
Ren$ Gourley 

B-Math University of Waterloo, 1992 

A THESIS SUBMITTED IN PARTIAL FULFIL1,MENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in t-he School 
of 

Computing Science 

@ Re& Courley 1995 

SIMON FRASER UNIVERSITY 

June, 1995 

M rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



t.l&mai Library I*/ of Cmada 
Bibliothwue nati~nale 
du Canada 

Acq~islfffs arid Oirection des acqkitions et 
B!biir;rgraphic %ruices Branch des sewices bib!!cgrapbiques 

Your frle Volre rr#e?ence 

Our Me Norre reference 

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

b'auteur a accorde une licence 
irrevocable et non exclusive 
permettant 5 la Bibliothhque 
nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de sa these 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemglaires de cette 
these a la disposition des 
personnes int6ress6es. 

The author retains ownership of L'auteur conserve la propriete au 
the copyright in his/her thesis. droit d'auteur qui protege sa 
Neither the thesis nor substantial these. Ni la t h b e  ni des extraits 
extracts from it may be printed or substantiels de celle-ci ne 
otherwise reproduced without doivent 6tre imprimes ou 
his/her permission. autrement reproduits sans son - 

autorisation. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Master of Science 

Tensor Representations and Harmony 'I'hrosy: A ('sit ical 

Analysis 

Examining Committee: Ramesh Krishnanlurti 

Chair 

Dr. Robert Hadley 

Senior Supervisor 

Associate Professor of Computing Sciencc 

Dr- Arvind Gupta 

Senior Supervisor 

Assistant Professor of Computing Science 

Dr. J a ~ e s  Delgrande 

External Examiner 

Associate Professor of Computing Scierlce 

Date Approved: 



SIMON FRASER UidmRSITY 

PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser Ui4versity the right to lend my thesis, project 
or extended essay (the title of which is shown below) to users of the Simon 
Fraser University Library, and to make partial or single copies only for such 
users or in response to a request from the library of any other university, or 
other educational institution, on its own behalf or for one of its users. I further 
agree that permission for multiple copying of this work for scholarly purposes 
may be granted by me or the Dean of Graduate Studies. It is understood that 
copying or publication of this work for financial gain shall not be allowed 
without my written permission- 

Title of Thesis/Project/Extended Essay 

Tensor Re~resentations and Harmonv Theorv: A Critical Analvsis. 

Author: 
(signaolre) 

Rene Gourley 

(name) 

July f 1, 1995 



Abstract 

Harmony theory and tensor representations have been proposed as a means by which 

connectionist models can accept formal languages. Their proponents aim to p ruvidv 

a neural explanation of the productivity and systema ticity of cognitive processes, 

without directly implementing symbolic ajgorithms. Via tensor represen ta t io~~,  this 

theory interprets the activation vector of a connectionist system as a parse tree for 

a string in a particular context free language. Harmony theory appare~itly dcscrilm 

how to construct a network whose stable equilibria represent valid parse trees. 

This thesis presents a detailed analysis of tensor representations and harrnoriy 

theory. Over the course of this exposition, errors in the original formulatioti arc: 

identified and improvements are proposed. 

The thesis then goes on to examine some major issues confronting harnwny t ftcory. 

The first issue is that of input and output which have not been satisfiactorily cldincd 

by harmony theorists. Secondly, we examine the very large size of the networks. 

Finally, this thesis inspects harmony theory relative to its own goals and shows that 

the constructed networks admit stable equilibria that do not represent valid parw 

trees. Thus, harmony theory is unable to support its advocates' bold claims. 
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Chapter 1 

Overture 

I. I The Challenge 

In their controversial and influential paper; Fodor and Pylyshyn (1988) examined 

connectionist or neural network models, and their ability to explain human thought. 

They note that human thought is systematic. That is, if someone is capable of 

thinking a thought then they must also he able to entertain a number of other thoughts 

which are systernaticaily related to the first thought. For example, if a person is 

able to think that "John loves Maryn, then they must necessarily aiso be capable 

of entertaining the thought "Mary loves John," as well as a host of other similarly 

related notions. Fodor and Pylyshyn go on to note that humans are able to produce 

and understand an inexhaustible number of thoughts. Any explanation of cognition 

must, declare Fodor and Pylyshyn, provide a mechanism whereby this systematicity 

and productivity cannot fail to arise. 

According to Fodor and Pylyshyn, the proper way to achieve this goal is with 

a Classical model which works by "storing, retrieving, or otherwise operating on 

structured symbolic expressions." In other words, classical models consist of two 

parts - a representation part, and an action part. The representation part is a way 

to internally model concepts in terms of symbols. For example, the sentence "John 

loves Mary" might have aa internal representation loves(john,mary). The action part 

of a classical model is the way in which the model, or program operates on these 
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representations - the way the steps in the algorithm manipulatr syiubol cxprc.ssioiis. 

In the case of the relationship between Mary and John. Mar_\- [night dccidc that ,Iohri 

loves her by executing a sequence of actions such as "compare 'may '  wit 11 t l ~ e  swotld 

argument of the relation 'loves' where .john' is the first argunient ." 'I'l~c c-lassicaal 

models manipulate structured symbol representations. In other \vords, tlw syu~hols  

and the structure surrounding them, together with the classical algorithms. causc tho 

classical model to behave in the way it does. 

According to Fodor and Pylyshyn: connectionist models do none of thcsc opcra- 

tions on symbollc expressions, and so they are doomed to failure. The failure stmts 

from their assertion that the presence of symbols and a structure imposed o n  those- 

symbols is inherently necessary to gclarantee that a particular n1odc.l w1I act appro- 

priately in various circumstances. Fodor and Pylyshyn notc that connectionist rrioth~ls 

do not have these structured symbol representations. In particular, i n  mrinw t,ior!ist 

systems, objects may have different neural representations depending on their ront,t~t,. 

Because they lack such structured symbolic representations, connec tior~ist, rirt,wa~.lis 

cannot perform operations that are sensitive to the structure of a represen tja tior], Ill1 t, 

only to the total representation. Indeed, if the total representation is all that can Iw 

discerned, and the symbols themselves are missing, Fodor and Pylyshyr~ asscd, that, 

connectionist models cannot consistently perform operations that depend thin tori- 

stituents of the structure. Consequently, connectionist models will never accaurlf, for 

human ability to think systematically, logically and uniformly. Similar1 y they wi 11 not 

account for the ability to  generate and understand an infinite number of ttiought~. 

Furthermore, say Fodor and Pylyshyn, even if connectionism could rrmclcl hurnan 

cognition, the best it will ever do is directly implement a classical or syn-ibolic al- 

gorithm. That is, the connectionist system would necessarily represent the symbolic 

structure, and mimic the classical model's manipulation of the synthols t.o detcrrnirit 

its output. For this reason, Fodor and Pylyshyn say connectionists may as well acccpt 

the fact that at best they are only implementing classical aigorithms. 



m r  1.2 i ne Answer 

In answer to Fodor and Pylyshyn's charges, Smolensky, Legendre and Miyata (Smolen- 

sk!r, Legendre, and Myata 1992: Smolensky 1993) proposed a mechanism, "Harmony 

'I'heory," by which connect~onist models can accept formal languages. Thus, the pro- 

ponents claim that cortnectionisz networks can perform structure sensitive operations 

without implementing classical algorithms. 

Like a classical model, a connectionist network in Harmony Theory possesses a 

representation of symbolic structure. Each symbol's representation is spread amongst 

many nodes, and is in fact entwined with the representations of other symbols. Thus, 

unlike the classical model. the connectionist network does not manipulate the con- 

stituents or symbols of the structure. Rather, processing in a connectionist system is a 

"kind of parallel holistic manipulation of symbolic structures" (Smolensky, Legendre, 

and Miyata 1992, p9). In other words, classical models directly manipulate individual 

symbols while harmony theory describes a means by which the symbolic structure is 

manipulated as a whole. In harmony theory, the individual symbols and their posi- 

tions in the structure do not directly cause the connectionist network to behave the 

way it does. 

In a Harmony Theory connectionist network, or Harmony network, the symbolic 

stxucture is represented by a pattern of activation over the nodes in the network. Har- 

mony theory describes a method of determining the interconnections in the harmony 

network so that the activation value changes into a completion of the computation 

(Legendre, Miyata, and Smo:ensky 1990). That is, the distributed pattern changes 

by virtue of the individual activation values, not by virtue of the symbols themselves. 

Thus, the algorithm in a Harmony network performs structure-sensitive operations 

without manipulating the symbols themselves. 

More precisely, the representation part corresponds to classical structure-sensitive 

representations. A variety of mechanisms have been proposed whereby connection- 

ist networks could associate symbols with their syntactic positions. For example, 

Shastri and .4jjanagadde (Shastri and Aj janagadde 1993; Tesar and Srnolensicy 1994) 

propose to associate objects in the representation by firing neurons synchronously. 



Plate j 1993) proposes that symbols could be associated via a "holographic" c.onvo- 

lution scheme. Harmony theory proposes a sin1ila.r scheme using telisors to i.o~t~oIvr~ 

representations for symbols with their syntactic positions. Smolensky, I,cgrndrr, i ~ l ~ t l  

Miyata (1992) demonstrate that these tensor representations can l)c used to rc*psc.scrtt 

parse trees for context free languages. 

Smolensky et al. also assert that a similar line of reasoning would allow the r r ' p  

resentation of derivation graphs of arbitrary type 0 languages (Sniolet~sky, I,t~gwdrc, 

and Miyata 1992, p44). The present thesis demonstrates a specific mealts by whicli 

tensor representations could capture such derivation graphs, and cliscusscs t hc pit fails 

of such a representation. We will also develop a second type of temor rcpscscmta t iw  

for derivation graphs which is unrelated to that implied by Smoler~sky et al. 

The action part of harmony theory purportedly describes how a co~tnc~ctionist 

network could be constructed so that it accepts structured representations of s t r i~~gs  

in a formal language. Essentially, the idea is to construct a "harmony functiorl," whir11 

maps the set of all possible parse trees to the real numbers. The function is cicfi~lcd 

so that the value of the harmony function for a correct parse tree will be greatw tltarr 

the harmony value for any incorrect parse tree. Smolensky et a]. give a rnetlmd t o  

construct a harmony function for any context free grammar, and suggest tf r at, x si 1r1 i lar 

harmony function exists for any type 0 language. The proposed ljarrrlotry fur~ctiorr 

does not fulfill all the requirements for the construction of a harrnor~y ncdwork, airti 

so, we will modify it slightly. The thesis then goes on to show the precise 1ndior1 for 

constructing a harmony function for a type 0 language. 

Smolensky et al. note that some conzlectionist systems are krlown to r:linirnizc: 

particular functions, called Liapunov or energy functions (eg .  Colden 1986; Iiopficlrl 

1952). If a connectionist network can be synthesized so that its energy ft~r~ction is thc: 

negation of the harmony function for the parse trees in a particular language t,hcw that, 

connectionist network wilI seek well-formed parse trees for words in that langimgc:. 

Smolensky et al. purportedly define just such a harmony fuitction and conncctioniht 

network. Given a grammar on which a harmony function has beer] defined, they 

explain how to construct a netw~rk so that the network's zero-energy states corrc:sj~untl 

t o  parse trees with maximum harmony values. They use this cortstruction to clairr~ 
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that the network's stable equilibria represent valid parse trees. This thesis shows that 

their construction is incorrect in that the parse tree representations do not correspond 

to t h e  network's zero-energy states. Fortunately, as demonstrated in this thesis, the 

cmstruction is  easily corrected. 

The Rebuttal: The Main Result 

bbor and Pylyshyn's classical models must surely work on some machine model - 

a model that receives input, processes it and produces output. Language theorists 

recognize :hat such a machine is equivalent to one that accepts the language consisting 

of input-output pairs. Conseque~tly~ if the classical models can be formalized at all, 

then they axe equivalent to a machine that accepts a formal language. It is just such a 

machine that Harmony theory claims to construct in answer to Fodor and Pylyshyn7s 

challenge: 

Furthermore. . . we saw that this embedding invariance generates Harmony 

functions which can be used to express any Context Free Language; that 

is, the net.work can distinguish ill- and well-formed strings from such a 

language. Indeed we saw how this extends to arbitrary formal languages." 

(Smolensky, Legendre, and Miyata 1992, p44) 

The present thesis proves a s  its main result that this statement is false. More precisely, 

it shows no network of the type described by Smolensky, Legendre, and Miyata (1992) 

car1 distinguish ill- and \\-ell-formed strings from any language. 

Smolensky et al. do not define what, it means for a connectionist system to "dis- 

ti!~guish ill- and well-formed strings.'YThis thesis will therefore suggest a reasonable 

definition for a connectionist decision network. Formalization of the definition will il- 

luminat e the fact that inputs to a harmony network are assumed to be parse trees, not 

strings of symbols to  be tested for membership in the language. Furthermore, there 

is no output to indicate if a string is in the language or not; the network's acceptance 

or rejection must. be inferred from a vahe which the network itself cannot calculate. 

Thus. the proposed harmony networks cannot be said t o  decide an arbitrary language: 
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the claim that harmony networks can distinguish ill- and well-formed strings fsorlt u 

context free language is false. Later, the present thesis will expand on why sr~ch a 

network is insufficient to  meet Fodor and Pylyshyn's challenge. 

However. even given that the problems of associating the string wi th  its pass<\ tJrt~cb 

and deducing the output can be solved, harmony networks do not work as clesigiicd. 

This thesis shows that harmony networks ad~ni t  stable equilibria that arc not, valid 

parse tree representations. Consequently, harmony theory and tensor rcpresert t,at,ians 

are unable t,o support their proponents' claim that connectionist networks can exhibit 

structure-sensitive processing without directly implementing classical algorithis. 



Chapter 2 

Background and Notation 

2.1 Sets 

The notation to be used in this thesis for sets is summarized in Table 2.1 In addition, 

this thesis uses the following terms when referring to functions: 

Injection A function, F ,  is an injection if each element in the domain maps to 

a unique element of the codomain. That is, if dl  # d2 then F(dl )  # F(d2).  

Surjection A function, F, is a surjection if for every element c of the codomain, 

there is an element d in the domain, such that c = F(d)  

0 Bijection A function which is both an injection and a surjection is called a 

bijection or an isomorphism. If there is an isomorphism between two sets ,4 and 

B, then we say that A is isomorphic to B and write A 2 B. 

0 Odd For the purpose of this thesis, an odd function is a function, f : R --+ ifBl 

that is symmetric about the origin: f ( -2)  = - f (x). 

0 Even Again, for the purpose of this thesis, an even function is a function, 

f : R + R that is symmetric: f ( - x )  = f ( x ) .  
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Notation Description 

{ a ,  b)  The set consisting of a and b. 
e E A  
e $ A 

R 

I A I 
A c B  
A c B  
A U B  
A n B  

A \ B  
- 
A 

A x  B 

-4" 

F : D + C  
F(c )  = d 

e is an element of a set -4. 
e is not an element of a set A. 
The real numbers. 
The size of the set -4. 
A is a subset of 3. 
A is a proper subset of B. 
The union of A and B. 
The intersection of A and B. 
The difference between A and B; those elements that are in A, but  
not in B. 
The complement of A. 
The cartesian product of A and B ; the set of all ordered pairs 
where the first element is from A and the second element is from 
B. 
The cartesian product with A by itself n times; the set of n-tuples 
of elements of A. 
F is a function which maps the domain, D to the codomain, C'. 
The function. F, maps the element c to d. 

Table 2.1: Notation for Sets 

2.2 Graph Theory 

2.2.1 Definition 

A directed graph is an ordered pair G = (V, E) where V is a set of vertices a r ~ d  

E C V x V is a set of edges. An edge (u, v) is said to be incident from u and incident 

to v, or simply from u and to u.  

An undirected graph or graph is similar to a directed graph, except that the edgc 

set E contains two-element subsets of V. Thus, in an undirected graph, edges have no 

"from end" or "to end." We will denote edges in an undirected graph by an  ordered 

pair, (u, v); notice that (u, O )  = (v, u). 

This thesis will make use of the following terms relating to graphs and directed 

graphs: 
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Subgraph A graph Gf = (V', Ef) is a subgraph of a graph G = (V, E) if G1 is a 

graph and, V' C V and E' E E. 

0 Path In a graph (V, E),  a sequence of distinct vertices (vo, vl,. . . , vk) is a path 

from u to v if u = vg, v = vk and for i = 1. .  . k, (v; - 1? v;) E E.  

c Connected If there is a path between every pair of vertices in a graph, then 

the graph is said to be connected. 

Cycle A cycle is a path, (vo, vl, . . . , vk), which begins and ends at the same 

place, so vk = vg. If a graph does not contain any cycles, then it is called 

 cyclic. 

In-degree In directed graphs, the in-degree of a vertex, v is denoted by deg;,(v), 

and indicates the number of edges that are incident to the vertex. 

Out-degree In directed graphs, the out-degree of a vertex, v is denoted by 

deg,,t(v), and indicates the number of edges that are incident from the vertex. 

Source If a vertex, s in a directed graph has deg;,(s) = 0 then it is called a 

source vertex. 

Sink If a vertex, s in a directed graph has deyOut(s) = 0 then it is called a sink 

vertex. 

Tree A tree is an undirected connected acyclic graph. All the trees considered 

in this thesis are rooted, ordered trees. A rooted tree is a tree where a particular 

vertex is identified as the root. If (u, v) is the last edge in the path from the 

root of the tree to a vertex v,  then u is the parent of v and v is u's child. If 

the children of every node in a tree are given an order, then the rooted tree is 

ordered. A leaf is a vertex that has no children. 
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2.3 Formal Languages 

For a more comprehensive review of formal languages, the reader is rcferrcd to 

Hopcroft and Ullman's standard text, (Hopcroft and Ullrnan 1979), which scrvcs 

as the basis for this section. 

2.3.1 Definition 

An alphabet is a finite set of symbols. A string or word is a sequence of zero or nmrc 

symbols from a given alphabet. This thesis will use the words "string" and "word" 

interchangeably. The special word, E, contains no symbols, and is called the rtrzpt?j 

word. 

The length of a word is simply the number of symbols in the word. If zu is a word, 

then iwl is its length. Thus 161 = 0, and labcabcl = 6. 

A language is a set of words over a given alphabet. The following are some iinpor- 

tant languages: 

0 The empty set, 0 is the language that contains no words. 

0 If C is an alphabet, then Ci is the set of words of length i made up of any 

combination of symbols from C 

The finite language of all strings over a given alphabet with length at most n is 

0 The infinite language of all strings over a given alphabet, 2= is denot,ed C'. 

2.3.2 Grammars 

A grammar is a four-tuple, (V, C, P, S) that describes how to derive strings in a 

language C is the alphabet over which the language is defined; when refwring to a 
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grammar, its members are sometimes called terminals. V is a set of non-terminals 

such that V n C = 0? and S is a special non-terminal, called the start symbol. The 

set of productions, P C (V u C)' x (V U C)*, describes how to rewrite strings of 

non-terminals and terminals. 

Each production is written as a -+ ,b' which means "replace an occurrence of the 

string a with P," where a and p are strings of terminals or non-terminals ( a,  p E 

(V li C)* ). If y ,  S E (V li C)* are strings of terminals and non-terminals, and there 

is a production, (a  -+ p) E P then we say ya6 directly derives ypd or yo6 follows 

from the application of the production to ya6. We denote this relation by writing 

ya6 2 ypd. If a, E (V U C)' follows from the application of 0 or more productions 

to the string a,  E (V U C)* then we say a1 derives a, and write, al 2 a,. If the 

grammar is clear from the context, then the symbols, and % are written 

=+ and respectively. 

The set of all strings of terminals that can be derived from the start symbol is 

ca.lled the language generated by the grammar. This language is denoted, L(G). Thus 

if G = (V, C, P, S) is a grammar, then L(G) = {wlw E C* and S w}. 

2.3.3 Derivation Graphs 

A derivation sequence for a word, w is a sequence of strings of terminals and non- 

terminals such that the first string is the start symbol, the last string is the word, 

and each intermediate string follows from the previous by the application of one 

product.ion. More formally, a sequence wI, w2,. . . , w, is a derivation sequence for w 

if w1 = S ,  w, = w and w; + w;+l, for i = 1, .  . . , n - 1. 

-4 derivation graph is a graphical representation of a derivation sequence. To 

~onst~ruct a derivation graph for a word in a language that is generated by a grammar, 

begin by writing down a derivation sequence for the word, and call the symbols in 

this derivation sequence the nodes of the graph. Next add arcs joining any symbols 

that remained unchanged from one step to the next. For each step, add arcs from the 

symbols of the left hand side of the production rule that was applied in that step to 

those of the right hand side. Finally, contract edges which begin and end at identical 
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symbols. 

h4ore precisely, let w be a word in the language generated by a grammar, C: = 

( N ,  C, P, S). Construct the derivation graph for to by performing the following steps: 

1. Write a derivation sequence, W I , .  . . ,tun, for to. Let I, = Iwtl be tAe length 

of the derived string after the ith step. Let a , ,  be the jth symbol in  to;, for 

i = 1 . . . n, j = 1 . . . I ; .  Let p,, qi and r ,  be such that a ,,,, . . . a ,,,, arc tbhc syrlrbols 

on the left side of the production applied in the ith step, and a,+,,qr, . . .a,+,,,, 

are the symbols on the right side of that production. 

2. Construct a directed graph H = (V, h)  where V = {aiTj l i  = 1 . . . n, j = 1 . . . l i ) .  

3. Add the edges, ( a i j ,  u ; + ~ , ~ )  if the two vertices satisfy one of the followi~rg riilcs: 

a Ifp; I_?' I q i  and pi I k L r ; .  

a I f j = k < p ; .  

a If q; < j, r; < k and li - j = I;+! - b 

In every case, the resulting graph will be a directed acyclic graph, wllcre 1 , 1 1 ( ~  

source is the start symbol, S ,  and the sinks constitute w. For context free and rcgular 

languages, derivation graphs are trees and are called parse trees. 

2.3.4 Machines and Languages 

-4 machine is a finite mathematical model of a system that produces a single output, 

upon presentation of a finite input. In this thesis, we are only interested in rnach'rrres 

that halt on every input? answering either "yes" or "no." If 5' is the set of strings 

to which a machine, M ,  answers "yes," then M is said to accept S. This is deriot,ed, 

S = L ( M ) ,  and L ( M )  is called the language of M. 
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Regular Languages 

If the productions in a grammar all have one non-terminal on the left hand side and 

at most one terminal and one non-terminal (in order) on the right hand side, then the 

grammar is called a regular grammar. The language that is generated by a regular 

grammar is called a regular language. 

In other words, let G' = (V, C, P, S )  be a grammar where if a -+ ,fl is a production 

in P,  the11 a E V and ,fl E ({rcylx E C a n d  y E V )  U C U V). Then G is a regular 

grammar and L(G) is a regular language. 

Context Free Languages 

If the productions in a grammar all have one non-terminal on the left hand side and 

at most two terminals and non-terminals on the right hand side, then the grammar 

is called a context free grammar  (CFG). If a language is generated by a context free 

grammar then it is called a context f r ~ e  language (CFL). 

Formally, let G = (V, C, P, S )  be a grammar. If for every (a + P) E P, a E V 

and /3 E {C U 1f)52, then L(G) is a context free language. 

Context Sensitive Languages 

If every prodnction in a grammar has at least as many terminals and non-terminals 

on the right hand side as on the left, then that grammar is called a context sensitive 

grammar. Languages that are generated by context sensitive grammars are called 

context sensitive languages. 

More formally, let G = (V, C, P, S) be a grammar where if (a  -, P) E P then 

01 < IPI. The language, L(G) is a context sensitive language. I - 

Recursive Languages 

If G is an arbitrary grammar, then L(G) is a recursively enumerable language, and G 

is called a type O grammar. 

If L(G) is a recursively enumerable language, then there is a machine called a 

Turing machine which answers "yes" whenever the string presented to  its input is in 
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L(G). However, this machine may not ha.1t on every input. If the ?ilring: 1mc11i1x 

halts on every input, then L,(G) is called a recursive language. 

2.4 Linear Algebra 

The notation used in this thesis for linear algebra is summarized in 'Ibble 2.2. We 

will also use the following terms: 

Linear function If V is a vector space over a field, X, and f : V -+ 1; is such 

that for every x E X and a ,  b E V, f (  a + xb) = f (a)  + xf(b), then f is a. lirwzr 

function of V .  

Linearly independent If V is a vector space over X, and A = 

{al, a2, . . . , a,) c V is such that for every X I ,  x2, . . . ,5 ,  E X, X I  ul + xzaz t 
- 

a -  + x,a, = 0 implies that xl = 5 2  = - . .  - x, = 0, then A is a li1aewly 

independent set of vectors. 

Direct Sum If U and V are subspaces of a vector space, W with the propcrty 

that for every zu E W there exist unique vectors u E U and 21 f V sucli that 

w = U+V then W is the direct sum of U and V, and we denote this, W = I .  fB V 

(Fisher 1970, p104). 

0 Eigenvalue If A E M[n, n], e E Rn and X E R are such that Ae = Xc then X is 

an eigenvalue of A, and e is an eigenvector of A. 

2.5 Tensors 

The tensor product is an operation, satisfying certain properties (see e.g. Yokorltma 

1977), and which maps a pair of vector spaces to a third vector space. Thc tcnsor 

product of two vector spaces U ,  V is written U @ V, and for u E IJ and v E V, u @ v 

denotes the tensor product of u and u. 



CHAPTER 2. BACKGRO UhTD AND NOTATION 

Notation Description 
V Ilsually, we will use capital letters to  represent a vector space. 

Mfm? nl The vector space of rn x n real matrices. 
?i Except in the case of matrices, we will usually use small letters 

to denote a vector. If there is confusion, we will use the special 
symbol, f 

det / A [  The determinant of A E M[n, n]. 
uT The transpose of u 

Table 2.2: Notation for Linear Algebra 

In this thesis, we are concerned entirely with a very simple tensor product called 

the Kronecker product (Yokonuma 1977, p17) which maps pairs of matrices to a third 

matrix. If U = M[m, n] is the vector space consisting of m x n matrices over the real 

numbers, and V = M[mf, n'], then the Kronecker product, U 6 V = 11.1 [mm', nn'] is 

where A E U and B E V .  

This paper will make use of the following general properties of tensor products: 

T1 If li and V are vector spaces over a field F, then U @I V is also a vector space over 

F. This statement is a recapitulation of part of the definition, but it is worth 

stating again. 

T2 i\ssociativit,y: ( l i  8 I f )  @I E I1 8 (V @I W) (Yokonuma 1977, p12). If the tensor 

product is the Iironecker product, and U, V and W are matrices over R, then 

( [ I  (3 V )  @ w = ti- @ ( L J @  W). 

T3 Commutativity: I/' @ V 2 V 8 U (Yokonuma 1977, p10). It may not be the case 

that 21. @ n = v @I 21. For example, if U = V = rV1[1,2] are vector spaces over the 



reals, and the tensor product is the 1l;ronecker product. 

T4 If U and V are vector spaces, and z.1 E V ,  then there is a, lincar nlapping p,?,, : 

li @I V -+ U such that for any u E i7, pv(u @ 2 2 )  = PL (yok~nunla 1977, p.10). 

T5 Let I/r and V he vector spaces over a field, F ,  and let u~ E. I! @ V be given by 

where u; E U and v; E V for i = 1 . . . r .  If {vl, v p ,  . . . , vr)  is lirifwly i ~ i d ( ~ l ) ~ ~ l ~ l e ~ i t , ,  

then the elements ul ,  u2, .  . . ,21 ,  are uniquely determined (Yokontlrrta 1977, I)!)). 

T6 If a ,  b  E M [ m ,  n.], c E iI4[m1, n'], and the tensor product, is the Iironc~ckt~ psocl~~c:t,, 

then 

( u + b ) 6 ~ c = u @ c + b @ c  

Because T2 guarantees the associativity of 8, it is convenient to ust: t , l ~  ffr,llowing 

shorthand for large tensor products. If V is a vector space, then define: 

The elements of TP(V) are tensors of degree p: and the elernents of T ( V )  arc vcx:t,oss 

whose pth component is a tensor of degree p. Smolensky, Legendre, and Miyata ( 1  !I%!) 

assert that the elements of T ( V )  can be thought of as the concatenation of tensors of 

increasing degrees. 



Neural Networks 

C:onnectionist or neural network models of computation consist, of a la.rge set of simple 

prc,cessing uni ts  connected in a network (see for exa.mple Rumelhart, Hinton, and 

McClellanci 1986). Each processing unit, carries a certain weight or ac t ivdon  level. 

?'he external world can influence and perhaps be influenced by the aAivation level 

in some or possibly all of the processing units. That is, the input is provided to  the 

ncttwork as activation levels on a fixed subset of the units; this subset is ca,lled the 

input .set. Similarly, the output is read from the ~e twork  by examining the activation 

Jcv& of the output set. Units that are in neither the input set nor the output set are 

known as hidden units. 

lJpo11 receiving an initial activation on its input units, the connectionist network 

transmits that activation hetween processing units via the interconnections of the net- 

work. Using a weight factor, each connection in the network can modify the activation 

levcl that it receives from the sending unit and sends to the receiving unit. The rule 

that cictermines exact'ly how activation in a unit will affect that unit's neighbours is 

called the activation rule. This rule, together with the wa.y the processing units are 

connectecl in the network, the weights on the connections, and the units' initial state 

cletermines how the neural network will behave. 

&{&re formally, let ( U ,  E) he a weighted directed graph, where U is a set of nodes, 

or processing units, and E is a set of edges, ea.ch of which is assigned a weight. We will 

clefine a matrix, 14' E M[lUj, lUi] called the weight matrix; it describes how the nodes 

in  the network are connected. If iq$ is zero: then there is no connection from node U j  

to node IFi. and the activation level of Ci:j will have no direct affect on the activation 

level of lJi. On t!he other hand, if IVij is non-zero, then there is a connection from 

rwcle I5 t,o node U;. The value of I,Kj indicates a scale hctor  that is applied to the 

activat.ion level that propaga.tes along that link. 

For esarnpfe, suppose a particular network contains three nodes, U l t  U z ,  and U3, 



Figure 2.1: An illustratiorl of a simple corilwct ionist r~t~t,work. 

and the weight matrix of the network is given by: 

Then activation in is transmitted to 1;$ and / I 3 ,  h i t  is sca1r.d hy facf,oi.s of 0. ! i111(l 

0.3 respectively. S i m i l a r l ~  activation in Irr3 is transmitted to lrl .  lmt, is sr-itlt~l Ity ;I 

factor of 0.2 by the link between those two nodes. 'I'his network is illi~strat,c~l i r l  l ip,~rr*c% 

2.1. 

The activation vector of a network consisting of noiles / I l ,  f i Z ,  ..., !I,, is a, vwt,ot. 

u = (a1 ,  U Z ,  .... un),  where u; E R is the activation l evd  o f  nodc fl , .  111 gwi(*ri~I, t11c' 

activation levels can vary arbitrarily. hut in most rnodcls. the rartgcl of the itcti va 1,iotl 

levels is a finite subset of the real numbers. Because tile art  i vd,ion vrvtor r.lmtg(swc*r 

time, let a ( t )  he the activation vector a i  time t ,  and let u , ( t )  hc tfw ith corr~pormrt, 

of the activation vector a t  time t .  In the above example. the sigrlal rct-c:ivc:d l)y 1/, i11, 

time t is then 

0.1a2[t) + 0.2u3(t)  

Using the activation ride, Crl would then have to  use this signal to detder~1lirtct hc~w to 

modify its own activation value; 



'I'jtrx activation ride determines how the activation vector changes over time. If the 

part irrllar conncr-ticrnist model under consideration is a continuous time model where 

t h e  prc~wssirrg units tlpdate ihemsel\-es immediately when their neighbours change, 

irt IIopfic4rf 119841. then the activation rule is a differential equation: 

j 19%) proposes the following activation rule for a continuous 

Irr this rtiodel, C',, R, ar~d I, are biologically motivated constants, and g;(x) are odd 

real-valucd functions for all i. 

On the  other hand, if the model is a discrete time model where the entire network 

is uptlatcti during each time step. then tahe activation rule is iterative: 

For csample. the Brain-state in a box model developed in (Anderson, Silverstein, 

Ritz. and Jones 1977) represents one of the simplest discrete time models. It uses the 

fcllotving activation rule to determine the next state of the network: 

iVhere St] is a vector \-ahxed function that truncates each component so that the acti- 

vatior? vector ahmy.: s h ~ s  within a hypercube centred at  the origin; 7 is a constant. 



Chapter 3 

Tensor Represent at ions 

As mentioned in Chapter 1, Smolensky, Legendre and Miyata's answc.s t,o I:otlor i \ l l d  

Pylyshyn's challenge consists of two parts: a representat ion part and an a c t i o ~ ~  lmr1. 

This chapter describes the representation part in detail. The seprtwwtatiu~~ part o f  

Harmony theory depends on a technique to relate symbols with t h i s  synt,acl,ic. p s i -  

tions by convolving vectors that represent these symbols and positions via, a tcnsos 

product. Thus, the representation part of Harmony theory is called Icr~.sor* represrll- 

tation. Starting with the development of simple tensor representatious this c.1 la,ptcs 

traces Smolensky, Legendre and Miyata's (Smolensky 1993; Smolensky, Lc~gc*ritlrt:, ~ L I I ~  

Miyata 1992; Smolensky 1990) development of recursive tensor represenl,al,itrrls, and 

their use in representing parse trees for context free languages. The chaptm t l ~ c ~ i  

proceeds to develop the use of tensor representations to capture the derivat iot~ graphs 

of Type 0 languages. 

3.1 Simple Tensor Represent at ions 

If tensor representations are to  provide a means to represent st ruct ursd sy xrrhol ex-. 

pressions, they must represent symbols and their syntactic positions. Smolcnsky, 

Legendre and Miyata call these syntactic positions roles (Smolensky 1990; S1no1c11- 

sky, Legendre, and Miyata 1992). Some examples of roles are the first, secorld, third 

and fourth positions in a Iist, and the relative positions of left-child and right-child of 
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a vertex in a binary tree. For an example in natural language, consider the sentence 

"John kissed Maryf'; there are three symbols "John" "kissed", and "Mary". Each 

symbol appears in a particular role. "John", the performer of the action, appears 

in the agent role; "kissed" zppears in the verb role, and "Mary", the receiver of the 

action; appears in the paiient role. 

One possible approach to the problem of representing the various symbols in their 

separate roles is to arbitrarily assign a different representation for each constituent 

or symbol-role pair. So, for example, there would be a representation for each of 

(,John,agent), (kissed.verb). and (Mary,~atient). However, this approach is unsatis- 

factory. As argued effectively by Fodor and Pylyshyn, any representational scheme 

that can represent sentences such as "John kissed Mary" must also be able to represent 

"Mary kissed John." If there are different, unrelated representations for (John,agent ) 
and (.John,patient), then there is no guarantee that the system that correctly repre- 

sents John giving a kiss will also be able to represent John receiving a kiss. 

Furthermore, if there are different unrelated representations of (John, agent) and 

(John,patient), then there is no way to relate the "John" in the agent role with the 

"John" in the patient role. Indeed, if connectionism were to model human intelligence, 

then the "John" in "John kissed Mary" should also be able to relate to the "John" in 

"Rachel's husband is John". Otherwise Rachel wouldn't know if she should be upset 

or not. 

Finally, if several units take part in each constituent, so that the representations 

are fully distributed, then there may be no easy way to untangle the superposition of 

several constituents. That is, if the entire structure consisting of several constituents is 

represented by the sum of their individual representations, then some other unrelated 

constituents could be subsumed by that sum; the result would be that the network 

would "accidentally" represent two things, one of which would not be true. For 

example, suppose 
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Then (1,1,1) is the representation for "John kissed Mary" and it is also tht. rtyrc- 

sentation for "Fido chased Felix". The representation has no way to guarailt c~ t, hat 

this overlap does not happen because the constituents are assigned arbitrary vcdors. 

Tensor representations address these issues by assigning some number of rv(il wr- 
r 3 tors to represent the roles, and other vectors to represent the consti tucrlts. 1 lw rcp- 

resentation of a constituent. in a particular role is then the tensor product ctf tlw two. 

For example, suppose the symbol .bJohn" is represented by a, vector, j = ( j l  ,3'2,.j:1) 

and the agent role is represented by a = (al,a2),  then the representation of Joltn i t 1  

the agent role is 

j @ S. = ((ja~~1,jl~t2,j2al,j2a2,j3a1~j3a2) 

Similarly, if the patient role is represented by p = (pl,p2), the11 the represeritatio~~ of 

John in the patient role is 

Thus, unlike the arbitrary constituent representations above, a tensor product, reprc- 

sentation scheme that is able to represent a particular constituent i n  a give11 ~.olc is 

necessarily able to represent that constituent in any other role. A tensor repr~*sc~r~ti~.- 

tion guarantees that the system that correctly represents John givirtg a kiss will also 

be able to represent John receiving a kiss. 

The second important difference between the tensor representatior~ and tllc arhi- 

trary constituent-role representations is that the tensor product allows the rctricval 

of symbols that have been combined with roles. That is, given a role a ,  j>ropckrl,y 

T4 of tensors furnishes a linear mapping rp, so that p,(j (cn a)  = j .  This projjcrty 

allows computations on tensor representations to recognize that the same constit,uc:rit, 

is used in two different roles. So for example, it is possible to relate the ".Johnn in  

"John kissed Mary" to the "John" in "Rachel's husband is John". 

Like the arbitrary role-constituent pair representations above, ter~sor represer~ta~ 

tions are superimposed or added to one another to represent several constituents in 

different roles. For example, if j ,  k and rn are arbitrary but distinct vector reprc- 

sentations for "John", "kissed" and i'll-lary" respectively, and a, v and p arc vector 
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I-espectively representations for "agent", "verb" and "patient", then the tensor repre- 

sentation for the sentence "John kissed Mary" is j @I a + k @I v + rn @ p. Provided the 

reasonable assumption that no two symbols appear in the same role, this represen- 

tation avoids the trap that catches arbitrary role-symbol pairs; it is able to untangle 

the role-symbd pairs from the sum, provided the role vectors, a ,  v and p are inde- 

pendent. In general, if the role vectors wl, wz, . . . , w, are linearly independent, and 

1 = C(v2 8 w;) then property T5 of tensors guarantees that vl, v2,. . . , V, are uniquely 

determined from t .  The result is that, as long as the vectors that represent the roles, 

or the role vectors, are linearly independent, two different structures have two dif- 

ferent activation vectors. Furthermore, there is a way to determine the constituents 

from tche complete represent at ion. 

The linear independence which ensures that different structures have different 

representations also ensures that those representations are explicit. In other words, the 

information has not been compressed, lost or otherwise hidden. Indeed, considering 

the two-dimensional case, this explicitness is obvious if the role vectors are the set 

( 1  0 0 1 )  Section 3.2 will show that these role vectors must be used in the 

recursive case. A symbol ( a l ,  u 2 )  in each of those roles would be represented by, 

These representations are the same as lett'ng the first and third units represent the 

synbol in the role (1,O) and letting the secmd and fourth units represent the symbol 

in the role (0 , l ) .  The representation's transparency is ensured by the role vectors' 

linear independence which ensures that symbols do not collide in the complete repre- 

senteation. 

Linear independence of the role vectors is worrisome because the size of any set 

of linearly independent vectors in a vector space is bounded by the dimension of the 

vector space. Since activation vectors are in Rn the number of possible roles for sym- 

bols in an n-node neural network is n. Role vectors are then a limited resource, which 

implies tha.t connectionist models must carefully assign them to gain the maximum 

benefit. For example, it would not do to assign role vectors for every position in a list 
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as that would imply that the activation vector could only represent sllort lists. 

Even so, it does not help to be "nearly" linearly independent as thtw tensor prop- 

erty T5 simply does not hold; the extent to which it fails is an area of currcl~t rt.scwcll 

(Smolensky, Legendre, and Miyata 1992). Smolensky (L991) presents a "sdf arldrcss- 

ing unbinding procedure" similar to T5 that does not require thcx role vectors to 1w 

linearly independent, but merely that the dot product of any two role vectors 1,c sn~nll. 

Using this unbinding procedure, the retrieved value, 21, of a symbol f, is 

where rj, j = 1 .  . . r are the role vectors and f, is the vector that, rcyrcsc~its tile 

constituent in the role represented by rj. Each incorrect role vector contril~ntes a i l  

error proportional to its amount of "non-independence" wit 11 thc corrcc t rolc v c ~ t , c ) r .  

So, if there are many role vectors, or their pairwise dot products are large, t,I~(w tlw 

error in this retrieved value can be overwhelming. For example, i f  thcrt. arc r h  -+ 1 

unit-length role vectors and the mean dot product of pairs of roles is :, then tllr wror 

in the retrieved value has the same magnitude as the original syrnbol. 

In either case, the number of role vectors is extremely limited. On the orw tia~~cl, 

if the role vectors must, be independent then their nurnber is bounded by the siztx oi' 

the network. On the other hand, if the self-addressing unbinding procedure is usctl, 

then the error is overwhelming for large sets of roles. 

3.2 Recursive Tensor Representations 

Fortunately, there is evidence that not very many role vectors are needed (Snloler~s ky, 

Legendre, and Miyata 1992). The trick is to choose roles that can l ~ e  used recursively 

so that each role is really a composition of atomic roles. For exarriplc, rathcr than 

having different roles for each element in a list, as in "first", "second", "third" ,  a,nd 

SO on, use the single role "next"; in that case, the third element of t h c  list is the: r ~ x t  

of the next of the next ( of the zero ). 

In terms of tensors, given a (small) set of roles R = (rl ,r2, .  . . , r , )  ~ C C I I I ' S ~ V C I ~  
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define new roles R' = (r i :  r i ,  . . .) by 

That is, R' is the set of all finite length tensor products of elements of R. For example, 

if R = { T O , T ~ )  then Rr = { T O , ~ ~ , T O  @ r0,ro @ r 1 , ~ l  @ r0,rl @  TO @ r0 @ T O , .  . .) 
(Smolensky, Legendre, and Miyata 1992). In the list example above, if the symbol, f 

is in the list and the "next" role is represented by the vector r ,  then the representation 

of f occupying the third position in the list is f @ r @ r @ r .  

The following theorem, which is a straightforward consequence of tensor property 

7'4, shows that recursive tensor representations can be "unwound" just like the simple, 

non-recursive representations. That is, given a recursive tensor representation of a 

constituent, the symbol and role of that constituent can be determined. 

Theorem 1 Let I f  and R be vector spaces. Let r = rl 8 rz @ . . . 63 rk, where r; E R, 

for 2 = 1 . . . k . Then there is a function, 9 ,  : V @ Tk((IZ) + V such that if v E V 

then cp,(v @ r )  = v. 

Proof: (by induction on k) Let 9,; : (V @ Ti-'(R)) @ R -+ V @ Ti-'(R) be a 

junction that for a E V 8 Ti-'(R), pri(a @ ri)  = a (Such a function is guaranteed b y  

property T4 of tensors). Now if k = 1,  then 9 ,  = cp,, since vr1(v @ r l )  = v for any 

71 E V .  

Assume that for k = 1,  there is a function, 9r(l,li : V 8 T'(R) -r V such that for 

any v E 1/, 9,- y,,,) (V @ rl @ . . . C3 r r )  = v. 

Then, if k = I + 1 ,  let f : (V @ T'(R))  @ R -+ V be defined by 

Then, 
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Aiow, by property T2, the associatiuifiy of tensor productsj 

is a function that maps V @I Ti+'R to V such that p ,I,,, +,) (v @ rl 8 . . . @ = r l  

So, by induction, for any k, there is a function (or = (o ,(,,,, such t h a t  9,. : V N 

Tk(R) --+ V and for any v E V, yr(v @ r )  = v. u 

As in the simple tensor representation, this theorem allows computatiorls on tc~isor 

representations to recognize that the same symbol is used in two different roles. For 

example, if an element appeared in the third and fifth position of a list, it would bc 

possible to relate the two instances of the symbol. 

To combine two constituents to represent a structure where one sy~nhol fills orw 

role, and another symbol fills another, the tensor products are simply adcied. I3ccausc 

they are not the same vector space, vector addition is not defined betwcon t4c1rietits 

of I f  @I V and V @ V 8 V, (or between any TP(V) and Tq(V),  p # q). For. this rcason, 

recursive tensor representations are taken to be elements of T ( V )  - the infinite clircct 

sum of tensor powers of If. 

Recall that the elements of T(V) can be thought of as the concatenation of tcnsors 

of increasing degrees (Smolensky, Legendre, and Miyata 1992). If two symbols apj)c:ar 

at different levels of recursion, then they can be separated easily by taking the parts of 

the superposition vector that correspond to the appropriate levels of ret:iirsicin. 'I'hid 

is, if fl @ rl E TP(V) and f2  8 r2 E Tq(V) are recursive tensor representations of two 

symbols, fl ,  f2  in recursive roles rl,r2, and p # q then t = f 8 rl + jz r;3 7'2 can tw 

decomposed easily into its two summands; to get this decomposition, simply take the 

components o f t  that correspond to TP(V) and Tq(V) and apply the functioils implied 

by Theorem 1 to each. However, it remains to be seen whether the superposittion 

vector, t can be decomposed if both symbols appear at the same level of recursion; 

that is, if p = q. 
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Theorem 2 shows that such sums of recursive tensor products can be decomposed 

iritv their summands. It shows that by applying the function implied by property T5 

of tensors iteratively, the symbols in recursively applied roles can be determined. 

Theorem 2 Let A be a linearly independent set of vectors from a vector space, V If 
s E V 8 TP(V) is given by  

where u; E V and v i j  E A for i = 1 . . . r,  j = 1 . . . p. Then the elements u ~ , u z , .  . . , U ,  

are uniquely determined. 

Proof: (by induction on p). The theorem holds for p = 1,  b y  property T5 of 

tensors. Assume that it holds for p 5 k .  Then for p = k + 1, 

and therelore s E I f  @ Tk+'(V).  Let r : (V @I T k ( v ) )  @ V --+ V  @ Tk+' (v )  be an 

%omorphism, whose existence is guaranteed b y  property Ti!. Let w; = u ~ @ v ; , ~ @ .  . .@vi,k 

be in V @ T k ( V )  Then 
r 

fr.clzn which wi are unigvelg determined for i = 1 . .  . r ,  b y  property T5. By hypoth- 

esis, ui, i = 1 . . . r are uniquely determined from w;. So ui, i = 1 . . . r are uniquely 

determined from s.  Therefore the claim holds for all p. 

Theorem 2 shows that, like simple tensor representations, recursive tensor repre- 

sentations can be superimposed (added) on one another to represent several symbols 

in different recursive roles. Yet, even with such superposition, the original symbol-role 

pairs can be reconstructed. The theorem also shows how this reconstruction can be 

performed recursively. 

Note, however, that if the self addressing unbinding procedure discussed in Section 

3.1 and in (Smolensky 1991) is used to unbind the representations then the error due 

to the rule vectors' linear dependence is even more important. If the role vectors are 



linearly independent, then the error is zero, otherwise, it depends on the 11url1hcr of 

role vectors, and the dot product between pairs of them. In a recursive rcprcac~rli a tion, 

the self addressing unbinding procedure is applied iteratively to its result to rclr;iiin 

a symbol. Thus, the error present after the first unbinding is ~ t s td  to det,errnirlc> 

the second unbinding. and so on; consequently the errors compound as the rwlrrsivc. 

representation is unwound. The linear independence of the role vectors tl~ereforc 

becomes even more important. 

Aside from the linear independence of the vectors, the development of tensor reprc.- 

sentations (Smolensky 1990; Smolensky, Legendre, and Miyata 1992) has corlsist,ctit ly 

glossed over the fact that tensor products are only defined for vector spaces over fid(ts 

of characteristic zero such as the real numbers or the rationals. Activation vect.ors, 

on the other hand are usually defined over a bounded subset of the reals, such as 

[0 . . . 11; certainly, in the models that are required by Harmony theory, thc activation 

values are defined over a bounded subset of the real numbers. In order to reprcscnt 

structures, the tensor representations of constituents with the same dirncrlsior~;~lit,y 

are added together as vectors. However, this addition may not bc possiblc i f '  c ~ c r y  

component of the sum must fall in a bounded subset of the reals. In the sirnplta I I O I I -  

recursive case, where there can only be a small number of role-const i tuen t pairs i J)  ally 

representation, this difficulty can be finessed by simply making the cornponent,~ of all 

the vectors small. However. such is not the case in the recursive tensor rcprescr~t,ilt,ior~. 

In a recursive representation, because the activation vector could he thr sum of a, 

large number of tensor p -oduct vectors, the activation values can becotnc saturated. I n  

other words, some units may be required to  attain an activation valw that is heyor~tl 

their capacity. Suppose for instance, u = C, v,,~ Q, vz,2 @ . . . @ vt,k @ i~~,1;+1, if  t11cw 

are r role vectors, then there are as many as rk tensors in the sum. If thc srrtallcst, 

component is &, then all the components of each of the tensors have size at Icast, ( k f '  

r \  , and so every component of the sum u is at least u, > ck+'rk = ( & T ) ~ c .  1 hcr~forc, 

recursive roles of depth k give representations that simply cannot he represented hy 

the activation vector for all k such that: 
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The result is that the depth of the recursion is limited not only by the size of the 

network, hut by the chosen representation as well. This means that models, such as 

harmony networks, that take advantage of recursion to define families of networks 

that manipulate recursive tensor representations must be careful to avoid saturating 

the corinectionist units. The only way to avoid this saturation without limiting the 

depth of the recursion is by making the role vectors unit vectors along the axes. If the 

roie vectors are among {(1,0,0,. . .), (0,1,0,. . .), (0,0,1, .  . .)) then no two summands 

will use the same unit, and so, no unit will saturate. 

3.3 Representation of Parse Trees 

Trees are an especially useful example of a recursive structure. Many relationships can 

be represented using trees. For example, trees can be used to represent relationships 

between classes and their subclasses, or between objects and their components. In 

particular, trees ca.n be used to represent the application of production rules from 

context free grammars (CFGs). 

Suppose C: = (V,  E, P, 5') is a CFG. Then, as described in Section 2.3, for any 

w E L(G), we can create at least one tree that represents the application of production 

rules from G to arrive at w in the leaves. 

For example, let G = ({S, r l , l ,  A, r2,1, B, r3 ,~ ,  C, D), {a, b), P, S) be a CFG where 

P is the set of productions: 

It can be shown that L(G) = {aipli  > 0). Figure 3.1 illustrates a tree that represents 

the appkation of the production rules to arrive at w = aabb: 

Smolensky, Legendre, and Miyata (1992) describe the following tensor represen- 

tation for binary trees, which is based on a breadth-first search of the tree: Let rl 

and r, be the two role vectors corresponding to the role of left child and right child 

respectively. If tl and t ,  are the superposition tensors representing the left and right 
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Figure 3.1: A derivation graph of the string aabb using rules from the  gra,mlita.r, (t' of' 
the text 

subtrees of a node labeled v, then s = v + t r  @ rl + t ,  @ T ,  is the superpositior~ f,msor 

of the subtree rooted at  ?J. For example, the tree shown in Figure 3.1 wot~ld haw a. 

tensor representation givefi by the following construction which follows a l)rcta,rltl~-firs{, 

traversal of the tree: 

s = S+ < subtree at rl,1 > @rr 

= S + < subtree at C > @rl+ < subtree at U > @T,) @ 7.1 

= S + ((rl,l + (C + a 8 r l )  &, rl + (B+ < subtree at r:i,l > GI 

7.1) 8 r r )  8 rl 

= S + ( ( f l , l  + ( C + a @ r l ) @ r l + ( B +  ( B +  

< subtree at A > @rl+ < subtree at D > @r,) @ r l )  9 T,) @ 7-1 

= S + ( ( I ' l , l + ( C + a @ r r ) @ r r + ( B + ( H + ( A +  

< subtree a t  rz,l > @rr) 8 rr + ( D  + b 8 rl)  8 r,) @ rr) @ 7,) @ r~ 

= S + ( ( ~ J  + ( C + U @ ~ I ) @ T I  + ( B +  ( B +  ( A +  W ~ J  + 
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By property T6 of the Kronecker product, 

The previous section showed that provided rl and rr are independent, the tensor 

representation for any tree will be decomposable, and the labels of the vertices will 

be retrievable, along with their positicns in the tree. The result of this tensor repre- 

sentation for trees is that activation vectors can then describe correct (and incorrect) 

parse trees for words in a context free language. Harmony theory describes how to 

construct a connectionist network the stable equilibria of which are supposed to be 

tensor representations of parse trees. This theory is discussed in Chapter 4. 

For now, observe that even if activation vectors can represent parse trees for con- 

tsext free languages, it is still "unclear whether this sort of apparatus is adequate 

to represent all the semantically relevant syntactic relations that Classical theories 

express" (Fodor and McLaughlin 1990, p344). Indeed, it is certain that the tensor 

representation leaves a lot of useful languages unexplained. For example, the language 

L = (ruwfw E (a, b)') is a context-sensitive language, not a context-free language; 

because productions in a grammar for such a language can have several symbols on 

the left, a machine that constructs derivation graphs for strings in L will need a more 

powerful representation than trees. 



3.4 Representation of Derivation 

Graphs 

To correctly parse context sensitive languages such as ii abo\rt, rcquil-cs c l  irw t.<vl 

acyclic graphs. This section begins by discussing a normal form for T y p e  0 grammars 

that restricts the number of symbols in a production in the grammar. S~ich it rioutral 

form is required by both the restrictive recursive tensor representat ion of dil-ectccl 

acyclic graphs (DAGs) that is developed later in this sectio~:, and by the ct~apter  oit 

harmony theory that follows. The question of whether or not there arc: cortnrctioitist 

networks that can decide if a decomposition graph is correct for a partic-tllar t y pc. 0 

language is considered in Chapt<er 4. 

3.4.1 Normal Form for Type 0 Grammars 

In general, grammars can have productions of any length. Howcvcr: i t  is not, tliffic~~lt. 

to modify an unrestricted grammar so that each production h a s  at most thrt-c: s y ~ n -  

bols. To construct this normal form for an unrestricted grammar, 12 = ( V, S, I< ,?), 

constrnct a new grammar, Q' = (V U f, C, PI, S). For every prodrtctio~l y, E I' : 

where% E V U C , j  = I..-s, gk E V U C , k =  I . . . !  and s + l  2 .3, add to 1'nc.w 

non-terminals r;,j for j = 1.. . s + 1 - 1, and add to P' thc followirlg prod~lctioi~s: 

K s + t < 3 then add pi to  P. It can be shown that L ( W )  = Lfl2) 'I'his norrr~al forrrr 

is important because it establishes a bound on the number of parents arid chi1rIrt:n of 

each node that the decomposition graph haq. 



f Original Production ! New Productions I 
E i 5' -+ ~ I , I  + &,2 r 1 . 2  4 C r l - 3  i i S -t AC.*aH 
; / 171,3 -+ ~ r ~ , ~  r1 ,4  B 1 

I 
k 

1 C'a -t a d '  
i C j r2,1 r 2 , l a  j r2 ,2  r 2 , 2  -$ o,r2 ,3  

i 
i i ; , U ,  r 2 , 4  + c 
i 
I C B  -, D B  / C r3 .1  r3 ,1  B --) r3 .2  r3 ,2  -+ D r 3 , 3  

i / r3,3 - B ,r cn-E  I 

i c -+ r4,~ r 4 , ~ ~  -+ f4,2 r 4 , 2  3 E 
r 
I u D - ,  Da j U + I ~ F ~ , I D  + r5 ,2  r5 ,2  -+ D r 5 , 3  

1 1 r5,3 -+ (1 
1 

i .4 D --+ AC' 1 -4 4 r6 ,1  6 .  6 r 6 , 2  -) A r 6 , 3  
I 
i 

Table 3.1: Normal form for the grammar for L = {aili is a positive power of 21 

For example consider the language, L = {uzji is a positive power of 2). The pro- 

ductions lor a grammar. G = ((5'. -4. B. C'. D. E ) ,  {a), P, S )  for L are reproduced from 

j iiopcraft and UIiman 1979. p2'0 j below: 

'The productions in the  normal form are shown in Table 3.1. 

3.4.2 Spanning n e e  Representation of 

Directed Acyclic Graphs 
!- I he previous section demonstrates that in order to show that tensor representations 

ca:: cap!::re the deri~zt;ior: graph of 2 recursiw Iitngmge: it is necesszry to show 

that they can represent directed acyclic graphs where each node has at most two 

inbound and two outbound edges. The approach suggested by Smolensky, Legendre 
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and Miyata's development of tree representations is to create a number of parent ro1e.s 

and a number of child roles. The construction will employ these roles to scprcwnt 

a spanning tree of the graph as before, and then to represent t h v  uol~-trec cdges 

separately. 

The Representation 

Let G = (V, E) be a directed acyclic graph. Assume that G has a single source, .s E 1'. 

Assume also that the in-degree and out-degree of each node is bounded, that is for 

each v E V, degi,(v) 5 d, and degOut(v) 5 do. The previous section showed t,hat, (1, 

and do can be as low as 2 for the derivation graphs of recursive languages. If t , l ~ c w  

is an arbitrary order (<) applied to the vertices of G , then there is a ~>;ltu~.i~l t c ~ ~ s o r  

representation for G. 

Let El = {(u, v)jVui E V, (12; vj E E + '11 5 d) be the set of "least," cclgc~s illto 

each vertex. Now E' covers I.' \ {s) since every vertex v # s has a least 11 such t h t ,  

(u,v) E E for otherwise G has more than one source. Because G is acyclic, El also 

covers s. Let T = (K E') be the suhgraph of G that is induced by El. 7' is a t l ~ c  

because no vertex has more than one edge corning into it, and because (2 has a sitlglo 

source and no cycles. For example, in Figure 3.2, the darkened edges seprcwnt, '1'. 

We can consider the tree to  be rooted at s, and ordered by thc original ordcri~lg 

on the vertices. NOW, let at = (Q, r2, . . . , rm} be role vectors, where r, corresponds to 

the role of ith subtree. Then in a manner similar to the representation of binary txec~s 

in the previous section, there is a recursive tensor representation for 7'. It rcrnains to 

be seen how the edges in E \ El are represented. 

Let 9 = {pi :p2, . . . , p,) he role vectors, where p, corresponds to the role of it11 

parent (in the order (If, <)). Suppose that 
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Figure 3.2: A graph with the nodes ordered left to right, top to bottom. The spanning 
subtree T in the text is represented by the heavy edges. 

are the tensor representations for nodes u and v in T ,  and 1, an$ 1, are their labels. 

Now to represent the edge (u, u )  in E \ E', where u is u's ith parent use: 

The representation for the graph, G is then 

Now, provided that the set of all role vectors, Q U a, is linearly independent, 

sc: can be decomposed into its constituent parts. Also, due to the uniqueness in 

tensor property T5, each tensor representation corresponds to a unique (up to graph 

isomorphism) graph. 

An Example 

Consider the graph illustrated in Figure 3.2. Its source is A, and its spanning subtree 

is the  set of darkened edges. The representation of the spanning subtree is, 

ST = A+ < subtree at B > @rl+ < subtree at C > @r, ' 1. 
= A + (B+ < subtree at D > @r,) @ r r > W ~ ,  

-. 
= A + ( B + D @ r , ) @ r l + C @ r ,  

= A + B @ r l + D @ r , @ r l + C @ r ,  
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Now the edge (C, D) is represented by putting the hbel C in the role construi.t4cd by 

multiplying the roles of C and D with the parent role: 

The complete representation for the graph is 

Analysis 

Despite its uniqueness property, and the fact that the representation can be ctccortl- 

posed into its constituent parts, this method for representing DAGs is unsatisfying. 

In contrast to the representation of trees, this representation of DAGs could allow 

the graphs themselves to be malformed. The parent pointer can point to a node that, 

may not actually be there, or it may have a different label in the tree than it does in 

the non-tree part of the representation. In order to ensure that the DAG is valid, thv 

non-tree edges tacked on the end of the representation will rey uire special t,rcat,~nc:nt, 

in any scheme to develop such derivation graphs, or even in a scheme to rccog~tizc a 

valid derivation graph. 

3.4.3 Recursive Representation of Directed 

Acyclic Graphs 

The representation of trees is smooth because trees offer a natural recursive struct, tire: 

a tree can be constructed from an existing tree by adding a single vertex, and joiriilrg 

that vertex to another vertex already in the tree by the addition of a single cdgc. 'I'1.w 

result is that for any vertex in the tree, there is exactly one path from that v r t rkx  

to the root of the tree. Indeed, there is exactly one path between any two vertices. 

In general, DAGs cannot he constructed in the same way because for each partic~~lar 

vertex, there may be more than one path from the source to that vertex. When a new 
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vertex is added to a DL4G, several edges may need to be added in order to link several 

paths. Fortunately, every derivation graph as developed before can be constructed 

recursively by starting with the source and adding vertices and at most two edges to 

each new vertex from the existing set of vertices. 

The Representation 

Proskurowski (1981) proposed a recursive representation for k-trees which serves as 

an inspiration for a tensor representation of DAGs. The representation is a. sequence 

of sets, where each set represents a vertex and contains the indices of the vertices to 

which that vertex is joined. In the tensor representation of derivation graphs, we are 

not only interested in the label of the new vertex but in the position of the added edges 

(ie whether it is joining a left-parent or a right parent); the tensor representation must 

include that information as well. As in the representation of the trees, the label and 

a subgraph will fill each role, and the role will indicate the position of the subgraph. 

The proposed representation is a recursive one. If a vertex labeled L is added 

to the graph which has superposition vector tG, then the superposition vector of the 

resulting graph is 

t k X t G @ ( 1 @ p l + r @ p r ) + L  

Here 1 and r are simple roles indicating "left parent" and "right parent" respectively, 

and pt and p, are recursive roles that indicate the indices of the left and right parents 

respectively. Note that each time a new vertex is added to the graph, the existing 

graph's role gains another I and r, so no two subgraphs fall in the same role. Note 

also that a graph's representation will depend on the order in which the vertices are 

added. 

These indexing roles might be recursively formed from a vector that indicates 

"next" as in a representation for a list; in that case, they would start at the first 

node in the graph and count toward the current node (that labelled L). Because we 

are interested in using this representation to build derivation graphs, it will be more 

efficient to start with the current node and count backwards. Thus, if p is a simple 

role that indicates "previous", then if the left parent of the new node was the most 
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recently added node, and the right parent were the node that wa.s added beforc t,ha.t., 

the role of s~ would be 

( l @ p + r @ p @ p )  

An Example 

Consider again the directed graph illustrated in Figure 3.2. The seprese:lta,th~ of tliis 

graph is best understood by foliowing the construction of the graph: 

Analysis 

The use of indexing roles results in some of the same problems as the tree-lmsetl 

representation. For example, there is no built in limit to the index. Thus, the irtclex 

could refer to a vertex that is not in the graph. In the representation of trees i n  

Section 3.3, there was no need for an index - it was implicit, the newly addcd vcrtcx 

was always joined to the roots of its subtrees. However, in any reprcscntation of a 

graph, there must be some means to refer to vertices inside the graph, for otherwise, 

there is no way to build multiple paths. Indexing is almost guaranteed in any tensor 

representation of directed acyclic graphs. 

On the other hand, the recursive representation of directed acyclic graphs is uni- 

form. Unlike the tree-based representation, there are no special edges which arc* 

appended to the end of the representation. That means that a mec2-~anisrn that rrlust 

decide if a graph is valid does not need to have special cases to handle somc of tfic 

edges. 



Chapter 4 

Harmony 

In Chapter 3, we traced Smolensky, Legendre and Miyata's developnlent of tensor 

product representations for parse trees for Context Free Grammars. We went on to 

extend that development to represent ations of derivation graphs for type 0 grammars. 

Together, these results show how the activation vector of a connectionist network could 

represent the steps of an algorithm. Smolensky, Legendre and Miyata's Harmony 

theory, which is the subject of this chapter, claims to show how a connectionist system 

could be synthesized so that it naturally "relaxes" into such a state. 

Harmony theory consists of two viewpoints or formulations: a symbolic viewpoint 

and a numeric viewpoint. These viewpoints claim to explain the apparent difference 

between classical algorithms for intelligence and the computational models postulated 

by connectionists. The symbolic viewpoint consists of a "harmony function" which 

maps the set of derivation graphs that are possible over a grammar to the real num- 

bers. A symbolic computation in this formulation is simply a choice of a particular 

derivation graph that happens to maximize the harmony. The numeric viewpoint 

consists of an explanation of the evolution of activation vectors in connectionist sys- 

tems from the point of view of energy minimization. The two are apparently tied 

together in a procedure to synthesize neural networks that seek maximum harmony 

computations. 
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4.1 Symbolic Formulation 

Because the tensor representations discussed in Chapter 3 are based 011 symbols i11 

various roles, a harmonic account of tensor representations starts with a sy 111 bolic. 

account. The symbolic harmony of a set of constituents is defitlecl to bc thc S U I I I  of 

the harmonies of the constituents, taken in pairs: 

So for example, the harmony of a structure such as "John kissed Mary" would bc 

something like 

H ( ( ~ o h n ,  agent),(kissed, verb) , (~ary ,  patient)) = H((.lohn, agent),(kissed, verb)) t 

fl((kissed, verb),(Mary, patient.)) + 
H ( ( ~ o h n ,  agent),(Mary, patient)) 

and we would expect this value to be high in the part of Rachel's brain that dcc.itlcs 

jealousy. If languages such as the set of English sentences that make IZ,achcl jcaloi~s 

are computable at all, then they must be equivalent to some (perhaps resi,rict,ccl) rv- 

cursively enumerable language (provided Church's thesis holds) (Hopcroft, attcl L J l l ~ l l i ~ t ~  

1979, p221). So, we require a harmony function that decides membership of strings 

in some recursively enumerable languages. 

4.1.1 Context-Free Parse Trees 

Smolensky (1993) proposed a harmony function for derivation trees for contcxt frct: 

grammars in a normal form. That is, their harmony function takes as input a caritli- 

date parse tree for a string in a context free language and assigns a harmony value 

to  the tree. If the harmony of the tree is zero, then the string is judged to hc i n  thc 

language. The function examines the labels of the nodes in the derivation txcc:, and 

compares parents to their children. The rules that are used to derive this function for 

any given language are summarized in Table 4.1. 

That these rules yield a zero harmony value for well formed trees can hc  seen t ~ y  

examining the proof presented in (Smolensky 1993). The essential idea of this proof is 
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Type 0 Production or Symbol 
l(v) = a E C  

'hble 4.1: Rules for determining the harmony, H ,  of a parse tree, E), for a string 
from an arbitrary context-free grammar, ( N  U r, C, P, S). Here is the set of new 
non-terminals that are added when constructing the normal form described in Section 
3.4.1. 1 is a labelling of the nodes of the parse tree, 1 : V -+ C  U N  U T'. 

Change in Harmony 
add -1 to H , , 

l(v) = A  E iV 
l(root) = S 

I (V)  = E r 
(u, v) f E ,  v the left child of u and 

(l(u) -+ l(v)a) E P or (l(u) -+ E(v)) f P, 
C X E C U N U F  

(u, v) E E, v the second child of u and 
(l(u) -+ al(v))  E P , a  E C U  N  

that for every vertex in the parse tree, the number of incident edges that are required 

for the tree to be valid is known, because the grammar conforms to the normal form 

presented in Section 3.4.1. Thus for each vertex, the number of incident edges required 

is subtracted from the harmony. Each valid edge is incident to two vertices, and so, 

add -2 to H 
add $1 to  H 
add -3 to H 
add +2 to H 

add +2 to H 

it contributes +2 to the harmony, balancing the negative contributions of the vertices 

at  each end. 

For example, let F = ({S, r l , l ,  A, r2,1, B, r3,1, G, D}, {a, b}, P, S) be a Context 

Free Grammar where P is the set of productions: 

Suppose G = (V, E) is a potential derivation graph for a string in L ( F )  and 1 : V t 

( S ,  r l , , ,  A, rztl ,  B, r3,1, C, D, a, b )  is a labeling for the vertices of G. We can compute 

the harmony of G as follows: 

For any node 27, if b(v) E {a, b) then add -1 to the harmony. (Rule 1 in Table 

4.1) 
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Figure 4.1: A parse tree for the word w = uububu which is not in the language, L ( P )  of 
the text. The numbers represent the contributions to the harmony valuc of t , t i c ~  paxsc. 
tree with respect to the grammar F of the text. It can be seen that, the ha.rmor~,y of 
this tree is -2. 

Far any node v, if E(v) f { A ,  B, C, D ,  S) then add -2 l o  the I-~arrnon~. (Itr~lc 2) 

0 If v is the root and I(v) = S then add $1 to the har~nony. (Rule 3) 

For any node ZJ, if l (v)  E {1'1,1, 1'2,1, r3,1) then add -3 to the harmony. (R,nlc. 4)  

For any edge (u,v)  where v is the second child of u, if ( l(u), l(v)) E 

{(rl t l ,  B), B),  (r3,1, D)) then add 2 to the harmony. (Rule 6) 

Figures 4.1 and 4.2 illustrate this harmony function applied to an invalid arid a valid 

parse tree, respectively. 

The problem with this harmony function is that the method for construct,ing 

networks, discussed in Section 4.2 that find maximum harmony trees requires that 
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Figure 4.2: A parse tree for the word w = uabb which is in the language, L ( F )  of the 
text. The numbers represent the contributions to the harmony value of the parse tree 
with respect to the grammar F of the text. It can be seen that the harmony of this 
tree is 0. 

the harmony function is embedding invariant. That is, the harmony function must 

cletermi~le the contribution to the harmony made by a pair of nodes without knowing 

where the pair lies in the overall structure of the tree. In the embedding invariant 

scheme, there is no way to tell if a particular node lies at the root of the tree, or 

below. This means that the rule that increments the harmony if the root is labelled 

with the start symbol cannot be used. 

If the start symbol appears only on the left hand side of productions, a condition 

which is easily satisfied with a simple modification to the grammar, then the root is 

the only valid position for the start symbcl. In that case, the start symbol will always 

contribute a value of -1 to the harmony value of the tree. Table 4.2 captures this 

modification and extends the rules for constructing a harmony function to apply to 

Type O grammars. 



Table 4.2: Rules for determining the harmony relative to an arbitrary grzknlitlilr, (: oS 
a derivation graph (V, E) with vertex labelling given by 1. 'I'he grartllrlar is given hy 
G =   NU^, C,  P, S )  where r is the set of new non-terminals aclclcd wtlcri corist,rr~ct,iilg 
the normal form as in Section 3.4.1. 

1 

Product ion  o r  Symbol  / Change in H a r n ~ o n y  
I 

-- 

4.1.2 Type 0 Derivation Graphs 

l ( v )  = a E 2 
I 

i l ( v )  = A E N \ { S )  
i I(v)  = S 
I 

1 l ( v )  = y E I' and { a  --+ y , y  --+ /?) P, and a,/? 
1 ( N u C )  

I 

(u, v) E E, u the 1st parent of u ( l ( u ) n  -+ l ( v ) )  E 
P, or ( l ( u )  -i l ( v ) )  E P for some a E ( N  U I' U 3) 

I (u, u )  E E , u  the 2nd parent of zl ( y t ( u )  --+ y ) )  E 
i P ,  for some y E I' 

(l(u)cr -+ l ( v ) )  E 

(u, v )  E E, u the second child of v  (1  ( U )  --+ 
a l ( u ) )  E P,a E C U  N 

Table 4.2 extends Smolensky, Legendre and Miyata's fiarmony function to x lizcrl~loiiy 

function for an arbitrary type 0 grammar. This harmo~iy function is simply an rx- 

plicit version of the harmony function suggested by Smolensky, Legendre, aud Miy i~h  

(1992). The proof is very similar to the development which was prescl~tcc-1 l>y Srriolcvr- 

sky, Legendre, and Miyata (1994) and summarixed in t h e  previous scct,iori, a~ id  so thv 

harmony function is presented here without proof. As implied by the previotls swtion, 

the revised harmony function not only gives an ext,ension to type 0 grarnlnars, h111, 

also makes the harmony function truly embedding invariant. 

add - 1 to 11 -- 
add -2 to N 
add - 1 to 11 

add -(In[ + /$I )  1.0 11 

add $2 t,o If 
-- 

add $2 to IT 

add $2 to I 1  
- 

add $2 to 11 
- 

4.1.3 The Symbolic Viewpoint 

The crucial aspect of both the original symbolic harmony function for Context I;rcc 

parse trees and the variation presented above is that both calculate Iiarrnony by 

comparing only pairs of constituents. The harmony of the entire structure is calc~datcd 
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by adding up the harmony values contributed by vertices and pairs of vertices (or 

vertices and edges). So, the harmony contribution of the edges can be expressed 

exactly as in the definition of the symbolic formulation of harmony: 

The vertices, on the other hand: make a contribution regardless of their position. 
r 7 1 hus, 

The vertex contributions can be included in the calculation of the edge contributions, 

but care should be taken so that each contribution is added exactly once. So, we can 

define the pairwise harmony, 

c , r , , , r  = < harmony contribution of edge between r; and rj > + 
< harmony contribution of c; > 

If c, is the parent of c, then we must ensure that there is a "null" child so that the 

sinks are also parents and their contributions are included in the sum. In this last 

case, we see that the harmony of the derivation graph can be expressed exactly as in 

Equation 4.1. 

What's more, this formula for harmony is embedding invariant. That is the rules 

can be applied by looking at  exactly two vertices, without any more information than 

their labels and the fact that one is the left or right parent of the other on a path from 

the source. This independence means that the roles ri in the harmony calculation can 

be recursive - a property that will be useful as we turn to the numeric formulation 

of harmony theory. 

4.2 Numeric Formulation 

Smolensky (Smolensky, Legendre, and Miy ata 1994) contends that symbolic comput- 

ing is simply a high level view of human cognitive processes. From below, the processes 

are better viewed as the "spreading" of activation among connectionist units, If this 



is true. then connectionists will have to deviw a means t o  coltnrct t 11t' tiso vi twy~~il l fs  

of cognition: namely they will have to con11ec.t the symGolic fos~nulatiori o f  tlitr~llolly 

theory with a connectionist or numeric formulation. 

Smolensky. Legendre and Miyata ( Legendre, Miya ta, anti S~ilol~ws k y  1 !1!)0) not r' 

that with each state change. some types of neural rietworks niirlirnixc. furl(-: ions. c.;~llt~l 

Liapunov functions, or energy functions. In particular, somta ricural ~ii~t\vor-ks srBrvch to 

minimize the following function of their activation vcc tor: 

Here n is the activation vector. and M' is the neural network's wvight nmt rix (I,(y,- 

endre, Miyata, and Smolensky 1990: Smolensky, Legcnclrc, arid Miyata 1 992). S~ictl 

a function will be called the energy fu?zction of the connectionist, rwtwork ;is i l l  ( ( ' 0 -  

hen and Grossberg 1983 Hopfield 1982; Hopfield 1984; fIopfieltl I!IXli; ( h l ( l t b l ~  l9SG; 

Salam. Wang, and Choi 1991: Li, Michel, and Porod 1988: Micht4, 17arrc41, a11cl I'orocl 

1989; Lillo, Miller, Hui, and Zak 1994). Note that this tci-minology is diffiw-111, ~ S O I I I  

that of Smolensky e t  al. who use the term "harmony function" to do~lotc~ t lw rltbg;l - 

tion of the energy function. To avoid confusion with t hv harmorty f r ~ r ~ c - i  io11 wIric.11 11iis 

already been defined as a function mapping clesivation graphs tcr the rceal 11 lr~rltwrs. 

we will use the more common term energy function for the fi inctio~~ i r r  c*cjl~at,iolr 4.2. 

Subsection 4.2.1 will examine the networks that are knotvri t o  n~irririlizc~ te1lc-  i ~ l > ( , \ f ( s  

energy function. 

Smolensky, Legendre and Miyata propose to exploit knowlt~clgt~ a l ~ t i ~  t c-trchrgy SI I I I V  - 

tions t o  show that connectionist networks have the sarnc cornputaf icmd pow(-rs its 

context free grammars. Their strategy is to describe a ~nethocl of svrrt f~i.sizilrg t , t l c .  

weight matrix for a connectionist network so that wtlenwtar t trt* act ivatior~ v t ~ t c ~ s  is a 

tensor representation of a parse tree. the energy of the network will t,r- tlw sa~ric* ;is I. 111- 

negation of the harmony of that parse tree (Smolensky, Legcrrtlrc:, arid Miyata 1994. 

p1.54). Because valid parse trees have high harmony values, the low iBrtt>rgy s t a t v s  of 

the network wili be tensor representations of valid parse trtcs. T h s ,  hy mi I I ~ T I I  izi rig 

its own energy, such a network will naturally find representations of rrraxitr~~im has- 

mony parse trees. From this point. Smolensky et  al. argue that, the conr~c.cticmist. 



network cxhihits the same ability as a context free grammar (Smolensky. Legendre, 

and Miyata 3992, p44j. 

The harmony proponents do not say how these trees are generated, nor indeed do 

they indicate how a nerwork will go about calculating its own energy value and indicate 

its answer. These questions will be examined in detail in Chapter 5. Furthermore, 

they do not demonstrate that their harmony netsworks find maximum harmony parse 

trws -- a question that is examined in Section 5.3. In this section we will simply 

trace the development of energy-minimizing connectionist networks which have the 

desired energy function. While i t  may be possible to synthesize such a network in an 

ad hoc manner, we desire a more structured approach. 

In Section 4.1 -3 we noted two principle attributes of the symbolic formulation 

which may help to construct these networks. 

e For each   air of constituents. their roles are relative. In other words, the r ~ l e  of 

the second constituent c-;,n be expressed in terms of the first. For example, the 

harmony of a pair of nodes might be +2 if the second node is a valid child of 

the first. 

0 The harmony of a complete structure is the same as the sum of the harmonies 

of pairs of constituents in their roles. 

Section 4.22 will examine the use of the first of these attributes to create a submatrix 

of the weight matrix. This submatrix will be used to calculate the negation of the 

harmony of a pair of adjacent vertices in the parse tree. Using this submatrix, Section 

4.2.3 will examine the question of how copies of the submatrix can be combined to form 

the desired connectionist network - one for which the energy of tensor representations 

of parse trees is the negation of the harmony. 

4.2.1 Connectionist Networks as Energy Minimization Sys- 

tems 

-4s iroted previously some comectionist networks, like a variety of other dynamic 

systems, admit a Liapunov or energy function. As the dynamic system evolves over 



Figure 4.3: A graphical representation of a connectionist network's energy function. 
The activation vector, a,  starts at  an initial state i and moves "downhill" to a final 
equilibrium point, f .  

time, the value of the Liapunov function decreases. In other words, the ciyriaruic 

system seeks to minimizeits Liapunov cost function. These functions ease thc analysis 

of dynamic systems. 

Informa12y7 the energy function can be used to provide a visual metaphor for tlic 

operation of connectlonist networks. Energy is a single valued function of a vector 

quantity. Thus, if the vector space is two dimensional, then the energy function car 

be viewed as  a landscape, with hills and basins. The original state of the ~lct,worIc is 

like a ball bearing placed randomly on the surface. As the cormectionist net,work's 

state changes, the ball bearing falls toward the nearest basin until it comes to rest, 

at an equilibrium point. Figure 4.3 represents this description graphically. For a 

reasonably understandable introduction to Liapunov functions see (Leipholz 1987), 

and for a description to these functions in the context of connectionisri.i, see (Hopfield 

1982). In these terms, Harmony theory seeks to devise a landscape so that thc ntinirna 

fall on the well-formed parse trees. 

Harmony theory (Smolensky, Legendre, and Miyata 1992; Smolensky 1993) is 

based on the energy value, E(a)  = - $ a T w a  of Equation 4.2. Srnolensky et al. cite 
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assumption is somewhat unusual from a practical standpoint because most ir~lplcnwn- 

tations of connectionist networks have asymmetric weight matrices. 

It is natural to ask whether the BSB must have a symmetric weight matrix in  

order to exhibit the desired energy function. In an experiment using 100 snlall ( 3 by 

3 ) random asymmetric matrices, each admitted at least one initial vector tlia t, causccl 

EssB to increase. For example, using the notation of Equatio~ls 2.3 and 2.1 let 

If y = 0.1 and a(0) = (0.746, - I ) ~ ,  then EBsB(a(0)) = -0.41 EBsB(a(l)) = -0.395, 

and EBsB(a(6)) = -0.35. So the energy function admits an increase i n  this asynlnxt,- 

ric case. Similarly, for those 100 asymmetric matrices, EBsB is not a valid Liapunov 

function. 

Energy of the Hopfield Model 

The Hopfield model as defined in Equations 2.1 and 2.2 is quite different from thc I3S13 

model. Interestingly, under certain c~nditions it admits an energy function that, is very 

similar to the energy function of the BSB model. Hopfield showed (Hopfield 1984), 

the following function is an energy function for Hopfield networks with symrnet,r.ic 

weight matrices: 

Recall from Section 2.6 that R; is a biologically motivated constant, g, is the response 

curve of unit i, and I; is a fixed input signal to the unit, i. 

Yang and Dillon (1994) modified this energy function and demonstrated an imta,- 

bility result to show that the modification was necessary. They assert that tfic rcasoli 

EHWfietd(a) is inadequate is that it assumes that the network =ill reach a n  asymp- 

totically stable equilibrium when the energy function is minimized. Their iristabili ty 

result shows that this is not necessarily true - the state vector can oscillate hctwcen 

two equilibria of equal energy. The modification defines an equili briurn as a point 
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where there is no change in the activation vector. They then go on to modify the en- 

ergy function, Equation 4.3, to measure the distance in terms of EH,, field(a) between 

an equilibrium point and the activation vector, a. Since EHOpfield(a) is much simpler 

than the energy equation proposed by Yang et al., the remainder of this thesis will 

make the reasonable assumption that the minima are indeed asymptotically stable 

equilibria, in which case, EHopfield(a) is adequate to denote the energy function of the 

Hopfield network. 

in (Hopfieid 1984), Hopfield showed that under certain conditions, the Hopfield 

model has the same energy function as that of the Brain-State-in-a-Box model. In 

the case where all the units are allowed to vary freely, from their initial state, I; is 

zero for all i, and so the last term is zero. Recalling that gi(v) is an odd function, 

with Ig;(v)l 5 1, the integral in the second term also becomes zero as g;(v) becomes 

steeper. Thus when all the units are allowed to vary freely, and the units' response 

curves (g;(v)) are steep, and the weight matrix is symmetric, the energy function of 

the symmetric Hopfield model reduces to: 

So, given these conditions, the symmetric Hcpfield model has the same energy function 

as the symmetric brain-state-in-a-box model. 

4.2.2 Pairwise Harmony in Context Free Parse Trees 

We will use the energy function described in the previous section to provide insight 

into how a connectionist network can be constructed so that its energy function is the 

negation of the harmony function for some grammar. As indicated at  the beginning 

of Section 4.2, we will exploit the fact that the change in harmony attributed to a 

pair of vertices is non-zero only if one vertex is the parent of the other. 

Recall that in a recursive tensor representation, the representation is simply the 

sum of the tensor products of the symbols with their recursive roles. In the cases 

where the recursive roles differ in dimension, the sum is taken to be a direct sum. 

Thus if the activation vector a is a superposition vector containing some recursive 
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I kor  every . . . I Add equations . . . i 
I terminal, fi I -$(fi + G @ r ~ ) ~ w r ~ ~ t ( . f i  + deqi = +I 1 

non-terminal? fi E N \ { S )  j - f ( ~ l + B ~ ~ l ) T ~ r o o , ~ ~ ~ l + ~ ~ r l )  = +2 
non-terminal, fi E r 1 1 - ? ( f i  + 6 8  ~ t ) T ~ r o o t ( f i  + a @  r l )  = +: j  

non-terminal fl = S 1 -f(fi + BB ~ ) T ~ ' r o o , ( f ~  + 8~ T i )  = +I  

Table 4.3: The system of equations that determines Wroot for a context; free gsain- 
mar, ( N  U I?, C, P, S) .  This system of equations is extended from that proposcd by 
Smolensky, Legendre, and Miyata (1992). Note that we are abusing the uotation by 
using fi to denote both symbols in the grammar, and vector representations of t,hose 
symbols. 6 is a zero vector in the same space as fi, . . . , f3. AS in Chapter 3, r.1 and 
r, are role vectors denoting left child and right child respectively. 

tensor representation, then 

If each of the summands is taken to be a vector in the direct sum then they could 1-lo 

added as vectors. That is, if we pad the vector fi @ ri with an appropriate number of 

zeros so that the dimensions are consistent, we can express the superposition vector' 

Here, all the summands lie in the same vector space and can be added. 

If the connectionist network is one of those described in the previous section, and  

if the activation vector is interpreted as a parse tree, then, the energy of the network 

will be 
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This equation is very similar to the symbolic formulation of harmony that is presented 

in Section 4.1. Like the symbolic harmony function, the weight matrix relates pairs 

of constituents. 

The recursive representation of parse trees allows further characterization of the 

weight matrix W. When calculating the harmony of a parse tree, the contribution of 

a pair of vertices is non-zero only when the pair is connected by an arc. We are only 

interested, then, in two symbols if one appears as either a left-child or a right-child 

of the other. If rl and r, denote the left- and right-child roles, respectively, then in 

order for the harmony contribution of two symbols to be non-zero, one symbol must 

appear in a role which is the tensor product of the second role and either rl or r,. In 

other words, (G ,  fi @ r l ,  G ) T ~ ( & ,  f2 @ Q,&) # 0 only if 7-2 = r Q, r, or r, = r @ r 2  

for some r E (q, r,). 

Because the roles of two adjacent vertices are related in this way, the two con- 

stituents appear in adjacent locations in the direct sum of all the constituents. In 

other words, whenever the harmony contribution of a pair of vertices is non-zero, the 

padding vectors, 6 and 0; are "nearly" the same, as are G and &. SO, the non- 

zero entries of the weight matrix occur in a relatively small section "near" the main 

diagonal. 

Firhat's more, as discussed in Section 4.1.3, the harmony function for context free 

parse trees is independent of embedding. That is, the harmony contribution of a 

maximal subtree of the parse tree is the same regardless of where it occurs in the 

whole tree. Consequently, the connections that relate two constituents will be the 

same regardless of how deeply the constituents are embedded. Therefore, from the 

whole weight matrix, we need concern ourselves for now only with a small submatrix 

that relates two constituents. Smolensky et al. call this submatrix WTOot. 

It is reasonably straightforward to  find a value for WrOot so that the energy contri- 

butions of two constituents are equal to  the negation of their harmony values. Finding 
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-W,oot is merely a matter of solving a system of equations which is given in l'able 4.3. 

If the vector representations of the terminal and non-terminal symbols are lirieaxly ill-  

dependent, then this system of equations will always have at least one solution. ?'ticre 

may also be a solution if the vectors representing the symbols are linearly dependent,. 

Consider for example the regular grammar, F = ( N  U I', E, P, S) w'tiere t h  pro- 

ductions are 
S -t a S --+ rl,l rI,l -+ aB 

B - + a  B--+l?l,l 

This grammar is in the normal form of Section 3.4.1. We can see that W,.,7,t m u s t  

satisfy the following equations: 

We will use the following vector representations for the terminal and non-terminal 
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symbols: 

Also, we will use the role vectors rl = (1,O) and r,  = (0,l) .  Substituting these values 

into the equations above results in the following value for Wroot: 

That this value for WrOot yields the correct energy values is easily checked. 

Due to the nature of the equations that define Wroot7 it admits four distinct regions. 

If symbols are vectors of dimension rn and roles are n dimensional, then we can write 

Where 
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A is a rn x n2 block 

which is used to calcu- 

late the contribution 

to energy of the root 

of the pair by itself. 

B is a, rn x 7 n n  block 

which is used to cal- 

culate half the contri- 

bution to the energy of 

edge between the ver- 

tices. 

BT is a mn x m block 

which is used to calcu- D is a rnn x mn. block 

late half the contribu- of unconstrained vari- 

tion to the energy of ables which we will 

edge between the ver- take to  be zeros. 

t ices. 

So we now have a way to calculate the harmony of two constituents rcpreserttcd i r k  

tensor form. 

4.2.3 Harmony of Whole Context Free Parse Trees 

In principle, the matrix, Wroot which relates any two constituents should he "e~n1)cd- 

ded" at every level of the weight matrix. In this way, the harmony of any two ac1j;~cent 

vertices of the parse tree can be calculated, regardless of their embedding. Due to lhc 

recursive nature of the tensor representation for parse trees, Smolensky ct al. arguc 

that the correct way to perform this embedding is with the recursion formula 

It is difficult t o  know what exactly they mean by this formula. W is the syrnrnct,ric 

weight matrix for a connectionist network, and WrOot is the submatrix developed above 

that relates two constituents. I is surely the identity matrix with the same dimensions 

as the role vectors. But, then the summands on the right hand side all have different 

dimensions. They are added together as elements of the direct sum, so the right hand 
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side of this equation is essentially a vector, not a matrix. For emmple, if I is 2 x 2 it 

will he: 

Moreover, left-xnultlplying by the identity matrix does not change the size of the non- 

zero blocks in the weight matrix. However, the dimension of a parent-child pair in 

the tensor representation of the parse tree depends on the level of embedding, and 

can be arbitrarily large. 

Fortunately, it is not hard to see how to properly construct W. Note that if 

symbols are vectors of dimension m and roles have dimension n, then 

The block IjV,oot can be expanded by right-multiplying by a matrix. For example, if 

In,, is the n x n identity matrix, then 

Because D is always zero and it has the same dimensions as A @ I, we can replace D 
with A @ I. Then the weight matrix, W would be given by 
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That the energy function for a connectionist network with this weight matrix is t.hc 

negation of the harmony is proven below by Theorem 4. 

Before proving that theorem, however, we will need two s~nall lenl~uas. 'I'llc f irsl 

lemma states that the value a T w b  remains the same if both a and h arc tensor- 

multiplied by the same unit-length role vector. The second lernma shows t11at i f  n 

and b are tensor-multiplied by different orthogonal role vectors, thcn the valuc. n'''W'0 

is annihilated. The theorem uses these two lemmas to show that i f  s is tht. temor 

representation of a tree, then - isT W s  is the same as the harmony of that, t,ser. 

Lemma I If 

I .  W is as defined in Equation 4.5. 

2. r is a role vector, rT = ( r l ,  7-2,. . .). 

4. 6 is a zero vector in the spnce of symbol vectors 

5. aT = (al, a2,. . .), and bT = (bl ,  62,. . .) 

Then 

Proof: 



W is as defined in Equation 4.5. 

r l ,  7-2 are role vectors such that rTr2 = O and rT = (r,,,, r1 ,z3.  . .), r,T = 

+ 

0 is a zero vector in the space ofsyrnbol vectors 

uT = ( a l 3  uz,. . -1: and bT = (b l ,  b2.. . .) 

Proof: 



Theorem 4 If 

1. WrOOt is as defined in Section 4.2.2. 

2. is the contribution to the harnionp of lhr pair oj iyr rtirr+ labrllr d I , ,  
in the roles r l .  r2 us is Section 4.1.3 

3. HI,  is the harmony contribution o/ a uerfex lolrllrd j i i t  tlrr rolt 1 . .  

4. ?V is as defined in 4.5. 

5. s = xi f; 8 r; is a tensor representation of u f l ~ e  us ill .Srrliolj J.3, 

Let s, = Ci f, ,a - F*- -9 c.r 1.1 - and a, = xi fr,; @ I-,.,; be lensor rqvrscrrietions for lrnc.? a s  

in Section 3.3. Let frsl,Jrsl be tub& of the r-00i.y of their ~ ~ . s p ~ l z l ; c  f x c . ~ .  ARSUIIIC 



< ,  Ihert s = f, + .si 2 ri + s, Z, r, is a tensor representation for a tree c~s in Section 

.Y..j. .You+, becausr- Md- 2 s  symmrstrir, 

Ilpith lentmas 1 and 2. it can be seen that this is simply 

Urcausf 14;.i = 0 for 1 5 i --< m,(rnn +- m j  5 j ,  the only contribution to the first, 

s r m r d  a i d  third fernzs cornea from the interaction through Wr,,t and so, 
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Which  is as  required. u 

So, the formula for W in Equation 4.5 results in a connectionist network whosc~ tw- 

ergy values are the same as the negation of the harmony of the activntio~~ vector. 

taken as a tensor representation for a tree. A connectionist iletwork Ihat rni I I ~  rnizcs 

the required energy function, and which has the above weight matrix relativtl to ;I 

particular grammar. G, will be called a harmony network for C. 

Surely, all that remains now is to construct such a harmony networh and it, will 

compute maximum-harmony trees. Before constructing such a ~ietwork and analyzing 

its behavior, however. we will pause to  consider two issues that have been buried u~ldcr 

the details of the past two chapters. First, we will discuss, in Section 5.1 whethc.~. it 

is meaningful to have a network which computes maximum-harmony trees. Wc will 

then go on to look at the size of these networks in Section 5.2. Finally, i l l  Scc.t,ic,~l 

5.3? we will look a t  harmony networks, and determine if they do in fact ccmputc~ 

maximum-harmony trees. 



Chapter 5 

Discord 

5.1 Input and Output in Harmony Networks 

As suggested in Chapter 1, we are interested in connectionist networks that have 

the same computational power as certain classes of machines or classical algorithms. 

This section examines the harmony networks constructed in the previous chapter and 

compares them to the Turing Machine (TM) model of computation. While Smolen- 

sky, Legendre and Miyata do claim Harmony networks can accept arbitrary formal 

languages (Smolensky, Legendre, and Miyata 1992), such power may be unnecessary 

to simulate cognitive processes. However, the portions of the TM model used in this 

section could easily be replaced with similar parts of any other machine model of 

computation. 

Recall that a TM for a recursive language L consists of a finite control and an 

infinite tape. In the initial state, the tape contains the input, or a string to be tested 

for membership in L. The processor scans the tape, erasing symbols and writing some 

symbols of its own. In its final state, the tape contains a single symbol indicating 

that the machine either accepted or rejected the input. 

-4 harmony network for a grammar, G, by contrast, consists of a set of units 

connected by weighted edges. The harmony proponents do not propose a means by 

which the input string can be presented to the network, and so the activation values 

in the initial state are undefined. The harmony network proceeds to relax into a 
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minimum-energy state where the activation values represent a ll~asimt~rn-har~llor~y 

parse tree relative tro G. This final state is related to acceptance or rqjc~t~iort by 

calculating the harmony of the parse tree, or equally by detcrnlining tlic c~icrgy of 

the network in its final, stable state. 

There is no direct. correspondence between either the initial stat,es or t,hc final s ta tes  

of these two models. Sections 5.1.1 and 5.1.2 will examine each of these disorcpancies 

in turn. This scrutiny will be followed in Section 5.1.3 by a proposed definitio~t for 

connectionist model of computation that is comparable to the Turing macl~ine modcl. 

Section 5.1.4 will relate the decision networks of Section 5.1.3 to harmony tlwory in  

order to define harmonic decision networks. Finally, Sect ion 5.1.5 will i~~vcst,iga,tc a 

special class of harmonic decision networks. 

5.11 Input 

So far, the initial state of a harmony network IS undefined. As suggested above, i~ 

order to correspond with the T M  model, this initial state must involve, in  some way, 

the word that is to be tested for membership in the language. We will cxarnir~e thrcc 

different schemes by which the initial state can include a representation of the word. 

None of these strategies is found to be satisfactory. 

One way to present the word to the system is to make the initial state a rcprcscrl- 

tation of the word. For example, various groups of units co~~lcl be used to rcpr(:scril, 

each symbol in the input string. However, the structure of a harmony nctwork tlocs 

not guarantee that the parse tree representation that results from a particular word 

being present in the initial state will have anything to do with that word. 

To be a parse tree for the word represented by the initial state, thc firtal h t t :  

must be a local minimum for a region (called a "basin" in Section 4.2.1) that includes 

the initial state. The harmony network and energy function was not constructed with 

this ir? mind, and so, it is extremely unlikely to happen. In particular, it could be ttlc 

case that a h a m m y  network could settle into a representation of a parse iret: for a 

word that is entirely different from the word presented as input. The final state will 

not be related to the input word, and so, the calculation will not yield the desired 
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result a resolution of the word's membership in the language. 

Smolensky (1993) proposes that the network completes a representation when 

provided with a partial representation. Indeed, experiments show that many connec- 

tionist networks of the type proposed by harmony theory tend to function in that way. 

This seems to indicate that, given part of a parse tree for a given word, the network 

will complete the tree and then calculate the energy value to determine if the tree 

is valid or not. The problem is this: we cannot specify the word without giving the 

form of the entire parse tree, thus defeating the purpose of building a network that 

can supposedly find valid parse trees. 

Recall that the tensor representation sf a parse tree (see Section 3.3 ) is constructed 

recursively by adding the tensor products of the left- and right-child roles with the 

representations of the left and right silbtrees to the representation for the root. Be- 

cause the particular product that is considered in tensor representations distributes 

over addition, this construction amounts to adding all the labels of the vertices each 

in their own recursive role. These recursive roles specify a simple path from each 

vertex to the root of the tree. 

The only part of the parse tree t,hat is known in the initial state is the word itself, 

which constitutes the leaves of the parse tree. '4s long as the empty string is not in 

the language, we can assume. without loss of generality, that the grammar has no 

productions of die form, A -, 6 ;  so the input word accounts for every leaf in the parse 

tree. 

Therefore, to specify the symbols in the word in their final positions, we must 

specify a path from every leaf to the root of the tree. Thus, specifying the terminal 

symbols and their positions amounts to providing a description of the whole tree, 

albeit with the vertices left unlabelled. So, if we can construct a parse tree for a 

word, in the language, then the harmony network will label the vertices and perhaps 

answer that the word is in the language. 

There are two ways that we could determine such a parse tree - by parsing the 

w r d .  or randomiy. if the former course is followed, then the parse tree's labelling as 

well as the word's membership in the language would already be discovered prior to 

using the network. That defeats the purpose of building the network in the first place. 
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If, on the other hand, the parse tree is generated randomly, the network would have 

to try to label every appropriate binary tree before it could answer defi~iitively tlmt 

the word is not in the language. Because there are in principle an infinite number 

of unlabelled binary trees with a given sequence of leaves, this network would lravc 

to consume infinite resources before it could conclude that the word was not in  tlrc 

language. Therefore, we see that providing the leaves of the parse tree as tlw initial 

state is not reasonabie. 

Another proposal for the presentation of the input is to use it to constrain the state 

space (Legendre. Miyata, and Smolensky 1990). The idea here is that the activation 

vector is a triple, (i, h,o)  where i is the input set, o is the output set and h is tlrc 

harmony network. Normally, the activation vector can vary throughout its entire s t ak  

space. Fixing the values of the input units is equivalent to constraining the activatioti 

vector to a smaller part of its state space. 

To calculate the parse tree of a particular word, the input units are held constatit, 

so they represent the word. The network is then allowed to find its rni~limum-ci~crgy 

state in the constrained state space. The resulting minimum-energy statx could bc 

the required parse tree. 

However, the structure of the harmony network does not guarantee that tlrc lo- 

cation of the parse tree for a word will fall in a particular region of the state space. 

Indeed, the construction of the harmony network does not even mentior1 the inpu t  

units at all, let alone indicate how to connect them to the rest of the network so tliat, 

they confine the state space appropriately. So, the stable equili briurn that, resul ts 

from constraining the inputs could just as likely be a parse tree far a different word 

than that presented to the input units. 

5-1.2 Output 

In order for harmony networks to closely match the Turing machine model, there 

must be a way to determine the output. Ideally, we would like the output, to be a 

single unit which has two possible final values - one denoting acceptance and the 

other denoting rejection. Now, the final state of the harmony network is a tensor 
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representation of a parse tree. Because each unit in the parse tree representation is 

used in the representation of one or more symbols in positions within the tree, there 

is no single unit which we can examine to determine if the network has found a valid 

parse tree or not. 

The factor that determines whether or not the parse tree is valid is the harmony 

of the overall structure. Equivalently, it is the energy of the harmony network. If 

the energy is zero in the final state, then the word represented at  the leaves is in the 

language, otherwise it should be rejected. 

Unfortunately, while they implicitly minimize energy, harmony networks do not 

possess any way to explicitly calculate that value. Harmony networks were constructed 

so that their final state would be a representation of a valid parse tree, but no part 

of the network was set aside to calculate the harmony of the rest of the network, and 

report whether a valid or an invalid parse tree was found. At a stable equilibrium, the 

harmony network can only say that it has reached the lowest energy point attainable 

from its initial state. It does not have any knowledge about the value of the energy 

a t  that point. 

If the harmony network itself cannot determine its own energy, perhaps an external 

process could examine the network and determine the energy value. Naturally, we 

would want the external process to be a connectionist system as well. We will call 

this external process the energy calculator. 

Now, in order to  calculate the energy value of the h a r m o ~ y  network, the energy 

calculator must perform the following sum: 

To dekrmine each summand, the energy calculator must have access not only to the 

activation values of the nodes in the harmony network, but the weights on the links 

between nodes. The activation values are not a problem because they can simply be 

"read o r :  however, the fact that the energy calculator must know the weights of the 

links between nodes seems to contradict one of the basic tenets of connectionism - 

that all calculation must be local, and all signals are simple numbers. 
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Because they can't calculate their own energy, and no conncctioriist energy calcu- 

lator can calculate it for them, harmony networks have no way of kl-~owing: if  the word 

present in the initial state is a member of the language or not. A harnlony nct work 

may find a final state which has the required energy value to distinguish the act,ivation 

vector as representing a valid parse tree. However. the network will keep this criergy 

value, and the resulting knowledge to itself. 

In order to be useful, the connectionist network should have some designated stlt, 

of output units. To determine if the word presented on the input units was in t t t e  

language, the output units would then be examined to see if their pattern of a~t~ivat~ion 

indicated "accept" or "reject ." In the following discussion, we will corlsidcr ~tctworlis 

which have a designated set of input units and a single output unit in inore cltd ail. 

We will call such networks decision networks. 

5.1.3 Decision Networks 

To decide if a word is in the language, a representation of that, word must, bc yrc- 

sented on the decision network's input units. In some connectionist motlcls,  cad^ 

unit can have only a finite number of different states. Because t,hc ~lctwork has only 

a finite number of input units, and each of these may have only a fi~iitc: nimber of 

possible states, such models can only accept finite languages, and regular larlguagcs 

(see below). 

Unfortunately most interesting languages are infinite, and so, most languages could 

not be accepted by a decision network. Notice that this concern is not unique to 

connectionist decision networks: all implementations of Turing machines are also 

finite, and thus can only accept strings of finite length. In practice, then any particular 

implementation of a Turing machine can only accept a finite language, and so it will 

be with decision networks: 

Definition 1 Let N = (U, E )  be a connectionid network, where I c U is the .ret 

of input units Which ZIQ~J throughoat the space D!'/ where D is  a finite subset of R.  

Let dm;, and dm,, be the min'nim~m and masimum elements of D re,s-pectively. h i ,  

G = (dmi,,d,,,) be an alphabet and let L C Cs" be a language over that alphehi, 
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whose strings c~ii haw length at most n .  Let aOUt be the value of the single output unit. 

Then N is u decision network for L if and only if: 

1. far every w E Eln,, if w is presented to I ,  then the network reaches an equi- 

librium with aOUt == Y e s  whenever w E L, otherwise it reaches equilibrium with 

uOut = No for some constants, Y e s  and No. 

2. I f  L is recwsizte then there are no other equilibria. 

So a decision network for a particular finite language is a connectionist network 

where the inputs are presented with words over an alphabet of maximum and mini- 

mum activation values. Note that this small alphabet does not restrict the types of 

languages that can be accepted by decision networks because any other alphabet can 

be represented using just two symbols and binary encodings. 

For every input, the network's single output unit assumes a value that can be 

interpreted as either Y e s  or No. If the word is in the decision network's language, 

then the decision network must answer Yes .  Conversely, if the word is not in the 

Ianguage, and the language is recursive, then the network must answer No. If the 

language is recursively enumerable, but not recursive, then the network needn't answer 

for otherwise a Turing machine would not be able to simulate the network, leading to 

a contradiction. 

Some connectionists might object to the use of a single output unit, preferring to 

say instead that. the network assumes an accepting pattern on its output units. How- 

ever, deciding if the output units' pattern is an accepting pattern is really just another 

language recognition problem if connectionists want to claim that their networks can 

accept formal languages, then they should also be able to accept the language of ac- 

cepting output patterns. Thus, one unit should be sufficient to indicate acceptance 

of the input. 

As noted above, a particular implementation of a Turing machine can accept only 

a finite language. However. in principle, a Turing machine can be constructed that 

accepts arbitrarily large subsets of an infinite language. A computational model, such 

as decision networks. which restricts the size of its input is therefore inferior to the 

f i r ing  machine model. 
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For decision networks, one possible solution to the difficulty of finite ~ l c t ~ ~ o r l i s  ac- 

cepting infinite languages is to present symbols to the network's input units sequrn- 

tially. This solution was proposed by Elman for parsing na turd langilages ( Kll~larl 

1990) and it does allow the network to accept words of arbitrary leilgth. I-fowcvtr, 

notice that since the connectionist network has only a finite number of possiblc stjat,cs, 

and is thus essentially a finite automaton, it can accept at most a regular languagt.. 

That is, while strings of arbitrary length can be input into this type of iwtwork, this 

solution restricts the class of languages that can be accepted by such decision net,~vorks 

to the regular languages. 

Admittedly, any realization of a Turing Machine can also only accept a fi~lit~c.., a t ~ d  

thus regular language. However, it is easy to create a Turing Machine that, cam ac-c~y) l  

a word of arbitrary length simply by providing a longer tape. It is riot so easy t,o 

extend networks of the type proposed by Elman: no mechanisni has beer1 proposcd 

by which such networks can be systematically enlarged. 

If, in order to  accept large non-regular languages, we must expand a net,work of 

the type proposed by Elman, then it is reasonable to limit the length of the i l ~ p r ~ l  to 

those words that can be accepted by the network. In other words, decision net,works 

are sufficient, and there is no need to present symbols seyuentjally to thc nt:twork7s 

input units. Therefore we can consider, as a solution to accepting strings of arhi t,ra,ry 

length, an infinite, uniform family of finite decision networks. Each merr~her of the 

family accepts a finite subset of the language. For example, the itfi decision ~tc:t,work 

would accept or reject words that contain at most i symbols. To dccidc: if a word 

is in the language, first find an appropriate member of the family, and prcscrit, thc 

symbols in the word simultaneously to the input units of the network. Such a fan~ily 

of decision networks each deciding a finite subset of the language is called a d e c i s i o ~ ~  

family for the language. 

Definition 2 Let L be a language, and let L; = {wl W E L, Iw j 5 i )  be thc .sulr.rel 

of the language co~sk t ing  of words that have length at most i. Suppose Ihere is an 

algorithm, which when given i computes Ni,  a deci.sion network for 1,;. Then the s c l  

(Nl, N2, ...) is a decision family for the language L .  
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The family must be uniform in the sensr that given an index i, a Turing machine 

could write down a description of the ith network in the family. This uniformity 

is important for two reasons. First, there must be a way to synthesize the decision 

networks, or to "find an appropriate member of the family." Second, non-uniformity 

would allow the creation of a family of decision networks that decides a non-recursive 

language - a language that can't be decided by a Turing machine. 

5-1.4 Harmonic Decision Networks 

While they are a reasonable model for connectionist systems that accept formal lan- 

guages, the decision networks described in the previous section do not capture many 

of the principles of harmony theory. The crucial aspect of harmony networks that 

distinguishes them from other connectionist models is the energy function that de- 

scribes the way the harmony network relaxes into certain stable equilibria, and which 

is used in the design of the harmony network. We can thus define a harmonic decision 

tteturork which cornbines the principle of energy minimization with decision networks. 

Definition 3 A harmonic decision network is a decision network that admits E(a)  = 

- b T W a  2 as an energy or Liapunov function, where a is the activation vector and W 

zs the weight matriz. 

The construction of Chapter 4 might suggest that the algorithm that constructs 

a family of decision networks must use the energy function in some way; however, 

such a stipulation would be difficult to formalize. The development and use of tensor 

representations for parse trees might imply a refinement also - that the hidden units 

should assume a pattern that is systematically related to the input. For example, the 

definition couId assert that the hidden units should find stable equilibria that represent 

a parse tree for the word presented to the inputs. Neither of these refinements is 

required, however, by the discussion in the next section about the restrictions on 

languages that are accepted by a small subclass of harmonic decision networks. 
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5.1.5 Symmetric Harmonic Decision Networks 

This section discusses a special kind of harmonic decision network wtlerc the st,at.tb 

space is symmetric about the origin, that is, a E 1) if anti only if' -cr E 11. Not,c  

that this type of symmetry is different from the weight matrix synimctry of Swtion 

4.2.1. Harmonic decision networks that have a symmetric state spaw will  1w ci~llctl 

symmetric harmonzc decision networks. 

For all harmonic decision networks, the energy function is even. That is, 

The result is that, due to the following lemma, symmetric harmonic dccision r~ct,worl<s 

have stable points at both a and -a. 

Lemma 3 Let E ( a )  be an even real-va,lued function of R", und let. fit be a re!jiott such 

that a E R + -a E R. Then a is a local minimum of E ( u )  in R .iS arid only i j  -a is 

also a local minimum value of E ( u )  in R. 

rL , iOl lS  From a decision network point of view? this even energy function lias i~nplic" 1. 

on the meaning of the stable equilibria. At equilibrium, the value, a,,,, of thc dccisio~~ 

network's output node, can only be either Yes  or No. Otherwise, if a, ,~ can havc morc: 

than two values, then there are some ambiguous inputs. Lemrna 3 shows t, hat if a,,,, is 

an equilibrium value of the output node, then so is -aout. Thus  i l l  a synlrrlctric 13SI3 

decision network, Yes = -No. This fact is captured more forrrlally by the followirtg 

lemma: 

Lemma 4 If 

I .  H = ( I ~ J u ( u u t ) ,  E )  is a symmetric harmonic decision rtetwork /or a lanyuqe,  

L.  
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2. f ,  # fl and L # X'. 

The 71 

Y e s  = - N o  

Proof: Because L. # 8. H admits a stable equilibrium, a,  with u, ,~ = Y e s .  By 
Lemma .?, -a is also an equilibrium point. Because H is a harmonic decision network, 

either = Y e s  or -u,,,~ = No. ,So either Y e s  = - N o  or Y e s  = -Ye s  = 0 .  

Similarly, because L # Z*, either N o  = --Yes or N o  = -Aio = 0. In all cases 

Y e s  = -hTo. I7 

Because the energy is even, u , , ~  = Y e s  in half the energy function's local minima 

and in the other haif, uout = -Ye s  = No. In other words, exactly half the stable 

equilil->ria correspond to the network accepting the input word, and half of the minima 

correspond to rejecting the word. This result is formally presented by Lemma 5 .  

Lemma 5 V 

1.  H = ( I  U J U {ou t ) ,  E )  is u sgmmetric harmonic decision network with output 

unit out. 

2 Yes # N o  

3, A is the set of accepting eguilibriu,m states, 

-4 = {a fa  is an eqaiEibrium state and aOut = Y E S )  

4. K is th.e set of rejecting equilibrium states, 

R = {ala is an equilibrium state and aOut = N o )  

Proof: Because E'es = -No ,  then for every a E ,4, -a E R, so IAl 5 ] R1. 

Similarly, for every a E R. -a E A, so 5 1-41. [7 
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t -1 

It is important to realize that the presentation of two ciiffiwnt ~vords to a d(*c-isior~ 

network may cause the network to reach the same equilibriuni point. 111 particular, 

the energy function could have only two local minima or~e wlicrt' tr,,, = I*(  .s i 1 1 1 d  

another where uout = )YO. On the other hand, some words could corrt~po~rtl to two 

or more local minima. 

However, if each word presented to the input units causes a sy r~mtet sit. hitr~~to~tic 

decision network to find a unique local minimum, there would I F  as itiitrly l o c . i 1 1  

minima as words over the alphabet. In fact, if every word slioultl c.orrt.spoird t o  

exactly one stable equilibrium of a symmetric harmonic dccisiori network, t 1ttv1 i t  is it 

straightforward result of Lemma .5 that the language is equal in size to its c-ort~ l)l(wl(~l t : 

Theorem 5 I f  

1. H = ( I  U J U {ou t } ,  E )  is a haimonic decision netu?ork for (L I ~ L ~ . I L ( L ! J C  I, 

2. H's  state space is symmetric about the origin. So i f  n i s  cirr nctiwlio~r cicr/or- oj' 

N, then a E DI'I x IJlJl x D where Ll = [-b, k]. 

3. E E DIrI x DlJ[ x D is the set of stable equililtt..ici, of 11. 

4. There is a bijection 9 : E -+ L !J 1 between I1 's ~qui l ib~' iuru po~n1.s m r d  /Ire st.1 

of all strings. 

Then 

So we see that, for almost all languages, there is iio orlettrune corrcspo~~d(:rlc~t~ 

from the set of words onto the set of equilibria. Either some words must cc,rresyor~tl 
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to more than one stable equilibrium in a symmetric harmonic decision network, or 

sew:. a1 words must map to the same stable equilibrium. If there is no such bijection, 

it rerrlains to kt. seen if there are similar restrictions on the size of the language. 

Proving such a restriction requires a result relating the evenness of the energy 

function to oddness of the function calculated by the network. In particular, we need 

to stiow that if 

1 .  If = (I/, E )  is a symmetric harmonic derision network. 

2. h : nlVl + D I " ~  is t,he function calculated by H .  

then 

I:nfortunately, this hypothesis does not (seem to) follow from the definition of an 

c~lergy function. We can, however: prove that if H is implemented by one of the types 

of networks in which we are interested, then it has the desired property. 

Recall that the particular models that have the energy function required by har- 

monic decision networks are special cases of the Brain-State-in-a-Box (BSB) model 

a d  the Hopfield mode!. Both of these models were introdxed in Section 2.6, and 

discussed in more detail in Section 4.2.1. 

The BSB model is defined by the equations 

If a harmonic decision netwwk is implemented by a BSB where the threshold function 

.$[) is odd so that S(-a)  = -S(a) ,  then it is a symmetric harmonic decision network. 

This property of the threshold function produces the effect that t.he function computed 
- * b~ !he net . rwk  is qmmetiP:c abed the origin. 

Lemma 6 If 

I .  H is a BSB network with an odd threshold function, S(-a)  = -S(a). 
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Like the BSB model, the Hopfield model also displays symmetry whenever the 

activation function is odd, Recall the Hopfield model as de 

AS rev 

du; C7 u ; c2- = u!'. . 
dt - - + A 

3 Ri 

xibed in 

re steep, 

ection 2.6. 

nd the ste ealed in Section 4.2.1, if the activation functions, g; a ady 

inputs, I; are all zero, then the Hopfield model has the required energy function. If 

9; is an odd function so that yi(-2) = - 9 i ( x ) ,  then this model displays symmetry 

similar to the BSB model. 

Lemma 7 If 

1. H is a Hopjeld network with odd activation functions, so that for every 

i ,  g,(-z)  = -gi(x) .  

2. a ( t )  is the valve of H's activation. vector at time t .  

3. let a ( t l )  = -u( t ) .  

Proof: From the defining equations we see that 
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- -I 
- g,'(.*ON 

dg,'(a,fi l)) Ct do, R* 

Corollary 2 I j  

I .  H is a Hopfield network with odd activation furzctior~.~. 

2. h : glv1 -+ D I " ~  i s  the function culc,ulated b y  H 

Then 

h.(-x j = -h (z )  

dx(t) - Proof: Since , rs odd, tben h(x) = limt,, z ( t )  is also odd. 

Because symmetric harmonic decision networks are implemeritid by syr r l  I 11t.tr.i~ 

BSB or Hopfield networks, which implement odd functions, then synrrtctric harrr~ouic' 

decision networks will also implement odd functions. This is the result that wca rquirc 

to find the restrictions on the languages that can be accepted by a symrnctric barr~~o~~ic.  

decision network. The following theorerr, reveals that even if  there is n o  c,nr.-to-orrcl 

correspondence from the words onto the equilibria, the language is still equal i l l  sixc 

to its complement. 

Theorem 6 If 

1.  H = ( I  U J U {out), E )  is a harmonic decision network for a luriyil~(~y~, I,. 

2. H is either a BSB network or a Hopfield network as in Lemmas. h' and 7. 
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Proof: Let It : DI.'~ x ~ f ~ l  x D -+ ~ 1 ' 1  x ~ 1 ~ 1  x D be the function calculated b y  H .  

For w E (-k, k}', let Fw = ( (XI ,  x2,53)13 yl, 92 s.t. h(w,  ~ 1 ,  yg) = ( ~ 1 ~ x 2 ,  xg)) be 

the set  of all final stafes for w. 

Because h(-(x, y ,  z j )  = -h((x, y, z ) )  (due to corollaries 1 and 21, F-, = -I?,. 

Thus, for every u E L fhere is a v = -u such that -F, = Fa. Because Y e s  = -No 

(lemma 4): then v f d. So, f L [  < iz]. 
,Similurly, for every u E there is a v = -u such that -F, = Fv, and so v E L. 

T ~ L U S  1x1 5 ILI. 0 

Thus, for almost every language, there is no symmetric harmonic decision network 

that decides that language. 

5.2 Network Size 

The previous section investigated the difficulties of providing input to, and deter- 

mining output from harmony networks. A second problem with harmony networks 

involves the number of units required by the tensor representation held by the net- 

work. This number, we will see, is quite large. 

Section 3.3 showed that the role vectors in the tensor representation for the parse 

tree are constructed recursively. If the base role vectors are of dimension r, a symbol 

in t.he ith level of the tree will appear in a role of dimension r\ Two vertices at 

different levels in the tree will appear in roles with different dimensions; these are 

added by taking their direct sum. The result is that the dimension of the sum of the 

two representations d l  be the sum of their dimensions. 

The total number of units required to represent a parse tree of depth k is then 
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Here. f is the dimension of the symbols. Thus, if the roles and symbols arc h t , h  

two-dimensional, then the number of unit.s required to represent a tree of dcytli 30 is 

over 2 x 10lO. Because the grammar has a special form where eacll produ~t~iorl has at 

most two symbols on the right (see Section 4.1), parse trees of relatively sliort st,ri~~gs 

in formal languages will be much deeper than thirty levels. Moreover, if lhglisli 

sentences are to be parsed using a grammar that allows at most, two synibols 011 t,li(. 

right of each production, then complicated sentences, such as this one, will  l i  kt.1~. 

require a parse tree with more than thirty levels even if words are taken to bc atomic 

and have no so-called micro-features as proposed by Srnolensliy ( 1 988). 

Harmony networks were never meant as a metaphor for tlie human brain, altl~ouglr 

the proponents claim that the level of harmony networks is much "closer to the ric.ura1 

level" than symbolic algorithms (Legendre, Miya,ta, and Smolensky 1990). Co~isidc~r 

though that the number of neurons in the brain is estimated to be twtwce~l 10'" a~ id  

10'' (Rumelhart and McClelland 1986). So, even with minimal assumptiol~s al~out, 

the dimensions of the symbols and the roles, the number of units required t,o mp~-cwml, 

relatively small parse trees approaches the number of neurons in the brain. 

Intuitively, the number of units required is much greater than we woult! expcct. 

One reason for this is that the representation is capable of capturi~ig cornpletc: binaxy 

trees - binary trees where every non-leaf vertex has both a left- and a right-ch ild. A 

quick examination of the parse tree in Figure 4.2 will reveal that this rcprescl~t~atio~~al 

capacity is not required. In the parse trees resulting from the grarrimm tlimtsncd 

in Section 3.4.1, vertices typically have only a left-child, while a few haw a right,- 

child as well. The result is that much of the representational capacity of tlw t,c:rtsor 

represent ation is wasted. 

There are a number of natural representations that could be proposed to rc:tlrtc:c: 

this waste. For example, each level of the parse tree could be represented by a group 

of units: as it is in the tensor representation, which economically encoclc:s thr. sy~nbols 

on that level. While it might work, it is difficult to see how such a network could 

find maximum-harmony trees without resorting to directly manipulating symbols, and 

implementing classical theories - a pitfall that harmony theorists want to avoid if' 

they are to successfully answer Fodor and P ylyshy n's challenge. 
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Another solution to the size problem is to propose a representation that does not 

grow exponentially with the depth of the recursion. For example, Plate's Holographic 

Representations (Plate 1993) could offer a reprieve to harmony theory. However, the 

next section will show that, in their present form, harmony networks admit stable 

cq uili bria that do not represent parse trees, and so, the question of size is academic. 

5.3 Harmony Networks Do Not Work 

In the previous two sections, we discussed the problems related to connecting a har- 

mony network to the outside world, and the large size of harmony networks. Even if 

we are willing, however: to ignore these stumbling blocks and carry on to implement 

a harmony network, we will find that it does not actually perform as advertised: Har- 

mony networks find stable equilibria that do not represent maximum harmony parse 

trees. 

Recapitulating the developments of chapters 3 and 4 will reveal the reason why 

Harmony networks do not actually find maximum harmony parse trees. The previous 

two chapters demonstrate 

1. A method to represent parse trees using the activation vector of a connectionist 

network (Section 3.3). 

2. A harmony function defined on parse trees. A parse tree is valid if its harmony 

value is zero. The harmony values of all invalid parse trees are below zero. In 

other words, the parse tree is valid if and only if its harmony value is a maximum 

(Section 4 1 . 1 ) .  

3. An energy function, defined on the values of the activation vector. Two models 

of connectionism - the Brain-State-in-a-Box (BSB) model and the Hopfield 

model - seek local minima in this energy function (Section 4.2.1). 

4. A system foi. determining the weight matrix of a connectionist network so that 

if its act~ivation vector is interpreted as a parse tree, then its energy function is 

the negation of the harmony of that parse tree (sections 4.2.2 and 4.2.3), 
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The problem is that the energy function is defined on the values of the activation 

vector. By contrast, the harmony function is defined on possible parse trees. A s  

shown in Section 5.3.1 these two domains are not equal: there art- some act.ivs.t,ioll 

vectors that do not represent any parse tree. 

So, while it may be the case that the energy and harmony functions arc ~tcgations 

of one another, it is not likely the case that a local minimum of one is a local 113asi- 

mum of the other. Indeed, item 4 above merely guarantees that, the onergy f'unctior~ 

passes through zero at  the appropriate points, hut its minima are unrest~rictt4. Mort. 

succinctly, the harmony network will find minima that are not even parse trcc-s, Ict, 

alone valid parse trees. 

The reason why harmony networks do not work is straightforward. St~ctiort 5.3 .2  

shows that the weight matrix must have only negative eigenvalues, for ot ttercvise tht* 

network constructs structures which are not valid trees. Section 5.:3.3 shows that if t h :  

weight matrix has only negative eigenvalues, then the energy function atirnits only a. 

single zero - the origin. Furthermore, we show that the origin cannot bc illt,c.rprct,ctl 

as a valid parse tree. Thhs, the stable equilibria of a harmony network are not all 

valid parse trees. 

5.3.1 More Activations Than Trees 

As noted above, the reason why harmony networks do not work is that t11c.y s(*(:li 

minima in their state space which may not coincide with parse tree represen ta1,itrrts. 

One way to ameliorate this would be by making every possible activatiorr vc:c%or 

represent some parse tree. In other words, the parse twe representatio~ls f i l l  t f t t s  stat,(. 

space of the harmony network with the same density as the act,ivatior~ vc:c:tors. 1 I' 

every activation vector represents some parse tree, then the rules that dtterrnir~t* t h c b  

weight matrix - and hence determine the energy function - will ensure that thc: 

absolute energy minima agree with the valid parse trees. 

Unfortunately, if every activation vector represents some parse tree, tfiert thc sys- 

tem of equations in table "1.3 has no solution. The first four lines of tha t  tablc indicate 
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that for each terminal or non-terminal, f, Wroot must satisfy the equation: 

where h E {2,4,6). If the symbols of the grammar are two dimensional, then there 

will be symbols represented by each vector, (xl,xl), (x1,x2), (x2,x1), and (x2,x2), 

where s, # x2. Therefore, bVr,,t must satisfy the equations, 

Because hi E (2,4,6), there must be a pair hi,hj  which are equal. In 

that cae ,  it can be shown using Gaussian elimination, there is no solution for 

WrUatl WruOtl2, Wroot2,: I.VT~t,2- If the symbols are represented by vectors of dimension 

three or greater, then the same contradiction occurs. The result is that the weight 

matrix cannot be derived. 

Thus there are some activation vectors that do not represent any tree - valid or 

invalid. The question now becomes one of determining whether all of the harmony 

network's stable equilibria are valid parse trees. 

5.3.2 Non-Negative Eigenvalues Yield Non-Trees 

The last section showed that not every point in the harmony network's state space 

can represent a parse tree. However, the harmony network can be restricted so that 

all its stable equilibria fall on the corners of its state space. With such an affinity 

for the corners. the interior points need not represent parse trees. While the previous 

section showed that not every corner can represent a parse tree (simply let x1 ,x~  

be the minimum and maximum activation vaiues), not every corner will be a stable 

q~dibr iurn,  and so, such a restriction could force the harmony networks to End 

maximum harmony parse trees. 

Golden f 1986) showed that making all the weight matrix's eigenvalues non-negative 

will ensure that the BSB model's stable points lie in the corners. Hopfield (1984) 
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Figure 5.1: The energy function of a two-dimensional harmony network where o w  
eigemalue is negative and the other positive. The hashed plane represents the  plaiie 
E = 0. It intersects the energy function and the vertical axis at the origin. The poiriks 
i and f respectively represent an initial and a final state of the network. 

claimed that "usually" the Hopfield model's stable points iie in thc corncrs. Expc*si- 

ments show, however, that when the weight matrix admits negative eigenvectms, tllc 

stable points tend to be away from the corners. On the other hand, non-negat,ivc* 

eigenvalues do tend to force the Hopfield model to find only corners. 

If any of the eigenvalues of the weight matrix, W ,  is positive, then it is easy to 

show that the harmony network will seek a stable equilibrium that does not reprt:scrtt 

a parse tree at all. Let X > 0 be a positive eigenvalue of W ,  and let c be an cigcnvc:ct,or, 

corresponding to X, that falls within the state space. Then, 

Figure 5.1 illustrates the energy function of a harmony network where one eigenvaluc: 

is positive. In this figure, all the valid parse trees would rest on the hashed zero-energy 
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Figure 5.2: The energy function of a two-dimensional harmony network where one 
eigenvalue is negative and the other is zero. The heavy line represents the intersection 
of the surface with the plane E = 0. It intersects the vertical axis at the origin. The 
~ o i n t s  i and f respectively represent an initial and a final state of the network. 

plane, arid all the invalid trees would be above it. Because the energy function drops 

below zero, the harmony network would have to undergo an energy increase in order 

to find a zero-energy stable equilibrium. This cannot happen, and so, the network 

reaches an equilibrium with energy strictly less than zero. Therefore the harmony 

network with positive eigenvalues will certainly find stable equilibria which are not 

vat id parse tree representations. 

Now, suppose W ,  the weight matrix, has a zero eigenvalue. If e is an eigenvector 

corresponding to that eigenvalue, then for every real a, aVVe = 0. Then one of the 

following must be true: 

cre is not a stable equilibriilm: In that case, the energy function must drop below 

zero. yielding a subzero stable equilibrium - a stable equilibrium that does 

~crt represent aqr  tree. 

a a  is a stable equiii'orium: Then for every a, ae must be a valid tree representation. 

This situation is represented in Figure 5.2, where the set of all points, ae, is rep- 

resented by the heavy line. This implies that there is a symbol, ( a l ,  a2,. . . , a,), 
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such that a 1 ( a l . .  - . . a,). a2(a l , .  . . . a, ) ,  , . . . a,,l+, ( a l , .  . . . a,) are d s a  all sym- 

bols. As before, this implies that 14,;oot must satisfy the equations, 

-4 h 1 
( ( a  . a + 6 ) ~ r o t ( a , .  . . a  + 0 @ ) = - 

c\ ; 

where hi E {2,4.6). By Gaussian elimination, there is no solution t,o this systmri 

of equations, and hence, there is no such weight matrix. 

In all cases, if the weight matrix has non-negative eigenvalues, tlicrl tllc \~ i tn~ot iy  

network admits stable equilibria that do not represent any tree. Thus, t 1 ~ :  eigctnva.lilc~s 

must all be negative. 

5.3.3 Negative Eigenvalues Yields Non-Tree 

If all the eigenvalues of the weight matrix are negative, then the cncrgy f u l ~ c t i o r ~  Iii~,s 

a very special shape: i t  is a paraboloid centered on the origin and concavc i n  thr! 

direction of positive energy. This is easily seen by considering the first artd scconcl 

derivatives of E: 

- - 
ax; 



Figure 5.3: The energy function of a two-dimensional harmony network where both 
eigenvalues are negative. The vertical axis pierces the surface at the origin. The 
points i and f respectively represent an initial and a final state of the network. 

Clearlrv, all the first derivatives are zero at the origin, and so, it is a critical point. Now 

the origin is a strict minimum if all the roots of the following equation are positive 

(see for exa.mple Taylor and Mmn 1983, p218): 

i 
i . - *  I 

= det i-FY - X l f  

0 = det 

This last equation is known as the characteristic polyuomial of - W: and its roots are 

the cigendues of -1%'. Therefore, if X is a root then it is also an eigenvalue of - W ,  or 

wpivatentij-, it is the negative of an eigenvaiue of W .  Because all of -W5s eigenvalues 

are negative, the origin is a strict minimum, and indeed it is the only minimum. Such 

a harmony net.work is represented by Figure 5.3. 

LJ2E(Z) -- A EJ2E(Z) 
axlazl a f l  ax2 . . . 

a2E(t.ecz) a2E(vecz) A 
az2azl ax,  ax2 
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As can be seen, the origin is the 01113- stable point where t h e  cncrgy i s  zcr-o, i3utf i t  

cannot represent a parse tree which is valid for tile grammar, for t t~ttn, 

where TL? TR are appropriate left and right subtree represe~ltat.ioiis. Bcc-at~stx c>ac.lr of 

the subtrees is multiplied by either rf or r,., they are not, the same dirriensior~ as S, 
...a 

and are consequently concatenated instead of added. Therefore S = 0. 13111, t,lic~~, 

WFOOt must satisfy the equation 

This is impossible, and so, the origin is not a valid tree rcprescntation. 

5.3.4 Conclusion 

This section has shown that in every case, a harmony network will rcacti st,d)lc qti i -  

fibria that are not valid parse trees. This is not unexpected. Hwamc- t l l t b  (wnr.gy 

function is a very simple function, it would be more surprising i f  such a conl~cc-tio~)ist. 

system could construct complicated structures such as jiarsc t.rctc:s for a c-or11 cxt  free 

grammar. 



Chapter 6 

Resolution 

The previous section showed that harmony networks do not construct8 only I I I ; L S ~ I ~ ~ ~ I ~ ~ -  

harmony parse trees for some context free grammar. Even so, this fmlt t1ot.s 1101, 

spell the end of harmony theory, but only upsets a particular ii~lplemc~lt,atiorl of' 

it. The basic idea - that of describing the operation of a connectionist syslc~n at, 

a high level, and then using that high level description to forge a co~i~~ectiorl wit11 

an even higher symbolic level - still seems more likely to yield neurally ~ > l i ~ l ~ s i l ) l ~ ~  

explanations for high level cognitive functions than the ad hoc approachw proposed 

by many connectionists (for example, Shastri and Ajjanagaddc 1993j. Ilowcvc~, t l i ~  

particular type of connectionist system postulated by harmony theory is too si~itplib 

to uphold the bold claims of its proponents. 

It is possible that some r'uture harmony network will be cons1,ructc.d that, bikes 

advantage of a more complicated connectionist system (perhaps one whcre t h  wc~igl~t 

matrix is not symmetric) and the resulting energy functioii to create a harnlorly I M ~ -  

work that actually does construct only valid parse trees. Such a nctwork wotllil n t , i l l  

only answer one of the main difficulties exposed by this thesis. 

A successful implementation of a harmony network will still hc extrt:~rtt~ly large. i f  

it is to  construct non-trivial parse trees. The network's ~nagnitude rriay firid a solutio~~ 

in one of the other techniques for convclving symbols with their roles. F'or example, 

while they do not allow perfect decomposition, Plate's holographic rcprcsctr~tat, ions tlo 

not grow exponentially with the depth of the recursion. 



Mc,reovcr: even a successfutlf harmony netn-ork will still require input in the form 

of parif* trees, and tsilf nut offer any meaningful output. The harmony network 

cannot be said to accept a formal language because its inputs are parse trees. and 

t h e  oritpiit does not directiy indicate acceptance or rejection. The question of output 

may b t  especially difficult for connectionists: particularly in less constrained formal 

languages, such as recursive languages. membership is a global property of the entire 

string, not of local portions. Connectionist models, by contrast. perform only local 

operations. and so. it is biEcidt to see how they can capture the full generality 

of forrnal languages. Harmony theorists will have to answer this objection before 

claimjng to have uncovered a new means by which connectionist networks can accept 

formal languages. 

I'erhapsa more interesting question is whether or not harmony networks in their 

present form successfully refute Fodor and Pylyshyn's challenge (Fodor and Pylyshyn 

i 988). That is. do harmony networks account for the systematicity and productivity 

of human cognition without directly implementing symbolic algorithms? 

At first. it seems that they do. Provided a network actually did find stable equilib- 

ria that represented valid parse trees, we would have to concede that the network was 

exhibiting some amount of systematicity and productivity. That is, if it is capable of 

reaching a particular stable equilibrium, then a harmony network must also be able 

to reach a host of other systematically related equilibria. This property is guaranteed 

by the recursive construction of the harmony network, which allows a legal subtree to 

appear in any legal position of the parse tree represented by the stable equilibrium. 

1Vhat.s more. provided the network is big enough to represent them, it will be ahle 

to rtprcstnt every possible valid parse tree as a stable equilibrium. Thus a success- 

fir1 harmony network would be ahle to entertain an infinite number of systematically 

related thoughts, satisfying Fodor and Pylyshyn's requirement for productivity. 

So. it might appear that the harmony networks do satisfy Fodor and Pylyshyn's 

fe an original challenge. This is misleading. The fact that they do not actually hay 

input and create meaningful output from it, however, means that harmony networks 

do not actually calculate anything. In other words, while they may be able to  token an 

infinite 11unlber of systematically related thoughts, harmony networks cannot produce 



any inferences. and so. they do not account for a property which 1;i)tior and I'j.l\~sl~yt~ 

call the -systematicit_\- of inference." This quality of human cognitio~t rclatcls to 11w 

idea that someone who can draw one kind of inference can necessarily cot~lputc. n 

number of other similar inferences. Because harmony rwt\~t>sks do not r'alctilat c- alty 

inference. the>- satisfy this property only trivially, arid so. harmony rit-t~wrks tlo  rot 

exhibit the spirit of systematicit? of inference. 

Even so: we should not abandon the principles that rnotivatc harn~my rlct woi.lis. 

Considering connectionist models as energy-minimization systems cottlcl still IcaJ to 

a successful answer to  the issues raised by Fodor and Pylyshyn. :Is in t , l t c b  hanilortic. 

decisio-il networks that were introduced in this thesis, however, tlrc wholr nct,woslc 

- including input and output units - siiould he included when consi(1crjng curlsgy 

reduct ion. 



Bibliography 

Anderson: J., J. Silverstein, S. Ritz, and R. Jones (1977, Sept.). Distinctive fea- 

tures, categorical perception, and probability learning: Some applications of a neural 

model. Psych~ological Review 84 (51, 413-451. 

Cohen, M. and S. Grossberg (1983, Sept.). Absolute stability of global pattern forma- 

tion and parallel memory storage by competitive neural networks. IEEE Transactions 

on Systems, Man and Cyberneiics SMC-13(5), 815-826. 

Elman, .I. (1990). Finding structure in time. Cognitive Science 14, 179-212. 

Fisher, R,. C. (1970). An Introduction to Linear Algebra. Encino, California: Dick- 

enson Pub. 

Fodor, J. and B. McLaughlin (1990). Connectionism and the problem of systematic- 

ity: Why Smolensky's solution doesn't work. Cognition 35, 183-204. 

Fodor, J. and 2. Pylyshyn (1988). Connectionism and cognitive architecture: A 

critical analysis. Cognition 35, 183-204. 

Golden, R. (1986). The 'brain-state-in-a-box' neural model is a gradient descent 

a1gorit;hm. Journal of Mathe.matica1 Psychology 30, 73-80. 

Golden, R. (1988). A unified framework for connectionist systems. Biological Cyber- 

netics 59, 109-120. 

Hinton, G . ,  J .  McClelland, and D. Rumelhart (1986). Distributed representations. 

In D. Rumelhart, J- McClelland, and The PDP Research Group (Eds.), Pardlel 



Distributed Processing Ezplomtions in t h p  ilficrostructure of C'oyllitio~r 1 i ~ l u n r c  I :  

Foundations. pp. 77-109. Cambridge: h4IT Press. 

Hopcroft. J. and J. Ullman (1979). Infroductiorz to A utolnntn 7'hcory. 1,artgcrcrgc.s 

and Computation. 3Iassachusetts: -4ddison-IVesley. 

Hopfield, J. (1982. -4pril). Neural networks and physical syst(ms wit,h cwwrgv~~t 

collective computational abilities. Proceedings of th f  ;Yafiortc~t =tcndcmy of Scic1tc.r 

7.9, 25-54-2558. 

Hopfield. J. (1984, May). Neurons with graded response h a w  collt~.t iw cori~pl~ 1 a- 

tional properties like those of two-state neurons. Procerdings of / h e  N n f i o ~ d  rt  curlrrrr!/ 

of Science 81, 3088-3092. 

Hopfield, J. (1987, Dec.). Learning algorithms and probability ctist.ril~iltio~~s i n  fcvcl-  

forward and feed-back networks. Proceedings of the Nniiord Acnden~y of Sc.ic.twra 

84, 8429-8433. 

Legendre, G., Y. Miyata, and P. Smolensky (1990). Harmonic grammar - ;L for- 
r l ma1 multi-level connectionist theory of linguistic well-formeclness: I 1-1eoretica.1 Tot1 11- 

dations. In PT-oceedings of the Twelfth National Confe~mce  on CoOqnitittc Scic.ticc, 

Cambridge, M A ,  pp. 385-395. Lawrence Erlbaum. 

Leipholz, H. (1987). Stability Theory Ar2 Introduction to the ,S'tubility of Ilyn(rmic 

Systems and Rigid Bodies (Second ed.). New York: John Wiley. 

Li, J., A. Michel, and W. Porod (1988). Qualitative analysis and synt, hcsis of a. class 

of neural networks. IEEE Transactions on Czrcuits and Systems 35(8), 976-985. 

Lillo, W., D. Miller, S. Hui, and S. Zak (1994, Sept.). Synthesis of brain-sf,at,c-in- 

a-box (BSB) based associative memories. IEEE Tmn.suctions on Neural Networks 

5 f 5) ,  730-737. 

Michel, A., J. Farrefl, and W. Porod (1989). Qualitative analysis of neural networks. 

IEEE Transactions on Circuits and Systems 36(2), 229-243. 



Plate. 7'. A. (1993). Holographic recurrent networks. In S. Cowan and C. Giles 

(Eds.1. Adoances in  .VeuraE Information Processing Systems 5, pp. 34-42. Sari Mateo: 

Morgan Kaufmann. 

Proskurowski: A. (1981). Recursive graphs, recursive labellings and shortest paths. 

SIAM Journal of Computing 10(2),  0. 

Rurnelhart, D.. G. Hinton, and I .  McClelland (1986). A general framework for paral- 

lel distributed processing. In L?. Rumelhart, J. McClelland, azd The PDP Research 

Group (Eds.), Parallel Distributed Processing Exploratiors in the Microstructure of 

Cognition Volume I :  Foundations, pp. 77-109. Cambridge: MIT Press. 

Rumelhart, D. and J. McClelland (1986). PDP models and general issues in cognitive 

science. In D. RumeIhart, J, McClelland, and The PDP Research Group (Eds.), Par- 

allel Distributed Processing Explorations in  the rWicrostructure of Cognition Volume 

1: Foundations, pp. 110-149. Cambridge: MIT Press. 

Salam, F., Y. Wang, and M.-R. Choi (1991, Feb.). On the analysis of dynamic 

feedback neural nets. IEEE Transactions on Circuits and Systems 38 (2), 196-201. 

Shastri, L. and V. Ajjanagadde (1993). From simple associations to systemmatic 

reasoning: A connectionist representation of rules, variables and dynamic binding 

using temporal synchrony. Behavioral and Brain Sciences 16, 417-494. 

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of 

harmony theory. In D. Rumelhart, J. McClelland, and The PDP Research Group 

(Eds.), Parallel Distributed Processing Explorations in  the Microstructure of Cogni- 

tion Volume I :  Foundations, pp. 77-109. Cambridge: MIT Press. 

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and 

Brain Sciences I 1  (1). 1-74. 

Srnolensky, P. (1990). Tensor product variable binding and the representation of 

symbolic structures in connectionist systems. Artificial Intelligence 46, 159-216. 



BIBLIOGRAPHY 95 

Smolensky, P. (1991 1- Connectionism, consiti tuency and t he language of t i~ouglrt. 111 

B. Loemer and G. Rey (Eds.), 3leaning in  Mind: Fodor and his Critics, pp. 201 227. 

Oxford: Basil Blackwell. 

Smolensky, P. (1993). Harmonic grammars for formal languages. In S. IIanson, 

.J. Cowan, and C. Gifes (Eds.), Advances in Neural Informcition Procc.ssiity Sljstrnts 

5, pp. 847-854. San Mateo: Morgan Kailffman. 

Smolensky, P., G. Legendre, and Y. Miyata (1992). Principles for an illtcgratcd 

connectionist/symbolic theory of higher cognition. Technical Report CllJ-(:S-600-!)2, 

University of Colorado Computer Science Department. 

Smolensky, P., G. Legendre, and Y. Miyata (1994). Integrzting connectionist a,ritl 

symbolic computation for the theory of language. In V. Honavar a ~ l d  I,. 1Jhr (ll:ds.), 

Artificial Intelligence and Neural Networks: Steps Zoulard Principled fnt tymt iou, pp. 

509-530. Boston: Aczdemic Press. 

Taylor, A. and R. Mann (1983). Advanced Calculus (Third ed.). Ncw York: .Johr~ 

Wiley and Sons. 

Tesar, B. and P. Smolensky (1994). Synchronous firing variable binding is t,rtlsor 

product representation with temporal role vectors. In A. Ham and I<. Eisclt (Ms.),  

Proceedings of the Sixteenth Annual Conference of the Cognitive Scieim ,Sociely, 

New Jersey, pp. 870-. Lawrence Erlbaum. 

Yang, H. and T. Dillon (1994, Sept.). Exponential stability and ~scillat~iori of Ilopfic:l(l 

graded response neural network. IEEE Transactions on Neural Networks 5(5), 7 19 

729. 

Yokonuma, T. (1977). Tensor Spaces and Exterior Algebra. Rhode Islaud: Arrwricall 

Mat hematicai Society. 




