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Abstract 

This thesis aims at building a Lexical Knowledge Base (LKB) that will be useful to a 

Natural Language Processing (NLP)  system by extracting information from a Machine 

Readable Dictionary (MRD). Our source of knowledge is the American Heritage First 

Dictionaryl(AHFD) which contains 1800 entries and is designed for children of age 

six to eight learning the structure and the basic vocabulary of their language. Using 

a children's dictionary allows us to  restrict our vocabulary, but still work on general 

knowledge about day to day concepts and actions. 

Our Lexical Knowledge Base contains information extracted from the AHFD and 

represented using the Conceptual Graph (CG) formalism. The graph definitions 

explicitly give the information contained in all the noun and verb definitions from the 

AHFD. Each sentence of each definition is tagged, parsed and automatically trans- 

formed into a conceptual graph. The type hierarchy, extracted automatically from 

the definitions, groups all the nouns and verbs in the dictionary into a taxonomy. 

Covert categories will be discovered among the definitions and will complement 

the type hierarchy in its role for establishing concept similarity. Covert categories 

can be thought of as concepts not associated to a dictionary entry, such as "writing 

instrument" or "device giving time". They allow grouping of words based on different 

criteria than a common hypernym, and therefore augment the space to explore for 

finding similarity among concepts. The relation hierarchy is built manually which 

groups into subclasses/superclasses the relations used in our CG representation of 

'Copyright 0199.1 by Houghton Mifflin Company. Reproduced by permission from THE AMER- 
ICAN HERITAGE FIRST DICTIONARY. 



definitions. The relations can be prepositions such as in, on or with or deeper se- 

mantic relations such as part-of, material or instrument. Concept clusters are 

constructed automatically around a trigger word to put it into a larger' context. Its 

graph representation is joined to the graph representations of other words in the dic- 

tionary that are related to it. The set of related words forms a concept cluster and 

their graph representation, showing all the relations between them and other related 

words, is a Concept Clustering Knowledge Graph. 

One important aspect of the thesis is the underlying thread of finding similarity 

through concept and graph comparison as a general way of processing information. 

The ideas presented in this thesis are implemented in a system ARC-Concept. 

We present and discuss the results obtained. 

Keywords: Lexical Knowledge Base, Machine Readable Dictionary, Concept Clus- 

tering, Type hierarchy, Conceptual Graphs 
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Chapter 1 

INTRODUCTION 

Lexical knowledge is knowledge expressed by words. Words can be used in many 

different ways. They can be nice or mean, whispered or shouted, direct or ambiguous. 

They can also be said or implied. Words help us discover, interpret, and remember the 

world around us. They can trigger many images, feelings, situations. Words can he 

put together to form an infinite number of sentences, each one expressing a different 

meaning, a meaning that can also differ depending on the context of utterance. 

The study of words in the goal of understanding their meaning and how they 

relate to each other is a very large and complex field in itself. Aiming to  render this 

information usable by a computer presents an even larger problem. Researchers have 

tried to constrain this problem in a few ways. 

Words can be taken as entities. A lot of them are looked a t  without investigating 

their meanings. The interaction between words is given through statistical measure- 

ments [42, 401. Probabilities are involved at different steps of sentence analysis; the 

tagging process, the syntactic analysis and word sense disambiguation. 

On the other hand, it is possible to work with a sublanguage where the number of 

words is limited and the sentence structures are more restricted [68]. Investigating a 

smaller set of words allows researchers to go deeper in their analysis and understanding 

of the meaning of words. 

In this research. we take an approach of the second type as our interest is in 

representing the meaning of ivords. \Ve are addressing the following problem: How 



can one, from existing information, (semi-)automatically create a substantial lexical 

knowledge base that is useful for processing, disambiguating and understanding sen- 

tences. This is an important problem because manual construction of an LKB can be 

labour intensive, error-prone and less systematic than an automatic process. 

Our first hypothesis is that a children's first dictionary is a good source of infor- 

mation to  build an LKB if we focus toward N L P  applications that need to understand 

sentences used in a non-technical, daily usage type of context. 

Our second hypothesis is that the processes developed to automatically build the 

LKB, can also be used to augment and restructure the information contained in that 

LKB. 

Our third hypothesis is that the LKB can be structured so that words are "defined" 

in terms of their relationship to  other words in the dictionary. 

The American Heritage First Dictionary (AHFD) will be our guide. It is a 

dictionary for young children made to give them simple explanations about a limited 

number of words that are commonly used in daily life. The AHFD will tell us what 

it knows about these words: what they mean and how they are used in different sen- 

tences. Through the definitions showing typical situations, we will learn about people 

and things, how they behave and interact. From that source, our goal is to build a 

Lexical Knowledge Base (LKB) that can be consulted by a natural language pro- 

cessing system for the basic task of sentence disambiguation and understanding. Some 

software tools will be developed to  extract knowledge about the words in the AHFD 

and to test different ideas on the manipulation, disambiguation and reorganization of 

this knowledge. 

So, our LKB will contain knowledge about the words found in the AHFD, but what 

does that mean exactly? What knowledge do we want our LKB to  contain? Figure 1.1 

shows a summary of types of knowledge relating to words as defined by the different 

authors who participated in the SIGLEX workshop [ I l l ] .  We emphasize hereafter to  

what extent this research has an interest in these different types of knowledge. 

\Ve approach different types of word-related knowledge with different personal 

interests. and therefore investigate them to different degrees. Our main interest is in 

lexical knowledge. C k  are interested in analyzing the definitions given in the AHFD 
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1. Lexical Knowledge 

What you put in the lexicon 

Words are symbols (pointers) into the conceptual world 

Contains the essential features of objects 

A rich semantic structure 

Lexical rules (changes on syntactic features based on semantic class) 

Associative patterns between words' feature structure 

Knowledge that can be expressed in words 

2. World Knowledge 

General inference mechanisms (abductive, deductive), commonsense reasoning 

World Model, ontology, organization of concepts 

3. Basic General Knowledge 

What you need to talk about a topic (or understand) 

-1. Encyclopedic knowledge 

a large amount of information on everything (purpose, composition, applications, usually used for, 
etc) 

contains the supeduous features of objects 

5 .  Domain-Specific Knowledge 

knowledge on all the properties of specific objects 

knowledge restricted to a particular domain 

6. Semantic knowledge 

Word meanings 

Predicates 

Sentence meanings 

Text meaning 

7.  Pragmatic knowledge 

information coming from the context 

speakers and hearers roles and attitudes toward the discourse 

8. Linguistic knowledge 

morphology, syntax, subcategorization patterns 

9. Son-lexical knowledge 
I 

tense and aspect 

I 

Figure 1.1: Different types of knowledge mentioned in SIGLEX 
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to find the meaning of words. Via a word's definition, we will find the relationships 

of that word to the other words in the dictionary. To do so, we need to  analyze the 

meaning of the defining sentences and in that respect we are interested in semantic 

knowledge. 

We will expand from lexical to world knowledge as we address the problems of 

concept organization and world modeling. We want our LKB to  be a world model. 

It will be the world viewed through the eyes of our AHFD guide, with the ontology 

of concepts it defines. On the other hand, we do not explore general inference mech- 

anisms (abductive, deductive), and commonsense reasoning that should be part of 

world knowledge [80, 102, 941. Further research to  include these reasoning mecha- 

nisms could use the LKB developed here as a starting point. 

We expand in a similar way from semantic to  pragmatic knowledge as we believe 

that words should be seen in context, and that their meaning is influenced by context. 

For our research and application, the context is given by the AHFD and we can look 

at words within that context. It can be considered a general context, a context which 

teaches children the way things in daily life "normally" work, but that is still in 

a probabilistic world, it is just one context with a high probability. We are only 

partially covering pragmatic knowledge as we do not work with models of the hearer 

and speaker [67] and belief revision systems [124]. 

.As we are using a children's dictionary, we are looking more at basic general 

knowledge rather than encyclopedic knowledge, although these two types again do 

not form two distinct sets. The boundary between what is necessary and what is 

superfluous in a definition is quite fuzzy. 

Some linguistic knowledge will be assumed known a priori to allow us to transform 

the sentences in the dictionary into a different knowledge formalism, and to allow us 

to extract information from these sentences and construct the knowledge base. 

The ultimate goal would be a knowledge base which encompasses all kinds of 

knowledge, as there is no clear separation between any of them. They all influence 

each other and should blend in a certain way. In the present research, we emphasize 

lexical knowledge. Based on the definitions presented in Figure 1.1, what we call a 

lexical knowledge base will be a cross-over between different types of knowledge even 



i f  we concentrate more on the lexical aspect. This LKB should tell us as much as it 

can about t,he meaning of words, so that when we encounter those words in a text, 

we can access the LKB to  help us understand the meaning behind that text. The 

content of our LKB is of course influenced by the choice of our source of knowledge. 

.As mentioned before, we chose a children's dictionary as our guide. This choice is 

quite unique to this work. Other researchers have chosen other places to find lexical 

knowledge. 

One possibility is to  hand-code, using a specific formalism, all we know about day 

to day life, about arts or communications, about social experiences, about the nature 

around us, about the things we find in a house, about how to  behave in a restaurant, 

about everything! This is what the project Cyc intends to  do, which is the largest 

enterprise in building a Knowledge Base. The group, under the direction of R.V. 

Guha and D.B. Lenat, started the Cyc project 10 years ago with an ambitious goal 

of building a knowledge base of "foundational knowledge", by which they mean: 

... the knowledge that, for example, a high school teacher assumes students 

already have, before they walk into class for the first time. ... common 

sense notions of time, space, causality, and events; human capabilities, 

limitations, goals, decision-making strategies, and emotions; enough fa- 

miliarity with art, literature, history, and current aflairs that the teacher 

can freely employ common metaphors and allusions. [70] 

Another dictionary, the EDR Electronic Dictionary [loo], is the result of nine years 

of efforts to manually develop a bilingual Japanese-English dictionary. Many other 

groups designing Natural Language Processing systems, probably not having 10 years 

to spend on their knowledge base, preferred to manage with limited knowledge, testing 

their systems on a small lexicon. With the increase in the amount of information that 

is available electronically, there has been a corresponding increased interest in building 

large Lexical Knowledge Bases. Machine Readable Dictionaries (MRDs) and many 

text corpora are widely available and NLP systems can use such information to evolve 

from toy prototypes to  real-size systems. 

\\.e th ink  that the dictionary is a good place for finding lexical units and their 
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semantic relations since this is part of the purpose of a dictionary. The definitions 

from a >lachine Readable Dictionary can contain significant information about lexical 

and world knowledge. That information is often presented in an implicit way, and we 

aim at rendering it explicit so that an NLP system can make good use of it. 

After deciding on the source of information, we have to decide on the means of 

representation. We opt for Conceptual Graphs for their closeness to  natural language, 

their intuitive graphical representation, and their comparison algorithms that will 

allow us to  compare definitions, to  find common information and to join information. 

We also have to  decide on the structure of our LKB. This thesis is built on the 

hypothesis that words are defined with words. If the knowledge extracted from the 

dictionary is represented as a list of separate words, with no relations between them, 

these words are then still just isolated words with almost no meaning by themselves. 

With links, they form a network of interconnected words that define objects and 

situations. 

An important part of this research will be to introduce the idea of word clusters. 

More precisely we should talk of concept clusters, using a simple definition of concept 

as being a word sense. A cluster will extend the meaning of a concept to  include the 

meaning of other concepts that are related to  it in various ways. A concept can be 

related to another concept, not only by being a synonym or antonym, but also by 

interacting with that concept in particular situations. 

One important relation between concepts is the hypernym/hyponym relation. It 

has been given a lot of importance in recent work on knowledge extraction from dic- 

tionaries, especially looking a t  noun definitions [35, 41, 4, 341. Finding the supertype 

(hypernym) of each noun allows the building of a type hierarchy. We will investigate 

the type hierarchy with the goal of expanding it, so that we can create a richer on- 

tology showing more classes or groups of words sharing something else than the same 

supertype. 

Here are the four interesting aspects of the Lexical Knowledge Base we are creating. 

\.Ve justify each one in more length hereafter. 

1. The choice of a children's dictionary 

2. The use of conceptual graphs 
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3 .  The expansion of the type hierarchy 

4. The expansion of the meaning of a word into a cluster 

Choosing a dictionary 

Deciding to  work with Machine Readable Dictionaries (MRDs) reflects our belief that 

the dictionary is a good source of lexical knowledge. 

Still, dictionaries are the largest available repositories of organized knowl- 

edge about words, and it is only natural of computational linguists to turn 

to the,m in the hope that this knowledge can be extracted, formalized and 

made available to NLP systems. [25] 

Another popular source of lexical knowledge are text corpora. Both corpora and 

dictionaries are rich in linguistic and domain information [22, 211. Corpora can be 

viewed as the raw information from which dictionaries are made. Lexicographers di- 

gest this raw information, looking for generalizations, contexts of usage, dependencies, 

and organize it into a dictionary. In doing so, they are making available to  others 

information that is not easily obtained from the raw text. However, the drawback 

is that no two lexicographers will extract or represent the information in exactly the 

same way1. 

There is also information that can be extracted from corpora that is not present in 

dictionaries, such as frequency data, collocations [125], word cooccurrences [43, 142, 

132, 31, 1081 and subcategorizations [38, 30, 1171. As mentioned in [42] lexicographers 

tend to pay little attention to  the corpora as a whole but look more for selected 

citations and complement their findings with introspection. But the trend is starting 

to change, as dictionary making starts to depend heavily (mostly in Britain as the 

authors note) on machine-readable corpora, for example, to find concordances using 

tools. 

'For a critical analysis of dictionary making,  definitions reliability and  usefulness for L K B  build- 
ing. see [13] as well as [82]. 



Ideally, a natural language system should have access to as much information as 

possible about words to help its task of sentence understanding. The use of corpora 

can nicely complement the use of dictionaries [13] in building an LKB. Given the vast 

amount of knowledge that is contained in dictionaries (which also reflects the vast 

amount of human preprocessing), it seems natural to  use the dictionary as a starting 

point. 

Assuming we are looking into a general-purpose dictionary (by which we mean a 

non-technical dictionary), the scope of the vocabulary used in a dictionary is the same 

as unrestricted text. Moreover, the language used in dictionaries cannot appropriately 

be called a specialized language given that it does not operate in a specialized domain. 

At the syntactic level, the variety of constructions (if not in the definitions, certainly 

in the given examples) is comparable to  that of textual corpora. The regularity of 

the language used within dictionary definitions lies in the frequent occurrences of 

lexical and syntactic patterns to  express particular conceptual categories or semantic 

relations. Much research has been done on trying to extract semantic relations from 

dictionaries [35, 41, 92, 3, 139, 85, 581. All has been done on adult dictionaries, which 

often give complex definitions, and assume a lot of implicit knowledge from the user. 

In this research, we perform knowledge extraction from a children's first dictionary: 

The American Heritage First Dictionary (AHFD). For our needs, we produced 

an electronic version of the AHFD2. 

The AHFD is addressed to  children of ages six to  eight. It contains 1800 entries, 

and about 650 pictures. The definitions can always be interpreted independently 

from the pictures. The AHFD is the second dictionary of a series of four. The first 

is the American Heritage Picture Dictionary (AHPD) addressed to  children of ages 

four to  six. It contains about 900 words with a pictorial representation of each word. 

The third dictionary in the series, is the American Heritage Children's Dictionary 

(.4HCD), for children of ages eight to eleven, which contains 37000 entries. From the 

nearly 2000 words learn in the XHFD, the AHCD expands into :37000 words. This 

does not imply that all the words in the AHCD are uniquely defined using words from 

'Copyright 0 1 9 9 4  by Houghton hlifflin Company. Reproduced by permission from T H E  AMER- 
1C':IN HERITAGE FIRST DICTIONARY. 



the .AHFD3. The child has acquired enough basic concepts and relationships between 

concepts from this first dictionary, to be able to expand to a much larger world, a 

world that specializes into multiple different domains, and for each domain there is 

more vocabulary to learn. 

We favored the AHFD for the following reasons: 

Limited size: Its limited number of entries allows us to constrain our experiments 

to  a corpus of a manageable size. 

Day to day knowledge: Although it is quite limited in size, the AHFD contains a 

lot of knowledge about basic daily tasks and simple world generalizations. This 

kind of information is useful for an LKB designed to be the source of knowl- 

edge for a Natural Language Processing (NLP) system trying to  understand a 

non-technical conversation. This information is often not stated in an adult's 

dictionary because it is assumed to  be known by the user. 

Sentence structure: In the AHFD, all words are defined using complete simple 

sentences. By doing so, the AHFD does not respect the convention of other 

dictionaries which always define a word of a certain part of speech by a word or 

phrase of the same part of speech. But for the purpose of knowledge extraction, 

this renders the parser's task no different than parsing plain text. The simplicity 

of the sentences (limited length, limited number of relative clauses) leads to a 

more limited set of possible parse trees, and this will propagate to  the next steps 

to  limit the disambiguation. 

Closed world: Almost all defined words in the AHFD use in their definition other 

words that are themselves defined in the AHFD. Our view of meaning sees 

the meaning of a word consisting of a set of schematas or situations in which 

that word is seen in relation to other words. All words are seen as part of an 

3 ~ t  would have been an interesting experiment, had the A H C D  been in electronic form, to  see 
how many words are actually defined using the 2000 words from AHFD.  The words found form a 
bet of X words, and then we see how many more words are defined using the words in set X,  and so 
on. This is the idea of bootstrapping presented later in this section. 
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interconnected network of relations to other words. Again, words are defined 

with words. This is a circular process and it will be possible to close the loop 

if we are in a closed world system. The AHFD gives us an almost closed world 

since only a few words used in definitions are not present in the dictionary. 

Bootstrapping: We can think of some NLP applications directed toward children 

that could make good use of our LKB, such as a language teaching tool, or 

machine translation of a children's book. But we can also think of our LKB 

as the starting point of a bootstrapping process. For a particular task, if the 

information contained in the LKB is not sufficient, we can continue to update 

it by acquiring more information dependent on the domain of application. 

By its nature, as being simple and forming a closed-world system, the AHFD 

makes it easy to build a coherent LKB which can become the seed of a boot- 

strapping process. The LKB built from the AHFD could be at the core of a 

more extended LKB, acquiring new information from other dictionaries or text 

corpora. The LKB expands, and at each step, the new words added are defined 

using mostly the words in the core, and then the core becomes a bigger core 

on top of which new words can be added and so on. That way the core grows 

gradually to  include more and more words. 

This is a different view than the one used by the lexicographers who built the 

Longman Dictionary of Contemporary English (LDOCE), which is a favorite 

among the research community working on knowledge extraction from MRDs 

[TI. LDOCE contains extra semantic information in the form of codes that 

can be read, but its appeal comes mostly from the fact that it uses a restricted 

core vocabulary of about 2000 words and then the rest of the 40000 words in 

the dictionary are defined using only words from this core. An interesting work 

by Wilks et  al. [I421 presents an attempt at disambiguating by hand the core 

lexicon and then performing automatic analysis on the rest of the dictionary. 

j \e  state hereafter a few problems that will be encountered by researchers work- 

ing with the LDOC'E. One first problem of expressing a set of 40000 words by 

using only a subset of 2000 words is that it requires some long explanations. 
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leading potentially to complex sentence structures. Alternatively, we prefer an 

approach that builds a larger and larger set of words that can define the other 

words. 

If we start by extracting the information from the children's first dictionary, we 

will have a core of about 2000 words. Then later on, we could expand to a larger 

core, incorporating any word from a dictionary or corpus that is expressed using 

the first core of words. Maybe 5000 words could be defined. Then repeating 

this process, maybe 10000 more words could be defined using the first 5000 and 

SO on. 

A second problematic consequence of using a small core vocabulary for a large 

dictionary is that it will result in a fairly flat hierarchy as we try to extract 

the noun taxonomy. As no intermediate terms are allowed to be defined and 

therefore all 40000 words are defined uniquely using the subset of 2000 words, 

the only possible non-leaf nodes are those 2000 words. 

Taxonomies derived from LDOCE would be expected t o  have a greater 

percentage of leaf nodes than those from other dictionaries because of 

the restricted core vocabulary. [48] 

Researchers working on dictionaries and/or lexical-based systems agree on the 

importance of building a taxonomy of words. For LKBs, inheritance is per- 

formed along this hierarchy. A type inherits the attributes and default values of 

its supertype. As well, in tasks of disambiguation of texts, if a word's context 

does not allow us to  disambiguate it, we might have to search in the taxonomy 

to  find contextual elements surrounding a supertype or a subtype of the word. 

For a taxonomy to  be useful it must contain many intermediate nodes between 

the root and the leaves of the tree. For example, a flat hierarchy in which all 

the nouns are subtypes of a unique root "thing" would be totally useless. 

There is a third problem caused by using a core vocabulary that is more specific 

to our work and the work of Richardson [118]. It is actually noted in [ l lS]  who 

makes use of the LDOC'E for his project. During the clustering process presented 
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Table 1.1: Noun definitions from adult's AHD and AHFD 

pmm - 
air 

bear 

bird 

boat 

bottle 

A H U  I .%nr Y I . I - - 
l 

a colorless, odorless, tasteless gaseous mixture I Air is a gas that people breath. 

I Boats are made of wood,metal, or plastic. 
Most boats have ennines to make them move. I 

- 
chiefly nitrogen (78%) and oxygen (21%) 

any of various usually large mammals 
having a shaggy coat and a short tail. 

a warm-blooded, egg-laying, feathered vertebrate 
with forelimbs modified to form wings. 

A relatively small, usually open water craft. 

I Some boats have sail. 
., 

.4 container, usually made of glass, with a I A bottle is used to hold liquids. 

. . 

Air is all around us. 
We cannot see it, but we can feel it 
when the wind blows. 
A bear is a large animal. 
It has thick fur and strong claws. 
Many bears sleep all winter. 
A bird is a kind of animal. 
It has two wings and is covered with feathers. 
Robins, chickens, eagles, and ostriches 
are all birds. 
Most birds can fly. 
A boat carries ~ e o p l e  and things on the water. 

narrow neck and a mouth that can be capped. I It is made of glass or plastic. I 

" I Most people wear boots in the rain or snow. 
brain I the portion of the central nervous system I The brain is a part of the body. 

boot 

I activities and the exercise of emotion and thought I ! 

A kind of shoe that covers the foot 
and  art of the lee. 

consisting of a large mass of gray nerve tissue 
enclosed in the skull of a vertebrate, 
responsible for the interpretation of sensory 
impulse, the coordination and control of bodily 

in section 3.4 we will take a particular word and look into the definitions of all 

A1 got a bottle of juice at  the store. 
A boot is a large shoe. 
Boots are made of rubber or leather. 

It is inside your head. 
The brain makes your arms, legs, 
eyes and ears work. 
People think with their brains. 

the words in the AHFD that are defined using that word. The goal is to  build 

a larger context around a word. In LDOCE, such a process is only possible 

for the words in the core vocabulary as they are the only words used in other 

words' definitions. As clustering is a very important aspect of the LKB we are 

building, the LDOCE is definitely not adequate for our purpose. 

Naive view: The XHFD gives us a naive view on things. When we look at the 

XHFD and then at an adult's dictionary, we feel like the adult one is quite com- 

plicated and abstract. AHFD is made for young people learning the structure 

and the basic vocabulary of their language. In comparison, an adult's dictionary 

is more of a reference tool which assumes knowledge of a large basic vocahu- 

lary. .A learners dictionary assumes a limited vocabulary but still some verv 

sophisticated concepts. To give a feel for that statement, Table 1.1 shows a few 



examples of nouns defined in the AHFD and in the adult's American Heritage 

Dictionary (AHD). 

The complexity in the sentence structures can be seen, mostly in the entry for 

brain. One long sentence will correspond to three or four simpler sentences in 

the AHFD. One main difference between the AHFD and the adult's dictionary 

is on the emphasis given by the definition. The adult's dictionary always tries 

to  give a noun's definition using another noun. It follows the genus/differentia 

model of definition and therefore tries to find a genus at the expense of getting 

into complicated sentence structures, as well as sometimes finding obscure nom- 

inalizations (e.g. feathered vertebrate, gaseous mixture). The AHFD tends to 

give simpler definitions that are more usage oriented. In the cases of boot and 

boat, the AHFD has information about usage that is not present in the adult's 

dictionary, respectively on when people wear those boots, and that boats carry 

people. The AHFD's definition of bird gives many important aspects of being a 

bird (except for the egg-laying), as well as examples of birds. This information 

seems like exactly what we would want to  put in an LKB where we need to say 

what people usually know about birds. Notice also the sentence Most birds can 

fly. This is the kind of generalization that is really useful to have in an LKB 

and that would be hard to  extract from multiple texts or the adult's dictionary. 

We will use this kind of information later on to  assign certainty factors to the 

facts stored in the LKB. 

The AHFD's naive view on things makes it a perfect source of "shallow lexical 

knowledge" which is argued by Dahlgren [53] to be sufficient t o  disambiguate 

and build a discourse model of a textlsentence in real time. She describes her 

approach of "naive semantics" as follows: 

... all language understanding occurs in  the context of some knowl- 

edge. Within a subculture there is a body of common knowledge that 

is shared among participants. There is a relatively shallow layer of that 
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common knowledge (bblexical semantic knowledge ") which the hearer/rea- 

der employs in discourse interpretation; this shallow knowledge is ac- 

cessed as "default values" in the absence of relevant contestual infor- 

mation to the contrary. [53] 

Limited polysemy: The AHFD gives a limited number of senses to each word. 

Comparing definitions of verbs between an adult dictionary and the AHFD 

demonstrates an important problem often mentioned in work on knowledge ex- 

traction from dictionaries: polysemy. Some words in the AHD have more than 

ten senses. For example the verbs carry and catch both have thirteen senses. In 

comparison, these verbs have only one sense in the AHFD. In the AHFD, some 

words have multiple senses, but it rarely exceeds three, and never exceeds five 

(only a few verbs contain five senses). 

This limited polysemy might not be considered an advantage in itself, but our 

research focuses on other aspects of lexical semantics, and therefore not having 

to deal with polysemous words all the time becomes an advantage. We will 

address the question of word sense disambiguation within our lexical acquisition 

and clustering processes, but it is not the main emphasis of this research. 

Now. let. us summarize our justification for choosing the AHFD as our source of 

knowledge by answering some questions presented in [141]. 

Sufficiency: Is the dictionary sufficient to  give a strong enough knowledge base for 

English? 

Answer: We do not believe it is sufficient, but it is a very good starting point. With 

all the availability of data on the Internet, there is currently a keen interest in 

corpora. At the Euralex'96 meeting4, the consensus seemed to be that corpora 

are absolutely necessary to the dictionary making process. Therefore the use of 

a dictionary becomes, as mentioned before, like looking at the result of a corpora 

"Eurales'O6 is a European Conference on lexicography that  brings together dictionary publishers, 
lexicographers and computational linguists 
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analysis made by lexicographers. We think that any LKB should be dynamic, 

meaning it should be possible to update it with more data coming from either 

dictionaries or texts. 

Extricability: Can a set of computational procedures that operate on an MRD, 

without any human intervention, extract general and reliable semantic informa- 

tion on a large scale, and in a general format suitable for a range of subsequent 

NLP tasks? 

Answer: The dictionary contains the same vocabulary as plain texts, and uses 

the same syntactic structures, therefore any method used on the dictionary 

should work on plain text. The advantage of the dictionary is that some of its 

structures are used very often and give hints for ways t o  extract information. 

This is particularly true in the AHFD where the sentences are short and often 

use the same structures. 

Bootstrapping: Is it possible to collect an initial set of information that is required 

by a set of computational procedures for extracting semantic information from 

the sense definitions in an MRD? Or how do we extract the initial information 

that will enable us to analyze the rest of the dictionary? 

Answer: This is an important point. We must assume some things are known 

before we start, but we would like to keep it to a minimum. In our approach, 

we do not hand-code any semantic knowledge for individual words as was done 

in LDOCE. We start with the following elements: 

1. 1800 words, with their part-of-speech and their textual definitions; 

2. Morphological rules for the tagging of words; 

:3. A chart parser [66] with multiple parse rules for generating the parse tree(s), 

as well as additional information to help the parser: 

( a )  sorne word specific heuristics, for example, parse rules unlikely to make 

sense for some words (ex. a trip can go well, using rule [np 4 n n] to 

make a compouncl noun of tr ip can would he unlikely); 



(b )  type specific heuristics, for example, parse rules unlikely to make sense 

for words of a particular semantic class (ex. he dreams every night, using 

the rule [vp -+ vt np] to make every night an object of the verb dream 

would be unlikely, as the word night is a subtype of the semantic class 

time which is unlikely to be used as an object); 

(c) information about verb categorizations for a few verbs (ex. verb give 

can take 2 NPs, give John a message); 

4. Transformation rules to transform a parse tree into a Conceptual Graph 

(CG); 

5 .  Knowledge of certain semantic relations (is-a, part-of,  goal, instru-  

m e n t )  and the defining formulas used in the definitions to  express them. 

We need CG transformation/reduction rules to find the defining formulas 

at the CG level and transform them into semantic relations within the 

CGs; 

6. Knowledge of CG combination algorithms (finding common subgraphs, per- 

forming a join of two graphs) with the help of the type hierarchy (auto- 

matically constructed from the is-a relations found in the dictionary) to 

operate on CGs, discover common knowledge and build larger structures 

of knowledge. 

The first three items could be used by any knowledge base constructor, they 

allow us to analyze the sentences from which we want to extract knowledge. 

The last three items are particular to our design using conceptual graphs. 

1.2 Conceptual graphs 

The previous subsection presented our source of information, the AHFD, in which 

the knowledge is given by the dictionary sentences in natural language. We aim at 

builcling an LIiB containing this knowledge in a more explicit form; a form that would 

be readable by human users and accessible by an NLP system. 
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.A knowledge base relates to a specific universe of objects, here the set of objects 

defined in the XHFD. An object in the universe can be described in different ways 

depending on the representation formalism. For example, in a logical system an object 

can be defined by a list of predicates, or in a frame system by a list of attribute-values, 

or in a conceptual graph system by a list of relations and concepts. A knowledge 

representation language supports a method for specifying individuals or classes of 

individuals in terms of the functions and relations between them. 

Any one of the numerous knowledge representation formalisms5 could be adequate 

for building an LKB, given time to  develop all the necessary tools to  test and imple- 

ment different heuristics and different manipulations on the knowledge stored. 

We are using Conceptual Graphs [126, 1281 in this research, as there is a large com- 

munity of researchers working on CGs, developing tools that allow easy comparison of 

knowledge via graph matching. Comparison of knowledge will be very important to 

our research. Conceptual graphs present a logic-based formalism with the flexibility 

to express the background knowledge necessary for understanding natural language. 

Here are some characteristics of Conceptual Graphs: 

Predicates and arguments from predicate logic are replaced by concepts and relations; 

Concepts are typed allowing selectional restriction; a relation's signature defines what 

concept types it can relate; 

Concepts allow referents to specify an individual or a set of individuals of a certain 

type; 

A type hierarchy can be defined on concepts; 

Different graphs can be related through a coreference link on an identical concept; 

Jlanipulation algorithms are defined: maximal join, graph generalization, which make 

use of the type hierarchy to determine concept similarity for finding common infor- 

mation between graphs; 

"For an introduction to different formalisms used in Artificial Intelligence (logic, production rules, 
semantic networks, frame languages, parallel distributed processing), see [114] 
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Quantifiers are dealt with: plural, forall, there exist, some. 9 cats, John and Mary, 

that man; 

0 Easy mapping to natural language is intended. 

Figure 1.2 shows two sentences with their corresponding conceptual graph rep- 

resentations in graphical and linear forms. It also shows the result of a maximal 

common generalization and specialization performed on those graphs. 

The maximal common generalization of two graphs extracts the largest generaliza- 

tion that they share. A generalization of a graph is a subgraph where all the concepts 

are identical or more general than the ones in the original graph. For example, a 

referent can be replaced by a general type, or a type replaced by a supertype. 

If we specialize the concepts in the maximal common generalization to  the most 

specific concept types found in the original graphs, and then add the extra information 

contained in each of the graphs, we build a maximal join. 

1.2.1 Representing dictionary definitions 

In his book Conceptual Structures [126], Sowa defines: 

0 A canonical graph (sect. 3.4) is a meaningful conceptual graph that represents 

a real or possible situation. It incorporates selectional restrictions imposed on 

permissible combinations of words. 

An abstraction (def. 3.6.1) is a canonical graph with one or more concepts 

designated as formal parameters. 

0 A type definition (def. 3.6.4) is an abstraction that introduces a new type 

defined with a genus containing the formal parameter connected to a graph 

called the differentia. 

0 .A schemata (sect. 4.1) shows concepts and relations that are commonly associ- 

ated with a particular concept type. Unlike type definitions, the relationships in 

a sche~nata are not necessary and sufficient conditions for defining that concept 

type.  
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1. The two cats chase the mice while the dog Tod is resting. 

2. Dogs rest on a sofa. 

[rest] ->(agent)->[dog:plural] 
->(location)- >[sofa] 

Maximal Common Generalization 

Maximal Join 

Figure 1.2: C'onceptual graphs and their manipulation algorithms 
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The type definition a t  first seems to be the right structure for mapping dictionary 

definitions: one word, one type definition. 

... a concept type may have at most one definition, but arbitrarily many 

schemata. ... Type definitions present the narrow notion of a concept, and 

schemata present the broad notion ... type definitions are obligatory con- 

ditions that state only the essential properties, but schemata are optional 

defaults that state the commonly associated accidental properties. 11261 

Unfortunately, it is more the rule than the exception to  see a word in the dictionary 

with multiple senses. A concept type cannot correspond to  a single word, nor could it 

correspond to  a word sense since the number of word senses defined in the dictionaries 

is quite arbitrary, thus making us wonder what each sense really is. As well, a word 

sense can be defined by its usage and then its definition is closer to  a schemata than 

to  a type definition. 

Furthermore, a major aspect of dictionary definitions prevents them from being 

type definitions: they do not always specify the necessary and sufficient conditions 

for defining a word. Dictionary definitions contain many inconsistencies, and different 

dictionaries emphasize different aspects of words. For example, the Webster's Seventh 

New Collegiate Dictionary (W7) and the AHD have different views on what a cuckoo 

is. In W7, a cuckoo is A largely grayish brown European bird noted for its habit of laying 

eggs in the nests of other birds for them to hatch. In AHD, a cuckoo is An old world 

bird with graying plumage and a characteristic two-note call. 

In our work we will mainly use the term conceptual graph definition in the sense 

of a set of schemata used to  define a word. Hence a CG definition is a group of CGs 

showing some aspects (description, usage) of a word, those aspects not necessarily 

constituting a set of necessary and sufficient conditions for defining the word. 

1.3 The type hierarchy 

By seeing a word's meaning as a C'C; definition which is a set of schemata, we em- 

phasize the idea of meaning by usage. or meaning as the relation of a word to other 
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words. With respect to  our hypothesis of building an LKB useful to an N L P  system 

that will analyze texts using common language, we are more interested in knowing 

about a word's usage than having its detailed description. 

Many dictionary definitions are writ ten as descriptions, in the traditional way of 

giving the genus and differentia. In a noun definition, the genus specifies the class in 

which to put the noun, and the differentia specifies how different that noun is from 

the other nouns in the class. 

Why should the genus differentia method of defining a word be the most favored 

one? We do not question the method itself (which goes back to  Aristotle), but rather 

the practical use of such information in the context of building an LKB compared to 

other types of information that could be extracted from a dictionary. 

A definition like: 

Aspirin: A white crystalline compound of acetylsalicylic acid, C9H8O4, used 

t o  relieve pain and reduce fever. 

make us certainly wonder about the value of the descriptive part for everyday knowl- 

edge (genus: crystalline compound) versus the explication of usage (used t o  relieve 

pain). 

The first attempts at extracting knowledge from dictionary definitions [41, 341 were 

concentrating on the extraction of the genus word and the automatic construction of 

type hierarchies. A typical genusldifferentia definition is for example: A castle is a 

large building with high thick walls. The word building is the head of the noun phrase, 

and therefore the genus. This is used in building the taxonomy, where the headword 

castle becomes a subtype of the genus building. This taxonomy based on the genus of 

the definitions, called an is-a hierarchy,  is probably the most common one extracted 

from dictionaries. 

Finding the genus of each definition is not always easy. The genus is not always 

the head of the noun phrase. There are patterns called empty heads where the genus 

is the word after the preposition of, as in <X is a form of Y>. 

,\.lore recently, the large-scale project WordNet [23] created even more interest 

in the matter. \.VordNet is in fact much more than a large type hierarchy focusing 



only on the hypernymy/hyponymy relations. The developers include a small number 

of relations that they believe are especially significant for the structure of the lexi- 

con: synonymy, antonymy, hyponymy, hypernymy and three types of meronymy and 

holonymy. WordNet includes no definitions; instead, synsets (words having a similar 

meaning grouped together) are connected to other synsets by pointers representing 

the chosen relations. 

,411 these relations are interesting, but they are not enough. All these -nymy 

relations bring together two words of the same part of speech. They all work at 

the paradigmatic level. However, we think it is absolutely necessary to  look at the 

syntagmatic level, to  explore the relations between the different parts of speech to 

find other ways t o  find intermediate links between words. For example, the fact that 

a goat lives on a farm, and a cow lives on a farm gives them a strong relation not 

expressed by any of the relations mentioned for WordNet. 

Our goal is to  find all these other relations by comparing the definitions of multiple 

words and finding what they have in common. We will create cover t  categories,  

which are categories without a label ( a  corresponding entry in an English dictionary), 

but that correspond to  concepts. To take the same example as before, the concept of 

living on a farm does not correspond to a single English word, but it can be used to 

find similarity between other words. 

These covert categories can be given type definitions as opposed to the actual 

English words which we decided to define through groups of schemata. We associate 

an arbitrary label (or type) to  a unique conceptual graph, in which case using the label 

or the graph becomes totally equivalent. The graph is unique and it gives necessary 

and sufficient conditions for defining the label. 

The increased interest in type hierarchies seems to overshadow a lot of other useful 

information that should be part of our concept world. The type hierarchy is often the 

only information used to establish the similarity (via a measure of semantic distance) 

between concepts. To find the semantic distance between two concepts C1 and C2, 

we must first find a concept C in the hierarchy which subsumes both of them. One 

way to establish the semantic distance is to calculate the path length going from C1 

to (_' and from C' to  Ci) [63]. Another way is to establish the degree of informativeness 
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of the concept C [116] that is based on its number of occurrences in a corpus of texts. 

The most frequent words are the less informative. Whatever the criteria is, it is based 

on a subjective structure. Type hierarchies are not absolute truths, they differ from 

one application to another, from one dictionary to  another. Different lexicographers 

might define the same words using different genus, and therefore a path could be 

completely absent and the similarity between two concepts not found. 

More fundamentally, many types of similarities are not found on the subclass/su- 

perclass axis. There are many more dimensions to this concept world. How are a clock 

and a watch similar? Or a pen and a pencil? Or a cardinal and a tomato? These are 

the dimensions we would like to capture and therefore augment the ontology so that 

it is not restricted to  the type hierarchy. 

1.4 The meaning of a word 

As mentioned before, and in accordance with our third hypothesis for this thesis, 

we consider a word's definition as a group of schemata, giving descriptive and usage 

knowledge about the word. We continued to argue in section 1.3 that more than 

just the genusldifferentia information given by single definitions should be seen as 

important information to  be included in an LKB. Now, we go further. Why should a 

word's meaning be restricted to the information contained in its own definition? 

Without getting into the large philosophical debate on lexical versus encyclopedic 

knowledge, it is important to  note that, in a practical way, definitions are arbitrarily 

long or short, detailed or concise. As we said earlier by showing the cuckoo example, 

they emphasize different aspects depending on what was considered important by the 

lexicographer. One good way to  overcome these differences is to  combine information. 

The more information we have, the more different details we can gather, but as well, 

the redundancy found will augment our confidence in certain given facts. Additionally, 

the repetition of information can help solving anaphora present in the individual 

definitions. In our L K B  we will build larger structures, called concept clusters, to  

better represent the meaning of a word using its interaction with other words. 

byhen people have a conversation, or read a text about a particular subject. they 
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have in their mind an extended view of that subject that they can use to infer missing 

information in the text. For example, if one says the word "baseball" to another 

person, this word will trigger a group of related actions and concepts: that baseball 

is played with a bat and a ball (also called baseball), that many people attend major 

league games, that the players have to  run on the bases, etc. All this information 

should be part of a concept cluster built around a word that we will call a trigger 

word. The idea is close to the idea of scripts presented in [121]. To build a particular 

cluster, we will use the definition of a trigger word in a dictionary and perform forward 

and backward searches to find related words in the dictionary and enrich the definition. 

This idea of clustering is quite different from the many recent efforts in finding 

words that are semantically close which involve mostly statistical techniques [43, 142, 

31, 1081 t o  determine word clusters based on cooccurrences of words in text corpora 

or dictionaries. 

Our idea of clustering is not based on finding groups of synonyms, or groups of 

words connected by any single relation. We try finding groups of words that help 

define each other, or that are used in a single situation and therefore are related to 

each other in different ways. As our knowledge representation is based on concep- 

tual graphs, we will call these clusters Concept Clustering Knowledge Graphs 

(CCKGs). CCKGs give a CG representation for all the words in the cluster showing 

the relations among them and to  other words part of the micro-domain represented. 

1.4.1 Cruse's View 

The research of Cruse [51] influenced many of the ideas in this dissertation, and 

the idea of extending a word's meaning from its definition to a cluster certainly was 

inspired by his work. Cruse describes how the meaning of a word is made of the 

meaning of other words and how it is influenced by the context: 

The full set of normality relations which a lexical item contracts with all 

conceirable contexts will be referred to as its contextual relations. We 

shall say then, that the meaning of a u~ord iu fully reflected in its contestual 
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relations; in fact, we can go further, and say that, for the present purposes, 

the meaning of a word is constituted by its contextual relations. 

We can picture the meaning of a word as a pattern of afinities and dis- 

afinities with all the other words in the language with which it is capable 

of contrasting semantic relations in grammatical contexts. 

An extremely useful model of the meaning of a word, which can be extracted 

from the contextual relations, is one in which it is viewed as being made 

up, at least in part, of the meanings of other words. [51] 

All the work presented in his book is based on the idea of first defining lexical units 

(instead of talking of words) and then looking at many possible relations between these 

lexical units. A lexical unit should correspond minimally to a semantic constituent 

and a word. 

At the syntagmatic level, Cruse considers as a semantic constituent, any con- 

stituent part of a sentence bearing a meaning that could be combine with the meaning 

of the other constituents to  give a meaning to the sentence. He talks about words, 

idioms and collocations, prefixes and suffixes. 

At the paradigmatic level, one lexical unit can have multiple senses. As we do not 

address the problem of finding idioms, a lexical unit will correspond to  a single word 

which can have multiple senses. 

Cruse introduces the interesting idea of sense modulation. A context can select a 

sense of a Iexical unit if there are multiple senses, but a single sense can be modulated 

by the context as well. 

Each sense of a lexical unit is made of semantic traits given by the other lexical 

units defining it. A semantic trait can have five statuses: criterial, expected, possi- 

ble, unexpected and excluded. To modulate a sense, a context can highlight certain 

semantic traits of a lexical unit in a particular situation. For example, the pregnant 

cat, brings the female trait of cat from possible to  criterial. 

With our clustering process, we will see some lexical units having only one of their 

senses as part of a cluster which can be seen as a context. Another sense can be part 

of another cluster. When two senses are closely related (differing only in their part of 
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speech, for example "to mail" and "the mail") they might be found as interacting in 

the same cluster. As well, a lexical unit with a unique sense might be part of different 

clusters emphasizing different semantic traits of it. 

The five statuses chosen for the necessity levels of semantic traits will be introduced 

later in our work as certainty factors on the facts given in the dictionary. 

Once the lexical units are defined, Cruse introduces multiple lexical relations in 

which the lexical units can relate to each other. In particular he gives more information 

on taxonomies, meronimies, different types of opposites and synonyms. We will look 

into semantic relations in section 2.4.3. 

1.4.2 Quillian's view 

In Quillian's [I131 work on semantic memories, he was trying to  find the "larger word 

context". To him the meaning of a word was not only its definition, but also the 

definitions of all the words used to  define it, and then all the definitions of the words 

used in those definitions and so on. 

The problem with such a view is that the definition of a word becomes very large. 

There is no stopping condition, nor is there a procedure to focus the search in the 

right direction. 

In a definition, not all words mentioned are of equal interest to  pursue a search 

and include their definition. We will see in section 3.4.1 how we decide whether a 

word is semantically significant or not. If a word is too general, like the word person, 

it is certainly not very useful to include its definition as part of the definition of all 

the words that include it, which is probably half the dictionary. 

In our view, a circular search is more appropriate than the expansion method of 

Quillian. There is information related to word X not only in the definitions of the 

words included in the definition of word X (forward search), but also in the definitions 

of the words that are defined using word X (backward search). We think of going 

forward then backward then forward again, then backward again, and so on, as a 

circular process. 

\ \e  also want to ensure termination by including new words in the cluster onljr 
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if they already relate to that cluster, meaning that their definition overlaps with the 

larger cluster's definition. That prevents from going in all sorts of directions that 

give more and more information about more and more concepts. We want more 

information (more connections) but about a limited number of concepts. 

1.5 Layout of this dissertation 

The four previous sections presented four important aspects of the LKB that we aim 

to  build: (1) the choice of children's dictionary as our source of information, (2) the 

choice of conceptual graphs as our representation formalism, (3) the expansion of the 

type hierarchy to  include covert categories and (4) the formation of concept clusters 

around a trigger word found in the dictionary. 

We want to present in the next chapters all the steps, ideas, processes, heuristics, 

leading to the construction of our LKB. 

Chapter 2 will look a t  all the steps to  transform one sentence found in the AHFD 

as part of a word's definition into a conceptual graph. The multiple steps will be 

presented: tagging and parsing, parse-to-CG transformations, structural disambigua- 

tion and semantic disambiguation. We will also show the construction of the type 

hierarchy, as we build the hierarchy automatically from the definitions. There is no 

interaction or links found between the graphs at this point, this will come in the next 

chapter. 

This chapter will validate our first and second hypothesis, as the children's first dic- 

tionary will be transformed in a set of graph definitions containing general knowledge, 

and the partially built LKB will help process and disambiguate the graph definitions. 

Chapter 3 will explore the actual construction of the LKB. We have all the individ- 

ual graphs corresponding to each sentence part of all the nouns and verbs definitions. 

\Ve can load them all in our environment and then experiment with them. \Ve will ex- 

plore the cluster formation, and the expansion of the type hierarchy to  include covert 

categories. 

This chapter will validate our third hypothesis as we will show the construction 

of clusters of words which give much information about a word through its relations 
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to other words. The second hypothesis is also validated as we create new structures 

in the LKB from existing ones. Covert categories are introduced and express some 

information contained in the graph definitions in a more explicit form. ' 

Chapter 4 will demonstrate the system ARC-Concept (Acquisition, Representation 

and Clustering of Concepts) which is the software implementation of all the ideas 

presented in Chapter 2 and Chapter 3. We also present and evaluate results. 

Chapter 5 will briefly explore the role of our LKB for text analysis. It will summa- 

rize the ideas presented in the thesis and give many suggestions for future research. 



Chapter 2 

FROM A DEFINITION TO A 

CONCEPTUAL GRAPH 

By analyzing dictionary definitions, our goal is to  find the knowledge contained in the 

sentences describing objects, qualities or actions, and to  represent this knowledge in 

an explicit form that can be easily accessed, used and updated by a Natural Language 

Processing (NLP) system. 

In the introduction chapter, we introduced our source of knowledge: the American 

Heritage First Dictionary (AHFD). We introduced as well our chosen representation 

formalism: Conceptual Graphs (CGs). In the present chapter, we take the reader 

through all the steps for transforming the definitions found in the AHFD into con- 

ceptual graphs (CGs). 

The goal is to  transform each sentence that is part of a definition into a CG, and 

to build a Lexical Knowledge Base (LKB) containing all these resulting CGs. The 

next chapter will then start from an LKB with all CG definitions and perform more 

operations on them to  render the LKB richer in disambiguated structures and more 

informative to a Xatural Language Processing (NLP) system. 

The whole process described hereafter has two main goals: single out one graph out 

of the many possibilities that correspond to  a sentence (structural disambiguation) and 

disambiguate the ambiguous information contained in the sentence (semantic disam- 

biguation). .hnbiguous information can take multiple forms: an unresolved anaphor 
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( a  pronoun referring to some unknown noun), an unresolved semantic relation (an 

ambiguous preposition such as with that can have multiple meanings: accompani- 

ment, instrument), or an unresolved sense ( a  word with multiple senses and we do 

not know which one is meant). 

Figure 2.1 shows all the steps to transform a sentence into a single CG, and render 

it less and less ambiguous. We briefly present each step: 

1. Sentence to CG: The first transformation of a sentence into a conceptual 

graph which contains surface semantics. 

Tagging: All words need to be tagged first. 

Parsing: Then a sentence is parsed using a chart parser that we developed 

for this application. 

Parse to CG: Once the parse trees are constructed, there is a set of rules to  

transform them into conceptual graphs containing multiple surface seman- 

tic relations. 

2. Building type hierarchy: The type hierarchy is important for further ma- 

nipulations and we make a first attempt at generating it from the graph repre- 

sentations we have so far by finding is-a relations. 

3 .  Structural Disambiguation: Multiple possibilities for prepositional and 

conjunctional attachment are two large causes of structural ambiguity. We use 

a few heuristics to  reduce the number of CGs. Some of these heuristics rely on 

the type hierarchy. 

Prepositional attachment: 

proach based on the LKB. 

Conjunctional attachment: 

c hy. 

4. Semantic Disambiguation: 

informat ion more explicit. 

We use a statistical approach and another ap- 

We use an approach based on the type hierar- 

Four aspects are studied t,o render implicit 
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Figure 2.1: All steps from a sentence to a conceptual graph 



Anaphora resolution: We use very basic anaphora resolution. 

Word sense disambiguation: We try to assign the correct word sense to all 

the words within the graphs. 

SRTGs: Semantic Relation Transformation Graphs are used to  transform the 

surface semantic relations into deeper semantic relations. 

Conjunction distributions: Some relations attached to a member of a con- 

junction can, in some cases, be distributed to the other members. We try 

simple transformations. 

We try to explain afterward how all these disambiguation methods are not totally 

independent of each other, and that the whole disambiguation process is seen as 

a spiraling process. For example, at the beginning we have very little information 

to build the type hierarchy, and then we use it to perform other operations that 

might change the type hierarchy. For example, the word sense disambiguation will 

have modified some superclasses found (by giving the correct genus sense), and the 

conjunction distributions might have distributed some is-a relations. This affects the 

type hierarchy. But then, every time we modify the type hierarchy, the structural 

disambiguation that uses it might find better results, i.e. fewer graphs. We should 

therefore repeat some steps already done. 

After all the preceding transformations, if we still have more than one graph per 

sentence, we can ask the user to manually choose one graph. 

1Iany ideas presented in this chapter are not novel. But the exercise of performing 

a sentence to  conceptual graph transformation allows the presentation of a good syn- 

thesis of multiple N L P  issues. In some papers using CGs for NLP [61, 881, the authors 

assume the sentence to  graph transformation is already done, but they never really 

explain how it is done, with what success and what effect how well the transformation 

is done has on subsequent results. The reader will see that a sentence to CG trans- 

fornlation is not an easy task. It must address many problems of text understanding 

such as anaphora resolution, structural disambiguation, word sense disambiguation. 

\ire are trying to understand text to transform the information it contains into an 

explicit representation. 



For the present research, we think it is a very good way, as part of a doctoral 

dissertation, to get an overview of the multiple problems that computational linguists 

face, even if only attempting simple solutions to some problems, realizing that the 

door is open for a life-long exploration into the field. 

When people analyze dictionaries, they usually concentrate on words that are 

part of the open set [51], i.e. the set of words containing the lexical roots. The closed 

set of words contains affixes, articles, conjunctions, prepositions, which are mostly 

defined by their function. We will see that the formulas or patterns discovered among 

definitions that lead to semantic relations are often constructed of words from the 

closed set. This assumes a knowledge of the closed set of words before we start our 

analysis of the dictionary. 

In the AHFD, the part of speech of the words defined is not indicated in their 

definition. Our electronic version of the AHFD incorporates this information which 

allows us to distinguish between open set and closed set, and thus focus our analysis 

on nouns, verbs, adjectives and adverbs as the major constituents of the open set 

of words. We specifically concentrate on the definitions of nouns and verbs, as they 

account for three quarters of the words in the AHFD. 

Their definition is usually given by a few sentences that contain up to  three general 

types of information, as shown in the examples in Figure 2.2 (the words between 

brackets are our addition). 

0 description: This contains genusldifferentia information. Such information is fre- 

quently used for noun taxonomy construction [34, 85, 142, 171. 

general knowledge or usage: This gives information useful in daily life, like how 

to use an object, what it is made of and what it looks like. 

0 specific example: This presents a typical situation using the word defined and it 

involves specific persons and actions. 

An extract of the electronic version of the dictionary is shown in Figure 2.3. Details 

concerning the format of this dictionary are provided in Appendix A. It contains the 

same information as the hook version of the AHFD, minus the accompanying pictures, 

hut augmented with the information about parts of speech. 



CH'APTER 2. FRO-41.4 DEFINITION TO A C'0iYC'EPTI:AL C;RdAPH 

An arm is a part of the body. [description] 
It is between the shoulder and the hand. [usage] 
Amy used both arms to carry wood for the fireplace. [example] 

Cereal is a kind of food. [description] 
Many cereals are made from corn, wheat, or rice. [usage] 
Most people eat cereal with milk in a bowl. [usage] 

Ash is what is left after something burns. [usage] 
It is a soft gray powder. [description] 
Ray watched his father clean the ashes out of the fireplace. [example] 

A bag is used to hold things. [usage] 
It can be made of paper, plastic, cloth, or leather. [usage] 
Jason brings his lunch to school in a paper bag. [example] 

Figure 2.2: Example of definitions from AHFD 

One original contribution of the research presented in the next few sections is the 

development of a grammar for children's simplified English that could be useful not 

only for this dictionary, but for other children's oriented text,  and perhaps for tasks 

other than knowledge extraction. 

2.1 Sentence to Conceptual Graph 

Increasingly sophisticated analysis has been done t o  extract information from dictio- 

nary definitions. Chodorow et  al. [41] performed string matching to find the genus of 

each definition and then build type hierarchies. Then Markowitz et  al. [92] identified 

defining formulas showing patterns related to  case relations. Alshawi developed the 

idea of using a hierarchy of phrasal patterns to  identify defining formulas [5, 21. Other 

researchers [2f, S.5, 1011 prefer parsing the dictionary definition first, then do a search 

on the parse tree t o  locate defining formulas, and use some heuristics t o  find the words 

involved in the relations. 

\\'e follow the last approach. IVe parse a definition sentence before we transform it 

into a conceptual graph and then perform further steps a t  the graph level. Arguments 
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corner 
1.n. 

A corner is the place where two sides come together. 
Squares and rectangles have four corners. 

correct 
l.adj. 
Correct means without mistakes. 
Jack's answer was correct. 
2.v. 
To correct means t o  check for mistakes in something. 
The teacher corrects all our tests. 

cost 
1.v. 

To cost means t o  have a price of some amount of money. 
The book Susan wants costs a dollar, but she only has 50 cents. 

costume 
1.n. 
A costume is a set o f  special clothes. 
Stacy wore a costume in the school play. 

cotton 
1.n. 
Cotton is soft, light, and gray. 
I t  grows on a cotton plant. 
It is made into cloth. 

People wear clothes made from cotton in the summer. 

could 
l.aux. 
Could is a form o f  can. 

Tom can whistle. 
He could whistle when he was five years old. 

couldn't 

Couldn't is a short way t o  say could not. 

Last year A.J. couldn't read as well as Tyrone, but now he can. 

Figure 2.3: Extract from electronic AHFD 
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in favor of the parsing method are presented in [loll .  

itre must first tag each word, then parse the sentence and then transform the parse 

tree into a conceptual graph. 

2.1.1 Sentence tagging 

The first step in analyzing our sentence before the parse step is the tagging step. X 

sentence is made of tokens which can be: 

1. a base word, such as a singular noun, adjective, non-conjugated verb (Ap- 

pendix A shows all possible parts of speech.) 

2. a different form of a word, which we can find via morphological rules (Ap- 

pendix B shows all possible morphological rules.) 

3. an irregular verb, an irregular plural form, a symbol or punctuation, or a proper 

name (Appendix B gives a list of these tokens.) 

The tagging process finds a tag for most words of the dictionary definitions because 

almost all words in the dictionary are defined using words themselves defined in the 

dictionary. Table 2.1 shows 29 undefined words used in the 1800 words defined. 

Some of these words (interesting, jewelry, salty) might be found if we refine our 

morphological analysis more. 

.A word can also be defined as one part of speech but used in another definition 

in its base form as another part of speech. Table 2.2 shows the few cases where it 

happens. 

The sentences also contain many proper names which can be identified during 

processing due to capitalization. The tagger interacts with the user concerning the 

recognition of proper names the first time an unknown capitalized word is encountered. 

2.1.2 Sentence parsing 

i \ e  implemented a chart parser which is a bottom up parser that works with unary 

and hinary combination rules. For example: 
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Table  2.1: Words  used b u t  not  defined in t h e  AHFD 

word 
ahead 
apartment 
b u s s t o p  
chain 
classroom 
couch 
dad 
flow 
forth 
interesting 
jewelry 
matter  
none 
nor 
onto 
out  -of 
pillow 
press 
respect 
row 
salty 
skirt 
s o m u c h  
someplace 
t a b  
thirty 
toast 
treat 
twelve 

part-of-speech 
adv 

n 
n 
n 
n 
n 
n 
v 

ad  v 
ad j 
n 
v 

pron 
conj 

Prep 
Prep 

n 
v 
n 
n 

a d j  
n 

adv 
pron 

n 
a d j n u m  

n 
v 

a d j n u m  



Table 2.2: Words used but defined as different part-of-speech in the AHFD 

word I part-of-speech used 
beat 
dark 
equal 
help 
human I n 

n 
look jump I n 

adj 
rise open I n 
round ad j 
straight 1 rdv 
turn 1 n 
whatever 1 adj 

part-of-speech defined 
v 

ad j 
adj 

v 
ad j 

v 
v 
v 
v 
n 

adj 
v 

pron 

unary rule: vp + vi nil verb phrase results from an intransitive verb and nil 

binary rule: vp + vt np  verb phrase results from a transitive verb 

and a noun phrase 

RULES 

IVe use both a primary and a secondary set of rules which are provided in Appendix C. 

The  parsing engine first tries parsing a sentence with the primary set of rules, which 

results in a parse for a large percentage of sentences. If no parse is found, then the 

engine adds one by one the rules from the second set of rules which are looser. For 

example we would expect a relative clause to  start  with a relative pronoun, therefore 

in the primary set we have: 

np -+ np 1-2 noun phrase results from noun-phrase + relative clause 

r',! + reI-pron vp relative clause results from relative pronoun + verb-phrase 

(ex. the dog that  runs) 

r2 -+ rel-pron np-v relative clause results from relative pronoun + incomplete 

np-v -+ np vt sentence made of a noun-phrase and a transztive verb 

(ex .  the cat that  the dog chases) 
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In the secondary set we would add the following rule that skips the relative pro- 

noun. 

r2 + np-v nil (ex. the  cat the  dog chases) 

The problem with looser rules like this one is that they generate a large set of 

wrong parses, but they are needed because they allow us to parse perfectly acceptable 

sentences present in the language and that should be allowed. That is why we decided 

to do the parsing in two steps instead of allowing all the rules to be tried at once. If 

only the first set of rules can be used, the number of parses is more limited, although 

it is often still more than one or two. 

HEURISTICS 

Most sentences when parsed result in more than one parse tree. Some heuristics can be 

used for reducing the number of parses, and we present a few hereafter. The heuristics 

presented are compared to  the heuristics used in [81]. Unless stated otherwise, what 

we present is similar to their view. 

Level difference: This idea is a variation on the theme of ''right association" which 

says that postmodifiers prefer to be attached to the nearest previous possible 

head. Here we relaxed that preference a bit to  allow not only the nearest head 

but sometimes the next nearest head too. 

Each node in the parse tree has two children, its left child and its right child. 

When we build the parse tree, all the words correspond to leaves of the tree 

and are set at level 0. Every time we use a rule, the new node is a t  level n + l ,  

where n is the highest level of both children nodes it is made from. The levels 

are indicated in parenthesis in the following example: 

np(1) ->clet(O)->the n p  is at l e w l  1 ,  built from t w o  level 0 
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->n(O)->sky children 

p2(2) ->prep(O)->at prepositional phrase is at level J as 

->np(l)->"the sky" it is built from a preposition at level 0 

and a noun phrase at level 1 

What we call level difference is the difference in levels between the left child and 

the right child of a node. The subtraction goes from left to right. 

If a parse is built sequentially from the last token in the sentence to the first 

one (as PARSE 1 shows in Figure 2.4), the level of the right child is always 

the highest. If a left child is a t  a much higher level than a right child it  means 

we are building a large structure in the middle of the sentence and then try to 

attach to  it a little word a t  the end. For example, in the sentence A beach is an 

area of sand at  the edge of a lake or an ocean (definition of beach in the AHFD) 

there are many ways to decide which nodes are involved in the conjunctions and 

prepositions. One parse could find ocean and area of sand a t  the edge of a lake 

as members of the conjunction "or". PARSE 2 of Figure 2.4 shows that such an 

option would correspond to a large level difference of 5 .  The other possibility 

of having ocean and lake as members of the conjunction "or" is shown within 

PARSE 1 and PARSE 3 in Figure 2.4 and correspond to a level difference of -1. 

A threshold on the level difference has been set experimentally to decide which 

parses to eliminate. 

Argument versus modifier: Favoring arguments over mere modifiers would find 

the right interpretation of a sentence like John bought a book from Mary. The 

prepositional phrase from Mary is an argument of the verb bought. But for 

other examples, such as: John borrowed a book from the library. or John eats a 

prepared dish from the freezer. it becomes not so obvious t o  decide. We would 

like to keep both interpretations as opposed to [Sl]. To favor the argument 

is actually opposite to the right association principle, but because our level 

difference heuristic is looser, i t  allows both interpretations unless the verb's 
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PARSE 1: 

sl(l1)->np(l)->det->a 
n-> beach 

vp(l0)->vb->be 
np(9)->np(l)->det->a 

n- > area 
p2(8)->prep>of 

np(7)->np(l)->n->sand 
p2(6)->prep>at 

np(5)->np(l )->det->the 
n- >edge 

p2(4)->prep>of 
np(3)->np(l)->det->a 

n- > lake 
cnp(2)->conj->or 

np(1)->det->an 
n->ocean 

PARSE 2: 

sl(l0)->np(l)->det->a 
n- > beach 

vp(9)->vb->be 
np(8)->np(7)->np(l)->det->a 

n- > area 
p2(6)->prep>of 

np(5)->np(l)->n->sand 
p2(4)->prep>at 

np(3)->np(l)->det->the 
n->edge 

p2(2)->prep>of 
np(1)->det->a 

n- >lake 

PARSE 3: 

sl(9)->np(l)->det->a 
n-> beach 

vp(8)->vb>be 
np(7)->np(3)->np(l)->det->an 

n- > area 
p2(2)->prep>of 

np(1)->n->sand 
p2(6)->prep>at 

np(5)->np(l)->det-> the 
n->edge 

p2(4)->prep>of 
np(3)->np(l)->det->a 

n- > lake 
cnp(2)->conj->or 

np(1)->det->an 
n- >ocean 

Figure 2.1: Example of parse trees showing difference in levels 
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direct object is modified intensively increasing the difference level to  be above 

the set threshold. For example, we would not keep the argument interpretation 

in the following sentence: John bought a book that  was used by his school teacher 

in first grade from Mary. 

Infinitive complement versus adverbial: The complement interpretation of in- 

finitives is favored over purpose adverbial interpretations. In the example John 

wants his driver t o  go t o  Los Angeles. the prepositional phrase t o  Los Angeles 

should modify go and not want. As the rule [vp -+ vp ~ 2 1  would give the wrong 

interpretation, we must verify if vp does not have a child that is of type inf-vp 

before applying it, so to  avoid structures like 

vp -> vp -> vp 

-> inf-vp -> inf 

-> vp 

-> p2 

This alternate structure will be preferred: 

vp -> vp -> vp 

-> inf-vp -> inf 

-> vp -> vp 

-> p2 

Temporal prepositional phrases: The attachment of temporal prepositional phra- 

ses is reserved to verbs or event nouns. In example John saw the President during 

the campaign the prepositional phrase during the campaign should attach to saw 

as it expresses temporal information. We look for the preposition during before 

applying the rule [np --+ np p2] which would allow any prepositional phrase to 

modify a noun. Other prepositions that could express temporal information 

(such as a t ,  in, by) can also express other types of information and are not 

restricted here. 
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Temporal noun phrases: In [81] they favor adverbial over object interpretations 

of temporal and measure noun phrases. In the example John won one day in 

Hawaii. the noun phrase one day is considered as an adverbial modifier to the 

verb instead of a direct object. In our opinion, the opposite interpretation seems 

as plausible in this case. 

We could make use of the type hierarchy to see if a noun is a subtype of time 

before allowing the rule [vp + vt np]. But this is quite restrictive, as it does 

not allow any direct object to be a subtype of time. 

We go the other way around, and for the rule [vp -t vp a d v a p ]  in which a 

noun phrase is considered an adverbial modifier, we only allow it if the noun 

is a subtype of time. So in the previous example, because day is a subtype of 

time both interpretations would be allowed. On the other hand if the sentence 

was John won a kite in Hawaii. only the direct object interpretation would be 

allowed. 

At the beginning of our knowledge base construction, we start with a flat type 

hierarchy. Therefore, we do not know if any noun is a subtype of time or not. 

As we build the hierarchy, extracting the is-a relations from simple sentences, 

the word day will be put as a subtype of time. Then, in a second iteration of 

parsing we will allow new parses that were not allowed before. 

Compound nominals: Temporal nouns are favored as adverbials over compound 

nominal heads. In the example I saw the man Thursday. the word Thursday is an 

adverbial and does not form a compound nominal with man as man Thursday. 

X reasoning similar to the previous heuristic is used in this case. We do not 

allow the rule [np + n n] to  be used if the second noun is a temporal noun, a 

subtype of time. 

Verb classes and alternations: We have six groups of verbs that are created at 

the beginning of the parsing process and the user can add verbs to these groups 

as he/she wishes. Each group is presented to the user through an example as 

follolvs: 
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1. I help/want/like her to find her shirt. 

2. I made/help/watch Xlary go to  the store. 

3. I feel/live/get better. 

-2. John decided/judged/saw who was right. 

5. John mailedlgave Mary a letter. 

6. I believe/think/say ( that)  Joe will win the race. 

Each group allows for specific rules to be used that cannot be used by all verbs. 

For example, only group 5 allows for two noun phrases as direct object and 

indirect object [vp -+ vg np2], any other verb not part of group 5 would have to 

take the second noun phrase as an adverbial modifier. This takes care for most 

cases of the rule in [81] that favor predeterminers over separate noun phrases. 

Only the verbs in group 5 can have two separate noun phrases as arguments, in 

which case there is two possible interpretations and we allow both, such as in 

example Send all t h e  money. 

Only group 6 allows that  as a complementizer which takes care of the rule in 

[81] favoring t h a t  as a complementizer rather than as a determiner. In example 

I know t h a t  sugar is expensive. the word t h a t  is not usually a determiner in front 

of sugar. Our heuristic favors the complementizer interpretation only in the case 

of certain verbs. 

Even after the reducing process, there are often multiple parses left. In general, 

our heuristics tend to  be looser than [81] as we believe that no decision is better 

than the wrong decision. For this reason, we keep the reduced set of possible parses 

and go on to  the next step of transforming parse trees into conceptual graphs. We 

generate multiple conceptual graphs for each sentence and carry them along through 

Inore reciuction and transformation processes performed at the graph level. We hope 

to perform structural disambiguation in a more informed way at a later stage as we 

will have access to some of the information from the LKB in construction. 
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2.1.3 From a parse tree to a Conceptual Graph 

The parse trees generated during the previous steps show the syntactic level of sen- 

tence decomposition or analysis. We now want to take each parse tree and transform 

it into a Conceptual Graph (CG). For a first step, the syntax-semantic transformation 

will give us a CG containing surface semantics, that is a mix of syntactic and seman- 

tic relations, and therefore a semantic representation that is very close to the syntax. 

Section 2.4.3 will present graph transformations to find deeper semantic relations. 

The relations first put in the CG come from two sources: 

1. the set of closed class words, e.g.: of, to, in, and; 

2. the relations that are extracted from the syntactic structure of a sentence, e.g.: sub- 

ject, object, goal, attribute, modifier. 

Figure 2.5 shows both types of relations. The set of closed class words includes 

prepositions, adverbs and conjunctions. We can see the prepositions o n  and of in 

sentence 1, the adverb w h e r e  in sentence 2, and the conjunction a n d  in sentence 

:3, all used as relations in the corresponding conceptual graphs. The second set of 

relations from syntactic structures can be seen by the relations ob jec t  and agen t  in 

all t,hree graphs. 

The relations defined using the closed class words are often ambiguous. Exam- 

ple 2.1.1 shows the ambiguity generated by the preposition of as it expresses a relation 

of (1) t i m e ,  (2 )  m a t e r i a l  and (3) part-of.  

E x a m p l e  2.1.1 - 
(1 )  Birthday: T h e  day or anniversary of a person's birth. 

( 2 )  Shelf: A flat, usually rectangular structure of a rigid material... 

(3) Floor: The  surface of a room on which one stands. 

The ultimate goal of our translation process is to have a conceptual graph con- 

taining a restricted set of well-defined and n o n - a m b i g ~ ~ ~ ~  semantic relations. At this 

stage. we have no means of deciding what relation is meant by each preposition. By 

keeping the preposition itself \vithin the graph, we delay the ambiguity resolution 
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process until we have gathered more information and we even hopefully avoid the 

decision process as the ambiguity might later be resolved by an integration process 

during which we combine multiple graphs. 

Appendix D shows all the rules used to change a syntactic structure into one or 

multiple relations in the CG. The parse-to-CG rules are applied recursively until we 

have looked at the whole parse tree and generated a conceptual graph to represent 

the sentence. 

Let us take the first simple sentence A barn is a kind of building on a farm from the 

example shown in Figure 2.5 to detail a few parse-to-CG rules. Under each rule there 

is an example. 

1. Noun with determinant: 

Syntactic Rule CG 
np + det n [n:det] 

Example: 

a barn 

It is not standard in the CG formalism to keep the determiner as a referent. We 

do not want to  deal with quantifiers here, and therefore keep the referents as close 

as possible to the natural language form. In fact, because we are within a context 

which states generalities, facts about daily life, we assume by a barn, the author 

mean any barn, not a particular barn. This should be given by an existential 

quantifier, and in the CG formalism that is reflected by an empty referent field. 

The second sentence which says the barn should refer to a particular barn that 

was mentioned before in the text, but here it still means any barn. This is a 

complicated matter, and we prefer not to  take any decision at this stage. 

2. Noun modified by prepositional phrase: 

Syntactic Rule CG 
np t np p2 I n ~ l - > ( ~ r e ~ ) - > b ~ l  

p2 t prep np 
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WORD: BARN 

A barn is a kind of building on a farm. 
The barn is where the farm animals stay at night. 
Farm machines and food for the animals are kept in the barns, too. 

Parse for sentence 1: 

sl(7)->np(l)->det->a 
n- > barn 

vp(6)- >vb- >be 
np(5)->np(l)->det->a 

n- >kind 
p2(4)->prep->of 

np(3)->np( l)->n->building 
p2(2)->prep- >on 

np(1)->det->a 
n->farm 

Conceptual Graph for sentence 1: 

Parse for sentence 2: 

sl(7)->np( 1)->det->the 
n- > barn 

vp(6)->vp(l)->vb->be 
questsl(5)->quest->where 

sl(4)->np(2)->det->the 
n(1)->n->farm 

n->animal 
vp(3)->vp(l)->vi- >stay 

p2(2)->prep->at 
np( 1)->n->night 

Conceptual Graph for sentence 2: 

Figure 2.5: Example of transformation from parse tree to C'G 
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Parse for sentence 3: 

sl(6)->np(5)->np(l)->n->farm 
n- >machine 
cnp(4)- >conj- >and 

np(3)->np(l)->n->food 
p2(2)- >prep->for 

np(1)->det->the 
n- >animal 

vp(5)->vp(4)->vb-> be 

P P ( ~ ) - > P P - > ~ ~ ~ P  
p2(2)->prep->in 

np(1)->det->the 
n- > barn 

modap(1)->pause-  >, 
adv- > too  

Conceptual Graph for sentence 3: 

Figure 2.5: Example of transformation from parse tree to CG (continued) 
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Example: 

building on a farm [building]->(on)->[farm:a] 

We keep the preposition as a relation. This is the first type of relation mentioned 

before, from the closed-set of words. 

3. Direct object to a verb: 

Syntactic Rule - CG 

vp + vb np [vbl->(object)->[np] 

Example: 

is a kind of ... [be]->(object)->[kind:a]-> .. . 

Transitive verbs (vt) ,  and the verb to be (vb) have similar rules [vp --+ vb np] 

and [vp + vt np] to  indicate the direct object. 

4. Sentence with subject: 

Syntactic Rule - CG 

Example: 

a barn is a kind ... [bej->(agent)-> [barn:a] 

Syntactic Rule - CG 

s l  + np vp(passive) [vp]->(object)->[np] 

Example: 

the food is kept [keep]->(object)->[food:t he] 

The subject becomes the agent of the verb if the form is active. In a passive 

voice it becomes the object. 

This part of our work is i n  some ways similar to the work presented by Velardi e t  

d. [13S. 111. Instead of going directly from the parse tree to a graph representation. 
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they have an intermediate representation as a list of syntactic predicates. A syntactic 

predicate is created from the analysis of the parse tree. For example a node with 

children (adj) and (np) leads to the predicate XTTRIBUTE(np,adj) and a node with 

children (np) and (p2) leads to the predicate NPPP(np,prep,pp). Instead of using 

predicates, we directly generate the graphs [npl->(attribute)->[adj] and [npl->(prep)- 

>[np]. For us, these syntactic predicates are the basis of our first graph constructions, 

before we go to the next level of transformation. It seems more appropriate to express 

everything with the same formalism instead of introducing another level of represen- 

tation (predicates). As well, if their next step of transforming a predicate to  a CG 

is ambiguous, it obliges them to  make a choice, or to generate multiple CGs. In our 

case, we still have a unique CG with ambiguous relations that could be specified later 

on. 

In the next section, we try to  find deeper semantic relations and try to move away 

from how things were said and more toward what is the meaning of what was said. 

Before we move to  the next step however, one should note that it is possible to 

get the same CG from two parses. The redundancy due to  the parse rules is usually 

called "spurious ambiguity". It is hard to design a perfect grammar and well beyond 

the scope of this thesis. Instead, we design a non-perfect grammar and remove the 

spurious ambiguities by finding identical graphs. 

The way to find if two graphs ( A  and B) are identical is by doing a projection of 

A on B and then of B on A. If A is a subgraph of B, and B is a subgraph of A, then 

they are identical graphs. 

2.2 Building a type hierarchy 

IVe start with a flat hierarchy where all words are under the highest type everything. 

By using parts of speech, we can at least put nouns under something, verbs under act, 

and adjectives under attribute. 

\Vhen we have words with multiple senses, they might be of different parts of 

speech. The type hierarchy will he transformed to have the general word under 

everything and each specific sense under something. act or attribute depending on its 
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Figure 2.6: Type hierarchy modified to include word senses 

part of speech. 

Figure 2.6 shows an example with the word bow that has two senses, to bow and 

a bow. Both senses are put under the general term bow. 

The hierarchy is also updated via the is-a relations found in all the graphs from 

all the definitions in the dictionary. 

The (is-a) relation is only one of the multiple deeper semantic relations found via 

the Semantic Relation Transformation Graphs (SRTGs). These will be presented in 

section 2.1.3, along with a detailed analysis into the field of semantic relations. 

Example 2.2.1 briefly illustrates how we extract is-a relations via SRTGs. This 

transformation is performed on all graphs in the LKB and then from all the is-a links 

found we can modify the type hierarchy. 

Example 2.2.1 - 

Sentence: An ape is an animal thatlwith ... 

Graph representation: [ape]<-(agent)<-[be]->(object)->[animal]<-(agent/poss) ... 

Defining formula Sf is a .Y2, typical formula to identify a is-a relation 

Associated SRTG: 

Before: [XI]<-(agent)<-[be]->(object)->[X2] 
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After: [XI]->(is-a)->[X2] 

Result: [ape]->(is-a)->[animal] 

Structural Disambiguation 

We have already discussed the tagging of an input sentence, its analysis to  find parse 

trees and the application of rules to  transform the parse trees into conceptual graphs. 

If multiple parse trees were generated for a sentence, representing different syntactic 

analysis for that sentence, multiple graphs were generated and therefore the syntactic 

ambiguities are carried along as structural ambiguities given by different arrangement 

of concepts and relations in the graphs. Our first attempt at reducing the number of 

generated graphs was by finding identical graphs caused by spurious ambiguities. 

We continue here with some graph manipulations that reduce the number of graphs 

by looking at different types of structural ambiguities. We look a t  some stand-alone 

and some LKB-dependent reductions. They, respectively, reach a decision without or 

with the help of the partially constructed LKB. 

The problem with stand-alone reduction is that each graph is examined individ- 

ually. This gives us only information that is within the graph, which is often not 

enough to make a decision about the graph itself. We must look at the larger picture. 

We are analyzing each graph with the goal of building a Lexical Knowledge Base. The 

information in the LKB can be used to disambiguate the graph we are looking at now. 

IVe must think of the whole process in terms of multiple iterations. For each word, 

we disambiguate as much as we can without accessing the LKB. When all words have 

been seen once, we can start again and disambiguate more in the second iteration as 

we have access to  the information given by the definition of the other words. 

2.3.1 Prepositions 

One major contributor to structural ambiguities is the problem of prepositional at- 

tachment. \Vhen a sentence contains multiple prepositions and more than one possible 



CH44PTER 2. FROM A DEFINITION TO '4 COiVCEPTI!',4L GR.4PH 

place of attachment (e.g. a verb and a noun), the number of parse trees grows expo- 

nentially with the number of prepositions. 

CCk first describe a stand-alone method based on statistics, and then a method 

that uses information stored in the LKB. 

Statistical method 

Here we describe an heuristic that relies on a statistical measure to help us decide 

where a preposition should attach [77]. 

We calculate for all verbs and nouns, their co-occurrences with other words in all 

the definition sentences from the AHFD. Table 2.3 shows a few results. 

Table 2.3: Examples of cooccurrences of words 

To decide on the prepositional attachment, we give a global score to each graph 

based on its prepositions used as relations and the words involved in those relations. 

The ambiguity is never on what follows the preposition but on what it is attached to. 

In a structure like [a]->(of)->[b], we try to give a score to the combination [a]->(of), 

and for doing so, we look a t  noun and verb co-occurrence information in the data to 

find the noun or verb [a] followed by the word of. Each preposition in the graph is 

given a score depending on what concepts it is attached to. We add all the scores to 

give a global score to the graph. The graphs containing the highest score is kept. 

Definition 2.3.1 shows part of the definition of ant for which there are two possible 

graph representations due to a prepositional attachment ambiguity. 

word 
run 
fly 
way 
picture 

Definition 2.3.1 - 

possible following words with number of occurrences 
fast 3, all 2, to 2, after 1, into 1, faster 1 
above 1, in 2, around 1, is 3, his 1, an 2, long 1, would 1, away 1 
to 38, of 1, out-of 1, from 1, home 4, across 2 
of 8, on 6, or 1, that 1, can 1, with 1 

ANT 

Ants live in large groups in trees. 
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ant-1-BA first sense of ant ( I ) ,  second sentence ( B ) ,  first possibility ( A )  

[live]->(agent)->[ant:plural] 

->(in)->[group:plural]->(attribut)->[large] 

->(in)->[tree:plural] 

ant-1-B-B first sense of ant ( I ) ,  second sentence (B), second possibility ( B )  

[live]->(agent)->[ant:plural] 

->(in)->[group:plural]->(attribut)->[large] 

->(in)->[tree:plural] 

Differences: 

[group:plural]->(in)->[tree:plural] 

[live]- >(in)->[tree:plural] 

Our co-occurrence statistics give us that live cooccurs with in 28 times in the 

AHFD, and that group cooccurs with in only 1 time. This gives a score for ant-1-BA 

of 29, where the first in is given 28, and the second in is given 1. Graph ant-1-BB 

gets a score of 56, as both relations in are attached to  live giving each 28. Graph 

ant-1 -B-B is chosen. 

The problem with the statistical measure is that our statistics are based on a 

pretty small corpus, the dictionary itself. It will help decide when the difference in 

score is very high (let say if we had to  decide between made of (occ > 100) and boat 

of (occ = 0) )  but it will be too risky to trust the statistics when the scores are close. 

To circumvent this problem we choose graph A against another graph B, if the score 

for graph A is a t  least twice the score as for graph B1. 

Graph com~arison method 

In section 2.1.:3 we introduced the work of Velardi e t  al. [133]. Again, we present an 

approach similar to their work. We look into the definitions of the concepts involved 

'There must  be a penalty factor for small  numbers as a score of 4 is twice a score of 2 but the 
difference is not  significant. 



in the prepositional attachment ambiguity to resolve the ambiguity [133, 611. 

An example given from Velar& et  al. [I331 is the ambiguity in the phrase to  produce 

wine in bottle. As they use syntactic predicates, they would generate two possible 

predicates: NP-PP(wine,in,bottle) and NP-PP(produce,in,bottle). They look into 

the definitions of bottle, wine and produce to find these possible predicates (they also 

call them triplets). From the most probable one, they generate the CG representation, 

that is [produce]->(object)->[wine]->(in)->[bottle]. 

Instead of predicates, we work directly at the CG level, and two possible parses 

would have generated two possible graphs: 

Graph 1: [produce]->(object)->[wine]->(in)->[bottle] 

Graph 2: [produce]->(object)->[wine] 

->(in)->[bottle] 

From these graphs, we identify subgraphs showing the differences: 

[winel->(in)->[bottle] 

[produce]->(in)->[bottle] 

We find the projections of these subgraphs onto the graph definitions for wine, bottle 

and produce to find the most probable graph representation for the phrase t o  produce 

wine in bottle. 

Definition 2.3.2 shows part of the definition of drew for which there are two possible 

graph representations due to a prepositional attachment ambiguity. 

Definition 2.3.2 - 

DREW 

Then he drew some squares with a blue crayon. 

drew-1-BA 

[drawl- >(object)->[square:plural]->(attribut)->[some] 

->(with)->[crapn:a]->(attribut)->[blue] 

->(agent)- >[he:ref] 



C'HAPTER 2. FROM A DEFINITION T O  A CONCEPTlrd-lL GRAPH .? 6 

Differences: 

sub-drew-1-B4 : [square]- >(with)->[crayon] 

sub-drew-1-B-B : [drawl->(with)->[crayon] 

The only discrepancy between those two graphs is where the relation with is 

attached. In drew-l-BA, it is attached to square, and in d r e w - l B B  to draw. 

We look into Definition 2.3.3 for square and definition 2.3.4 for crayon to find 

the maximal common subgraph with subdrew-l-BA. We look into definition 2.3.5 

for draw and definition 2.3.4 for crayon to find the maximal common subgraph with 

sub-drew-1-BA. 

Definition 2.3.3 - 

SQUARE 

A square is a shape. 

All four sides o f  a square are the same length. 

s q u a r e - 1 4 4  

[shape:a]<-(is-a)<-[square:a]. 

square-1-BA 

[length:the]->(attribut)->[same] 

<-(is-a)<-[side:four]->(attribut)->[all] 

->(of)->[square:a] 

Definition 2.3.4 - 

CRAYON 

A crayon is a piece o f  colored wax. 

It is used t o  draw and write with. 

Crayons come in many colors. 



C'H'APTER 2. FROM .4 DEFIRITION T O  '4 COlVCEPTUAL G R A P H  

Definition 2.3.5 - 

DRAW 

To draw is to make a picture. 

You can draw with pencils, pens, or crayons. 

Abel likes to draw. 

draw-144 

[drawl->(equiv)->[make]->(object)->[picture:a] 

draw-LBA 

[drawl->(with)->[pencil:piural] 

->(with)->[pen:pluraI] 

->(with)->[crayon:plural] 

<-(able)<-[you:ref] 

draw-1-CA 

[Abel]<-(agent)<-[like]->(to)->[draw] 

There is no common subgraph between subdrew-1-AA (square with crayon) and 

any of square-1 A A ,  square-1 - B A ,  crayondl - A A ,  crayon-1-BA or crayon-1 - C A .  On 

the other hand, there are some common subgraphs between sub-drew-1-AB (draw 

with crayon) and draw-1-BA and crayon-1-BA. 

The maximal common subgraph between subdrew-l AB and d raw- lB  is: 

[drawl->(wit h)->[crayon] 



C H A P T E R  2. FROM A DEFINITION T O  A CONCEPTUAL GRAPH 

The maximal common subgraph between sub-drew-1-A-B and crayon-1-B is: 

[drawl->(instrument)->[crayon] 

These matches lead us to choose the graph drew-1-AB. The second match gives 

us even more information by disambiguating the relation with to  an instrument 

relation. In graph drew-1 AB, we can replace with by instrument. 

2.3.2 Conjunctions 

Not only prepositions create structural ambiguities, but conjunctions as well. We look 

at conjunction attachment. The heuristic presented here relies on information already 

stored in the LKB as did the second heuristic presented for prepositional attachment. 

Definition 2.3.6 shows part of the definition of jacket for which there are multiple 

graph representations due to  conjunction attachment ambiguity. 

Definition 2.3.6 - 

JACKET 

Jackets are good for spring and fall when the weather is cool. 

jacket-1-84 

Ija~ket]<-(agent)<-[be]->(attribute)->[~ood]->(for)->[s~ring] 

->(and)->[fall]->(when)->[weather]... 

jacket-1-6-6 

Ijacket]<-(agent)<-[be]->(attrib~te)->[~ood]->(for)->[s~rin~]->(and)->[fall] 

->(when)->[weather]... 

To decide which concepts are part of a conjunction, we rely on the type hierarchy 

to give us an idea of the closeness of the items. We assume that closely related items 

have more chances of being joined by a conjunction. The idea is that if two words are 

put together in a conjunction they might have something in common. 

the more similar ~ K O  words are, the more informative will be the most 

spccific concept that subsumes them both. [115] 
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So here we have two possibilities: be and fall, or spring and fall. We look in the type 

hierarchy to find the lowest common superclass. This assumes that we have already 

done a full iteration through our dictionary and extracted from the is-a relations the 

information needed to construct our type hierarchy. 

In fact, one sentence of the definition of fall is that fall is a season, which translates 

into the graph [fall]->(is-a)->[season]. The same is true for the word spring, spring is 

a season, which translates to  the graph [spring]->(is-a)->[season]. 

In the type hierarchy, we find spring and fall under season. The verbs be and fall are 

under a general superclass act. We choose the graph jacket A - B B  as the superclass 

season is more semantically significant (or informative) than act. We explain in detail 

the idea of semantic significance in Section 3.4.1. 

2.4 Semantic Disambiguation 

The previous section took us through the steps of structural disambiguation. In this 

section, we explore four aspects of semantic disambiguation: anaphora resolution, 

word sense disambiguation, semantic relation disambiguation and conjunction distri- 

bution. 

2.4.1 Anaphora resolution 

Lrery simple techniques are used here to remove some pronominal referents from our 

graphs. 

The first simple observation is that the pronoun it is very often used in definitions 

to refer to the object being defined. In a typical definition for a noun, the word 

defined is used in the first sentence, and then a pronoun it is used in the second 

sentence. By replacing the pronominal referent with the word being defined, the 

graph representation of each sentence becomes independent of all other graphs, as we 

eliminate the intersentential referents. 

Definition 2.4.1 for the word ash shows the graph definitions after the anaphora 
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resolution. 

Definition 2.4.1 - 

ASH 

Ash is what is left after something burns. 

I t  is a soft gray powder. 

a s h - 1 4 4  

[ash]- >(is-a)- >[something]<-(object )<-[leave] 

->(after)->[burn]->(agent)->[something] 

ash-1-B4 

[ash]->(is-a)->[powder]->(attribute)->[soft] 

->(attribute)->[gray] 

In definition 2.4.1, replacing the word it by ash in the graph ash-1-BA will have 

an effect on the construction of the type hierarchy. 

We also process one simple type of intrasentential anaphora. We look for pronouns 

again, but this time not limited to  it, but adding they, she, he, and you. Then we must 

find another concept in the graph that is compatible with the pronoun (gender and 

number, person or thing). We only resolve the referents if there is a single possibility 

for its anaphora. 

2.4.2 Word sense disambiguation 

At this point, multiple graph transformations and reductions have been done, trying 

to  resolve structural ambiguities. Even if the number of graphs is reduced to one per 

sentence, there is still ambiguity, but this time within the concepts themselves. The 

graphs are made of concepts and relations, and so far the nouns, verbs and adjectives 

found in the sentences have been put directly as concepts within the graphs. But 

sometimes a word has multiple meanings, and we would like to  identify which sense 

of the word is appropriate in a particular context. 

\Ve look into another type of language ambiguity: polysemy. The AHFD has a 

reduced polysemy problem as the number of senses given for each noun or verb is 
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quite minimal. We compiled that 83% of definitions of nouns and verbs contain only 

1 sense, and 97% of definitions give at most 2  sense^)^ Even if the polysemy problem 

is not at the scale of an adult's dictionary, we address it here. 

No research on knowledge extraction from MRDs gives a clear way to  deal with 

polysemy. To disambiguate which sense of a word is used for defining another word, 

the decision is often based on probabilities or heuristics. For example the first sense 

of a word is assumed because it is the most probable [58]. 

For a word that has multiple senses, we use four different techniques to  assign a 

sense to  that word. We present them from the simplest to the most elaborate. 

Heuristic 1: Assume word A is being defined, and it has multiple senses. When one 

sense of word A is defined, the word A is used as part of the defining sentences 

to mean the sense defined, unless word A is used twice or more in the sentence 

in which case we cannot make any easy assignment. 

gas (sense 1) /* gas occurs once in the sense defined, gas-1 */ 
defining graph: [air]->(is-a)->[gas] 

gas (sense 2) /* gas occurs twice in two diflerent senses */ 
defining graph: [gas]->(group-of)->[gas] 

Heuristic 2: For other words used in the definition, if they have different word senses 

corresponding to  different parts of speech, they can be distinguished by looking 

at what types of relations they are involved in. For example, 

[a]->(agent)->[b] /* a must be the verb sense */ 
/* b must be noun sense */ 

[a]->(attribute)->[b] /* a must be the noun sense */ 

Each relation possesses a signature that gives what types of concepts are allowed 

to participate on each end of the relation. For example: 

'Combining nouns and verbs, we have 1239 words defined, 1021 with 1 word sense, 182 with 2 
word senses. 24 with 3 word senses and 12 with 4-6 word senses. 
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agent {Signature:2,act,something); 

attribute{Signature:2,something,attribute}; 

By looking at the signatures of some relations we can decide whether it is the 

noun, verb or attribute sense of a particular word that is meant. 

We also have this information about part-of-speech directly available from the 

parse tree, and we could keep it as we are doing the parse-to-CG transformation. 

By using the signatures, the process becomes independent from the parse tree. 

For example, if a graph was given as input, or if we construct new graphs from 

other graphs, we would still like to  be able to  perform this kind of disambigua- 

tion. 

Heuristic 3: If a word X with multiple senses of the same part of speech appears in 

conjunction with another word Y, we find the maximal common subgraph be- 

tween each sense of word X and word Y to  disambiguate word X. Example 2.4.1 

shows an example where the word land is defined using the word earth which 

has two senses but is in conjunction with word ground which has only one sense. 

Finding which sense of earth is most related to  ground gives us which sense to 

put in the definition of land. By finding the maximal common subgraph between 

t,he two words involved in the conjunction, we indirectly find if they have the 

same superclass [39] (without looking in the type hierarchy) and we also find all 

other relations they have in common. 

Example 2.4.1 - 

LAND: The land is the earth or ground that someone uses. 

EARTH(1): Earth means dirt. 

There is good earth in the garden for the plants to grow in. 

EARTH(2): The earth is our world. 

The earth is covered by land and oceans. 

GROUND: Ground is the earth. 

Plants grow out of  the ground. 

.\lnrimal C'onznzorz Subgraph between earth(1) and ground. 
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[growl->(agent)->[plant:plural] 

Number of common significant concepts: 2 (grow,plant) 

.21aximal Common Subgraph between earth(2) and ground 

empty graph. 

Number of common significant concepts: 0 

Decision: Assign sense 1 to earth in the definition of land. 

Heuristic 4: The most general case is when a word possesses two senses of the same 

part of speech and that word is not involved in any conjunction. Assuming word 

B is used in the definition of word A, and it has two possible senses. We try 

matching graph-A with graph-B-1 (sense 1) and then graph-A with graph-B2 

(sense 2) t o  find the largest common subgraph. By finding the pair that overlaps 

the most, it gives us which sense to use. 

Example 2.4.2 shows an example where we disambiguate the word bow which 

has two senses and is used in the definition of the word arrow in its first sense. 

Example 2.4.2 - 

ARROW 

You can shoot arrows from a bow. 

a r r o w l B 4  

[shoot]- >(agent)- >[you] 

->(object)- >[arrow-1] 

->(from)->[bow] 

BOW-1 

A bow is a curved piece of wood. 

A piece of string is tied to  the ends of it. 

Bows are used to shoot arrows. 
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BOW2 

A bow is also a knot made with ribbon or string. 

I t  has two circles and two ends. 

I tie my shoes with a bow. 

Maximal Common Subgraph is found between a r r o w l - B A  and bow-1-CA: 

[shoot]->(object)->[arrow] 

Semantically significant concepts in common: shoot, arrow and bow. 
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2.4.3 Finding deeper semantic relations 

We want to find deeper semantic relations to replace and disambiguate the surface 

semantic relations included at this point in our conceptual graphs. 

Earlier, in section 2.1.3, we compared our work to the work of [I331 in which they 

transformed their parse tree into a set of predicates. To continue the comparison, 

a t  this point, they go from their syntactic predicates to  conceptual graphs through 

a process of "semantic verification" which tries to  find the correct semantic relation 

for a predicate. For example, their predicate NPPP(x,of,y) can be transformed into 

POSSESS(y,x) (eg. the book of Bill), PART-OF(y,x) (the pages of the book) or 

ARGUMENT(x,y) (the book of history). 

We do not use predicates, but instead keep the ambiguous preposition in the con- 

ceptual graph itself. We have [XI->(of)->[y], and we need to  replace the ambiguous 

relation of by either possess, part-of,  or a b o u t .  It seems more appropriate to  

express everything with the same formalism instead of introducing another level of 

representation (predicates). As well, if there is no help from the context and the 

transformation from a predicate to  a CG is uncertain, they still have to  choose a se- 

mantic relation or generate multiple CGs for multiple possibilities. With our method, 

we have a unique CG containing the ambiguous relation (of) until it can be specified 

later when we have more information about the concepts involved in the relation. 

To help the disambiguation process, in [133], they assume the availability of a 

semantic lexicon of about 850 word-senses, for each there are 10-20 surface semantic 

patterns, which are the relations that a word-sense is involved in. Our work differs 

here, as they use the information stored in their lexicon t o  find the most probable 

semantic interpretation of the preposition, but we do not have access to a lexicon, as 

we are in the process of building it. 

Working with natural language, you often find yourself tracing a circle that you 

have to break at some point by making assumptions. Assuming a preexistent source of 

lexical information to help the disambiguation of surface relations means that someone 

at some point had to  create it by hand. Or if it was not created by hand, it had to 

be extracted from text, and to analyze that text it would have been useful to have 
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access to a source of lexical information, and we're back to starting point. 

We prefer to view this circle as a spiral that expands with more and more infor- 

mation. We position ourselves near the starting point of that spiral by assuming no 

previous lexical knowledge, although we make some assumptions about the processing 

of sentences. As we build the lexical knowledge base, some ambiguities are left in, 

others are resolved by using stand-alone heuristics or by using the information from 

the partially constructed LKB. The ambiguities left in will eventually get resolved 

as we gather more and more information and as the LKB expands to include more 

words. 

Therefore, at this point we have decided to leave the prepositions inside the graph 

as loosely defined relations that can be disambiguated later. Our way to show that 

the preposition of can indicate a relation of possession, part-of and argument will be 

through a manually established hierarchy on the relations used. 

Before we establish the hierarchy connecting the closed set words to  a set of se- 

mantic relations, we must investigate and choose a set of relations. We shall first look 

at research into semantic relations and then explain our choice of relations. Then we 

shall look at the implementation level where we transform the graphs obtained during 

the previous steps. 

Choosing a set of semantic relations 

Much of the work on semantic relations, from a perspective of extraction of informa- 

tion from a dictionary, is done via the analysis of defining formulas. 

For a more general view on semantic relations, we refer the reader to a survey 

on lexical-semantic relations published in 1980 [59], that covers four different fields: 

anthropology, linguistics, psychology and computer science. Over fifteen years, part 

of the fields of linguistics, psychology and computer science have met and formed the 

interdisciplinary field of computational linguistics. The work on semantic relations 

became more stimulated by statistical corpora analysis than by the earlier methods 

of introspection and psychological experiments on human subjects. 

Defining formulas correspond to phrasal patterns that occur often through the 



C'H.4PTER 2. FROM A DEFliVlTlOlV TO A CONCEPTUAL GRAPH 6 7 

dictionary suggesting particular semantic relations [3, 581. For example, the relations 

part-of, made-of, instrument can be respectively found via the defining formulas 

<?(I is a part of X2>, <XI is made of X2>, and <X1 is used to  X2>. 

Noun definitions are certainly the preferred vehicle to study defining formulas. The 

simplest defining formula leads to the most studied relation: the taxonomic relation 

between two nouns. The taxonomy relation is identified by looking at the genus of 

the noun definition. The genus which gives the class of the noun is usually the head 

of the noun phrase in an adult's dictionary, as for example ape would be defined as 

Animal t hatlwith . . . . In a children's dictionary, definitions are given by full sentences, 

including the noun to be defined in the sentence. Thus, the genus is normally the 

head of the noun phrase which follows a verb like is or means. For example, An ape 

is an animal that/with .... The defining formula <X1 is a X2> expressed in the CG 

formalism would be: 

[XI]<-(agent)<-[be]->(object)->[X2] 

leading to a taxonomic relation between X1 and X2 that could be expressed by the 

graph: 

[XI]->(is-a)->[X2] 

.A quite frequent category of noun definitions has been called empty heads [41, 

341. They have the structure <XI is a X2 of X3> where X2 does not give any strong 

semantic information, but primarily information concerning a relationship. The most 

frequent structure is X2=kind, <X1 is a kind of X3> that identifies again the is-a 

or taxonomic relation. There are many other empty heads that identify other types 

of relations. They are the key for the investigation into the sets of possible relations 

and have been analyzed by various researchers. 

In [103], they chose manually 41 '.function nouns" (what we just called empty 

heads) and grouped them into 8 link types: is-a, part-of, member-set, action, 

state, amount, degree, form, thereby reducing 41 syntactic structures into 8 se- 

mantic relations. 

In [83] they ran a concordance program to find a list of words which occur before 

of in the structure <XI of X2> among the 7 first words of the definition. They ran 
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Table 2.4: Formulas of type < N 1  of N2> 

N 1  of 
kind of 
part of 
amount of 
piece of 
group of 
month of 
day of 
set of 
side of 
foot of 
form of 
lot of 
name of 
path of 

AHFD 

their test on the Webster7s Seventh New Collegiate Dictionary (W7) and on LDOCE. 

We ran a similar test on the 1117 nouns in our dictionary, and we show in Table 2.4 

the structures occurring more than once among the noun definitions. 

Most X1 found by Klavans e t  al. that are present in the W7 are not present at all 

in the AHFD, such as any of, state of, act of, one of, process of, instance of, member 

of, unit of, condition of, branch of, action of, system of, series of, practice of, period of, 

study of, use of, mass of, portion of, means of, lack of, number of. Many of those words 

are not defined themselves in the AHFD, and therefore are not used to  define other 

words. Among those, act, state, process, instance, system are quite abstract nouns not 

present in the child's world. 

The AHFD's size is too small to analyze the semantic significance of the X1 which 

are part of patterns that occur only once compared to those occurring more than 

once. In [85] on a basis of about 70 000 words, they noticed that in patterns <X1 

is a X2 of X3> where the X% occurs only once in that position, the X2 has enough 

semantic value for the defined word to be a subclass of X2 and X3, and inherit from 

both genuses. 

Our observation was that the .Vls that were most frequent were most likely 
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Table 2.5: Noun definitions analysis from Vossen-et-a189 

Type of kernel I description I Example 
Link I hyperonym of entry word I cocktail: a mixed alcoholic drink 

I synonym of the entry word I abattoir: slaughterhouse 
Linker ( <N1 of N2> I bourgeois: a member of the middle class 

LinkILinker 

Shunter 

( N1 and VP are semantically significant I 
Nominalization I <N1 of N2> I advent: the coming of Christ to the world 

Link/Shunter 

I I N1 represents an action 

N1 giving a relationship 
<N1 of N2> 
N1 and N2 semantically significant 
<N1 of VP> 
norninalization, where info in the VP 
<N1 relpron VP> 

to signal special relationships that we would be interested in extracting for 

detonation: the noise of an explosion 

adornment: the act of adorning 

camper: a person who camps 
noun is an argument of VP 
<N1 of VP> 
<N1 r e l ~ r o n  VP> 

our lexical knowledge base; least frequent N l s  were more likely to be in  a 

angling: the sport of catching fish ... 
adiective: a word which describes ... 

IS-A relation with the genus term. [55] 

Another interesting work, is the study by [139]. They differentiate multiple types 

of definitions based on the properties of the syntactic kernel, the head of the noun 

phrase. Table 2.5 summarizes their work. The Link/Linker and Link/Shunter types 

have been added to reflect some comments given in their paper on intermediate types. 

X kernel of type Link gives directly the genus of the word defined. A kernel of 

type Linker is what we called empty head before. It links the word defined to  another 

word via a semantic relation. Sometimes the kernel could be a link and a linker, and 

we added the class Link/Linker to  show kernels that give important information and 

could be considered the genus, but they also link to another noun phrase that could 

be a second genus. The Shunter kernel signals a change in part of speech by giving a 

very vague noun and relating it to  a precise verb. We added the type Link/Shunter 

for Shunter types in which the noun is not that vague, and could be considered as an 

interesting genus as well as accentuating the verb it relates the noun to. 

The same remark made in [85] about the frequency of occurrence of a kernel 

being an indication of a relationship is made in 11391. The real Linkers and Shunters 

have a high frequency. The Link/Linker kernels are the ones with a small number of 
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occurrences where both N1 and N2 can become superclasses of the word defined. 

The Linker kernels are present in the AHFD (they have been shown in Table 2.4), 

and they lead to particular semantic relations. On the other hand, the Shunter kernels 

< N 1  of VP> are not present. This syntactic structure is not used as a way of defining 

words in the AHFD. The nominalizations are in fact replaced by the verbs themselves, 

as in 

AHFD : Attention is listening with care. 

Adult dictionary: Attention: the state of careful listening. 

On the other hand the Shunter kernels using a relative pronoun <N1 relpron VP> 

are sometimes used in the AHFD and correspond to definitions that we call outsiders 

in later chapters. Both types of Shunter kernels in fact lead t o  a relation between a 

noun and a verb, either the noun is surrounding the verb (state of VP, act of VP) or 

plays a case role for that verb ( a  person who VP). 

An important work on relating defining formulas to  semantic relations is by [3] 

who have built from the dictionary W7, a relation lexicon extracted by looking at 

defining formulas in the dictionary. Some of the noun relations and formulas they 

extracted are: AMOUNT (amount of), PART (a  branch of, a portion of, a part of), 

SET (class of), METHOD (means of). 

The work by [101, 581 also involves extracting semantic relations through the 

use of defining formulas. Their first step involves parsing the definitions of LDOCE 

entries using a broad-coverage grammar of English. The resulting parse structures 

are then subjected to  a set of heuristic rules whose goal is to  identify the occurrence 

of syntactic and lexical patterns which are consistently associated with some specific 

semantic relations, as instrument and location. They recognize about 25 relation 

types for verbs and nouns, some of which are: location, part-of, purpose, hypernym, 

time, (typical) subject, (typical) object, instrument, food, human, location, made-of, 

caused-by, causes, measure, means. 

Another example of a set of semantic relations is the Appendix B of [I261 which 

presents :37 relations used throughout the examples in the book. This set overlaps 

with the set in [loll, and overlaps with the set in [3], but they are all slightly different, 
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giving different number of relations. 

So who is right and who is wrong? Who has the magic set? 

In our opinion, nobody is right and nobody is wrong. The number of relations 

that someone could include in their LKB is simply arbitrary. Each group works with 

a different dictionary (in Sowa's case he works from made up examples) and then 

finds different examples that they try to  fit into their model. The model grows and 

adjusts as more examples are seen. 

The number of relations might be arbitrary, but there needs to be structure among 

these relations. Therefore the important point we are trying to make is the necessity 

to  structure relations into a hierarchy. The comparison among different relation sets 

would then resemble the comparison between the taxonomy of different languages. 

Some word exists in language A but not in language B where it might be replaced by 

a superclass word. 

For now, we introduce our set of relations, and in the next chapter in which we 

show all parts of the LKB, we will show the relation hierarchy in section 3.3. 

Now we introduce our set of relations which contains a different number of relations 

than the sets used in the works mentioned earlier. We have 51+ relations. The + 
stands for all the words in the closed set that we allow as relations but that will 

hopefully get changed into other semantic relation. We have conjunctions (and, or, 

pause/comma), prepositions (in, at,  with, .. .), and some adverbs (where, when, how). 

The size of our dictionary is too small to base our choice of relations solely on the 

analysis of the frequency of defining formulas, therefore, as we work with conceptual 

graphs we decided to start from the set of relations ~ r o ~ o s e d  by Sowa for conceptual 

graphs [126], and expand to add more relations, some based on defining formulas, 

others based on working with examples. Working from a set of defining formulas 

extracted from a corpus different from our own might not be appropriate. For example, 

the language used in an adult's dictionary (the W7 or LDOCE used by [3, 551) is quite 

different than the language used in the AHFD. 

In this research, we will often compare the CGs constructed to each other (as 

seen in Chapter : 3 ) .  For comparison purposes, the more general the relations the 

more commonality exists between graphs, but we also risk generating meaningless 
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results. On the other hand if the relations are too specific, it will be hard to find 

common subgraphs between graphs. We need some kind of trade-off here. And again, 

establishing a hierarchy on the set of relations will be the key to  solve this problem. It 

will allow us to  compare graphs with more or less specific relations and decide which 

relations can be subsumed by others. 

The relations presented fall into two main classes: objects or situations. 

OBJECTS: We have in this group the relations found between objects, as well as 

the relation between a unique object and its properties or parts. 

1.  part/whole relations: This class looks at objects that can be segmented 

into a number of functional parts, or into smaller segments. 

Relations: part-of, piece-of, area-of, amount-of, content 

2 .  member/set relations: This class contains all the relations of quantity 

of objects, whether we have none, one or many of the same or different 

types. 

Relations: set-of, element-of 

3. human/animal relations: Some relations only apply to living entities 

having the capacity for decision, perception and feeling. 

Relations: child-of, possession, home-for 

4.  comparison relations: This class contains the relations for comparing 

the physical properties of two objects. 

Relations: like, more-t han, as, less-t han 

5. spatial relations: The relations for comparing two objects with regard to 

their location. 

Relations: multiple prepositions such as on, in, above, behind 

6. word relations: The relations of synonymy, opposite and taxonomy have 

been analyzed in great detail. To some extent, these relations are context 

independent. They are not part of an object or a situation, they are rela- 

tions on the concepts that words represent instead of the physical entities 
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themselves. We could say they are intensional relations instead of exten- 

sional ones. 

Relations: opposite, synonymy, taxonomy 

7. description relations: This class gives the value of different attributes of 

objects through some formulas that describe the objects. 

Relations: name, attribute, material, function, about 

SITUATIONS: This group deals with situations instead of objects, it therefore 

relates actions to participants, location, time. As well, it classifies the situa- 

tions themselves as being states or events depending on the time they take to 

accomplish in comparison to the surrounding events. 

1 .  action modifiers: General adverbial modifiers not yet classified as more 

precise 

Relations: modif 

2 .  case-role relations: This is the largest class, it contains all the relations 

that can be subordinate to a verb. 

Relations: instrument, method, manner, agent, experiencer, lo- 

cation, object, recipient, result, cause, transformation, reason, 

goal, accompaniment, direction, source, destination, path, dur- 

ing, point-in-time, frequency 

3. agent involvement: The agent of the action is a living entity with desires, 

feelings, goals. The involvement of the agent in a situation is an important 

factor to its progress. 

Relations: ability, desired-act, intention 

4. action relations: This class contains different types of actions: event, 

state, process. The three relations form more of a continuum that three 

independent relations, as the distinction between them is subtle. It involves 

the ratio of elapsed time between the action itself and the other actions 

within a situation. 

Relations: act, event, process, sequence 
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Among the relations presented, the following are taken directly from Sowa (1261: 

accompaniment, agent, attribute, cause, child, destination, duration, expe- 

riencer, frequency, instrument, location, manner, material, method, name, 

object, part, path, point-in-time, possession, amount (quantity), recipient, 

result, source, successor. 

Others are found in Table 2.4 (presented at the beginning of this section) which 

lists the most frequent defining formulas used in AHFD. Formulas <is a kind of>, <is 

a part of>, <is an amount of>, <is a piece of>, and <is a group of> are at the top 

of the list. We added the relations is-a (kind-of), piece-of, and set-of (group-of). 

Relations part-of and amount-of are already taken from Sowa. 

The rest of the relations were added by looking through examples and trying 

to see which relations would be needed to generate an adequate conceptual graph 

represent at ion. 

All the relations presented are what we consider our "deeper semantic relations" 

in comparison to the surface semantic relations generated directly from the parse tree. 

The semantic relations will be used in the CG representation of the dictionary defini- 

tions, along with other surface semantic relations that are not yet disambiguated. The 

term semantic relations is used to cover all types of relations. There is often a dis- 

tinction made [59] between syntagmatic and paradigmatic relations. In an association 

experiment, a response of type paradigmatic could be seen as a possible substitute 

for the cue word, as in motherifather or orange/fruit, where as the response of type 

syntagmatic would represent a precedence or following relation as in rnother/love or 

orangeleat. Paradigmatic relations include the hierarchical, synonymy and meronymy 

relations. The syntagmatic relations include the restriction or modification relations, 

the case-type or argument relations as well as the derivational relations. Again, here, 

we talk in general terms of semantic relations. A CG is made of concepts and semantic 

relations. 

As we are working at the CG level to  identify the semantic relations, we need 

Semantic Relation Transformation Graphs (SRTGs) that can be projected onto our 

graph definitions to find out if some particular semantic relations corresponding to 

particular defining formulas are present. The SRTGs allow us to  find the defining 
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formulas at the graph level and then transform the graph to  contain the appropriate 

semantic relation. The graph level is much more flexible, as multiple string patterns 

lead to identical subgraphs. Example 2.4.3 shows different string patterns leading to 

graphs containing an identical subgraph [use]->(to)-> [B] that we can find. 

Example 2.4.3 - 
< A  is used to B >  [use]->(object)->[A] 

- >(to)->[B] 

<A is used often to B> [use]->(object)->[A] 

->(to)->[B] 

<-(modif) <-[often] 

<A is used by C to B> [use]->(object)->[A] 

->(to)->[B] 

->(agent)->[C] 

All three graphs contain the same subgraph that can be transformed into the 

instrument relation. We do not have to account for all the possible variations, as we 

would have to  do a t  the string level [loll. 

Example 2.4.4 shows a few SRTGs that expresses defining formulas a t  the graph 

level. For a complete description, we present in Appendix E each of our relations, 

with a description, a few examples of possible defining formulas found in the AHFD, 

and the associated SRTGs. 

Example 2.4.4 - 

SRTG(part-of) 

Before: [something:.~]<-(agent)<-[be]->(object)->[part]->(of)->[something:B] 

[something:B]<-(agent )<-[have]->(object )- >[something:A] 

After: [something:B]->(part-of)- >[something:A] 
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Before: [something:A]<-(agent)<-[be]- >(object)-> [made]- >(of)- >[something:B] 

[something:A]<-(agent)<-[be]- >(object)->[made]->(from)->[something:B] 

After: [something:A]-> (material)- > [something:B] 

SRTG(instrument) 

Before: [something:B]<-(object)<-[use]- >(goal)->[act :A] 

After: [act:A]->(instrument)->[something:B] 

SRTG(reason) 

Before: [act:B]->(to)->[show]->(what)->[act :A] 

[act :A]->(because)->[act:B] 

After: [act:A]->(reason)->[act:B] 

SRTG( possession) 

Before: [person/animal:A]<-(agent )<-[have]- >(object)->[something:B] 

After: [person/animal:A]- >(pass)- > [something:B] 

Some of the defining formulas mentioned lead to  multiple possible semantic rela- 

tions and we face the problem of ambiguity mentioned earlier. For example, a simple 

verb like have can describe a part-of relation or a possession relation. In this case, the 

possessor being a person or an object provides the deciding key. This corresponds to 

the "signature" of the relation, meaning the selectional restrictions imposed on the 

concepts that it relates. 

In other cases, mostly in the cases of prepositions indicating multiple possible 

relations, we keep the preposition in the graph until we have more information to dis- 

ambiguate it. The only cases that would allow us to  disambiguate the preposition arise 

when the signature of a particular deeper semantic relation is respected. For example, 

the signature of accompaniment could be accompanimentSignature:2,person,person. 

The preposition with can be refined into instrument, accompaniment, manner, etc. In 

this case, if it is joining two concepts of type person, we can make the transformation, 

as neither instrument nor manner have such a signature. 

This disambiguation is quite unlikely, and the prepositions are more likely to  get 
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disambiguated at a later stage of graph comparison and joining. They will be part 

of the relation hierarchy to show us which prepositions can be associated with which 

semantic relations when we need to compare graphs. 

Instead of waiting until our clustering process (see section 3.4) to achieve more 

semantic relation disambiguation, we could use the technique proposed by [131] which 

looks into the definitions of the words involved in the ambiguous relation to see if one 

of the possible deeper semantic relation is present and involves compatible concepts. 

2.4.4 Conjunction distribution 

We want to distribute the information around conjunctions as it might be useful in 

further graph transformation. 

In example 2.4.5 we look at the graph crayon-1-BA presented earlier in sec- 

tion 2.3.1 within definition 2.3.4 at an intermediate stage of transformation that is 

after anaphora resolution and SRTGs were applied. Distributing the relations that 

draw is involved in to  write  will help us later if some information is required about 

write. tells us that we can not only draw but also write using the crayon as an 

instrument. 

Example 2.4.5 - 

CRAYON 

It is used to draw and write. 

c r a y o n l - B A  

[drawl->(instrument)->[crayon] 

->(and)->[write] 

.I fter conjunction distribution: 

c r a y o n l - B A  

[draw]->(instrument)->[crayon]<-(instrument)<-[write] 

IVe are being conservative here and only distribute a few relations, such as object, 

instrument, made-of, is-a. It is outside the scope of this thesis to  do a full study on 

which relations are or are not distributive and in which cases the distribution can 
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apply. Therefore we only use this heuristic for a few cases. As well, we distribute 

relations only around the conjunction and. The conjunction or should not be dealt 

in the same way and we do not address this problem here. 

2.5 Discussion 

We have presented multiple graph transformation and heuristics to reduce the struc- 

tural ambiguities, and hopefully reduce the number of graphs to one per sentence. 

Some heuristics presented were stand-alone, and others required the access to the 

LKB. We need to  perform the whole process in multiple iterations, and a t  each iter- 

ation we construct an LKB that is more complete and contains less ambiguity. The 

heuristics needing access to the LKB not be performed before the second iteration. 

The work presented in [I311 is similar to ours in the sense that it assumes a first 

pass through the whole dictionary to find is-a relations, but also other deeper semantic 

relations found via non-ambiguous defining formulas. They use this information as 

part of the LKB after their first iteration to help them into processes of conjunction 

and prepositional attachment (similar to our techniques that access the LKB) as well 

as to help them disambiguate some relations. 

Again, we think of the whole process of constructing the LKB as a spiral. We 

start with not much information, build a little more from that, build even more from 

that,  and so on. What we have at point A and are not able to disambiguate, might 

become different at point B when we have gathered more information. 

We propose the following sequence, where each iteration means going through the 

whole set of nouns and verbs in the dictionary. 

ITERATION 1. 

1. Tag, parse and apply parse-to-cg rules. 

2 .  Attempt anaphora resolution and word sense disambiguation on word defined. 

3. Apply statistical method to prepositional attachment. 

4 .  Apply ONLY the SRTG to find (is-a) relations. 

r>. L'pdate hierarchy using parts of speech information and is-a relations. 
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This first iteration only uses stand-alone procedures and makes a first attempt at 

building a type hierarchy. The type hierarchy is important for the other heuristics 

used in the second iteration. The conjunction attachment relies directly on it. The 

LKB-based (not statistical) prepositional attachment relies on graph matching which 

is a procedure using the type hierarchy. Finally, some of the SRTGs need to  know 

the difference between a concept of type person and of type something to transform 

the graphs correctly. 

ITERATION 2. 

1. Tag, parse and apply parse-to-cg rules. 

2. Attempt anaphora resolution and word sense disambiguation on word defined. 

3. Apply statistical method to  prepositional attachment. 

4. Apply the SRTG to  find (is-a) relations. 

5. Update hierarchy using is-a relations. 

6. Perform conjunction attachment. 

7.  Perform prepositional attachment. 

8. Rebuild hierarchy from scratch with reduced number of graphs. 

9. Apply other SRTGs. 

10. Distribute conjunctions. 

11. Modify hierarchy. 

Every time we update the type hierarchy, we want to  parse the sentences again 

as some parse preference rules depend on the semantic categories of the nouns and 

verbs. 

We must perform conjunction attachment before the conjunction distribution at 

the next iteration because if we distribute conjunctions there are no more conjunctions 

to decide the attachment of. 

.As we are reducing the number of graphs, with the conjunction and prepositional 

attachment, we regenerate the type hierarchy (not the part-of-speech transformations, 

only the is-a) as it might reduce some errors stored there. Then we apply the SRTGs. 

lye waited to apply those after the type hierarchy is better set. A SRTG, might trans- 

form a graph like [XI->(is-a)->[piece]->(of)->[B] into [XI->(piece-of)->[B]. Therefore, 
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i f  we try to build the type hierarchy from the is-a links using the second graph after 

the SRTC;, we have lost the information about concept X being a subtype of piece. 

We also wanted to  wait until all semantic relations are put in (after SRTGs) to 

perform conjunction distribution. This allows us to distribute some deeper semantic 

relations. Once we distribute the conjunctions, we might find new (is-a) links that 

got distributed, and we can update the type hierarchy. We do not rebuild the type 

hierarchy from scratch now because the SRTGs made us lose at the graph level some 

information that is already stored in the type hierarchy, and therefore we should not 

recreate the type hierarchy from those graphs. 

ITERATION 3. 

1. Steps 1 to 11 from iteration 2. 

Now that the hierarchy has been modified, we can try to perform all the steps in 

iteration 2 one last time. This results in the final graph definitions to be part of the 

LKB, as well as the final type hierarchy. 

To further modify the type hierarchy, we will use covert categories (as defined in 

section :3.2.7, as well as information extracted from new texts (see section 5.4.1). 

The graph definitions will be further modified when we perform word sense dis- 

ambiguation (see section 2.4.2). They might also be modified later as part of the 

clustering process presented in section 3.4. 

After the last iteration of automatic disambiguation, we might still have more 

than one graph per sentence. At this point we can rely on a manual disambiguation 

performed by a user. By user, we mean someone familiar with the conceptual graph 

representation, who could distinguish between two graphs by looking at them. The 

user does not need any particular training, just a bit of familiarity with interpreting 

conceptual graphs in natural language. 



Chapter 3 

A LEXICAL KNOWLEDGE 

BASE 

A Lexical Knowledge Base (LKB) should be a valuable source of information for a 

Natural Language Processing (NLP) system analyzing text for different goals, such as 

machine translation, information retrieval or text summarization. The LKB should 

contain information a t  different levels: morphology, syntax, semantic, pragmatics, 

that are more or less interdependent. 

The preceding chapter presented the transformation steps to obtain conceptual 

graph representations of the sentences contained in the .American Heritage First Dic- 

tionary (XHFD). To achieve these steps we presented the information from the LKB 

pertaining to morphology (for tagging) and syntax (for generating the parse tree). 

The fuzzy syntax-semantic boundary was crossed as we transformed parse trees into 

conceptual graphs and used some heuristics for multiple structural disambiguations. 

\Ve introduced some semantic disambiguation methods for which we needed to  access 

the information stored in the LKB about the definitions of the words. 

This chapter continues a t  the semantic level, and shows different parts of the LKB 

that help structure the semantic information extracted from the definitions in a way to  

render implicit information explicit, to facilitate comparison among the information, 

and to facilitate access to  this information. Let us look at all three aspects. 
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1 .  explicitness of information 

TO render information explicit, we want the information from all definitions to 

interact via significant relations. First, let us mention the work of Calzolari 

[36] which aims a t  organizing a dictionary into a Lexical Database based on 

relationships more linguistically relevant than alphabetical relations. We look 

at the relations identified in her work and see how we integrate them into our 

conceptual graph representation. 

hierarchical relations: The hierarchical relation is shown by the is-a rela- 

tion found in the conceptual graphs and extracted from the definitions via 

defining formulas such as <X is a Y> or <X is a kind of Y>. The construc- 

tion of the type hierarchy depends on this relation. The type hierarchy is 

an important part of the LKB. 

synonymy relations: The conceptual graph may contain a synonym rela- 

tion extracted via defining formulas such as <X is another word for Y> 

or <X is another way to say Y>.  This is the direct synonym. Other syn- 

onyms are found by getting caught into a loop of definitions, where each 

word is defined by another word of the loop. We can think of these loops 

as forming synsets (sets of synonyms as called in the WordNet system, see 

section 3.2.5) which are often found at the root of the multiple subtrees 

which form the whole type hierarchy. 

derivational relations: Some languages have many suffixes and prefixes that 

have particular meanings. We are not investigating these very much here. 

We do a morphological analysis to  find some base words, but they are 

usually suffixes that allow a change of part of speech. For example, the 

suffix ly changes an adjective into an adverb. Wre do have the mechanism 

in place to  do further investigation. We actually see in the e r  suffix a 

change not only from a verb to a noun, but the noun becomes the agent 

of the verb, so the eater is an agent of eat, and we do put this information 

as part of the graph, eater hecomes [eat]->(agent)->[person :*XI. These are 



relations certainly worth looking at and we have the mechanism here to 

develop it further. 

other taxonomies not organized on the is-a relation: A taxonomy that 

can be built is based on meronyms, or part-of relations. That relation is 

present in the conceptual graphs and can be extracted via defining formulas 

such as <X is a part of Y> or <X has Y>. Although the part-of relations 

are shown within the graph definitions, we do not extract that information 

to put it in a separate taxonomy, although all the mechanisms are in place 

to do so easily. 

terminological sublexicons: This does not apply to  our children's first dic- 

tionary. It is for larger dictionaries, where some codes are given in the 

definitions to relate a particular word sense to  a particular domain. Those 

codes (present in dictionaries such as the LDOCE) are used to limit the 

disambiguation process. 

restriction or modification relations: These are all the definitional pat- 

terns used to restrict the meaning of a genus term. They correspond to the 

many relations identified by defining formulas that are at the basis of our 

conceptual graph representation. All these relations are part of the graph 

representation of the definitions for individual words. 

case-type or argument relations: These correspond to  the syntagmatic re- 

lations such as agent, location, object; they are case roles for a verb. 

For example, for the verb sell, Calzolari will look a t  all the definitions where 

an agent is involved (a person who sells), or a location (where they sell), and 

use this information to  assume some kind of template that should come 

with a verb to  describe its possible arguments. These case relations are 

no different than other relations as part of the conceptual graph represen- 

tation. We do not work with templates as we explain in more details in 

section 13.1.1. 

Comparing our work to Calzolari's work emphasizes the fact that we include as 

part of our graph representation multiple types of relations representing a lot of 
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different information. The set of all graph definitions extracted from the X H F D  

make up the first large part of the LKB we are building. 

2. comparison of information 

Among all previous relations, the is-a relation is set apart and used to create 

a separate structure of the LKB, the type hierarchy. The type hierarchy is very 

important for concept comparison. The is-a relation is special as it permits cer- 

tain kinds of inference to be made. In general, all the properties of a superclass 

hold for all members of the class. 

We will come back to  the importance of the is-a relation compared t o  other 

relations as we introduce covert categories in section 3.2.7. For human experi- 

ments, Collins and Quillian talk in terms of the "accessibility" of a relation in 

a person's memory. 

In many cases, the superset is the most accessible property of a con- 

cept, though not always (e.9. it is probably not the .most accessible 

property of a nose that it is an appendage or a body organ). [45] 

Another important part of the LKB, not often mentioned in work on LKB 

construction is the relation hierarchy. We mentioned in section 2.4.3 that the 

relation hierarchy will play an important role for comparing information within 

the LKB. 

In this thesis we mostly insist on the importance of being able to  easily compare 

information. The importance of concept comparison is noted by Collins and 

Quillian: 

The process of identifying similar concepts with each other arises in 

many digerent aspects of language processing. ... Often the attempt 

to identify similar concepts turns into a question of whether the two 

concepts can be identified with each other in this particular case. [4.5]. 

By emphasizing graph comparison, we take into account the context of compar- 

ison. 
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3. access to information 

Easy access to information in the LKB is very important if we want an NLP 

system to efficiently use the LKB for text analysis. Other researchers [91, 601 

have worked on the problem of encoding conceptual graphs for easier retrieval, 

smaller storage and operational efficiency. 

This endeavor is outside the scope of this thesis, although the one last part 

to the LKB that we propose should help accessing the LKB. We propose the 

addition to the LKB of word clusters built from expanding the definition of a 

word to  the definitions of related words. 

Clusters of words are important for many applications of computational lin- 

guistics, such as information retrieval [106, 1471 and word sense disambiguation 

[145]. 

What is interesting in this work, is that we do not only form clusters of words, 

but also give all the interactions (the ones we were able to  extract from the 

dictionary) between those words. In term of accessibility to the LKB, clusters 

of words will direct the search into the LKB to the right cluster. For example, 

we will find a cluster containing a few of the words present in the text being ana- 

lyzed. This will allow quicker comparisons from the text to  the cluster of words, 

which in fact represent a fairly disambiguated merge of multiple definitions, 

instead of comparing the text to the individual definitions. 

The LKB is divided into four parts which are detailed in the four sections of this 

chapter. Figure 3.1 shows all four parts with the connections between them. 

1. Graph definitions: All the graphs constructed from the sentences of each 

word defined in the XHFD are gathered into this first part of the LKB. We try to 

obtain a single graph representation per sentence, via the algorithms presented in 

the previous chapter. Structural and semantic ambiguities are reduced as much 

as possible, and the relations found in the graphs are as specific as possible. 

The graph representation attempts at showing in a disambiguated form the 
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ambiguous information hidden by the surface structure of the natural language 

sentences. 

The sentences being represented in the LKB are extracted from a dictionary and 

represent facts about the world. These facts contain information that is valid 

all the time, or part of the time. We need a way to distinguish the absolute 

truths from the probable or uncertain facts. Certainty information is added to 

the facts represented in the LKB and we describe the process for doing so [16]. 

2. Concept Lattice: As it is the case in most research on LKB, the is-a relation 

is favored among all and a separate structure is built containing all nouns and 

verbs organized into a lattice of classes/subclasses. We have been talking in 

chapter 2 of a type hierarchy. The term concept lattice is more appropriate at 

this point. We will argue in section 3.2.2 that the hierarchy needs to be tangled 

and therefore becomes a lattice. Also, covert categories (see section 3.2.7), which 

do not correspond to  a word or a word sense, will become part of the lattice, 

and therefore we prefer to  talk in more general terms of concepts. The concept 

lattice is the main source of information to  establish the similarity between 

concepts. We propose adding covert categories to  this classification to expand 

the search space for finding similarities between concepts [17]. 

3. Relation Lattice: All relations used within the conceptual graphs are man- 

ually structured in a lattice to  allow better graph comparisons. We defined 

multiple semantic relations in the previous chapter (see section 2.4.3), and we 

mentioned that all the prepositions are used as relations within the graphs until 

they can be disambiguated. One preposition can be refined to different more 

specific semantic relations. Organizing prepositions and semantic relations into 

a hierarchy will allow us to  compare them in an easier way. We will see in 

section 3.:3 that the hierarchy is tangled and we prefer to  use the term lattice. 

4. Concept clusters: Large conceptual graphs are built to  show the connections 

l~etween groups of related words that form clusters [IS]. These clusters can 

he seen as groups of words defining a particular micro-world, or a particular 
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situation. 

By constraining the language model, they will be helpful at different levels of 

text analysis [GI: at the signal analysis level for speech recognition or character 

recognition for choosing between different possible recognized words, at the syn- 

tactic level for disambiguating ambiguous syntactic structures, a t  the semantic 

level for choosing between multiple senses of a word. 

When analyzing a text, if a few concepts in the text can be associated to one 

cluster, that particular cluster will explicitly give some information that is im- 

plicit in the text. By implicit, we mean that a text is directed toward a human 

reader, and much of that reader's life experience helps him/her understand that 

particular text which may contain references to  actions or concepts not explicitly 

mentioned. 

The word clusters will also be important for applications of information retrieval. 

Moreover, the clustering is important as part of the construction of the LKB as it 

helps disambiguate the individual definitions. When we gather information from 

multiple definitions, the redundancy helps specialize certain general concepts, 

as well as resolve anaphora and perform word sense disambiguation. We will 

explore all these interesting side effects of clustering. 

Graph definitions 

The first major part of the Lexical Knowledge Base (LKB) is a list of all nouns 

and verbs with their graph definitions. We concentrate on nouns and verbs as they 

account for more than three quarters of the definitions in the American Heritage First 

Dictionary (AHFD).  This observation was made for the W7 as well [6]. 

.A noun or verb can have multiple senses, each one being defined via multiple sen- 

tences, and each sentence having its corresponding graph representation. Each graph 

definition is obtained from the sentence-to-graph process described in the previous 

chapter. 
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\Vhen we look at a book version of a dictionary, the entries are organized in a linear 

fashion according to their alphabetical order. The information is given in a localist 

way as all the information for each word defined is given locally in that word's entry. 

An LKB built from a dictionary should offer many more possibilities of organizing the 

world created by all the information present in the dictionary. We want to  expand 

from the localist approach, and spread the information about one word to the entries 

for other words forming a large web showing multiple relations between words. 

Through the eyes of our guide, the AHFD, we learn about different situations in 

life and build an interrelated ensemble of conceptual graphs. This ensemble is not an 

eclectic set, but rather a group of facts. Some facts are more important than others, 

and the guide emphasizes certain aspects of definitions and not others, it also gives 

general rules and exceptions to look for. 

Keeping in mind the overall goal of using our LKB for natural language processing, 

we assume that further text analysis looking into the LKB for information will need 

to be aware of those differences about the certainty associated with each given fact. 

The text is better understood if we can relate some partial information given in it 

to more complete information given in the LKB. Therefore, a text processing task 

would constantly compare the text (in our case transformed into conceptual graphs) 

to the information stored in the LKB. We want to include the certainty information 

given about different facts a t  the graph level in a way that would ease further graph 

matching, as this is the general method of finding similar or partially compatible 

information. 

Introducing certainty information as part of the conceptual graph representation 

barely opens the door into the area of knowledge consistency, belief and discourse 

analysis. The reader should view section 3.1.2 as an attempt to  expand from our 

work into these fields which constitute large areas of study by themselves. Only a few 

ideas are explored. 
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3.1.1 Definitions as a set of interconnected nodes 

Quillian [11:3] introduced the ideas of a t y p e  node ,  the defined concept, a token  

node ,  a concept used in other definitions, an i n t r a p l a n e  relat ion,  one concept with 

the others in its definition and an in te rp lane  re la t ion ,  same concept from type to 

token. Under the non-localist approach, each token node is in an interplane relation 

with its type node defined somewhere else. A token node used in a definition points 

to its type node, and with these links all words are somehow connected. 

Let us take for example, the definition of zoo. 

A zoo is a place where animals are kept. Many of them are kept in cages. 

You can see lions, tigers, and elephants at some zoos. 

The type node is zoo, some of the token nodes are place, animals, keep, cage, 

see, lion, tiger. The intraplane relations are among the token nodes, such as [keep]- 

>(object)->[animal], and [keep]->(in)->[cage]. The interplane relations are pointers 

from each token node to  its type node where it is defined. 

Thus, a concept would be a set of interrelationships among other concepts. 

... An interesting aspect of such a network is that within the system there 

are no primitive or undefined terms in the mathematical sense, everything 

is defined in terms of everything else. [45] 

For example, a system such as KL-ONE [29] which is based (as CGs are) on the 

idea of "structured inheritance networks", separates the world into two basic groups: 

primitives and defined. 

We purposely do not make this distinction in our work. We mentioned in the 

introduction chapter (see section 1.1) an interesting aspect of the AHFD as being a 

closed world where all the words defined use in their definitions other words that are 

themselves defined. If the set of words is very large, as in an adult dictionary, we 

usually assume that all possible words are defined, and therefore we have a closed 

world. But in a small dictionary, only taking a subset of 2000 words from the large 

English \.ocabulary, we see that the authors of the XHFD tried to make the children as 
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part of a subworld that is consistent, and closed, having all the concepts interconnected 

and no primitives that have to  be predefined before entering into that subworld. 

The definitions are transformed to contain all the original information expressed 

in the sentences. We do not try to fit this information into a preexisting feature 

structure or "template" [50]. 

For example in Pustejovsky's work [26,110,8,112], the Generative Lexicon Theory 

also rejects the characterization of a lexicon as a static listing of words, but his 

theory postulates a particular structure for representing semantic information. His 

qualia structure partitions the aspects of a noun's meaning into formal, constitutive, 

agentive, and telic roles. 

Constitutive Role: Relation to constituent parts 

0 Formal Role: Distinguishes the word within a larger domain 

Telic Role: Purpose and function 

0 Agentive Role: Whatever brings it about 

Example 3.1.1 shows the qualia structure for two words, food and bagel. 

Example 3.1.1 - 
food(x) 

[const: phys-obj(x)] 

[formal: ] 
[telic: eat( E,z,x)] 

[agentive: cook(w,x), prepare(y,x)] 

bagel( x) 

[const: dough(u)] 

[formal: bread(x) & ring-shaped(x)] 

[telic: ^food] 

[agentive: bake(w,x)] 

The cjualia structure can be used in the selectional restrictions of verbs. Like for 

the verb eat which would select as a direct object nouns related to food, those nouns 

would have the eating process in their telic role. 
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One important aspect of the Generative Lexicon Theory is type coercion: a seman- 

tic operation that converts an argument to the type which is expected by a function, 

where it would otherwise lead t o  a type error. For example, an object can be taken 

to  mean an event. This type coercion can be given in many cases by the telic role, as 

in the example John left after the bagel. where it means that John left after the event 

of eating the bagel. 

The project ACQUILEX [37, 46, 136, 1381 aims at extracting lexical (syntactic 

and semantic) from multiple machine dictionaries. An Italian, a Dutch a Spanish and 

two English monolingual dictionaries are used, as well as two bilingual dictionaries. 

The goal of ACQUILEX is the formalization of the basic general knowledge found in 

dictionaries in the form of concepts and semantic relations. They use an approach 

similar to the qualia structure of Pustejovsky but in a broader sense. 

These four main roles (constitutive, formal, telic, agentive) on the one side 

do not cover the whole range of lexical notions which characterize nomi- 

nnls, and on the other side do not include other pertinent world-knowledge 

information which can be useful in many NLP tasks or applications and 

can be found in MRDs. [37] 

Therefore in ACQUILEX they use "meaning types" and associate a particular 

template to  each one as a way to  structure its semantic information. A template 

associated to a meaning type a t  the top-level of the taxonomy, such as substance, will 

be inherited by its subclasses, such as liquid. The meaning type liquid can have extra 

features as well. Each template for nominals contains four larger categories (function, 

property, constituency and source) which correspond to the four roles in the qualia 

structure (respectively, telic, formal, constitutive, agentive). Each larger category is 

subdivided into more specific relations (e.g. property into smell and color), and other 

larger categories are added such as location and cause-of. The templates for verbs are 

different and contain mostly the possible case roles. 

The use of templates can have several advantages such as guiding the parsing of 

definitions toward finding the appropriate semantic relations and helping the compar- 

ison and merging of acquired information. The main problem though is to actually 
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construct those templates. It requires a large amount of human analysis, first to es- 

tablish the taxonomy, then to decide on all the properties or features that will be part 

of each different template for all the different meaning types. The second problem is 

flexibility. Once the templates are constructed, all information that does not fit in 

has to be discarded. 

Within the graph representation, all the roles (constitutive, formal, telic, agentive) 

from the qualia structure are described via the semantic relations. The constitutive 

role is given by relations such as part-of, made-of, is-a. The formal role is given by 

the attribute relations. The telic and agentive roles are shown by the object relations 

and will be even more emphasized via the covert categories (see section 3.2.7). All 

the relations used in CGs will cover the different features used in the more detailed 

templates of ACQUILEX. 

Using a graph representation gives a much looser representation that can include 

all the information from the qualia structure and more. By putting as is all the 

information from each sentence into a conceptual graph, we do not distinguish between 

more important or more superfluous information. Having to  put information within a 

template forces some information not to  fit and to be discarded. That could possibly 

be an advantage for future comparison or analysis but it could also be a disadvantage 

if we made the wrong judgment on the importance of things. The problem is that the 

importance of a particular feature can depend on the context. For example in They 

carried the piano, and He tuned the piano, the verbs carry and tune do not refer to the 

same aspects of piano. Uniquely significant to each verb is that it is a heavy object 

and a musical instrument, respectively. 

We do not, but we could at the conceptual graph level, establish a subset of 

relations that are considered more "important" than others and use them in priority 

to perform graph comparison and graph matching. This would still allow us to keep 

all the information given in the definitions. 

\.Ve now introduce the large effort started at Microsoft 1-58, 56, 131, 1181 to con- 

struct an LIiB containing information extracted from the LDOCE. Their work shows 

similarity to our work by the fact that it is very much in the spirit of building an 

LKB made of a large interconnected network of words. \.Ve compare their choice of 



representation, a semantic relation structure, to the Conceptual Graph formalism and 

come to the conclusion that their choice presents some severe limitations. 

... the cluster of semantic relations extracted from a given definition ac- 

tually forms a directed acyclical graph structure, referred to hereafter as a 

semantic relation structure. This structure has as its root node the head- 

word of the entry containing the definition. [I181 

A CG is not an acyclical graph. It is actually very important to allow cycles as 

it is the only way to have multiple coreferences to a single concept. A CG does not 

have a root. Any CG is considered as a source of information for any concept that is 

part of it. 

Definition 3.1.1 shows the definition of motorist given in [I181 with the root node 

motorist (we constructed that one from our understanding of their work), then with 

the root node car (taken directly from [118]), and then we show our corresponding 

CG representation. 

Definition 3.1.1 - 

Definition of MOTORIST:  

A person who drives, and usually owns, a car. 

Root MOTORIST 

motorist -< Tsub - drive 

- Tobj >- car 

- Hyp >- person 

-< Tsub - own 

- Tobj >- car 

Inverted with root CAR 

car -< Tobj - drive 

- Tsub >- motorist 

- Hyp >- person 

-< Tsub - own 
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- Tobj >- car 

Conceptual Graph Representation 

[drive]->(object)->[car]<-(object)<-[own]->(agent)-[motorist *x] 

->(agent)->[*XI->(is-a)->[person] 

Only the CG representation allows the interpretation of a unique car which is 

owned and driven by the same person. The CG representation contains coreferents 

that refer to the same concept. 

For our application, it is fine to have cyclical structures as part of the LKB.  All 

the different investigations into the L K B  to modify or restructure information are 

performed by the graph matching and graph joining algorithm that are not sensitive 

to  cycles. 

For his application, Richardson needs acyclical structures as he develops a whole 

notion of semantic similarity between words based on the path length and path weight 

joining them. He describes a whole process to invert a semantic relation structure. It 

creates a new structure with a different root node which can be stored as part of the 

information of that root node. He justifies the duplicated information as a trade-off 

between storage and retrieval efficiency. The process of inverting all the definitions 

in the dictionary for all the possible root nodes in each definition creates 180 000 

inverted structures from 45 000 initial structures. 

The C'G representation is more adequate and flexible for our needs than the se- 

mantic relation structures. We do not have to invert any structure, and we base 

our notion of similarity between words on the similarity of their graph representation 

which can contain cycles. 

The system DANTE [133, 11, 101 developed at the IBM Rome Scientific Center 

uses an approach more similar to ours than ACQUILEX or the Microsoft project. 

DANTE evolved into the PETRARCA system [132, 1341. Their subject and language 

is different from our application: they analyze short narrative texts in Italian about 

finance and economics. The similarity comes from their choice of conceptual graphs 

to  represent the information they extract. They create a large interconnected network 

where all the concepts defined in these short texts are related. The system is later 



CERTAINTY DECISIVE SENTENCE IN NL CONCEPTUAL GRAPH 

Criterial trait: It's a rose therefore it is a flower. [entailment] [rose]->(is-a:criterial)-> [flower] 

Expected trait : It's a bird, but it can fly. (odd) [bird]->(able:expected)->[fly] 
It's a bird, but it can't fly. (normal) 

Possible trait: It's a dog, but it's brown. (why not) [dog]->(attribute:possible)->[brown] 
It's a dog, but it's not brown. (why should it be) 

Unexpected trait: It's a dog, but it can walk on two legs. (normal) [dog]->(able:unexpected)-> [walk].. 
It's a dog, but it can't walk on two legs. (odd) ->(on)->[leg: Q2] 

Excluded trait: It's a rose therefore it is not a tulip. (entailment) [rose]->(is-a:excluded)->[tulip] 

Figure 3.2: Interpretation of certainty levels 

used to help analyzing more texts on finance and economics. We have contrasted 

their approach to ours with respect to  sentence to CG transformation in section 2.1.3. 

We will present the idea of concept clustering in section 3.4 which is not presented in 

their approach. 

3.1.2 Certainty Informat ion 

We base our notion of certainty of relations on Cruse's approach, where a semantic 

trait can be assigned five statuses of necessity to  characterize the meaning of a lexical 

unit: criterial, expected, possible, unexpected and excluded [51]. Figure 3.2 shows 

(reflecting Cruse's ideas) how entailment helps assign a criterial/excluded certainty 

level, and how the oddity versus normality of some natural language sentences (shown 

as comments after each sentence) helps us understand the meaning of the other levels. 

A semantic trait in the conceptual graph formalism is represented by a rela- 

tion/concept pair. For example, [A]->(X)->[B], means that B is a semantic trait 

of type X for A ,  therefore [A]->(X:certainty level)-> [B] represents the certainty level 

involved in a particular relation. 

Cruse talks about modulation as the modification in multiple ways of a single 

sense, each context emphasizing certain semantic traits and obscuring others. By 

allowing context to modulate a word's meaning we allow it to play with the certainty 
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Table 3.1: Examples of criterial semantic traits 

Defined word 
air 
ball 

levels associated with its semantical traits. In the example A pregnant nurse attended 

us., the word pregnant promotes the trait of female from expected to  necessary. A 

good example is the sentence Arthur poured the butter into a dish. Here, the trait 

liquid goes from possible, or unexpected to  criterial (necessary). 

As text is analyzed and compared to the representation in the LKB, information 

from the LKB can be brought into the text's environment and the certainty levels 

modified according to  the context given by that particular text. 

We will see how the three types of information contained in a dictionary defini- 

tion (description, usage, specific examples), mentioned a t  the beginning of chapter 2 ,  

involve relations between concepts at different levels of certainty. 

bite I bake 

Description: Table 3.1 shows some descriptions of nouns and verbs where a par- 

ticular attribute or case role is essential to the word defined. The genus in the 

definition gives the superclass of the object, and is used as mentioned earlier in 

building the concept lattice. The is-a relation between a word and its genus 

is criterial, as there is entailment from the word to the genus. The differentia 

part of the definition contains different attributes or case roles that differentiate 

the word defined from the other words in the same superclass. The presence of 

those semantic traits in the definition is usually essential to the meaning of the 

word defined and so they have a relation at the criterial level with that word. 

Description 
Air is a gas that people breathe. 
A ball is a round object. 
To bite means to cut with your teeth instrument:teeth 
To bake is to cook in the oven 1 k I 1ocation:oven 

Figure 3.3 shows the CG representation of the words from Table 3.1. 

We can identify the description sentences by finding in their corresponding graph 

the relation is-a. The other relations found in the graph, which establish the 

differentia, will be given a criterial level of certainty. 

genus 

gas 
object 

criteria1 differentia 
object: breath 
round 
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Figure 3.3: CG representation of sentences with criteria1 traits 

Usage: The usage part of the definition presents information that can be assigned 

different levels of certainty. The generic information given suggests a typical 

usage to which we will assign an expected level of certainty. Some keywords 

present in the definition are good indicators of the certainty level to  assign 

to that information. They usually express a position in a range of quantity 

(Table 3.2) or frequency (Table 3.3).  

The frequency information can always be interpreted in terms of certainty, but 

we have to be more careful with the quantity information. We will interpret 

quantifiers like many, some, few, as certainty information only if they are mod- 

ifying the concept acting as the agent to the verb, or as the object if no agent is 

present. So, in a sentence like Many bears sleep all winter. we will treat the key- 

word many as certainty information, while in a sentence like Her father became 

a pilot many years ago. we will not. 

The CG representation will include the necessity level given by the keyword. An 

expected level should be assumed when no keyword is given, as these sentences 

are considered facts general enough to be stated as part of the AHFD. 

Figure 3.4 shows a few CG representations taken from the examples in Table 3.2 

and Table 13.3. 

Specific examples : In the example part of the definitions, the concepts presented 
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Table 3.2: Certainty levels expressed by keywords of quanti ty 

necessity 
criteria1 

expected 

possible 

Table 3.3: Certa inty  levels expressed by keywords of frequency 

keyword 
all 

most 

many 

unexpected 
excluded 

example 
All people and animals have bodies. 
Cups, suitcases, and tools all have handles. 
Most birds can fly. 
Most births happen in hospitals. 
Many authors write books for children. 
Many bears sleep all winter. 

some 
Many children go t o  a camp in the summer. 
Some people are afraid of the dark. 

few 
no 

necessity 
cri terial 

expected 

1 I I People sometimes cry when they are sad. I 

- - 

Some astronauts have walked on the moon. 
... but few people live there (forest). 
No trees grow there (field). 
A round ob iect has no points or corners. 

possible 

keyword 
always 

often 

example 
The air inside (a  greenhouse) is always warm. 
There are always guards in front of the palace. 
Knights often wore armor. 
Baskets are often shaped like bowls and have handles. 

usually 
sometimes 

unexpected 
escluded 

Cartoons are usually funny. 
Birds and other animals are sometimes kept in cages. 

never It ( sun)  never rises in the west. 
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[live]->(agent)- >[~erson] 
- >(location:unexpected)-> [forest] 

[growl- >(agent)->[tree] 
->(location:excluded)->[field] 

Figure 3.4: CG representations including different certainty information 

are only possibly interacting with the noun or verb defined in a particular situ- 

ation. The situations presented are very precise, and therefore the information 

given is of limited interest by itself but it might reveal some interesting aspects 

if we cumulate multiple examples to dynamically update our LKB. We present a 

few ideas hereafter that have not been implemented so far. There are not many 

examples given with the noun definitions, therefore we will look in Table 3.4 at 

the example part of the same two verbs presented in Table 3.1. 

Table 3.4: Possible situations given by specific examples 

I I I object: sandwich ( I bake I John baked his pie for an hour. ( agent: John I 

possible roles 
agent: person 

word defined 
bite 

object: pie 
duration: 1 hour 

example 
She bites her sandwich. 

-- - - 

The examples can be seen as the different experiences that someone goes through 
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day after day. We keep some individual experiences in memory, but we also look 

for generalizing patterns. Within this LKB application when general patterns 

are found, we might discard the individual examples and keep the general pat- 

tern that encompasses all the separated examples. When we find one particular 

example that expresses a different view then the one we hold via our general- 

ization pattern, we keep it as a contradictory example. 

In the LKB, the individual examples extracted from the dictionary are kept 

separately from the generic information given by the usage part. When a gen- 

eralization pattern is found, it is placed with the generic information, and the 

examples are discarded. 

For doing so, we try to  find a graph that subsumes multiple other graphs. We 

find all the concepts subsumed by a more general concept in the subsuming 

graph. For each case role attributed to  the verb in the graph, the superclass of 

all unifiers establishes a selectional restriction. 

For example, in Table 3.4, the object of bake is pie which is a subclass of food. 

In the dictionary, we find that cakes, bread, loaves, cookies and pizza are be- 

ing baked, and they are all subclasses of food. We might therefore assign a 

selectional restriction to  the object of [bake] by giving the relation an expected 

certainty level, here [bake]- >(object :expected)-> [food]. 

This more general graph showing the selectional restriction, will replace the 

multiple specific example graphs we have. 

Certainty Information in CG representations 

Table 3.2 and table 3.3 showed a set of keywords expressing either a range in quantity 

modifying a noun, or in frequency modifying a verb. 

In our CG representation, the frequency information on a verb will be identified 

via a modif relation, to  which a frequency keyword concept is attached. and the 

quantity information on a noun will be identified via an attribute relation, to which 

a quantity keyword concept is attached. 
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To establish a certainty factor on one specific relation, we must first find the rela- 

tion modif giving verb modifications, or the relation attribute giving noun modifi- 

cations. The case of nouns is more complex as mentioned in the previous subsection. 

We only consider a noun as a candidate for certainty information if it is involved in 

an agent (or object in case agent is absent) relation to  a verb. Here are the possible 

subgraphs found on which we can achieve a transformation. 

[VerbXI->(modif)- > [Frequency] 

->... 
[VerbX]->(agent)->[Noun]->(attribute)->[Quantity] 

->... 
[VerbX]->(object)->[Noun]->(attribute)->[Quantity] 

->... ** no agent ** 

There are four possible cases to explore. The number of relations given to describe 

each case is not the total number of relations in the graph. It is the number of relation 

in which VerbX is involved (not counting the modif relation). 

1 .  Single relation: VerbX is involved in one relation on which we assign the 

certainty level. 

Example 3.1.2 John never smiles. 

Graph 3.1.1 - Starting Gmph 

[smile]->(agent)->[John] 

- >(modif)- > [never] 

Graph 3.1.2 - Resulting Graph 

2. Two relations including agent: VerbX is involved in an agent relation and 

one other relation. The agent gives us the person or thing we are talking about 

in this sentence. The other relation give us details about what this agent did, 

where, or how. The certainty information is put on that relation. 
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Example 3.1.3 Some astronauts have walked on the moon. 

Graph 3.1.3 - Starting Graph 

Graph 3.1.4 - Resulting Graph 

[walk]->(agent)- >[astronaut] 

->(on: possible)- > [moon] 

3. Two relations excluding agent: The third case does not contain an agent 

relation, and we assume the object relation leads to a concept playing a role 

similar to the agent. Therefore we are in a situation similar to the previous case. 

We assign the certainty to  the other relation that VerbX is involved in. 

Example 3.1.4 Birds and other animals are sometimes kept in cages. 

Graph 3.1.5 - Starting Gmph 

Graph 3.1.6 - Resulting Gmph 

4. More than two relations: We assume agent is present, and if not, the object 

relation (as in previous case) takes the agent role. This case is more complex, 

and we will introduce a few ideas via an example. 
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Example 3.1.5 John often eats at the restaurant for lunch. 

Graph 3.1.7 - Starting Graph: 

Graph 3.1.8 - First interpretation: we see John and it's lunch time, so we expect 

the location to be a restaurant, 

Graph 3.1.9 - Second interpretation: we see John and we are in a restaurant, so we 

expect the time to be lunch time 

Both interpretations are possible. But is there one more probable than the other? 

The following paragraphs are an attempt at answering this question. We look at the 

notion of informativeness of words. 

At the core of the field of information theory is the rule by Shannon [log] stating 

that the most informative event is the least probable. The information given by 

an event x is inversely proportional to its probability. Shannon's theorem gives the 

information of x,  I(x),  as the following: 

where P(x)  is t h e  probability of the event x. 
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In our case, events are words. The probability of occurrence of a word in a corpus 

can be calculated by counting its number of occurrences in that corpus, and divide it 

by the total number occurrences for all words in the corpus. 

Therefore, a word is considered informative (brings more surprise in the text) if it 

does not occur often in a corpus. The more common a word is (thing, person) the less 

we are surprised or informed by it. We hypothesize here that certainty information 

should be seen in relation to  information given by each word in the graph. It should 

be put on the most informative word in the sentence. 

In our example, the word restaurant occurs only one time in the AHFD (not 

counting in its own definition) and the word lunch is there 17 times. We would 

therefore put the certainty information on the word restaurant and favor the first 

interpretation, where we expect the location of the lunch to be at the restaurant. 

Of course, the AHFD gives us a very small corpus to  calculate statistics, but we 

present briefly this idea of informativeness from information theory to  suggest a way 

to automatically decide which word is being emphasized by the certainty information.' 

The information about certainty or necessity is usually given as a second order 

relation in the "standard" (from Sowa [126]) CG formalism. Let us look again a t  

Example 3.1.5 given before, and its corresponding standard CG. 

Graph 3.1.10 - 
[Proposition: [eat]->(agent)->[John] 

->(at)->[restaurant] 

->(for)-> [lunch] 

1- >(certainty)->[expected] 

Our approach of attaching the certainty to  a given relation within the graph sur- 

rounds more precisely where the certain or uncertain information is. By putting it 

outside the graph, it gives a certainty value to the whole proposition. 

'The notion of informativeness of a word is taken without any given context. More precisely, 
the contest becomes the whole dictionary used to  calculate the probabilities of encountering each 
word, but each sentence when later analyzed is considered t o  be seen in isolation. In a text, when 
some sentences precede the one analyzed, the informativeness of a word will depend on  whether it 
was mentioned before, and not only on how probable i t  is t o  occur in any context. Therefore its 
probability is modified and the interpretation of certainty information can change. 
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The standard representation has the advantage of not having to choose what is 

certain or uncertain. In our case, when no context is available, we use the rule from 

information theory and therefore assign the certainty information on the relation 

leading to the more informative concept. But again, we believe that if the sentence 

was taken in context, we would also have information about the salience of a word and 

would be able to  point to the right relation where the certainty information should 

be added. 

In our opinion, our method permits a more accurate representation. It has reper- 

cussions on the graph operations defined in [126] that allow us to  compare or combine 

the information contained in the definitions. 

Graph comparison One important operation, that we have been mentioning throu- 

ghout this thesis is graph matching. Finding the maximal common subgraph between 

two graphs corresponds to finding what similar information is given by their rep- 

resentations. The certainty levels introduced in section 3.1.2 must be taken into 

consideration as we perform the graph matching operation, and we present here some 

ideas on how this may be done.2 

We look at one simple case of comparing 2 graphs. We test if graph- 1 can subsume 

graph-%, and if so, we indicate which certainty level should be kept in the subsum- 

ing graph. We assume the graphs contain identical concepts and relations, and one 

relation may contain a different level of certainty. 

graph-1 : [eat] ->(object:expected)->[fruit] graph-2 : [eat]->(object:possible)->[fruit] 

->(agent)->[John] ->(agent)->[John] 

The level possible is the most neutral level which can subsume all other levels. 

In this case, graph-1 can subsume graph-2 if its relation contains a more neutral (or 

less decisive) level of certainty. Table 3.5 shows the resulting certainty level when 

subsumption is possible. The use of natural language sentences helps to  judge qual- 

itatively if the results make sense. When we read a stronger statement, we cannot 

'These ideas have not been explored t o  the  point of being implemented in our system presented 
in chapter 4. They again open the door into the field of knowledge consistency, belief revision, and 
we do not pursue these issues in detail here. 
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Table 3.5: Case I: Certainty level for A subsuming B 

then propose a weaker one. But we can start from a weaker statement and emphasize 

more toward a stronger statement. 

excluded cannot subsume/entail criteria1 

John never eats fruits. Well in fact, John always eats fruits. 

excluded 
- 

- 

possible 
unexpected 

possible _can subsume/entail expected 

John sometimes eat fruits. Actually, John often eat fruits. 

unexpected 
- 

- 

possible 
unexpected 

A / B 
criteria1 

expected 
possible 

unexpected 

unexpected cannot subsume/entail possible 

Cathy rarely drives the car. Even more, Cathy sometimes drives the car. 

unexpected _can subsume/entail excluded 

Cathy rarely drives the car. To tell the truth, Cathy never drives the car. 

criterial 
criteria] 

expected 
possible 

- 

If we assign numerical values between -1 and 1 to each certainty level, we have: 

criterial(l.O), expected(0.5)) possible(0), unexpected(-0.5), excluded(-1.0). Relation 

r\ with certainty value C(A)  can subsume B with certainty value C(B) if 

IC(A)I <= IC(B)I 

Things get more complicated when the concepts involved in the relation modified 

by certainty information are not identical. Then we have to understand the relation 

between the concepts, for elample is one an hypernym or an opposite of the other. 

before we can decide on the relations between the graphs. Let US modify graph-;, to  

contain one concept more specific than graph- 1. 

expected 
- 

expected 
possible 

- 

possible 
- 

- 

possible 
- 
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graph-1: [eat] ->(object:expected)->[fruit] graph-2: [eat]->(object:possible)->[apple] 

->(agent)->[John] ->(agent)->[John] 

In this case, talking about whether graph-1 can subsume graph-2 is not appropri- 

ate. We should talk more about their co-existence, do they contradict each other or 

can they both be part of the same graph? 

Using the same scale as given for Case 1, we propose a condition for possible co- 

existence (non-conflict). Relation A with certainty value C(A) can co-exist relation 

B with certainty value C(B) if 

Again, we look a t  natural language sentences to get a feel for the validity of this 

result. This time, to  be valid the second sentence is not a stronger statement of the 

same idea as in Case 1, but a precision given on that idea. 

expected can co-exist with excluded 

John often eats fruits. But, John never eats apples. 

unexpected cannot co-exist with expected 

John rarely eats fruits. But ,  John often eats oranges. 

0 possible can co-exist with excluded 

Cathy sometimes drives a car. But, Cathy never drives a Cadillac. 

0 possible cannot co-exist with criteria1 

Cathy sometimes drives a car. But, Cathy always drives a Cadillac. 

We are aware that we leave many questions unresolved. This is not the main 

focus of this thesis, and it will be very interesting as future research to  explore in 

more details the few suggestions given in this section. 

3.1.3 In Summary 

\.ire presented the idea of including certainty information into our graph representation 

of dictionary definitions. We presented some ideas inspired by the work of Cruse. 
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using five levels of certainty: criterial, expected, possible, unexpected, excluded to give 

weight to some relations in the graphs. We explained the repercussion on the standard 

conceptual graph matching algorithms. The finding of keywords and inclusion of 

certainty information in the conceptual graph formalism has been implemented in 

our ARC-Concept software presented in chapter 4, but the graph matching processes 

have not. 

The certainty information presented has some similarity with the certainty factors 

used in MY CIN [14]. They use a confidence scale between -1.0 and +1 .O, where - 1.0 

represents complete confidence that a proposition is false and +1.0 represents total 

confidence that a proposition is true. They say that standard statistical measures were 

rejected in favor of CFs because experience with clinicians had shown that clinician's 

reasoning patterns is more weighted by terms such as strong, weak in their decision 

making. Keeping the words themselves as part of the graphs allows us t o  express 

certainty information in a form closer to natural language. 

Overall in this section, we presented the first part of the LKB, the graph defini- 

tions. All graphs are generated from the sentences found in the dictionary via the 

transformation process presented in chapter 2. By having each concept in a graph 

considered as a token node pointing back to  its type node, where the concept is de- 

fined, we form a large interconnected set of facts and not only a list of definitions. 

LVithin these facts, we render explicit at the graph level the certainty information 

given in the sentences via different keywords. 

3.2 Concept Lattice 

In section 2.2, we presented very briefly the construction of the type hierarchy, to 

include the different word senses given in the AHFD, as well as the subclass/superclass 

relations found via the is-a links within the dictionary definitions. We explained that 

we needed the type hierarchy for further processing/reduction of the graph definitions. 

In this section, we will go into more details into the construction of what we will 

call from now on a concept lattice, as we will see that a strict hierarchy is not sufficient 

to express all the subclass/superclass relations found in the dictionary. 
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First we will give some ideas from Cruse [.5l] in section :3.2.1 on what is supposed 

to be represented in a concept lattice. We will use another term, t axonomy,  as 

interchangeable with concept lattice. 

Then we will come closer to our subject of interest by reviewing some work on 

the building of a concept lattice from information extracted from machine readable 

dictionaries. This will lead us into presenting the taxonomy built from the AHFD. One 

important problem faced by researchers attempting automatic building of a taxonomy 

is how to determine which sense of each word is appropriate as a superclass of other 

concepts. We will introduce this problem of genus disambiguation and explain some 

heuristics for resolution. 

As a point of comparison for our resulting taxonomy we look into WordNet, as it 

is the most talked-about taxonomy of the present days. Some WordNet-based appli- 

cations are developed for sense disambiguation [I151 and for establishing selectional 

restrictions [I 171. A project, EuroWordNet, aims at building similar wordnets from 

existing resources for Spanish, Dutch and Italian [137]. 

We will pause to discuss what we have so far, what is part of the taxonomy, what 

is not, how we could use other methods to  find more subclass/superclass relations 

as well as what is missing in the concept lattice. This leads us to the important 

subsection on cover t  ca tegor ies  in which we describe other types of classes to be 

added to the taxonomy. 

Finally we have a short discussion on semantic distance, as it is often based on 

the concept lattice and it is important for our favorite operation of graph matching. 

3.2.1 Defining a taxonomy 

.A taxonomy is a type of branching hierarchy which expresses a relation of hyponymy 

between daughter and mother nodes. An hyponym is a lexical unit which is the result 

of a necessary entailment from another lexical unit. For example, if a dog is a pet 

necessarily entails that a poodle is a pet., then poodle is an hyponym of dog. 

.A branching hierarchy must express two structural relations: a relation of dorn- 

inance and a relation of difference [.51]. The relation of dominance is the vertical 
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relation, and the relation of difference is the horizontal relation. The relation of dom- 

inance must be asymmetric in that it must have a direction, and it must be catenary, 

which is the capacity to  form indefinitely long chains of elements. For example, the 

relation husband-of is asymmetric but not catenary, and the relation father-of is both, 

because A  can be the father-of B, who can be the father-of C ,  who is not the father-of 

A. The relation of dominance can be transitive or intransitive. For example, > rep- 

resents a transitive relation, ( A  > B and B > C) implies ( A  > C ) ,  but friend-of is 

intransitive ( A  friend-of B and B friend-of C) does not necessarily imply (A  friend-of 

C ) .  

In any type of hierarchy, the relation of dominance and the relation of difference 

must remain constant. The hyponymy hierarchy has a relation of dominance based 

on hyponymy, and a relation of difference based on incompatibility. A taxonomy, is 

a subtype of hyponymy hierarchy in which the relation of dominance is respected, 

daughter-nodes must be hyponyms of their mother-nodes, but the sister-nodes do not 

show a uniform relation of incompatibility. For example, book and paperback are 

hyponyms of novel, but they are not incompatible. 

Natural taxonomies have been widely studied in different areas as anthropology, 

biology, etc. One characteristic is that they typically have no more than five levels. 

For example a chain, [plant/bush/rose/hybrid tealpeace] corresponds to  different levels, 

[unique beginnerllife-form/generic/specific/varietal]. 

The generic level is the most significant level of a taxonomy from the point of 

view of the speakers of the language. 

This is the level of the ordinary everyday names for things and creatures: 

cat, oak, carnation, apple, car, church, C U P ,  etc. ... most branches of 

taxonomic hierarchies terminate at the generic level. Items which occur 

at specific and varietal levels are particularly likely to be morphologically 

cornylex, and cornpound words are frequent. 1511 
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3.2.2 Building a taxonomy from a dictionary 

When people talk about building taxonomies from MRDs, they have a different notion 

of the word taxonomy than the formal definition just described in the previous section. 

The notion of taxonomy that has been used in work on MRDs is essentially 

an informal and intuitive one: a taxonomy is the network which results 

from connecting headwords with the genus terms in their definitions, but 

the concept of genus term is not formally defined; however for noun defi- 

nitions, it is in  general taken to be the syntactic head of the defining noun 

phrase. [48] 

This definition is not as restrictive as the one defined by [51], as it does not require 

any consistency in the dominance or difference relations. There might be inconsisten- 

cies as well as circularity between the headwords and genus in the definitions. 

Amsler was perhaps the first author within the research area of extracting infor- 

mation from MRDs t o  note the availability of taxonomic links 161. Even if most of the 

work described in his thesis is actually done manually, Amsler had many insights about 

how things could be done if computers were more efficient at that time. Following 

his thesis, many articles from different groups present some aspect of automatisation 

of what Amsler was doing manually [35, 41, 34, 1411. As mentioned in section 2.4.3, 

most of the extraction techniques rely on finding defining formulas within the defining 

sentences. Formulas such as <A is a B> or < A  is a kind of B> were mentioned as the 

most common ways to identify an is-a relation between concepts A and B, showing 

a subclass/superclass relation that can be added to the concept lattice. 

Most research on taxonomies has been done on nouns, and sometimes verbs. This 

is well justified when we look a t  Amsler's analysis of the Merriam-Webster New Pocket 

Dictionary. Amsler found that it was composed of 66% of nouns, 22% verbs, 20% 

adjectives, 2% adverbs, and less than one percent all the other part of speech (prepo- 

sitions, conjunctions, etc). The number of nouns in the dictionary far surpasses the 

number of any other part of speech. 

I\-herens a single definition or even a small set of definitions may fail to 

c o ~ r  the complete meaning of the words they define, access to a complete 
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set of taxonomically related definitions m a y  be used to compose a nearly 

complete portrait of the meaning of their root concept. [7] 

He builds the taxonomy for the nouns and verbs based upon the hand-disambigua- 

ted genus words in their definitions. It confirms the expected structure of the lexicon 

to  be a tangled hierarchy. 

Allowing a concept to have more than one genus leads to a concept lattice instead 

of a tree. We can also talk in terms of multiple inheritance hierarchy, or tangled 

hierarchy. Having the noun taxonomy as a tree, in which any noun is in an upward 

relationship (is-a) to  only one other noun, is preferable, according to some researchers 

[48] since it simplifies some operations, such as inheritance. Through the following 

paragraphs we will see that it is not always possible. 

We face multiple possible genus when a definition includes a conjunction of genus, 

as seen in the following example from the AHFD: An  aquarium is a glass box or bowl 

that is filled with water. If aquarium is a subclass of both box and bowl, it would inherit 

from both items. Alternatively, to  keep the hierarchy as a tree, one could add an 

entry {box or bowl) that would inherit the intersection of the attributes of box and 

bowl [GI. 

If we put {box or bowl) under box and under bowl with some particular mechanism 

to mark it in a special way so it inherits the intersection of both concepts, we place 

this new concept as more specific than the two others separately. Which is not the 

case. The concept {box or bowl} is more general than box and than bowl so it should 

be put higher in the hierarchy. What we suggest here, is to  find the lowest common 

generalization of box and bowl, let say it is container for this example, and put the 

node {box or bowl) under container, and place box and bowl under the new node. 

This keeps the specialization progression, as well as keeping the hierarchy to a tree 

structure as shown in Figure 3.5. 

Example 13.2.1 shows a list of definitions that will lead to  a tangled hierarchy as 

shown in Figure 3.6. 

E x a m p l e  3.2.1 - 

A father is a man who has a t  least one child 
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container 

1 
{box or bowl} 

box bowl 

Figure 3.5: Tree hierarchy including sets. 

A man is a grown male person. 

A mother is a woman who has a child. 

A woman is a grown female person. 

A parent is a mother or father. 

To add the node parent = {mother, father) in the hierarchy, we find the lowest 

common supertype of mother and father which is person. We then put parent under 

person, and mother becomes a subtype of parent but stays also a subtype woman, as 

well as father becomes a subtype of parent but stays also a subtype of man. This 

example shows the necessity of allowing tangled hierarchies. 

3.2.3 Building a taxonomy from AHFD 

We first start with a flat taxonomy where all words are leaf nodes and the only root is 

the supertype of all, that is type everything. We then refine the taxonomy in multiple 

steps: 

1. Jlanually we assign a supertype to some pronouns often used in definitions, 

such as you, we. someone, somebody. We do not analyze pronoun definitions, 

therefore we cannot discover their superclass automatically. 
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person 

woman parent :{mother, father) 

\ / \ /man 
mot her fat her 

Figure 3.6: Tangled hierarchy including sets. 

2. Words with multiple senses have their individual senses put under the word, so 

they will have multiple superclasses, but one of them will be their word. We can 

see in example 3.2.2 the definition of the word arrow and the relation between 

word senses (noted with an underscore followed by sense number) and their 

superclasses.. 

Example 3.2.2 - 

arrow 

1.n. 

An arrow is a stick with a point at one end. 

You can shoot arrows from a bow. 

2.n. 

An arrow is a symbol. 

I t  is used to point in one direction. 

stick arrow symbol 

3. lise the is-a relations found in the graphs to refine the noun and verb taxonomy 

(see section 2.2). 
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4. Only words that are still subtypes of everything after the two preceding steps 

are modified here. Depending on their part of speech, word senses are put 

under different categories. Verbs are put under act, adjectives under attribute 

and nouns under something. For example, the word stick is defined as a piece 

o f  wood, giving the graph [stick]->(piece-of)->[wood] in which there is no is-a 

relation, and therefore stick will not be updated from under everything. As it 

is a noun, we put it under something. On the other hand, we will not add the 

supertype something to arrow-1, as arrow-1 is subtype of stick and therefore also 

a subclass of something. 

Figure 3.7 shows the subtree under place and figure 3.8 shows the subtree under 

animal as they were built automatically from the AHFD through the process of finding 

the genus of each definition. Each superclass in the figures points to its first and last 

subclass only so the figures are not too crowded. It is not our intention here to 

judge whether the IS-A hierarchy extracted from the AHFD is right or wrong. This 

is often a matter of long lasting debates. The only point we are trying to make is 

that the AHFD is structured in part on the basis of classification of nouns through a 

hierarchy of classes, subclasses and superclasses. The resulting hierarchy is certainly 

simpler than one that would be extracted from an adult's dictionary, but nonetheless 

informative, and adequate for our present task. 

As we build the hierarchy, going upward, we find circularity at high levels. Under 

the main root everything, the whole taxonomy is a forest with multiple trees, each 

of which having a t  its root a group of words defined through a loop. Example 3.2.3 

shows the circularity in the definitions of place and animal which are a t  the root of 

the two hierarchies presented in Figure 3.7 and 3.8. 

Example 3.2.3 - 

Animal: An animal is anything alive that is not a plant. 

A thing is an object, animal, or plant. 

Place: A place is somewhere for something to be. 

Somewhere means any place. 
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barn 
castle 
exit 
garage 
greenhouse 
hospital 
hotel 
house - hut 

cave jail igloo 

city Lighthouse 
comer palace 

crack post-office 

dock stable 
door - gate station 
edge - border theater 
fireplace bank2 
forest - path - railroad 

\ 
river 
road - sidewalk 

garden sidew- street 
gym stream 
h a  / ::A trail 
hole - keyhole 

home - hive 
jungle 
kingdom 
knot - bow2 
li brary 
museum 

office 
playground 
restaurant 
schoo/ : t z i a r b t  
store - drugstore 
tent 
town - street 
window 
zoo 

bank1  

s tep2  

Figure i3.7: is-a hierarchy for root place 



CHAPTER 3. '4 LEXICAL K X O W L E D G E  BASE 

hawk 
hen 
ostrich 
owl 

camel parrot 
cat - kitten penguin 
cattle robin 
COW rooster 
dog - POPPY swan 
donkey chickenl 
elephant turkeyl  
fox 
frog - tadpole 
giraffe 
goat 

hamster 
hippopotamus 

horse - Pony * ant 
insect 

jellyfish 
kangaroo 
Lion - lioness 
lobster 
monkey fly-1 
monster dragon 
mouse 

Pet 
pig 
puppet 
rabbit alligator 
raccoon crocodile 

rat dinosaur 
reptile snake 
rhinoceros * turtle 
seal 
sheep - lamb 

skunk 
spider 
squirrel 
tiger 

unicorn 

ebra 
bat 2 

Figure 3.8: is-a hierarchy for root animal 
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3.2.4 Genus disambiguation 

When a word with multiple senses is not a leaf node, we have to decide which sense 

is appropriate under which to put other nodes or leaves. This is the problem of 

genus disambiguation. 

Even if the AHFD seldom gives multiple senses to a word (see section 2.4.2), it is 

important to be sure that when we build any network of relations, we actually put 

the correct word senses in relation with each other. Especially in an is-a relationship 

with inheritance along the links, we would not want one node to inherit from the word 

senses it is not related to  [84]. In example 3.2.4, dam should not be related t o  the 

more specific sense side of  a room, but instead to the more general sense, a wall being 

a separation between two things. 

Example 3.2.4 - 

DAM 

dam is a wall across a river. 

WALL-1 

A wall is a side of a room. 

W A L L 2  

A wall is something that is built to keep one place apart from another 

In Guthrie et  al. [72], they analyze multiple possible relations between the genus 

and the entry word. They use the LDOCE dictionary, in which box codes (semantic 

information) and subject codes (pragmatic information) are given. The box codes use 

a set of primitives such as abstract, concrete, animate, organized into a hierarchy and 

the subject codes are a set of field names such as engineering, electrical, also organized 

into a hierarchy. Their Genus Disambiguator tries to  find the genus sense whose 

semantic codes identically match with the headword, or that has a semantic category 

that is an ancestor to the semantic category of the headword. In case of a tie, they 

look into similarity of the subject code, and in case of another tie, they choose the 

most frequently used sense of the genus word (stated as the first sense in LDOCE). 

They give a success rate of about 80%. 
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In Bruce and Guthrie [32], they go further and analyze individually and in com- 

bination, each of the three factors they considered in their previous work (semantic 

code, pragmatic code, frequency of usage), to assign a weight to each of them. 

In Klavans et al. [84], they work with the Webster's Seventh, in which no semantic 

codes are available. They propose two approaches of disambiguating the genus of 

words for building their taxonomy. The first one had been proposed by [go] previously. 

It consists of finding the number of overlapping words (excluding a stop list like the, 

a ,  of that are present in the definition of the headword, H, and the definition of the 

genus, G. The second approach consists of finding the number of overlapping words in 

the definition of H with synonyms of G, and of the synonyms of H with the synonyms 

of G. The second approach is considered more accurate, even if both give results of 

about 40% success. The difference is in their rating in terms of full successes, where 

all the proposed choices are good, as opposed to a success being when one of the genus 

proposed is the right one. In the first approach, 9% corresponds to a full success, and 

the second approach gives 19% full success. The remaining of the 40% are proposed 

sets of genus in which there are some successes and some omissions, or some successes 

and some erroneous choices. 

In our study, we do not have access to any subject or box code, as the dictionary 

we use is not intended for any computational linguistic purposes as the LDOCE is. 

Statistics would not help either, as to determine what sense of a word is used the 

most often, you need a large corpus tagged by hand with word senses which we do 

not have either. 

Therefore, we take a more general approach, that could be useful in cases where 

we deal only with raw text, not manually modified to add extra codes or tag some 

information in it. Our approach is based, as is all the rest of this thesis, on graph 

matching. By comparing information from different definitions and finding similarity 

we can solve some ambiguity problems. 

For our purposes, we treat the genus disambiguation problem as part of our general 

word sense disambiguation process described earlier (see Section 2.4.2, method 4).  The 

genus is just another word in the definition that needs to  be disambiguated. Therefore 

using our general method involves performing a graph matching to find the maximal 
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common subgraph between the word defined and the different possible senses of the 

word in the definition, here the genus. 

In a way it is similar to finding the number of overlapping words as in (8.11, except 

that we also consider the relations in which the words are involved. Example 3.2.5 

shows a situation where an ambiguous word chicken (sense 1 for the animal and 

sense 2 for the meat) is used in a graph and needs to be disambiguated. If two 

graphs possess the word chicken in a disambiguated form they can help solving the 

ambiguity. In example 3.2.5, Graph 3.2.1 and Graph 3.2.2 have two isolated concepts 

in common: eat and chicken. Graph 3.2.1 and Graph 3.2.3 have the same two concepts 

in common, but the addition of a compatible relation, creating the common subgraph 

[eat]->(object)->[chicken], makes them more similar. The different relations between 

words have a large impact on the meaning of a sentence. 

Example 3.2.5 - 
John eats chicken with a fork. 

Graph 3.2.1 - 

John's chicken eats grain. 

Graph 3.2.2 - 

John likes to eat chicken at noon. 

Graph 3.2.3 - 
[like]->(agent)->[John] 

->(goal)->[eat]->(object)->[chicken-21 

->(time)- > [noon] 

The graph matching method gives a more precise answer for the choice of a genus, 

as it can look not only at concepts but at how their interaction is similar or not. 
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3.2.5 Comparing the children's taxonomy to WordNet 

LjordNet [96, 23, 971 is a large lexical knowledge base, hand built by lexicographers, 

and based on psycholinguistic principles. A small number of relations is used to  

structure the nouns in the lexicon. They are synonymy, antonymy, hyponymy (is-a), 

hypernymy (inverse of is-a), meronymy (part-of) and holonymy (inverse of part-of). 

The basic unit of WordNet is a set of synonyms called a synset. The synsets are 

organized into multiple hierarchies, with a set of semantic primes ( a  synset) a t  the 

root of each hierarchy. We compare in Table 3.6 their hierarchies to the hierarchy built 

from the AHFD. In WordNet, there are 25 semantic primes called unique beginners. 

Some of the WordNet categories are defined in the AHFD. As they are very general 

concepts such as object, shape, time, animal, plant, food and place, they correspond to  

concept types in AHFD that are a t  the root of different subgraphs. Those subgraphs 

are joined together as all roots are subclasses of everything. 

Some categories from WordNet are not directly defined in AHFD (that is the words 

representing the categories are not defined) but the concepts are present as they can 

be found via some defining formulas, such as event, feeling, possession, reason. 

Some other categories from WordNet are not defined at all in AHFD, such as 

substance, relation, artifact, cognition. Those categories are not explored at all in the 

AHFD as they are probably too abstract for children. 

Among the categories defined, many are not defined in a typical genusldifferentia 

type of definition. We would expect that as these categories are very general and they 

are very near the unique root (everything) of the type hierarchy. 

But there are many much more specific concepts in the AHFD that are not defined 

with the typical genusldifferentia rule and they do not find a place in the AHFD 

hierarchy (besides being a subclass of something the superclass of all nouns). Some 

of these words are: ash, gift ,  habit, interest, invention, lie, load, luck, mistake, nest, 

package, song, sugar, language, money, danger and heat. 

Classifying those nouns into the CVordNet set of categories is not an easy task 

and it would probably not be any easier in any categorial system. That makes us 

wonder then why we would insist on doing such a task, and if it would be any useful 
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Table 3.6: WordNet hierarchies and AHFD's hierarchies 

WordNet roots 
{act, action, activity) 
{animal, fauna) 

{artifact) 

{attribute, property) 

{body, corpus) 

{cognition, knowledge) 
. . .  

{communication) 

{event, happening) 

{feeling, emotion) 

{food) 

{group, collection) 

{location, place) 

Description in the children's AHFD 
Root for all verbs. 
Defined as Anything alive that  is not  a plant. 
Root of large subgraph containing all the animals. 
Not defined. 
** See natural obiect. 
Not defined. 
Root for all adjectives. 
Defined as The body o f  a person is 
the part you can see and touch 
Body forms its own network of Part-of relations 
as many nouns are defined as part-of the body: 
arm, back, brain, chest, ear, foot, etc. 
Not defined. 
Not defined. 
Found via defining formula group-of words that have a purpose. 
Not defined. 
Found via defining formula is when 
A chase is when someone follows something quickly. 

Not defined. 
Found via defining formula X is what you feel ... 
Defined as what people or animals eat. 
Food forms a large hierarchy including: 
bread, butter, chocolate, meat, etc. 

A group is a number of people or things together. 
Found via defining formulas more than one, 

- - - - - r  - 

Defined as A place is somewhere for something t o  be. 
It forms a very large hierarchy including: 
airport, building, city, forest, jungle, etc. 
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Table 3.6: WordNet hierarchies and AHFD's hierarchies (continued) 

{natural phenomenon) 
{person, human being) 

WordNet roots 
{motive) 

{natural object) 

This category is not distinguished from any general event. 
Defined as A person is a man, woman, boy, or girl. 

Description in the children's AHFD 
In AHFD, the only word corresponding to  this category 
is reason. 
A reason is why something is so. 
Found via defining formula: is why 
Defined as Anything that  people can see or touch that  is not alive 
The distinction between artifacts and 
natural objects is not made in AHFD. 
There is a large tree under object including: 
anchor. furniture, moon, rock, toy 

I Person forms a large hierarchy including: 

I bush. crass. mushroom. tree. etc. 

{plant, flora) 
artist, chief, engineer, guard, man etc. 
Defined as anything alive that  is not a person or an animal. 
Plant forms a large hierarchy including: 

{process) I 
{quantity, amount) I Defined as An amount is how much there is o f  something. 

{possession) 

I Found via defining formulas: is an amount of. 

. "  , 

Not defined. 
Found via defining formula: X is what Y has ... 

{relation) 
{shape) 

{state, condition) 

Defined as The shape o f  something is what it is like on the outside. 
Shape forms a small hierarchy including: 
cross, diamond, oval, round, star, etc. 
Not defined. 

{substance) 
{time) 

Not defined. 
Defined as how long it takes for something t o  happen. 
T ime forms an average hierarchy including: 
day, hour, minute, week, etc. 



CHAPTER 3. A LEXICAL KNOWLEDGE BASE 

to an LKB system. Inheritance and type generalization are some of the reason for 

building a type hierarchy. An NLP system needs help to  analyze sentences that might 

be ambiguous. One way to disambiguate a word, if we cannot find any help within 

its description, is to look into the description of its superclass. However, there are 

nouns (as in the list above) that are difficult to classify. We can be sure that a text or 

discussion using such a noun would probably never use its superclass to  talk about it. 

The text would use the noun itself, probably because it is the only term that could 

mean exactly what the author wants. A more general term would be far too general. 

To have an idea of what an adult dictionary would say about the previous list 

of words, we looked in the American Heritage Dictionary and found the following 

genuses: ashlresidue o f  combustion, giftlsomething, habit lpattern o f  behavior, inte- 

restlsomething, invention/{device,method,process), lielfalsehood, loadlmaterial ,  luck- 

(chance)/abstract nature, mistake(error)/uninthtional deviation, nest/{container,shelter), 

package(bundle)/something, song/composition, sugar/crystalline carbohydrates, langua- 

geluse, money/commodity, danger/{cause,chance o f  harm), heatleffect. The words in 

parenthesis are synonyms of the entry words for which the genus is found. 

By qualitatively judging the interest of these genuses, we would agree that knowing 

about the superclass of each word in the list is not very useful. This leads us to the 

following section, in which we comment on other ways to  access words in an LKB, 

and on the usefulness of the taxonomy. 

3.2.6 Relative importance of hypernyms 

One interesting aspect mentioned in Amsler [6], as well as in Copestake [48] is that 

taxonomies are limited to  relationships between words or phrases having the same 

part of speech. It seems like dictionary definitions try to respect this rule, in the 

sense that they will define a noun by a noun phrase definition, or a verb by a verb 

phrase definition. In certain cases, this can make the definition more obscure by a 

choice of a meaningless genus. Some noun definitions [6] can be text descriptions of 

case arguments of verbs or relationships to other nouns. For example, vehicle : a means 

of carrying or transporting something. The noun vehicle exists mainly in a instrument 



CHAPTER 3. LE-XlCAL KNOWLEDGE BASE 126 

relation to  a verb carry, transport. If we follow a strict noun taxonomy, a vehicle will 

be a subclass of a means. 

In [1:39], as described in Table 2.5 in section 2.4.3, those examples correspond to 

the shunter type. There was two patterns < N 1  of VP> and < N 1  rel-pron VP>. The 

shunter using the relative pronoun corresponds here to a verb with a case argument (a  

person who VP ,  a place where V P ,  an object that  VP) .  The shunter with the preposition 

of  can also be a case argument, as shown in the previous example with vehicle. 

To accomplish this task of explaining noun phrases by noun phrases often only 

renders the definitions more complex than they should be. 

. . . the lexicographers must use nominalirations and other morphological 

transformations to incorporate sentences about the word being defined into 

the noun phrases used in the single definitional phrase. [6] 

In the AHFD, the classification of a noun via a genus is not always its most 

important feature. In some definitions, the first sentence describing the genus is 

completely missing; as if the lexicographers went to a more essential characteristic of 

the defined word, like its usage or purpose, something that would be more essential 

than trying to give a genus that might be confusing for a child. 

A definition in which genusldifferentia pattern is not present will put the noun in 

relation to  other parts of speech, often as a case relation to a verb, as its typical object, 

agent or instrument. The genus is replaced by an over-general term, like something or 

what and the focus is on the action. Definition 3.2.1 shows a few sentences following 

that pat tern. 

Definition 3.2.1 - 

Food is what people or animals eat. 

A habit is something you do often. 

Hair is what grows on your head. 

A pan is something to cook in. 

Sound is anything that you hear. 
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Table 3.7: Comparison of definitions from the AHFD and AHD 

1 AHFD: case relation I AHD: superclass 

Definition 3.2.2 shows how those nouns are defined in the adult version of American 

Heritage Dictionary (AHD). The  one sense (written in parenthesis) the  most similar 

to  the AHFD definition was chosen. 

food 
habit 
hair 

pan 
sound 

Definition 3.2.2 - 

Food(1): A substance taken in and assimilated by an organism to  maintain 

life and growth; nourishment. 

Habit(1): A pattern of behavior acquired by frequent repetition. 

Hair(1): A fine, threadlike outgrowth, especially from the skin of a mammal. 

Pan(1): A wide, shallow, open container for household purposes. 

Sound(1a): A vibratory disturbance, with frequency in the approximate range 

between 20 and 20,000 cycles per second, capable of being heard. 

object(eat) 
object(do often) 
agent (grows) 
instrument(cook) 
obiect (hear) 

The  adult dictionary will usually provides a genus to  the expense of getting into 

complicated sentence structures, as well as sometimes finding obscure nominalizations 

(e.g. vibratory disturbance). Table 3.7 shows the different emphasis given by both 

dictionaries. When we compare the complicated adult's definitions of nouns to the 

simple ones in the AHFD, we feel the AHFD gives a more understandable and useful 

definition as needed for most common daily dialogs. A good reason t o  build an  LKB 

from this information is that it could be useful t o  an  NLP system processing simple 

daily dialogues. 

These cases lead us to  the idea of covert categories identified through repeated 

phrasal patterns found in the AHFD. \Ve present covert categories in the following 

substance 
pattern of behavior 
outgrowth 
container 
vibratory disturbance 



sect ion. 

3.2.7 Covert categories 

Building the taxonomy using is-a relations gives us one representation of the concept 

world; one in which all words are compared to other words with respect to  the hy- 

pernym relation. If two words have a common hypernym they will be close in the 

tree. 

Here we introduce the idea of using covert categories in our LKB [17]. The 

notion of covert category is discussed in the book Lexical Semantics [51]. A covert 

category is really just an unnamed concept. 

The lexical items in a taxonomic hierarchy may be considered to  be labels 

for nodes in a parallel hierarchy of conceptual categories. Now while the 

existence of a label without a corresponding conceptual category must be 

regarded as highly unlikely, it is not impossible for what is intuitively rec- 

ognized as a conceptual category without a label. Sometimes there may be 

clear linguistic evidence for the existence of the unlabeled category. [51] 

As linguistic evidence, Cruse suggests a sentence frame for a normal sentence 

containing a variable X where we determine a list of items that X could be. For 

example, given the sentence frame John looked a t  the X to  see what time i t  was. we 

could generate the list clock, watch, alarm clock as possible values for X. Cruse calls 

these categories with no names, but for whose existence there is definite evidence, 

covert categories, and he mentions that they most frequently occur at the higher 

levels of a hierarchy. 

Covert categories are often present in the AHFD, either because the label is not 

part of the vocabulary taught to the child, or because the label does not exist in the 

English language. Consider the vehicle category, which does have a label in English, 

hut not in the children's world of the AHFD. A vehicle in the adult AHD is defined as 

A means to  carry people, loads and goods. In the AHFD, to search for the concept of 

vehicle, we seek for an action of carrying. The sentence frame could be X carries/carry 



Table 3.8: Definitions with pattern ( X  carry people/load) 

I An airplane is a machine with wings that flies in the air. 
I Airplanes carrv ~ e o ~ l e  from one  lace to  another 
I A balloon is a kind of bag filled with gas. - - 

Some balloons are huge and can carry people high into the sky. 
A boat carries people and things on the water. 

L - - - 
A bus is a machine. 
Buses carry many people from one place to  another. 
A camel is a large animal. 
Camels can carry people and things across the desert. 
A donkey is an animal. 
Donkeys can carry heavy loads. 
A helicopter is a machine. 
It carries people through the air. 

I A ship is a big boat. 
Large ships can carry many people across the ocean. 
A subway is a train that travels through tunnels underground. 
Subways carry people through large cities. 
A train is a group of railroad cars. 
Trains carry heavy loads from one place to  another. 
A truck is a machine. 
It is a very large car that is used to carry heavy loads. 
A wagon is used t o  carry people or things from one place t o  another. 

people/loads. T h e  word goods is not in t h e  A H F D  so we will not use it. Table 3.8 

shows t h e  definitions from t h e  A H F D  tha t  would match  this sentence frame. 

So there we have a category X including airplane, balloon, boat, bus, camel, donkey, 

helicopter, ship, subway, train, truck, wagon. All those lexical units  have in common 

of carrying people or loads. Some of t h e  vehicles found were already assigned a genus 

like airplane, bus, helicopter and  truck which are  machines. Some others like camel and  

donkey are  animals. B u t  others did not have any category assigned such as boat, train 

and wagon. 

T h e  notion of carrying people or loads corresponds t o  a covert category which is 

shown in Figure 3.9. 
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X carry/carries people/loads [vehicle] 

tractor mac 

bicycle 

motorcycle 

helicopter 

jet balloon bus 

wagon boat 

ship 

train 

I 
subway 

Figure 3.9: Part of the noun hierarchy including vehicle. 
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A few other nouns that we know as vehicles are defined in the AHFD,  like au- 

tomobile, bicycle, je t ,  motorcycle, tractor, trailer but they are not defined as carrying 

people/loads. Jet is a subclass of airplane so it will inherit the vehicle's properties 

through airplane which is a vehicle. The others are subclasses of machine. We see 

them in Figure 3.9. 

Another covert category given by the sentence frame X have engine, gives us the 

following words: boat,  bus, car, ship, airplane, je t ,  motorcycle, tractor,  tugboat. Among 

these eight words, four of them are also in the covert category X carry people/load. 

The covert category given by the sentence frame X have wheels, gives us the following 

words: bicycle, bus, car, roller skate, suitcase, tractor, wagon. Among these eight words, 

three are also under X carry people/load and three are also under X have engine. 

It is possible that an investigation into the overlaps between groups of words which 

partially share the same hypernyms could give us more insight into semantic distance. 

Let us briefly consider this in the context of the words we have been working with 

thus far, for which we have three sets: 

Set A - carry people/load: {airplane, balloon, boat, bus, camel, donkey, helicopter, 

ship, subway, train, truck, wagon) 

Set B - have engine: {airplane, boat, bus, car, ship, jet, motorcycle, tractor, tugboat) 

Set C - have wheels: {bicycle, bus, car, roller skate, suitcase, tractor, wagon) 

By partially sharing the same hypernyms, we mean that the intersection between 

two groups of words under different hypernyms is not empty. There is an intersection 

between Set .A and Set B containing four elements {boat ,  bus, airplane, ship). The fact 

that they share a large percentage of their elements shows some similarity between 

Set .A and Set B, and their associated concepts. 

In which case can we extend that second hypernym to cover the members of the 

first group as well? Can we assume that all members of Set A have an engine as well'? 

How similar to each other are the members of group that do not share the hypernyms'? 

How similar is a motorcycle (set B) to an helicopter (set A ) ?  Or how similar is a roller 

skate (set C )  to a train (set A ) ?  

This leads us toward the idea of componential analysis [143] which divides the 

world into groups based on what attributes the members share. It would be a very 
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nice step to bring together the field of semantic networks [144, 127, 1291 in which 

all words are not decomposed into features but are defined via their relations to 

other words, and the field of componential analysis in which words are not related as 

entities to other words but are rather seen as an agglomeration of attributes. Such 

an integration is beyond the scope of this thesis. 

Finding covert categories within the Conceptual Graph representation 

For building the taxonomy automatically, finding the covert categories requires more 

work than finding the genus of a definition. The categories are hidden through phrasal 

patterns which are repeated among many definitions with maybe some variants. Those 

patterns are not known in advance and have to be found through comparisons of the 

CG representations of sentences. 

As those patterns are usually centered around a verb, we decided to  take each verb 

and build a list of all possible immediate relations for each of them. This includes 

agent, object, location, instrument, time, as well as all the prepositions that might 

not have been disambiguated. 

To do so we build a general graph ( G I )  around a verb with a relation r l  that will 

vary over all possible relations, and a very general concept everything that subsumes 

all concepts in the concept lattice and therefore could be match to any of them. 

For example with the verb carry, we have: 

Using graph matching techniques, we project G I  onto all the graphs constructed 

from the dictionary definitions. As a result, we will have a list of all projections; 

rneaning all subgraphs that are more specific than GI .  We find seventeen occurrences 

of the projection where r l  is specialized to agent, and thirty-two occurrences where 

r l  is specialized to object. This generates two covert categories: carry-agent and 

carryeobject. \Ve call them level 1 categories. 

If there are multiple occurrences with the same concept occupying a case role (as 

agent or object), we refine our graph and try the projection again. For example, 

we found the concept person in eight occurrences with rl  specialized to  object. We 
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create graph (G2) that contains relation r l  that we can specialize again to all possible 

relations. 

The eight occurrences found when r l  is specialized to agent in G2 are: airplane, 

balloon, boat, bus, camel, helicopter, ship, subway. 

This generates one more covert category: carry"object"person"agent. We establish 

a hierarchy on the covert categories as well. The new category is a subtype of category 

carry-object, it refines it to only carrying people and not anything. It is now a level 2 

category. 

When the number of occurrences of a projection exceeds a certain threshold (let 

us call it Covert Threshold, CT), we use it to  define a covert category. Later we 

will be discussing different possible values for C T  and the resulting covert categories. 

The A-abstraction mechanism of CGs are used here to label and define a new type 

concept. For the two previous covert categories described, we generate two type 

concepts named carry-agent and carry"object"person"agent. Arbitrary names can be 

used as labels; we prefer to  choose a name that is a good reminder of what the covert 

category expresses. The label could later correspond to  an existing word, since we 

saw that some words are not yet part of the child's vocabulary. We assign each label 

to a A-abstraction given by the projection we found. 

The hierarchy is updated so that the new type concepts become hypernyms of the 

group of words they subsume. 

Select ional  res t r ic t ion  

iVe saw that finding a covert category consists of finding a graph that subsumes other 

graphs. By projecting GraphA:  [eat]->(object)->[everything] on all the graphs in the 
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LKB. we find multiple graphs subsumed by Graph-X that contain a specific concept 

subsumed by everything. The set of concepts subsumed by everything represents the 

labeled category food as all the individual concepts are subclasses of the class food. 

In that case, we can put a selectional restriction on a case role for the verb examined. 

A selectional restriction is a "co-occurrence" constraint which is possessed 

b y  senses of words of certain parts of speech and which restricts the se- 

mantic classes of words with which it co-occurs. [62] 

Thus the selectional restriction of the object relation for eat is of class food. Fur- 

thermore, the class food is associated with the type concept labeled eateobject(*X) 

defined with the A-abstraction [eat]->(object)->[*XI. We have a reciprocal relationship 

between the eating concept and the food concept, expressed through the interrelation 

bet ween the selectional restriction and the covert category. 

In [51], a selectional restriction is defined as a presupposition of a selector whose 

non-satisfaction leads to  a paradox or incongruity. 

For example the word drink could have a selectional restriction for its object rela- 

tion to be a liquid. If we see drink a liquid, liquid is a tautonym of the head, as the 

combination of drink and liquid is pleonastic, its superordinates substance or fluid are 

also tautonym, but all hyponyms beer, water are philonyms, meaning that they lead 

to a normal reading. 

Not mentioned in Cruse are the cases where some hyponyms of the selectional 

restriction reading would not give a normal reading, such as drink gasoline. Gasoline 

is an hyponym of liquid, but does not give a normal reading. In our finding covert 

categories, we find selectional restrictions by exhaustive search. Only concepts that 

appear as object of drink can become an hyponym of the covert category [drink]- 

>(object)->[]. If all hyponyms of that covert category are hyponyms of liquid, the 

co\-ert category will become itself an hyponym of liquid. 

By indicating selectional restrictions, covert categories will help solve some struc- 

tural ambiguities, such as prepositional attachment. For example, the covert category 

see-with can have as hyponyms: eyes, telescope, and binoculars. When encountering 



the sentence He saw the girl with a scarf, there should be less likely to assign with a 

scarf to the action of seeing. 

Selectional restriction is addressed in earlier work on discovering semantic relations 

among word sense [33]. It is also addressed in the context of acquisition from text 

corpora [69]. In LDOCE, or other adult dictionaries, the "typical" object, subject 

or instrument is sometimes (but not consistently) written in parenthesis within the 

definition. The selectional restriction for some verbs can be performed simply by 

looking at the word in the parenthesis. 

3.2.8 In Summary 

We presented some ideas from Cruse on what a taxonomy should be. Then we looked 

at some work on knowledge extraction from dictionaries which give a looser definition 

to  the taxonomy, calling it an is-a hierarchy (concept lattice) and relating headwords 

with the genus of definitions. We have also shown part of the taxonomy extracted 

from the AHFD and talked about including sets in the hierarchy and the necessity of 

the hierarchy being tangled. 

We presented covert categories as a way to find similarity between words [76]. 

We think they open more dimensions of comparison between words. Via the type 

concepts defined with A-abstraction, it is possible to  include these covert categories 

within the concept lattice already constructed by extraction of is-a relations. 

b'e have mentioned numerous times the dependency of graph matching on the 

concept lattice, as we use the lattice to decide if two concepts in two different graphs 

or within the same graph are compatible. The concept lattice is our main source of 

information to establish the similarity between concepts. 

Two concepts (Cl,C2) are close if one subsumes the other in the type hierarchy. 

The type hierarchy can also be used to find a concept C that subsumes C1 and C2, 

and then the semantic distance is defined as the path length going from C1 to  C to 

C" [6f] or as the informativeness of C [116]. If we are to  use our concept hierarchy to 

establish the similarity between pen and crayon, we find that one is a subclass of tool 

and the other of wax, both then are subsumed by the general concept something. \Ye 
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have reached the root of the noun tree in the concept hierarchy and this would give 

a similarity of 0 based on the informativeness notion. 

These two concepts on the other hand have the similarity of both being instruments 

of writing. By sharing this information, a pen is more similar to a crayon than it is to 

a pumpkin (see [78] for concept similarity based on common features). The pumpkin 

is probably more similar to  a carrot than it is to a broccoli. We can find similarity 

at many levels, and limiting ourselves to the type hierarchy does not seem adequate. 

By finding covert categories, we add more dimensions to  the taxonomy, more ways to 

find similarities between objects. 

Covert categories can be related to some extent to the work of [98, 991. They use 

a method called MSG (Method of knowledge Structuring by Generalization) based 

on conceptual graph description of concepts. They start with a set of concepts, each 

defined with a graph definition and each put in a taxonomy. They find new categories 

by extracting the common features of multiple definitions and reorganize the type 

hierarchy by adding terms in it that represent the new established categories. We 

consider our covert categories as unnamed concepts and give them an arbitrary label, 

but they assume their new categories as possibly named by a knowledge expert. One 

main difference with our work is that before they use their generalization algorithm, 

the graph representation of each definition is first transformed into a set of triplets 

(Concept-Relation-Concept) and therefore their generalization process works only for 

one relation at a time. It corresponds to our Level 1 categories. They call their overall 

process "conceptual clustering". Other works [9, 281 are also using this term for a 

very similar approach. 

We use the term concept cluster in section 3.4 for quite a different approach. 

What is interesting though about the work of Mineau and Allouche is the larger goal 

in which their research is situated which brings a new light on our work. They see 

such a process of vocabulary extension as facilitating vocabulary integration between 

different applications, and knowledge sharing between multi-agent processes. In our 

conclusion section, we mention future research into the area of lexical gaps. It is 

similar to non-compatibility between the vocabulary used by different agents wanting 

to  communicate. For lexical gaps it is often the case that we are talking about 
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vocabulary from different languages. 

Covert categories can also be related to the idea of establishing the similarity be- 

tween items by finding the shortest path between them in a semantic network [79, 571. 

Let us imagine that all our CGs for all the definitions become interconnected into a 

large network. Two hyponyms of eat-object, such as fruit and potato would be at 

distance 2 (or some proportionally related distance) as the path between them is: 

The problem is that fork would be at the same distance from [fruit] because of 

[fruit]<-(object)<-[eat]->(with)->[fork]. Richardson [118] does an interesting inves- 

tigation into finding particular paths which are indicators of similarity. He uses the 

thesaurus to define in advance similar words and then finds the best possible paths be- 

tween them (he developed as well a measure of the weight of different paths). Among 

the 20 most frequent paths are: Hyp-HypOf (apple-fruit-orange), Tobj-TobjOf-Hyp 

(apple-eat-orange-fruit), Hyp-Hyp (castle-building-place). We see that the hypernym 

(Hyp as well as its opposite HypOf) plays an important role in these similarity path. 

In the CG formalism, they are taken care of by the concept hierarchy and are always 

considered as we perform graph matching. The covert categories at level 1 correspond 

to symmetric paths such as Tobj-TobjOf, or Manner-Mannerof. One advantage of 

the path similarity measure is that a path of any length can be considered, but its 

disadvantage is that a path does not branch out and therefore cannot find covert cate- 

gories at level 2. For example, we are able to find the covert category carry-instrument 

at  level 1, which has for hyponyms arm, bucket, pipe, car, tube, wagon and which could 

be found by a path Inst-InstOf. Now, we refine to level 2 and find the covert category 

carry-object-liquidainstrument. There is a closer similarity between bucket, pipe and 

tube which cannot be expressed by a path. 
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3.3 Relation taxonomy 

In section 2.4.:3 we briefly presented all the relations we are using in our LKB. Ap- 

pendix E gives a complete detailed list of all relations. We grouped all relations into 

a few classes, such as case relations, agent involvement, comparison relations, etc. 

Within these groups, we listed the relations without giving any structure as to which 

relations are more closely related than others. 

It is important to  establish which relations are more similar, as it makes them 

more likely to be compatible during graph matching. We use graph matching for 

multiple purposes throughout this thesis, and the relation taxonomy will influence 

the matching process. 

We present in Table 3.9 the compatibilities that we will accept as we perform 

graph matching. An arbitrary label is given to a relation that serves as a superclass 

of other semantic relations that we have defined earlier unless there is already a more 

general relation within the group that can be used as superclass. 

We present the compatibilities as sets, but they will be represented in the taxon- 

omy by having the given label as a superclass of all elements in each set. 

Some superclass/subclass relations imply looking at the concepts in reverse order. 

For example [John]<-(agent)<-[eat], and [John]->(desire)-> [eat] can be related if we 

match the opposite concepts. This is noted by (r) in Table 3.9. 

In section 2.4.3 we mentioned that we have a set of 44+ semantic relations. The 

"+" is there for all the prepositions that are used as relations until we can later disam- 

biguate them. A preposition that can be disambiguated into more specific semantic 

relations is considered in the relation taxonomy to be a superclass of these possible 

relations. Table 3.10 gives the prepositions that must be disambiguated into semantic 

relations. These prepositions are defined in the AHFD as having more than one sense. 

The examples given in Table 3.10 are taken directly from the definitions of the prepo- 

sit ions in the XHFD. We added a few more examples taken from other definitions in 

the XHFD when we felt that there were more possible meanings than the ones given 

in the preposition's definition. We do not intend to give a complete list of possible 

relations given by prepositions, as some more "abstract" semantic relations such as 
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Subclass of relation 

humanlanimal 
comparison 
description 
action modifier 
case roles 

agent involvement 
type of action 

Table 3.9: Compatible semantic relations 

Grouping found 
Groupl = {part-of, content, material) . - 

Group2 = Group1 U {piece-of, area-of, amount-of) 
Groups = {possession, child-of) 
Group4 = {like,as,more-t han,less-t han) 
Groupattribute = {material, function, about) 
Groupmodi = {manner, frequency) 
Groups = {method, manner) 
Groups = {agent, experiencer) 
Group7 = {agent, instrument) 
G T O U P ~ ~ ~ ~ ~ ~ ~ ~  = {direction,s~~rce,de~tination,path) 
Grouptime = {point in time, frequency, during) 
Groups = {resuit,cause,transformation,goal) 
Groupagent(r) = {ability, desired act, intention, obligation) 
Groupg = {act, event, process) 

state or c i r c u m s t a n c e  are  not part of the children's world and therefore not part of 

the LIiB built. For a review on the possible meanings of a set of twelve prepositions, 

see [ .55] .  

For each example in Table 3.10 we indicate from which word's definition a sentence 

is taken. 

As for the hierarchy expressed in Table 3.9, some superclass/subclass relations 

between a preposition and a semantic relation require a reversal of the the order of 

the concepts. For example we have [trunk]->(of)->[tree], that  can subsume [tree]- 

>(part-of)->[trunk]. We note these reversals in Table 3.10 with an  (r) .  

Note that some prepositions such as above ,  across ,  over ,  are not generalizations 

of rnultiple semantic relations but instead are specializations of some relations mostly 

related to  time and location, as shown in Table 3.11. 

\Ve have extracted the possible meanings of prepositions by looking through the 

XHFD.  By no means do we assert that this is an exhaustive search through all the 

possible meanings of prepositions. 

At its initial stage, the relation taxonomy is built manually but it should he 

clyrla~nic. ready to be modified by new relations. Some argumentation in favor of a 
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PREPO- 
SITION 
about 

along 

at  

before 

by 

for 

from 

in 

into 

of 

on 

through 

t 0 

with 

Table 3.10: Ambiguous prepositions 

SEMANTIC 
RELATION 
ABOUT 
MODIF 
LOCATION 
ACCOMPANIMENT 

LOCATION 
POINT IN TIME 
DIRECTION 
SEQUENCE 
P O ~ N T  IN TIME 
AGENT 
MANNER 
POINT IN TIME 
FUNCTION 
RECIPIENT 
DIRECTION 

DURING 
SOURCE 
LOCATION 
LOCATION 
POINT IN TIME 
MANNER 
PART-OF ( r )  
DIRECTION 
RESULT 
PART-OF ( r )  
CONTENT 
POINT IN TIME 
ABOUT 
POSSESS ( r )  
XIATERIAL 
LOCATION 
ABOUT 
POINT IN TIME 
PATH 
MANNER 
DIRECTION 
POINT IN TIME 
TRANSFORMATION 
CONTENT 
PART- 0 F 
INSTRCMENT 
SIANNER 
..\CCO.ZIPANIMENT 

(Word from which example is extracted in AHFD) 
The story is about Lisa and David. (about-ll 
That line is about four inches long. (about2)  
It is nice to walk dona the beach. (alonn-ll - . - ,  

Donna went to the store and her brother went 
along with her. (along2) 
She is a t  school now. (at-l) , . 
School begins at  ~ n e  o'clock. ( a t 2 )  . . 
Jerry looked at the sky to watch for falling stars. ( a t 3 )  
Minny washes her hands before she eats. (beforel)  
She had never been on a plane before. (before2) 
The question was asked by Dana. (by-1) . -  . 
We made a garden by planting some flowers. ( b y 2 )  - . . .~ . 
Nicole is usually hungry by supper. (by3)  
A carpenter has a box for his tools. (for-1) 
I bought this book for you. (for-1) 

' 

People can reach for the sky, but they can't 
touch it. ( for2)  
We played baseball for two hours. (for3) 
Bob went from school to the library. (from-l) 
The moon is a long way from the earth. (from2) 
Fish swim in the water. (in-1) 
Ted's birthday is in August. ( in2)  
Ants live in large groups ... (ant) 
The people in this story are Lisa and David. ( a b o u t l )  
My father drives the car into the garage. (into-1) 
Caterpillars change into moths and butterflies. (into2) 
Branches grow out from the trunk of a tree. (branch) 
Paul was Earrying a pail of water. (of21 
The time is ten minutes of four. (of3) 
Steve drew a picture of his brother. ( a d d l )  
You can see the work of many artists in a museum. (artist) 
We made a border of stones around the garden. (border) 
The dishes are on the table. (011-2) 
Thea has a book on dinosaurs. (0113) 
We play ball on Sundays. (0x4)  
Jess walked through a field to get to school. ( throughl)  
Many people send messages through the mail. (message) 
Astronauts have flown to the moon. (to-1) 
It(the store) is open from nine to six. ( t o 2 )  
He changed the walls from yellow to white. ( t o 3 )  
Joe's hamburger came with onions on it. (with-1) 
A giraffe is an animal with a long neck. (with2)  
Brian dug a hole with a shovel. (with3)  
Attention is looking and listening with care. (attention) 
To march with someone means ... (march) 



CHAPTER 3. A LESIC.AL I<,VO\VLEDGE BASE 

SEMANTIC 
RELATION 
LOCATION 

PATH 

DIRECTION 

SEQUENCE 

Table 3.11: Temporal and location subclasses 

above I Airplanes fly above the ground. 

PREPOSITION 

against I Kathy put her bicycle against the wall 

EXAMPLE 

around Sandra looked around the room for her shoes. 
behind Julio stood behind Sally. 

between ( It(wrist) is between your hand and your arm. 

below 
beside 

Roots grow below the ground. 
Kim sits beside Don and Don sits beside Kim. 

over I A helicopter flew over our house. 

inside 
off 

under I The roots of a plant grow under the ground. 

 hen she went inside the house to get warm. 
Please take your books off the table before supper. 

upon 
across 

toward I The ship seemed to grow bigger as it sailed toward us. 

The bird was sitting upon the branch. 
A bridge was built across the river. 

beyond 
down 
out 

UP I We went up in a balloon. 
after I After the ball game, we went home. 

She went beyond the fence. 
A big balloon came down in our garden. 
Joe went out the door and closed it behind him. 

- 
before I Februarv comes after January and before March. 



destination direction source 

Figure 3.10: Small part of relation taxonomy. 
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non-static set of relations, arranged into a hierarchy, is given in [106]. They argue 

that it might be desirable at some point to add new relations that were perhaps 

not accorded much attention before. The level of detail for differentiating relations 

will depend on the domain of application, and if our relation set is organized into 

a hierarchy, any branch can be expanded at any time without affecting the overall 

system. For example, in [I191 they position the case relations from Fillmore [63] in a 

taxonomy and refine each case as a more specific relation. 

Building the hierarchy will allow us to compare graphs expressing similar ideas but 

using different sentence patterns that are reflected in the graphs by different prepo- 

sitions becoming relations. If multiple prepositions can be specialized to the same 

deeper semantic relation, we can find this semantic relation as we try to  join or com- 

pare graphs containing these different prepositions as relations connecting compatible 

concepts. This claim assumes that not all prepositions can represent all semantic 

relations. For example, if we see in the mail and through the mail, we can establish 

the similarity via the manner relation. They interact at location as well but more 

indirectly. Figure 3.10 shows a small part of the relation hierarchy, and we highlighted 

the compatibility between through and in. 

3.4 Concept clusters 

In this section, we describe word clusters, the last but very important part of our 

LKB. Word clusters allow the gat hering of information about specific subjects. They 

are like "micro-worlds" in which the relations among multiple participants and actions 

are described [IS]. 

Our idea of clustering is quite different from the many recent efforts in finding 

words that are semantically close. These other approaches [43, 142,31, 1081 determine 

word clusters based on co-occurrences of words in text corpora or dictionaries. The 

problem with such fully automatic and probabilistic approaches is that the linguistic 

plausibility of the resulting clusters cannot be evaluated [go]. Clusters of words are 

found, hut it cannot be explained why the words appear in the same cluster and how 

they are related. 
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The term conceptual clustering has also been used to find groups of objects with 

similar features [99, 9, 281. 

Our work on word clusters is in some respect similar to the work of Schank [122], 

where he introduces the idea of a Situational Memory (SM) containing information 

about specific situations. In his understanding process, information found in SM is 

used to provide the overall context for a situation, as well as the rules and standard 

experiences associated with a given situation in general. 

Schank calls his memory structures at the situational memory level Memory Or- 

ganization Packets (MOPs) A MOP is a bundle of memories organized around a 

particular subject that can be brought in to  aid in the processing of new inputs. The 

key to understanding is the continual creation of MOPs which record the essential 

parts of the similarities in experience of different episodes. A MOP can help in the 

processing of a new event and it is itself affected by the new event. 

We think the concept clusters will be helpful when we further analyze text and 

refer to our LKB ( to  find implicit information for example). The process of building 

the concept clusters is very important as well. The gathering of information plays an 

important role in disambiguating information contained in the LKB. The idea is that 

more is better; finding redundant information can lead to  some clarifications. 

In chapter 2, we showed the transformation from a sentence to a CG containing 

surface semantic and then we explored multiple structural and semantic disambigua- 

tion processes. In the end, ambiguity still remains, and sometimes the representation 

is still close to surface semantics. By gathering information from multiple definitions 

within the same small domain, we will find definitions sharing parts of information. 

One definition might be less ambiguous than the other and this will help us disam- 

biguate the information in the other definition. For example, definition 1 contains an 

ambiguous word and definition 2 contains the same word with a sense assigned; if that 

word is part of the knowledge shared by both definitions, it allows us to  disambiguate 

the word in the first definition. 

The large graph that will result from merging the information from multiple defini- 

tions is a Concept Cluster Knowledge Graph (CCKG) which has the role of structuring 

as much information as possible about a particular topic. Each CCIiG will start as 
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a CG representation of a trigger word and will expand following a search algorithm 

to incorporate related words and form a concept cluster. The concept cluster is inter- 

esting in itself as it identifies a set of related words, and these sets have been used in 

other research for tasks such as information retrieval or word sense disambiguation. 

Here the CCKG gives more to  that cluster as it shows how the words are related. To 

go back to earlier work by Schank, we can say that a CCKG is in some ways similar 

to  a script [121]. However, a CCKG is generated automatically and does not rely on 

primitives as Schank's work does but on a large number of concepts, showing objects, 

persons, and actions interacting with each other. This interaction will be set within 

a particular narrow domain (like a script), and the trigger word should be a keyword 

of the intended domain. For example, for the shopping domain, appropriate trigger 

words would include shop, store, buy. If we take a more general term such as money, 

we will not only go into the shopping domain, but also look at banks, jobs, types of 

money, etc. 

This section describes how given a trigger word, we perform a series of forward and 

backward searches in the dictionary to build a CCKG containing useful information 

pertaining to the trigger word and to closely related words. The primary building 

blocks for the CCKG are the graphs built from the dictionary definitions of those 

words using our transformation process described in chapter 2 and presented as the 

first part of our LKB in section :3.1. Those graphs express similar or related ideas 

in different ways and with different levels of detail. As we will try to  put all this 

information together into one large graph, we must first find what information the 

various graphs have in common and then join them around this common knowledge. 

An important aspect of the clustering is the idea that some paths are worth ex- 

ploring more than others. We think this decision should be based on how significant a 

concept is with relation to  its surrounding context. The idea of finding Semantically 

Significant Words (SSWs) is an important factor at the base of the clustering process. 

To build a CCKG and perform our integration process, we will rely on our two 

main knowledge structures described earlier as the second and third parts of the LKB, 

the concept lattice and the relation lattice. We use the graph matching procedure 

mentioned earlier, but it will be described in more detail here. Once the common 
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Table 3.12: SSWs and number of occurrences 

Max number of occurrences 
to be considered a SSW 

5076 
2904 
1095 
623 
264 
126 
62 
42 
3.5 
2 7 
18 
11 
5 
4 
2 
1 

% of occurrences 
discarded 

10 
20 
30 
30 
50 
60 
70 
75 
77 
80 
85 
90 
95 
9 7 
99 
100 

% words 
discarded 

0 
0 
0 
0 
1 
2 
6 
8 
10 
13 
19 
29 
48 
60 
80 
100 

subgraphs between two graphs are found, the joining of the remaining information 

particular to each graph is performed around that common information. 

This section will process as follows. First we establish which words can be called 

semantically significant words. Second we give details of doing graph matching. Third, 

we present how to  join two graphs around their maximal common subgraph. Fourth, 

we give an overview of our clustering process. We end with a discussion. 

3.4.1 Semantically Significant Words 

The semantic weight of a word or its informativeness can be related to its frequency 

as we saw earlier in section :3.1.2 (see also [116]). We should add that the semantic 

weight of a word is related to  the context in which it is used, and that measuring the 

frequency of a word should be done with respect to a particular ~ o n t e x t . ~  

' ~ i c h a r d s o n  [I181 ment ions  t h e  work of  Sa l ton  e t  al. [I201 who uses a t e r m  weight based on  t h e  
t e r m  frequency a n d  t h e  inverse d o c u m e n t  frequency, which m e a n s  t h a t  they assign a weigh t o  a t e r m  
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Here we assume the context to be the simplified world described in the definitions 

of the XHFD, and we calculated the number of occurrences of each word within that 

context. In table :3.12, we can interpret the third column as giving us the percentage 

of different words needed to create the corresponding percentage of word occurrences 

shown in column 2. We find that 10% of the possible words in AHFD account for 

77% of word occurrences. A small 1% of the possible words accounts for 50% of word 

occurrences, and 48% of the possible words account for 95% of all occurrences. Among 

the most frequent words in the AHFD, we have (with their number of occurrences 

in parenthesis): a(5106), the(1619), in(664), something(341), person(429), have(278), 

many(157), animal(ll6). And among the least frequent words, we have: haircut(3), 

palm(3), lumber(2), emerald(2), traffic(2), dentist ( 1 ), classroom(1). 

We define as a semantically significant word (SSW), a word which occurs less 

often in the AHFD than a set threshold. Table 3.12 gives us the number of word 

occurrences, and the number of a different words that are eliminated for different 

thresholds on the SSWs. For example, if a word must occur less than 27 times to  be 

considered semantically significant, and we use that criteria to restrict our search of 

words for our clustering process, than we are eliminating SO% of all word occurrences 

and 13% of the possible words in the dictionary on which the search will not be done. 

When trying to  give more context to  a word, the last thing we want is t o  investigate 

words such as person or something which are probably part of most definitions in the 

dictionary. By establishing a criteria on the possible words to be explored, we avoid 

such useless search. 

The notion of a semantically significant word is used throughout the rest of this 

section. 

3.4.2 Finding common subgraphs 

Establishing overlap in information given by different definitions is performed by find- 

ing the common subgraphs between two graphs. This consists of finding a subgraph 

(or word) with respect to  a single document based on the term's frequency within that  document 
compared to  its frequency within a group of documents. 
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of the first graph that is isomorphic to a subgraph of the second graph. In our case, 

we cannot often expect to find two graphs that contain an identical subgraph with 

the exact same relations and concepts. Ideas can be expressed in many ways and we 

therefore need a more relaxed matching schema. 

That relaxed matching schema consists of a looser approach in identifying match- 

ing concepts, we call them compatible concepts. We also use the possibility of not 

finding exact relation match but using the relation taxonomy to find compatible 

relations. 

Two graphs can have multiple compatible concepts and multiple compatible re- 

lations, and the Maximal Common Subgraph (MCS) will be the largest connected 

subgraph that can be found among all these concepts and relations. 

We describe our procedures for finding concept and relation compatibility in the 

following paragraphs. We also present a measure of similarity between two graphs 

expressed via their common subgraphs. 

Compatible concepts Our approach is an extension to the graph matching proce- 

dure described in [126]. Two concepts A and B (noted in parenthesis, present in two 

separate graphs or within the same graph, are compatible in the following conditions: 

0 Condition 1: identical concept types 

[drivel->(object)-> [car (A)] 

[wash]->(object)->[car (B)] 

Condition 2: concept A subsumes concept B 

[drivel->(object)->[vehicle (A)] 

[wash]->(object)->[car (B)] 

0 Condition 3: concept A subsumes a certain sense of concept B (which disam- 

biguates B at the same time) With message and letter, message subsumes the 

second sense of letter, letter2, the first sense le t te r l  is a symbol of the alphabet. 

[send]->(object)->[message (A)] 

[writel->(object)->[letter ( B ) ]  
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0 Condition 4: concept A is a pronoun or a very general concept (like something), 

it is linked via a relation X1 to concept C1; concept B is linked via a relation 

X2 to concept C2; X1 is compatible with X2 and C1 is compatible with C2 

Example: 

[send(Cl)]- > (object(X1))- > [it (A)] 

[send(C2)]->(object(X2))->[letter2 (B)] 

0 Condition 5:  concept A does not subsume concept B, concept B does not sub- 

sume concept A, but both are subsumed by a third concept C, and C is seman- 

tically significant (C=fruit in the following example) 

[eat]->(object)->[banana (A)] 

[like]->(object)->[orange (B)] 

0 Condition 6: same as Condition 4, but concept A is not a pronoun or a very 

general concept type, in which case we do not automatically assign them as 

compatible, but we investigate the semantic distance between the two con- 

cepts. 

[writel->(instrument)->[crayon (A)] 

[writel->(instrument)->[pencil (B)] 

h'e describe the investigation hereafter. 

\Ve already talked about semantic distance in section 3.2.7. The concept lattice 

built via the is-a relations extracted from the dictionary is the main source of informa- 

tion about concept similarity. We look first into the concept lattice for subsumption 

relations. To the concept lattice, we added covert categories. We presented covert 

categories as another way to find similar concepts as it helps us find concepts that 

play the same case role to  a particular verb. In ['20], they look at the opposite cate- 

gorization problem, finding groups of verbs depending on their relation to nouns. As 

we incorporate covert categories in the concept lattice, the subsumption process can 

he used as well. 
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In many cases, this should be sufficient, but when we have reasons to believe that 

two concepts might be similar (as in this case being related to the same concept by 

the same relation), we might want to go one step further and extend the subsumption 

notion to the graphs. Instead of finding a concept that subsumes two concepts, 

we will try finding a common subgraph that subsumes the graph representations of 

both concepts. In our example, pen and crayon have a common subgraph [writel- 

>(instrument)->[] as part of their respective graph definitions. 

The approach here is exactly the same as the one presented in section 3.2.7 for 

finding covert categories, groups of words that share a particular case role to a verb. 

We establish a Covert Threshold (CT) to decide if we create a new node in the 

type hierarchy to correspond to a new type defined via a A-abstraction. In this 

particular case, the A-abstraction [writel->(instrument)->[A], labeled write-instrument 

can be found in the taxonomy as a covert category if it occurred more than CT times 

in the dictionary. If the subgraph [writel->(instrument)->[A] does not occur often 

enough it does not become a covert category. But it still represents the common 

information between pen and crayon, it subsumes both their graph representations. 

Compatible relations Two relations A and B are "compatible" in the following 

conditions: 

Condition 1: relations A and B are identical 

[eat]->(with (A))->[fork] 

[eat]->(wit h (B))->[knife] 

Condition 2: relation A subsumes relation B in the relation hierarchy 

[eat]->(with (A))->[fork] 

[eat]->(instrument (B))->[knife] 

Condition 3:  relation A subsumes relation B with concepts involved in reversal 

order; we mentioned this factor before in section 3.3 

[branch]->(of (A))->[tree] 

[tree]->( part-of (B))->[branch] 
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Similarity expressed via common subgraphs Now that we have established 

the criteria for concept compatibility and relation compatibility, we can define the 

compatibility between two graphs as expressed by the list of all their compatible 

concepts, and the list of their compatible relations if these relations are connected to 

compatible concepts. Therefore the compatibility between two graphs is expressed 

by a disjoint set of subgraphs, some being unique concepts and others being larger 

structures of at least two concepts joined by a relation. 

Normally, in the CG formalism, the largest common subgraph between two graphs 

is defined as the largest connected subgraph that subsumes the two graphs. Here we 

want to keep track not only of the largest connected subgraph, but also all the other 

isolated concepts that are present in both graphs. Two graphs can be more or less 

com pati ble depending on the amount and the significance of the information that 

they share. Their compatibility establishes their similarity. 

Two measures are used: 1) the number of SSWs among the set of compatible sub- 

graphs, and 2)  the number of connected concepts in the Maximal Common Subgraph 

( AICS). 

Let us take an example, where after the graph compatibility is performed between 

two graphs we obtain the following set of subgraphs. 

[mail] isolated concept 

[post-office] isolated concept 

[send]- >(from)- >[person] MCS with 3 connected concepts 

->(to)->[person] 

The set of common subgraphs, either isolated concepts or concepts connected via 

relations, has a total of three SSWs: {send, mail, post-office). The MCS contains only 

one SSW send and the concept person which is not a SSW. Our first measure gives 

three. 

The second measure is the number of concepts within the MCS. To he counted 

here a concept does not have to be semantically significant. In our example, that 

measure would also he three. 
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The total similarity measure is based on both factors: enough significant concepts 

in common, but as well some shared structure. GS(a,  b) gives the graph similarity 

measure. The two measures described are given by parameters a (number of SSWs 

in common) and b (number of concepts in the MCS). 

3.4.3 Joining two graphs 

The next section will describe how to direct our clustering into choosing which new 

word to  add to  the cluster. But independent of that choice, the process of expanding 

the cluster always boils down to joining the cluster-graph (Graph C)  with the new- 

graph (Graph N).  

We must find the common subgraphs between Graph C and Graph N using the 

algorithm proposed in the previous subsection. If the Graph Similarity (GS) between 

these graphs exceeds a fixed Graph Matching Threshold (GMT) then we perform the 

join between graphs C and N on the most significant concept of the MCS, and then 

we simplify the new graph by eliminating redundancy. 

.As we add more and more graphs to the cluster graph, we want to make sure that 

we are adding graphs that are related to the cluster graph. By that we mean that we 

expect them to share a significant part of knowledge. If, for example, they only have 

the concept person in common, that would be meaningless. We want the two graphs 

to share significant information. 

The GMT is defined based on the GS measure given in the previous subsection. It 

is given in terms of the minimal number of SSWs present in the common subgraphs 

(parameter a in GS) and the minimal number of relations in the MCS (parameter b 

in GS). 

When the GMT is satisfied between graph C and N, that is GSclN(a, b) 2 
G-\.ITcl,v(c, d) ( a  2 c and b 2 d), the graph similarity between C and N exceeds 

the threshold, then we perform the join between the cluster-graph and the new-graph. 

The join is done around one SSW, but which one is not important as all the redundant 

information will be eliminated in the following simplification steps. 
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Definition 3.4.1 and definition 3.4.2 show the definitions of mail and stamp re- 

spectively. Then we can see their MCS in Result 3.4.1 and their maximal join in 

Result 3.4.2 which is performed on the concept mail-1. 

Definition 3.4.1 - 

MAIL-1 

Many people send messages through the mail. 

Definition 3.4.2 - 

STAMP 

People buy stamps to put on letters and packages they send through the mail. 

Result 3.4.1 - Common subgraph between mail-1-B-A and stamp-1-A-A 

Result 3.4.2 - .Ilaxirnal jo in  between mail-1-B-A and stamp-1-A-A 

Graph mail_l/stamp 

[send]->(agent)->[person:plural] 
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- >(agent)->[they] 

- >(object)- >[message: plural] 

->(through)-t maill *XI 
[send]->(object)->[letter:pl~ral]->(and)->[~ackage:plural] 

<-(on)<-[put]<-(goal)<-[buy]->(agent)->[person:plural] 

->(object)->[stamp] 

->(through)->[mail-1 *x] 

Simplification within a graph We present two simplification methods that will 

eliminate redundant information generated by the joining of two graphs. 

internal join: if a SSW is present twice in the resulting graph, possibly in two com- 

patible forms, it can become one. This happens when both Graph N and Graph 

C contain a concept X, but the join is performed on another compatible con- 

cept from the MCS, and therefore the resulting graph still contains concept X 

twice. After the join of mail-1 and stamp which resulted in the graph presented 

in Result 3.4.2, we have the concept send present twice, and also the concept 

letter is present in two compatible forms letter and message. These compatible 

forms actually allow us to  disambiguate letter into l e t t e r 2  It is letter2 that is a 

subclass of message. The other sense le t ter1 is a subclass of symbol. Result 3.4.3 

shows the result of performing an internal join on letter with message and on 

send. We can see that only concepts are joined, relations are not eliminated. 

They become redundant (twice object and twice through) and are eliminated 

at the next step. 

Result 3.4.3 - Aber internal join on graph mail-l/stamp 
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reduction: if two compatible concepts are linked to the same concept with com- 

patible relations, the concepts can be joined and the less specific relation elim- 

inated. If a unique concept is joined with two compatible relations to  another 

concept, the less specific relation is eliminated. From Result 3.4.3, the reduction 

allows us to  eliminate the redundant relations through present twice between 

mail-l and send and object present twice between send and l e t t e r 2  Both agent 

relations attached to concept send lead to compatible concepts: they and person. 

This gives us an anaphora resolution for pronoun they in graph stamp-1-Ail 

which could have referred to letters, packages, people or stamps, but now is set to 

people. The concepts they and person are not SSWs and therefore could not be 

joined during the previous simplification step. At the reduction step, we have 

more evidence through the compatible relations that the two concepts refer to 

the same thing. 

Result 3.4.4 - After reduction of graph mail-l/stamp 

3.4.4 Clustering procedure 

In the preceding subsections, we have given ideas on how to  determine semanti- 

cally significant words, described finding common subgraphs between two graphs. 

attempted at a measure of graph similarity, looked at how to join graphs as well as 

reduce the resulting graph. We summarize three important definitions hereafter: 



Semantically Significant Word (SSW): A word occuring less often in the dic- 

tionary than a certain threshold (set empirically); 

Graph Similarity (GS): Similarity measure based on the number of shared SSWs 

between two CGs, as well as on the size of their maximal common subgraph 

Graph Matching Threshold (GMT): Threshold put on the GS measure to de- 

cide whether a graph will be joined to  the CCKG (graph representation of the 

cluster) or not. 

Now that we have presented all the elements needed for the clustering procedure, 

we present the strategy for performing the clustering itself. We start from a trigger 

word and build a Concept Cluster Knowledge Graph (CCKG) around it. The CCKG 

will start as the CG representation of the trigger word and will grow from there by 

being joined to  the CG representation of other words. We present our method for 

directing which word should be joined to the CCKG. We will explore some words, 

and among them some will be joined and some will not. To limit our exploration, 

we investigate only SSWs. When we explore a new word, it is not automatically 

joined to the CCKG. Its CG must have a graph similarity with the CCKG that is 

equal or more than the GMT. The GMT will vary depending on the phase (trigger or 

expansion) and has been set from experimentation. When we investigate a SSW that 

has multiple sense, we will add a penalty t o  the GMT to  avoid joining word senses 

that are not appropriate. That penalty is set at GMT(a+l,b).  

TRIGGER PHASE. We start with a keyword, a word central to  the subject 

of interest, that becomes the trigger word. The CG representation of the trigger 

word's definition forms the initial CCKG. The GMT is set low for the trigger phase: 

GLIT(1,O). The graph to  be joined must have one SSW in common with the CCKG. 

Rigger forward: Find the SSWs part of the CCKG, and attempt a join with their 

respective CG to  the initial CCKG. 

Trigger backward: Find all the words in the dictionary that use the trigger word 

in their definition and attempt a join with their respective C'G to the CCKG. If 
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the trigger word is ambiguous, the backward search might find multiple words 

using it in their definition but in the wrong sense. We add a penalty to GMT 

in that case. 

Instead of a single trigger word, we now have a cluster of words that are related 

through the CCKG. Those words form the concept cluster. 

EXPANSION PHASE. We try finding words in the dictionary containing many 

concepts identical to  the ones already present in the CCKG but perhaps interacting 

through different relations allowing us to create additional links within the set of 

concepts present in the CCKG. Our goal is to create a more interconnected graph 

rather than sprouting from a particular concept. For this reason, we establish a GMT 

higher than for the trigger phase. GMT(2,l) means that the graphs to  be joined must 

have at least two SSWs in common as well as a relation. The relation in common 

must be part of a common subgraph. The two SSWs do not have to be the concepts 

that are part of the subgraph. 

Expansion forward: Find the SSWs part of the CCKG, and attempt a join with 

their respective CG to  the initial CCKG. 

Expansion backward: Find all the words in the dictionary that use any word part 

of the concept cluster in their definition and attempt a join with their respective 

CG to the CCKG. 

Repeat: Continue forward and backward expansion until no changes are made. 

We do not present an example of the clustering process at this stage because in 

chapter 4, a large example is presented in section 4.5 which illustrates all the steps. 

3.4.5 In Summary 

\Ve presented our clustering mechanisms. and showed all the steps and sub- processes 

necessary to expand the graph representation of a trigger word into a Concept Cluster 

~inowleclge Graph. 
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If that process is done for the whole dictionary, we would obtain an LKB divided 

into multiple clusters of words, each represented by a CCKG. Then during text pro- 

cessing for example, a portion of text could be analyzed using the appropriate CCKG 

to find implicit relations and help understanding the text. All the mechanisms are 

in place to perform the clustering operations as part of our ARC-Concept software 

presented in chapter 4. We have not performed t h e ' c l ~ s t e r i n ~  on all possible trigger 

words in the AHFD but only on some randomly chosen words to  show some results. 

Not only do we think the clusters will help further text analysis, but they also play 

an important role within the construction of the LKB as they allow for some semantic 

disambiguation as they gather more information on a same subject. Redundancy leads 

to  disambiguation. 

When we integrate different graphs together using the dictionary, we assume that 

the information is valid information to  be put in a knowledge base. It is not one 

person's view on a particular story, but mostly generalities about daily life situations. 

We can therefore use that kind of trust in the knowledge to  perform some inferences 

that we might not do if we were not certain of our source. 

There are two good side effects to  our knowledge integration process. By putting 

more information together, we can find redundancy that helps disambiguate single 

examples. 

1. Anaphora resolution: if a pronoun and a concept C1 are involved in a compatible 

relation to another concept C2 then the pronoun can be coreferred to C1. We 

saw an example with they and person (plural) during the reduction process 

presented in section 3.4.3. 

2. Word sense disambiguation: a match between concept A and concept B, where 

concept A subsumes a certain sense of concept B, will disambiguate B at the 

same time. We saw an example with letter and message as part of the simplifi- 

cation process presented in section 3.4.:3. 



3.5 Discussion 

This chapter presented all four parts of our Lexical Knowledge Base (LKB). 

1. Graph definitions: the set of all nouns and verbs defined in the AHFD with 

their graph representations; 

2. Concept lattice: all the is-a links found in the graph definitions are extracted 

to  form a separated structure, the concept hierarchy; we add covert categories 

to  expand the search space for finding similar concepts; 

3. Relation lattice: built by hand, it puts together all deeper semantic relations 

and the prepositions; 

4. Concept clusters: from the graph definitions we can build larger structures 

around particular words; a trigger word becomes part of a cluster, which is a 

group of words representative of a particular context or micro-world; it gives a 

larger view to  the meaning of that starting word. 

Here is a more formal way to  describe the elements part of the LKB. An LKB is 

a tuple (G, LC,  L,, C L )  where 

0 G is a set of Conceptual Graphs; 

a Conceptual Graph is defined as a tuple (C, R) ,  where 

- C is a set of possible concepts 

- R is a set of possible relations 

0 LC is a concept lattice in which all concepts from set C are positioned 

0 L, is a relation lattice in which all relations from set R are positioned 

0 C'L is a set of clusters; 

each cluster is defined as a tuple (CLtTigger, CLwoTds, CLgraph), where 

- CLtTzgaeT is a concept from the subset C,,, which gives all the semantically 

significant words from set C ,  C,,, C C ;  
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- CLwords is the set of all significant words that were included within the 

cluster via the clustering process, CLwoTds C Cssw; 

- CLgTaPh is a Conceptual Graph centered around a single concept CLtTigger 

and containing a set of concepts Ccluster, we have Ccluster c C ,  and CLwoTd, C 

Cclus ter  . 



Chapter 4 

IMPLEMENTATION AND 

RESULT ANALYSIS 

In this chapter, we take the reader through a demonstration of our system ARC- 

Concept (Acquisition, Representation and Clustering of Concepts). We refer to  the 

two preceding chapters, as all the ideas presented in them are tested via our ARC- 

Concept system, and we are able to present and evaluate results at this stage. 

ARC-Concept runs on a UNIX/Linux platform and is written in C++. It con- 

tains modules for parsing, transforming a parse tree into a representation using the 

Conceptual Graph (CG) formalism, performing structural and semantic disambigua- 

tion at the CG level, clustering definitions from the dictionary, and discovering covert 

categories as present in the dictionary. 

Making use of a grammar file, a lexicon with parts of speech and definitions, a file 

of cooccurrences of words, and a set of files (verb exceptions, plural exceptions) used 

for the morphological analysis, it provides the user with facilities to acquire, represent 

and cluster concepts in a Lexical Knowledge Base. The user interacts with the system 

through a series of menus which can cause modification of the LKB and can display 

aspects of the LKB, such as the type hierarchy associated with any word. 

The user interface (menu system) was not designed with a general user in mind, 

instead it is a custom menu system which is tailored to the needs of the research of 

this thesis. It would be possible to replace the rnenuing system with a more general 
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purpose arrangement of menus. 

1Ienu 4.0.1 shows the first menu presented to a user of ARC-Concept. 

Menu 4.0.1 - 
Initialize. 

Work  on a specific word. 

Work  on all words o f  the dictionary for building the LKB. 

Discover covert categories. 

Clustering. 

Show type hierarchy. 

Others. 

Terrnine. 

The first section introduces briefly the CoGITo system [73] (Initialize) which we 

used as a starting platform t o  develop parts of ARC-Concept dealing with the storage 

and manipulation of Conceptual Graphs. 

The second section presents all the steps for converting a sentence into a conceptual 

graph representation (Work on a specific word) using a few examples: the parsing, 

the parse-to-cg transformation, the different heuristics for structural and semantic 

disambiguation. 

These steps from a sentence to  a conceptual graph are performed on all nouns and 

verbs in the dictionary (Work on all words of  the dictionary). The third section shows 

results such as the average number of parse trees per sentence and the reduction factor 

associated with each step of structural disambiguation. 

The fourth section looks into covert categories (Discover covert categories). Quan- 

titative results are given as to  how many covert categories are found depending on 

the Covert Threshold used. Then we give qualitative interpretation and evaluation of 

the relevance of some covert categories found. 

The fifth section gives one detailed example of the construction of concept clusters 

(Clustering). It then looks a t  the effect of varying the threshold for semantically 

significant words. Results for clusters built around different trigger words are then 

presented. 



4.1 CoGITo System 

The CoGITo system [74] was developed at Universitk Montpellier and was demon- 

strated at ICCS795, the third International Conference on Conceptual Structures. 

Since it was the most promising system at that time, we used it as a basis for our 

research. In addition, it was free, giving us access to the source code in case we 

wanted to modify some routines. Although many new systems are now available1, we 

are staying with CoGITo, now that we have a lot of software already developed and 

since it satisfies our needs. 

In CoGITo, before a graph can be manipulated it must be part of an "environment" 

which is based on a "Support". In the Support, we must give all the concepts types, 

all the relations and all the referents (possible individuals of a certain type) that will 

be used in the graphs. This is a bit limiting, as everything must be known in advance. 

An unknown concept type cannot be used in a graph that we are trying to load in 

the environment. This means that we could not directly use our system on graphs 

generated by another system. We can use it though on a text containing unknown 

words, as for each word that cannot be tagged we ask the user to tag it (or eventually 

we could attempt automatic tagging I9.51) and we put it in the Support. A Support 

can be modified after we have started working in an environment. 

The Support does not only state all possible concept types, but also the sub- 

type/supertype relations between them. Therefore the Support is the host for the 

type hierarchy and it can be easily modified as we refine the hierarchy via the is-a 

relations found in the graph representations of definitions. The Support is the host 

for the relation hierarchy as well. Both the concept and the relation hierarchies will 

be used when we try to  find common information between two graphs. 

Graphs can be read from a file (that has a particular format) and put in memory, 

or saved on a file from memory. Each graph in memory is part of an environment, 

and it has a unique name. Multiple graphs can be put in an environment so that 

operations can be performed on them. 

CoGITo has an implementation of the standard operations performed on graphs, 

'see web site http://rnaths.une.edu.au/ cgtools, where they are listing 25 known CG-based tools 
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such as projection (whether a graph A can be found as a subgraph of graph B) and 

join (making a larger graph A by joining it to graph B on a compatible concept type). 

4.2 From a sentence to a Conceptual Graph 

From the main menu, I Work on a specific word I gives a user a large submenu for all 

the possible operations on a single word (menu 4.2.1). We present three examples 

involving the words doughnut, bat, piano to  go through most of the important opera- 

tions. 

Menu 4.2.1 - 
Assign word t o  work wi th .  

Find and show i t s  definition. 

Create CG file f r o m  definition. 

Load i t s  CG and update hierarchy (category and mul t ip le  sense). 

El iminate identical graphs. 

Anaphora o n  word defined. 

Anaphora o n  other words. 

Word  sense on  word defined. 

Prepositional a t tachment  (statistics). 

Update support (is-a relations). 

El iminate some graphs based o n  the superclasses o f  conjunctions. 

Prepositional a t tachment  (based o n  LKB). 

Applying Semantic Relation Transformation Graphs. 

Distr ibute conjunctions. 

Try  t o  assign word sense t o  each word. 

Certainty. 

Manual  reduction. 

Save graph t o  graph file. 

Show i t s  super and sub classes f r o m  hierarchy. 

Show CG. 
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4.2.1 Example 1: DOUGHNUT 

I Assign word to  work with must be chosen first. For this first example, the used typed 

in doughnut. 

The selection 1 Find and show its definition I then prompts ARC-Concept to open the 

entire dictionary file (dict.dat as described in Appendix A) and retrieve the word 

given by the user from this dictionary. 

Result 4.2.1 - 
WORD : doughnut 

sense-number : 1 
cat: n 

A doughnut is a small round cake. 
Many doughnuts have a hole in the center. 
Some have jelly in the center. 
People like to eat doughnuts for breakfast. 

Next, entering I Create cg file from definition I causes ARC-Concept to  tag all words 

(see section 2.1.1) from the sentences contained in the definition, then apply parse 

rules (see section 2.1.2) t o  find possible parse trees for these sentences. The parser 

makes use of the rules provided in Appendix C. According to  our grammar, the 

parser finds two parses for each of the four sentences. The parses are shown in 

Result 4.2.2. In each parse we can see the words themselves as leaf nodes and the 

different grammatical categories used as intermediate nodes. The root of each tree is 

s2  which means a whole sentence. The numbers in parenthesis correspond to  levels as 

seen in section 2.1.2 in the subsection on heuristics, as useful for the level difference 

heuristics. A leaf is considered as level 0, and each rule applied creates a new node 

that is one level higher than the highest level of its children nodes. 

The trees are transformed into conceptual graphs (see section 2.1.3) and all saved 

in a file doughnut.cg in a specific format that can be read by the CoGITo system 

which will put the graphs in memory within its environment for further operations. 

Since there are eight parse trees, we will end up with eight CGs for doughnut. The 

CCk are also saved in files so they can be used for subsequent ARC-Concept sessions. 

Resu l t  4.2.2 - 
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nb-parses: 2 
s2(6)->~1(5)->np(l)->det->a 

n->doughnut 
vp(4)->vb->be 

np(3)->det->a 
n(2)->adj->small 

n(1)->adj->round 
n->cake 

ep->. 
s2(6)->~1(5)->np(l)->det->a 

n->doughnut 
vp(4)->vb->be 

np(3)->det->a 
n(2)->adj->small 

n(1)->n->round 
n->cake 

ep-> . 

nb-parses: 2 
~2(6)->~1(5)->np(2)->n(i)->adj->many 

n->doughnut 
vp(4)->vt->have 

np(3)->np(l)->det->a 
n->hole 

p2(2)->prep->in 
np(1)->det->the 

n->center 

ep-> . 
s2(5)->~1(4)->np(2)->n(l)->adj->many 

n->doughnut 
vp(3)->vp(2)->vt->have 

np(1)->det->a 
n->hole 

p2(2)->prep->in 
np(1)->det->the 

n->cent er 

nb-parses: 2 
s2(6)->s1(5)->np(i)->pron->some 

vp(4)->vt->have 
np(3)->np(l)->n->jelly 

p2(2)->prep->in 
np(1)->det->the 

n->center 

ep-> . 
s2(5)->s1(4)->np(l)->pron->some 

vp(3)->vp(2)->vt->have 



I Load its CG and update hierarchy (category + multiple sense) I prompts ARC-Con- 

cept to open file doughnut.cg and load all graphs in the CoGITo environment. 

The graphs become accessible via a specific data structure built around the word 

doughnut which contains its part-of-speech, its definitions, its graph representations, 

etc. 

.A concept type is created from each word and put in the type hierarchy under 

"something" or "act" depending on the part-of-speech of its associated word. If the 

word contains multiple senses, a concept type is created for each sense and is put in 

the type hierarchy as a subclass of the concept type associated with the word. 

Once the graphs are loaded in the CoGITo environment, 1 Show CG 1 can be called 

at any time to show the conceptual graphs associated with the word in usage. Re- 

sult 4.2.:3 shows the graphs for doughnut. Some attribute names and values are in 

French, since the original CoGITo environment was developed in France and made use 

of French. We have eight graphs, two possible graphs for each of the four sentences 

in the clefinit ion. The name of each graph indicates the word defined. the sense of the 



word, the sentence number, and the possible graph for that sentence. For example, 

doughnut-1-C-B indicates we are working with the word d o u g h n u t ,  sense 1, third 

sentence C ,  and second possible graph for that  sentence B. 

R e s u l t  4.2.3 - 

Linear output for : 
graph:doughnut-1-A-A; 
nature: f ait ; 
set : ens ; 
[be] - 
C 
(object)-> [cake: a] - 

C 
(attribut)-> [round] ; 
(attributl->[small] ; 

3; 
(agent -> [doughnut : a] ; 
3. 

Linear output for : 
graph:doughnut-1-A-B; 
nature : f ait ; 
set:ens; 
[be] - 

< 
(object)->[cake:a]- 

C 
(attribut)-> [round] ; 
(attribut)-> [small] ; 
3; 

(agent) -> [doughnut : a1 ; 
>. 

Linear output for : 
graph:doughnut-1-B-A; 
nature : f ait ; 
set:ens; 
[have] - 

(object)->Chole:al->(in)->[center:thel; 
(agent )-> [doughnut :plural] -> (attribut )-> [many] ; 
3 - 

Linear output for : 
graph:doughnut-1-B-B; 
nature : f ait ; 



s e t :  ens;  
Chavel - 

C 
(objec t ) ->  [hole: a] ; 
( in) ->  [center :  the1 ; 
(agent )-> [doughnut :p lura l1  - > ( a t t r i b u t )  -> [many] ; 
3. 

Linear  output  f o r  : 
graph:doughnut,l-C-A; 
na tu re  : f a i t  ; 
s e t :  ens; 
[have] - 

C 
(objec t ) ->  [ j e l l y ]  ->(in)-> [center :  the] ; 
(agent )-> [some : r e f ]  ; 
3. 

Linear  output  f o r  : 
graph:doughnut-I-C-B; 
n a t u r e : f a i t ;  
s e t  : ens;  
Chavel - 

C 
(objec t ) ->[ je l ly]  ; 
( in)->[center : the]  ; 
(agent I-> Csome:ref I ; 
1. 

Linear  output  f o r  : 
graph:doughnut-1-D-A; 
n a t u r e : f a i t ;  
s e t  : ens ; 
[ l ike]  - 

C 
(goal)-> Ceatl ->(object  )-> [doughnut : p l * f  a s t ]  ; 
(agent ) -> [person : p lu ra l ]  ; 
3. 

Linear output  f o r  : 
graph:doughnut-1-D-B; 
na ture  : f a i t  ; 
s e t  : ens ; 
[ l ike]  - 

C 
(goal)-> [eat] - 

C 
(objec t  ) -> [doughnut :p lura l ]  ; 
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(for) -> [breakf ast] ; 

(agent)-> [person: plural] ; 
I. 

At this point we can choose any one of a number of operations to be performed 

on the eight graphs. We illustrate a few of the options which affect the graphs for 

doughnut. We start with three options that do not need to  access the other graphs 

stored by ARC-Concept to  do their task: eliminate identical graphs, anaphora on word 

defined, prepositional attachment (statistics). 

Option l ~ l i m i n a t e  identical graphs 1 finds graphs that are identical. Our grammar 

generates spurious ambiguities which lead to identical graphs. The two graphs dough- 

n u t - 1 - A A  and doughnut-14-B are identical. The word round can be considered as 

a noun or an adjective leading by two different ways to the noun phrase round table 

which correspond to the same graph where round is an attribute of table. ARC- 

Concept eliminates arbitrarily the second graph. 

Option I Anaphora on word defined I looks for a pronoun related concept such as it 

or some. If the graph does not contain the concept for the word defined (in our case, 

if it does not contain the doughnut concept) then the pronoun related concept can be 

replaced by the concept for the word defined (see section 2.4.1). Notice in Result 4.2.4 

that [some:ref] has been replaced by [doughnut]->(attribut)-> [some]. 

Result 4.2.4 - 

BEFORE: 

Linear output for : 
graph:doughnut-1-C-A; 
nature : f ait ; 
set: ens; 
[have] - 

(object)-> [jelly]->(in)->[center:the] ; 
(agent ) -> [some : ref] ; 
I. 

AFTER: 

Linear output for : 



graph:doughnut-1-C-A; 
nature : f ait ; 
set:ens; 
[have] - 

C 
(obj act)-> [jelly] ->(in)->[center: thel ; 
(agent ) -> [doughnut] -> (attribut ) -> [some] ; 
1 - 

I Prepositional attachment (statistics)[ calculates a score for each graph (see sec- 

tion 2.3.1). It looks at each relation in the graph one by one, if that relation is a 

preposition, it goes to files verbs~cooccur.dat and nouns~cooccur.dat2 

to find out how many times over the whole dictionary did that particular prepo- 

sition occur after the verb or noun to which it is attached. 

Result 4.2.5 - 
score 0 --- doughnut-1-A-A : (no prepositions) 
score 8 --- doughnut-1-B-A : [hole] ->(in)-> [center] 
score 1 --- doughnut-1-B-B : [have] ->(in) -> [center] 
score 2 --- doughnut-1-C-A : [jelly] ->(in)-> [center: thel 
score 1 --- doughnut-1-C-B : [have] ->(in) -> [center : the1 
score 1 --- doughnut-1-D-A : [doughnut :plural] -> (f or) -> Cbreakf astl 
score 0 --- doughnut-1-D-B : [eat] -> (f or)-> [breakf astl 

When two or more graphs are competing for the representation of a single sentence, 

we take them two at a time and choose the one with the highest score if that score is 

more than twice the score for the other candidate. If one score is small (scoreli5), the 

other graph's score must be twice the first score + 5 (score2 > (score1 * 2 + 5 ) )  to 

choose it3. Following these criteria, in Result 1.2.5 only the graph doughnut- lB-B 

can be eliminated. 

Result 1.2.6 shows one modified graph. The type hierarchy will establish doughnut as 

I Update support (is-a relations) 

a subclass of cake as shown in graph doughnut-1-AA. 

first transforms some graphs to  include the is-a 

"these two files are created via a C++ program which counts for each noun and verb in the 
dictionary (in a base form, so after performing the tagging process) the number of times that  any 
other words occurs after it.  

3these arbitrary thresholds are chosen from experimentation, the penalty ( + 5 )  is needed in case 
of small scores to  make sure the difference in scores is somewhat significant 

relation and then updates the type hierarchy with these relations (see section 2.2). 
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Result 4.2.6 - 

BEFORE: 

Linear output for : 
graph:doughnut-1-A-A; 
nature : f ait ; 
set : ens ; 
[be] - 
I 
(object)->Ccake:a]- 

I 
(attribut)-> [round] ; 
(attribut)-> [small] ; 
3; 

(agent) -> [doughnut : a] ; 
3. 

AFTER: 

Linear output for : 
graph:doughnut-I-A-A; 
nature : f ait ; 
set:ens; 
[cake : a1 - 

I 
(attribut )-> [round] ; 
(attribut )-> [small] ; 
( is-a) <- [doughnut : a] ; 
1 .  

Let us now consider some options that need to  access the other graphs stored by 

ARC-Concept as well as the type hierarchy. 

looks for differences like those seen in CASE 1 and CASE 2. 

I Prepositional attachment (based on LKB) looks at differences between graphs that 

compete for the same sentence (see section 2.3.1), rather than looking a t  statistics. It 
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The idea is to  prefer a CG for a sentence if it has a subgraph that projects onto a 

related CG from another word. 

In CASE 1, ARC-Concept searches for subgraphl in the graph representation of 

the definitions of ConceptA and ConceptB and searches for subgraph2 in the graph 

representation of the definitions of Concept A and Concept C. 

Similarly, in CASE 2, ARC-Concept searches for subgraph3 in the graph repre- 

sentation of the definitions of ConceptA and ConceptB and searches for subgraph4 in 

the graph representation of the definitions of ConceptC and ConceptB. 

We are looking for subgraphs that are similar, differing in only one concept. With 

the last sentence of the definition of doughnut we have an example of the second case. 

Result 4.2.7 shows graphs doughnut-1-DA and doughnut - lDB.  They vary by 

the attachment of the word breakfast to either doughnut or eat. ARC-Concept searches 

for subgraphl [doughnut]->(for)->[brea kfast] in the graph representations of breakfast 

and doughnut and searches for subgraph2 [eat]->(for)->[brea kfast] in the graph repre- 

sentations of eat and breakfast. In this particular case, looking at the word doughnut 

is not informative as it is the word we are working on. We look at the other two words 

breakfast and eat. The graph representations for breakfast shown in Result 4.2.8 do 

not contain either subgraphl or subgraph2. The graph representations for eat shown 

in Result 4.2.9 contain the subgraph [eat]->(for)->[lunch]. Both lunch and breakfast 

are subclasses of meal and therefore compatible concepts. Graph doughnut-1-D-B 

is chosen because subgraph2 can be projected on eat-1-C-A and no projection for 

subgraphl was found. 

Result 4.2.7 - 
Linear output f o r  : 
graph:doughnut-1-D-A; 
na ture  : f a i t  ; 
s e t  : ens;  
[ l ike]  - 

C 
(goal)-> [eat] ->(objec t ) ->  [doughnut : ~ l u r a l ]  ->(f or)-> [breakf a s t l  ; 
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(agent) -> [person : plural] ; 
3 - 

Linear output for : 
graph:doughnut-1-D-B; 
nature : f ait ; 
set: ens; 
[like] - 

C 
(goal) -> [eat] - 

C ................................................ 
(object)->[doughnut:plural]; * Graph chosen against previous doughnut-I-D-A * 
(for) -> Cbreakf ast] ; * [eat] ->(f or)->[breakf ast] can be projected * 
3; * onto graph eat-1-C-A * 

(agent) -> [person: plural] ; ................................................ 
3 - 

DIFFERENCES: 
subgraphl : [doughnut] ->(f or)-> [breakf astl 
subgraph2 : [eat] ->(f or)-> [breakf ast] 

Result 4.2.8 - 

WORD : breakfast 

sense-number: 1 
cat: n 

Breakfast is a meal. 
It is the first meal of the day. 
At breakfast Bud usually eats cereal with milk. 

Linear output for : 
graph:breakfast-1-A-A; 
nature:fait; 
set : ens; 
[meal: a] <-(is-a)<- [breakfast] . 
Linear output for : 
graph:breakfast-1-B-A; 
nature:fait; 
set:ens; 
[meal : the1 - 
C 
(attribut )-> [f irst] ; 
(is-a)<- [breakfast]->(of )-> [day: the] ; 
3. 



Linear output for : 
graph:breakfast-1-C-B; 
nature : f ait ; 
set: ens; 
[eat] - 

C 
(object )-> [cereal] ->(with)-> bilk] ; 
(agent) -> [person: Bud] ; 
(at : expected)-> [breakf astl ; 
I. 

Result 4.2.9 - 

WORD: eat 

sense-number : 1 
cat: v 

To eat means to take food into the body through the mouth. 
People eat when they feel hungry. 
I ate some soup for lunch. 

Linear output for : 
graph:eat-1-A-A; 
nature:fait; 
set : ens; 
[eat] ->(equiv)->[take] ->(object)-> [food] ->(into). . . 

-> [body : thel ->(through) -> [mouth: the] . 

Linear output for : 
graph:eat-1-A-C; 
nature : f ait ; 
set : ens ; 
[eat] ->(equiv)-> [take] - 
C 
(object )-> [f ood] ; 
(into)-> [body: the] ->(through)-> [mouth: thel ; 
I. 

Linear output for : 
graph:eat-1-B-A; 
nature : f ait ; 
set:ens; 
[eat:*l]->(when)->[feel]- 

(attribut ) -> [hungry] ; 
(agent )-> [person:plural]<-(agent )<- [*I] ; 
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Linear output for : 
graph:eat-1-C-A; 
nature: f ait ; 
set : ens; 
[eat] - 
C 
(object )-> [soup] ; 
(for) -> [lunch] ; 
(agent) -> [I :ref 1 ; 
3 - 

Result 4.2.10 shows that we have dealt with all the structural ambiguity, we have 

obtained a single graph for each sentence of the definition of doughnut after all the 

following options have been used. 

Assign word t o  work with. 
Find and show its definition. 
Create cg file from definition. 
Load its CG and update hierarchy (category + multiple sense). 
Anaphora on word defined. 
Prepositional attachment (statistics). 
Update support (is-a relations). 
Prepositional attachment (based on LKB).  

We found identical graphs representing the first sentence. We used the statistics 

to resolve the structural ambiguity of the second sentence, preferring [hole]->(in)- 

>[center] to [have]->(in)->[center]. We used the LKB-based method for the third 

and fourth sentences, preferring respectively Oellyl->(in)->[center] to  [have]->(in)- 

>[center] and [eat]->(for)->[brea kfast] to  [doughnut]->(for)->[brea kfast]. 

Result 4.2.10 - 

Linear output for : 
graph:doughnut-1-A-A; 
nature: f ait ; 
set : ens ; 
[cake:al- 
C 
(attribut)-> [round] ; 
(attribut)-> [small] ; 



(is-a) <- [doughnut : al ; 

3. 

Linear output for : 
graph:doughnut-1-B-A; 
nature : f ait ; 
set : ens; 
[have] - 

{ 
(object)-> [hole: a] ->(in)->[center: thel ; 
(agent) -> [doughnut :plural] -> (attribut ) -> [many] ; 
I. 

Linear output for : 
graph:doughnut-1-C-A; 
nature : f ait ; 
set: ens; 
[have] - 

€ 
(object)-> [jelly]->(in)->[center: thel ; 
(agent ) -> [doughnut] -> (attribut ) -> [some] ; 
I. 

Linear output for : 
graph:doughnut-1-D-B; 
nature:fait; 
set: ens; 
[like] - 

{ 
(goal)-> [eat]- 

{ 
(object ) -> [doughnut :plural] ; 
(for)-> [breakf ast] ; 
I; 

(agent -> [person : plural] ; 
3. 

The -1 option reorganizes the certainty information within the graph (see 

section :3.1.2). Result 4.2.11 shows the transformation of doughnut-1-BA to include 

the certainty level expected due to the presence of many. 

Result 4.2.11 - 

Before : 

Linear output for 
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graph:doughnut-1-B-A; 
nature : f ait ; 
set: ens; 
Chole : a] - 

(in)->[center: the] ; 
(part-of ) <- [doughnut :plural] -> (attribut) -> [many] ; 
3 .  

After: 

Linear output for : 
graph:doughnut-1-B-A; 
nature : f ait ; 
set: ens; 
Chole : d - 
C 
(in)->[center: the] ; 
(part-of:expected)<-[doughnut:plural]; 
3. 

4.2.2 Example 2: BAT 

With this second example, we look into a few more options that we did not get at 

with the first example on doughnut. The word bat has two senses. This allows us to 

show the option for word sense disambiguation on the word defined. We also examine 

options for conjunction attachment, semantic relation transformation and word sense 

disambiguation of other words. 

/ Find and show its definition 1 gives the following result. We have two senses of bat each 

having three sentences in their definition. 

Result 4.2.12 - 

WORD : bat 

sense-number : 1 
cat: n 

A bat is a thick stick. 
It is used to hit a ball. 
Bats are made of wood, metal, or plastic. 



s ens e-number : 2 
cat: n 

A bat is a small animal. 
A bat has a body like a mouse and wings. 
Bats sleep during the day and fly around at night. 

l ~ r e a t e  cg file from definition I gives the following results. For the first sense, only the 

third sentence is ambiguous, receiving two parses. For the second sense, the first 

sentence is unambiguous, the second sentence receives three parses and the third 

sentence receives two. So, we have a total of ten parse trees. 

Result 4.2.13 - 

SENSE 1: 

nb-parses: I 
s2(5)->si(4)->np(l)->det->a 

n->bat 
vp(3)->vb->be 

np(2)->det->a 
n(1)->adj->thick 

n->stick 
ep-> . 

nb-parses: I 
s2(6)->s1(5)->np(l)->pron->it 

vp(4)->vp(i)->vb->be 
pp->use 

inf-vp(3)->prep->to 
vp(2)->vt->hit 

np(1)->det->a 
n->ball 

nb-parses: 2 
s2(10)->s1(9)->np(l)->n->bat 

vp(8)->vb->be 
pp(7)->pp->make 

p2(6)->prep->of 
np(5)->np(l)->n->wood 

cnp(4)->conj(l)->pause->, 



SENSE 2: 

nb-parses: 1 
s2(5)->sl(4)->np(l)->det->a 

n->bat 
vp(3)->vb->be 

np(2)->det->a 
n(1)->adj->small 

n->animal 

nb-parses: 3 
s2(8)->s1(7)->np(l)->det->a 

n->bat 
vp(6)->vt->have 

np(5)->np(l )->det->a 
n->body 

p2(4)->prep->like 
np(3)->np(l)->det->a 

n->mouse 
cnp(2)->conj->and 

np(1)->n->wing 



I Load its CG and update hierarchy (category + multiple sense) 1 followed by -1 
gives in Result 4.2.14 the ten CGs corresponding to  the ten parse trees given in 

Result 4.2.1:3. 

Result 4.2.14 - 
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Linear output f o r  : 
graph:bat-1-A-A; 
na ture  : f  a i t  ; 
s e t  :ens;  
[be] - 

€ 
(objec t  )-> [ s t i ck :  a] -> (a t t r i bu t ) ->  [thick] ; 
(agent ) -> [bat : a] ; 
3. 

Linear output f o r  : 
graph:bat-1-B-A; 
na ture  : f  a i t  ; 
se t : ens ;  
[use] - 

€ 
(goal)-> Chit1 ->(object  )-> [ba l l :  a] ; 
(ob jec t ) -> [ i t : r e f ]  ; 
3. 

Linear output f o r  : 
graph:bat-1-C-A; 
na ture  : f  a i t  ; 
s e t  : ens;  
[make] - 

€ 
(of )-> [wood] ->(pause)-> [metal] ->(or)->[plast ic]  ; 
(objec t  ) -> Cbat :p lura l ]  ; 
1 .  

Linear output f o r  : 
graph:bat-1-C-B; 
na ture  : f  a i t  ; 
s e t : e n s ;  
[make] - 

€ 
(of )-> [wood] ->(pause)-> [metal] ->(or)-> [p las t ic ]  ; 
(objec t  ) -> Cbat :p lura l ]  ; 
3 - 

Linear output f o r  : 
graph:bat-2-A-A; 
na ture  : f  a i t  ; 
s e t : e n s ;  
Cbel- 

€ 



(object)->[animal:d->(attribut)->[small] ; 
(agent) -> Cbat : a] ; 
3. 

Linear output for : 
graph:bat-2-B-A; 
nature : f ait ; 
set : ens; 
Chavel - 
C 
(object)-> [body: a]->(like)->[mouse: a] ->(and)->c~in~:~lural] ; 
(agent) -> Cbat : a] ; 
3. 

Linear output for : 
graph:bat-2-B-B; 
nature : f ait ; 
set :ens; 
[have] - 

C 
(object ) -> [body : a] ; 
(like)-> [mouse: a] ->(and)-> [uing:plural] ; 
(agent )-> Cbat : d ; 
3 - 

Linear output for : 
graph:bat-2-B-C; 
nature : f ait ; 
set : ens ; 
Chavel- 
C 
(object ) -> [body : a] - 

C 
(like)->[mouse:a]; 
(and) -> Cuing : plural1 ; 
1; 

(agent ) -> Cbat : a1 ; 
3. 

Linear output for : 
graph:bat-2-C-A; 
nature : f ait ; 
set : ens; 
Csleepl- 

(during)-> [day: the] ; 
(and) -> [fly] -> (modif) -> [around] ; 
(at ) -> [night] ; 



(agent ) -> [bat :plural] ; 
>. 

Linear output for : 
graph:bat-2-C-B; 
nature : f ait ; 
set:ens; 
[sleep] - 

C 
(during)-> [day : the] ; 
(and) -> [fly] - 

C 
(modif ) -> [around] ; 
(at 1-> [night] ; 
3;  

(agent ->[bat : plural1 ; 
> - 

Graph b a t - 1 - C A  and bat-1-C-B are identical. Since our grammar generates 

spurious ambiguities which lead to  identical graphs, I Eliminate identical graphs 1 can be 

used to arbitrarily remove one (it removes the second one). 

I Anaphora on word defined I (see section 2.4.1) finds the pronoun related concept it 

in graph bat-lBA and replaces it with the bat concept. 

Result 4.2.15 - 

BEFORE: 

Linear output for : 
graph:bat-1-B-A; 
nature : f ait ; 
set:ens; 
[use] - 

C 
(goal)-> [hit] -> (object )-> [ball :a] ; 
(object I-> [it: ref] ; 
3 .  

AFTER: 

Linear output for : 
graph:bat-1-B-A; 
nature : f ait ; 
set: ens; 
[use] - 
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C 
(goal)  -> Chit1 ->(object )-> [bal l :  a] ; 
(object 1-> [bat] ; 
>. 

I w o r d  sense on word defined I (see section 2.4.2) puts within each graph the sense 

of bat being defined in that sentence. So, each occurrence of bat  in Result 1.2.1-1 is 

replace by either bat-1 or b a t 2  For example, the CG from Result 4.2.15 is converted 

as shown in Result 4.2.16. 

Result 4.2.16 - 

Linear output f o r  : 
graph:bat-I-B-A; 
nature : f a i t  ; 
s e t : e n s ;  
[us e l  - 

C 
(goal)->[hit]->(object)-> [bal l :  a] ; 
(object)-> [bat-11 ; 
>. 

I Prepositional at tachment (statistics) 1 (see section 2.3.1) cannot make any decision 

between bat-2-C-A over bat-2-C-B as the scores are too close. 

Result 4 . 2 . 1 7  - 

score 3 --- bat-2-C-A : [sleep]->(during) (score 1 )  
[sleep] ->(at )  (score 2) 

score 1 --- bat-2-C-B : Csleepl->(during) (score 1) 
Cflyl->(at> (score 0) 

1 Prepositional at tachment (LKB- based) / will choose (wrongly) the graph bat -2-C-A 

as it finds in the definition of sleep the subgraph [sleep]->(at)->[night]. The  subgraph 

[fly]->(at)->[night] is not found in the definitions of night or fly. 

I Eliminate some ~ r a p h s  based on the  superclasses o f  coniunctionsl (see section 2.3.2) 

can he used next for further structural disambiguation using the type hierarchy. 

It plays a role eliminating two candidates for the sentence A bat has a body like 

a mouse and wings. The  three possible graphs put in conjunction different elements. 
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Both graphs bat-2-B-A and bat-2-B-B have [mouse]->(and)->[wings], and graph 

bat-2-B-C has [body]->(and)->[wings] in conjunction. The superclass for mouse and 

wing is something and the superclass for body and wing is part. As part is more specific 

than something in the type hierarchy, ARC-Concept eliminates two graphs and to  

keep only b a t - 2 B - C  t o  represent the sentence. 

Result 4.2.18 - 

Linear output for : 
graph:bat-2-B-A; 

nature : f ait ; 
set : ens; 

[have] - 
* Superclass of mouse and wing * 
* SOMETHIHG * 

(object)-> [body: a] ->(like)-> [mouse:a] ->(and)-> [~ing:~lural] ; 
(agent ) -> [bat -2 : a1 ; 
3. 

Linear output for : 
graph:bat-2-B-B; 
nature : f ait ; 
set:ens; 

[have] - 
C 

.................................. 
* Superclass of mouse and wing * 
* SOMETHIHG * 
.................................. 

(object) -> [body : a] ; 
(like)-> [mouse : a] ->(and)-> [wing: ~lural] ; 
(agent 1-> [bat-2: a] ; 
3. 

Linear output for : 
graph:bat-2-B-C; 
nature : f ait ; 
set : ens ; 
[have] - 

C 
(object )->[body: a] - 

C 
(like)->[mouse:a] ; 
(and) -> [wing : plural1 ; 
>; 

(agent I-> [bat-2 : a] ; 
1 .  

* Superclass of body and wing * 
* PART * 

Result 4.2.19 shows that  we have dealt with all the structural ambiguity, we have 



obtained a single graph for each sentence of the definition of bat after all the following 

options are used. 

Assign word t o  work with. 
Find and show its definition. 
Create cg file from definition. 
Load its C G  and update hierarchy (category + multiple sense). 
Anaphora on word defined. 
Word sense on word defined. 
Prepositional attachment (statistics). 
Update support (is-a relations). 
Eliminate some graphs based on the superclasses o f  conjunctions 

For sense 1, the first and second sentences were already unambiguous, the third 

sentence generated two identical graphs and one was arbitrarily removed. For sense 

2, the first sentence was unambiguous, the second sentence was disambiguated via 

the conjunction attachment option preferring to  put body and wing in conjunction 

rather than mouse and wing, the third sentence was (wrongly) disambiguated via the 

prepositional attachment (LKB- based) option preferring to  have [sleep]->(at)-> [night] 

rather than [fly]->(at)->[night]. 

Result 4.2.19 - 
Linear output for : 
graph:bat-1-A-A; 
nature : f a i t  ; 
s e t  : ens ; 
[ s t i ck :  a] - 
C 
(at tr ibut l ->  [thick] ; 
( i s -a )< -  [bat-1 :a] ; 
>. 

Linear output for : 
graph:bat-1-8-A; 
nature : f  a i t  ; 
s e t  : ens ; 
[us e l  - 
C 
(goal)-> [hit] ->(object)-> [bal l:  a] ; 
(object)-> [it :ref]  ; 
>.  

Linear output f o r  : 
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graph:bat-1-C-A; 
na ture  : f a i t  ; 
s e t  : ens ; 
[make] - 
C 
(of ) -> [wood] -> ( ~ a u s e )  -> [metal] ->(or)  -> Cplasticl ; 
(object  ) -> Cbat :p lura l ]  ; 
3. 

Linear output f o r  : 
graph:bat-2-A-A; 
na ture  : f a i t  ; 
s e t : e n s ;  
[be] - 

C 
(object)-> [animal: a]->(attribut)->[small] ; 
(agent )-> Cbat :a] ; 
>. 

Linear output f o r  : 
graph:bat-2-B-C; 
na ture  : f a i t  ; 
s e t  : ens;  
[have] - 

C 
(object)->[body :a]- 

€ 
( l i ke ) ->  [mouse: a] ; 
(and) -> [wing : plura l ]  ; 
3;  

(agent ) -> [bat : a] ; 
3. 

Linear output f o r  : 
graph:bat-2-C-A; 
na ture  : f a i t  ; 
se t : ens ;  
[sleep] - 

(during) -> [day : the1 ; 
(and)-> [f ly]  ->(modif )-> [around] ; 
( a t  ) -> [night] ; 
(agent)  -> Cbat : p l u r a l l  ; 
3. 

I Applying Semantic Relation Transformation Graphs I tries t o  find deeper seman- 

tic relations in the graphs as discussed in section 2.4.3. ARC-Concept looks for 



particular subgraphs that lead to  deeper semantic relations. It finds the relation in- 

strument and material respectively in graphs bat-1-BA and bat-1-C-A shown in 

result 1.2.20. 

Result 4.2.20 - 

BEFORE: 

Linear output for : 
graph:bat-1-B-A; 
nature : f ait ; 
set : ens; 
[us el - 
C 
(goal)-> [hit]->(object)->[ball: a1 ; 
(object)-> [bat-I] ; 
3. 

Linear output for : 
graph:bat-1-C-A; 
nature:fait; 
set: ens; 
[make] - 

(of )-> [wood] ->(pause)-> [metal] ->(or)-> Cplasticl ; 
(object )-> [bat-1 :plural] ; 
3. 

AFTER: 

Linear output for : 
graph:bat-1-B-A; 
nature : f ait ; 
set: ens; 
Chit1 - 

C 
(object) -> [ball: a] ; 
(instrument)-> [bat-11 ; 
>. 

Linear output for : 
graph:bat-1-C-A; 
nature : f ait ; 
set :ens ; 
[wood] - 
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(pause)-> [metal] ->(or)-> [plast ic]  ; 
(material) <- [bat-1 :plural] ; 
3 .  

I Try to  assign word sense to  each word I finds two word sense disambiguations (see 

section %.4.2), one for word stick and the other for word fly based on the part of 

speech used (shown by different types of relations that a word is linked to in the 

graph). Nothing is found for night as it is not ambiguous. And the word day which 

has two senses in the AHFD is left ambiguous. Result 4.2.21 shows the two modified 

graphs. 

Result 4.2.21 - 
Linear output f o r  : 
graph:bat-1-A-A; 
nature : f a i t  ; 
s e t :  ens; 
[st ick-1 :d- 

( a t t r ibut  )-> [thick] ; 
( i s -a)<-  [bat-1: a] ; 
3 .  

Linear output f o r  : 
graph:bat-2-C-A; 
nature : f a i t  ; 
s e t : ens ;  
[sleep] - 

(during)-> [day : the] ; 
( a t  ) -> [night] ; 
(agent )-> Cbat-2 : plural1 <- (agent I<- Cf ly-21 -> (modif I-> Czuound] ; 
3 .  

4.2.3 Example 3: PIANO 

lVith the word piano we show an example of word sense disambiguation looking into 

the knowledge base. First the option i ~ i n d  and show its definition] gives the following 

result. 



Result 4.2.22 - 

WORD: piano 

sense-number : 1 
c a t :  n 

A piano i s  an instrument .  
It has 88 white and black keys. 
You push dorm on t h e  keys with your f i n g e r s  t o  make music 

Result 4.2.23 shows the resulting graphs after applying all the following options. 

Assign word to work with. 
Find and show its definition. 
Create cg file from definition. 
Load its CG and update hierarchy (category + multiple sense). 
Eliminate identical graphs. 
Anaphora on word defined. 
Applying Semantic Relation Transformation Graphs. 

Result 4.2.23 - 

Linear  output  f o r  : 
graph:piano-1-A-A; 
na tu re  : f a i t  ; 
s e t  : ens ; 
[instrument :an] <-(is-a)<-[piano: a] . 

Linear  output  f o r  : 
graph:piano-1-B-A; 
na tu re  : f a i t  ; 
s e t  : ens;  
[key : numl - 

( a t t r i b u t )  -> [white] ; 
( a t t r i b u t  ) -> [black] ; 
(part-of )<- Cpianol ; 
>. 

Linear  output  f o r  : 
graph:piano-1-C-A; 
na tu re  : f a i t  ; 
s e t : e n s ;  
[push] - 
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C 
(modif) -> [down] ; 
(on) -> [key :p lura l ]  ->(with) -> [f inger  : your] ; 
(goal)-> [make] ->(object)-> [music] ; 
(agent)->[you: re f1  ; 
3. 

Linear output f o r  : 
graph:piano-1-C-C; 
na ture  : f a i t  ; 
s e t  : ens;  
Cpushl- 

(modif ) -> [down] ; 
(on) -> [key :p lura l ]  ; 
(with)-> [f inger  : your] ; 
(goal)-> [make] ->(object)-> [music] ; 
(agent ->[you : ref  I ; 
1. 

Option I Try to  assign word sense to each word] (see section 2.4.2 general case) iden- 

tifies the sense for key by looking into its graph representation. Graph p i a n o - 1 2 4  

will be modified to include the second sense of key. It has a common subgraph 

with key-24-A.  The definition and graph representation for key are shown in re- 

sult 4.2.24. Other graphs piano-1-C-A and piano-1-C-C also contain the concept 

key but it cannot be disambiguated within these graphs as there is no common sub- 

graph with any sense of key. 

Result 4.2.24 - 

WORD : key 

sense-number : I 
c a t :  n 

A key i s  a p iece  of metal .  
It opens a lock .  
People use keys t o  open t h e  doors of t h e i r  homes and c a r s .  

sense-number : 2 
c a t :  n 



A key i s  a l s o  a p a r t  of a piano. 
The keys a r e  where you put  your f i n g e r s  t o  play. 
There a r e  white keys and black keys on a piano. 

Linear  output  f o r  : 
graph:key-1-A-A; 
na tu re  : f a i t  ; 
s e t : e n s ;  
[metal] ->(piece-of )->[key-1 :a] . 

Linear  output  f o r  : 
graph:key-1-B-A; 
na tu re  : f a i t  ; 
s e t  : ens;  
Copenl- 

€ 
(objec t ) ->  [lock: a] ; 
(agent )  -> [key-11 ; 
3.  

Linear  output  f o r  : 
graph:key-1-C-A; 
na tu re  : f a i t  ; 
s e t : e n s ;  
[use] - 

€ 
(object)->[key-1 :p lura l ]  ; 
(goa l )  -> [open] ->(object  )-> [door: ~ l u r a l l -  

€ 
(o f )  -> [home : t h e i r 1  ; 
(o f )  -> [car : plura l1  ; 
3 ;  

(agent I-> [person: p lu ra l ]  ; 
3. 

Linear  output  f o r  : ........................................ 
graph:key-2-A-A; * Subgraph [key-21 <- (part-of )<- [piano] * 
na tu re  : f a i t  ; * i n  common with piano-1-B-A * 
s e t :  ens;  ........................................ 

[also] <-(modif )<-[key-2: a] <-(part-of )<- [piano: a] . 

Linear  output  f o r  : 
graph:key-2-C-A; 
na tu re :  f  a i t  ; 
s e t :  ens;  
[be : p lu ra l ]  - 



C 
( o b j e c t ) - >  [ k e y  : p l u r a l ]  ->(attribut )-> [ w h i t e ]  ; 
( a g e n t  )-> [ t h e r e  : r e f  1 ; 
( o b j e c t ) - >  [ key  :plural] - 
C 
(a t t r ibu t  )-> [ b l a c k ]  ; 
(on)-> [ p i a n o  : a] ; 

1; 

4.3 Results over the whole dictionary 

Until now, we have been looking at augmenting our Lexical Knowledge Base (LKB) 

one word at a time. This is important for exploring different definitions and observing 

the behavior of the many operations in isolation. Now, we want to  consider the wide 

spread application of many operations to the words from the dictionary file to build 

Menu 4.3.1 - 

the LKB. 

Generate the CG files for each word f r o m  a dictionary file. 

Statistics o n  number o f  graphs. 

l terat ion 0: Update Support w i t h  part-of-speech and word senses. 

l terat ion 1: stat.  prepositional a t tachment  + is-a relations. 

l terat ion 2. all structural disambiguation. 

l terat ion 3: Same as l terat ion 2. 

Certainty. 

For all graphs, disambiguate words used i n  definitions having mul t ip le  senses. 

Look a t  cg  files and manual ly choose the graphs t o  keep. 

Work on all words of the dictionary for building the LKB 

Let us now consider each of these options in detail. 

from the main menu gives 

I Generate the cg files for each word from a dictionary file I looks a t  all nouns and verbs 

the following submenu. 

in the dictionary and for each one creates a file "X.cgV that corresponds to  the concep- 

tual graph representations of all sentences defining the word "X" that ARC-Concept 
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was able to parse and transform into a CG representation. When all these files are 

loaded into memory in the CoGITo environment, they form the first large part of the 

LKB,  the graph definitions of all words. 

Option I lteration 0: Update Support with part-of-speech and word senses1 loads all 

graphs in CoGITo and updates the type hierarchy with respect to the part of speech 

of the words defined as well as the different word senses possible for that word. We 

want to create a type hierarchy containing all possible concepts. The initial support 

contains one concept for each word, but we want to have one concept for each sense. 

We also eliminate spurious ambiguities generated by the chart parser by eliminating 

identical graphs. 

This iteration 0 corresponds to the following operations presented in the previous 

section for a single word. Now they are performed on all nouns and verbs. (see 

section 2.5 for a description of all iterations) 

Load its CG and update hierarchy (category + multiple sense). 
Eliminate identical graphs. 

I Statistics on number of graphs I calculates for all sentences their number of corre- 

sponding graphs. We aim toward one graph per sentence, which would mean that 

we dealt with all the structural ambiguity in the sentences. The statistics will allow 

us to see the effect of each step of structural disambiguation toward that goal. After 

iteration 0, the number of corresponding graphs is in fact equivalent to the number 

of parses generated by the chart parser minus the spurious ambiguities taken away 

via the Eliminate identical graphs option. There was 20% of the parses eliminated as 

spurious ambiguities. 

Table 4.1 shows the results in terms of parses, but you could as well read it in 

number of graphs. There is a total of 3742 sentences, a total of 6900 parses and 

therefore an average of 1.84 parse/sentence. 

Option / Iteration 1: stat. prepositional attachment + is-a relations I follows iteration 

0. and looks into anaphora resolution of the word defined and other words, as well 

as word sense disambiguation for the word defined. We attempt structural disam- 

biguation via the statistical prepositional attachment heuristic. We also look for is-a 
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Table 4.1: Statistics on number of parses 

relations to create a type hierarchy that will be useful for further structural and se- 

mantic disambiguation processes making use of ARC-Concept's ensemble of graph 

definitions and the type hierarchy. 

Iteration 1 includes the following operations presented in the previous section for 

a single word. Now they are performed on all nouns and verbs. 

Anaphora on word defined. 
Anaphora on other words. 
Word sense on word defined. 
Prepositional attachment (statistics). 
Update support (is-a relations). 

The only operation which actually reduces the structural ambiguity is the prepo- 

sitional attachment heuristic. There is an 18% reduction in the number of graphs, as 

we go from 6900 total number of graphs(parses) to 5655 graphs. Now that we made 

a first attempt a t  updating the type hierarchy, we start over from the parsing step. 

The number of parses can be different at each iteration as some parsing heuristics are 

based on the type hierarchy. 

I Iteration 2.  all structural disambiguation 1, we go through the following steps which 

are previously discussed. 
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Table 4.2: Number of graphs after steps of iteration 2 

I Step I Number of graphs Average nb graphs 
per sentence 

2.16 
1.84 
1.49 
1.46 
1.31 

Load graphs 
Eliminate identical graphs 
Statistical prepositional attachment 
Superclass of conjunction 
Prepositional attachment based on LKB 

Create cg file from definition. 
Load its CG and update hierarchy (category + multiple sense). 
Eliminate identical graphs. 
Anaphora on word defined. 
Anaphora on other words. 
Word sense on word defined. 
Prepositional attachment (statistics). 
Update support (is-a relations). 
Eliminate some graphs based on the superclasses o f  conjunctions 
Prepositional attachment (based on LKB). 

8078 
6716 
5558 
5469 
4905 

Table 4.2 shows the resulting number of graphs after each step of the structural 

disambiguation. We have started at 1.84 graphlsentence after eliminating identical 

graphs and we have reduced to  1.31 graphlsentence after all steps of structural disam- 

biguation. This represents a reduction of almost 30%. Currently, we do not perform 

any more structural disambiguation; we can use manual reduction at this point if we 

want to decide on a single graph per sentence. 

~ p p l ~ i n ~  Semantic Relation Transformation ~ r a p h s  1 takes care of semantic disam- 

biguation by trying to find deeper semantic relations within the graphs (as described 

in section 2.4.3), and I Distribute conjunctions I distributes the relations in which some 

concepts involved in a conjunction are also involved in (as described in section 2.4.4). 

They are the two last steps of iteration 2. 

The results of these steps, along with other options which could be performed on 

all nouns and verbs such as ( ~ r ~  t o  assign word sense to  each word] and /I are 

more difficult to present. 

We can see quantitative results for the structural disambiguation process in terms 
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of number of graphs corresponding to one sentence. For semantic disambiguation, the 

evaluation would be trickier. To decide whether the correct sense of a word has been 

assigned to an occurrence of that word in a particular sentence, we must ask a human 

reader t o  be the judge of the task. The same is true as for judging i f  the correct 

semantic relation has become part of a graph. As the task of human judging would 

be very time consuming if applied on the whole dictionary, we would have to take a 

sample of sentences and evaluate those. We decided against that option mostly for 

time reason, as even a sample size of limited significance (51ooking at each word for 

sense disambiguation and each relation for SRTGs. 

4.4 Covert categories 

So far we have seen how the definitions from a dictionary can be individually trans- 

formed into Conceptual Graphs and how these CGs can be used to build the type 

hierarchy. Now, we want to examine another important aspect of the LKB: the dis- 

covery of covert categories. Covert categories are discovered among the definitions 

and are used to complement the type hierarchy in its role for establishing concept 

similarity. Covert categories are seen as concepts without words, such as "writing 

instrument" or "device giving time". They show grouping of words based on different 

criteria than a common hypernym. 

From the main menu, / Discover covert categories 1 brings up the following menu: 

Menu 4.4.1 - 
Find covert categories level 1. 

Find covert categories level 2. 

Build lambda abstractions and add covert categories. 

Calculate average number o f  occurrences for a covert category. 

Retour au menu principal. 

\\:e try finding covert categories (see section 3.2.7) within the set of resulting 

graphs after itera.tion 1, and iteration 2 shown in the previous section. To find a 

covert category, we create a subgraph 



where A varies over the range of all verbs in the dictionary and REL varies over the 

range of all possible relations. We look at verbs because the usual nature of a covert 

category is as a case role to a verb. 

We have a total of 267 verbs and a total of 51 deeper semantic relations + 6,5 

prepositions, conjunctions, adverbs that can be used as relations. This gives over 30 

thousand possible combinations. Although, this is without considering that many of 

those combinations are not possible, as for example a verb cannot be related to a 

"part-of" relation. There are 16 relations that we can eliminate as they cannot apply 

to verbs. This still leaves us with over 25 thousand possible combinations. 

We establish a Covert Threshold (CT)  for the number of times the particular sub- 

graph must be present among all graph definitions in ARC-Concept to be considered 

as a new covert category and be assigned a A-abstraction. We present results with a 

C T  of 2, 5, 10 and 20. 

The results for finding the covert categories demand equality of relations instead of 

compatibility. Looking a t  compatible relations will lead to multiple covert categories 

and we will not be able to identify what is the predominant relation within that 

category. 

Option I Find covert categories level 11 discovers multiple covert categories and save 

them into a file. Option I Calculate average number of occurrences for a covert categoryl 

then gives us some quantitative results based on the file generated at the previous 

step. 

The results presented are not exact. They contain some errors due to  the fact 

that we do not have a single graph representation for each sentence, but an average 

after iteration 1 of 1.8 graphs per sentence. This means that a pattern found 3 times 

might not come from three occurrences in the dictionary but from three possible graph 

representations for the same occurrence. One obvious way to solve this problem is 

to manually chose for all 1200 words, that is 3742 sentences, which graph should 

represent that sentence. That is a long task that we will not do here, and we will 

compensate by using the 1.8 graph/sentence as a reduction factor. For example, to 
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Table 4.3: Covert categories found after iteration 1, level 1 

Covert Threshold 
(with factor) 

Table 4.4: Covert categories found after iteration 2, level 1 

Number of covert categories 

Concept Subsumption(CS): YES I CS: YES I CS: NO 

2 (3.7) 
5 (9.2) 

10 (18.4) 
20 (36.8) 

Factor: 1.0 
866 
508 
256 
121 

Covert Threshold 
(with factor) 

be counted as 5 occurrences, a pattern should occur more than 5*1.8, that is 9 times 

among the graph representations. 

Table 4.3 and Table 4.4 show results respectively after iteration 1 and iteration '2 

of the number of covert categories found. The first column shows the results as they 

are, then column two takes the reduction factor into account. In the third column, we 

show results that add one constraint on the comparison process. Concept subsumption 

using the type hierarchy is usually used for graph projection. The constraint added 

to the projection of the simple graph onto all graphs in the dictionary is to not allow 

for subsumption. Therefore the projection is possible only when all the concepts in 

both graphs are identical. 

The covert categories extracted are at Level 1. They contain only one concept 

type and one relation and have one variable within the A-abstraction. 

Number of covert categories 

Concept Subsumption(CS): YES I CS: YES I CS: NO 

2 (2.6) 

Factor: 1.84 
592 
256 
123 
55 

Factor: 1.84 
393 
227 
117 
5 1 

Factor: 1.0 
804 

Factor: 1.31 1 Factor: 1.31 
638 I 504 
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Result 4.4.1 shows a small part of file covertB.dat corresponding to covert cate- 

gories found at Level 1 after iteration 2. The name of each covert category is generated 

as a unique label from its graph representation. For example, blow'agent, means that 

we projected the graph [blow]->(agent)->[everything] on all graphs in the dictionary. 

We found three occurrences of wind as the agent of blow, five occurrences of person, 

one of horn3 and one of instrument. 

I Build lambda abstractions and add covert categories.] takes each covert category one 

by one, creates a type concept and defines it via a A-abstraction. The new type 

concept is put in the type hierarchy, and the A-abstraction associated with that type 

concept is put in the CoGITo environment. 

Result 4.4.2 shows A-abstractions corresponding to the covert categories from Re- 

sult 4.4.1. Each A-abstraction is represented as a graph and is equal to the graph 

that was projected on the whole dictionary to establish the covert category in the 

first place. 

Result 4.4.1 - 

In file COVERTB.DAT 

blow-agent: 
wind 3 
person 5 
horn-3 1 
instrument 1 

clean'with: 
brush 1 
soap 1 

sew'object : 
button 1 
cloth I 
patch-1 8 
pocket 1 
dress 2 
clothes 3 

Result 4.4.2 - 

LAMBDA 
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Linear output for : 
graph:blow'agent; 
nature : ; 
set: ; 
[blow] ->(agent )->[everything] . 

LAMBDA 
Linear output for : 
graph:clean'with; 
nature : ; 
set:; 
[clean]->(with)->[everything] 

LAMBDA 
Linear output for : 
graph:sew'object; 
nature : ; 
set: ; 
[sew] ->(object)-> [everything] . 

We then continue a t  Level 2 where we have two concept types, two relations and 

one variable. The level 2 covert categories are based on those of Level 1. If a covert 

category found a t  Level 1 contains many occurrences (surpasses a certain threshold) 

of a particular concept type, we fix it and try to  vary on a second relation. 

For example, assume we have the following Level 1 covert category: 

Type WordX"relationA(X) is 

[WordXI->(relationA)->[A] 

If the concept type WordY is found 5 times among the graphs of ARC-Concept 

to  replace the A,  then we go on to  Level 2 with a subgraph : 

[WordXI- >(relationA)- > [WordY] 

->(REL)->[everything] 

\i'e project that subgraph on all graphs in the LKB and again use the Covert 

Threshold to establish more covert categories. 

Option ( Find covert categories level 2 (discovers multiple covert categories and saves 
I I 

them into a file. Option 1 Calculate average number of occurrences for a covert category] 
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Table 4.5: Covert categories found after iteration 1, level 2 

( Covert Threshold I Number of covert categories 

Table 4.6: Covert categories found after iteration 2, level 2 

(with factor) 

2 (3.7) 
5 (9.2) 

10 (18.4) 
20 (36.8) 

., 

Covert Threshold 
(with factor) 

then gives us some quantitative results based on the file generated at the previous 

Concept Subsumption(CS): YES 
Factor: 1.0 

1867 
74 1 
290 
118 

Number of covert categories 

Concept Subsumption(CS): YES I CS: YES 1 CS: NO 

2 (2.6) 
5 (6.5) 

10 (13.1) 
20 (26.2) 

step. We present again the results after iteration 1 and iteration 2 in Table 4.5 and 

Table 4.6. 

Result 4.4.3 shows a small part of file covert2B.dat corresponding to covert cat- 

egories found a t  Level 2 after iteration 2. Then Result 4.4.4 shows the corresponding 

Result 4.4.3 - 

CS: YES 
Factor: 1.84 

997 
290 
129 
44 

Factor: 1.0 
1171 
415 
154 
44 

In file COVERT2B.DAT 

CS: NO 
Factor: 1.84 

256 
125 
56 
22 

play'agent'person-object: 
music 2 
ba seba l l  1 
game 5 
ou t s ide  2 
s e c r e t  2 

Factor: 1.31 
811 
255 
88 
31 

Factor: 1.31 
393 
180 
66 
24 
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instrument 1 
sport 2 
movie 1 
time-3 1 
song 1 
well-2 1 
violin 1 

rise'agent-sun-in: 
east 1 
morning 1 

send'agent'person'object: 
card-2 1 
message 1 
person 1 
package 2 
letter 1 

Result 4.4.4 - 

LAMBDA 
Linear output for : 
graph:play-agent'person'object; 
nature : ; 
set: ; 
Cplayl- 

C 
(agent)-> [person]; 
(object )-> [everything] ; 
1. 

LAMBDA 
Linear output for : 
graph:rise'agent'sun'in; 
nature : ; 
set: ; 
[rise] - 

(agent > -> [sun] ; 
(in)-> [everything] ; 
1 .  

LAMBDA 
Linear output for : 
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graph:send'agent-person'object; 
nature: ; 
set: ; 
Csendl- 

C 
(agent I-> [person] ; 
(object 1-> Ceverythingj ; 
3. 

We present now two examples of how the type hierarchy gets modified by the 

addition of covert categories. Figure 4.1 presents the addition of the Level 1 covert 

category live-in and of multiple Level 2 categories that become subclasses of live-in 

as they are different specializations depending on the agent relation. In parenthesis 

after a leaf node we display its superclass as extracted from the is-a relations. The 

superclasses area and place were already grouping many of the concepts together, but 

other concepts such as water, castle, ground were not grouped together, and the covert 

category live-in brings them all together. 

Figure 4.2 shows the addition of the covert category wear-agent -person-object . 
It is interesting to note a large part of its elements are also subclasses of clothes. But 

the two classes are not equivalent, there are also boots and hats and other things that 

a person can wear and they are not considered as clothes. The left part of Figure 4.2 

shows the hierarchy as extracted from the is-a relations. We note that the similarity 

between ring and skate, or ski and clothes, or coat and suit could not be established. 

The smallest superclass common to each pair is the very general concept something 

under which all nouns are. Adding the covert category wear-agent-person'object 

establishes a similarity between all the words and things that a person can wear. 

It is interesting to compare our results with A n  exploration into graded set mem- 

bership 1931. Using 76 adults, Markowitz performed some experiments, asking the 

subject how much a concept is prototypical of a class. The subject has to give a rank 

from 1 to  10. For example, where do you rank shoe, ice skate and slippers as being 

representative of footwear. Or how do you rank robin, eagle, chicken, ostrich, bat as 

representative of bird. She found that: 



live-in 

live-agent -mouse-in ground(earth) 

Figure 4.1: Example  of covert categories involving live-in in t h e  hierarchy. 
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- armor 

ski-1 

I liquid - water - ice 

dress2  q/t pajamas '\\ trousers uniform 
pants v 

shirt sock 

8 ject 

- - 

Figure 4.2: Covert category wear-agent - person-object part  of the  hierarchy. 
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... the semantic relations that played the most important role in the rank- 

ing and restriction of membership were modification, part-whole, function, 

agent and object. [93] 

She also mentions location and instrument as being used sometimes in the ranking 

but not as much. 

Table 4.7 shows the distribution of the relations that are part of the covert cat- 

egories found. To be able to compare with the work of Markowitz, we must look 

at Level 1 categories as they contain only one relation. We present results without 

the adjusting factors as they can be calculated on the raw data. Using the adjusting 

factors would mean to  divide all the resulting numbers by a constant which would not 

change any proportion. 

It is interesting to  note that for both iterations, about 20% of the covert categories 

are based on an agent case role, and as well around 20% are based around an object 

case role. Around 11% are based on a modification to  a verb. 

With these three relations, modif, agent and object, we cover 50% of all covert 

categories found. These three are among the five noted by [93] as the most used by 

humans for ranking objects. The other two relations, function and part-whole are 

not present here among our covert categories as we are only looking at case roles for 

verbs". The function relation combines a noun with a verb (but in the reverse order 

to a case role) and the part-whole relation combines two nouns. 

The location relation mentioned in [93] as being of some importance, is harder 

to isolate as it is distributed among prepositions and adverbs (in, on, to, from, at ,  

into, where, through, by) that are present in 209 covert categories (in:iO, on:40, 

to:2:3, from:20, at:16 into:13, where:12, through:9, by:6), that is 25% of all covert 

categories. This 25% contains relations of manner, agent, time, etc, as the prepositions 

are ambiguous and we have not analyzed in how many cases they really did express 

a location relation. 

The last relation mentioned in [93] is the instrument relation, and it is present 

here in 3.6% of the covert categories. 

'All the mechanisms are in place to  find covert categories around nouns as well as around verbs, 
we just decided to  emphasize the  grouping of nouns around verbs. 
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Table 4.7: Relations found within the covert categories 

Relation Number of covert categories 

agent 
object 
modif 
in 
on 
with 
goal 
and 
to  
from 
of 
at 
for 
into 
is-a 
what 
when 
where 
through 
like 

by 
about 
others 
total 

Iteration 1 
n b % 
180 20.8 
162 18.7 
97 11.2 
70 8.1 
4 1 4.7 
3 1 3.6 
2 7 3.1 
26 3.0 
23 2.7 
20 2.3 
18 2.1 
16 1.8 
14 1.6 
13 1.5 
13 1.5 
13 1.5 
12 1.4 
12 1.4 
9 1 .o 
7 0.8 
6 0.7 
5 0.6 
5 1 5.9 
866 100 

- 
Iteration 2 

n b % 
182 22.6 
166 20.6 
93 11.6 
75 9.3 
34 4.2 
25 3.1 
25 3.1 
6 0.7 
20 2.5 
17 2.1 
15 1.9 
12 1.5 
11 1.4 
14 1.7 
14 1.7 
13 1.6 
13 1.6 
13 1.6 
7 0.9 
6 0.7 
6 0.7 
5 0.6 
3 1 3.9 
804 100 



4.5 Concept Clustering 

The final aspect of our LKB, which augments the information found in dictionary 

definitions is the concept clusters. 

)I from the main menu leads us to menu 3.5.1 which shows all possible 

operations needed for clustering. 

Menu 4.5.1 - 
Assign Trigger word. 

Trigger forward. 

Trigger backward. 

Expansion forward. 

Expansion backward. 

Show word cluster. 

Show resulting CCKG. 

Set threshold for SSWs. 

In this clustering section, we first present one large example of clustering, detailing 

all the necessary steps. The Trigger Word used for that example is post-office. The 

threshold, for a word to be considered a Semantically Significant Word (SSW), is set 

at 42, meaning that for a word to  be considered a SSW, it must occur less than 42 

times in the dictionary (see section 3.4.1). This corresponds t o  eliminating 75% of 

all word occurrences, and 8% of all possible words. The Graph Matching Threshold 

(GMT) is set at GMT(1,O) for the trigger phase and GMT(2,l) for the expansion 

phase (see section 3.4.3). This means that the graphs to be joined must have at least 

one SSW in common for the trigger phase, and at least two SSWs in common plus a 

relation in common for the expansion phase. 

We then show how that particular cluster built around post-office would be mod- 

ified if we changed the threshold on SSWs. 

Continuing with that same cluster around post-office, we show the effect of using 

other words that resulted in the cluster as trigger words. When we start with post- 

office. we obtain send, stamp, mail, message in the cluster, but what would happen i f  

we use stamp or send as trigger words, would we obtain a similar cluster? 
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Finally we briefly present clustering results with more words used as trigger words: 

needle, sew, kitchen, farmer, stomach, plane, elephant, soap, wash. We show the 

resulting clusters for different thresholds on SSWs, and different GMTs. 

4.5.1 Example of integration: POST-OFFICE 

[ ~ s s i ~ n  Trigger word I is the first option that must be chosen. Here we assign post-office 

as our trigger word. 

Ishow word cluster] can be called at any time to show what are the words included 

in the cluster at any particular step. Similarly I Show resulting CCKG I shows the re- 

sulting Concept Cluster Knowledge Graph (CCKG) at any time. Result 4.5.1 shows 

the initial cluster for post-office which comes from its definition. 

Result 4.5.1 - 

CLUSTER: post-of f ice / 

Linear output for : 
graph:cluster~post~office~O; 
nature : f ait ; 
set : ens ; 
[post-off ice]<-(to)<-Cgol- 

€ 
(agent ->[it :ref I ; 
(when) -> [mail-21 - 

C 
(object)->[letter:d ; 
(agent )-> [you: ref1 ; 
3; 

3 - 

Now we go forward in the dictionary to find SSWs that come from the definition 

of post-office and backward to find SSWs whose definitions contain post-office. As 

each SSW is examined, we try to join some of their defining graphs to the CCKG 

(see section :3.4.4). There are a few steps done every time a new word is looked at for 

joining its graphs with the cluster graph (see section 3.4.3): 

1. Find common subgraphs between NewGraph and ClusterGraph 



2. Verify that they contain enough concepts and relations to  continue (threshold 

changes depending on the step backward or forward, trigger or expansion) 

:3. If so, perform maximal join between both graphs 

-1. Then, perform an internal join in case some concepts were duplicated during 

the join 

5 .  Finally, perform a reduction looking for compatible concepts that are joined via 

compatible relations t o  the same concept 

[Trigger forward I is the first step of clustering. It finds all SSWs from the cluster 

graph and looks into their definitions one at a time. Result 4.5.2 shows the whole 

process. First, two SSWs are identified, m a i l 2  and letter. When a word with multiple 

senses is disambiguated, we only try to join the graphs for the appropriate sense to the 

cluster graph. Here, the graphs for m a i l 2  are joined. The Graph Matching Threshold 

(GMT) is set quite low when we are in the Trigger Phase, that is the first step away 

from the trigger word. We have GMT(1,O). We must have one SSW in common 

between both graphs. 

The second SSW is letter, and it is not disambiguated. As we do not want to 

join in some word senses that are not appropriate, we raise the GMT in a case of 

sense ambiguity, it is brought up to GMT = (2,O). This higher threshold requires the 

graphs to have two SSWs in common and in the present example it prevents both 

senses le t ter2  and l e t te r2  from being joined to the graph. 

Result 4.5.2 - 
SEMANTICALLY SIGHIFICAHT WORDS: mail-2 / letter / 

nom: mail-2 

Graph to join: 
Linear output for : 

graph:mail-2-A-A; 
nature : f ait ; 
set: ens; 
[mail-21 - 



(object)->[something:ref] ; 
(object)-> [it :ref] ; 
(through)-> [mail-1: the] ; 
1.  

New graph has : 1 concepts in common and : 0 relations. 
GMT(~,~) : 1 concepts and 0 relations. 

COMMOB GRAPH : 
Graph:CopyOf2-A-A/post-office-0; 
Bature : f ait ; 
Set : ens; 
Concepts : 
cl= [mail-2 : *I ; 
Relations : 
Edges : 
EndGraph ; 

AFTER MAXIMAL JOIB : 
Linear output for : 
graph:cluster~post~office~O; 
nature : f ait ; 
set:ens; 
[something: refl <-(object )<- [mail-21 - 
C 
(object)-> [it :ref] ; 
(through) -> [mail-1 : the1 ; 
(object)->[letter: d ; 
(agent) -> [you: ref 1 ; 
(when) <- [go] - 

C 
(to)->[post-off ice1 ; 
(agent )-> [it : refl ; 
3; 

1.  

AFTER REDUCTION: 
Linear output for : 
graph:cluster~post~officee0; 
nature : f ait ; 
set : ens ; 
[mail-1 :the] <-(through)<- [mail-21 - 

< 
(object)->[letter] ; 
(agent ) -> [you: ref 1 ; 
(when) <- [go] - 

* possible join * 
------------------ 
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C 
( to ) ->  [post-off ice] ; 
(agent ) ->[ i t  : r e f1  ; 
>; 

>. 

Nom: l e t t e r - 1  

Graph t o  jo in :  
Linear output f o r  : 
graph:letter-1-A-B; 
na ture  : f a i t  ; 
s e t :  ens; 
[s ymbol : plura l ]  - 

C 
(object)<-[usel- 

C 
(goal)  -> [write] ->(object ) -> [word: p lura l ]  ; 
(agent) -> [person : plura l ]  ; 
1; 

(of )<-[ let ter-1:al  ; 

>. 
New graph has : 1 concepts i n  common and : 0 r e l a t i o n s .  .................... 
GMT(a,b): 2 concepts and 0 r e l a t i o n s .  * No jo in  poss ib l e  * 

.................... 
COMMON GRAPH : 
Graph:CopyOfi~A~B/post ,oi i ice~O; 
Nature : f a i t  ; 
Set  : ens; 
Concepts : 
c7=[ le t te r -1  :a] ; 
Relat ions : 
Edges : 
EndGraph ; 

Nom: l e t t e r - 2  

Graph t o  jo in :  
Linear output f o r  : 
graph:letter-2-A-A; 
na ture  : f a i t  ; 
s e t :  ens; 
[also]<-(modif )<-[ let ter-2:  a]<-(object)<-[write] - 

C 
(on) -> Cpaperl ; 
(agent)  -> [you: re f  1 ; 



New graph has : 1 concepts in common and : 0 relations 
GMT(a,b): 2 concepts and 0 relations. 

COMMON GRAPH : 
Graph:CopyOf2-A-A/post-office-0; 
Nature : f ait ; 
Set : ens ; 
Concepts : 
c6= [letter-2: a] ; 
Relations: 
Edges : 
EndGraph ; 

Result 4.5.3 shows the result of the trigger forward phase. 

Result 4.5.3 - 

CLUSTER: post-office / mail-2 / 

Linear output for : 
graph:cluster-post-office-0; 
nature:fait; 
set:ens; 
[mail-1 : the]<-(through)<- hail-21 - 
C 
(object) -> [letter] ; 
(agent ) -> [you : ref 1 ; 
(when) <- [go] - 

€ 
(to)-> [post-off ice] ; 
(agent )-> [it :ref 1 ; 
>; 

3 - 

The second step is the option -1. It finds all SSWs in the AHFD 

that use in their definition the trigger word post-office. There are only two such words 

in the AHFD: address and package. As we are still in the trigger phase, the GMT 

is still low at GM(1,O) that is only one SSW in common between the graph to join 

and the cluster graph to allow the join. In Result 4.5.1 we can see that the first 

sentence of address leading to  the graph address-1-A-B does not contain the word 



i 

post-office and therefore is not join to  the cluster. Its second sentence leading to the 

graph address-1-B_E does contain the trigger word and therefore is joined to the 

cluster graph. A word (such as in this case for address) can be added to  the cluster 

even if not all its defining graphs are joined. 

Result 4.5.4 - 

SEMANTICALLY SIGNIFICANT WORDS: address / package / 

nom: address 

Linear output for : 
graph:address-1-A-B; 
nature:fait; 
set : ens; 
[place:a] <-(of )<-[address :an] . 

leu graph has : 0 concepts in common and : 0 relations. .................... 
GHT(a,b): 1 concepts and 0 relations. * No join possible * 

Linear output for : 
graph:address-1-B-E; 
nature:fait; 
set:ens; 
[put I - 
I 
(object)->[address :an] ; 
(on)->[letter: a1 ; 
(goal) -> Ctelll- 

I 
(who) -> [post-of f ice : the] ; 
(what )-> cpest] <-(ahere)<-[send->(object 1-> [it :ref] ; 
3 ;  

(agent) -> [you: ref 1 ; 
3. 

New graph has : 2 concepts in common and : 0 relations 
GMT(a,b): 1 concepts and 0 relations. 

----------------- 
* join possible * 
----------------- 

COMMON GRAPH: 
Graph:CopyOfl-B-E/post-office-0; 
Nature : f ait ; 
Set : ens ; 
Concepts : 
c9= [post-of f ice : *I ; 
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Relations : 
Edges : 
EndGraph ; 

AFTER MAXIMAL JOIN : 
Linear output for : 
graph:cluster~post~office~O; 
nature : f ait ; 
set : ens; 
Cputl - 

(object )-> [address :an] ; 
(on)->[letter:a] ; 
(goal) -> [tell] - 

E 
(who)->[post-off ice: the]<-(to)<-[go]- 

E ......................................... 
(agent I-> [it :ref 1 ; * SSW letter is duplicated from the join * 
(when) -> [mail-21 - * internal join will put them together * 

E .......................................... 
(through)-> [mail-I: the] ; 
(object)->[letter] ; 
(agent )-> [you:ref] ; 
1; 

1; 
(what ) -> [place : quest] <-(where) <- [send ->(object I-> [it : ref 1 ; 
1; 

(agent)-> [you: ref] ; 
1. 

AFTER REDUCTION: 
Linear output for : 
graph:cluster~post~office~O; 
nature : f ait ; 
set:ens; 
[put: *I1 - 

E 
(object )-> [address: an] ; 
(on>-> [letter] <-(object )<-[mail-2: *21- 

C 
(where)-> [place: quest]<-(what )<-[tell] - 

C 
(who)-> [post-off ice:thel<-(to)<-[go]- 

C 
(agent)-> [it :ref1 ; 
(when) -> [*2] ; 



3; 
[*I] ; 

3; 
(through) -> [mail-I : the1 ; 
(agent )-> [you] <-(agent )<- [*I] ; 

3; 
3. 

nom: package 

Graph to join: 
Linear output for : 
graph:package-1-A-A; 
nature : f ait ; 
set:ens; 
[tie:*l]- 
C 
(modif )-> Cup1 ; 
(object )-> [package:aI <-(object )<-[send]- 

C 
(through)-> [mail-1 :the] ; 
(agent 1->[you:ref] <-(agent)<- [*I] ; 
3; 

3. 

New graph has : 2 concepts in common and : 0 relations. 
GMT(a,b): 1 concepts and 0 relations. ................................. 

* possible join, first sentence * 
* from definition of package * 

COMMON GRAPH : ................................. 
Graph:CopyOfi~A~A/post~office~O; 
Nature : f ait ; 
Set: ens; 
Concepts : 
c6= [package : *] ; 
Relations : 
Edges : 
EndGraph ; 

AFTER REDUCTIOB: 
Linear output for : 
graph:cluster~post~office~O; 
nature: f ait ; 
set : ens ; 
[tie:*l]- 

C 
(modif ) -> [up] ; 



(object 1-> Cpackage:a] <-(object)<- bail-2: *2]- 
C 
(where)-> [place : quest] <-(ahat )<- [tell] - 
C 
(who)-> [post-off ice: the] <-(to)<-[go] - 
C 
(agent>-> [it :ref] ; 
(ahen)-> [*2] ; 
>; 

(goal)<- Cputl- 
< 
(object)->Caddress:anl; 
(on)->[letter]<-(object)<-[*2] ; 
(agent -> Cyoul- 

< 
(agent)<-[*I]; 
(agent <- C*21; 
>; 

1; 
3; 

(through) -> [mail-11 ; 
3; 

3. 

Graph to join: 
Linear output for : 
graph:package-1-B-F; 
nature:fait; 
set :ens; 
Cbr ing] - 
C 
(object )-> [package :plural1 ; 
(to)->[post-of f ice:the] ; 
(goal)-> [mail-21 ; 
(agent) -> [person: plural1 ; 
3. 

New graph has : 3 concepts in common and : 0 relations. 
~nT(~,b): 1 concepts and 0 relations. .................................. 

* possible join, second sentence * 
* from definition of package * 

COMMON GRAPH: 
Graph:CopyOfl-B-F/post-office-0; 
Nature : f ait ; 
Set : ens ; 
Concepts : 
c5= [post-of f ice: *] ; 



Relat ions : 
Edges : 
EndGraph ; 

AFTER REDUCTION: 
Linear output f o r  : 
graph:cluster-post-office-0; 
nature  : f a i t  ; 
s e t  : ens;  
[bring: *l]  ->(object)-> [package:*2] <-(object)<-[ t ie l-  
C 
(modif) -> [up] ; 
(agent)-> [you: *31- 
C 
(agent )<- [*l] ; 
(agent )<- [put : *4] - 

C 
(object)->Caddress:anl ; 

(goal)<-  [*I1 ; 
(ob j a c t  ) -> [*21; 
(where)-> [place : quest] <-(what)<- [ t e l l ]  - 

C 
(who)-> [post-off i c e  :the]- 

C 
(to><-[*I1 ; 

(agent )-> [it : r e f  1 ; 
(when) -> [*5] ; 
3;  

3 ;  
(goal)<-  C*41; 
3 ;  

(through) -> [mail-11 ; 
(agent)  -> [*3] ; 
3 ;  

The resulting cluster from the I trigger backward1 phase is {post-office, mail-2, ad- - - - 1 - 

dress, package). Its CCKG is the last graph from Result 4.5.4. 

The  next step is the /Expansion forward]. Now we look a t  all SSWs that are in 

part of the cluster graph and that  are not yet in the Cluster. During the expansion 



phase the GXlT is a bit higher, as we are looking at more definitions and chances 

are that they are less related to the trigger word. We set GMT = (&I) ,  at least 2 

common concepts and 1 common relation. When there is sense ambiguity the GMT 

is incremented to GMT = ( 3 , l ) .  In Result 4.5.5 we can see that the words bring, tie, 

letter, send and mail-1 are candidates to be joined to the cluster. In all the definition 

graphs of bring, tie and letter there is only the word package in common with the cluster 

graph, so no join is possible. It is important during the expansion phase to put the 

GMT high enough that we do not expand in directions more specific to one particular 

word in the cluster (here bring and tie relating more to package) because that does 

not increase the coherence of the cluster but contrarily expands it by adding new 

concepts in all directions. The case of send is quite different. Both sentences defining 

send were not parsed and therefore no graphs were generated and no join can be 

envisaged. Finally mail-1 has a GS(2,l) which is at the threshold level and it can be 

joined. 

Result 4.5.5 - 

SEMANTICALLY SIGBIFICABT WORDS: bring / tie / letter / send / mail-1 / 

nom : bring 

Graph to join: 
Linear output for : 
graph:bring-1-LA; 
nature : f ait ; 
set : ens; 
[bring] ->(equiv)-> [take] - 

(object)-> [something: ref] ; 
(with)-> [you: ref] ; 
>. 

New graph has : 1 concepts in common and : 0 relations 
GMT(a,b): 2 concepts and 1 relations. 

COMMON GRAPH: 
Graph:CopyOfl~A~A/post~office~O; 
Nature:fait; 
Set : ens ; 
Concepts : 
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c4=[you:refI ; 
Relations : 
Edges : 
EndGraph ; 

Nom: tie-1 

Graph to join: 
Linear output for : 
graph:tie-1-A-A; 
nature : f ait ; 
set : ens; 
[tie-11 -> (equivl-> Choldl- 
C 
(object)-> [something: ref] ; 
(modif )-> [together] ; 
(with)-> [string] ; 
(with)-> [rope] ; 
3. 

New graph has : 1 concepts in common and : 0 relations. 
GMT(a,b): 3 concepts and 1 relations. 

COMMON GRAPH: 
~ r a ~ h : ~ o p ~ O f l ~ ~ ~ A / p o s t ~ o f f i c e ~ O ;  
Nature : f ait ; 
Set : ens ; 
Concepts : 
cl=[tie-1: *I ; 
Relations : 
Edges : 
EndGraph ; 

Nom: tie-2 

Linear output for : 
graph:tie-2-A-A; 
nature : f ait ; 
set:ens; 
[tie-21 ->(equiv)-> [make] ->(obj ect )-> [knot :plural] . 

->(in)-> [string] ->(or)-> [rope3 ->(or)->[ribbon] . 

New graph has : I concepts in common and : 0 relations. 
GMT(a,b): 3 concepts and 1 relations. 

------------ 
* No join * 
------------ 

COMMON GRAPH : 
~ra~h:~opyOf2-A-A/post-office_0; 
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Se t : ens ;  
Concepts : 
c l =  [ t ie-2:  *I ; 
Relat ions:  
Edges : 
EndGraph ; 

Graph t o  join:  
Linear output f o r  : 
graph:tie-2-B-A; 
na ture  : f  a i t  ; 
s e t :  ens;  
C t  ie-21- 
C 
(object  ) -> [bow : p lu ra l ]  - 

C 
( a t t r i b u t  I-> [pret ty]  ; 
(on) -> [present :p lura l ]  - > ( a t t r i b u t  ) -> [a l l ]  ; 
1 ;  

(agent)-> Cjoyl ; 
3 - 

New graph has : 1 concepts i n  common and : 0 r e l a t i o n s .  ------------ 
GMT(a,b) : 3 concepts and 1 r e l a t i o n s .  * No jo in  * 

------------ 
COMMON GRAPH: 
Graph:CopyOf2-B-A/post-office-0; 
Nature : f a i t  ; 
Set  :ens;  
Concepts : 
c i=[ t ie -2 :  *I ; 
Relat ions:  
Edges : 
EndGraph ; 

Nom: l e t t e r - 1  

Graph t o  jo in :  
Linear  output f o r  : 
graph:letter-1-A-B; 
na ture  : f  a i t  ; 
s e t :  ens;  
[symbol : p lu ra l ]  - 

C 
(object)<-[use] - 

(goa l )  -> [write] ->(object  ) -> [word: p lura l ]  ; 



(agent 1-> [person:plurall ; 
3;  

(of )<-[letter-1: a1 ; 
>. 

New graph has : 1 concepts in common and : 0 relations. ------------ 
GMT(a,b): 3 concepts and 1 relations. * No join * ------------ 
COMMON GRAPH: 
Graph:CopyOfl~A~B/post~office~O; 
Nature:fait; 
Set:ens; 
Concepts : 
c7=[letter-1 :a] ; 
Relations : 
Edges : 
EndGraph ; 

Nom: letter-2 

Graph to join: 
Linear output for : 
graph:letter-2-A-A; 
nature : f ait ; 
set: ens; 
[also] <-(modif )<-[letter-2: a] <-(object)<-[writel- 

(on) -> [paper]; 
(agent -> [you: ref I ; 
3. 

New graph has : 1 concepts in common and : 0 relations. 
GMT(a,b) : 3 concepts and 1 relations. 

COMMON GRAPH: 
Graph:CopyOf2-A-A/post-office-0; 
Nature:fait; 
Set:ens; 
Concepts : 
c6=[letter-2: a] ; 
Relations : 
Edges : 
EndGraph; 

----------- 
* No join * 
----------- 



nom: mail-1 

Linear output for : 
graph:mail-1-A-I; 
nature : f ait ; 
set :ens; 
[be] - 

C 
(how)-> [send] - 

C 
(object)-> [letter:plural] ->(and)-> [package: plural]; 
(f ram)-> [place : one] ->(to)-> [another: ref] ; 
(agent)-> [we : ref] ; 
3; 

New graph has : 2 concepts in common and : 1 relations. ----------------- 
GMT(a,b): 2 concepts and 1 relations. * Possible join * 

----------------- 
COMMON GRAPH : 
Graph:CopyOfl~A~I/post~office_0; 
Nature : f ait ; 
Set:ens; 
Concepts : 
c2= [mail-2 : *I ; 
c3= [letter :plural1 ; 
Relations : 
r2=(object) ; 
Edges : 
r2,c2,1; 
r2,c3,2; 
EndGraph ; 

AFTER REDUCTION: 
Linear output for : 
graph:cluster-post-office-0; 
nature : f ait ; 
set:ens; 
[be: *l] ->(how)-> [mail-2 : *21- 

C 
(from)-> [place: onel->(to)-> [another:refl; 
(goal)<-[bring:*3]->(object)->[package:plural*41- 

C 
(and)<-[letter]- 

C 



(goal)-> [ t e l l ]  - 
€ 
(who)-> [post-off ice :  the1 - 

C 
( to )<-  C*3l; 
(to><-Cgol- 

€ 
(agent I-> [it :ref I ; 
(ahen)-> C*21; 
3;  

3;  
(what)-> [place: quest] <-(ahere)<- [*21; 
3;  

(agent) -> Cwel- 
C 
(agent )<- [*31 ; 
(agent)<-Ct ie]  - 
C 
(modif) -> [up] ; 
(object I-> C*41; 
3;  

(agent)<- [*2] ; 
3; 

3 ;  
(object I<- C*21 ; 
3; 

(object )<- C*21; 
3; 

(through)-> [mail-1 :the] <-(agent)<- [*I] ; 
3. 

The resulting cluster from the I Expansion forward] phase is {post-office, mail.?. 

address, package, mail-1). Its CCKG is the last graph from Result 4.5.5. 

The next step is I Expansion backward / in which we look in the dictionary for all 

SSWs that contain in their definition any of the words in the Cluster. The GMT 

is GhIT = (2 , l )  again for the expansion phase. One SSW found is mail, meaning 

any sense of the word, but as ARC-Concept looks into each sense, it finds out that 

both mail-l and mai l2  are already in the cluster, so it continues with the second 

SSW stamp. There are many concepts and relations in the second graph for stamp in 
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common with the cluster graph. 

Result 4.5.6 - 

SEMANTICALLY SIGNIFICANT WORDS: mail / stamp / 

Nom: mail-1 ....................................... 
Nom: mail-2 * Present individually in the cluster * 

....................................... 
nom: stamp 

Graph to join: 
Linear output for : 
graph:stamp-1-A-A; 
nature : f ait ; 
set: ens; 
[small] <-(attribut)<- [stamp: a] <-(~iece-of )<- [paper] - 

{ 
(with) -> [word: plural] ; 
(with) -> [number : plural] ; 
(with)-> [picture: a]->(on)->[it :ref1 ; 

3. 

New graph has : 1 concepts in common and : 0 relations. 
GMT(a,b): 2 concepts and 1 relations. 

COMMON GRAPH : 
Graph:CopyOfl-A-A/post-office-0; 
Nature: f ait ; 
Set: ens; 
Concepts : 
c4= [number : plural] ; 
Relations: 
Edges : 
EndGraph ; 

Graph to join: 
Linear output for : 
graph:stamp-I-B-E; 
nature : f ait ; 
set : ens ; 
[buy: *I]- 

{ 
(object)-> [stamp:plural] ; 

----------- 
* No join * 
----------- 

(through) -> [mail :the] ; 
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(agent) -> [ p e r ~ o n : ~ l u r a l ]  <-(agent) <- [*I] ; 
(object  ) -> [package :p lu ra l ]  ; 

3 ;  
3 - 

New graph has : 4 concepts i n  common and : 4 r e l a t i o n s .  
----------------- 

~ n T ( a , b ) :  2 concepts and I r e l a t i o n s .  * Possible jo in  * 
----------------- 

COHMOU GRAPH: 
~ r a p h : ~ o p y ~ f l ~ B ~ E / p o s t ~ o f f i c e ~ O ;  
Mature : f a i t  ; 
Set  : ens ; 
Concepts : 
c4= [ l e t t e r  :plural]  ; 
c5= [package :p lura l ]  ; 
c6= [mail-2 : *I ; 
c7= [mail-1 : the] ; 
c8= [we :p lura l ]  ; 
Relat ions:  
r2=(obj  e c t )  ; 
r3=(through) ; 
r4= (agent ) ; 
r8=(object{certainty:  ; 3) ; 
Edges : 
r2 ,c6 ,1 ;  
r2 , c4 ,2 ;  
r3 , c6 ,1 ;  
r3 , c7 ,2 ;  
r4 , c6 ,1 ;  
r4 ,c8 ,2 ;  
r8 ,c6 ,1 ;  
r8 , c5 ,2 ;  
EndGraph ; 

AFTER REDUCTIOB: 
Linear output f o r  : 
graph:cluster~post~office~O; 
nature : f a i t  ; 
s e t  : ens ; 
[buy :*I]- 

{ 
(objec t ) ->  [stamp:plural] ; 
(goal)-> Cput] ->(on)-> [ l e t t e r  :plural*2] ->(and)-> C~ackage : ~ l u r a l * 3 ]  . . . 

<-(object)<- [bring: *4] ->(to)-> [post-off i ce :  the*5] <-(who)<- [ t e l l :  *GI .  . 
->(what)-> [place :quest] <-(where)<- b a i l - 2 :  *TI- 



(from)-> [place : one] ->(to)-> [another : ref 1 ; 
(how)<- [be]->(agent )->[mail-1 :the] <-(through)<- [*7] ; 
(goal ) <- [*4] ; 
(agent ) -> [we : plura l ]  - 

€ 
(agent) <- C* 11 ; 
(agent ) <- [*41; 
(agent)<- Ctiel- 

€ 
(modif ) -> Cup1 ; 
(objec t  I-> C*31; 
3 ;  

(agent ) <- [put] - 
€ 
(object)->[address: an] ; 
(on)-> C*21; 
(goal)  -> [*6] ; 
>; 

3 ;  
(object)-> [*3] ; 
(object)-> C*21; 
(when) <- Cgol- 

€ 
( to) ->  [*51; 
(agent )-> [it :ref  1 ; 
3;  

3 ;  
3.  

The resulting cluster of the lExpansion backward I phase is {post-office, mail-2, ad- 

dress, package, mail-l, stamp). It is interesting to note that only one sentence from 

stamp was pulled in, not the details about what a stamp looks like, but its usage. 

At this point we can repeat the I Expansion forward I and [Expansion backward I steps 

until there are no more changes in the cluster. We continue with the same GMT, as 

we are still in the expansion phase. 

Result 4.5.7 - 

Expansison Forward: 

SEMANTICALLY SIGNIFICANT WORDS: br ing  / t i e  / l e t t e r  / 
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Expansion Backward: 

SEMABTICALLY SIGIIFICABT WORDS: mail / 

.............................................................................. 
* All senses of mail are already in the cluster so there is no addition here * 
.............................................................................. 

Result 4.5.8 shows the final cluster. 

Result 4.5.8 - 

CLUSTER: post-office / mail-2 / address / package / mail-1 / stamp / 

Linear output for : 
graph:cluster~post~office~O; 
nature : f ait ; 
set:ens; 
[buy :*l]- 

C 
(object )-> [stamp:plural] ; 
(goal)-> [put] ->(on)-> [letter :plural*2] ->(and)-> Cpackage:plural*31. . . 

. . .  <-(object)<- [bring: *4]->(to)-> [post-off ice: the*51<-(who)<- [tell: *el. . . 

. . . ->(what)-> [place: quest] <-(where)<- [mail-2 : *TI - 
C 
(from) -> [place : one] ->(to) -> [another : ref 1 ; 
(how)<- [be] ->(agent)-> [mail-1 :the] <-(through)<- [*TI ; 
(goal) <- [*41; 
(agent ) -> [we : plural] - 

< 
(agent I<- C*ll ; 
(agent ) <- C*41; 
(agent)<- [tie] - 

C 
(modif )-> [up] ; 
(object 1-> C*31; 
1; 

(agent )<- Cputl- 
C 
(object)->[address: an] ; 
(on) -> C*21; 
(goal)-> [*GI; 



3; 
3; 

(object I-> [*31 ; 
(object)-> C*21; 

4.5.2 Changing the thresh0 

The option [set threshold for SSWs 1 allows the user to  decide on the threshold for 

establishing Semantically Significant Words. It gives us the following menu. 

Menu 4.5.2 - 

Compute total. 

Compute thresholds. 

Return to  main menu. 

Result 4.5.9 shows the result from -1 based on the file SSW-occ.dat 

which contains the number of occurrences of all words in the AHFD. 

Result 4.5.9 - 

t o t a l  number of word occurrences: 58354 
t o t a l  number of words: 2073 

There are 2073 words used in total in the dictionary, and there are 58354 occur- 

rences of all these words among all the sentences. 

Option ICompute thresholds I allows the user to  specify how many words and word 

occurrences he/she wants to discard. Result 4.5.10 shows the dialogue about changing 

the threshold. 

Result 4.5.10 - 
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Table 4.8: Different thresholds 

Max number of occurrences 
to be considered a SSW 

5076 

% of occurre? 
discarded 

10 
20 
30 
40 
50 
60 
70 
75 
77 
80 
85 
90 
95 
9 7 
99 
100 

nces 
I 

% words 
discarded 

0 
0 
0 
0 
1 
2 
6 
8 
10 
13 
19 
29 
48 
60 
80 
100 

ARC-Concept: What percent of occurrences to discard? 
User: 50 

ARC-Concept: To eliminate 50% of the occurrences, that is 29177 occurrences, 
we must eliminate 29 words, that is 1% of the words. 

We consider SSV, a word with less than : 264 occurrences 

Table 4.8 shows for different thresholds, how many words and occurrences of words 

get discarded. It is interesting t o  note that only 1% of the words account for 50% of 

all occurrences of words in the AHFD. And only 10% of the words account for 77% 

of all occurrences. 

The  threshold 42 that  we used in the ~ rev ious  subsection for the example with 

post-office corresponds to  excluding '75% of the occurrences and 8% of the words. 

Figure 1.:3 shows the resulting cluster for the same trigger word for different thresholds. 
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Sometimes the resulting cluster is the same but relaxing the threshold allows more 

SSWs to be explored and more iterations need to be done. At each step during the 

clustering process, we show the SSWs to  be explored and we emphasize in bold the 

words that become part of the cluster. 

For the trigger word post-office, a threshold 42 seems a good threshold as we do 

not explore multiple words that never get brought in, but we do get a large cluster. 

The cluster stays the same if we loosen the threshold to  126 but we need to explore 

more words and therefore the process takes longer to  reach the same conclusion. 

We try with another trigger word farmer to show the influence of the threshold 

for SSW on the resulting cluster. For the word farmer as we can see in Figure 4.4, 

the threshold 42 make us explore many, many words that do not get joined in. But 

even with this long exploration the resulting cluster is qualitatively quite good. When 

we lower the threshold to  18 (making it more difficult to be a SSW), the exploration 

is much more limited and we only lose the words rose2 and morning. Lowering the 

threshold even more reduces the exploration so much that we lose almost everything. 

A threshold of 18, that was way too limiting for the trigger word post-office, is fine 

for the trigger word farmer. We will come back to  this remark in section 4.5.4. 

4.5.3 Changing the trigger word within the cluster 

From the resulting cluster: {post-office, mail2,  address, package, mail-l, stamp) we 

performed an experiment in which all the different words in the cluster were used as 

trigger words themselves and we generated clusters around them. From the concepts 

present in the cluster from post-office we formed a set of clusters. That  particular set 

was an extremely stable set of clusters. Result 4.5.11 shows all the resulting clusters 

and shows the coherence of a subgroup of concepts by the number of time they occur 

in the clusters. 

R e s u l t  4.5.11 - 
Cluster : 

post-of f i c e  : (address,  mail-I ,  mail-2, package, post-of f i c e ,  stamp) 

mail-2 : (mail-2, mail-1 , package, stamp) 
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Threshold = 42 
% occurrences discarded = 75 
Trigger word: post-office 
Trigger forward: m a i l 2 ,  letter 
Trigger backward: address, package 
Expansion forward ( 1): bring, tie, send, mail-1 
Expansion backward (1): mail, stamp 
Expansion forward (2): bring, tie, send 
Expansion backward (2): mail 

Resulting cluster: {post-office, m a i l 2 ,  address, package, mail-1, stamp) 

Threshold = 126 
% occurrences discarded = 60 
Trigger word: post-office 
Trigger forward: m a i l 2 ,  letter 
Trigger backward: address, package 
Expansion forward (1): bring, tie, up, put, tell, letter, send, mail-1 
Expansion backward (1): mail, stamp 
Expansion forward (2): buy, send, bring, tie, up, tell, put, letter 
Expansion backward (2): land, mail 

Resulting cluster: {post-office, m a i l 2 ,  address, package, stamp, m a i l l  ) 

Threshold = 18 
% occurrences discarded = 85 
Trigger word: post-office 
Trigger forward: NONE 
Trigger backward: address 
Expansion forward (1): NONE 
Expansion backward (1): NONE 

Resulting cluster: {postaffice, address) 

Figure 4.3: varying the SSW threshold for clustering around post-office 



THRESHOLD = 42, GMT(1,l) for expansion 
Trigger word: farmer 
Trigger forward: farm, start, early, morning 
Trigger backward: been, field(l), land, patch, raise(2), tractor, wall 
Expansion forward (1): help, prepare, rise, sun, first, start, early, area, vegetable 
Expansion backward (1): barn, been, brush, bulldozer, continue, cool, country, cow, 

cowboy, cowgirl, early, field, goat, horse, last, 
mad, o'clock, patch, pig, raise, ring, rise, rooster, rose(2), 
sleep, spend, stable, sunrise, trailer, wake, wall 

Expansion forward (2): o'clock, rise, wool, help, prepare, first, start, early, vegetable, 
milk, sun 

Expansion backward (2): barn, been, brush, bulldozer, continue, cool, country, cow, early, 
field, horn, horse, last, mad, milk, o'clock, patch, pig, raise, 
ring, rise, rooster, rose, sleep, spend, stable, sunrise, trailer, 
wake, wall 

CLUSTER: { farmer, farm, morning, field-1, raise-2, tractor, cowboy, 
cowgirl, goat, rose2 ) 

THRESHOLD = 18, GMT(1,l) for expansion 
Trigger word: farmer 
Trigger forward: farm, early 
Trigger backward: patch, raise(2), tractor, wall 
Expansion forward (1): prepare, early 
Expansion backward (1): barn, bulldozer, cow, cowboy, cowgirl, goat, patch, pig, raise, 

stable, trailer, wall 
Expansion forward (2): wool, prepare, early 
Expansion backward (2): barn, bulldozer, cow, horn, patch, pig, raise, stable, trailer, wall 

CLUSTER: {farmer, farm, raise2, tractor, cowboy, cowgirl, goat ) 

THRESHOLD = 11, GMT(1,l) for expansion 
Trigger word: farmer 
Trigger forward: NONE 
Trigger backward: been, field, land, patch, raise, tractor, wall 
Expansion forward (1): prepare, early 
Expansion backward (1): bulldozer, patch, trailer 

CLUSTER: {farmer, tractor) 

Figure -1.4: Varying the SSW threshold for clustering around farmer 



address : 
package : 
mail- I : 
stamp: 

{address, mail-I,  mail-2, package, pos t -of f ice ,  stamp) 
(address, br ing ,  mail-I,  mail-2, package, post-off i c e ,  stamp) 
(address, mail-I,  mail-2, package, pos t -of f ice ,  stamp) 
{address, l e t t e r - 1  , mail-1, mail-2, package, post-off i c e ,  stamp) 

Concepts present  with t h e i r  number of occurrences: 

address (5)  
mail-i  (6)  
mail-2 (6)  
package (6) 
post-off i c e  (5) 
stamp (6) 
br ing  ( 1  
l e t t e r - I  (1)  

The subgroup: address, maild,  mail& package, post-office, stamp forms a very 

coherent set. 

We perform the same task with farmer as our trigger word. The threshold is 

lowered to  reduce the search space, but the graph matching threshold is lowered as 

well to (GMT(1,O) trigger, GMT(2,O) expansion) to allow more matches. 

It generates a much less stable set of clusters as shown in Result 4.5.12. 

Result 4.5.12 - 
Clus ter :  

farmer : (cowboy, cowgirl,  farm, farmer, goat ,  ra i se-2 ,  t r a c t o r )  
farm: {barn, c a t t l e ,  cow, cowboy, cowgirl,  farm, farmer, farmer, goa t ,  p ig ,  

ra i se-2 ,  s t ab l e )  
raise-2:  {cowboy, cowgirl,  farm, farmer, raise-2)  
t r a c t o r  : (engine, farmer , prepare,  t r a c t o r ,  tugboat) 
cowboy: ( c a t t l e ,  cowboy, cowgirl,  farm, farmer) 
cowgirl: { c a t t l e ,  cowboy, cowgirl ,  farm, farmer) 
goat :  {chin, co t ton ,  farm, goa t ,  h a i r ,  l i o n ,  l i oness ,  raise-2,  s t a b l e ,  sweater,  

wizard, wool, yarn) 

Concepts present  with t h e i r  number of occurrences: 

farm (6)  
farmer ( 6 )  
cowboy (5)  
cowgirl (5) 
ra i se-2  (4) 
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goat  (3)  
c a t t l e  (3)  
t r a c t o r  (2)  
s t a b l e  (2)  

barn, cow, p ig ,  chin,  co t ton ,  h a i r ,  l i o n ,  (1) 
l i o n e s s ,  sweater,  wizard, wool, yarn 

Subgroup: {farm, farmer, cowboy, cowgirl, raise2) forms a coherent set. It gets 

harder to  see the place of the subgroup {goat, cattle, tractor, stable). In such a case 

where it is less clear than with the previous example, we might want to  continue our 

search and start with some of these in-between words as trigger words, and then look 

over the larger set of clusters. In this particular case, it means looking at cattle and 

stable as the o t h e ~  two words goat and tractor have been used as trigger words already. 

The new results are shown in Result 4.5.13. 

Result 4.5.13 - 
Clus ter  : 

farmer: (cowboy, cowgirl,  farm, farmer, goat ,  raise-2,  t r a c t o r )  
farm: (barn, c a t t l e , c o w ,  c o w b o y , c o w g i r l , f a r m , f a r m e r , f a r m e r , g o a t , p i g ,  

ra i se-2 ,  s t ab l e )  
ra i se-2 :  (cowboy, cowgirl,  farm, farmer, raise-2)  
t r a c t o r  : (engine, farmer, prepare,  t r a c t o r ,  tugboat) 
cowboy: ( c a t t l e ,  cowboy, cowgirl,  farm, farmer) 
cowgirl : ( c a t t l e ,  cowboy, cowgirl,  farm, farmer) 
goat :  (chin, co t ton ,  farm, goat ,  h a i r ,  l i o n ,  l i o n e s s ,  ra i se-2 ,  s t a b l e ,  sweater,  

wizard, wool, yarn) 

c a t t l e :  ( c a t t l e ,  meat, beef ,  cowboy, cowgirl,  ham) 
s t a b l e :  ( s t ab l e ,  farm, ra i se-2 ,  goat) 

Concepts present  with t h e i r  number of occurrences: 

farm ( 7 )  
farmer (6)  
cowboy (6)  
cowgirl (6) 
ra i se-2  (5 
goat (4 
c a t t l e  (3)  
s t a b l e  (3)  
t r a c t o r  (2)  



ham, beef ,  meat ( 1 )  *** new ones *** 
barn, cow, p i g ,  chin,  cotton,  ha i r ,  l i o n ,  (1) 
l i o n e s s ,  sweater, wizard, wool, yarn 

There is still no clear cut distinction between the words that should definitely be 

part of the cluster, and those that should not. The ones occurring only once should 

be eliminated. A word occurring twice that was used as a trigger word (as tractor) 

in fact only occurs once in another word's cluster. We can have the resulting cluster 

as {farm, farmer, cowboy, cowgirl, raise2, goat, cattle, stable). 

4.5.4 Results on other trigger words 

This section shows a few more results of clusters starting from different words. Ta- 

ble 4.9 shows clusters for different thresholds for establishing the Semantically Sig- 

nificant Words and different thresholds for the Graph Matching criteria. Again, we 

judge the resulting clusters in a qualitative manner. The resulting clusters tend to get 

less focused as we loosen the threshold for SSW. Instead of setting it, the clustering 

program should adjust the threshold automatically so that it would not explore more 

than X number of words at each step. Actually the trigger phase is less problematic, 

and the threshold could be looser a t  that phase. We are only looking a t  one word, the 

word it uses in its definition (trigger forward) and the words that are defined using 

it (trigger backward). When we enter the expansion phase, especially the backward 

phase, the search space can become quite large, as we are trying to  find all the words 

in the dictionary that are defined using one of the words presently in the cluster. The 

larger the cluster becomes, the larger the search space becomes, and the lower the 

threshold should be. 

The effect of the Graph Matching Threshold is less dramatic. We tried three vari- 

ations for the expansion phase, GMT(1 , I ) ,  GMT(2,1), GMT(3,O). GMT(1,l) means 

that there must be one SSW in common and a subgraph containing two concepts and 

one relation in common. The SSW could be part of the subgraph or not. GMT(2,l)  

GMT(1.1) means that there must be two SSWs in common and a subgraph containing 
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two concepts and one relation in common. The SSWs could be part of the subgraph 

or not. The third possibility GMT(3,O) means that you need three SSWs in common 

not necessarily part of any structure. 

Discussion 

First, the CoGITo system was briefly introduced, that is the CG platform used for 

our CG development. 

All the steps presented in chapter 2 for converting a sentence into a Conceptual 

Graph were presented using three examples: doughnut, bat, piano. We saw the first 

transformation steps, tagging, parsing, parse-to-cg transformations, as well as all steps 

for structural and semantic disambiguation. 

Then a few results were presented on applying all heuristics from chapter 2 to all 

the words in the dictionary. We showed the average number of parse per sentence and 

the reduction achieved by each step of structural disambiguation. 

Some results on covert categories were shown. We presented the number of cat- 

egories extracted when varying the Covert Threshold. Two examples, live-in and 

wear' agent ' person 'ob ject , were chosen to exemplify the modification introduce 

by covert categories within the type hierarchy. We were able to  give a sense of how 

much more dimensions we need to  explore to address the problem of similarity between 

words. 

The last section showed results from clustering. We gave a large detailed example 

of all the clustering steps (trigger forward and backward, expansion forward and 

backward) starting from the trigger word post-office. Loosening the SSWs threshold 

allows an expansion of the search space, but it might still result in the same cluster 

and spend more time to  find it. On the other hand, tightening the SSWs threshold 

might result in missing a lot of important words that should be part of the cluster. 

\Ve suggest that the threshold should be adaptive and vary as the clustering process 

is going on. 

Testing ideas is always interesting as it opens avenues not thought of before. Trying 

a clustering process around trigger words that are part of the resulting cluster from 
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Trigger 
word 

needle-1 

needle-1 
needle-1 
sew 

sew 
sew 
kitchen 
kitchen 
kitchen 
kitchen 
stove 
stove 
stomach 
airplane 

airplane 
elephant 
elephant 

soap 
soap 
soap 
soap 

wash 
wash 

Table 4.9: Multiple clusters from different words 

Threshold 
for SSW 

42 

12 
18 
42 

18 
18 
42 
12 
12 
18 
18 
18 
4 2 
18 

18 
12 
4 2 

handkerchief, pin, ribbon, string, rainbow) 
GMT(1 , l )  {needle-1 , thread) 
G M T ( ~ , O )  
GMT(2,l)  

{needle-1, sew, thread) 
{sew, cloth, needle-1, needle-2, thread, 

GMT(1, l )  

{kitchen, stove, refrigerator, pan) 
{kitchen, stove, refrigerator, pan, pot, clay) 

button, patch-1, pin, pocket, wool, 
ribbon, rug, string, nest, prize, rainbow) 
{sew, needle-1, needleS, thread, button, pocket) 

G M T ( ~ , O )  
GMT(2, l )  

GMT(3,O) 1 {kitchen, stove, refrigerator, pan) 
GMT(1 , l )  I {stove, pan, kitchen, refrigerator, pot, clay) 

{sew, needle-1, needle-2, thread, button, pocket} 
{kitchen, stove, refrigerator, pan, box) 

GMT(3,O) 
GMT(1, l )  
GMT(1, l )  

GMT(1 , l )  I {elephant, skin, trunk-1, ear, zoo, bark, 

{stove, pan, kitchen) 
{stomach, kangaroo, pain, swallow, mouth) 
{airplane, wing, airport, fly-2, helicopter, jet, 
kit, machine, pilot, plane) 

GMT(3,O) 
GMT(1 , l )  

{airplane, wing, airport, helicopter, jet, kit, pilot, plane) 
{elephant, ear, zoo) 

. . 

GMT(1, l )  

. - 

leather, rhinoceros) 
{soap, bath, bubble, suds, wash, boil, steam) 

GMT(1, l )  
GMT(3,O) 
GMT(1, l )  

I clean-2, steam) 

{soap, dirt, mix, bath, bubble, suds, wash, boil, steam) 
{soap, dirt, mix, bath, bubble, suds, wash, boil) 
{soap, help, dirt, mix, bath, bubble, suds, 

GMT(1 , l )  
GMT(1 , l )  

wash, clean-2, boil, anchor, steam) 
{ wash, soap, bath, bathroom, suds, bubble, boil, steam) 
{ wash, soap, bath, bathroom, suds, bubble, boil, 



another word opened the door into a new dimension of analysis for the clusters. We 

could see the coherence of the set as it is more or less variant when we start from 

different words. We started to investigate the idea of having a subset of words that 

is more central to the cluster and some other words are more on the edge. 



Chapter 5 

DISCUSSION AND 

CONCLUSION 

This dissertation presented a method for transforming a machine readable dictionary 

into a Lexical Knowledge Base (LKB) made from Conceptual Graphs (CGs). 

In chapter 2 we showed how to convert a definition made of a few natural language 

sentences into a conceptual graph representation that is as structurally and semanti- 

cally disambiguated as possible. The CGs for all the nouns and verbs in the American 

Heritage First Dictionary (AHFD) formed the first major part of our LKB which is 

seen in its entirety in chapter 3. The LKB contains four parts: the g r a p h  definitions, 

the concep t  la t t ice ,  the re la t ion  l a t t i ce  and the concept  clusters .  Chapter 4 

presented the implementation of the ideas seen in the previous two chapters. We 

took the reader through numerous examples to show all the different operations pos- 

sibly performed by ARC-Concep t ,  our Acquisition, Representation and Clustering 

system which allows us to  build all four parts of the LKB. 

The present chapter will develop as follows. First, section 5.1 summarizes the 

research presented. Second, section 5.2 emphasizes the major contributions from this 

research. Third, section 5.3 looks at a few specific problems that were encountered. 

Fourth, section 5.4 offers numerous suggestions for future research. Finally, section 5 .5  

provides some general conclusions. 
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5.1 Dissertation summary 

In the introduction, we stated the following problem to be addressed: How can one, 

from existing information, (semi-)automatically create a substantial lexical knowledge 

base that is useful for processing, disambiguating and understanding sentences. This is 

an important problem because manual construction of an LKB can be labour intensive, 

error-prone and less systematic that an automatic process. 

For our research, the existing information is a children's first dictionary of which 

we claimed as our first hypothesis that it would be a good source of information to  

build an LKB if we focus toward NLP applications that need to  understand sentences 

used in a non-technical, daily usage type of context. 

We showed in chapter 2 all our processes to  extract the information from the 

AHFD and build a set of graph definitions. The graph definitions represent in a more 

disambiguated form the information given by the sentences in the AHFD. We build 

the graph definitions through multiple iterations, and by using the partially built 

LKB to  better analyze and disambiguate the sentences in the AHFD we validated not 

only our first hypothesis but also our second, which said that the processes developed 

to automatically build the LKB, can also be used to  augment and restructure the 

information contained in that LKB. 

Our third hypothesis was that the LKB can be structured so that words are 

"defined" in terms of their relationship t o  other words in the dictionary. The covert 

categories and the concept clusters presented in chapter 3 show interesting structures 

resulting from the definition of words in t.erms of other words. 

To elaborate on the points made above, we suggested the use of a children's first 

dictionary, the American Heritage First Dictionary (AHFD) for its emphasis on daily 

usage of words giving us a "naive" view on the world. When we look a t  the simple 

definitions of the AHFD, it is amazing to  see how much information they actually 

provide through the usage and examples, and how this information is often what we 

mostly need t o  understand a non-technical daily conversation. By using the AHFD as 

our source of lexical information, we were able to restrict our vocabulary to result in a 

project of reasonable size, dealing with general knowledge about day-to-day concepts 



and actions. 

The conceptual graph formalism was used throughout the construction of the LKB. 

The graph matching procedures, finding maximal common subgraphs and joining 

graphs, are the basic procedures for the construction and update of our LKB. 

All the steps from dictionary definitions to  conceptual graph representations were 

presented: the morphological analysis, the syntactic analysis to generate a parse tree 

from the sentence, the set of parse-to-CG rules to  transform the parse tree into a 

surface semantic conceptual graph. We looked into structural disambiguation, inves- 

tigating conjunction and prepositional attachment. Finally we looked at semantic 

disambiguation, trying to  find deeper semantic relations, performing some anaphora 

resolution and word sense disambiguation. 

We saw how the different parts of a definition, description, usage and example, 

are assigned a different weight and play a different role in the LKB. The description 

usually gives information essential to  the definition of the word, and it also contains 

the information used for building the concept hierarchy. The usage part is rich in 

information expressing generalities about the world. It uses keywords that can be 

interpreted as certainty information. The specific examples give the best illustration of 

the dynamic aspect of the LKB; processing them can make us change our expectations 

about typical situations and take note of exceptions to  rules. 

As an important part of our LKB, taxonomic relations were found through the 

analysis of the graph definitions from the AHFD. We reviewed how most research 

on knowledge extraction from dictionaries looks for taxonomic relations by finding 

the genus of the definition. The AHFD most often gives a taxonomic link in the 

first sentence of a definition using the genusldifferentia structure. We discussed the 

necessity of allowing tangled hierarchies to  be able to  represent all the information 

found in those definitions. 

Me explored the idea covert categories and showed that we should include those 

unlabeled classes in the concept hierarchy. These covert categories are often super- 

classes whose subclasses occupy the same case relation to  a verb. We saw the dual 

relation between covert categories and selectional restrictions. The covert categories 
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are created by processing information already in the LKB and can be used to comple- 

ment the concept hierarchy in semantic similarity measures. The facet of a human's 

lexical knowledge that has received the most attention in recent efforts to build LKBs 

is the set of lexical relations to a given word, most frequently the -nym relations 

(synonym, antonym, hyponym, meronym) [33, 23, 65, 1031. This exploration of the 

covert categories made us question the importance accorded to those particular rela- 

tions, especially (as it is the most widely used) the importance given to  the traditional 

taxonomy, the type/supertype information. Sometimes in the AHFD, a word is not 

defined via the genusldifferentia structure. This differs from the adult dictionaries, 

where a word of a certain part of speech is always defined through another word of 

the same part of speech. The adult dictionaries will find an abstract or complicated 

nominalization in order to  assign a genus. In the AHFD, a noun can be put into a 

relationship to  another part of speech, the most frequent case being that a noun is 

given as a case relation to  a verb. 

We presented another important part of the LKB, the building of concept clus- 

ters. We showed the multiple steps leading to the building of Concept Clustering 

Knowledge Graphs (CCKGs). Those knowledge structures are built within the 

LKB and can be seen as special structures integrating multiple parts of the LKB 

around a particular concept. The CCKGs could be either permanent or temporary 

structures depending on the application using the LKB. For example, for a text under- 

standing task, we can build beforehand the CCKGs corresponding t o  one or multiple 

keywords from the text. Once built, the CCKGs will help us in our comprehension 

and disambiguation of the text. The graph operations (maximal common subgraph 

and maximal join) defined on conceptual graphs, play an important role in our inte- 

gration process toward a final CCKG. Finding semantically significant words limits 

the search for the expansion of the cluster, and putting a threshold on the graph 

matching process limits the expansion itself, focusing on the addition of words who 

share some information with the CCKG. Clustering is often seen as a statistical oper- 

ation that puts together words "somehow" related. Here, we give a meaning to their 

clustering: we find and show the connections between concepts, and by doing so, we 

huild more than a cluster of words - we build a knowledge graph where the concepts 



interact with each other giving explicitly important information that will be useful 

for natural language processing tasks. 

We showed the LKB as a dynamic entity, that can and should be modified con- 

stantly through the acquisition of more information. Humans are constantly adapting 

their models of the world, often using NL to achieve this goal. To mimic this process, 

the LKB should be dynamic and easily modified through the processing of additional 

NL input. In our project, the dictionary is the starting point for building the LKB. 

The same method used to process the dictionary definitions can be used to process 

new text, assuming this text is written for children or it is made of sentences contain- 

ing a simple vocabulary and written in a simple way. Further research has to be done 

to establish a reasonable updating mechanism of the information by comparing and 

modifying the certainty levels assigned in the LKB. 

Finally, in a larger perspective, our LKB could be used for NLP applications for 

children, or as the core of a larger LKB, on which new information coming from 

dictionaries and corpora could be added. The new information does not necessarily 

have to be more complex or at a different level of detail from what we have so far. In 

the introduction, we mentioned that the AHFD was a good source of "shallow lexical 

knowledge" as described by Dahlgren [53] to be an independent and sufficient layer 

of naive semantics useful for text analysis. As our LKB is built on the AHFD, it 

becomes a source of shallow lexical knowledge. From there, we can try to  find sources 

of information of the same type we have now (small descriptions, words put in typical 

contexts) but for more words. 

Major contributions 

We present this section as five different contributions made over the course of this 

research. The first three are more general contributions that apply to  the overall 

perspective or approach promoted during this research and the last two are more 

specific contributions that make this work unique and original. 

1. Our use of Conceptual graphs as a unifying formalism 

2. Graph similarity used for test processing 
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3. LKB construction as a catalyst for future research 

4. Covert Categories 

.5. Clustering 

5.2.1 Our use of Conceptual Graphs as a unifying formalism 

By unifying formalism, we mean two things: (1) CGs can be used for most of the 

structures constructed during the development of the LKB, (2) our use of CGs allows 

the coexistence of ambiguous and non-ambiguous information within the LKB. 

We start with natural language sentences and first perform tagging and parsing. 

We obtain parse trees which are not structures represented by CGsl, and then we 

transform the parse trees into CGs. From then on, all the operations are performed 

on CGs and all the new information extracted by comparison and combination of 

known information is also stored as CGs. 

Unique to  this work is the idea of including prepositions within the relation taxon- 

omy. This is an important factor in our ability to  show, within the same representation 

formalism, information that is a t  different level of ambiguity. The CG representation 

of a definition which contains a preposition as a relation shows a surface semantic 

representation, that is close to  the syntax of the sentence. As we have access to 

more information, the representation can be disambiguated to  contain more specific 

relations, but we still use the same representation formalism. This is an important 

difference with the work of [I331 in which they introduce the use of predicates as an 

intermediate structure between their parse tree and their Conceptual Graph repre- 

sentation. A flexible structure must be able to  account for ambiguous concepts and 

relations. A concept with multiple senses can be part of a CG as an ambiguous con- 

cept. Each word has a concept type associated with i t ,  even if that concept does not 

correspond to any graph representation. Each sense of that word also has a concept 

type associated with it, which does correspond to the graph representation of its def- 

inition sentences. All concept types of the different senses of a word are considered 

' A  parse tree is still a directed graph,  and therefore could be represented by a conceptual graph. 
The words that  are nodes and leaves of the parse tree become CG concepts, and the CG relations 
are reduced to  a single possible relation .'childn. 



C'H.4 PTER 5. DISCljSSIOIV ;1,brD CONCL I'SION 248 

subclasses of the concept type associated with the word. Therefore, putting in the 

CC: the concept type associated with the word corresponds to putting a more general 

(therefore more ambiguous) concept that can hopefully be disambiguated later. 

The CG formalism makes use of a type hierarchy and a relation hierarchy. Those 

two structures are essential for comparing concepts. We introduced the idea of sets of 

words (found from conjunction) that can be assigned a label and be put in the type 

hierarchy (see section 3.2.2). A set can simply be represented by a CG containing 

isolated concepts with no relations between them. We are also able to introduce 

covert categories, represent them by a structure described in the CG formalism, the 

A-abstractions, and include them in the type hierarchy (section 3.2.7). 

The algorithms described for finding common subgraphs are useful as we attempt 

structural and semantic disambiguation which is based on comparison of information 

contained in the LKB, as well as when we build our clusters. For the clustering 

process, we make use of the maximal join algorithm from the CG formalism. We 

again represent the resulting cluster within the CG formalism. Its corresponding 

CCKG is a large CG containing all the relations among the cluster words as well as 

their relation to other words in the specific context. The cluster itself is a smaller CG 

containing the set of words as isolated concepts. 

We intend to do text analysis using the CG formalism as well. We can transform a 

sentence in a text into a CG, and then compare that CG to the information contained 

in our LKB, all stored as CGs. 

5.2.2 Graph similarity for text processing 

The importance of concept comparison is noted by Collins and Quillian: 

W e  only want to  point out here that it is quite basic to  the understanding 

of language processing to find out how people decide whether two concepts 

car) br identified in  a particular case. [45]. 

During this research, we use graph comparison for many different tasks. Graph 

comparison and graph subsumption are used everywhere. Comparing graphs is based 



CHAPTER 3. DISCUSSION 'LVD CONCL I'SION 

on comparing concepts. It is more elaborate as it demands comparing relations as 

well, and identifying identical structures, not just isolated identical or compatible 

concepts and relations. The way to find if a graph is compatible with another graph, 

is to attempt a projection of the first graph on the second graph, or of the second 

graph on the first graph. The way to find if two graphs share a common subgraph is 

to  attempt the projection of the different subgraphs of the first graph onto the second 

graph and vice versa. Similarity or compatibility of information is the key to multiple 

ambiguity resolution. 

Graph comparison is used in the following tasks: 

Finding is-a relations: To build the type hierarchy, we must find is-a relations 

within graphs. We project a simple subgraph [everything]->(is-a)->[everything] 

onto all graphs in the LKB and update the type hierarchy from our findings. 

Prepositional attachment: To decide between two possible graphs for the same 

sentence that differ on their prepositional attachment, we generate two sub- 

graphs (one for each possible attachment) that we project on the definitions on 

the words involved in the attachment. If a projection is found for one subgraph 

and not the other, we choose the graph containing it. 

Word sense disambiguation: To decide on the sense of a word, we try finding 

the largest common subgraph between the graph in which it is used and the 

defining graphs corresponding to its different senses. 

Finding deeper semantic relations: A defining formula found in a sentence that 

corresponds to a particular semantic relation can be found at the graph level by 

projecting a particular subgraph corresponding to the formula onto all graphs 

in the LKB. 

Covert categories: Finding covert categories consists of projecting simple sub- 

graphs built around verbs onto all graph representations of the LKB. 
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Clustering: The whole clustering process is based on finding common subgraphs 

between the graph representation of different words and then joining more in- 

formation around them. 

5.2.3 LKB construction as a catalyst for future research 

This research investigates a large problem: the construction of an LKB from a chil- 

dren's dictionary. In addressing such a large problem, it allows subproblems to  be 

examined in context rather than in isolation. This dissertation presented solutions to 

some associated subproblems and established some grounds t o  resolve other subprob- 

lems. In addition, it allows previously proposed solutions to  be integrated with other 

solutions, again in context. 

The creation of an LKB by automatically extracting information from text de- 

mands that some part of the project be oriented toward text analysis. Yet, text 

analysis is in fact the problem for which the LKB is needed. 

We attempted to break the circle here by starting with a simple text source that 

would be easier to analyze so we could build an LKB and then enrich that LKB later 

with other texts. Although we did start with a children's dictionary in which there 

is no notion of part-of-speech, we used a tagger and parser t o  analyze the sentences. 

This is one area that could be further expanded. There is much exciting research on 

language acquisition and automatic grammar learning [52]. 

\Ve transformed our parse trees into conceptual graphs, and applied multiple struc- 

tural disambiguation heuristics. At that point as well there is much on-going research 

on finding the right prepositional attachment or the right conjunction attachment. 

But, whatever method is used, we can always see it as a reduction of the number of 

graphs assigned to each sentence. The goal is to produce one graph per sentence, and 

more advanced techniques can be added to help that task. 

Then we briefly touched on the idea of semantic disambiguation, looking at very 

interesting problems such as anaphora resolution and word sense disambiguation. 

Again there is a large open door to  explore these avenues more. Anaphora resolution 

can further lead us into exploring discourse analysis, which will be useful if we attempt 



to augment our LKB with information from free-form text and not from dictionary 

definitions. 

Once we obtain a single graph per sentence, we are only starting our exploration 

into the construction of the LKB. We looked into the construction of the type hier- 

archy, explored the idea of covert categories and mentioned the importance of these 

structures for finding similarity between concepts. Semantic similarity is another 

fascinating aspect of language analysis. A more detailed exploration into semantic 

distance could only ease the construction of some internal structures to  the LKB (such 

as the clusters), as well as ease the comparison of new text with the information within 

the LKB. This last issue is an important research avenue, how to use new texts t o  

augment the LKB, and how the LKB is useful to analyze these texts. In the present 

thesis we consider only the initial LKB. Using this LKB for further text analysis will 

illustrate and increase the value of the LKB. 

5.2.4 Covert categories 

This research allowed us to  put in perspective the importance given to the taxonomic 

link compared to  other kinds of information given in a dictionary. Even if the taxo- 

nomic link is often considered to represent the most important relation between words, 

we saw many examples where that is not the case. This work gives us an insight into 

the importance of not only the taxonomic relation but also all the other relations 

often considered less important or ignored. 

By trying to  find covert categories, that is, concepts with no corresponding word, 

we in fact find groups of words that are related by the fact that they can act as 

the same case role for a particular verb. For example, two concepts might share the 

property of being possible objects of the verb drink. That category does not have a 

name (we could come up with "drinkable liquidv which in fact expresses in an implicit 

manner the underlying case role we are trying to  get at and express explicitly). It is 

certainly a subclass of liquid, but it is more specific. The concepts gasoline or oil are 

subclasses of liquid but they are not drinkable. 

The covert categories give more dimension to the similarity of words than looking 
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only at hyponyms. Within the conceptual graph formalism, we are able to give a 

label to each covert category, and define it through a A-abstraction. This allows us to 

consider the new labels as concept types that are put inside the type hierarchy and 

on which we can use subsumption as we do on the other concept types created to  

correspond to words and word senses. 

We believe an LKB must include the taxonomic relation, as well as many other 

ones represented by covert categories, to contain as much information as possible for 

a natural language processing system. 

5.2.5 Concept Clustering 

The clustering process, which was explained in detail in section 3.4, is concerned with 

an issue that we have talked about since the start of the thesis: the importance of 

not looking at words in isolation. We have mentioned the work of [45] on semantic 

memory and the work of [51] in which they emphasize the importance of looking a t  

the surrounding context, specifically at the surrounding words to  be able to find the 

correct meaning of a word within a particular sentence and paragraph (giving a larger 

context). 

Most clustering techniques are based on statistical methods [43, 142, 31, 1081. 

Although our clustering technique does involve statistical measures to decide which 

words are semantically significant, the primary mechanism is not statistical. Our 

technique is also used on a machine readable dictionary and not on raw texts. We 

make use of the fact that the words used in a sentence are being defined elsewhere 

and we can go look up their own definitions. 

Our technique makes used of forward and backward references in the dictionary 

to find definitions of words which share some common information. The results are 

not only groups of words, as is found by all statistical techniques, but as well a large 

set of relations that describe the relations between all the words in the cluster, and 

between them and other words in the near context. We do not only know that a set 

of words share something in common. but we also know & it is that they share. 

Each word that is part of the cluster is therefore put in a larger context, and we have 



a more extended view of its relations to other words. 

One computational linguistic area which makes good use of clustering is infor- 

mation retrieval. Information retrieval uses keywords instead of understanding the 

words in the request. It can be improved by adding terms to the query related to  

the original term by lexical relations like synonymy, taxonomy, set-membership, or 

part-whole. The cluster might give some extra information worth taking into account. 

If we are trying to find documents about mailing for example, we probably would also 

like documents that talk about sending letters even if the query only mentions the 

word mail. On the other hand we would not want documents about sending flowers 

to be retrieved. So only knowing that send can be a synonym of mail is not enough. 

The cluster gives us a few semantically significant words that we can look for. We 

can have some measure of how appropriate is a document based on the number of 

concepts it contains that overlap with the cluster. Just looking a t  the words might 

not be enough, and therefore we will need the structure given by the CCKG of the 

relations between concepts. 

... the system can use clusters of relevant words to identify the desired 

senses of at least some of them, the lexicon can help filter unwanted refer- 

ences as well as help find wanted ones that might otherwise be missed. 

There are huge numbers of possible path definitions, only some of which 

will ever be useful. Which paths aid effective query expansion for infor- 

mation retrieval, for instance, is an open research topic. 

Without disambiguation, expanded indexing would create garbage indexes 

(expanded from wrong sense of words in the text), thus aggravating the 

problem of retrieving documents the user does not want. [I061 

\Ve think one possible path for query expansion is through the semantically sig- 

nificant words (section 3.4.1) in a cluster and the relations that give them a sense in 

a larger structure. 

The cluster can also be used to help the user specify one from the multiple senses 

of a particular keyword he/she gave to start a search. If the keyword is vague (non 
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semantically significant) or ambiguous (multiple senses) it might lead to an enormous 

number of retrieved documents. If that keyword is part of multiple clusters, the set 

of words within each cluster can be presented to the user to help him/her refine the 

search [42]. 

Specific problems 

We address in this section a few specific problems encountered along the development 

of the ideas in the thesis. 

Use of thresholds: It is always delicate to base calculations and heuristics on de- 

fined thresholds, as we have to be careful of the way each threshold is either 

calculated or decided. There are three thresholds we use. 

1.  SSW Threshold: One important threshold is the one that differentiates 

between semantically significant words and non-significant ones. We cal- 

culated that threshold based on the small corpus of the American Heritage 

First Dictionary. As our application stays within the use of the AHFD the 

statistics are adequate, but if we envisage adding new information in from 

text corpora, we should revise our statistics. We also calculate these statis- 

tics with respect to words as entities and not word senses. This will affect 

our clustering procedure. A word might contain two senses, one which 

is frequently used and the other not. Overall that word is not a SSW. 

However, in a cluster that contains the second sense, the word should be 

considered a SSW and we should explore its definition for expansion. In 

AHFD, only the few most common used word senses are presented, in 

which case, the problem is less noticeable. 

We saw during section 4.5 how the threshold on SSW influences the cluster 

built. A threshold adequate for one trigger word is not necessarily adequate 

for another trigger word (we gave an example with post-office and farmer). 

\.Ye believe an adaptive threshold, as mentioned in section 4.6, would be 

the solution to this problem, as it would keep the search space constant. 



2. Covert Threshold: Another threshold is used for deciding if a covert 

category becomes part of the system and is assigned a A-abstraction and 

put in the type hierarchy. Again, our corpus is small, and it becomes diffi- 

cult to decide if four occurrences is enough compared to three, or whether 

a pattern really corresponds to a covert category, or just happened to be 

repeated a few more times than usual in that particular corpus. We must 

consider as well that there is error included in the results as we do not 

have a single graph per sentence. If the corpus were larger, covert cate- 

gories that need to be put in the type hierarchy would be discovered by 

finding a much larger number of occurrences. 

3. Graph Matching Threshold: The third threshold, the graph matching 

threshold, is used for deciding whether we join a new graph to the cluster 

graph during the clustering process. This threshold causes less problem as 

it would not vary with the size of the corpus. It is representative of how 

much information we think should be shared between two structures before 

we decide to join them. But still, it is a decision based on empirical testing 

and observations, and therefore subject to  criticism. 

Separation of stages parselparse-to-CGIreduction : It is non-optimal to  build 

all the parse trees and then transform all parse trees into Conceptual Graphs, 

and then apply some structural disambiguation techniques to reduce the num- 

ber of graphs. These three stages should be more intertwined, so we can reduce 

the number of parses as we go. 

Limitations of CoGITo: The CG platform that we use has some important lim- 

itations which would render it less adequate if our system ARC-Concept were 

to become much larger. One such limitation is that the type hierarchy is imple- 

mented as a large matrix. If there are N concept types in the type hierarchy, 

CoGITo needs a matrix of size iV2 in which it stores the most immediate su- 

perclass for each combination pair of concept types. This saves in time when 

the information is needed, but it adds in time at the beginning of a session to 

calculate all this information, and mostly it adds in memory demand. At this 
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point, we have less than 3000 concept types, but already a matrix of 9 million 

integers. 

The second limitation of CoGITo is that it does not allow nested context. So, 

we can not represent, for example, a sentence like John said: " I  like skiing" 

which should look like: 

During our implementation, we have overlooked this limitation by interpreting 

the CGs with an ordering to  the relations used. In this last example, if we decide 

that the relation what has less priority than all other relations, the following 

graph, 

without the proposition concept being itself defined by a CG, would be equiv- 

alent to the first graph. The relations agent and object have priority over 

what and therefore we regroup I like skiing into a subgraph before joining it to 

the rest by the relation what. It is not standard practice in the CG formalism 

to give an ordering to  the relations. CGs usually allow for nested contexts, in 

which one concept type, such as proposition or a situation, can be itself defined 

by another CG. 

5.4 Future research 

As we said earlier, this research has a broad coverage, and it forms a good base for 

further explorations. iVe suggest here a few directions for future research, but there 

are certainly even more. We give an overview of some suggestions, and then reserve a 
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sub-section to future research in text analysis as it would be the next immediate step 

for testing and augmenting our LKB. 

Salience of relations: We compare graphs for multiple purposes, and we base some 

decisions (such as whether or not to include a new graph in a cluster) based on 

the common subgraphs found between two graphs. The number of SSWs con- 

tained in the common subgraphs and the size of the maximal common suhgraph 

(hopefully a structure with one or more relations and attached concepts) are used 

to establish the similarity between two graphs. One problem not addressed in 

this research and noted in Delugach [.54] is that not all semantic features found 

via our semantic relations are of equal importance. For example the fact that 

two concepts share the same color might be less important then the fact that 

two concepts share the same instrument for performing an action. A further ex- 

ploration into semantic relations to establish some kind of relative importance 

among them should be part of the future research agenda. 

Finding similarities between word senses: Each word in the dictionary has mul- 

tiple senses, and each sense contains multiple sentences. One major component 

of my research proposal presented two years ago [15] was the integration of the 

multiple senses of a word into a larger broader sense, or a t  least trying to find 

subgraphs present in multiple senses to find connections. 

The problem of dictionary definitions is well expressed by Atkins: 

The word meaning is often divided into discrete senses (and sometimes 

subsenses), which are then analyzed and recorded as though they had 

a life of their own, with little to link them except the coincidence of 

their being expressed by the same string of characters pronounced in 

the same way. [13] 

As mentioned in our introduction (see section l ) ,  our objective is a non-localist 

representation of the lexicon. This non-locality should first be present at the 

word level, by relating the multiple word senses of a word. Polysemy is handled 
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quite arbitrarily by lexicographers giving multiple senses according to more or 

less specific usage or as being part of different contexts. The idea of regular 

polysemy [12], lexical rules [47] or Lexical Implication Rules (LIRs) [I071 sees 

relations between word senses that are more than accidental. The relations are 

present in multiple words and can be extracted and formalized. 

This regular polysemy could hopefully be expressed with conceptual graphs, 

using A-abstraction that can be seen as transformation graphs. For example, 

one LIR says that a count noun of class vehicle can become an intransitive verb, 

meaning traveling using the noun as an instrument. 

RULE 1: Type Vehicle(A) is 

[Travel: A]->(instrument)->[Vehicle] 

As these rules assume that we can transform one part of speech into another, 

they must be accessible at the parse level. 

Regular polysemy is an interesting subject by itself. We continue hereafter on 

the idea that some senses could be related in an arbitrary manner but that we 

could still find connections between them. 

Let us look at the 3 senses of door from the American Heritage Dictionary 

where it seems obvious that some connections should be established between 

word senses. We could be talking about the entranceway, or the panel blocking 

it, but those two things are related. By establishing links between senses, we 

hope to reflect the meaning of a word in a more coherent manner. 

Door(1): A movable panel used to open or close an entranceway. 

Door(2): An entranceway to a room, building, or passage. 

0 Door(3): .A means of approach or access. 

The research proposal suggested to establish links between word senses, as again 

the non-localist approach should start at that stage. It is after the proposal that 

we decided to work with the American Heritage First Dictionary (AHFD). In 
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the XHFD, most words have a unique sense, and when there are multiple senses 

they usually have very different meanings. Still, sometimes there is a relation 

between the verb and noun versions of the same word, and we could try finding 

relations at that level. 

In support of our idea, the work of Dolan [56] aims at finding similarity between 

word senses. His work is part of the large Microsoft effort at building an LKB 

from the LDOCE dictionary and using this LKB to help in text analysis. Dolan 

suggests that the idea of assigning a particular word sense to  a word found in 

a text might not always be appropriate. It might become too specific, and the 

choice is often arbitrary as some senses are so closely related that either sense 

would be fine in the text or, better, a more general sense that includes these two 

senses. To establish similarity between word senses he makes use of the semantic 

and domain codes given in the LDOCE. But (in a spirit more similar to ours) 

he looks into the semantic relations in which both word senses are involved to 

compare their values. 

The ideas presented in this dissertation are close in spirit to  the ones in the 

proposal, as instead of joining word senses, we decided t o  join different words 

with our clustering process. So even if our clustering is on multiple words, the 

technique of graph matching and graph joining can be tried to see what it does 

on the joining of multiple senses of one word. In the large example we presented 

in section 4.5.1, we built a cluster around the trigger word post-office, in which 

are present two senses of mail. One side effect of clustering is to bring together 

related word senses and show the relation between them. 

Parsing: There are two options (quite opposite in spirit) for future research related 

to the parsing done in this research. One is to  parse better, and the other one 

is not to  parse at all. 

1. The ARC-Concept system makes use of its own parse, which allows the 

exploration of many aspects of the NLP, understanding the many types of 

ambiguity. The grammar and chart parser developed for ARC-Concept are 



certainly adequate for analyzing the simple sentences in the AHFD, and 

it would certainly be adequate for analyzing texts coming from children's 

story. Its potential is not certain for adult's texts. There are many com- 

mercial and non-commercial parsers available, and we could certainly look 

into those to  replace the parsing module. Our parser and grammar are 

quite robust, finding a parse for 92% of all sentences present in the AHFD. 

2. The AHFD was augmented in the electronic version with parts of speech 

information. Exploring grammar learning or children's language acquisi- 

tion was outside the scope of this dissertation, so we had no choice other 

than to  tag and parse our sentences to  obtain the graph representation 

needed to  go on with our explorations into covert categories, clustering, 

etc. But as future research, it would be fascinating t o  try to generate the 

conceptual graph representations without doing this parsing process, or by 

learning how to parse by starting with two-word sentences, then three-word 

sentences and so on. There is certainly much interesting research to do in 

lexical and grammar acquisition in children of different ages [140]. 

Text Segmentation: A text in more than a sequence of words. Each sentence is 

related or not to  the preceding and following one. Identifying the structure of 

the text consists in finding smaller units showing a certain lexical cohesion. In 

[86], they talk about a process called lexical cohesion profile which locates 

segment boundaries in a text. They define lexical cohesiveness as word similarity 

computed by spreading activation on a semantic network [87]. Their network is 

made up of words definitions extracted from the LDOCE. 

We believe that our clustering process base on definitions, could be triggered 

dynamically by semantically significant words found in the sentences of a text. 

\Vhen there is cohesion between a sequence of words, then we could find common 

subgraphs between the definitions of these words. When a word cannot be added 

to the present cluster, it can become the starting point of a second cluster. When 

a new word comes along we try clustering it to the first and second cluster, if it 

does associate with the second cluster, we are probably at a boundary. 
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Language generat ion:  Some work has been done on generating sentences from a 

C'G representation [104]. As part of the KALIPSOS project mentioned earlier, 

Nogier and Zock [I051 developed a generation module. It would be very inter- 

esting to express in a paragraph in natural language the result of our clustering 

process. Starting with multiple sentences from multiple definitions, we could 

bring all the information together into a coherent, non-redundant unit. Ex- 

pressing the information with natural language sentences would be like giving 

a summary of our discovery. 

We could investigate whether some of our analysis processes are reversible and 

can be used as a generation process. For example, we have multiple rules for 

parse-to-CG transformations which could probably be used as cg-to-parse rules 

as well. 

Second language acquisition: When you look at books for second language ac- 

quisition, one method to  make a person learn a language is to  put him/her into 

a particular situation and learn the elements, objects, actions, typical questions 

and answers that are related to  that situation. For example, in the Berlitz 

Essential German [I], some of the chapters are: meeting a new person and pre- 

senting yourself, going on a vacation trip, being at the office, being a t  the hotel, 

talking about the weather, having breakfast, going on a picnic, talking about 

the family, shopping in a large department store. 

Similarly, Schoelles and Hamburger talk about the role of NLP in CALL (Com- 

puter-Assisted Language Learning) and mention the idea of "microworlds" as 

a hierarchy of objects with their description, properties, associated plans and 

actions [123]. 

This is reminiscent of Schank's scripts [121], and for us this seems like a good 

application for our clustering. We can start from a trigger word representative 

of the subject matter for a particular lesson, such as breakfast, store, picnic, 

family, and from there we create a cluster around that word showing all the 

related concepts possibly present in that situation and all the relations that link 

all these concepts together. 
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To interact with the learner, we need to be able to transform his/her ques- 

tions/remarks into conceptual graphs and compare these graphs with t he in- 

formation we have stored in the appropriate cluster. We would need as well 

a Natural Language (NL) generator that can start from a CG description and 

explain in NL to  the learner what is present in the cluster, what the important 

elements and relations are. As well, the rules the NL generator uses to  go from 

a CG description to a NL sentence could be explained to the learner as a mech- 

anism for him/her to generate correct sentences from mental representations of 

the situation. 

Machine translation: The clustering would be interesting to  explore in a multi- 

lingual environment. Let us assume we work with two languages, French and 

English. We could perform clustering starting from a particular concept for 

which we know the word in both languages (for example we start with post- 

office and bureau de poste), and then compare the resulting clusters. As there 

is a lot of information present in both clusters, we have more chances of find- 

ing corresponding subgraphs (which would show compatible relations between 

concepts) and connections between words. 

It is usually hard to find matching on single definitions as they might emphasize 

different aspects and therefore often no connections are found between the defi- 

nitions in the two languages. The more information we gather the more chances 

we have to  find overlapping information. As well, the clustering process on 

both sides will have disambiguated some words having multiple senses, and the 

French-English correspondence between two words might be reduced to finding 

a correspondence between word senses. 

Another interesting aspect of matching cluster graphs from two languages is 

that it might help disambiguate some relations. On each side (example the 

English and the French side) there is a relation taxonomy that shows the su- 

perclass/subclass relations between deeper semantic relations and more general 

prepositions. For example we have the two following corresponding subgraphs: 
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[send]->(in)->[mail] 

[envoyerl- >(par)- > [poste] 

assuming we were able to find the correspondence between mail and poste and 

between send and envoyer. The French preposition par is a supertype for more 

than one deeper semantic relations: 

agent: j'ai appris la nouvelle par Jacques 

I heard (learned about) the news from Jacques 

path: je regarde par la fenPtre 

I look out the window 

manner elle est venue par avion 

she came by plane 

The English preposition in is a supertype for four semantic relations: 

point-in-time: Ted's birthday is in August 

location: fish swim in the water 

manner: ants live in large group 

part-of: the branch in the tree 

In this particular case, we have only one possibility of convergence of the two 

prepositions, it is on the semantic relation manner. We therefore disambiguate 

the relation in both languages. In other cases, for example if it had been the 

English sentence send through the mail, we could still have reduced the French 

ambiguity, but from four to two possible semantic relations, here manner and 

path. 

Investigation into Lexical Gaps: Each language is a reflection of a whole culture 

behind it, it has a history, it evolved over time, sometimes into strange or inex- 

plicable constructions. When we look at pairs of languages we find many lexical 

gays [89], that is words in a source language that don't have any equivalent in 

a target language. In relation to CGs, we show part of an example with the 

taxonomy of vehicles in English and Chinese given in [130]. 



vehicle -> bicycle (zixingche) 

-> qiche -> car 

-> taxi (chuzuqiche) 

-> bus (gonggongqiche) 

-> truck (kache) 

-> train (huoche) 

Our investigation into covert categories might be helpful for looking at lexical 

gaps. In fact a covert category is a concept in one language that does not have 

a corresponding word. We saw for example, that the concepts of a "writing 

instrument" or a "drinkable object" can be present in our mind without a single 

word to correspond to it. These covert categories as we saw often correspond 

to case roles to  particular verbs. When we try to compare two type hierarchies 

coming from different languages, maybe the covert categories in one language 

will actually be known words in the other language. 

This observation certainly deserves more investigation for different languages. 

We might look into other types of covert categories that could be related to 

nouns and not just centered around verbs. 

5.4.1 Using the LKB for text processing 

The LKB is built for one main objective: helping Natural Language Processing (NLP) 

systems for their task of text understanding. NLP systems need a great deal of 

information about words. By doing a detailed analysis on word definitions and a large 

part of the disambiguation process as we are building the Lexical Knowledge Base 

(LKB)  from a Machine Readable Dictionary, we aim toward a more coherent view of 

a lexicon containing as much information as possible and in the most explicit form. 

ll:e want to give a larger amount of information surrounding each word, putting it in 

context. For applications like machine translation, information retrieval or question- 

answering, the LKB aims to ease the tasks of disambiguation, finding related concepts 

or finding implicit information. 



In its present state, the LKB can be used to help us analyze more dictionary 

definitions, or other text input. In return, the new inputs will help us modify and 

update the LKB. It is a constant loop of refining the LKB to be more accurate, 

perform better text analysis and then refine the LKB even more 1191. 

We can think of the constructed LKB as a core that contains general and basic 

information about day to  day life. As mentioned in the introduction chapter, the 

AHFD is the second dictionary in a series of four, meant to  contain information for 

children of different ages. The AHFD contains around 2000 words, and the next 

one in the series, the American Heritage Children's Dictionary contains about 30000 

words. It is aimed at children of age 8-11. This is when in primary school children 

start learning about more specialized fields, they go into more details about history, 

science, geography, etc. It would be interesting to expand our LKB by learning about 

these different fields from text books. As well as text books on particular subjects, it 

would be very interesting to take children's stories and try to update the information 

stored in our LKB. 

The expansion of the LKB means the addition of more concepts and more links, 

and one concern is to  what extent the processes presented during this research are 

able to scale up, if instead of 2000 words, we now have 40000 words. The sentence 

to graph transformation will need some adaptation. It works on individual sentences, 

therefore the number of sentences to process is not an issue. On the other hand, 

if the texts used to  acquire information come from different sources, the parser will 

need to be adapted. The parse-to-CG module will also need some adaptation as it 

is based on the discovery within the AHFD of frequently used patterns that lead to 

deeper semantic relations. Once the CGs are obtained, the rest of the process will 

be identical. The prepositional attachment disambiguation module makes use of the 

information in the LKB but it only looks at the words related to the preposition, and 

therefore having more words in the LKB will not be an issue. 

The finding of covert categories is the process that will be influenced the most by 

the size of the LKB. To establish a covert category, we must iterate through all the 

verbs present, build subgraphs around those verbs and then do multiple projections 

on all the graph definitions within the LKB to find if the subgraphs (that will possibly 
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become covert categories) are present a sufficient number of times to be considered 

covert categories. The threshold will need to be adapted and the process will take 

much longer. The main operation is the projection operation which is known to be 

NP-complete [44]. Cogis and Guinaldo [44] list multiple methods proposed by different 

researchers to  restrict the problem in such a way that the complexity is reduced to be 

polynomial and therefore not create combinatory explosion. 

The clustering process will not really be influenced by the size of the LKB. In- 

creasing from 2000 to  40000 words will not have a dramatic effect on the number of 

words used in a single definition. The notion of semantically significant words (which 

will scale up as it is a statistical measure on a larger corpus) will still constrain and 

direct the search for words to  be added just as it does in the AHFD. 

One concern is to use the LKB for text analysis. If we perform sentence disam- 

biguation by accessing information in the LKB and comparing it t o  the information 

in the sentence to  be analyzed, we will need a good indexing method on the words 

stored in the LKB, so we can access the definition of a particular word quickly and 

also access the clusters in which it is present in a quick manner. 

The use of time and storage is one technical concern, but another more funda- 

mental concern is knowledge consistency. With respect to  the update mechanism, 

research should be oriented toward ways of establishing consistency, or non-conflict of 

information (as briefly introduced using the certainty levels). The LKB only perpetu- 

ates a general view of things, but if we start analyzing texts we will have to enter into 

the field of knowledge belief, and individual representation of the world as similar or 

different from what is in the LKB. 

The following subsections show how the LKB might be updated through the pro- 

cessing of textual input (in addition to the AHFD) and how the LKB can help in the 

processing of additional input. 

Modifvine: the LKB 

As we said earlier, the LKB is built dynamically and should continue to  evolve as we 

process new text. Two main parts of the LKB, the concept hierarchy and the graph 
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definitions, are subject to  modification by new incoming information. To continue 

updating our LKB, after our definitions have all been analyzed, we will look for 

simple texts, such as children's stories. We assume we are processing simplified text, 

like that written for children that only includes concepts from the dictionary, or new 

concepts that we can link to the existing ones via the concept hierarchy or definitions. 

The sentences should be short and simple like the examples found in the dictionary. 

So, the process of updating the LKB from text is essentially the same as the one that 

updates the LKB as dictionary definitions are processed. 

Concept hierarchy When analyzing a text that contains concepts not already 

in the knowledge base, the certainty levels established on the relations can help us 

find a place for a new concept in the concept hierarchy. For example, if we have 

the fact [eat]->(instrument :expected)->[utensil] in the knowledge base, and the graph 

[John]<-(agent)<-[eat]->(instrument)->[chopsticks] is extracted from a text, we can 

infer the following taxonomic link: [chopstick]->(is-a)->[utensil] and place chopstick 

as a subclass of utensil in the type hierarchy. For much research on lexical acquisition, 

see [I%]. 

In general, it is important to make a hierarchy as rich as possible to  aid in word 

sense disambiguation and anaphora resolution when analyzing text. To further aug- 

ment the concept hierarchy from the analysis of texts, we can use the method of 

pattern finding presented in [75]. Patterns such as < N P  { , N P )  *{,) o r  other IVP> 

(e.g. apples, pears or other fruits), or < N P { , )  especially { N P , )  * { o r / a n d )  NP> (e.g. 

fruits, especially apples and pears) can be used t o  determine the classes of words. 

Definitions The certainty levels that we introduced within the CG representation 

will play an important role in the changes to  occur in the LKB. As we said earlier, 

the examples can be seen more or less as the different experiences that someone 

goes through day after day. We keep the general pattern that encompasses all the 

individual examples, and when we do find one particular example that expresses a 

different view, it is kept as a contradictory example. 

In the example from section :3.1.2 we had the verb bake where the various concepts 
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that could fill the object relation were all of class food. Therefore we assigned a 

selectional restriction on the object of bake, expressed by an object relation at the 

certainty level expected: 

-4s we process new texts, if we then encounter an example saying: Susan baked her 

clay animals in the oven which does not follow the norm, we include it in the LKB as 

a specific example: 

We can establish a threshold for the number of examples to be encountered before 

we actually move the information from the example part to  the usage part of the 

LKB. This means deleting multiple examples, and adding a generic information with 

a selectional restriction expressed as a possible or expected relation. For example, if we 

see more examples, in which we bake clay pots, then clay figurines, we might update 

to: 

and then we can discard the examples we were keeping. 

Analyzing text 

From the perspective of natural language processing, the value of any lexical 

knowledge base is ultimately to be judged by the degree of support it oflers 

to tasks like syntactic analysis and semantic interpretation. [25] 

An important case of syntactic ambiguity that can make use of semantic infor- 

mation to resolve the ambiguity is prepositional attachment. We presented in sec- 

tion 2.:3.1 how to eliminate structural ambiguity trying to find the correct preposi- 

tional attachment by looking into the graph definitions in the LKB. We can use the 

exact same method for analyzing new texts and achieve with our system a similar 

disambiguation process as described in [83]. 

\.ire see a typical prepositional attachment problem in example 5.4.1. 
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Example 5.4.1 - I eat my fish with a fork. 

Graphl: 

[eat]->(object)- >[fish]->(with)->[fork] 

Graph2: 

[eat]- >(object)->[fish] 

->(with)->[fork] 

We will look into the graph definitions of fish and fork to  find the subgraph [fish]- 

>(with)->[fork] and we will look into the graph definitions of eat and fork to  find 

the subgraph [eat]->(with)->[fork]. We can choose the best structural interpretation 

depending on the similarity between our graph definitions. 

Finding similarity with graph definitions can also help in the case of anaphora 

resolution 1881. 

One interesting research based on an LKB of Conceptual Graphs is the project 

KALIPSOS described in [61] which performed some natural language understanding 

tasks using CGs. They differentiate between two aspects of a word, its canonical 

graph and its meaning by use. Their LKB consists of a list of words; each word is 

associated to a canonical graph, which gives the "basic" meaning of the word, and 

a set of schemata called schematic cluster which represents the meaning by use. For 

example the entry for the word key and open might look as follows (from [61]): 

'key' 

concept type: KEY < PHYS-OBJECT 

schematic cluster: 

( s l )  [KEY]<(INST)<-[OPEN]->(OBJ)->[DOOR] 
(s2) [KEY]<-(PART)<[KEYBOARD] 

<-(OBJ)<-[PRESS]->(AGT)->[PERSON] 

'open' 

concept type: OPEN < ACT 

canonical graphs: 

( c l )  [PERSON]<-(XGT)<-[OPEN]->(OBJ)->[PHYS-OBJECT] 
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We intentionally do not distinguish between the canonical graph and the meaning 

by use graph in our system as we think such a division is arbitrary and does not help 

further processing. But at this point we want to look at their text analysis using the 

LKB and not the structure of their LKB. 

Their analysis of a sentence is based on the compositionality principle. The se- 

mantic representation of an entire sentence can be built by combining the semantic 

representations associated with its components. The meaning of a sentence is there- 

fore the maximal join of the conceptual graphs associated with the words in the 

sentence. Those words correspond to  the leaves of the parse tree resulting from a 

syntactic analysis. For a word, the conceptual graph chosen could be its canonical 

graph or some schemata of its schematic cluster. 

In their paper, it does not seem obvious why they would chose to  look at the 

graphs of certain words and not others in the parse tree. They use, as an example, 

the sentence John opened the session by pressing the enter key. They look at two 

possible schemata of key and two possible canonical graphs of open to find the right 

interpretation of the sentence, where the right interpretation contains the appropriate 

sense of each ambiguous word. 

Looking into the graph definitions (for them canonical graphs and schemata) to 

disambiguate a new sentence seems the right thing to do. But they do not mention 

how they decide to look into key and open, and not into session, pressing or enter. One 

way to reduce the search would be to  limit the chosen words to be nouns or verbs 

and to  be Semantically Significant Words (SSWs). In which case, for their example, 

we would limit the search to  open, session, press and key. Some of these words might 

not be SSWs. The prior syntactic analysis is useful to eliminate the word open as it 

is not used as a verb but rather as a modifier to the noun key. 

Our clustering process allows us to  perform in advance multiple maximal join 

and create larger graphs representing different situations. When we analyze a new 

sentence. we look at the SSWs in the sentence and form a test cluster that we can 



intersect with the clusters built within our LKB. If there is such an intersection 

(containing a certain minimal number of words), then the cluster graph will be our 

guide to interpret the sentence, maybe disambiguate some words, help in anaphora 

resolution, etc. On the other hand, if such a cluster does not exist, we can use the same 

method as presented in [61] and build a larger graph from the individual definition 

graphs of the words in the sentence. Here, we would use the same idea of only looking 

at SSWs in the sentence. If there are NbWords in the sentence that are SSWs, and 

each word Wi possesses NbSenses(W;), there will be M possible maximal joins. 

NbWords 

= n NbSenses(W,) 
i= l  

The largest of all these maximal joins will likely contain the right sense for all 

words in the sentence that could be assigned multiple senses. One interesting aspect 

of this approach to  word sense disambiguation is that it addresses the ambiguities of 

all the words in the sentence at the same time. More often we see access to dictionary 

definitions to try to  disambiguate a single word in a sentence [go, 711. An immediate 

context is established around a word and that word is disambiguated by looking up 

the definitions of the words in its surrounding context to find overlapping information. 

For simultaneous disambiguation using dictionary definitions, Veronis and Ide [I351 

propose a method based on spreading activation in neural networks. As well, Cowie 

e t  al. [49] propose a method based on simulated annealing which is a technique we 

see used in the associative memory types of neural networks. None of these methods 

looks into the relations between words, they only look into sets of overlapping (or 

activated) words extracted from each definition. 

5.5 Conclusion 

M:e conclude and summarize the ideas presented in this dissertation by answering 

some interesting and very pertinent questions raised in [22] 

1 .  What can be learned from texts and from dictionaries? 



A lot. We believe that much information can be learned from texts and dictio- 

naries, and that the manual effort of encoding information for a system should 

be kept to a minimum. We did not look at acquisition from text in this thesis, 

but we looked into much detail at the acquisition and encoding of information 

from dictionaries. More particularly we looked at a children's dictionary, the 

American Heritage First Dictionary (AHFD). The AHFD has been our guide 

and it certainly made us learn a lot about the world, about day to day objects, 

actions and situations. Through a process of sentence analysis, and transforma- 

tion into conceptual graphs we were able to encode all the information from the 

AHFD into a Lexical Knowledge Base (LKB). Not only did we learn about the 

definitions of each word, but we were able to  relate all these words together into 

a large interconnected network of information. We were also able to  extract a 

type hierarchy from the definitions of the AHFD. The one thing we did manually 

was to build a relation hierarchy. Both the concept and relation hierarchy are 

used intensively for comparing information, finding similarities between graph 

representations. We were also able to  construct clusters, to rearrange the infor- 

mation into larger structures to make us understand the meaning of groups of 

words within a larger context. 

2. Are domain-specific corpora better than general purpose texts and 

dictionaries for the purpose of extracting data useful to automatic 

language processing? 

We would say that domain-specific corpora have their place in the construction 

of an LKB, but not as a first source of information. What would be very 

fascinating is to  build an LKB from nothing, as a child starts from nothing. 

He/she acquires knowledge from day to day experiences, from being told about 

objects and actions by people around. We do not have the luxury of spending 

years on knowledge acquisition, but studying the process would be interesting. 

With this thesis, we feel like we have started at least closer to the core by 

acquiring knowledge from a children's first dictionary than if we had acquired 

information on a specific subject via corpora of very specialized texts. The 
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XHFD is a very good source of information about daily situations and it can be 

used a the core of an LKB that can later grow via the analysis of other more 

advanced general purpose texts and dictionaries and eventually via domain- 

specific corpora. 

3. What is the relative contribution of statistical and AI-based tech- 

niques (syntax and semantics) in the analysis of textual databases? 

We could not say the exact contribution of each but we did, during our research, 

touch both approaches. We in fact used more AI-based techniques, that we 

called heuristics, to  solve multiple problems that came along. In fact, the most 

general technique used throughout the thesis is graph matching. It is good and 

satisfying to reduce all problems to be solved by a singular approach. We did use 

statistical techniques, although we know that the size of our corpora is much 

too small to consider the numbers found to  be reliable. One very important 

statistical measure is to establish whether a word is semantically significant or 

not. That measure is used throughout the thesis as part of our graph comparison 

process. 

We could in fact say that most heuristics in our thesis are based on two general 

principle, one AI-Based, and one statistically based. From AI-Based Conceptual 

Graph formalism, we constantly use the graph matching algorithm to compare 

graphs to find similarities. From statistical techniques, we use a simple cal- 

culation of number of occurrences of a word within a corpora to establish its 

semantic significance. The semantic significance is then used within the graph 

matching process so that matches on significant words is more significant then 

matching on non-significant words. The graph matching based on SSWs is used 

to solve some NL problems such as prepositional attachment and word sense 

disambiguation. 

4. How much of the process of acquiring lexical knowledge can actually 

be automated? 
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Much of it can be automated, and it should. There is no sense in doing manual 

work that can be done automatically, especially with the tremendous amount 

of information that is present in electronic form these days. 

For this thesis, we do have structures that were entered manually, as well as all 

the heuristics were decided and manually encoded, such as the morphological 

rules and tagging process, the parse rules and chart parser, the parse-to-CG 

transformation rules, the multiple structural disambiguation heuristics, the se- 

mantic disambiguation heuristics, the process to find covert categories, and the 

process to build clusters. 

It is mostly processes and not data that were entered manually, and therefore, 

once they are in place, they can be used on all different data. Certainly some 

investigations into machine learning [52] might show some processes as learnable 

from data, such as morphological rules, part of speech tagging, parsing rules, 

or parse-to-CG transformation rules. But that assumes large set of sentences 

tagged, parsed, transformed into cg so that we can learn the process from them. 

It is probably feasible, but was not the goal of this thesis. The process of 

discovering covert categories requires minimal code to find much information 

within the data source that we have. It could be used on any data source 

transformed into CGs. The clustering process can be applied on any starting 

word and will automatically generate a cluster around it, so again minimal 

process encoding that can be used on large data sets. 

Finally, it is good to  note that many of all the processes described are based on a 

more fundamental process, graph matching. Throughout the thesis, we empha- 

sized the importance of graph comparison, the importance of finding similarity 

between concepts. We based all our heuristics, and our explorations into differ- 

ent avenues on that simple idea, and it lead us quite far. 



Appendix A 

Electronic version of AHFD 

I n p u t :  American Heritage First Dictionary (AHFD) 

Descript ion:  Contains 1800 entries and pictures for English vocabulary ad- 

dressed to  children from age 6 to  8. 

Format :  . 
Word X 

Defining sentence 1. 

Defining sentence 2. 

Word-Y 

1 .Defining sentence 1. 

Defining sentence 2. 

2.Defining sentence 1. Defining sentence 2. 

Process:  We produced an electronic version of the American Heritage First Dictio- 

nary (FD)'. We add information about the parts of speech which are not present 

in the AHFD. 

The chosen parts of speech (tags) associated with the words are: 

'Copyright 0 1 9 9 4  by Houghton Mifflin Company. Reproduced by permission from T H E  ASIER- 
ICAN HERITAGE FIRST DICTIONARY. 
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- abb: abbreviation 

- adj: adjective 

- adjnum: numerical adjective 

- adj-c: comparative adjective 

- ad j s :  superlative adjective 

- adv: adverb 

- aux: auxiliary verb 

- conj: conjunction 

- det: determinant 

- m: verb (mean) for definitions 

- n : noun 

- prep: preposition 

- pron: pronoun 

- pron-pos: possessive pronoun 

- rel-pron: relative pronoun 

- than: word than always used in special conditions 

- v : verb transitive or intransitive 

- vi : verb intransitive only 

- vb : verb (be) 

- quest: words used for questions (how, what) 

More information is added when known: 

- t o  verb entries (v,vi,vb): tense, person and  number  

- pronoun entries: person, number,  gender and  position occupied in t h e  

sentence (subject ,  object)  

- noun entries and  determinants:  number (only if plural for nouns) 

Multiple senses: a word can have multiple senses, each sense defined via a 

few sentences. We give a t ag  t o  each sense, and  a n  integer represents the  

word sense. 
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Multiple tags: Sometimes a word sense is defined in the AHFD using exam- 

ples that suggest multiple parts of speech. For example, the word "after" 

is defined as: 

After means following. 

After the ball game, we went home. 

Steve ran fast when his brother came after him. 

In this case, we would add two tags, one for conjunction and one for prepo- 

sition and separate them with a "/" in the file. Each tag gets an integer 

as if it was a different word sense even if they are defined using the same 

set of sentences. 

Output: File dict.dat. 

Format: . 
Word-W 

l.conj.12.adv. 

Defining sentence 1. 

Defining sentence 2. 

WordX 

1 .vb.tense.person.number. 

Defining sentence 1. 

Defining sentence 2. 

Word-Y 

1 .pron.number.person.gender.position. 

Defining sentence 1. 

Defining sentence 2. 

LVord-Z 

1.n. 

Defining sentence 1. 

2.n. 
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Defining sentence 1. 

Defining sentence 2. 
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Irregular words and morphological 

rules 

I n p u t  files o r  data: 

Sentence to tag 

dict.tags : file of possible words and their tags, it is created automatically from 

the dictionary file dict.dat 

Verb-list.dat, plurals.dat,  abb.dat  : files containing respectively: 

- a list of irregular verbs 

- a list of irregular plurals 



APPENDIX B. 1RREGlrLAR WORDS .41VD MORPHOLOC~IC.4 L RZTLES 280 

child/children/ 

foot/feet/ 

goose/geese/ 

mouse/mice/ 

person/people/ 

tooth/teeth/ 

- a list of abbreviations. 

arenlt/are not/ 

can'tlcan not/ 

cannotlcan not/ 

couldn't/could not / 
didn't /did not / 
doesn't/does not/ 

don't/do not/ 

Dr./doctor/ 

hadn'tlhad not/ 

haven't / have not / 
I7ll/1 will/ 

peoplenames.dat : as the  tagging process goes, when an  unknown word is 

found, the tagger stops and asks the user to  enter the base word and its tag, if 

the tag happens to  be "pn" for a person's name, we add the name into this file 

Lisa pn f 

David pn m 

Tom pn m 

Ann pn f 

Steve pn m 

Timmy pn m 

Kathy pn f 

John pn m 

Sarah pn f 

Kate pn f 

Beth pn f 
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Marcel pn m 

symbols.dat :  created by hand is a file containing a list of symbols, it contains 

individual letters "a-z" (tag: le tmin) ,  "A-Z" (tag: l e tma j ) ,  "0-9" (tag: n),  

.'+=<>" (tag: s),  "." (tag: ep (end phrase)), "," (tag: pause), "?" (tag: eq 
(end question)), '""" (tag: dquote,equote) 

.4 letmaj  / 

... 
Z le tmaj  / 
a letmin / 
. . . 
z letmin / 
o n /  
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mots~composes.dat: this file is created manually, although in a large dictio- 

nary it should be done automatically, and it contains a list contains the entries 

from AHFD that  are compounds. If a word is added by the user (was not de- 

fined in dictionary but used in a definition) and it is a compound word it will 

be added t o  the list. 

each other 

fire engine 

hot dog 

ice cream 

peanut butter 

post office 

roller skate 

string bean 

teddy bear 

bus stop 

so much 

out of 

Morphological rules: 

Noun plural ending in "men", singular "man". 

Words ending in "s", "es": noun plural, or verb in third person singular 

Words ending in "ies": noun plural or verb 3.p.s. ending in "y" 

Noun plural ending in "ves" from singular ending in "f" 

Past tense verb, ending in "ed" 

Continuing present tense verb, ending in "ing" 

Comparative or superlative adjective ending in "ern and "est" 

X t l ~ ~ e r b  made from adjective ending in "ly" 
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0 Noun made from verb ending in "ern 

0 Adjective made from noun ending in "al" 



Appendix C 

Parse rules 

RULE.DIC 
s2 s l  ep /* full-sentence(s2) -> sentence(s1) + "." (ep) */  
s2 sq eq /* full-sentence(s2) -> question-sentence(sq) + "?"(eq) */ 
sq do s l  /* question-sentence(sq) -> "do" + sentence(s1) */ 
s l  s l  cs /* sentence(s1) -> conjunction of multiple sentences */ 
cs conj s l  s l  sm p s l  /* sentence(s1) -> adverbial phrase(sm) + ","(pause) + s l  */ 

/*  ex: when you go to  the store, you buy groceries */ 
s l  p2 p s l  /* sentence(s1) -> prepositional phrase(p2) + pause + s l  */ 

/* ex: a t  the store, you buy groceries */ 
sm adv s l  /*  adverbial phrase(sm) -> adverb(adv) + sl */ 
p s l  pause s l  

vp vp sm /* verb phrase(vp) -> verbphrase(vp) + adverbial phrase(sm) */ 
/* ex: (John) ((goes to  the store)vp (when the sun goes down)sm)vp) */ 

s2 i f s l  ep /* full sentence(s2) -> if + s l  + pause + s l  */ 
/* ex: If you go to  the movies, I'll go with you. */  

i f s l  i f s  p s l  

i f s  if s l  

p s l  s l  nil /* pause can be omitted in previous cases */ 
s l  np vp /* sentence(s1) -> noun phrase(np) + verb phrase(vp) */ 
vp vp i f s  /*  verb phrase(vp) -> vp + if-sentence */  

/* (I)  will go to  the movies if you go */ 
np np cnp /* noun phrase can be a conjunction of multiple noun phrases */ 
cnp conj np 

n p  np r2 /*  noun phrase(np) -> np + relative clause(r2) */  



r2 r2 c r l  /*  a relative clause can be a conjunction of relative clauses */  
cr l  conj r2 

r2 rel-pron vp /* relative clause(r2) -> relative pronoun 

+ verb phrase(vp) */ 
/* ex. the  ladies (who sing) */ 

r2 rel-pron np-v /* relative clause(r2) -> relative pronoun + np */  
/* + non-complete sentence (np-v) */ 

np-v np vt  /* non-comple sentence(np-v) -> noun phrase + transitive verb */ 
/* ex. the shirt that  (you like) */ 

np-v np  v t i n f  /*  np-v -> noun-phrase + transitive verb modified by infinitival phrase */ 
v t i n f  vt  inf-vp /* ex. the shirt that  (you like to  wear) */  
np-v np  v t s m  /* np-v -> noun-phrase + transitive verb modified by adverbial phrase */ 
v t s m  vt s m  /* ex. the shirt tha t  (I wore when you came) */ 
np-v np vi-p /*  np-v -> noun-phrase + verb phrase + prep */ 
vi-p vp prep /* ex. the  chair tha t  (you are sitting on)  */ 
np-v np vst /* np-v -> noun-phrase + verb phrase (wantllike) + 

/* n p  + inf + verb-phrase + prep */ 
vst vs s-vp /*  ex. the  chair t ha t  (you want John t o  sit on) */ 
s-vp np inf-vi-p 

inf-vi-p inf vi-p 

adj  adj-cause t h a t s l  /* adjective(adj) -> so + adj + t ha t  + sentence */ 
adj-cause so adj  /*  a painting (so marvellous that  your eyes blink when you see i t)  */ 
t h a t s l  that  s l  

np np p p i n f  /* noun phrase(np) -> np + past participle + infinitival phrase */  
p p i n f  pp inf-vp /* the shirt hung to  dry */ 
np np ~2 /*  np  -> np  + prepositional phrase (p2) */ 
~2 prep nP /* the  shirt in the drawer */ 
p2 p2 c p l  /* p2 can be a conjunction of prepositional phrases */ 
cpl  conj p2 

inf-vp inf-vp cinf /*  infinitival phrase can be a conjunction of infinitival phrases */ 
cinf conj inf-vp 

cp l  conj inf-vp /* prepositional phrases and infinitival phrases */ 
cinf conj p2 /* can be mixed in conjunctions */ 
n p  det n /*  np -> determinant(det) + noun */ 
n p  pron-pos n /*  np -> possessive pronoun + noun */ 

/ *  ex. m y  shirt */  
up a c l j n u n ~  n /*  np -> numerical adjective + noun */ 



.4 PPESDIX C'. P'4RSE R I:LES 

/*  ex. twelve shirts */  
np number n /*  np -> number + noun */ 

/*  ex. 12 shirts */  
np n nil /* np -> noun */  
np pn nil /* np -> proper noun */ 
np pron nil /* np -> pronoun */ 
n nc np /* np -> noun + possessive mark(poss) + noun phrase(np) */ 
nc n poss /* ex. the lady's hat */  
nc pron poss /* ex. someone's hat */ 
nc pn poss /* ex. John's hat */ 
np np adj /* np -> np + adjectival phrase */ 
nP nP PP /* np -> np + past participle */ 
n adj n /* noun -> adjectival phrase + noun */ 
pron adj pron /* pronoun -> adjectival phrase + pronoun */ 
a d j n u m  a d j n u m  cad jnum 

/* numerical adjective can be a conjunction of numerical adjectives */ 
cadjmum conj a d j n u m  

adj adv adj 

adj adj  p2 

adj a d j s  nil 

adj adj-c nil 

adj adj cadj 

cadj conj adj 

adv adv cadv 

cadv conj adv 

vp vs i n f s  

i n f s  np inf-vp 

i n f s  i n f s  ci 

ci conj i n f s  

vp vw s s  

s s  np ss-vp 

ss-vp vp nil 

vp vq quest-sl 

quest-sl quest vp 

vp vs inf-vps 

/*  adj -> adverb + adjectival phrase */  
/ *  ex. the very large room */ 
/* adj -> adjectival phrase + prepositional phrase */ 
/* ex. afternoons are short in winter */ 
/*  adj -> superlative adjective */ 
/* adj -> comparative adjective */ 
/* adj can be a conjunction of adjectival phrases */ 

/* adverb can be a conjunction of adverbs */ 

/* verb phrase -> (want/like)vs + infinitival sentence */ 
/ *  ex. John wants Mary to  come with him */ 
/*  infinitival sentence can be a conjunction */ 
/*  of multiple infinitival sentences */ 
/*  vp -> "watch" + sentence */ 
/* ex. John watched Mary go to  the store */  

/* vp -> (decide/judge)vq + (where/what)quest + vp */ 
/*  ex. John judged who did the best drawing */ 
/* vp -> (help/rnake)vs + infinitival sentence */  
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inf-vps inf vp 

inf-vps np inf-vps 

inf-vps vp nil 

inf-vp inf vp 

vp vp h o w s l  

h o w s l  how-adj s l  

how-adj how adj 

howadj  howadj  n 

p2 prep v p i n g  

v p i n g  v p i n g  cing 

cing conj v p i n g  

v p i n g  v t i n g  np 

v p i n g  v i ing  nil 

n v i ing  nil 

vp vp adv-vp 

vp adv-vp vp 

adv-vp quest inf-vp 

VP "P "VP 
cvp conj vp 

vp vp p2 

vp vp inf-vp 

vp vi nil 

vp vt np 

vp vg np2 

lip2 np np 

vp vb nil 

vp v s  r3 

r3 rel-pron s l  

vp vf adj 

/* ex. John helped ( to )  bring the tree inside */ 
/* ex. John helped Mary bring the tree */  

/*  infinitival phrase -> "to" + verb phrase */ 
/*  vp -> vp + how phrase */ 
/*  ex. know how heavy it is */ 

/* ex. know how many pounds this weighs */ 
/* prepositional phrase -> preposition + ing verb phrase */ 
/* for eating */ 
/* ing verb can be a conjunction of ing verbs */ 

/* ing verb phrase ( v p i n g )  -> ing transitive verb + np */ 
/* ing verb phrase (vp ing)  -> ing intransitive verb */ 
/* any ing verb can become a noun */ 
/*  ex. the eating, the coming */  
/*  verb phrase -> verb phrase + adverbial phrase */ 
/*  verb phrase -> adverbial phrase + verb phrase */ 
/*  adverbial phrase -> quest + infinitival phrase */ 
/*  where to  go */ 
/*  verb phrase can be a conjunction of verb phrases */  

/* verb phrase -> vp + prepositional phrase */ 
/* eat a t  the table */  
/* verb phrase -> vp + infinitival phrase */ 
/* eat t o  get bigger */ 
/* verb phrase -> intransitive verb */ 
/*  verb phrase -> transitive verb + noun phrase */ 
/* verb phrase -> (give/mail)vg + 2 noun phrases */ 
/*  give Mary the book */ 
/* verb phrase -> verb to  be */ 
/* verb phrase -> (thinklbelieve) + relative clause 

/*  made of a complete sentence */ 
/*  I believe that  John will win the race */  
/*  verb phrase -> (staylfeel) + adjectival phrase */ 
/ *  ex. I feel bad. 
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vt vt cvt 

cvt conj vt 

vt vb v t i n g  

vi vb vi ing 

vb vb not 

vp vb np 

vp vb adj 

PP PP CPP 

CPP conj PP 
vt mod vt 

vi mod vi 

vb mod vb 

mod aux nil 

mod adv nil 

mod aux not 

vp vp m o d a p  

vt vt m o d a p  

vb vb m o d a p  

m o d a p  adv nil 

conj pause nil 

conj pause conj 

vp vp cornpnp 

cornpnp comp np 

comp adj-c than 

comp as adj-as 

adj-, adj as 

n1 m not 

/* a transitive verb can be a conjunction of transitive verbs */ 

/*  transitive verb -> verb t o  be(vb) + ing form of transitive verb */  
/* intransitive verb -> verb t o  be(vb) + ing form of intransitive verb */  
/* vb -> vb + negation(not) */  
/*  vp -> vb + np */  
/* ex. John is a carpenter. */ 
/* vp -> vb + p2 */ 
/* ex. John is in a good mood */ 
/* vb -> vb + adjectival phrase */ 
/* ex. John is tall. */ 
/* vb -> vb + past participle */  
/*  ex. is gone */  
/* past particple -> past participle + prepositional phrase */ 
/* left on the couch */ 
/* past participle can be a conjunction of multiple past participles */  

/* modifiers before verbs, as auxiliaries or adverbs */ 

/* modifiers after the verb */ 

/* conjunction -> ","(pause) */ 
/ *  conjunction -> pause + conjunction */ 
/* verb phrase -> verb phrase + comparative noun phrase */ 
/* comparative noun phrase -> comparative adjective + than + np */ 

/* comparative noun phrase -> as + adjective + as */ 

/*  verb mean or is can be negated in the definition */ 
/ *  a car is not a ... */ 
/*  verb mean or is can be modified by an adverb */  
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s l  inf-vp m i n f  

m i n f  nl inf-vp 

np a d j n u m  nil 

/*n symbx nil 

/*symbx symb csymb 

/*symbx symb nil 

/*csymb conj symbx 

/*symb l e t m a j  nil 

s l  np m n p  

m n p  m s l  

m n p  m h o w s l  

vp va quote 

quote pause s-quote 

quote p s-quote 

s-quote equote s2x 

s2x s2 equote 

vt vh-a pp 

vi vh-a pp 

vh-a vh nil 

vh-a vh adv 

/* a car also means a .. . * /  
/*  verb phrase definitions: to  xxx is to yyy */ 
/* infinitival phrase (meanslis) infinitival phrase */ 
/* noun phrase can be a number */ 
/* you add two and two */ 
/*  a noun can be a symbol or a conjunction of symbols */ 

/* the only symbol defined so far is a capital letter */ 
/* noun can be defined by a sentence */ 
/*  ash is what is left after ... */ 
/* the age of something is how old it is */  
/**/ vp -> va pause equote s2 equote 

/**/ vp -> va : equote s2 equote 

I**/ 
I**/ 
I**/ 
/*  vt/vi -> auxiliary have + pp */ 
/*  ex. astronauts have walked on the moon */ 
/* add adverb between auxiliary and pp */ 
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adv-vp adj  np 

r3  s l  nil 

r2 np-v nil 

m o d a p  prep nil 

n n n  

/ *  adverbial phrase -> adjective + noun phrase * /  

/ *  skip the relative pronoun * /  
/ *  John believes ( tha t )  Mary will win the race */  

/ *  skip the relative pronoun */ 
/ *  Mary's skirt ( t ha t )  I washed yesterday * /  

/ *  use a preposition as a modifier after a verb */ 

/ *  a noun can be made of two nouns * /  
/ *  the metal head */ 

/ *  a full sentence can be a n  adverbial sentence */ 
/ *  When the leaves fall. */ 

/ *  a full sentence can be a verb phrase */ 



Appendix D 

Parse to Conceptual Graph rules 

Here is some information to  help the understanding of the rules presented: 

0 The word in parenthesis next to a category indicates a variation. That variation 

shows information that has been carried up into the parsing from the morpho- 

logical analysis. The words in the parse tree correspond t o  the base forms found. 

For example, if the word "eater" was analyzed as an agent variation on a verb 

"eat", in the parse tree we will have (n->eat), but in the data structure we keep 

information about part-of-speech, here noun, and variation, here agent. These 

variations will affect the resulting graph. 

0 We put letters in parenthesis next to the categories t o  avoid confusion when 

there are two items of the same part of speech involved 

0 The referent "ref" indicates an anaphora that will have to be resolved. 

0 The referent "quest" indicates a question is asked, so the referent is not resolved, 

but it is not in the sentence 

The relation "quest" is a superclass for all relations (where, when, what, who). 

\Ve have no way to decide now which it is, and we will try at the graph level 

to decide by looking a t  the superclass of the object. ex. [go]->(quest)->[home], 

and we find that "place" subsumes "home", we can specialize the relation to 

*-wherev, [go]-> (where)- > [home] 
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parse to CG rules: LEAF LEVEL 1 
SYNTACTIC RULE(S) 
GRAPH 

[person:pn] 
pron 

[n]-> (agent)-> [person] 
adj 
[I->(attribut )->[adj] 
adv 
[advl->(modif)-> [] 
not 
[not]->(modif)-> [I 
n/v/ot hers 
In1 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

John 
[person: John] 
he 
[he:ref] 
eater 
[eat]-> (agent)-> [person] 
beautiful ring 
[ring]->(attribut)->[beautiful] 
runs fast 
[fast]->(modif)-> [run] 
will not go 
[not]- > (modif)-> [go] 
chair 
[chair] 

parse to  CG rules: CONJUNCTIONS 

SYNTACTIC RULE(S) I EXAMPLE SENTENCE 

I []->(pause)-> [np] I [cat]-> (pause)- > [dog] 

GRAPH 

cnp conj np 

[I->(conj ) - > [ n ~ l  
conj pause conj 

Il->(conj)->bpl 
conj pause nil 

EXAMPLE GRAPH 
- 

cat and dog 
[cat]- > (and)- > [dog] 
cat, or dog 
[cat]->(or)->[dog] 
cat, dog 
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parse to  CG rules: PREPOSITIONS 
SYNTACTIC RULE(S) 
GRAPH 
?? ?? p2 

~2 Prep nP 
[ I - > ( P ~ ~ P ) - > [ ~ P ]  
p2 p2 cpl 
cpl  conj p2 
[ I - > ( ~ r e ~ l ) - > [ n ~ ( a ) l  

- > ( ~ r e ~ 2 ) - >  [ n ~ ( b ) l  

parse to  CG rules: VERB FORMS AND MODIFIERS 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

cat on mat 
[cat]->(on)-> [mat] 
cat is playing with a ball 
and on the mat 
[play]->(with)->[ball] 

->(on)- > [mat] 

SYNTACTIC RULE(S) 
GRAPH 
v? vb v? ing  

[v? i ng] 
v? v?  m o d a p  
[mod-apl->(modif)->[v?] 

v? vb pp 

[PPI 
v ?  vh-a pp 

_ [PP] 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 
is going 

[PI 
drive fast 
[fast]->(modif)->[drive] 
is gone 

[go1 
have walked 
[walk] 
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Darse to CG rules: VERB COMPLEMENT 

SYNTACTIC RULE(S) 
GRAPH 

vp vt np 
[vtl->(object)->[np] 

vp vg np2 

np2 n p b )  np(b) 
[I->(to)->[np(a)l 

->(object)->[np(b)] 
vp vp inf-vp 
inf-vp inf vp 

[I->(goal)->[v~l 
vp vs i n f s  
in f s  np inf-vp 
[I->(what)->[vp]->(agent)->[np] 

vp vw sx 
sx np xx-vp 
xx-vp vp nil 
[I->(what)->[vp]->(agent)->[np] 

vp vp sm 
sm adv s l  
[I->(adv)->Is11 

vp vp sm 
a d v a p  np nil 

[I- > (quest )- > [npl 
vp vp compnp  
compnp comp np 
comp adj-c than 

[ I - >  (modif)-> [adjl->(than)->[np] 
comp as adj -as 
adj -as adj as 
[I->(modif)->[adj]->(equal)->[np] 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

brush your teeth 
[brush]->(object )->[teeth] 

give Mary the book 
[give]->(to)-> [Mary] 

->(object)->[book] 

eat to grow 
[eat]-> (goal)- > [grow] 

wants Mary to  come 
[want]->(what)->[come]->(agent)-> [Mary] 

watch Mary go home 

when you go 
[I->(when)->[g~]->(a~ent)->[~ou] 

go every day 
[go]->(quest)->[day]->(attribut)->[every] 

sing better than you 

sing as good as you 
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Darse to C G  rules: VERB COMPLEMENT (continued) 

SYNTACTIC RULE(S) 
GRAPH 
vp va quote 
quote pause s-quote 
s-quote equote s2x 
s2x s2 equote 
[I->(what)->[s%] 

vp vp h o w s l  
hows l  how-adj s l  
how-adj how adj 
[I->(what)->[sl]->(attribut)-> 

[adj : how] 
how-adj how-adj n 
[I->(what)->[sl]->(attribut)-> 

[n:howmany] 
vp vp ques t s l  
ques t s l  quest vp 
[I->(what)->[I<-(quest)<-[vp] 

ques t s l  quest s l  
[I->(what)->[]<-(quest)<-[sl] 

ques t s l  ques inf-vp 
[I->(what)->[]<-(quest)<-[vp] 

\ 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

John says, "xxx". 
[say]->(what)->[xxx] 

you know how heavy this is 
[know]->(what)->[is]->(athibut)-> 
[heavy: how] 
you know how many pounds this weighs 
[know]->(what)->[weigh]->(attribut)-> 
[pound: how many]  

John decided who did ... 
[person:quest]<-(what) <-[decide] 

<-(who)<[do] 
I know where the animal are 
[place:quest] <-(what)<-[know] 
<-(where)<-[be]->(agent)->[animal] 
I know how to fight 
[manne~quest]  <-(what)<-[know] 
<-(how)<-[fight] 
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Darse to CG rules: NOUN MODIFIERS 

SYNTACTIC RULE(S) 
GRAPH 

np det n 
[n:det] 

np pron-pos n 
[n: pron-pos] 

np number n 

adj adj -cause t h a t s l  
adj-cause so adj 
t h a t s l  that s l  
[I->(attribut)->[adj]<-(modif)<-[so] 

->(cause)-> [sl] 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

the cat 
[cat: the] 
my cat 
[cat :my] 
12 cats 
[cat:12] 
broken car 
[break]->(object)-> [car] 

John's book 
[John]->(pass)-> [book] 
metal head 
[metal]-> (modif)-> [head] 

light so bright that ... 
[light]->(attribut)->[bright] 
............... <-(modif)<-[so] 

->(cause)- > [. . .] 
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I the animals stay 
- 

parse to  CG rules: SENTENCE FORMATION 
SYNTACTIC RULE(S) 
GRAPH 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

[ v ~ I - > b g e n t ) - > [ n ~ ]  
s l  np vp(passive) 

[stay]->(agent)-> [animals] 
food is kept 

[vpl->(object)->[np] 
i f s l  i f s  p s l  

[keep]->(object)-> [food] 

i f s  if s l  
p s l  pause s l  
[sl(a)]->(if)->[sl(b)] 

i f s l  i f s  t h e n s l  
t h e n s l  then s l  
[sl(a)]->(if)-> [sl(b)] 

if you go, I'll go 
[go]->(agent)->[I] 

->(if)->[go]->(agent)->Iyou] 

if you go, then I'll go 
if you go, then I'll go 
[go]->(agent)-> [I] 

->(if)-> [go]->(agent)-> [you] 

parse to  CG rules: SPECIFIC DEFINITION SYNTAX 
SYNTACTIC RULE(S) 
GRAPH 
s l  np m n p  
m a p  m s l  
[npl->(equiv)-> [sl] 

s l  inf-vp minf  
minf  m inf-vp 
[vp( l)]->(equiv)-> [vp(2)] 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

ash is what is left 
[ash]->(equiv)->[what]<-(object)<-[leave] 

to  lie is to say 
[lie]->(equiv)-> [say] 
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Darse to  CG rules: RELATIVE CLAUSES 

SYNTACTIC RULE(S) 
GRAPH 

np np r2 
r2 rel-pron vp 

np-v np v t m o d  
v t m o d  vt nil 
[vtl->(object)->[] 

->(agent)-> [np] 
v t m o d  vt sm 
v t m o d  vt a d v a p  
v t m o d  vt inf-vp 

vst vs inf-vt 

vst vs s-vp 
s-vp np inf-vi-p 
inf-vi-p inf vi-p 
vi-p vp prep 
[vs]->(agent)->[np(l)] 

->(what)->[vp]->(agent)->[np(:!)] 

->(prep)->[l 

EXAMPLE SENTENCE 
EXAMPLE GRAPH 

the cat that runs 
[run]->(agent)-> [cat] 

the car that I like 
[like]->(object)-> [car] 

->(agent)->[I] 
add modifier to  vt 

the chair that you are sitting on 
[sit]->(agent)->[YOU] 

->(on)->[chair] 

the shirt that you like to  wear 
[like]- >(agent)- > [you] 

->(what)->[wear]->(object)->[shirt] 

the chair that you want John to  sit on 
[want]->(agent )-> [you] 

->(what)-> [sit]->(agent)-> [John] 
->(on)- > [chair] 



Appendix E 

Semantic Relation Transformat ion 

Graphs 

OBJECT RELATIONS: 1.  Part-whole relations 

PART-OF: part of an object (part-of) 

Defining formulas: an arm is a part of the body 

pines have needles on their branches 

SRTG : [something:B]->(part-of)->[something:A] 

Before : 

[something:A]<-(agent)<-[be]->(object)->[part]->(oi)->[something:B] 

[something:B]<-(agent)<-[have]->(object)->[something:A] 

PIECE-OF: piece of an object (piece-of) 

Defining formulas: a block is a piece of wood 

[something:A]<-(agent)<-[be]->(object)->[piece]->(oi)->[something:B] 

SRTG: [something:B]->(piece-of)->[something:A] 

AREA-OF: area of an object (area-of) 

Defining formulas: a beach is an area of sand 

[something:A]<-(agent)<-[be]->(object)->[area]->(of)->[something:B] 

SRTG: [something:B]->(area-of)->[something:A] 

AMOUNT-OF: amount of some mass noun (amount-of) 

Defining formulas: a breath is an amount of air 

SRTG: [something:B]->(amount-of)->[something:X] 
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Before: 

[something:A]<-(agent)<-[be]->(object)->[amount]->(of)->[something:B] 

CONTENT: the content of an object (content) 

Defining formulas: Paul was carrying a pail of water. 

SRTG: [something: B]->(content)-> [something:A] 

Before: 

[something]->(of)->[something:B] 

Memberlset relations 

SET-OF: group, set, pile of something (set-of) 

Defining formulas: an army is a large group of people 

a costume is a set of special clothes 

dust is tiny pieces of dirt 

a pile is a lot of something 

SRTG: [something:B]->(set-of)->[something:A] 

Before: 

[something:A]<-(agent)<-[be]->(object)->[group]->(of)->[something:B] 

[something:A]<-(agent)<-[be]->(object)->[set]->(of)->[something:B] 

[something:A]<-(agent)<-[be]->(object)->[piece:plural]->(of)-~[something:B] 

[something:A]<-(agent)<-[be]->(object)->[lot]->(of)->[something:B] 

ELEMENT-OF: one of many (element-of) 

Defining formulas: a letter is one of the symbols 

SRTG: [somet hing:B]->(element-of)-> [sornething:A] 

Before: 

[something:A]<-(agent)<-[be]->(object)->[one]->(of)->[something:B] 

Humanlanimal relations 

CHILD-OF: the child of a human or animal (child-of) 

Defining formulas: your cousin is the child of your aunt or uncle 

a lamb is a young sheep 

SRTG: [person/animal:B]->(child-of)->[person/animal:A] 

Before: 

[person/anin~al:A]<-(agent)<-[be]->(obje~t)->[child]->(of)->[~erson/animal:B] 

[person/anin~al:A]<-(agent)<-[be]->(obje~t)->[~erson/animal:B] 

->(athibut)->[young] 

POSSESSION: the possession of someone ( poss) 
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Defining formulas: men and women who have children are parents 

many people have dogs as pets 

SRTG: [person/animal:A]->(pass)->[something:B] 
Before: 

[person/animal:A]<-(agent)<-[have]->(object)->[something:B] 

HOME: someone's home or area of living (home-for) 

Defining formulas: a hive is a home for bees 

horses live on farms 

SRTG: [person/animal:B]->(home-for)-> [something:A] 

Before: 

[~omething:A]<-(agent)<-[be]->(object)->[home]->(for)->[~erson/animal:B] 

[person/animal:B]<-(agent)<-[live]->(in)->[something:A] 

-1. Comparison relations 

LIKE: indicate similarity between objects (like) 

Defining formulas: a rainbow looks like a ribbon ... 

rubbers are like shoes 

baskets are often shaped like bowls and ... 

SRTG: No one to find, the preposition like will be kept as is, 

and considered to mean similar 

MORE-THAN: a exageration of an attribute (more-than) 

Defining formulas: So far limited with the verb to be 

John is better than you (comparative adj) 

SRTG: No one to find, established at parse time 

[be]->(agent)->[person] 

->(attribut)->[attribute]->(more-than)->[person] 

AS: an equality in attribute (as) 

Defining formulas: Again so far limited with to be 

John is as good as you 

SRTG: No transformation for as if found as is in sentence, 

but negation of more-than, and less-than leads to as 

[be]->(agent)->[something:A] 

->(attribut)->[attribute:B]->(as)->[something:B] 

Before: 

[be]->(agent)->[something:A] 

->(attribut)->[attribute:B]->(more-than)->[something:B] 
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[be]->(agent)->[something: A] 
->(attribut)->[attribute:B]->(less-than)->[something:B] 

<-(modif)<-[not] 

LESS-THAN: a diminution of an attribute (less-than) 

Defining formulas: Same again, limited with to be 

John is not as good as you 

SRTG: negation of as 

[be]->(agent)->[something:A] 

->(attribut)->[attribute:B]->(less-than)->[something:B] 

Before: 

[be]->(agent)->[something:A] 

at athibut)->[attribute:B]->(as)->[something:B] 
<-(modif)<-[not] 

5. Spatial relations 

Prepositions: All possible prepositions, left as they are until 
further disambiguations 

Defining formulas: Many prepositions are possible (on,in,above, ...) 

SRTG: They are kept as relations, put as is in graph. 

When used with the verb to be, we can transform 

[something:A]->(preposition)-> [something:B] 

Before: 

[something:A]<-(agent)<-[be]->(preposition)->[something:B] 

6. Word relations 

OPPOSITE: the contrary of something/action (opposite) 

Defining formulas: back is the opposite of front 

to break means not to  work 

SRTG: In the case of the verb definition, the correct relation 

is established directly from the parse tree. 

[something:A]->(opposite)->[something:B] 

Before: 

[something:A]<-(agent)<-[be]->(object)->[something:B] 

<-(modif)<-[not] 

SYNONYMY: two similar objects or actions (equiv) 
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Defining formulas: automobile i s  a n o t h e r  word  for  car 

earth means  dirth w i th  no modifiers 

to beat m e a n s  to hit w i t h  n o  modifiers 

SRTG:  In the case of the verb definition, the correct relation 

is established directly from the parse tree. 

[something:A]->(equiv)->[something:B] 

Before: 

[something:A]<-(agent)<-[be]->(object)->[word]->(attribut)->[another] 

->(for)<-[something:B] 

[something:A]<-(agent)<-[mean]->(object)->[something:B] 

TAXONOMY: somethinglact being a subclass of 
another somethinglact (is-a) 

Defining formulas: an acorn i s  a nut that ... 

an apple i s  a k i n d  of  fruit 

a date is any o n e  day 

dogs, cats, birds, and insects are all animals 

pictures, poems, and musics are k inds  of art 

to crawl i s  to move on your hands and knees 

SRTG:  [something:A]->(is-a)->[something:B] 

Before: 

[something:A]<-(agent)<-[be]->(object)->[something:B] 

[~omething:A]<-(a~ent)<-[be]->(object)->[kind]->(of)->[something:B] 

Description relations 

NAME: the name of an object (name-of) 

Defining formulas:  an address is the n a m e  of  a place 

SRTG:  [something:B]->(name-of)->[something:A] 

Before: 

[s~mething:A]<-(a~ent)<-[be]->(object)->[name]->(of)->[something:B] 

ATTRIBUTE: any attribute to an object (attribut) 

Defining formulas:  an adjective modifying a noun 

SRTG:  Extracted from parse tree 

MATERIAL: what an object is made-of (material) 

Defining formulas:  glass is what windows are m a d e  f r o m  

a hose is a tube m a d e  of rubber 

SRTG:  [something:A]->(material)-> [something:B] 



Before: 

[something:A]<-(agent )<-[be]->(object )-> [madel->(of)->[something:B] 

[something:A]<-(agent)<-[be]->(object)->[made]->(from)->[something:B] 

FUNCTION: the function of an object (function) 

Defining formulas: a pen is a tool to write 

a fence is m a d e  to keep two places ... 

SRTG:  [something:A]->(function)->[act:B] 

Before: 

[s~mething:A]<-(a~ent)<-[be]->(object)->[made]->(to)->[act:B] 

ABOUT: the subject matter (about) 

Defining formulas: preposition about, or some adjectives 

SRTG:  we will need more information to decide to  transform an 

attribute relation into an about relation, 

a s  in the history book, [book]->(attribute)->[history] 

SITUATION RELATIONS: 1.  Action modifier 

MODIF: general adverbial modifier (modif) 

Defining formulas: All adverbial modifiers 

SRTG:  Extracted from parse tree 

[act:A]->(modif)->[B] 

2. Case-role relations 

INSTRUMENT: instrument involved in act (instrument) 

Defining formulas: a bag is u sed  to hold things 

to  bite means to  cut w i th  your teeth 

to  climb means to use  your hands and feet 

S R T G :  the formula used t o  can be transformed, but the 

preposition with is ambiguous and we need 

further information to transform it into the instrument relation 

[act:A]->(instrument)->[something:B] 

Before: 

[something:B]<-(object)<-[use]->(goal)->[act:A] 

[something:B]<-(agent)<-[be]->(object)->[tool] 

->(goal)->[act :A] 

METHOD: method used to achieve act (method) 

Defining formulas: a trap is a way to catch wild animals 



to blow means to make a sound by pushing ing form air 

SRTG: [act:A]->(method)->[something:B] 

Before: 

[something:B]<-(agent)<-[be]->(object)->[way] 

->(goal)->[act:A] 

[act:A]->(by)->[act:B] 

MANNER: manner that the act is performed (manner) 

Defining formulas: to giggle is to laugh in a silly way 

SRTG: [act:A]->(manner)->[attribute:B] 

Before: 

[act:A]->(in)->[way]->(attribute)->[attribute:B] 

AGENT: the person/animal who performs the action (agent) 

Defining formulas: an author is someone who writes a story 

a barber is a person who gives haircut 

The question was asked (past part) by Dana. 

SRTG: Most agent relations are found directly for the parse tree, 

either the subject of the verb, or object if in passive form 

[act:A]->(agent)->[something:B] 

Before: 

[act:A]->(by)->[something:B] 

EXPERIENCER: person experiencing a state (experiencer) 

Defining formulas: Mary is cold (adj) 

SRTG: [person:A]->(experiencer)->[attribute:B] 

Before: 

[person:A]<-(agent)<-[be]->(attribut)->[attribute:B] 

LOCATION: where the action takes place (location) 

Defining formulas: an airport is a place where ... 

a bathroom is a room where ... 
a bank is a safe place to keep your money 

a direction is somewhere you can look 

to arrive is to come to a place 

SRTG: [act:A]->(location)->[place:B] 

Before: 

[sornething:B]<-(agent)<-[be]->(object)->[place] 

->(to)->[act:A] 



[something:~]<-(agent)<-[be]->(what)->[place/somewhere]<-(where)<-[a~t:A] 

[act]->(in)->[way]->(attribut)->[attribute:B] 

OBJECT: direct object of the action (object) 

Defining formulas: Direct object of transitive verb 

SRTG: Put into graph directly from transformation of parse tree 

[act:A]->(object)->[something:B] 

RECIPIENT: recipient of act (recipient) 

Defining formulas: to  pass means to give to  someone with your hands 

SRTG: [act:A]->(recipient)->[person:B] 

Before: 

[act:A]->(to)->[person:B] 

->(object)->[something] 

RESULT: an entity that results from an action (result) 

Defining formulas: ash is what is left (past part.) after something burns 

smoke is made by things that burn 

SRTG: [act:A]->(result)->[something:B] 

Before: 

[something:B]<-(object)<-[act:A]->(after)->[act] 

[something:B]<-(object)<-[make]->(by)->[act:A] 

CAUSE: an action/state resulting from another actionlstate (cause) 

Defining formulas: to  kill is to  cause to die 

to  pour is to make liquid go from one place to another 

the window broke when a baseball went through it 

SRTG: The relation when will need more analysis to be changed 

into result, it could also mean a time. 

[act :B]->(cause)->[act:A] 

Before: 

[act:A]->(equiv)->[cause/make]->(goal)->[act:B] 

[act : B]- >(when)- > [act :A] 

TRANSFORMATION: the new state of an entity because of an action 

(transform) 

Defining formulas: to  die means to become dead 

SRTG: [act:A]->(transform)->[attribute:B] 

Before: 
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[act:A]->(equiv)->[become]->(attribute)->[attribute:B] 

REASON: why the act is performed (reason) 

Defining formulas: many people hug each other to show t h a t  they are glad 

to  laugh is to make a sound t h a t  show t h a t  something 

is funny 

Olivier asked for more soup because  he was hungry 

SRTG:  [act:A]->(reason)->[act:B] 

Before: 

[act:B]->(to)->[show]->(what)->[act:A] 

[act:A]->(because)->[act:B] 

GOAL: goal of an action (goal) 

Defining formulas: to  chase means to run after something to try to  catch it 

to  explain means to  tell about something s o  that ... 
SRTG:  The goal relation will be put in the cg from the parse tree 

[act : A]- > (goal)- > [act : B] 

ACCOMPANIMENT: multiple agents cooperating to a unique act (ac- 
companiment) 

Defining formulas: Bill and Jane swam together 

SRTG:  [person:A]->(accompaniment)->[person:B] 

Before: 

[person:A]->(and)->[person:B] 

<-(agent)<-[act]<-(modif)<-[together] 

Before: 

DIRECTION: (direction) 

Defining formulas: to  bow means to bend the body forward  

SRTG:  [act:A]->(direction)->[forward/backward] 

Before: 

[act:A]->(modif)->[forward/backward] 

SOURCE/DEST: (source)/(dest) 

Defining formulas: to move is to  go f r o m  one place to another 

SRTG: [place]<-(source)<-[act:A]->(destination)->[place] 

Before: 

[place]<-(from)<-[act:A]->(to)->[place] 

[act:A]->(from)->[place]->(to)->[place] 



PATH: . 

Defining formulas: to  eat means to take food into the body through 

the mouth 

to  fly is to travel through the air 

SRTG: [act:A]->(path)->[something] 

Before: 

[act:A]->(through)->[something] 

DURING: (during) 

Defining formulas: to  dream means to imagine stories while you sleep 

Jeff breathes fast when he runs 

SRTG: when is ambiguous and will need more processing 

before a transformation to during. 

[act:A]->(during)->[act:B] 

Before: 

[act:A]->(while)->[act:B] 

[act:A]->(when)->[act:B] 

POINT IN TIME: specific time (at-time) 

Defining formulas: birth is the moment when a person is born 

SRTG: [act:A]->(at-time)->[time:B] 

Before: 

[time:B]->(when)->[act:A] 

FREQUENCE: (frequence) 

Defining formulas: to  practice is to  do something many times so that ... 
SRTG: [act:A]->(frequence)->[time:B] 

Before: 

[act:A]->(quest)->[time:B] 

3. Agent involvement relations 

ABILITY : (able) 

Defining formulas: power is being able to do work 

to know is to be able to say who they are 

SRTG: [person:A]->(able)->[act:B] 

Before: 

[person:A]<-(agent)<-[be]->(attribute)->[able] 

->(to)->[act:B] 

[person:A]<-(agent)<-[act:B]<-(rnodif)<-[can] 
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DESIRED ACT: (desire) 

Defining formulas: to hurry is to try to  go quickly 

SRTG: [person:A]->(desire)->[act:B] 

Before: 

[person: A]<-(agent)<-[want]->(to)->[act :B] 

INTENTION (intention) 

Defining formulas: 

SRTG: [person:A]->(intention)->[act:B] 

Before: 

[person:A]<-(agent)<-[try]->(to)->[act:B] 

OBLIGATION (obligation) 

Defining formulas: have to 

SRTG: [person:A]->(obligation)->[act:B] 

Before: 

[person:A]<-(agent)<-[have]->(to)->[act:B] 

1. Action relations 

ACT (act) 

Defining formulas: attention is looking (verb) and listening with care 

exercise is running (verb) and jumping 

SRTG: [something:A]->(act )->[act :B] 
Before: 

[something: A]->(equiv)->[act :B] 

EVENT (event) 

Defining formulas: a chase is when someone follow ... (with a sentence) 

an earthquake happens when ... 
SRTG: [something:A]->(process)->[act:B] 

Before: 

[something:A]<-(agent)<-[is/happen]->(when)->[act:B] 

PROCESS (process) 

Defining formulas: to roll is to keep turning over and over 

to twist is to  turn around and around repetition 

SRTG: [act:A]->(continuous)->[act :B] 
Before: 

[act:X]->(equiv)->[keep]->(object)->[act:B] 

[a~t:A]->(e~uiv)->[act:B]->(n~odif)->[C]->(alld)->[C] 



SEQUENCE: (sequence) 

Defining formulas: t o  dip means to put something in liquid and then to ... 

After the ball game, we went home. 

SRTG: [act:A]->(succ)->[act:B] 

Before: 

[act: A]->(then)->[act:B] 

[act:B]->(after)->[act:A] 
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