsed, the value on the D input is launched 

across the flop to start the propagation. A strobe point is placed in the capture cycle to 

sample the post-transition value on the output port. A test engineer can move the strobe 

point forward in time (even into the launch cycle) to find the time of failure. The time of 

failure is the characterized output timing on the port. 

Throughout both the launch and capture cycles, the patterns generated by the 

ATPG tool need to hold the data-out port at '0' to ensure that the device-level port 

registers a '0' when output is enabled. In fact, due to the tool's inability to directly handle 

data-paths through output-enable of tristate buffers, pattern is generated at block-level 

with O t + l  transitions on the block-level output-enable port. Then the pattern is post- 

processed to convert the O t  +l  transitions into O t + Z  transitions. 

4.3 Path-Delay ATPG Flow Description 

The diagram below is a flow chart of AC-Scan ATPG flow for Path-Delay model. 

It is broken down into 3 stages each of which is described more closely in the 



paragraphs following. Please note that for If0 characterization, since there are four 

types of characterizations as described in the last section, each type of characterization 

requires a separate invocation to the flow. 

Figure 11 : AC-Scan path-delay ATPG flow-chart 
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4.3.1 Generate all files to automate flow 

This is stage one of the flow. Since the flow is automated and generic across all 

designs, user only needs to enter information needed by the flow in a design-info file. 



This file is fed into a script that generates all files necessary to accomplish downstream 

tasks. There are several advantages to this type of design methodology: 

Automated design flow shortens development time and increases efficiency, allowing 

designers to concentrate on tasks specific to the design. 

A single data file at the start of the flow creates a clear point of intrusion, making 

debugging easier. 

Running through ATPG requires expertise in the area of DFT. The flow is designed 

to provide a higher level of abstraction to allow designers without relevant knowledge 

and/or experience to still accomplish their jobs. In essence, automation flows are 

designed to shield designers from the intricate details of the tools contained within. 

This creates more clear-cut knowledge boundaries and better technical organization. 

Included as part of the file generation is a list of path files each containing the 

critical paths within a clock domain. There are as many of these files as the number of 

clock domains. 

4.3.2 Performing ATPG in AC path-delay mode 

This is stage two of the flow. In this stage, ATPG is run for each group of critical 

paths. If run successfully, each ATPG will result in the generation of a WGL 

pattern/vector file containing AC-scan path-delay patterns targeting a collection of the 

paths for a specific clock domain. These WGL patterns are to be translated into 

simulation testbenches and simulated for verification. For speed-gradinglbinning ATPG, 

the flow ends here. For I10 characterization, since the vectors are generated at block- 

level, the next step prepares for vector mapping to device-level. 



4.3.3 Pattern post-processing 

As mentioned, all characterization patterns are generated at block-level to avoid 

tool limitation in handling tristate logic. Therefore patterns need to be mapped to device- 

level to be useable on production testers. For example, for tristate-to-one check on a 

particular pin, the actual tristate logic is outside the block-level circuit. Therefore The 

ATPG tool is fed a path from the output flop to the block-level output pin leading to the 

output-enable of the tristate logiclpad. Consequently, the block-level pattern generated 

by The ATPG tool only records '1' and '0' on the output-enable pin. In order to properly 

map the pattern to device-level, the pattern post-processing step creates a new pin that 

translates '1' and '0' on the output-enable pin into 'Z' and '1' respectively. 

Other than pattern manipulation for tristate checks, other types of 

characterization may also require post-processing. This usually is related to scan-mode 

pin sharing. All scan-inlout pins of the device are shared with functional 110s at the 

boundary of the device, i.e. outside the block. This means that for a device I10 reused 

for scan-inlout, the logic to realize the sharing of functionality (between scan and normal 

modes) is not present at block-level. i.e. the block would contain two pins which will be 

merged outside. Therefore in this situation, when the ATPG tool generates patterns on 

the block, it will place patterns onto both pins. Care has been taken to ensure that the 

patterns in both pins (stimuli or strobes) do not conflict with each other. The post- 

processing step would merge values on the two pins into a new pin. 

4.4 AC Path-delay ATPG Issues 

This section discusses some of the issueslpeculiarities related to AC path-delay 

ATPG. More specifically, emphasis will be placed in deciding on acceptable test 

coverage, choosing a good clock source for I10 characterization, and path-selection. 



4.4.1 Acceptable test coverage 

For speed-gradinglbinning, while having the mindset of trying to achieve as high 

a test coverage as possible on the critical paths, there is no absolute requirement for the 

test coverage. If a number must be given, experience has shown that anywhere 

between 40-60% should be reasonably achievable. Since this test is not meant to detect 

manufacturing defects on the die, it does not require extremely high coverage to find 

gross performance outliers. Instead, it is trying to detect the effect of fabrication process 

variations on the DUT. Process variations, such as small shifts of doping level from 

wafer to wafer, provide gradual changes in circuit performance between neighbouring 

dies on a wafer or between dies on neighbouring wafers. [ I  21 They affect entire dies, 

contributing to a slight overall performance enhancement or degradation of the dies. 

Therefore, testing a few representative paths may be adequate to gauge the overall 

performance of the device. The important point here is to ensure that the critical paths 

are targeted for ATPG. This may be somewhat tricky as, due to process variation, the 

critical paths reported from static-timing analysis of the design during chip development 

may become faster paths in silicon, making the other presumably shorterlfaster paths 

the speed-determining paths. Therefore, it is necessary to choose at minimum a 

collection of paths that represents the top 10% of the total paths in terms of length. Path 

selection is discussed further in a later section. 

On the other hand, 100% test coverage is required for I10 characterization. In 

these types of tests, each path chosen to be targeted for ATPG represents a part of a 

timing specification. Because every timing specification is required to be verified, every 

path must be properly sensitized, meaning 100% test coverage is a hardened 

requirement. If this is not achievable, functional vectors need to augment the AC-Scan 

I10 characterization vectors. 



4.4.2 Clock source for I10 characterization 

It is common for an input or output timing specification to be based on input clock 

edges. This characteristic provides an interesting challenge for scan-mode testing. 

More specifically, a typical functional-mode device-level clock pin toggles all flops under 

its control through a delay-lock-loop circuit (DLL). A DLL compensates for the delay 

introduced by the clock tree by adding the correct amount of extra delay to the clock line 

such that the clock signal at the device-level input clock and the signal at the clock pins 

of the associated flops are exactly 360-degrees out of phase. [I 31 In other words, the 

clock signal at the source and leaves of the clock tree are synchronized, but off by 

exactly one full clock cycle. 

During scan, the DLL stops working because its flops operate as elements in the 

scan chain. However, for I10 characterization, the DLL needs to be operational and 

locked at the right functional clock frequency. This causes a logical conflict as AC-Scan 

path-delay ATPG for I10 characterization requires that the scan chain structure be 

maintained, and that the DLL be in functional state. The workaround to this issue is to 

scan the DLL separately from the rest of the digital logic such that the device contains 

two scan modes, one for the DLL and one for everything else. This way, path-delay I10 

characterization ATPG would have access to the necessary scan chains and the 

functionalities of the DLL. 

4.4.3 Path Selection Issues Related to Speed-GradingIBinning 

Data paths selected for path-delay ATPG is usually chosen for their propagation 

time. The propagation time is reported from static timing analysis (STA) of the design by 

using commercial STA software such as PrimeTime from Synopsys Inc. Since STA 

results are obtained from timing models of gates and calculated timing delays of wires, 



actual timing of the selected path in silicon may be different from the STA report. This 

presents a challenge for speed-gradinglbinning as a device that passes path-delay test 

at a particular clock frequency may in fact be faster or slower than the tested speed. 

Furthermore, actual critical paths in silicon may not even be reported as critical paths by 

STA prior to chip tape-out. Consequently, a way to make better use of path-delay ATPG 

is to find correlation between STA data, tested device speed, and actual device speed. 

Also, some techniques are needed to select the right collection of paths. 

4.4.3.1 Some path-selection techniques 

Since speed-gradinglbinning essentially checks for the effect of process variation 

on the IC's performance, it is important to choose a set of data paths that are evenly 

distributed across the die of the chip. [ I  41 Also on the same note of testing process 

variation, Dr. Karim Arabi introduced the following concept during a verbal discussion of 

this issue. It is described as follow: All data-paths within a device can be classified 

according to their timing, forming a timing distribution. One can choose a group of timing 

paths within each section of the timing curve and test each group according to their 

maximum allowable clock frequency. The relative numbers of paths within all groups 

form a statistically representative sample of the full timing distribution. All targeted paths 

must pass path-delay test at their respective speed to qualify the device. This approach 

is better than only selecting the critical paths because it qualitatively verifies the 

correlation between tested speed and STA data. 

4.4.3.2 Correlating path-delay results with actual device speed 

A paper written by Bruce D. Cory, Rohit Kapur and Bill Underwood titled "Speed 

Binning with Path Delay Test in 150-nm Technology" introduced an interesting idea for 



correlating path-delay results with actual device. It may be possible to apply its concept 

here to increase the usefulness of path-delay ATPG in the context of this project. Here 

is a brief description of the correlation process. 

After tape-out of any design, the product will progress through a prototyping 

phase before production release. Prior to production release, the fabricated IC will be 

thoroughly tested to verify its behavioural functionality. This is not done by running scan 

vector on ATEs, but by plugging the device onto a system board that is designed in 

parallel to the design of the device itself. The board is meant to validate all 

functionalities of the device at the required clock speed to flush out all functional bugs. 

(Hopefully, there are no critical bugs discovered at this stage that warrants revisions of 

the design). This type of functional tests alone is actually sufficient to speed-gradelbin 

the chip. However, the test is usually too time-consuming to be economically performed 

on every device. This is the reason for path-delay ATPG. Since the functional 

prototyping tests can qualify the device at a maximum clock frequency (referred to as 

Fmax), and path-delay test can be performed on the same device, the failed clock 

frequency obtained from the path-delay test can be correlated with that of the functional 

test. [I 41 From this correlation, future devices produced after production release can 

simply be tested through path-delay scan vectors and qualified at a particular bin 

according the correlation relationship. The test-case shown in the aforementioned paper 

provided very clear and linear correlation between path-delay results and functional test 

results. 



CHAPTER 5 AT-SPEED ATPG ON RAM INTERFACE 

5.1 Overview of RAM Interface 

Since RAM is a complex sequential module, testing its interfaces requires extra 

ATPG effort than the normal AC-Scan transition-delay ATPG. More specifically, it 

invokes the multi-load ATPG algorithm where a particular fault is tested through multiple 

shift loads of scan data. [I 51 For reasons of toollpattern efficiency, this algorithm should 

be invoked separately on logic requiring its presence only (namely RAMS). 

Consequently, a flow for testing the RAM interfaces is developed as a standalone 

component, separated from the normal (or single-load) AC-scan ATPG flow. Since RAM 

testing with scan chains is relatively new to PMC-Sierra, much of the effort spend here 

involves understanding behaviour of the ATPG tool during the operation. The following 

sections will describe, among other topics, the author's understanding of how the ATPG 

tool targets and tests the different RAM interfaces with its built-in ATPG algorithms. This 

understanding was obtained through generating scan patterns on the interfaces of a 

test-case, simulating the patterns to ensure its integrity, and painstakingly tracing logic 

states of the RAM interfaces to interpret the purpose of all state changes on relevant 

nodes of the design asserted by the ATPG tool. This was a necessary and important 

step in gaining confidence in the tool's ability in order to develop an automation flow 

around it and release the flow to the design community of PMC-Sierra. 



Figure 12: Simplified diagram of RAM interface 
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The above figure shows a simplified view of the RAM interface. Logic excluded 

from the diagram is mainly Built-In Self-Test (BIST) bypass logic between the 

peripheries of the RAM and the attached flops. The scan chain, shown as the arrowed 

line from scan-in to scan-out through all flops, does not dictate the order of the flops in 

the chain, but merely depicts that the sequential elements are scan-inserted and serve 

as proper control and observe points during ATPG. At this time, it is worthwhile to briefly 

describe the following pins of the RAM: 

5.1.1 MEB: Active-Low Module Enable 

This is the active-low module-select pin. Its functional logic needs to be gated 

with SE such that the RAM module is disabled during scan-shift operation. This is 

because of the multi-load nature of the RAM patterns. Much of the testing is done 

through writing data into certain RAM locations from data shifted in on one scan load, 



and reading from those locations at the end of the next scan load. In order to preserve 

the content of the write operations through scan shifting, RAM needs to be disabled. 

5.1.2 OEB: Active-low Output Enable 

This is the active-low output-enable pin, and is present in some RAM modules. 

As part of the PMC standard, OEB is tied to '0' such that output is always enabled. 

5.2 At-Speed ATPG Methodology for RAM Interface 

There are three main interfaces to be tested: DIN, ADDR, and DOUT. Testing 

each interface requires a different ATPG approach, as implied by the ATPG tool. Please 

note that the ATPG methodology described here uses only transition-delay fault model 

because path-delay ATPG on RAM interfaces is not yet available at the time of this 

project. However, the impact of this deficiency is minimal to the higher-speed RAMS as 

the RAM interfaces are usually directly registered with minimal combinational gates in 

between. This makes the path-delay coverage implied if the interfaces are well tested in 

transition-delay mode. 

5.2.1 Testing DIN of RAM 

The diagram below depicts the strategy for testing DIN of RAM by the ATPG tool. 

This test involves two scan loads, one to write complementary bits to two different 

locations (marked as IocationA and IocationB in the above figure) in the RAM, and the 

other to read the content from those locations. Here is the description in detail: 



Figure 13: Testing DIN of RAM 
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First apply a scan load (shift) that provides the following setup: Q pins of the ADDR 

flops would select IocationA once latched in; D pins of the ADDR flops would select 

location6 once it is clocked to the Q pins and latched in; Q pins of the DIN flops 

would drive data (call it dataA) into IocationA upon a clock pulse; D pins of the DIN 

flop would contain bits that are complementary to dataA (call the D pin values data6) 

and should be driven into location6 after two consecutive clock pulses; Active-low 

write-enable (WEB) is setup to be '0' for the next two clock pulses to allow for two 

consecutive write operations. 

As marked in the diagram as (A), scan-en drops to '0' and a clock pulse is issued to 

write dataA into IocationA. 



3. As marked in the diagram as (2), a second clock pulse is issued to write dataB into 

IocationB in at-speed fashion. At this stage, the DIN input bus of the RAM has been 

sensitized at-speed due to the double pulse from (1) and (2). If there is an at-speed 

defect on a bit of the bus, that bit in IocationB would have falsely received the 

corresponding bit in IocationA. The rest of the sequence reads out the content of 

IocationB to verify the write operaion. 

4. Apply another scan load (shift) that provides the following setup: Q pins of the 

ADDR flops would select IocationB; WEB is setup to be '1' to allow for a read 

operation. 

5. As marked in the diagram as (3), scan-en drops to '0' and a clock pulse is issued to 

read the content of locationB (dataB) to the DOUT bus of the RAM. 

6. As marked in the diagram as (4), another clock pulse is issued to capture the values 

on DOUT onto the DOUT flops. Then the shift-out operation pipes the content of the 

DOUT flop to the scan-out port for sampling. This verifies whether the at-speed 

write operation has been done fault-free, and completes the test. 

5.2.2 Testing ADDR of RAM 

The diagram below depicts the strategy for testing ADDR of RAM by the ATPG 

tool. This test involves two scan loads, one to write complementary bits to two different 

locations (marked as IocationA and IocationB in the above figure) in the RAM, and the 

other to read the content from those locations. Here is the description in detail: 



Figure 14: Testing ADDR of RAM 
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3. As marked in the diagram as (2), a second clock pulse is issued to write data6 into 

IocationB in at-speed fashion. At this stage, the changing bit in the ADDR bus of the 

RAM has been sensitized at-speed from the double-pulse generated by (1) and (2). 

If there is an at-speed defect on that bit, dataB would be incorrectly written into 

IocationA instead of IocationB. The rest of the sequence reads out the content of 

IocationA to verify that its content is dataA, not dataB. 

4. Apply another scan load (shift) that provides the following setup: Q pins of the 

ADDR flops would select IocationA; WEB is setup to be '1' to allow for a read 

operation. 

5. As marked in the diagram as (3), scan-en drops to '0' and a clock pulse is issued to 

read the content of IocationA to the DOUT bus of the RAM. 

6. As marked in the diagram as (4), another clock pulse is issued to capture the values 

on DOUT onto the DOUT flops. Then the shift-out operation pipes the content of the 

DOUT flop to the scan-out port for sampling. This completes the test. 

5.2.3 Testing DOUT of RAM 

The above diagram depicts the strategy for testing DOUT of RAM by the ATPG 

tool. This test involves four scan loads, all of which involve read and write access to two 

locations different RAM locations (marked as IocationA and IocationB in the figure 

above). Here is the description in detail: 



Figure 15: Testing DOUT of RAM 
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1. First apply a scan load (shift) that provides the following setup: Q pins of the ADDR 

flops would select IocationA; Q pins of the DIN flops would drive data (call it dataA) 

into IocationA upon a clock pulse; WEB is setup to be '0' to allow for a write 

operation. 

2. As marked in the diagram as ( I ) ,  scan-en drops to '0' and a clock pulse is issued to 

write dataA into IocationA. 

3. Apply another scan load (shift) that provides the following setup: Q pins of the 

ADDR flops would select IocationB; Q pins of the DIN flops would drive data (call it 

dataB) into IocationB upon a clock pulse; WEB is setup to be '0' to allow for a write 

operation. 



4. As marked in the diagram as (2), scan-en drops to '0' and a clock pulse is issued to 

write dataB into IocationB. Most, if not all, of the bits in dataB is complementary to 

dataA. 

5. Apply another scan load (shift) that provides the following setup: Q pins of the 

ADDR flops would select IocationA; WEB is setup to be 'I' to allow for a read 

operation. 

6. As marked in the diagram as (3), scan-en drops to '0' and a clock pulse is issued to 

read content of IocationA (dataA) to the DOUT ports of the RAM. This operation 

presets the value of the DOUT. Since OEB is always enabled and ME6 is disabled 

during shift, the DOUT value will be maintained through the next shift load 

7. Apply another scan load (shift) that provides the following setup: Q pins of the 

ADDR flops would select IocationB; WEB is setup to be ' I '  to allow for a read 

operation. 

8. As marked in the diagram as (4), scan-en drops to '0' and a clock pulse is issued to 

read the content of IocationB (dataB) to the DOUT bus of the RAM. 

9. As marked in the diagram as (5), another clock pulse is issued to capture the values 

on DOUT onto the DOUT flops in at-speed fashion. If there are no delay defects on 

the DOUT pins, this clock pulse would have captured the content of dataB onto the 

DOUT flops. Because many, if not all, of the bits in dataA and data5 complement 

each other, the pulses in (4) and (5) together have launched a set of transitions on 

the DOUT pins and captured the post-transition value onto the associated flops. 

Then the shift-out operation pipes the content of the DOUT flop to the scan-out port 

for sampling. This completes the test. 



5.3 RAM ATPG Issue(s) 

Currently, due to the ATPG tool's inability to enforce double-pulses for sensitizing 

all interfaces of RAM-namely, the DOUT interface, the generated patterns may be 

problematic if a PLL is used to toggle the RAM clock(s) during capture. PLL is currently 

designed to issue two at-speed pulses in scan mode upon a falling edge of scan-en. 

This conflicts with the setup requirement of the DOUT test which issues single-pulse 

waveforms. Therefore, three workarounds are proposed here: 

1. If the I10 rate of the scan-mode clock port is fast enough, disable the PLL and use 

the top-level clock source directly to generate the pulses in capture mode. 

2. Since PMC's PLL setup can be done solely through JTAG operations, pattern file 

can be post-processed to insert JTAG sequences to bypass the PLL for the single- 

pulse captures. In this case, it is important that none of the JTAG pins (tck, tdi, tdo, 

tms, trstb) are shared for scan purposes. Sharing JTAG pins for other means is not 

only a problem for this work-around, but also a direct violation of the JTAG 

standards. 

3. Reuse a top-level functional pin to control the PLL bypass mux in scan mode. This 

way, the mux can bypass the PLL for the single pulses with a simple pin constraint 

on the mux-control port. 



CHAPTER 6 TEST-CASE RESULTS 

As part of the verification for the ATPG automation flows as well as the ongoing 

IC development within the company, various aspects of the flow have been subjected to 

thorough testing. This chapter presents some of the results from the transition-delay 

ATPG flow and the path-delay ATPG flow. Unfortunately, at this time, meaningful data 

have not been collected on ATPG of RAM interface due to delay in delivery of a generic 

RAM wrapper that, among other features, contains the gating logic to enable RAM 

ATPG. Consequently, the flow was only subjected to a simple test-case as a proof of 

concept. ATPG was successful on that test-case. 

Table 1: Test-case results for AC-scan Transition-delay ATPG 

gate count C 
clock domain count 

No. of scan chains 

longest chain 

AC attern count L 
inal AC coverage 

DC fault-grade coverage 

DC top-up pattern count 

final DC coverage 

otal pattern count 



Table 1 records pattern and coverage results for five design blocks subjected to 

the transition-delay ATPG flow. AC pattern count and final AC coverage describe the 

effectiveness and efficiency of the initial ATPG run in AC mode. The coverage ranges 

between 66% and 8O0/0, and is inline with the expected coverage number of a testable 

design. Please also note that, in some cases, patterns were truncated to save tester 

memory. The DC fault-grade coverage describes the DC-mode coverage of the patterns 

generated for AC. The DC faults not covered by the AC patterns were then targeted for 

the DC-mode top-up ATPG to obtain the final DC coverage and the total pattern count. 

The last row of the table records the vector count. Vector count is approximated by 

multiplying the pattern count with the length (or numbers of flops) of the longest chain in 

the design and, as mentioned earlier, directly impacts the availability of ATE memory 

space. From this relationship, one can understand that keeping the scan chains short is 

another effective way of lowering vector count. As an example, block 2 in the above 

table has only half of the pattern count of block 1. However, its vector count exceeds 

that of block 1 because its chain length is close to three times of the block 1's chain 

length. 

Figure 16 records the incremental coverage increases as AC-scan transition- 

delay patterns are generated for four of the five blocks mentioned in Table 1. A notable 

observation here is that some of the curves in the graph show discontinuity during the 

incremental increases. These discontinuous points marks the limit of achievable 

coverage for one clock domain and the targeting of another clock domain as the ATPG 

tool gives up on the first one. For example, on the curve for block 3, the ATPG tool was 

able to achieve as much as 42% AC coverage by targeting clock domain one. As the 

number of testable faults depletes in that domain, the tool moved on to target the second 

domain. Block 2 exhibits the same behaviour at approximately 73%. 



Figure 16: AC Transition-delay coverage VS. pattern count 
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Table 2 shows the test-case results for path-delay ATPG for speed-grading. 

Coverage is usually between 50% and 65%. Block 3 is considered as an outlier due to 

the small number of paths targeted for ATPG. Path-delay ATPG for I f0  timing 

characterization has also been done on one testcase and 10O0/0 coverage was obtained 

from that. 

Table 2: Test-case results for AC-scan Path-delay ATPG 



CHAPTER 7 CONCLUSION 

With the growing complexity of today's integrated circuit designs, engineers have 

abandoned the use of pure functional test vectors wherever possible, and adopted 

various DFT solutions to make their designs more test-friendly. The most common DFT 

approach for digital designs is scan insertion, because of its relative simplicity in 

conceptual understanding and implementation automation. During scan insertion, flip- 

flops in the design are converted into scan flops and linked into chains of shift registers 

called scan chains. This way, data input stimuli are shifted into every flop through their 

respective scan chains. Then, after the stimuli are given the time to propagate through 

their functional data paths, the flops are triggered to capture the result of the 

propagation. Finally, the results are marched out of the chains for strobing. The 

structured nature of scan-testing paves the way to various automated test-pattern 

generation tools. These tools are capable of automatically generating test vectors on a 

scan-inserted design of significant gate-count based on a stuck-at fault model, usually 

achieving 95% or higher test coverage within hours of processing. This, compared to 

the multiples of man-weekslmonths of manual vector creation, creates great savings in 

engineering and corporate resource. 

As transistor size continues to shrink, new defect mechanisms start to appear 

that can no longer be properly modelled by the stuck-at fault model. These new types of 

defects adversely affect the speed of the IC's operation. More specifically, a defect may 

no longer cause a node be permanently "stuck" at a particular logic level when a 

transition is required, but cause the desired transition to take place at a much slower 



speed than needed. This class of new defect mechanisms prompted the creation of the 

transition-delay fault model. ATPG tools supporting this model create patterns that 

launch two at-speed clock pulses in between the shift-inlout operations. The two pulses 

are accompanied with test vectors that launch and capture data transitions on the 

targeted node, hence testing the node in at-speed fashion. As part of this project, an 

automated ATPG flow is created to generate test vectors for at-speed defect detection. 

The flow involves finding the functional clock domains and their respective clock speed, 

identifying the scan-mode clock sources for each functional domain, performing ATPG 

on each domain in AC-scan mode to obtain transition-delay test coverage, fault-grading 

the AC vectors in DC mode, and finally creating DC-mode top-up vectors. This test 

approach provides good AC and DC test coverage with the least amount of vectors 

possible. 

Along with transition-delay fault model, another model called path-delay fault 

model is also created. This fault model models an entire data path with two faults: A 

slow-to-rise fault that states a 0-to-1 transition on the source flop's output pin must 

invoke a transition on the input of the destination flop within a clock period; A slow-to-fall 

fault that states a 1 -to-0 transition on the source flop's output pin must invoke a transition 

on the input of the destination flop within a clock period. This model is ideal for speed- 

gradinglbinning and can also be applied quite effortlessly to I10 characterization on a 

scan-inserted design. This is because the model focuses on the transition of data-paths 

rather than a particular node of a particular gate within a data-path. The basic idea of 

speed-gradinglbinning is to sensitize the critical paths of the design at the highest speed 

possible; similarly, I10 characterization is done through sensitisation of timing-critical 

data-paths connected to the design's primary I10 ports. Therefore, both speed- 

gradinglbinning and I10 characterization can be done by feeding the ATPG tool with the 



paths of interest. An automated path-delay ATPG flow is created based on this 

approach. 

For designs containing large RAMs, data paths responsible for RAM access 

sometimes becomes the most difficult to meet timing. Therefore, it is important to 

guarantee that boundaries of RAMs are defect-clean so that the data-paths interfacing to 

their pins can satisfy timing. Due to the relatively complex nature of RAM access 

compared to operating flops, ATPG tools make use of a different algorithm called multi- 

load ATPG to test RAM interfaces. A flow has been developed to test RAM interfaces 

at-speed based on the multi-load algorithm. This flow is designed to target DIN, DOUT, 

and ADDR pins of RAMs. 

With the AC-scan pattern generation flow fully implemented, scan-inserted 

devices can be tested in at-speed fashion. It is recommended that chips be subjected to 

the transition-delay patterns, along with the DC top-up patterns, first to filter out all 

defective parts before running the path-delay patterns. 
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