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Abstract 

Static light scattering (SLS) and dynamic light scattering (DLS) techniques are used to 

measure characteristics of particles in dispersion. SLS measures the dependence of the 

average scattered intensity I, on the scattering angle and is sensitive to spatial variations 

in the dielectric constant E .  DLS measures the time dependence of the scattered light. One 

fundamental application of light scattering techniques is the accurate measurement of the 

size distribution of particles in dispersion. 

Detailed experimental investigation of SLS and DLS has been attempted in this work, 

with experimental work based on dilute water dispersions of two different spherical par- 

ticles, polystyrene latexes and poly(N-isopropylacrylamide) (PNIPAM) microgels. Size 

information is obtained from SLS measurements in the form of a particle size distribution 

G (R,) where R, is the static radius. Size information is obtained from DLS measurements 

in the form of a decay rate distribution G (I?) which depends on the decay rate I?. 

Although both SLS and DLS can be used to obtain size information from the scattered 

light, the information obtained using SLS and DLS is different. For the three polystyrene 

latex sphere samples studied in this thesis, the mean static radii obtained are consistent 

with that of the mean radii provided by the supplier. For all three samples, the apparent 

hydrodynamic radius is larger than the mean static radius by about 12%. For PNIPAM 

microgel spheres, the apparent hydrodynamic radius is also larger than the mean static 

radius. The size of the PNIPAM microgel particles is extremely temperature sensitive; the 

radius decreases by a factor of three as the temperature is raised from 15OC to 50•‹C. Both 

the hydrodynamic and static radii show this behavior. The effect of the chemical crosslinker 

(N, N'-methylenebisacrylamide) content on the temperature sensitivity of the PNIPAM mi- 

crogels and the temperature dependence of the ratio of the apparent hydrodynamic radius 

to the mean static radius are also discussed. 
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Chapter 1 

Introduction 

A great deal of information about particles in dispersion can be obtained using light scat- 

tering techniques. Two important techniques are static light scattering ( S L S )  and dynamic 

light scattering (DLS) .  SLS measures the dependence of the average scattered intensity on 

the scattering angle. Structural information about the particles, including the size, shape 

and molar mass, can be obtained using SLS. DLS measures the time autocorrelation of the 

scattered light intensity g(2) ( r )  as a function of the delay time T .  The results obtained from 

DLS provide dynamic information about the particles in dispersion including translational, 

rotational and internal motion. One fundamental application of light-scattering techniques 

is the accurate measurement of the size distribution of particles in dispersion. 

Different methods have been used to obtain structural information from SLS measure- 

ments depending on the values of q (R:)~'~, where q is the scattering vector and (R:)"~ is 

the radius of gyration of particles. For small g (R:)li2, the SLS measurements are simplified 

to the Zimm plot [I], Berry plot or Guinier plot 121 etc., where the experimental data are 

plotted in different forms to obtain a linear plot region, so the root mean-square radius of 

gyration (Ri)ll2 and the molar mass of particles can be easily obtained. Since all informa- 

tion is obtained under the condition that the values of q (R:)~'~ are small, most information 

contained in SLS is neglected. If the information at large values of q (R;)li2 is considered 

by fitting a form factor to the SLS data, more detailed information can be obtained. Since 

the same constraints ( q  (R:)"~ << 1) that apply to the Zirnm plot, Berry plot or Guinier 

plot do not apply when fitting a form factor to the data, size distributions for much larger 

particles can be obtained from SLS measurements. 

How the particle size distribution can be obtained directly from SLS data has been 
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studied by various authors. For example, Schnablegger and Glatter [3] assumed that the 

size distribution can be described as a series of cubic B-splines and used simulated data and 

measured data to demonstrate their computation procedure. Strawbridge and Hallett [4] 

studied the scattered intensity of coated spheres. They used a discrete method to obtain 

particle size distributions minimizing [I (q) - CT=l a,I (q, rn)12, where I (q) is the scattered 

intensity of measurements, I (q, T,) is the scattered intensity of a particle with a chosen 

geometrical or linear trial radius between r,i, and T,,, and a, is constrained to be positive 

and represents the amplitudes of a histogram. 

In this thesis, a equation for homogenous spherical particles is used to obtain the size 

distribution and the average molar mass for large particles from SLS. In this equation, a 

Gaussian distribution is chosen to represent the particle size distribution and size informa- 

tion is obtained by fitting the equation to the data in terms of the static radius R, and the 

width of the distribution a. 

Traditionally, two standard methods have been used to obtain size information about 

dispersed particles from DLS data: moment analysis [[5] - [9]] and the inverse Laplace 

transform algorithm, which involves solving an ill-conditioned problem [lo]. Both provide 

information about the hydrodynamic radius Rh. Although Rh can be measured accurately 

at a given scattering angle using moment analysis, Rh shows a strong dependence on the 

scattering vector q. This occurs because the DLS data is intensity-weighted and in most cases 

larger particles scatter more light. Moment analysis does not take this intensity-weighted 

difference into account. Moment analysis is also relatively insensitive to a small degree 

of polydispersity. In order to detect small degrees of polydispersity, for dilute polydisperse 

homogeneous spherical particles, Pusey and van Megen [12] proposed a method to accurately 

detect small polydispersities when the Rayleigh-Gans-Debye (RGD) approximation is valid 

by measuring the dependence of the effective diffusion coefficient D cx & on the scattering 

angle. Both theoretical and experimental results show that the angular dependence of the 

effective diffusion coefficient is a sensitive function of the particle's size and distribution. 

In order to obtain more accurate information about particles, people have explored re- 

lationships between the physical quantities obtained using SLS and DLS techniques. Some 

researchers use the dimensionless shape parameter p = ( ~ 2 ) " ~  /Rh to determine the par- 

ticle shape [[2], [13] - [15]]. Others [ll] have investigated the particle size distribution of 

homogenous spherical particles by comparing the q-dependence of the apparent hydrody- 

namic radius Rh (q) and the average scattered intensity for three distributions: Gaussian, 
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Log normal and Weibull. Their results show that sometimes the q-dependence of Rh can be 

used to distinguish between distributions while the q-dependence of I is relatively insensitive 

to the distribution used. 

There is a potential problem with these analyses for polydisperse samples. Different 

sizes contribute with different weights to the scattered intensity. For example, at small 

scattering angles, most of the scattered intensity comes from the larger size particles. For 

the Zimm plot analysis, which is applied at small scattering angles, the values of (R:) 112 

will be dominated by these larger particles. The values of Rh are also influenced by the 

scattered intensity and can depend on scattering angle. For small particles, where Rh is 

basically independent of q and Rg is well-defined, p has been used to judge the shape of 

particles for a long time. The use of p as a test for the shape of small particles will be 

discussed again in this work. The static radius R,, obtained directly from SLS, provides a 

method that examines the validity of the dimensionless shape parameter p, because, from 
112 . 

the definition (R:) , ~t is a function of static radius R, and distribution G (R,). 

In our experiments, two different kind samples were studied: polystyrene and PNIPAM 

microgel particles. The size distribution was investigated using SLS and DLS. Commercial 

polystyrene spheres are used as standard particles for comparing the results obtained using 

Transmission Electron Microscopy (TEM), SLS and DLS. Our results show that the values 

of mean static radius and the mean radius measured using TEM are consistent while the 

value of Rh is larger than that of mean static radius under the same conditions. 

PNIPAM microgel particles belong to a class of synthetic aqueous microgels that displays 

extreme temperature sensitivity [16], most of which are based on poly(N-isopropylacrylamide) 

(PNIPAM) or related copolymers. PolyNIPAM is a polymer which has a critical solution 

temperature about 32•‹C in water. As temperature increases above the critical temperature, 

the interaction of PNIPAM microgels with water molecules changes from being hydrophilic 

to hydrophobic. Their volumes collapse and the PNIPAM microgels undergo a volume 

phase transition. Many authors [[17], [18]] have measured the equilibrium swelling ratios of 

polyNIPAM hydrogels with different levels of crosslinking using DLS techniques. The ratios 

are then used to identify the phase transition. Some authors [[I91 - [21]] have also measured 

the dimensionless shape parameter p as a function of the temperature. Their results show 

that Rh/Rg has a peak in the vicinity of the phase transition temperature. 

Both SLS and DLS measurements were made on PNIPAM samples. The SLS data thus 

were analyzed and the size distribution of the particles was obtained. Our results show 
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that the size distribution of PNIPAM microgels, even with a small degree of polydispersity 

that cannot be measured using moment analysis , can be measured accurately. The mean 

static radii of PNIPAM microgels at different temperatures have been used to indicate the 

volume phase transition. The effects of changing the amount of crosslinker was also inves- 

tigated. The apparent hydrodynamic radii were obtained from DLS measurements using 

moment analysis. The same phase transition was observed using the hydrodynamic radii. 

Comparison of the hydrodynamic radius and the static radius shows that the value of Rh is 

larger than that of (R,) under the same conditions for PNIPAM samples. For the particu- 

lar volume phase transition of PNIPAM microgel samples, the negative thermal expansion 

coefficient also was discussed. With experimental data analysis, better understanding of the 

size information contained in DLS and SLS spectroscopies was obtained. 



Chapter 2 

Light Scattering Theories 

Light scattering is caused by inhomogeneities of the dielectric constant of the scattering 

medium. In particle dispersions, the intensity of the scattered light depends on the sizes and 

shapes of the particles as well as interparticle interactions. In this Chapter, the scattering 

geometry being used and static and dynamic light scattering theories will be discussed. 

2.1 Scattering Geometry 

A nonmagnetic, nonconducting, nonabsorbing medium is considered. If this medium is not 

optically uniform, i.e. if there are spatial and/or temporal fluctuations of the dielectric 

constant, light is scattered away from the direction of incidence. The local dielectric tensor 

E (F, t) of the medium can be expressed in terms of an average dielectric constant and a 

fluctuating component 6~ (F, t ) ,  

where I is the second rank unit tensor. The incident electric field 2 (< t )  can be written 

Wit) 1 

where iti, Eo, & and wi are the unit vector along the direction of the incident electric field, 

the field amplitude, the wave vector and the angular frequency respectively. A sketch of the 

incident and scattered light is shown in Fig. 2.1. 

If the probability of the incident photons being scattered more than once is low and the - 
collision is elastic, the scattered electric field gs (R, t )  with polarization fif ,  wave vector kf, 
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A Scattered light 

Figure 2.1: Light of polarization fii and wave vector & is incident on the sample. Light 
is scattered in all directions as shown by the dotted arrows. The detector measures the 
scattered light of wave vector if and polarization .izf. 0 is the scattering angle and the 

+ + 

scattering wave vector q'is equal to ki - k f .  fii and .izf are perpendicular to the plane. 

and frequency w f  at a large distance R from the scattering volume can be written as [22] 

Eo E ,  R,t = - ( 4IT&oR 
exp ( i k f R )  l d 3 r e x p  [i (q'. 7-  wit)]  

where the subscript v indicates that the integral is over the scattering volume; the scattering 

volume is the intersection of the incident beam with the beam that reaches the detector. 

The scattering wave vector q'is shown in Fig. 2.1; q'is defined as the difference between the 

directions of propagation of the incident and scattered light 

The angle between & and zf  O7 is called the scattering angle. If the wave lengths in vacuo 
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of the incident and scattered light are hi and At ,  the magnitudes of & and zf are and 

h, respectively, where n, is the refractive index of the scattering medium. In general, 
f 

the frequency of the incident light changes little in the scattering process and the scattering 

process approximates an elastic collision so that 
+ + 

JkiJ = lkf 1 = k. (2.5) 

From Eqs. 2.4 and 2.5, the magnitude of the scattering vector q'can be obtained; since 

then 
B 4.rrnS B 

q = 2ksin - = - 
2 X 

sin -. 
2 

As shown in Eq. 2.3, the scattered field is a function of the component of the dielectric 

constant fluctuation tensor along the initial and final polarization directions and is indepen- 

dent of any specific laboratory coordinate system. However, it is convenient to use specific 

scattering geometries. The plane defined by the initial and final wave vectors of the light 

is called the scattering plane. It is necessary to define the scattering geometry in relation 

to the scattering plane. The geometry used in here is shown in Fig. 2.2.a. The scattering 

vector < i s  antiparallel to the X axis. In our experiment, both the incident light and the 

scattered light are polarized in the direction perpendicular to the scattering plane, as shown 

in Fig. 2.2.b. 

2.2 Static Light Scattering 

SLS measurements investigate the dependence of the average scattered intensity on the 

scattering angle. For small particles, SLS data can be analyzed to obtain the root mean- 

square radius of gyration (R:)'" and the molar mass of the particles. For large particles, 

more detailed information can be obtained. In this section, equations will be derived for 

light scattered from homogenous spherical particles. 

2.2.1 Small particles 

For a single small particle with 

scattering angle and is given by 

polarizability a,  the scattered intensity is independent of 

[231 
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Figure 2.2: Scattering geometry and the polarization directions used in our light-scattering 
experiments. a. The scattering plane is the XY plane. The scattering angle is the angle 
between the wave vectors Zi and Zf. b. The incident and scattered light. The polarized 
direction of incident light is out the scattering plane. The scattered light is measured in the 
vertical polarized direction. 

where Ii,, is the intensity of the incident beam, I ,  is the intensity of the scattered light that 

reaches the detector, 4 is the angle between the polarization of the incident electric field 

and the propagation direction of the scattered field, r is the distance between the scattering 

particles and the detector, X is the wavelength of the incident light in vacuo and n, is the 

solvent refractive index. In our measurements, 4 is equal to 90•‹. 

The polarizability of the particles is related to the refractive index of the material. From 

the Lorentz-Lorenz equation [24] 

where N represents the number of particles per cubic centimeter in the dispersion and n is 

the index of refraction. In dilute solutions, the refractive index is close to n,. Then 

2 4 r a ~ n z  x n2 - n,. (2.10) 

We can expand n in a Taylor series in terms of the mass concentration c of particles in the 

dispersion. If all terms are neglected except the first two, 
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and, to first order in dnldc, 

Combining Eqs. 2.10 and 2.12, we have 

c (dnldc) M (dnldc) 
a =  - - 

27rNn, 27rNon, 7 

where M is the molar mass of particles and No represents Avogadro7s number. 

Using Eq. 2.13, the scattered intensity from a single particle can be written as 

I s  - -- 
47r2n: ( d n / d ~ ) ~  ~, ,OM~ - K M ~  

- (2.14) 
Iinc N;X4r2 r2N0 ' 

where 

The scattered intensity can thus be used to measure the molar mass if K is known 

2.2.2 Large Particles 

If the particles are large, interference effects between light scattered at different points within 

a single particle must be considered. The scattered intensity for a single particle depends 

on scattering angle and can be written in terms of the form factor P (q) 

The form factor P (q) can be calculated under some conditions. As shown in Fig. 2.3, 
+ 

the wave vector is Ci = 27rnS/X.iz inside the solvent and k = 27rnp/Xfi inside a particle, where 

n, and np are the refractive indices of the solvent and the particles and f i  is a unit vector 

of propagation, respectively. The smallest phase change that occurs as the field propagates 

between the planes 1 and 2 is 27rn,R/X inside the solvent and the largest phase change 

is 27rnpR/X inside the particle, here R is the radius of the particle. The largest phase 

difference between the light traversing the particle and the solvent is 47r (n, - n,) RIA = 

47rn, (m - 1) RIA, where m is np/n,. In order to use the Rayleigh theory to calculate 

the scattered intensity, the phase difference on the planes that are perpendicular to the 

propagation vector must be small. A rough criterion is 
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<. 
A particle with index n, 

/ * 

Solvent with index n,  

Plane I Plane 2 

Figure 2.3: Schematic diagram showing the wave vectors inside and outside a particle. 

where R is a characteristic dimension of a particle. This is known as the RGD condition. 

The criterion implies that the phase of a component of the wave traversing the particle is 

almost the same as the wave traversing the solvent and the effect of the particles on the 

phase of the local field can is small. 

For homogeneous spherical particles where the RGD approximation is valid, the form 

factor P (q, R,) is given by [22] 

9 
P (4, R,) = - (sin (qRs) - qR, cos ( q ~ , ) ) ~ ,  (2.18) 

4% 

where R, is the static radius of the particles. In the limit qR, << 1, 

where Rg = ( f ~ , ) l ' ~  is the radius of gyration of the particle. 
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If there are N particles in a unit volume, Eq. 2.16 can be written as 

The total number density thus can be written as 

For large, noninteracting particles, the form factor can be written as P (9) z 1 

[25]. So the Rayleigh ratio Rvv = r2& can be written as 

From a plot of as a function of g2, the (R:) and M can be obtained. This is known as 

the Zimm plot analysis. 

For a distribution of particles, 

where N (R,) is the number density of particles of radius R, and 

where N is the total number density of particles. N (R,) can be written in terms of the 

particle number distribution 

N(Rs) = NG(R,) ,  

where J G (R,) dRs = 1. The molar mass of each size particle is M = $ ~ R : N ~ ,  so that the 

average molar mass can be defined as 

where p is the density of particles. The total number density can be written as 
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A new equation of the scattered intensity per unit volume for spherical particles can be 

written as 

where a = K*NO. 

When the values of q R s  are small, the form factor can be expanded according to Eq. 

2.19, so that Eq. 2.28 can then be written as 

where (R:) is the mean-square radius of gyration of the macromolecule. 

Comparing with the Zimm plot analysis, the mean square radius of gyration for a polydis- 

R2 A l 2  
which reduces to as derived by Pencer and Hallett [37] .  The molar mass obtained 

from a Zimm plot analysis is 

(R:) 
M e f f  = ( M )  - (2.31) 

( W 2  ' 

which reduces to -@!? ( M ,  as derived by van Zanten 138). 

For homogeneous spherical particles, Equation 2.28 provides one method of relating size 

information to the average scattered light scattering intensity, when the RGD approximation 

is valid. Equation 2.30 provides the theoretical relationship between (R:) and Rs and G (R,) 

when the Zimm plot analysis can be used. 
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2.2.3 Reflection Correction 

Toluene 
I Reflected light 

m 

Incident beam 

I 
Sample 

Figure 2.4: Schematic diagram showing the structure of the sample cell and vat where 
light is reflected. Dotted arrows represent reflected light, solid arrows represent incident, 
transmitted and scattered light. 

As shown in Fig. 2.4, some scattered intensity detected comes from reflected light. There 

are two contributions. One is that the reflected light of the transmitted beam is scattered 

again at the scattering angle T - 0 and the other is the scattered light of the incident beam 

at the scattering angle T - 0 is reflected again if the signals are detected at a scattering 

angle 0. If reflected light is considered, the average scattered scattering intensity of a dilute 

polydisperse dispersion of spheres can be obtained for vertically polarized light: 

where 

is the scattering vector of the reflected light, b is a constant with a value determined by the 

shape of the sample cell, the refractive indices of the solvent and the sample cell and the 
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geometry of the instrument. 

Some scattered intensity comes from the reflected light, as shown in Fig. 2.4. There are 

four surfaces that reflect the transmitted or scattered light. The first is situated between 

the water and the glass sample cell; the second is located between the glass sample cell and 

the toluene; the third is between the toluene and the quartz and the fourth is between the 

quartz and the air. For each type of interface, the reflected light comes from two sources: 

one is the transmitted beam and the other is the reflected light of the scattered light at  the 

scattering angle .rr - 8 if the photon signals are measured at  the scattering angle 8. 

We can estimate the reflectivity coefficient from Fresnel's reflectivity coefficient. For the 

normal incidence, Fresnel's reflectivity coefficient is given by 

where n2 and nl  are the refractive indices of the materials that form the surface where the 

reflection is occurring. If the refractive index n2 is close to the refractive index n1, Fresnel's 

reflectivity coefficient becomes very small. 

In our experiments, the indices of toluene, water, air, glass and quartz are 1.49, 1.33, 

1.00, 1.53 and 1.54 at normal temperature, pressure and a wavelength of 633 nm [32], 

respectively. The values of Fresnel's reflectivity coefficient for the four interfaces are listed 

in Table 2.1. 

Table 2.1: Fresnel's reflectivity coefficients of the four surfaces for normal incidence. 

From the values of Fresnel's reflectivity coefficients at  the four surfaces, it is apparent 

that the reflected light from the glass/toluene and toluene/quartz surfaces can be neglected. 

As shown in Fig. 2.4, each interface produces the reflected light from the two places, so the 

total Fresnel's reflectivity coefficient is about 10%. 

Fourth interface 
0.045 Rre  f 

First interface 
0.005 

Second interface 
0.0002 

Third interface 
0.0003 



CHAPTER 2. LIGHT SCATTERING THEORIES 

2.3 Dynamic Light Scattering Theories 

The DLS technique investigates the relationships between the normalized time autocor- 

relation function g ( 2 )  ( r )  and the delay time 7 .  The time dependence of scattered light 

is analyzed in terms of the time autocorrelation function ( I  ( t )  I ( t  + r ) ) ,  where I ( t )  and 

I ( t  + 7 )  are the scattered intensities of light at  time t and t  + T and r is the delay time [ 2 2 ] .  

Results are typically expressed in terms of the normalized time autocorrelation function 

where the braces indicate averaging over time. 

The time autocorrelation function of the scattered light intensity is related to the scat- 

tered field by [lo] 

where E ( t )  and E ( t  + 7 )  are the scattered electric field of light a t  time t  and t  + 7 ,  respec- 

tively. Using the relations 

(IE ( t )  1 2 )  = (IE ( t  + 7 )  1 2 )  ( 2 . 37 )  

and 

( E  ( t )  E* ( t  + 7 ) )  = (E* ( t )  E ( t  + 7 ) )  , 

Eq. 2.36 can be written 

( I  ( t )  I  ( t  + r ) )  = ( I E  ( t )  1 2 ) 2  + ( E  ( t )  E* ( t  + T ) ) ~  . ( 2 . 39 )  

Using the normalized time autocorrelation function of the electric field of the scattered 

light g(') ( T ) ,  

the normalized intensity correlation function can be written 

g'" (7 )  = 1 + g'l' ( r )  ( ) 2  

This is known as the Siegert relation. To this point only the complex amplitude at a single 

point on the detector has been considered. In practice, large detector apertures are com- 

monly used. The statistical consequences of spatial averaging over the detector apertures 
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must be calculated. For a typical continuous-wave gas laser, beam-intensity profiles are rea- 

sonably close to a Gaussian bell shape. The complex field or the intensity of scattered light 

is a stochastic process in space as well as in time. From the Siegert relation and considering 

the spatial dependence, one can write the normalized time autocorrelation function of the 

intensity of the scattered light g(2) (T) as [lo] 

2 
g(2) (T) = 1 + p [g(l) (T)] , 

where p + 1 is the value of the normalized time autocorrelation function of the intensity of 

the scattered light at  a given scattering angle and zero delay time. 

For a solution of noninteracting, monodisperse particles, g(l) (7) has the form 

g( l )  (7) = exp (-I?), (2.43) 

where I? = q 2 ~  is the decay rate, D is the macromolecular translational diffusion coefficient 

of the particles and q is the magnitude of the scattering vector. 

For a polydisperse system, g(') (7) consists of a distribution of exponentials 

where G (I?) is the normalized distribution of the decay rates. 

The size distribution can be obtained using the method of moment analysis [[5] - [9]]. 

For this calculation, a mean decay rate l=' and the moments of the distribution pi are defined 

Assuming that (I? - r) T << 1, one can write the exponential function in Eq. 2.44 as 

ex,(-FT) = exp ( - r ~ )  exp [- (r - r) T] 

Substituting this expression into Eq. 2.44, we get 
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Then the intensity-intensity autocorrelation function can be written as 

Details of the particle size distribution can then be obtained by fitting Eq. 2.50 to the data. 

The apparent hydrodynamic radius Rh is defined using the Stokes-Einstein relation 

where vo, kB and T are the viscosity of the solvent, Boltzmann's constant and the absolute 

temperature. Equation 2.51 is obtained in the Stokes approximation for stick-boundary 

conditions [[22], [26]]. 

The width of the hydrodynamic radius distribution and the polydispersity index are 

defined as [27] 
fi Width = -Rh r 

2.4 Dimensionless Shape Parameter p 

The results from SLS and DLS measurements can be used to infer details of particle shape. 

This is sometimes done by defining a dimensionless shape parameter for small particles 

For a long time, people have used that measurements of p to infer particle shapes [[2], [13] - [15]]. 

For a monodisperse model, theoretical values for different shapes of particles have been de- 

rived previously. For example, p is = 0.775 for homogenous spherical particles and p 

is 8 / 3 ~ l / ~  = 1.505 [15] for linear chains. Since the static radius can be obtained from SLS 

directly, the parameter p will be discussed again in Chapter 5.1 and 5.2.5. 



Chapter 3 

Experiment 

A light-scattering instrument built by ALV-Laser Vertriebsgesellschaft m.b.H (Langen, Ger- 

many) was used in our experiments. The samples that were studied included three com- 

mercial polystyrene latex samples and four Poly(N-isopropylacrylamide) microgel samples. 

3.1 Instrument 

A schematic diagram of the apparatus is shown in Fig. 3.1. A Uniphase 1145P He-Ne laser 

provides an incident polarized light beam with a power of 23 mW at a wavelength of 632.8 

nm. The polarized light beam is focussed on the centre of the sample cell. In order to 

reduce the reflected light at the surface between the sample cell and the liquid, the glass cell 

is immersed in a cylindrical quartz vat containing toluene, a refractive index matching fluid. 

The light signals are detected by a photomultiplier tube after passing through the monitor. 

The 2.7 mm aperture cuts down the stray light. Pinhole 1 is located as close to the lens as 

possible. Both pinholes are 400 p m  in diameter. The size of the pinholes was chosen as a 

compromise between the DLS and SLS techniques. The measurements of SLS need enough 

photons to obtain an average scattered intensity and the measurements of DLS require a 

small area to detect a coherent patch of light. The lens images the scattering volume onto 

the PMT. The lens and pinholes are installed in front of the Thorn EM1 Electron Tube 

(Ruislip Middlesex, England, type: QL3OF15RFI). The signals detected by the PMT are 

transferred to the computer. The detector arm including the detection optics and PMT can 

be moved to any scattering angle between 12O and 150" by a stepper motor. Combined with 

an ALV-LSE light scattering electronics unit, the ALV-5000 can provide records of laser 
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intensity, beam position and probe temperature. 

The scattering intensity was recorded by the ALV-5000 Multiple Tau Digital Correlator. 

The ALV-5000 Multiple Tau Digital Correlator is a real-time computation correlator of 

photon correlation functions with a fixed range of simultaneous lag times between 0.2 ps 

and several hours. 

S c a t t e e  angle 
I / 

Figure 3.1: Schematic diagram showing the geometry of the detection system in the ALV 
laser light scattering setup. 

3.2 Sample Preparation 

3.2.1 Polystyrene Latex Spheres 

Three standard polystyrene latex samples, obtained from Interfacial Dynamics Corporation 

(Portland, Oregon), were used in the SLS and DLS measurements. The sample names, 

product information and size information, including mean diameter and standard deviation, 

are shown in Table 3.1. Size information provided by the supplier was obtained using 

Transmission Electron Microscopy (TEM). Light scattering measurements were performed 

on dilute samples where the PS - 180 was diluted to a weight factor 6.47 x lop6, the PS - 67 

was diluted to 1.02 x lop5 and the PS - 110 was diluted to 1.58 x lop5. 
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Table 3.1: Information about the three polystyrene latex samples as provided by IDC 

Sample Name ( Product No. I Batch No. / Mean Radius(nm) 1 a (nm) 

3.2.2 Poly (N-isopropylacrylamide) (PNIPAM) Microgels 

PS - 180 1 2 - 200 1 817b 

N-isopropylacrylamide was obtained from Acros Organics (Geel, Belgium) and was re- 

crystallized from hexane or acetone solutions. The structure of NIPAM is shown in Fig. 

3.2. Potassium persulfate and N ,  N1-methylenebisacrylamide (BIS)  were obtained from 

Aldrich and were used as received. The structures of the potassium persulfate and N,  N'- 

methylenebisacrylamide are shown in Figs. 3.3 and 3.4, respectively. Fresh de-ionized water 

from a Milli-Q Plus water purification system (Millipore, Bedford, with a 0.2 p m  filter) was 

used throughout the whole experiment. The synthesis of the four gel particles used in this 

work has been described elsewhere [[28], [29]]. 

90 1 2.5 

Figure 3.2: Structure of N-isopropylacrylamide. 

All the four PNIPAM microgel samples were made using a precipitation polymerization 

technique. The simple process is that a solution 100 g including the PNIPAM monomers 

and the crosslinker N ,  N1-methylenebi~a~lamide was heated to a temperature of 70•‹C and 

potassium persulfate ( K P S ,  40 mg) was introduced to initiate polymerization. The total 

weight of the PNIPAM monomers and the crosslinker N,  N1-methylenebisaylamide is 1 g. 

The reaction system was stirred at  70•‹C for about 4 hours. The solution was then cooled 

to room temperature 
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Figure 3.3: Structure of N, N1- methylene bisacrylamide. 

Figure 3.4: Structure of potassium persulfate. 

The four samples were named according to the molar ratios ~ B I S / ~ A I ~ P A M  of N, N1- 

methylenebisacrylamide over N-isopropylacrylamide. They were centrifuged at 14,500 RPM 

followed by decantation of the supernatant and re-dispersion four times to remove free 

ions and any possible linear chains. Then the samples were diluted for light scattering to 

weight factors of 5.9 x 8.56 x 9.99 x and 8.38 x lop6 for P N I P A M  - 0, 

P N I P A  M - 1, P N I P A M  - 2 and P N I P A M  - 5, respectively. Before the measurements 

were made, P N I P A M  - 1, P N I P A M  - 2 and P N I P A M  - 5 were filtered using 0.45 p m  

filters (Millipore, Bedford), respectively. Due to the large size of P N I P A M  - 0, it was used 

directly. 
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3.3 Experimental Measurements 

The ALV-5000 Multiple Tau Digital Correlator program records the autocorrelation func- 

tion of the intensity of the scattered light g(') ( r ) ,  the standard deviations of this func- 

tion, temperature, viscosity, refractive index, wavelength, scattering angle and measure- 

ment time. Measurements were performed five times at  each angle for all samples except 

the P N I P A M  - 0 sample, in which measurements were performed only twice. The time 

autocorrelation function of the scattered light intensity g(') (7) is characterized by the decay 

time constant 7,. It measures the Brownian motion of colloidal particles in dispersion. In 

order to obtain accurate statistical results of measurements, the measurement time must 

be greatly larger than the decay time constant. The relationship between the measurement 

time and the required accuracy is given out in the following discussion. 

For DLS, the experimental uncertainty A r  of the decay rate r is determined by the 

measurement time t ,  as is given by 

where is the precision that measurements are required. For all the experimental data, 

the measurement time was set to obtain a precision of 1%. 

For SLS, experimental uncertainty depends on the uncertainty in the scattered intensity 

I and the uncertainty due to intensity fluctuation &, where N, = $ as given by 1301 Ns 

where N, is the mean number of counts in time t obtained from the scattered intensity and 

the transmitted power, S is the ratio of the scattered to transmitted power and u i  is its 

variance, and P is the scattered power and 6 P  is its fluctuation amplitude. The values of 

9 depend on the collection and focusing geometries. In our measurements, the mean 
\ ,  

number of counts N, is usually very large and (6p2) approximates 0.4, so Eq. 3.2 can be Ti= 
written as 

For the static scattered light intensity, the data collection program records the scatter- 

ing vector, count rate, monitor intensity, temperature and the standard deviation of these 

quantities. In order to estimate an experimental uncertainty, each run was performed 3 
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times; The duration of each measurement was determined using Eq. 3.3 and the limit for 

the standard deviation of the measured intensity of all runs performed at one angle was set 

to be 5%. If 5% is exceeded, the measurement is repeated at the same angle using the same 

parameters. 



Chapter 4 

Data Analysis and Results 

In this Chapter, the theoretical models described in Chapter 2 will be used to analyze the 

SLS and DLS experimental data to obtain information about the size and polydispersity of 

the samples. 

4.1 Static Light Scattering Data Analysis 

From the theoretical analysis in Chapter 2, size distributions for homogenous spherical 

particles can be obtained by considering the relationship between I,/Ii,, and q. In order to 

obtain the size distribution G (R,) from the SLS data, the model of particle size distribution 

in Eq. 2.28 must be determined. Various probability distributions have been used to describe 

particle size distribution. For example, Bryant et a1 [ll] used three model distributions 

(Gaussian, Log-normal and Weibull) to describe both static and dynamic scattering data 

from homogenous spherical particles. Of these distributions, Gaussian or normal error 

distribution is the most important in the statistical analyses of data because, in practice, it 

appears to describe the distribution for many experiments [31]. When we investigated the 

SLS data, the Gaussian distribution was chosen first to describe our data. Since the fitting 

results were very good, the Gaussian distribution was subsequently used to investigate our 

experimental data. It is written as 

where (R,) is the mean static radius and u is the standard deviation. 
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For monodisperse systems, Eq. 2.28 can be written as 

1s 9a [sin (qR,) - qR, cos ( q ~ , ) ] ~  
--- = ~R:P (q, R,) = 
Iinc q6R: 

If a sample consists of homogenous spherical particles, the mean static radius can be obtained 

approximately using Eq. 4.2. 

4.1.1 Zimm Analysis and Results 

At small scattering angles, where qR, is small, the spherical form factor can be approximated 

by Eq. 2.19. The exact values, A, and approximate values ,B, of the spherical form factor 

and the relative deviation (A - B) /A are shown in Fig. 4.1 for small values of qR,. At 

qR, = 1, the deviation is only 2%. 

In this situation, the Zimm plot can be used to obtain the approximate values of (R:) 112 

using as a linear function of q2. For example, Fig. 4.2 shows the data of taken 

over the entire angular range for PS - 180. The function between and q2 is linear for 

q2 < 1.2 x nmp2. From the slope, (R:)"~ = 69.1 nm, corresponding to qR, = 0.97 at 

the largest q included in this fit. 

The results of (R : )~~__  for the polystyrene latex samples and PNIPAM samples with 

small particle sizes at high temperatures are shown in Table 4.1 and 4.2, respectively. 

Table 4.1: Values of (R:)::__ for the PS samples. 

Sample 
PS - 67 

4.1.2 Fitting the Form Factor to the Data and Results 

(R;)E (nm) 
27.0 f 0.5 

4.1.2.1 Polystyrene Latex Sphere Data and Results 

Since the distributions of the polystyrene latex particles are very narrow and the sizes are 

small, Eq. 4.2 is a good method to obtain the mean size of the polystyrene latex particles. 

The experimental data and fit results for PS - 180 are shown in Fig. 4.3. Here, a good fit 
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Figure 4.1: The exact values A and approximate values B of the spherical form factor. 
o shows the exact values, o represents the approximate values and A shows the relative 
deviations ( A  - B) / A .  
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Figure 4.2: The results of the Zimm plot analysis and the experimental data for PS - 180 
over the entire scattering vector range. The circles show the experimental data and the line 
shows the results of the Zimm plot obtained in a small scattering vector range plotted as a 
function of q ~ 2  where R = 90nm. The results of a Zimm plot obtained in a small scattering 
vector range are shown in the inset. The circles show the experimental data, and the line 
shows a linear fit to the plot of Kc/&, as a function of q2. 
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Sample(Temperature) 
P N I P A M  - 5 (40") 

(R: ) %.!.*& (nm) 
116. f 3. 

P N I P A M  - 2 (40oj 
P N I P A M  - 1 (40") 

Table 4.2: Values of ( R : ) : ~ ~  for the PNIPAM samples. 

96. f 5. 
97. f 5 .  

PNIPAM - o (400j 
P N I P A M  - 0 (34") 

over the whole q-range was obtained, with no systematic residuals. The residual is defined 

as (yi - yfit) / ~ i  for the ith data point, where yi is the experimental value, yfit is the fit 

value and ai is the error of the ith data point. 

For the three polystyrene samples, the results of static radii and X 2  are listed in Table 

4.3. 

81. f 2. 
105. f 3. 

Table 4.3: The fit results for the polystyrene samples. 

4.1.2.2 Poly(N-isopropylacrylamide)(PNIPAM) Microgel data and Results 

In general, any particle system has a particle-size distribution and the monodisperse model 

is only an ideal case. In order to obtain the size distribution, we use Eqs. 2.28 and 4.1 to 

fit the measured static data. 

The data for P N I P A M  - 5 are plotted in Fig. 4.4. The values of Is/Ii,, show one 

minimum. From Eq. 2.18, the value of qR, a t  the minimum is 4.493. For this data, the 

value of the scattering vector a t  the minimum of the scattered intensity is about 0.0207 

nm-l, corresponding to a radius of 217 nm. 

A nonlinear least squares fitting program was used to obtain the size information from 

SLS. In the method of least squares, the hypothesis is that for a set of data the optimum 

description is one that minimizes the weighted sum of the squares of the deviation of the 
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Figure 4.3: The experimental data and fit results for PS - 180. The circles show the 
experimental data, the line shows the results of fitting Eq. 4.3 to the data and the diamonds 
show the residuals. 
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Figure 4.4: All the experimental data for PNIPAM - 5, plotted as a function of q. 



CHAPTER 4. DATA ANALYSIS AND RESULTS 31 

data from the fitting function. For a function y (x) fit to N data points, the statistic X2 is 

defined as 

where n is the number of parameters, yi is the measured value at  the ith datum, ai are the 

uncertainty relative to the ith datum and yfit is the value of the model function at  the ith 

datum. 

In order to fit Eq. 2.28 to the data, one must assume a probability distribution of particle 

sizes. The values of X2 are used to test the fit. If the distribution is a good approximation 

of the particle size distribution, the value of X2 should approximate unity. In general, if the 

values of X2 are reasonably probable, the assumed probability distribution can be trusted. 

For the results of X2 are much larger than 1, this shows that maybe an incorrect proba- 

bility distribution was chosen or a poor measurement was obtained or small uncertainties 

were obtained. For very small values, in general, it imply some misunderstanding of the 

experiment [31]. 

In practice, we first consider whether the theoretical values are consistent with the 

experimental data when the fit results are obtained. If the fit results are consistent with the 

experimental data, the values of the residuals and X2 will be considered next. If the residuals 

show systematic variance or if X2 is large, the reasons will need to be studied further. In 

general, we need to consider the model again if this situation is met. 

When Eq. 2.28 was fit to this data, it was found that the results for the mean static 

radii (R,) and standard deviation a depended on the angular range being fit, as listed in 

Table 4.4. If a small angular range is chosen, the parameters are not well-determined. As 

the angular range is increased, X2 and the uncertainties in the parameters decrease and 

(R,) and a stabilize. If the fitting angular range continues to increase, the values of (R,) 

and a begin to change and X2 grows. It is apparent that Eqs. 2.28 and 4.1 cannot be 

used to describe the data in the vicinity of the intensity minimum which lies at  about 103'. 

Other features of particles, for example, deviations of the particle number distribution from 

a Gaussian distribution, deviations of the particle shape from a perfect sphere, deviations 

of the density of particles from homogeneity as well as experimental concerns such as light 

scattered from the solvent, the contribution of reflected light, etc., can affect the scattered 

intensity, especially near the minimum. 
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Angular range (R,) (nm) dnm> xZ 
15" to 40' 189.92 f 30.58 38.12 f 15.69 1.44 
15" to 50" 199.50 f 10.45 32.84 f 6.49 1.17 
15" to 60" 210.80 f 2.39 24.66 f 2.29 1.03 
15' to 65" 215.47 f 1.47 19.91 f 1.87 1.07 
15" to 70" 216.94 f 0.60 18.10 f 1.02 1.06 

Table 4.4: The fit results for the data shown in Fig. 4.4 for different angular ranges. 

To consider the effects of reflected light, we fit Eq. 2.32 to the data of Fig. 4.4 for 

various factors of reflected light b. The fit results are listed in Table 4.5, and the results 

for b = 0.011 are shown in Fig. 4.5. The values of X2 are large and the residuals contain 

systematic variations. 

Table 4.5: Fit results for PNIPAM - 5 obtained from Eq. 2.32 using various values of b. 

If the data in the vicinity of the intensity minimum are neglected, a much better fit is 

obtained. Table 4.6 lists results for fits to the data excluding the range from 0.01781 to 

0.02435 nm-l. The values obtained at  b=0.011 where X2 is minimum are consistent with 

the results obtained using Eq. 2.28 over the fitting range between 15" and 80". b have a 

large difference with the calculated values of the total Fresnel's reflectivity coefficient 0.1 

because the shapes of our sample cell and the vat are cylindrical. 
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Figure 4.5: The experimental data measured at  a temperature of 2g•‹C and fit results using 
Eq. 2.32 for PNIPAM - 5 over the entire angular range. The circles show the experimental 
data; the line shows the fit results; and the diamonds show the residuals. 
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Table 4.6: The fit results for P N I P A M  - 5 obtained by using Eq. 2.32 and neglecting 
experimental data near the intensity minimum. 

One possible explanation for the deviation of the fit of Eq. 2.32 to the data near the 

minimum is that the number distribution deviates from a Gaussian. The results obtained 

using Eq. 2.28 over the fitting range from 15 to 80' were used to calculate the expected 

values of Is/Ii,, in the entire scattering angular range. First a full Gaussian was considered 

and the values of fit results were input to Eq. 2.28. Next, a truncated Gaussian was used, 

ie. integrated between (R,) f 1.20 instead of between 1 and 800 nm, and the fit values were 

still input to Eq. 2.28. Finally, the integrated range is same with the second, the values 

were input to Eq. 2.32. All results are shown in Fig. 4.6. The expected results in the last 

situation are consistent with the experimental data. The results also show that the SLS 

data are very sensitive to the particle size distribution. This conclusion has some difference 

with Bryant's [ l l ]  results. Since Bryant did not give the values of X 2 ,  the results cannot be 

compared directly. 

Because the fit values of the mean static radius and standard deviation for P N I P A M - 5  

in the scattering range between 15" and 80' stabilize and fits to this range yield results 

consistent with the location of the first minimum, the fit results for this scattering angle 

range are used to provide size information for P N I P A M  - 5 at a temperature of 2g•‹C. The 

fit results and the residuals in the angular range 15' to 80' are shown in Fig. 4.7. 

Because of the temperature sensitivity of the PNIPAM samples, their sizes decrease as 

temperature increases and the minimum of scattered intensity is no longer measured on 

our apparatus. For the experimental data of P N I P A M  - 5 measured at a temperature 

of 40•‹C, the static radii (R,) and standard deviations u found for fitting different angular 

ranges are listed in Table 4.7. If a small angular range is chosen, the parameters are not 

well-determined. As the angular range is increased, the uncertainties in t,he parameters 
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Figure 4.6: The experimental data and the calculated values for PNIPAM - 5 over the 
entire angular range. First the line shows the calculated results of the incident light calcu- 
lated during full distribution; Second,the dash dot represents the calculated results of the 
incident light calculated between (R,) - 1.20 and (R,) + 1.20 and third, the short dot shows 
the calculated values of the incident and the reflected light calculated between (R,) - 1.20 
and (R,) + 1.20 with b: 0.011. 
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Figure 4.7: The experimental and fit results for PNIPAM - 5 measured at a temperature 
of 2g•‹C. The circles show the experimental data, the line shows the fit results and the 
diamonds show the residuals. 
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decrease and (R,) and (T stabilizes. The fit results over the entire angular range are shown 

in Fig. 4.8. The fit results over the entire scattering angular range are chosen to be the 

particle size distribution obtained using the SLS technique since (R,) and (T stabilize. 

Table 4.7: The fit results for PNIPAM - 5 at different angular ranges at a temperature of 
40•‹C. 

The fit results are consistent with that the shapes of our PNIPAM samples are spherical. 

The result is the same as other authors. Pelton [16] investigated PNIPAM samples using 

the transmission electron micrograph and the scanning electron micrograph and Kratz et a1 

([18], (331) using the scanning electron micrograph to show the particle shape. All pictures 

show that the shapes of the PNIPAM microgel particles are spherical. 

The same fit procedure was applied for all the data of the PNIPAM samples at all 

temperatures; the fit static radii (R,) and standard deviations c~ are listed in Appendix A. 

The fit results for the four PNIPAM microgel samples show an interesting result that 

the value of c ~ /  (R,) is about 10% both below and above the phase transition. If the dis- 

tribution is assumed to be a constant between 0 and k,,, the value of c ~ /  ( R )  will be 

@. If it is in proportion to 1/R, between Rmi, and k,,, the value of c ~ /  (R) will 

be (En ( R m a x / k i n )  /2 - 1)'12 for Rmin << k , , .  The expected values of c ~ /  (R) are large 

differences with those obtained fitting the SLS data for PNIPAM microgel samples. To the 

distributions of PNIPAM microgel samples, they are determined by the method of microgel 

synthesis called precipitation polymerization [16]. The simple polymerization procedure can 

produce remarkably uniform particles. 
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Figure 4.8: The experimental and fit results for PNIPAM - 5 measured at a temperature 
of 40•‹C. The circles show the experimental data, the line shows the fit results and the 
diamonds show the residuals. 
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4.2 Dynamic Light Scattering Data Analysis and Results 

In general, the size information from DLS data is obtained using moment analysis or the 

inverse Laplace transform. Both methods analyze the autocorrelation function of the scat- 

tered light intensity g(') ( T )  that can be measured using the ALV-5000 Multiple Tau Digital 

Correlator. In this section, moment analysis is used to obtain size information. For monodis- 

perse particles only the first moment is included in the fit. For polydisperse particles, more 

moments must be included; in our case only the addition of the second moment was required. 

4.2.1 Polystyrene Latex Spheres data and Results 

The intensity-intensity correlation function measured for PS-67  a t  90' is shown in Figs. 4.9 

and 4.10 for p2 = 0 and p2 # 0 respectively. Figure 4.9 shows the autocorrelation function of 

the light scattered intensity g(') ( T )  and a fit of Eq. 2.50 to the data with p2 = 0 during the 

delay time range 10W6 to 7.168 x s. The criterion for data cutoff is g(') (7) - 1 < 0.01. 

The residuals vary randomly as the delay time is changed. Figure 4.10 shows the same data 

with a fit of Eq. 2.50 with p:! # 0. The residuals are also random. 

Pairs of fit results for five independent data sets are listed in Table 4.8 for the scattering 

angle 90". The results obtained for p2 often are negative, which is in contradiction to its 

definition. 

Table 4.8: The fit results for P S  - 67 at  a scattering angle of 90'. 

Figure 4.11 shows the autocorrelation function of the scattered light intensity g(') ( T )  

for P S  - 67 at a scattering angle of 30•‹. Equation 2.50 was fit to the data with pg = 0.  The 

residuals show systematic variations with the delay time. Figure 4.12 show the same data 

with a fit of Eq. 2.50 with p2 # 0. Again, the residuals show systematic variations. 

Fit results obtained using both procedures are listed in Table 4.9 for five independent 
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Figure 4.9: The autocorrelation function of the scattered light intensity g ( 2 ) ( ~ )  - 1 for 
PS - 67 measured at a scattering angle of 90•‹. The circles show the experimental data, the 
line shows the fit results for p:! = 0 and the diamonds show the residuals. 
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Figure 4.10: The autocorrelation function of the light scattered intensity 9 ( 2 ) ( ~ )  - 1 for 
PS - 67 measured at a scattering angle of 90'. The circles show the experimental data, the 
line shows the fit results for p2 # 0 and the diamonds show the residuals. 
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Figure 4.11: The autocorrelation function of the scattered light intensity g ( 2 ) ( ~ )  - 1 for 
PS - 67 measured at a scattering angle of 30'. The circles show the experimental data, the 
line shows the fit results for p2 = 0 and the diamonds show the residuals. 
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Figure 4.12: The autocorrelation function of the scattered light intensity g ( 2 ) ( ~ )  - 1 for 
PS - 67 measured at a scattering angle of 30'. The circles show the experimental data, the 
line shows the fit results for p2 # 0 and the diamonds show the residuals. 
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data sets at a scattering angle of 30'. 

Table 4.9: The fit results for PS - 67 at a scattering angle of 30•‹. 

The hydrodynamic radii inferred from the two types of fit are shown in Table 4.10 as a 

function of scattering angle. 

Table 4.10: Hydrodynamic radii of PS - 67 at different scattering angles. 

Angle 
30' 

From the fit results for the polystyrene latex samples, we see that the values of 112 

can have large differences even if the experimental data were measured under the same 

conditions. More importantly, the fit values of 112 are often negative; in contradiction with 

its definition. The hydrodynamic radii obtained for the two types of fits are consistent. In 

order to avoid the contradictions that the values of p2 are often negative, all the values of 

the hydrodynamic radii are obtained setting 112 = 0. In order to avoid the problem that X 2  

. . %  , 

112 = 0 1 112 varied 
37.27 f 0.09 1 36.4 f 0.1 
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is large, all fit results are chosen under this condition X2 < 2. The results for the polystyrene 

latex samples measured a t  different scattering angles are shown in Appendix B. 

4.2.2 Poly (N-isopropylacrylamide) (PNIPAM) Microgel Data and Results 

Moment analysis was also used to obtain decay constants for PNIPAM samples using fits 

with p2 = 0 and p2 # 0 respectively. Figure 4.13 shows the results of fitting Eq. 2.50 to the 

PNIPAM - 5 data with p2 = 0 over the delay time range to 0.03927 s measured at a 

scattering angle of 30' and a temperature of 29'C. The residuals show systematic variations 

with the delay time. Figure 4.14 shows the same data along with a fit of Eq. 2.50 in which 

p2 # 0. The residuals also show systematic variations with the delay time. 

The fit results for both fits for the five independent data sets are listed in Table 4.11 

for a scattering angle of 30" and a temperature of 29•‹C. The results for p2 are often nega- 

tive, which is in contradiction with its definition. Since the residuals also show systematic 

variations with the delay time for the PS and PNIPAM microgel samples, why systematic 

variations can emerge needs to be further researched. Mostly the method of moment analysis 

needs to be reconsidered. 

Table 4.11: The fit results for PNIPAM - 5 at a temperature of 29•‹C and a scattering 
angle of 30". 

With the fit results for the decay constant I? and Eq. 2.51, the hydrodynamic radii Rh 

can be obtained. The values obtained for the two fits are shown in Table 4.12. Results are 

consistent for both fits. 

The fit results for p2 show the same situation for the PNIPAM microgel samples as 

that obtained for the polystyrene latex samples: the values of p2 can have large differences 

even if the experimental data were measured under the same conditions, the fit values of 

p2 are often negative and the hydrodynamic radii obtained for the two types of fits are 
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Figure 4.13: The autocorrelation function of the light scattered intensity g(2)(.r) - 1 for 
P N I P A M  - 5 measured at a scattering angle of 30' and a temperature of 29'C. The circles 
show the experimental data, the line shows the fit results for p2 = 0 and the diamonds show 
the residuals. 
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Figure 4.14: The auto-correlation function of the light scattered intensity y ( 2 ) ( ~ )  - 1 for 
PNIPAM - 5 measured at a scattering angle of 30" and a temperature of 29•‹C. The circles 
show the experimental data, the line shows the fit results for p2 # 0 and the diamonds show 
the residuals. 
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Table 4.12: Hydrodynamic radii of PNIPAM - 5 a t  a temperature of 29'C and different 
scattering angles. 

Angle 
30' 
35' 
40' 
45' 
50' 

consistent. Only fits with p2 = 0 will be considered, and all the values of the hydrodynamic 

radii are calculated in this situation later. Since the volumes of PNIPAM microgels display 

temperature sensitivity, the temperature is chosen as a parameter. All the results of apparent 

hydrodynamic radius are listed in Appendix B. 

R h  (nm) 
p2=0 

282. f 1. 
282. f 2. 
282. f 2. 
281. f 1. 
2 8 1 . f l .  

p2 varied 
283. f 1. 
283. f 1. 
282. f 2. 
283. f 2. 
2 8 1 . f l .  
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Discussion 

R, and Rh reflect different physical characteristics of the particles. In this Chapter, the 

sizes of particles obtained using the different techniques will be discussed. 

5.1 Polystyrene Latex Spheres 

Sizes can be obtained using the DLS and SLS techniques respectively. The values are listed 

together in Table 5.1. As shown in Appendix B, the apparent hydrodynamic radius is a 

function of the scattering angle. Since the sizes of the three polystyrene samples are small, 

the values of Rh are almost independent of scattering angle. In order to compare the values 

obtained using different techniques, DLS results a t  the scattering angle of 40•‹ were chosen 

for all the PS samples. 

Table 5.1: The (R,), commercial RTEM, hydrodynamic radii Rh at  a scattering angle of 40•‹ 
and the ratios Rh/ (R,) for PS samples. 

From the results shown in Table 5.1, the size obtained using SLS is consistent with 

the commercial value RTEM obtained using TEM. The value of the hydrodynamic radius 

obtained under the same conditions as the static radius is larger than that of the static 



CHAPTER 5. DISCUSSION 

radius by about 12%. 

The value of the root mean square radius of gyration (R:):/: calculated using the com- 

mercial size distribution is consistent with the measured value of (R:):?__ obtained from 

the Zimm plot analysis. Also shown are values of (Rg)R,, the radius of gyration calculated 

from the mean static radius using the monodisperse model. The three values for each sample 

are consistent. This is because the distributions of the three PS samples are narrow. All 

results are shown in Table 5.2. 

Table 5.2: Values of (R;):!:, ($):%_ and (Rg)Rs (nm). 

Next, the dimensionless parameters p and (R;)Z__ / (R,) will be discussed. The values 

of the dimensionless parameters p and ( R ; ) ~ ~ _ _  / (R,) and the ratios U/RTPM for the PS 

samples are shown in Table 5.3. 

Table 5.3: The dimensionless parameters of p and (R;):__ / (R,) and the ratios o/RTEM 
for the PS samples. 

Sample 
PS - 67 

The value of ( R ~ ) ; Y ~ _  is influenced by the standard deviation of particle sizes. This 
112 is shown in Table 5.4 where values of / (R)  are shown calculated for particle size 

distributions with different relative widths a/ (R) .  

As seen in Table 5.4, the values of the dimensionless shape parameter of polydisperse sys- 

tems should be larger than the value 0.775, which is the theoretical value for monodisperse 

homogenous particle systems. Values for p are certainly less than expected. However the 

values for (R:)?__ / (R,) are generally consistent. For the samples PS - 67 and PS - 1 10, 

P 
0.72 f 0.01 

( ) /  
0.81 f 0.02 

~ I R T E M  

0.075 
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Table 5.4: The values of (R:);i: / (R )  with different distribution widths. 

112 very good linear ranges of as a function q2 can be obtained and values of ( R : ) ~ ~ _ _  

can be measured accurately. For the sample P S  - 180, the value of (R:)iyrnrn is affected 

by the fit range. The value changes from 66 nm to 72 nm as the different fit data points 

were chosen. It is thus difficult to determine the value of ( R : ) ~ ~ , _ .  ' I 2  This situation arises 

because a good linear range of as a function q2 cannot be obtained. Even if the data can 

be measured at  much smaller angles, there still exist other problems; at  small angles, the 

experimental data stringently depend on sample quality and instrument capability. These 

problems constraint the use of Zimm plot analysis to small particles. 

5.2 Poly (N-isopropylacrylarnide) (PN I P A  M) Microgel 

5.2.1 Temperature Dependence of the Sizes for the Four PNIPAM Mi- 

crogel Samples 

When the temperature is increased from 25OC to 40•‹C, the characteristics of PNIPAM mi- 

crogel particles change from being hydrophilic to hydrophobic. The volumes of PNIPAM 

particles collapse. The change of the size of the PNIPAM microgels with temperature can be 

observed using light scattering techniques. Figures 5.1-5.4 compare the temperature depen- 

dence of Rh and (R,) for P N I P A M  - 5, P N I P A M  - 2, P N I P A M  - 1 and P N I P A M  - 0, 

respectively. Since the uncertainties of the mean static and hydrodynamic radii are very 

small as shown in Appendix A and B, the values of the mean static radii and hydrody- 

namic radii only were shown. These figures show that the mean static radii of the four 

PNIPAM microgel samples is generally decreasing as the temperatures is increased. Near 

the transition temperature, the radii decrease sharply. 
av Even far from the transition, the large negative thermal expansion coefficient xv = 
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Temperature ('C) 

Figure 5.1: The hydrodynamic radii (diamonds) measured at a scattering angle of 30' and 
the static radii (circles) of PNIPAM - 5 at different temperatures. 
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Temperature (C) 

Figure 5.2: The hydrodynamic radii (diamonds) measured at a scattering angle of 30' and 
the static radii (circles) of PNIPAM - 2 at different temperatures. 
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Temperature ('C) 

Figure 5.3: The hydrodynamic radii (diamonds) measured at a scattering angle of 30" and 
the static radii (circles) of PNIPAM - 1 at different temperatures. 
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Temperature (C) 

Figure 5.4: The hydrodynamic radii (diamonds) measured at a scattering angle of 30' and 
the static radii (circles) of P N I P A M  - 0 at different temperatures. 
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is surprising. Some results for xv calculated from (R,) are listed in Table 5.5, 5.6 and 5.7 

for P N I P A M  - 5 ,  P N I P A M  - 2 ,  P N I P A M  - 1 and P N I P A M  - 0,  respectively. 

Table 5.5: The approximate values of the thermal expansion coefficient for P N I P A M  - 5. 

Temperature range (OC) ( xv = & (oC-') 

Temperuture range (OC) ( XV=&( OC-1 

( P N I P A M  - 2 1 P N I P A M  - 1 

25-27 

Table 5.6: The approximate values of the thermal expansion coefficient for P N I P A M  - 2 
and P N I P A M  - 1. 

-0.041 

Even at temperatures far away the transition, xv still is about -lop2 (oC-') below 

and above the phase transition. However the thermal linear expansion coefficients, a = 

(aL/aT)p /L, of polymers (vulcanized rubber) [35] are about (oC-l), where P and 

L represent the pressure and the length of samples, respectively. For small deformations of 

particles, there exists a relationship xv = 3 a .  From this relationship, our values show a 

large difference with results expected for polymers. In order to understand this difference, 

the structures of PNIPAM microgel particles need to be considered. PNIPAM microgel 

particles comprise two components: one is the polymer and the other is the water molecules. 

When temperature changes, the PNIPAM microgel particles can absorb or release the water 

molecules, so this system can be considered to be an open system. For an open system, the 
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Table 5.7: The approximate values of the thermal expansion coefficient for PNIPAM - 0. 

Temperature range ( O C )  I xv = && (OC-l) 

thermal expansion coefficient xv is defined as xv = 6 (g)P,Ni. Since water molecules can 

flow out or into the PNIPAM microgel particles as the temperature changes, these results 

of the thermal expansion coefficient may represent the change of water molecules inside the 

PNIPAM microgel particles. 

At the transition, the radius changes more quickly with temperature. In order to un- 

derstand this behavior of PNIPAM microgel particles, the peculiarities of water as a liquid 

must be considered. In general it is agreed that water is a highly hydrogen-bonded liquid 

[39]. When solutes and solute groupings are added to water, they disrupt the local structure 

of the water and new structure is formed in the region of the added solutes. Hydrophilic 

nonionic solutes form hydrogen bonds with the water molecules. The water-water contacts 

are replaced by polymer-water contacts. Regular structure can be formed and can com- 

pensate for the water-water bonds broken. Meanwhile the hydrophobic parts of the solutes 

interact with water via the hydrophobic effect: because of the existence of nonpolar regions 

of the solutes, the water molecules must reorient around them. 

A closer look at the structure of PNIPAM, as shown in Fig. 5.5, will help us to un- 

derstand the peculiar volume phase transition properties of PNIPAM in water [34]. The 

oxygen and nitrogen atoms have a net negative charge and the hydrogen interacting with 

the nitrogen brings some net positive charge due to the perturbation of the electrons. This 

region of the molecule can then form hydrogen bonds with the surrounding water molecules. 

Other parts of the PNIPAM are hydrophobic. The characteristics of PNIPAM in water are 

19-22 -0.031 
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Figure 5.5: The chemical structure of Poly(N-isopropylacrylamide). 

mainly determined by the relationship between the hydrophilic and hydrophobic effects. At 

low temperatures, hydrogen bonds forming between the water molecules and the PNIPAM 

molecules are more efficient than hydrogen bonds forming between water molecules only. 

This makes the PNIPAM to dissolve in water. As a result, PNIPAM microgel particles swell. 

As the temperature increases, the polymer-water contacts become weak and are replaced by 

water-water and polymer-polymer contacts [34]. The PNIPAM molecules collapse suddenly 

as the temperature is raised. This is called volume phase transition (VPT). Above the 

VPT, the interaction between PNIPAM and water becomes hydrophobic. 

5.2.2 Relation between Rh and (R,) 

The sizes obtained from DLS and SLS for both the PS and PNIPAM microgel samples show 

that the apparent hydrodynamic radius Rh is larger than the static radius (R,). From the 

definition, the radii Rh and (R,) represent the sizes of particles obtained from the different 

physical characteristics of the samples. The apparent hydrodynamic radius Rh is mainly 

determined by the hydrodynamic features of particles. 

The discrepancy between Rh and R, could be due to use of the Stokes-Einstein relation 

to calculate Rh from the diffusion coefficient. The Stokes-Einstein relation is obtained when 
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the movements of particles are diffusion processes for no slip boundary conditions. As the 

particle translates through a fluid of viscosity ~0 with velocity v, the drag force Fdrag on a 

particle is written as 

Fdrag = ~ ~ ' v o R ~ v .  (5.1) 

For real samples, there may exist some deviations from the conditions under which the 

Stokes-Einstein relation can be used. For example, there may be polymer chains dangling 

from the surface and the surfaces may be coarse. These deviations would make the drag 

force on a particle appear to be larger. If the hydrodynamic radius is still obtained using 

the Stokes-Einstein relation, the values obtained will be too large. This is why p is still 

less than 0.775 for the PS and PNIPAM samples, although the values of ( R : ) : ~ ~  become 

bigger. 

5.2.3 Crosslinker Dependence 

In all cases, the sizes of the PNIPAM microgel particles decrease with temperature. In 

order to show the effects of adding crosslinker on the volume phase transition, the size 

of this decrease observed for different crosslinker contents as obtained from SLS and DLS 

measurements are shown in Figs. 5.6 and 5.7, respectively. The radius is compared to that 

measured at a temperature of 40•‹C. A few authors [[17],[18]] have shown similar results for 

Rh; in their papers, the phase transition was shown with the PNIPAM microgel samples 

where the crosslinker content varies over a much wider range. 

There are two possible reasons why the phase transition becomes less sharp and weaker 

as crosslinker is incorporated. One is that the added crosslinker increases the number of 

physical crosslinking points. The more crosslinking points, the larger the elasticity of the 

gel particles. The PNIPAM microgel particles thus cannot be deformed as easily. The 

other is that more crosslinking points result in a stronger hydrophobic interaction due to 

the hydrophobic features of the crosslinker [36]. The total experimental result of adding 

crosslinker is that the phase transition of PNIPAM becomes less sharp and the change in 

radius becomes smaller as the cross-linker content increases. The theoretical explanation 

can be studied further. 
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Figure 5.6: The ratios of the static radii at temperature T (R:) to that measured at 40•‹C 
(R:O•‹C) for P N I P A M  - 0, P N I P A M  - 1, P N I P A M  - 2 and P N I P A M  - 5. 
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Figure 5.7: The ratios of the hydrodynamic radii at temperature T (R:) to that measured 
at  40•‹C (RPoC) for PNIPAM - 0, PNIPAM - 1 ,  PNIPAM - 2 and PNIPAM - 5 at  
the scattering angle 30'. 
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5.2.4 Ratio of the Apparent Hydrodynamic Radius over the Mean Static 

Radius near VPT 

The static radius reflects the mass distribution and the apparent hydrodynamic radius re- 

flects both the mass distribution and the hydrodynamic features of the PNIPAM microgel 

particles. As the temperature changes, it is possible that the mass distribution and hydro- 

dynamic features of the PNIPAM microgel particles are influenced differently. In order to 

show this feature, the temperature dependence of the ratio RE/ (R:) is shown in Fig. 5.8 

for the four PNIPAM microgels samples. 

As shown in Fig 5.8, the ratio of the apparent hydrodynamic radius over the mean static 

radius is larger than 1 in the temperature range from 24OC to 40•‹C. Below and above 

the phase transition, the values of the ratio change from 1.1 to 1.3. When the temperature 

nears the phase transition temperature, the values of the ratios become larger and the peaks 

emerge. The lower the crosslinker content, the higher the peak in the ratio R:/ (R:). The 

variation in the temperature dependence of the ratios R:/ (R:) for the four PNIPAM 

microgel samples shows that the volume phase transition has different effects on the mass 

distribution and on the hydrodynamic characteristics of the particles. In order to obtain 

more information from the relationship between Rh and R,, Rh needs to be further studied. 

5.2.5 Shape Parameter 

The fact that the static radius (R,) is not equal to the hydrodynamic radius Rh under the 

same conditions raises an interesting question: Can the dimensionless shape parameter p tell 

us anything about the particle shape? From Eq. 2.30, the definition of the root mean square 

radius of gyration ( R ~ ) ~ ~ ~ ~  is a function of the mean static radius (R,) and distribution 

for spherical particles. For the monodisperse model, Rg is only related to R, and has a 

value of Rg/R, = 0.775 for homogenous spherical particles. At present, the definition of the 

dimensionless shape parameter is (R:)gmm / (Rh).  All the theoretical values of p have been 

derived for the different shape particles with a monodisperse distribution. For homogenous 

spherical particles, the value of p is, by definition, 0.775. For the four PNIPAM microgel 

samples, the values of parameters (R:)Zmm / (R,) and p calculated using the values of the 

hydrodynamic radius at a scattering angle of 30•‹C are listed in Table 5.8. The expected 

values of (R:)::; / (R,) obtained using the mean static radius and standard deviation and 

Eq. 2.30 also are shown in Table 5.8. 
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Temperature (C) 

Figure 5.8: The ratios between the hydrodynamic and static radii R:/ (R:) for P N I P A M -  
0 ,  P N I P A M  - 1,  P N I P A M  - 2 and P N I P A M  - 5 measured under the same conditions. 
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Sample (Temperature) 
P N I P A M  - 5 (40•‹C) 

Table 5.8: The values of the dimensionless parameters of p, (R:)::_/ (R,) and 

(R:)::; 1 (Rs). 

P N I P A M  - 2 ( 4 0 0 ~ )  ' 0.69 f 0.03 ' 0.84 i- 0.04 0.82 f 0.01 

2 112 From Table 5.8, the calculated value ( R ~ ) ~ ~ ~  / (R,) is consistent with the experimental 
112 value ( R : ) ~ ~ ~  / (R,) and the value of p has large differences with the experimental value 

(R:)Zmm / (R,). Meanwhile from Eq. 2.28 or 2.30, the values of (R:);ymm / (R,) are larger 
2 112 than 0.775. For a wide distribution, (Rg)zimm/ (R,) can even be larger than 1. Just like the 

sample P N I P A M  -0  at a temperature of 34OC, the expected value of (R:)::; / (R,) is 1.04 

and the value of p is only 0.538. Compared with the experimental value 1.13, p cannot give 

a good description for the shape of particles. The dimensionless parameter (R:)lI2 / (R,) 

not only gives a good description of the particle shape, but also reflects the effects of the 

distribution of particle sizes. 

P 
0.73 f 0.02 

P N I P A M  - 1 (40•‹C) 
P N I P A M  - 0 (40•‹C) 
P N I P A M  - 0 (34OC) 

(Qzimm/ 2 1/2 (RJ  
0.83 h 0.03 

0.69 h 0.03 
0.66 f 0.01 
0.54 & 0.02 

(Rg)co,l 2 112 
0.813 h 0.003 

0.87 f 0.04 
0.80 f 0.02 
1.13 f 0.03 

0.856 f 0.009 
0.81 f 0.01 
1.04 f 0.03 
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Conclusion 

The relationship between the scattered intensity per unit volume and the scattering vector 

described in Chapter 2 (Eq. 2.28) provides one method to measure accurately the particle 

size distribution. With it, narrow particle size distributions that cannot be measured using 

moments analysis have been obtained. 

Comparing results of SLS and DLS shows that more accurate information about the 

size distribution can be obtained from SLS data. The results obtained from SLS avoid the 

problems encountered in the analyzing DLS data that the apparent hydrodynamic radius 

depends on scattering angle. Meanwhile, as shown in Table 5.1, the SLS results agree with 

values as measured using TEM. Another important aspect is that the distribution obtained 

from the SLS data is the number size distribution G (R,). Compared to the distribution 

G (Rh), which is a composite distribution, G (Rs) gives direct information about the particle 

size distribution. Since the more accurate size distribution obtained from SLS data can affect 

the analysis of all physical quantities that are related to the particle size distribution, the 

influences can be further explored. 

Based on our results, the size measured using the SLS technique is not equal to that 

measured using DLS technique even for polystyrene latex sphere samples. For PS samples, 

this difference is about 12%. For the PNIPAM microgel samples, the difference is much 

larger and ranges from about 20% both below and above the transition to about 110% at 

the transition. For PNIPAM the largest deviations were observed for the lowest crosslinker 

concentrations. The results show that the structure of PNIPAM microgel particles are 

related to the amount of the crosslinker. Since many features of structure can influence the 

values of the apparent hydrodynamic radius of PNIPAM microgel particles, for example: 
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the dangling chains, the coarse surfaces and the hydrogen bonds, etc, how the contents of 

crosslinker affects the structures of PNIPAM microgel particles can be further studied. 

The expected value of (R:)::; calculated using the commercial mean radius and standard 

deviation is the same as the measured result using the Zimm plot analysis. This consistency 

also shows that the measured values obtained using the SLS technique are more accurate. In 

general, the value of ( R ~ ) ~ ~ ~ ~  is a function of the particle size distribution of the particles 
112 and the ratio of ( R ~ ) , ~ ~ ~  / (R,) is larger than 0.775. The dimensionless shape parameter p 

cannot provide a good description for the shapes of particles in the presence of polydispersity 

and when the results for Rh are inaccurate. 



Appendix A 

Details of results obtained using 

SLS 

Temperature(OC) I (R,) (nm) I (T (nm) 1 / ( R )  1 X 2  

25 1 231.9 f 0.7 1 20.7 f 1.0 1 0.089 1 1.49 

Table A . l :  The fit results for PNIPAM - 5 at different temperatures. 
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Table A.2: The fit results for P N I P A M  - 2 at different temperatures. 

Temperature('C) 
25 

Temperature(OC) I (Rs)  (nm) I a (nm) I a/ (Rs)  I X 2  

25 1 277.7 f 0.5 1 23.1 f 0.9 1 0.083 1 1.84 

Table A.3: The fit results for P N I P A M  - 1 at different temperatures. 

(R,) (nm) 
246.5 f 0.2 

Temperature(OC) I (R,) (nm) I a (nm) 1 a ( R )  1 x2 
19 1 402.1 f 0.3 1 36.7 f 0.6 1 0.091 1 1.06 

Table A.4: The fit results for P N I P A M  - 0 at different temperatures. 

a (nm) I a / (R,) 
22.6 f 0.4 1 0.092 

X2 
4.70 



Appendix B 

Details of results obtained using 

DLS 



APPENDIX B. DETAILS OF RESULTS OBTAINED USING DLS 
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Figure B.l: Hydrodynamic radii as a function of scattering angle 6' for polystyrene latex 
spheres. Circles, Triangles and Diamonds show the results for spheres with nominal mean 
radii 33.5 nm, 55 nm and 90 nm, respectively. 
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Figure B.2: Hydrodynamic radii as a function of scattering angle 0 for PNIPAM - 5 at  
25OC (o), 27OC (A), 29.C (o), 31•‹C (a) and 33OC (+). 
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Figure B.3: Hydrodynamic radii as a function of scattering angle 0 for PNIPAM - 5 at 
35OC (o), 37OC (A) and 40•‹C (0). 
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Figure B.4: Hydrodynamic radii as a function of scattering angle B for PNIPAM - 2 at 
25•‹C (o),  27OC (A), 29OC (01,  31•‹C (a) and 33OC (*). 
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Figure B.5: Hydrodynamic radii as a function of scattering angle 0 for PNIPAM - 2 at 
36•‹C (0) and 40•‹C (0). 
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Figure B.6: Hydrodynamic radii as a function of scattering angle B for PNIPAM - 1 at 
25•‹C (o), 27OC (A), 29.C (o), 31•‹C (a) and 33•‹C (*). 
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Figure B.7: Hydrodynamic radii as a function of scattering angle 19 for PNIPAM - 2 a t  
36OC (0) and 40•‹C (0). 

155 

150 

- 
145 s 

eC 

140 

I I I I 

\.I 

- - 

\, 

- - 

- - 

\ 

i 
* / \, 

3 < :> 
< 

\, 

135 I I I I 

20 40 60 80 100 120 

e (degree) 



APPENDIX B. DETAILS OF RESULTS OBTAINED USING DLS 
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Figure B.8: Hydrodynamic radii as a function of scattering angle 19 for PNIPAM - 0 at 
25OC (o), 27OC (A), 29.C (o), 31•‹C (a) and 33OC (*). 
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Figure B.9: Hydrodynamic radii as a function of scattering angle 13 for PNIPAM - 0 at  
34OC (o), 36OC (0) and 40•‹C (*). 
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