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(iii)
ABSTRACT

The one dimensional propagation of intense electromagnetic waves in a

nonlinear medium with an intensity dependent refractive index

n = ny + nZ'E'z + n4'§'4 is examined theoretically. The nonlinear
cubic-quintic Schrodinger equation (NLCQSE) governing the dynamics of thé
electromagnetic field in the medium is derived. Three conservation laws
and the Galilean invariance of the equation are obtained. The Lagrangian
formulation for the field equation is developed. The solitary wave
solutions for the NLCQSE are obtained for all possiblé cases corresponding
to different signs of n, and n,. Two analytical techniques i.e. the
Bﬁcklund tr;nsformation and thg inverse scattering transform method are
used to test the stability of the solitary wave solut?onsfi.e. to find
multi-soliton solutions. These two approaches seem to imply that the
solitary waves are not true solitons. However, numerical simulation shows

that quasi-soliton behaviour is found to persist over wide regions of

parameter space.
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CHAPTER 1

Introduction

Although a great deal of nature can be accurately described by linear
fields, nevertheless, nature in its mést general and complete sense, is
nonlinear. We are familiar with the small amplitude approximatién that we
make in order to obtain linear field equations for vibratory motion [1].
Similarly in electrodynamics, for a weak enough field propagating through a
dielectric medium, the response of the medium is linear and the electric
displacement vector depends linearly on the applied electric field E,

viz,

D = g(o)g_ (1.1)

(0)

where € is the linear dielectric constant of the medium. However,
with the invention of lasers, it is now possible to generate'very intense
light pulses with peak electric fields in excess of 109v/m [2]. Materials
that show a linear response to weak fields, eventually show nonlinear
behaviour at high enough field strength as the electronic or ionic
oscillators are driven to large amplitudes. In the nonlinear regime the

linear relation (1.1) is modified, eg., to

D= [8(0) + 8(2)'212 + higher order nonlinear terms]E (1.2)

2 . . .
where s( ) is the second order dielectric constant and so on. The

nonlinearity can be equivalently expressed in terms of the refractive index
of the medium. As early as the mid nineteen sixties, it was well known [3]

that when an electromagnetic wave propagates through a nonlinear dispersive



medium, a solitary wave can be obtained as a result of the interaction of

nonlinear and dispersive effects.

The nonlinearity of the index of refraction [4]

n=n, + nz,Elz (1.3)

could be used to compensate the pulse broadening effect. When the pulse
spreading due to dispersion and the pulse squeezing due to the nonlinearity
of the refractive index are balanced, the light pulse tends to form a
localized pulse which holds its shape and travels at constant velocity.
Such a pulse is referred to as "a solitary wave". Starting from (1.3), one

can derive the following dynamical equation for the field, viz,

. 1 ’ 2 .

iqe tzaq. + 2|q| ga=0 | (1.4)
which is called the cubic nonlinear Schrodinger equation (NLSE). Here
subscripts indicate partial differentiation w.r.t. the indicated variable.
g(£,T) corresponds to the electric field strength, £ is proportional to

the distance x along the propagation direction and T « t = %—-, where
g

t 1is time and vq is group velocity. The conditions under which a

solitary wave can be obtained are shown in the following diagram:



iq. = 0 . 1 -
€ i, + 59, 0
Linear dispersionless
Solitary wave q=q(t-'§) » Linear with dispersion
g (No solitary wave)

\

iqg + 2’q|2q =0 iqg +-% q..* Z'qlgq =0

Nonlinear dispersionless Nonlinear with dispersion
(No solitary wave) (Solitary wave exists)

In equation (1.4), the second term describes the effect of dispersion and
the third term the effect of nonlinearity. When the second and third terms
are absent, any localized solution of the equation travels without changing
shape and therefore is a (trivial example of a) solitary wave. The effect
of introducing dispersion without nonlinearity is to eliminate the
possibility of solitary waves because different Fourier components will
prbpagate at different velocities causing a spreading effect. Introducing
nonlinearity without dispersion again rules out the possibility for
solitary waves because the pulse energy is continually injected into higher
frequency modes which by the uncertainty pfinciple causes a squeezing
effect; But with both dispersion. and nonlinearity present, new (non
trivial) solitary waves can again be obtained that can be qualitatively
understood as the balance between nonlinearity and dispersion. If on
collision, the solitary waves pass through each other (interacting

nonlinearly as they 4o so) and come out with the same shapes and velocities



as before the collision, they are said to be solitons ie. solitons are
stable solitary waves. In 1970, Zakharov and Shabat [5] were the first to
solve equation (1.4) for multi-soliton solutions using the inverse
scattering transform method (ISTM) ana hence demonstrating that the
solitary wave solutions of (1.4) are solitons. The ISTM was firét
discovered by Krushkal et al [6] in.1967 and was used to find the soliton
solutions of the historically famous KAV equation describing shallow water

waves in a rectangular canal.

In 1973, Hasegawa and Tappert [7] pointed out that the nonlinearity
in the refractive index (1.3) could make it possible fo transmit picosecond
duration light pulses without distortion in an optical fiber having
appropriate dispersion. The experimental observations of such solitons
were reported [8,9,10] from the Bell Laboratories in the early eighties.
These optical solitons are now considered to havé a potential application
in the development of a high~bit-rate transmission system [11]. For these
solitons, the (small) fiber loss is the only factor that contributes to the
distortion of the stable pulse by broadening the pulse width and decreasing
the amplitude. In this case, equation (1.4) is modified to include damping
and one must study the perturbed NLS equation [12]. In a series of papers
[13,14,15,16] Hasegawa and Kodama showed that an optical soliton deformed
by the fiber loss can be reshaped by appropriate pumping to a narrower and

higher pulse during the course of transmission through the fiber.

One may wonder what would happen if one could find a material with
refractive index whose fourth order nonlinearity also becomes important for

sufficiently intense electromagnetic fields (below the dielectric breakdown



limit). For a higher order positive nonlinearity the narrowing effect is
expected to be even stronger. But whether the balance between the total
nonlinearity and dispersion actually occurs and is stable or not, is not
obviogs. If it does, we shall get nafrower and higher solitons and hence
it will make the communication system more effective by increasiﬁg the
bit-rate of transmission. Very little has been done in this direction and
the detailed calculations have not been yet carried out. In this thesis we

shall assume the nonlinear refractive index to be of the form

E

4'_ (1.5)

2 4
= + +
n n, nz’gl n '
Pushkarov et al. [26] have written down solitary wave solutions
corresponding to (1.5) (without giving any derivation) for the situation

when n, is positive and n, is positive or negative. They call their

solitary wave solutions solitons without ever checking their stability.

In chapter 2, we define our model explicitly and by Taylor expanding
the wave number k around the carrier frequency Wy (= 2nc/A, where A\
is the vacuum wave length) and in powers of ‘the electric field we derive a
nonlinear evolution equation (the nonlinear cubic-quintic Schrddinger
equation) that governs the dynamics of the electromagnetic pulse in the
medium characterized by (1.5). We give an alternative derivation of the
same equation starting with Maxwell's equations in Appendix A. In chapter
3, we obtain three conservation klaws by inspection for the nonlinear
cubic-quintic Schrodinger equation (NLCQSE) as well as showing that it is

Galilean invariant. These are important properties of the equation and two



of the conservation laws are used to check the accuracy of the numerical
scheme employed in chapter 7 for checking the stability of the solitary
wave solutions. It has been noticed [17] that if one knows the Lagrangian
density corresponding to the field equétion, one can possibly derive ;he
infinite number of conservation laws making use of the Backlund
transformation for the equation. Thus in chapter 3, we also develop the:
Lagrangian formalism and show that the three conservation laws can also be
obtained from the Lagrangian density.

In chapter 4, we solve the NLCQSE analytically and obtain the
solitary wave solutions for all possible signs of n, . and n,. We show
that the solutions reported by Pushkarov et al. form a subset of our
solutions. A special case is relegated to Appendix B. In subsequent
chapters we attempt to determine whether the solitary wave solutions are
solitons or not. Presently there are two different but interconnected
analytic methods to obtain multi-soliton solutions if they exist. Theée
methods are the Backlund transformation and the ISTM [18,19]. If we derive
the Backlund transformation we can obtain an eigenvalue problem to solve
the equation by the ISTM. If, on the other hahd, we are able to establish
the ISTM, we can obtain the Backlund transformation from the eigenvalue
problem of the ISTM. Thus, in chapter 5, we make an attempt to derive the
Backlund transformation for the evolution equation by a method due to
Clairin. In chapter 6, we explore the possibility that the NLCQSE belongs
to the class of equations that éan be solved by the ISTM using the
Ablowitz-Kaup-Newell-Segur (AKNS) eigenvalue problem. The results of these
two approaches lead us to believe that the solitary wave solutions of the

NLCQSE are probably not solitons. Since we cannot absolutely rule out the



possibility of solitons, we finaliy examine the stability of the solitary
waves numerically in chapter 7. The general conclusion is that the
solitary wave solutions are not solitons, but "quasi-soliton" and other
interesting behaviour is observed. E#perimental difficulties aside, some
aspects of our theoretical results may possibly be experimentally
testable. We discuss these possibilities in chapter 8 and present

conclusions of this thesis in chapter 9.



CHAPTER 2

Formulation of the problem

In this chapter, we derive the nonlinear (cubic-quintic) Schrodinger
equation (NLCQSE) that describes the propagation of an optical pulse in a
nonlinear dispersive medium. In section 2.1, we introduce the refractive
index which characterizes our model. Beginning with this model ip section
2.2, we derive the nonlinear differential equation governing the dynamics
of the electric field in the medium. Finally we obtain the NLCQSE by

moving into the group velocity co-ordinate system.

2.1 The Model

The physical process under investigation is the (one dimensional)
propagation-of intense electromagnetic waves in a nonlinear dispersive

isotropic medium characterized by a refractive index given by

_ck _ .
n = =n () + ix(w) + nZLE

2
= |

+n,|E|* (2.1)

where E 1is the electric field intensity, ng is the linear index of
refractipn, n, and n, are higher order coefficients of the refractive
index and Y 1is the imaginary part of the linear refractive index that
accounts for any damping. In (2.1) we have neglected any variation of

n, and n, with w assuming that we are far away from any resonance as
far as these coeffiéients are concerned. At this level our model is a
phenomenological one and we will not go into possible microscopic -

contributions to n, and Nye

As mentioned in the introduction, the effect of the second order

nonlinearity has already been studied in detail, the nonlinear Schrodinger



equation resulting when the '§,4 contribution is neglected. When the

electric field is sufficiently intense (assuming that it's below the

n
dielectric breakdown limit) such that E~(;£) r the fourth order non-
4

D=

linearity in equation (2.1) becomes comparable to the second ordér
nonlinearity and plays an important role. The nonlinear dependence of
refractive index on the electric field intensity gives rise to a

pulse compression or pulse broadening effect depending upon the signs of
n, and n,. The dependence of the refractive index on the frequency (w)
causes dispersion. The nonlinear combination of both .effects determines

the shape of the optical pulse as it propagates.

Under the assumption that the diameter of the medium guide (e.g. an
optical fiber) is much larger than the wave length of the radiation, the
electric field can be written in terms of a (slowly varying) complex

amplitude ¢ times a plane wave, viz;
E(x,t) = Re{¢(x,t)gl{kox - wot}} (2.2)

where Re means real part and ko and w, are the central wave number

and angular frequency respectively.

2.2 Derivation of the Basic Nonlinear Dynamical Equation

The dynamical equation that describes the development of the
amplitude function ¢(x,t) in the non linear medium may be derived as
follows. (An alternate derivation starting directly from Maxwell's

equations is given in Appendix A).
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Expanding k = k(w,'E|2,|E|4) around the carrier frequency

w°(= E%EJ and zero electric field, we obtain
k o 2 3
k -k =1x—°—+——k- (w=w ) + Ok 'E|2+l§—£ (w-w)2+—1--a'—&(w-w)3
o n w 2 2 2 o) 6 3 o)
o 6|E dw dw
o -l lo 1o o
(v
2%k 2 0 Bk s 1 ok 2 2
+ 2 (w-wo)liE— +- 4 'E' 323 2 'E| (w-wo)
dwd | E| LB|E| dw 3| E|
4
19k 4 .
+ ﬁ—4 (w—wo) (2.3)
dw .
o

We have consistently kept all terms up to fourth order in the expansion.

From (2.1) we find that

23k 0

o o],

5%k M2
oudfg)® |,

(2.4)
2%n

ok |
| A
(o]

2|E)?

2
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Writing %5- = k', §L4% = k" etc. and using (2.4), (2.3) may be
o AW
o
re—expressed as
k 2nn
- = 1 .2 ] 2 2 _1_ " 2 ,l, (AN 3
k=k = iX = + k' (=0 ) + ——|E|” + 53 k" (0=w )" + = k""" (0= )
n 2nn
2152 S TR I R 4
+ JEj(ww5)+ X'El f24k wwh) (2.3)

We now write the electric field E(x,t) in its Fourier inteqral form as

+e +e
E(x,t) =»L [ [ e(kuel 9k ay (2. 6)

so that equation (2.2) can be written for ¢ (x,t) as

o e .
0 (x,t) =5,1;f f e (k,wyell (KkIx=Ww Ity 0 (5 g

From (2.7) we obtain

(k-ko)x_(wq”o)t}dk dw

12 .1 }a r{-(k—k y}e (k wyell
4 dx 2n o '

b3

e :
¢ = 5% f f iy ;9-e(k,w)el{(k-ko)x_(w-wo)t}dk aw

(o}
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}"’ i{ (k= _)x-(w-v_)t}

k' (w-wo)a(k,w)e {

Y ikt 22 o iy dk dw

ot 2

a

-—CC

2n. +< 4 27n
2 2 1 2 (k=k J)x=-(w=-w )t
v X ,E ) = L L ' | £ (k,w)e’ i o o }dk dw
N
2 oo o .
f =k 2 ¢ _ =1 %k"(w-wo)ze (ke il kkoIx=(w )ty o)
ot -t -t
( (2.8)
s 3 +¢ +oc T 1 - - \
L0 Ly kU ) (k,w)el{(k ko) x=twu )thy o
3 2n 6 o
ot -
+x 4+x n .
2 a¢ _ 1 "2 2 i{ (k=k )x=(w-w_)t}
/ c' , =5 L L S (w-wo)l_}:l_l e(k,w)e o o’ “ldk dw
2nn +x 4= 27n .
4, 4 1 4 .4 i{ (k=k )x=(w=w )t}
— |E| o -EL L — |E|” ek 0)e o o’ “lak dw
4 +oc foc
1 d 1 1 (k=k_)x=(w—w )t
ﬁk””a-;%=_2—’?{a{¢24 k""(w-w)e(kw)e{ o o }dk dw
Adding all the equations of (2.8) and using (2.5) we obtain
i 2 , 3 n
29 e 00y 1 ,.070 _i.,,,230¢ i 2 1412 03¢
1{ax +rd + k at}/‘ 5 k — 5 k 3 +i== o] Y
21m 21n
1 d ¢ 4 4, _
tap kU # l¢'¢+ |of ¢ =0 (2.9)
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Equation (2.9) governs the dynamics of the electric field envelope
$(x,t) in the medium and it contains the terms accounting for effects of

group dispersion, medium losses and pulse compression etc. In equation

(2.9), if we switch off the loss term, non linearity and group dispersion

i.e. r =k" = k''' = k'*''! = n, =n, = 0, the equation reduces to
9¢ . 120 _
o v 3t 0 (2.10)
g9
where v = %% = %T is the group velocity. From equation (2.10) it's

clear that

X

ox,t) = ¢(e- =)
g

This suggests that the dynamical evolution of ¢ may be best seen by

moving into the group velocity co-ordinates (£,t) where ZF«x and

X . . . . .
Ta(t- ;—). We also, for convenience, normalize the distance x, time t
g

and the electric field amplitude ¢ as follows:



']
i
—
o
i
>i%

} X,
T = (t - ) | (2.11)

where in defining T it's assumed that k" is negative [20]. To give the
reader a feeling for these normalized quantities we take the nominal,

example of a glass fiber discussed by Hasegawa and Kodama [21].
For A = 1.5um

n, = 1.2 x 10-22m2/v2

and the group dispersion

3

2
A2 9—22= ~8.13 x 10"

dA

Using these values we calculate

Ak" = A 9—2’% A
[}

= - (}\
o)

14



For these values, we find that in (2.11)

1 corresponds to x 1. 5km

(]
(]

= 1.62 x 10%/m

©
§

g = 1 corresponds to

1 corresponds to t - ;5-= 5.68psec.

9

<
fi

From (2.11), we can write the transformation of the spatialAand temporal

operators as follows

o _107 5 _107*® L p
ox A [} (-Xk")1/2 07T
i (2.12)
_a ) 10_4.5 .—a_ L'} !.)_Q 3\
ot (_M(")1/2 o1 . - e 31
Using (2.11) and (2.12), (2.9) transforms to
2 3 4
. 0qg . 107g 2 4 _ . s 07gq _ . 2 3q _ dq
igg+tg 2 *2a|l"a+8lal’a=-iTa~ip, =5 - iByla|” 57 - B3 —
ot o1 ot
(2.13)

where



4 -9
2
T = 109Kr

1 krer 10743

5 k" /R (2.14)

™
—
|

10-40 5

By = ———— A
Tev ~Ak"

tene -
1 k' 10 9

24, 2

B3

We now wish to show that the terms on the right hand side of (2.13) are
very small and may be neqlected. Let us estimate the coefficients 61, 32'

B3 and T in (2.13).

We have already calculated

Ak" = 3.23 x 1073%2 gor A = 1.5um so that

k"= =2.15 x 10" 2% %/n

Cdk" _ dk" DA _ A2 ak” A o

.71 x 10”4

s3/m~
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Similarly we estimate

56 4

K'*'" > =1,36 x 10 ~°s"/m

Using these values we obtain from (2.14)

5 ~4 10

B, = -2.34 x 107, B, =2.8x 107", B, =-8.17 x 10~

i.e., these coefficients are very small.

For, say, a quartz fiber with loss rate _0.2dB/km [22]

i/

r = 10%r = 10%(1.5107% x 22 (3n10) x 1073 = 3.45 x 1072
so that the damping coefficient is alSo'small. Now making the crude
approximation that %%-~-% , etc., and assuming that q,7 and { ~ 1, the
L.H.S. of (2.13) is of order unity and the R.H.S. negligible. Thus our
dynamical equation finally becomes

0q 1 62q 2 4
i—=+=— + 2'q| q + 6|q| q=20 (2.15)
o0& 2 612

which we call the NLCQSE.

0, (2.15) reduces to the well-known NLSE which has soliton

For O
solutions for n, > 0. It should be noted that if n, < 0 the cubic non
linear term in (2.15) would have a negative coefficient and the sign of &

depends upon the sign of n,.



CHAPTER 3

Galilean Invariance and Conservation Laws for the NLCOSE

In this chapter, we shall investigate some of the iﬁportant
properties of the NLCQSE. In section 3.1, we derive by inspection the
first three conservation laws for this equation. To obtain additional
conservation laws or to establish that there are an infinite number of
them, we clearly cannot proceed by inspection but must follow a more
general approach e.g. a Lagrangian formulation. It is generally believed
that the existence of an infinite number of conservation laws, a Backlund
transformation and an ISTM are intimately connected. The existence of one
implies the existence of others. If we could develop the Lagrangian
formulation for our problem, it would be possible to find an infinite
number of conserved densities and hence an infinite number of conservation
laws provided the Backlund transformation for the equation is known. So in
section 3.2, we develop the Lagrangian formalism for the problem. In
section 3.3, we obtain the same three conservation laws from the Lagrangian
density. Finally, the invariance of the NLCQSE under a Galilean

transformation is demonstrated in section 3.4.

3.1 Derivation of the Conservation Laws

- Scott et al. in their well known paper [23] point out the importance
of distinguishing between those nonlinear wave equations that dissipate
energy and those that do not. The latter ones are often referred to in the
engineering literature as "conservative". Now as we have derived the
NLCQSE as an approximate description of the system, it is not a priori

obvious that the energy is conserved. So, it is important to find the

conservation laws, if any, including the energy conservation. Zakharov and

18
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Shabat [24] have found, by the inverse scattering technique, an infinite
set of conservation laws for the nonlinear cubic Schrodinger equation.
However, this doesn't imply that the NLCQSE also has an infinite number (or
any) of conservation laws. By inspection, we have found three conservation

laws for the equation

iqg +-% a.. + 2|q|2q + 6|q,4q =0 (3.1)

The First Conservation Law

From (3.1) we write

q = %—1qTT + 2i|q'2q + ié'q'4q (3.2a)
and
*
% = -3 i - Al - e .2
Let's define the integral
2
I, = / [a]| “av (3.3)
.
so that
dI1 R
_— = * * 3.
= {a,q* + agtlac (3.4)

Using (3.2), (3.4) becomes

e
aE % L{qTTq* - qq;':}dt (3.4a)



Now by the method of integration by parts

%
A%

e
*, = * *,
J a;,9%d7 = a.q 9, qpd

lm_

o e
- f 29747 = -q1q ' + I a qixdf
—CC .-l e=OC

e e
Thus f qTTq*dT = f q qztdt
-l —CC

where we have used the condition
q*>0 as T >t «= S

Making use of (3.4b), (3.4a) becomes

(3.4b)

(3.4c)

(3. 5)

This is what we call the first conservation law, I1 being the conserved

quantity.

The Second Conservation Law

From (3.2), we obtain

—l' - '2* o &ud i 22 '3**
U, =7 i, + 2iq qxr + 4iq q, + 3idq*“q q; + 2i6q q ar

1
2

* e o o Ll
q&t -

2 2.2 3
- 1ia* . i * 3 * - 3 *
2iq*“q - 4iqqr - 3i8q°q*"q* - 2i8q*Tqq_

(3.6a)

(3.6b)
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Now define the quantity

4o
I, = [ {a*a; - agtlar (3.7)
[ 4
Therefore
daI x
== = [ {agq_ + q*a,_ - a.q* - qqf_}dv (3.8)
ag e T ET gt £t

Making use of (3.2) and (3.6), following the same procedure that we used to

derive the first conservation law, we obtain

— = c (3-9)

This is the second conservation law for the equation (3.1).

The Third Conservation Law

Let's now define the integral

I3 =

bR

(Ja,|* - 2/a]® - 5 o]a Jac (3.10
Following the same procedure we obtain

dI3
ag_ =0 (3.11)

which is the third conservation law.



(3.5), (3.9) and (3.11) can be written in their explicit form as-

+
é {Jqlsz =0 (3.12a)
+a .
d
= L{q*qT - qa*}as = 0 (3.12b)
2 r{'q '2 - 2|q|4 -2 6|ql6}d1; =0 (3.12c)
& e 3

These conservation laws have significant physical meaning i.e. they
represent the conservation of number, conservation of ﬁomentum and the
conservation of energy respectively according to the terminology used by
Zakharov et al. in the case of the NLSE [5]. We have obtained the three
basic conservation laws for the NLCQSE, but the question whether the
equatibn has infinite number of conservétion laws is still open. We will

address this issue in the coming chapters.

3.2 The Lagrangian Formulation of the NLCQSE

memeﬁmfumhmism%Mrmy&emhthcm%que
nature of a system. The Lagrangian density is a useful concept. If the
Lagrangian density, no matter how we find it, has the form of that for a
conservative system, then the corresponding wave system may bevconsidered
as conservative in the conventional sense of the term. In the NLCQSE, g
is a complex field. So the field is described by two independent field
variables ¢ an; g*. The Lagrangian density of a one dimensional complex

field can be taken, in general, of the form:

22
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L= L(QIQ*:qT:q;,qg:qEIE:T) (3.13)

We take the total derivative of L with respect to xu {where Xy =&

x, = 1}

dL _ 3L 3L 3L
== 22 o 9 o + 9= (3.13a)
dxp’ 6qi i,p 6qilv i,pv E)xLL

dq,

where q. =49, q, = g*, q, = — etc. and the sum over repeated
1 2 i, dx‘_L

indices is implied. The Euler-Lagrange equations corresponding to a

Lagrangian of the form (3.13) are

d (_dL 3L _ o
= (6q. ) oq. = 0 i=12 , (3.14)
\Y i,v 1

Making use of (3.14), (3.13a) becomes

dL = d ( oL ) q + oL dqi,u + oL
dxu dxV aqi,v i,p aqi,v_ dxV 6xu
d oL oL
S o b —
dx, (aqi,v qi'u) ox

d { oL 3L
= q, =L§ } =-= (3.15)
é#v aqllv Lo By 6xu
If L does not depend explicity on XP’ %&— = 0 and (3.15) becomes
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- 4T v
—EE— = 0 (3.16)
v
where
, = 695—— 9. - L6 (3.17)
(] EERY i, BV
T is in general a four-tensor of the second rank for a three

oY

dimensional field. But we are dealing, however, with only one dimensional
field. So the indices u,v would run over §{ and 1 only. Consider the

Lagrangian density

=i * o ok 1 * - 2 %2 0 3,3
L =3 {qqg q qg} t799 -a9 394
/ (3.18)
- i * ok + l' '2 - ' l4 - é' |6
=3 {qqE q qg} 2|9, q 3la

Using the Lagrangian density (3.18), the Lagrange equations (3.14)

yield the field equations

1 2 4
- ig* + —g* + 2 * 4 * = ( 3.19
: lqg 2 qTT |q| 4 qu| 4 ( )
iqg + % qTT + 2|ql2q + 6,q|4q =0 (3.20)

which are indeed the NLCQS equations.

Hence the Lagrangian density given by (3.18) qualifies to be the

Lagrangian density for our problem.



3.3 Derivation of the Conservation Laws from the Lagrangian Formalism

We can now obtain the three conservation laws systematically from the

Langrangian formalism developed in section 3.2.

We can rewrite (3.16) as

4aT :
___E'_o + = 0 (3.21)
dg

e
;

and in our problem, xj has Jjust one component and that's £. (3.21)
has the structure of an equation of continuity, which says that the time
rate of change of some density plus the divergence of some corresponding

flux or current density vanishes. The equation of continuity

o , 3B _
oF + o 0 i (3.22)

implies the conservation of integral quéntities [25]

+
I=/Ddr (3.22a)

-—Ct

provided the integral exists and the integrand satisfies the appropriate

boundary conditions.

Now for our problem, (3.21) is a set of two equations i.e.

4aT 4aT
5 o . _EE _
ar + aE 0 (3.23a)
daT daT
9% , 0% _, (3.23b)

dz 4az,
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where according to Goldstein [25] ng is the energy density and Tb& is

the momentum density. Now from (3.17)

dL dL dL
T = q. = ==-q, + q*
go aqiﬁ 1,8 0dq. & 0qr &

= %{ng; + qtqg}

and
- oL -1 = 0L dL _
R A A
(3.24)
1 2 4 2 6
= -3l ]” - 2a]” - 5 8q]}
Similarly
Too = - 3lagt - ata} + e |® + [o]* + 3q|®

%E=-%¢%—qﬁJ

4

From (3.23) and (3.24) we obtain the second and third conservation laws

4 o
& [ lata; -aag} @ =0 (3.12b)
4
d 2 4 _ 2., ,6
&EL{lqu - 2|q|” - 5 8|a| tav = 0 (3.120)

It's worth noticing that the conserved quantity in (3.12¢c) is the
Hamiltonian corresponding to the Lagrangian of our problem with the

Hamiltonian density defined as viz;

H T-L (3.24a)



where the canonical momentum = 1is given as;

oL _ 9L _ oL (3.24b)

" T8, "%, % T daf %

Now from (3.14), we write

_g_(aL ) + _g‘(OL ) _ oL 0

dt aq; og*
or
< o o
4 OL _ OL dqg* - - 4 (dL x x
Z g 3 dqF ag 3" fdr(aq;)qdf"fa*th
-t Fz -t F: - -t
(3.25a)
And from the second Lagrange's equation
4 (OL ) 4a (OL ) QL _
—_— 0
d§ bqF= qu bq
or
4 o g
4 OL OL_dgq d (0L oL
ac f dq qdt - f q dF, dv - f dt (aq‘r)q dt +.J' dq q dt
(3.25b)

Subtracting (3.25b) from (3.25a) and making use of (3.18), we obtain

ot 4o e
o 2 1 o
%._§.£m|q, dt = Ea{C {a{q;Tq - qrrq*}dT =0 (using 3.4c)

R e
So = [ |a s = 0 (3.12a)
=0

which is the first conservation law.
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The equation of continuity (3.22) exists for all solutions q. If
the Backlund transformation for the NLCQOSE exists (i.e. if we can find it)
then it would be possible to find an infinite number of conserved densities
and hence an infinite number of conservation laws following basically the
same approach as applied by Scott for the Sine Gordon equation [23]. This
is the basic motivation behind developing the Lagrangian formulation of the

problem. We will return to this issue again in chapter 5.

3.4 Invariance Under Galilean Transformation

We demonstrate here that the NLCOSE (3.1) is invariant under the

Galilean transformation

gl

(]
()

A (3.26)

2

A
qQE,t) = q'<a',%-)e1{"T + 58

The corresponding operators transform accordingly as

B0 o
of ot ot!
(3.27)
> _ 3
3t ot

From (3.26) and (3.27), we obtain
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2
2 v
o) . 0q' dq! v ijvt" + —E°
16'1={la§—,—lva—3—'-+-é-—'} { g}
(3.28)
2
2 2 2 . v
137 137q" 3q' _ v ifver + -t}
3= gt ivgr -3 a') 2
o7t ot'

Thus equation (3.1) transforms to

2
3 R S RE LU LU R IR
ot

Hence the NLCQSE is invariant under the Galilean transformation. This

invariance reveals that if q(f,T) 1is a solution of (3.1) then
2
i{ve - =—¢} . , , A
gl ,t=E)e 2 is a1so a solution. If q(§,t) 1is a solitary wave
solution then the other solution represents the solitary wave moving with

relative velocity wv. It's interesting to note that the Lagrangian density

(3.18) is also invariant under the Galilean transformation.



CHAPTER 4

Solitary Wave Solutions for the NLCOSE

In this chapter, we solve the NLCQSE to obtain the solitary wave
solutions. Some of these solutions haﬁe been quoted in a different form
without derivation by Pushkarov et al [26]. 1In section 4.1, we make the
distinction between the terms solitary wave and soliton. In section 4.2 we
derive a general solitary wave solution for the NLCQSE. The solitary wave

solutions for all possible special cases (ie. all signs of n and n4)

2
are deduced in section 4.3 and 4.4. Finally in section 4.5, we

qualitatively discuss the role of nonlinearities and the dispersion in

producing the necessary balance for solitary waves to exist.

4.1 Solitary Waves and Solitons

A solitary wave és a localized shape that propagates at constant
velocity without changé of form;; If two or more solitary waves after
suffering a collision, come out with exactly the same shape and velocity,
they are called solitons and the collision is called a perfectly elastic
collision. The'ending "on" is Greek for particle and the word soliton
means the particle-like behaviour of the solitary wave. Not all solitary
waves exhibit soliton behaviour. Some equations may have solitary wave
solutions that have approximate soliton behavior in the sense that when two
such solitary waves collide, they re-emerge with a slight change in shape
and/or velocity, leaving a small amount of energy behind in the form of
oscillations ("radiation”). Such solitary waves are said to exhibit
soliton=-like or quasi-soliton behavior and such collisions are referred to
as being only partially elastic. However, conventions differ from one area

of physics to another. For instance in particle physics and solid state
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physics, the transparency of the wéves to one another is not so important
relative to other particle-like properties such as localisability and
finite energy. Consequently some models are used in which the waves are
not strictly solitons in the sense defined above but nevertheless they are
still called solitons by workers in those fields ([27]. However wé shall
stick to our strict definition stated above. Accordingly, what we obtain
in this chapter are referred to as solitary wave solutions and their

soliton nature will be investigated in the upcoming chapters.

4.2 The General Solitary Wave Solution for the NLCOSE

The solitary wave solutions for the cubic nonlinear Schrddinger
equation which is a special case ofbthe NLCQSE, are well known. We present

here a method to solve the NLCQSE for solitary wave solutions.

The NLCQS equation is L

We assume the solitary wave solution to be of the form

q = P T o (gmwt) (4.2)

where P and w are real constants which can be determined from initial
conditions; and F 1is a real function. w can be interpreted as the

velocity relative to the group velocity.

From (4.2), we obtain
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(24
(4.3)
2 ,/’
10% _(108% . oF _1 2 i{PE + wr}
I R i R L
ot ot
Using (4.2) and (4.3), (4.1) leads to
-PF+1——62F+19—F-+iw9£--1—w2F+2F3+6’i-;5=0 (4.4)
2,2 3 ot 2 yz

We can convert this partial differential equation into an ordinary
differential equation by substituting T - wE =t (not to be confused with

the lab time) so that

Qo _0
ot ot
dE dt

With this substitution, equation (4.4) becomes:

%@-(P +12'—)F+2F3+/§F5=0 (4.5)
at /

It's now straightforward to integrate this second order ordinary

differential equation. Multiplying equation (4.5) by g%-i F' and

integrating once, we obtain



= (2P + w2)F2 - 2F4 t/g;éF + C1 (4.6)

where C1 is the integration constant.

Now for a solitary wave of localized shape
F and F' + 0, as t + + « /

N/

so from (4.6), C1 = 0., However more generally, non-localized travelling

wave solutions to (4.6) can be obtained for arbitrary C1.

Equation (4.6) now becomes

dF _ 2y _ op2 4 g411/2
= ~ Flee+vw) - oF fiyé‘} (4.7)

where vy = 2% which on integrétion gives:

/ F{(2p + w?) -sz 2+ 4f)1/2 SETG (4.8)
where ¢, is the integration constant.
We rewrite (4.8) as
f dx 73 = 2(t + c2) (4.9)

x{ (28 + w?) - 2% - sz}

33



However, we have assumed that F 1is real. For this to be true for

all values of & we recognize that

2P +w > 0

Assuming this, we solve the integral in (4.9) and obtain [28]

(2P + w?) - X
72

L 2,1/2
773 = - tash{2(2p + w) (¢ + C,)}

(2 + W) (2P + w’) - 2x - yxz}

(4.10)

which can be rewritten as
{1+ y(2p + w2 )tanh[6(t +‘lc2)]}x2 - 2(2P + w2){1 - tanh([B(t + c2)]}x

+ (20 + w*)%{1 - tann®(o(e + c 1} = 0 (4.11)

2(2p + w2)1/2,

in

where 9

Equation (4.11) is a quadratic equation in X. We obtain the

solution

(2 + W) {1 % 401 + y(2p + w2)1/Zsinnlo(e + ¢ )1}
X = - : : (4.12)
[1 + y(2P + w')]cosh“[B(t + C,)1 - y(2P + W)

If we choose (this does not restrict the generality of our results.)

then
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sinh[8(t + C,)] = sinh[0t + i %g = sinh(0t)cosh (i gp + cosh (0t)sinh (i %o

= sinh(et)cos(go + cosh (0t) iAsin(%J

= i cosh(0t) (413

Similarly we obtain
2 . 2
Cosh“ [0 (t + C2)] = - ginh”(0t) (4.14)

Making use of (4.13), (4.14) and of appropriate trigonometric identities,

(4.12) can be rewritten as

g 22+ w12 {14y +whH} Zosney)]
1«1 +y(2p + w?) Jcosh2(ot)

(4.15)

There are two values of X in (4.15). We shall keep the 6ne that

makes F real. From (4.15) we write

F =/X = [ZP +'W2]1/2[1 s {1 + y (2P + wz)}1/?cosh6t]1/2
[1 - {1 +y(@p + w?)}cosh® (ot) ]1/2

(4.16)

Thus we can write the solitary wave solution for the equation (4.1) as

q = Fej"[Pg + wtl (4.2)

where F 1is given by (4.16).
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(4.16) is the general solution in the sense that we have not assigned
any positive or negative signs to §. From this general solution we shall
obtain particular solutions for different possible special cases, in the

following sections.

4.3 Sdlitary Wave Solutions for Positive n

2.
This case has three special sub cases
(i) n, > 0, n, >0 i.e. y>0
From (4.16) we obtain, on taking minus sign,
[2p + w?]"/2
F= 2. ,1/2 1/2 (4.17)
[1+ {1+ y@2P + w")} "“cosh(ot)]

The other solution corresponding to taking the plus sign makes F
imaginary, so we reject it as being inconsistent with our assumption that

F is real. Thus we write the solution of the equation (4.1) as

q(E,T) = [2P+w2]1/2[1+{1+y(2P+w2)}1/2cosh[2(2P+w2)1/2(1-w§)]]—1/2ei{PE+wT}
(4.18)
Let [2p + w112 = ¢
Then [1 +y(2p + w2172 = [1 + yc?11/2
B 2 _ 2
and P = C__—L .
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And we can write (4.18) as

/2 =172 ei[(c2 - wHE & wrl

q(,t) = C[1 + (1 +yc2)1 cosh[2C(t - wE)] 2
(4.19)
The constant C, can be determined by initial conditions. Assume that

initially i.e. £ =1 =20

lal =9,
Then from (4.19) we find

c=q(2+vygd) 2 (4.20)

where q, is given by (2.11) as

4.5 ‘
q, = 10 »’nn2 4’0 (4.21)

We can convert our solution (4.19) to the form quoted by Pushkarov et al

[26]. Consider

<

o

/ |q|2d1 = (4.22).

We know from (3.12a) that € is a conserved quantity. Substituting for

g as given by (4.19), (4.22) becomes

37
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dt_
1+ (1 + YC2)1/2cosh[2C(1 - wg)l}

Solving the integral we obtain

2 -1 Yy C
€ =— tan { }
o /5 1+ (1+ Yc2)1/2

or vy C

(4.23)
We solve (4.23) for C and obtain
c=— tan[vy ¢ ]
— o
4
define n =y £,
then C=c¢ tann
o n
Thus (4.19) becomes
tann tann -1/2 i{(g2 tan’n 2.k
a(E,t) = Ed_—; {1 + secncosh[zso——— (1-w§)]} e fo) 5 -w )2 + wr}
n

(4.24)



This is the form of solution reported by Pushkarov. We shall prefer
to write the solution in the form (4.19). The width of the solitary wave

would be

= 1 © (4.25)

L =
2,1/2
2, {2 +vq’}"/

=
2

Thus for n, > 0 the solitary waves will be narrower than those which

4

occur when n, = 0.

(ii) n, > 0, n, < 0 i.e. Y <O

For this case the solution (4.16)\becomes

2]1/2cosh(2Ct)}1/2

_cli s 11 - Jyfc
- Ty }1/2

(4.26)
{1 -100 - ’Y’CZ)coshz(ZCt)]

F

The only solution consistent with F real is

F=c{1+ (0~ fy|c}Zeosnizc(z - we)1}™"/?

Thus

o le? _ 2.E
a€,7 =cf1+ (1 - |y|c?)%cosnizc(z - w2)1} 172,11 €% = w3 + wr)

(4.27)

We calculate C by initial conditions and obtain
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_ _ 2,1/2

C=gq (2-|y|a) (4.28)

Thus the width of the solitary wave is

1 1
L = — = (4.29)
2C 2.1/2

Thus for n, < 0 the solitary wave will be broader than that with n, = 0.
(iii) n, =

4—0’ n2>0 i.e. Y=0

For this case the NLCQSE reduc’és to the NLS equation and the solution
(4.16) becomes

o - CI1 £ cosh(ace))*'/?

(1 - cosh2 (2Cct) ] 172

The only solution consistent with F real is

P o= cr - cosh(2Ct)]1/2 C

[1 - cosh2(2ct)1'”/% 1 + cosh(2ct)]'/?

= — .C =—_E_sech[C(1: - wE)1]
Y2 cosh (Ct) Y2
Thus

f 2 _ 2.8
qiE,t) = —g;sech[C(T - wg)]el{(c w3
Y2

(4.30)

"
This is the well known soliton solution [29] for the NLS equation.



4.4 solitary wave solutions for n, < 0

2

Here we again discuss three subcases:

For this, the NLCQSE becomes

1 2 4
iq. + + -2 - =0
ig, +5q . |q| q léllql q

41

(4.31)

We solve this equation following the same procedure and obtain

1/2

1
I

c{(1 - |y|c2) cosh(2ct)

This solution is unacceptable because at <t = § = 0,
in contradiction to our assumption that F is real.

wave solution does not exist for n2 < 0, n, < 0.

(ii) n, <0 n, =0
For this case the NLCQSE reduces to
1 2
i + = -2 =0
lqg ) qrr IQI q

and the solution (4.32) reduces to

'

- gy

c{(1 - |v|c*2cosnizc(s - weN - 1)

(4.32)

-1/2

F becomes imaginary

Therefore a sblitary

(4.33)



F = C{cosh[2Cc(t - wE)] - 1}-1/2
= c{2sinn?[2c(r ~wE)1}" /2 (4.34)
C
= — csch[2C(Tt - wE)]
Y2

This is certainly not a solitary wave solution because it doesn't have a
finite amplitude at

T=£ =0,
(iii) n, <o, n, > 0
For n, < 0, n, > 0 the NLCQSE becomes
X 1 : 2 4 _
tg + 3 ., - 2al e + oalta - o (4.35
and the solution is
»oclie o +yc V20en12c(x - we)1} /2
B 2 2 1/2
] {1 +yc%)eosh“[2c(T - wE)] - 1}
The solution consistent with F real is
F = ¢
{1 +yeH 20sn12c(r - we)] - 1}'/2
Thus
C i{c? - wHs + wi}
a= 2.1/2 172 © 2
{1 +yc*) /" “coshizc(t - wE)] - 1}

(4.36)
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5 = 0, n, > 0, our equation NLCQSE reduces to the "higher"

4
NLS equation whose solution has been quoted by Kodama et al. [30]. We

derive this solution by our method in Appendix B.

4.5 Discussion

We can understand from a qualitative, i.e. hand waving, argument how
the dispersion and nonlinear terms can balance to yield solitary waves. We
can summarize these effects in diagrams as follows where the solid arrow

corresponds to the effect of dispersion, the dashed arrow to the n

2
contribution and the dotted one to the n, contribution.

Eg Eﬂ Expectation
Solitary wave may
exist.

a) + +
PR, .- _ Solitary wave may
Corvoas oo poscessP exist.
b) + - ;
..... Solitary wave may
Gococso s exist.
e}

c) - + J/
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2 _4 Diagram Expectation
RS Solitary wave can't
sreee e exist.
d) - -
. Solitary wave may
exist.
e) + 0

o

The n and n contributions cause pulse compression or pulse broadening

2 4

depending upon whether they take on the positive or negative sign
respectively and the dispersion térm (for k" < 0) always causes spreading.
The possible balance betweenléqueeZing and spreading determines the
possibility of the existence of solitary waves. The solitary wave in éase
e) is known to be a soliton, but the soliton behavior of the solitary waves
for other cases is still to be explored. Various solitary wave solutions
obtained in this chapter are plotted in the following diagrams. In fig.

4.4, the energy content of the pulse, i.e. I is kept fixed for all the

1’

three plots.
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Fig 4.1) Plot for solitary wave solution (4.19). Input parameters

are & = 30, C = 0.5, n2'> 0.
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'Fig 4.2) Plot for solitary wave solution (4.27). Input parameters

are 6 = -500’ cC = 2.0' n2‘ > 0.
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lFig 4.3) Plot for solitary wave solution (4.36). Input parameters

are § =8, ¢ = 0.7, n, < 0.
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Fig 4.4)

Comparative plots of solitary wave solutions for

4

Ny
'5' = 1.5, n, > 0.

=0 and n, < 0. Input parameters are I1 =
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N4 POSITIVE

1\ N4 ZERO

N4 NEGATIVE
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CHAPTER 5

Search for Multi-Soliton Solutions for the NLCOSE-

The Biacklund Transformation

In the previous chapter, we obtained the solitary wave soluﬁions for
the NLCQSE. Now, we address the issue of whether the solitary waves are -
stable, ie. whether our equation, the NLCQSE, has multi-soliton solutions.
There are two possible analytical techniques which may be used to obtain
the soliton solutions i.e. the Backlund transformation and the inverse
scattering transform method (ISTM). However, the two techniques are
interrelated [31]. The eigenvalue problem iﬁ}the ISTM is transformable to
the Backlund transformation [32] and conversely if the Bidcklund
transformation for the given evolution equation is known, one can deduce
the eigenvalue problem. A number of nonlinear evolution equations such as
the Korteweg-deVries (KdV) equation, the NLS equation and the Sine-Gbrdﬁn
equation belong to a class of equations that can be solved by the ISTM ([33]
and the related eigenvalue problem can be deduced from the Backlund
transformation [31] for these equations. We wﬁnder if the NLCQSE has a

Backlund transformation and hence multi-soliton solutions.

In section 5.1, we introduce the concept of the Backlund
transformation and discuss it in the context of an illustrative example.
In section 5.2, we make an attempt to derive the Bidcklund transformation
for the NLCQSE. The conclusion from thewresult of our attempt is drawn in

section 5.3.

5.1 The Biacklund transformation

Let 2z satisfy a differential equation. The Bicklund transformation
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will yield another solution say z' satisfying the same form of the

equation. Define the transformation between the two solutions as

g: = p = f(x'ly'lz'lp'lg|)

: ' 5.1)
dz _ (
_a; =g =¢(x',y's2',p',9")

where 2z 1is a function of two independent coordinates x and y eg. X
may be temporal and y may be a spatial coordinate, x =x', y =y' and

' o= %i;- etc.

The integrability condition for z requires

% _ %
dy x
. . . _ Op 0g
which on defining Q = 5;-— % becomes

Q =f 1 - ¢X' + leg' - ¢z|p' + (fpl - ¢g|)s' + fglt' + ¢p|r' =0

y
(5.2)
2 2
where r = a—;, s = g;%—y t = 9—%- etc. {5.3)
< Y dy

Now, the integrability condition (5.2) can be satisfied in either of two

ways
(1) We can satisfy (5.2) identically i,.e.

fpl - ¢gi = fgv = ¢p| = fy| - ¢xw + fz|g‘ - ¢Z'p' =0
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In this case the transformation is called a contact transformation.

(ii) The equation (5.2) can be satisfied if z' is its solution. In this

case the transformation is called the Bdacklund transformation.
For example, consider the sine~Gordon equation

¢ = sing (5.4a)
xt

This equation has the Bicklund transformation

o
h
i
©
(a2
+
I
0
[N
[=}
~
) E
\_/-

(5.4b)

where a is an arbitrary constant.

The application of the integrability condition

yields

¢l = Sind)' (5.4c¢)
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Thus the sine-Gordon equation is invariant under the Bicklund
transformation (5.4b) i.e. if ¢ is a solution of the sine-Gordon
equation, so is ¢'. The Backlund transformation may be used to generate
additional solutions of (5.4a) by insefting the kqown solution into
(5.4b). For example, ¢6 =0 is a trivial "vacuum" solution of (5.4c),

Substituting this into (5.4b), we obtain a pair of equations viz;

d. = 2a sin(i)
X 2
(5.44)
=2 .in(t
o = 3 s1n(2)
which may be solved to obtain a second (nontrivial) solution, viz;
- +‘I
¢ = 4tan 1{e(ax t/a + b)} (5.4e)

where b is a constant of integration.

(5.4e) can be shown to be a "one soliton" solution of the sine-Gordon
equation. Let ¢1, ¢2 be two such one soliton solutions derived from the
vacuum solution ¢ by applying the Backlund transformation with parameters

0 P

a; and a, and integration constants bl and b2 respectively. It is

possible to choose the appropriate integration constants say bi and bé

such that we obtain the same solution ¢l by further applying the

.2

Backlund transformation with parameter a, to ¢2 and a, to ¢l as

shown schematically by a commutative Bianchi diagram, viz;



¢1 2 would be a two soliton solution.
14

Starting from the Backlund transformation (5.4b), one can prove the

following theorem

2) tan{——F—2}] +o__, (5.4f)

where ¢n and ¢n are solutions of (5.4a) generated by application of
1 2

the Bdcklund transformation. (5.4b) to a known solution ¢ with

n=-1

parameters a, and a, respectively. In (5.4f) o,

1 o represents an

-1

(n=-1) soliton solution, ¢n and ¢n represent n soliton solutions
1 2

and ¢n +1 and ¢n +1 represent (n+1) soliton solutions. Thus knowing
2

the one soliton solution, an infinite sequence of additional solutions may
be generated without further recourse to integration, by making use of
(5.4f) . The generation of ﬁ-soliton solutions is shown in the extended
Lamb diagram given below where the integration constants b have been
suppressed for brevity. The number in parentheses indicates the number of

solitons.
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5.2 The Backlund Transformation for the NLCQSE.

G.L. Lamb [31] has derived the Bdcklund transformation for the NLS
equation by a method due to Clairin [34]. Here we attempt to derive the
Backlund transformation for the NLCQSE by using the same method. The

NLCQSE and its complex conjugate are

1 4 4
i + = + 2 + =90 3.19
ige * 5, |q| q 6|q| q (3.19)

- 1 — 2— 4
-ig. + — + 2 + =0 3.20
iq 2 Uy |q' q 6lql q ( )

g

where the bar indicates complex conjugate.

<
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Let's make the substitutions

26 =y, 2t=x, g= 2z, % = A, %3 =g
(5.5)
0x ax2 ay2 0xJdy dydx

With these substitutions, the evolution equations (3.19) and (3.20)

become
2 3.2
ig+r+zz+Azz =20 (5.6a)
_  _ 2 32
~ig+r+zz+Azz =20 (5.6b)
The general form adopted for the Bdcklund transformation is
P = f(zI;iz'l-z—'lp'I;|)
_ _ _ _ (5.7)
g = ¢(zlzlz'lz|lg' 9 .p'sp")
with x =x', y = y' and also the complex conjugate transformation
-T
- - {(5.8)
g =10
The integrability condition for 2z requires
O _ 39 - g =9 (5.9)
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From (5.7) we obtain

= =fg+fg+f ,g'+f ,g' +f ,s' +£f s (5.10a)
z 3 z > P 5

d — - - -

_;3? =0p+0p +0 '+ ¢_'p' + ¢g,s' + ¢__'s' + ¢p, r' + ¢_'r'

z .2 g P
(5.10b)
Using (5.10), (5.9) becomes
Q= £,0 4 £9 +E,9" +E_ T4 (E, =0 8"+ (E_ =0_)3" -0 -0 F
z z p° . g z
T 0Pt =P - bt m0_ 1t (5.11)

z p'

Let the transformed solution " z' also satisfy the equation of the same
form as (5.6) i.e.

- _ 2 32
ig" +r' +2'z2' +Az' z =0 (5.12a)

-ig' +r' +z'z' +Az' z =0 (5.12b)
Making use of (5.12), (5.11) becomes

Q = fz¢+f_$+fz.g'+f_'5'+<fp.-¢g.>s'+<f_'—¢_'>§'-¢zf—¢_?—¢z.p'
z z p' g z
_ 2_ 3 2 _ _2 _3 2
- ¢ pl+¢ ,(ig'+z' z'+Az' 2! ) +¢ (_igl+zl z'+Az' z' ) =0
;l P ;l
{(5.13)



From (5.13), we obtain

gsl = fpl - ¢q| =0
(5.14)
Q = f - ¢ =0
-S—I ;l ;l
Using (5.14), (5.13) becomes
Q= f£,0 +£5 +£,09" +E_ T - 0,£ -0 F -, - 0_p'
2z 2z 2z z
+ <I>p,(ig' +\,,z'2?' + Az'3?'2) +¢_ (~ig" + 7% . A?'3'z'2)
‘ Y
(5.15)
FProm (5.14), we have
stgv = fplgl - ¢glql =0
But £ is not an explicit function of g' or 5“ so
£ = 0 f =0 5.15a)
plgl r ;'q_' (
it follows that
¢g|gl = o (5.168)
Similarly from (5.14) we obtain
$ =0 (5. 16b)

El-g—l
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Now using the fact that f 1is not an explicit function of g' or g' and

making use of (5.16a) and (5.16b), we obtain from (5.15)

Qrge = 2065100 = 200, , = 0 (a7
and
Q__ = -2i¢p__ = -2if =0 (5.18)
g'gl glpl plpl
Making use of (5.14), (5.17) and (5.18), we obtain from (5.15)
Rgrpr = pipr = 0
Q___ ==-i¢_ =0
glpl plpl
or
¢p'p' = 0 (5.19a)
and
¢_'_ =0 (5. 19b)
p'p' ‘

Let 7 stand for the set of four independent variables z,z',z,z'. We
note from (5.7) that ¢, in general, is a function of 2, g',a“,p' and
P'. PFrom (5.17) we notice that ¢g' is independent of p'. From (5.14)
and (5.7) we conclude that ¢g' is independent of g' and 51_ So

combining these facts we obtain

6. =f_, = F(Z,p") (5.20)

g' p'
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Equation (5.7)'tells us that f is, in general; a function of 2z, p' and
5“.‘ {(5.17) implies that f 1is only a linear function of p' and (5.18)
tells us that it can also be only a linear function of S“. Combining

these facts, we can write
£ = kp'p' + 2p' +mp' + n (5.21)
where Kk,i,m and n are arbitrary functions of 2.

Now from (5.21) and (5.14), we obtain

=f =kp' +2
<|>g. S0 P
(5.22)
¢ = f =kp' +m
&
which imply that ¢ must be of the form
o = k(p'g' +p'g') + Ag' + mg' + X (5.22a)

where X is independent of g' and gq'. Thus X is possibly a function
of 7, o' and 5“. But from (5.19) it implies that ¢ can depend only

linearly on p' or 5“. Therefore we can write X as
X =op'p' +1p' +6p' +y
where 0,t,9 and Y are functions of Z.
Thus (5.22a) becomes

¢ = k(p'g' +p'g') + g’ + mg' + op'p' + Tp' +6p' + ¥ (5.23)

From (5.1) and (5.5) we obtain, making use of (5.21)
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_a__z _QE ..Qf_ - [ gt B ] pout' I ] '}
r axz = 3% - 3m kp'r' + kp'r' + Ar' +mr' + p'p kx + p lx + p mx + nx
and
. . of — st T s aas - F—.
ig +r =i¢ + 3x - kp'(ig'+r) + kp'(ig'+4r') + 2 (ig'+r') + m(ig'+r')

: oy’ : ' .y : Tt ' -t
+ iop'p' + itp' + i6p' + ix + p'O kx + p lx +p'm, + n,
(5.24)
However from (5.6a) and (5.12a) we have
ig +r = =27 - 22772

(5.25)

ig' + 1t = —z' %7 - Azt
Therefore comparing (5.25) and (5.24) we obtain

-22; - Az3;2 = kﬁ"(-z'zg' - Az'3;'2) + kp'(iE“ +T') + 1(-2'2;' - Az'3;'2)

+ m(ig' + r') + iop'p' + iTp' + iBp' + iy + p';'kx +p'a + E'mx +n
(5.25a)

Now the variables %, p', 5", E“, T' are independent variables. Thus
equation (5.25a) must be satisfied identically. First, we compare the

coefficients of q' and T' on both sides of (5.25a) and obtain

k=m=0 (5.25b)

Hence (5.25a) is reduced to
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2% - az5E% = (z'z?' + Az'3;'2) + iop'p' + iTp' + i0p' + iy + p'_ +n,
(5.26)
Now
= o T = A ' ey
'Qx 2 z, + ,Q_zx + 2 _,z! + ,Q__'zx ,sz +4p+ lz,p + ,Q__'p (5.26a)
z z z 2 ,
From (5.21) and (5.25b) we have
p=f=2" +n
(5.26b)
5=F=Tp +n
Thus (5.26a) becomes
’Qx = lzlp' + ,an +2 2 p'+n+ ,Qz.p' + ,Q__;:' (5. 26c)
z z z'
Similarly we obtain
n, = nzlp‘ +nn, + in p' + nn + nz.p' + n__'p‘ (5.264)
z z . z
Substituting (5.26c) and (5.26d) into (5.26) we obtain
2% - 82322 = p'p'{ic + L2 +2_} +p{it+2n+ in+sn 4 nz,}
z z! z
e - 2— 2 — 2
+ p'{le +An_ +n_ } + p! p'{o} + p! {xz, + 117} + p! {o}
z z' - -
+ nn, +Hn__-lz'2;' —,QAz'3?'2+ ix (5.27)

zZ
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Now the requirément that (5.27) is satisfied identically, leads us to write

ic+2 X+ =0 , (a)
z z'

it +4n+4n+2n, +n, =0 (b)
Z

i +2n_+n_ =0 (c) (5.28)
z z'
Lo+, =0 (@)
nn_ + Hﬁ_ - 12-2;- - lAz'3E'2 + iy = -zZE - Az3;2 (e)

z

‘Notice that we have already déveloped the Backlund transformation from
(5.7) into the form'(5.21)‘and (5.23)., Now our job is to calculate k,'l,
m, n, T, 6, 0 and Y that we know can depend upon 2 only. If we look
at (5.28) carefully, it seems promising to start with equation (5.28d) that

involves only . Now (5.28d) is satisfied if L is a constant.
So L= a (constant) (5.29)"
Considering % as constant, (5.28a) gives
c=0 (5.30)

Now substituting the values of k, m, L and o from (5.25b), (5.29) and

(5.30) into (5.21) and (5.23), we obtain
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ap' + n (a)

o)
il
rh
(]

— (5.31)
ag' + 1p' + Op' + ¥ (b)

[(e]
[
<
(]

(5.31) is the Backlund transformation derived to this point. 1, T, 9 and
X are still to be determined. Keeping in mind that p','E', q' and Z

are independent variables; we obtain from (5.31)

= ' A
¢, =T,p' +6.p' +y,
o_ =7T_p' +0.p' +x_
z V4 Z Z
(5.32a)
q’zl =Tzlp. +ezl;' +le
¢_ =1_p'+6_p' +y
z" z' z! z!
and
fZ = nZ
f =n_
z Z
(5.32b)
le =N,
£ =n



Substituting (5.32) and (5.31) into (5.11) we obtain,

0 = gl{anz + nz' + iT} + p'{'[;nz + n_z_‘g - axz - T_E; - le - l'l’l,'z}

+ S"{nze + q;? -8, - Eb__- ;k_)- X—w} + 5‘{;h_ + n_ = 0}
z z z .z z z

+ p'2{-aTz - Tz.} + p'S“{4§f_ - @_'} + 5“2{-39_}
z z z

+xn, + xn_ - nx, - ny_ + iz' 27+ taz' 72 + 9(5“2z' + A;'3z'2)
z z
- — — 2 _— =2
= Jg' + Kp' + Lp' +M + Ng' + Pp'" + Qp'p' + Rp' =0 (5.33)
_ = 2 - _2
Now comparing the coefficients of g', »', p', g', ', Pp'p' and p' on
both sides we obtain,
J=K=L=M=N=P=Q=R=0 (5.33a)
N =0 implies an_+n_ -6 =0 (5.33b)
z z! :
We can rewrite (5.28c¢c) as
an_+n_ +i6 =0 (5.33c)
z z!
Comparing (5.33b) and (5.33c) we obtain,
0 =0 (5.34)

Substituting (5.34), into (5.33a) yields
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J=Zan_+n , +it =0 (a)
K = Tn, - ax, - nt, - nTE'- Xyt = 0 (b)
LEn7zt -ax_-%_ =0 (c)
z z z'
M= xn_ + xn_ - nx, = ny_ + 12'25' + 1Az'3;'2 =0 (a)
z z
(5.35)
NZan_+n_ =0 (e)
z z!
P = -(a1:z + tz,)v= 0 (£)
Q= -(at_+1_) =0 : (g)
z z'
R=20
Using (5.34), we rewrite (5.31) as
p =ap' +n
(5.36)

g = ag' + 1p' + X

Thus the Backlund transformation has now been developed to the form

{(5.36) . Our task has been reduced to detefmining n, t and ¥ only. For
this purpose we try to solve the equations (5.28e) and (5.35). G.L. Lamb
[31] has solved equations of this form for-the NLS equation for the case

1. Following him we solve (5.28e) and (5.35) for the NLCQSE choosing

a

a 1. For this purpose we define the new variables.

w=z+2"', 5=z+?5 v=2z-2' vV=2z~2' (5.37)

”



It follows that

o} o} o} o} 2} o}

370 30 T3y — =+

oz Bw ov 0z dw ov

{5.38)

Q2 0 _ 2 L 08 _ 20

1] — — —

0z Ow BV 9z' dw dv

Thus (5.35f) and (5.35g) become
Ty == ] {(5.39)
w

In general T can be a function of v, ;; w, w. But (5.39) tells us
that T is independent of w and w. So we can write

T = T(v,V)

(5.40a)
and (5.35e) becomes
LY
dw
which implies that
n = n(v,v,w (5.40b)
Next, (5.35a) gives
g—; =-= (5.41)

which on integration yields
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.
- ——

n = 5 W+ Y (v, V) (5.40c)
where Yy 1is the constant of integration which is to be determined.
Now
n_=n_=—-;—u) Tty
z v v v
' (5.404)
=1, .1
R, =TT e, tY,
Similarly using (5.40) and (5.39), (5.35c) vields
-ln?-i(-—i-wr + )
X_ =zt =3lmg 0T
w- z v v
w T i g - ,
or X =35 (- 2w T_ +y ) + E(w,v,v) (5.40e)
v v
where %—is the constant of integration, also to be determined.
From (5.40e) we obtain
=2x dw , 0x Ov
z dw 0z ov 0z
_-,l{_:_l.,m’?r +(;}+x (5.42)
2 2 5 W v

7
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From (5.40a)

N
<|

(5.43)

Using (5.404), (5.42) and (5.43), we obtain from the equation (5.35b)

i 2 -
Cw =~ 3 F = YT_-v1, + T,
v
Thus
{2 _ _
¢ o=ol-FT ey, -y, - YTV} +10,9 (5.44)

where 7 1is the integration constant.
Substituting the value of { from (5.44) into (5.40e), we obtain

T i wyp i 2 — 1
x-—z—{-gmv+ YV}+3{-31 +Wv‘YTv-YTV} +n (5.45)

€l

Making use of (5.45), (5.404) and (5.37), the equation (5.28e) becomes

i - 1 1 2— A -2 3 . —
wo{_ %-ry_+ YYv + yy;_+ E-n + z-v v + Tg-v v } + w{- 1th - 1y1;}
+w2{-%‘m‘v +-1—V+T2—Av—} +uﬁ{%—tv+%+%Av27}
Bz (g 2w} + Bul(=2 av} + @RV = 0 (5.46)



Comparing the coefficients of equal powers and combinations of w and

on both sides of (5.46), yields:

i = i = 1‘2"'__A 352
TETRV VAN s oV g v (2)
yrv+71:__=0 (b)
S
- 3 —2
TT, =V + 7AW (c)
?T_ = ) -%AVZV (d)
_ .
(5.47)
Ty_ =0 (e)
v
Avy = 0 ' . (£)
Av = 0 (9)
3

Av- =0 (h)

The motivation here is to solve equations (5.47) and determine v,n,t in

terms of v and V. Then we can find Y from (5.45) and the Backlund
transformation (5.36) would be developed to its final form. But look at

(5.47€), (5.47g), and (5.47h). These equations imply that

(i) for non zero v and v
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This is equivalent to switching off fifth order nonlinear term in the
NLCQS equation and hence reducing it to the NLS equation. The Backlund

transformation for the NLS equation can then be obtained as outlined below.

For A =0, (5.47) becomes

AR AR AR R Ve (a)
v
YT, * YT_ =0 ‘ (b)
v
T, = v (c) (5.48)
TT_ = =v ’ (a)
v
Ty_ =0 ' | (e)
v
(5.48¢c) and (5.484) are satisfied if
t=i(b - 2vy) /2 _ (5.49)
where b is a real constant.
‘Equation (5.48b) is satisfied by
y = ikv (5.50)

where k 1is real constant. Thus (5.48a) yields

n =iz [v|* + k- %% (5.51)



Making use of (5.51) and (5.44), we obtain from (5.40e)

x = =kn + 2 o+ g iv(fe)® + [v[H (5.52)

Thus the Backlund transformation (5.36) now takes the form

wt + ikv

N

[To]
1

1 1 . 2 2
g' + 3 1(ptp') - kn + z 1v('w’ + 'v' ) (5.53)
This is the Backlund transformation for the NLSE.

(ii) for non-zero A, v = 0 so.that

<|
I
)

or/and
so that z = ;

This last case means that the solutioﬁ of the NLCQSE (ie. A#0) is
transformed into itself. ,Wb can't generate another solution. The purpose
in deriving the Bdcklund transformation was to obtain the multisoliton
solutions and that purpose seems to be defeated here. We say that the
Backlund transformation breaks down or there is no Bdcklund transformation
for the NLCQSE at least in the existing framework that we are using. 1In
the calculation presented here we have taken a = 1, but we have carried
out calculg}ions for other values of a. In all such attempts, we were

unable to find the other solution.
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5.3 Conclusion

If there is no Bidcklund transformation for the NLCQSE we can expect
that the equation has no soliton (or multiéoliton) solutions. But, one can
argue that there may be some other method (i.e. a different value of
constant a could be chosen or a method entirely different than ﬁhe one
due to Clairin) to derive the Bicklund transformation for our equation.
Thus we can speculate, but we can't deduce here that the NLCQSE has no
soliton solution. In the next chapter we shall try the other technique

i.e. the ISTM to look for soliton solutions.
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CHAPTER 6

Search for Multi-Soliton Solutions

The Inverse Scattering Transform Method

In chapter 5, we made an attempt to derive the multi-soliton
solutions to the NLCQSE using the Backlund transformation. An alternative
approach is to use the inverse scattering transform method (ISTM). 1In
section 6.1, we give a brief introduction to the ISTM technique. 1In
section 6.2, we make an attempt to construct an inverse scattering

framework for the NLCQSE. The conclusion is given in section 6. 3.

6.1 Introduction

The inverse scattering method is very important in the sense that it
allows us to use linear techniques to solve ce;tain nonlinear evolution
equations and to discover multi-soliton solutions, The method was
developed by Gardner et al. [6] in 1967 and was used to solve the KAV |
equation. A general formulation of the method by P.D. Lax [35] soon

followed (1968) and this is what we briefly outline here.

Consider a general nonlinear equation

o, = K(0) (6.1)

where K is a nonlinear operator on some suitable space of functions.
Suppose that we can find linear operators L and B' which depend upon

¢, a solution of (6.1), and satisfy the following operator equation

iLt = [B',L] = B'L - LB’ (6.2)
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If B' is self adjoint, equation (6.2) implies that the eigenvalues [ of

L which appear in
Y =Ld ' (6.3)

are independent of time. Also it follows from (6.2) that the eigenfunction

¢ evolves in time according to the equation

i, =B . (6.4)

Assume, further, that we can associate a scattering problem with the
operator L. Then given the initial shape ¢ (x,0), we can find ¢ (x,t)

by carrying out the following linear steps.

(1) The Direct Problem

Using equation (6.3) we calculate scattering parameters (e.g.
reflection and transmission coefficients of L) for ¢ at x = « and

t = o from a knowledge of ¢ (x,0).

(2) Time Evolution of the Scattering Data

We use equation (6.4) together with the asymptotic form of B' at

X = © to calculate the time evolution of the scattering data.

(3) The Inverse Problem

From the knowledge of the scattering data of L as a function of
time, we can construct ¢(x,t). The following figure summarizes the
inverse scattering method. The idea is to avoid path d i.e. to avoid
solving equation (6.1) directly. Instead we solve equation (6.1) by going

through linear computations of steps a,b and c.
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¢ (x,0) Direct Problem a Scattering Data
given > at x = «
' Eq.(6.3) for t = o
Time
\ 4 Evolution
d ( Eg.(6.1) Eq.(6.4) b of
Scattering
Data
Eq.(6.3) Scattering Data
d(x,t) =2 < at X = «
c - Vs t

“Inverse problem

There are many potehtiql technical- difficulties with the procedure
outlined above, eg. we ma& not be able to find operators L and B' which
satisfy equation (6.2), we may not be able to solve the inverse problem for

the operator L etce.

6.2 Application to the NLCOSE.

In order to carry out the first step, we should be able to write the
appropriate eigénvalue problem i.e. equation (6.3). So far, no general
method has been developed to derive the eigenvalue problem corresponding to
a given evolution equation. It's well known that certain evolution
equations, eg. KdVv, Sine Gordon and NLS equations belong to a class of
equations that correspond to the Zakharov-Shabat [24] and other eigenvalue
problems which are special cases of a more general eigenvalue problem due

to Ablowitz, Kaup, Newell and Segur (AKNS) [33] viz:
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Vg T vy o= q(x,t)v2
(6.5)
Vo 1Cv2 = r(x,t)v1
This can be rewritten in the form (6.3) as
i ) - iqg v v
1 ,
dx = C ! (6.5a)
ir - 1i 4 v V2
dx 2
V1
where v, and v, are the components of the eigenfunction ¢ = v
’ 2

and q(x,t), r(x,t) are the solutions of a coupled pair of nonlinear
evolution equations. Now, fiféfly, the NLCQSE is an extension of the NLS
equation in the sense that if we switch off the fifth order nonlinear term
the equation reduces to the NLS equation and secondly, the AKNS eigenvalue
problem is very generai. Thus it's reasonable to expect that if the NLCQSE
does have soliton solutions, it possibly can be associated with the AKNS
eigenvalue problem. Under this assumption our first step becomes to check
the possibility that the NLCQSE corresponds to the AKNS eigenvalue problem
(6.5). We assume that q(x,0) and r(x,0) afe given. In general, the
eigenvalues and eigenfuncfions of (6.5) will evolve in time as the
potentials qg(x,t) and r(x,t) evolve according to some evolution

equation. We choose the time dependence of v1(x,t) and v2(x,t) as

<
I

1t = A(x,t,C)V1 + B(x,t,C)Vz

(6.6)

<
]

P C(x,t,C)V1 + D(x,t,C)v2



o »
O w

This is equivalent to (6.4), with ¢ = v and B'

But as pointed out in the preVious section, we insist that the eigenvalue
be independent of time. From cross differentiation of (6.5) and (6.6) we
obtain

D= -A+ d(t)

where d(t) is an integration constant and we can set it equal to zero

without any loss of generality. We thus obtain

D = =A (a)

A, = qC - rB (b)

(6.7)
B+ 2iCB = q. =~ 2aq (c)
Ce 2igc = r, + 2Ar (d)

Equations (6.7) can give us possible evolution equations for g and r.
First we find A,B,C and D. These coefficients are functions of x,t
and . We expand them in powers of { and we will systematically

calculate the expansion coefficients.

A = EN A(n)c(n) (a)
n=0

=)V (@0 (b) (6.8)
n=0

c=J" e (c)
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We set N = 4

From (6.8) and (6.7) we obtain

A(4)=a4
(3)
A = a
3
a
2 _ 24
A = > qr + a2 (6.9)
() _ 134 23
A =2 [rqx qrx] +,2 gqr + a,
(0 _ 24y | 3 227 .33
A ) [qxrx rqxx qrxx] + 8 a4[q r ] t1 —2'[rqx qrx]
a
2
+—2qr+a
8 =
B(3) = iqa4
a
2 _ . %
B = iqa, > qx (6.10)
a a a
(n _ 2 N W'
B =—plar+iaa--—5q, -1-74q,
a a a a
0 __3 23 33 2
B =-gagrqti—mar-i—Jq. -—59q tia g+ —gaq..



c® =0

C(3) = ira4

C(Z) = a—;rx + ira3 (6.11)
C(” = -iz_‘lrxx +a—:;rx +l—a-;—qr2+ ia2r

C(O) - - a_grxxx‘-'-%aﬂrrx -1 il%rxx * ia_;qr2 * a_g b4 * ira,

where agr Aqr 2y, Ay and a, are independent of x but may depend upon

t. Along with these equations also we obtain

(0) (0)
= +
a, 2A''q +B (a)
(6.12)
r = -0 40 (b)
t X
Making use of (6.9), (6.10) and (6.11), we rewrite (6.12a) as
= {-l r_-gqr -1lah +343%2.3, P }
qt a4 2 qqx X a qxx g 9 XX g 9 4 qqu 8 qxxxx
(6.13)
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Now, if we choose

the eigenvalue problem (6.5) reduces to for this special case,

Vig TV =@,

(6.13a)

- 1 -y ®
v2x 1Cv2 q v1

which is the Zakharov-Shabat eigenvalue problem and the evolution equation

(6.13) becomes
1 2
i + = + = .
ig, *+ 3 9, 'ql qa=20 (6.14)
which is the NLS equation.

We are looking for the possibility of deriving the NLCQSE out of

(6.13). In order to obtain the higher order nonlinear term we can't set

a 0. Let's make the suitable choice a, = a, =a = 0, a, = ~-i,

4 0

=—:.L = - %*
a, =3 8, «r 2g*.

With this choice (6.13) becomes

. 1 2 a _ _ 8 2 2 .1 2, .3 .2
lqx~.+2qxx+2lq' q'+5’q|q 3{q|qx' +2|q|q+2qqxx+2q*qx

\\1 :
t3 qxxxx} (6.15)

We get all the terms we need on the L.H.S., but we also get terms on R.H.S.

that our equation does not have. There is no apparent way that a proper

80



choice for a, could lead to the NLCQSE. This shows that the NLCQSE may

not belong to the AKNS eigenvalue problem.

6.3 Conclusion

We have shown that the NLCQE does not belong to the very general AKNS
eigenvalue problem. It was plausible to expect that if the NLCQSE does
have soliton solutions, it should correspond to the AKNS framework. The
possibility that it belongs to a different eigenvalue problem appears to be
remote. Thus we can conclude that, maybe, the NLCQSE does not possibly
have soliton solutions. This is consistent with our failure to find a
Bicklund transformation. This speculation is supported by numerical-

simulation given in the next chapter. By the way, if equation (6.15)

should correspond to some physical system, it‘would have soliton solutions.
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CHAPTER 7

The Numerical Simulations

In previous chapters we attempted to analytically investigate the
stability of the solitary wave solutions. The indication is that’we don't
have true solitons but the possibility of having quasi-soliton behaviour -
can't be ruled out. In this chapter, we study numerically the collisions
of two solitary waves whose input shapes are calculated from the analytical
expressions in Chapter 4. In section 7.1, we discuss the numerical scheme
that was used. In section 7.2 we present our numerical results for the

and n,. The conclusions are given

various combinations of signs of n, 4

in section 7.3.

7.1 The Numerical Scheme

To solve the NLCQSE
1 2 4
i + = + 2 + =0 7.1
lqg 2 qtt |QI q G'Q' q ( )

we replace the derivatives qg and - in (7.1) by finite difference
approximations [1,36]. Consider the function q(Z,t). We write the Taylor

expansion of q at (& + Af) and (f - Af) around E.

q(g + Ag,7) a(g,t) + (AE)q _(E,7T) + %(A&)zq (g,7) + 0[(A§)3] (7.2a)

g (23

aE = 86,1 = Q(E,m) = (AB)ag(E,m) + %(A&)zqaa(a,‘r) + ol(ae) 3 (7.2Db)
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Subtract (7.2b) from (7.2a)

Qg + DE,T) = Q= BE,T) = 2088, (Eum) + of(ag)>)
or

q( + AE,t) = g(& = AE,T) _ 2
2AL %t 0(Ag) (7.2.0)

which is the central difference approximation (CDA) to g Note that the

forward difference approximation (FDA), viz;

= QLE, + AalT) - q(ng)
a (E,7) = AE + 0(AE)

is not as accurate for a given Af. Also it's found that numerical
instability occurs if the FDA is used for the NLCQSE. For sufficiently
small Af, the higher order terms in (7.2c) may be neglected to obtain

g, = LE2LET) 2 all — ML) (7.3)

%

-

In our numerical runs the value of Af wused is .0.003. Now to
obtain Qppr  We write the Taylor expansion of g at <1 + At and <t =~ Ax

around < viz;v

2
AE,T + A1) = q(E,m) + (g (5, + B g (,1) + o((an)?) (7.4a)
o2 3
alg,t = A1) = q(§,7) - (Ar)qT(E,T) + qTT(g,T) + o (A7) ) (7.4b)
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Adding (7.4b) to (7.4a) yields

q(E,t + At) + q(&.vz- At) - 29(E,T) _ Q. * O((AT)Z) (7.4c)
(At)

Neglecting higher order terms for sufficiently small (At) we have

- aE,t + At) + q(E,T = AT) = 29(E,T)
2
(AT)

q (7.5)

TT

We choose AT ~0,1 in our simulations.

Substituting (7.5) and (7.3) into (7.1) we obtain

(2 + A%,7) - a@,T)) , 9€,T + AT) * 9,7 - AT) - 29(E,T)
' ) 285 2(A7) 2

f\\ZIQ(ng)Izq(ng) +6'q(§rT)l4Q(§rT) =0

or

a@ + Ag,T) = q(§ ~ AE,T) + iéé—}{q(g.r + At) + qQ(E,T-At) - 2q(E,T)}
(AT)

+ 4i(A§)IQ(Er":)|2q(Fer) + 2id (A§)|q(§11)'4q(§11) =90

(7.6)

Knowing the terms on R.,H.S. we can obtain the L.H.S. and advance in
£. The terms in this finite-difference formulas are indicated
schematically in the following figure. WNote that we cannot use the CDA on
the first & step. For the first step i.e. to go from zero'th & row to

1st £ row AE was further subdivided into 600 steps and a forward



Ag{

M&TAE.T) .
q(Z,t=AT) Q(EIT)
1st £ row =~
q(& rT+AT)
zeroth £ row > o >

AT q(E-AE,T) ‘ T

difference approgimation was used. This approach yielded extremely
accurate values{éf g on the first & row to use in the CDA., The FDA
could not be used for larger- £ because it involved too much computing
time and was found to be unstable. The program for this finite difference
scheme was written by Stuart Cowan. Periodic boundary conditions were
imposed by taking the extreme right and left mesh pts to be adjacent. Each
plot shown involved of the order of 100 million floating point
multiplications. The aécuracy of the numerical runs was checked by

continually monitoring the conserved quantities

$c
2
I =L |a] “av
e 2 4 2 6
1y = tlal® - 2e)" - § oje) e

which were derived in Chapter 3.
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7.2 Numerical Plots and Discussion

We now present our results for different possible cases depending
upon the signs of n, and n,. In discussing the results, we have labeled
the pulse initially on the Left (Right) as L(R). Although a wide variety
of relative pulse heights and velocities were considered, here tﬁe pulses
are taken to be identical and (except for Fig.7.1a) the velocities w
symmetric. Also, except for Fig.7.4c, each { step shown corresponds to
AY = 1. Fig.7.0 shows the éccuracy of the numerical scheme including the
periodic boundary conditions. The solitary wave disappears on the right
edge and reappears on £he/left due to the periodic boundary conditions.

Below, we discuss the results for the various combinations of n2 and n4.

For this case, quasi-soliton behaviour was observed\over the entire
range of parameter space consistent -with our derivation i.e. the solitary
wave solutions are relatively stable. Some typical results are shown‘in
Figs. 7.1 and 7.2. In Fig.7.1 we have taken § = =1.3 and q, = 1 while

in Fig.7.2, 8 = =5, gq_= 0.5 where q, is the maximum input g. In

o
terms of the conserved quantity I1 of the pulses, I1 = 3 in the first
cagse and 1.4 in the second. Fig.7.1, therefore, involves the collision of
more energetic pulses. A sizable radiative peak emerges between the two
quasi-solitons, the peak shedding successive oscillations. As a result of
the periodic boundary conditions, the quasi-solitons in this case are

unphysically running back into the radiative oscillations and producing the

noisy ripple. For the less energetic pulses of Fig.7.2, the radiation is
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less pronounced, appearing as an oscillatory plateau between the

quasi-solitons which eventually dies away.

(ii) n, > 0, n, > 0.

In this case both the nonlinear terms contribute to pulse compression
and a much richer spectrum of possible behaviour is found. Quasi-soliton
behaviour is, of course expected for R << 1 where R is the ratio of the
fifth order to éhird order contributions i.e. R = Ié"q'Z/Z.
Quasi=-soliton behaviour is élso found to persist for larger R values,
eg. Fig.7.3 with R = 0.26 /for 'ql = a4, where only a' small radiative
oscillation is quickly shed during the interaction period. But for R = 1
small changes in parameters q, d or the initial velocities can lead to
wildly different scenarios as; eg. illustrated in Fig. 7.4a,b,c. Only 4,
has been varied, taking on the values 0.27, 0.31 and 0.35 with the
corresponding R values 1.13, 1.48 and 1.89. 1In Fig.7.4a, the two
solitary waves simply flatten out after the interaction. 1In Fig.7.4b they
also flatten out but a sharp spike forms in the middle. In Fig.7.4c, the
pulses barely meet before a rapid transition to explosive behaviour is

observed. Our numerical results show that for R ~ 1, the behaviour is

not gquasi-soliton, the stability of the solitary waves being very weak.

(iii) n, < 0, n, > 0

As n, » 0 (i.e. & » 0) we find that larger and larger electric

field amplitudes are required to sustain the solitary wave as §

decreases. For & << 1, the solitary wave solution is very sharply peaked
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and physically either entirely unrealizable (requiring maximum electric
field amplitudes beyond dielectric breakdown) or at least highly unstable.
For larger values of §, the solitary wave solutions are less sharply
peaked, but are subject to an unstable.fifth order compression effect. No
quasi-soliton behaviour was observed for this case. Typically, tﬁe two
colliding solitary waves produced only radiative or explosive behaviour.The
stability in this case is extremely weak. As in the previous case, for R =
1, the results were extremely sensitive to the input velocities w

etc. In Fig.7.5 and 7.6, R = 2.5 for lq' =q, but the initial size of
the nonlinear terms is about 7 times larger in Fig.7.5.than in Fig.7.6.
Explosive behaviour is obsérved in Fig.7.6, while in Fig.7.5 only chéotic
radiation is produced. This is because the velocities w were larger in
Fig.7.5 so that the pulses spgnt less time interacting with each other and
hence prevented an exélosion. If the velocities w are decreased, an

explosion occurs.

7.3 Conclusion

The numerical simulations show that the solitary wave solutions that
we derived in Chapter 4, are not solitons and hence our tentative
conclusion reached in the previous chapters is supported. However quasi-
soliton behaviour for n, > 0, n, > 0 and n, > 0, n, < 0 cases persist
over wide regions of parameter space. But for the n, > 0, n, > 0 case
numerical results show that for R ~ 1, the behavidur is not even
quasi-soliton, the stability of the solitary waves being very weak. Thus,

on theoretical grounds, we can rule out the possibility of obtaining

substantially narrower solitons by finding a material with a large §

value and/or a large dielectric strength.
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Fig 7.0) Propagation of a solitary wave. The input parameters are:

c = 0.5, § = 10.00, n, > 0. The solitary wave disappears on

the right edge and reappears on the left due to the periodic

boundary conditions. Max. IAI3/I = 0.21%.

y
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Fig. 7-1oa)

Quasi-soliton behaviour for n, > 0, n, < 0. Input

2 4

parameters are C = 1.07, § = =1.3 for each pulse
and W, = +3.2, wg = 0. Max. ’AI3/I3‘ = 0.25%. The
arrow indicates that the quasi-soliton disappears on the

right edge and reappears on the left due to the periodic

boundary conditions.
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Fig. 7.1.b) Quasi-soliton behaviour for n, > 0, n, < 0. Input

= +1.6, w_, = =-1.6

R

~parameters: C = 1.07, 8§ = =1.3, Wy

Max. 'AI3/I = 0.60%. The arrows indicate that the quasi-

3|
solitons reappear on the opposite edges due to the periodic

boundary conditions.
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.Fig. 7.2) Quasi=-soliton behaviour for n, > 0, n, < 0. Input
parameters: C = 0.54, 6 = =5.0, wL = +1.6, wR = =1.6.

Max. 'AI3/I3| =0.20%.
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Fig 7.3) Quasi-soliton behaviour for n, > 0, n, > 0. Input

parameters: C = 0.65, § = +3.0, w, = +1.6, w = -1.6.

Max . 'AI3/I3| = 1.22%.
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Fig - 7.4.a) Radiative (dispersive) behaviour for

n2 > 0, n4 > 0.

Input parameters: C = 0.50, §

= 30.9, wp = +1.6, wp = ~1.6.

Max. IAIB/IB' = 1.40%.
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Fig 7.4.b)

Radiative and spiking behaviour for n,
Input parameters: C = 0.61, § = 30.9, w

w = - = - -
R 1.6. Max. 'AI3/I3| 5.24%
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Fig 7.4.c) Explosive behaviour for n, > o, n, > 0, Input parameters:

= +1.6, w_ = -1.6.

c =0.75, § = 30.9, w R

L

. 1| = 0.79%.
Max 'AI3/I3' 0.79%
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Fig 7.5) Radiative behaviour for n, < 0, n, > 0. Input parameters:

CcC =10.50, § = 30.9, wL = +4.0, WR = =4.0

Max . 'AI3/I3, = 0.42%






98a

Fig 7.6) Explosive behaviour for n, < 0, n, > 0. Input parameters

C = 0.25, § = 100.0, w. = +1.6, = -1.6.

L YR

Max . !AI3/I3. = 0.51%.
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CHAPTER 8

Possible Comparison with Experiments

From an experimental viewpoint two central interrelated gquestions
remain to be answered:

1) How big is n, and therefore §7?

2} Can one ever test the effect of including the n, contribution?

There are laser sources capable of generating sufficiently intense pulses,
the only limiﬁation being the dielectric break down limit of the medium
i.e. the electric field in the medium should be below the dielectric
stréngth. The dielectric strengths of the various meaia are given in Table
8.1. In section 8.1 we attempt to estimate the order of magnitude of n,
for liquids and solids from the known value of n in Rb vapour. In

4

section 8.2, we show that the n contribution is probably negligible in

4

glass fibers. In section 8.3, we point out that it may be possible to test

our results experimentally in Rb and possibly other vapours.

' 8.1 BAn Estimate of n, for Dielectric Solids and Liquids

The microscopic origin of n and n has been discussed by

2 4

Grishkowsky et al. [37] and Lehmberg et al. [38]. However, to the best of

our knowledge, no first-principle-estimate of n, has been given in the

4

literature. The third order nonlinear effect is well known and well

understood in the literature and the values of n, for solids, liquids

and vapors are available and are given in table 8.2. Note that n, is of

the same order of magnitude for all solids and liquids. However, because

the study of the fifth order nonlinear effecf\has not been carried out in

detail yet, the values of n, for various dielectric materials are not

929
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available. 1In the absence of any better method, we estimate here the value

of n for solids and liquids by connecting it to its microscopic origin

4
i.e. the polarizability of the molecule. The molecular polarizability vy

is related to the refractive index n by the Clausius—~Mossotti equation,

viz,

n2-1
y === (55—) (8.1)

where N is the number of molecules per unit volume. (8.1) may be

rewritten as

1 + 2Xy (8.2)

=]
N
-—
U
- e
<
il

The average dipole moment P of the molecules is approximately

proportional to the electric field acting on the molecule, viz,
P=yE : (8.3)

Thus the vector P is sensitive to the direction of the electric field. |
This forces us to write the molecular polarizability -in its nonlinear form

as, viz;
Y =Yy * YZIE’Z + Y4|_E.|4 (8.4)
The nonlinear refractive index in our model is assumed to be of the form

_ 2 4
n=n_+ nz'_E_I + n4|§| (1.5)
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Substituting (8.4) and (1.5) into (8.2) and comparing equal powers of ‘E'

on both sides, we obtain

Y2 6ngn, ‘
;;.= (n2+2)(n2-1) (8:3)
0 0
and
Y n n2
_4_=_‘_1. {1+A __.__2 } ) (8-6)
Y2 M g
2-3n§
with A = >
2n0(n0+2)

Now for the case of Rb vapour we have information from the experiment

done by Puell et al. [39], viz. n, = 3.8 x 10—31N esu and

=40 .
n4 = =3,1x 10 N esu, where N is the number density of Rb atoms.

The experiment was performed at N . 108 atoms/cm3. Thus from (8.6) we

. -9 .
obtain |y4/y2' ~ 10 "esu. Since n, and n, are about the same for all
liquids and solids, the relation (8.5) tells us that Iyz/yol is of the
same order of magnitude for all molecules. Knowing that vy is the
microscopic property of the molecule, we extend our argument to assume that

’Y4/Y2’ is of the same order of magnitude for all molecules. Hence

-13

IY4/YZI ~ 10-9esu. Now, it is known that n2 ~ 10 esu for all solids

and liquids. Substituting tﬁe values of 'y4/y2' and n, in (8.6}, we

=22

obtain 'n ~ 10"““esu in solids and liquids.

4
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8.2 Experiments on Glass Fibers

Experiments have been performed [8] at Bell Labs on glass fibers and
solitons have been observed. The experiments were done with the power P

of the order of 10W in a glass fiber with radius r of the order of a
micrometer. Specifically, let us consider a typical set of values used,

viz;

P=11.4" and r = 4.66um.

‘ 4
Thus the corresponding intensity I = —25 = 1.67x1011w/m2 = 1.67x101 esu.
nr

and the magnitude of the electric field

1/2

|¢' = lgl = [§§£] = 3.74x102 Stat Volt/cm or 1.12x107V/m.

Thus from the definition

4

Iq' = 10 '5(nn2)1/2’¢‘

13

= 1.2x10-22(m/V)2 or 1.08x10 '“esu for

the glass fiber. As argued in the previous section, n, 10_22esu so

4
that |6| ~ 10-5. Thus the ratio R of the fifth order nonlinear term to

we obtain Iq' = 6.88 using n,

the third order term in the NLCQSE is

For such a small R value, the quasi~soliton behaviour predicted by our

theory would be indistinguishable from the "true" soliton behaviour (ie.
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when the fifth order term is completely neglected). To obtain a larger R
value, the electric field E must be increased. From Table 8.1, the
dielectric strength of glass is about 1.4x107V/m which corresponds tb

lq, = 8.6 and R . 10—4. Thus even #t the largest electric fields below
the dielectric breakdown, the fifth order contribution is probabiy
negligible in glass fibers. Of course, our estimate of n, was crude and
also the dielectric strength of some materials may be higher than in a

glass fiber, so we cannot absolutely rule out the possibility of observing

the fifth order contribution in solids and liquids.

8.3 Experiments on Rb Vapour

For gases, n and n

2 depend upon the number density

4
N (atoms/cm3). From section 8.1, for Rb vapour (at A = 1.06um)

2n 12 :
4 -9 -1.37x10

= —— x 10 = ——— 8.7
8 > X N ( )
2
Puell et al. have actually carried out a self-focusing (as opposed to pulse
compression considered here) experiment with N = 108atoms/cm3 which
corresponds to § = -1.37x104. Since, & is negative, the fifth order

term is negative and causes defocusing while the third order term produces

a focusing effect. The two competing effects roughly cancel when

2
'6"q’ ~ 1 i.e. the fifth order and third order nonlinear terms are of
2

comparable magnitudes. This implies that 'q' = 1.21x10—1 which corresponds

to 'E' = 3,5 x 104 Stat Volts/cm. and the intensity I = 1.5x1011W/cm2. A

cancellation at this intensity was indeed observed by Puell et al. [39].
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It seems possible, in principle, to experimentally verify the quasi-soliton

behaviour predicted by our theoretical results for n2 > 0, n, < 0 even

for large & values, in Rb vapour. From (8.7) & = -1, eg., correspohds

to N . 1012

atoms/cm3. Since it is pdssible to reach the sufficiently high
value of § in vapours, it seems possible to test some other theoretical

results as well, in some suitable vapour.
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Dielectric constant and strength of various materials

Material

Air

Bakelite

Glass (pyrex)

Mica

Neoprene

Paper

Paraffin

Plexiglas

Polystyrene

Porcelain

Transformer oil

Water (20°C)

Fused quartz

Teflon

Amber

Ref: [41], [42]

Dielectric Constant K

1.00059

4'9

5.6

2.24

80

2.7

Dielectric Strength
V/m

3x106

2.4x107

1.4x107

(1-10)10’

1.2x107
1.6x107

1x107

ax107
2.4x10’

5.7%10°

1.2x10
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Table 8.2

Values of n, for Various Materials

| -13 1078
Material n2x10 esu (x 3 MKS)

Fused quartz 1.2~-1.4
Ruby 1.5
Lucite 2.7
NacCl ) | 6.5
CCl4 2.5
Toluene 45
Benzene : 20-25
CS2 : 110~200
Water >, ;f 1.4

Air (latm) 0.041
Air (100atm) 4.1
Glass (heavy silicate flint) 0.9
Calcite ' 0.8
Sapphire ) 0.2

Ref: [43] and [4]
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CHAPTER 9

Conclusions

We have derived the nonlinear (éubic-quintic) Schrddinger equation
that describes the dynamics of the propagation of intense electrémagnetic
pulses in a nonlinear dispersive medium characterized by a refractive index
n = n, + n2'§|2 + n4l§l4 and have obtained solitary wave solutions for

and n,. To determine whether

this equation for all possible signs of n, 4

the solitary waves are solitons or not, two analytic approaches to
obtaining multi-soliton solutions were investigated, viz. the Bicklund
transformation and the inverse scattering transform method. These
approaches seemed to indicate that the solitary waves were not solitons.
This speculation was found to be well supported by numerical simulations.
However, quasi-soliton behaviour was found to persist over a wide~region'of
parameter space. Other interesting behaviour was also observed in the.
numerical simulations. Some aspects of our theoretical results may be
experimentally testable. We have ruled out on theoretical grounds the
possibility of obtaining substantially narrowér solitons (of relevance to
the development of high bit rate transmission system) in eg. a glass fiber
or in any other material which might have a large § value and/or a large

dielectric strength.
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APPENDIX A

Alternate derivation of the NLCOSE

Consider a dielectric medium with a nonlinear dielectric constant

given by

+ ¢ E

2 4
= + .
€ €9 2|E| e4| ' (A.1)

where Eo is the linear dielectric constant and ¢ and ¢

5 are higher

4

order coefficients. The electric field in the medium can be taken to be of

the same form as in chapter 2 i.e.

E(x,t) = Re{o(x,t)et R wE]y (a.2)
or equivalently

E(x,6) = 3 e ! (a.3)
Maxwell's equations in the dielectric medium.can be written as

VXE = = % 5% B (A.4)

VeE = 0 (A.5)

VeB =0 (2.6)

1 0B
VxB = P (a.7)

<< ¢ and

In writing equation (A.5), thé reasonable assumption €y °

€4 << €9 has been made.
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From (A.4) and (A.7), we obtain

| =
(o]
w)]

VX(VXE) = - (A.8)

Q

N

[e %4

o

N

In a medium characterized by (A.l) the electric displacement vector will be

written as

D={e +c¢ |E| + e IEI 33 (3.9)

From (A.3) we obtain

3 i(kx-wt), 1

N 21 -1i(kx-
E =& 7]o| (7 ¢ + gore TR

=[°

+ % {¢*3e-3i(kx-mt)+ ¢3e3i(kx-mt)}

Now, neglecting the third harmonic terms we obtain

Je]
]

—Z—'q)’zg (R.11)

It
wiwn

Similarly |§'4_E_ |¢|4E (A.12)

From (A.11) and (A.3), we obtain



lj(|§_|2_§) =&

3 it}
4
ot

2
2 Jol%0 = 2tu]o) %0+ o%ef - 1ws®er + [o]%,,

2
) |
+ ;L oF, * 2¢|¢t' ] + c.c. : (A.13)

Now let us estimate the terms on R.H.S. in (A.13) for picosecond pulses

eg. At = 5.68 x 10—125 for A= 1.5 x 10_6m as considered in chapter 2.

Also we make the crude approximation ¢t ~ Z% . Noting that '¢'2¢ is

common in all terms, we estimate its coefficients, wviz;

2

(2n)2(%) = 1.57 x 103972

€
i

w 2nc _ 26 =2
At AL 2.2 x 107 s

1 2

—L = 3.09 x 10225
At

Thus all terms on R.H.S. of (A.13) are negligible compared to the first

one. Therefore (A.13) is reduced to

;%5 (|§|2E) - _a % w2’¢‘2¢ei(kx-wt)_ a % w2'¢'2¢*e-i(kx-wt) (A.145
Similarly
2 . .

From (A.3) we obtain
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2%e 2 2
= _  i(kx-wt)ar., 23 _ k A =ilkx=wt)_.. 30* _ k
5;5 = e é{ik o " 2 o} + &e {-ik il o*} (A.16)

2 .
where we have neglected the Q—% term by making the slowly varying
dx :

envelope approximation. Note that for picosecond pulses we cannot neglect

the second time derivative. Thus

62E 2 2
D2 atemwe)gn ol Lo 0wl
at2 2 at2 ot 2
(A.17)
. —ilkx-ot) (1 8% . . 38* w2 .,
+ 2e {'2'@2+l‘*’ e = 2 0%}
t

Now, substituting (a.17), (A;15), (A.14) and (A.16) into (A.10) and using

€

1
—% = —E and ., w = kv, we obtain the following
c v

€ € (.02
1 3 4 4
——, |¢| o}
ke

. w
1(kx=wt) [, 2 2 5
e (i 5 |¢' o+ 72

+ = _-—
¢x v ¢t 2pv q>tt 8
kc

2
. . €, € ,W
-i(kx=-wt) i 1 2 2 * 5 74 4
+ —-—1h® - o~ AF - ——— h* = 4 — *=o
e {-ief =508~ 7w % Y5 T 2 |¢| ¢ * 76 2 '¢, o*}
ke kc
(A.18)
Comparing the coefficients of el(kx—wt) and e-l(kx_wt) on both sides of

(A.18) we obtain



o2 2
10y by _—271'}7 Ope * g 2z |¢' LT _42_ |¢’4¢ =0 (A.19)
kc ke
and
i 1 3 E2“’2 2% 5 54“’2 4 :
TN Ty et g T gz [oer =m0 @20

Now we move to the group velocity coordinate system defined by (unlike

chapter 2 we will not bother normalizing the new coordinates)

o _X '
T =t - (A.21)

d(x,t) = q(E,T)

Thus (A.19) and (A.20) become

2 2
€ . € .W
, 1 32 2 54 4
% = 2ov Tir T B o2 la]a + 6 | .2 |o] & =0 (A.22)
€ wz £ w2
3 72 2 * 5 4 4
-*-— ry — e * = .
YT v U *3 2 ' , T kc2 'q’ q 0 (A.23)

These equations are equivalent to the NLCQSE. We do not obtain any higher
order dispersion term in this derivation because we did not consider the

frequency variation., We have also not included damping.
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APPENDIX B

Solitary Wave Solutions of the "Higher"™ NLSE.

For n, = 0 and neglecting the higher dispersion terms i.e.
k''* = k'''' = 0 as well as damping i.e. Yy = 0, the dynamical equation
(2.9) becomes

2 2nn
R R N NE

Now we move to the group velocity coordinate system defined by

_ an=9 X
E =10 T
-4,5
7 =12 (t - %) :
(-Kk“)1/2
q = 102.25(1"14)1/4<|>

Note that the normalization of q is different than in chapter 2. Thus

the equation (B.1) becomes

igg+3 3+ 2a'a=0 (B.2)

This is what Kodama et al. called the "higher" NLS equation ([30] and
appears as a special case out of our model. Let us apply the séme method

as in chapter 4 to obtain the solitary wave solution for equation (B.2)
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Assuming

q = F(T-wé)el{P§+WT} (B.3)
and paralleling chapter 4, (B.2) yields
dx = [ at  (B.4)

1
EI" 2 2 2
/(2P+w)—§x

where t =1 - wE and x = F2

Setting 1/2P+w2 = C and performing the integration in (B.4) we

obtain

= -ténh[ 2c(t+C ) ] (B.5)
[cz_%xz]vz " 1

where C1 is integration constant. Choosing ZCC1 =i %— we obtain from

(B.5)

x = /%-c sech (2¢t) (B.6)

Thus

1/4

. 2_2¢%
a(g,t) = 6%) [c sech{2c(¢-wg)}]1/2e1{(c WG+ wt} (B.7)

This solution is of the same form as that quoted by Kodama et al. {30].
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