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ABSTRACT 

The one dimensional propagation of in tense electromagnetic waves i n  a 

nonlinear medium with an i n t ens i t y  dependent r e f r ac t i ve  index 

n = n + n2 ( E )  + n4 1 ~ )  is examined theore t ica l ly .  The nonlinear 
0 

cubic-quintic ~ c h r o d i n ~ e r  equation (NLCQSE) governing the  dynamics of t he  

electromagnetic f i e l d  i n  the  medium is derived. Three conservation laws 

and the  Galilean invariance of the  equation a re  obtained. The Lagrangian 

formulation for  the  f i e l d  equation is developed. The s o l i t a r y  wave 

solut ions  f o r  the  NLCQSE are  obtained f o r  a l l  possible  cases corresponding 

t o  d i f f e r en t  signs of n and n4. Two ana ly t ica l  techniques i .e .  the  2 

~ a c k l u n d  transformation and the  inverse s ca t t e r ing  transform method a re  

used t o  t e s t  the  s t a b i l i t y  of the  s o l i t a r y  wave solut ions  i . e .  t o  f i nd  

multi-soli ton solut ions .  These two approaches seem t o  imply t h a t  the  

s o l i t a r y  waves a re  not t r u e  so l i tons .  However, numerical simulation shows 

t h a t  quasi-soli ton behaviour is found t o  p e r s i s t  over wide regions of 

parameter space. 
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CBAPTER 1 

Introduction 

Although a great deal of nature can be accurately described by linear 

fields, nevertheless, nature in its most general and complete sense, is 

nonlinear. We are familiar with the small amplitude approximation that we 

make in order to obtain linear field equations for vibratory motion [ I ] .  

Similarly in electrodynamics, for a weak enough field propagating through a 

dielectric medium, the response of the medium is linear and the electric 

displacement vector depends linearly on the applied electric field E, 

viz, 

where E (O) is the linear dielectric constant of the medium. However, 

with the invention of lasers, it is now possible to generate very intense 

9 bight pulses with peak electric fields in excess of 10 v/m [ 2 ] .  Materials 

that show a linear response to weak fields, eventually show nonlinear 

behaviour at high enough field strength as the electronic or ionic 

oscillators are driven to large amplitudes. In the nonlinear regime the 

linear relation (1.1) is modified, eg., to 

+ IZ ( 2, (gl + higher order nonlinear terms l - E 

where E ( 2 )  is the second order dielectric constant and so on. The 

nonlinearity can be equivalently expressed in terms of the refractive index 

of the medium. As early as the mid nineteen sixties, it was well known [31 

that when an efectromagnetic wave propagates through a nonlinear dispersive 



medim, a solitary wave can be obtained as a result of the interaction of 

nonlinear and dispersive effects. 

The nonlinearity of the index of refraction [ 4 ]  

could be used to compensate the pulse broadening effect. When the pulse 

spreading due to dispersion and the pulse squeezing due to the nonlinearity 

of the refractive index are balanced, the light pulse tends to form a 

localized pulse which holds its shape and travels at constant velocity. 

Such a pulse is referred to as "a solitary waven. Starting from (1.31, one 

can derive the following dynamical equation for the field, viz, 

which is called the cubic nonlinear ~chrgdinger equation (NLSE). Here 

subscripts indicate partial differentiation w.r.t. the indicated variable. 

q(E,z) corresponds to the electric field strength, 5 is proportional to 

X the distance x alonq the propaqation direction and z a t - - 
v 

where 
g 

t is time and v is group velocity. The conditions under which a 
9 

solitary wave can be obtained are shown in the following diagram: 



( Linear dispersionless 1 
Solitary wave q=q(t- -) , , tg, Linear with dispersion 

(No solitary wave) I 

In equation (1.41, the second term describes the effect of dispersion and 

the third term the effect of -nonlinearity. When the second and third terms 

are absent, any localized solution of the equation travels without changing 

shape and therefore is a (trivial example of a) solitary wave. The effect 

of introducing dispersion without nonlinearity is to eliminate the 

possibility of solitary waves because different Fourier components will 

propagate at different velocities causing a spreading effect. Introducing 

nonlinearity without dispersion again rules out the possibility for 

solitary waves because the pulse energy is continually injected into higher 

frequency modes which by the uncertainty principle causes a squeezing 

effect. But with both dispersion and nonlinearity present, new (non 

i q g + 2 q  I l 2  q = o  

Nonlinear dispersionless 
(No solitary wave) 

trivial) solitary waves can again be obtained that can be qualitatively 

understood as the balance between nonlinearity and dispersion. If on 

collision, the solitary waves pass through each other (interacting 

nonlinearly as they do so) and come out with the same shapes and velocities 

- + - q  1 + 2 1 q l  2 q r O  
i'~ 2 rr 

Nonlinear with dispersion 
(Solitary wave exists) 



a s  before the  co l l i s i on ,  they are  sa id  t o  be so l i t ons  ie .  so l i tons  a re  

s t ab l e  s o l i t a r y  waves. In 1970, Zakharov and Shabat [51 were the  f i r s t  t o  

solve equation (1.4) fo r  multi-soliton so lu t ions  using the  inverse 

s ca t t e r ing  transform method (ISTM) and hence demonstrating t h a t  t he  

s o l i t a r y  wave solut ions  of (1.4) are  so l i tons .  The ISTM was f i r s t  

discovered by Krushkal e t  a1  [61 i n  1967 and w a s  used t o  f i nd  the  s o l i t o n  

solut ions  of the  h i s t o r i c a l l y  famous KdV equation describing shallow water 

waves i n  a rectangular canal. 

In 1973, Hasegawa and Tappert [71 pointed out t h a t  the  nonl inear i ty  

i n  the  r e f r ac t i ve  index (1.3) could make it possible  t o  transmit  picpsecond 

duration l i g h t  pulses  without d i s to r t i on  i n  an op t i ca l  f i be r  having 

appropriate dispersion.  The experimental observations of such so l i t ons  

were reported [8,9,101 from the Bell  Laboratories i n  the  ear ly  e igh t ies .  

These op t i ca l  so l i tons  are  now considered t o  have a po t en t i a l  appl icat ion 

i n  t he  development of a high-bit-rate transmission system [ 1 1 I . For these 

so l i tons ,  the  (smal l )  f i be r  loss  is the  only f ac to r  t h a t  contributes t o  t h e  

d i s to r t i on  of the  s t ab l e  pulse by broadening the  pulse width and decreasing 

the  amplitude. In t h i s  case, equation ( 1.4) is modified t o  include damping 

and one must study the  perturbed NLS equation [12l. In  a s e r i e s  of papers 

[13,14,15,161 Hasegawa and Kodama showed t h a t  an op t i ca l  so l i t on  deformed 

by the  f i b e r  l o s s  can be reshaped by appropriate pumping t o  a narrower and 

higher pulse during the  course of transmission through the  f i be r .  

One may wonder what would happen i f  one could f ind a mater ia l  with 

r e f r ac t i ve  index whose four th  order nonl inear i ty  a l so  becomes important f o r  

s u f f i c i e n t l y  in tense electromagnetic f i e l d s  (below the  d i e l e c t r i c  breakdown 



l i m i t ) .  For a higher order pos i t ive  nonl inear i ty  the  narrowing e f f e c t  is 

expected t o  be even stronger.  But whether the  balance between the  t o t a l  

nonl inear i ty  and dispersion actual ly  occurs and is s t ab l e  or not, is not 

obvious. I f  it does, we s h a l l  get narrower and higher so l i tons  and hence 

it w i l l  make the  communication system more e f f ec t i ve  by increasing the  

b i t - r a t e  of transmission. Very l i t t l e  has been done i n  t h i s  d i rec t ion  and 

the  de ta i led  calculat ions  have not been yet  ca r r ied  out. In t h i s  t h e s i s  we 

s h a l l  assume the  nonlinear r e f r ac t i ve  index t o  be of the  form 

Pushkarov e t  a l .  [261 have wri t ten down s o l i t a r y  wave so lu t ions  

corresponding t o  (1.5) (without giving any der ivat ion)  fo r  the  s i t ua t i on  

when n2 is pos i t i ve  and n4 is pos i t ive  or negative. They c a l l  t h e i r  

s o l i t a r y  wave solut ions  so l i tons  without ever checking t h e i r  s t a b i l i t y .  

In chapter 2, we define our model e x p l i c i t l y  and by Taylor expanding 

the  wave number k around the  c a r r i e r  frequency w o  (= 2nc/hr where h 

is the  vacuum wave length)  and i n  powers o f - t h e  e l e c t r i c  f i e l d  we derive a 

nonlinear evolution equation ( t he  nonlinear cubic-quintic Schrsdinger 

equation) t h a t  governs the  dynamics of t he  electromagnetic pulse i n  t h e  

medium characterized by (1.5). We give an a l t e rna t ive  der ivat ion of the  

same equation s t a r t i n g  with Maxwell's equations i n  Appendix A. In  chapter 

3,  we obtain th ree  conservation laws by inspection fo r  the  nonlinear 

cubic-quintic SchrGdinger equation (NLCQSE) as  well as  showing t h a t  it is  

Gali lean invar iant .  These a re  important p roper t ies  of the  equation and two 



of the conservation laws are used to check the accuracy of the numerical 

scheme employed in chapter 7 for checkinq the stability of the solitary 

wave solutions. It has been noticed [I71 that if one knows the Lagrangian 

density corresponding to the field equation, one can possibly derive the 

infinite number of conservation laws making use of the Backlund 

transformation for the equation. Thus in chapter 3, we also develop the 

Lagrangian formalism and show that the three conservation laws can also be 

obtained from the Lagrangian density. 

In chapter 4, we solve the NLCQSE analytically and obtain the 

solitary wave solutions for all possible signs of n2 . and n4. We show 

that the solutions reported by Pushkarov et al. form a subset of our 

solutions. A special case is relegated to Appendix R. In subsequent 

chapters we attempt to determine whether the solitary wave solutions are 

solitons or not. Presently there are two different but interconnected 

analytic methods to obtain multi-soliton solutions if they exist. These 

methods are the Backlund transformation and the ISTM [ l a ,  191. If we derive 

the ~acklund transformation we can obtain an eiqenvalue problem to solve 

the equation by the ISTM. If, on the other hand, we are able to establish 

the ISTM, we can obtain the Backlund transformation from the eigenvalue 

problem of the ISTML. Thus, in chapter 5 ,  we make an attempt to derive the 

Backlund transformation for the evolution equation by a method due to 

Clairin. In chapter 6, we explore the possibility that the NWQSE belongs 

to the class of equations that can be solved by the ISTM using the 

Ablowitz-Kaup-Newell-Segur (AKNS) eigenvalue problem. The results of these 

two approaches lead us to believe that the solitary wave solutions of the 

NLCQSE are probably not solitons. Since we cannot absolutely rule out the 



possibility of solitons, we finally examine the stability of the solitary 

waves numerically in chapter 7. The general conclusion is that the 

solitary wave solutions are not solitons, but "quasi-soliton" and other 

interestinq behaviour is observed. Experimental difficulties aside, some 

aspects of our theoretical results may possibly be experimentally 

testable. We discuss these possibilities in chapter 8 and present 

conclusions of this thesis in chapter 9. 



CHAPTER 2 

Formulation of the problem 

In this chapter, we derive the nonlinear (cubic-quintic) ~chrgdin~er 

equation (NLCQSE) that describes the propagation of an optical pulse in a 

nonlinear dispersive medium. In section 2.1, we introduce the refractive 

index which characterizes our model. Beginning with this model in section 

2.2, we derive the nonlinear differential equation governing the dynamics 

of the electric field in the medium. Finally we obtain the NLCQSE by 

moving into the group velocity co-ordinate system. 

2.1 The Model 

The physical process under investigation is the (one dimensional) 

~ropagation.of intense electromagnetic waves in a nonlinear dispersive 

isotropic medium characterized by a refractive index given by 

where E is the electric field intensity, n is the linear index of 
0 

refraction, n2 and n4 are higher order coefficients of the refractive 

index and x is the imaginary part of the linear refractive index that 

accounts for any damping. In (2.1) we have neglected any variation of 

n2 and n4 with w assuming that we are far away from any resonance as 

far as these coefficients are concerned. At this level our model is a 

. phenomenological one and we will not go into possible microscopic 

contributions to n2 and n4. 

As mentioned in the introduction,.the effect of the second order 

nonlinearity has already been studied in detail, the nonlinear ~chrgdinger 



equation r e su l t i ng  when the  contr ibut ion is neglected. When the  

e l e c t r i c  f i e l d  is su f f i c i en t ly  intense (assuming t h a t  i t ' s  below the  

4 

"2 Z d i e l e c t r i c  breakdown l i m i t )  such t h a t  E-(,) t he  fourth order non- 
4 

l i n e a r i t y  i n  equation (2 .1 )  becomes comparable t o  the  second order 

nonl inear i ty  and plays an important role .  The nonlinear dependence of 

r e f r ac t i ve  index on the  e l e c t r i c  f i e l d  i n t ens i t y  gives r i s e  t o  a 

pulse  compression or  pulse broadening e f f e c t  depending upon the  s igns  of 

n2 and n4. The dependence of the r e f r ac t i ve  index on the  frequency ( w )  

causes dispersion.  The nonlinear combination of bo th .e f fec t s  determines 

t h e  shape of the  op t i ca l  pulse as  it propagates. 

, Under the  assumption t h a t  t he  diameter of the  medium guide (e.g. an 

op t i ca l  f i b e r )  is much la rger  than the  wave length of the radiat ion,  t h e  

e l e c t r i c  f i e l d  can be wri t ten i n  terms of a (slowly varying) complex 

amplitude 4 times a plane wave, viz ;  

where Re means r e a l  p a r t  and ko and wo a re  the  cen t r a l  wave number 

and angular frequency respectively.  

2.2 Derivation of the B a s i c  Nonlinear Dynamical Equat ion  

The dynamical equation t h a t  describes the  development of the  

amplitude function @ ( x , t )  i n  the  non l i n e a r  medium may be derived a s  

follows. (An a l t e rna t e  der ivat ion s t a r t i n g  d i r e c t l y  from Maxwell's 

equations is given i n  Appendix A 1 . 



Expanding k = k (o, ( E 1 2, 1 E I  ') around the carrier frequency 

h e  
w0(= T )  and zero electric field, we obtain 

We have consistently kept all terms up to-fourth order in the expansion. 

8 2k + - 
awa IEI - 

From (2.1 ) we find that 

0 0 0 

2 +'  ak 
(w-wol(~( - 4 

ale1 
4 1 a3k 

IEI + - aw2a1~l - 
2 2 (el (w-wo) 



Writing El = kt, - a2k 
aw 0 aw 

2 

re-expressed as 

- 

We now write the electric field E(x,t) in its Fourier inteqral form as 

= k" etc. and using (2.41, (2.3) may be 

0 

so that equation (2.2) can be written for $(x,t) as 

From (2.7) we obtain 



Adding all t h e  equations of (2 .8 )  and us ing  (2 .5 )  w e  o b t a i n  



where 27t . " = X T  

Equation (2.9) governs the  dynamics of the  e l e c t r i c  f i e l d  envelope 

4 ( x , t )  i n  the  medium and it contains the  terms accounting fo r  e f f e c t s  of 

group dispersion,  medium losses  and pulse compression e tc .  In equation 

(2.91, i f  we switch off the  loss  term, non l i n e a r i t y  and group dispers ion 

ice. = kll = kl 1 8  = kll 1 1  = n = n4 = 0, the  equation reduces t o  
2 

where v = = - is the  group veloci ty .  Prom equation (2.10) i t ' s  
g ak - kt 

c l e a r  t h a t  

This suggests t h a t  t he  dynamical evolution of may be best  seen by 

moving i n t o  the  group veloci ty  co-ordinates (z,z) where x and 

a t -  2). We also,  f o r  convenience, normalize the  distance x, time t 
v 

g 

and the  e l e c t r i c  f i e l d  amplitude 4 as  follows: 



where in defining it's assumed that kn is negative [201. To give the 

reader a feeling for these normalized quantities we take the nominal. 

example of a glass fiber discussed by Hasegawa and Kodama [213. 

I 

For h = 1.5l.i.m 

and the group dispersion 

Using these values we calculate 



For these values, we find that in (2.11) 

= 1 corresponds to x = 1.5km 

6 
q = 1 corresponds to 0 = 1.62 x 10 v/m 

7 = 1 corresponds to t - - = 5.68psec. 
V 
4 

Prom (2.11), we can write the transformation of the spatial and temporal 

operators as follows 

Using (2.11) and (2.12), (2.9) transforms to 

where 



We now wish to show that the terms on the right hand side of (2.13) are 

very small and may he neqlected. Let us estimate the coefficients pl, B2, 

p 3  and I' in (2.13). 

We have already calculated 

-hkn = 3.23 x 1 0 ~ ~ ~ s ~  for h = 1.5pm so that 

Now 



Similarly we estimate 

Usinq these values we obtain from (2.14) 

i .e. these coefficients are very small. 

For, say, a quartz fiber with loss rate 0.2dB/km 1221 
I 

so that the damping coefficient is also small. Now making the crude 

approximation that - - - , etc., and assuming that q,r and C - 1, the a~ 7; 

L.H.S. of (2.13) is of order unity and the R.H.S. negligible. Thus our 

dynamical equation finally becomes 

which we call the NLCQSE. 

For 6 = 0, ( 2.1 5) reduces to the well-known NLSE which has soliton 

solutions for n2 > 0. It should be noted that if n2 < 0 the cubic non 

linear term in (2.15) would have a negative coefficient and the sign of 6 

depends upon the sign of n4. 



CHAPTER 3 

Galilean Invariance and Conservation Laws for the NICQSE 

I n  t h i s  chapter, we sha l l  invest igate  some of the important 

proper t ies  of the  NLCQSE. In section 3.1, we derive by inspection the  

f i r s t  three conservation laws for  t h i s  equation. To obtain addi t ional  

conservation laws or t o  es tab l i sh  t h a t  there  a re  an i n f i n i t e  number of 

them, we c lear ly  cannot proceed by inspection but must follow a more 

general approach e.g. a Lagrangian formulation. It is generally believed 

t h a t  the  existence of an i n f i n i t e  number of conservation laws, a ~ a c k l u n d  

transformation and an ISTM are  intimately connected. The existence of one 

implies the existence of others. I f  w e  coqld develop the Lagrangian 

formulation fo r  our problem, it would be possible  t o  f ind  an i n f i n i t e  

number of conserved dens i t ies  and hence an i n f i n i t e  number of cqnservation 

laws provided the  ~ a c k l u n d  transformation fo r  the  equation is known. So i n  

sect ion 3.2, we develop the Lagrangian formalism for  the problem. In 

section 3.3, we obtain the same three conservation laws from the Lagrangian 

density. Finally,  the invariance of the  NLCQSE under a Galilean 

transformation is demonstrated i n  sect ion 3.4. 

3.1 Derivation of the Conservation Laws 

- Scot t  e t  a l .  i n  t h e i r  w e l l  known paper [23] point  out the  importance 

of dis t inguishing between those nonlinear wave equations t h a t  d i s s ipa t e  

energy and those t h a t  do not. The l a t t e r  ones are  often referred t o  i n  the  

engineering l i t e r a t u r e  as "conservative". Now as we have derived the  

NLCQSE as an approximate description of the  system, it is not a p r i o r i  

obvious t h a t  the  energy is conserved. So, it is important t o  f ind  the  

conservation laws, i f  any, including the  energy conservation. Zakharov and 



Shaba t  [ 2 4 ]  have found, by t h e  i n v e r s e  s c a t t e r i n g  t e chn ique ,  an i n f i n i t e  

set of c o n s e r v a t i o n  laws f o r  t h e  n o n l i n e a r  c u b i c  ~ c h r o d i n ~ e r  equa t ion .  

However, t h i s  d o e s n ' t  imply t h a t  t h e  ?JLCQSE a l s o  ha s  an i n f i n i t e  number (or 

any) of conservation laws. By inspection, we have found three conservation 

l aws  f o r  t h e  e q u a t i o n  

1  
iqg  + 7 q,, 

The First  Conservation Law 

From (3.1) w e  write 

- 1 
qg - 2 is,, 

and 

L e t ' s  d e f i n e  t h e  i n t e q r a f  

so t h a t  

Using (3 .2) ,  (3 -4)  becomes 



Now by the method of integration by parts 

Thus 

where we have used the condition 

Making use of (3.4b) , (3.4a) becomes 

This is what we call the first conservation law, I, being the conserved 

quantity. 

The Second Conservation Law 

From (3.2) , we obtain 



Now define the quantity 

Making use of (3.2) and (3.6) , following the same procedure that we used to 

derive the first conservation law, we obtain 

This is the second conservation law for the equation (3.1 ) . 

The Third Conservation Law 

Let's now define the integral 

Following the same procedure we obtain 

which is the third conservation Paw. 



(3.51, (3.91 and (3.11) can be wri t ten i n  t h e i r  e x p l i c i t  form as 

These conservation laws have s ign i f ican t  physical  meaning i .e.  they 

represent the conservation of number, conservation of momentum and the  

conservation of energy respectively according t o  the  terminology used by 

Zakharov e t  a l .  i n  the  case of the  NLSE [51. W e  have obtained the th ree  

basic  conservation laws for  the  NLCQSE, but the question whether the  

equation has i n f i n i t e  number of conservation laws is still  open. We w i l l  

address t h i s  issue i n  the  coming chapters. 

3.2 The Lagrangian Formulation of the W S E  

The Lagrangian formalism is another way t o  explore the  conservative 

nature of a system. The Lagrangian density is a useful concept. Tf t he  

Lagrangian density,  no matter how we f ind  it, has the form of t h a t  for  a 

conservative system, then the corresponding wave system may be considered 

as  conservative i n  the  conventional sense of the term. In the NLCQSE, q 

is  a complex f i e l d .  So the f i e l d  is  described by two independent f i e l d  

var iables  q and q*. The Lagrangian density of a one dimensional complex 

f i e l d  can be taken, i n  general, of the  form: 



We take the t o t a l  der ivat ive of L with respect  t o  x {where xl = 5 ,  
P 

x2 = T). 

- dqi where q1 = 4, q2 = GI* r - -  
'i,p, - dx e tc .  and the sum over repeated 

P 

indices is implied. The Euler-Lagrange equations corresponding t o  a 

Lagrangian of the  form (3.13) are 

Making use of (3.141, (3.13a) becomes 

Combining t o t a l  der ivat ives  on both s ides ,  t h i s  can be writ ten as 

If L does not depend expl ic i ty  on x , - = 0 and (3.15) becomes 
P axP 



where 

T i s  in general a four-tensor of the second rank for  a th ree  
P V  

dimensional f i e l d .  But we are dealing, however, with only one dimensional 

f i e l d .  So the  indices  p, v would run over and T only. Consider t h e  

Lagr angian density 

Using the  Lagrangian density (3.18),  the  Lagrange equations (3.14) 

yie ld  the  f i e l d  equations 

1 - iq* + - q *  + 2 q  q* + 6  q q* = 0 5 2 TT I l 2  I l 4  

which are  indeed the  NLCQS equations. 

Hence the  Lagrangian density given by (3.18) qua l i f i e s  t o  be t h e  

Lagrangian density for  our problem. 



3.3 Derivation of the Conservation Laws f r o m  the Lagrangian Formalism 

We can now obtain t he  three  conservation laws systematically from the  

Langrangian formalism developed i n  sect ion 3.2. 

We can rewri te  (3.16) as  

and i n  our problem, x has jus t  one component and t h a t ' s  5 .  (3.21 ) 
j  

has the  s t ruc tu re  of an equation of cont inui ty ,  which says t h a t  the  time 

r a t e  of change of some density plus  the  divergence of some corresponding 

f l ux  or current density vanishes. The equation of cont inui ty  

implies the  conservation of i n t eg ra l  quqnt i t i es  [251 

provided the  i n t eg ra l  e x i s t s  and the  integrand s a t i s f i e s  the  appropriate 

boundary conditions. 

Now fo r  our problem, ( 3.2 1 is a s e t  of two equations i. e. 



where according to Goldstein [251 T is the energy density and T 55 05 is 

the momentum density. Now from (3.17) 

and 

Similarly 

i 1 2 
Too = -I{qqt - q*$ ++=I,( + 1ql4 +$lq16 

i 
T 05 = - +*q, - q*qr 

L 

From (3.23) and (3.24) we obtain the second and third conservation laws 

It's worth noticinq that the conserved quantity in ( 3 . 1 2 ~ )  is the 

HamiPtonian corresponding to the Laqrangian of our problem with the 

Hamiltonian density defined as viz; 



where the canonical momentum n is given as; 

Now from (3.14), we write 

And from the second Lagrange's equation 

(3,25b) 

Subtracting (3.2%) from (3.25a) and making use of (3.18), we obtain 

i d 
+ce 

2 1 
=+a 

- - J ( q (  d~ = 7 J j {q:7;q - qT,g*)d7; = 0 (using 3.4~) 
2 dr .-a 4 4 

which is the first conservation Paw. 



The equation of continuity (3.22) exists for all solutions q. If 

the ~acklund transformation for the NLCQSE exists (i.e. if we can find it) 

then it muld be possible to find an infinite number of conserved densities 

and hence an infinite number of conservation laws following basically the 

same approach as applied by Scott for the Sine Gordon equation 1231. This 

is the basic motivation behind developing the Lagranqian formulation of the 

problem. We will return to this issue again in chapter 5. 

3.4 Invariance Under Galilean Transformation 

We demonstrate here that the NLCQSE (3.1) is invariant under the 

Galilean transformation 

The corresponding operators transform accordingly as 

Prom (3.26) and (3.27), we obtain 



Thus equation (3.1 ) transforms to 

Hence the NLCQSE is invariant undqLr the Galilean transformation. This 

invariance reveals that if q(E,z) is a solution of (3.1) then 

2 v i(v~ - - 5) 
q(c,~*<)e 2 is also a solution. If q(c,~) is a solitary wave 

solution then the other solution represents the solitary wave moving with 

relative velocity v. It's interesting to note that the Lagrangian density 

(3.18) is also invariant under the Galilean transformation. 



CHAPTER 4 

Solitary Wave Solutions for the HICQSE 

In  t h i s  chapter, we solve t he  NLCQSE t o  obtain the  s o l i t a r y  wave 

solutions.  Some of these solut ions  have been quoted i n  a  d i f f e r en t  form 

without der ivat ion by Pushkarov e t  a1 [261. In sect ion 4.1, we  make the  

d i s t i nc t i on  between the  terms s o l i t a r y  wave and so l i ton .  In sect ion 4.2 we 

derive a  general sol i tary 'wave solut ion fo r  the  NLCQSE. The s o l i t a r y  wave 

solut ions  fo r  a l l  possible  specia l  cases ( i e .  a l l  s igns  of n2 and n4) 

are deduced i n  sect ion 4.3 and 4.4. Final ly  i n  sect ion 4.5, we 

qua l i t a t i ve ly  discuss the ro l e  of nonl inear i t i es  and the  dispersion i n  

producing the  necessary balance fo r  s o l i t a r y  waves t o  ex i s t .  

4.1 Solitary Waves and Solitons 

A s o l i t a r y  wave A s  a  local ized shape t h a t  propagates a t  constant 

veloci ty  without change of form* If two or more s o l i t a r y  waves a f t e r  

suf fe r ing  a  co l l i s i on ,  come out with exact ly  the  same shape and veloci ty ,  

they are ca l led  so l i tons  and the  co l l i s i on  is ca l led  a  per fec t ly  e l a s t i c  

co l l i s ion .  The'ending "on" is Greek fo r  p a r t i c l e  and the  word so l i t on  

means the  pa r t i c l e - l i ke  behaviour of t he  s o l i t a r y  wave. Not a l l  s o l i t a r y  

waves exhib i t  so l i t on  behaviour. Some equations may have s o l i t a r y  wave 

solut ions  t h a t  have approximate so l i t on  behavior i n  the  sense t h a t  when two 

such s o l i t a r y  waves co l l ide ,  they re-emerge with a  s l i g h t  change i n  shape 

and/or velocity,  leaving a  small amount of energy behind i n  the  form of 

o s c i l l a t i o n s  ( " rad ia t ion") .  Such s o l i t a r y  waves are  sa id  t o  exhib i t  

sol i ton- l ike  or quasi-soli ton behavior and such co l l i s i ons  are  re fe r red  t o  

a s  being only p a r t i a l l y  e l a s t i c .  However, conventions d i f f e r  from one area 

of physics t o  another. For instance i n  p a r t i c l e  physics and s o l i d  s t a t e  



physics, t he  transparency of the waves t o  one another is not so important 

r e l a t i v e  t o  other pa r t i c l e - l i ke  proper t ies  such as  l o c a l i s a b i l i t y  and 

f i n i t e  energy. Consequently some models a re  used i n  which the  waves are  

not s t r i c t l y  so l i tons  i n  the  sense defined above but nevertheless they a r e  

s t i l l  ca l led  so l i t ons  by workers i n  those f i e l d s  [271. However w e  s h a l l  

s t i c k  t o  our s t r i c t  def in i t ion  s t a t ed  above. Accordingly, what we obtain  

i n  t h i s  chapter a re  referred t o  a s  s o l i t a r y  wave solut ions  and t h e i r  

so l i t on  nature w i l l  be invest igated i n  the  upcoming chapters. 

4.2 The General Solitary Wave Solution for the W Q S B  

The s o l i t a r y  wave solut ions  fo r  the  cubic nonlinear Schradinger 

equation which is a spec ia l  case of t he  NLCQSE, are  well known. We present  

here a method t o  solve the  NLCQSE f o r  s o l i t a r y  wave solutions.  

The NLCQS equation is 

We assume the  s o l i t a r y  wave solut ion t o  be of the  form 

where P and w a r e  r e a l  constants which can be determined from i n i t i a l  

conditions; and F is a r e a l  function. w can be in te rpre ted  as  the  

veloci ty  r e l a t i v e  t o  the  group velocity.  

From (4.2), we obtain 



Using (4.2) and (4.3), (4.1) leads to 

We can convert this partial differential equation into an ordinary 

differential equation by substituting T - WE = t (not to be confused with 

the lab time) so that 

With this substitution, equation (4.4) becomes; 

It" sow straightforward to integrate this second order ordinary 

dF differential equation. Multiplying equation (4.5) by zE F' and 

integrating once, we obtain 



where Cl is the  integrat ion constant. 

Now fo r  a s o l i t a r y  wave of local ized shape 

F and F' + 0, as  t + + a 4 

so from (4.61, C1 = 0. However more generally,  non-localized t r ave l l i ng  

wave solut ions  t o  (4.6) can be obtained fo r  a rb i t r a ry  
Cl. 

Equation (4.6) now becomes 

dF - = F { ( ~ P  + w 2 )  - 2~~ iy64}1/2 
d t  

2b which on in tegra t ion  gives where y = 3 

where C2 i s  the  in tegra t ion  constant. 

W e  rewri te  (4.8) a s  

2 where X = F . 



However, we have assumed t h a t  F is rea l .  For t h i s  t o  be t rue  f o r  

a l l  values of 6 we recognize t h a t  

Assuming t h i s ,  we  solve the  i n t eg ra l  i n  (4.9) and obtain [281 

(4.10) 

which can be rewri t ten as  

2 + ( ~ P + w ~ ) ~ { - I  - tanh [ 8 ( t  +C2)1}  = 0 (4.11) 

2 1/2 where 8 E 2(2P + w . 
Equation (4.11 is  a quadratic equation i n  X. We obtain t h e  

so lu t ion  

If  we choose ( t h i s  does not r e s t r i c t  the  general i ty  of our r e su l t s .  l 

then 



76 7C = sinh (8 t) cos (?) + cosh (Bt) i' sin (i) 

Similarly we obtain 

2 2 Cosh @(t + C2)1 = - sinh (Bt) (4.14) 

Making use of (4.13), (4.14) and of appropriate trigonometric identities, 

(4-12) can be rewritten as 

There are two values of X in (4.15). We shall keep the one that 

makes F real. From (4.15) we write 

Thus we can write the solitary wave solution for the equation (4.4 ) as 

where F is given by (4.16). 



(4.16) is the  general solut ion i n  t he  sense t h a t  we have not assigned 

any pos i t ive  or negative signs t o  6. From t h i s  general solut ion we s h a l l  

obtain pa r t i cu l a r  solut ions  for  d i f f e r en t  possible  spec ia l  cases, i n  t h e  

following sect ions .  

4 -3 Solitary Wave Solutions for Positive n2. 

This case has three  spec ia l  sub cases 

From (4.16) we obtain,  on taking minus s ign ,  

F = 

The other solut ion corresponding t o  taking the  plus  sign makes F 

imaginary, so we r e j e c t  it as being inconsis tent  with our assumption t h a t  

F is r ea l .  Thus we write the  solut ion of the  equation (4.1 a s  

(4.18) 

Let 2 1/2 = C [2P + w I 

2 1/2 Then [I + y(2P + w ~ ) I ' / ~  = [I + yc 1 
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And we can w r  i t e  (4.1 8) a s  

(4.19) 

The c o n s t a n t  C,  can be determined by i n i t i a l  cond i t i ons .  Assume t h a t  

i n i t i a l l y  i.e. E = z = 0 

Then from (4.19) w e  f i n d  

where qo is g iven  by (2.11) a s  

W e  can conver t  our s o l u t i o n  (4.1 9) t o  t h e  form quoted by Pushkarov e t  a 1  

[261. Consider 

W e  know from (3.12a) t h a t  &o is a conserved quan t i t y .  S u b s t i t u t i n g  f o r  

q a s  g iven  by (4. lg), (4.22) becomes 



Solving the  i n t eg ra l  w e  obtain 

We solve (4.23) fo r  C and obtain  

, 

define T, = 4; c0 

then C = cO kz?% 
rl 

Thus (4.19 1 becomes 

tan7 2 2 
q(c,.c) = cOzrl{l + sec~cosh[2t0- (T-wg) ]}  -1/Zei{ ( co tan  11 

Il T, 2 
rl 

- w21f + WT} 



This is the form of solution reported by Pushkarov. We shall prefer 

to write the solution in the form (4.19) . The width of the solitary wave 
would be 

Thus for n4 > 0 the solitary waves will be narrower than those which 

occur when n4 = 0. 

(ii) n2 > 0, n4 < 0 i.e. y < 0 

For this case the solution (4.16) ,becomes 

The only solution consistent with F real is 

F = C{l + (1 ~~~C~)'/~COS~[~C(T - w5)1} - 1 /2 
Thus . 

2 2 5  
q(5,r) = c(1 + (1 - (yl~2)1/2cosh12~(r - wc)]} -1/2~i{ (C - w )l + w} 

(4.27) 

We calculate C by initial conditions and obtain 



Thus t h e  wid th  of t h e  s o l i t a r y  wave is 

Thus f o r  n 4  < 0 t h e  s o l i t a r y  wave w i l l  be  b r o a d e r  t h a n  t h a t  w i t h  n 4  = 0. 

For  t h i s  case t h e  NLCQSE r e d u c e s  to t h e  NLS e q u a t i o n  and t h e  s o l u t i o n  

( 4.1 6) becomes 
j 

C[1 + c o s h ( 2 ~ t )  1 +1/2 
F = 2 

[ I  - c o s h  (2Ct) 1 1/2 

The o n l y  s o l u t i o n  c o n s i s t e n t  w i t h  F real is 

1/2 C[1 - c o s h ( 2 C t )  I F I -  - - C 
2 

61 - c o s h  (2Ct) 1 'I2 [ 4 + cosh  (2Ct)  I 1/2 

P 
. C - -  - s e c h  [C (z - WE. 1 l 

47 c o s h  (Ct )  47 

Thus 

C 

T h i s  is t h e  w e l l  known s o l i t o n  s o l u t i o n  [29] f o r  t h e  NLS e q u a t i o n .  



4.4 Solitary wave solutions for n2 0 

Here we again discuss three subcases: 

(i) n2 < 9, n4 < 0. 

For this, the NLCQSE becomes 

We solve this equation following the same procedure and obtain 

1/2cosh(2~t) - F = C{(1 - (y(C 1)-1/2 

= ~ { ( l  - (y(C2)1/2cosh~2~(r - WE)] - p2 

This solution is unacceptable because at r = 5 = 0, F becomes imaginary 

in contradiction to our assumption that F is real. Therefore a sblitary 

wave solution does not exist for n2 < 0, n4 < 0. 

For this case the NLCQSE reduces to 

and the solution (4.321 reduces to 

C 



This is certainly not a solitary wave solution because it doesn't have a 

finite amplitude at z = 5 = 0. 

For n2 < 0, n4 > 0 the NLCQSE becomes 

and the solution is 

The solution consistent with F real is 

. Thus 



For n2 = 0 ,  n4 > 0,  our equation NLCQSE reduces t o  the  "higher" 

NLS equation whose solut ion has been quoted by Kodama e t  a l .  [301. We 

derive t h i s  solut ion by our method i n  Appendix B e  

4.5 Discussion 

We can understand from a w a l i t a t i v e ,  i .e .  hand waving, argument how 

the dispersion and nonlinear terms can balance t o  y ie ld  s o l i t a r y  waves. We 

can summarize these e f f ec t s  i n  diagrams as follows where the  so l i d  arrow 

corresponds t o  the  e f f ec t  of dispersion,  the  dashed arrow t o  the  n2 

contribution and the  dotted one t o  the  n4 contribution.  

Diagram Expectation 

Sol i t a ry  wave may 
e x i s t .  

So l i t a ry  wave may 
e x i s t .  

So l i t a ry  wave may 
e x i s t .  



Diagram Expectation 

Sol i t a ry  wave can ' t  
ex i s t .  

So l i t a ry  wave may 
e x i s t .  

The n2 and n contributions cause pulse compression or pulse broadening 
4 

depending upon whether they take on the  pos i t ive  or negative sign 

respectively and the  dispersion term ( f o r  k" < 0) always causes spreading. 

The possible balance between squeezing and spreading determines the  

pos s ib i l i t y  of the  existence of s o l i t a r y  waves. The s o l i t a r y  wave i n  case  

e l  is known t o  be a so l i ton ,  but the  so l i t on  behavior of the  s o l i t a r y  waves 

for  other cases is s t i l l  t o  be explored. Various s o l i t a r y  wave solut ions  

obtained i n  t h i s  chapter are  p lo t ted  i n  the  following diagrams. In  f i g .  

4.4, the  energy content of the  pulse, i .e. I,, is kept f ixed fo r  a l l  t h e  

three  p lo t s .  



Fig 4 .1 )  ~ l o t  for solitary wave solution ( 4.19) . Input parameters 

are 6 = 30, C = 0.5, n '> 0. 2 
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Fig 4.2) Plot f o r  s o l i t a r y  wave solut ion ( 4.27 ) . Input parameters 

a re  6 = -5.0, C = 2.0, n - > 0. 2 



TAU 



Fig 4.3) Plot  fo r  s o l i t a r y  wave solut ion (4.36).  Input parameters 

are  6 = 8, C = 0.7, n2 < -0. 





Fig 4.4) Comparative p l o t s  of s o l i t a r y  wave s o l u t i o n s  f o r  n4 > 0, 

n4 = 0 and n4 < 0. Input parameters a r e  1 = 1.0, 



TAU 



CHAPTER 5 

Search for Multi-Soliton Solutions for the NICQSE- 

The ~gcklund Transformation 

In the previous chapter, we obtained the solitary wave solutions for 

the NLCQSE. Now, we address the issue of whether the solitary waves are 

stable, ie. whether our equation, the NLCQSE, has multi-soliton solutions. 

There are two possible analytical techniques which may be used to obtain 

the soliton solutions i.e. the Backlund transformation and the inverse 

scattering transform method (ISTM). However, the two techniques are 

interrelated [3 1 I . The eigenvalue problem in the ISTM is transformable to 
the Backlund transformation [321 and conversely if the Backlund 

transformation for the given evolution equation is known, one can deduce 

the eigenvalue problem. A number of nonlinear evolution equations such as 

the Korteweg-deVries (KdV) equation, the NLS equation and the Sine-Gordon 

equation belong to a class of equations that can be solved by the ISTM [331 

and the related eigenvalue problem can be deduced from the ~acklund 

transformation 131 I for these equations. We wonder if the NLCQSE has a 

Bgcklund transformation and hence multi-soliton solutions. 

In section 5.1, we introduce the concept of the Backlund 

transformation and discuss it in the context of an illustrative example. 

In section 5.2, we make an attempt to derive the Backlund transformation 

for the NLCQSE. The conclusion from the result of our attempt is drawn in 

section 5.3. 

5.1 The B&5elund transformation 

Let z satisfy a differential equation. The ~acklund transformation 



will yield another solution say z '  satisfying the same form of the 

equation. Define the transformation between the two solutions as 

where z is a function of two independent coordinates x and y eg. x 

may be temporal and y may be a spatial coordinate, x = x', y = y' and 

The integrability condition fdr z requires 

which on defining Q = * - 3 becomes 
ay ax 

L-2 = fyl - 9,' + fZtgl - + (fpI - $ g l ) ~ l  + fg# + = 0 

a 2z a2z 
where r = -, s = - a2z t = -  

axayr etc. 
ax ay 

Now, the integrability condition (5.2) can be satisfied in either of two 

ways 

(i) We can satisfy (5.2) identically i.e, 



In this case the transformation is called a contact transformation. 

(ii) The equation (5.2) can be satisfied if z '  is its solution. In this 

case the transformation is called the Backlund transformation. 

For example, consider the sine-Gordon equation 

This equation has the ~acklund transformation 

where a is an arbitrary constant. 

The application of 

to ( 5.4b) gives equation 

the integrability condition 

(5.4a) and ,the integrability condition 

yields 



Thus the  sine-Gordon equation is invar iant  under the  BBcklund 

transformation (5.4b) i .e .  i f  $ is a  solut ion of the  sine-Gordon 

equation, so is  4 . The ~ a c k l u n d  transformation may be used t o  generate 

addi t ional  solut ions  of (5.4a) by i n se r t i ng  t he  known solut ion i n t o  

( 5.4b) . For example, $6 = 0 is a  t r i v i a l  "vacuum" solut ion of ( 5 . 4 ~ 1 ,  

Subs t i tu t ing  t h i s  i n t o  (5.4b1, we obtain a  p a i r  of equations v iz ;  

which may be solved t o  obtain a  second ( n o n t r i v i a l )  solut ion,  v i z ;  

b ) ~  (5.4e) 

where b  is a  constant of in tegrat ion.  

(5.4e) can be shown t o  be a  "one so l i ton"  solut ion of t he  sine-Gordon 

equation. Let , $ be two such one so l i t on  solut ions  derived from the  

vacuum solut ion $O by applying the  ~ z c k l u n d  transformation with parameters 

a  and a  and in tegra t ion  constants 
1 2 

bl and b2 respect ively .  It is 

possible  t o  choose the  appropriate in tegra t ion  constants say b; and b; 

such t h a t  we obtain  the  same solut ion 
41 .2  

by fu r the r  applying the  

~ g c k l u n d  transformation with parameter a  t o  $2 and a  t o  a s  
1 2 

shown schematically by a  commutative Bianchi diagram, v iz ;  



%,2 would be a  two so l i t on  solut ion.  

S t a r t i ng  from the  ~ a c k l u n d  transformation (5.4b1, one can prove t h e  

following theorem 

where @n and @n are  solut ions  of (5.4a) generated by appl icat ion of 
1  2  

t he  Backlund transformation (5.4b) t o  a  known solut ion @n-l with 

parameters a l  and a2 respect ively .  In  (5.4f)  @n-l represents  an 

(n-I)  so l i t on  solut iqn,  @n and @n represent n  so l i t on  solut ions  
I  2 

and @ n l f l  and @n2+1 represent (n+l )  so l i t on  solut ions .  Thus knowing 

t h e  one so l i t on  solut ion,  an i n f i n i t e  sequence of addi t ional  solut ions  may 

. be generated without fu r ther  recourse t o  in tegra t ion ,  by making use s f  

(5 .4f) .  The generation of N-soliton solut ions  is shown i n  the  extended 

Lamb diagram given below where the  in tegra t ion  constants b  have been 

suppressed fo r  brevity.  The number i n  parentheses indicates  the  number of 

so l i t ons  . 



5.2 The ~ k k l u n d  Transformation for the NLCQSEo 

G.L. Lamb [31] has derived the  B3cklund transformation fo r  the  NLS 

equation by a method due t o  Cla i r in  [34] .  Here we attempt t o  derive t h e  

~ a c k l u n d  transformation for  the  NLCQSE by using the  same method. The 

NLCQSE and i ts complex conjugate a re  

where the  bar indicates  complex conjugate. 



Let's make the substitutions 

With these substitutions, the evolution equations (3.19) and (3.20) 

become 

The general form adopted for the B'ricklund transformation is 

with x = x\ y = yy' and also the complex conjugate transformation 

The integrability condition for z requires 



From (5.7) we obtain 

Using (5. lo), (5.9) becomes 

Let the transformed solution ' z '  also satisfy the equation of the same 

form as (5.6) i.e. 

Making use of (5.12), (5.11) becomes 



From (5.13), we obtain 

Using (5.14), (5.13) becomes 

From (5.14), we have 

- 
But E is not an explicit function of q' or g' so 

it follows that 

Similarly from (5.14) we obtain 



- 
Now using the fact that f is not an explicit function of g' or g' and 

making use of (5.16a) and (5.16b), we obtain from (5.15) 

and 

Making use of (5.14), (5.17) and (5.18), we obtain from (5.15) 

or 

and 

-- 
Let Z stand for the set of four independent variables z,zq,z,z ', We 

note from (5.7) that , in general, is a function of 2, g',T',p1 and 
- 
p ' ,  From (5.17) we notice that 4 is independent of p' .  From (5.14) 

g ' 
and (5.7) we conclude that is independent of g' and . So 

9 ' 
combining these facts we obtain 



59 

Equation (5.7) tells us that f is, in general, a function of 2, p' and 
- 
p' .  (5.17) implies that f is only a linear function of p' and (5.18) 

tells us that it can also be only a linear function of pg. Combining 

these facts, we can write 

where k,R,m and n are arbitrary functions of Z. 

Now from (5.21) and (5.14), we obtain 

which imply that 4 must be of the form 

- 
where X is independent of q' and q '. Thus X is possibly a function 

of X, P' and p'. But from (5.19) it implies that 4 can depend only 

- 
linearly on p' or p ' .  Therefore we can write X as 

where a,z,B and x are functions of 2. 

Thus (5.22a) becomes 

From (5.1) and ( 5 . 5 )  we obtain, making use of (5.21) 

"7 



an? 

af -1 +Fa ) 
iq + r = i$ + - = kpl(ig'+r) + kpl(igl+rl) + R(iq'+rl) + m(ig ax 

+ icrp1? + irp' + if33 + i~ + plP1kx + palx + F1mx + nx 

However from (5.6a) and (5.12a) we have 

NOW the variables X, p', _Ibqr fDs are independent variables, Thus 

equation (5.25a) must be satisfied identically. First, we compare the 
- 

coefficients of <' and r on both sides of (5,25a) and obtain 

Hence (5.25a) is reduced to 



Now 

- 
= a z + a-zX + aZ1z; + a  ;; = aZp + a-F + aZlpt + a  5' 

z X - - 
2 2 ' Z z ' 

From (5.21) and (5.25b) we have 

Thus (5.26a) becomes 

Similarly we obtain 

- - - - 
nx = nzRpl 9 nnz + An p1 + n n + nZIp1 + n- p' - - 

z z z ' 

Substituting (5.26~) and (5.26d) into (5.26) we obtain 
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Now the requirement that (5.27) is satisfied identically, leads us to write 

Notice that we have already developed the Backlund transformation from 

(5.7) into the form (5.21) and (5.23). Now our job is to calculate k, R, 

m, n, sf 8, a and x that we know can depend upon Z only. If we look 

at (5.28) carefully, it seems promisinq to start with equation (5.288) that 

involves only R. Now (5.281) is satisfied if R is a constant. 

So R = a  (cons tan t ) (5.29) 

Considering R as constant, (5.28a) gives 

Now substituting the values of k, m, R and a from (5.25b), (5,29) and 

(5,30) into (5.21) and (5,23), we obtain 



(5.31) is the Backlund transformation derived to this point. q, z, 8 and 

- x are still to be determined. Keeping in minh that p '  p' q' and Z 

are independent variables; we obtain from (5.31) 

and 



Substituting (5.32) and (5.31) into (5.11) we obtain, 

- - - - 
+ p'{nz9 + n 7 - OZn - n9 - - - ax- - x - } + g8{an_ + n - - ie} 

Z Z 2 z ' z z ' 

- - 2 
2 

Now comparing the coefficients of q', p ' ,  p', g', o' , p'p' and p' on 

both sides we obtain, 

- 
N = 0 implies an + n- - i9 = 0 - 

z z ' 

We can rewrite (5.28~) as 

Comparinq (5.33b) and (5.33~) we obtain, 

Substituting (5.34), into (5.33a) yields 



Using (5.34), we rewrite (5.31) as 

p = ap' + n 

g = ag' + zp' + x 

Thus the ~acklund transformation has now been developed to the form 

(5,36), Our task has been reduced to determining n, T and x only. For 

this purpose we try to solve the equations (5.28e) and (5.35) . G. L. Lamb 

[31] has solved equations of this form for the NLS equation for the case 

a = 1. Following him we solve (5.28e) and (5.35) for the NLCQSE choosing 

a = 1. For this purpose we define the new variables. 



Xt follows that 

Thus (5.352) and (5.359) become 

- - 
In general z can be a function of v ,  v ,  w, U. But (5.39) tells us 

that z is independent of w and w. So we can write 

and (5.35e) becomes 

which implies that 

Next, (5.35a) gives 

which on integration yields 



where y is the constant of integration which is to be determined. 

Now 

Similarly using (5.40) and (5.39) , (5.35~) yields 

r where -is the constant of integration, also to be determined. 2 

From (5.40e) we obtain 



From (5.40a) 

Using (5.40d), (5.42) and (5.43), we obtain from the equation (5.35b) 

Thus 

where is the integration constant. 

Substituting the value of C from (5.44) into (5.40e), we obtain 

- - 
w 7 i w i 2  - x = - { -  1 
2 

- w r  + Y-} + T { -  I. T + =yv - y t v  - ~ T J  + +T (5.45) 2 - v v v 

Making use of (5.451, (5.40d) and (5.371, the equation (5.28e) becomes 

i 1 1 2- A -2 3 
wO{- r~ + yyV + + T TI+ +a v v + - v v ) + w{- i y r  - iTr-} 

v 16 v 
V 

1 1 - 3 -2 - 1 -  v 3 + W ~ { - ~ T T ~  + -  v + - A v v  j + U W { ~ T Z  + -  + -Av2;) 
4 16 - 

v 2 8 

- i -  - 2  3 -2 2 3 -2 A 3 + w { ~  qJ + uw {B AVT} + w w {-- AV)  + w {- v } = o 
v 16 16 



Comparinq the coefficients of equal powers and combinations of w and 

on both sides of (5.46), yields: 

- 3 -2 
ZT = V  + - A V V  v 4 

The motivation here is to solve equations (5.47) and determine y,q,~ in 

- 
terms of v and V .  Then we can find x from (5.45) and the ~'acklund 

transformation (5.36) would be developed to its final form. But look at 

(5.47f1, (5.474), and (5.47h). These equations imply that 

- 
(i) for non zero v and v 



This is equivalent t o  switching off f i f t h  order nonlinear term i n  the  

NLCQS equation and hence reducing it t o  t he  NLS equation. The ~ k k l u n d  

transformation f o r  the  NLS equation can then be obtained a s  outl ined below. 

For A = 0 ,  (5.47) becomes 

( 5 . 4 8 ~ )  and (5.48d) are  s a t i s f i e d  i f  

where b is a r e a l  constant. 

Equation (5.48b) is s a t i s f i e d  by 

y = ikv 

where k is r e a l  constant . ~ h u s  (5.48a) y ie lds  

l 2  + k~ - 2k2} 



&king use of (5.51) and (5.441, we obtain from (5.40e) 

Thus the ~acklund transformation (5.36) now takes the form 

i p = p '  - -  
2 wz + ikv 

This is the ~Xcklund transformation for the NLSE. 

(ii) for non-zero A, v = 0 so that 

Z = Z' 

- 
or/and v = O  

- - 
SO that z = z' 

This last case means that the solution of the NLCQSE (ie. A#O) is 

transformed into itself. We can't generate another solution. The purpose 

in deriving the Biicklund transformation was to obtain the multisoliton 

solutions and that purpose seems to be defeated here. We say that the 

Backlund transformation breaks down or there is no Backlund transformation 

. for the NLCQSE at least in the existing framework that we are using. In 

the calculation presented here we have taken a = 1, but we have carried 

out calculations for other values of a. In all such attempts, we were 

unable to find the otl-ier solution. 



5.3 Conclusion 

I f  there  is no Bzcklund transformation fo r  the  NLCQSE we can expect 

t h a t  the  equation has no so l i t on  (or  mul t i so l i ton)  solut ions .  But, one can 

argue t h a t  there  may be some other method ( i . e .  a  d i f f e r en t  value of 

constant a  could be chosen or a  method e n t i r e l y  d i f f e r en t  than the  one 

due t o  Cla i r in )  t o  derive the  Backlund transformation fo r  our equation. 

Thus we can speculate,  but we can ' t  deduce here t h a t  the  NLCQSE has no 

so l i t on  solution.  In the  next chapter we s h a l l  t r y  the  other technique 

i.e. the  ISTM t o  look fo r  so l i t on  solut ions .  



CHAPTER 6 

Search for Multi-!Soliton Solutions 

The Inverse Scattering Transform Method 

In chapter 5 ,  we made an attempt to derive the multi-soliton 

solutions to the NLCQSE using the ~acklund transformation. An alternative 

approach is to use the inverse scattering transform method (ISTM). In 

section 6.1, we give a brief introduction to the ISTM technique. In 

section 6.2, we make an attempt to construct an inverse scattering 

framework for the NLCQSE. The conclusion is given in section 6.3. 

6.1 Introduction 

The inverse scattering method is very important in the sense that it 

allows us to use linear techniques to solve certain nonlinear evolution 

equations and to discover multi-soliton solutions. The method was 

developed by Gardner et al. [6] in 1967 and was used to solve the KdV 

equation. A general formulation of the method by P.D. Lax 1351 soon 

followed (1968) and this is what we briefly outline here. 

Consider a general nonlinear equation 

where K is a nonlinear operator on some suitable space of functions, 

- Suppose that we can find linear operators L and B' which depend upon 

4 ,  a solution of (6.1), and satisfy the following operator equation 

iLt [B1,L] Z B'L - LBq (6.2) 



If B' is self adjoint, equation (6.2) implies that the eigenvalues C of 

L which appear in 

are independent of time. Also it follows from (6.2) that the eigenfunction 

4 evolves in time according to the equation 

Assume, further, that we can associate a scatterinq problem with the 

operator L. Then given the initial shape @(x,o), we can find @(x,t) 

by carrying out the following linear steps. 

( 1) The Direct Problem 

Using equation (6.3) we calculate scattering parameters (e.g. 

reflection and transmission coefficients of L) for J, at x = a and 

t = o from a knowledge of @(x,o). 

(2) Time Evolution of the Scattering Data 

We use equation (6.4) together with the asymptotic form of B' at 

x = a to calculate the time evolution of the scattering data. 

(3) The Inverse Problem 

From the knowledge of the scattering data of L as a function of 

time, we can construct @(x,t). The following figure summarizes the 

inverse scattering method. The idea is to avoid path d i.e. to avoid 

solvinq equation (6.1) directly. Instead we solve equation (6.1) by qoing 

through linear computations of steps a,b and c. 



T i m e  
Evolution 

Scatter'ing 

@(x ,o )  
given 

Scat ter ing Data 
a t x = a  

Inverse problem 

Direct Problem a - * 
Eq.(6.3) 

There a re  many poten t ia l  technical .  d i f f i c u l t i e s  with the procedure 

Scattering Data 
a t x = o :  
fo r  t = o 

outl ined above, eg. we may not be able t o  f ind  operators L and 8' which 

s a t i s f y  equation (6.2), we  may not be able t o  solve the inverse problem for  

the operator L e t c .  

6.2 Application to the NLCQSE. 

In  order t o  carry out the f i r s t  s tep ,  w e  should be able t o  write the  

appropriate eigenvalue problem i .e.  equation (6.3).  So f a r ,  no general 

method has been developed t o  derive the  eigenvalue problem corresponding t o  

a given evolution equation. It 's well known t h a t  cer ta in  evolution 

equations, eg. KdV, Sine Gordon and NLS equations belong t o  a c l a s s  of 

equations t h a t  correspond t o  the  Zakharov-Shabat [24] and other eigenvalue 

problems which are  special  cases of a more general eigenvalue problem due 

t o  Ablowitz, Kaup, Newell and S e w  (AKNS) [3%% viz: 



This can be rewri t ten i n  the  form (6.3) as  

where v and v a r e  the  components of the  eigenfunction + = 1 2 

and q ( x , t ) ,  r ( x , t )  are  the  solut ions  of a coupled p a i r  of nonlinear 

evolution equations. Now, f i r s t l y ,  t he  NLCQSE is an extension of t h e  NLS 

equation i n  the  sense t h a t  i f  we switch off the  f i f t h  order nonlinear term 

t h e  equation reduces t o  the  NLS equation and secondly, the  AKNS eigenvalue 

problem is very general. Thus i t ' s  reasonable t o  expect t h a t  i f  the  NLCQSE 

does have so l i t on  solut ions ,  it possibly can be associated with the  AKNS 

eigenvalue problem. Under t h i s  assumption our f i r s t  s tep  becomes t o  check 

the  p o s s i b i l i t y  t h a t  the  NLCQSE corresponds t o  the  AKNS eigenvalue problem 

(6.5).  We assume t h a t  q(x,O) and r(x,O) are  given. In general, t he  

eigenvalues and eigenfunctions of (6.5) w i l l  evolve i n  time as  the  

po t en t i a l s  q ( x , t )  and r ( x , t )  evolve according t o  some evolution 

equation. We choose t he  time dependence of vl (x  , t 1 and v2 (x, t ) as  



But as pointed out i n  the  previous sect ion,  we i n s i s t  t h a t  the  eigenvalue 

be independent of time. From cross d i f f e r en t i a t i on  of (6.5) and (6.6) we 

obtain 

where d ( t )  is an in tegra t ion  constant and we can s e t  it equal t o  zero 

without any loss  of generali ty.  We thus obtain  

Equations (6.7) can give us possible  evolution equations f o r  q and r. 

F i r s t  we f ind  AIB,C and D. These coef f ic ien ts  are  functions of x , t  

and . We expand them i n  powers of c and we w i l l  systematically 

ca lcu la te  the  expansion coef f ic ien ts .  



W e  set N = 4  

From ( 6 . 8 )  and ( 6 . 7 )  w e  o b t a i n  

B ( ~ )  = i q a  
4  

a 
R 

4 
(2)  = i q a  - T q x  3  

a 4  2 B(') =, a 3  a4 
2 i q  r + ia2q  - 7 q x  - i - q  

4  xx 

3  
B ( 0 )  , , - 4 a 4 q r q x  + i ~q a3  2 r  - i -q a 3  - - q  "2 + i a , q  9 - q  a 4  4  xx 2 x 8  xxx 



a4 ,(a) = - r + ira 
2 x 3 

where ao, al, a2, a3 and a4 are independent of x hut may depend upon 

t. Along with these equations also we obtain 

Making use of (6.9), (6.10) and (6.111, we rewrite (6.12a) as 



Now, i f  we choose 

the eigenvalue problem (6.5) reduces t o  fo r  t h i s  special  case,  

which is the Zakharov-Shabat eigenvalue problem and the evolution equation 

( 6.13 becomes 

which is the NLS equation. 

We are looking for  the  poss ib i l i t y  of deriving the NLCQSE out of 

( 6.1  3 ) . In order t o  obtain the higher order nonlinear term we can ' t s e t  

a4 = 0. L e t ' s  make the su i tab le  choice a. = al  = a3 = 0, a2 = -if 

With t h i s  choice (6.13) becomes 

We get a l l  the  term's we need on the L.H. S. ,  but we a l so  ge t  terms on R.H. S. 

t h a t  our equation does not have. There is no apparent way tha t  a proper 



choice fo r  a4 could lead t o  the  NLCQSE- This shows t h a t  the  NLCQSE may 

not belong t o  the  AKNS eigenvalue problem. 

6.3 Conclusion 

We have shown t h a t  the  NLCQE does not belong t o  the  very general AKNS 

eigenvalue problem. It was p laus ib le  t o  expect t h a t  i f  the  NLCQSE does 

have so l i t on  solut ions ,  it should correspond t o  the  AKNS framework. The 

pos s ib i l i t y  t h a t  it belongs t o  a d i f f e r en t  eigenvalue problem appears t o  be 

remote. Thus we can conclude t ha t ,  maybe, the  NLCQSE does not possibly 

have so l i t on  solut ions .  This is consis tent  with our f a i l u r e  t o  f i nd  a 

Bxcklund transformation. This speculation is supported by numerical' 

simulation given i n  the  next chapter. By the  way, i f  equation (6.15) 

should correspond t o  some physical  system, it would have so l i t on  solut ions .  



CHAPTER 7 

The Numerical Simulations 

In previous chapters we attempted t o  ana ly t i ca l l y  inves t iga te  t h e  

s t a b i l i t y  of the  s o l i t a r y  wave solutions.  The indicat ion is  t h a t  we don't  

have t r u e  so l i t ons  but the  p o s s i b i l i t y  of having quasi-soli ton behaviour 

can ' t  be ruled out. In t h i s  chapter, we study numerically the  co l l i s i ons  

of two s o l i t a r y  waves whose input shapes a re  calculated from the  ana ly t i ca l  

expressions i n  Chapter 4. In  sect ion 7.1, we discuss the numerical scheme 

t h a t  was used. In sect ion 7 . 2  w e  present our numerical r e s u l t s  f o r  the  

various combinations of signs of n and n4. The conclusions a re  given 2  

i n  sect ion 7.3. 

7.1 The Numerical Scheme 

To solve the  NLCQSE 

we replace the  der ivat ives  q and q i n  (7.1) by f i n i t e  di f ference r; 'G'G 

approximations [1,361. Consider the  function q ( c r ~ ) *  W e  wri te  t he  Taylor 

expansion of q a t  (c  + A S )  and ( - A 1 around r;. 



Subtract (7.2b) from (7.2a) 

which is the  cen t ra l  d i f ference approximation (CDA) t o  q Note t h a t  the  
5 

forward dif ference approximation (FDA), viz ;  

is not as  accurate fo r  a given A%. Also i t ' s  found t h a t  numerical 

i n s t a b i l i t y  occurs i f  the  FDA is used f o r  the  NLCQSE. For s u f f i c i e n t l y  

small be,  the  higher order terms i n  ( 7 . 2 ~ )  may be neglected t o  obtain 

In  our numerical runs the  value of A 5  used is -0.003. Now t o  

obtain 
~ T T  

we wri te  t he  Taylor expansion of q a t  T + AT and T - AT 

around T viz;  



Adding (7.4b) to (7.4a) yields 

Neglecting higher order terms for sufficiently small (AT) we have 

We choose AT - 0.1 in our simulations. 

Substituting (7.5) and (7.3) into (7.1) we obtain 

Knowing the terms on R.H.S. we can obtain the L.H.S. and advance in 

. The terms in this finite-difference formulas are indicated 

schematically in the following figure. Note that we cannot use the CDA on 

the first step. For the first step i.e. to qo from zero'th 5 row to 

1st 5 row A5 was further subdivided into 600 steps and a forward 



difference approximation was used. This approach yielded extremely 

accurate values of q on the first 5 row to use in the CDA. The FDA 

could not be used for larger 5 because it involved too much computing 

time and was found to be unstable. The proqram for this finite difference 

scheme was written by Stuart Cowan. Periodic boundary conditions were 

imposed by taking the extreme right and left mesh pts to be adjacent. Each 

plot shown involved of the order of 100 million floating point 

multiplications. The accuracy of the numerical runs was checked by 

continually monitoring the conserved quantities 

-+a 
2 2 6 

1 = [ - - 5 61q( ldr 
-a 

which were derived in Chapter 3. 



7.2 Numerical Plots and Discussion 

We now present our r e s u l t s  fo r  d i f f e r en t  poss ib le  cases depending 

upon the  s igns  of n2 and n4. In discussing t he  r e s u l t s ,  we have labeled 

the  pulse i n i t i a l l y  on the  Left (Right) a s  L ( R ) =  Although a wide va r i e ty  

of r e l a t i v e  pulse heights and ve loc i t i e s  were considered, here the  pulses 

are  taken t o  be i den t i ca l  and (except fo r  Fig.7.1~1) t he  ve loc i t i e s  w 

symmetric. Also, except fo r  F i g . 7 . 4 ~ ~  each s t e p  shown corresponds t o  

A< = 1. ~ i g . 7 . 0  shows the  accuracy of t he  numerical scheme including the  

per iodic  boundary conditions. The s o l i t a r y  wave disappears on t he  r i g h t  

edge and reappears on the  l e f t  due t o  the  per iodic  boundary conditions. 

Below, we discuss the  r e s u l t s  fo r  the  various combinations of n and n4. 
2 

For t h i s  case, quasi-soliton behaviour was observed over the  e n t i r e  

range of parameter space consis tent .wi th  our der ivat ion i .e.  the  s o l i t a r y  

wave solut ions  a re  r e l a t i ve ly  s table .  Some typ i ca l  r e s u l t s  are  shown i n  

Figs. 7.1 and 7.2. In  Fig.7.1 we have taken 6 = -1.3 and qo = 1 while 

i n  Fig.7.2, 6 = -5, qo 
= 0.5 where 90 is the  maximum input q. In  

terms of the  conserved quant i ty  I1 of the  pulses ,  I1 = 3 i n  the  f i r s t  

case and 1.4 i n  the  second. Fig.7.1, therefore ,  involves the  co l l i s i on  of 

more energet ic  pulses. A s izab le  rad ia t ive  peak emerges between the  two 

quasi-soli tons,  the  peak shedding successive o sc i l l a t i ons .  As a r e s u l t  of 

t he  per iodic  boundary conditions, the  quasi-soli tons i n  t h i s  case are  

unphysically running back i n t o  the  rad ia t ive  o sc i l l a t i ons  and producing the 

noisy r ipple .  For the  l e s s  energet ic  pulses of Fig.7.2, the  rad ia t ion  is 



l e s s  pronounced, appearing as an o sc i l l a to ry  pla teau between the  

quasi-soli tons which eventually dies  away. 

(ii) n > 0 ,  n > 0.  2 4 

In t h i s  case both the  nonlinear terms contribute t o  pulse compression 

and a much r icher  spectrum of possible behaviour is found. Quasi-soliton 

behaviour is, of course expected fo r  R << 1 where R is the r a t i o  of t he  

• ’ i f  t h  order t o  t h i r d  order contributions i . e  . R = 16 ( 1 1 '/2. 

Quasi-soliton behaviour is also found t o  p e r s i s t  f o r  larger  R values,  

eg. Fig.7.3 with R = 0.26 fo r  1 4 1  = q where only a .smal l  rad ia t ive  
0 

o s c i l l a t i o n  is  quickly shed during the  in te rac t ion  period. But f o r  R = 1 

small changes i n  parameters qo, 6 or the  i n i t i a l  ve loc i t i es  can lead t o  

wildly d i f f e r en t  scenarios as, eg. i l l u s t r a t e d  i n  Fig. 7.4a,b,c. Only qo 

has been varied,  taking on the  values 0.27, 0.31 and 0.35 with the  

corresponding R values 1.13, 1.48 and 1.89. In  Fig.7.4aI the  two 

s o l i t a r y  waves simply f l a t t e n  out a f t e r  the  in te rac t ion .  In  Fig.7.4b they 

a l so  f l a t t e n  out but a sharp spike forms i n  the  middle. In  F i g . 7 . 4 ~ ~  the  

pulses  barely meet before a rapid t r a n s i t i o n  t o  explosive behaviour is 

observed. Our numerical r e s u l t s  show t h a t  f o r  R I t he  behaviour i s  

not quasi-soli ton,  t h e  s t a b i l i t y  of t h e  s o l i t a r y  waves being very weak. 

A s  n4 + 0 (i .e. 6 + 0 )  we f i nd  t h a t  l a rger  and larger  e l e c t r i c  

f i e l d  amplitudes are  required t o  sus ta in  t he  s o l i t a r y  wave as 6 

decreases. For 6 << I ,  the  s o l i t a r y  wave solut ion is very sharply peaked 



and physically e i t h e r  e n t i r e l y  unrealizable ( requi r ing  maximum e l e c t r i c  

f i e l d  amplitudes beyond d i e l e c t r i c  breakdown) or a t  l e a s t  highly unstable.  

For l a rger  values of 6 ,  the  s o l i t a r y  wave solut ions  are  l e s s  sharply 

peaked, but are  subject  t o  an unstable f i f t h  order compression e f f ec t .  No 

quasi-soli ton behaviour was observed f o r  t h i s  case. Typically, the  two 

co l l id ing  s o l i t a r y  waves produced only rad ia t ive  or explosive behaviour.The 

s t a b i l i t y  i n  t h i s  case is extremely weak. A s  i n  the  previous case, f o r  R = 

1, the  r e s u l t s  were extremely s ens i t i ve  t o  the  input ve loc i t i e s  w 

e tc .  In  Fig.7.5 and 7.6, R = 2.5 f o r  ( q (  = B but the  i n i t i a l  s i z e  of 

the  nonlinear terms is about 7 times la rger  i n  Fig.7.5 .than i n  Fig.7.6. 

Explosive behaviour is observed i n  Fig. 7.6, while i n  Fig. 7.5 only chaotic 

radiat ion is produced. This is because the  ve loc i t i e s  w were la rger  i n  

Fig.7.5 so t h a t  t he  pulses spent l e s s  time in t e r ac t i ng  with each other and 

hence prevented an explosion. I f  the  ve loc i t i e s  w are  decreased, an 

explosion occurs. 

7 3 Conclusion 

The numerical simulations show t h a t  t he  s o l i t a r y  wave solut ions  t h a t  

we derived i n  Chapter 4, are  not so l i tons  and hence our t en t a t i ve  

conclusion reached i n  the  previous chapters is supported. However quasi- 

so l i t on  behaviour f o r  n2 > 0, n4 > 0 and n2 > 0 ,  n4 < 0 cases p e r s i s t  

over wide regions of parameter space. But f o r  t he  n2 > 0 ,  n4 > 0 case 

numerical r e s u l t s  show t h a t  f o r  R - 1 , t he  behaviour is not even 

quasi-soli ton,  the  s t a b i l i t y  of the  s o l i t a r y  waves being very weak. Thus, 

on t heo re t i ca l  grounds, w e  can r u l e  ou t  t he  p o s s i b i l i t y  of obtaining 

subs t an t i a l l y  narrower so l i t ons  by f ind ing  a mater ia l  with a large 6 

value and/or a l a rge  d i e l e c t r i c  s t rength.  



Fig 7.0) Propagation of a s o l i t a r y  wave. The input parameters are:  

C = 0.5, 6 = 10.00, n > 0. The s o l i t a r y  wave disappears on 
2 

t h e  r i g h t  edge and reappears on the l e f t  due t o  the  periodic 

boundary conditions. mx. J A I ~ / I ~ J  = 0.21%. 





Fig. 7.1.a) Quasi-soliton behaviour for n2 > 0, n4 < 0. Input 

parameters are C = 1 .O7, -6 = - 1 . 3  for each pulse 

and wL = +3.2 ,  wR = 0 .  Max. ( A I ~ / I ~  1 = 0.25%. The 

arrow indicates that the quasi-soliton disappears on the 

right edge and reappears on the left due to the periodic 

boundary conditions. 





Fig. 7.1.b) Quasi-soliton behaviour f o r  n2 > 0, n4 < 0. Input 

parameters: C = 1.07, 6 = -1.3, wL = +1..6, wR = -1.6 

 ax. ( A I ~ / I ~ I  = 0.60%. The arrows indicate  t h a t  the  quasi- 

so l i tons  reappear on the  opposite edges due t o  t h e  per iodic  

boundary conditions. 





Fig. 7.2) Quasi-soliton behaviour for n2 > 0, n4 < 0. Input 

parameters: C = 0.54, 6 = -5.0, wL = +1.6, wR = -1.6. 

Max. ( * I ~ / I ~ ~  = 0.20%. 



Fig. 7.2 



Fig 7.3) Quasi-soliton behaviour for n2 > 0, n > 0. Input 4 

parameters: C = 0.65, 6 = +3.0, wL = +1.6, w R =  -1.6. 

M ~ X .  ( A I ~ / I ~  1 = 1.22%. 





Fig 7.4.a) Radiative (dispers ive)  behaviour for n2 > 0, n > 0. 4 

Input parameters: C = 0 .SO, 6 = 30.9, w L = +1.6, wR = -1.6. 

Max. ( A I ~ / I ~ I  = 1.40%. 





Fig 7.4.b) Radia t ive  and s p i k i n g  behaviour f o r  n2 > 0, n > 0 .  4 

Input  parameters:  C = 0.61, 6 = 30.9, wL = +1.6,  

W = -1.6. 
R 

Max. ( A I ~ / I ~ )  = 5.24%. 





Fig 7.4.c) Explosive b e h a v i o ~  for  n 2  > 0, n 4  > 0,  I n p u t  parameters: 

C = 0.75, 6 = 30.9, wL = +1.6, wR = -1.6. 

M ~ X .  ( A I ~ / I ~ (  = 0.79%. 





F i g  7.5) R a d i a t i v e  b e h a v i o u r  f o r  n 2  < 0, n 4  > 0. I n p u t  p a r a m e t e r s :  

e = 0.50, 6 = 30.9, wL = +4.0, wR = -4.0 

 ax. ( A I ~ / I ~ (  = 0.42% 





F i g  7 . 6 )  Explos ive  behaviour f o r  n2 < 0,  n4 > 0 .  Input parameters 

C = 0 .25 ,  6 = 100.0 ,  w L =  +1.6 ,  w R =  - 1 . 6 .  

mx. ( A I J I ~ J  = 0.51%. 





CHAPTER 8 

Possible Comparison with Experiments 

From an experimental viewpoint two cen t r a l  i n t e r r e l a t ed  questions 

remain t o  be answered: 

1) How big is n4 and therefore  6 1  

2) Can one ever t e s t  the  e f f ec t  of including the  n contribution? 
4 

There are  l a se r  sources capable of generating su f f i c i en t ly  intense pulses,  

the only l imi ta t ion  being the d i e l e c t r i c  break down l i m i t  of the medium 

i.e. the  e l e c t r i c  f i e l d  i n  the  medium should be below the d i e l e c t r i c  

strength.  The d i e l e c t r i c  strengths of the  various media are  given l n  Table 

8.1. In sect ion 8.1 we attempt t o  estimate the  order of magnitude of n4 

f o r  l iquids  and so l ids  from the known value of n i n  Rb vapour. In  4 

sect ion 8.2, we show t h a t  the  n4 contribution is  probably negl igible  i n  

g lass  f ibers .  In section 8.3, we point out t h a t  it may be possible t o  t e s t  

our r e su l t s  experimentally i n  Rb and possibly other vapours. 

8.1 An Estimate of n4 for Dielectric Solids and Liquids 

The microscopic or ig in  of n and n has been discussed by 2 4 

Grishkowsky e t  a l .  [371 and Lehmberg e t  a l e  K381 . However, t o  the  bes t  of 

our knowledge, no f i rs t -pr inciple-est imate  of n4 has been given i n  t he  

l i t e r a t u r e .  The t h i r d  order nonlinear e f f ec t  is well known and well 

understood i n  the  l i t e r a t u r e  and the  values of n fo r  so l ids ,  l iqu ids  
2 

and vapors are avai lable  and are  given i n  t ab l e  8.2. Note t h a t  n2 is of 

t h e  same order of magnitude for  a l l  so l id s  and l iquids .  However, because 

, the  study of the  f i f t h  order nonlinear e f f e c t  has not been car r ied  out i n  

d e t a i l  yet ,  the values of n fo r  various d i e l e c t r i c  materials a re  not 4 



available.  In the  absence of any be t t e r  method, we estimate here the  value 

of n4 for  so l ids  and l iquids  by connecting it t o  i ts  microscopic or ig in  

i.e. the  po la r i zab i l i t y  of the molecule. The molecular po la r i zab i l i t y  y 

is  re la ted  t o  the re f rac t ive  index n  by the Clausius-Mossotti equation, 

v iz  , 

where N is the number of molecules per un i t  volume. (8.1) may be 

rewrit ten a s  

4xN where X = - - .  

The average dipole moment - P of the molecules is approximately 

proportional t o  the e l e c t r i c  f i e l d  ac t ing  on the molecule, v iz ,  

Thus the vector g is sens i t ive  t o  the  d i rec t ion  of the e l e c t r i c  f i e l d .  

This forces us t o  write the  molecular p o l a r i z a b i l i t y - i n  its nonlinear form 

as,  v iz ;  

The nonlinear re f rac t ive  index i n  our model is assumed t o  be of the  form 



101 

Subst i tu t ing (8.4) and (1.5) i n to  (8.2) and comparing equal powers of 

on both s ides ,  we obtain 

and 

2-3n 2 

with A = 
0 

2 
2nO(n0+2) 

Now fo r  the  case of R b  vapour we have information from the. experiment 

done by Puell  e t  a l .  [391, viz.  n = 3.8 x I O - ~ I N  esu and 
2 

-40 n = -3.1 x 10 N esu, where N is the number density of Rb atoms. 
4 

8 3 
The experiment was performed a t  N , 10 atoms/cm . Thus from (8.6) we 

- 9 
obtain  IY4/y2 ( . 10 esu. Since n and n a re  about the  same fo r  a l l  

2 0 

l i qu ids  and so l ids ,  the  r e l a t i on  (8.5) t e l l s  us t h a t  )Y2/Y0 ( is of the  

same order of magnitude fo r  a l l  molecules. Knowing t h a t  y is the  

microscopic property of the  molecule, we extend our argument t o  assume t h a t  

(y4/y2  1 is of the  same ordel- of magnitude fo r  a l l  molecules. Hence 

-9 
IY4/y2 1 .. 10 esu. NOW, it is  known t h a t  n 

2 ' "  
10 - '~esu  fo r  a l l  so l i d s  

and l iquids .  Subst i tu t ing t d e values of ( Y 4 / Y 2 1  and n i n  (8.61, we 
2 

ob ta in  In4) .. 1 0 - ~ ~ e s u  i n  so l i d s  and l iqu ids .  



8.2 Experiments on G l a s s  Fibers 

Experiments have been performed [81 a t  Bell Labs on glass  f i be r s  and 

so l i tons  have been observed. The experiments were done with the  power P 

of the  order of 10W i n  a glass  f i be r  with radius  r of the order of a 

micrometer. Specif ical ly ,  l e t  us consider a t yp i ca l  s e t  of values used, 

v iz  ; 

P = 11.4W and r = 4.66pm 

Thus the  corresponding in t ens i t y  I = - = 14 
1 . 6 7 x 1 0 ~ ~ ~ / m ~  = 1.67~10 esu. 

2 
x r  

and the  magnitude of the  e l e c t r i c  f i e l d  

8nI 1 /2 2 7 
141 = 1 ~ 1  = 

= 3.74~10 S t a t  Volt/cm or 1.12~10 V/m. 

Thus from the def in i t ion  

we obtain -22 Iql =6.88  using n = 1.2~10  (m/v12 or 1 .08x10-~~esu  fo r  
2 

t h e  glass  f iber .  A s  argued i n  the  previous sect ion,  n 
4 - 1 0 - ~ ~ e s u  so  

- 5 t h a t  ( 6  1 . 10 . Thus the  r a t i o  R of the  f i f t h  order nonlinear term t o  

the  t h i r d  order term i n  the  NLCQSE is  

For such a small R value, the  quasi-soli ton behaviour predicted by our 

theory would be indist inguishable from the "true" so l i t on  behaviour ( i e .  



when the f i f t h  order term is completely neglected).  To obtain a larger  R 

value, the e l e c t r i c  f i e l d  E must be increased. From Table 8.1, the  

7 d i e l e c t r i c  s t rength of glass is about 1 .4~10 V/m which corresponds t o  

-4 Iq( = 8.6 and R .. 10 . Thus even a t  the  l a rges t  e l e c t r i c  f i e l d s  below 

the d i e l e c t r i c  breakdown, the f i f t h  order contribution is probably 

negl igible  i n  glass  f ibers .  Of course, our estimate of n4 was crude and 

a l s o  the d i e l e c t r i c  s t rength of some materials may be higher than i n  a 

glass f iber ,  so we cannot absolutely ru l e  out the poss ib i l i t y  of observing 

the f i f t h  order contribution i n  so l ids  and l iquids .  

For gases, n and n4 depend upon the number density 2 
3 

N (atoms/cm ). From sect ion 8.1, fo r  Rb vapour ( a t  h = 1 .06p)  

Puel l  e t  a l .  have actual ly  car r ied  out a self-focusing ( a s  opposed t o  pulse 

8 compression considered here) experiment with N = 10 atoms/cm3 which 

4 corresponds t o  S = -1.37~10 . Since, 6 is  negative, the f i f t h  order 

term is negative and causes defocusing while the  t h i r d  order term produces 

a focusing e f fec t .  The two competing e f f ec t s  roughly cancel when 

1' 1 1'1 - 1 i.e. the f i f t h  order and t h i r d  order nonlinear terms a re  of 
2 

comparable magnitudes. This implies t h a t  q = 1.2 1x 10-I which corresponds I I 
4 11 2 t o  (51 = 3.5 x 10 S ta t  Volts/cm. and the  in t ens i ty  I = 1.5~10 W/cm . A 

cancel la t ion a t  t h i s  in tens i ty  was indeed observed by Puell e t  a l .  [391. 



~t seems possible ,  i n  p r inc ip le ,  t o  experimentally ver i fy  the  quasi-soli ton 

behaviour predicted by our t heo re t i ca l  r e s u l t s  fo r  n > 0, n < 0 even 
2 4 

f o r  large 6 values, i n  Rb vapour . From (8.7 1 6 = -1, eg., corresponds 

12 3 t o  N - 10 atoms/cm . Since it i s  possible t o  reach the  su f f i c i en t ly  high 

value of 6 i n  vapours, it seems possible  t o  t e s t  some other t heo re t i ca l  

r e s u l t s  as  well,  i n  some su i tab le  vapour. 



Table 8 .1  

Dielectric constant and strength of various materials 

Mater ia l  D i e l e c t r i c  Constant K D i e l e c t r i c  St rength  
v/m 

A i r  1.00059 3x 10 
6 

Bake l i t e  4.9 

Glass (pyrex) 5.6 

Mica 

Neoprene 

Paper 

P a r a f f i n  

P lex ig las  

Polystyrene 

Porcela in  

Trans former o i l  

Water (20•‹C) 

Fused quar tz  

Teff on 

Amber 

Ref: [411, [423 



Table 8.2 

Values of n2 for Various Materials 

M a t e r i a l  

F u s e d  quar tz  

R u b y  

L u c i t e  

N a C l  

CC1 

T o l u e n e  

B e n z e n e  

6S2 

Water 

A i r  ( 1 a t m )  

A i r  ( 1 0 0 a t m )  

G l a s s  ( h e a v y  s i l i ca te  f l i n t )  

C a l c i t e  

Sapphire 

R e f :  [43] and [41 



CHAPTER 9 

Conclus ions 

We have derived the nonlinear (cubic-quintic) Schrijdinger equation 

t h a t  describes the dynamics of the  propagation of intense electromagnetic 

pulses i n  a nonlinear dispersive medium characterized by a re f rac t ive  index 

n = n 0 + n2IEl2 + n41gl and have obtained s o l i t a r y  wave solut ions  for  

t h i s  equation for  a l l  possible signs of n2 and n4. To determine whether 

the  s o l i t a r y  waves a re  so l i tons  or not, two ana ly t ic  approaches t o  

obtaining multi-soliton solutions were investigated,  viz.  the BXcklund 

transformation and the inverse s ca t t e r ing  transform method. These 

approaches seemed t o  indicate  t h a t  the  s o l i t a r y  waves were not sol i tons .  

This speculation was found t o  be well supported by numerical simulations. 

However, quasi-soliton behaviour was found t o  p e r s i s t  over a wide region of 

parameter space. Other i n t e r e s t i ng  behaviour was a l so  observed i n  the  

numerical simulations. Some aspects of our theore t ica l  r e su l t s  may be 

experimentally tes tab le .  We have ruled out on theore t ica l  grounds the  

p o s s i b i l i t y  of obtaining subs tan t ia l ly  narrower so l i tons  (of relevance t o  

the  development of high b i t  r a t e  transmission system) i n  eg. a glass  f i b e r  

o r  i n  any other material  which might have a large 6 value and/or a large 

d i e l e c t r i c  strength.  



APPENDIX A 

Alternate derivation of the WliCQSE 

Consider a d i e l e c t r i c  medium with a nonlinear d i e l e c t r i c  constant 

given by 

(A. 1 )  

where 
&o is the  l inear  d i e l e c t r i c  constant and c2  and c4 are  higher 

order coef f ic ien ts .  The e l e c t r i c  f i e l d  i n  the  medium can be taken t o  be of 

t he  same form as  i n  chapter 2 i .e . 

E(x , t )  = Fe{@(x, t )e  i [kx-wt] 1 

or equivalently 

Maxwell's equations i n  the  d i e l e c t r i c  medium can be wri t ten a s  

In wri t ing equation (A.51, 

E~ << c0 has been made. 

VxE = - - - 
c a t  - (A.4) 

(A.5) 

(A061 

(24.7) 

the  reasonable assumption E~ << go and 



F r o m  ( A . 4 )  and ( A . 7 ) ,  we  obtain 

I n  a medium characterized by (A.1)  the e lect r ic  d i s p l a c e m e n t  vector w i l l  be 

w r i t t e n  as 

M a k i n g  use of ( A . 5 )  and (A.91 ,  w e  obtain f r o m  ( A . 8 )  

CI 

F r o m  ( A . 3 )  we  obtain 

3 2 1 i ( k x - w t ) +  1 - i ( k x - w t )  ( E I ~ E  = z J m /  IT ee 9 * e  1 

3 - 3 i ( k x - w t )  3 3 i ( k x - w t  
+ I+* e + e e  1 

Now, neglect ing the  t h i r d  h a r m o n i c  t e r m s  w e  obtain 

3 
( E ( ~ E  = , 14 1 'E 

5 
8 

1, w e  obtain 

S i m i l a r l y  

F r o m  ( A . 1 1 )  and 

(A. 1 1 )  

(A. 1 2 )  



a 2  2 
2 

- ( ( ~ 1  E) = i - 3 ei {I=-wt ) w 2 2 2 
4 [- 1- l m I 2 m  - 2 i ~ ( m ( ~ m , +  o*mt - iom m; + I m l  mtt 

a t  

(A .  13) 

Now l e t  us estimate the  terms on R.H.S. i n  (A.13) fo r  picosecond pulses 

-12s -6 
eg. A t  = 5.68 x 10 for  A = 1.5 x 10 m as considered i n  chapter 2. 

Also we make the crude approximation A . ~ o t i &  tha t  
m t  " A t  

common i n  a l l  terms, we estimate its coef f ic ien ts ,  v iz ;  

Thus a l l  terms on R.H.S. of (A.  13) are  negl igible  compared t o  the  f i r s t  

one. Therefore (A.13) is reduced t o  

a 3 2 2 -i(kx-wt) - 2 2 i(kx-wt)- ( ( E l  6) = - w 2 ( m l  P g w ($1 m*e (A.  14) 
a t  

Similarly 

a 2  5 2 -i (kx-wt 
16 8 3 0 )rnl4m*e a t  (A.  15) 

From (A.3) w e  obtain 



2 
2 

- =  k2 a i ( k ~ - w t ) ( ( . ~  & - - '1 + ge -i ( kx-wt 1 
e {-ik w - !L 

ax 
2 ax 2 ax 2 @*I (A. 16) 

where we have neglected the  A term by making the  slowly varying 
ax 

2 

envelope approximation. Note t h a t  f o r  picosecond pulses we cannot neglect  

t he  second time der ivat ive .  Thus 

(A. 17) 

NOW, subs t i tu t ing  ( ~ ~ 1 7 1 ,  (A.151, (A.14) and (A.16) i n t o  (A.lO) and using 

& O  1 - = -  
2 2 

and ,w  = kv, we obtain t he  following 
C v 

2 2 
i( kx-wt) 

e 
1 i - -  3 E2w 

9-- 
Ii'x + ; 't 2, 'tt 8 kc 2 

2 2 
-i ( kx-wt 1 i 1 3 E2W * + e {-i+: - ; + - - 5 E4w '* + - -  + -- 

2wv tt 8 kc 2 2 (+)*m*) = o 
l6  kc 

(A.  18) 

Comparing the  coef f ic ien ts  of e i(kx-wt) and -i(kx-wt) on both s ides  of 

( ~ . 1 8 )  we obtain 



2 2 
i I 3 E2W 5 E4W 

i$x + ; $t - -  P + - + m ( 2 e + x ~ l m ) 4 m = ~  2wv tt 8 kc (A. 19) 
kc 

and 

Now we move to the group velocity coordinate system defined by (unlike 

chapter 2 we will not bother normalizing the new coordinates) 

Thus (A. 19) and (A. 20) become 

(A. 21) 

(A. 22) 

(A. 23) 

These equations are equivalent to the NLCQSE. We do not obtain any higher 

order dispersion term in this derivation because we did not consider the 

frequency variation. We have also not included damping. 



APPENDIX B 

Solitary Wave Solutions of the 'Higherm NLSE, 

For n2 = 0 and neglecting the higher dispersion terms i.e, 

k t  = k w  = 0 as well as damping i.e. y = 0, the dynamical equation 

( 2.9) becomes 

Now we rnove to the group velocity coordinate system defined by 

Note that the normalization of q is different than in chapter 2. Thus 

the equation (B .l) becomes 

This is what Kodama et al, called the 'highern NLS equation [30] and 

appears as a special ease out of our model. Let us apply the same method 

as in chapter 4 to obtain the solitary wave solution for equation (R.2) 



Assuming 

and p a r a l l e l i n g  chap te r  4, (B.2) y i e l d s  

where t = 1; - WE and x = F 
2 

S e t t i n g  = C and performing t h e  i n t e g r a t i o n  i n  (73.4) we 

o b t a i n  

7d where C1 is i n t e g r a t i o n  cons t an t .  Choosing 2CC, = i - 
2 

(Be 5)  

Thus 

'(B.5) 

we o b t a i n  from 

Th i s  s o l u t i o n  is of  t h e  same form a s  t h a t  quoted by Kodama e t  a l e  [301. 
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