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Abstract 

The problem of computing the distribution of a sum or an average of independently, 

identically distributed observations arises in many statistical applications. In most cases, 

asymptotic methods or numerical methods have to  be used. 

Daniels' (1954) saddlepoint expansion for the density function and Lugannani and Rice's 

(1980) expansion for the cumulative distribution function are amongst the most widely used 

asymptotic methods. Although the integrated saddlepoint expansion is generally considered 

to be as accurate as Lugannani and Rice's expansion for approximating the cumulative dis- 

tribution function, the theoretical relationship between these two expansions remains largely 

unknown. We show that Lugannani and Rice's expansion may be differentiated to obtain 

the saddlepoint expansion, and give the exact relationship between their coefficients. We 

then discuss two applications of this result, and study the uniform validity of the saddlepoint 

expansion, a problem which arises naturally in our investigation of the relationship. 

We also study asymptotic expansions for general distributions that are asymptotically 

normal. We discuss a formal method for deriving expansions and a family of expansions to 

which it leads. Through this family, we examine and compare known expansions, such as the 

Edgeworth expansion and the saddlepoint expansion, and discuss generalizations of these. 

We also examine the accuracy of these generalizations to  problems where exact solutions 

are available and demonstrate that they are indeed accurate. 

A numerical method for computing distributions whose moment generating functions 

are known is also discussed. The method makes use of the fact that the moment generating 

function is an integral transformation of the density function, and computes the density 

function by solving the integral equation that defines the moment generating function. The 

advantages of this method compared to the asymptotic methods will be discussed. 
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Chapter 1 

Introduction 

In many statistical applications, distributions of various statistics, frequently some 

functions of a sample mean, play a central role. The exact distributions, however, are often 

difficult to obtain. The problem of approximating these distributions has been studied by 

generations of statisticians, and continues to provide a fertile ground for new research. This 

thesis consists of work centered on three subjects concerning asymptotic and numerical 

methods for approximating these distributions. 

Efforts for obtaining accurate approximations for the distribution of a sample mean 

have not only resulted in reliable numerical approximations, but have also led to major 

theoretical breakthroughs in asymptotic theory related to  statistics and probability. As- 

sume that X I , .  . . , X, are independently identically distributed (i.i.d.) with an underlying 

density f(x). Let x be their arithmetic mean. Then x is usually asymptotically normally 

distributed in the sense that its standardized version is asymptotically standard normal. 

Although the exact distribution of x may be difficult to  calculate, its moment generating 

function often is not. Methods exist that allow one to  approximate the distribution based 

on the first few moments of X, e.g., fitting a Pearson curve, or using the first few terms of 

the Edgeworth expansion. These methods usually provide satisfactory approximation in the 

center of the distribution, but they are often not accurate in the tail. The Pearson curve 

method, though typically accurate out as far as 5th or 95th percentiles, is often inaccurate 

beyond that range and is of limited value as a theoretical tool. The Edgeworth expansion 
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is perhaps more important as a theoretical tool than as a practical approximation. It too is 

only accurate in the center of the distribution, and can even be negative in the far tails. 

In his pioneering paper in 1954, H. E. Daniels introduced the method of saddlepoint 

approximation into statistics and derived an asymptotic series expansion for the density 

function. This asymptotic expansion is obtained by first expressing the density as the Fourier 

inversion of its moment generating function, and then expanding the inversion formula using 

the method of steepest descents. Unlike Edgeworth expansion, which is in powers of 1 / f i ,  

Daniels' expansion is in powers of l l n .  It provides accurate approximation to the density, 

even for very small sample sizes. Perhaps the most important feature of this expansion is 

that its accuracy usually does not deteriorate in the tail. The leading term of Daniels' series 

is called the saddlepoint approximation. 

The corresponding asymptotic expansion for the cumulative distribution function was 

obtained by Lugannani and Rice in 1980. It was also obtained by first expressing the tail 

area of the distribution using a Fourier inversion formula, and then expanding this formula 

while taking into consideration a pole in the integrand. Like Daniels' expansion for the 

density function, it is in powers of l l n  while the Edgeworth expansion for the cumulative 

distribution function is in powers of l/fi.  It is very accurate over the entire domain of 2,  

even for small sample sizes. Although the numerically integrated saddlepoint approximation 

has also been known as an accurate approiimation to the cumulative distribution function, 

Lugannani and Rice's approximation has the advantage that it does not involve numerical 

integration, and is thus easy to  compute. 

The first subject of this thesis is the relationship between Daniels' expansion for the 

density and Lugannani and Rice's expansion for the corresponding cumulative distribution 

function. Our interest in this relationship was initially raised by an interesting conjecture 

by Lugannani and Rice. In their 1980 paper, they compared their series with the integrated 

Daniels' series numerically, and observed that tney both have errors of comparable size. 

They therefore conjectured that their series and the integrated Daniels' series should always 

be "in errors by the same order of magnitude". Due to the complexity of the expressions 

for the errors of these two approximations, a direct algebraic comparison seems intractable. 

We shall therefore turn our attention to the mathematical relationship between the two 

series, and try to  answer the conjecture by first understanding this relationship. Since the 
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cumulative distribution function may be differentiated to obtain the corresponding density 

function, our investigation focuses on whether or not a similar relationship exists between 

these two expansions. We shall prove that such a relationship indeed exists. This relation- 

ship not only leads to  an answer to Lugannani and Rice's conjecture, but also establishes 

the derivative of any truncated Lugannani and Rice's series as an asymptotic approximation 

to  the density function. 

A problem closely related to our proof for this relationship is that of the uniform validity 

of Daniels' expansion. We shall discuss general conditions under which it is uniformly valid 

on compact subsets, and show that these conditions are met by commonly used continuous 

density functions for which the saddlepoint approximation can be derived. 

The second subject centers on general expansions for densities of distributions that are 

asymptotically normal but not necessarily that of a sample mean or standardized mean. We 

introduce a formal method for deriving expansions for these densities and derive a family of 

formal asymptotic expansions, which includes the saddlepoint expansion and the Edgeworth 

expansion as special cases. This family of expansions is defined with respect to  sequences 

derived from the cumulant generating functions. These sequences are usually asymptotic for 

distributions that are asymptotically normal. The derivation of this family of expansions 

also hints that such sequences are the most natural sequences with respect to which the 

asymptotic expansions of the densities be defined. The sequences simplify to essentially 

{I/(+)') and {l/nT) for the cases of standardized mean and sample mean. The validity 

of these expansions, however, needs to be established for each case, and this in general 

can be difficult. We shall consider Jargensen's exponential dispersion models for which the 

validity can be established. We shall also study the numerical accuracy of the saddlepoint 

approximation in this broader context through numerical examples. 

The third subject is concerned with a numerical method for computing distributions 

whose moment generating functions are known. We look at  the equation that defines (defin- 

ing equation for) a moment generating function from the integral equation point of view, and 

compute the distribution by solving the Fredholm integral equation of the first kind given 

by the defining equation. Fredholm integral equations of the first kind, however, are usually 

difficult to compute, and existing methods do not seem to work well for our purpose of com- 

puting the defining equation. We shall first discuss a way to  refine the quadrature method 
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for Fredholm equations of the first kind, a simple method that can be easily implemented. 

This leads to  a general method which may be used to solve a variety of equations, including 

the defining equation for the moment generating function. This general method will be 

presented as a method for Fredholm equations of the first kind. Its relevance to the theme 

of the thesis, i.e., approximating distributions, is discussed separately. The method is easy 

to carry out for distributions with bounded domains. When the domains are unbounded, 

however, the method is difficult to implement. For these cases, we shall discuss the use of 

Bellman et aL7s (1966) quadrature method for computing distributions. These numerical 

methods have certain advantages over asymptotic methods, e.g., the moment generating 

functions need be evaluated only a t  a small number of points. This and other advantages 

will be discussed and illustrated with examples. 

Following is an overview of the thesis: 

In Chapter 2 we first review various properties of complex moment generating functions. 

These properties lead to  the inversion integrals for both the density function and the cumu- 

lative distribution function, from which asymptotic expansions were found. We then review 

how Daniels' expansion for the density function of the mean of a sample of i.i.d. observations 

and Lugannani and Rice's expansion for the corresponding cumulative distribution function 

were derived. 

In Chapter 3, we first formally differentiate Lugannani and Rice's expansion for the 

cumulative distribution function and obtain an asymptotic series that resembles Daniels7 

series for the density function. We then prove that this formal differentiation is valid un- 

der the condition that Daniels7 series is uniformly valid, and the resulting series is indeed 

that of Daniels'. The uniform validity of Daniels' series, together with applications of the 

relationship between the two series will also be discussed in this chapter. 

Chapter 4 begins with a discussion on Charlier differential series and the formal method 

for deriving asymptotic expansions. The family of expansions is then derived through the 

method. We then study this family for the sample mean and the standardized sample mean 

in detail. We also discuss Jmgensen's saddlepoint approximation for exponential dispersion 

models in the context of this family, and some numerical examples which illustrate the 

accuracy of the saddlepoint approximation. 
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In Chapter 5, we discuss general quadrature methods and our method for solving Fred- 

holm integral equations of the first kind. We then discuss the use of our method and Bell- 

man et al.'s (1966) method for computing distributions and compare them with asymptotic 

methods. 

We finish this introduction with a brief review of work which we shall cite most fre- 

quently. Daniels' (1954) pioneering work derived the saddlepoint expansion for the density 

of the mean of a sample of i.i.d. observations. He also discussed the existence of the saddle- 

point, as well as the uniform validity of the saddlepoint approximation for four important 

classes of densities. Barndorff-Nielsen and Cox (1979) brought the importance of saddle- 

point approximation to  light, and showed how it may be used in a variety of important 

applications. They also further discussed the uniform validity of the saddlepoint expansion. 

Lugannani and Rice (1980) derived the corresponding expansion for the tail probability of 

the sample mean. This expansion is uniformly valid, and compares very favorably t o  other 

asymptotic approximations for the tail probability. Daniels (1987) compared Lugannani and 

Rice's approximation to  other approximations, and extended this approximation to  the tail 

probability for the mean of i.i.d. lattice random variables. He also reproduced Lugannani 

and Rice's derivation in more convenient notation. Jensen (1988, 1991) gave important 

results on the uniform validity of Daniels' saddlepoint expansion and an approximation for 

the tail probability. Reid (1988) provided a comprehensive review of papers on saddlepoint 

approximation and its applications. Finally, we have found the two books by Field and 

Ronchetti (1990) and Barndorff-Nielsen and Cox (1989) very helpful in preparing this the- 

sis. Both books provide a detailed account of the development of the method of saddlepoint 

approximation, as well as some of its more important applications. Barndorff-Nielsen and 

Cox (1989) also discussed a broad range of other asymptotic techniques in statistics. 

Terminology and  notation: We use the terms 'asymptotic expansion', 'asymptotic series' 

and 'asymptotic approximation', interchangeably. We say that  f (x) is asymptotically equiv- 

alent or  equal to g(x) under the limit x + xo and write f (x )  N g(x) if f(x)/g(x) 4 1 as 

x -+ xo. We use R t o  denote the set of all real numbers, and R+ the set of all positive real 

numbers. Unless specified, a density function is assumed t o  be continuous (in its domain) 

and defined on R. By the domain of a density function, f(x),  we mean the shortest interval 

in which f (x)  $ 0. Finally, by f (x) E LP(R), we mean that JR I f  (x)lpdx < oo. 



Chapter 2 

Two Expansions for the 

Distribution of the Sample Mean 

In this chapter, we show how Daniels' saddlepoint expansion for the density function 

and Lugannani and Rice's expansion for the tail probability of the sample mean may be 

derived. The basic steps that led to  both expansions are: (i) expressing the function to be 

expanded as the inversion of the characteristic function, and (ii) expanding the inversion 

integral where the sample size plays the role of a large parameter a t  the saddlepoint. We 

shall present step (i) in a slightly different way, i.e., we shall express the function to be 

expanded as the inversion of the complex moment generating function. A definition of a 

complex moment generating function is given below. Its important properties, including 

those we shall use for step (i), are discussed in the first section. We choose to  work with 

the complex moment generating function instead of the characteristic function because it 

leads directly, without any additional complex analysis argument, to  the inversion formulas 

needed for step (ii). More importantly, we need to  use it extensively in later chapters. Step 

(ii) is discussed in the second section. 
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2.1 Complex moment generating functions 

To be consistent with conventional notation used in complex analysis, in this section we use 

z = x + iy where x, y E R to denote a complex variable. For this section only, we use T for 

a random variable with cumulative distribution function F( t )  and continuous probability 

density function f( t )  = Ff(t) .  We call M(z) given by the following integral transformation 

of f (t)  the complex moment generating function of T: 

When y = 0, the complex moment generating function is the. ordinary real moment generat- 

ing function M(x).  When x = 0, it is the characteristic function, M(iy). In this thesis, we 

only consider complex moment generating functions that are analytic in some open vertical 

strap containing the imaginary axis. The corresponding characteristic functions are thus 

also analytic. We call K(z)  = log M(z) the complex cumulant generating function. 

If the kernel in (2.1.1) is e-zt rather than eZt, the resulting integral transformation of f ( t )  

is the well-known bilateral Laplace-Stieltjes transformation. Denote this transformation by 

L(z), then 

M(z) = L(-z). (2.1.2) 

Bilateral Laplace-Stieltjes transformations have been shown to possess many important 

properties, see e.g., Kawata (1972) and LePage (1961). These properties can be transferred 

directly to  M(z) through (2.1.2). The only reason for working with M(z) rather than 

L(z) is that M(z) is the direct extension of the moment generating function, which is 

commonly used in statistics. Although we are mainly interested in proper distributions 

with continuous densities, most of the results included in this section actually hold for 

integral transformations (2.1.1) of a much broader class of real functions. 

0 Region of existence and elementary properties 

The collection of points at which the real moment generating function M(x) exists 

forms an interval I where 0 E I C R. The complex moment generating function M ( z )  

exists in a vertical strip G in the complex plane (2-plane) that contains the imaginary axis. 

Furthermore, the interval I is the intersection of G and the real axis. M (2) has the following 
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two important properties: (a) it is analytic in G; and (b) M ( 0 )  = 1 and IM(x +iy)l 5 M ( x ) ,  

with equality if and only if y = 0. 

Proofs for the region of existence and the analyticity of M ( z )  follow from those for 

the Bilateral ~ a ~ l a c e - ~ t i e l t j e s  transformation, which may be found in Kawata (1972) and 

LePage (1961). A proof for the inequality in (b) may be found in Daniels (1954). 

Calculation of the complex moment generating function 

The complex moment generating function may be simply obtained by replacing the x 

in M ( x )  by z. To see this is true, M ( x )  = M ( x  + i O )  is an analytic function of x in I. 

Upon replacing x by z ,  we obtain the analytic continuation of M ( x ) ,  which is analytic and 

coincides with M ( z )  in G. As a special case, upon replacing x in M ( x )  by i y ,  one obtains 

the characteristic function of T. 

Asymptotic properties 

Lemma 2.1: Let R e ( z )  = x E I where I is the real interval in which M ( x )  exists, then 

where z = x + iy .  

Proof: Let h ( t )  = e x t f ( t ) .  Since x E I, h ( t )  is integrable over R. M ( z )  can thus be 

regarded as the Fourier transform of h( t ) .  The Riemann-Lebesgue lemma then implies that 

lM(z) l  + 0 as l ~ l  - # 

Furthermore, assume that f (t) is differentiable in its domain. Then h ( t )  is also differen- 

tiable in the domain. If h ( t )  vanishes at  the extremes of the domain, and h f ( t )  is integrable, 

then I M ( z ) l  = o(l y l - l )  as 1 yl + oo. This result may be proved by using the arguments 

in the proof for Lemma 4 on page 487 in Feller (1966). Note that there is an error in this 

Lemma. Although it deals with characteristic functions only, a condition equivalent to  h ( t )  

vanishing a t  the extremes of the domain is needed but is not included. If h ( t )  is bounded but 

is not zero at  at  least one of the extremes and h f ( t )  is integrable, then IM(z)l = O(l yj-l).  

For example, for the exponential distribution the complex moment generating function is 

M ( z )  = 1 / ( 1 -  z )  and h ( t )  is ext-t. It is easy to see that as t approaches the lower extreme 

of the domain, t = 0 ,  h ( t )  -, 1 and that IM(t) l  = O(lYl-') as Iyl - oo. 
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Theorem 2.1: Let f ( t )  be a continuous density function, and [XI ,  x2] be a bounded subin- 

terval of I .  Then IM(z)l -+ 0 uniformly with respect to x E [x1,x2] as lyl + oo. 

Proof: When f ( t )  vanishes outside a finite interval, the above theorem may be proved by 

using a result on the uniform convergence of the Laplace transform of an almost piecewise 

continuous function1 on a bounded domain (see, e.g., Theorem 12-1 in LePage, 1961). 

We now show that for other density functions, for any c > 0, there exists a y ( c )  > 0 such 

that IM(z)l < 6 when lyl > y(c) for all x E [xl, x2]. For any C > 0, 

Since M(xl)  and M ( x z )  exist, there exists C > 0 such that the first and third terms in 

(2.1.3) are each less than €14. For the integral in the middle, we may treat f ( t )  as if it 

vanishes outside ( -C,  C ) .  Thus there exists a Y ( E )  > 0 such that it is bounded by €12 when 

Iyl > Y ( E )  uniformly for t E [xl, x2]. It follows that when Iyl > y(c), IM(z)I is uniformly 

bounded by c. # 

0 Inversion formula 

F ( t )  and f ( t )  may be obtained by inverting the complex moment generating function. To 

derive the inversion formula, we need the following result for the bilateral Laplace-Stieltjes 

transformation. More general versions of this result and their proofs may be found on pages 

267 and 268 in Kawata (1972). Denote the region of existence for L ( z )  by GL, we have 

GL = { z  : -Re(z )  E I ) .  

Theorem 2.2: Let F ( t )  be a proper distribution with density function, f ( t )  = F1(t) ,  which 

is continuous in its domain. Let z = c + iy E GL. Then 

and ( i i )  - L(z)eztdz = f ( t ) .  

'See page 240 in LePage (1961) for a definition. 

.! 
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We now prove the following inversion formula of M(z)  by using the above result. 

Theorem 2.3: Let F ( t )  be a proper distribution with density function, f ( t )  = F1(t), which 

is continuous in its domain. Let z = b + iy E G. Then 

and (ii) 4 / M ( ~ ) e - " ~ d z  = f (t). 
2 ~ 2  b-jm 

Proof: 

(i) When b < 0, let c = -b > 0, then c + iy E GL and (2.1.4) gives 

Similarly, we can use (2.1.4) to show that when b > 0, 

(ii) may be obtained similarly by using (2.1.5). # 

0 Complex moment generating function of a convolution 

Let TI and T2 be two independent random variables with distribution functions Fl(t) 

and F2(t). Let MI (z) and M2(z) be the complex moment generating functions of these two 

random variables. Then the convolution Fl * F2 has complex moment generating function 

MI@) x Mz(4.  

This property, together with the inversion formula of the complex moment generating 

function, enable us to  express the density function and distribution function of the mean 

of n independently, identically distributed observations as the inverse transformations of 

the nth power of the complex moment generating function of a single observation. The 

inversion integrals are then expanded to  obtain the saddlepoint expansion to  the density, 

and Lugannani and Rice's expansion to  the distribution function. 
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2.2 The two expansions 

To prepare for our investigation on the relationship between Daniels' expansion for the 

density and Lugannani and Rice's expansion for the tail probability (Chapter 3), it is helpful 

to  see first how they are derived. There are different ways for deriving these expansions. 

Derivations shown in this section are based on that given by Daniels (1954 and 1987). 

For consistency with Daniels' notation, we now use T = r + iy for a complex variable 

instead of z = x + iy. Also, we use M ( T )  t o  denote the complex moment generating function 

of a single observation X;, and 

0 The integrability of IM(T)I 

The condition that for each 

is important t o  the derivation 

x to  denote the mean of a sample of size n. 

r E I, there exists a v > 0 such that  

of Daniels' expansion. First of all, it ensures that X will 

actually have a density function, which can be expressed as a contour integral involving 

M(T) .  Secondly, it is indispensable in proving that Daniels' expansion for the integral is 

indeed an asymptotic expansion of the density function. For brevity, we write IM(T)I E 

LU(R) if M ( T )  satisfies (2.2.8). We now show that it implies that IM(T)I E L7(R) for any 

y 2 v, and that  the density function of X, fn(Z), exists and is continuous for n 2 v. 

By the elementary properties of M(T) ,  I M(T)/M(r) l  5 1. Thus for any y > v, 

i.e., I M(T)I E LT(R), or equivalently, I M(T)Iy E L1(R). To see that  it ensures the existence 

and continuity of fn(?), assume that v = vo a t  r = 0. Then for n 2 vo the characteristic 

function of C Xi, M n ( i  y), is in L1 (R). It follows from the Fourier inversion theorem, e.g., 

Theorem 3 on page 482 in Feller (1966), that  the density function for C Xi and thus fn(3) 

are bounded and continuous. For the rest of this chapter, we assume that (2.2.8) is satisfied. 

Although we only need it a t  T = 0 for the existence and continuity of fn(x), we shall need it 

a t  other values of r later on for demonstrating the asymptotic nature of Daniels' expansion. 
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It is not difficult to see that (2.2.8) is satisfied when IM(T)I is O(ly1-') or o(lyl-') as 

1 yl - oo. See Section 2.1 regarding this and other asymptotic properties of M ( T ) .  Later in 

Section 3.4, we shall prove that it is satisfied by complex moment generating functions of 

all commonly used continuous distributions. 

Inversion formulas for the density and tail probability of x 
Using the continuity of f n (3 ) ,  the convolution property in Section 2.1, and the inversion 

formula in Theorem 2.3, one can show that f n (3 )  can be expressed in terms of M ( T )  as 

Recall that K ( T )  = log M ( T ) ,  thus (2.2.10) may be written as 

Similarly, the tail probability Q n ( 3 )  = P ( X  > 2 )  can be expressed as 

where c > 0 and c E I 

Watson's lemma 

The asymptotic nature of the expansions will be established with the aid of the following 

version of Watson's lemma. Discussions concerning this lemma may be found in Copson 

(1965) or Jeffreys and Jeffreys (1950). 

Watson's Lemma: If +(z)  is analytic in  a neighborhood of z = 0 and bounded for real 

t. = w i n  an interval -A  < w 5 B with A > 0 and B > 0, then 

is an asymptotic expansion in  powers of n-' .  

The  saddlepoint 

The saddlepoint corresponding to 3,  T, is the real number in the region of analyticity 

of M ( T )  that satisfies the equation 
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To see that is indeed a saddlepoint, recall from the elementary properties that I M ( T  + 
iy)l 5 I M ( ? ) ~ .  Thus 1 exp{K(T + iy)}l < 1 ~ X ~ { K ( T ) } I ,  or equivalently 1 exp{K(T + iy) - 

(T + iy) f ) l  5 lexp{K(T) -T?)\.  It follows that Re{K(T+iy)-  ( ~ + i y ) f }  I K(T) - f 2  

for any y, and thus & R ~ { K ( T )  - Tz) = 0 at T = T. This and (2.2.13) imply that 

VR~{K(T)  - ~ f )  = 0. By the analyticity of K(T)  -T2 and the Cauchy-Riemann equations, 

V I ~ { K ( T )  - TZ} = 0. Thus T is either a maximum or a saddlepoint. By the maximum 

modulus principle, T must be a saddlepoint. 

In general, the saddlepoint has to  be computed numerically. Since KII(T) > 0, T is an 

increasing function of 2. Also, K1(0) = p (= E ( X ; ) ) .  Thus the saddlepoint corresponding 

to p is 0. For more discussion concerning these properties and the existence and uniqueness 

of the saddlepoint, see Daniels (1954). 

The two expansions 

For convenience of our presentation, we now give the two expansions here. Daniels' 

expansion for f n ( i )  and Lugannani and Rice's expansion for Qn(Z) are 

and 

where gn(3) is the saddlepoint approximation given by 

w = S ~ ~ ( T ) { ~ [ T K ~ ( T )  - K(T)]}!, Q and 4 are the cumulative distribution function and 

probability density function of the standard normal distribution, respectively. The a, 's and 

the brls are coefficients in (3.3) in Daniels (1954) and (4.5) in Daniels (1987), respectively. 

In general they are functions of 3. For brevity we may write K ( ~ ) ( T )  as ~ ( ' 1 .  We may also 

write K ( ~ ) ( T ) / [ K ~ ~ ( T ) ] ~ / ~  as A,(T) or A,. Later in this section, we shall give expressions for 

ao, a l ,  bo and bl in terms of T, the K ( ~ ) ' s  and the Ark. 

a Derivation of Daniels ' expansion 
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We use the method of steepest descents. We first choose a proper contour, (, for the 

inversion integral (2.2.11), which contains a small section of the curve of steepest descent that 

passes through the saddlepoint. Using elementary properties of M ( T )  and the integrability 

of I M ( T ) ( ,  we show that the contribution to the inversion integral from the part of the 

contour outside a small neighborhood of the saddlepoint is essentially the product of g n ( f )  

and a quantity which converges to  zero faster than any power of l l n .  We then use Watson's 

Lemma to  show that the series in (2.2.14) is an asymptotic expansion for the contribution 

from the part inside the neighborhood. It follows that the series is an asymptotic expansion 

for the inversion integral. Consequently, it is an asymptotic expansion for fn(3) .  

The contour is obtained by deforming a small section of the line T = T + i y  near the 

saddlepoint as described below. First set r in (2.2.11) to  T and then replace the section of 

T = T + i y  inside the neighborhood defined by IT - To[ < 6 by the curve of steepest descent 

which is that branch of I m { K ( T )  - T z )  = 0 touching T = T + i y  at T .  We denote this part 

of the deformed contour by w. Outside this neighborhood, the contour is continued along 

curves orthogonal to  w on which R e { K ( T )  - T z )  remains constant. These curves can be 

shown to  meet T = T + i y  provided 6 is small enough. From the points where they meet, 

the contour resumes the original T = T + iy. The value of the inversion integral under 

this deformed contour is the same as that under the original T = T + i y  so long as 6 is 

small enough that the deformed contour is inside G. Also, w can be chosen symmetric with 

respect to the real axis since I m { K ( T )  - T f )  is an odd function of y. For more discussion 

concerning the contour, see Daniels (1954). Field and Ronchetti (1990, p. 28) contains a 

graph of the contour. 

On the above contour of integration, leK(T)-T'l reaches its absolute maximum at the 

saddlepoint T.  To see this true, we first note that starting from the saddlepoint the value 

of R e { K ( T )  - T f  ), and hence that of leK(T)-T'~, decreases as T moves along w away from 

the saddlepoint until the contour reaches the outside of the neighborhood IT - To[ < 6. 

It then remains constant until the contour meets the original path T = f + iy .  On the 

original path, according to  the elementary properties of M ( T ) ,  IM(T)I < 1 M ( T ) I .  Thus 

I M ( T ) ~ - ~ ' ~  < I M ( T ) ~ - ~ ' ~  and, equivalently, leK(T)-T'l < leK(')-"~. 

Furthermore, by the asymptotic properties of M ( T ) ,  it approaches 0 as lyl approaches 

infinity. Thus on the contour outside the neighborhood IT - Tol < 6, (/w, it cannot be 
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arbitrarily close to I M ( T ) I ;  i.e., there exists some p E ( 0 , l )  such that, 

We now rewrite the inversion integral (2.2.11) as 

n[K(T)-T*] l e n [ ~ ( ~ ) - ~ ~ - ~ ( ? ) + ? q d T .  f n ( Z )  = -e 
21~2 

A bound on the contribution to the integral in (2.2.17) from (/w is given by 

The integral in (2.2.18) is finite since IM(T)IY is integrable over ( / w  and le-"+'"1 is 1 

except on a small finite section of (/w just outside the neighborhood. Thus the contribution 

to the integral in (2.2.17) from (/w is O(pn) .  

On o ,  K ( T )  - T i  - K ( T )  + T Z  is real and analytic, and at T ,  its first derivative is 0. 

In order to utilize Watson's lemma. we introduce a new variable w such that 

where z = ( T  - T ) [ K ~ / ( T ) ] ~ / ~ ,  and w is chosen to have the same sign as I m ( z )  on the 

contour. Inversion of the series yields an expansion 

convergent in some neighborhood of w = 0. This new variable w is a continuous one-to-one 

function of z and has range ( -A ,  B )  where A and B are positive. Thus 
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By noting that 
d  z 1 
- = i + - A 3 w + i  
dw 3 

and applying Watson's lemma to  the integral in the right-hand side of (2.2.19), we obtain 

where, by (2.2.20), a. = 1 and a1 = i A 4  - &A:. For a general expression for the ai's, see 

Daniels (1954). It follows from (2.2.21) and (2.2.18) that  

Inversion formula (2.2.17) then implies that 

We have obtained Daniels' expansion for the density function (2.2.23). 

0 Derivation of Lugannani and  Rice's expansion 

It is natural to  try a routine application of the method of steepest descents to  the 

inversion integral of the tail probability (2.2.12). Indeed, an asymptotic expansion for the 

tail probability may be obtained in this way (see Daniels, 1987) a t  any 2 value except 

p. At p ,  the saddlepoint is 0 and is thus a singularity of the integrand. The method of 

steepest descents does not apply. Another problem with this approach is that even though 

an asymptotic expansion can be obtained for any a: # /I, the expansion does not provide an 

accurate approximation for Q n ( f )  near p ,  even for large n values, due to  the presence of 

the pole. 

Lugannani and Rice (1980) used a method developed for obtaining asymptotic expan- 

sions for contour integrals where the integrand has a simple pole near a saddlepoint, and 

derived an asymptotic expansion for the tail probability which is uniformly valid over the 

entire range of 3. Daniels (1987) gave the following concise account of their derivation. 
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The basic idea is to  evaluate the contributions t o  the inversion integral from the pole and 

the saddlepoint separately. This is achieved by introducing a new variable which enables 

one to  write the inversion integral as the sum of two integrals. The value of the first integral 

represents the contribution from the pole. The integrand of this integral has a pole a t  

the origin, but may be integrated exactly. The value of the second integral represents the 

contribution from the saddlepoint. The integrand has a saddlepoint but no singularity a t  or 

near p.  Watson's lemma is then used to  obtain an asymptotic expansion for this integral. 

The new variable, W ,  is defined by the relation 

where w is as in (2.2.15). The inversion integral (2.2.12) is now expressed as 

Equation (2.2.24) may be rearranged as 

1 c+ico 
+ , - i n w 2  - 1 - d~ - -) 1 dw.  

I - i c o  T d W  W 
(2.2.25) 

2ni 

The first integral in (2.2.25) has a singularity a t  W = 0 (or 5 = p) ,  and has value 1 - 

Q ( ~ n i ) .  To see that the integrand of the second integral has no singularity a t  or near p, 

we examine its asymptotic behavior as ii approaches p ,  or equivalently, as T approaches 0. 

When IT1 is small, W N AT where 

when T # 0, and A = (~" (0) ) - ' I2  when T = 0. Hence T-'dT/dW N W-'. Since dT/dW 

is analytic in a neighborhood of W = 0, so is T - ' ~ T / ~ w  - W-'. It follows that the path of 

integration for the second integral may be set t o  W = w + iy where w is the saddlepoint, 

even when w = 0. Watson's lemma is then applied to  expand this integral, and the resulting 

expansion is uniformly valid across p. Detailed calculations lead to  Lugannani and Rice's 

expansion for the tail probability, 
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where, by letting u = T ( K " ) + ,  

1 1  1 1  5 2  A3 1  1  
bo = 7 - 7, and bl = 7 ( - X 4  - - A 3 )  - -;- - - + r. 

U W U 8 24 2U2 ~3 W3 

Formulas for further coefficients may be found in Lugannani and Rice (1980) .  

When U ,  and hence W, are small, the individual terms making up bo and bl are seen to  

be large. However, by expanding w in powers of u as 

they reduce to 

Every b, can be expanded in this way as a series in powers of u whose leading term is 

O ( 1 ) .  Thus the b,'s remain finite as u crosses the origin. In practice, to  approximate 

the tail probability one usually uses the leading term (bo) of the expansion and writes this 

approximation as follows: 

- - , / 1  where 2 = T ( n K  ) 2 ,  and ( = { 2 n ( ~ ~  - ~ ) ) + s ~ n ( ~ ) .  At 3 = p,  T = 0, ( = 0 and u = 0. 

By (2 .2 .28) ,  bo = X3(0).  Thus (2 .2 .29)  reduces to  

The expansion for the tail probability (2 .2 .26)  leads to the following expansion for the 

cumulative distribution function F n ( i )  

We shall refer to  this expansion as Lugannani and Rice's expansion for Fn(3 ) .  

Note that the uniform validity of (2.2.26) and (2 .2 .31)  means that the ~ ( n - ~ - t )  terms 

in these equations are independent of 3 .  Discussions on uniform validity of expansions for 

contour integrals may be found in Wasow (1965)  and Bleistein and Handelsman (1975) .  For 
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a definition of this uniform validity, see Appendix A. 

The orders of the relative errors of the expansions 

The absolute error of the saddlepoint approximation (2.2.16) is gn(x)O( l l n ) ,  and that 

of the Lugannani and Rice's approximation (2.2.29) is 4 ( ( ) 0 ( n - ~ / ~ )  or 4 ( ~ n ' / ~ ) o ( n - ~ / ~ ) .  

Since both the density and the tail probability tend to  be small a t  the far tail, these absolute 

errors do not tell us much about the accuracy of the approximations. It is thus important 

to examine their relative errors. 

The relative error of the saddlepoint approximation is given by 

To examine the relative error of Lugannani and Rice's approximation (2.2.29), and in general 

that of (2.2.31), we first calculate the asymptotic order of Mill's ratio, R(wn1I2). Using 

the following identity from Kendall and Stuart (1969, Vol. 1, p. 137) 

it is easy to see that R(wn1I2) = ~ ( l / n ' / ~ ) .  It follows that 

It is not difficult to show using (2.2.32) that the relative error of Lugannani and Rice's 

approximation (2.2.29) is also O(l/n).  Furthermore, it is uniformly O( l /n )  since all the 

O(.)'s in (2.2.32) are uniformly valid. The absolute and relative errors of other truncated 

versions of the two expansions may be discussed analogously. 

Renormalization 

It is necessary to check whether an approximation for a density function is (1) non- 

negative, and (2) integrates to 1. The saddlepoint approximation gn(f)  satisfies the first 
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condition, but does not in general integrate to  1. This problem is usually solved by mul- 

tiplying gn(3) by a constant c, which is the reciprocal of the number that g,(?) integrates 

to. This strategy is known as renormalization, and cgn(if) is referred to as the renormalized 

saddlepoint approximation. Renormalization is usually carried out numerically. It can be 

time consuming since a t  each 3 the saddlepoint has t o  be computed using Newton's method. 

To reduce the amount of computation, Daniels (1987) suggested using T as the variable of 

integration. This can be achieved by a simple change of variable and eliminates the need to  

compute saddlepoints. The renormalized saddlepoint approximation is often more accurate 

than the original saddlepoint approximation. Another benefit of renormalization is that 

one may store the values of g,(Z) used for renormalization, and use them for computing an 

integrated saddlepoint approximation to  approximate the distribution function. 

It is also important to  know whether Lugannani and Rice's approximation (2.2.29) is 

non-negative, non-decreasing and approaches 110 as x approaches the lower/upper end of 

its domain. Due t o  the complexity of the formula, these conditions are usually difficult to  

verify. We have not encountered any numerical example where they are not met. We shall 

further discuss these conditions, in particular, the last condition, in the next chapter. 



Chapter 3 

The Relationship Between the 

Two Expansions 

3.1 Introduction 

A natural alternative to  Lugannani and Rice's approximation for the tail probability is that 

of numerically integrated saddlepoint approximation. Which one of the two approximations 

is more accurate? In their 1980 paper, Lugannani and Rice compared the two approx- 

imations through a numerical example and wrote, "this example suggests the conjecture 

that the integration of Daniels' series and our series for Q,(Z) both give approximations to 

Q,(f) that are in error by the same order of magnitude". This conjecture was subsequently 

supported by numerical evidence provided by various authors, e.g., Daniels (1983), Field 

and Ronchetti (1990). Nevertheless, from a theoretical point of view the conjecture remains 

largely unanswered. The fact that the error terms for both approximations do not have 

simple expressions, and no simple and practical bounds are available made this conjecture 

difficult to  pursue. See Lugannani and Rice (1980) for further discussion. 
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Our interest in the mathematical relationship between the two expansions was raised by 

the possibility that  such a relationship, should it exist, may hold the key to the conjecture. 

More specifically, if a relationship between the coefficients of the two expansions can be es- 

tablished, then we may be able to  express the integrated saddlepoint approximation in terms 

of the coefficients of Lugannani and Rice's expansion. A direct comparison of the two ap- 

proximations may then be possible. There is reason to  believe some kind relationship indeed 

exists since they are both obtained by expanding the inversion integrals a t  the saddlepoint. 

This unknown relationship itself became an interesting question, and subsequently the fo- 

cus of our investigation. Since the cumulative distribution function may be differentiated t o  

obtain the corresponding density function, we asked whether the relationship between their 

asymptotic expansions is similar. 

In this chapter, we investigate this relationship by focusing on the derivatives of the 

entire and truncated Lugannani and Rice series for Fn(ii). Our investigation starts with 

the derivation of a formal relationship which suggests that the derivative of Lugannani and 

Rice's series is Daniels' series. This formal relationship is then rigorously established by 

using asymptotic arguments. Applications of this result are then discussed. The following 

is an outline for this chapter. In Section 2 we formally differentiate Lugannani and Rice's 

series for F,(%) and show that the resulting series resembles Daniels' series for fn(5) .  In 

Section 3 we prove, under a uniform validity assumption concerning Daniels' series, that 

we can indeed differentiate Lugannani and Rice's series for F,( f )  to  obtain Daniels' series. 

This result is the main result of this chapter. In Section 4 we show that  the uniform 

validity condition required t o  prove the relationship is in general true. We then apply the 

main result in Section 5 to  study the relationship between the truncated versions of the 

two series, which establishes the derivative of a truncated Lugannani and Rice series as 

an alternative asymptotic approximation to  the density function and provides an answer 

to  Lugannani and Rice's conjecture. We also derive a saddlepoints approximation for the 

standardized mean, a result related to  the uniform validity of the saddlepoint expansion for 

the mean. 

Throughout this chapter, we assume that  Xi has a continuous density function f(x) 

whose domain is an interval on the real line. As the existence of the two series depends 

on the existence of the saddlepoint, we shall only be concerned with those ii values that  
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have saddlepoints. These Z values form an interval. For this chapter, we shall refer to this 

interval as the domain of 3 .  

3.2 Formal differentiat ion 

The derivative of T with respect to Z and the derivative of w with respect to T are used 

repeatedly in the differentiation. It is not difficult to show that they are 

dT  - -  - 1 d w  T K I ~ T )  
and --- = 

d"ll(T) ' dT  w . 

We now formally differentiate Lugannani and Rice's series for Fn(Z) (2.2.31) .  

Recalling from (2.2.27) that 
1 1 

it is easy to see that 

Thus (3 .2 .1)  may be written as 
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With b-1 = -w, (3 .2 .4 )  may be written in a more compact form 

where 

The formal relation (3 .2 .5 )  suggests that the asymptotic series in the right-hand side 

of (3 .2 .5)  is an asymptotic expansion of the density function fn(3  ). Furthermore, since 

Daniels' series (2.2.23) is an asymptotic expansion of f , . , ( i )  and the asymptotic series in the 

right-hand side of (3 .2 .5)  is in the form of Daniels' series, it suggests that the two series 

should coincide with one another, that is c,  = a, ( r = 0, 1 ,  . . . ). From (3 .2 .4 )  and the 

argument below we see that co = 1 and cl = :A4 - $A:, which indeed match a0 and a l ,  

respectively. If this formal relation can be rigorously established, then by the uniqueness of 

the asymptotic expansion with respect to the asymptotic sequence {l /nr) ,  the entire series 

(3 .2 .5 )  coincides with Daniels' series (2 .2 .23) ,  and thus c,  = a, ( r  = 0, 1 ,  . . . ). 
We conclude this section by showing that a1 = c l ,  i.e., 

- 1 1  1 - // - 1- dbo 
a1 = T ( K  )2bl - ( K  ) 2 7 ,  

dT 

which is also a useful identity for the proof of Theorem 3.1 in the next section. Using the 

expressions for bo and bl shown in (2 .2 .27) ,  we can show that 

Equation (3 .2 .7)  then follows from (3 .2 .8)  and (3 .2 .9 ) .  
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3.3 The main theorem 

When a function of two variables f ( s ,  t) has an asymptotic series expansion in variable s ,  

it is not always true that formally differentiating this series with respect to t will result in 

an asymptotic series for the partial derivative ft(s, t). Wasow (1965, pp. 43-48) discussed 

conditions under which this is true. But these conditions are in general not satisfied here. 

In this section, we state and prove the main result of this chapter, i.e., the following the- 

orem, which presents a sufficient condition under which the formal relation (3.2.5) derived 

by differentiating Lugannani and Rice's series for F,(f) i s  valid. 

Theorem 3.1. Let DZ be a bounded closed interval in the domain of 3. If Daniels' series 

(2.2.23) is uniformly valid in DZ, then the series in (3.2.5) obtained by differentiating Lu- 

gannani and Rice's series (2.2.31) coincides with Daniels' series (2.2.23) in DZ. 

To prove the theorem, we first establish conditions, through Lemma 3.1 and 3.2 below, 

under which a power series expansion of f (s ,  t) in s may be differentiated with respect to  

t to obtain a power series expansion of ft(s, t). Lemma 3.1 gives a necessary and sufficient 

condition for uniform validity of an asymptotic series. Lemma 3.2 uses the condition given 

by Lemma 3.1 to show that when asymptotic expansions for both ft(s, t)  and f(s, t )  with 

respect to the asymptotic sequence {sr) exist, the expansion for ft(s, t) is the derivative 

of that for f (s ,  t), provided it is uniformly valid. Lemma 3.1 and its proof are taken, es- 

sentially, from Chapter 3 in Asymptotic Expansions for Ordinary Differential Equations by 

Wasow (1965). Theorem 3.1 and the lemmas in this section all involve the notion of uniform 

validity of asymptotic expansions for functions of two variables, which we had come across 

a few times toward the end of Chapter 2. For discussion concerning this uniform validity, 

as well as generalizations of Lemma 3.1, see Appendix A. 

Lemma 3.1. (Wasow, 1965) Let f (s, t) be bounded in D, x Dt where 0 E Ds, and hr(t) (r 

= 0, 1, . . .) be bounded in Dt .  Then 

M 

f (s, t )  N hr(t)sr as s + 0 
r = O  
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uniformly for t E Dt ifl for every m the function Em(s , t )  defined by the relation 

is bounded in Ds x Dt. 

Proof: 

(a) If the expansion (3.3.10) is uniformly valid for t E Dt then there exists, for every E > 0 ,  

a 6,(&) > 0,  independent of t ,  such that in D, x Dt 

whenever Is1 5 6,(&). Applying the inequality with m + 1 instead of m we find immediately 

that 
m 

m 1  [ f ( ) ~ h r ( t ) s r ]  1 < & +  hrn+l(t)l7 31 5 6m(&)7 
r=O 

which implies the boundedness of E,(s, t )  for the part of D, x Dt in which Is[ 5 6 , (~) .  For 

I S [  > brn(&), ( s ,  t )  E D, x Dt, the boundedness of 

follows from the boundedness of f ( s ,  t )  and of the hr(t)'s. 

(b) If E,(s, t ) ,  as defined by formula (3.3.12), is bounded we have 

which tends uniformly in Dt to zero, as s + 0 in D,. # 

Lemma 3.2. Assume is integrable in t and bounded in D, x Dt, where 0 E D, and 

Dt is a bounded closed interval on the real line. If 

and 
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where (3.3.14) is uniformly valid in Dt and lr(t)'s are continuous functions of t ,  then the 

hr(t) 's are differentiable in Dt and 

Proof: 

Since and the l,(t)'s are bounded, (3.3.14) and Lemma 3.1 imply that for every rn 

the function Em(s, t )  defined by the relation 

is bounded in D, x Dt. For t and ti in Dt 

Since J;' l,(v)dv ( r  = 0, 1, . . . , m) are bounded in Dt, and f w d v  and J:' E,(s, v)dv 

(m = 0,1, .  . .) are bounded in D, x Dt, by Lemma 3.1 

as s + 0 uniformly in Dt. That is: 

as s -+ 0 uniformly in Dt. On the other hand, (3.3.13) implies that 

as s -+ 0. By the uniqueness of asymptotic expansion with respect to a given asymptotic 

sequence, 
t' 

hr(ti) - h,(t) = 1 l,(v)dv for  T = 0, 1, . . . (3.3.15) 
t 

Since I, is continuous and (3.3.15) holds for any ti E Dt, (3.3.15) implies that h:(t) exists 

and equals lr(t) ( r  = 0, 1, . . .). # 

Nonetheless, since f , ( ~ )  in (2.2.23) is not bounded when n approaches infinity, and 

Lugannani and Rice's series (2.2.31) is not a standard power series, Lemma 3.2 cannot be 
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directly applied to (2.2.31) and (2.2.23) to prove the theorem. We now focus on a new 

function, I (n,  Z), defined below, and show that this function and its partial derivative have 

asymptotic power series expansions. Lemma 3.2 is then used to establish the relationship 

between these two power series, which leads to the theorem. 

Lemma 3.3. Let Dn be the set of positive integers, De be a bounded closed interval in the 

domain of x, and I (n ,  3) be defined by the relation 

Then 
00 

br 
( 4  5 )  C 7 as n -+ w uniformly for 3 E D*. (3.3.17) 

r= l  

Furthermore, if (2.2.23) is uniformly valid in De, then 

(ii) is continuous in 3 and bounded in Dn x D1, and 
d z  

dI (n ,  3) 
00 

(iii) 
1 

h@)- uniformly with respect to 2 E D*, 
ax  nr+ 2j r= l  

where hr(3) = % for T = 1,2, . . 

Proof: 

(i) is readily obtained upon substituting Lugannani and Rice's series for Fn(f )  (2.2.31) in 

(3.3.16). To show (ii) is true, differentiate both sides of (3.3.16) with respect to 3. We 

obtain 

Define Dl(n, S) and Ll(n, 5) by the following relations 

For any finite n, fn(i7)/gn(3) and I(n,Z) are bounded in De. When n approaches infinity, 

by the uniform validity assumption on (2.2.23) and (i), they approach the leading terms in 
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the right-hand side of (3.3.19) and (3.3.20) uniformly, respectively. Thus fn(f)/gn(f) and 

I(n,Z) are bounded in D, x DZ. Lemma 3.1 then implies that Dl(n,S) and Ll (n , f )  are 

both bounded in Dn x DZ. They are also continuous in 3 since fn(3)/gn(f) and I(n,Z),  

and a1 and bl are all continuous in f .  

Substitute (3.3.19), (3.3.20) into (3.3.18), and use the identity (3.2.7), we obtain 

On DZ, T and (Kt')-$ are both continuous and bounded. Thus it follows from the bound- 

edness and continuity of Dl(n, 3) and Ll(n, ?), %$$ is continuous in 3 and bounded in 

Dn x Dz. 

To show (iii), rewrite (3.3.18) as 

By substituting (2.2.23) for fn(2) and the asymptotic series in (i) for I (n ,  5) into the above 

equation, we obtain 

By using the identity a1 = T ( K " ) ! ~ ~  - (K")-! 3, and collecting terms according to  the 

powers of n we have 

where 

h , ( ~ )  = Tbr+1 - (KM)-:a,+l. 

The asymptotic expansion in the right-hand side of (3.3.21) is uniformly valid due to  the 

uniform validity assumption on Daniels' series (2.2.23) and the uniform validity of the ex- 

pansion in (i). Since the hT7s are functions of ar7s, br7s, K", and T, they are continuous in 
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i. (ii) and Lemma 2 then imply that h, (x) = % for T = 1,2, . . . # 

Proof of Theorem 3.1: 

By substituting the asymptotic expansions of I(n,Z) and in Lemma 3.3 into 

(3.3.18) and collecting terms according to the powers of n, we obtain (3.2.5). Thus (3.2.5) 

is indeed a uniformly valid asymptotic expansion of f,(%) for 3 in Dz. By the uniqueness of 

asymptotic expansion with respect to the asymptotic sequence {l /nr) ,  this uniformly valid 

asymptotic series coincides with that of Daniels. # 

The above proof centers on proving the asymptotic validity of the series in the right- 

hand side of (3.2.5). The general relationship between the coefficients of Daniels' series and 

Lugannani and Rice's series, i.e., c, in (3.2.6) equals a,, is a consequence of this validity and 

the uniqueness of asymptotic expansion with respect to  a given asymptotic sequence. One 

may also prove the theorem without explicitly using the uniqueness property by showing 

that (3.3.22) implies c, = a, (T = 0,1, . . .). 

To conclude, we note that the uniform validity condition required by the theorem is not 

as restrictive as it appears to be. We show in the following section that this condition is 

rather easily satisfied. 

3.4 Uniform validity of Daniels' expansion 

Theory announced to  date on the uniform validity of Daniels' expansion falls into two 

categories, i.e., results on uniform validity of the saddlepoint approximation as % approaches 

the end points of its domain, and results on uniform validity of the entire series in some given 

compact subset of the domain. Daniels (1954) studied four classes of densities for uniform 

validity in the tail. Jensen (1988) further studied these four classes. These two papers 

showed that for the four classes of continuous densities, the saddlepoint approximation 

is uniformly valid as 5 approaches the end points. The results in the latter category were 

presented by Barndorff-Nielsen and Cox (1979), in which they gave a condition and outlined 

a proof for the uniform validity of the Edgeworth expansion for a parametric family of 

densities in any compact subset of the parameter space. This result led to  the uniform 

validity of Daniels' series in any compact subset in the parameter space. These results, 



Chapter 3. The Relationship Between the Two Expansions 3 1 

however, appear to be valid only for the exponential families considered in their paper. 

The outlined proof in their paper and that in Jensen (1988) for the uniform validity of 

the saddlepoint approximation both use Feller's (1966) method for verifying the uniform 

validity of the Edgeworth expansion. Jensen (1991) gave a set of three conditions under 

which Daniels' series is uniformly valid in a subset of the parameter space. Note that the 

parameter that we have been referring to  is the saddlepoint, T. Uniformity results in terms 

of this parameter may be translated into results in terms o f f  using the relation 3 = K ~ T ) .  

In this section, we prove two theorems concerning the uniform validity of Daniels' series 

on compact sets. The first theorem (Theorem 3.2) identifies two conditions under which the 

series is uniformly valid. This theorem is similar to  the univariate version of the corollary 

in the appendix in Barndorff-Nielsen and Cox (1979), but it uses stronger conditions than 

the corollary and its validity is not restricted to  a certain type of densities. The proof is 

also based on Feller's method for verifying the uniform validity of Edgeworth expansion, 

and the theorem resembles the fundamental lemma (1) in Jensen (1991). Nevertheless, we 

were unaware of Jensen's (1991) result at the time we proved the theorem, and our proof 

is also somewhat different from that outlined in Jensen (1991, 1988). There has been no 

detailed proof in the literature so far. We thus include our proof here for the completeness 

of our discussion. The second theorem (Theorem 3.3) shows that Daniels' series is, for all 

practical purposes, always uniformly valid.. 

Theorem 3.2. Let X be the mean of n i.i.d. observations with underlying density function 

f (x) ,  and Dz = [xl, x2] be a bounded closed interval in the domain of 3. If (i) there exist 

y > 0 and K. > 0 such that for f E DE, 

where 
e [~(?+i~)-(f'+iy)z] 

"(Y) = e[~(f')-f'z] 7 (3.4.23) 

and (ii) for any yo > 0, there exists a po E ( 0 , l )  such that for all 3 E D,, I&(y)l < po 

when 1 yJ > yo, then Daniels' expansion (2.2.23) is uniformly valid in DE. 

Function &(y) is the characteristic function corresponding to the conjugate density 
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where c(2) = e-K(f)+f'. It arises naturally in Daniels' second derivation of the saddlepoint 

expansion (2.2.23) (Section 4 in Daniels, 1954) which establishes the asymptotic property of 

the expansion through that of the Edgeworth expansion. Using the relationship K ~ T )  = f ,  

one can show that' the mean and variance of a random variable, U,, whose density is h,(u), 

are zero and K"(T), respectively. To prove Theorem 3.2, we need the following lemma. 

Lemma 3.4. For any given r ,  the rth absolute moment of the mndom variable U,, M,(f) = 

E(IU,Ir), is bounded in D,. 

Proof: 

Let (I, u) be the largest open interval in which the moment generating function M(t) exists. 

At a saddlepoint T, K ~ T )  > 0 (Daniels, 1954). Thus 3 = K1(5?) is a strictly increasing 

function of T. Since K ~ T )  is also continuous, it has a continuous and strictly increasing 

inverse function. Hence, the set of saddlepoints that correspond to  the 3's in [xl, x2] form 

an interval [TI, T2] c (1, u), where = T(xl), and T2 = ~ ( x 2 ) .  For each T E (0, 1 , .  . .) 

Choose 6 > 0 such that TI - 6 and T~ + 6 are in (I, u), and choose C > 0 such that for all 
r f y  

2 in [zl ,  1.21, ly - 21 e < eth+')y when y > C, and 1 y - flreiy < e@l-')y when y < -C. 

Then 

Note that the last two terms in (3.4.24) are bounded by M ( T ~  -6) and M ( T z + ~ )  respectively, 

which are both finite constants since - 6 and f2 + 6 are in (1, u). Furthermore, c(x)ewT" 

and ly - 21'efy are continuous and bounded in ((2, y) : 2 E [x1,22], and lyl < C). Thus 

M,(f ) is bounded in D" for any given T .  # 

The above proof may be easily modified to show that Mr(Z) is actually continuous in D,. 

We also need the following inequality concerning the Taylor expansion of a characteristic 

function. Assuming that M(r+l) for some distribution with characteristic function p(t) is 
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finite, then the following inequality is valid 

See Feller (1966, p. 487) for a proof. 

Proof of Theorem 3.2: 

The density function fn(Z) may be expressed in terms of & as (Section 4 in Daniels, 1954) 

where a (5)  = JKM(T) .  The basic idea is to  write the integral in (3.4.26) as the sum of 

two integrals, and then to  show that one of these two integrals has an asymptotic approxi- 

mation in powers of l l n  that is uniformly valid with respect to  all 3 E Dz while the other 

integral converges to zero uniformly faster than any power of l l n  as n goes to  infinity. The 

asymptotic approximation multiplied by gn ( f )  then forms a uniformly valid expansion for 

the density fn(5).  This approximation must coincide with Daniels' expansion due to the 

uniqueness of asymptotic expansions with respect to  a given asymptotic sequence. We can 

thus conclude that Daniels' expansion is uniformly valid. 

Define function &(t ) by the following relation 

1 2 -  2 &(t) = log h ( t )  + -0 ( z ) t  . (3.4.27) 
2 

To obtain the Taylor approximation for &(t) up to  and including the term of degree T 

(T  > 3) near t = 0, we note that, by (3.4.25) and the fact that &(O) = E(Uz) = 0, &(t) 

has Taylor approximation 

where coefficients for terms of even powers are real. By Lemma 3.4 the absolute moments 

of the family of distributions indexed by 5,  UE, where 2 E DE are bounded. Thus (3.4.25) 

implies that the O(ltl('+')) term is uniformly valid for all g5z(t). For Izl < 1, 
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Let 

r ! 

Since ~ P ) ( O )  < Mk(3), by Lemma 3.4, there exists a constant C < m such that 14Lk'(0)1 < I I 
C for k = 1,2, .  . ., r. Thus z(3) < 1 for all 3 if It1 is small. Equations (3.4.27), (3.4.28) and 

(3.4.29) can then be used to obtain a power expansion for &(t) that is valid near t = 0 

for all 3. This expansion has only terms with power 3 or higher, and coefficients for terms 

of even powers are real. More specifically, let p in (3.4.28) be sufficiently large, say p > T .  

Then there exists a polynomial of degree r - 2, +g)(t), such that $g)(0) = 0 and 

1 2 -  2 -  2 (r) &(t) = log4?(t) + 20 (x)t - t (li (t) + ~ ( l t l ( ~ + ' ) )  as t + 0, (3.4.30) 

where the term 0(ltl('+l)) is uniform with respect to 3. Note that only the first term, z, in 

the right-hand side of (3.4.28) will contribute a t3 to ql(t), and, from (3.4.29), the coefficient 

of this term is 4f1(0)/6. Consequently, the coefficient of t in +$)(t) is also 4f1(0)/6. We 

shall use this fact later on in this proof. We now put 

Then pz(t) is a polynomial in t whose coefficients depend on n and the first T moments of 

U?. The inversion formula (3.4.26) can now be expressed as 

l o o  t 
fn(5) = gn(3)- J d z  -00 

e-k t2  exp {n+? ( ) } dt Wfi 

For p,(t), coefficients for terms with odd powers have 1/+ to some odd powers as factors, 

and coefficients for terms with even powers are real and have 1 / f i  to  some even powers 

as factors. If m is an odd integer, then tm exp{-$t2) is an odd function and integrates to  

zero over (-oo, oo). Thus the result of the first integral in (3.4.31) may be written as a 

polynomial in l l n  whose coefficients are all real and can be expressed in terms of the first 

T moments of Ujr. The order of this polynomial in l / n  is ( r  - 2)2/2 if r is an even number, 

and is the biggest in teer  smaller than ( r  - 2)2/2 if r is an odd number. 
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Note that  since T 1 3, (T - 2)2/2 2 ~ / 2  - 1. If the second integral is 0(1/n'/~-'), then the 

sum of those terms of the polynomial with degree less than or equal t o  r / 2  - 1 may be used 

as an asymptotic approximation for the integral in (3.4.26). We now show that the second 

integral is indeed 0(1/n'/~-') uniformly in Df. Specifically, we show that there is a suitably 

small 6 > 0 such that  the contribution to  the integral from the interval It1 5 6a(f )fi is 

uniformly 0(1/n'/~-'), and that from It1 > 6a(ii)Jn is uniformly O(pn)  for some p < 1. 

To evaluate the contribution from the interval, It1 5 6a(f),/E, we use the inequality, 

where y > max{(al, 1/31}. In the present discussion, a and P are 

respectively. Since a(?) is positive and bounded away from zero for f E Df,  for any 6 > 0, 

by (3.4.30), there exists 6 > 0 such that for It[ < 6, 

uniformly in 2. Thus for It1 5 6o( f ) f i  or Itl/(a(ii)fl < 6, we have la - PI < ~ l t l ~ / n ~ / ~ - '  

uniformly. The coefficient o f t  in '$J!)(t) being q5r1(0)/6 and bounded, we can suppose that 

for It1 < 6, 
1 

I+F)(t)l < altl < -a2(%) 
4 

(3.4.34) 

uniformly, provided a > 1 + 1q5r)(0)1 for all 3. Thus /PI < t2/4. Also, we require that  for 

Itl < 6, 
1 2 -  2 

I k ( t ) l  < (x)t , (3.4.35) 

so that  la1 < t2/4. It then follows from (3.4.32) that for It1 < 6a(f) f i ,  the absolute value 

of the integrand for the second integral in (3.4.31) is less than 
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where to  obtain the last term in the square brackets, we have used the bound altl for ~ ~ g ' ( t ) l  

given by (3.4.34). Since a (3 )  is bounded away from zero, the integral of B,( t )  over (-00, oo) 

is uniformly of order ~ ( c n - ' / ~ + ' )  for all f in DE. Furthermore, since c is arbitrary, we can 

write this order as ~ ( n - ' / ~ + ' ) .  Thus the contribution t o  the second integral in (3.4.31) from 

the interval It1 5 S a ( i ) f i  is indeed uniformly ~ ( n - ' / ~ + ' )  with respect to  f E D,. 

The contribution from the interval It1 > 6 a ( f ) f i  may be evaluated using conditions 

(i) and (ii) stated in the theorem. By (ii) for y > 6 there exists a p6 > 0 such that 

14e(y)J < P6 < 1 for f E DE. Thus this contribution is bounded by 

t 
P Jm -00 143 rdt + / Itl>6a(r)fi e-kt' [ l  + pi.(t)] dt. 

By condition (i) the first term in (3.4.37) is bounded by p:-'~, which tends to  zero more 

rapidly than any power of l l n .  Using integration by parts, one can show that  the second 

term is dominated by e ~ ~ { - $ 6 ~ a ~ ( i ) n ) ,  which approaches zero uniformly in 3 ,  faster than 

any power of l l n .  

It follows that  the second integral in (3.4.31) is uniformly ~(n- ' /~+ ' ) .  Let k be the 

largest integer smaller than or equal to  r / 2  - 1, and let the el's be the coefficients of the 

polynomial in l / n  resulting from the first integral. Then we can write (3.4.31) as 

Note that the term o( l /nk)  does not just represent the value of the second integral. It 

represents the sum of this value and terms of the polynomial that do not appear in (3.4.38). 

The el's are functions of i. Specifically, they are fractions with a (%)  in their denominators 

and &(o) (i = 1 , .  . . , T) in their numerators. Thus they are bounded for i E D,. It follows 

that the contribution t o  the error term o( l /nk)  from the polynomial, i.e., ck+l/nk+' + 
ck+2/nk+2 + ., is uniformly o ( l /nk)  for f E Di;. This and the fact that the second integral 

is uniformly o(n-'I2+') imply that the o( l /nk)  in (3.4.38) is uniformly valid in DE. 

By the uniqueness of asymptotic expansion with respect t o  the asymptotic sequence 

{ l /n l ) ,  The asymptotic approximation (3.4.38) is that  of Daniels' expansion (2.2.23) trun- 

cated a t  k. This implies that the truncated Daniels' expansion is uniformly valid in D,. By 

letting T = 3,4, . . ., we conclude that the entire Daniels' expansion is uniformly valid. # 
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We now briefly comment on the method used in the above proof. The method offers 

an alternative to the method of steepest descents for showing the pointwise validity of the 

saddlepoint expansion. When Dz degenerates into a single point, the second condition of 

the theorem is always true, and the first condition is equivalent to the integrability of the 

complex moment generating function discussed in Section 2.2. We shall further comment 

on this condition at  the end of this section. The advantage of this method compared to  

the method of steepest descents is that it may be used to  prove the uniform validity of the 

saddlepoint expansion on bounded closed intervals as we have shown. Note that we did not 

give expressions for the coefficients c; (i = 1,2, .  . .) in the proof. Since (3.4.38) is the same 

as Daniels' series (2.2.23), the c,'s are the same as the a;'s in (2.2.23). 

Also, under a stronger set of conditions, the method may be used to  prove uniform 

validity in the entire domain of Z. Specifically, if (1) for any given T, M,(Z) is bounded, 

(2) &!(0) = a2(3) is bounded away from zero, and (3) the two conditions stated in the 

theorem are valid, throughout the domain, then the above proof may be adapted to  show 

that the saddlepoint expansion is uniformly valid throughout the domain. This is so because 

under these conditions, the coefficients of the polynomial in l / n  are all bounded throughout 

the domain and the second integral is uniformly of order o(n-'I2+'). Note that the set 

of sufficient conditions for uniform validity in Jensen (1991) includes only (1) and (3) but 

not (2). We do not have details of his proof. In order to  use the above proof without 

condition (2), one would have to look into the asymptotic behavior of the $~ ) (o ) ' s ,  e.g., 

the relative speed at  which 4;(0) and q5g1(0) (T > 2) converge to zero, to  establish the 

boundedness of the coefficients and to  eliminate the 4 5 )  term in (3.4.36). Even when these 

can be accomplished, the above proof only implies the uniform validity for those Z such that 

a(?) = O(l/ne)  for some 8 < 112. This last point is clear from the discussion on (3.4.37). 

We now prove the following theorem which shows that Daniels' series is in general uni- 

formly valid in a bounded closed interval. 

Theorem 3.3. Let f(x) be a continuous densaty function defined on an interval with end 

points el and ez (el < e2). If lim,,,, f(x) = 0 when e; is infinity, and f (x) = O(le; -  XI-^) 

for some a < 1 when e, is finite for i = 1,2, then Daniels' series (2.2.23) as uniformly valid 

in any bounded closed interval, Dz = [xl, x2], inside the interval. 
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The conditions in this theorem imply that: (1) when the domain of f (x)  is an unbounded 

interval, for any given p > 0 f(x)  is bounded by /3 outside some bounded interval, and 

(2) for any p > 1 such that a p  < 1, f (x) E LP(R). In the case of the Gamma distribu- 

tion with density f (x )  = ~ - l / ~ e - " / r ( 1 / 2 ) ,  for example, el = 0, e2 = oo, a = 112 and 

lim,,,, f(x) = 0. We shall need the following inequality in our proof of the theorem: 

Hausdorff-Young Inequality: Let 1 < p 5 2 and cp be the Fourier transformation (char- 

acteristic function) o f f .  Iff E LP(R), then 

where l / p  + l /q  = 1. 

A proof of this inequality may be found in Sogge (1993) or Titchmarsh (1948). 

Proof  of Theo rem 3.3: 

We use the notation introduced in the proof for Lemma 3.4. We show that under conditions 

stated in Theorem 3.3, conditions (i) and (ii) in Theorem 3.2 are true. 

(i) Since [TI,%] c (1,u), there exists a p E (1,2] such that a p  < 1 and [ p ~ ~ , p f i ]  c ( 1 , ~ ) .  

For a constant /3 > 0, let L > 0 be such that f (y)  < p when Iyl > L. Then 

Choose Bl, B2 > 0 such that [ c ( ~ ) e - ~ ' ] ~  < B1, and ep'y < B2 for (3 ,y)  E ( ( 3 , ~ )  : i. E 

[x1,221, and Ivl < L ) ,  then 

M(PT) is continuous and thus bounded in p~ E [pfl, p ~ ~ ] .  Since a p  < 1, f (x) is in LP(R), 

thus J-iL f(y)Pdy is bounded. It follows that the left-hand side of (3.4.39) is bounded by 

some constant, say B3 0, that is independent of x. 
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By the Hausdorff-Young inequality, the characteristic function corresponding to  density 

hZ(u), &(u), satisfies 

1 
where y is given by l l p  + l l y  = 1. Letting K be 2 n B ~  and noting that y > 0, we obtain 

condition (i) in Theorem 3.2. 

(ii) 4 4 y )  may be rewritten as follows: 

$Z(Y) = 

Thus to prove (ii) it suffices to  show that for any yo > 0 there exist a po E (0 , l )  such that 

the ratio ~ ( y )  = IM(T + iy)/M(T)[ < po when lyl > yo for all 2 E [xl,x2]. 

Under the conditions stated in Theorem 3.3, the density function f(x)  is continuous 

and thus Theorem 2.1 gives the asymptotic behavior of M(z). Let pl be in (0 , l )  and 

6 = mints[~(zl~.~(z2~l{ M(T)). Since S > 0 and by Theorem 2.1 I M(T + i y)l + 0 uniformly 
as 1 yl + oo with respect to T E [ ~ ( x l ) ,  T(x2)], there exists yl > 0 such that for 1 yl > yl, 

I M ( T + ~ ~ ) / G (  < pl. Without loss of generality, we assume yo is in (0, yl). On the union of the 

two bounded, closed, rectangular regions given by {z : T E [ ~ ( x l  ), ~ ' ( x z ) ]  and 1 yl E [yo, yl]) 

in the complex plane, I M(T + iy)l < M(T), and r (  y) is a continuous function. Thus r(y) is 

bounded by a constant pz < 1. 

Let PO = max{pl,pz), then ~ ( y )  = I M ( T  + i y ) / ~ ( T ) ]  < po when lyl > yo for all 

T E [ T ( X ~ ) , T ( X ~ ) ] .  (ii) is thus proven. # 

Theorem 3.3 may be generalized to  densities with discontinuities. Specifically, the conditions 

may be replaced by that f (x) be almost piecewise continuous, bounded outside some finite 

interval, and be in LP(R) for some p > 1 without affecting the conclusion. 

The conditions stated in Theorem 3.3 are satisfied by commonly used continuous density 

functions with moment generating functions, including the four classes of density functions 

studied by Daniels (1954) and Jensen (1988) and all densities with closed bounded interval 

domains. This implies that the uniform validity of Daniels' expansion in any bounded closed 

interval is in general true. Note that to establish the relationship between Daniels' expansion 

and Lugannani anddice's expansion (Theorem 3.1) a t  a certain point 2 in the interior of 
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the domain, we only need the uniform validity of Daniels' expansion in a small bounded 

closed interval containing the 5. Since Theorem 3.3 holds for any bounded closed interval 

in the interior, together with Theorem 3.1, they imply that Daniels' series is the derivative 

of Lugannani and Rice's series everywhere in the interior of the domain. 

To conclude this section, we recall that to derive the saddlepoint expansion (Section 

2.2), we used the condition that I M(T)Iu is integrable for some u > 0. This condition is 

equivalent to  l&(y)lu be integrable for some u > 0. From the proof of Theorem 3.3, we see 

that such a condition is satisfied when conditions in Theorem 3.3 are met. 

3.5 Applications 

We discuss two applications of Theorem 3.1 and saddlepoints approximation for the density 

of standardized mean in this section. The first application establishes the derivative of a 

truncated Lugannani and Rice series as an asymptotic approximation to the density func- 

tion. The second gives an answer to Lugannani and Rice's conjecture that we described at  

the beginning of this chapter. The saddlepoints approximation for the standardized mean 

is based on the saddlepoint approximation for the density of the mean, and its relative error 

is also of order l l n .  We include this result in this section since it is an application of the 

uniform validity results discussed in this chapter. 

1. The derivative of a truncated Lugannani and Rice series as  an asymptotic approximation 

to the density function. 

We consider the two expansions for f in some interval Dz where conditions stated in Theo- 

rem 3.1 are satisfied. Denote the sum of the first m + 2 terms, including @(~n!), of (2.2.31) 

by Fim)(f  ), and the sum of the first m + I terms in (2.2.23) by fAm)(f), i.e., 

and 
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By differentiating F;~'(z), and then applying (3.2.6), we obtain 

~ F ; ~ ) ( Z )  m a, ( Ktl) i  db,,, 
da: 

it follows that 

Equations (3.5.41) and (3.5.43) imply that the derivative of F,(~)(%) is an asymptotic ap- 

proximation for fn(Z), and that its error is of the same order as that of f im)(f) .  

We give prominence to  the derivative of F;O)(Z) given below. 

We shall refer to (3.5.44) as the adjusted saddlepoint approximation, and the second term 

in the square brackets as the adjustment term. 

The advantage of the adjusted saddlepoint approximation is that it in general does not 

need to be numerically renormalized since F;')(z) generally approaches 011 when 3 ap- 

proaches the lower/upper end of its domain. However, it also raises the following concerns: 

(1) it could be negative when the adjustment term is greater than 1, and (2) the adjustment 

term may compromise the accuracy of the original saddlepoint approximation. Neverthe- 

less, our experience with the adjusted saddlepoint approximation has yet to  validate these 

concerns. The first problem can only emerge when F;O)(Z) is a decreasing function of 3 .  

We have not found any example where this happens. Based on examples that we looked at ,  

the adjusted saddlepoint approximation is actually more accurate than the original, and is 

often substantially more accurate near the mean. We now further illustrate this point with 

the following two examples. The distribution in the first example has unbounded domain, 

and that in the second example is bounded. 
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Example 3.1: Gamma(a, P) 

From (2.2.16), the saddlepoint approximation for the mean of a sample of size n is 

ncr ? na 
( 3  = ( )  e n  ( )  - 1  e - ~ z / P .  

The exact result is 

Example 3.2: Uniform[- l,1] 

The density function for the mean of n independent observations from this distribution is 

given by (Seal, 1951), 

where (z) = z for z 2 0, and (z) = 0 for z < 0. The cumulant generating function and its 

first two derivatives are 

The saddlepoint approximation is given by 

The following tables contain, along with the exact values, the values of the saddlepoint 

approximation (spa) and of the adjusted saddlepoint approximation (aspa). Table 1 is for 

the case where the underlying distribution is gamma with both parameters equal to 2, and a 

sample size of 3. Table 2 is for the case where the underlying distribution is uniform[-1, 11, 

and a sample size of 3. ,Renormalization, though it can be quite involved, will in general 
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Table 3.2: Approximations to  the density function for the mean of 5 
indevendent observations from a uniform[-1.11 distribution 

Table 3.1: Approximations to the density function for the mean of 3 
independent observations from a gamma(2,2) distribution 

- x 

spa 
aspa 
exact 

improve the accuracy of the saddlepoint approximation. The renormalized spa values for 

the uniform case may be found in Field and Ronchetti (1990), and are indeed more accurate 

than the unrenormalized ones. However, even compared with these renormalized values, 

aspa values are still more accurate. 

- x 
spa 
aspa 
exact 

When x is near the mean p, the individual terms making up the adjustment term are 

seen to be large. The adjustment term, as given in (3.5.44), is undefined at 3 = p where 

T = 0. One may thus be concerned with the accuracy of adjusted saddlepoint approximation 

near p. We now show that as 2 approaches p the adjustment term has a finite limit, and 

that this limit equals -a l /n ,  the second term in Daniels' expansion (2.2.23). Using identity 

(3.2.7), the adjustment term may be expressed in terms of a1 as 

0.5 
0.6133652 
0.6049278 
0.6049129 

As 2 approaches p,  T approaches 0 and, by (2.2.28), bl has a finite limit. Thus the right- 

hand side of (3.5.45) approaches -al/n. It follows that a t  if = p the adjusted saddlepoint 

0.1 
1.4461734 
1.4022376 
1.4021810 

approximation reduces to  

1.5 
0.3694524 
0.3644115 
0.3643613 

and in the neighborhood of p where T ( K " ) ~  bl = O(l/n) ,  it satisfies 

0.3 
0.841 1568 
0.8128860 
0.8121745 

4.5 
1.3673e-06 
1.3510e-06 
1.3484e-06 

2.5 
0.0117770 
0.0116238 
0.0116147 

0.5 
0.2628890 
0.2521337 
0.2522786 

3.5 
0.0001570 
0.0001551 
0.0001548 

0.7 
0.0340165 
0.0323275 
0.0329590 

0.9 
0.0004137 
0.0004034 
0.0004069 
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This means that near the mean the adjusted saddlepoint approximation is a second order 

approximation, and agrees with the examples where it is seen to  be substantially more 

accurate than the original saddlepoint approximation. 

The above derivation may be generalized to  show that, for any m, the derivative of 
(m) - F n  (2) is of smaller asymptotic error near the mean when compared with fLrn)(i?), and 

(m+l) that at  the mean it equals fn (3). This observation, however, does not constitute a 
reason for using the derivative of Fim)(Z) to approximate the density instead of fAm)(t). 

The approximation with a smaller asymptotic error is not necessarily more accurate for small 

and moderate sample sizes. Also, with asymptotic approximations of any order available, 

other considerations, such as the simplicity of the formula and the actual accuracy observed 

through numerical examples, usually take precedence over the order of asymptotic error. 

Nevertheless, for computing numerical approximations of the density, we recommend 

the adjusted saddlepoint approximation due to the advantage and accuracy we discussed 

earlier. When asymptotic approximations to both Fn(Z) and f,(Z) are sought, the adjusted 

saddlepoint approximation is a particularly attractive alternative to  the saddlepoint approx- 

imation since the corresponding approximation to Fn(Z), Fi0)(3), is easily available. 

2 .  Lugannani and Rice's conjecture. 

Lugannani and Rice's conjecture states: "the integration of Daniels' series and our series for 

Qn(Z) both give approximations to  Qn(x) that are in error by the same order of magnitude". 

We now examine this conjecture in a simple setting where there is a saddlepoint for every 
( possible i? value, and Fnm'(Z) approaches 011 when 3 approaches the lower/upper end point 

of its domain. Since, by (2.2.31), 

where O(l/nmc!) is uniform over the domain, the asymptotic behavior of Fim)(Z) with 

respect to 3 may be determined through (3.5.46) by examining that of W .  When /w(Z)l  
1 

approaches infinity at  the lower/upper end point, d ( ~ n 5 )  approaches 0. Thus there exists 

an no such that when n > no the right-hand side of (3.5.46) approaches 0. Since Fn(5) 

approaches 01 1, (3.5.46) implies that F L ~ ) ( z )  approaches 01 1. 
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In light of (3.5.46), the conjecture may be formulated in terms of Fn(3) as 

Fn(3) - ly fAm)(y)dy = q5(Cj/nt)0(l/nm+f ), (3.5.47) 

where sl is the lower end of the domain, and the constants associated with the symbol 0 

in (3.5.46) and that in (3.5.47) may be different. We note that Lugannani and Rice (1980) 

are not specific about which truncated versions of their expansion for Q,(3) and Daniels' 

expansion for fn(3) the conjecture refers to. The numerical example prior to the conjecture 
(1) - - in that paper compares Q. (2) (- 1 - Fi1)(3)) with integrated fP'(3). The formulation 

(3.5.47) implies that ~ i ~ ' ( 3 )  is to  be compared with integrated fAm)(3). We choose to do 

so because it is most meaningful to compare approximations formed with the same number 

of terms (m) from the asymptotic components of the two expansions in terms of their orders 

of asymptotic error. This formulation is somewhat subjective but the subjectivity is not 

critical to  our discussion. Our main purpose is to  demonstrate the use of the theorem in 

answering this conjecture. Should the conjecture be formulated differently, the theorem is 

still applicable, although the conclusion may be different. 

In order to answer the conjecture, we need to first express the difference between F,(z) 

and integrated fim)(3) in terms of quantities whose asymptotic orders can be evaluated. To 

see how this may be achieved, we rewrite the derivative of F ; ~ ) ( ~ ) ,  given by (3.5.41), at a 

point y in the domain as 

where T = T(y) is the saddlepoint corresponding to  y and W = sgn(T){2[TK1(T) - 

K(T)]}:. By integrating, from q to 3,  both sides of (3.5.48), we obtain 

where 
f 1 db, 

R L ~ ) ( ~ )  = JT(.[) 9(Wni)&T- 

Equations (3.5.46) and (3.5.49) lead to  the difference between Fn(3) and integrated /im'(3) 
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Laplace's method for integrals with large parameters (see, e.g., Murray, 1974) may now 

be used to  obtain the asymptotic order of R L ~ ) ( ~ ) .  The derivative of TKt(T)  - K(T)  

is TKU(T), where Ktt(T) is positive. Thus TKt(T)  - K(T)  is monotonely decreasing for 

T < 0 and monotonely increasing for T > 0. At T = 0, it has its minimum 0. It follows 

that function - w ~ ( T )  has its global maximum at T = 0, and is monotonely increasing for 

T < 0 and monotonely decreasing for T > 0. The integral in the right-hand side of (3.5.50) 

can thus be expanded by using Laplace's method at  T = 0 when T 2 0 (or 3 > p),  and at 

T when T < 0 (or Z < p). This gives 

Equations (3.3.51) and (3.5.52) then imply 

For 3 > p, Fn(3) may be more accurately approximated by subtracting from 1 the integral 

of fLm)(y) over (3, su) ,  where su is the upper end of the domain. By essentially repeating 

the above procedure, we obtain 

It follows from (3.5.53) and (3.5.54) that for 3 # p, the smallest error achievable by using 

integrated truncated Daniels7 series f!im)(y) to approximate Fn(3) is + ( ~ n t ) ~ ( l / n ~ +  i), 
the same as that of truncated Lugannini and Rice's FAm)(y). At the mean, it is O(l/nm+'), 

but that of Lugannani and Rice's is O(l /nmf f ). Thus Lugannani and Rice's conjecture, as 

formulated by (3.5.47), is correct everywhere, except at the mean. 

3. Saddlepoints expansion for the density of a standardized mean. 

Consider the standardized mean, Zn, given by 

x - p  zn = - 
a l f i  ' 

where p and a are the mean and standard deviation of X, respectively. For simplicity of 

presentation, we shall write a realization of Zn as z rather than z,. The density, fz,(z), has 
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Edgeworth expansion, which shows that the relative error of approximating this density with 

that of the standard normal, $(z), is in general of order I/&. We now use the uniform 

validity of the saddlepoint expansion in a small neighborhood of the mean to develop a 

saddlepoints expansion for fzn (2) whose relative error is of order l l n .  The reason for using 

the term "saddlepoints expansion" will become apparent later. 

Using (3.5.55) we can express Z as a function of z and n. We have 

u d ~ ( z , n )  a 
Z(Z, n) = -z + p, and - -  - 

fi dz fi. 
Thus the fzn(z) may be expressed in terms of fn( i )  as 

u 
f d z )  = -fn(+, 4 ) .  f i  

Since fzn(z) and fn(3(z,n)) only differ by a known factor a/&, an approximation to 

fn(Z(z, n))  multiplied by the factor may be used as an approximation to fi,(z). Further- 

more, the relative errors of these two approximations are equal. 

For any fixed z, Z(z, n) changes with n and is increasingly close to p as n gets larger. If 

(2.2.23) is uniformly valid in some neighborhood of p, i.e., the relative error for using the 

sum of the first r + 1 terms of the expansion to approximate fn(3) is uniformly of order 

0 (l/nr+') in that neighborhood, then fi,(z) has expansion 

where, to recognize their dependence on z and n, we write the a,'s as a,(Z(z, n)). It should 

be noted that expansion (3.5.57) is not a power series expansion in PoincarC's sense in that 

the a,'s are not constants and will change with the large parameter n. Nevertheless, it is a 

meaningful expansion since the 0 (l/nr+') term in the expansion is indeed valid. In terms 

of PoincarC's general definition of asymptotic expansion, it is an expansion with respect to 

the asymptotic sequence {$,(n)) where 4,(n) = ar(Z(t, n))/nr and the coefficients of the 

4,(n)'s are all 1. The expansion may thus be written in terms of {q5,(n)) as 

Furthermore, the condition that (2.2.23) is uniformly valid in some neighborhood of p implies 

not only pointwise validity of (3.5.57), but also its uniform validity in any compact subset 
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on the real line. If (2.2.23) is uniformly valid throughout the domain of X, then (3.5.57) is 

also uniformly valid in the domain of Zn, although the domain expands with n when that 

of x is not the entire real line. 

It should also be noted that (3.5.56) may not be used the other way around to obtain 

an expansion for f n ( f )  through the Edgeworth expansion for fi,(z) unless 2 = p. This 

is because for any fixed f (# p ) ,  the value of z goes to infinity as n increases. Since 

the Edgeworth expansion for fin (z) is not uniformly valid on the entire real line, the above 

argument will not work. At f = p, the Edgeworth expansion for fi,(z) leads to an expansion 

for fn(5), which is the saddlepoint expansion for fn( f )  at  3 = p. 

We shall denote the leading term of (3.5.57) by hn(z) and call it the saddlepoints ap- 

proximation to fZn(z) as it involves a sequence of saddlepoints which converge to zero as n 

increases. Let Tn be the saddlepoint corresponding to f (z ,  n), the saddlepoints approxima- 

Since T n  + 0, it is not difficult to show that K"(T~) -+ u2 and ~ { K ( T ~ )  - ?Tn) - 
-z2/2. Thus hn(z) approaches 4(z). This agrees with the Edgeworth expansion that fin(*) 

approaches 4(z) as n approaches infinity. 

To demonstrate the accuracy of the saddlepoints approximation, consider the approxi- 

mation of the density of the standardized mean of n uniform[-1, 11 observations. The exact 
' 1 .  

density may be found in Field and Ronchetti (p. 17, 1990). We compare the saddlepoints 

Table 3.3: Relative errors of one and three-term Edgeworth 
expansions and saddlepoints approximation 

n 

n=5 

4 ( 4  
0.164e-01 
0.567e-01 
0.563e-01 
0.865e+01 
0.816e-02 

z 
0.50 
1.50 
2.50 
3.50 
0.50 

fe(z> 
0.611e-03 
0.544e-02 
0.817e-02 
0.973e+00 
0.293e-03 

hn(z) , 

0.313e-01 
0.366e-01 
0.419e-01 
0.167e-01 
0.154e-01 
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approximation with one-term and three-term Edgeworth expansions. The one-term Edge- 

worth expansion is the standard normal density, which for this particular case also has 

relative error of order l ln .  The three-term Edgeworth expansion, f,(z), has relative error 

of order l/n3I2 and is given by 

Table 3.3 contains the relative error of the three approximations at some equally spaced 

points for n = 5 and n = 10. fe(z) can produce negative approximations at  the tail and an 

asterisk in the fe(z) column indicates that the corresponding approximation is negative. 

Even when the sample size is as small as 5, the saddlepoints approximation's relative 

error is less than 5% throughout the domain, while the Edgeworth expansions are good in 

the middle but unacceptable at the tail. When sample size reaches 10, the three-term Edge- 

worth expansion starts to  produce negative approximations at  the tail. Further computation 

can show that when sample size is greater than 20, the relative error of the saddlepoints 

approximation is uniformly less than 1% while that for the Edgeworth expansions can be 

as large as 1015 at  the tail. 

Finally, Lugannani and Rice's expansion for Fn(Z) may be used to  derive a saddlepoints 

approximation for the cumulative distribution function of Zn since it is uniformly valid. 



Chapter 4 

General Asymptotic Expansions 

4.1 Introduction 

In this chapter, we introduce a family of formal expansions for density functions of one- 

dimensional continuous distributions that are asymptotically normal. The expansions are 

derived through a formal method which is analogous to the formal argument Daniels (1954) 

used to  demonstrate the asymptotic validity of the saddlepoint expansion. This family 

(1) provides a systematic framework for important expansions for densities of the sample 

mean and the standardized mean, such as the saddlepoint expansion and the Edgeworth 

expansion, and (2) leads to  natural generalizations of these expansions for distributions 

that are asymptotically normal but are not necessarily related to a sample mean. Much of 

the discussion in this chapter will be centered on these two points. The foundation of this 

method is the inversion formula given by Theorem 2.3: 

where Kn(T) is the cumulait generating function for X. with density fn(x), T = T + iy, 
and T E (1, u), which is the largest interval in which K,(T) exists. Inversion formula (4.1 .l) 
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expresses the density function as a contour integral for which an asymptotic expansion often 

exists. We assume X, is asymptotically normal as n approaches a certain limit, usually 

infinity, where n is not necessarily a sample size but merely an index or parameter that may 

assume values other than integers. Also, we assume that the interval (1, u) does not change 

with n. For simplicity of presentation, we shall use x to  denote a realization of X,. 

To highlight the difference between our approach and Charlier's (1906) approach for 

obtaining expansions for densities, we shall discuss the Charlier differential series and the 

Edgeworth expansion in Section 4.2. In Section 4.3, we introduce the formal method and 

derive the family of formal expansions for f,(x). In Section 4.4, we give a systematic account 

of known expansions related to the sample mean and the standardized mean in the context 

of this family of expansions. In Section 4.5, we study the validity of the family, in particular 

the validity of the saddlepoint approximation, for J~rgensen's exponential dispersion models. 

We conclude with some numerical examples in Section 4.6. 

4.2 Charlier differential series and Edgeworth expansion 

The Charlier differential series represents perhaps the first attempt to study expansions for 

density functions in a systematic manner. .It first appeared in Charlier (1906). In a review 

paper, Wallace (1958) discussed this series and gave some related historical notes. Discus- 

sions concerning this series may also be found in Kendall and Stuart (1969). To facilitate 

comparison between this series and other expansions, we give the following derivation which 

is slightly different from that shown by Wallace (1958). We use the inversion formula (4.1.1) 

as the starting point. Let f(s) be the density to  be expanded and g(x) be the developing 

function with respect to  which f(x)  is to  be expanded. Then let Kj(t) and K,(t) be the 

cumulant generating functions of the two distributions. Let K, and K: ( i  = 1,2, .  . .) be the 

cumulants of these two distributions, respectively. Then 

, 
- - L J~ exp {gcKr - % : ) 4 }  e ~ g ( ~ t i e - ~ t x  dt. 

2lr -00 T .  r= l  
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Assume all derivatives of g ( x )  vanish a t  the extremes of its domain. Then by the definition 

of K , ( i t )  and integration by parts, we have 

Using Fourier inversion, we obtain 

Thus from (4 .2 .2 )  we have formally 

where D denotes the differential operator, d l d x .  More generally, if K f ( x )  and K , ( x )  exist 

in some interval I ,  then f ( x )  may be formally expressed as 

where T E I. By 

we have 

An important special case arises when f ( x )  (= f n ( x ) )  is the density of the standardized 

mean of n i.i.d. observations, and g ( x )  is the density of the standard normal distribution, 

q5(x). In this case (4 .2 .3)  becomes 

Let A ,  ( r  = 1 , 2 , .  . .) be the standardized cumulants for the underlying distribution of the 

standardized mean, then rc, = ~ , / n ' f ~ - ' .  Substituting Ar/nrf2-' for rc, in (4 .2 .6 )  and 

rearranging terms according t o  the powers of l / f i ,  we obtain the Edgeworth expansion 
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where P,(-)  is a polynomial of degree 3(r  - 2 )  with coefficients depending on X 3 ,  X4, . . . , A t .  

The powers of the polynomial should be interpreted as derivatives, e.g., $ 2 ( x )  = D ~ ~ ( x ) .  

See Section 4.4 for further details. The expansion (4.2.7)  may be written as 

where H , ( x )  is the Hermite polynomial of order r .  Discussions concerning the validity of 

the Edgeworth expansion (4.2.8)  may be found in CramCr (1962) and Feller (1966). Here 

we present a result which may be found on page 506 in Feller (1966).  Note that this result 

does not require the existence of all cumulants of the underlying distribution. 

Theorem 4.1: Suppose the third moment of the underlying distribution exists and its 

chamcteristic function 11, satisfies that I1l,IV is integmble for some v 2 1, then f n ( x )  exists 

for n 2 Y and as n + oo 

uniformly in x .  

Note that equation (4.2.9)  is equivalent to  

at any fixed x .  The o ( l l J n 3  term in (4.2.10) denotes the relative error of the expansion and 

can be obtained from the error term in (4.2.9)  by dividing by 4 ( x ) .  A careful examination 

of Feller's proof can show that it is uniformly valid in any bounded subset of R, and is not 

uniformly valid in any unbounded subset. At the mean, x = 0 and H,(x)  = 0 if r is odd, 

and thus the Edgeworth expansion becomes an expansion in integer powers of l l n .  Because 

of this, as approximations to  fn (x ) ,  truncated versions of the Edgeworth expansion with 

even number of terms are asymptotically more accurate a t  the mean than anywhere else. 

4.3 General expansions for densities 

We now introduci the formal method and derive the family of expansions for density func- 

tions. Following-the development of the Edgeworth expansion, the method consists of two 
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steps, i.e., (1) expanding density functions in terms of quantities related to the cumulant 

generating functions, and (2) examining the asymptotic properties of these quantities, re- 

arranging terms in the expansions according to  their asymptotic orders, and thus obtaining 

formal asymptotic expansions. We shall illustrate the method through examples and high- 

light differences between it and the derivation of Charlier differential series. 

The expansion at  the saddlepoint 

We first define the generalized saddlepoint approximation and briefly discuss the saddle- 

point. Let Tn € (1, u) be the saddlepoint corresponding to x, i.e., the solution to equation 

Kh(T) - x = 0. We define gn(x), the generalized saddlepoint approximation for fn(x) as 

It should be noted that in general the saddlepoint corresponding to x may vary with n. The 

existence of a saddlepoint has been discussed by Daniels (1954). Since qualitative features 

of fn(x) such as whether it has a finite domain are usually available, Theorems 6.1 and 

6.2 concerning the existence of the saddlepoint in Daniels (1954) may be used to show the 

existence of a saddlepoint for each x value when fn(x) has finite domain. 

To obtain the expansion at  the saddlepoint, set r in (4.1.1) to  c. On the contour near 

T ~ ,  Kn(T) - Tx has Taylor expansion 

Equation (4.1.1) is then formally rewritten as 

Letting v = [K:(T~)]~/Z~ and x( . ,~)(T~) = K!?(T~)/[K:(T~)]~/~ for j = 3,4, .  . ., then 

(4.3.13) becomes 



Chapter 4. General Asymptotic Expansions 

Expanding the function exp (.) in the integrand, we get 

Integrating (4 .3 .15)  term-by-term and noting that odd moments of the standard normal 

distribution are zero, we obtain 

This is the expansion at the saddlepoint. 

0 The expansion at the origin 

Another special point for K , ( T )  - T x  is the origin at  which it is zero. Set r in (4 .1 .1 )  

to 0 .  On the contour near the origin, 

Since K h ( 0 )  = p, and K i ( 0 )  = a: ,  where p, and a: are the mean and variance of X,, 
(4 .3 .17)  may be written as 

With c = ( p n  - x ) / a i ,  equation (4 .1 .1)  may be rewritten as 

Letting v = u n ( y  - i e )  and h ( n , j ) ( 0 )  = K!?(O)/U: for j > 3 ,  we may write (4 .3 .19)  as 
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where 4, is the density of N(pn, a:), and for brevity we have written X(,,j)(O) as 

Expanding the function exp (.) in the integrand, we get 

Since [ i (v+~ca , ) ]~  = -i~~+3v~ca~+i3v(co~)~-(ca~)~, which has terms involving v2 and vO, 

thus unlike in (4.3.16) X(n,3) will not disappear after term-by-term integration. This term- 

by-term integration may be easily carried out by noting that +(v)vT is an entire function, 

and thus the contour of integration in (4.3.21) may be defarmed from Im(v)  = -can to 

Im(v)  = 0. The following identity may be used to simplify this integration 
00 L m(v)(iv - x ) ~ ~ v  = ( - l ) k ~ k ( x ) ,  (4.3.22) 

for k = 0,1,.  . ., where Hk(x) is the Hermite polynomial of degree k (see Appendix B for a 

proof). This identity and (4.3.21) lead to 

or equivalently 

This is the expansion for fn(x) at the origin. 

Expansions at other points 

At any fixed T E (1, u )  where K"(T) > 0, the argument demonstrated above may be used 

to derive an expansion for fn(z). The leading term in the Taylor expansion of Kn(T) - T z  

at T = T is in general a nonzero constant Kn(r )  - r z .  Thus the resulting expansion is 
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where 4(,,,)(z) is the density of the normal distribution with mean p, = Kk(r) and variance 

0: = K" ( T ), and A(,,,)(r) = K?)(~)/[K;(T)]'/~. This gives a family of expansions indexed 

by r ,  which includes the expansions at the saddlepoint and the origin. This completes the 

first step of the method. 

Compared with Charlier differential series, the family of expansions (4.3.25) is obtained 

without an explicit developing function g(x). The key difference between the method which 

led to  the family (4.3.25) and that which led to  Charlier series is that the method completes 

a square using the first and second order terms of the Taylor expansion of K,(T) - Tx 

and expands only exp(R3) before integration, where R3 is the sum of terms in the Taylor 

expansion with orders three and higher. An important consequence of this is that the family 

of expansions obtained are expansions based on the A(n,j)(r)'s, which usually have certain 

asymptotic properties with respect to  n if the X,'s are asymptotically normal. On the 

other hand, that for Charlier series calculates the Taylor expansion for Kf(T)  - K,(T) and 

expands exp{the entire expansion) before integration. Explicit expressions of the terms 

of the expansion are usually difficult to obtain. This makes it difficult to examine the 

asymptotic properties of these terms. 

Formal expansions based on the sequence {A(,,,)(.)) 

We now proceed with the second step of the method stated at  the beginning of this 

section. Expansions (4.3.16) and (4.3.25) are not particularly useful from an asymptotic 

expansion point of view in that they, like Charlier differential series, do not use informa- 

tion concerning the asymptotic properties of the distribution being expanded, and are not 

asymptotic expansions. To transform them into asymptotic expansions, we generalize the 

idea of Edgeworth, i.e., making use of the asymptotic properties of individual terms in the 

expansions. This involves examining the asymptotic orders of the A(,,,)(-)'s, and then rear- 

ranging terms in the curly brackets in (4.3.16) and (4.3.25) in ascending order according to  

the rates a t  which the A(,,,)(-)'s approach zero. The notation for the sequence, {A(,,,)(.)), 

is different from notation commonly used for asymptotic sequences. It may help to reduce 

the confusion created by this difference to  keep in mind that r is the index of the sequence, 

and that {A(,,,)(.)), when written in commonly used notation, is essentially {A,(n)). 

~xaminat ion bf the asymptotic orders of the A(,,,)(.)'s, though it involves calculating the 
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X(,,,)(.)'s and may be time consuming, is straightforward and will not be further commented 

on. In the following, we shall focus on rearranging terms in (4.3.16) and (4.3.25) in ascending 

order according to  the rates at which the X(,,,)(.)'s approach zero. In order to illustrate how 

to do it, we shall make some assumptions concerning the asymptotic orders of the X(,,,)(.)'s. 

We first consider the expansion at the saddlepoint (4.3.16) under certain assumptions, which 

are true when Xn is a sample mean. We assume that { x ( ~ , , ) ( T ~ ) } ~ ~  form an asymptotic 

sequence with respect to  n; i.e., X(n,,+l)(Tn) = o(X(,,,)(Tn)) as n approaches a certain 

limit, usually infinity, for i 2 2. In particular, to make it easy to compare this expansion 

at  the saddlepoint with the saddlepoint expansion for the sample mean, we assume that 

A ( ~ , ~ ) ( T ~ )  = o n 3 T n .  By arranging the terms in the curly brackets in (4.3.16) in 

ascending order according to the rates at which they approach zero, we have 

This is the genemlized saddlepoint expansion for fn(x). With more assumptions concerning 

the rates at which the X ( , , , ) ( T ~ ) ~ ~  approach zero, further terms in (4.3.26) may be given. 

To discuss the asymptotic properties of other members of the family (4.3.25), we also 

need to consider the Hermite polynomials that appear in the expansion. If the absolute value 

of their common argument, (pn-x)/an, goes to infinity when n goes to infinity, then since H k  

is a polynomial of order k, the reciprocals of these polynomials, i.e., l / H k  (k  = 3,4,.  . .), will 

form an asymptotic sequence with respect to  n. Thus (4.3.25) contains ratios of terms in two 

asymptotic sequences, and its asymptotic properties need careful examination. To avoid this 

complication, we focus on cases for which (pn - x)/an is bounded. In these cases, the relative 

rate at which terms in the curly bracket, such as X(,,,)(r)H3 and X(,,,)(r)H4, approach zero 

is determined by that of the X(,,,)(r)'s. Now assume that X(n,;+l)(~) = o(X(,,;)(r)) for i > 2. 

Then we may rewrite (4.3.25) as 

where pn = K ~ ( T )  and an = K:(r). In particular, at r = 0 we have 

1 
x = x {I + ~ ( ~ 3 )  [ (  - 3 ( I  + n 3  (4.3.28) 

'Jn 'Jn 

We shall refer to  q4.3.27) as the general expansion for fn(x), and (4.3.28) as the generalized 

Edgeworth expan5ion. The assumption that (x - pn)/an approaches a finite limit is usually 
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satisfied when the Xn's are standardized variables, e.g., the standardized mean of n i.i.d. 

observations. Note that all the assumptions made above are for illustrative purposes only. A 

{X,) may not satisfy these assumptions. In this case terms in the curly brackets of (4.3.16) 

and (4.3.25) should be rearranged accordingly, and the general expansions, the generalized 

saddlepoint and Edgeworth expansions will be different from those shown above. 

It is important to keep in mind that the generalized saddlepoint approximation and the 

general expansions we obtained this way are only formal asymptotic expansions for f,(x). 

Their validity still needs to be verified. Also, the generalized Edgeworth expansion can be 

valid for cases where only the first few cumulants exist, e.g., Theorem 4.1 on the Edgeworth 

expansion in Section 4.2. 

A common feature of the expansions discussed above is that the asymptotic sequences 

involved all have the same first term, 1. Thus the second terms of these sequences measure 

the asymptotic relative error for approximating fn(x) with the leading term of the expansion. 

The generalized saddlepoint and Edgeworth expansions as  special cases 

From the perspective of the family of expansions (4.3.27), these two expansions are 

special cases with the generalized Edgeworth expansion being the one derived at r = 0 

whose leading term is a normal density, and the generalized saddlepoint expansion being 

the one derived at the saddlepoint for which the leading term simplifies to ~X~{K,(T,) - 
T ~ x ) .  The latter usually has the smallest relative error for approximating f,(x) due to 

the disappearance of x(,,,)(T~). The generalized saddlepoint expansion may represent a 

collection of expansions in that it will assume a different member of the family for different 

values of n should the saddlepoint vary with n. 

Loosely speaking, the generalized Edgeworth expansion tells us the asymptotic distance 

between fn(x) and the normal densities, while the generalized saddlepoint expansion tells 

us the smallest asymptotic distance between f,(x) and the family. From this point of view, 

the generalized saddlepoint expansion is more suitable for approximating f,(x). 
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4.4 Expansions for the densities of the sample mean and 

standardized mean 

The general expansions are derived without assumptions on the X,'s beyond that they are 

asymptotically normal (under which the assumptions on the A(,,,)'s made above are usually 

true), and include expansions at  different T values. It is in this sense that we call them the 

general expansions. However, such general expansions are meaningful only if they simplify 

to  known results for special cases. We now show for the special cases of the sample mean 

and the standardized sample mean that the general expansions indeed coincide with known 

expansions. 

Expansions for the density of the sample mean 

It may be readily verified that when X, = W, the average of n independent copies of a 

random variable W, the generalized saddlepoint approximation (4.3.11) is the same as the 

saddlepoint approximation given by Daniels (1954). See (2.2.16). In this case, let K(T)  be 

the cumulant generating function of W, then Kn(T) = nK(T/n) .  Let T be the solution 

of K ~ T )  = x, then T~ = n ~ .  Furthermore, K,(T,) = ~ K ( T )  and K,N(T,) = K " ( T ) / ~ .  

Thus the generalized saddlepoint approximation (4.3.11) is the same as Daniels' saddlepoint 

approximation (2.2.16). 

To examine the asymptotic property of the generalized saddlepoint expansion (4.3.26), 

we first note that K?)(T,) = K(')(T)/~'-' for any r E N. It follows that A ( ~ , , ) ( T ~ )  = 

K ( ' ) ( T ) / [ ~ ' / ~ - ' ( K ' ' ( T ) ) ~ / ~ ]  for r 2 2. Denote K ( + ) ( T ) / ( K I ~ ( T ) ) ~ ~  by A,. It is not difficult 

which is a1 in Daniels' expansion (2.2.23). Further terms in expansion (4.3.26) may be 

constructed for this particular case and it can be shown that they are equal to the corre- 

sponding terms in (2.2.23). Thus the generalized saddlepoint expansion (4.3.26) coincides 

with Daniels' saddlepoint expansion (2.2.23). Hence it is a valid expansion for f,(?). 

It may also be easily verified using the same argument demonstrated above that the 

general expansion of the form(4.3.27) coincides with the expansion Daniels (1954) derived 

through the Edgeworth expansion at T .  See (4.3) in Section 4 in Daniels (1954). We shall 
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refer to  this (4.3) as D(4.3) '. Daniels (1954) stated that the family of expansions given by 

D(4.3) are asymptotic expansions, and in particular at r = 0 it reduces to  the Edgeworth 

series for f,(Z). This, however, is not accurate. The reason is that the Edgeworth expansion 

for the standardized variable Zu = ( U  - E(U))/(a,/,/Z) may not be used to obtain an 

asymptotic expansion for the density of u at anywhere except for E(U) (see the second 

paragraph on page 48 for a related discussion). The distribution of the random variable 

U described before D(4.3) has mean E(U) = Kt( r )  - 3, but D(4.3) was derived through 

the Edgeworth expansion for Z,, at u = 0, or Zu = -[Kt(r)  - i ] [ n / ~ " ( r ) ] ' / ~ .  Thus when 

K'(r) - Z # 0, expansions given by D(4.3) are not valid. More specifically, the coefficient 

A1 in D(4.3), for example, is in general 0(n3I2). Thus the second term in D(4.3), A1 /fi, 
is in general O(n). Hence D(4.3) cannot even be an asymptotic expansion in a formal sense. 

This illustrates the importance of the assumption that (p, - z)/a, approaches a finite limit 

as n approaches infinity that we made in arriving at (4.3.27). 

To conclude, for the case of sample mean only one member of the family, i.e., the 

generalized saddlepoint expansion, is a valid asymptotic expansion for the density. 

0 Expansions for  the density of the standardized mean 

(i) The Edgeworth expansion and the generalized Edgeworth expansion 

We now show that (4.3.28) coincides with the Edgeworth expansion (4.2.10). Let 

w - p  
X, = - 

a/+ ' 

where p and a are the mean and standard deviation of W. The cumulant generating function 

of X,, K,, is given by 
f i p  K,(T) = --T + n K  - ( 0 2 .  (4.4.30) a 

Denote the cumulants of W by K;  ( i  = 1,2, . . .). Then for any finite T, K,(T) has a Taylor 

expansion, provided that n is sufficiently large, i.e., 

'There is an error in the expressions for A1 and A2 in D(4.3). There should be a negative sign in front 
of each [ K 1 ( r )  - z]. 
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where X,(W) = n , / a r  are the standardized cumulants for W .  It is not difficult to see from 

(4 .4 .29)  and (4 .4 .31)  that pn = 0 ,  on = 1, K?)(o) = X 3 ( W ) / f i  = W ( W ) / ( 0 3 J i i ) ,  and 

K?' 1 ' ( 0 ) / ~ ~ ' ( 0 )  = O ( l / f i )  for i > 2 ,  where p 3 ( W )  is the third moment and cumulant of 

W .  It follows tha t  = K?)(o) for ( r  2 3 ) ,  and (4 .3 .28)  may be written as 

which coincides with the two-term Edgeworth expansion for f n ( x ) .  

The full Edgeworth expansion for the standardized mean is obtained by using the follow- 

ing version of the relation (4 .4 .31)  which expresses the characteristic function of X,, $, ( t ) ,  

Expanding the exp(.) term in (4.4.32) we obtain 

Since ( i t ) k e - t 2 / 2  has Fourier inversion Hk(x)q5(x) (see Appendix B for further discussion on 

H k ( x )  and qh(x)), then Fourier inversion of (4.4.33) gives 

The full Edgeworth expansion is then obtained by rearranging terms in (4 .4 .34)  in ascending 

powers of I/&. 

The right-hand side of (4.3.28) may also be further expanded with respect to the X(n ,k ) '~ .  

It is not difficult to show that the coefficient for, say is H2*/[2!(k!) ' ] ,  and so on. Since 

= ~ ~ ( ~ ) / ( f i ) ( ~ - ~ )  for k = 3 , 4 , .  . ., (4 .3 .24)  coincides with (4 .4 .34) .  The further 

expanded (4 .3 .28)  is obtained by rearranging terms in (4 .3 .24)  in ascending powers of 1/fi, 

and is thus the same as the Edgeworth expansion. 

(ii) The generalizqd saddlepoint expansion and saddlepoints expansion 

Recall from Chapter 3 that the saddlepoints expansion for the density of a standardized mean 
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was derived through the saddlepoint approximation for the mean, and its relative error is 

of the same order as that of the saddlepoint expansion provided the saddlepoint expansion 

is uniformly valid in some neighborhood of the mean. We now show that the saddlepoints 

expansion is actually the generalized saddlepoint expansion for the standardized mean. 

For a fixed x, T, is the solution of equation Kk(T) = x, i.e., from (4.4.30), 

Since x = ( 2 7 )  - p)f i /u ,  the above equation is equivalent to 

Let t, be the solution to  Kt(T)  = w, then by (4.4.35), t, = pn/(ufi) ,  and fn = t,ufi. 

Thus from (4.4.30) in terms of t,, K,(T,) is 

Furthermore, 

and 
1 

K;(T,) = 7 ~ t t ( t n ) .  

It follows from (4.4.36) and (4.4.37) that 

Equations (4.4.38) and (4.4.39) imply that the generalized saddlepoint approximation given 

by (4.3.11) is the same as the saddlepoints approximation (3.5.59), for which fn and i ( r ,  n) 

correspond to  t, and w in the present discussion. 

By repeating the procedure we followed to show the equivalence of the generalized sad- 

dlepoint expansion and the saddlepoint expansion, one can show that the entire generalized 

saddlepoint expansion (4.3.26) coincides with the saddlepoints expansion (3.5.57). 

(iii) Validity of other members in the family 
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Recall that  for the sample mean only the generalized saddlepoint approximation is valid. 

For the standardized mean, however, besides the generalized saddlepoint approximation and 

the generalized Edgeworth expansion, the following one-term expansion given by (4.3.27), 

is also valid. Although in this case the 0 ( X ( n , 3 ) ( ~ ) )  term in (4.4.40) and 0 ( X ( n , 4 ) ( ~ ) )  term in 

(4.3.27) may be easily further expanded, verification of the asymptotic validity of expansions 

with more terms than that in (4.4.40) is difficult. That is why we only consider (4.4.40) for 

which the validity of the family can be established through that of the Edgeworth expansion. 

We now prove the validity of (4.4.40). The following equation will be used repeatedly 

in the proof: 

where p, q E R and p > 0. This follows directly from the fact that  for 1x1 < 1, the function 

(1  + x)Q has Taylor expansion 

1 + C l X  + c2(x)x2, 

where cl is a constant and c2(x) is a function bounded in absolute value. By (4.4.31) we 

obtain the following asymptotic approximations for the derivatives of Kn(T):  (1) K n ( T )  = 

~ ~ / 2 + 0 ( n - ' l ~ ) ,  (2) Kk(T) = T +0(n- 'I2),  (3) K:(T) = 1 +0(n- 'I2),  and (4) K!?(T) = 

~ ( l / n ' / ~ - ' )  for r 2 3. Denote the leading term of the expansion (4.4.40) by l(,,,)(x). We 

have 

Then ( I ) ,  (2), (3) and (4.4.41) lead to  

Also, (3) and (4)jmply that  A i n t 3 ) ( r )  = ~ ( n - ' I 2 ) .  Thus (4.4.42) may be written as 
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By the Edgeworth expansion, fn(x) = $(x) [ I +  0(n-'I2)]. Thus 

This proves the validity of (4.4.40). 

The relative accuracy of l(,,,)(x) and one-term Edgeworth expansion, i.e., 4(x), is not 

clear from (4.4.40). But we expect that when T is close to  the saddlepoint, l(,,,)(x) will be 

more accurate. 

Some remarks 

To conclude this section, we note that the seemingly very different expansions, such as 

the Edgeworth expansion for the standardized mean and the saddlepoint expansion for the 

mean are in fact special cases of the same general expansion (4.3.27). This is, perhaps, not 

unexpected since the general expansion was derived at  an arbitrary T without using specific 

information on the form of the cumulant generating function. The general expansion (4.3.27) 

would not be of much interest to  us if its only use is as a unified treatment for the known 

expansions. However, it also identifies the basic asymptotic quantity, i.e., {X(,,,)(T)), based 

on which asymptotic expansions for distributions may be found, and has thus generalized the 

Edgeworth and saddlepoint expansions for which {A(,,,)(T)) happen to be, essentially, power 

series {n-'I2) and {n-'), respectively. Such generalization provides formal expansions 

(4.3.27) to  be rigorously examined which may turn out to be valid asymptotic expansions. 

The saddlepoints expansion and the expansions given by (4.4.40), for example, were first 

derived through the general expansion formula as formal expansions. They both turned out 

indeed to  be valid expansions, although neither is a power series expansion. 
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4.5 Saddlepoint expansion for J~rgensen's exponential dis- 

persion model 

In this section we examine another case, i.e., Jprrgensen's exponential dispersion model, 

for which the generalized saddlepoint expansion may be expressed as a power series. The 

asymptotics for such a model are with respect to a large parameter, which is in general not 

a sample size and is continuous. To be consistent with notation commonly used for this 

model, A will be used, for this section only, to  denote the large parameter instead of n. Also, 

T and o will be used for different purposes and this will be made clear in the discussion. 

Jprrgensen's (1987) exponential dispersion model for a one-dimensional continuous ran- 

dom variable Y is defined by the probability density function, 

for suitable functions a and K, where A E A R+, 1 E A and 8 E O R. This model is 

an important contribution to the theory of exponential families and has wide application in 

generalized linear regression analysis. Its moment generating function is 

The cumulant generating function, K(t ;  8, A), is thus A{rc(8 + t/A) - ~ ( 8 ) ) .  By repeatedly 

differentiating K(t ;  8, A) ,  one can obtain the ~ ( ' ) ( t ;  8, A)%. In particular, the ith cumulant, 

~ ~ ( 0 ,  A), for Y is 

rcj(8, A) = rc(')(8)A1-' i = 1,2,.  . . 

Define ~ ( 8 )  = ~ ' ( 8 )  and V(p) = rcl'(r-'(p)). Then the expectation of Y, p,  is given by 

and the variance is given by 

a 2 v ( ~ ) ,  

where V is called the variance- function for the model and a2 = 1 / A  is the dispersion 

parameter. The Bet R = r ( int0)  is called the mean domain. The smallest closed convex 

subset of R with measure 1 is called the convex support. When the mean domain coincides 
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with the convex support for a l l  values of A,  the model is said to be steep. In this section, we 

only work with y values in the mean domain of the model. When the model is steep such 

a restriction is unnecessary. It is, however, essential when the model is nonsteep since a y 

value outside the mean domain does not have a corresponding saddlepoint. For details on 

steepness and other properties of the model, see J~rgensen (1992). 

The model is closed with respect to A under addition, and this leads to the asymptotic 

normality of the model in the sense that 

Because of its asymptotic normality (4.5.46), asymptotics concerning the behavior of the 

model as a or 1 / A  approaches zero fit readily into the framework of the general expansion. 

The deviance, d(y, p), for a single observation from the model is 

where e is the value of 6 that maximizes y6 - 46) .  J~rgensen (1992, Theorem 3.3.1) 

introduced the saddlepoint approximation for the density (4.5.45), 

and demonstrated that the approximation converges to p(y; 6, A) as a approaches zero. 

In this section, we look at the entire saddlepoint expansion for the model. Specifically, 

we give the following extended version of Theorem 3.3.1 in J~rgensen (1992). 

Theorem 4.2:  Let g(A,s)(y) be the saddlepoint approximation given by (4.5.47), and e be 

such that r(e) = y. Then for a fixed 6, 

where the a;'s are functions of y for any T E N .  The expansion (4.5.48) is uniform in 

y in any compact subset if p(y; 6 , l )  satisfies the following conditions: (1 )  it is piecewise 

continuous in any finite interval, (2) it is bounded outside a finite interval, and (3) it 

belongs to Lq(R) for some q >. 1. 

The three conditions for the uniform validity are the generalized versions of conditions in 
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Theorem 3.3, which we had commented on near the end of Section 3.4. We now give a simple 

proof for the above theorem. By inverting the moment generating function we obtain 

where we have used a change of variable, s = t / X .  

We first consider the special case where X  only assumes integer values. In this case, 

(4.5.49) implies that the density p(y;  8 ,  A )  is that of the mean of X i.i.d. observations from the 

model p(y;  8 , l ) .  For this case, the pointwise validity and uniform validity of the saddlepoint 

expansion as defined by Daniels (1954) have been proved in Chapters 2 and 3. Thus the 

theorem will be proved upon showing that the saddlepoint approximation given by (4.5.47) 

coincides with that given by Daniels. Written in the present notation, Daniels' saddlepoint 

approximation is 

where so is the saddlepoint satisfying: K1(so ;  8 , l )  = y. To see (4.5.47) is indeed (4.5.50) ,  

note that K ( s ;  8 , l )  = l c ( O + s ) - ~ ( 8 ) .  Thus K 1 ( s ;  8 , l )  = lcl(B+s), and K U ( s ;  8 , l )  = lcU(8+s). 

The saddlepoint so satisfies lc1(8 + s )  = y,  and thus the equation 8 = 8 + so. It follows that 

and KU(so ,  8 , l )  = n1'(8+so) = l c l1(8)  = V ( y ) .  The theorem has thus been proved for integer 

values of A. 

Note that (4.5.47) and (4.5.50) are identical whether or not X is an integer. In general, X is 

not necessarily an integer. The theorem follows from the equivalence of (4.5.47) and (4.5.50) 

and the observation that the method of steepest descents, which was used by Daniels (1954) 

to show the pointwise validity of the saddlepoint expansion, does not use the information 

that n is an integer and may be applied to (4.5.49) to derive (4.5.48). The derivation is 
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literally identical to  that shown by Daniels (1954) except that the large parameter in this 

case is X instead of n. Consequently, the a,'s in (4.5.48) are the same as the a,'s in Daniels' 

saddlepoint expansion (2.2.23). As to the uniform validity of (4.5.48) on a compact set, again 

the proof for the uniform validity of Daniels' saddlepoint expansion that we demonstrated 

in Chapter 3 does not use the information that n is an integer, and is thus applicable to 

Theorem 4.2 as well. 

Expansion (4.5.48) is the generalized saddlepoint expansion for the model. This can be 

readily confirmed using similar arguments to those shown in the previous section. For the 

standardized variable (Y -p) /a ,  we also can show that the generalized Edgeworth expansion 

for both the density and the cumulative distribution function are valid. This indicates that 

the density of the standardized variable approaches that of the standard normal density with 

a relative error diminishing at the rate of O(a). Furthermore, the cumulative distribution 

function of the model has asymptotic expansions such as Lugannani and Rice's expansion 

and other expansions discussed in Daniels (1987). The general expansions given by (4.4.40) 

are all valid. 

Jorgensen (1992, Theorem 3.3.3) also discussed saddlepoint approximation for a class of 

dispersion models. Here we consider the following modified version of this theorem, which 

gives the order of the relative error of the approximation. 

Theorem 4.3: Consider the dispersion model for the random variable Y of the form 

where function t satisfies (2) t(y) has a global maximum at y = 0 in the sense that for any 

bounded neighborhood w  of 0, sup{t(y) : y 6 w )  < t(O), and (ii) there exists a neighborhood 

of y = 0, 6, in which ttt(y) exists and is continuous. Then 

and 
d 

x = ( Y  -P) /u  + N(0,V) for  a + 0. 

The leading term,, g(,,,)(y), in (4.5.52) is the saddlepoint approximation, 
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where d(y, p )  = 2{t(0) - t(y - p)) is the deviance, and V = -l/tl1(O). 

Proof: (a) We now use Laplace's method to prove (4.5.52). The key step is to obtain an 

asymptotic expansion for the quantity Although function a is not specified, 

such an expansion is possible due to the fact that p is a density function. We have 

where w is chosen to  be a bounded neighborhood of 0. By condition (i) there exists a 

positive constant p < 1 such that exp{t(y) - t(0)) < p for y 6 w.  The asymptotic order of 

the second integral in the curly brackets can thus be evaluated as the following: 

Owing to the existence of J et(y)dy, this integral is e x t ( 0 ) ~ ( p x ) .  By Laplace's method, the 

first integral is 

Since pA converges to zero faster than any power of 1/A, the second integral is asymptotically 

negligible. Thus equation (4.5.55) becomes 

or equivalently, 

a(a-2)et(0)/u2 = ( ~ T u ~ v ) - ' / ~  {I + 0(a2)}.  

The density function (4.5.51) is now expressed by using (4.5.56) as 
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which proves (4.5.52) .  

(b) To prove the asymptotic normality as stated in (4.5.53) ,  let the density of X be 

q ( x ;  p ,  a2) .  Then 

d y  - 2  t (uz ) /u2  
a ( x ;  p,  a2) = P ( ( ~ x  + c ) ,  p, a2Iz = o a ( u  )e (4.5.58) 

The distribution function of X ,  Q ( x ;  p ,  a 2 ) ,  is thus given by 

We now prove (4.5.53)  by showing that Q ( x ;  p ,  a2)  = @ ( x / f i ) .  Using (4.5.56) ,  we 

obtain the following expansion of Q ( x ;  p ,  a2)  

Consider the contribution to the integral in (4.5.59)  from the interval (-oo, b l a ) ,  where 

b < 0 and b E 6, the neighborhood of zero in which t ( y )  is twice continuously differentiable. 

Choose b close enough to zero such that the function t ( v )  - t(0) has a global maximum at 

v = b. Since it has a continuous second derivative in a neighborhood of b, by Laplace's 

method, we obtain 

Thus for the chosen b the contribution from (-00, b l a )  converges to zero faster than any 

power of a. It follows from (4.5.59)  and (4.5.60)  that the asymptotic normality is established 

if we can show that 
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Let a be small enough so that b < a x  and (6, a x )  c 6. Then the function t(av) - t(0) has a 

second order Taylor expansion for all a v  E (6, ox),  or equivalently for all v E (610, x). That 

is t(av) - t(0) = 02t"(<(v))v2/2 where I<(v)l < lovl for all v E (610, x). Thus 

Since I<(v)l < lavl < max{lbl, laxl), we are able to  choose b close enough to  zero and let a 

be small enough that so that I[(v)l is very close to zero for all v. Consequently, t"([(v)) is 

then very close to t"(0). We now use these observations to prove (4.5.61). 

Let u = sup{t"(y) : y E 6). Since t"(0) < 0 and t"(y) is continuous in 6, we may assume 

that -oo < u < 0. For any given 6 > 0, let c be such that 

It follows that if <(v) E 6, then 

et"(E(u))"2/2dv < euv2/2dv < €14, and 
C Lrn et11(0)u2/2dv < €14. 

Due to the continuity of t"(y) in 6 and the fact that I[(v)l < max{lbl, lax/),  we can choose 

b and a0 such that for a < ao, not only <(v) E 6, but also to  be so close to  0 that 

It follows that 

This proves (4.5.61). It follows that lim,,~ Q(x; p, a )  = @ ( ~ / f l ) -  # 

In a private communication, J~rgensen pointed out that it may be possible to  prove 

the asymptotic hormality by using the following result: if p, and p are density functions 

and p, -+ p, the; F, + F ,  where F, and F are the distribution functions corresponding 
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to  pn and p, respectively. We now show that this result provides a simpler proof than 

the one given above. To utilize this result, we first derive an asymptotic expansion for 

the density of X .  Recall that the saddlepoint expansion for the mean was used to obtain 

the saddlepoints expansion for the standardized mean in Chapter 3. Here we can use the 

saddlepoint expansion for the density of Y to obtain a saddlepoint expansion for that of X. 

Specifically, by (4.5.56)  and (4.5.58)  we have 

Let a be small enough so that a x  E 6. Then t ( a x )  - t ( 0 )  has a Taylor expansion 

where /<(x)I < a x .  Since < ( x )  -+ 0 and thus t M ( ( ( x ) )  + t"(0) as a + 0 ,  it follows from 

(4.5.63)  that 

q(x ;  a2)  -+ ( 2 7 r ~ ) - ' / ~ e - " ~ / ( ~ ~ )  as a -+ 0 .  

The result stated above then implies (4.5.53). To conclude this section, we note that the 

above two proofs for the asymptotic normality are rather qualitative in the sense that they 

do not give the order in which the distribution function of X converges to  that of N ( 0 ,  V ) .  

Should the analytic expression of t(y) be available, this order may be derived by looking 

into the order in which the left-hand side of (4.5.61) approaches its right-hand side. 

4.6 General expansions for distribution functions 

A method similar to  that discussed in Section 4.2 may be devised to  derive expansions for 

the cumulative distribution function of X, ,  F,(x) .  The base of the method is again an 

inversion formula for the distribution, 

where Q , ( z )  is the tail probability and T > 0 .  The expansions, however, become quite 

complicated due to the extra factor 1/T in the integrand and the restriction that T > 0 ,  and 

come in many different forms. Following the derivation of the expansion at  the origin in 

Section 4.2, suppose that we have obtained the Taylor expansion of K , ( T )  - T x  and so on, 
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and are about to  perform the term-by-term integration similar t o  that shown in (4.3.21). 

Two different families of expansions may be derived by expanding 1/T before the term- 

by-term integration and retaining it. Yet another family of expansions may be obtained by 

simply integrating the general expansions given by (4.3.27), which for the case of the sample 

mean includes Lugannani and Rice's expansion for the cumulative distribution function (see 

Chapter 3). The relationship amongst these families have yet t o  be studied in detail, but 

it can be shown that  for the simple case of the sample mean, they are all different. Thus it 

appears that  there does not exist a single formula such as (4.3.27) for expansions for densities 

that would include all known expansions for the cumulative distribution function as special 

cases. We shall therefore not discuss general expansions for the cumulative distribution 

function further. Instead, we look at the generalization of two frequently used formulas for 

the standardized mean and sample mean. 

a The generalized Edgeworth expansion 

Consider the case where p, = 0 and a, = 1. By formally integrating (4.3.28), we obtain 

the generalized Edgeworth expansion for a cumulative distribution function 

It may be easily verified that  (4.6.65) is the same as the Edgeworth expansion for a cu- 

mulative distribution function when X, is the standardized mean. Also, (4.6.65) can be 

valid when X, is not a standardized mean. Here we briefly consider the expansion for the 

cumulative distribution function of a U-statistic of degree 2. This statistic is defined by 

where the Xi's are i.i.d. and h is a symmetric function of two variables with E[h(X1, X2)] = 0 

and E[h2(Xl, X2)] < oo. The asymptotic normality of U, was proved by Hoeffding in 1948. 

Let a, be the standard deviation of U, and F,(x) be the cumulative distribution function 

of U,/o,, then under certain conditions Bickel, Gotze and van Zwet (1986) showed that 

where u 3 / f i  is an approximation with error o ( l /n )  t o  the third cumulant of Un/an, 

With X, = U,/a,, (4.6.67) then implies that (4.6.65) is indeed valid. Furthermore, it can 
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be shown that the fourth cumulant of Un/on, A(,,,), satisfies A(,,,) = 0(1/n) .  The right- 

hand side of (4.6.67) and thus that of (4.6.65) can be further expanded. The expansion in 

(4.6.67) is simpler than that in (4.6.65) in that it is defined in terms of a simpler asymptotic 

sequence {l/J;i} while (4.6.65) is defined in terms of {A(,,,)) ( r  2 3). From the present 

point of view, {A(,,,)) is a more natural asymptotic sequence upon which to  base asymptotic 

expansions. It is not clear, however, which one is more accurate for small and moderate 

sample sizes, and whether or not {A(,,,)) are easy to calculate. 

Lugannani and Rice's approximation 

Lugannani and Rice's approximation for the tail probability of a sample mean is given 

by (2.2.29). To approximate the tail probability for X, using this formula, we may treat 

X, as a mean of k i.i.d. random variables where k = 1. The formula then leads to  

1 
where tn = {~[T,x - K.(T,)])!, and tn = T~(K:(T,))T. Note that since (4.6.68) is not 

derived through the formal method, we do not have a formal order for its relative error. 

When X, is a sample mean, this approximation is very accurate, even for small sample 

sizes. We shall examine its accuracy for other cases in the next section. 

4.7 Numerical examples 

There is no definite relationship between the accuracy of an asymptotic expansion at a 

fixed value of the asymptotic factor and the order of its relative error, although a high 

order expansion is often more accurate. Thus an asymptotic expansion, regardless of its 

order, is considered useful only after a substantial amount of numerical evidence which 

indicates its accuracy is gathered. In this section, we examine the numerical accuracy of the 

generalized saddlepoint approximation for the density function (4.3.11) and Lugannani and 

Rice's approximation for the cumulative distribution function (4.6.68) for some examples. 

For brevity, we may also refer to  (4.3.11) as the saddlepoint approximation. 

Example 1: 
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Consider f,(z) with the following structure 

where 8, -, 0 as n + oo, and E(X) is a density function. By rewriting fn(x) as 

it is clear that f,(z) is asymptotically 4(x), and the error of using 4(x)  to approximate 

fn(x) is O(8,). Furthermore, X, converges to the standard normal in distribution. 

Let Mc(T) be the moment generating functions for ~ ( x ) ,  then 

1 
K,(T) = -T2 + log [ I +  8, ( e - f T 2 ~ , ( ~ )  - I)] . 

2 

Assume that e - f T 2 ~ & ( T )  is bounded, then K,(T) converges uniformly to  the cumulant 

generating function of the standard normal distribution, T2/2.  By Weierstrass' theorem 

on uniformly convergent sequences of analytic functions, the derivatives of K,(T) also con- 

verge to those of T2/2 uniformly. It can be shown that K K T )  = 0(1) ,  K?)(T) = O(6,) for 

r 2 3 and that the generalized saddlepoint approximation (4.3.11) is indeed an asymptotic 

approximation to f,(x). Also, A(,,,) = O(8,). Thus by (4.3.26) the formal order of the gen- 

eralized saddlepoint approximation is 0(8,), the same as that of the normal approximation. 

Is it still more accurate than 4(x) in this case? 

Consider fn(x) given by 

where I (x )  is 1 if x E [ - x / 2 ,  n/2], and is 0 otherwise. Table 4.1 contains the exact values 

of f,(x), the normal approximation, +(x), and values of the saddlepoint approximation, 

gn(x), for 8, = 0.5, 0.3, and 0.1. g,(x) here is not renormalized. Renormalization will in 

general improve the accuracy of saddlepoint approximation a t  those x values where fn(x) 

is relatively large, but may actually make the approximation at  the far tail less accurate. It 

is thus recommended for densities, such as those that have finite domain and are bounded 

away from zero, whose magnitudes are relatively homogeneous over their domain. 

When the value of the parameter 8, is large (8,  = 0.5), the normal approximation is 

poor. Its relative error is approximately 100% except at  the mean (x = 0). The saddlepoint 
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Table 4.1: Comparison of approximations to fn(x) with ~ ( x )  = I(x)cos(x)/2 

en  

81 = 0.5 

82 = 0.3 

approximation, on the other hand, is reasonably accurate near the mean, and is remarkably 

accurate at  the tail. As 8, decreases to 0.3 and 0.1, the normal approximation becomes 

more accurate, but is still consistently less accurate than the saddlepoint approximation. 

Table 4.2: Comparison of approximations to Q,(z) with ~ ( x )  = I(x)cos(x)/2 

x 

gl(x) 
exact - 

4(x) 

83 = 0.1 

. \ ,  

gz(x) 
exact 
d x ' l  

0 

3.98942e-01 
4.49471e-01 
3.98942e-01 

- - \  , , 
exact 1 4.09048e-01 
d x )  / 3.98942e-01 

81 = 0.5 

3.98942e-01 
4.29259e-01 
3.98942e-01 

e2 = 0.3 

Table 4.2 contains values of the tail probability Qn(x). Since fn(x) is symmetric, both 

Lugannani and Rice's formula and the normal approximation are trivially exact at the mean. 

At the tail, however, Lugannani and Rice's formula is consistently more accurate. Also, we 

note that Lugannani and Rice's formula is quite accurate even for 8, = 0.5 while normal 

approximation is not acceptable until 8, = 0.1. 

Example 2: 

4.85918e-02 
5.39909e-02 

L R1 (x) 
exact 

@(x) 
L R J x )  

83 = 0.1 

We consider approximating the distribution of the normalized sum of independent uni- 

form distributions discussed in Example (d) of Section 4 in Chapter VIII in Feller (1966). 

8 

2.52613e-15 
2.52613e- 15 
5.05227e-15 

2 

3.16164e-02 
2.69954e-02 
5.39909e-02 

4.07347e-02 
3.77936e-02 
5.39909e-02 

- \  , 
exact 
x 

1.20447e-04 
1.33830e-04 

- 

5.00000e-01 
5.00000e-01 
5.00000e-01 

5.00000e-01 

, , 

LR3(x) 
exact 
@(x) 

4 

6.60181e-05 
6.69151e-05 
1.33830e-04 

9.31173e-05 
9.36811e-05 
1.33830e-04 

5.00000e-01 
5.00000e-01 

6 

3.03786e-09 
3.03794e-09 
6.07588e-09 

5.46829e-09 
6.07588e-09 

1.18940e-02 
1.13750e-02 
2.27501e-02 

1.61569e-02 

5.00000e-01 
5.00000e-01 
5.00000e-01 

4.25307e-09 
4.25311e-09 
6.07588e-09 

4.54704e-15 
5.05227e-15 

1.59250e-02 
2.27501e-02 

3.53659e-15 
3.53659e-15 
5.05227e-15 

1.56423e-05 
1.58356e-05 
3.16712e-05 

2.20608e-05 

2.05219e-02 
2.04751e-02 
2.27501e-02 

2.21698e-05 
3.16712e-05 

4.93965e- 10 
4.93293e- 10 
9.86587e-10 

6.91107e-10 

2.84705e-05 
2.85041e-05 
3.16712e-05 

3.36432e- 16 
3.33066e- 16 
6.66133e-16 

4.46532e-16 
6.90611e-10 
9.86587e-10 

4.44089e-16 
6.66133e-16 

8.88121e-10 
8.87929e-10 
9.86587e-10 

5.56044e-16 
5.55111e-16 
6.66133e-16 
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Let Xk be uniformly distributed between -ak and ak. Then a; = a2/3. The normalized 

sum of the Xk7s, Wn, is given by 

where s; = a: + a; + . . . + 02. If a: + a: + . - + a; -+ oo and the ak's remain bounded, then 

the Lindeberg condition is satisfied, and the distribution of Wn approaches the standard 

normal. We now consider the special cases where ak = k for k = 1,2,.  . . ,5. The exact 

densities of C: X;, C: X;, and Ct X;, h3(x), h4(x), and h5(x), shown below are obtained 

through repeated convolution. The domains of these three densities are: [-6, 61, [-lo, 101 

and [- 15, 151, respectively. 

1 
h 3 ( ~ )  = - [ ( x  + 6 ) :  96 - ( X  + 4):  - ( X  + 2): + ( X  - 2): + (z - 4):  - (2 :  - 6): ]  , 

1 3 
- [ ( x  + 10): - ( x  + 8): - ( x  + 6):  + 2(x) :  - ( x  - 6):  - ( X  - 8 )+  h 4 ( x )  = 2304 

+ ( x  - lo ) : ]  1 

The densities of W3, W4 and Ws, f3(x), f4(x) and fs(x), can be obtained by using the 

relation fn(x) = snhn(snx), and have domains [-2.78,2.78], [-3.16,3.16] and [-%SO, 3.501, 

respectively. Note that for the present example, ak cannot always be allowed to be k due 

to the fact that the ak's need to  be bounded for the Lindeberg condition to  apply. Since 

we are only interested in the accuracy of the saddlepoint approximation for k = 3,4 and 5, 

we shall not specify the ak's for k > 5. Table 4.3 contains, along with the exact values of 

the density functions, the values of the renormalized saddlepoint approximation, and that 

of the normal approximation. The x values are approximately equally spaced points in the 

positive half of the domains. 

The saddlepoint approximation for the average of the mean of five uniform[-1, 11 obser- 

vations has been computed by Daniels (1954) and Field and Ronchetti (1990) to illustrate 

its remarkable accuracy for approximating the density of the sample mean. The maximum 

relative error of the renormalized saddlepoint approximation for the density h5 is about 3%, 

which is comparable to that reported by Field and Ronchetti (1990). 
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Table 4.3: Comparison of approximations to  density function fn(x) 

fn(x) 

f3(x) 

f4(x) 

x 

g d x )  
exact 

4(x) 
g4(x) 

f 5 ( ~ )  

Table 4.4 contains approximations to  the cumulative distribution function, F, obtained 

through Lugannani and Rice's formula, the exact values and the values of the normal ap- 

proximation. Although the normal approximation is reasonably accurate in all three cases, 

again Lugannani and Rice's formula consistently gives more accurate approximations. 

Table 4.4: Comparison of approximations to  cumulative distribution function Fn(x) 

Example 3: 

0.0000 

3.69101e-01 
3.60041e-01 
3.98942e-01 

3.75409e-01 - . , ,  

--, 1 

exact 

$(x) 

F n  (x) 

Fl(x) 

F2(x) 

F3(x) 

When the cumulant generating function of a discrete distribution is known, and this 

distribution is asymptotically normal, saddlepoint approximation may still be used to obtain 

a smoothed version of its probability mass function, see e.g., Daniels (1958). Lugannani and 

Rice's formula for the tail probability can also be used to  approximate its tail probability. 

Although these two approximations are now only formal approximations, numerical evidence 

1.34334e-01 
1.1541 1e-01 

9.80271e-02 

exact 

4(x) 
a d z )  

3.77719e-01 
3.98942e-01 

x 

F3(x) 
exact 

$(x) 
F4(x) 
exact 

$(x) 
F5(x) 
exact 

$(x) 

2.7700 

5.55914e-06 
5.84455e-06 
8.60520e-03 

7.71770e-08 

0.6925 

3.11023e-01 
3.09682e-01 
3.13888e-01 

2.94665e-01 
2.20003e-02 
2.44863e-02 

9.12319e-03 

3.73324e-01 
3.98942e-01 

3.79532e-01 

8.03275e-08 
2.79425e-03 

4.41027e-09 

2.92380e-01 
2.92580e-01 

2.77795e-01 
2.76990e-01 
2.73244e-01 

0.0000 

0.5000000 
0.5000000 
0.5000000 

0.5000000 
0.5000000 
0.5000000 

0.5000000 
0.5000000 
0.5000000 

1.3850 

1.76792e-01 
1.80745e-01 
1.52887e-01 

1.31653e-01 

2.0775 

4.95893e-02 
5.14500e-02 
4.61000e-02 

2.10719e-02 

9.94923e-02 
8.77960e-02 

2.7700 

1.0000000 
1.0000000 
0.9971972 

1.0000000 
1.0000000 
0.9991836 

1.0000000 
1.0000000 
0.9997493 

0.6925 

0.7416284 
0.7376693 
0.7556883 

0.7734851 
0.7712989 
0.7845054 

0.7990668 
0.7977302 
0.8078498 

9.42633e-03 
1.32337e-02 

4.55929e-09 
9.35772e-04 

1.3850 

0.9121156 
0.9090287 
0.9169738 

0.9416066 
0.9402327 
0.9423718 

0.9601499 
0.9594114 
0.9590705 

2.0775 

0.9881504 
0.9879917 
0.9811223 

0.9956302 
0.9955662 
0.9909239 

0.9982908 
0.9982675 
0.9954729 
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suggests that they remain accurate. We now consider the use of Lugannani and Rice's 

formula for approximating the significance level of a simple one-sample permutation test. 

Let xl ,  22,. . . , xn be a random sample from a population with distribution function 

F(x  - 0), where F(y)  is symmetric. The hypothesis of interest is: Ho: O = 80. Robinson 

(1982) considered a randomization test conditional on lal 1, la2[, . . . , lan[, where 

The test statistic, W,, is then 
n 

wn = C ~ i l a i l ,  
i=l 

where the B;'s are independent random variables taking values 1 and -1, each with proba- 

bility 112. The cumulant generating function of Wn is 

The observed value is wn = C:.l a, and the significance level for a one-sided test is 

P(Wn 2 w,). Note that the distribution of Wn is symmetric. Thus for a two-sided test, 

the significance level is 2P(Wn > w,). The exact value of the significance level is usually 

difficult to  obtain due to  the huge amount of computing needed to  calculate it. However, the 

cumulant generating function of Wn (4.7.75) is easily available, and under the null hypoth- 

esis, the distribution of Wn is asymptotically normal. See Lehmann (1988) and Robinson 

(1982) for discussion concerning the asymptotic normality of Wn. Lugannani and Rice's 

formula may thus be used to  approximate the significance level. Robinson (1982) derived 

the following two approximations for P(Wn > w,), 

and 

where Tn is the saddlepoint corresponds to the observed value w,, an = JK:(T,), X3(Tn) = 



Chapter 4. General Asymptotic Expansions 8 1 

Robinson called A the first saddlepoint approximation, and B the second saddlepoint ap- 

proximation. Since we have used the term "saddlepoint approximation" for the approxima- 

tion given by (4.3.11), to avoid confusion we shall refer to  A and B as Robinson's first and 

second approximations to the significance level, respectively. Robinson's approximations 

may be used in other situations where the distribution being approximated is asymptoti- 

cally normal. Daniels (1987) used them for the tail area of the mean of n i.i.d. observations, 

where their errors are 0(1/fi) and O( l l n ) ,  respectively. 

Table 4.5 compares Lugannani and Rice's formula (4.6.68) with Robinson's approxima- 

tions for two examples. The first example, also used by Robinson (1982), is taken from 

Fisher (1935, Section 21). The second example involves a set of twenty random numbers 

from a normal distribution with mean 0.3 and standard deviation 1. The data for both 

examples are listed in the end of this example. The hypothesis in both cases is Ho: go = 0. 

For the first example, the exact significance level is given by Robinson (1982). For the 

second example, we used a simulated significance level based on 10,000 simulated values of 

W,, where the a;% are calculated using the data set # 2 given below. 

Table 4.5: Approximations to  the significance level of 

The examples suggest that values given by Robinson's second approximation and Lugan- 

nani and Rice's formula differ very little. They both are very close to  the true significance 

level. Robinson's first approximation, however, is slightly less accurate, and gives values that 

are smaller than the exact/simulated significance levels. Robinson (1982) also discussed the 

use of his approximations in approximating the significance level of a two-sample permuta- 

tion test, as well as computing confidence intervals for 8. One may also use Lugannani and 

Rice's formula in place of his approximations to  perform these tasks. 

a one sample randomization test. 

Data set #1 used in Example 3: 

-67 -48 6 8 14 16 23 24 28 29 41.49 56 60 75 

Data set #2 used in Example 3: 

-1.0819158 0.2442755 0.9777535 0.2314501 -0.6371420 -1.0340618 1.4874597 

LR 
0.052 

Data Set 

#1 

n 
15 

exact/simulated 
0.052 

A 
0.048 

B 
0.052 
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Saddlepoint appmximation for L statistics 

Easton and Ronchetti (1986) discussed saddlepoint approximation in situations where 

exact moment generating functions are not available but Edgeworth expansions for densities 

up to and including the term of order l l n  are available. Their approach is to  approximate the 

moment generating function through the Edgeworth expansion, and use this approximation 

of the moment generating function to  replace the true unknown moment generating function 

for calculating the saddlepoint approximation. They seemed to  have obtained a remarkable 

result that the error of the saddlepoint approximation calculated this way is of order O(l /n)  

uniformly. See, also, Field and Ronchetti (1990). The authors were not specific about the 

type of error they discussed. Judging by the key formula (2.4) in Easton and Ronchetti 

(1986), this error should be the absolute error rather than the relative error due to  the 

presence of the absolute error of the Edgeworth expansion, Zn(x). For brevity, a formula in 

this paper, say (2.4), will be referred to  in the following as ER(2.4). 

Neither Easton and Ronchetti (1986) nor Field and Ronchetti (1990) contain a proof for 

the result. In attempting to construct a proof based on discussion in Easton and Ronchetti 

(1986), we encountered the following problem. To obtain the saddlepoint approximation, 

the integral in ER(2.4) needs to  be expanded at the saddlepoint. The cumulant generating 

function, R,(T),  however, is a function of n. Thus the expansion of the integral may not 

be obtained through the classical method of Laplace or steepest descents. Chaganty and 

Sethuraman (1986, Theorem 2.1) discussed a saddlepoint approximation type of expansion 

for an integral (see (2.12) in this paper) similar to  that in ER(2.4). The integral has, in 

the place of R,(T) in ER(2.4), a true cumulant generating function of complex variable. 

They used rather strong conditions to establish the validity of their expansion. We have not 

found a way to prove that Easton and Ronchetti's expansion to  the integral in ER(2.4), i.e., 

ER(2.6), is valid. Even if it is, only the order of the relative error (for using the expansion 

to approximate the integral) is available. It is not clear to  us how the order of this relative 

error and that of Zn(x) imply that the error of using ER(2.6) to  approximate f,(x) is of 

order O(l /n) ,  uniform for all x values. 
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Easton and Ronchetti (1986) applied their saddlepoint approximation to approximate 

distributions of some complicated L statistics. Their numerical results suggest that the sad- 

dlepoint approximation compares favorably to the normal approximation and the Edgeworth 

expansion. These numerical results have not only added further evidence to the remarkable 

accuracy of the saddlepoint approximation, but have also demonstrated its robustness in 

that a small variation of the approximation formula results in little loss in accuracy. 

Some comments based on the examples 

The examples that we examined suggest that the saddlepoint approximation and Lu- 

gannani and Rice's formula are reliable approximations, and are increasingly more accurate 

as the distributions being approximated get closer to  the normal distribution. 

These and other examples that we have examined indicate that the saddlepoint ap- 

proximation and Lugannani and Rice's formula give accurate numerical approximations to  

normal-like distributions. Davison and Hinkley (1988) applied saddlepoint approximation 

in a variety of resampling methods where the exact cumulant generating functions are not 

available. They used the cumulant generating function of the empirical distribution to  

compute the approximation and still obtained very accurate results. Field (1993) applied 

Lugannani and Rice's formula to approximate the tail probability of weighted chi-squares. 

Although a general asymptotic relationship between the error and the weights is not avail- 

able, he observed that the approximation is very accurate. All this evidence suggests that 

these two approximations are in general robust, and their excellent accuracies are intrinsic 

in that they are accurate so long as the distribution being approximated is normal-like, 

whatever the underlying cause. This calls for a wider use of these approximations in place 

of the normal approximation, (perhaps) even in situations where asymptotic analyses of 

their relative errors are not available. 

4.8 Concluding remarks 

Although in PoincarC's definition of an asymptotic expansion, 
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the asymptotic sequence {&} needs not to  be a power series, important developments in 

the theory of asymptotic analysis are mostly concerned with power series expansions for 

functions. The developments in asymptotic expansions for distributions reflect that of the 

theory of asymptotic analysis. In fact all known expansions for distributions are power 

series expansions, and even in cases where the power series expansions are not the most 

natural expansions, efforts had been concentrated on obtaining power series expansions. 

There may be three reasons for the popularity of power series expansions: (1) they are 

simple to  interpret, (2) for the important special cases of sample mean and standardized 

mean for i.i.d. observations, the well-known expansions are all power expansions, and (3) 

their validity can often be readily demonstrated using existing asymptotic methods. 

In this chapter, we have derived a family of general expansions for density functions with 

respect to  sequences based on Our main goal has been to point out the possibility 

of expanding distributions that are asymptotically normal with respect to  these sequences. 

The usefulness of the general expansions is evident from examples discussed in Sections 4.4, 

4.5 and 4.6. Having said this, we note, however, that we have been relying on the asymptotic 

properties of known power expansions to prove the validity of the general expansions. A 

typical example is that of the proof for the validity of the saddlepoints expansion in Chapter 

3. More direct methods for verifying the validity of these expansions are needed. Work is 

continuing to connect the general expansions with results obtained by Skovgaard (1986) and 

Chaganty and Sethuraman (1986), and to  establish general conditions under which some or 

all members of the family are valid asymptotic expansions for the density function. 

The numerical accuracy of the saddlepoint approximation and Lugannani and Rice's 

formula for cases where orders of their errors are not clear has been the focus of Section 

4.7. The remarkable accuracy and robustness of these approximations demonstrated in that 

section should provide some assurance for using these approximations in the absence of 

rigorous analyses on their asymptotic properties. 



Chapter 5 

Quadrature Methods for 

Computing Distributions 

5.1 Introduction 

Let X be the mean of a sample of i.i.d. observations with domain [a, b ] .  Assume X has a 

continuous density function f(x). The moment generating function of X, M ( t ) ,  is given by 

The moment generating function may be easily determined by using that of the individual 

observations. In theory, f (x)  and the cumulative distribution function of X ,  F(x) ,  may be 

computed by numerically evaluating the convolution formulas or integrating the inversion 

formulas of (5.l.l), but in practice the first approach may be time consuming and inaccurate. 

The second also has its drawbacks. It involves integrating the characteristic function over 

an infinite path, and requires a detailed analysis concerning the asymptotic behavior of the 

characteristic function. See Lugannani and Rice (1980) for further discussion. While there 

is a lack of successful numerical methods for approximating distributions, there are accurate 
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asymptotic approximations, such as Daniels' saddlepoint approximation and Lugannani and 

Rice approximation that we discussed extensively in earlier chapters. These approximations 

have had remarkable success. Unlike normal approximation, they are also often accurate for 

small sample sizes. However, there are several difficulties in using these approximations: (1) 

Often M( t )  can only be determined through numerical means, i.e., its analytic expression is 

not available. See, e.g., Daniels (1983). In such cases, it is rather expensive if not impossible 

to  compute these approximations. (2) There is a lack of a practical method for estimating 

the errors of these approximations. Lugannani and Rice (1980) discussed an error bound 

for their approximation, but it often requires integrating a complex function over an infinite 

path. (3) Various examples suggest that in the case of a finite domain, when the density 

function being approximated is far from a normal density, these asymptotic approximations 

are often poor. See, e.g., Chapter 7 in Field and Ronchetti (1990). 

In the present chapter, we discuss quadrature methods for computing distributions, in 

particular that of the mean of a sample of i.i.d. observations. Distributions whose domains 

are finite intervals and those whose domains are unbounded are dealt with separately. For 

computing distributions with finite domains, a refined quadrature method, the optimal 

method, is introduced. This method is built upon a measure of accuracy that we devised 

for identifying accurate quadrature methods for Fredholm integral equations of the first 

kind, such as (5.1.1). For distributions with domains which are bounded below or above but 

not both, we discuss Bellman et al.'s (1966) method for inverting Laplace transformations 

and its use for computing distributions of this type. These methods may be used to  compute 

both the cumulative distribution function and the density function of a distribution, and 

have certain advantages over the traditional asymptotic methods. 

Since the measure of accuracy and the optimal method may be used to  solve other 

types of Fredholrn equations of the first kind, we shall present them not as tools devised 

solely for the purpose of computing distributions but tools for solving general Fredholm 

integral equations of the first kind. Thus we divide this chapter into two parts with the first 

part devoted to  the presentation of the measure of accuracy and the optimal method, and 

the second part to their application and the use of Bellman et al.'s method in computing 

distributions. For the completeness of presentation of the measure of accuracy and the 

optimal method, the first part also contains an introduction. 
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Notation in this chapter is different from that in previous chapters. We shall use, for 

example, f (x) to denote the density of a sample mean instead of f,(x). The reason for this 

is that the sample size, unlike in asymptotic methods where it is the all important large 

parameter, plays no role here. 

5.2 Part One: A measure of accuracy for quadrature meth- 

ods for Fredholm equations of the first kind 

5.2.1 Introduction 

We consider quadrature methods for Fredholm integral equations of the first kind, 

[ ~ ( t ,  X)f (X)dX = Y(t), t E It (5.2.2) 

where f (x )  is the unknown, and It is the domain of t. Equation (5.2.2) may be written in 

operator form: K f = y. Let x j  and wj ( j  = 1,2,. . . N )  be the abscissae and weights of an 

N-point quadrature rule, QN. A quadrature method replaces the integral in (5.2.2) with 

QN for t = t; ( 2  = 1,2,  . . . , N )  and leads to N simultaneous equations 

Let K ( ~ )  = [ ~ ~ K ( t ; , x ~ ) ] ~ ~ ~ .  Provided that K ( ~ )  is nonsingular, (5.2.3) has a unique 

solution f (xj ) ,  which is an approximation of f (xj)  ( j  = 1,2, . . . , N). For brevity, a method 

that uses QN and a certain set of t;'s will be referred to  as method (QN,T) ,  where T = 

h t 2 , .  .,tN). 

Despite the fact that they are the simplest of all numerical methods for solving (5.2.2), 

quadrature methods are rarely used in practice. One reason is that they frequently lead to  

inaccurate numerical solutions. Yet little is known concerning conditions under which they 

may be accurate. This difficulty is further discussed in the next section. For a compre- 

hensive discussion concerning ,quadrature methods and their drawbacks, see Baker (1977). 

Nonetheless, as we shall see from subsequent examples, there are equations for which ac- 

curate quadrature methods exist. The question is how to identify these accurate methods 
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from a virtually infinite number of methods available. In the present section, we introduce 

a simple measure of accuracy that may be used to  identify such methods. This measure 

may also be used to establish error bounds for the solutions. In Section 5.2.2, we examine, 

through an example, the difficulties of determining the accuracy of quadrature methods, 

and introduce the measure of accuracy. In Section 5.2.3, we discuss how this measure may 

be applied to identify accurate methods and calculate approximate error bounds. We shall 

provide some general discussion on basis selection and error bounds in Section 5.2.4. 

5.2.2 The order of accuracy of a quadrature method 

The choice of each of the three components for a quadrature method, i.e., the type of quadra- 

ture rule, the number of abscissae N and the t ; ' ~ ,  affects its accuracy. Unfortunately, unless 

K(t ,  x)  is of a certain special form, e.g., example 5.35 in Baker (1977), it is generally difficult 

to  determine theoretically how the accuracy depends or1 the choices of these components. 

Even increasing the number of abscissae, a strategy commonly used to  improve the accuracy 

of numerical methods, may fail to  bring more accurate solutions for quadrature methods. 

Consider the following example 

Example 5.1: 
sinh(t) /_: etx f (x)dx = - 

t '  
t E (-7 4, 

which has exact solution f (x )  = 0.5 for x E [-I, 11. Denote the error of the quadrature for- 

mula at  t = t; by T;, and f(xj)  - f (xj)  by ej. Let R = ( T ~ , .  . . , T N ) ~  and E = ( e l , .  . . , eN)T. 

The following table, computed by methods using N-Point Gauss-Legendre rules and ti's 

that are equally spaced points between -1 and 1, contains 1 1  Rlloo, the estimated condition 

number of ~ ( ~ 1 ,  K ~ ( K ( ~ ) ) ,  and IIElloo. 

It can be shown that K ( ~ ) E  = R. Thus in general llEllm is small when both K I ( K ( ~ ) )  

and llRllco are small. Initially as N increases, K ~ ( K ( ~ ) )  increases, but llRllm decreases. 

The decrease in 1 1  Rlloo offsets the increase in K ~ ( K ( ~ ) ) ,  and the accuracy of the numerical 

solution improves. However, once 1 1  Rlloo drops to  near machine epsilon at  N = 7, it cannot 

drop further, but rcl ( ~ ( ~ 1 )  still increases very rapidly. Consequently, 11 E [ l o o  becomes larger. 

The influence of the type of quadrature rule is even more difficult to determine. 
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Table 5.1: The effect of the number of abscissae on the error 

Although theoretical analyses on the errors of quadrature methods seem intractable, one 

can still judge their accuracy through test problems. We propose the following measure of 

accuracy to explore this idea. To simplify our presentation, we shall assume that (5.2.2) has 

a unique solution. 

Let Ph = Span(1, x, x2, . . . , xh) be the set of polynomials of degree h or less. The set 

of h + 1 test equations, K fl = KT', have solutions x' ( I  = 0,1,. . . , h). To measure the 

accuracy of a certain quadrature method, (QN,T) ,  we compare its numerical solution to  

K fl = KX', jl, with x' for 1 = 0,1,.  . . , h. Let 

and emax(h) = max{eo, el , .  . . , eh). Write emax(h) in scientific notation, 

where 1 5 cr < 10 and r is an integer. We call r the o d e r  of accuracy of method (QN, T) 

with respect to Ph, and write this order as r(Ph). T(Ph) is a nonincreasing function of h, i.e., 

T ( P ~ + ~ )  5 r(Ph). The following table shows the orders of accuracy of 5-point, 7-point and 

9-point methods as used to  compute Table 5.1 with respect to P3, P4, P5, and PC. The 7- 

Table 5.2: Example 5.1 cont'd. Orders of accuracy for methods 
2 1  1 using N-point Gauss-Legendre rules with ti = -1 + w. 

point method has consistently the highest order of accuracy with respect to  all four different 
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polynomial spaces. This agrees with Table 5.1, where the 7-point method was shown to be 

the most accurate. 

To see how the order of accuracy may be used to  establish error bounds for numerical 

solutions of quadrature methods, we first note that if f and j are the numerical solutions 

for equations where the exact solutions are f and g, then the numerical solution for the 

equation with exact solution a f + /3g is crf + pi. This linearity of the numerical solution 

implies that if (5.2.2) has solution f E Ph, i.e., 

where the c;'s are constants, then the corresponding numerical solution f is 

A bound on the error is then given by 

or, in terms of the order of accuracy, 

where cr is the same as in (5.2.6). The cj's are in general unknown, but may be approximated 

by the method of least-squares. Also, the above bounds are often useful even if f(x) 4 Ph, 

provided it can be well approximated by some p(x) E Ph. We shall further illustrate these 

points through Example 5.2 in the next section. 

5.2.3 The optimal method 

Different choices of quadrature rules and ti's can also greatly affect the orders of accuracy. 

The following table is computed by methods using N-point composite Simpson's rules and 

Gauss-Legendre (G-L) rules with ti's that are equally spaced between -2 and 2. With 

the same choices of N and T, methods that use Gauss-Legendre rules have considerably 

higher orders of accuracy. Also, by comparing orders of accuracy of methods that use the 
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Table 5.3: Example 5.1 cont'd. Orders of accuracy for methods 4(i.ly usin N-~oint  
composite Simpson's rules and G-L rules with t, = -2 + N-l . 

I N I Simpson's Rule G-L Rule I 

above Gauss-Legendre rules with that of methods (shown in Table 5.2) that use the same 

quadrature rules but different ti's, we see that the order of accuracy is heavily influenced 

by the choice of T. In general, to obtain high order methods, the larger the N ,  the wider 

spread in the t;'s needs to be. For methods that use the 15-point Gauss-Legendre rule, 

for example, r(P5) is actually negative when the ti's are equally spaced between -2 and 2. 

When they are equally spaced between -11 and 11, r(P5) is 7. There is a limit, however, 

on how large one can make N and still obtain a high order method. When N is too large, 

K ( ~ )  may be too ill-conditioned regardless of the choice of quadrature rule and T. 

In general, to look for the method with the highest order of accuracy with respect 

to a certain Ph, one should consider methods with different types of quadrature rule and 

different choices of N and T, so that methods of possible high orders are not overlooked. 

One computes and then compares their orders of accuracy. The method with the highest 

order found by this process will be referred to as the optimal method with respect to Ph, or 

simply the optimal method. The optimal method is not necessarily the one with the highest 

order possible. Nevertheless, when used to  solve (5.2.2), it generally gives the most accurate 

solutions among met hods considered. 

We now use some of the methods discussed above to  compute the following example 

involving the operator in Example 5.1. These methods all use the Gauss-Legendre rule. 

Example 5.2: 
e(t+l) - e-(t+') /_: etx f (x)dx = t E (-m, m) .  

( t  + l)(el - e-l) 

The exact solution is f (x)  = e.x/(e - e-') for x E [-1,1]. Table 5.4 contains, in the 

middle column, the maximum absolute error of the numerical solutions of a 7-point, a 9- 

point and a 15-point method, where the t;'s are equally spaced points in [-2,2], [-5,5], 
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and [-11,11], respectively. These methods have orders of accuracy r (ps )  = 2, 4, and 7, 

respectively. The 15-point method is the optimal method. The estimated error bounds, 

Table 5.4: Maximum absolute errors and error bounds for Example 5.2. 

 IN^ IIEL I Error Bound I 

computed using (5.2.9), are in the right-hand column. These bounds are calculated using 

the coefficients of the third order polynomials that best approximate the numerical solutions. 

The method of least-squares is used to  compute these coefficients. The decision to use third 

order polynomials is based on the observation that the coefficients for x4 and x5, should 

they be used, are much smaller than those of the lower order terms. Also, without these 

terms, the error sum of squares is already very small. Adding them to the least-squares 

regression reduces the error sum of squares very little. 

Note that although the exact solution in this example is not a polynomial, it can be well 

approximated by a third order polynomial and the optimal method with respect to  P5 does 

give the most accurate solution. In practice, since the exact solution is unknown, one in 

general does not know the value of h such that the solution may be well approximated by a 

member of Ph. Thus optimal methods with respect to  Ph where h is reasonably large, such 

as h = 5 in this example, are recommended. 

5.2.4 Basis selection and error bounds 

Let L E R ( ~ + ' ) x ( ~ + ' )  be nonsingular and X = (1, x, . . ., x ~ ) ~ .  The elements of @ = 

(40, &, .  . ., 4h)T where @ = LX form a basis for Ph. Under this basis, f E Ph in (5.2.7) 

where C = (co, cl , .  . ., ch)T and V = c ~ L - '  = (vO, vl,. . . , v ~ ) ~ .  Substituting bl(xj) for 

xi and &(xj) for $(xj) in (5.2.5) for 1 = O , l , .  . ., h, where & is the numerical solution 

to K 4  = K41, the resulting el's may be used to  define the order of accuracy and optimal 

method under {do, 4',. . . , q5h) by following procedures described in Sections 5.2.2 and 5.2.3. 
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For (5.2.2) where f E Ph, they also lead to the following bound on the error of f 

Although the order of accuracy of a method may change with the basis, we observed 

that the optimal method under one basis remains optimal under another. Furthermore, 

it also remains optimal even when the dimension of Ph is changed; e.g., among the three 

methods shown in Table 5.2, the 7-point method is consistently optimal with respect to  P3, 

P4, P5 and P6. This independence of the optimal method on the choice of the basis raises 

an interesting question: is there a strategy for finding a basis under which the error bound 

given by (5.2.13) for the optimal method is the smallest or closest to  the real error? 

Since the vj's and the ej's will both vary with the basis, even for examples where the 

exact solutions are known it is usually difficult to  determine theoretically whether a certain 

basis will lead to a bound smaller than that under, say {I, x, . . . , xh). One exception to  this 

is that when f = 4; for some i, then v, = 1 and vj = 0 for j # 2 .  The equality in (5.2.13) 

holds and its right-hand side gives the minimum bound. In practice, however, the exact 

solution is not known, thus the minimum bound cannot be achieved. If we fit the numerical 

solution with a polynomial using the method of least-squares, and let 4, be this polynomial, 

then v, x 1 and vj x 0 for i # j. The resulting bound may be close to the minimum bound, 

provided the numerical solution is accurate. This bound may not be useful in practice since 

its accuracy depends on that of the numerical solution. A practical strategy for looking for 

a small bound may be to  use a certain set of bases, such as (1, x, . . . , xh) and the shifted 

Chebyshev polynomials, at the same time routinely, and compare the resulting error bounds. 

For f 6 P h ,  write f as f = ph + E where ph E Ph. Let Bh, i and f be solutions 

to Kg = Kph, Kg = K E  and (5.2.2), respectively, given by the same method. Then 

1 1  f - f l l o c  5 llph - + I I E  - illw. While we may assume llph - fihll, is small when the 

method is optimal with respect to Ph, we still need to know the error in solving Kg = KE. 

This is an important and yet complicated problem. Here we make two suggestions that may 

be useful for dealing with it. If it is known that E E A where A is a function space of a finite 

dimension, one may consider deriving and using an optimal method with respect to  both Ph 

and A. Without this information, one may select a high h value so that the solution can be 

well approximated by some ph E Ph and solve the problem as if f is in Ph. This approach 
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usually works well in practice, e.g., Example 5.2. 

5.2.5 Concluding remarks 

We have found that optimal methods defined in Section 5.2.3 work well for solving a variety 

of problems where the kernel is not too flat and It is (-oo,oo). A typical example is that 

of inverting Laplace transformations of functions that vanish outside some finite intervals. 

Under these two conditions, optimal methods with high orders of accuracy can usually 

be found, and numerical solutions given by these methods are very accurate. The error 

bound given by (5.2.9) is also quite reliable. We also found, however, that for equations 

where the two conditions are not met, optimal methods are sometimes of low orders of 

accuracy ( r (Ps )  5 3), and their numerical solutions may be poor. Although the simple 

basis, (1, z, . . . , xh}, is usually satisfactory in practice, basis selection remains an important 

problem to be further studied. 

Finally, the idea behind the above order of accuracy is the same as that behind the 

precision of quadrature rules, i.e., evaluating numerical methods according to  their perfor- 

mance on test problems involving polynomials. Since continuous functions on finite intervals 

can be well approximated by polynomials, when (5.2.2) has a continuous solution, the Ph7s 

are natural choices relative to which the order of accuracy and optimal methods are de- 

fined. Nevertheless, when exact solutions are known to be in some other spaces, one should 

consider using these spaces instead. 

Examples in this part were computed using Fortran 77 on a SPARC station. The linear 

system solver used was DLSARG, least-squares estimates were computed by DRCURV, and 

condition numbers were estimated by DLFCRG, all from IMSL. 
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5.3 Part Two: The use of quadrature methods for comput- 

ing distributions 

In this part, we discuss the use of the optimal method and Bellman et al.'s (1966) method 

for computing density functions, and compare their accuracy with that of the saddlepoint 

approximation. In Section 5.3.1, we discuss issues related to the implementation of the 

optimal method for (5.1.1). In Section 5.3.2, we discuss Bellman et al.'s (1966) method for 

cases where b or a (not both) is infinity. We then compare the optimal method with the 

saddlepoint approximation in Section 5.3.3. 

5.3.1 Computing densities with finite domain [a, b] .  

The kernel for both examples that we considered in Part One is etx7 which is that in the 

equation that defines the moment generating function (5.1.1). The optimal methods for 

these examples both involve the Gauss-Legendre rule. This is not a coincidence. Based 

on our experience with different types of quadrature rule, for equation (5.1.1), the optimal 

method always involves the Gauss-Legendre rule. The domain of f (x) for these examples is 

[- 1,1], on which the Gauss-Legendre rule can be directly used without any transformation. 

When [a, b] is not [-I, 11, in order to utilize the Gauss-Legendre rule, it is most convenient 

to transform [a, b] to  [- 1,1] with the following transformation: 

22 - (a + b) 
Y '  b - a  where x E [a,b]. 

The transformed variable y satisfies y E [-I, 11 and 

x = (b- a)y + ( a +  b) 
2 

Thus (5.1 . l )  becomes 

We shall refer to  (5.3.16) as the standardized equation for equation (5.1.1). Applying the 

optimal method with abscissae y; (i = 1,2, .  . . , N )  to  (5.3.16), we obtain approximations 

for f (x)  a t  x; = x(y;) for i = 1,2,. . . , N.  
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The operator in (5.3.16) has kernel et(b-a)y/2, for which ety is the special case where 

b = -a = 1. Still the Gauss-Legendre rule provides the most accurate methods for this 

operator. Note that the operator is location invariant (or invariant under a shift of the 

domain of a distribution) in that it only depends on the length of the domain, but not its 

location. Thus the optimal method for a certain standardized equation (distribution) with 

b - a = 1 may be stored and used for other equations (distributions) that have the same 

domain length 1. 

Furthermore, the standardized equation (5.3.16) corresponding to a distribution will 

remain the same when its domain is shifted. To see this is true, we need to show that the 

right-hand side of (5.3.16) does not vary with the location of the domain. We have 

2M(t) -tpp~ - e-"l2 1 
e - 7-4 ety f0(y)dy = 2~,-,(t)e-"/~/l, 

b - a  

where fo(y) and Mo(t) are the density function and the moment generating function for 

the shifted distribution whose domain is [O, 11, respectively. Notice that both a and b are 

absent from this simplified expression. Thus the right-hand side of (5.3.16) does not depend 

on the location of the -domain; i.e., it is simply a different expression of the function at the 

right-hand side of (5.3.17) whose value does not depend on a and b. 

Example 5.3: 

The exact solution is f (x) = ex/(eb - ea). Consider two equations for which [a, b] is [I, 51 

and [ l l ,  151, respectively. The distributions associated with these two equations are identical 

except for the locations of their domains. To obtain approximations for their density func- 

tions, we compute their standardized equations, (5.3.16). Table 5.5 shows r(6), the exact 

Table 5.5: Orders of accuracy, errors and error bounds of methods 
for the standardized equations of (5.3.18). 

error and the error bound (5.2.9) given by the following three methods for the standardized 
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equations: N = 9 with T a set of 9 equally spaced points on [-2,2]; N = 15 with T a 

set of 15 equally spaced points on [-6,6]; and N = 19 with T a set of 21 equally spaced 

points on [-9,9]. These methods all use Gauss-Legendre rules. The 19-point method is the 

optimal method, and is very accurate for both equations. Also, the order of accuracy, the 

exact error and the error bound did not vary with the location of the domain. This reflects 

the fact that the two equations are in theory the same. Numerically, since a difference in 

two expressions of a certain function may lead to  a difference in values corresponding to  the 

two expressions, there may be a difference in values of the right-hand sides of the equations. 

Such a difference, however, is usually negligible and does not affect the accuracy of the 

methods and numerical solutions as can be seen in the above example. 

To compute the density function at points other than the abscissae of the quadrature rule 

involved, one may use the method of interpolation. The abscissae of the Gauss-Legendre 

rules are very evenly spread in [-I, 11. With highly accurate numerical solutions at these 

abscissae, accurate approximations throughout the entire domain can be obtained. 

The optimal method for (5.1.1) may also be used to  compute the cumulative distribution 

function, F(x) ,  corresponding to f (x). To see how, we rewrite (5.1.1) as 

Integrating the left-hand side by parts, we obtain 

The above equation has the same kernel as equation (5.1.1). Thus the optimal method for 

(5.1.1) is also optimal for this equation, and can thus be used to  compute F(x). As in the 

case of computing f (x), we recommend that the standardized equation for (5.3.20) be used 

instead of (5.3.20) itself. This standardized equation is: 

where M*(t) = [etb - M(t)]/t. 
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5.3.2 Computing densities with domain [a, +oo) 

The optimal method is mainly intended for (5.1.1) whose domain is a finite interval. This 

is because polynomials form a dense subspace in the space of continuous functions on any 

finite interval domain, and can approximate any continuous density function defined on 

the domain well. Hence we can use the Ph7s to define the optimal method and expect 

it to be accurate for computing (5.1.1). When the domain is unbounded, e.g., [a, +m) ,  

the polynomials are not in the solution space of equation (5.1.1). This is clear from the 

fact that no polynomial integrates to  one over [a, t oo ) .  They cannot even approximate a 

density function well due to that they either remain a constant, or approach positive or 

negative infinity as x approaches infinity. Thus they can no longer be used to  define the 

optimal method for computing (5.1.1). Consequently, the optimal method is difficult to  

define unless some information, e.g., a basis of a space to which the solution belongs, are 

known. 

Nevertheless, there are quadrature methods for dealing with situations where such in- 

formation is not available. Bellman et  al. (1966) studied quadrature methods for inverting 

Laplace transformations of continuous functions on [a, +m).  In this section, we discuss 

the use of their methods to  solve (5.1.1), and demonstrate through examples that they are 

capable of delivering accurate numerical solutions. 

Without loss of generality, we may assume that a = 0. So (5.1.1) becomes 

Note that in general M(t)  is not defined on the entire real line, rather it is defined on ( -00,  to) 

for some to 2 0. Bellman et al. (1966) recommended using the transformation y = e-" to 

transform the equation into one with a bounded domain. With this transformation, [O, m )  

is transformed onto (0, 11, and (5.3.22) becomes 

A quadrature method can now be applied to  (5.3.23) to  compute f (x )  on a set of points 

x; = - log(y;) for i = 1,2, .  . ,, N where the y;'s are the abscissae of the quadrature rule 

involved. Since the domain of f (x) is unbounded, it may not be enough to compute f(x) 

only at some finite number of points. They suggested the following argument which makes 
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it ~ossible to compute f(x)  at any point. By (5.3.22), 

where y = e-"1' and c > 0. If we need to  estimate f (z )  at ,  say x = 5, let y; be an abscissa of 

a certain quadrature rule, and choose c such that 5 = - c  x log(y;). Applying a quadrature 

method that uses this quadrature rule to  (5.3.24), we obtain 5 as one of the points at which 

f (x)  is computed. 

As to what type of quadrature method is best for equations of the form of (5.3.23) or 

(5.3.24), they recommended methods involving Gauss rules on [0,1] whose abscissae are the 

roots of the shifted Legendre polynomials. 

Example 5.4: Let X be the sum of two independently exponentially' distributed random 

variables with parameter 1. Then its density function and distribution function satisfy 

and 

Using methods based on Gauss rules with T = -(0,1,. . ., 17) and T = - (1 ,2 . .  . ,18), 

respectively, we computed (5.3.25) and (5.3.26). The exact and the numerical solutions to  

(5.3.25) are in Table 5.6 under f(x) and f^(x), respectively. Those to  (5.3.26) are in Table 

5.7 under F (x )  and k(x) ,  respectively. The c  values associated with the numerical solutions 

are also indicated in the tables. 

The numerical results indicate that the magnitude of the maximum absolute error of 

the numerical solutions is about Thus the quadrature method is quite accurate for 

this example. The tables contain numerical solutions at  x values as large as 21, for which 

the density is as small as and the cumulative distribution function is as close to  one 

as 1 - To estimate these functions farther out in the tail, one may use even larger c  

values. We caution however that when c  is too large, e.g., in the above example when c  is 

greater than 5, the numerical solution at the tail, though very close to zero, may be negative 
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Table 5.6: Approximations for the density in Example 5.4 (c = 4). 

abs. error 
0.24239e-08 
0.35949e-07 
0.99036e-07 
0.17334e-06 
0.23793e-06 
0.27652e-06 
0.27875e-06 
0.23705e-06 
0.13232e-06 

in the case of computing f (x), a ,nd slightly greater than one in the case of computing F(x).  

As f (x )  is expected to be very close to  zero and F(x)  very close to one at the far tail, they 

should be treated as zero and one, respectively. 

Table 5.7: Approximations for the c.d.f in Example 5.4 (c = 4). 

Note that one may also use Bellman et al. 

abs. error 
0.52861e-07 
0.10569e-06 
0.13486e-06 
0.14613e-06 
0.14313e-06 
0.13012e-06 
0.10997e-06 
0.83615e-07 
0.44330e-07 

's (1966) methods to compute dis t~ 

with finite domain. However, they are less accurate than the optimal method, and give no 

error bounds on their numerical solutions. 

5.3.3 Comparison with the saddlepoint approximation 

We have shown that the two quadrature methods discussed above are promising methods 

for computing the distribution of the sample mean. Such numerical methods are intended 

just for that and are of little use as theoretical tools. 
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In terms of accuracy, these quadrature methods are complements to  asymptotic methods 

for computing the distribution of the mean in that they are more accurate overall for very 

small sample sizes, but less so for larger sample sizes. This is because quadrature methods, 

like numerical methods in general, are accurate when the exact solutions are smooth and 

are less accurate when they are not. When the sample size is small, the density function and 

the cumulative distribution function for the mean are relatively smooth. When the sample 

size is large, the density function is highly aggregated in a small region in its domain near 

the mean. It has a sharp spike, and the cumulative distribution function takes a steep jump 

in that region. Consequently, they are not smooth when viewed over the entire domain, and 

the quadrature methods become less accurate. Tables 5.8 and 5.9 below further illustrate 

this point. 

Table 5.8: Approximations to the density of the mean of 
5 i.i.d. uniform[- l ,1 ]  observations. 

OM Error 
0.36147e-03 
0.24184e-03 
0.10075e-03 
0.17433e-04 
0.31 138e-05 
0.82171e-06 

Table 5.9: Approximations to  the density of the mean of 
15 i.i.d. uniform[- l ,1]  observations. 

SPA Error 
0.47701e-01 
0.30251e-01 
0.76103e-02 
0.24747e-03 
0.27835e-05 
0.10406e-09 

SPA Error 

In these tables, f (x) is the exact solution, foM(x) and j s p ~ ( x )  are approximations 

given by the optimal method and the method of saddlepoint approximation. 'OM Error' 

and 'SPA Error' are the absolute errors of these two approximations, respectively. The 

optimal method used to compute foM(x) has r(6) = 7, and involves the Gauss-Legendre 
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rule with N = 21, and a T consisting of 21 equally spaced points between -20 and 20. When 

the sample size is 5, the optimal method is more accurate overall. When the sample size is 

15, f o ~ ( z )  becomes negative at the tail and the saddlepoint approximation becomes more 

accurate overall. In general, the quadrature methods are more accurate in the part of the 

domain where f (x) is not too small relative to its maximum. If f (x) does not vary too much 

in magnitude throughout the domain, as is the case in Examples 5.1 and 5.2, then they are 

more accurate than the asymptotic methods everywhere. 

Apart from the optimal method being more accurate for very small sample sizes, quadra- 

ture methods in general also have the following advantages: (1) They are applicable when- 

ever the moment generating function is known. Consider the case where we need to  estimate 

the density of the sum of several independent observations. If these observations are not 

identically distributed, then asymptotic methods may not be applicable but quadrature 

methods still are. (2) Computationally, they are often less time consuming than the asymp- 

totic method which involve computing the saddlepoint since they require only that the 

moment generating function be evaluated at a small number of points. In cases such as 

estimating the density functions of statistics given by estimating equations, the moment 

generating functions of the statistics often can only be expressed as contour integrals and 

their evaluation may be time consuming. In these cases, this advantage is particularly im- 

portant. (3)  For densities with bounded domains, the optimal method also gives a reliable 

bound on the maximum absolute error of its numerical solution. 

To conclude, we note that there are many other numerical methods, such as the eigen- 

function expansion method and a varieties of iterative methods, for solving Fredholm equa- 

tions of the first kind. We have discussed only quadrature methods here because they are 

the simplest of all methods for solving these equations, and may be easily used by statis- 

ticians to  compute distributions. They are also very accurate for this purpose. The use of 

quadrature methods for computing distributions defined on the entire real line remains to  be 

further studied. We have yet to  find successful methods for computing these distributions. 

Examples in this paper were computed using Fortran 77 on a SPARC station. The linear 

system solver used was DLSARG, and least-square estimates were computed by DRCURV, 

both from IMSL. 



Appendix A 

Uniform Validity of an 

Asymptotic Expansion 

Here we give the definition for uniform validity, and discuss two generalizations of Lemma 

3.1 (Wasow, 1965) under weaker conditions. 

Definition. Uniform Validity of An Asymptotic Series 

Let f(s, t )  be defined on D,  x Dt where 0 E D,.  We say that an asymptotic expansion 

of f ( s ,  t )  with respect to s ,  

00 

f ( s ,  t )  hr(t)sr as s + 0, 
r=O 

is uniformly valid in Dt if for any given m E N ,  

uniformly with respect to all t E D t .  

An important lemma related to uniform validity is Lemma 3.1 given below (see Section 3.3 

for a proof). This lemma shows that when the specified conditions are met, the error of 

the truncated expansion which includes only the first m + 1 terms of the expansion is the 
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product of a bounded function and sm+'. 

Lemma 3.1. (Wasow, 1965) Let f (s, t) be bounded in D, x Dt where 0 E D,, and h,(t) (r 

= 0, 1, . . .) be bounded in Dt. Then 

uniformly for t E Dt ifl for every m the function Em(s, t) defined by the relation 

is bounded in D, x Dt. 

Under a weaker set of conditions, i.e., without the condition that f (s, t )  be bounded in 

D, x Dt ,  we can prove the following lemma: 

Lemma 3.la: Expansion (A.0.2) is uniformly valid and its coeficients, hr(t) (T = 0,1, . . .), 
are each bounded for t E Dt if and only if f (s ,  t) is bounded in R x Dt for some R such that 

0 E R c D,, and for each m, Ern(s, t) is bounded in R x Dt. 

Proof: For any given c: > 0, by the definition of the uniform validity there exists a R where 

0 E R c D, such that I f  (s, t) - ho(t)l < 6 uniformly with respect to t E Dt for s E R. Thus 

I f  (s ,  t)l < Iho(t)l + 6 for (s, t )  E R x Dt. Since ho(t) is bounded in Dt, f (s, t) is bounded in 

R x Dt. It then follows from Lemma 3.1 that the Em(s, t)'s are bounded in 52 x Dt. 

On the hand, if f ( s , t )  and the Ern(s,t)'s are all bounded in R x Dt, then ho(t) = 

f ( s ,  t )  - Eo(s, t)s is bounded. Furthermore, hr+l(t) = Er(s, t) - E,+l(s, t)s ( r  = 0,1,.  . .). 
Thus they are bounded. Also, the boundedness of the E,(s, t)'s imply the uniform validity 

of the expansion. This is clear from part (b) of Wasow's proof for Lemma 3.1. # 

Lemma 3.la may be used to prove a lemma similar to  Lemma 3.2 but without the 

condition that ft(s, t) be bounded. Compared to Lemma 3.1, Lemma 3.la makes use of 

the fact that the conditions that f (s ,  t) be bounded and ho(t) be bounded are essentially 

redundant, and it is applicable when f ( s , t )  is not bounded in the entire Ds x Dt. In 

general, if we define E_'(s, t )  = f ( s ,  t), then the boundedness of {Er(s, t)),>,,, where mo - 
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is an integer, depends only on that of {hr(t))T2m,+l and vise versa. This leads to the 

following lemma: 

Lemma 3.lb: The hm(t) 's where m 2 mo + 1 are each bounded in Dt and (A.O. l )  holds 

for each m 2 mo uniformly in Dt if and only if for each m 2 mo, there exists a subset of 

D,, Om, where 0 E Qm, such that Em(s,  t )  is bounded in 0, x Dt. 

Proof: From part (a) of Wasow's proof for Lemma 3.1, for any given c > 0, there exists a 

5,(c) > 0 such that 

Let Om = {s : Is1 < 6,(c)). Then the boundedness of hm+1(t) in Dt implies that of Em(s, t) 

in Om x Dt. On the other hand, hm+1(t) = Em(s,t)  - E,+l(s,t)s. Thus for m 2 mo the 

boundedness of the Em(s,  t)'s implies that of the h,+l(t)'s. It also implies that (A.O.l) 

holds uniformly. This is again clear from part (b) of Wasow's proof for Lemma 3.1. # 

A consequence of Lemma 3.la is that a uniform expansion with bounded coefficients 

may be written using the 0 symbol as 

where O(sm+l ) is uniformly valid for t E Dt. 



Appendix B 

An Identity Concerning Hermite 

Polynomials 

We now prove identity (4.3.22). The Hermite polynomials, Hk(x) (k = 0,1,.  . .), can be 

derived by repeatedly differentiating the density of the standard normal distribution, 4(x). 

Specifically, they are given by the following relationship 

where, by convention, Ho(x) = 1. It can be shown that the Hk(x)'s form a set of orthogonal 

polynomials in R with respect to  the weight function, 4(x). Also, Hk(x)4(x) has the Fourier 

transform (it)ke-t2/2. See, e.g., Feller (1966), for a proof. We now discuss two properties of 

these polynomials which we shall use to prove the identity. These two properties are both 

derived from the equation, 

which may be proved by noting that 
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and that, by Taylor's theorem, 

The first property we need is the following differential equation, 

This may be proved by differentiating both sides of (B.0.2) with respect to x and identifying 

coefficients for tk. See, e.g., Kendall and Stuart (1969). 

The second property is the following relationship between the constant term of Hk(x) 

and the kth moment of the standard normal distribution. By setting x to zero in (B.0.2) 

we obtain 

The left-hand side of (B.0.4) is the moment generating function of the standard normal 

distribution evaluated at it. It follows that 

for k = 0,1, .  . ., where mk is the kth moment of the standard normal distribution. Since 

mk = 0 when k is odd, (B.0.5) may be written as 

To prove (4.3.22), we show that if Pk satisfies 

for k = 0,1, .  . ., then Pk(x) = Hk(x). We first note that 

Again, since mk = 0 when k is odd, (B.0.8) may be written as 
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Furthermore, by differentiating (B.0.7) with respect t o  x we obtain 

for k = 1,2 , .  . . Thus 
d 

- p k ( ~ )  = kPk-l(x), 
dx 

for k = 1,2,  . . . It follows that  Hk(x) and Pk(x) are the solutions of the same differential 

equation (B.0.3)or (B.O.lO). Furthermore, H o b )  = Po(x) = 1 and Hk(0) = Pk(0) = (i)kmk, 

by induction Pk(x) = Hk(x)  for k = 0,1 , .  . . 
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