MUSCIL

AN AUTOMATED MUSIC CCMPCSITIOCN DATA PROCESSOR
by

Jean Piché

B.A.C.C., Université Laval, 1974

PROJEZT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FCE THE DEGREE OF
M. A. (CHNS)
in *the Department
of

COMMUNICATION

(:) JEAN PICHE 1381
SIMCN FRASER UNIVERSITY

SEPTEMBER 1381

All rights reserved. This thesis may not be
r eproduced in whole or in part, by photocopy
or other means, without permissicn of the authore



Name:
Degree:

Title of Project:

Examining Committee:

APPROVAL

Jean Piché
Master of Arts (Communication)

MUSCIL: An Automated Music Composition
Data Processor.

é//Barr D. ?%uax
Assistant Professor
Senipr Supervisor

Nick J. Ceﬁkone
Associate Professor
Computing Science

Jerry Barrenholtz/
Lecturer in ,
Computfing\8cience/Centre for the Arts

Martin Bartlett
Associate Professor
Faculty of Music

University of Victoria
External Examiner

Date Approved: September 29, 1981




PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library ot any other university, or other educational I(nstitution, on
its own behalt or for one of Its users. | further agree that permission
tor multiple copying of this work for scholariy purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying

or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

MUSCIL: An Automated Music Compositon Data Processor.

Aufhor:

tshgnature)

Jean Piche

(name)

September 29, 1981

(date)



ABSTRACT

MUSCIL is a new language developed by the author‘for the input of
musical scores in a computer-based music system,

The context of computer music composition is analysed in terms of
a behavioural process where a number of specific tasks need to be
accomplished for the production of music. The three main tasks are
defined as the building of instruments, the composition of scores, and
the organization of scores together in a final structure. Each of
these tasks is analysed and conclusions are drawn as to their relative
importance within a giwven system.

Based on these observations, and on a review of various computer-
based music score editors, proposals are made for the elaboration of
MUSCIL.

The MUSCIL language for music composition data processing is

presented in the form of a user manual which explains the data structure

and syntax of the language, and gives examples on the use of its
features, The language is presently implemented in PASCAL and runs on

Simon Fraser University's main computer.
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PREFACE

The use of digital computers for the composition and generation
of music has progressed greatly since the early experiments
conducted by lLejaren Hiller(Hiller,1958) and Max | Matheus
(Mathews, 1969) in the early fifties. The availability cf newer
and faster digital ccompuvters brought the emergence of a pew and
very compelling way of producing music. Perhaps the very nature
of music as a special application of physics' and wmatlematics
best explains the coﬁVinCing results so far obtained in
combining automated data processing and musical creativity.

For centuries music and numbers have followed a parallel
path. The workings of Pythagcrean arithmetics were partly based
c¢n proporticns of vibrating string lengths in relationship to
their sounding pitch. Principles of wvibratory physics %ere
initially formulated by the French physicist Fourier by
examining socund as a ccrpound of multiple harmonically related
vitrations. |

The more specific task of musical ccmposition also involves
processes closely related to mathematics. The Art of the Fugne
illustrates the wondercus fasciration J.S.Bach cultivated for
the magic of ~numbers. More recently, from the time of
Schoenberg's radical departure from tonal pitch theory, cne can
observe the almost overbearing presence of "data processing” as

the main compositional concern of modern music practitioners.
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¥hile the extensively rigid rules in serial composition resulted
in ites downfall and dissaffection by most composers, perhaps the
most influencial composers of ocur time {Boulez, Xenakis,
Stockhauser and John <Cage) have and 1in some cases s£till do
define their craft as a selection process from all musical
"possibles” by the application of compositional rules : the act
of composing is an act of computing (Risset, 1980). The advent
of the digital ccmputer, and more generally of electronics,
protaltly constitutes the most significant musical development in
centuries. Very often 1in the history cf music a given "goclden
period"™ car te iinked tc the arrival of a particularly apt tool.
The pianoforte by virtue of its dynamic keyboard cpened a
fruitful venue to the composer of the late 18th century and its
refinements have given us the expressive richness of romantic
pusic. |

The impact of computers will probably be deeper. For the
first time now, the composer is given access to the generalized
instrument. ©Or %o put it in its true pérspéctive, the
generalized orchestra. significantly the composer is also given
the option to design his own personal rules of compositicn into
a ccmputer-based working environment.

A composer?'s task, in the +traditional setting of
instrumental composition vusually consists cf choosing
instruments and writing scores for them. IR a computer

music-making environment, however, these tasks are not cbvious.



Concepts of instruments and scores can still be used; but these
become generalized in the sense that any instrument can be
fabricated by the composer and can be made +to play any score
{Mathews, 1969). Digital synthesis procedures represent in fact
a virtual instrument that can theoretically perform the tasks of
any known acoustic instrument and offer entirely new instruments
that don't have amk eguivalent 1in the acoustic world. The
composer no lcnger mérely chooses instruments but actually
fakricates them by determining special computing procedures.

Perhaps more relevant to this presentation is the new sense
of the act of compcsition. The writing of ndtes on musical
staves, the testing on a keyboard, the erasure and recompositiocn
of segments have successfully translated the genius of
generations of composers and before the invention of automated
data processing no other method of notating musical thought
could have been used. In the current state of the software, one
could discuss advantages and inconveniences of composingvat the
terminal as opposed to ccmposing at the piano. | |

More than a few conmposers set in the %raditional ways have
chrsed the computer as a form of sub-intelligence not always
facilitating the composition of music. They see the compeser as
consistently being bent into thinking about music the same way
the designer of the prograﬁ #as thinking. This proklen \is
regularly experienced Ly composers %hc use computers in the

-making of their music. To a large extent an experience of this
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type is unavoidable to thke uninitiated composer. The design and
izplementation of computer music software 1is an exercise in
decision~-wmaking about what is important, most important and not
so important. No two coaposers can come up with the sanme
priority list. For this reason +the final arbitrator in the
gsefulness of a computer-music program is the composer sho uses
it. when a conposer is not. satisfied, he designs his own
programs. MUSCIL was designed by the’author to implement first
and foremost his own set of priorities in the exercise of his
craft. The relevance of the solutions offered may or may not
'suit the needs bf a composer Wwith specialized demands. MUSCIL is
not 1in that respect a program by a programmer, but a program by
a musician. It is offered as a musical toccl toc be used Dby the
advanced conmposer who 1is comfortable with the compositional

nodel on which it is based.
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A. CONSIDERATIONS ON THE MAKING OF MUSIC WITH COMPUZIERS



I. DEFINING COMPOSITION

into a number cof subtasks.

1.

2.

The activity of music compésition can be handily dissected
The first of these tasks is to decide which instruments or
which type of instruments will be vsed in the compcsition.
Given a ccmputer-based sound synthesis facility, the
composer’s work in selecting his palette of timbres will be
much mcre complex than the nmere choosing of available
acoustic -instruments. The COmECSer will fabricate
instruments and test them to familiarize himself with its
general prcperties. Some attention will be given %o what
kinds of wmusical statements will be nmade with these
instruments, but at this level the "sound" aspect is most

relevant.

Once a group of sound-producing devices has. been aésembled
the cocmposer will compose scores for them. At this pcint our
definition ¢f score is very open. Let us simply assume that
the ccpposer intends to use a specific instrument to produce
rore than one socund. In other words +the inétruments will
play scmething.

As opposed to acoustic instruments, the scoring fer

digitally isplemented instruments is more precise and nmore



general. A score can be made tc contrcl every parameter of

~apr dinstrument whereas acoustical instruments are usually
given a score of pitch against ﬁime %ith some indications
for a few of the secondary parameters, such as loudness and
articulation.

3. When scores have been written for a number of instruments,
the composer will likeiy want to hear theses scores - by
themselves or playing together with cne or a number cf other
scores. This task is accomplished by organising individual
scores polyphonically and represents the most advanced stage
of structuial organization where the work's final forr and

shape is devised.

The production of music, as we have discussed briefly in  our
intioduction, 1is subject to influences by the very means of
production. If a procedure, musical or not, <can be  described
with symbolic logic, computers can offer an isplementation of
the procedure. The [prcblem with musical téské is one of
aesthetics. Of all possible musics, none can be said to be more
desirable than the other. The very nature of experimentation in
music or otherwise demands that experimentation tools be able to
measure, sSynthesize, and analyse the unknown. This can only ﬁe
achieved through the impiementation of open systems basedxon

extremely general models.



However, generality rapidly beccmes its own antithesis.
Full cptions remain open only as long as we do not decide that
some things are more important than other things (Truax, 1577) .
Many décisions wvere taken in the course of MUSCIL's =lakoration
to reduce the generality of music-making as an open-ended
activitya This was done by applying specific nodels of
compositional behaviour and of musical acoustics in the design
of its main features. The models adopted, like the one described

above, are widely, if not universally, accepted.

THE CONCEPT OF INSTRUMENT

For our purpose let us define the computer-implemented
instrument as a virtual system capable of producing sound. These
systems are defined by the types of sounds they produce and by
the algorithms utilized %o genetate their timbre. Programs are
currently available to assemble many types of algorithas. Such
Frcgrams are MUSIC V (Mathews), MUSIC 360 and ﬁBSiC 11 {Vercoe)
and SAMINS (CCRMA-Stanford). Since this project does not directly
deal with techriques of instrument-building with computers, we
will simply adopt the most wide-spread of these programs as a
nodel for our own purpose of defining what an instrument
consists of. MNUSIC V prdvides a very elegant way of making

instruments and most other programs were derived from it.
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INSTRUHENT-BUILBING IN MOSIC V¥

We shall use the MUSIC ¥V nodel (Mathews, 19693)in the
fcllowing discussions as a basic structural reference for the
elatoration of the MUSCIL input language. In MUSIC V a number of
unit generators are offered. These units usvally have a set of
inputs and an output and can ke connected +together by simply
listirg calls to difierent units. The composer organizes
different units togeﬁher to obtain a network of
signal-processors that have the potential of procducing socund.
The chatracteristics of tike sounds they can produce depends on
the types and number of units used, the networking of the
connections between the units and the values of the parameters
left open at the input pcints of the networke. |

A typical instrument might use a functicn generator, a
modulating cscillatecx, a multiplier, an envelope generator and a
randox generator for a vibrato for exanmple.

The diagram shown in fig. 1 is such a Music V instrument
using nine unit generators. The RANdcz genherator uses two
variable input parameters : P13 and P14. The function delivered
by the RAN unit is added to the signal obtained by a first
modulating oscillator whcose pitch is obtained from P10 and whose
amplitude is obtained through a multiplier controlled by an

envelope generator with the function described by P11 and P12.



The waveshape of the modulating oscillator is specified by P15.
The adder also received P2 which describes the pitch of the main
oscillator. The sum of +the adder is used to coatrol the
frequency cf the oscillator. The main oscillator also kngws the
kind of waveform to output by parameter P9%. Finally <the
instrument is given an amplitude contour with wunit generator
ENVelope, where P3, P5,P6,P7 and P8 give the attack time,
initial decay, steady state and final decay plus a level for the
steady state portion of the envelope function. The outputs of
the ENV and the ©SC are multiplied and sent to a second
multiplier to.scale the sound to a volume specified in P4. This
instrument is strictly a signal-processing network and as such
does not produce sound. All the "P" points need to be known for
the instrument to produce sound. Each "E"™ gpoint will provide
essential information with regards to pitch, amplitude, timbre
and duration of the sound. This informaticn must be supplied for

each and every sound the instrument is tc produce.

A DISCUSSION ON THE HIERARCHY OF IRSTRUMENT PARAMETERS

over the years many different algorithes for
instrument-building have been proposeda John Chewning's
frequency-modulation technigue (Chowning, 1973) and the linear
distortion waveshaper of Mark LeBrun and Daniel Arfib{LeBrun,

1979 ¢ "Arfib, 1378) are pre~defined networks that have proven



useful 1in the generation of rich families of sounds with
relatively few control parameters. This reduction of control
parameters will probakly prove the most long-lasting advantage
of powerful synthesis methods as opposed to the specific timbres
they produce.

Most composers see a natural hierarchy in the parameters.
that define the syntéctic value of a sound in relationship to
other sounds. Pitch is always favoured, whether organized
tonally or atonally. The succession of scunds in time is another
primary parameter. 3Although this parameter is not part of any
single instrument definition, it is present whenever we ask thé
instrument t¢ produce more than one sound : a timing period must
be known before a second sound is produced. This +timing
parameter allows the construction of rhythm, and of all
time~related structures.

If, as above, we use the model of acoustic composition, we
can discern a few secondary parameters like amplitude
articulaticn and timbre. In a succession of scuﬁds; a secondary
parameter 1is one that is often found +to be dependent or a
function of the primary parameters, or which does not carry the
same syntactical Wweight as the primary parameters. Most timbral
parameters are usually in this group.

The actual duration of each sounpd will mostly be a funcgicn
of the time available between each sound. This is always true in

the case ¢f ponophonic instruments that must end one souad



befcre they can produce a new cne. The anmplitude of a sourd nmay
be a function of the pitch a sound, as ir almost all blown
instruments like woodwind and‘ brass. The higher pitches are
lcugder.

Changes in loudness between sounds are usually done in
broad gestures like a crescendo, a diminuendo, or a given
accentuation pattern.

Certain timbral characteristics of the amplitude contour of
sound often depend on pitch and 1loudness. The timbral and
temroral character of percussive sounds, for example, will vary
greatly in relétionshi? t0 their loudness.

This discussion aims at understanding that when a socund is
heard as the product of a device, the character of the scund is
a result of the particular idiosyncracies of the system that
produces it. The sonic manifestations of a vibrating or
oscillating tkody are always reflective of the structure of the
instrument and their character is the making of a physical
system. In digital sound synthesis, this particular
individuality of acoustic instruments is not easy to reproduce.
No cne amplitude, pitch or timbre parameter should be thought of
as static. Credible synthesis of tones can only be achieved
through a model that respects the inherent interdependency 6f
parameters invclyed in the groduction of a musical tone. |

., As will be discussed later, these observations led to major

decisions in the conceptualization of MUSCIL. This apprcach is



alsc very relevant to reduction of data in the formulation of

scores of rarameter values to be performed by an instrument.

THE CONCEPT OF SCORE

Scores are defined as lists of parameter vectors nceded by
a given instrumsent to produce a successicn of different sounds.
The actual meaning' or application of the parameters is aot
relevant as long as the first parameter in each vector is a
waiting period before the next vector is performed by the
_instrument. The other parameter values in each vector will tell
the instrument what sound to produce.

In traditional acoustic scering the interpreter is asked to
perform the given pitch{es) at the loudness prescribed with the
waiting period(s) proportional to the duration of the note(s)-
In a practical sense a human performer can only be expected to
process a limited amount of information regarding the sounds he
is to produce with his instrument. This has been elcguently
illustrated by the famous Klavierstuckeﬁ -by Karlheinz
Stockhausen. Intended to explore the very precise parametric
contrcl of the generalized series, the pieces were in fact
impossible to glay as scored.

Computers brought with them not only an amazing capacity to
synthesizé sound, but alsé a disconcerting ease to perform ihe
EOSt complicated music devisable. Not only does the computer

process instantaneous information about pitch, amplitude and

10



timbre, but it can also <control other parameters with great
precision.

While the precisicn of control over all paraneters is
greatly enhanced, the amount o¢f contrel information to be
surrlied to the instrument is also increased.-. The burden is on
the composer to elaborate very complex tables of numbers to have
the instruments produce music.

p1,p2,P3,P4,P5,F6,07,P8,P9,P10,P11,E12, P13,P14 and P15 of
our example must all be supplied for each and every sound. Fig.

2 shows one such takble.

TINE ok | E2 P3 B5 P6 27 ~eeP 15
1.2 12.1 500  440.4 2.5 22 330 eaall
2.4 8.1 300 880.8 3.2 24 660 wee9
3.2 11.4 100 220.2 4.7 29 880 o
4.4 10.1 50  330.4 3.3 20 300 eeeb5al
6.6 11 77 220.12.1 22 400 eenla?

eeeoFig. 2 = A MUSIC V NOTE TABLEa ...
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A data table like this is a score. It is a list of contrcl
infermatior and timers t¢ be used one 1line at a time by an
instrument with 15 parameters to produce one sound, and then
wait the amount of time given in +the first parameter before
producing +tke next scund. The compiiation and generation of
control tables or scores of this type through a fpowerful
high-level language is ttke first goal of the MUSCIL project.

If a coﬁposer ‘must input scores cne number at a time, he
often faces a burden too complex to deal with efficiently. Most
of the information =supplied by the composer in this case is
redundant, specially if many of the parameters are a Kkrown
function of twec or three primary ones.

#e should also give consideraticn to the types of data
processes used by composers in scoring for an dinstrupent. &
considerable amcunt of redundancy is usually piesént in a given
musical statenent. Daniel Charles, the noted French
musicologist, defines &pusic as the dialectic experience of
change within permanence ({Charles, 13976). A group of pitch
values or a succession of durations will often be repeated
within the same work; in thé case of  wminimal music tke éame
musical ~ Phrase 1is often repeated continuously with small

variations. If a succession of parameter values is to tbte wused
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consistently in a work, a composer should be given the means cf
describing the succession only once and referring to it
subsequently by a name or a mnemonié reference.

In the early fifties, IXannis ¥enakis formulated and
demonstrated a pertinent principle for the generation of
parameter values (Xenakis, 1963). The post-¥ebernian cCemposers
were dedicating emnorrous enérgies to calculating hyper-precise
scores while never considering that the actual sounding result
¥as sc¢ complex that the meaning of the individual events in a
composition was lost. Xenakis stated that random generation
procedures would much more efficiently generate the same kind of
perceived structures. The use of randonm {stochastic)
distributicn methods in music is now wide-spread. The composer
using them can specify probabilistic ranges for parameters of
sounds instead of defining the precise value of each parameter
for each scund event.

While experimentation with stochastic procedures as a style
has probably shown its limits for the construction of SCOIes,
the use of random procedures tc¢ prcduce credible timbres cannot
ke overestimated. This particularity is mainly concerned with
the sgicro-time structure of sound ditself but it is alsc
reflected in formal structures by the undefinable "human® edée
cf live music performance. | |

. Randopization is in fact vital in the simulation of nature.

Perhaps the most compelling power c¢f precision in computer~based

13



prccessing 1is also its killing grace. Computer music that does
not acknowledge imperfection usually suffers frcm an unrelenting
hard-edge.

MOSCIL is a language to generate control data tables, using
algorithms to izplement random and sequential prccesses easily
that are often used by composers, thereby reducing redundant
input. Parapetric interdependency allows the formulaticn cf

scores in a hierarchical fashion.

THE CCNCEPT OF CRCHESTRA

A . A e el O PiSp—— s s s

The last step in the production of complete musical Wworks
is usually the orchestration stage. Several ways of looking at
orchestration are possible. One definition states that
orcltestration is the process (the "scorclestration® concept). by
which a composer assigns different scores to be played by
various instrunments {Buxton et al., 13%78).

Another definition, which is adopted by MUSCIL, states that
orctestration is the organization of varicus irstruments playing
different parts into one polyphonic 'score'. In this task, the
conposer proceeds to the wmacro-assembly of individual parts
scored for different instruments. This concept of orchestra in a
ccmfuter setting is an expanded one, owing %o the almcét
unlimited variety of instruments devisable with digiial
synthesis technigques and tte theoretically endless variatioas

rossible in their juxtaposition and combibationa.

14



An analysis of most musics shows that there always are
redundant elements in a wcrk of music. The sane instrument may
for example appear at a later stage of a wecrk playing the same
score with variations in a number of parameters, e.g. Ssofter,
transposed by a fifth or simply faster. Such operations can bhe
referred to as post-processing of scored data. These processes
are most often employed in thé general structuring of music.

An orchestra can be regarded as an open system capable of
producing a variety of vertical structures. The number of
variations possible is 1limited by the number of instruments
comprised in tﬁe orchestra and the number of different scores
playable by these instruments. The importance of orchestration
and global structuring shculd not be underestimated. 2 final
#ork of music will rarely consist of a lone line of sound. The
composer must be given tools that ease the process of scoring
many voices at the <same time. He must also be given tools at
this stage for the implementation of variations on the
individual instruments he uses without having to rescore a full
part.

MUSCIL makes this orchestral level of composition activity

the mocst impertant focal point.
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II. A BRIEF SURVEY OF CURRENT MUSIC SCORE EDITORS

In this chapter we shéll look at a numker of
computer-based music score editors. In doing so, we will point
out their advantages and inconveniences with +the intent of
integrating scme of the more useful features into the design of
our language. The <choices made here reflect the author's
experience with these systems withont considering the intent of
their authors. As was previously noted, the real test of any
computer music sSystem comes when users are trying to generate
music. The features of systems highlighted as desirable reflect
nothing more than this author's biases in accomplishing the

tasks pertinent to music-making.

THE MUSIC V SYSTEMS

In the descripticn of the MUSIC V instrumgnt_we méntioned
its very crude score editing process. The overwhelming task of
specifying scores in MUSIC V prompted several composers to
develop nevw versions of the program by adding badly needed tools
to facilitate inpuﬁ.

The MUSIC 360 and MUSIC 11 languages devised by Barry
Vercoe at HM.I.T. resort to graphic means for inputing rotes cn

staves. These pitch-time structures can then be applied to a

16



predefined instrument with the cther parameters being imput at
the instrument-building stage. This apgrcach suggests a number
cf comments on the use of graphics hardware for the input of
scores. It also brings camme#ts on the relevance of various
"yisualizations" of scored nusic.

Graphics are expensive, in both hardware and software. 1If
they came for free there is no doubt that they would be vseful.
Computer systems should be used in an efficient fashion, without
wasting copputing power on the inzplementation of features that,
although inmpressive, have never proved to be of crucial
importance in ’the making of good music. Until the time comes
that proper, hupman-engineered interfaces can be provided at
little cost, there seems no reason for the composer to avoid
dealing with numbers. It 1is faster, more efficient . and
inexpensive.

Another ccmment, Trelated tc¢ the previous one, challenges
the conviction on the part of awmusic-program designers that
composers cannot understand anything but notes:on-music staves.
Nct only dces this attitude take a heavy tdll on experimentation
in scoring, but also limits precise scoring of every parameter
of an instrument and -practicaly eliminates one of the finer
edges of ccmputer music as a powerful “"crganizer” Sf
compositiocns. \

. Ccmmon Music ©Notation (CMN) has its uses fer the

comfuter-music neophyte. It is a practical representatior of twuo
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primary parameters of music, pitch and time, but it places an
unnecessary bias on what the composer ought to be thinking ¢f as

important in his music.
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Many features of SCORE, developed by Leland Smith at
Stanford University, aére adopted in ﬂUSCIL- In the author's
experience SCCRE takes a very sensible approach to practical
input procedures and at the same time ’provides very powerful
tocls for the éxperimenter {Smith, 1972).

SCCRE was designed to work in ccnjunction with MUS10, a
MUSIC Vv type instrument definition progranm that leaves a number
c¢f parameters open for control during the execution of a score.
Each "part" cf a composition is specified one parameter at a
time wusing a number of operations that will apply for the
duration of the score. Parameter values can be defined by
inputing lists cf data or randcm number generatbr coordinates. A
mathematical language is offered that applies to any parameter
to implement parameter interdependence efficiently.

SCORE compiles a score from a user's compositional file.
That file is irput according to the SCORE syntax with a givén
ccmputer text editor. SCORE does not interact with the user énd
sipply compiles the total score for all the instruments present

in a file. There are no "nesting" possibilities. Everything
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pertaining to the execution o0f an instrument score must be
present in the parameter command list of that instrument. Once a
file has been defined, cpe cannot tefer to other files and, for
example, prcduce the sinrultanecus executicn of many files. SCORE
alsc lacks in that the composer cannot pre-compose "cells" cf
data and later use them in his instrument scorese.

The last criticisnm of SCORE is essentially its "batch"
processing apgroach. SCCRE does not run in real-time nor was it
designed tc. This rules cut any possibility of SCCRE being used
with input devices like keyboards or potentiometers to interpret

or conduct the execution of a score in real-time.

4CEL

Curtis Abbott programmed the UCED language to controcl the
4C synthesizer built by Pepino di Giugno at IRCAM in France. The
output of 4CED feeds the input registers ¢f the U4C synthesizer
with parametric data every time a new socund is to be produced,
according to the score wcrked cut with the UCED editor (Abbott,
1980) .

4CED 1is a real-time score processor and instrument-builder
that incorporates a MUSIC V +type instrument definition, ‘a
function editor £for envelopes, and a powerful sccre p:ccessing
language. Data for individual scores must still be input in the

forr of note lists with all parameter values actually defined.
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These scores can be cycled and treated in a number of ways
throcugh the processing part of 4CED. Since 4CED feeds the 4c in
real-time, a tctal reconfiguration of the synthesizer is allcowed
"on the fly" as is the input of parameter values through a set
cf potentiometers that are read by the progranm justvbefoxe a
sound is output. This is by far the most interesting feature of
4CED. It is essentially ah eXtremely powerful segquencer that
processes many scores at the same time, cffering a number of
options at the performance level.

4CED tries to implement a wide variety of musical
operatiocns on é small computer (PDP 11/34). That it succeeds in
doing =0 is remarkable. Its important lack is in the type of
primary score definitiocn used. It is very similar toa MNUSIC V
input file and as such is very awkward. Much typing is needed if
one wants to specify large deterministic pitch-time scores.

The "orchestral" language of 4CED is its most interesting
feature. 1Individual scores are seen as "units™ that will cycle
for a time given in a list of real-tipe ccmmand. At any point in
the execution of a command 1list, the scores can change, and
specific parameters can te changed. Some features cf this part

of LCED were adopted in MOUSCIL.
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IHE POD SYSTEN

The POD programs were developed by Barry Truax to run on
rini-computers while ¢providing aa interactive setting for the
user {Truax, 1577). POD6 is centered arcund a conversatiocnal
prograe tc¢ aid the user through a number of musical processes
used in defining a specific type of compcsition. The instrument
cffered by PCD for synthesis is a freguency-modulation algorithm
with a fixed number of parameters. The parameters pertaining to
tipbre are defined through "object definition" procedures and
the score consists of a pitch-time-amplitude conglomerate
calculated fxoﬁ a Poisscorn distribution and user-supplied limits.
An auxiliary score editing facility allows a more general
control of the main parameters by using a number of operators cn
existing score data files.

POD programs are not readily amenable to the composer with
a lkias towards deterministic procedures in compcsition. ECD's
‘impcrtant feature is prchably its stress co¢n interaction as a
tool for 1letting the composer define his ownipriorities. That
however is true of the main part of the system(POD6). In FODSG,
the COomposer organizes a monophonic distribution of
events(notes) by specifying its structural features. POD offers
programs for editing, mixing and orchestrating different scoreé.
These programs run on precompiled POD6 scores. At this levél,
the . advantages of interaction are 1lost to the preofit of

- generality. Since most musics usually consist of more +than orne
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line of socund, it is vital that the final goal of a music
program always ke a polyrhonic sccre.

The three main steps defined earlier in our compositional
mcdel are present in POD. While POD6 was conceived as a full
compositicnal facility it 1is in fact seldom used for the
composition of an entire work. The three main tasks of
instrument~-definition, =scoring (if one doec not wish to use
Poisscn Distributions) and orchestral structuring are in fact
implemented 1in the form of three different programs{POD6, PDFIL
and MERGE).

The preseni author was influenced by +this structuzring of

taskse.

SsSP
The Structured Sound Synthesis Project, coordinated by
Bill Buxton at the University of Toronto, has concentrated of
lot of energy in the creation of appropriate scftware for the
input of music scores. Supported by scme of the:mGSt imgressive
grarhics available, most input is dcne with a light pen on a
variety of pitch -time coordinates like "piano-roll® notation or
comEon music nctation on staves.
The ocriticism given earlier to graphics oriented inpét
tocls apply just as well in this «case. In this particuiar
exapple the cost implied in graphics is specially felt owing to

the relatively small amount of ccrputing power available for the
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full systen.

A number of relevant issues pertaining +to computer-aided
composition were addressed in the development stage of the S$5SP
system (Buxten,1978). Buxton correctly assessed that composition
is essentially a recursive process whose different steps are
rarely exclusive. He further observed +that very few score
editors allowed the‘coaposer to swork with small units and later
use instances of these in the conception cf larger compositional
units. This hierarchical concept of scoring is fundamental if
cpe is fo take advantage cf the true "assewbling” capacities of
a ccmputer based resource.

SSSP implements this concept with tree structures shere a
recurring umnit in a compcsition need not be duplicated in actual
stcrage. SSSPE uses the event as its primary unit. This event can
be cof various levels of complexity (e.g. a score, a note, a
section) and a score is defined as a number of events.

Although the nesting approach is very powerful, there seens
to be linmits to its practicality. It wculd Se 'important to
define how many levels <¢f data nesting are relevant to amusic
composition. The composer can €asily get lost in tree structures
that involve pore than a few dimensions. Perhaps more important
is the observation that if wmusic repeats itself, it rarely
repeats itself perfectly. A nesting aprroach to compcsitional |
data structures should therefore advocate the use of powerful

parametric podifiers to facilitate the scoring of Yvariations"
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of nested data.

SSSP also assumes primary parameters as the exclusive
domain of pitch and time. Scores are strictly defined with four
parameters {pitch,time,amplitude and timbre). Tisbre is
specified through a call to an independent data structure, known
as the “"object". Parageters relevant to timbre {envelopes,
spectra, etc.) are defined onée in a separate program. ¥hen a
score 1is perfecrmed these parameters are not accessible. As we
have seen in the preceding chapter, this approach does nct lead
t¢ a "credible™ morphology of musical statements. Parametric
interaependence' must be reflected all the way down the
parametric chaiﬁ of a given dinstrument for 1t +toc achieve
critical realism. The notion of hierarchy in parameters is
acknowliedged, but some of the most important secondary and
tertiary parameters are %totally separated.

One develorment of the SSSP project worth mentioning is the
conducting programs c¢f Bill Bux*on. Similar to 4CED in their
scope, they allcw the simultaneous perforrance of a nusber of
scores and the real-tine interaction of the

"performer-conductor” (Buxton et al., 13980).
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IIX. PROPOSAL FOR AN INTERACTIVE REAL-TIME MUSIC DATA PROCESSOR
Many ccmposers have +turned #%o computers as a vay aof
generating music for many years and in many cases the results
cbtained would not have been possible without their use. Very
often composers with a particular musical idea resort to writing
specific pregrams +o calculate data from which scores are
derived (Xerakis, 1971 & Roenig, 1975). No particular progran
for music-makirg has ever succeeded in offering all ccmpcsers
the possibilities for elaborating all possible music structures.

The scoring of music is nothing more than a special kind of
data processing and the possible musics derived from all
possible sets of data is beyond reach of the imagination.

Tke design and ismplementation of the MUSCIL language .has
gained from the «criticism given to currently available music
score editors and, in scome cases, has Lkorrowed directly frca
them. The authcr wishes tc acknowledge their coptribution.

The gocal of the MUSCIL project was to establish a language
that retains a measure of familiarity for the COmEOSer
acquainted with cother music sccre editors like SCCRE or MUSIC V.
At the same time MUSCIL is to offer greatly enhanced features to
€ase the production of complex musical scores. It is a difficult
task for the designer +tc¢ formulate languages that are very

general in the scope of prokblems they can treat, and yet which
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allow the execution of these tasks ip a relatively "natural"®
LER R

In elaborating a language, the first step is to describe
the types of problems we wish to solve with that language. A
music processor. in itself can be relatively simple, as we bhave
seen with the MUSIC V note tables. Theoretically the composer
could input any type of musical structure into a computer and
have it performed. However this proccess is tedious. The level of
redundancy is usunally so high in almost all musics that their
actuval representation could be reduced to a few base elements
and a good ccnétruction plan {music in "kit" form). The actual
building can be automated.

The ultimate legitimacy of a score processor is that it
saves a lct of work. The cther main advantage is that it allows
the composer to concentrate the bulk of his work at the level
which suits him the most. Any experienced compcser can formulate
"perscnal” or "generalized" sets of rules in the compositicn cf
- music. These rules, when formulated, can be impieménted» in the
foxm of ar intelligent score processor, where the entry of data
is minimized as a primary task and more attention is given +to
what post composers actually do when they compose nusic.

MUSCIL does Dnot attempt %o be the most general of scofe
processors. The compositicnal behaviour model adopted as a baéis '
to . the design of MUSCIL 1is specific. The "instrumental®

approach, adopted by MUSCIL, has been time-tested Ly generaticns
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of composers. The ™instrumental' process of MUSCIL, however, is
greatly expanded and suits a number of alternative épproaches to
the task of creating music.

This chapter attempts to justify the main decisions that
were taken in the design of MUSCIL. The MUSCIL user's manual

describes the details cf the izplementaticn.

AN INSTRUMENTAL MODEL

An instrument is viewed as a sound producing device. Tke
range, timbre and general amplitude characteristics of acoustic
instruments is usuvally known. In the computer music idio® an
instrument can be defined as a sound producing "unit" where
range, timbre and amplitude characteristics are fabricated. The
"constructicn® of this instrument is subject tc¢ many different
views, specially in experimental music.

Since the days of the "Klangfarbenmelodie®, the instrument
is often used as a timkre before it is used as a "pitch-value"
redium. Nevertheless an instrument will always ﬁe iade to play
something = whether it uses gpitch or not as a primary
syntactical vehicle.

What the instrument plays is the scoie. This score can §e
formulated with a 1list of .numerical values that describe
uneqguivocally what will te §1ayed. The "general®™ instrument as
_implementable with a ceocumputer shcould therefore be our reference

shen speaking of instrument.
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Let usg describe the task cf composition as a succession of
w0 recursive rrocesses that cumulate in a completed work.

Think of an instrument. -Ccﬁpose a4 score of primary
parameters for that instrument using rules and oprocesses
relevant to the cbmyositional style used for the compesition.
Test the score with an available sound source, the piano c¢r some
other readily available insﬁrument. Refine the score until
satisfied with the results. Compose another part for a different
instrument or the same instrument. This is the first recursive
taske.

Choose cné of the previously composed scores and copy it on
a mpulti-vcice score at the appropriate place using modifications
and transformations relevant to the compositicnal style. Repeat
the preceding task until the smork 1is ccrpleted. This is the
s€ccnd recursive compositional process.

In a computer-based environment these tasks are more
precise and demand more attention from the composer. Scme new
tasks are alsoc introduced by virtue of the cchputer's capacity
to fabricate instruments.

Build an instrugent {or a patch 1in the electro-acoustic
terminology) and hear how it sounds with "“dummy"™ parameter
values. Refine the instrument by changing parameter -valués
and/or reconfiguring the patch. Repeat this procedure untii a

fagily of instruments is available to the user's "orchestra'.
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Choose an instrument in the orchestra and Wwrite a score for
it using rules and processes relevant to the compositonal style.
Hear how the score sounds as plajed by the instrument. Refine
the score until satisfied and/or hear what the same score scunds
like when ©played by a different instrument. The essential
difference of computer-based compositicr is perhaps most
prenounced here. A score caﬁ be specified with absolute values
with 1o margin left for human errc: duiing the interpretation
stage of the sork. The precision of scoring can be absolute and
therefore necessitates special attention from the composer.

Creating cdmplex multi-voiced scores is also a much mcre
precisely defined task inm a computer-based environment.

Choose a score and an instrument and enter it at the
appropriate place 1im the score effecting modificatiens .and
transformations to the score zrelevant to *the compositional
style. Hear how the composite score sounds. Make modificatioas
to the score, delete the score or choose another instrumert to
play the same score until the results sound satifactory. Repeat
the preceding processes until the final results are obtained.

As witnessed by this descripticn, the computer setting of
composition cffers more flexibility by allowing the compeser to
hear the results of a particular coppositiocnal decisioﬁ
immediately. Akove and beYond the advantage of making
instruments, the composer 1is given Jinstantaneous feedback.

Ancther advantage is that of modifying instances of a particular
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score without having to restate the complete score, but instead

only the parts shich are subject to modificaticns.

ROULES AND PRCCESSES IN CCMPOSITION

| As we have discussed, most cf the composer's work will go
towards specifying or fcllowing a set of rules. It is reasonable
to state that music history has yielded many sets of rules that
have or have not resisted the onslaught of time. Traditional
harzony 1is a set of rules, dodecaphonic music is regulated by
. general and specific rules, and so is process music. One would
be hard pressed to formulate general rules that apply for each
and every style of music.

Hovwever there are definite constants in almost all musice.
Without <calling ther universal rules, we can at least sugéest
the nature of their universality. For instance, few musics hever
repeat themselves within a composition. Repetition 1is
fundamental +to music everywhere but in specific aieas of
ccntemporary nmusic composition. This suggests that music is
usually composed with small pre-ccomposed units that are used
with a number of variationms.

Following this observation, one camn comment on determinism
in music. W#ith the exception of a specific fphase of tte
avant-garde period, nc music has ever been fully deterministic.

While the means of being fully deterministic are ncw available,
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it tas never been pxoven to be desirable. Music, whether in
rerformance or composition, always uses a considerable amount of
indetersinism. This suggests that randon processes are
impcrtant, at 1least for the simulation cf indeterminise at the

ricro level.

PARAMETER HIERARCHY

MUSCIL divides paranmeters in three <classes :
Primary (pitch=-tinme), séCondary(amplitude, articulaticn) and
tertiary(timbre). This division should not, however, dictate
that certain parameters cannot be "orimary"® in their
controllability. This particular hierarchy was designed as a
convenience to establish what types of processing MUSCIL should
implement.

MUSCIL assumes the pre-eminence of pitch-time conglgmerates
in the hierarchy of musical parameters. Attention will be given
to these two parameters in the form of a special kind éf data
structure that will facilitate +their dinput and allow the
composer to interact with MUSCIL mainly in terms of pitch-tize
parameters. Seccndary parameters like articulation and amplitude
are seen, in the design of MUSCIL, as functions of tte
pitch-tinme ccnglomerates. 3 mathematical language should
therefore facilitate the control cf these tyres cf

relationships.

31



Parametric interdependence is a powerful ccncept in the
descripticn of musical sound events, since computers can easily
perfors the complex transfer functions from one parameter to the
other. MUSCIL will provide a special purpose mathematical
processcr to treat this problem. The most important effect cf
that feature will be to allow the composer to concentrate his
creative energies on the production of pitch-time scores shile
other parameters = by‘virtue of mpathematical expressioctrs = can

be defined cnce as functions of thenm.

CCHMELEX WOEKS

MUSCIL also assumes that, whatever the @musical idionm
employed, a piece of music.aluays consists in the final analysis
of a number of sound events, with or without silence, played
solc or simultaneously with other sound events. The multi-vbice
score therefore becomes the main product cf MUSCIL.

Complex works of music are usually ccnstructed from smaller
parts. Redundancy is almost always present in some form 6: cther
as a work unfolds. The ccmposer will often use an instrumental
rart at the beginning of a work and re-use the same part with
modifications again 1later in the ccmposition. As in the
. multi-stave orchestral score, MUSCIL will allow an "orchestral”
area where many individual "parts™ can Le organized tcgether.
This feature acknowledges the fact that most musics use

polﬁphony and will influence the COmMpOSer to thick
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folyphonically. Perbaps the most isportant part of MUSCIL is the
algerithm that allows the sorting of many individual instruments
playing individual scund events at the same time. The particular
task of "orchestrating" different voices is seen as the most

importapt in the elaboration of complex susical works.

INTERACTICN

Interaction was and still is much discussed in conmputer
music as a gprimary feature of efficient and useful languages.
Interaction peimits a novice user an e€asier introductior to
music-making with a particular language and greatly enharces his
chances of Leinc¢ successful.

Another wvital advantage of interaction is to permit
inmediate execution of special sub-tasks for testing purposes.
In a composition session at the computer terminpal, one will wish
to hear small fragments before incorporating them in a
full-fledged corposition. Once a user has rastered the isportant
Frocesses in the elaboration of a susical work, the most
valuable feature of a system becomes the ease of execution <cf
these processes. A user must be given full flexibility to move
back and forth between various "musical levels" of the languagé.

MUSCIL was conceived as a high-level music 1language for
composers who are already familiar with the tasks invoclved in

froducing ccmputer music works. The type of interaction offered
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is ease of execution and econcmy of data entry.

A REAL-TIME PROCESSCR

MUSCIL ccspiles a score in real-time. This is implemented
by outputing event data to an FIFO output buffer. This buffer
can be read frcr the top by an interpreter feeding a digital
sound synthesizer, while it is being filled at the bottos by the
MOSCIL execution cycle. The output cycle of HMUSCIL will ouput
*cherds' of all synchronous events in an orchestrated score and
prcvide a waiting time for the synthesizer or synthesis progran
before it reads the next ‘*cherd'. The next ‘'cherd? of
synchronous events is calculated during the waiting period and
output after the buffer has been read by the synthesizer.

The real-time feature of MUSCIL will prove very useful when
real time input 'windous' are left in the instrument definiticn
of a particular parame*er. An input device like a joystick or
potentiometer can then te read through thke window in the buffer
to obktain current data. The output =tage of MUSCIL will

calculate a score of up to 48 voices.
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B. MUSCIL : USER'S MABRUAL

The following presents the syntax for the MUSCIL language.
All cptions <¢f MUSCIL are used and explained in the examples.
Special sysbols are defined and exprlained as well as the sjyntax

of the MUSCIL Command Language.
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I. THE MUSCIL WORKING ENVIRCNMENT

Fig.3 shows the diagram of available 1esources in the
MUSCIL working environment. The first section is a puklic use
library that contains various data lists, instrument definitions
and demonstration scores that can be accessed by any user to get
useful "pre-defined" MUSCIL statements. This library will be of
particular wuse to the wunacguainted user who dces not wish to
immediately tackle all tasks involved the executicn of a MUSCIL
- score. Standard instrument dJdefinitions, for example, can be
borrowed from the public library and only a pitch-tine score
need bpe input in conjunction with that instrument to produce a
playable =core. The library is also used to store MUSCIL
commands +that have pgroven to be of general usefulness sﬁch as a
crescendo function or a randomization function.

The second part of the library is tte private library. This
likrary is stcred on disk space allocated to a user. In this
file, the ccmposer inputs MUSCIL data thrcugh a general purpose
editor like OUONIX or M7S or the editor available in the
particular computer system. This file contains all the comnposed

daté relevant to the execution of a number of orchestrated
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scores by MUSCILa.
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Fig.3 — MUSCIL DATA STORES AND
INTERACTIVE WORKING SPACE
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When the MUSCIL program is started, a file name is asked for and
all the data is read into the "active” stcrage of MUSCIL. The
structure of the file must respect a strict input syntax that

will le descrifbed at a later stage.

MUSCIL LIBRARIES

All interactive work 1is «ccnducted through the active
library, that which =sits within immediate reach of the MUSCIL
program. The active 1library is subject to changes in its
contents at most points of a work session but it constitutes tte
only data from which the executicn of a given score <can be
derived. Library management in MUSCIL is an important concept.
At any giver mcment in a sessiocn, the user is given the ofpticn
to redraw his ccmpositicral intention ccxpletely with the use of
a new set of definitions. The libraries are therefore
exchangeaktle. The capacity of the "active™ library, however, is
linited. References %o external 1libraries are  subject to
availability of space. The public library, for instance, might
contain a vast number of definiticns sufficient tc exceed the
allcted active storage. At the beginning of a session the user
can choose tc input his own library and parts of the publié
library. In the course of iﬁteracting with MUSCIL, the user can
completely alter the centents of the library. The cnly time cne

is not allowed to do so is during a MUSCIL score compilatiocn.

339



¥hen a score is being compiled, all materials pertaining to that
comjpilation must be in tle active library.

Note: The composer may Wish to work only in the interactive
mode without reference to a particular user's file. In such a
case,he can input all his data during a session and save tte

full active litrary in a personal file cn disk.
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INTFRACTIVE CONMANDS

All wuser interaction 1is handled by a conversational

subprogram that recogrizes a number of commands and dispatches
the necessary actions to have the <ccmmands executed. The
interactive ccamands are expiained below. <datalakel> indicates
a user's defined name for a particuliar type of data structure.
The various types of structures are explained later. <filenanme>
refers to a user's private library from and to which data is

being transferred.

FETCH <datalabel> <filename>.

The FETCH command is used to get data from the external
libraries read into the active 1library. If the cptional
<datalabel> is omitted, the full contents of the file kanown as

<filename> will be read.
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INEOT <datalabeld.

The INPUT <command is used tc input agy type of data into the
active library from the computer terminal. Note that the type of
data input is determined by the first letter of the <datalabel>

and will be stored accordingly in the active library.

SAVE <datalakel> <filenasme>

The SAVE ccmmand will stcre the data contained din the active
library under the <datalabel> intc the aprropriate store of the
file kncwn as <filename>. Here again the first 1letter of tke
<datalabe > determines the type of data. If no label is given

the full active library will be saved.

EDIT <datalaktel>

The EDIT ceommand alliows the user to <change scme of +thke data
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contained under the <datalabel>. The contents of the <datalabel)
are printed on the screen. The edit functions are those of a

cemgon text editor.

PLAY <datalabel>

The PLAY command is the only command that is restricted to
particular data structures. Only PITCH/TIME SCOREs, PARAMETRIC
COCMMAND LISTS and ORCHESTRAL CCMMAND LISTS can be played. Refer

tc the next section for details.
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MUSCIL LAIA STRUCTURE
Fig.u‘presents the various components of the MUSCIL active
library. It is composed of three distinct parts.

1. The HEADER, where dJdata is entered in storage units of the
types PITCH/TIME SCORE, LIST and MASK. The HEADER is a data
store that 1is accessed by PARAMETER COMMAND LISTS. The
HEADER is optional in the executicn of a MUSCIL score
compilation but is useful when identical strings of data are
to e used more than once in a particular compcsition. Up to
ten different entries of each type can be entered in the
active library.

2. The PARAMETRIC COMMAND LISTS{PCL) or Instrument Definitions
constitute the only compulsory data for a MUSCIL execution.
The Active Library has space for 25 PCLs.

3. The ORCHESTRAL COMMAND LISTS{CCL). The Active Library will
accept 3 CCLs. Each of these can consist of u§ to 48 tracks
of instruments playing together.

The interpretation and execution <¢f sounds is not the
responsibility of HMUSCIL. It is therefore assumed that a MUSCIL
file interpreter and a synthesizer are carrying out the actuél
playing of the instruments. It is alsc assumed that a 'patéh’

service program will define ipstruments to the interpreter.
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NCTF : Por the purpose of our examples +*he instruments use a
fixed waveforrn synthesis method and are controlled by fifteen
input parameters similar thebthelMUSIC V instrument discussed in
the first part of this text.

The ordering of parameters will be as follows :

P1 : Wait cycle(entry delay) before a new note in milliseconds.
P2 : Freguency in Centi-Hertz.

P3 : furation of each noté in milliseconds.

P4 : Mazximum amplitude of each note in decibels.

P5 : Attack time in milliseconds.

P6 3 Initial decay in milliseconds.

P7 : Duration cf steady state in milliseccnds.

P8 : Final decay in milliseconds.

P9 : ¥Wavefors number.

P10 z Vibrato rate in centi-Hertz.

P11 Vibratc amplitude.

[T}

P12 : Vibrato attack time.

P13 : Random deviation for pitch warble in percentage.
P14 : Frequency of random fluctunation in centi-Hertz.
P15 Waveform of vibrato oscillator.

L1

4%
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II. THE HEADER

The storage area defined as the HEALER is dividedvin three
sections. Each section stores a different tyge of data
structure. Data contained 1in the HEADER area can only be
accessed through the PARAMETRIC COMMAND LISTS. The HEADER in
fact serves as an auxiliary storage for the PCLs, so that
particular groups of data used often in a composition can be
predefined, given a label, and recalled by using only the label.
The three types of data structures contained in the HEADER are
1= The PITCH/TIME SCORE, 2= The LISTS and 3~ The MASKS.

Note that HEADER data need not Lbe present in the active
library for the executicn of a score. 411 HEADER data refereﬁced

frce the PCLes must howsver be present.
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PITCH/TIME SCORES

PITCH/TIME SCORES are a special type of data structure
that allew a particularly efficient input of the two primary
parameters of pitch and entry delay.

Each character on the .computer terminal keyboard is
assigned two values, one for pitch, the other for time. The
configuration of different keyboard will vary but as a rule, the
lowest pitch of the tempered scale {circa C1) is assigned tc the
leftmost/upperrow character {usually the character "1"). Moving
tc¢ the 1right from that éorner each key increments pitch by a
semi~tone. Cne character represents one pitch. Therefcre tte
full keyboard can be assigned a range of over eight octaves.

A future implementation of MUSCIL will offer alternatives
to the tempered scale by allowing the composer tc¢ specify his
own increment between keys. The base frequency(pitch) of the
lowest key can also be changed to "modulate”™ thé kéyboard.

Time is also calculated by specifyirg an increment between
the keys, the 1lowest key specifying the smallest indivisible
time unit.

PITCH/TIME SCOREs are entered by first specifying the
PITCH/TINE SCCRE 1label. ;he first letter of the laktel mﬁst
always be an "X". The next line will contain the time values in

the form of characters and the third line will contain the pitch
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valuves. There reed not be an egual number of pitchés and tinmes.
The first fime value is used in conjunction with the first pitch
value and so on. The two lists cycle independently. The user
muost therefore ensure that, if that is desired, there will be a
related number of pitches and entry delays.

PITCH/TIKE SCOREs can only be used in a PARAMETRIC COMMAND
LIST as a replacement for P1. and P2. This is done in the
PARAMETRIC COMMAND LIST by listing a call to the lakel of a
PITCH/TIME SCORE with tte speciai "PLAY" cocmmand. The special
fore of this command will be treated in the following chapter on

the MUSCIL COMMAND LANGUAGE.
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EXABPLE - THE PITCH/TIME SCORE

XVio
703ygygi60tgtgu69TGHE9; {each character is an entry delay)

20392039g1dgl1dgldgldgl; {each character is a frequency)

Xvia
87€%;

NEW ICKOFAMISN;

IVIE
i

GLEGLS;

XVIF
TOCTOCBI;

$1;
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The LIST structure is simply a sequential 1list of data
also to be wused in the PCLs. A LIST can contain a number of
elements of twec types : an actual numerical value or a LIST
label that cortains LIST data. The first line of input is the
LIST label which must always have the dharacter "1i" as tte first
letter.

The wmain advantage of the LIST structure is its pctential
for nesting IISTS within LISTS. There is no restriction to the
level of nesting and this rTepresents a powerful way of
constructing ccmplex structures.

LISTS are used seguentially by the "S" +term in the
 PARAMETRIC COMMAND L1IST. ®#hen a LIST label is encountered the
full contents of that LIST is output before the next element in
the original LIST is output.

The complete form of the term will ke discussed in_the next
chapter on the MUSCIL CCHMMAND LANGUAGE. The user must of course
be aware of where in the PARAMETRIC CCMMAND LISIS a particular
LIST will be used, as different parameters will expect different

numerical value ranges.
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EXAMELE -~SOME DATA LISTS.

LAMVIE {(latel con first line)

10 20 30 4§ 500; {data on next line)

LANVIO

300 40C 500 LAMVIE; {(nesting allowed but not recursion)

LAMVIF

LAMVIC LAMVIA 1IANVIO;

LAMVIA

100 260 300 40C LAMVIE;
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HASKS
A MASK is defined as a two-dimensional geometrical
construct specifying time-dependent limits within which a randcm
numker is generated. The specific use of MASKS will be discussed
in the next chapter. The time co-ordinate 1is given in the
PARAMETRIC CCMMAND LIST; therefore, HEADER MASKs are strictly
shapes that can be stretched in the +time domain by a timing
variable.
Masks are input in the HEADER the same way lists are input
with the exception that only one mask cceprising two,three or
four coordinates can be entered under cne label. Nesting is not

allowed.
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EXAMELE - SCEE MASKS.

MTEUM (label on first line)

10 15 ; (data on next line)

HTRUL

58 60 10 35 ;

MTIROP
- 100 500 2800;(if three coordinates are given the fourth is seen

as egual to the third number)

MCLAP

¢ 100C 200 10;
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IIT. THE PARABETRIC COMMARD LIST

The next part of a HQSCIL input file is compcsed of
Instrument definitions or PARAMETRIC CCMMAND LISTS (PCL). The
reader should at this point be concerned cnly with the structure
of the PCL. The syntax of the command language will be described
in the next chapter. Each instrament definitibn must begin with
an instrument label, of which the first character is always an
"I". It must also be terminated by the 'END;*' cocntrol word. The
PARAMETRIC COMMAND LIST is entered after the label line. One
lire of input must contain all the commands for the executicn cf
one parameter. Command lines are input ir order from PY to P(n)=
The actual parameter number need not be given as MUSCIL will
assume they are in order from P! to P{n). The instrumerts here
have 15 parameters to ccntrcl. Each of these parameters must be
supplied with a command string that will be used for the
outputing of a parameter value as the instrument rlays.

The active 1library contains space for 25 different
instruments. One can sisply input all command strings for the 15
parameters every time a new instrument is defined or one can use
the 'COPY' option. This option uses the PCL c¢f a previcusly
defined instrument specified after the 'CCPY' command. If the
YCOPY' mode is tsed some of the parameter command strings may be

substituted by inputing a new string preceded by the paraneter
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to which it will apply.

It follows that at least one instrurent must te defined in
the MISCIL active 1litrary. Other 1instruments can be copies
playing different PITCH/TINE SCORE for exasmple.

Note that all instrument definitions or PCLs must end with the

contrel word 'YEND;'.
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EXAMPLE - A PARAMETRIC CCMMAND LIST USING THE PLAY OPTION.

IVICLIN

44080 PLAY XVIC XVIO1 {3000 PLAY XVIO XVIC?Y j4000 FLAY XVIO1;
E3:3P1 # 3000;

P4: 14000 S LAMVIE 3000 R HTRﬁH {4000 S L2MVIA;
P5:3R 20 25 30 60 § R 10 20;

E6:jP4 * R 0.25 1.35 - P1 * .025;

BF7:4P3 * 2;

P8 2;

P9:1# 63

§10:15000 s lamvie;

P11:is 20 30 40 lamcla;

B12:1P3;

P13:JFE MTRAP & 20 30 40 lamvie 400 2;

Pi4zi# 677;

P15:yP8 * R 0.58 1.03;

ENL;
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EXAMPLE =2 PABAMETRIC CCMMAND LIST COPYING IVIOLIN AND CHANGING

SCME PARAMETERS

ICL2RINA
COPY IVIGLIN;

18000 PLAY XCLA 13000 R MCLAPS XCLA XCLA2 XCLA;

P3 : |8000 S LTUCLO 3000 S LDUCLC LDUCLA LDUCLE;
P4 : ] R 50 60 10 5;

P5 : J# 1.255;

P6 : j4000 S 30 40 10 5 17000 R 5 11;

ENL;
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EXAMELE =3 PCL COPYING IVIOLIN AND SUBSTITUTING P1 & P2

ITRUMPETT
COBY IVIOLIN

et

(1]

15000 S LARVIE }5000 S LAMVIA {2000 R MTRUPE 20 40 80 100:
P2 : § s 220 440 880;

P4 : |5000 B MTRUM {5000 B MTRUP {1000 R MTRUL;

E8 = P7;

END;

FIN;
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MOSCIL PARAMETRIC COMMAND LANGUAGE

A G ‘ot e S S O

For every parameter of an instrument a command string is
expected, whether duplicated from another instrument or input
directly. The syntax for each command string is the same for
every parameter with the exception o¢f the ortional *PLAY!
ccmpand where only certain types of processing are allovwed. This

case is treated separately.

THE TIMER - CCMMAND SEPARATOR

If we consider +the IVIGLIN (example ), we find that each
ccemand is always preceded by the "i" timer symbol. The optional
number fcecllcwing the "|" symbol is a timer value that will be
ccunted down while the following command is executed. The times
given as a timer are absclute. Every time the instrument plays a
note or every time an event is output in the execution of an

orchestration, the parameter timer is subtracted by the actual
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waiting cycle of the last event. When a timer has run out the
next command in the command string dis initiated with a ©new
timer.

Some options are available in the use of timers. The "|"
symbol however must always be present at the beginning of tke
command string. A numerical timer need nct be given. If a
numerical timer is not found, %the command parser gives the
subject commarnd a timer equal +to the timer given for the P1
rarameter. This means that every time the command in P1 is
changed, a similar wupdate will occur in the parameter with ro
timer.

NOTE : a timer must always be given for the P11 parameter.

The timers also act as ccmmand separators.>1t is therefore
inportant +tc understand that if a timer runs out and there are
nc furthker commands to process, i.e. the ';' terminator symbol
is encountered, the ccmmand string will be recycled from the
start. This does not hold for the P1 waiting cycle parameter. In
that case when the e€nd of the command sfrihg is met, the
.instrnment stops playing, regardless of the timing values in the

ctker parameters.
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" EXAMPLE ~THE USE OF TIMERS IN THE PARAMETRIC CCMMAND STRING

P{n):{200 ccemand exp. }2000 ccmmand exp. }3000 ccmmand exp. ;

P(2-n) | conmand exp. | command exp. jcorrand exXPa.;

P{2-n):] cormand exp.;

P{n) indicates that all parameters can use the fcllowing fornm.

The other cases apply toc all parameters except Pl.
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THE MUSCIL PARAMETRIC CCMMAND EXPRESSION

A legal MUSCIL ccrmard expressicn is definéd as an
operaticn consisting  of one or mcre ‘terms' linked by
'orerators'. A command delivers only one final value as a result
of the expression given in the comrand. An €xpression nust
contain at least one MUSCIL ternm.

'The user must ensure that'the data input in a command is
syntactically correct. The input parser only performs partial

error reporting or correction.

{. - MOSCIL OPERATIONS

A MUSCIL command is always seen as an operation whatever
the number of terms given. The command parser ¥ill read through
the sentence and fabricate a linked 1ist cf operations tetween
terzs until a +timer "|" or an end of string ";" is met. The
orerator symbols "xn, wyn, w.n_ apnd *y" are allowed. They

res#ectively stand for :  multiply, add, subtract and divide.

64



They also act as term separators. The execution will then look
for an operator symbol and proceed to read the second term. ¥hen
this 1is done, +the ©parser 1iooks for another operator and if
found, ancther term, etc. This is carried out until the parser
peets a "|" timer symbol. At that point the command is deenmed

complete and will be executed as such. The execution is always
done linearly therefore not allowing the use of brackets. A
product %ill be obtained from the operéticn of the first two
terss and this in turn will become the first operand of the next
operation invelving the next term as the second operand. Here

are some exanples of legal operation chainsa
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EXAYPLE - SCME STRINGS OF MUSCIL CCMMAND EXPRESSICNS.

13000 terml * term2 13000 term3 + term2

{each type of term is defined later. The syntax of an expression
regquires +that each +term of an expression be separated by an
operator. Fach expression must be separated by the "|" timer

symbol)

§2040 term? * term2 + termi;

1120 term1; (the one-term expression is allowed)

§3000 term112000 term2§5000 termi:

jtermljtern2iterml;

}3000 terml + term2 / terml! * terml + termiy
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2= MJSCIL TERMS

In an operation consisting of tvwo or more terms, each *term must
be separated by an ‘'operator' symbocl that also gives the kind of
operation tc Le perfcrﬁed between two terms. There are four
types of legal terms in MUSCIi; each one is discussed. Note that

ternms are parsed after a new commpand is ipitiated.

A)-THE S (for Seguential) TERM

The sequerntial command is invoked by the "S" symbol followed by
the data tc¢ be <cycled. The only 1legal types of Jdata are
numerical wvalues and 1list 1labels. In the later case the list
label must be present in the current 'Headerlist' 1library. The
sequential grocessor %ill <cycle all data gi#en'after the ws"
sysbol and before an operator or the next timing """ symkol.
¥When a list label is given, the data of that 1list is
seguentially read before the next value in the term data string
is read. When using the PITCH/TIME SCCRES, tke S5 tern is
autcomatically assuned and is replaced by the PLAY comﬁand
followed by the PITCH/TIME SCORE labels. Note that PITCH/TIME

SCCRES and the PLAY ccrmand can only be givet as a replacement
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for P1 and Pi.
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EXAMPLE -USE OF THE SEQUENTIAL (S5) TERN.

§30C0 s 200 300 400 ;

1S lamvio lamvia;

1S lamvio 200 300 lamvia 400;

$3000 PLAY XVIO XVIE XVIA;{note how the FLAY replaces the "S5")

{PL2Y XVIA;
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B)~-IHE B {for Random) TEEHM

The random generator is invoked by the «control symbol "g"
followed by either a mask label or a list <f two, three or four
nurbers giving +the coordinates of a tendency mask that will be
used to calculate the time-varying minimum and maximum values
used by the random number generator. Tke timing value for tke
stretching of the figure will be the same as the one given for
the timer. This assignment is done after the timer has keen
cttained, therefore guaranteeing a timer will be known. The

simplest case 2

R 1C 200;

In this case a random number (equal weight) iili be generated
between 10 and 200 every time the term is called upon to deliver
data. The time variant fac*or bhere will not have any effect
because both limits remain constant.

Three or four numbers can define a time-variant paske. \A
'mask can also be defined in the header and called upon in‘the
cempand string. The first two numbers always give the starting

values of the random limits. The other number(s) gives the
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position of the two limits at the end of the timing period. If
there are only three numbers the third number is used as maximum
and &rinimum at the end of the timing period. Only one mask can

be input in a single tern.
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EXAMFLE ~USE OF THE RANDCM (R) TERM.

R 10 105; (two numbers provide constant linits)

R 1 200 400; (The fourth number when not given is made egual

+o the third number>

R 200 400 500 1000;

R MTRUM; {only cone mask label can be referred to¢ 1in a single

R statement)
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A particularly interesting way of using the random command
is as a selector rather than a gereratcr.In the latter case a
value returned by the randpm number generator beccmes the value
of the term. Rhen used as a selector, the randcm number is not
returned as the value for the term but is used to select a value
in a  given list of values. The form of this special use of the
"RY ccEmand expects a)- the R symbol, b)- mask, c)- the special
control symbkol "E® and c¢)= a list of values (list labels ox

numerical).

The list of data to be chosen from remains the same throughout
the execution of the command. The items to be selected are
counted and given a range. The number received from the randonm
generator =®must be situated between 0 and 100. The first item in
the data 1list is assigned the lowest range and the last jitem in
the list is assigned tle highest range. If the item selected by
the randen number is a list label, the full conienis of the list

is cutput before ancther selection is made.
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EXAMPLE ~The RANDOM SELECTOR.

R FTRUNE LVIC LVIA LVIE; (all data following tte

is subject to selection)

RO 10 10 80§ 20 30 5C 7¢ 80 100 3 5 8 19 555.4;

R MTRUME 30 40 S50 LAMVIO 60 80 90 40 555.2:

R MTRUM & 4D 60 70 80 50 100 110 120 300;
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C)-THE FARAMETEF TRANSFER TERM

A term can consist of a simple reference %o a current
parameter value that already bas been calculated and ohtput to
the output buffer. Since parameters are piocessed one at a tinme
it is possible to use a precedent paraneter value as a term. The
code symbol "P" is followed by the parameter number we wish to
copy. If an attempt is made to copy a parameter that has not yet
been output, an error will occur. Note that a parameter value
can only be copied from the sanme instrument.

For exanmple :

13000 P4;

§2000 P2 * p3;

In these examples whatever parameter the expressicns are applied
to will use the previously calculated value from the specified

Farameter.
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T)~THE CONSTANT TERH

A constant value can be given as a term by simply - inputing
that value. Special precautions must be taken, however, if the
constant happens to be tte firét term after a "§" timing symbol.
In such a case the constant uill be confused with a timer value.
If the timer value is to be copied from P1, the timer symbel

should immediately be followed by the "#" symbol.

For exanmple :

140G0 4.55;
§2C0 600 + 3.3;
14 4.4;

i# 60000;
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IV¥. THE OBCHESTRAL COMMARD LIST

The ORCHESTRAL COMMAND LIST of MUSCIL can process up to 48
instruments in parallel, and can best be <thought of as a
48-track recorder for control data. One of the most important
processes in MUSCIL is tc sort up to 48 instruments playing
different scores at the same time.

After bhaving input a number of instrument definitions or
PCLs, the user has the option %o input a numker of
orchestrations of +the predefined instruments. MUSCIL uses the
CRCHESTRAL CONMAND LIST to compile a polyphonic SCOre.

An orchestration is input by first stating the name of tte
orctestration (the first character must be an "O"). On the next
line the first mtrack” is input. Subseguent lines all 'contain
data for one track for up to 48 lines of input. When the number
of desired "track-lines"™ is input, the "END;" control sord is
expected. All tracks are analoguous to a voice in an orchestral

SCOoIe.

79



EXAMPLE -2 10 vocice ORCHESTRAL COHMAND LIST.

CSECTIONT;

§20C00 IVIOLIN(P2*1.01) 410000 ICLARINA]2C0 STOP§IVIOLIN;

§10 STOP{ 19900 IVIOLIN} 10O STOP;ICLABINA12QOO ITRUMPETT,;

§200C ITRUMEETT (P1+7.7)1 200 ICLARINA} 200 IVIOLINjZ0000
STCEJIVIOLIN;

JIVIOCLIN{ICLARINAJITRUMBETT (P2%0.998) 20000
STCEJIVIOLIN|ITRUMPETT;

12.2 STOPJIVIOLIN]2.Y STOP§ICLARINA:

$410000 IVICLIK§10000 ICLARINA}200 STOP)IVIOLIN;

$110 STOP§ 19900 IVIOLIN} 100 STOPJICLARINA{Z000 ITRUMPETT;

1200 ITRUMEETT)200 ICLARINA}200 IVIOLIN|20000 STCP{IVIOLIN;
JIVIOLINJICLARINAJITRUMNPETT} 20000 STOP]IVIOIINiITRQMPETT;

§200 IVIOLINJICLARINA]ITRUMPETIT;

END;

{Each 1line terminated by the ";" terminator contains data for

one "track". A1l tracks are processed in parallel.)
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THE ORCHESTRAL COMMAND LANGUAGE -

A ——— —— ————

Any instrument that is used in an crchestration must have
been defined previously, otherwise an error will cccur.
The sorting algorithm of MUSCIL ensures that all instruments

will be playing their actuval score regardless of cther tracks.

1= TIMERS

Timers work the same way in the ORCHESTRAL COMMAND LIST as
they do in the PARAMETRIC COMMAND LISTs. Different commands are
separated by timer symbols "§" and the number followirng it is
alsc cptional. ¥hen a timer is not given, the timer will take
the form of a "flag" that w#ill be raised when the instrument
label following the timer has played all its notes. When this
happens the next command in that track is initiated. If a timer
is given in the form of a number, and given that this timing
value exceeds the time the following instrument would noresally
play, the instrument ic re-initiated and starts playing at the
. beginning again until the track timer has run ocut.
If the timer 1is less +than the norpal playing time of’tﬂe
instrument, the instrument is discarded before the end of its

Fart and a new command is initiated.
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2= COMMANES

The "STOP" command is used to introduce silence vin a
particular track at any given point. The "STOP" command must
always be used in conjunction with an actual numerical timer.

A number of modifications can be made to parametery values
received from the PARAMETRIC COMMAND LISTs. Essentially the
FARAMETRIC CCMEAND .EXPRESSIﬁNS apply as defined for tie
PARANETRIC COMMAND LISTs. Paranmeters can therefore be changed
inside the ORCHESTRAL COMMAND LISTs. There are a few
particularities in their use. The parameter we wish to alter
nust clearly be stated, and the expression must be included
between "{)" krackets. If more +than one parameter is to ke
altered, each parameter expression must ke separated by the ng»

symbol.
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EXAMPLE - SOME CRCHESTRAL COMMAND LISTS USING EXPRESSIONSa

§IVIOLIN(PZ * 1.333)312000 ITRUMPETT{P1 + 100 $ P4 +10);
(IVIOLIN will play its score with all P2 values transposed
one third. ITRUMPETT will then play 2000 time units

with P1 having 100 added ard P4 having 10 added.)

1200 IVIOLIN {(E9 + PS);

-J{ICLARINA (P6 + P8 + P3)JICLARINA(F6 #+ P10);
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APPENDIX I

A SAMPLE MUSCII USER'S FILE

The following compositional file is known as "RS"™ . "RS"
is a user's file that was written with the MIS time-sharing
system editor (in the current implementation of MUSCIL). Note
the special wuse of the "END;" control sord to indicate that a

particular section cf the file is terminated.
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HEALER

1« X¥I0
2. 7£5765765765765765765;
3. gfgfgfgfgfgfgfgfgfgfyg;
4. XVIA

5« GhvvKLl;

6. tR;
7= XV1E
Be tref;

9. acu)asc)abu)ghGHS6123123;

10. END;

11. LISTA
12. 20 403

13. LISTB

14. 22 55 LISTA LISTC 44;

15. LISTC

16. 1.2 3.2 4.3 5.4 5.5 LISTD;

17. LISTD

18. 330 660 990 115 330;

19. LISTE PT>8.2 7.2 6.2 5.2 6.2 7.2 8.2;
20. LISTF

21. 220 440 880 440 220 880 1760 220;
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22,

23.
24,
25.
26.
27
28.

29.

END;

MCLA

10 20 50 100;
MCLIP

0.59 1.04;

MTRU

200 300 100 900;

END;
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30.
31.
32.
33.
34.
35.
36
37.
38.
39.
40.
41.
42.
43.
44.
45.

4s.

47.

48.

INSTRUMENT DEFINITIONS - PARAMETRIC CCMMAND LISTS

IVIOLIXN

P1 {5800 S 60 46 80 40 20;

P2 16000 5 LISTF* R 0.99.1.01;
P3 110000 R 5000 3200;

P4 10000 S LISTA * R 0.9 1.1;

P5 J4G600 R 1 5 10 908& LISTA LISTB 30 40 50 60 703 800;

P6 {500 £ 100 200 300;

P7 }800 EB1* P6;

P8 11600 S Y2 3 4 56 7 8 9+ R 0.01
P3 |R 500 1000;

P10 {100 S 400 500 600{200 S 301 401
P11 J1€00 4;

P12 11200 S;

P13 1100 7;

P14 41290 s 8 9 10 11;

P15 {5200 R 300 1800 1 3;

END;

JICLARIRA

COPY 1VICLIN

88
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49. P11 |5000 S 1IsSTA 20 20 40 80 30 50 LISTA;
50. P2 {S LISTF LISTD* R .99 1.01 + 6;
51. P9 {5000 R 10D 300 500 700;

' 52. END;

S3. ITRUMPETT

54, COPY IVIOLIN

55. P1 § 2000 S 40 50 30;

56. P2 §S LISTD¥* R 0.99 1.01;
57. END;

58.

59. FIN;
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ORCHESTRAL CCMMAND LISTS

60. SECTICN1;

61. §500 IVICLIN}200 STCF] ITRUMPETT|40 STOP{400 ITRUMPEIT;
62. 500 ITRHHPETTIJSO STGP;SQO ICLARINA}0.20 STOPJICLARINA;
63. |10 SICP{19%90 IVIOLIK|{S00 STOP| 1000 ICLARINA;

64. {200 STOP 490 ITRUMPETT} 10 STOP} IVICLIN;

65. {500 STOF | IVIOLINJ300 STCP} 100 ICLARINA;

66. END;

67. SECTION2;

68. 11500 IVIOLIN;

69. |1500 IVIOLIN;

70. 11500 IVIOLIN;

71. 31500 IVICLIN;

72. 11500 IVIOLIN;

73. 11600 ICLARINA;
74, §1600 ICLARINA;
75. 11600 ICLAFINA;
76. {1600 ICLARINA;
77. 41600 ICLARINA;

78. {1600 ITRUNEETT;
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73.
80.
81.
82.
83.
84,

85.

86.
87.
88.
83.

30.

91.

11700 IVIOLIN;
11700 IVIOLIN;
§1500 IVIOLIN;
11600 ICLARINA;
11600 ITRUMPETT;
11500 IVIOCLIN;

END;

SECTION3;
JIVIOLIN;
{ICLABRINA;
jITRUNMPETT;

END;

FIRN;
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APPENDIX IX

2 EBSCAL INPLEMENTATION OF MUSCIL
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FIG. 5 SHOWS THE DATA STRUCTURE CF THE CHECHESTRAL COMMAND
LIST. ALL DATA PROCESSED BY MUSCIL IS DCNE SO THEOUGH A
- SIMILAER STRUCTORE.
THIS VERSION OF MUSCIL USES SPECIFIC EXTERNAL FUNCTIONS
IN THE UBC IFPLEMENTATICN OF P3ASCAL. THERE ALSO IS AN EXTERNAL
CALL TC A FCRTEAN RANDCHN NUMBER GENERATCE IN THE NAG LIERARY OF

SCIENTIFIC SUBROUTINES.
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PRCGRAY MUSCIL;

CONST
MAX = 999999;
CNE = 1;

TRC = 23

STCPCHARS = {a'=', 156", 1K1 10 0!
NO NS = (LVIV, V29,030 040 050 a5 01 _1ge g1 101 ).
OPERCHARS = ([ V%0, 0/ 141 ame 1o 930 9,

CARS
(o YL, MM, VY0, 020 030 e 1 5a ag 170 g 130 101 ),

NOCFPARAN = 153
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TYPE
TP = TRACKNODE;
ITEM = ARRAY (l..12) OF CHAR;
FILEID = ITEMN;
DATAFCINTER = PDAT;
OCLOUTREC = RECORD
TRACKEUM :INTEGER;

BOFSET : ARRAY {(l..15) CF SHORT;

END;
OCLCUTEUT = ARRAY(1..50) OF CCLOUTREC;
OCL =  RECOED
SMALLE : SHORT;
OUTBUFFER : OCLOUTPUT;
TRARRAY  : ARRAY (1..848) OF TP;
NOOFTRACK : INTEGER;
END;
TRACKNCDE = RECORD
PTINE : SHORT;
NCDAT : BOOLEAN;
0LDP1 : SHORT;
ccH : ITEM;
TDP : DATAPOINTER;
KK : INTEGER;
END;
ocLprR = OCLINPUT;
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il

CHABLINE ARRAY {1..100) OF CHAR;

OCLINPOUT RECORD

OCLNAME : ITEM:.

L]

OCLDAT : ARRAY (1..43)
END;
OCLTREE = ARRAY (1..4) CF OCLPTR;

OPPTR = CPLINK;

i

TEEMPTR TERNM;

STKPNT

]

STACKNODE;
LISTPT = LISTINPUT;

LISTINEUT = RECORD

LLNAME : ITEHN;

.

LDAT ¢ CHARLINE;

END;

GF CHARLINE;

LISTREE = ARRAY ({1..25) OF LISTINPUT;

PCLA = BRECORD

BCL : ARRAY {1..NOOFPARAM) OF CHARLINE;

PCNAME : ITEMN;
END;
PCLTREE = ARRAY(1..10) OF PCLA;

STACKNCODE = RECORD

LIABEL : CHARLINE;
RUM : INTEGER;

RESETPT : INTEGER;

NEXT : STKPNT;
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END;

PICKNCDE = RECORL
BANGE 2 SHORT:
INPBOGRSS5: EDOLEAN;

ST : STKPNT;

END;

MASKNCDE = RECORD
T2 : SHORT;
ASLCEE : SHORT;
BSLOPE : SHORT;
SR : PICKNCLE;
A,B : SHORT;
END;

TERH = RECORD
ACTUAL : CHAR;
CONSTA 2SHORT;
PI : INTEGER;
S 2 STKENT;
R 2 MASKNODE;
CPE : OPPTR;
END;

CPLIKK = ERECCRD

RATCR : CHAR;
NEXTEERM :TEBRMPTR;

END;
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]

PPOINT RECCORD

PTIME ¢ SHORT;

coM s TERHN;
KB : INTEGER;
END;

PDAT = RECORD

NODATT :z ECOLEAN;

NNAME : ITEMN;

PSET : ARRAY {(1..NOOFEARAM) OF SHORT:
EMAT : ARRAY (1..NOCFEFARAM) OF PPOINT;
END;

STACKARREAY = ARRAY (1..46) OF STKENT;

TERMETRARRAY

it

ARRAY ({l..U46) OF TERMPTR;

OPPTRARRAY

ARRAY{1..46) OF OFFPIR;
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VAR

TESTDAT : FDAT;

PCLLIB : PCLTREE;

CCLLIB : CCLTREE;
CCLSOURCE : OCLINPOUT:
FF,EVENT,PARAM,H,HH : INTEGER;

TCTIMNE : SHORT;

HEADLIST : LISTREE;

CCLA 2 ©OCL;

L

CATAFILE : TEXT;

L]

FILENA®ME : FILEID;
CCMMAND : ITEN;
FINISHED : ECOLEAN;
KUMCFIRST : INTEGER;

STORESTACK : STACEKARRAY;

STOFETEEMPTR : TERMPTRARRAY;
STOREOPETR : OPPTRAERAY;
EASSPOINTER : TERMPTR;

LLAST : INTEGER;
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FUNCTICN GOSDAF({X : REAL;Y : REAL;): REAL; SLINKAGE;

PRCCEDURE MASKSET(VAEF ADESS : CHARLINE;VAF I :INTEGER;

L]

VAR MPASS : MASKNODE) ; FORWARD;

PRCCEDURE PCOMINI? (VAR TINLINE : PECINT; VAR
CHARLINE) ;FCEWAED;
PROCCELURE TIHEUPDATE(VAB OCLA : OCL); FCERWARD;
PRCCEDURE CUTPUT{VAR OCLA : OCL) ; FORHWAED;
PEOCEDURE TRACKREAD (VAR KK : INTEGER;

VAR ITEMX z ITEM);FCEWARD;
PRCCEDURE COMTIMINIT(VAR TRANSFER : TRACKNODE;

VAR INTAKE : CHARLINE) ;FORWARD;
FROCCEDURE FINDSHALL (VAR CCLA : OCL); FORWARD;

PRCCEDURE GIVSET{(VAR INLAT : DATAPCINTER); FORWARD;
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PROCEDURE SEARCHPCLTREE (VAR INNAME : ITENM; VAR LCRETU : PCLA);
VAR INDEX : INTEGER;

FCUND : BOCLEAN;

{*SERVICE ROUTINE TO SEARCH THE INSTRUMENT LIBRARY
PCR AN INSTRUMENT NAME. IF FOUND THE INSTRUMENT

CATA IS RETURNED VIA 'LCREIU?'. %)

BEGIN
FCUND := FALSE;

INDEX :

H

1;
WHILE NCT FOURD AND INDEX
EEGIN
WITH PCLLIB(INDEX) DC
IF PCNAME = INNAME THEN

BEGIN

ERD;
ELSE INCR (INDEX);
END;
IF NCT FCUND THEN LCRETU.PCNAME := 'NCT FOUND';

END;
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PRCCEDURE NEWS (VAR S5 : STKPNT);

VAR A : INTEGEGFR;

{(*SERVICE RCUTINE TO ALLOCATE A NEW STACKNODE

PCINTER FROM THE STACKNCDE POINTER STORE.X)

BEGIN
IF STORESTACK (1) NIL THEN
EEGIN
SS := STCRESTACK(Y);
FOR & := 1 TO 45 DO
STORESTACK (A) := STORESTACK (A+1):
END;
ELSE NEW(SS):

END;

103



PRCCEDURE LISFCSS(VAR SS : STKENT);

(*SERVICE RCUTINE TC STORE B DISCARDED STACKNODE
POINTER IN THE 'STCRESTKENT'. THE CATA PCINTED

AT IS NULLIFIEELX)

VAR INDEX : INTEGER;
BEGIN
IF S5 NIL THERN
EEGIN
INDEX := 1;
#AHILE STORESTACK (INDEX) NIL AND INDEX
IF STORESTACK (INDEX) =NIL AND INDEX
BEGIN
STORESTACK (INDEX) := S55;
WITH STOBESTACK {INDEX) DO
BEGIN

LLABEL

"
[}

NUM

H

1

-

RESETPT:

1}

1;
NEXT 2= NIL;
END;
END;
EED;

DISEOSE {SS) ;
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END;
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FPROCEDURE DISMANTLSTACK (VAR SS : STKPNT);

v {*SERVICE BOUTINE TO LDISMEMBER B LINKED LIST

OF STACKNODES AND SAVE THE PCINTERS FOR

LATER USE. *)

BEGIN
IF S5 NIL THEN
BEGIN
IF SS.NEXT = NIL THEN
DISPOSS (SS) ;
FLSE
BEGIN
DISMANTLSTACK {SS.NEXT);
DISMANTLSTACK (55) ;
END;
END;

. END;
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PROCCEDURE NEWTERM{VAR S5 : OPPTR);
VAE A : INTEGER;
{*SERVICE ROUTINE TO ALLCCATE A NEW
PCINTER 'CPPTR' FROM THE POINTER STORE.
IF THE STORE IS EMPTY, A NEW ECINTER IS
BETURNED*)
BEG 1IN
IF STORECPPTR{1) NIL TEEN
EEGIN
5SS := STCRECPPTR{1):;
FOR A := 1 T0 45 DC
STCRECPPTR(2) := STCREOPPTR{A+1);
END;
ELSE NEW(S5S5);

END;
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PRCCEDURE DISPCSTERM(VAFR S5 : OPPTRH);

{(*SERVICE RGUTINE TC STORE A DISCARDED '"OPETR?
IN THE *STORECPPTR' AND MAKE IT AVAILLABLE
FOR LATER USE.*)
VAR INDEX : INTEGER;
BEGIN
IF 55 HNIL THEN
BEGIN
INDEX = 1;
WHILE STOERECPPTR{INLCEX) NIL AND INDEX
IF STORECFPTE(INDEX) =NIL AND INDEX
BEGIN
STCREGEFPIE {(INDEX) := 553

WITH STCREOPPTR (INDEX) DO

BEGIN
RATOR ::= ' 3
NEXTEBH.CPE := NIL;
END;
END;

END;
DISECSE(SS) ;

END;
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PRCCEDURE DISMCUNT (VAR SS : TERH);

{*SERVICE ROUTIRE TO bISHEﬂBER A LINKED LIST OF TERMS*)
BEGIN
IF S5SS.OPE ©KIL THEN
EEGIN
IF SS.OPE.NEXTERM.OPE NIL THEN
DISMOUNT {SS.OPE.NEXTERHN) ;
ELSE DISPCSTERM{SS.OPE);
ERD;

END;
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PRCCELURE PUSHSTACK (VAR STACK : STKPNT; VAR NAME :ITEMNM);

{* SERVICE ROUTINE TO SEARCH THE LISE
LIBRARY FOR A LIST LABEL, CREATE A NEW
NEW STACKNODE AND PLACE THE NEW NODE
AT THE START OF THE LINKED LISTX)
VAE NEWNODE : STKPNT; |
INDEX : INTEGER;
FOUND : BCCLEAN;
BEGIN

FCUND := FALSE;

|

INDEX == 1

L )

WHILE NOT FCUND OR INDEX > 25 DO
IF HEADLIST(INDEX).LLNAME = NAME THEN
FCUND := TRUE;
ELSE
IF INDEX >= 25 THEN
WRITELN (' ERROR IN STACK. LIST DOES NOT EXIST');

ELSE IKCE (INDEX);
NEWS {NEWNOLE) ;
NEWNODE.LLABEL := HEADLIST (INDEX).LDAT;
KEWNCDE.NUM := 13
NEWNCDE.RESETPT := 1;
NEWNCDE.NEXT := STACK;

' STACK == KEWNODE;
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END;
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EROCELURE EOFSTACK (VAR STACK : STKENT; VAE NAME : ITEHN) ;

{(*SEEVICE ROUTINE TO DISPOSE A STACKNODE AND
- BEESTABLISH THE LINK TC THE NEXT STACKNODE IN

A LINKED LIST OF STACKNODE*)

VAR TEMP : STKENT;
BEGIYN
TEMP := STBCK.NEXT;
LISPOSS {STACK);
STACK := TENP;

END;
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PRCCEDURE ITEMR

VAR J,1 :

BEGIN
FOR J ==

I

-
—
-

13

WHILE LINE (K)

INCR ({(K)

»
-

EAD{VAR LINE CHARLINE; VAR K INTEGER;

-
-

VAR ITEMR ITEN) ;
{(*SERVICE ROUTINE TO READ SEPARATE DATA ITEMS

AND CONTROL SYMBOLS IN A PCL COMMAND STRING.¥*)

INTEGER;

1 TO 12 DO ITEMR{J)

-

' 9

DO

IF LINE{K) IN STOPCHARS THEN

BEGIN

TIEMR(I) := LINE(K);

INCE (K) ;

INCR (I);
END

ELSE
BEGIN
WHILE LINE (K) NOT IN (!
P P A A A VAP L LR AP AP AL P PA P VAP LSO 1
BEGIN
ITEMR(I) := LINE(K);
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INCR (K);
INCR (I);
END
END

END;
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PROCEDURE FTERINCR (VAR LABA :CHARLINE;VAE KO : INTEGER;
VAR OPF : BOOLEAN);
(*SERVICE RCUTINE TO SEARCH FOR AN

OPERATOF IN A LINE OF CHARACTERS¥)

BEGIN
WHILE LABA{KO) NOT IN STOPCHARS DO INCR {KO);
IF LABA(KC) IN OPERCHARS THEN OPF := TRUE ELSE OPF :=PALSE;

END ;
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PRCCEDURE LISTSET{VAR INS : STACKNGCDE; VAR KK :INTEGER;
VAR LABE : CHARLINE);
{*SERVICE ROQUTINE TO INITIALIZE A STACKNODE*)

BEGIN

INS.LLAEEL := LABE;

INS. NUM == KK;

INS. RESETPT 2= KK

INS.NEXT := NIL;

END;
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PRCCETURE SETERM (VAR CCMDAT : TERM; VAR KT :INTEGER;

VAR LABS : CHARLINE; VAR ITEMN : ITEH) ;

&

VAR ITENTI : ITEMN;

2,1,3,L : INTEGER;H : SHORT;

-OPFIND : EGCLEAN;

(*SETERM WILL INITIALIZE THE TERM BY READING

IN THE CHARACTER LINE 'LABS'. THE FIRST

SYMBOL RETURNED WILL DETERMINE WHICH OF

OF THE SETTING ROUTINES WILL BE CALLED.

CNCE & TERM HAS BEEE INITIALIZED, SETERH

WILL READ FURTHER SEARCHING FCR AN OPERATOR.

IF IT IS FGCUKRD, AN OPERATOR LINK IS ESTABLISHED
AND SETERM IS CALLED RECURSIVELY TC INITIALIZE
THE NEXT TEEM OF THE OPERATICN. THIS PROCESS

IS REPEATED UNTIL NO CPERATOR CAN BE FCUND. *)

BEGIN
ITEMTI := ITENK;
WITH COMDAT DO
BEGIN
CASE ITEMTI(1) OF
*'s' : BEGIN
ACTUAL := 15';

DISMANTLSTACK({S) ;
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!Ol’l“!'lz ’,'3','“','5','6',‘7"'8','9'

NERS {(5) ;
LISTSET (S,KT,LABS);
ITEEREAD{LABS,KT,ITEETI):
END;

*R* : BEGIN
ACTUAL 3= 'R*';

MASKSET (LABS,KT,R)

s

END;

BEGIN
ACTUAL := 'C';
READSTR (ITENTI,ONE,H) 3

CCNSTA := H;

END;
1pe : BEGIN
ACTUAL = 'p';
READSTR{ITENTI,TWNC,Z);
PI z= Z; |
END;

2 WRITELN ('ERROR IN CCMMAND PARAMETER
END;
PTRINCR{LABS, KT,CEFIND) ;
DISPOSTERM (OPE);
VIF CPFIND = TRUE THEN

BEGIN
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ITEMREAD (LABS,KT,ITEMTI) ;
NEWTERM{CPE);
NEW (OPE.NEXTERM) ;
OPE.NEXTERM.OPE := NIL;
OPE.RATCR := ITENTI{1):
ITEMREAD (LABS,KT,ITENTI) ;
SETERN(OPE. NEXTERM,KT,LABS,ITENTI);
END;

END;

ENLD;
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PRCCEDURE PCOMINIT (VAR INLINE : PPOINT; VAR PCLAB : CHARLINE);
VAR ITEMX : ITEM;

GG 2 INTEGER;

{*PCOMINIT IS CALLEL FROM GIVSET WHENEVER
A PARAMETER IN AN INSTRUMENT MUST BE
INITIALIZED.IT WILL FIRST LOOK FOR A TIMER
IN THE CHARACTER LINE IT RECEIVES AND THEN
CALL 'SETERH’ TC CCHPLETE THE PROCESS OF
INITIALIZING THE TERM. THE GLOBAL VARIABLE
'PARAN' IS USED TO DETERMINED IF UEON MEETING
AN END OF LINE SYMBOL ';' THE PARAMETER
BEING PRCCESSED IS THE 'P1' TIME DELAY
PARAMETER. IF SO THE STOF FLAG IS RISEN
OTHERWISE THE CHARACTER LINE IS REPROCESSED
RECURSIVELY WITH A PCINTER SET TO TEE BEGIN

NING OF THE LINE. BEFORE 'SETERM' IS CALLED

THE PREVIOUS TERH’RECEIVED TﬁROﬁGH iHLINE
IS DISMEMBERED TO REGAIN ACCESS TO THE

POINTERS THEY USED.¥)

BEGIN
WITH INLINE DC
BEGIN

WHILE PCLAB(KD) NOT IN {.'}',';'.) DC INCR(KD);
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ITEMREAD (PCLAB,KD,ITENX) ;
CASE ITEMX{1) OF
*}1' = BEGIN
ITERREAD (PCLAB, KD, ITENX) ;
IF ITEMX (1) NOT IN NUMS THEN PTIME := MAX;
ELSE
BEGI&
READSTB(ITﬂﬂx;GHE,PTIHE);
TESTCAT.FMAT (PARAM) .PTINE := PTIME;
ITEMREAD (PCLAB, KL, ITENX) ;
END;
IF COM.OPE NIL THEN
DISMOUNT {COM) ;
IF COM.S NI THEN
DISMANTLSTACK (COM.S) ;

SETERM (COM,KD,PCLAB,ITENX) ; .

EKD;
FR : IF PARAM = 1 THEN TESTDAT.NODATT
:= TRUE;
ELSE EBEGIN
KD 2= 13

PCOMINIT (INLINE,PCLAB);
END;

: WRITELN (' ERRCR');
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END;
END

END;
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PROCEDURE MASKSET (VAR BRDRSS : CHARLINE; VAR I : INTEGER;

VAR HNEASS

MASKNODE) ;
VAR M,J,H,L : INTEGER;ITEMM : ITEM;
ZZ : SHORT:

C,D,Z =z SHQRT;

{*MASKSET REALCS FOR NUMBERS IN THE CHARACTER

LINE *ADRSS' SERT BY THE 'SEEERH' AND STORES
THEEM IN THE NEW MASKNCDE STRUCTURE WITH
THE SLOPE VALUE IT DERIVES FRCM THEM. MASKSET
LCCKS FOR TWC THREE OR FOUR NUMBERSa
IT THEN LOCKS FOR THE *'PICK' MODE SYMBOL
'$'. IF IT IS FOUND THE PICKNODE IS INITIALIZED
THE NUMBER OF ELEMENTS IN THE FOLLOWING LIST
OF ITEMS IS COUNTED AND AN AVERAGE RANGE IS

CALCULATED. 'ST' IS INITIALIZED.¥)

BEG IN
C =03 D = 03
SITH MPASS DC
BEGIN
SR := RIL;
€2 := TESTDAT.DPMAT (PARAM).PTIME;
ITEMREAD (ADRSS,I,ITEMY);

" READSTR(ITEMM,ONE,Z2) ;
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A = ZZ;
ITENREAD (ADRSS,I,ITENN);
READSTR (ITEMM,ONE,Z22);
B = ZZ;
ITEMREAD(ADRSS,I,ITENN);
IF ITEMM(1) IN KUMS THEN
BEGIN |
READSTR (ITEMM ,ONE,Z22) ;
€ = 22;
ITEMREAD (ADRSS,I,ITENN) ; .
IF ITEMM (1) IN NUMS THEN
BEGIN
READSTR (ITEMM,0NE,22):
D = Z3Z;
ITEMREAD {ADRSS,I,ITEMN) ;
END;
ELSE D = C;
END;

ELSE BEGIN

END;
ASLOEE := {C=-1)/7T2;
BSLOEE == (D=-B)/T2;

END;
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IF ITEMN({1) = '&' THEN

#ITH MPASS DO

BEGIN
L z= 1
2 = 0;
M = 2;
NEW (SR);

NEW {(SR.ST);
WITH SR DO
BEGIN
INPROGRSS := FALSE;
REPEAT
ITEMREAD (ADRSS,L,ITENN) ;
INCR(Z);
UNTIL ITEMM (1) IN STOPCHARS;
RANGE z= 100/(2-1);
WITH ST DO
BEGIN
LLABEL (1) == '£';

NOHM

“
i

-a
-y

KEXT 2= NIL;

L := I;

REPEAT

LLABEL (M) := BDRSS(L);

INCR(H);
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INCR({L);
UNTIL LLABEL {#-~1) IN STOPCHARS:
I =L - 1;
END;
END;
END;
IF ITENM(1) IN STOPCHARS THSN I = I=-1;

END;
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PRCCEDURE LISTPROC { VAR INSTK : STKDNT:
VAR PYAL : SHORT):
VAR ITEMS : ITEM;VAL1 : SHORT; INC : INTEGER;

INTERM : STKPNT;

{(*LISTEROC RECEIVES A POINTER TC A STACKNODE
AND READS THE ITEM IN THE CHARLINE CF THE
STACKNODE WITH THE ECINTER KD. IF A NUMBER
IS FCUND, THIS BECOMES THE FINAL VALUE.

IF 2 LISTLABEL IS FOUND, THE FCINTERIS

SENT TO0 'PUSHSTACK' TO REPLACE THE DATA AT

THE TOP OF THE STACK CHAIN AND LISTPROC IS
RECURSIVELY OUNTIL A RUMBER IS FOUND. IF

A RECYCLING CBARACTER IS FOUND THE POINTER

IS RESET AT THE BEGINNING OF THE DATA AND LISTPROC
IS CALLED RECURSIVELY. LISTPRCC NEVER LOOKS

FURTHER THAXK THE FISRT NODE PCINTED BY INSTK*)

BEGIN
INTERM := INSTK;
YITH INTERN DO
EEGIN
IF LLABEL{1) = '&' THEN VAL] := -299999;
ELSE

BEGIN

127



JTEMREAD(LLABEL,NUM,ITE#NS) ;
IF ITEMS(1) IN NUMS THEN
READSTR (ITEMNS,CNE,VALY) ;
ELSEkIF ITEMS(1) = *L' THEN
BEGIN
PUSHSTACK (INTERM,ITEMS);
LISTPROC{I&IERH,VALI);
ERD;
ELSE IF ITEHS{Y1) IN STOPCHARS THEN
BEGIN
IF LLABEL{1) = *j' THEN
BEGIN
NUM := RESETPT;
LISTPROL (INTERM,VALY) ;
END;
ELSE
BEGIN
FCPSTACK (INTERM, ITENS) ;
LISTPROC (INTERM,VALY) ;
END;
END
END
END;
PVAL := VAL1;

INSTK := INTERN;



ENC;
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PROCEDURE 1ISTPICK ({VAF RPICK : SHORT;

VAR VALI : SHORT; VAR SELECT : IKTEGER):

VAR PLACE : SHORT; K :INTEGER;

]

DONKE : ECOLEAN;

{*LISTPICK USES THE RANGE ?'EPICK' AND THE KUMBER
'VYALI' TO RETURN AN INTEGER 'SELECT' THAT GIVES
THE PLACE IN THE LIST THAT IS WITHIN RANGE OF

THE RANDCM NUMBER RECEIVEL*)

BEGIN

K 2= 1

-e

FLACE 2= RPICK;

DCNE =

FALSE;
WHILE NCT DCKE DO
BEEGIN
IF VALI >= PLACE THEN
BEGIN
PLACE := PLACE ¢ RPICK;
INCR ({(K);
END
ELSE DCNE := TRUE;
END:
SELELT := K§

IF SELECT
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END;
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PROCEDURE MASKEFROC {VAR MAK : MASKNODE; VAR VALR : SHORT3) ;
VAR T1 : SHORT;VI,X : INTEGER;
V,¥,VART :REAL; |
VA : SHORT;
TERMSET : TERN;
LAB : ITEM;

MAK1 : BASKENODE;

{*MASKPROC RECEIVES A NCDE OF MASK
COORDINATES, CHECKS IF IT IS CURRENTLY
ODTPUTING A LIST; IF SC IT GOES DIRECTLY
TO 'LISTPROC'. OTHERWISE NEW COORDINATES
ARE CALCULATED BY REFERENCE TO THE NEW

PARAMETER PTINE VALUE AND THE  NUMBERS
OBT BINED

ARE SENT TO THE RANDCM NUMBER GENERATCR AS

MINIMOM AND MAXINUN. IF THE MASK IS DEDICATED

TO SELECTING AN ITEM IN A LIST, THE RANDOM

SUMBEF IS USED TO SELECT A NEW ITEM TEROUGH

THE 'LISTPICK' PROCEDURE. OTHERWISE TEE

NUMBER IS CUTPUT AS THE FINAL VALUE.*)
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BEGIN
WITH MAK ©TC
EEGIN
IFP SR = NIL OR SR.INPROGRSS = FALSE THEN
BEGIN
T1 3= 12 = (?ESTDAT.PHA&(PAR&H).PTIHE);

A + {ASLOPE * T1);

Vo

i

¥ 2

H

B + (BSLOPE * T1);
VARI := GOSDAF{V,¥);

VA := ROUNDTOSHORT (VARI);

IF SR NIL AND SR.INBROGRSS = FALSE THEN
WITH SR DO
BEGIN
LISTPICK {SR. RANGE,VA,VI);
SR.ST.NOM 2= 2;
FOR X := 1 TO VI DO
ITEMREAD (ST.LLABEL,ST. NUN,LAE) ;
IF LAB (1) = 'L' THEN
BEGIN
SR.INPROGESS := TRUE;
PUSHSTACK {SR.ST,LAB) ;

LISTPROC{SR.5T,VA);
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ENC;
ELSE
TF LAB{1) IN 'NURS' THEN
READSTR(LAE,CNE,VA);

END;

FLSE IF SR NIL AND SR.INPROGRSS = TRUE THEN
BEGIN
LISTPROC (SR-STI,VA);
IF VA = =-993999 THEN
EEGIN
SR.INPROGRSS 3= FALSE;
M3AK1 := HAK;
MASKPROC(MAK?I,VA);
MAK := MAKI;
VALR := VA;
END;
END;
END

VALR

8

if
-3
[

-8

EXD;
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PRCCFDURE GETERMVAL (VAR INTERM : TERMPTR; VAR VALT : SHCRT);

VAR VAL .: SHOET; NO : INTEGER;

(*GETERMVAL PROCESSES CNE TERM CONLY AND
RETURN THE CURRERT VALUE OF THAT TER¥ TQ
YPTERMSCAN'. DEPENDING ON THE ACTUAL
MODE IT CALLS 'LISTPROC'OR 'FMASKPROC'¥)
BEGIN |
WITH INTERM IO

CASE ACTUAL CF

tpe ¢ VALT := TESTDAT.PSET (PI);
'ce 2 VALT := CONSTA;
'S : LISTPROC{INTERM.S,VALT);
'R : MASKPROC(R,VALT);

END;
END;
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FURCTION TERMSCAN ( TRANSTERM : TERMPTR;) : SHORT:
VAR VALY1,A%,B1,VAL2,VAL3 : SHORT;
OPER, CONCP : CHAR;
CURTERM : TERMPTR;

LC : BOOLEAN;

{*TERMSCAN PROCESSES A LINKED CHAIN OF
TERMS RECURSIVELY. EACH TERM IN THE
CHAIN IS5 CONTRACTED TO 'GETERMVAL' WHILE
THE OPERATOR LINK DETERMINES THE OPERATIGN
TC BE PERFORMED BETWEEN THE TERMS. TEEMSCAN
RETURNS A FINAL PARAMNETER VALUE TO THE

'GIVSET' PROCEDURE..*)

BEGIN
CURTERM := TRANSTERHN;
GETERMVAL (CORTERM,VALY) ;
IF CURTERN.OPE = NIL THEN TERMSCAN := VALI;
ELSE
BEGIN

CASE CURTERM.OPE.RATOR CP

t#*% 3 VAL! := VALt * TERMSCAN (CURTERM.OPE.NEXTERH);
t+4' : VALY := VAL! + TERMSCAN{CURTERM.OPE.NEXTERH);
*/' : VAL1 := VALY / TERMSCAN (CURTERM.OPE.NEXTERM);

- : YAL1 := VALY = TERMSCAN (CURTERM.OPE. NEXTERN) ;
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END;
TERMSCAN := VALIY;

END;
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PRCCEDURE EVACUATE (VAR OCLAU :CCLOUTPUT;VAR KG : INTEGER:);

VAR IND,A = INTEGER;

{*AT THIS TIME THE ONLY PORPCSE OF THIS ROUTINE IS
TC PRINT THE PARAMETER VALUES OF THE OUTBUEFFER
CR THE TERH:NAL SCREEN. THE OUTBUFFER STRUCTURE
IS A RECCRED CDNiAINING THE TBACK NUMBER OF EACH
EVENT. THAT IS PRINTED FOR EACH EVENT. COMMENT :
THE 'EVACUATE' RCUTINE WILL EVENTUALLY BE RESPOR
SIBLE TO FEED A SYNTHESIS FROCEDURE IN SOFIWARE
CF HARDWARE. %)
BEGIﬁ
FOF IND z= 1 TO KG DO
BEGIN
WRITELN (' EVENT NUMBER: ', EVENT);
WRITELN (' TRACK NUHﬁEE: 'y OCLAU{IND).TRACKNUN);
FOR A := 1 T0 8 DO
WRITE(OCLAU{IND).BUFSET(A));
WRITELN;
FOCR A := 9 TO 15 DO
WRITE(OCLAU{IND).EBOFSET{A));
WRITELN;
INCR{EVENT);
END;

END;
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PROCEDURE CUTPUT{VAR OCLA

VAR G,GG,TRACK

CHECK

T0

THE

BOF

BEGIN

GG = 13

CCL) ;

: INTEGER;

{*PROCEDURE TO PROPCESS EVERY ACTIVE TRACK AND

THE OLDPY TO SEE IF IT IS READY TC CUTPUT. IF IT
IS, THE PSET OF THAT TRACK WILL BE OUTPUT AND

REFILLED BY GIVSET UNTIL THE OLDP1 IS NCT EQU2L

0. ALL VALUES ENTERED IN THE OUTBUFFER ARE GIVEN
A VALUE OF 0. ALL TRACKS ARE PROCESSED TO ENSURE
THAT ALL INSTRUMENTS HAVE A NON-ZERC WAITING

TIHE IN OLDPY. ONCE THIS IS5 DONE, FINDSMALL IS
CALLED TO SELECT THE INSTRUMENT WITH THE SMALLEST
WAITING PERIOL AND THE LAST EVENT ENTERED IN THE
OUTBUFFER IS GIVEN A WAITING TIME EQUAL TC THAT.

THE 'EVACUATE' ROUTINE IS THEN CALLED 70 EMPTY
CUTBUFFER. NOTE THAT ONLY THE LAST EVENT 1IN THE

FER HAS A NON~ZERC WAITING TIME{PSET(1)).%*)

FCR TRACK := 1 TO OCLA.NOOFTRACK DO
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EEGIN
IF CCLA.TRARRAY (TRACK) NIL THEN
WITH CCLA.TRARERAY (TRACK) DO
IF TDP NIL THERN
BEGIN
WITH TDP DO
WHILE OLDP?1 = 0 DO
BEGIN
OLDP1 := PSET(1);
OCLA.OUTBUFFER{GG). BUFSET{1) == 03
FCR G := 2 TC NOGCFPARAM DO
OCLA.CUTBUFFER (GG) . BUFSET (G) := (PSET(G));
CCLA.OUTBUFFER (GG). TRACKNUM := TRACK;
GIVSET (IDP) ;

INCR {GG) ;

ENI;
END3

END;
GG = GG - 1;
LLAST 2= GG;
FINDSMALL (OCLA) ;
OCLA.CUTEﬁffER(GG).BUFSET(1) 2= OCLA.SMALLP;
TOTIME := ICTIME + OCLA.SMALLE;

EVACUATE {OCLA.OUTBUFEFER,GG) ;3
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END;
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PRCCEDURE CCHMTININIT{VAR TRANSFER : TRACKNODE;

VAR INTAKE : CHARLINE;) ;

VAR ITEMT : ITEH;
TIMER : SHCET;

J : INTEGER;

{*THE COMTIMINIT PROCEDURE READS INTC ONE

LINE OF THE OCLSOURCE TRACK DATA TRANSFERED
FROM 'TIMEUPDATE' OR 'SETOCL'. IT USES THE

KK POINTER IN THE TRACKNODE TO GET FIRST 2
TIMER SYMBCL, THEN A CCMHANL. THE COMMAND IS
EITHER A 'STOP' SYMBOL IN WHICH CASE THE DATA
POINTER 'TDP'IS DISPOSED, CR AN INSTRUMENT
NAME. IN THAT CASE A NE¥ TDP IS ASKED AND
VARIABLES ARE INITIALIZED, AND THE FESET IS

FILLED BY A CALL TG GIVSET.*)

BEGIN
WITH TRANSFER DO
EEGIN
FOR J 2= 1 TI0 12 DO ITEMT(J) z2= * v
ITENREAD (INTAKE, KK, ITENT) ;
IF ITEMT(1) = ';* THEN COM z= ';9;

ELSE
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IF ITEMNT{1) = *|*' THER
BEGIN

IF TDP NIL THEN

FOE‘J := 1 TO 15 DO
BEGIN
DISHANTLSTACK(TDP.PHAT(J).COH.S);
IF TDP.PMAT{(J).CCHM.OPE ©NIL THEN

DISMOUNT (TDP.PMAT (J).CCH);

END;

DISPOSE (TDP) ;

FOB J 2= 1 T0 12 BO ITEMT{(J) = ' ;3

ITEMREAD (INTAKE,KK,ITENT) ;

IF ITEMT{1) 1IN NUMS THEN

BEGIN
BEADSTR{ITENT ,ONE,TIMER);

PTI¥E := TIMER;

FOR J 2= 1 TO 12 DO ITEMT{J) = ' 1;

ITEMREAD (INTAKE ,KK,ITENT) ;

END;
ELSE PTIME := 9399999;
NODAT := FALSE;
IF ITENT = *'STOP' THEN

BEGIN
CO¥ 1= ITENT;

CLDPE1 := PTIME;
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END;
ELSE
BEGIN
NER(TDP) ;
CLDP1 := 03
CON := ITENT;
WITH TDP LO
BEGIN
NODATT 3:= FALSE;
NNAME = ITEMT;
FOBR J := 1 TO 15 DD
BEGIN
PMAT (J) .PTIME = 03

PMAT {J) . CCHaS 1= NIL;

PMAT {J) .COM.OPE 3= NIL;

PMAT {(J) .KD 2= 13
END;
GIVSET {TDP);:
END;
END;

END:

ELSE WRITEL® {* ',' TIMER EXPECTED. ERROR')

END;

ENE3
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PROCEDURE TIMEUPDATE{VAR CCLA : OCL);
VAR X,TRACK : INTEGER;

YES, YESYES : BOOLEAN;

{*THE TIMEUEPDATE PROCELURE IS RESPONSIBLE
FOR KEEPING TRACK OF ALL TIMING PARAMETERS
I8 THE EXECUTIO& OF A ORCHESTRATION. ALL
TIMING PARAMETERS ARE SUBTRACTED BY SMALLP
IF AN OCL TIMER IS FCUND TO EE O, THE INITIA
LIZATION OF A NEW CCHMAND FCR THAT TRACK
IS CONTRACTED OUT TC *COMTIMINIT'. IF THE
NE¥ COMMARD IS FOUND I0 BE THE END CF THE TRACK
THE TRACK FOINTER IS DISPOSED. THE PROCEDURE
PERFORMS A TEST TO DETERMINKNE HHE?HEBVSOME
TRACKS ARE STILL PLAYING AND IF NOT SENDS
A POSITIVE '"PINISHED' FLAG.
THE OLDP1 CF ALL TRACKS IS ALSO SUBTRACTED.
EY SMALLPE, THEREFCR GUARANTEEING THERE WILL
ALWAYS AN EVENT ®ITH AN OLDP1 ¥ITH VALUE=(.
THE ONLY EXCEPTICN TC THIS IS WHEN THE TRACK
SET FOR NEXT OUTPUT IS DISPCSE BY REFERENCE
TC THE 'CCMTININIT' PROCEDURE. THIS EXCEPTION
15 COVERED BY‘A CHECK OF CLDP) BEFORE THE
REW COMMAND IS INITIATED. IF IT IS EQUAL

TC 0, A NEW REFERENCE TO *FINDSMALL' IS
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MADE AND THE LAST TIME DELAY OF THE CUTPUT
BUPFER IS CORRECTED. IF A TRACK HAS NOT
BEEN INITIALIZED, ALL TIMING YALUES IN THE
INSTRUMENT®*S 'PMAT' STRUCTURE ARE SUBTRACTED
EY SMALLP.¥)
BEGIN
Y¥S := TRUE:
YESYES := FALSE;
FCR TRACK z= 1 TD OCLA.NOOFTRACK DO
IF OCCLA.TEARRAY (TRACK) NIL THEN
WITH CCLA.TRARRAY (TRACX) DO
BEGIRN
PTIME 3:= PTINME - CCLA.SMALLE;
OLDPY := OLDP1 - OCLAL.SMALLP:
IF TDP NIL THEN NCDAT := TCF.NODATT;
IF PTIME
BEGIN
IF OLDPY = ( THEN
YESYES := TRUE;
CONTIMINIT{OCLA.TRARRAY {TRACK),
OCLSOURCE. CCLDAT (TRACK) ) ;
END,;
IF Ccoy = ';*' THEN
DISPCSE{GCLA.TRARRAY {TRACK)) ;

IF CCM *;' AND TDF NIL THEN
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¥ITH TDP DO

BEGIN
FOR X 2= 1 70 15 DO
RITH BMAT{X) DO

PTIME := PTIME - OCLA.SMALLP;
END;
END;

FOR TRACK := 1 TO OCLA.NCOFTRACK DC

FALSE;

]

IF CCLA.TRARBRAY{TRACK) =NIL THEN YES :
IFP YES THEN FINISHED := TRUE;
IF YESYES AND NOT FPINISHED THEN

BEGIN

FINDSMALL (OCLA);

CCLA. CUTEUFFER{LLAST) . BUFSET {1)
OCLA. CUTBUFPFER (LLAST). BUFSET {1)
+ OCLA.SMALLP;
TIMEUPDATE (CCL3) ;
ENL;

END;
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PROCCEDURE FINDSMALL (VAR OCLA : OCL);
VAR TRACKK : IKTEGER;
FCﬁND : ECOLEAN;
{(*THE FINDSMALL WILL LCOK AT ALL THETRACKS

AND FIND THE SMALLEST 'OLDP1' VALUE AND
WILL MAKE SMALLP EQUAL TO THAT. THIS
MARKS THE AMCUNT TO EE SUBTRACTED FROM
ALL TIMING PARANTERS IN THE TIMEUPDATE
PROCEDURE. IT ALSO GIVES THE TIME DELAY
VALUE OF THE LAST EVENT ENTERED IN THE
OUTPUOT BUFFER.*)
BEGIN
TRACKK = 1;
¥WITH CCLZ pC
BEGIN
¥HILE TR2ZERAY {TBACKEK) = NIL DO INCE{TRACKK) ;
SHMALLP := TRARRAY (TRACKK).OLDP1;
FOR TRACKK := TRACKK+1 TC NCOPTRATK DO

IF TRAERAY {TRACKK) NIL AND TRARRAY (TRACKK).OLDP1!

TRARRRY (TRACKK) .CLDP1;

W

SMALLP :
END;

END;
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PRCCEDURE GIVSET(VAR INDAT : DATAPCINTER);
VAR PVAL = SHCET;

EETURNP : PCLA;

(*THE GIVSET PRCCEDURE RECEIVES A POINTER
TO A PDAT STRUCTURE. THE TASK OF GIVSET
IS 70 PILL THE PSET ARRAY WITH THE
PARAMETER VALUES OF THE NEXT EVENT
FROM THIS INSTUMENT BY USING THE 'PMAT'.
UPCN ENTERING THE PCINTED STRUCTURE IS
COPIED TO THE GLOBAL PDAT *'TESTDAT' 50
THAT ITS CONTENTS CAN BE MODIFIED BY THE
ROUTINES THAT WILL USE THE 'EMAT'DATA FRCHM
GIVSET.

EACH POSITION IN THE 'PMAT' ARRAY IS
PRCCESSED INDIVIDUALY AFTER A TIMING
Cﬁzcx IS PERFCRMED. IP THE TIMER IS
SET FOR RENEWAL, 'pconINITi IS CALLED

WITH THE TERM COMMAND AND THE PARAMETER

OF THE INSTRUMENT PREVIOUSLY FETCHED IN THE
LIERARY.'PCOMINIT' IS RESPONSIBLE |
TC INITIATE THE NEXT COMMAND OR SEND
A "NODAT* FLAG IF THE INSTRUMENT HAS

NC MCRE NOTES TO PLAY.X)
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BEGIN

TESTDAT := INDAT;

SEARCHPCLTREE(INDAT. NNAME, RETURNP) ;

IF RETURNP.PCNAME = 'KCT FCUND' THEN

WRITELN(INDAT.NNAME,' WAS NOT FCUND. IGNORED.?')

ELSE

WITH TESTCAT DO

FOR PARAM := 1 TO NOCFPARAM DO

WITH PMAT(PARAM) DO
BEGIN
IF PTIME
PCCHMINIT(PXAT(FARAY) ,RETURNP. ECL (PARAN));
IF NOLATT = FALSE THEN
BEGIN
PASSPCINTER := COM; {*TERNSCAN ACCEPTS A POINTER¥)
PVAL := TERMSCAN{PASSPOINTER) ; {*VALUE ARRIVES¥)
COM := PASSPOINTER; (*THECOMMAND IS ﬁPDﬁTED*)
PSET(PARAM) := PVAL; (*VALUE IS STORED¥)
END;
END;
IKDAT == TESTIDAT;

ERD;
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PEOCELURE SETHEADER;

VAR Y : INTEGEER;

{*THE SETHEADER PRCCEDURE READS THE FIERST

GECUP OF LINES IN THE INPUT FILE AND
STORES THEM IN THE HEADER LIBRARY. IT
WILL LdOP UNTIL THE 'END' SYMBOL IS
ENCOUNTERED., ONE LINE CCONTAINING THE
LIST LABEL IS ALWAYS FOLLOWED BY THE
CATA OF THAT LIST. *)
BEGIN
Y == 03
REFPEAT
INCR({Y) ;
READLN {DATAFILE,HEADLIST (Y).LLNAME) ;
IP HEADLIST(Y).LLNAME Y'END® .?HEN
BEGIN
READLN (DATAFILE,HEADLIST (Y).LDAT);
WRITELN (' * HEADLIST {Y).LLNAME,' ',HEADLIST(Y)}.LDAT) ;
END;
UNTIL HEADLIST(Y).LLNBHE = 'END' OR HEADLIST({Y).LLNAME ()
IF Y = 1 THEN HEADLIST({1).LLNAME := 'NQLIST?';

ENL;
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PROCEDURE SETPCLTREE;
VAR FOUND,LCUPC,DONE : BOCLEAN;
SE,SS : INTEGER:
INDEX‘:INTEGER;
ITEMR : ITEM;
DUPLIC s CHARLINE;
PCLRET : PBCLA;

I,5D, KL : INTEGER;

{*THE SETPCLTREE EOUTIﬁE FILLS THE
ECL LIBRARY WITH THE INSTRUMENT
DEFINITION DATA FROM THE INPUT FILE.
IT LCOKS FOCR CONTROL WORDS FOR INSIRU
MERT DUPLICATICN SYMBOLS AND SUBSTITUTES
PARAMETER CCOCMMAND STRINGS WHEN GIVEN.
ALL LINES FRCM THE INPUT FILE ARE READ

INTOTHE CHARACTER ARRAY 'DUPLIC'.*)

BEGIN
DORE := FALSE;

FALSE;

]

FCUND :

DUPC := FALSE;

INDEX := NUXCFINST;
WHILE NOT DCNE AND INDEX
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EFGIN
WRITELN;

KL = 1

L

FOR I := 1 TC 100 DC DUPLIC(I) z= * *;

READLN (DATAFILE, DUPLIC);

IF DUPLIC = YFIN;' OR INDEX >= 10 THEN DCNE := TRUE

ELSE |

(*THE NAME OF THE INSTBUMENT IS READ.

THE NEXT LINE IS READ AND PARSED TO LOOK
FOR THE 'COPY' WORD. IF IT IS FOUND THE
NEXT WORD IS PARSED TC GT THE RAME OF THE
INSTRUMENT TO COPY. THE COPY IS MADE FOR
EACH PARAMETER COMMANL STRING. THE DUPC
PLAG IS TRUE.
IF THE COPY SYMBOL IS NOT FOUND, THE
LINE BEING PARSED IS STORED AS THE FIRST

PARAMETER COMMAND STRING. *)

BEGIN
INCR (INDEX) ;
WITH PCLLIB (INDEX) DO
BEGIN
TTEMREAD (DUPLIC, KL, PCNAME) ;
WRITELN{"INSTFUMENT : *,PCHAME);

H := 13
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FCR I z= 1 TO 100 DO DUPLIC{I) = ' ';

REATLLN (DATAFILE,DUPLIC);

KL := 1 3

ITEMREAD {DUPLIC,

KL, ITEBR) ;

IF ITEMR = 'COPY' THENW

BEGIN

¥RITE{(' CCOPY OF INSTRUMENT *);

ITEMREAC(DUPLIC,KL,ITEHNR) ;

SEARCHPCLTREE {ITEMR, PCLRET) ;

IF PCLRET.PCNAME = 'NOT FCUND' THEN

WRITELN {°'
ELSE
BEGIN
FOE H

PCL {H)

INSTRUMENT UNKNOWN');

= 1 TC NOOFPAEAM DO

2= PCLRET.PCL{H)

WRITE{PCLRET.PCNAMNE) ;

WRITELN;

END;

"

pupcC :

FOR I z= 1 TO 100 DC DUPLIC(I)

TRUE;

LX)
H
-

READLN{DATAFILE,DUPLIC);

END;
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{*THIS LOOP PROCESSES THE BEXT LINE
UNTIL THE *END' CONTECL WORD IS MET.
IF THE DUPC FLAG IS TRUE THEN THE
LINE IS PARSEL TO SEE WHICH PARAMETER IS
TO BE REPLACED. THE SUBSTITUTICN IS FADE.
IF TEE DUPC FLAG IS FALSE, THE INPUT

LINE IS STORED IN ORDER.*)

H 2= 1;
WHILE DUPLIC 'END;' AND H
BEGIN
IF DUEC = TRUE THEN
BEGIN

8585 2= 1:8E := 13

ITEMR := DUPLIC {2);
WRITE(DUPLIC (1) ,DUPLIC {2) ,* REPLACED BY ');
READSTR (ITEMR,ONE,SD) ;
WHILE DUPLIC{(SE) '1' DO INCR(SE);
FOR I := 1 TO 100 DO PCL(SD,I) := ' ';
YHILE DUPLIC(SE) ';' DO
BEGIN
PCL{SD,SS) := DUPLIC({SE);
INCR(SS); INCR(SE);

END;
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PCL{SD,SS) == ';';
WRITELN ({PCL{5D)):

END;

ELSE
BEGIN
PCL(H) := DUPLIC;
HWRITELN (PCL{H));
INCR{H) ;
ERD;
FOE I := 1 TC 10 DC DUPLIC({I) :=
READLR(DATAFILE,DUPLIC) ;
END;
END;
END;
EXND;
NUMOFINST := INDEX;

END;
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PRCCEDURE EXEC;

VAR J,L : INTEGER;

(*THE PROCEDURE EXEC WILL LOOP UNTIL THE
GLOBAL 'FINISHED' FLAG BECOMES TRUE.
THE TWC MAIN STAGES OF A MUSCIL EXECUTION
ARE CALLED.‘OUTPUT WILL SHIP OUT THE
PARAMETIRIC VALUES OF ALl EVENTS CURRENTLY
MARKED FOR OUTPUT AND WILL REFILL FOR THE
NEXT ONE, REGARDLESS OF TINING.
TIMEUEDATE WILL TAKE THE TINE DELAY OF THE
LAST EVENT SHIPPED ODUT AND SUBTRACT IT
FBOM ALL TIMING PARAMETERS IK ALL
TRACKS AND INSTRUMENTS PLAYING. THE VALUE |
OF 'FINISHED' IS5 CONTRCLLED BY THE
"TIMEUPDATE' ROUTINE. IT IS SET TO TRUE
WHEN ALL TRACKS ARE EMPIY OF FURTHER

DATA. *)

BEGIN
FINISHED := FALSE;
WHILE NOT FINISHED DO
BEGIN
., OUTPUT (CCLA);

TIMEUPDATE (OCLA) ;
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END;

END;
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PRCCEDURE SEICCLTREE;
VAR INDEX,A,E,C,D : INTEGER;

DUPLI : CHAELINE;

{*THE SETCCLTREE EKOUTINE READS DATA FROM
THE GIVEN INTPUT FILE CR FROM THE
TERHINBL. ALL DATaA iS READ INTC THE
CHARACTER ARRAY 'DUPLI? ¥WHICH I5
MINED FCR CCLNTEOL HORDS. RHEN A NEW

QRCHESTRATICN IS ENCOUNTERED, A NEW
POINTER IS INITIALIZED.

CONTRCL WORDS ARE "END' INDICATING THE

THE END OF AN ORCHESTRATICON SCCRE,'FIN!

INDICATING THE LAST ORCHESTRATION HAS JUST

BEEN INPUT. *)

FOR D == 1 TC 100 DC DUPLI(D) z= ' ';
REACLN (DATAFILE,DUPLI);

WHILE DUPLI *FIN;' AND INDEX

BEGIN

INCR (INDEX) ;
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NEW {OCLLIB {INDEX));
C 3= 158 =
ITEMREAL (DUPLI,C,OCLLIB(INDEX).CCLNANE);

W¥RITELN (' FCLY-SCCRE : ',DUPLI);

FﬁB D := 1 T0 130 DC TUPLI{D) z= ' *;
REPD (DATAFILE,DUPLI) ;
WHILE DUPLI VYEND;' DO
BEGIN
OCLLIB (INDEX) -OCLOAT{A) := DUPLI;
WRITELN(' ',DUPLI);
FOR D := 1 TO 100 DO DUPLI{(D) == ' *;
READLN{DATAFILE,DUFLI);
INCR{3):
END;
OCLLIB(INDEX).OCLDAT {(a) == 'END;';
FOR D z= 1 TC 100 DO DUPLI := ' '3
READLN{DATAFILE,DUPLI);
¥ RITELN;
END;

END;
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PROCECURE SETOCL{VAR OCLABEL : ITEHM);
VAR LL,TRACK,J,I,INDEX,XX :INTEGER;
FCUND : BOCLERN;

ITEMTIR : ITEM;

{*THE SETOCL EOUTINE SEARCHES THE

OCL LIBRARY FOR THE OCL LABEL RECEIVED

FROM THE MAIN PROGRAM. IF¥ THE LABEL IS

FOUND, THE TRACK DATA IS READ INTO THE

PERMANENT *OCLSOURCE' STRUCTURE WHERE

THE EXECUTIVE WILL CCME TC GET LATA FOR

THE EXECUTION OF THE SCCRE

IF IT IS5 NOT FOUND, INPUT IS ASKED FROM

THE KEYEBOARD.

AFTER INPUT, THE SETCCL ROUTINE COUNTS THE
NOMBERE OF TRACKS TC BE PLAYED AND INITIA

LIZES THE CONTRCL DATA OF EACH TRACK.¥)

BEGIN

INCEX 2= 1;

LL 2= 1;

FCUND := FALSE;

WRITELN(' SEABCHING FOR FILE *',OCLABEL);
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WHILE NCT FCUKD AKRD CCLLIB{INDEX) NIL LO
EEGIN
IF OCLLIB(INDEX).OCLNAHE = DCLABEL TEHEN
BEGIN
OCLSCURCE.OCLRANE := QOCLABEL;
¥HILE OCLLIB(INDEX).OCLﬁAT(LL) 'ENC;'DD
BEGIN
OCLSOURCE-OCLDAT(LL) 2= OCLLIB({INDEX).CCLEAT{LL) ;
INCR{LL);
END;
FOUNﬁ 2= TRUE;
CCLSCURCE.OCLDAT{LL) := 'YEND;';
END;
ELSE INCE{INDEX):;

END;

IF KRCT FCUNL THENW
BEGIW
¥RITELN (' PLEASE INPUT AN ORCHESTRATION ')
REPEAT
READ{INPUT, CCLSOURCE. CCLDAT {LL} ) ;
IRCR{LL);
UNTII CCLSOURCE.OCLDAT{(LL~-1) = 'ENL;°

END;
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OCIA.NCOFTRACK := LL - 1;

CCLA.SMALLP = 0;

{*OCLA DATA STRUCTURE IS INITIALIZED HERE..
FOR EACH TRACK A TRACKNODE IS CREATED,
2 POINTER INTO THE TRACK IS SET TO 1,
INITIALIZATION‘IS CCNTRACTED OUT TC THE

*COMTIMINIT® ROUTINE.¥)

FCE XX := 1 TO OCLA.NCOFTRACK DO
BEGIN
NEW {(CCLA.TRARRAY{XX));
OCLA.TEARERAY{XX) .KXK := 1;
FOR LL 2= 1 TC OCLA.NOCOFTRACK DO
CCLA.TRARRAY {XX).TDP 3= NIL;
COMTIMINIT{CCLA.TRARRAY {XX) ,OCLSCURCE.OCLDAT (XX)) ;
END;
EVENT := 1;

END;
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BEGIN (* MAIN¥)
" FOR H 3= 1 TO 46 DO (*THREE STORES FOR POINTERS ARE INITIAL

IZET TO *NIL'. ¥)

BEGIN
STORESTACK{H) := NIL;
STCREOPPTR{H) == NIL;

STOCRETERMPTR (H) := NIL;
ERD;
{*2 GLOBAL ECINTER IS INITIALIZED¥)
NEW(EASSPOINTER) ;
{*A FILE NAME IS ASKED FOR.IF NO FILE
IS GIVEN, DATA WILL BE KEAD FROM INPUT¥)
WRITELN (' TYPE A "MTS™ FILENAME OR "CR™ FOR KBD ');
RERD {FILENAME);
IF LINELENGTH (INPOUT)
FILENAME := '*MSOUFCE® ';
RESET (DATAFILE,FILENAME);
IF FILENAME({1) = "*' THEN
WRITELN{' INEUT LINE');
{*THE DATA IS READ INTOC THE THREE
DATA LIBRARIES WITH CALLS TO THREE
LIBRARY MANAGEMENT ROUTINES FOR THE
THE DIFFERENT MUSCIL FILE SECTIONS.*)
SETHEADER;

NUMOFINST := 03
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SETPCLTREE;
SETOCLTREE;
(*LOOP WILL CYCLE UNTIL THE STOP CCHMMAND
IS RECEIVED. EACH LOOP EXECUTES CNE
CECHESTRATION CCMMAND LIST. ONLY ONE
OF THESE CAN BE PLAYED AND THE DATA
FOR ITS EXECUTION WILL ALWAYS BE CON
TAINED IN "OCLA".*)
WHILE COMNAND 'STGP' IC
BEFGIN
WRITELN (*EXECUTE SCCRE ? {"STOP™ TO QUIT)');
EEAD (INPUT, COMMAND) ;
IF CCMMAND = 'STOP' TEEN WRITELN (' GCCDBYE');
ELSE
BEGIN
TOTIME := 03 (*SETS TOTAL TIME TO 0%)

SETOCL {COMMAND) ; (*INITIALIZES THE CCLA DATA STRUCTURE¥)

EXEC; {(*EXECUTES THE DATA STRUCTURE¥)
WRITELN ('EXECUTICN FINISHEL. TOTAL TIME = !',TOTIME,?
SEC.');
END;
END;
ENT.
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