TENSOR REPRESENTATIONS AND HARMONY
THEORY: A CRITICAL ANALYSIS

by

René Gourley

B.Math University of Waterloo, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© René Gourley 1995
SIMON FRASER UNIVERSITY
June, 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.



e

Acquisitions and

Bibliothéque naticnale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

3245 Wellington Street
Yy -
Lomavwa, sg

K1iA ONG K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395. rnue Wellington
a Omtano Otawa (Ontario)

Your hie  Votre référence

Our file  Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-16893-X

Canada



APPROVAL

Name: René Gourley

Degre=: Master of Science

Title of thesis: Tensor Representations and Harmony Theory: A Critical
Analysis

Examining Committee: Ramesh Krishnamurti
Chair

Dr. Robert Hadley
Senior Supervisor

Associate Professor of Computing Science

Dr. Arvind Gupta
Senior Supervisor

Assistant Professor of Computing Science

Dr. Ja.qles Delgrande
External Examiner

Associate Professor of Computing Science

June & 1995

Date Approved:

i



SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to miake partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Tensor Representations and Harmony Theory: A Critical Analysis.

Author:

(signature)

René Gourley

(name)

July 11, 1995

(date)



Abstract

Harmony theory and tensor representations have been proposed as a means by which
connectionist models can accept formal languages. Their proponents aim to provide
a neural explanation of the productivity and systematicity of cognitive processcs,
without directly implementing symbolic algorithms. Via tensor representation, this
theory interprets the activation vector of a connectionist system as a parse tree [or
a string in a particular context free language. Harmony theory apparently describes
how to construct a network whose stable equilibria represent valid parse trees.

This thesis presents a detailed analysis of tensor representations and harmeny
theory. Over the course of this exposition, errors in the original formulation are
identified and improvements are proposed.

The thesis then goes on to examine some major issues confronting harmony theory.
The first issue is that of input and output which have not been satisfactorily defined
by harmony theorists. Secondly, we examine the very large size of the networks.
Finally, this thesis inspects harmony theory relative to its own goals and shows that
the constructed networks admit stable equilibria that do not represent valid parse

trees. Thus, harmony theory is unable to support its advocates’ bold claims.

111



Contents

Abstract

1 Overture

1.1 TheChallenge . . . . . . . ... . e

1.2 The Answer . . . . ... .. ...
1.3 The Rebuttal: The Main Result .

2 Background and Notation
2.1 Sets . ... ... ..
2.2 Graph Theory . . . . . . ... ..
221 Definition . . . ... ...
2.3 Formal Languages . . . . . .. ..
2.3.1 Definition . ... .. ...
2.3.2 Grammars . . .. .. ...
2.3.3 Derivation Graphs . . . .
2.3.4 Machines and Languages .
2.4 Linear Algebra . ... ... ...
Tensors . . .. ..........
2.6 Neural Networks . .. ... ...

3 Tensor Representations
3.1 Simple Tensor Representations . .

3.2 Recursive Tensor Representations

v

....................

....................

....................

....................

--------------------

....................

....................

....................

....................

....................

--------------------

ii1

U LS e

co 0o ~1 =

10
10
10
11
12
14
14
17



3.3 Representation of Parse Trees . . . .. .. . ... ... ... .....

3.4 Representation of Derivation Graphs . . . . .. .. ... ... .. ..

3.4.1

Normal Form for Type 0 Grammars . . . . . .. .. ... ...

3.4.2 Spanning Tree Representation of Directed Acyclic Graphs

3.4.3 Recursive Representation of Directed Acyclic Graphs . . . . .

4 Harmony

4.1 Symbolic Formulation . . . .. ... ... ... ... ..

4.1.1 Context-Free Parse Trees . . . . . . . . ... . ... ... ...
4.1.2 Type 0 Derivation Graphs . . . . .. ... .. ... ......
4.1.3 The Symbolic Viewpoint . . . . . .. .. ... ... ... ...
4.2 Numeric Formulation . . . . . ... .. ... ... 0000
4.2.1 Connectionist Networks as Energy Minimization Systems . .

4.2.2 Pairwise Harmony in Context kree Parse Trees . . . . . . . . .

4.2.3 Harmony of Whole Context Free Parse Trees . . . . . . . . ..

5 Discord
5.1 Input and Qutput in Harmony Networks . . . . .. . ... ... ...
51.1 Inmput. . .. ... .. .
51.2 Output. . . . . . . . e
5.1.3 Decision Networks . . . .. .. ... .. ... ... ......
5.1.4 Harmonic Decision Networks . . . . . . . . ... .. ... ...
5.1.5 Symmetric Harmonic Decision Networks . . . . . . ... . ..
52 Network Size . . . . .. . ... .
5.3 Harmony Networks Do Not Work . . . ... .. ... ... .. ....
5.3.1 More Activations Than Trees . . .. .. ... ... .. ....
5.3.2 Non-Negative Eigenvalues Yield Non-Trees . . . . . . .. . ..
5.3.3 Negative Eigenvalues Yields Non-Tree. . . . . . .. ... ...
534 Conclusion . . . . . . .. .. o o

6 Resolution

40

63
63
64
66
68
71
72
79
81
82
83
86
88

89



List of Tables

2.1
2.2

3.1

4.1
4.2
4.3

Notation for Sets . . . . . . .. . ... .. ... 8
Notation for Linear Algebra . . . . . . ... .. ... ... ... ... 15
Normal form for a Type 0 grammar . . . . . . ... ... ....... 33
Rules for determining the harmony of a parse tree . . . . . ... ... 41
Rules for determining the harmony of a derivation graph . . . . . .. 44
The system of equations that determines Wo; . . . . . . . . . . . .. 52

vi



List of Figures

2.1 An illustration of a simple connectionist network. . . . . . . .. ... I8
3.1 A derivation graph of the string aabb . . . . . . .. .. ... ... 30
3.2 A spanning tree of a derivation graph . . . . .. .. ... ... 35
4.1 A parse tree and harmony values for the word eababa . . . . . . . .. 12
4.2 A parse tree and harmony values for the word aabb . . . . .. .. .. 13
4.3 A graphical representation of an energy function . . . . .. ... ... 48
5.1 Energy of a harmony network with one positive eigenvalue . . . . . . 84
5.2 Energy of a harmony network with one zero eigenvalue . . . .. . .. 85
5.3 Energy of a harmony network with two negative eigenvalues . . . . . 87

Vil



Chapter 1

Overture

1.1 The Challenge

In their controversial and influential paper, Fodor and Pylyshyn (1988) examined
connectionist or neural network models, and their ability to explain human thought.
They note that human thought is systematic. That is, if someone is capable of
thinking a thought then they must also be able to entertain a number of other thoughts
which are systematically related to the first thought. For example, if a person is
able to think that “John loves Mary”, then they must necessarily also be capable
of entertaining the thought “Mary loves John,” as well as a host of other similarly
related notions. Fodor and Pylyshyn go on to note that humans are able to produce
and understand an inexhaustible number of thoughts. Any explanation of cognition
must, declare Fodor and Pylyshyn, provide a mechanism whereby this systematicity
and productivity cannot fail to arise.

According to Fodor and Pylyshyn, the proper way to achieve this goal is with
a Classical model which works by “storing, retrieving, or otherwise operating on
structured symbolic expressions.” In other words, classical models consist of two
parts — a representation part, and an action part. The representation part is a way
to internally model concepts in terms of symbols. For example, the sentence “John
loves Mary” might have an internal representation loves(john,mary). The action part

of a classical model is the way in which the model, or program operates on these



CHAPTER 1. OVERTURE

[ &3

representations — the way the steps in the algorithm manipulate symbol expressions.
In the case of the relationship between Mary and John. Mary might decide that Johu
loves her by executing a sequence of actions such as “compare ‘mary’ with the second
argument of the relation “loves’ where “john’ is the first argument.” The classical
models manipulate structured symbol representations. In other words, the symbols
and the structure surrounding them, together with the classical algorithins, cause the
classical model to behave in the way it does.

According to Fodor and Pylyshyn, connectionist models do none of these opera-
tions on symbolic expressions, and so they are doomed to failure. The failure stems
from their assertion that the presence of symbols and a structure imposed on those
symbols is inherently necessary to guarantee that a particular model will act appro-
priately in various circumstances. Fodor and Pylyshyn note that connectionist models
do not have these structured symbol representations. In particular, in connectionist
systems, objects may have different neural representations depending on their context.
Because they lack such structured symbolic representations, connectionist networks
cannot perform operations that are sensitive to the structure of a representation, but
only to the total representation. Indeed, if the total representation is all that can be
discerned, and the symbols themselves are missing, Fodor and Pylyshyn assert that
connectionist models cannot consistently perform operations that depend on the con-
stituents of the structure. Consequently, connectionist models will never account for
human ability to think systematically, logically and uniformly. Similarly they will not
account for the ability to generate and understand an infinite number of thoughts.

Furthermore, say Fodor and Pylyshyn, even if connectionism could model human
cognition, the best it will ever do is directly implement a classical or symbolic al-
gorithm. That is, the connectionist system would necessarily represent the symbolic
structure, and mimic the classical model’s manipulation of the symbols to determine
its output. For this reason, Fodor and Pylyshyn say connectionists may as well accept

the fact that at best they are only implementing classical aigorithms.



CHAPTER 1. OVERTURE 3

1.2 The Answer

In answer to Fodor and Pylyshyn’s charges, Smolensky, Legendre and Miyata (Smolen-
sky, Legendre, and Miyata 1392; Smolensky 1993) proposed a mechanism, “Harmony
Theory,” by which connectionist models can accept formal languages. Thus, the pro-
ponents claim that counectionist networks can perform structure sensitive operations
without implementing classical algorithms.

Like a classical model, a connectionist network in Harmony Theory possesses a
representation of symbolic structure. Each symbol’s representation is spread amongst
many nodes, and is in fact entwined with the representations of other symbols. Thus,
unlike the classical model, the connectionist network does not manipulate the con-
stituents or symbols of the structure. Rather, processing in a connectionist system is a
“kind of parallel holistic manipulation of symbolic structures” (Smolensky, Legendre,
and Miyata 1992, p9). In other words, classical models directly manipulate individual
symbols while harmony theory describes a means by which the symbolic structure is
manipulated as a whole. In harmony theory, the individual symbols and their posi-
tions in the structure do not directly cause the connectionist network to behave the
way it does.

In a Harmony Theory connectionist network, or Harmony network, the symbolic
structure is represented by a pattern of activation over the nodes in the network. Har-
mony theory describes a method of determining the interconnections in the harmony
network so that the activation value changes into a completion of the computation
(Legendre, Miyata, and Smoiensky 1990). That is, the distributed pattern changes
by virtue of the individual activation values, not by virtue of the symbols themselves.
Thus, the algorithm in a Harmony network performs structure-sensitive operations
without manipulating the symbols themselves.

More precisely, the representation part corresponds to classical structure-sensitive
representations. A variety of mechanisms have been proposed whereby connection-
ist networks could associate symbols with their syntactic positions. For example,
Shastri and Ajjanagadde (Shastri and Ajjanagadde 1993; Tesar and Smolensky 1994)

propose to associate objects in the representation by firing neurons synchronously.



CHAPTER 1. OVERTURE 4

Plate (1993) proposes that symbols could be associated via a “holographic™ convo-
lution scheme. Harmony theory proposes a similar scheme using tensors to convolve
representations for symbols with their syntactic positions. Smolensky, Legendre, and
Miyata (1992) demonstrate that these tensor representations can be used to represent
parse trees for context free languages.

Smolensky et al. also assert that a similar line of reasoning would allow the rep-
resentation of derivation graphs of arbitrary type 0 languages (Smoleunsky, Legendre,
and Miyata 1992, p44). The present thesis demonstrates a specific means by which
tensor representations could capture such derivation graphs, and discusses the pitfalls
of such a representation. We will also develop a second type of tensor representation
for derivation graphs which is unrelated to that implied by Smolensky et al.

The action part of harmony theory purportedly describes how a counectionist
network could be constructed so that it accepts structured representations of striugs
in a formal language. Essentially, the idea is to construct a “harmony function,” which
maps the set of all possible parse trees to the real numbers. The function is defined
so that the value of the harmony function for a correct parse tree will be greater than
the harmony value for any incorrect parse tree. Smolensky et al. give a method to
construct a harmony function for any context free grammar, and suggest that a similar
harmony function exists for any type 0 language. The proposed harmony function
does not fulfill all the requirements for the construction of a harmony network, and
so, we will modify it slightly. The thesis then goes on to show the precise method for

constructing a harmony function for a type 0 language.

Smolensky et al. note that some connectionist systems are known to minimize

particular functions, called Liapunov or energy functions (e.g. Golden 1986; Hopfield
1982). If a connectionist network can be synthesized so that its energy function is the
negation of the harmony function for the parse trees in a particular language then that,
connectionist network will seek well-formed parse trees for words in that language.
Smolensky et al. purportedly define just such a harmony function and connectionist,
network. Given a grammar on which a harmony function has been defined, they
explain how to construct a network so that the network’s zero-energy states correspond

to parse trees with maximum harmony values. They use this construction to claim

.




CHAPTER 1. OVERTURE 5

that the network’s stable equilibria represent valid parse trees. This thesis shows that
their construction is incorrect in that the parse tree representations do not correspond
to the network’s zero-energy states. Fortunately, as demonstrated in this thesis, the

construction is easily corrected.

1.3 The Rebuttal: The Main Result

Fodor and Pylyshyn’s classical models must surely work on some machine model —
a model that receives input, processes it and produces output. Language theorists
recognize ‘hat such a machine is equivalent to one that accepts the language consisting
of input-output pairs. Consequently, if the classical models can be formalized at all,
ihen they are equivalent to a machine that accepts a formal language. It is just such a
machine that Harmony theory claims to construct in answer to Fodor and Pylyshyn’s

challenge:

Furthermore . . . we saw that this embedding invariance generates Harmony
functions which can be used to express any Context Free Language; that
1s, the network can distinguish ill- and well-formed strings from such a
language. Indeed we saw how this extends to arbitrary formal languages.”

(Smolensky, Legendre, and Miyata 1992, p44)

The present thesis proves as its main result that this statement is false. More precisely,
it shows no network of the type described by Smolensky, Legendre, and Miyata (1992)
can distinguish ill- and well-formed strings from any language.

Smolensky et al. do not define what it means for a connectionist system to “dis-
tinguish ill- and well-formed strings.” This thesis will therefore suggest a reasonable
definition for a connectionist decision network. Formalization of the definition will il-
luminate the fact that inputs to a harmony network are assumed to be parse trees, not
strings of symbols to be tested for membership in the language. Furthermore, there
1s no output to indicate if a string is in the language or not; the network’s acceptance
or rejection must be inferred from a value which the network itself cannot calculate.

Thus, the proposed harmony networks cannot be said to decide an arbitrary language:



CHAPTER 1. OVERTURE 6

the claim that harmony networks can distinguish ill- and well-formed strings from a
context free language is false. Later, the present thesis will expand on why such a
network is insufficient to meet Fodor and Pylyshyn’s challenge.

However, even given that the problems of associating the string with its parse tree
and deducing the output can be solved, harmony networks do not work as designed.
This thesis shows that harmony networks admit stable equilibria that are not vahd
parse tree representations. Consequently, harmony theory and tensor representations
are unable to support their proponents’ claim that connectionist networks can exhibit

structure-sensitive processing without directly implementing classical algorithms.



Chapter 2

Background and Notation

2.1 Sets

The notation to be used in this thesis for sets is summarized in Table 2.1 In addition,

this thesis uses the following terms when referring to functions:

®» Injection A function, F', is an injection if each element in the domain maps to

a unique element of the codomain. That is, if d; # d; then F(dy) # F(d.).

® Surjection A function, F, is a surjection if for every element ¢ of the codomain,

there is an element d in the domain, such that ¢ = F(d)

¢ Bijection A function which is both an injection and a surjection is called a
bijection or an isomorphism. If there is an isomorphism between two sets A and

B, then we say that A is isomorphic to B and write A = B.

¢ Odd For the purpose of this thesis, an odd function is a function, f : R — R
that is symmetric about the origin: f(—z) = —f(z).

e Even Again, for the purpose of this thesis, an even function is a function,

f : R — R that is symmetric: f(—z) = f(z).




o]

CHAPTER 2. BACKGROUND AND NOTATION
Notation Description
{a,b} The set consisting of a and b.
e € A eis an element of a set A.
e A e1s not an element of a set A.
R The real numbers.
|A] The size of the set A.
ACB Aisasubset of B.
A C B Ais a proper subset of B.
AU B The union of A and B.
AN B 'The intersection of A and B.
A\ B The difference between A and B; those elements that are in A, but
— notin B.
A  The complement of A.
A x B The cartesian product of A and B ; the set of all ordered pairs
where the first element is from A and the second element is from
A %1:16 cartesian product with A by itself n times; the set of n-tuples
of elements of A.
F:D — C F isa function which maps the domain, D to the codomain, C'.
F(c¢) =d The function, F', maps the element c to d.

Table 2.1: Notation for Sets

2.2 Graph Theory

2.2.1 Definition

A directed graph is an ordered pair G = (V,E) where V is a set of vertices and

E CV xV is a set of edges. An edge (u,v) is said to be incident from u and incident

to v, or simply from u and io v.

An undirected graph or graph is similar to a directed graph, except that the edge
set E contains two-element subsets of V. Thus, in an undirected graph, edges have no

“from end” or “to end.” We will denote edges in an undirected graph by an ordered

pair, (u,v); notice that (u,v) = (v,u).

This thesis will make use of the following terms relating to graphs and directed

graphs:



CHAPTER 2. BACKGROUND AND NOTATION 9

e Subgraph A graph G’ = (V', E') is a subgraph of a graph G = (V, E) if G" is a
graph and, V' C V and E' C E.

e Path In a graph (V, E), a sequence of distinct vertices (v, vs, ..., v:) is a path

fromutovifu=vg,v=viand fori=1...k,(v; — 1,v;) € E.

e Connected If there is a path between every pair of vertices in a graph, then

the graph is said to be connected.

e Cycle A cycle is a path, (vg,vy,...,vx), which begins and ends at the same

place, so vy = vo. If a graph does not contain any cycles, then it is called

aeyclic.

o In-degree In directed graphs, the in-degree of a vertex, v is denoted by deg;,(v),

and indicates the number of edges that are incident to the vertex.

e Out-degree In directed graphs, the out-degree of a vertex, v is denoted by

degoui(v), and indicates the number of edges that are incident from the vertex.

e Source If a vertex, s in a directed graph has deg;,,(s) = 0 then it is called a

source vertex.

e Sink If a vertex, s in a directed graph has deg,u:(s) = 0 then it is called a sink

vertex.

e Tree A tree is an undirected connected acyclic graph. All the trees considered
in this thesis are rooted, ordered trees. A rooted tree is a tree where a particular
vertex is identified as the roof. If (u,v) is the last edge in the path from the
root of the tree to a vertex v, then w is the parent of v and v is u’s child. If
the children of every node in a tree are given an order, then the rooted tree is

ordered. A leafis a vertex that has no children.




CHAPTER 2. BACKGROUND AND NOTATION 10

2.3 Formal Languages

For a more comprehensive review of formal languages, the reader is referred to
Hopcroft and Ullman’s standard text, (Hopcroft and Ullman 1979), which serves

as the basis for this section.

2.3.1 Definition

An alphabet is a finite set of symbols. A siring or word is a sequence of zero or more
symbols from a given alphabet. This thesis will use the words “string” and “word”
interchangeably. The special word, €, contains no symbols, and is called the empty
word.

The length of a word is simply the number of symbols in the word. If w is a word,
then |w| is its length. Thus |e¢| = 0, and |abcabc| = 6.

A language is a set of words over a given alphabet. The following are some imnpor-

tant languages:
e The empty set, § is the language that contains no words.

e If ¥ is an alphabet, then ¥* is the set of words of length i made up of any

combination of symbols from ¥

e The finite language of all strings over a given alphabet with length at most n is
denoted 157, .
NS = U ¥
et

e The infinite language of all strings over a given alphabet, ¥ is denoted X".

=

1=0

2.3.2 Grammars

A grammar is a four-tuple, (V,X, P,S) that describes how to derive strings in a

language. ¥ is the alphabet over which the language is defined; when referring to a



CHAPTER 2. BACKGROUND AND NOTATION 11

gramrar, its members are sometimes called terminals. V is a set of non-terminals
such that VN'Y = B, and S is a special non-terminal, called the start symbol The
set of productions, P C (V U X)* x (V U X)*, describes how to rewrite strings of
non-terminals and terminals.

Each production is written as & — (3 which means “replace an occurrence of the
string o with 3,” where @ and f are strings of terminals or non-terminals ( «,3 €
(VUX)*). If 4,6 € (VUZ)" are strings of terminals and non-terminals, and there
is a production, (@ — ) € P then we say yad directly derives y36 or 36 follows
from the application of the production to yad. We denote this relation by writing
vaé = yps. If an € (VUL)" follows from the application of 0 or more productions
to the string a; € (V U X)* then we say a; derives a,, and write, oy =;> o,y,. If the
grammar is clear from the context, then the symbols, = and :;? are written
= and = respectively.

The set of all strings of terminals that can be derived from the start symbol is

called the language generated by the grammar. This language is denoted, L(G). Thus
if G = (V,X, P,S) is a grammar, then L(G) = {w|lw € £* and S =;> w}.

2.3.3 Derivation Graphs

A derivation sequence for a word, w is a sequence of strings of terminals and non-
terminals such that the first string is the start symbol, the last string is the word,
and each intermediate string follows from the previous by the application of one
production. More formally, a sequence w;, w»,...,w, is a derivation sequence for w
ifw, =85, w, =w and w; = w4y, fori=1,...,n— 1.

A derivation graph is a graphical representation of a derivation sequence. To
construct a derivation graph for a word in a language that is generated by a grammar,
begin by writing down a derivation sequence for the word, and call the symbols in
this derivation sequence the nodes of the graph. Next add arcs joining any symbols
that remained unchanged from one step to the next. For each step, add arcs from the
symbols of the left hand side of the production rule that was applied in that step to
those of the right hand side. Finally, contract edges which begin and end at identical



CHAPTER 2. BACKGROUND AND NOTATION 12

symbols.
More precisely, let w be a word in the language generated by a grammar, ¢ =

(N,%, P,S). Construct the derivation graph for w by performing the following steps:

1. Write a derivation sequence, wy,...,w,, for w. Let [; = |w;| be the length
of the derived string after the ith step. Let a;; be the jth symbol in w;, for
t=1...n,7=1...1;. Let p;, ¢; and r; be such that a,,, ...a;, are the symbols
on the left side of the production applied in the :th step, and a;pip, .- CGipir,
are the symbols on the right side of that production.

2. Construct a directed graph H = (V. k) where V = {a, ;i =1...n,7=1...{;}.
3. Add the edges, (a;;, aiy1.) if the two vertices satisfy one of the following rules:
elfp,<j<qgand p; <k <r.
o If j =Fk < p;.
e lfg<j,rmi<kandl;—j=1l4 —k
4. For every edge (ai;, aiy14) € F if j < p; or ¢i < j then contract (a;;, tiyi k).

In every case, the resulting graph will be a directed acyclic graph, where the
source is the start symbol, 5, and the sinks constitute w. For context free and regular

languages, derivation graphs are trees and are called parse trees.

2.3.4 Machines and Languages

A machine is a finite mathematical model of a system that produces a single output
upon presentation of a finite input. In this thesis, we are only interested in machines
that halt on every input, answering either “yes” or “no.” If S is the set of strings
to which a machine, M, answers “yes,” then M is said to accept S. This is denoted,

S = L(M), and L(M) is called the language of M.



CHAPTER 2. BACKGROUND AND NOTATION 13

Regular Languages

If the productions in a grammar all have one non-terminal on the left hand side and
at most one terminal and one non-terminal (in order) on the right hand side, then the
grammar is called a regular grammar. The language that is generated by a regular
grammar is called a regular language.

In other words, let G = (V, £, P, S) be a grammar where if @ — § is a production
in P, then o € V and 8 € ({zylz € Eandy € V}UX UV). Then G is a regular

grammar and L(() is a regular language.

Context Free Languages

If the productions in a grammar all have one non-terminal on the left hand side and
at most two terminals and non-terminals on the right hand side, then the grammar
is called a context free grammar (CFG). If a language is generated by a context free
grammar then it is called a contezt free language (CFL).

Formally, let G = (V, %, P,S) be a grammar. If for every (a — ) € P,a €V
and B € {L U V}=? then L(G) is a context free language.

Context Sensitive Languages

If every production in a grammar has at least as many terminals and non-terminals
on the right hand side as on the left, then that grammar is called a contezt sensitive
grammar. Languages that are generated by context sensitive grammars are called

contert sensitive languages.
More formally, let G = (V, %, P,S) be a grammar where if (&« — () € P then
la] < |B]. The language, L(G) is a context sensitive language.

Recursive Languages

If G is an arbitrary grammar, then L(G) is a recursively enumerable language, and G
is called a type 0 grammar.
If L(G) is a recursively enumerable language, then there is a machine called a

Turing machine which answers “yes” whenever the string presented to its input is in



CHAPTER 2. BACKGROUND AND NOTATION 14

L(G). However, this machine may not halt on every input. If the Turing machine

halts on every input, then L(G) is called a recursive language.

2.4 Linear Algebra

The notation used in this thesis for linear algebra is summarized in Table 2.2. We

will also use the following terms:

e Linear function If V is a vector space over a field, X, and f: V — V is such
that for every z € X and a,b € V, f(a + zb) = f(a) + x f(b), then f is a linear
function of V.

e Linearly independent If V is a vector space over X, and A =
{a1,az2,...,a,} C V is such that for every z,,z2,...,2, € X, 101 + w202 +
-+« + zpa, = 0 implies that z; = 2z, = --- = z, = 0, then A is a linearly

independent set of vectors.

e Direct Sum If U and V are subspaces of a vector space, W with the property
that for every w € W there exist unique vectors u € U and v € V such that
w = u-+v then W is the direct sum of U and V, and we denote this, W = U@V
(Fisher 1970, p104).

e Eigenvalue If A € M|n,n], e € R" and A € R are such that Ae = Ae then A is

an eigenvalue of A, and € is an eigenvector of A.

2.5 Tensors

The tensor product is an operation, satisfying certain properties (see e.g. Yokonuma
1977), and which maps a pair of vector spaces to a third vector space. The tensor
product of two vector spaces U, V is written U @ V, and foru e Uandv e V,u@v

denotes the tensor product of u and v.



CHAPTER 2. BACKGROUND AND NOTATION 15

Notation Description
V' Usually, we will use capital letters to represent a vector space.
M|[m,n] The vector space of m x n real matrices.
i@ FExcept in the case of matrices, we will usually use small letters
to denote a vector. If there is confusion, we will use the special

symbol,
det |A| The determinant of A € M[n,n].
a’ The transpose of a

Table 2.2: Notation for Linear Algebra

In this thesis, we are concerned entirely with a very simple tensor product called
the Kronecker product (Yokonuma 1977, p17) which maps pairs of matrices to a third
matrix. If U = M[m,n] is the vector space consisting of m x n matrices over the real

numbers, and V = M[m’,n’], then the Kronecker product, U @ V' = M [mm’,nn’] is

given by
al,]B 01,23 T al,nB
412,1B 02,23 Cot a2,nB
A@B = i . . .
am1B amaB o amaB

where A€ U and B e V.

This paper will make use of the following general properties of tensor products:

T1 If U and V are vector spaces over a field F', then U ® V is also a vector space over
F'. This statement is a recapitulation of part of the definition, but it is worth

stating again.

T2 Associativity: (U@V)oW 2UQ (VW) (Yokonuma 1977, pl2). If the tensor
product is the Kronecker product, and U,V and W are matrices over R, then

(UaV)eW=Ug (VW)

T3 Commutativity: U @ V 2V ® U (Yokonuma 1977, p10). It may not be the case
that © ® v = v ® u. For example, if U = V = M[1,2] are vector spaces over the



CHAPTER 2. BACKGROUND AND NOTATION 16

reals, and the tensor product is the Kronecker product.

{l

(1,0)®(0,1) = (0,1,0,0)
(0,1)®(1,0) = (0,0,1,0)

T4 If U and V are vector spaces, and v € V, then there is a linear mapping ¢, :

U ®V — U such that for any u € U, ¢,(u® v) = u (Yokonuma 1977, p10).

T5 Let U and V be vector spaces over a field, F', and let w € U @ V' be given by

r

w=Y (u;Qv)

1=1

whereu; € Uand v; € Vfori=1...r. If {vy,v2,...,v,} is linearly independent,

then the elements u;,u,,. .., u, are uniquely determined (Yokonuma 1977, p9).

T6 Ifa,b € M[m,n], c € M[m',n'], and the tensor product is the Kronecker product,
then
(a+0)@c=a@c+bBc

Because T2 guarantees the associativity of @, it is convenient to use the following

shorthand for large tensor products. If V' is a vector space, then define:

V) = {}

TVV) = V

TPV) = VTP (V), forp> 1
V) = P1(V)

i=0

The elements of TP(V') are tensors of degree p, and the elements of T'(V') are vectors
whose pth component is a tensor of degree p. Smolensky, Legendre, and Miyata (1992)
assert that the elements of T'(V) can be thought of as the concatenation of tensors of

increasing degrees.



CHAPTER 2. BACKGROUND AND NOTATION 17

2.6 Neural Networks

Connectionist or neural network models of computation consist of a large set of simple
processing units connected in a netwoirk (see for example Rumelhart, Hinton, and
McClelland 1986). Each processing unit carries a certain weight or activation level.
The external world can influence and perhaps be influenced by the activation level
in some or possibly all of the processing units. That is, the input is provided to the
network as activation levels on a fixed subset of the units; this subset is called the
input sel. Similarly, the output is read from the network by examining the activation
levels of the output set. Units that are in neither the input set nor the output set are
known as hidden units.

Upon receiving an initial activation on its input units, the connectionist network
transmits that activation between processing units via the interconnections of the net-
work. Using a weight factor, each connection in the network can modify the activation
level that it receives from the sending unit and sends to the receiving unit. The rule
that determines exactly how activation in a unit will affect that unit’s neighbours is
called the activation rule. This rule, together with the way the processing units are
connected in the network, the weights on the connections, and the units’ initial state
determines how the neural network will behave.

More formally, let (U, ) be a weighted directed graph, where U is a set of nodes,
or processing units, and F is a set of edges, each of which is assigned a weight. We will
define a matrix, W € M[|U|, |U]] called the weight matriz; it describes how the nodes
in the network are connected. If W; ; is zero, then there is no connection from node U;
to node U7, and the activation level of U; will have no direct affect on the activation
level of U;. On the other hand, if W, ; is non-zero, then there is a connection from
node I/; to node U;. The value of W;; indicates a scale factor that is applied to the
activation level that propagates along that link.

For example, suppose a particular network contains three nodes, Uy, U,, and Us,



CHAPTER 2. BACKGROUND AND NOTATION N

0.1
\ /
.n3

Figure 2.1: An illustration of a simple connectionist network.

and the weight matrix of the network is given by:

0 0.1 0.2
W=1{0 0 0
0 03 0

Then activation in )3 is transmitted to {/; and U/3, but is scaled by factors of 0.1 and
0.3 respectively. Similarly, activation in U3 is transmitted to /), but is scaled by a
factor of 0.2 by the link between those two nodes. This network is illustrated in figure
2.1.

The activation vector of a network consisting of nodes U/;,U,,...,U, is a vector
a = (aj,as,...,a,), where a; € R is the activation level of node U;. In general, the
activation levels can vary arbitrarily, but in most models, the range of the activation
levels is a finite subset of the real numbers. Because the activation vector changes over
time, let a(t) be the activation vector ai time ¢, and let a;(¢) be the ith component
of the activation vector at time ¢. In the above example, the signal reccived by U, at
time ¢ is then

0.1as(t) + 0.2a5(¢)

Using the activation rule, I/; would then have to use this signal to determine how to

modify its own activation value;



CHAPTER 2. BACKGROUND AND NOTATION 19

The activation rule determines how the activation vector changes over time. If the
particular connectionist model under consideration is a continuous time model where
the processing units update themselves immediately when their neighbours change,

as in Hopfield (1984). then the activation rule is a differential equation:

da(t) . =
7 = F(a(t),W)

For example. Hopfield (1984) proposes the following activation rule for a continuous

time nenral model.

. dui b4 ui y
C'—Jt— = ? W’,',J'aj — E + 1 (21)
u, = g;](a,‘) (22)

In this model, (7, R; and I; are biologically motivated constants, and g;(z) are odd

real-valued functions for all i.

On the other hand. if the model is a discrete time model where the entire network

15 updated during each time step. then the activation rule is iterative:
alt +1) = F(a(t),W)

For example. the Brain-state in a box model developed in (Anderson, Silverstein,
Ritz. and Jones 1977) represents one of the simplest discrete time models. It uses the

following activation rule to determine the next state of the network:

b(t) = a(l)+~yWa(t) (2.3)
alt+1)y = S(bt)) (2.4)

Where S() is a vector valued function that truncates each component so that the acti-

vation vector always stays within a hypercube centred at the origin; v is a constant.



Chapter 3
Tensor Representations

As mentioned in Chapter 1, Smolensky, Legendre and Miyata’s answer to IFodor and
Pylyshyn’s challenge consists of two parts: a representation part and an action part.
This chapter describes the representation part in detail. The representation part of
Harmony theory depends on a technique to relate symbols with their syntactic posi-
tions by convolving vectors that represent these symbols and positions via a tensor
product. Thus, the representation part of Harmony theory is called tensor represen-
tation. Starting with the development of simple tensor representations this chapter
traces Smolensky, Legendre and Miyata’s (Smolensky 1993; Smolensky, Legendre, and
Miyata 1992; Smolensky 1990) development of recursive tensor representations, and
their use in representing parse trees for context free languages. The chapter then
proceeds to develop the use of tensor representations to capture the derivation graphs

of Type 0 languages.

3.1 Simple Tensor Representations

If tensor representations are to provide a means to represent structured symbol ex-
pressions, they must represent symbols and their syntactic positions. Smolensky,
Legendre and Miyata call these syntactic positions roles (Smolensky 1990; Smolen-
sky, Legendre, and Miyata 1992). Some examples of roles are the first, second, third

and fourth positions in a list, and the relative positions of left-child and right-child of

[
[



CHAPTER 3. TENSOR REPRESENTATIONS 21

a vertex in a binary tree. For an example in natural language, consider the sentence
“John kissed Mary”; there are three symbols “John” “kissed”, and “Mary”. Each
symbol appears in a particular role. “John”, the performer of the action, appears
in the agent role, “kissed” appears in the verb role, and “Mary”, the receiver of the
action, appears in the patient role.

One possible approach to the problem of representing the various symbols in their
separate roles is to arbitrarily assign a different representation for each constituent
or symbol-role pair. So, for example, there would be a representation for each of
(John,agent), (kissed,verb), and (Mary,patient). However, this approach is unsatis-
factory. As argued eflectively by Fodor and Pylyshyn, any representational scheme
that can represent sentences such as “John kissed Mary” must also be able to represent
“Mary kissed John.” If there are different, unrelated representations for (John,agent)
and (John,patient), then there is no guarantee that the system that correctly repre-
sents John giving a kiss will also be able to represent John receiving a kiss.

Furthermore, if there are different unrelated representations of (John, agent) and
(John,patient), then there is no way to relate the “John” in the agent role with the
“John” in the patient role. Indeed, if connectionism were to model human intelligence,
then the “John” in “John kissed Mary” should also be able to relate to the “John” in
“Rachel’s husband is John”. Otherwise Rachel wouldn’t know if she should be upset
or not.

Finally, if several units take part in each constituent, so that the representations
are fully distributed, then there may be no easy way to untangle the superposition of
several constituents. That is, if the entire structure consisting of several constituents is
represented by the sum of their individual representations, then some other unrelated
constituents could be subsumed by that sum; the result would be that the network
would “accidentally” represent two things, one of which would not be true. For
example, suppose

(John,agent) = (1,0,0)  (Fido,agent) = (0.2, 0.4,0.5)

(kissed,verb) = (0,1,0) (chased,verb) = (0.5, 0.4,0.3)
(Mary,patient) = (0,0,1) (Felix,patient) = (0.3,0.2,0.2)



CHAPTER 3. TENSOR REPRESENTATIONS 2

o

Then (1,1,1) is the representation for “John kissed Mary” and it is also the repre-
sentation for “Fido chased Felix”. The representation has no way to guarantee that
this overlap does not happen because the constituents are assigned arbitrary vectors.

Tensor representations address these issues by assigning some number of real vee-
tors to represent the roles, and other vectors to represent the constituents. The rep-
resentation of a constituent in a particular role is then the tensor product of the two.
For example, suppose the symbol “John” is represented by a vector, j = (j1,72,73)
and the agent role is represented by a = (a1, a2), then the representation of John in
the agent role is

J ®a = (j1a1, 102, J2a1, J202, J3G1, J3l2)

Similarly, if the patient role is represented by p = (p1, p2), then the representation of

John in the patient role is

J @ p = (J1P1, 1P2, J2P1+ J2P2, J3P1» J3P2)

Thus, unlike the arbitrary constituent representations above, a tensor product repre-
sentation scheme that is able to represent a particular constituent in a given role is
necessarily able to represent that constituent in any other role. A tensor representa-
tion guarantees that the system that correctly represents John giving a kiss will also
be able to represent John receiving a kiss.

The second important difference between the tensor representation and the arbi-
trary constituent-role representations is that the tensor product allows the retrieval
of symbols that have been combined with roles. That is, given a role a, property
T4 of tensors furnishes a linear mapping ¢, so that ¢.(7 @ ¢) = 7. This property
allows computations on tensor representations to recognize that the same constituent
is used in two different roles. So for example, it is possible to relate the “John” in
“John kissed Mary” to the “John” in “Rachel’s husband is John”.

Like the arbitrary role-constituent pair representations above, tensor representa-
tions are superimposed or added to one another to represent several constituents in
different roles. For example, if 7,k and m are arbitrary but distinct vector repre-

sentations for “John”, “kissed” and “Mary” respectively, and «,v and p are vector



CHAPTER 3. TENSOR REPRESENTATIONS 23

respectively representations for “agent”, “verb” and “patient”, then the tensor repre-
sentation for the sentence “John kissed Mary” is j®@ a+ k®@ v+ m @ p. Provided the
reasonable assumption that no two symbols appear in the same role, this represen-
tation avoids the trap that catches arbitrary role-symbol pairs; it is able to untangle
the role-symbol pairs from the sum, provided the role vectors, a,v and p are inde-
pendent. In general, if the role vectors w;,ws,...,w, are linearly independent, and
t = 3 (vi @ w;) then property T5 of tensors guarantees that vy, vs, ..., v, are uniquely
determined from {. The result is that, as long as the vectors that represent the roles,
or the role vectors, are linearly independent, two different structures have two dif-
ferent activation vectors. Furthermore, there is a way to determine the constituents
from the complete representation.

The linear independence which ensures that different structures have different
representations also ensures that those representations are explicit. In other words, the
information has not been compressed, lost or otherwise hidden. Indeed, considering
the two-dimensional case, this explicitness is obvious if the role vectors are the set
{(1,0),(0,1)}. Section 3.2 will show that these role vectors must be used in the

recursive case. A symbol (a;,az2) in each of those roles would be represented by,

((11,(12)@(1,0) = ((11,0,(12,0)
(alaa2)®(071) == (Ovalaoaa&)

These representations are the same as lett'ng the first and third units represent the
symbol in the role (1,0) and letting the second and fourth units represent the symbol
in the role (0,1). The representation’s transparency is ensured by the role vectors’
linear independence which ensures that symbols do not collide in the complete repre-
sentation.

Linear independence of the role vectors is worrisome because the size of any set
of linearly independent vectors in a vector space is bounded by the dimension of the
vector space. Since activation vectors are in R” the number of possible roles for sym-
bols in an n-node neural network is n. Role vectors are then a limited resource, which
implies that connectionist models must carefully assign them to gain the maximum

benefit. For example, it would not do to assign role vectors for every position in a list




CHAPTER 3. TENSOR REPRESENTATIONS 24

as that would imply that the activation vector could only represent short lists.

Even so, it does not help to be “nearly” linearly independent as then tensor prop-
erty T5 simply does not hold; the extent to which it fails is an area of current rescarch
(Smolensky, Legendre, and Miyata 1992). Smolensky (1991) presents a “self address-
ing unbinding procedure” similar to T5 that does not require the role vectors to be
linearly independent, but merely that the dot product of any two role vectors be small.
Using this unbinding procedure, the retrieved value, u; of a symbol f; is

ui=fi+ Eﬁf;‘
j#i (|12
where r;,7 = 1...r are the role vectors and f; is the vector that represents the
constituent in the role represented by r;. Each incorrect role vector contributes an
error proportional to its amount of “non-independence” with the correct role vector.
So, if there are many role vectors, or their pairwise dot products are large, then the
error in this retrieved value can be overwhelming. For example, if there are n + 1
unit-length role vectors and the mean dot product of pairs of roles is , then the error
in the retrieved value has the same magnitude as the original symbol.

In either case, the number of role vectors is extremely limited. On the one hand,
if the role vectors must be independent then their number is bounded by the size of
the network. On the other hand, if the self-addressing unbinding procedure is used,

then the error is overwhelming for large sets of roles.

3.2 Recursive Tensor Representations

Fortunately, there is evidence that not very many role vectors are needed (Smolensky,
Legendre, and Miyata 1992). The trick is to choose roles that can be used recursively
so that each role is really a composition of atomic roles. For example, rather than
having different roles for each element in a list, as in “first”, “second”, “third”, and
so on, use the single role “next”; in that case, the third element of the list is the next
of the next of the next ( of the zero ).

In terms of tensors, given a (small) set of roles R = {ry,rs,...,7,} recursively



CHAPTER 3. TENSOR REPRESENTATIONS 25

define new roles R’ = {r{,r5,...} by
R ={r®@ri|re R,r; € R’}

That is, R’ is the set of all finite length tensor products of elements of R. I'or example,
if R = {ro,r,} then R’ = {ro,r,,70 ® 10,70 ® 11,71 @ 70,71 @ 71,70 @ 70 @ Tp, ...}
(Smolensky, Legendre, and Miyata 1992). In the list example above, if the symbol, f
is in the list and the “next” role is represented by the vector r, then the representation
of f occupying the third position in the listis f@r@r@r.

The following theorem, which is a straightforward consequence of tensor property
T4, shows that recursive tensor representations can be “unwound” just like the simple,
non-recursive representations. That is, given a recursive tensor representation of a

constituent, the symbol and role of that constituent can be determined.

Theorem 1 Let V and R be vector spaces. Letr =11 Q1 ® ... Q i, where r; € R,
fori=1...k . Then there is a function, ¢, : V@ T*(R) — V such that if v € V

then o, (V@) = v.

Proof: (by induction on k) Let ., : (VQT Y (R)® R — V & T (R) be a
function that fora € V@ T Y(R), ¢r.(a ® ;) = a (Such a function is guaranteed by
property T4 of tensors). Now if k = 1, then ¢, = ¢,, since ¢, (v ®ry) = v for any
veV.

Assume that for k = [, there is a function, ¢, , : V ® T'(R) — V such that for

anyv €V, or (v®T1IQ...Q 1) =v.
Then, ifk=1+1,let f: (VT R)) @ R — V be defined by

f = (107‘(1_1) 0 (fof'l+1

Then,

fw@m®...0nQru) = ¢y (Prn,(W®TI® ... @ 1i4a))
= c,a,.(u)(v RrIQ®...Q0r)

= v



CHAPTER 3. TENSOR REPRESENTATIONS 26

Now, by property T2, the associativity of tensor products,
VRTH(R)= (VT (R)QR
Leti: V@ TH(R) - (V®TYR)) ® R be that isomorphism, then

Q‘or(l,lﬂ) = fO%

is a function that maps V @ TR to V such that Cramy(VO®T O ... Q) =

So, by induction, for any k, there is a function ¢, = Crox Such that ¢, 1 V @

T*(R) -V and foranyv eV, p.(v®r) =v. O

As in the simple tensor representation, this theorem allows computations on tensor
representations to recognize that the same symbol is used in two different roles. For
example, if an element appeared in the third and fifth position of a list, it would be
possible to relate the two instances of the symbol.

To combine two constituents to represent a structure where one symbol fills one
role, and another symbol fills another, the tensor products are simply added. Because
they are not the same vector space, vector addition is not defined between elements
of V@V and V@V ®V, (or between any T?(V) and T9(V'), p # q). For this reason,
recursive tensor representations are taken to be elements of 7'(V') — the infinite direct
sum of tensor powers of V.

Recall that the elements of 7'(V') can be thought of as the concatenation of tensors
of increasing degrees (Smolensky, Legendre, and Miyata 1992). If two symbols appear
at different levels of recursion, then they can be separated easily by taking the parts of
the superposition vector that correspond to the appropriate levels of recursion. That
is, if f1@r, € T?P(V) and f @ ro € T V) are recursive tensor representations of two
symbols, fi, f2 in recursive roles ry,ry, and p # g then t = fy @ r, + fo @ ry can be
decomposed easily into its two summands; to get this decomposition, simply take the
components of ¢ that correspond to 77(V') and T9(V) and apply the functions implied
by Theorem 1 to each. However, it remains to be seen whether the superposition

vector, t can be decomposed if both symbols appear at the same level of recursion;

that is, if p = ¢q.



CHAPTER 3. TENSOR REPRESENTATIONS 27

Theorem 2 shows that such sums of recursive tensor products can be decomposed
into their summands. It shows that by applying the function implied by property T5

of tensors iteratively, the symbols in recursively applied roles can be determined.

Theorem 2 Let A be a linearly independent set of vectors from a vector space, V' If

s € V@TrP(V) is given by

r
SZZui®Ui,1®Ui,2®.-.®Ui,p

i=1
where u; €V and v;; € A fori=1...r,3=1...p. Then the elements uy,u,,...,u,
are uniquely determined.
Proof: (by induction on p). The theorem holds for p = 1, by property T5 of
tensors. Assume that it holds for p < k. Then forp =k +1,

r
§ = Zui®vi,1®vi,2®---®vi,k+l

i=1

and therefore s € V@ T V). Let 7 : (VQTHV) @V — V @ T*1(V) be an
isomorphism, whose existence is guaranteed by property T2. Let w; = 4;Qvi1®...Qv;i
be in V @ TH(V) Then .
s =7 wi ® Viks1)
i=1

Jrom which w; are uniquely determined for 1 = 1...r, by property T5. By hypoth-
ests, u;,1 = 1...7 are uniquely determined from w;. So u;,1 = 1...7 are uniquely

determined from s. Therefore the claim holds for all p. a

Theorem 2 shows that, like simple tensor representations, recursive tensor repre-
sentations can be superimposed (added) on one another to represent several symbols
in different recursive roles. Yet, even with such superposition, the original symbol-role
pairs can be reconstructed. The theorem also shows how this reconstruction can be
performed recursively.

Note, however, that if the self addressing unbinding procedure discussed in Section
3.1 and in (Smolensky 1991) is used to unbind the representations then the error due

to the role vectors’ linear dependence is even more important. If the role vectors are



9 4]

CHAPTER 3. TENSOR REPRESENTATIONS 28

linearly independent, then the error is zero, otherwise, it depends on the number of
role vectors, and the dot product between pairs of them. In a recursive representation,
the self addressing unbinding procedure is applied iteratively to its result to regain
a symbol. Thus, the error present after the first unbinding is used to determine
the second unbinding, and so on; consequently the errors compound as the recursive
representation is unwound. The linear independence of the role vectors therefore
becomes even more important.

Aside from the linear independence of the vectors, the development of tensor repre-
sentations (Smolensky 1990; Smolensky, Legendre, and Miyata 1992) has consisteutly
glossed over the fact that tensor products are only defined for vector spaces over fields
of characteristic zero such as the real numbers or the rationals. Activation vectors,
on the other hand are usunally defined over a bounded subset of the reals, such as
[0...1]; certainly, in the models that are required by Harmony theory, the activation
values are defined over a bounded subset of the real numbers. In order to represent
structures, the tensor representations of constituents with the same dimensionality
are added together as vectors. However, this addition may not be possible if every
component of the sum must fall in a bounded subset of the reals. In the simple non-
recursive case, where there can only be a small number of role-constituent pairs in any
representation, this difficulty can be finessed by simply making the components of all
the vectors small. However, such is not the case in the recursive tensor representation.

In a recursive representation, because the activation vector could be the sum of a
large number of tensor p-oduct vectors, the activation values can become saturated. In
other words, some units may be required to attain an activation value that is beyond
their capacity. Suppose for instance, v = ;01 @ Vi2 @ ... @ Vix @ Vi k41, if there
are r role vectors, then there are as many as r* tensors in the sum. If the smallest
component is €, then all the components of each of the tensors have size at least ¢**!
, and so every component of the sum u is at least u; > ¢**1r* = (er)*e. Therefore,
recursive roles of depth k give representations that simply cannot be represented by

the activation vector for all k such that:

1
k 2 loger -
€



CHAPTER 5. TENSOR REPRESENTATIONS 29

The result is that the depth of the recursion is limited not only by the size of the
network, but by the chosen representation as well. This means that models, such as
harmony networks, that take advantage of recursion to define families of networks
that manipulate recursive tensor representations must be careful to avoid saturating
the connectionist units. The only way to avoid this saturation without limiting the
depth of the recursion is by making the role vectors unit vectors along the axes. If the
roie vectors are among {(1,0,0,...),(0,1,0,...),(0,0,1,...)} then no two summands

will use the same unit, and so, no unit will saturate.

3.3 Representation of Parse Trees

Trees are an especially useful example of a recursive structure. Many relationships can
be represented using trees. For example, trees can be used to represent relationships
between classes and their subclasses, or between objects and their components. In
particular, trees can be used to represent the application of production rules from
context free grammars (CFGs).

Suppose G = (V,E,P,S) is a CFG. Then, as described in Section 2.3, for any
w € L(G), we can create at least one tree that represents the application of production
rules from G to arrive at w in the leaves.

For example, let G = ({S,['y,, 4,2, B,'3,,C, D}, {a,b}, P,S) be a CFG where

P is the set of productions:

S_’Fl,l Fl‘l—)CB A—)F3,1
F3’1-+CB B—-*Fz,l B—)b
F2,1_)14D C’—>a. D—)b

It can be shown that L(G) = {a'b’|i > 0}. Figure 3.1 illustrates a tree that represents
the application of the production rules to arrive at w = aabb:

Smolensky, Legendre, and Miyata (1992) describe the following tensor represen-
tation for binary trees, which is based on a breadth-first search of the tree: Let 7
and r, be the two role vectors corresponding to the role of left child and right child

respectively. If ¢; and ¢, are the superposition tensors representing the left and right



CHAPTER 3. TENSOR REPRESENTATIONS 30

Figure 3.1: A derivation graph of the string aabb using rules from the grammar, (7 of
the text

subtrees of a node labeled v, then s = v+ ¢, @ + ¢, @ r. is the superposition tensor
of the subtree rooted at v. For example, the tree shown in Figure 3.1 would have a
tensor representation given by the following construction which follows a breadth-first

traversal of the tree:

s = S+ < subtreeat '}, > @n

= S+ (I'11+ < subtreeat C > @r;+ < subtreeat B > @r,) @

= S+ (M1 +(CH+e®@r)@r+ (B+ <subtreeat '3, > @
r)@r,) @1

= S+((Ta+(CH+ae@r)@r+(B+(B+
< subtreeat A > ®@r;+ < subtreeat D > @r. )@ r) @ r.) @r

= S+ (M1 +(C+a@nr)@rn+(B+(B+(A+
< subtreeat sy > @r)@rn+(D+b@r)@r.)0r) @r) &

= S+ ((Cia+(C+a@nr)@r+(B+(B+(A+(I'2g+



CHAPTER 3. TENSOR REPRESENTATIONS 31

< subtree at C > @ri+ < subtreeat B > @r,.) ®
r)orn+(D+b@rm)@r)@r) @r.) @

= S+ ({(Tii+(C+e@m)@r+(B+(B+(A+ (L2 +
(C+a@r)@r+(B+b@m)@r)Qr)®@r +
(D+b@m)@r.)Q@n)@r)Qr

By property T6 of the Kronecker product,

s = S+, @en4+CR3n@drn+a@nnAOr +
BRr,or+Tl3:9n®@r@n+A@rn@r@rQ@r+
() @rm@n@ren@rn+Cendn®@n@rner.@n +
a@rA@r@rernAnAr@rn+ B @r
Pri@rM@rIN+obRrOr,@nAOrnrr. @ +
DRr,@r@r.@r+b@n@r@rner @mn

The previous section showed that provided r; and 7, are independent, the tensor
representation for any tree will be decomposable, and the labels of the vertices will
be retrievable, along with their positions in the tree. The result of this tensor repre-
sentation for trees is that activation vectors can then describe correct (and incorrect)
parse trees for words in a context free language. Harmony theory describes how to
construct a connectionist network the stable equilibria of which are supposed to be
- tensor representations of parse trees. This theory is discussed in Chapter 4.

For now, observe that even if activation vectors can represent parse trees for con-
text free languages, it is still “unclear whether this sort of apparatus is adequate
to represent all the semantically relevant syntactic relations that Classical theories
express” (Fodor and McLaughlin 1990, p344). Indeed, it is certain that the tensor
representation leaves a lot of useful languages unexplained. For example, the language
L = {wwlw € {a,b}*} is a context-sensitive language, not a context-free language;
because productions in a grammar for such a language can have several symbols on
the left, & machine that constructs derivation graphs for strings in L will need a more

powerful representation than trees.



CHAPTER 3. TENSOR REPRESENTATIONS 32

3.4 Representation of Derivation

Graphs

To correctly parse context sensitive languages such as L above, requires directed
acyclic graphs. This section begins by discussing a normal form for Type 0 grammars
that restricts the number of symbols in a production in the grammar. Such a normal
form is required by both the restrictive recursive tensor representation of directed
acyclic graphs (DAGs) that is developed later in this sectior, and by the chapter on
harmony theory that follows. The question of whether or not there are connectionist
networks that can decide if a decomposition graph is correct for a particular type 0

language is considered in Chapter 4.

3.4.1 Normal Form for Type 0 Grammars

In general, grammars can have productions of any length. However, it is not difficult
to modify an unrestricted grammar so that each production has at most three sym-
bols. To construct this normal form for an unrestricted grammar, @ = (V,X, P, 5),

construct a new grammar, ¥ = (VUT, X, P/,.5). For every production p; € P :
Pi =010y ... 0y — BhfBa... B

where a; e VUE, g =1...5, 8 € VUEk=1...tand s +1 > 3, add to I" new

non-terminals I'; ; for y =1...s+t — 1, and add to P’ the following productions:

ap — I,
Iijoijipr — Tijpsforg=1...s—1
Fi.) - r"3j-—s+1ri,j+1, forj =s5...5+t—2
Fiste-1 — By
IfS +t < 3 then add p{ to P. It can be Shown tha,t L((l’) = L((Z} rrhis n()rl‘nal f()r”]

is important because it establishes a bound on the number of parents and children of

each node that the decomposition graph has.




CHAPTER 3. TENSOR REPRESENTATIONS 33

Original Production New Productions
. . 5 —T5 F1,1 - AFI,Z 12— CF1,3
S - ACaB Fys— alya Pya— B
Ca — aal’ C— Fz,x F2,la - F2,2 F2,2 - an,a
i I\'2,3 — an,q F2,4 - C
CB— DB C — I3, Fa,lB - F3.2 I-‘3,2 - DF3,3
” F3,3 — B
CB— FE C' — F4,1 F4’IB — F4’2 F4’2 — F
aD — Da a — FS,I FS,ID - Fs,z F5,2 — DFs,a
53— a
AD — AC A—Te1 Te1D —Tsa T2 — Al
‘ ] lne»,s — C
aF — Ea a— FT,I F7,1E - F7,2 F7,2 - EF'{,a
['73—a
AE — ¢ A—Tgy Tgibl—Tgy I'ga—e

Table 3.1: Normal form for the grammar for L = {d’|i is a positive power of 2}

For example consider the language, L = {a'|i is a positive power of 2}. The pro-
ductions for a grammar., G = ({S. A, B,C, D, E},{a}, P, S) for L are reproduced from

{Hopcroft and Uliman 1979, p220) below:

S ACaB Ca— aaC CB— DB
CB— FE aD — Da AD — AC
aF — Fa AF — ¢

The productions in the normal form are shown in Table 3.1.

3.4.2 Spanning Tree Representation of
Directed Acyclic Graphs

The previous section demonstrates that in order to show that tensor representations
can capture the derivation graph of a recursive language, it is necessary to show
that they can represent directed acyclic graphs where each node has at most two

mbound and two outbound edges. The approach suggested by Smolensky, Legendre



CHAPTER 3. TENSOR REPRESENTATIONS 34

and Miyata’s development of tree representations is to create a number of parent roles
and a number of child roles. The construction will employ these roles to represent
a spanning tree of the graph as before, and then to represent the noun-tree edges

separately.

The Representation

Let G = (V, E) be a directed acyclic graph. Assume that G has a single source, s € V.
Assume also that the in-degree and out-degree of each node is bounded, that is for
each v € V, degin(v) < d; and degout(v) < d,. The previous section showed that d;
and d, can be as low as 2 for the derivation graphs of recursive languages. If there
is an arbitrary order (<) applied to the vertices of G , then there is a natural tensor
representation for G.

Let £' = {(u,v)[Vu' € V,(v/,v) € E = u < u'} be the set of “least” edges into
each vertex. Now E’ covers V' \ {s} since every vertex v # s has a least u such that
(u,v) € E for otherwise G has more than one source. Because G is acyclic, £ also
covers s. Let T = (V, E’) be the subgraph of G that is induced by £'. T is a trec
because no vertex has more than one edge coming into it, and because (i has a single
source and no cycles. For example, in Figure 3.2, the darkened edges represent I".

We can consider the tree to be rooted at s, and ordered by the original ordering
on the vertices. Now, let ® = {ry,73,...,7,} be role vectors, where r; corresponds to
the role of 7th subtree. Then in a manner similar to the representation of binary trees
in the previous section, there is a recursive tensor representation for T'. It remains to

be seen how the edges in E \ E' are represented.

Let ¥ = {p;1,p2,...,Pn} be role vectors, where p; corresponds to the role of ith

parent (in the order (V, <)). Suppose that

tu = lu @ Tu,l % Tu,2 @ ... @ Tu,j
t, = !v @ Ty,1 2 Tv,2 D@ Tuk



CHAPTER 3. TENSOR REPRESENTATIONS 35

Figure 3.2: A graph with the nodes ordered left to right, top to bottom. The spanning
subtree T' in the text is represented by the heavy edges.

are the tensor representations for nodes u and v in T', and [, and [, are their labels.

Now to represent the edge (u,v) in E \ E’, where u is v’s tth parent use:
tu) = ®@Tu @pi®Ty
The representation for the graph, G is then
te=Y (L@r)+ Y. LOrepen

ueV {(u,0)€(ENE)
and
uisv’/seth parent

Now, provided that the set of all role vectors, ¥ U ®, is linearly independent,
sg can be decomposed into its constituent parts. Also, due to the uniqueness in
tensor property T§, each tensor representation corresponds to a unique (up to graph

isomorphism) graph.

An Example

Consider the graph illustrated in Figure 3.2. Its source is A, and its spanning subtree
is the set of darkened edges. The representation of the spanning subtree is,
s = A+ < sublreeat B > Qri+ < sub\tree atC > @r,
= A+ (B+ < subtreeat D > @r,) ® ;;?-\Ségr
= A+ (B+D@r)@n+CQr,
= A4+ BOn+DOr@n+Cor,



CHAPTER 3. TENSOR REPRESENTATIONS 36

Now the edge (C, D) is represented by putting the label C in the role constructed by
multiplying the roles of C and D with the parent role:

sepy = CRre@p®rp

= Cnepdran
The complete representation for the graph is

S¢ = ST+ S(c,D)

= A+Bon+D@rn+Cor+CQr.Qmedr,n

Analysis

Despite its uniqueness property, and the fact that the representation can be decom-
posed into its constituent parts, this method for representing DAGs is unsatisfying.
In contrast to the representation of trees, this representation of DAGs could allow
the graphs themselves to be malformed. The parent pointer can point to a node that
may not actually be there, or it may have a different label in the tree than it does in
the non-tree part of the representation. In order to ensure that the DAG is valid, the
non-tree edges tacked on the end of the representation will require special treatment
in any scheme to develop such derivation graphs, or even in a scheme to recognize a

valid derivation graph.

3.4.3 Recursive Representation of Directed

Acyclic Graphs

The representation of trees is smooth because trees offer a natural recursive structure:
a tree can be constructed from an existing tree by adding a single vertex, and joining
that vertex to another vertex already in the tree by the addition of a single edge. The
result is that for any vertex in the tree, there is exactly one path from that vertex
to the root of the tree. Indeed, there is exactly one path between any two vertices.
In general, DAGs cannot be constructed in the same way because for each particular

vertex, there may be more than one path from the source to that vertex. When a new



CHAPTER 3. TENSOR REPRESENTATIONS 37

vertex is added to a DAG, several edges may need to be added in order to link several
paths. Fortunately, every derivation graph as developed before can be constructed
recursively by starting with the source and adding vertices and at most two edges to

each new vertex from the existing set of vertices.

The Representation

Proskurowski (1981) proposed a recursive representation for k-trees which serves as
an inspiration for a tensor representation of DAGs. The representation is a sequence
of sets, where each set represents a vertex and contains the indices of the vertices to
which that vertex is joined. In the tensor representation of derivation graphs, we are
not only interested in the label of the new vertex but in the position of the added edges
(ie whether it is joining a left-parent or a right parent); the tensor representation must
include that information as well. As in the representation of the trees, the labei and
a subgraph will fill each role, and the role will indicate the position of the subgraph.

The proposed representation is a recursive one. If a vertex labeled L is added
to the graph which has superposition vector ¢, then the superposition vector of the

resulting graph is
tg=tc@(U@p+re@p)+ L

Here [ and r are simple roles indicating “left parent” and “right parent” respectively,
and p; and p, are recursive roles that indicate the indices of the left and right parents
respectively. Note that each time a new vertex is added to the graph, the existing
graph’s role gains another /[ and r, so no two subgraphs fall in the same role. Note
also that a graph’s representation will depend on the order in which the vertices are
added.

These indexing roles might be recursively formed from a vector that indicates
“next” as in a representation for a list; in that case, they would start at the first
node in the graph and count toward the current node (that labelled L). Because we
are interested in using this representation to build derivation graphs, it will be more
efficient to start with the current node and count backwards. Thus, if p is a simple

role that indicates “previous”, then if the left parent of the new node was the most



CHAPTER 3. TENSOR REPRESENTATIONS 38

recently added node, and the right parent were the node that was added before that,
the role of sg would be
(I®p+rQp®p)

An Example

Consider again the directed graph illustrated in Figure 3.2. The representation of this

graph is best understood by foliowing the construction of the graph:

Scas = A
scaps = AQ(r@p)+ B
s<aBc> = (AR(r®p)+B)@(l®p®p)+C
s<apep> = (AR(r@p)+B)e(lepdp)+C)Q®
(l@pe®p+r@p)+ D

Analysis

The use of indexing roles results in some of the same problems as the tree-based
representation. For example, there is no built in limit to the index. Thus, the index
could refer to a vertex that is not in the graph. In the representation of trees in
Section 3.3, there was no need for an index — it was implicit, the newly added vertex
was always joined to the roots of its subtrees. However, in any representation of a
graph, there must be some means to refer to vertices inside the graph, for otherwise,
there is no way to build multiple paths. Indexing is almost guaranteed in any tensor
representation of directed acyclic graphs.

On the other hand, the recursive representation of directed acyclic graphs is uni-
form. Unlike the tree-based representation, there are no special edges which arc
appended to the end of the representation. That means that a mechanism that must
decide if a graph is valid does not need to have special cases to handle some of the

edges.




Chapter 4

Harmony

In Chapter 3, we traced Smolensky, Legendre and Miyata’s development of tensor
product representations for parse trees for Context Free Grammars. We went on to
extend that development to representations of derivation graphs for type 0 grammars.
Together, these results show how the activation vector of a connectionist network could
represent the steps of an algorithm. Smolensky, Legendre and Miyata’s Harmony
theory, which is the subject of this chapter, claims to show how a connectionist system
could be synthesized so that it naturally “relaxes” into such a state.

Harmony theory consists of two viewpoints or formulations: a symbolic viewpoint
and a numeric viewpoint. These viewpoints claim to explain the apparent difference
between classical algorithms for intelligence and the computational models postulated
by connectionists. The symbolic viewpoint consists of a “harmony function” which
maps the set of derivation graphs that are possible over a grammar to the real num-
bers. A symbolic computation in this formulation is simply a choice of a particular
derivation graph that happens to maximize the harmony. The numeric viewpoint
consists of an explanation of the evolution of activation vectors in connectionist sys-
tems from the point of view of energy minimization. The two are apparently tied
together in a procedure to synthesize neural networks that seek maximum harmony

computations.

39




CHAPTER 4. HARMONY 40

4.1 Symbolic Formulation

Because the tensor representations discussed in Chapter 3 are based on symbols in
various roles, a harmonic account of tensor representations starts with a symbolic
account. The symbolic harmony of a set of constituents is defined to be the sum of
the harmonies of the constituents, taken in pairs:
H =Y Heric,r, (4.1)
i#5
So for example, the harmony of a structure such as “John kissed Mary” would be

something like

H((John, agent),(kissed, verb),(Mary, patient)) = H((John, agent),(kissed, verb)) +
H ((kissed, verb),(Mary, patient)) T
fl((John, agent),(Mary, paticnt))

and we would expect this value to be high in the part of Rachel’s brain that decides
jealousy. If languages such as the set of English sentences that make Rachel jealous
are computable at all, then they must be equivalent to some (perhaps restricted) re-
cursively enumerable language (provided Church’s thesis holds) (Hopcroft and Ullman
1979, p221). So, we require a harmony function that decides membership of strings

in some recursively enumerable languages.

4.1.1 Context-Free Parse Trees

Smolensky (1993) proposed a harmony function for derivation trees for context frce
grammars in a normal form. That is, their harmony function takes as input a candi-
date parse tree for a string in a context free language and assigns a harmony value
to the tree. If the harmony of the tree is zero, then the string is judged to be in the
language. The function examines the labels of the nodes in the derivation tree, and
compares parents to their children. The rules that are used to derive this function for
any given language are summarized in Table 4.1.

That these rules yield a zero harmony value for well formed trees can be seen by

examining the proof presented in (Smolensky 1993). The essential idea of this proof is



CHAPTER 4. HARMONY 41

Type 0 Production or Symbol Change in Harmony
lv)y=a€X add —1 to H
llv)=A€eN add —2to H

[(root) = S add +1 to H
llv)=~v€Tl add -3 to H
(u,v) € F,v the left child of v and add +2 to H
(l(u) = l(v)a) € Por (l(u) — l(v)) € P,
acYUNUT
(u,v) € E,v the second child of v and add 42 to H
({{u) = al(v)) e Pa€ ZUN

Table 4.1: Rules for determining the harmony, H, of a parse tree, (V, E), for a string
from an arbitrary context-free grammar, (N UT', X, P, S). Here I' is the set of new
non-terminals that are added when constructing the normal form described in Section
3.4.1. [ is a labelling of the nodes of the parse tree, [ : V — XU N UT.

that for every vertex in the parse tree, the number of incident edges that are required
for the tree to be valid is known, because the grammar conforms to the normal form
presented in Section 3.4.1. Thus for each vertex, the number of incident edges required
is subtracted from the harmony. Each valid edge is incident to two vertices, and so,
it contributes 42 to the harmony, balancing the negative contributions of the vertices
at each end.

For example, let F' = ({S5,'|1,A,T2,,B8,03,,C, D},{a,b}, P,S) be a Context

Free Grammar where P is the set of productions:

S—i Fl,l Fl,l — CB A—> F3’1
F3‘1—>CB B-’Fz,l B—ib
F2,1—>44D C—>(1 D—b

Suppose G = (V, E) is a potential derivation graph for a string in L(F)and [: V —
{8, T11,A,2,1,B,I'31,C, D, a,b} is a labeling for the vertices of G. We can compute

the harmony of G as follows:

e For any node v, if /(v) € {a,b} then add —1 to the harmony. (Rule 1 in Table
4.1)



CHAPTER 4. HARMONY 42

Figure 4.1: A parse tree for the word w = aababa which is not in the language, L(F") of
the text. The numbers represent the contributions to the harmony value of the parse
tree with respect to the grammar £ of the text. It can be seen that the harmony of
this tree is —2.

® For any node v, if {(v) € {A, B,C, D, S} then add —2 to the harmony. (Rule 2)
e If v is the root and /(v) = S then add +1 to the harmony. (Rule 3)
& For any node v, if {(v) € {I'y1,'2,,'31} then add —3 to the harmony. (Rule 1)

e For any edge (u,v) where v is the first child of w, il ({(u),l(v)) €
{(S, Fl,l),(Fl,laC)a(Aa F2’1),(F2‘1,C),(B,Fg'l),(F&l,A),(CI,(L),(1),1)),(13,['))}
then add 2 to the harmony. (Rule 5)

% For any edge (u,v) where v is the second child of u, if ({(u),l(v)) €
{(I'11,B),(l21,B),(T'31, D)} then add 2 to the harmony. (Rule 6)

Figures 4.1 and 4.2 illustrate this harmony function applied to an invalid and a valid
parse tree, respectively.
The problem with this harmony function is that the method for constructing

networks, discussed in Section 4.2 that find maximum harmony trees requires that



CHAPTER 4. HARMONY 43

Figure 4.2: A parse tree for the word w = aabb which is in the language, L(F') of the
text. The numbers represent the contributions to the harmony value of the parse tree
with respect to the grammar F' of the text. It can be seen that the harmony of this

tree is 0.

the harmony function is embedding invariant. That is, the harmony function must
determine the contribution to the harmony made by a pair of nodes without knowing
where the pair lies in the overall structure of the tree. In the embedding invariant
scheme, there is no way to tell if a particular node lies at the root of the tree, or
below. This means that the rule that increments the harmony if the root is labelled
with the start symbol cannot be used.

If the start symbol appears only on the left hand side of productions, a condition
which is easily satisfied with a simple modification to the grammar, then the root is
the only valid position for the start symbcl. In that case, the start symbol will always
contribute a value of —1 to the harmony value of the tree. Table 4.2 captures this
modification and extends the rules for constructing a harmony function to apply to

Type 0 grammars.



CHAPTER 4. HARMONY 44

Production or Symbol Change in Harmony
[(v)=a€X add —1 to I/
[(v)=Ae N\ {S} add —2 to H
l(vy=S add —1 to H
[wWy=v€Tand {a¢ = v,y = B} C P, and o,8 €

(NU ) add —(|a| +|3]) to H
(u,v) € E,u the 1st parent of v <= ({(u)a = [(v)) €
P, or (l{u) — l(v)) € P for some o € (NUT UX)
(u,v) € E,u the 2nd parent of v <= (y{(u) — 7)) €
P, for somey €T’

(u,v) € FE,u the first child of v <= ({(u)a — [(v)) €
Por (l(u) = l(v)) e Pae X UN

(u,v) € E,u the second child of v <+ ({(u) —
al(lv)) e Pa € EUN

add +2 to

add +2 to H

add +2 to H

add +2 to H

Table 4.2: Rules for determining the harmony relative to an arbitrary grammar, (i of
a derivation graph (V, E) with vertex labelling given by . The grammar is given by
G = (NUT, X, P,S) where I is the set of new non-terminals added when constructing
the normal form as in Section 3.4.1.

4.1.2 Type 0 Derivation Graphs

Table 4.2 extends Smolensky, Legendre and Miyata’s harmony function to a harmony
function for an arbitrary type 0 grammar. This harmony function is simply an ex-
plicit version of the harmony function suggested by Smolensky, Legendre, and Miyata
(1992). The proof is very similar to the development which was presented by Smoleu-
sky, Legendre, and Miyata (1994) and summarixed in the previous section, and so the
harmony function is presented here without proof. As implied by the previous section,
the revised harmony function not only gives an extension to type (0 grammars, but

also makes the harmony function truly embedding invariant.

4.1.3 The Symbolic Viewpoint

The crucial aspect of both the original symbolic harmony function for Context Iree
parse trees and the variation presented above is that both calculate harmony by

comparing only pairs of constituents. The harmony of the entire structure is calculated



CHAPTER 4. HARMONY 45

by adding up the harmony values contributed by vertices and pairs of vertices (or
vertices and edges). So, the harmony contribution of the edges can be expressed
exactly as in the definition of the symbolic formulation of harmony:
Hegges = Y Heirie,r,
1#]
The vertices, on the other hand, make a contribution regardless of their position.

Thus,

Hverticcs = Z Hc,'
1

The vertex contributions can be included in the calculation of the edge contributions,

but care should be taken so that each contribution is added exactly once. So, we can

define the pairwise harmony,

H,.,, = < harmony contribution of edge between r; and r; > +

37Ty,

< harmony contribution of ¢; >

If ¢; is the parent of ¢; then we must ensure that there is a “null” child so that the
sinks are also parents and their contributions are included in the sum. In this last
case, we see that the harmony of the derivation graph can be expressed exactly as in
Equation 4.1.

What’s more, this formula for harmony is embedding invariant. That is the rules
can be applied by looking at exactly two vertices, without any more information than
their labels and the fact that one is the left or right parent of the other on a path from
the source. This independence means that the roles r; in the harmony calculation can
be recursive — a property that will be useful as we turn to the numeric formulation

of harmony theory.

4.2 Numeric Formulation

Smolensky (Smolensky, Legendre, and Miyata 1994) contends that symbolic comput-
ing 1s simply a high level view of human cognitive processes. From below, the processes

are better viewed as the “spreading” of activation among connectionist units. If this



CHAPTER 4. HARMONY 16

is true, then connectionists will have to devise a means to connect the two viewpoints
of cognition: namely they will have to connect the symbolic formulation of harmony
theory with a connectionist or numeric formulation.

Smolensky, Legendre and Miyata {Legendre, Miyata, and Smolensky 1990) note
that with each state change, some types of neural networks minmuize functions, called
Liapunov functions, or energy functions. In particular, some neural networks serve to
minimize the following function of their activation vector:

]
E(a) = -—;aTW’a (-1.2)

P

Here a is the activation vector, and W is the neural network’s weight matrix (Leg-
endre, Miyata, and Smolensky 1990; Smolensky, Legendre, and Miyata 1992). Such
a function will be called the energy function of the connectionist network as in (Co-
hen and Grossberg 1983; Hopfield 1982; Hopfield 1984; Hopfield 1937; Golden 1986;
Salam, Wang, and Choi 1991; Li, Michel, and Porod 1988; Michel, Iarrell, and Porod
1989; Lillo, Miller, Hui, and Zak 1994). Note that this terminology is different from
that of Smolensky et al. who use the term “harmony function” to denote the nega-
tion of the energy function. To avoid confusion with the harmony function which has
already been defined as a function mapping derivation graphs to the real numbers,
we will use the more common term energy function for the function in equation 4.2,
Subsection 4.2.1 will examine the networks that are konown to minimize the above
energy function.

Smolensky, Legendre and Miyata propose to exploit knowledge about energy func-
tions to show that connectionist networks have the same computational powers as
context free grammars. Their strategy is to describe a method of synthesizing the
weight matrix for a connectionist network so that whenever the activation vector is a
tensor representation of a parse tree, the energy of the network will be the same as the
negation of the harmony of that parse tree (Smolensky, Legendre, and Miyata 1994,
pl54). Because valid parse trees have high harmony values, the low energy states of
the network will be tensor representations of valid parse trees. Thus, by minimizing
its own energy, such a network will naturally find representations of maximum har-

mony parse trees. From this point, Smolensky et al. argue that the connectionist



CHAPTER 4. HARMOANY 47

network exhibits the same ability as a context free grammar {Smolensky, Legendre,
and Miyata 1992, p44).

The harmony proponents do not say how these trees are generated, nor indeed do
they indicate how a network will go about calculating its own energy value and indicate
its answer. These questions will be examined in detail in Chapter 5. Furthermore,
they do not demonstrate that their harmony networks find maximum harmony parse
trees — a question that is examined in Section 5.3. In this section we will simply
trace the development of energy-minimizing connectionist networks which have the
desired energy function. While it may be possible to synthesize such a network in an
ad hoc manner, we desire a more structured approach.

In Section 4.1.3 we noted two principle attributes of the symbolic formulation

which may help to construct these networks.

e For each pair of constituents. their roles are relative. In other words, the rcle of
the second constituent ¢:.u be expressed in terms of the first. For example, the

harmony of a pair of nodes might be +2 if the second node is a valid child of

the first.

e The harmony of a complete structure is the same as the sum of the harmonies

of pairs of constituents in their roles.

Section 4.2.2 will examine the use of the first of these attributes to create a submatrix
of the weight matrix. This submatrix will be used to calculate the negation of the
harmony of a pair of adjacent vertices in the parse tree. Using this submatrix, Section
4.2.3 will examine the question of how copies of the submatrix can be combined to form
the desired connectionist network — one for which the energy of tensor representations

of parse trees is the negation of the harmony.

4.2.1 Connectionist Networks as Energy Minimization Sys-

tems

As noted previously, some connectionist networks, like a variety of other dynamic

systems, admit a Liapunov or energy function. As the dynamic system evolves over



CHAPTER 4. HARMONY 48

Figure 4.3: A graphical representation of a connectionist network’s energy function.
The activation vector, a, starts at an initial state + and moves “downhill” to a final
equilibrium point, f.

time, the value of the Liapunov function decreases. In other words, the dynamic
system seeks to minimize its Liapunov cost function. These functions ease the analysis
of dynamic systems.

Informally, the energy function can be used to provide a visual metaphor for the
operation of connectionist networks. Energy is a single valued function of a vector
quantity. Thus, if the vector space is two dimensional, then the energy function can
be viewed as a landscape, with hills and basins. The original state of the network is
like a ball bearing placed randomly on the surface. As the connectionist network’s
state changes, the ball bearing falls toward the nearest basin until it comes to rest
at an equilibrium point. Figure 4.3 represents this description graphically. lor a
reasonably understandable introduction to Liapunov functions see (Leipholz 1987),
and for a description to these functions in the context of connectionism, see (Hopfield
1982). In these terms, Harmony theory seeks to devise a landscape so that the minima
fall on the well-formed parse trees.

Harmony theory (Smolensky, Legendre, and Miyata 1992; Smolensky 1993) is

based on the energy value, E(e¢) = —2a”Wa of Equation 4.2. Smolensky et al. cite



CHAPTER 4. HARMONY 49

papers by Cohen and Grossberg (1983), Golden (1986, 1988), Hinton, McClelland, and
Rumelhart (1986), Hopfield (1982, 1984, 1987), and Smolensky (1986) to demonstrate
that some connectionist models admit the above energy function. The models cited
in these papers fall into special cases of two categories of connectionist models —
the Brain State in a Box model (Golden 1986; Golden 1988), and the Hopfield model
(Cohen and Grossberg 1983; Hinton, McClelland, and Rumelhart 1986; Hopfield 1982;

Hopfield 1984; Hopfield 1987; Smolensky 1986).

Energy of the Brain-State-in-a-Box Model

The Brain-State-in-a-Box (BSB) Model, which is defined by Equations 2.3 and 2.4
on page 19, is one of the connectionist models that admits an energy function under

certain conditions. This fact was proven by Golden (1986) using the following theorem:

Theorem 3 (Golden 1986) If

1. EBSB(G) = —%aTVVa

o

. W is symmetric.

3. Either 0 < Apin 0r vy < 2/|Apin| where Apmin is the minimum eigenvalue of W,
and 7y is the constant in Equation 2.3.

Then
1. EBSB(a(t + 1)) < EBSB(a(t)) Zf a(t + 1) 74 G(t).
2. Epsp(a(t +1)) = Epsp(a(t)) if and only if a(t + 1) = a(2).

This theorem states that Eg sB(a) is monotonically non-increasing and that if it
ever stops decreasing, then the BSB model comes to rest at a single point. Golden
(1986) shows that these systems do in fact eventually come to rest at a single equi-
librium point.

The hypothesis that stipulates W is symmetric corresponds to saying that activa-

tion travels equally well in each direction along the connections in the network. This



CHAPTER 4. HARMONY 50

assumption is somewhat unusual from a practical standpoint because most implemen-
tations of connectionist networks have asymmetric weight matrices.

It is natural to ask whether the BSB must have a symmetric weight matrix in
order to exhibit the desired energy function. In an experiment using 100 small ( 3 by
3 ) random asymmetric matrices, each admitted at least one initial vector that caused

EBsp to increase. For example, using the notation of Equations 2.3 and 2.4 let

/11
W =
(0 1)
If Y= 0.1 a,nd G(O) = (0746, —1)T, then EBSB((I.(O)) = —0.41 EBSB((L(l)) = -—0395,
and Epsp(a(6)) = —0.35. So the energy function admits an increase in this asymmet-

ric case. Similarly, for those 100 asymmetric matrices, Fgsp is not a valid Liapunov

function.

Energy of the Hopfield Model

The Hopfield model as defined in Equations 2.1 and 2.2 is quite different from the BSB
model. Interestingly, under certain conditions it admits an energy function that is very
similar to the energy function of the BSB model. Hopfield showed (Hopfield 1984),
the following function is an energy function for Hopfield networks with symmetric

weight matrices:
1 I |
Eropfictd(a) = —EaTWa +3° E/gfl(v)dv + 3" La; (4.3)
;T :

Recall from Section 2.6 that R; is a biologically motivated constant, g; is the response
curve of unit 7, and [; is a fixed input signal to the unit, 1.

Yang and Dillon (1994) modified this energy function and demonstrated an insta-
bility result to show that the modification was necessary. They assert that the reason
Fropficta(a) is inadequate is that it assumes that the network will reach an asymp-
totically stable equilibrium when the energy function is minimized. Their instability
result shows that this is not necessarily true — the state vector can oscillate between

two equilibria of equal energy. The modification defines an equilibrium as a point



CHAPTER 4. HARMONY 51

where there is no change in the activation vector. They then go on to modify the en-
ergy function, Equation 4.3, to measure the distance in terms of Ep,pyicia(a) between
an equilibrium point and the activation vector, a. Since Enopfierq(a) is much simpler
than the energy equation proposed by Yang et al., the remainder of this thesis will
make the reasonable assumption that the minima are indeed asymptotically stable
equilibria, in which case, Fg,pficia(@) is adequate to denote the energy function of the
Hopfield network.

in (Hopfield 1984), Hopfield showed that under certain conditions, the Hopfield
model has the same energy function as that of the Brain-State-in-a-Box model. In
the case where all the units are allowed to vary freely, from their initial state, I; is
zero for all 7, and so the last term is zero. Recalling that g;(v) is an odd function,
with [gi(v)| < 1, the integral in the second term also becomes zero as g;(v) becomes
steeper. Thus when all the units are allowed to vary freely, and the units’ response
curves (g;(v)) are steep, and the weight matrix is symmetric, the energy function of

the symmetric Hopfield model reduces to:
1
EHopfield(a') = —-§CLTWG = EBSB(CL) (4.4)

So, given these conditions, the symmetric Hopfield model has the same energy function

as the symmetric brain-state-in-a-box model.

4.2.2 Pairwise Harmony in Context Free Parse Trees

We will use the energy function described in the previous section to provide insight
into how a connectionist network can be constructed so that its energy function is the
negation of the harmony function for some grammar. As indicated at the beginning
of Section 4.2, we will exploit the fact that the change in harmony attributed to a
pair of vertices is non-zero only if one vertex is the parent of the other.

Recall that in a recursive tensor representation, the representation is simply the
sum of the tensor products of the symbols with their recursive roles. In the cases
where the recursive roles differ in dimension, the sum is taken to be a direct sum.

Thus if the activation vector @ is a superposition vector containing some recursive



CHAPTER 4. HARMONY 5

[

~

For every ... Add equations ...

+0®7‘1) Wioot( f1 +6®?1) = +1
fi+00m) W (fi+00m) = +">
f1+0®71)TWroot(f1+0®71)
f1+0®'“1)TWroot(f1+0 1)

—3(f1
—3(
—3(
—3(
(f1 -r0®7‘1) W;oot(0+f2® 1)
—35(
—3(
—3(

terminal, f;
non-terminal, f; € N\ {S}

non-terminal, f; € [’

non-terminal f; = .S

H

production f; — fofs where
fae NUTUXU{e}

! !

0+f2®7'l) M/root(fl +0®7l) -

production f; — f;fs where fi +0®7‘1) Wraot(0+f3®7'r) = —1
/€ NUTUEX 0+ f307r) Weon(fi +0®7,) = —1
i’j (Wroot)z,] = (WTOOt)j»i

Table 4.3: The system of equations that determines W, for a context [ree gram-
mar, (N UT,X, P,S). This system of equations is extended from that proposed by
Smolensky, Legendre, and Miyata (1992). Note that we are abusing the notation by
using f; to denote both symbols in the grammar, and vector representations of those
symbols. 0 is a zero vector in the same space as fi,..., fs. As in Chapter 3, r; and
r,. are role vectors denoting left child and right child respectively.

MI'—‘ Nl'—‘ MD—‘NI'-‘ MI'-' Nl‘-‘ Nl‘-‘ Nl‘-‘

tensor representation, then

GZZfi®Ti

If each of the summands is taken to be a vector in the direct sum then they could be
added as vectors. That is, if we pad the vector f; @ r; with an appropriate number of
zeros so that the dimensions are consistent, we can express the superposition vector

as

= Z(O.i‘, fi @7, 05,)

Here, all the summands lie in the same vector space and can be added.
If the connectionist network is one of those described in the previous section, and
if the activation vector is interpreted as a parse tree, then, the energy of the network

will be

E(a) = —%aTWa



CHAPTER 4. HARMONY 53

J

1

1 . . . -
e —5 (Z(Oinfi ®Ti’0i2)T) w (Z(Ojl’fj ®7'j,0j2))
1 . . . -
= _§ZZ(0i17ﬂ®Ti70i2)TW(0jl7fj®Tj’0j2)
1 J

This equation is very similar to the symbolic formulation of harmony that is presented
in Section 4.1. Like the symbolic harmony function, the weight matrix relates pairs
of constituents.

The recursive representation of parse trees allows further characterization of the
weight matrix W. When calculating the harmony of a parse tree, the contribution of
a pair of vertices is non-zero only when the pair is connected by an arc. We are only
interested, then, in two symbols if one appears as either a left-child or a right-child
of the other. If r;, and r, denote the left- and right-child roles, respectively, then in
order for the harmony contribution of two symbols to be non-zero, one symbol must
appear in a role which is the tensor product of the second role and either r; or r.. In
other words, (0:,f1 ®ry, OZ)TW'(O_;,fg ® 7‘2,0—;) #0onlyifro=r®riorr,=rQ®mnr
for some r € {r;,r.}.

Because the roles of two adjacent vertices are related in this way, the two con-
stituents appear in adjacent locations in the direct sum of all the constituents. In
other words, whenever the harmony contribution of a pair of vertices is non-zero, the
padding vectors, 0; and 03 are “nearly” the same, as are 0z and 0. So, the non-
zero entries of the weight matrix occur in a relatively small section “near” the main
diagonal.

What’s more, as discussed in Section 4.1.3, the harmony function for context free
parse trees is independent of embedding. That is, the harmony contribution of a
maximal subtree of the parse tree is the same regardless of where it occurs in the
whole tree. Consequently, the connections that relate two constituents will be the
same regardless of how deeply the constituents are embedded. Therefore, from the
whole weight matrix, we need concern ourselves for now only with a small submatrix
that relates two constituents. Smolensky et al. call this submatrix W, ..

It is reasonably straightforward to find a value for W, so that the energy contri-

butions of two constituents are equal to the negation of their harmony values. Finding



CHAPTER 4. HARMONY o4

W00t 1s merely a matter of solving a system of equations which is given in Table 4.3.
If the vector representations of the terminal and non-terminal symbols are linearly in-
dependent, then this system of equations will always have at least one solution. There
may also be a solution if the vectors representing the symbols are linearly dependent.

Consider for example the regular grammar, F = (N U, X, P, S) where the pro-

ductions are

S—=a S—-0I,; I't)y—aB
B—a B-1T,
This grammar is in the normal form of Section 3.4.1. We can see that W00t must

satisfy the following equations:

(S+0@ ) Wrou(S+0@ 1)

(P11 + 0@ 7)) Weoot(T11 +0Q 1)

(B+0®7) Wyon(B+0@ 1)

(a4 08 m) Wroot(a+ 0@ )

(S4+0Q7) Wron(0+a @ m)

0+ a® ) Wrou(S+0®m)

(S +0® ) Weoot(0+T1,0 @ 71)
O+ T @) Wrou(S+0@ 1) =

)

)

)

)

)

)

1)

|
O ORI

(Crai+0@r)T root(O +a®@rm
0+a@r) Wron(l'is +0@m
(C11+0@ ) Wron(0+ B® T,
0+ B @) Weon(T11+0@
(B+0@m) Wreot(0+a®m
(6+ a® Tl) Wioot(B + 0®r

(B+0® 7)) Wyt (0 + 1,1 &
(6+nJ@n)ngB+0@n)=
W,; = Wi

I
NN N N NN N NN

We will use the following vector representations for the terminal and non-terminal




CHAPTER 4. HARMONY 55

symbols:

S =1(1,0,0,0) I'y;=1(0,1,0,0)
B =(0,0,1,0) a=(0,0,0,1)
Also, we will use the role vectors r; = (1,0) and r, = (0,1). Substituting these values

into the equations above results in the following value for W, ,n:

(-2 0 0 000200020

0 -6 0 000000220

0 0 —4 000200020

0 0 0 —2/00000000

0 0 0 0/0000O0O0GO0O

. 0 0 0 01/00000O0GO0O
=1 2 0 2 000000000
0 0 0 0(000O0O0O0TO0O

0 0 0 0{0000O0DO0GO0O

0 2 0 0(0000O0O0TO0O

2 2 2 000000000

\ 0 0 0 0/000O0O0O0TOO0)

That this value for W, yields the correct energy values is easily checked.
Due to the nature of the equations that define W,,., it admits four distinct regions.

If symbols are vectors of dimension m and roles are n dimensional, then we can write

. (A B
root — BT D

Where



CHAPTER 4. HARMONY

A is a m x m block
which is used to calcu-
late the contribution
to energy of the root

of the pair by itself.

BT is a mn x m block
which is used to calcu-
late half the contribu-
tion to the energy of

edge between the ver-

B is a m x mn block
which is used to cal-
culate half the contri-
bution to the energy of
edge between the ver-

tices.

D is a mn x mn block
of unconstrained vari-
ables which we will

take to be zeros.

56

tices.

So we now have a way to calculate the harmony of two constituents represented in

tensor form.

4.2.3 Harmony of Whole Context Free Parse Trees

In principle, the matrix, W,,,; which relates any two constituents should be “embed-
ded” at every level of the weight matrix. In this way, the harmony of any two adjacent
vertices of the parse tree can be calculated, regardless of their embedding. Due to the
recursive nature of the tensor representation for parse trees, Smolensky et al. argue

that the correct way to perform this embedding is with the recursion formula

W = Wiat+tIoW
= eroot’*'[®Wroot+[®[®Wroot+--~

It is difficult to know what exactly they mean by this formula. W is the symmetric
weight matrix for a connectionist network, and W,,,; is the submatrix developed above
that relates two constituents. [ is surely the identity matrix with the same dimensions
as the role vectors. But, then the summands on the right hand side all have different

dimensions. They are added together as elements of the direct sum, so the right hand



CHAPTER 4. HARMONY

a7

side of this equation is essentially a vector, not a matrix. For example, if [ is 2 x 2 it

will be:
( Wroot
Wroot 0
0 Wroot
Wroot 0 0 0
W =
0 Wroot 0 0
0 0 Wroot 0
0 0 0 Wroot
/

Moreover, left-multiplying by the identity matrix does not change the size of the non-
zero blocks in the weight matrix. However, the dimension of a parent-child pair in
the tensor representation of the parse tree depends on the level of embedding, and
can be arbitrarily large.

Fortunately, it is not hard to see how to properly construct W. Note that if

symbols are vectors of dimension m and roles have dimension n, then

Am m Bm mn
eroot = T g g
anXm Dmnxmn
The block W,,,; can be expanded by right-multiplying by a matrix. For example, if

[,xn is the n x n identity matrix, then

(A® Dpnxmn (B ® Dimnxmn? )

I'/Vroo ® In n —
t " ( (BT @ I)m‘n2XTT«-n (D ® ])m'n"’an"’

Because D is always zero and it has the same dimensions as A ® I, we can replace D

with A ® I. Then the weight matrix, W would be given by

R 0 0 )
C A®I B®lI 0

W=|0 C®I ARI®I B®I®I (4.5)
0 0 CQI®I AQI®I®I




CHAPTER 4. HARMONY o8

That the energy function for a connectionist network with this weight matrix is the
negation of the harmony is proven below by Theorem 4.

Before proving that theorem, however, we will need two small lemmas. The first
lemma states that the value a’Wb remains the same if both « and b are tensor-
multiplied by the same unit-length role vector. The second lemma shows that if
and b are tensor-multiplied by different orthogonal role vectors, then the value a’ Wb
is annihilated. The theorem uses these two lemmas to show that il s is the tensor

representation of a tree, then —%STW'S is the same as the harmony of that tree.

Lemma 1 If

—

. W is as defined in Equation 4.5.

re

r is a role vector, rT = (ry,rq,...).
3. rTr=1
4. 0 is a zero vector in the space of symbol vectors

5. aT = (a1, az,...), and bT = (by,by,...)

Then .
‘ 0 o
((_)T,(a®r)T)W' ( ) =a'Wb
b&r
Proof:
(07, (a® )" )W 0
’ bar
= (a@r) (WeHbar)
Wial Wil - bir \
= ((117'T, GQTT, .. ) Wgyll W2,2[ b27'

(b]T

o ,
= (Z a;Wiiry, Z aWiirs, ..., Z a;Wiary, .. ) bar
i i t .




CHAPTER 4. HARMONY 59

bl"l‘

= ((Z aiW,-J) rT, (Z aild’/i‘Q) rT.. ) bor

=3 (bj (Z a,-w,-,j) rTr)

J
= ZZaiW’i,]—bj
toy

= oTWbO

Lemma 2 If

1. W is as defined in Equation 4.5.

2. ry.ry are role vectors such that r;‘rrz = 0 and r? = (r11,T12,...),T8 =

(r21,7m2,2,-- )
3. 0 is a zero vector in the space of symbol vectors
/I' aT = (ala az, .. )' and bT = (bla sz .. )

Then

0
(—)‘T,'a@’)r yw =0
(07, ( 1)) (b®r2)

Proof:
oo g0
(0", (a@m)" )W
b \8 i)
= (@) TWelbe T2)
[«{fl‘l[ I"i’ylg'zl e blr2
(ayrl,agrT .. )| Waul Wi,l bary

(b2
= (Z aiWirre, ) aiWirria, ..., 2 aiWiary g, . . ) L by J



CHAPTER 4. HARMONY v

bil'g

= ((Z (l,“""’yl“l) 7'?, (Z (l{“""fi!g) 7"1T, .. ) bg?‘)

(o) )

J
= (0

Theorem 4 If
1. W, .o 15 as defined in Section 4.2.2.

2. Hj ,\ipr, 1S the contribution to the harmony of the pair of vertices labelled [, [,

in the roles r1, 12 as is Section 4.1.3
3. H;, is the harmony contribution of a vertex labelled f in the role r.
4. W is as defined in 4.5.

s =75, f: ©r; is a tensor representation of a tree as in Scclion 3.3,

S

Then

ST"{";S = -2 (E ;Hf‘,.‘;f],.] + Zf,‘ﬂ‘,‘)

17 t
Proof: (by structural induction on s)
If s = 0 (representing a tree with no vertices), then sTWs =0.
If s = [ (representing a tree with a single vertex which is labelled [ ), then because

of the definition of W, 4,

sTWs = (fJ+001) Wealf +0%m)

= _?’Hf,raot

Let s; = ¥ fri @1y and s, = Y; fri @ 1y be Lensor veprescniations for lrees as

in Section 3.3. Let fi1, f.1 be the labels of the roots of their respective trees. Assume



CHAPTER 4. HARMONY .

that

s II Ws,;

i

(Zﬂfllrlifljrlj +Zf11-;r11)

i#3

-S?"ijsr = (Z Hfr rrasfryTrg + Zfrhrrz)

]

Then s = fy + 81 % ri+ s, @1, is a tensor representation for a tree aus in Section

3.3. Now, because W 1s symmetric,

+ W0+ s, @7,)+

sTWs = fIwWhi+ ffw(0s,or) +
O+s2rn) Wl+si@m)+

O+s2m) W/ +
O+s2m)WO+s,@r)+ 045 0r) W+
O+s, or)Wl+s,2m)+O0+s &) W(O+s @)

= fIWh+2([WOs @r)+2ffW({0+s, @)+
O+sicr) Wl+siom)+20+s0r)" Wl +s, @r.)+
O0+s, 2r) W{0+s,971,)

With lemmas I and 2, it can be seen that this is stmply

sSTWs = fIWh+2ffWl+si@r)+2f{W0+s @)+
s Hf'51 + 0+ s, ﬁ’:sr

Because W, ; = 0 for 1 <1 < m.(mn + m) < j, the only contribution to the first,

second and third terms comes from the interaction through W, .., and so,

ST"' Vs fl ]r",-ogtfl + )fl w"’raat(O + fl 1% Ti) +
2/ Woou(0+ fra@71r) + 5] Wsi +

sTWs,



CHAPTER 4. HARMONY 62

Finally, by the induction hypothesis, and the construction of W, o, we see that

T < . .
s'Ws = ——.ZHferOt aa —QHferOthl.l"I + —2[1f1root;fmrr +
—2 (Z H.fl,l"l.ﬁfl,]ﬁ!,] + Z fl,i) Tl,i) +
1#7 i

_2 (Z H.fr.i rr,i;fr,ﬂ'r,] + Z fr,is T!‘,i)

1#7 [

Which is as required. !

So, the formula for W in Equation 4.5 results in a connectionist network whose en-
ergy values are the same as the negation of the harmony of the activation vector
taken as a tensor representation for a tree. A connectionist network that minimizes
the required energy function, and which has the above weight matrix relative to a
particular grammar, GG, will be called a harmony network for G.

Surely, all that remains now is to construct such a harmony network and it will
compute maximum-harmony trees. Before constructing such a network and analyzing
its behavior, however, we will pause to consider two issues that have been buried under
the details of the past two chapters. First, we will discuss, in Section 5.1 whether it
is meaningful to have a network which computes maximum-harmony trees. We will
then go on to look at the size of these networks in Section 5.2. Finally, in Section
5.3, we will look at harmony networks, and determine if they do in fact compute

maximum-harmony trees.



Chapter 5

Discord

5.1 Input and Output in Harmony Networks

As suggested in Chapter 1, we are interested in connectionist networks that have
the same computational power as certain classes of machines or classical algorithms.
This section examines the harmony networks constructed in the previous chapter and
compares them to the Turing Machine (TM) model of computation. While Smolen-
sky, Legendre and Miyata do claim Harmony networks can accept arbitrary formal
languages (Smolensky, Legendre, and Miyata 1992), such power may be unnecessary
to simulate cognitive processes. However, the portions of the TM model used in this
section could easily be replaced with similar parts of any other machine model of
computation.

Recall that a TM for a recursive language L consists of a finite control and an
infinite tape. In the initial state, the tape contains the input, or a string to be tested
for membership in L. The processor scans the tape, erasing symbols and writing some
symbols of its own. In its final state, the tape contains a single symbol indicating
that the machine either accepted or rejected the input.

A harmony network for a grammar, G, by contrast, consists of a set of units
connected by weighted edges. The harmony proponents do not propose a means by
which the input string can be presented to the network, and so the activation values

in the initial state are undefined. The harmony network proceeds to relax into a

63



CHAPTER 5. DISCORD 64

minimum-energy state where the activation values represent a maximum-harmony
parse tree relative to G. This final state is related to acceptance or rejection by
calculating the harmony of the parse tree, or equally by determining the energy of
the network in its final, stable state.

There is no direct correspondence between either the initial states or the [inal states
of these two models. Sections 5.1.1 and 5.1.2 will examine each of these discrepancies
in turn. This scrutiny will be followed in Section 5.1.3 by a proposed definition for
connectionist model of computation that is comparable to the Turing machine model.
Section 5.1.4 will relate the decision networks of Section 5.1.3 to harmony theory in
order to define harmonic decision networks. Finally, Section 5.1.5 will investigate a

special class of harmonic decision networks.

5.1.1 Input

So far, the initial state of a harmony network is undefined. As suggested above, in
order to correspond with the TM model, this initial state must involve, in some way,
the word that is to be tested for membership in the language. We will examine three
different schemes by which the initial state can include a representation of the word.
None of these strategies is found to be satisfactory.

One way to present the word to the system is to make the initial state a represen-
tation of the word. For example, various groups of units could be used to represent
each symbol in the input string. However, the structure of a harmony network does
not guarantee that the parse tree representation that results from a particular word
being present in the initial state will have anything to do with that word.

To be a parse tree for the word represented by the initial state, the final state
must be a local minimum for a region (called a “basin” in Section 4.2.1) that includes
the initial state. The harmony network and energy function was not constructed with
this in mind, and so, it is extremely unlikely to happen. In particular, it could be the
case that a harmony network could settle into a representation of a parse tree for a
word that is entirely different from the word presented as input. The final state will

not be related to the input word, and so, the calculation will not yield the desired



CHAPTER 5. DISCORD 65

result — a resolution of the word’s membership in the language.

Smolensky (1993) proposes that the network completes a representation when
provided with a partial representation. Indeed, experiments show that many connec-
tionist networks of the type proposed by harmony theory tend to function in that way.
This seems to indicate that, given part of a parse tree for a given word, the network
will complete the tree and then calculate the energy value to determine if the tree
is valid or not. The problem is this: we cannot specify the word without giving the
form of the entire parse tree, thus defeating the purpose of building a network that
can supposedly find valid parse trees.

Recall that the tensor representation of a parse tree (see Section 3.3 ) is constructed
recursively by adding the tensor products of the left- and right-child roles with the
representations of the left and right subtrees to the representation for the root. Be-
cause the particular product that is considered in tensor representations distributes
over addition, this construction amounts to adding all the labels of the vertices each
in their own recursive role. These recursive roles specify a simple path from each
vertex to the root of the tree.

The only part of the parse tree that is known in the initial state is the word itself,
which constitutes the leaves of tlie parse tree. As long as the empty string is not in
the language, we can assume, without loss of generality, that the grammar has no
productions of the form, A — ¢; so the input word accounts for every leaf in the parse
tree.

Therefore, to specify the symbols in the word in their final positions, we must
specify a path from every leaf to the root of the tree. Thus, specifying the terminal
symbols and their positions amounts to providing a description of the whole tree,
albeit with the vertices left unlabelled. So, if we can construct a parse tree for a
word, in the language, then the harmony network will label the vertices and perhaps
answer that the word is in the language.

There are two ways that we could determine such a parse tree — by parsing the
word, or randomly. If the former course is followed, then the parse tree’s labelling as
well as the word’s membership in the language would already be discovered prior to

using the network. That defeats the purpose of building the network in the first place.



CHAPTER 5. DISCORD 66

If, on the other hand, the parse tree is generated randomly, the network would have
to try to label every appropriate binary tree before it could answer definitively that
the word is not in the language. Because there are in principle an infinite number
of unlabelled binary trees with a given sequence of leaves, this network would have
to consume infinite resources before it could conclude that the word was not in the
language. Therefore, we see that providing the leaves of the parse tree as the initial
state is not reasonabie.

Another proposal for the presentation of the input is to use it to constrain the state
space (Legendre, Miyata, and Smolensky 1990). The idea here is that the activation
vector is a triple, (z,h,0) where 7 is the input set, o is the output set and h is the
harmony network. Normally, the activation vector can vary throughout its entire state
space. Fixing the values of the input units is equivalent to constraining the activation
vector to a smaller part of its state space.

To calculate the parse tree of a particular word, the input units are held constant
so they represent the word. The network is then allowed to find its minimum-energy
state in the constrained state space. The resulting minimum-energy state could be
the required parse tree.

However, the structure of the harmony network does not guarantee that the lo-
cation of the parse tree for a word will fall in a particular region of the state space.
Indeed, the construction of the harmony network does not even mention the input
units at all, let alone indicate how to connect them to the rest of the network so that
they confine the state space appropriately. So, the stable equilibrium that results
from constraining the inputs could just as likely be a parse tree for a different word

than that presented to the input units.

5.1.2 Output

In order for harmony networks to closely match the Turing machine model, there
must be a way to determine the output. Ideally, we would like the output to be a
single unit which has two possible final values — one denoting acceptance and the

other denoting rejection. Now, the final state of the harmony network is a tensor



CHAPTER 5. DISCORD 67

representation of a parse tree. Because each unit in the parse tree representation is
used in the representation of one or more symbols in positions within the tree, there
is no single unit which we can examine to determine if the network has found a valid
parse tree or not.

The factor that determines whether or not the parse tree is valid is the harmony
of the overall structure. Equivalently, it is the energy of the harmony network. If
the energy is zero in the final state, then the word represented at the leaves is in the
language, otherwise it should be rejected.

Unfortunately, while they implicitly minimize energy, harmony networks do not
possess any way to explicitly calculate that value. Harmony networks were constructed
so that their final state would be a representation of a valid parse tree, but no part
of the network was set aside to calculate the harmony of the rest of the network, and
report whether a valid or an invalid parse tree was found. At a stable equilibrium, the
harmony network can only say that it has reached the lowest energy point attainable
from its initial state. It does not have any knowledge about the value of the energy
at that point.

If the harmony network itself cannot determine its own energy, perhaps an external
process could examine the network and determine the energy value. Naturally, we
would want the external process to be a connectionist system as well. We will call
this external process the energy calculator.

Now, in order to calculate the energy value of the harmonry network, the energy

calculator must perform the following sum:
1 o
——a Wa
2

= 2> aWija,
T g

To determine each summand, the energy calculator must have access not only to the

E(a)

activation values of the nodes in the harmony network, but the weights on the links
between nodes. The activation values are not a problem because they can simply be
“read off’; however, the fact that the energy calculator must know the weights of the
links between nodes seems to contradict one of the basic tenets of connectionism —

that all calculation must be local, and all signals are simple numbers.



CHAPTER 5. DISCORD 68

Because they can’t calculate their own energy, and no connectionist energy calcu-
lator can calculate it for them, harmony networks have no way of knowing if the word
present in the initial state is a member of the language or not. A harmony network
may find a final state which has the required energy value to distinguish the activation
vector as representing a valid parse tree. However, the network will keep this energy
value, and the resulting knowledge to itself.

In order to be useful, the connectionist network should have some designated set
of output units. To determine if the word presented on the input units was in the
language, the output units would then be examined to see if their pattern of activation
indicated “accept” or “reject.” In the following discussion, we will consider networks
which have a designated set of input units and a single output unit in more detail.

We will call such networks decision networks.

5.1.3 Decision Networks

To decide if a word is in the language, a representation of that word must be pre-
sented on the decision network’s input units. In some connectionist models, each
unit can have only a finite number of different states. Because the network has only
a finite number of input units, and each of these may have only a finite number of
possible states, such models can only accept finite languages, and regular languages
(see below).

Unfortunately most interesting Janguages are infinite, and so, most languages could
not be accepted by a decision network. Notice that this concern is not unique to
connectionist decision networks: all implementations of Turing machines are also
finite, and thus can ounly accept strings of finite length. In practice, then any particular
implementation of a Turing machine can only accept a finite language, and so it will

be with decision networks:

Definition 1 Let N = (U, E) be a connectionist network, where [ C U is lhe sel
of input units which vary throughout the space D! where D is a finile subsel of R.
Let d,n;, and d,,.. be the minimum and mazimum elements of D respectively. Lel

Y = {dnin,dmaz} be an alphabet and let L C L5 be a language over that alphabel



CHAPTER 5. DISCORD 69

whose strings all have length at most n. Let a,.: be the value of the single output unit.

Then N is a decision network for L if and only i:

1. for every w € X", if w is presented to I, then the network reaches an equi-
librium with ay,, = Yes whenever w € L, otherwise it reaches equilibrium with

aou = No for some constants, Yes and No.
2. If L is recursive then there are no other equilibria.

So a decision network for a particular finite language is a connectionist network
where the inputs are presented with words over an alphabet of maximum and mini-
mum activation values. Note that this small alphabet does not restrict the types of
languages that can be accepted by decision networks because any other alphabet can
be represented using just two symbols and binary encodings.

For every input, the network’s single output unit assumes a value that can be
interpreted as either Yes or No. If the word is in the decision network’s language,
then the decision network must answer Yes. Conversely, if the word 1s not in the
language, and the language is recursive, then the network must answer No. If the
language is recursively enumerable, but not recursive, then the network needn’t answer
for otherwise a Turing machine would not be able to simulate the network, leading to
a contradiction.

Some connectionists might object to the use of a single output unit, preferring to
say instead that the network assumes an accepting pattern on its output units. How-
ever, deciding if the output units’ pattern is an accepting pattern is really just another
language recognition problem; if connectionists want to claim that their networks can
accept formal languages, then they should also be able to accept the language of ac-
cepting output patterns. Thus, one unit should be sufficient to indicate acceptance
of the input.

As noted above, a particular implementation of a Turing machine can accept only
a finite language. However, in principle, a Turing machine can be constructed that
accepts arbitrarily large subsets of an infinite language. A computational model, such
as decision networks, which restricts the size of its input is therefore inferior to the

Turing machine model.



CHAPTER 5. DISCORD 70

For decision networks, one possible solution to the difficulty of finite networks ac-
cepting infinite languages is to present symbols to the network’s input units sequen-
tially. This solution was proposed by Elman for parsing natural langnages (Elman
1990) and it does allow the network to accept words of arbitrary length. However,
notice that since the connectionist network has only a finite number of possible states,
and is thus essentially a finite automaton, it can accept at most a vegular language.
That is, while strings of arbitrary length can be input into this type of network, this
solution restricts the class of languages that can be accepted by such decision networks
to the regular languages.

Admittedly, any realization of a Turing Machine can also only accept a finite, and
thus regular language. However, it is easy to create a Turing Machine that can accept
a word of arbitrary length simply by providing a longer tape. It is not so easy to
extend networks of the type proposed by Elman: no mechanism has been proposed
by which such networks can be systematically enlarged.

If, in order to accept large non-regular languages, we must expand a network of
the type proposed by Elman, then it is reasonable to limit the length of the input to
those words that can be accepted by the network. In other words, decision networks
are sufficient, and there is no need to present symbols sequentially to the network’s
input units. Therefore we can consider, as a solution to accepting strings of arbitrary
length, an infinite, uniform family of finite decision networks. Each member of the
family accepts a finite subset of the language. For example, the ith decision network
would accept or reject words that contain at most ¢ symbols. To decide if a word
is in the language, first find an appropriate member of the family, and present the
symbols in the word simultaneously to the input units of the network. Such a family
of decision networks each deciding a finite subset of the language is called a decision

family for the language.

Definition 2 Let L be a language, and let L; = {w|W € L,|w| < 1} be the subsel
of the language consisting of words that have length at most 1. Suppose there is an
algorithm, which when given © computes N;, a decision nelwork for L;. Then the sct

{N1, N,, ...} is a decision family for the language L.



CHAPTER 5. DISCORD 71

The family must be uniform in the sense that given an index ¢, a Turing machine
could write down a description of the :th network in the family. This uniformity
is important for two reasons. First, there must be a way to synthesize the decision
networks, or to “find an appropriate member of the family.” Second, non-uniformity
would allow the creation of a family of decision networks that decides a non-recursive

language — a language that can’t be decided by a Turing machine.

5.1.4 Harmonic Decision Networks

While they are a reasonable model for connectionist systems that accept formal lan-
guages, the decision networks described in the previous section do not capture many
of the principles of harmony theory. The crucial aspect of harmony networks that
distinguishes them from other connectionist models is the energy function that de-
scribes the way the harmony network relaxes into certain stable equilibria, and which
is used in the design of the harmony network. We can thus define a Aarmonic decision

network which combines the principle of energy minimization with decision networks.

Definition 3 A harmonic decision network is a decision network that admits E(a) =

—%(LTWa as an energy or Liapunov function, where a is the activation vector and W

s the weight matriz.

The construction of Chapter 4 might suggest that the algorithm that constructs
a family of decision networks must use the energy function in some way; however,
such a stipulation would be difficult to formalize. The development and use of tensor
representations for parse trees might imply a refinement also — that the hidden units
should assume a pattern that is systematically related to the input. For example, the
definition could assert that the hidden units should find stable equilibria that represent
a parse tree for the word presented to the inputs. Neither of these refinements is
required, however, by the discussion in the next section about the restrictions on

languages that are accepted by a small subclass of harmonic decision networks.



~1
I

CHAPTER 5. DISCORD

5.1.5 Symmetric Harmonic Decision Networks

This section discusses a special kind of harmonic decision network where the state
space is symmetric about the origin, that is, ¢ € D if and only if —a € D. Note
that this type of symmetry is different from the weight matrix symmetry of Section
4.2.1. Harmonic decision networks that have a symmetric state space will be called
symmelric harmonic decision networks.

For all harmonic decision networks, the energy function is even. That is,

E(—a) = —=(—a)'W(—a)

The result is that, due to the following lemma, symmetric harmonic decision networks

have stable points at both a and —a.

Lemma 3 Let E(a) be an even real-valued function of R", and let R be a region such
that « € R = —a € R. Then a is a local minimum of E(a) in R if and only if —a is

also a local minimum value of E(a) in R.

From a decision network point of view, this even energy function has implications
on the meaning of the stable equilibria. At equilibrium, the value, a,,,, of the decision
network’s output node, can only be either Yes or No. Otherwise, if a,,; can have more
than two values, then there are some ambiguous inputs. Lemma 3 shows that if a,, is
an equilibrium value of the output node, then so is —a,y. Thus in a symmetric BSB
decision network, Yes = —No. This fact is captured more formally by the following

lemma:

Lemma 4 If

1. H = (IuJU{out}, FE) is a symmetric harmonic decision network for a language,

L.




CHAPTER 5. DISCORD 73

2. L#0Q and L #£L".

Then
Yes = —-No

Proof: Because L # 0, H admits a stable equilibrium, a, with a,y = Yes. By

Lemma 3, —a is also an equilibrium point. Because H ts a harmonic decision network,

cither —a,,; = Yes or —ayy = No. So either Yes = —No or Yes = —-Yes = 0.
Similarly, because L # X~, either No = —Yes or No = —No = 0. In all cases
Yes = —No. ]

Because the energy is even, a,,; = Yes in half the energy function’s local minima
and in the other half, a,,; = —Yes = No. In other words, exactly half the stable
equilibria correspond to the network accepting the input word, and half of the minima

correspond to rejecting the word. This result is formally presented by Lemma 5.

Lemma 5 If

1. H=(IUJU{out}, FE) is ¢« symmetric harmonic decision network with output

unit out.

e

. Yes # No
3. A is the set of accepting equilibrium states,

A = {a|a is an equilibrium state and a,y = Yes}

4. R is the set of rejecting equilibrium states,
R = {ala is an equilibrium state and a,yy = No}
Then
|A| = |A]
Proof: Because Yes = —No, then for every a € A, —a € R, so |A| < |R|.

Similarly. for everya € R. —a € A, so |R| < |A]. O



CHAPTER 5. DISCORD 74

It is important to realize that the presentation of two different words to a decision
network may cause the network to reach the same equilibrium point. In particular,
the energy function could have only two local minima -— one where ayy = Yes and
another where a,,; = No. On the other hand, some words could correspond o two
or more Jocal minima.

However, if each word presented to the input units causes a syimnmetric harmonic
decision network to find a unique local minimum, there would be as many local
minima as words over the alphabet. In fact, if every word should correspond to
exactly one stable equilibrium of a symmetric harmonic decision network, then it is a

straightforward result of Lemma 5 that the language is equal in size to its complement:

Theorem 5 If
1. H=(1UJU{out}, E) is a harmonic decision network for a language [..

2. H'’s state space is symmelric about the origin. So if a is an activalion veclor of

H, then a € DMl x DVl x D where D = [k, k].
3. E C DM x DVl x D is the set of stable equilibria of H.

4. There is a bijection ¢ : E — L U L belween H s equilibrium poinls and the scl

of all strings.

Then
|L] = |L]
Proof: Let A = {(z,y,Yes)lx € D',y € DV} be the set of all accepling stable
equilibria, and let R = {(x,y, No)|x € DM,y € DY} be the sct of all rejecting stable
equilibria. By Lemma 5, |A] = |R|. Since ¢ is a bijeclion, then

IL} = [o(A)l = lo(R)] = |L]

Nl

So we see that, for almost all languages, there is no one-to-one correspondence

from the set of words onto the set of equilibria. Either some words must correspond



CHAPTER 5. DISCORD 75

to more than one stable equilibrium in a symmetric harmonic decision network, or

seve.al words must map to the same stable equilibrium. If there is no such bijection,

it remains to be scen if there are similar restrictions on the size of the language.
Proving such a restriction requires a result relating the evenness of the energy

function to oddness of the function calculated by the network. In particular, we need

to show that if
1. H =(V,F)is a symmetric harmonic decision network.

2. h: D1 — DWV!is the function calculated by H.

then

h(—z) = —h(z)
Unfortunately, this hypothesis does not (seem to) follow from the definition of an
energy function. We can, however, prove that if H is implemented by one of the types
of networks in which we are interested, then it has the desired property.

Recall that the particular models that have the energy function required by har-
monic decision networks are special cases of the Brain-State-in-a-Box (BSB) model
and the Hopfield model. Both of these models were introduced in Section 2.6, and
discussed in more detail in Section 4.2.1.

The BSB model is defined by the equations

b(t) = a(l)+~yWa(t)
a(t+1) = SB())

If a harmonic decision network is implemented by a BSB where the threshold function
S() 1s odd so that S(—a) = —S(a), then it is a symmetric harmonic decision network.
This property of the threshold function produces the effect that the function computed

by the network is symmetric about the origin.

Lemma 6 If

1. H is a BSB network with an odd threshold function, S(—a) = —S(a).



CHAPTER 5. DISCORD 76

2. a(t) 1s the value of H'’s activation vector at time t.

d{t+1)=—a(t+1)
Proof:
ad(t+1) = S(d(t) +yWd(t))
= S(=a(t) —7Wa(t))
= S(=(a(t) +7Wa(1)))
= —5(a(t) + A Wa(t))
= —a(t+1)

Corollary 1 If
1. H =(V, FE) is a BSB network, with an odd threshold function, S(—a) = —S(a).
2. h: DVl — DV is the function calculated by H .

Then
h(—z) = —h(z)

Proof: Let z'(t) = —x(t), by induction 2'(t + k) = —z(t + k) for all k. Thus
h(—z) = limad'(t+k)
k=00
= — klim z(t+ k)

= —h(z)



CHAPTER 5. DISCORD 7

Like the BSB model, the Hopfield model also displays symmetry whenever the

activation function is odd. Recall the Hopfield model as described in Section 2.6.

du,: — U;
. = > Wija; ——+1
dt ; R;
wi = g7 (a)

As revealed in Section 4.2.1, if the activation functions, g; are steep, and the steady
inputs, I; are all zero, then the Hopfield model has the required energy function. If
¢ is an odd function so that ¢g;(—z) = —gi(z), then this model displays symmetry
similar to the BSB model.
Lemma 7 [f
1. H is a Hopfield network with odd activation functions, so that for every
i\ gil—1) = —gi(x).

2. a(t) 1s the value of H'’s activation vector at time t.

3. let a(t') = —al(t).

Then ,
da;(t’) _ da,(t)
dit o dt
Proof: From the defining equations we see that
du;(?) ] wilt)
C.— — W oas(t) —
Codt ; Vija;(t) R,
dg7 " (a:) da(t) wi(t)
Ci—= _ V. ai(l) —
da; dit ; W, ja;(t) R,
J— = — /' ) (1) — ‘l—_—-..
dt ¢, ) (Z Wija5(t) R,
t da.' J

So therefore,

- : . ' g,-_l(ai(t'))\.
Pl X0 (zxu,jaj(t)_T}
* da; 7



CHAPTER 5. DISCORD 78

— ____1_____ 17 . —_g:l(a:([})
= ) (—g:u’wa](t) - "‘“’Rf“'“—‘i

C‘ dg—'1 (a:i(t’

1 da,
_ —1 g7 (ait))
= L ETe®) (Z Woseilh) = ===
i da;
_ —1 , g; ' (ai(t))
- O da @) (23: Wi jai(t) — R,
1 da;
o _dai(t)
B dt
0
Corollary 2 If
1. H is a Hopfield network with odd activation functions.
2. h: DVl — DWI is the function calculated by H.
Then
h(—z) = —h(z)
Proof: Since dl;(:) is odd, then h(z) = limy_,. (1) is also odd. m;

Because symmetric harmonic decision networks are implemented by symmetric
BSB or Hopfield networks, which implement odd functions, then symmetric harmonic
decision aetworks will also implement odd functions. This is the result that we require
to find the restrictions on the languages that can be accepted by a symmetric harmonic
decision network. The following theorem reveals that even if there is no one-to-one
correspondence from the words onto the equilibria, the language is still equal in size

to its complement.
Theorem 6 If
1. H=(1U JU{out}, F) is a harmonic decision network for a languaye, L.

2. H is either a BSB network or a Hopfield network as in Lemmas 6 and 7.



CHAPTER 5. DISCORD 79

Tthen
IL| = |L]|

Proof: Let h : DV x DV % D — DM 5 DV« D be the function calculated by H.

For w € {—k,k}~, let F, = {(z1,22,23)| I y1,y2 s.t. h(w, y1,y2) = (21,22, 23)} be
the set of all final states for w.

Because h(—(z,y,2)) = —h((z,y, z)) (due to corollaries 1 and 2), F_,, = —F,,.

Thus, for everyu € L there is av = —u such that —F, = F,. BecauseYes = —No
(lemma §), then v € L. So, |L| < [L].

Similarly, for every u € L there is a v = —u such that —F, = F,, and so v € L.
Thus |L]| < |L]. O

Thus, for almost every language, there is no symmetric harmonic decision network

that decides that language.

5.2 Network Size

The previous section investigated the difficulties of providing input to, and deter-
mining output from harmony networks. A second problem with harmony networks
involves the number of units required by the tensor representation held by the net-
work. This number, we will see, is quite large.

Section 3.3 showed that the role vectors in the tensor representation for the parse
tree are constructed recursively. If the base role vectors are of dimension r, a symbol
in the ith level of the tree will appear in a role of dimension 7'. Two vertices at
different levels in the tree will appear in roles with different dimensions; these are
added by taking their direct sum. The result is that the dimension of the sum of the
two representations will be the sum of their dimensions.

The total number of units required to represent a parse tree of depth k is then

k-1
Nk) = 3

i=0

= f

1—r*

1—r



CHAPTER 5. DISCORD 80

Here, f is the dimension of the symbols. Thus, if the roles and symbols are both
two-dimensional, then the number of units required to represent a tree of depth 30 is
over 2 x 10'°. Because the grammar has a special form where each production has at
most two symbols on the right (see Section 4.1), parse trees of relatively short strings
in formal languages will be much deeper than thirty levels. Moreover, if English
sentences are to be parsed using a grammar that allows at most two symbols on the
right of each production, then complicated sentences, such as this one, will likely
require a parse tree with more than thirty levels even if words are taken to be atomic
and have no so-called micro-features as proposed by Smolensky (1988).

Harmony networks were never meant as a metaphor for the human brain, alth(}ugh
the proponents claim that the level of harmony networks is much “closer to the neural
level” than symbolic algorithms (Legendre, Miyata, and Smolensky 1990). Consider
though that the number of neurons in the brain is estimated to be between 10" and
10" (Rumelhart and McClelland 1986). So, even with minimal assumptions about,
the dimensions of the symbols and the roles, the number of units required to represent,
relatively small parse trees approaches the number of neurons in the brain.

Intuitively, the number of units required is much greater than we would expect.
One reason for this is that the representation is capable of capturing complete binary
trees — binary trees where every non-leaf vertex has both a left- and a right-child. A
quick examination of the parse tree in Figure 4.2 will reveal that this representational
capacity is not required. In the parse trees resulting from the grammars discussed
in Section 3.4.1, vertices typically have only a left-child, while a few have a right-
child as well. The result is that much of the representational capacity of the tensor
representation is wasted.

There are a number of natural representations that could be proposed to reduce
this waste. For example, each level of the parse tree could be represented by a group
of units, as it is in the tensor representation, which economically encodes the symbols
on that level. While it might work, it is difficult to see how such a network could
find maximum-harmony trees without resorting to directly manipulating symbols, and
implementing classical theories — a pitfall that harmony theorists want to avoid if

they are to successfully answer Fodor and Pylyshyn’s challenge.



CHAPTER 5. DISCORD 81

Another solution to the size problem is to propose a representation that does not
grow exponentially with the depth of the recursion. For example, Plate’s Holographic
Representations (Plate 1993) could offer a reprieve to harmony theory. However, the
next section will show that, in their present form, harmony networks admit stable

equilibria that do not represent parse trees, and so, the question of size is academic.

5.3 Harmony Networks Do Not Work

In the previous two sections, we discussed the problems related to connecting a har-
mony network to the outside world, and the large size of harmony networks. Even if
we are willing, however, to ignore these stumbling blocks and carry on to implement
a harmony network, we will find that it does not actually perform as advertised: Har-
mony networks find stable equilibria that do not represent maximum harmony parse
trees.

Recapitulating the developments of chapters 3 and 4 will reveal the reason why
Harmony networks do not actually find maximum harmony parse trees. The previous

two chapters demonstrate

1. A method to represent parse trees using the activation vector of a connectionist

network (Section 3.3).

b

A harmony function defined on parse trees. A parse tree is valid if its harmony
value is zero. The harmony values of all invalid parse trees are below zero. In
other words, the parse tree is valid if and only if its harmony value is a maximum

(Section 4.1.1).

3. An energy function, defined on the values of the activation vector. Two models
of connectionism — the Brain-State-in-a-Box (BSB) model and the Hopfield

model — seek local minima in this energy function (Section 4.2.1).

4. A system for determining the weight matrix of a connectionist network so that
if its activation vector is interpreted as a parse tree, then its energy function is

the negation of the harmony of that parse tree (sections 4.2.2 and 4.2.3).



CHAPTER 5. DISCORD )

The problem is that the energy function is defined on the values of the activation
vector. By contrast, the harmony function is defined on possible parse trees. As
shown in Section 5.3.1 th-se two domains are not equal; there are some activation
vectors that do not represent any parse tree.

So, while it may be the case that the energy and harmony functions are negations
of one another, it is not likely the case that a local minimum of one is a local maxi-
mum of the other. Indeed, item 4 above merely guarantees that the energy function
passes through zero at the appropriate points, but its minima are unrestricted. More
succinctly, the harmony network will find minima that are not even parse trees, let
alone valid parse trees.

The reason why harmony networks do not work is straightforward. Section 5.3.2
shows that the weight matrix must have only negative eigenvalues, for otherwise the
network constructs structures which are not valid trees. Section 5.3.3 shows that if the
weight matrix has only negative eigenvalues, then the energy function admits only a
single zero — the origin. Furthermore, we show that the origin cannot be interpreted
as a valid parse tree. Thus, the stable equilibria of a harmony network are not all

valid parse trees.

5.3.1 More Activations Than Trees

As noted above, the reason why harmony networks do not work is that they scek
minima in their state space which may not coincide with parse tree representations.
One way to ameliorate this would be by making every possible activation vector
represent some parse tree. In other words, the parse tree representations fill the state
space of the harmony network with the same density as the activation vectors. [f
every activation vector represents some parse tree, then the rules that determine the
weight matrix — and hence determine the energy function — will ensure that the
absolute energy minima agree with the valid parse trees.

Unfortunately, if every activation vector represents some parse tree, then the sys-

tem of equations in table 4.3 has no solution. The first four lines of that table indicate



CHAPTER 5. DISCORD 83

that for each terminal or non-terminal, f, W,,,; must satisfy the equation:
{f + 63 TI)TWraot(f + 6@ Tl) =h

where h € {2,4,6}. If the symbols of the grammar are two dimensional, then there
will be symbols represented by each vector, (zi,z1),(z1,22),(22,2;1), and (z,z2),

where x; # 1. Therefore, W,,,; must satisfy the equations,

T3 (Wroots, + Weootr, + Weooty, + Weoor,) = hu
T Woootyy + 2152 Wosoty, + 212aWoooty, + 25Wooor,, = hy | Where h; €
22Wroot,, + T122Woooty, + T122Woooty, + 22Woior,, = hs | {2,4,6}
25(Weootyy, + Wroots, + Weootsy + Weoory,) = by

Because h; € {2,4,6}, there must be a pair h;h; which are equal. In
that case, it can be shown using Gaussian elimination, there is no solution for
Wisotss Wrootins Wroota, s Wrooty,- If the symbols are represented by vectors of dimension
three or greater, then the same contradiction occurs. The result is that the weight
matrix cannot be derived.

Thus there are some activation vectors that do not represent any tree — valid or
invalid. The question now becomes one of determining whether all of the harmony

network’s stable equilibria are valid parse trees.

5.3.2 Non-Negative Eigenvalues Yield Non-Trees

The last section showed that not every point in the harmony network’s state space
can represent a parse tree. However, the harmony network can be restricted so that
all its stable equilibria fall on the corners of its state space. With such an affinity
for the corners, the interior points need not represent parse trees. While the previous
section showed that not every corner can represent a parse tree (simply let z,,z,
be the minimum and maximum activation values), not every corner will be a stable
equilibrium, and so, such a restriction could force the harmony networks to fird
maximum harmony parse trees.

Golden (1986) showed that making all the weight matrix’s eigenvalues non-negative

will ensure that the BSB model’s stable points lie in the corners. Hopfield (1984)



CHAPTER 5. DISCORD 34

Figure 5.1: The energy function of a two-dimensional harmony network where one
eigenvalue is negative and the other positive. The hashed plane represents the plane
E = 0. It intersects the energy function and the vertical axis at the origin. The points
¢ and f respectively represent an initial and a final state of the network.

claimed that “usually” the Hopfield model’s stable points lie in the corners. Experi-
ments show, however, that when the weight matrix admits negative eigenvectors, the
stable points tend to be away from the corners. On the other hand, non-negative
eigenvalues do tend to force the Hopfield model to find only corners.

If any of the eigenvalues of the weight matrix, W, is positive, then it is easy to
show that the harmony network will seek a stable equilibrium that does not represent
a parse tree at all. Let A > 0 be a positive eigenvalue of W, and let ¢ be an eigenvector,

corresponding to A, that falls within the state space. Then,

E(e) = —=e'We

I
|
m\
H
>
&

<0

Figure 5.1 illustrates the energy function of a harmony network where one cigenvaluc

is positive. In this figure, all the valid parse trees would rest on the hashed zero-energy



CHAPTER 5. DISCORD 85

Figure 5.2: The energy function of a two-dimensional harmony network where one
eigenvalue is negative and the other is zero. The heavy line represents the intersection
of the surface with the plane £ = 0. It intersects the vertical axis at the origin. The
points 2 and f respectively represent an initial and a final state of the network.

plane, and all the invalid trees would be above it. Because the energy function drops
below zero, the harmony network would have to undergo an energy increase in order
to find a zero-energy stable equilibrium. This cannot happen, and so, the network
reaches an equilibrium with energy strictly less than zero. Therefore the harmony
network with positive eigenvalues will certainly find stable equilibria which are not
valid parse tree representations.

Now, suppose W, the weight matrix, has a zero eigenvalue. If e is an eigenvector
corresponding to that eigenvalue, then for every real o, aWe = 0. Then one of the

following must be true:

ae is not a stable equilibrium: In that case, the energy function must drop below
zero, yielding a sub-zero stable equilibrium — a stable equilibrium that does

not represent any tree.

ae is a stable equilibrium: Then for every a, ae must be a valid tree representation.
This situation is represented in Figure 5.2, where the set of all points, ae, is rep-

resented by the heavy line. This implies that there is a symbol, (a1, as,- .., a,),



CHAPTER 5. DISCORD 86

such that on(a1,.-..a.), aalar,....an),. .., azp(ar, ..., a,) are wso all sym-

bols. As before, this implies that W,,,; must satisfy the equations,

) o g h
((ala-":an)+Oﬁrl)TI;vroot((ala---’an)+0®7'[) = ;i?
1

}).2

(a,- - an) + 0BT Weoar((a,---ran) +00T) = —
*2

- - b2
(... r0) + 0@ ) Waul((, ... an) +00m) = 4L

0’112_'_1

where h; € {2,4.6}. By Gaussian elimination, there is no solution to this system

of equations, and hence, there is no such weight matrix.

In all cases, if the weight matrix has non-negative eigenvalues, then the harmony
network admits stable equilibria that do not represent any tree. Thus, the eigenvalues

must all be negative.

5.3.3 Negative Eigenvalues Yields Non-Tree

If all the eigenvalues of the weight matrix are negative, then the energy function has
a very special shape: it is a paraboloid centered on the origin and concave in the
direction of positive energy. This is easily seen by considering the first and second

derivatives of E:

JE(T) 9

l r
6:1:,- - 6117,‘ (zj:g‘“g"‘/j,kic]‘mk)
7, 1 1 )
S '522 2Wikzjzk — 52 W;,;z;
' F)

255 k>
= =) Wiz;
B

PE(F) a ,
Y — _ /Vi
0zi0z; 3%‘( ;I 'kxk)
- W,




CHAPTER 5. DISCORD 87

Figure 5.3: The energy function of a two-dimensional harmony network where both
eigenvalues are negative. The vertical axis pierces the surface at the origin. The
points ¢ and f respectively represent an initial and a final state of the network.

Clearly, all the first derivatives are zero at the origin, and so, it is a critical point. Now
the origin is a strict minimum if all the roots of the following equation are positive

(see for example Taylor and Mann 1983, p218):
PEE) _ 92E(&)

31‘13!1 31‘131:2
- 32E(vec.1:) 82 E(vecz)
0 = det dxo0xy dr10zy A

N T W A }
= det —VVQ,I —I/szz - /\

; |

= det|—-W — Al|

This last equation is known as the characteristic polynomial of —W, and its roots are
the eigenvalues of —W. Therefore, if A is a root then it is also an eigenvalue of —W, or
equivalently, it is the negative of an eigenvalue of W. Because all of W’s eigenvalues
are negative, the origin is a strict minimum, and indeed it is the only minimum. Such

a harmony network is represented by Figure 5.3.




CHAPTER 5. DISCORD S8

As can be seen, the origin is the only stable point where the energy is zero. But it

cannot represent a parse tree which is valid for the grammar, for then,
S+Tr2r+TrQr. = (0,...,0)

where T, Tr are appropriate left and right subtree representations. Because each of
the subtrees is multiplied by either r; or r,., they are not the same dimension as 8,
and are consequently concatenated instead of added. Therefore $ = 0. But then,

W00t must satisfy the equation
(6 + 6 o rl)‘fv'raot((_j + 6 ® T'[) = —2

This is impossible, and so, the origin is not a valid tree representation.

5.3.4 Conclusion

This section has shown that in every case, a harmony network will reach stable equi-
libria that are not valid parse trees. This is not unexpected. Because the encrgy
function is a very simple function, it would be more surprising if such a connectionist
system could construct complicated structures such as parse trees for a context free

grammar.



Chapter 6
Resolution

The previous section showed that harmony networks do not construct only maximum-
harmony parse trees for some context free grammar. Even so, this fault does not
spell the end of harmony theory, but only upsets a particular implementation of
it. The basic idea — that of describing the operation of a connectionist system al
a high level, and then using that high level description to forge a connection with
an even higher symbolic level — still seems more likely to yield neurally plausible
explanations for high level cognitive functions than the ad hoc approaches proposed
by many connectionists (for example, Shastri and Ajjanagadde 1993). llowever, the
particular type of connectionist system postulated by harmony theory is too simple
to uphold the bold claims of its proponents.

It is possible that some future harmony network will be constructed that takes
advantage of a more complicated connectionist system (perhaps one where the weight
matrix is not symmetric) and the resulting energy function to create a harmony net-
work that actually does construct only valid parse trees. Such a network would still
only answer one of the main difficulties exposed by this thesis.

A successful implementation of a harmony network will still be extremely large if
it is to construct non-trivial parse trees. The network’s magnitude may find a solution
in one of the other techniques for convolving symbols with their roles. For example,
while they do not allow perfect decomposition, Plate’s holographic representations do

not grow exponentially with the depth of the recursion.

89



CHAPTER 6. RESOLUTION 90

Moreover, even a successful harmony network will still require input in the form
of parse trees, and will not offer any meaningful output. The harmony network
cannot be said to accept a formal language because its inputs are parse trees, and
the output does not directly indicate acceptance or rejection. The question of output
may be especially difficult for connectionists; particularly in less constrained formal
languages, such as recursive languages, membership is a global property of the entire
string, not of local portions. Connectionist models, by contrast, perform only local
operations, and so, it is difficult to see how they can capture the full generality
of formal languages. Harmony theorists will have to answer this objection before
claiming to have uncovered a new means by which connectionist networks can accept
formal languages.

Perhaps a more interesting question is whether or not harmony networks in their
present form successfully refute Fodor and Pylyshyn’s challenge (Fodor and Pylyshyn
1988). That is, do harmony networks account for the systematicity and productivity
of human cognition without directly implementing symbolic algorithms?

At first, it seems that they do. Provided a network actually did find stable equilib-
ria that represented valid parse trees, we would have to concede that the network was
exhibiting some amount of systematicity and productivity. That is, if 1t is capable of
reaching a particular stable equilibrium, then a harmony network must also be able
to reach a host of other systematically related equilibria. This property is guaranteed
by the recursive construction of the harmony network, which allows a legal subtree to
appear in any legal position of the parse tree represented by the stable equilibrium.
What’s more, provided the network is big enough to represent them, it will be able
to represent every possible valid parse tree as a stable equilibrium. Thus a success-
ful harmony network would be able to entertain an infinite number of systematically
related thoughts, satisfying Fodor and Pylyshyn’s requirement for productivity.

So, it might appear that the harmony networks do satisfy Fodor and Pylyshyn’s
original challenge. This is misleading. The fact that they do not actually have an
input and create meaningful output from it, however, means that harmony networks
do not actually calculate anything. In other words, while they may be able to token an

mfinite nunmber of systematically related thoughts, harmony networks cannot produce



CHAPTER 6. RESOLUTION 9l

any inferences, and so. they do not account for a property which Fodor and Pylyshyn
call the “systematicity of inference.” This quality of human cognition relates to the
idea that someone who can draw one kind of inference can necessarily compuic a
number of other similar inferences. Because harmony networks do not calculate any
inference, they satisfy this property only trivially, and so. harmony networks do not
exhibit the spirit of systematicity of inference.

Even so, we should not abandon the principles that motivate harmony networks.
Considering connectionist models as energy-minimization systems could still lead to
a successful answer to the issues raised by Fodor and Pylyshyn. As in the harmonic
decision networks that were introduced in this thesis, however, the whole network
~— including input and output units — should be included when considering cnergy

reduction.



Bibliography

Anderson, J., J. Silverstein, S. Ritz, and R. Jones (1977, Sept.). Distinctive fea-
tures, categorical perception, and probability learning: Some applications of a neural

model. Psychological Review 84(5), 413-451.

Cohen, M. and S. Grossberg (1983, Sept.). Absolute stability of global pattern forma-
tion and parallel memory storage by competitive neural networks. IEEE Transactions

on Systems, Man and Cybernetics SMC-13(5), 815-826.
Elman, J. (1990). Finding structure in time. Cognitive Science 14, 179-212.

Fisher, R. C. (1970). An Introduction to Linear Algebra. Encino, California: Dick-

enson Pub.

Fodor, J. and B. McLaughlin (1990). Connectionism and the problem of systematic-
ity: Why Smolensky’s solution doesn’t work. Cognition 35, 183-204.

Fodor, J. and Z. Pylyshyn (1988). Connectionism and cognitive architecture: A
critical analysis. Cognition 35, 183-204.

Golden, R. (1986). The ‘brain-state-in-a-box’ neural model is a gradient descent

algorithm. Journal of Mathematical Psychology 30, 73-80.

Golden, R. (1988). A unified framework for connectionist systems. Biological Cyber-
netics 59, 109-120.

Hinton, G., J. McClelland, and D. Rumelhart (1986). Distributed representations.
In D. Rumelhart, J. McClelland, and The PDP Research Group (Eds.), Parallel

92




BIBLIOGRAPHY a3

Distributed Processing Explorations in the Microstruclure of Cognition Volume |I:

Foundations, pp. 77-109. Cambridge: MIT Press.

Hopcroft, J. and J. Ullman (1979). [Introduction to Automata Theory, Languages

and Computation. Massachusetts: Addison-Wesley.

Hopfield, J. (1982, April). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of Science

79, 2554-2558.

Hopfield, J. (1984, May). Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proceedings of the National Academy

of Science 81, 3088-3092.

Hopfield, J. (1987, Dec.). Learning algorithms and probability distributions in feed-
forward and feed-back networks. Proceedings of the National Academy of Science

84, 8429-8433.

Legendre, G., Y. Miyata, and P. Smolensky (1990). Harmonic grammar - a for-
mal multi-level connectionist theory of linguistic well-formedness: Theoretical foun-
dations. In Proceedings of the Twelfth National Conference on Cognilive Science,

Cambridge, MA, pp. 385-395. Lawrence Erlbaum.

Leipholz, H. (1987). Stability Theory An Introduction to the Stabilily of Dynamic
Systems and Rigid Bodies (Second ed.). New York: John Wiley.

Li, J., A. Michel, and W. Porod (1988). Qualitative analysis and synthesis of a class
of neural networks. IFEFE Transactions on Circuits and Systems 35(8), 976-985.

Lillo, W., D. Miller, S. Hui, and S. Zak (1994, Sept.). Synthesis of brain-state-in-
a-box (BSB) based associative memories. IEEE Transactions on Neural Nelworks

5(5), 730-737.

Michel, A., J. Farrell, and W. Porod (1989). Qualitative analysis of neural networks.
IEEE Transactions on Circuits and Systems 36(2), 229-243.




BIBLIOGRAPHY 94

Plate. T. A. {1993). Holographic recurrent networks. In S. Cowan and C. Giles
(Eds.), Advances in Neural Information Processing Systems 3, pp. 34-42. San Mateo:

Morgan Kaufmann.

Proskurowski, A. (1981). Recursive graphs, recursive labellings and shortest paths.

SIAM Journel of Computing 10(2), 0.

Rumelhart, D., G. Hinton, and J. McClelland (1986). A general framework for paral-
lel distributed processing. In D. Rumelhart, J. McClelland, and The PDP Research
Group (Eds.), Parallel Distributed Processing Ezxploratiors in the Microstructure of
Cognition Volume 1: Foundations, pp. 77-109. Cambridge: MIT Press.

Rumelhart, D. and J. McClelland (1986). PDP models and general issues in cognitive
science. In D. Rumelhart, J. McClelland, and The PDP Research Group (Eds.), Par-
allel Distributed Processing Ezplorations in the Microstructure of Cognition Volume

1: Foundations, pp. 110-149. Cambridge: MIT Press.

Salam, F., Y. Wang, and M.-R. Choi (1991, Feb.). On the analysis of dynamic
feedback neural nets. IEEE Transactions on Circuits and Systems 38(2), 196-201.

Shastri, L. and V. Ajjanagadde (1993). From simple associations to systemmatic
reasoning: A connectionist representation of rules, variables and dynamic binding

using temporal synchrony. Behavioral and Brain Sciences 16, 417-494.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. In D. Rumelhart, J. McClelland, and The PDP Research Group
(Eds.), Parallel Distributed Processing Ezplorations in the Microstructure of Cogni-
tion Volume 1: Foundations, pp. 77-109. Cambridge: MIT Press.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and

Brain Sciences 11(1), 1-74.

Smolensky, P. (1990). Tensor product variable binding and the representation of

symbolic structures in connectionist systems. Artificial Intelligence 46, 159-216.



BIBLIOGRAPHY

=]
=

Smolensky, P. (1991). Connectionism, consitituency and the language of thought. In
B. Loewer and G. Rey (Eds.), Aeaning in Mind: Fodor and his Critics, pp. 201-227.
Oxford: Basil Blackwell.

Smolensky, P. (1993). Harmonic grammars for formal languages. In S. Hanson,
J. Cowan, and C. Giles (Eds.), Advances in Neural Information Processing Systems

3, pp- 847-854. San Mateo: Morgan Kauffman.

Smolensky, P., G. Legendre, and Y. Miyata (1992). Principles for an integrated
connectionist/symbolic theory of higher cognition. Technical Report CU-CS-600-92,

University of Colorado Computer Science Department.

Smolensky, P., G. Legendre, and Y. Miyata (1994). Integrating connectionist and
symbolic computation for the theory of language. In V. Honavar and L. Uhr (Eds.),
Artificial Intelligence and Neural Networks: Steps Toward Principled Integration, pp.
509-530. Boston: Academic Press.

Taylor, A. and R. Mann (1983). Advanced Calculus (Third ed.). New York: John
Wiley and Sons.

Tesar, B. and P. Smolensky (1994). Synchronous firing variable binding is tensor
product representation with temporal role vectors. In A. Ram and K. Eiselt (Eds.),
Proceedings of the Sizteenth Annual Conference of the Cognitive Science Society,

New Jersey, pp. 870-. Lawrence Erlbaum.

Yang, H. and T. Dillon (1994, Sept.). Exponential stability and oscillation of Hopfield
graded response neural network. IEEE Transactions on Neural Networks 5(5), 719

729.

Yokonuma, T. (1977). Tensor Spaces and Exterior Algebra. Rhode Island: American

Mathematical Society.





