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ABSTRACT 

This thesis is an experimental and theoretical study of proton-nucleus elastic and in- 

elastic scattering. Three purposes are emphasized in this work. First of all, I will describe 

the experimental set-up at TRIUMF's Medium Resolution Spectrometer(MRS) which 

is used in the ($,pl) experiments. Secondly, the non-relativistic Optical Model(0M) is 

studied with either a phenomenological or a microscopic treatment, and the calculation 

is compared with data obtained at TRIUMF. Finally, predictions using the Dirac for- 

mulation are compared with the experiment by employing an optical potential with a 

Wood-Saxon( WS) form. 

The data were taken at the TRIUMF's MRS using the target nuclei 24Mg and 28Si. 

Observables measured are : 

1) differential cross sections and analyzing powers for 24Mg at Ep=250 MeV. 

2) differential cross sections and analyzing powers for 28Si at Ep=200 MeV. 

3) differential cross sections and analyzing powers for 28Si at Ep=250 MeV. 

4) differential cross sections for 28Si at Ep=400 MeV. 

Absolute cross sections were extracted with a solid angle defined by a wire chamber 

at the entrance of the MRS spectrometer. 

The OM analysis includes both Schrodinger and Dirac formulations. The non- 

relativistic phenomenological optical model (POM) applies the Schrodinger equation 

with a Wood-Saxon form of potential, whereas the Dirac treatment of POM (RPOM) 

is found to have an unconventional (wine-bottle) shape. Calculations for inelastic col- 

lective states are done with the Distorted Wave POM(DWP0M) and the Dirac DW- 

POM(RDWP0M). The deformation lengths of the inelastic state are found and com- 

pared to those from electron scattering. 
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It was suggested that some version of the Impulse Approximation (IA) which in- 

cludes Medium Modification(MM) might be appropriate for understanding nucleon- 

nucleus scattering at a nucleon bombarding energy above 100 MeV. Calculations are 

compared using the free t-matrix and, in addition, the density dependent G-matrix. 

The microscopic study shows that a 3-parameter Fermi density from electron scat- 

tering with the finite size of the proton unfolded requires the empirical reduction of the 

potentials to approximately 70% to 85% of the impulse-model and MM values to obtain 

agreement with the data. The inelastic prediction using IA and MM shows that an extra 

-30% reduction on the differential cross section of the fmt  2+ state is necessary in order 

to fit the data well. 
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CHAPTER I 

INTRODUCTION 

This research work mainly studies the strong interaction via proton scattering. The 

study of proton elastic and inelastic scattering at intermediate energies provides infor- 

mation on nuclear structure and reaction mechanisms which are either complementary 

or comparable to that obtained with other probes. Since the nucleon has size, and the 

interacton of the projectiles with target nuclei is a sophisticated many-body problem, a 

simplified model and reasonable approximations are suggested. It is obvious that some 

ambiguities when doing this are inevitable. It is well known that absorption is involved in 

the collision processes. Thus, the translucent model of nucleon scattering - the Optical 

Model(0M) - is assumed in this paper. 

Conventionally, two approaches are possible with the Schrodinger formulation: the 

phenomenological optical model(P OM) and the Impulse Approxit ion(1A). 

1. POM. The POM has a potential based on the Schrodinger equation with Wood- 

Saxon(WS) form factors which describes the interaction with a complex formalism. The 

complex potential makes absorption possible which satisfies the translucent optical phe- 

nomenon. One often chooses the central and spin-orbit potentials as the dominant part 

of the optical potential. Therefore, the optical potential is described by four parts: real 

central, imaginary central, real spin-orbit and imaginary spin-orbit part. Each part has 

three parameters for a WS shape: strength, radius and diffuseness. The strength tells 

one how strong the potential is. The radius denotes how far the potential can reach. 

The diffuseness shows how quickly the potential dies out. 

2. Impulse Approxition(IA) and Medium Modification(MM). In the P OM, the 



potential is obtained by fitting the observables phenomenologically with a WS form. It 

is more important (and complicated) to study the OM microscopically without fitting 

any (p,p) data. The microscopic OM prediction has two parts: the strwture and the 

interaction. Nuclear charge distributions have been well studied by electromagnetic 

probes, especially electron scattering. The interaction for protons is described by IA or 

MM. For a bombarding energy above 100 MeV, one can think of the interaction between 

projectiles and the target nucleus as free scattering without being affected by other 

nucleons of the target (Ja7O). Mathematically, this free N-N interaction is parameterized 

with a t-matrix form(Ke59, C164, L08l). This very sudden collision approach is named 

the Impulse Approximation. A modifying effect can be included which considers Pauli- 

blocking(PB) and a short distance correction due to the strong repulsion force. This 

medium modification(MM) can be described by introducing a density dependent(DD) 

G-matrix(Br67, Ge82, Ge83, Ri84). The nucleon-nucleon interaction related to MM is 

taken from the PARIS83 force(Ri84). It will be shown that at intermediate energy(200 

to 400 MeV), MM results in better agreement with the data than the IA does. 

Recently, the Dirac approach which is constructed from a Lorentz Scalar term and 

a time-like Lorentz vector term(Ar81, Sh85) is found to be very successful in describing 

proton scattering processes. Basically, two relativistic (Dirac) approaches for nucleon- 

nucleus scattering have been studied: 

1. Dirac (Relativistic) Phenomenological Optical Model(RP0M). In this model, the 

effective potential is decribed with four parts: real-vector, imaginary-vector, real-scalar 

and imaginary scalar part(Du56, Sa83, Sa83a). The effective central and spin-orbit 

potentials are the combinations of these four parts with an unconventional (wine-bottle) 

shape of real-central potential for a projectile energy between 100 and 400 MeV(or 

higher). The effective potential of RPOM has the deformed shape near the center of the 

nucleons. This wine-bottle shape cures the problem of the POM which cannot predict 
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the observable~ very well. 

2. Relativstic Impulse Approximation. This approach will not be discussed in this 

work. 

For the inelastic scattering process, the optical potential is deformed. Dis'torted 

waves obtained with certain deformation lengths of the potential are used to describe 

the excitation of collective states in both Schrodinger(Sh69, Sa83a) and Dirac(Co81, 

Pi83, Sa83a) formulations. 

The transition densities used for inelastic scattering were obtained from a modified 

single particle model(Br83, Wi85, Br86). Since the electron scattering process is well 

known, the result of transit ion matrix elements and harmonic oscillator parameters can 

be applied to proton scattering directly. Finally, the nuclear matter density is taken 

from the three parameter Fermi model(Ja74) of (e,e) experiments by unfolding the size 

of the proton. 



CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Scattering Theorv 

If one thinks of the incident particles as an incoming wave and the target nuclei 

as a potential well, then scattering theory can be treated as a perturbation problem in 

quantum mechanics. To study the scattering phenomenon, one has to know how many 

particles are scattered into a certain direction and with what kind of intrinsic spin. The 

observables to be studied here are differential cross sections and analyzing powers. The 

definition of differential cross section g, polarization P and analyzing power Ay for 

proton scattering for spin-zero target nuclei is as follows: 

Fig. 2.1 Simplied diagram of the scattering process. 
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If lo is the number of particles incident from the left hand side in figure 2.1, and 

I ( @ ,  $) is the number of these particles scattered into the dR cone, then 

If the Pauli matrices a" describes the spin form of the incident particle, then 

For the projectile nucleons with the differential cross section of spin-up particles 

af,  spin-down particles a1 and incoming beam polarizations PT and PI respectively, the 

analyzing power is defined as: 

Alternately, one could obtain the representations of them by solving the Schrodinger 

equation with a small perturbation. For the initial and final states a;, f ,  the transition 

matrix element Tf i  is defined to as: 

where TS is the outgoing transition operator. For non-spinflip case in the asymptotic 

region, one has: 

Xi(= X f )  is the initial spinor of the projectile. 

The complex transition amplitude can be written as: 

5 



One can define the transition amplitude in the following way: 

where g, h are complex functions of energy and scattering angle and A = Li x Sf with 

&, zf the momentum of the incoming and outgoing particles respectively. 

Then the differential cross section and analyzing power can be found as: 

where 

To get the exact form of f (e,c$), it is necessary to solve the wave equation with a 

perturbation being the optical model potential. The wave equation could be either the 

Schrodinger or Dirac equation. The Dirac equation seems to work best at energies above 

200 MeV. 



2.2 O~t ical  ~oteritial: forrnal(0M) and ~henornenolo~ical(P0M~ - 

In order to describe the nucleon-nucleus interaction, one applies the general optical 

potential(Sh68) UO as 

where 

.Ze2 - 
T if r > Rc; 

VcOuz = { 2Rc [3 - ($-)2] , otherwise. 

and Rc is the Coulomb radius of the target. 

P henomenollogicallly, the Wood- Saxon form is applied: 

where 

1 
Rz = rzA3. 

WIc and WD corresponds to volume and surface absorption for the central potential 

respectively. The surface absorption term 4wD$ fIc(r)  is included because the volume 

term is damped at low energy due to Pauli blocking(PB)(Sa83a). For the intermediate 

or high energy range, the volume term dominates most of the absorption. Equation 2.10 

is the so called POM potential. 

Formally, the optical potential UOM does not need the Wood-Saxon 3-parameter 

form. The following assumptions are made for the formal UO M: 
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1. It has no discontinuity. 

2. It vanishes at infinity. 

3. There are scattering parts as well as absorption parts. 

4. It ignores the very detailed features of the nuclear structure. 

5. The reduced mass is replaced by the reduced relativistic energy because the 

speed of the projectile is very high compared to the classical case. 

It is very helpful to solve the Schrodinger equation since the Dirac formulation result 

has to be consistent with it. The time evolution of the system is thus governed by this 

formula from Schrodinger formulation: 

where the full Hamiltonian is 

Ho is the kinetic energy operator for the incident nucleon. 

V is the interaction potential. 

H ( J )  is the internal Hamiltonian of the target nucleus as a function of all the internal 

coordinates J .  

The total wavefunction 8 is a linear combination of basis functions a, from a 

complete set of eigenfunctions: 

where $, describes the motion of the projectile relative to the target and 
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In order to find the formal representation of the optical model potential, it is conve- 

nient to introduce two types of scattering channels and two types of projection operators. 

Following equation 2.15, the elastic channel state can be described as: 

Define P and Q as the elastic and the inelastic channel projection operators respec- 

tively, i .e., define: 

QQ Qinel 

Then, 

One finds the following relations by using equations 2.15 thruogh 2.25: 
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From 2.14, we get 

After some simple mathematics, a neat expression is obtained: 

( E  - PHP - PHQ 
1 

E - QHQ 

The result of the optical potential is listed(Sa83a): 

One should notice that the U(r)=UoM is actually a combination of the interaction 

potential and internal Hamiltonian of the target nucleus arad not just either one of them. 

Also, the first term on the right hand side of equation 2.31 weakly couples non-elastic 

channels to the elastic channel. For the high energy case(comparing to the interaction 

potential strength), this term is small compared with the last term. Thus, 

with the overall interaction represented by the sum of each nucleon in the nucleus: 

Thus 

or in the integral form: 



where 

is the matter density distribution, and for short range vi, one may use the 6-interaction 

for v; and get: 

U = (constant)p(q. (2.37) 

Thus, in the optical model approach, the potential follows the density by a simple 

form at high energy, and is line= in the matter density for the short range case which 

is the case for strongly interacting particles. 

The transition matrix element can be expressed in terms of the Optical Model 

potential as: 

and 

is the Moller wave operator, and 

G' = ( E -  H f  ie)-'. 



By applying equations 2.6 to 2.9 and 2.38 one can find the observables of the elastic 

~cattering process with an Optical Model analysis. 
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2.3 Standard optical Model(DWP0M): Schradinger treatment 

The Standard Optical Model is simply the POM with a distorted wave treatment. 

This is also called the Distorted Wave Phenomenological Optical Model(DWP0M). The 

Distorted Wave Born Approximaton with WS potentials has also proved suitable to de- 

scribe proton scattering from deformed nuclei(Sh69, Sa83a). From the previous section, 

it is clear that the optical model potential is related to the matter density. It is thus 

reasonable to describe the inelastic collective state by deforming the shape of the nuclear 

matter. Define the distorted wave x for the projectile as the following: 

(Ho + Uo - E)x = 0 where Uo is a spherical optical potential. 

If for the deformed poential UD EUo + AU where AU is the non-spherical part 

of the optical potential, then the transition matrix element for a single excitation of 

collective mode of an even target nucleus is given by: 

Here IIM) describes a collective excited state with spin I and projection M and xS, X- 
are the incoming and outgoing distorted waves of the projectile. The parity of the state 

1s given by af = (-1)'. 

The deformed interacton potential AU is obtained by deforming the optical model 

potential of equation 2.10 and keeping terms to first order in the deformation parameter. 

One can write AU as: 

where 

AUc, AURE, AUrM, AUso refer to Coulomb, real, imaginary and spin-dependent 
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p r t  s repectively. Define the deformed radius R1(B164) as: 

with 

and E L ,  M is the dynamical coordinate which describes the surface displacement. Then, 

The deformed central potential has the real and imaginary parts as: 

The deformed spin-orbit piece AUso can be written as the sum of two terms (Sh69), 

AUso E AUsoL + AUsoD where(S0L for 5 Z term and SOD for d term): 



The deformed Coulomb part up to the first order is: 

3ZZ/e2 C(l)(yIM)* if r 2 Rc; (IMIAUclOO) = 
R'& 2 I + l  otherwise. 

(2.5Q, 

For the even target in the final state I IM)  = I I O )  with an orbital angular momentum 

L, the real-central cv~c becomes: 

Then, one can get: 

where PL E tLO is the deformation parameter. The (RRCPL) can be written as SL - the 

deformation lengt h. 

T'ne final. T-matrix thus has three parts: 

with 

To is the non spin-orbit term. 

TsoL is the o' . e term from equation 2.48. 

TsoD is the SOD term from equation 2.49. 

The final expression of the transition matrix(see equation 2.42) has been solved by 

Sherif(Sh68)and Sawafta(Sa83a) which includes all the three terms in it. We refer to 

their work for the full expression of the T-matrix. 



T -.---- 

Finally, the expressions of observable~ in terms of the T-matrix form are found and 

listed. The inelastic differential cross section is given by: 

for spin-$ particle where (CPi) gives rise to a factor of 2. 

The inelastic analyzing power becomes: 

This model was found to be somewhat successful for low-lying states at %ow energies. 

It will also be shown in this paper that it nicely describes the scattering processes at the 

intermediate energies. 



2.4 Phenomenolo$ical Dirac O~t ica l  Model(RPOM, RDWPOM) 

The Dirac Optical Model is also known as the relativistic Phenomenological Optical 

~ode l (RP0M).  Based on the Dirac equation, the relativistic optical model approach was 

constructed recently(Ar81, Co81, Sa83a, Sh86). Both the macroscopic WS fit and the 

microscopic calculations were found to do well when compared with the experimental 

data(the microscopic way will not be discussed here). In this section, the methods 

of RPOM and RDWPOM are introduced. The' Dirac optical model has the mixture of 

consisting of a Lorentz scalar part Us and the time-like component of a vector 

part Uv. The equation governing proton elastic scattering is : 

where 

a, p are 4 by 4 Dirac matrices: 

4 9 is the momentum operator of the incident proton with = --iV 

m is the rest mass of the incident proton. 

\I, is the Dirac 4-spinor. 

Vc is the Coulomb potential which is determined from the empirical nuclear charge 

distribution given by electron scattering experiment. 

E is the proton total energy. 
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It is well known that the nucleon-nucleon interaction can be interpreted by the 

exchange processes of elementary particles. The major part of the interaction is con- 

sidered as the combination of "one boson exchange potential" (OBEP) and "two pion 

exchange potential"(TPEP) in the asymptotic region. The dominant characteristics of 

the nucleon-nucleus interaction for a spin-zero isospin-zero target nucleus are expected to 

be represented by the exchange of neutral scalar and vector mesons(Ar81, Co81, Sh86). 

This exchange process is found to be directly related to the scalar and vector potentials 

of the Dirac formulation. The main effects of using a mixture of a scalar Us and a vector 

Uv potential in the Dirac equation was originally discussed by Fury(Fu36) who pointed 

out that to the lowest order in (q), the sum of Uv and Us contributes to the central 

potential, while the difference Uv - Us affects the spin-orbit part. It was found that this 

feature of mixed potential successfully described both elastic and inelastic scattering at 

intermediate energies(Co81, Ar82, Sa83a, Sh86). 

If one writes the spinor as a 2-component Dirac spinor $: 

with an upper and a lower part, then one preserves not only the Dirac version but 

one obtains the standard optical model-like form. 

Now, using equation 2.58, 2.59 and 2.60 in 2.57, one obtains: 

giving 



From 2.63, one solves for $,: 

with 

Now, define a new wave function in order to get the Schrodinger equivalent equation: 

& (F) = D'/~&(F). (2.66) 

Then, the Schrodinger-like equation is found after a few substitutions: 

where 

E 1 + us + -(U, + Vc) + Z;;; [U; - (Uv + vC)~] * m 

(2.68) 

and k2 = E2 - m  2 

Equation 2.67 which produces equivalent elastic scattering is called the "Schrodinger 

equivalent equation". The qhp has the same asymptotic behavior as + p  in the absence of 

the Coulomb potential because of the short range of Uv and Us. 

For the neutral vector meson exchange portion, one gets a repulsive Uv, while for 

the neutral scalar meson exchange, one gets an attractive potential Us. One can see 

that Us and Uv tend to cancel each other when calculating Uef f. 
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Phenomenologically, one writes the Uv and Us with: 

where fi is the 3-parameter WS form(see 2.11). 

The inelastic standard optical model has successfully described nucleon-nucleus scat- 

tering at low energy. For energies above 50 MeV(especial1y above 150 MeV), it didn't 

predict the data so well. It was then suggested that the Dirac model which describes 

the elastic scattering so well(Ar81, Ar82) should also be able to describe the low-lying 

collective states. Sat chler (Sa83) and Sawafta(Sa83a) have recently studied the inelastic 

observables for the low-lying states near 200 MeV and up for various nuclei. Olmer(0184) 

studied 2gSi and other nuclei between 80 and 200 MeV. Hintz(Hi84) interpreted some 

data on 28Si with energies up to 800 MeV. Both Olmer and Hintz fitted their elastic 

scattering data and available reaction cross sections with elastic POM potentials. This 

paper presents the inelastic data together with the standard model and the Dirac model 

calculations for 2gSi and 24Mg. These results are then compared to those obtained by 

Olmer, Hintz and Sawafta. 

The Dirac theory of the inelastic process is also based on deforming the vector 

and the scalar potentials just as in the non-relativistic standard optical model where one 

deforms the central and spin-orbit potentials. Thus, the potentials Uv and Us described 

in 2.70 and 2.71, can be written as deformed potentials: 

where X stands for V(vector) or S(sca1ar) part. 



Then, US: cari be expressed in terms of spherical and non-spherical parts: 

with 

The detailed calculation of the transition matrix Tf i  and form factors for the in- 

elastic scattering is listed in Sh68 and Sa83a. It is interesting to note that the Dirae 

treatment predicts an effective potential in the shape of a wine-bottle bottom which acts 

like a density dependent potential. This will be demonstrated in chapter 5 .  
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2.5 DWIA and DWMM 

DWIA and DWMM stand for Distorted Wave Impulse Approximation and Distorted 

Wave Medium Modification respectively. The nucleon-nucleus(NA) interaction can be 

simply approximated by assuming a single nucleon-nucleon(NN) collision at energies 

above 80 MeV. This single scattering model is the so-called Impulse Approximation(1A). 

The inleastic process can be treated using the distorted wave approach. This is 

called DWIA. The related transition amplitude(or propagator) for nucleon scattering in 

the first Born approximation is: 

where V(q3 and p(q3 are the Fourier transformations of the effective interaction potential 

and the momentum transition density respectively. This consideration of a single NN 

scattering which neglects the effects of other nucleons in the target is valid at high ener- 

gies(Lo83, Fr85). For the energy range between 60 and 350 MeV, Medium-Modification 

such as Pauli-Blocking effects and short range correlations should be considered. This 

medium-modified approach , DWMM(Ge79, Ri84 and Dy85), is thus a refinement of the 

DWIA. The interaction of the DWIA with a pseudopotential t(r) by Love and Franey 

is refered to as LF later in this paper. The transition density is well described by the 

shell model calculation of Brown and Wildenthal(Br83, Wi85 and Br86) which describes 

electron scattering data very well provided "effective charges" for proton and neutron 

are introduced. The results from Brown are thus taken as the input of the (p,pl) calcu- 

laton for 2+. The spin-orbit as well as the tensor force give parts of the nuclear force 

for nucleon scattering. For this reason, the localized t-matrix (not the T-matrix which 

is a normal represention of the transition matrix) by LF can be written as: 



- 

with the well-known expressions: 

C 
V ( r )  = ~ f ( r )  + vfzl Z2 + v:i1 . i2. (2.77) 

vLS(r)  v t s ( r )  + ~ : ~ ( r ) i ~  i 2 .  (2.78) 

v T ( r )  ~:(r) + ~ : ( r ) q  . i2. (2.79) 

-. S12 3(z1 - ?)(Z + ?) - 0 2 .  (2.80) 

The Fourier transformation of t ( q  gives the first part of the transition amplitude. 

After some manipulations, one finds for t(g(Lo81, Ye83): 

& & + &  (2.84) 

-. -. 
g'= ki - kf. (2.85) 

and li = ii x if. The observables can be found in much the same way as for the POM. 

Medium Modification uses a density dependent matrix, the G-matrix, instead of 

the free NN t-matrix in IA. This G-matrix not only takes care of the strong short 

range repulsion problem but also includes the Pauli-Blocking effect. Since the strength 

of interaction of a nucleon pair depends upon the density of the nuclear matter, the 

G-matrix is found to be weaker inside the nucleus than outside. At high energy, the 



G-matrix approaches the complex t-matrix for the free NN scattering(1A). The force 

used is the PARIS83 free NN force which is based on meson exchange theory. For the 

elastic scattering process, the information of ground state density is (like the IA) taken 

from the 3 parameter Fermi model via electron scattering with the neutron density 

the same as the proton density. We find that both models(1A and MM) are not able 

to predict the data for light, non-spherical nuclei. By changing the optical potentials 

substantially(approximate1y 15% to 30% reduction), we obtain much better fits to the 

data than with the full strength. This will be explored latter in this paper. 



CHAPTER 3 

Experimental 

3.1 General 

A typical proton scattering experimental facility is shown in figure 3.1. It includes 

mainly 5 parts: source, beamline, target, counters and electronics and data aquisition 

system. The extracted polarized or unpolarized proton beam from the source strikes a 

thin target. The vast majority of the projectiles pass through the target without interact- 

ing with any target nuclei. The evacuated beamline contains magnetic elements(dipo1es 

and quadrupoles), some beam profile monitors and a beam dump. The MRS spectrom- 

eter(see section 3.2) consists of a focussing quadrupole(Q) and a dispersing dipole(D) 

which bends scattered particles by about 60" and spatially seperates particles of different 

moment a. Position sensitive gas counters then detect the scattered particle and digit a1 

information for each event is recorded on magnetic tape. The spectrometer used for the 

present results is shown schematically in figure 3.2. 

One of the results is a spectrum, the graph of position along the focal plane versus 

the number of particles detected at each position. It reveals a number of peaks each of 

which corresponds to the excitation of a particular state of the target nucleus. Figure 

3.3 shows the typical large angle spectra for light nuclei with - 140 keV resolution taken 

at TRIUMF, Spring 1986. 
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Figure 3.1 Typical proton scattering experimental facility layout. 
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Figure 3.2 The geometry and outline of the TRIUMF MRS spectrometer for this 

experiment. 
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Figure 3.3 Large angle spectra for light nuclei.with /v 140 keV resolution taken 
at TRIUMF. Shown on top is the 24Mg spectrum for inelastic 35.03" 
MRS angle at 250 MeV. The spectrum below is for 28Si 42.02'. The 
ground and 2+ states are very clean in both spectra. 
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3.2 TRIUMF and 'MRS 

TRIUMF is Canada's national Meson Facility. It provides world-leading facilities 

for experiments in subatomic research with beam of pions, muons, protons and neutrons. 

The TRIUMF accelerator is a six-sector isochronous cyclotron which is capable of ac- 

celerating H- ions to a continuously varying extraction energy from 180 to 520 MeV by 

adjusting the radius of a stripping foil along a track inside the cyclotron. The stripper 

here can strip off electrons from H- to get H+ which is transported down the beamline. 

The In-Beam Polarimeter(1BP) is placed at an intermediate focus of the beam- 

line to detect the beam polarization. The beam intercepts a thin foil target and some 

protons that undergo nuclear reactions are scattered into the Medium Resolution Spec- 

trometer(MRS). This is a large dipole magnet which analyzes particles from nuclear 

scattering as described above. The MRS is capable of detecting protons with energy 

resolution as low as 100 keV. The mornenturn acceptance is about 10% for particles up 

GeV to 1.5 7. 

The dipole and the quadrupole magnets are mounted on a framework which ro- 

tates horizontally around the scattering chamber. The dipole bends the particles' tra- 

jectory 60' in the vertical plane(bend plane) and disperses them over a focal plane. The 

quadrupole magnet only focuses in the horizontal plane allowing a larger solid angle to 

be accepted(and defocuses in the vertical plane as well). Focusing is accomplished by 

adjusting the optical parameters which describe the QD magnet system. The locations 

of the beam on the target XI and focal plane Xf are described by: 
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Rij's are the beam optics parameters which depend 

magnet system. The dispersion matching condition is: 

on the characteristics of the 

(3.3) 

In this case, the momentum spread of the incident beam does not affect the resolu- 

tion in the focal plane. This will give better position(energy) resolution at Xf. 

The scattering chamber can be operated at small and large angle configurations: 

SAC and LAC, each of which has a different set-up and range of experimental angles. 

The range of LAC is from 16' to 135O, For SAC, it is from -7' to 16'. 

' 3.3 MRS detectors and IBP 

There are 5 detector sets in the MRS: 'Fkont End Charnber(FEC), Elastic Veto Scin- 

tillator(EV), Vertical Drift Chambers(VDC), Trigger Paddles(TP) and S 1 Scintillat or. 

PEC: This first MRS detector is located just after the target to allow ray-tracing 

back to the target 'in order to set solid angle gates and to correct for aberrations in the 

MRS. 

EV: This scintillator is placed just below the focal plane to pre-scale the elastically 

scattered particles(i.e., only count a small fraction of the elastic peak). In this way, one 

can increase the amount of useful data on tape and reduce the dead-time. 

VDC: The heart of the MRS detectors is a pair of vertical drift chambers just above 

the focal plane and set at 45' with respect to the scattered protons. Each VDC consists 

of two crossed wire planes which give positions in the X(bend plane) and U(30•‹ to 

X) directions: XI, X2, U1 and U2. This information is then transformed into X- and 



TP: There are 10 scintillator trigger paddles above the VDC's which are powered 

seperately and thus allow the experimenter to limit the amount of the focal plane which 

is considered in the trigger. Details are given in the MRS manual at TRIUMF(Hi86). 

The In-Beam Polarimeter(1BP) is the primary monitor of the beam intensity and 

polarization. It consists of a thin CH2 polyethylene target and two pairs of counter tele- 

scopes(each in coincidence with a recoil counter) that counts elastic proton-proton scat- 

tering events. The "real" event rate(per second) and the "accidental" event rate(formed 

by delayed coincidence) are counted in scalers and are periodically recorded on tape. 

The intensity of the beam is proportional to the total event rate T: 

T = (L - La) + (R - R,). 

where L=Left real rate, L,=Left accidental rate; and E, E, the same at the right. 

The polarization is defined as: 

where 

There is another monitor of the beam current, the Second Emission Monitor(SEM), 

which collects electrons from surface emission as the proton passes through several alu- 

minum foils located downstream of the target. For small angle configuration(SAC), SEM 

is replaced by a Faraday brick. Normally, IBP and SEM give the incoming particle num- 

ber to an accuracy of 1.5%. 



Finally, two .corrections of the beam polarization are given. First, is the spin-off 

(unpolarized) correction factor to correct for mechanical asymmetry for Left and Right 

side of the IBP. 

This correction factor could be very large if the beam tune is poor. Nevertheless, a 

few percent still exist even with good beam. 

The second correction is a small carbon correction factor. Since the CH2 target 

was used instead of pure hydrogen, the (p,2p) reaction from carbon can contribute. A 

seperate run with a carbon target is needed. The final correction of the carbon can be 

written as: 

with 

and Nx(C) = X(C) - XaC(C) is the scattered count from the carbon target detected 

by the IBP. 

3.4 Data Aauisition 

The detector and polarimeter system are interfaced to the on-line computer through 

CAMAC. The on-line computer is a Data General Eclipse S200. A generalized program 

called DACS was written to acquire and analyze data with this aquisition system. The 

data tapes can be analyzed by the Eclipse or by the VAX. A program called LISA(see 

chapter 4) can replay and refine the data off-line. 



3.5 Targets 

The targets(see Table 3.1) chosen are 24Mg and 28Si fo;-this experiment. Three 

other targets are used for the purpose of obtaining the normalization factor and angle 

calibration result: CH2, 208Pb and Mylar(CsH402). 

Tarnet Thickness List 

Target EP(M~V)  Configuration 

24Mg 250 SAC,LAC 

28Si 200,250,400 SAC,LAC 

SAC 

LAC 

SAC,LAC 

SAC,LAC 

SAC 

LAC 

(Not measured) 

Table 3.1 Target thickness for different energies and configurations. 



CHAPTER 4 

DATA ANALYSIS 

4.1 Genaral 

Analysis of the experimental data consists of the replaying of the data tapes, ex- 

tracting peak areas from the momentum spectra, calculating differential cross sections 

and analyzing powers and calibrating the MRS for angles and normalizations. 

4.2 S~ectrum Analvsis 

A 2-dimensional particle identification spectrum is obtained by using the time of 

flight and energy loss of the scattered protons. Different types of particles(p,d,.?r ,... etc.) 

are in different regions of this spectrum. The focal plane position is determined using 

the VDC coordinates and simple geometry. Details are given in the MRS manual(Hi86). 

Ray tracing to the target is dso done using the FEC and VDC coordinates. Gates m e  

then set around the beam spot. 

The focal plane spectra XF can be corrected to have a better resolution by the use 

of the FEC chamber coordinates. These corrections take into account aberrations due to 

trajectories passing through non-homogeneous regions of the magnetic field (analogous 

to optical aberations at the edges of a lens). The multiwire chambers can also identify 

the missing or multiple counts of the scattered particles, and thus determine the chamber 

efficiency. 



4.3 Differential cross section and analyzing power 

Since both unpolarized and polarized beams for incoming projectiles were used, two 

calculations are discussed in the following. 

4.3.1 Un~olarized scattering 

The center of mass differential cross section for an incident unpolarized beam can 

be formulated in this way: 

do AREA x PSCL 
( Z ) C M  = CL x CE x (nsdflIab.) x (nrdx)  

where: 

AREA is the counts for the excited state one is interested in. 

PSCL is the prescde factor. 

CL is the compuier livetime which is the ratio of the pulses recorded by the computer 

over the pulses generated(and recorded in as a scaler). 

CE is the wire chamber efficiency, the ratio of good proton events over proton events 

that produce a signal in each and every multiwire chamber. 

nB is the number of beam projectiles per unit time which can be derived from the 

IBP. The Faraday cup(SAC) and the SEM(LAC) numbers are used to double-check the 

nB's validity. 

doIab. is the differential solid angle of the beam: 

[AX0 x AYO x (50 x 1 0 - ~ ) ~ ] c m ~  
dQlab. 2 AQlab. = 

L2(cm2) 

where L is the distance between target chamber and FEC. In this experiment, 



132 cm, for SAC; 
63 cm, for LAC 

nTdx is the number of target atoms per unit area, often simply called thickness and 

AXO, AYO are measured in 50pm unit. In the unit of number per millibarn, we have: 

where T is the thickness in unit 3 and M is the atomic weight of the target nucleus. 

4.3.2 .Polarized scattering 

First we need to find the polarization of the projectile from IBP analysis (see chap 

ter 3). The corrected polarization is denoted Pt and P1 for spin-up and spin-down 

respectively. If one uses the simple notation a for differential cross section, then, 

The analyzing power can be calculated from differential cross sections and beam 

polarizations: 

a t  = a 0  * (1 + Pt * Ay). (4.5) 

Thus, a t  - a1 = Pt a! * Ay + Plat * Ay . It turns out that the result has the simple 

form: 

4.4 Angle calibration 



It is very important to find the exact laboratory angle of the MRS. The YO plane of 

the target multiwire chamber has 1,600 channels, where the separation of two adjacent 

channels is 50 x 10-4cm. Chamber alignment is often not that precise and the center 

of YO does not coincide with the nominal MRS angle. Thus the real center of the MRS 

angle on YO plane has to be recalculated very carefully. Since there are different MRS 

structures and angle configurations, the angle calibration for different cases is required. 

A way to determine the YO center is to compare the YOXF graph(see figure 4.1) with 

a kinematics calculation(figure 4.2) of OL versus momentum. If we calculate the angle- 

dependent momenta for l2 C and H, we see that there could be a cross point for hydrogen 

ground state and carbon excited states(especial1y 4.439 MeV). Thus, for example, in 250 

MeV SAC, we did the 7.51" CH2 run to get enough counts on l2 C 3-(4.439 MeV) state. 

Then, the kinematic calculation is done for those two states. From the calculation, a 

cross point of 7.55" was found. Now check the YO-XF angle versus momentum plot for 

CH2 run. It was then found that the cross point is 772 channels of the YO coordinate. 

Thus, we say that in this experiment, Oc = 7.55" is at Yc = 772 channels. Since the 

nominal MRS angle is 7.51 degree, we could find correspondingly what the YO center is: 



Figure 4.1 YOXF 2-dimensional density plot of the outgoing beam for CH2 7.51" 
MRS angle run at Ep=250 MeV. 
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Figure 4.2 Kinematic calculation of projectile kinetic energy to laboratory angle for 
12C and H at Ep=250 MeV. A cross point is found at 7.55 lab. angle. 



Thus, 

where 

Re (ch:r;el) = { 460.77, 219.91, for for LAC. SAC; ' 

Thus, in 250 MeV SAC run, its Yoc for MRS angle is 772 + 18 % 790 channels. This 

is the target chamber Y plane center of the MRS angle. For LAC, the CH2 target is 

replaced by 208Pb and the angle minimum can be compared to known data(for example, 

Hu86). The cross point method can also be applied to get the center of the MRS angle. 

The results for Yoc are shown in table 4.1. 

Ep(MeV) Configuration YOC Angle shift 

SAC 590 

LAC 728 

SAC 790 

LAC 762 

SAC 682 

LAC 840 

Table 4.1 The MRS angle centers and angle shifts for different cases. 
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4.5 Normalization 

- - 

The MRS allows one to calculate absolute differential cross sections using the front 

MWC to determine the solid angle acceptance. It is often not necessary to normalize the 

data to other states of known cross sections(e.g., H or 208Pb). The proton-CH2 experi- 

ment allows one to compare the values of hydrogen cross section with those calculated 

from phase shift analysis (Ji83, Ar81). Normally, the uncertainty is within 5%. The 208Pb 

run could be used for normalization purposes using the previous data set by Hutcheon 

et al(Hu86). 

4.6 Uncertainties 

The uncertainty in the differential cross section is a combination of uncertainties 

from various sources. Each of the normalization factor pieces in equation 4.1 gives un- 

certainty, and the peak area of the momentum spectrum gives an uncertainty. We often 

refer to the former one as "systematic uncertainty" or "systematic error". 

The relative error formula gives the uncertainty of the experiment. For example, a 

quantity S is of the form: 

Then AS can be formulated as: 



\ 

The systematic error is estimated as: 

Au, 6%. (4.12) 

from uncertainties in the solid angle, the beam charge integration, the target thickness, 

etc. 

The differential cross section uncertainty can be found easily: 

for unpolarized case, where, 

The polarized scattering has the uncertainties for a and Ay as: 



CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 General 

The invariant differential cross sections (g ) and the center of mass(CM) differential 

cross sections (g)CM of 28Si at 200, 250 and 400 MeV are shown in figures 5.1 and 

5.2. From figure 5.2, one sees that for higher be& energy, one gets lower (%ICM for a 

specific center of mass angle. The invariant differential cross sections is almost a constant 

with respect to the momentum transfer q. This is because (g) is a Lorentz invariant as 

is the electromagnetic interaction. 

The beam polarizations are shown in figures 5.3,5.4 and 5.5. The beam polarizatons 

varies between 70% and 85% in Proton Hall BL4. The analyzing power data are discussed 

later together with the optical model result. 



Figure 5.1' The invariant differential cross sections of 28Si. 
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Figure 5.2 The center of mass differential cross sections of 28Si. 
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Figure 5.3 Incoming beam data for 28Si at 200 MeV. 

- 
-1.0 1 I 

0 5 10 15 20 25 
Tape Order 

Z8~i  250 M e V  6 , p )  

Figure 5.4 Incoming beam polarization data for 28Si at 250 MeV. 
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Figure 5.5 Incoming beam polarization data for 24Mg at 250 MeV. 



5.2 POM and RPOM 

The RPOM uses the scalar and vector potentials (with Wood-Saxon form): Vv, 

Wv, Vs, Ws. The results were obtained from fitting the data with the code RUNT. 

Figures 5.6, 5.7, 5.8 and 5.9 show the scalar and vector potentials from fitting to 28Si 

and 24Mg. Note that these potentials are not the effective nuclear potentials. Rather, 

the combination of them forms the effective potentials. 

The POM on the other hand gives the central and spin-orbit potentials directly: 

Vc, Wc, Vso and Wso. These potentials can be compared with the effective potentials 

from Dirac calculations. The results are shown in figures 5.10, 5.11, 5.12 and 5.13 where 

the RPOM optical potentials correspond to the solid lines and the POM potentials to the 

dotted lines, Table 5.1 is the comparison of the optical model fits with the Wood-Saxon 

potential parameters. Note that the experiment by Olmer applies the code SNOOPY 

which is slightly different from RUNT. 

The RPOM effective potentials shown in the figures 5.10 to 5.13 (solid line) always 

exhibit a deformation at small radii. This shape looks like the bottom of a wine bottle 

with a rise at the center of the bottom face of the wine bottle. This unconventional 

shape is therefore refered to as the wine-bottle shape. Potentials of this shape can not 

be obtained in the POM. Other than this shape, there is not much difference in the 

radius or the diffuseness from these two models. It is also found that the fitting results 

are not unique. Two different fits for each data set are shown in table 5.1. Both fits 

reproduce the data nicely. 
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Figure 5.6 RPOM vector and scalar 
potentials for 28Si at 200 MeV. 
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Figure 5.8 RPOM vector and scalar 
pot,entials for 28Si at 400 MeV. 
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Figure 5.7 RPOM vector and scalar 
potentials for 28Si at  250 MeV. 

Figure 5.9 RPOM vect.or and  scalar 
potentials for 2%lg a.t 250 AleT-. 
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Figure 5.10 POhl(dotted line) and RPOM optical potentials for 28Si at 200 MeV. 
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Figure 5.11 POM(dotted line) and RPOM optical potentials for 28Si at 250 Me]-. 
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Figure 5.12 POM(dotted line) and RPOM optical potentials for 28Si at 100 I l e T - .  
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Figure 5.13 POM(dotted line) and RPOM optical potentials for 24Mg at  250 l l e l* .  



7 28Si POM 

I 28Si RPOM I 

24Me: RPOM 

Table 5.1 Optical model parameters with comparison 



The calculation of observables from the POM fit are plotted in figures 5.16, 5.17, 

5.20, 5.21, 5.23, 5.26 and 5.27. These observables are both the differential cross sections 

and analyzing powers. It can be seen immediately that the fitting results give very good 

agreement with the data. Figures 5.14,5.15, 5.18,5.19,5.22, 5.24 and 5.25 are the results 

from the RPOM fit. It is not obvious which one of the calculations is better at first sight. 

However, the very forward angle fitting results agree with the data better in the RPOM 

than in the POM at all angles. Also, around 18 degrees, the first minimum from 28Si 

at 250 MeV of the POM is lower than expected, while the RPOM does not have this 

problem. One should compare the results of both model carefully from other figures 

shown in the paper. The Dirac POM is probably a better description when the beam 

energy is higher. It also means that the optical potentials using wine-bottle shape which 

is interpreted as the meson exchange process in the nucleon interaction(see section 2.4) 

is a better model than the smooth Wood-Saxon shape. 



Z8~i($,p)  Ep=200 MeV ROM - NROM --- 

Figure 5.14 RPOM calculation of Figure 5.15 RPOM calculation of Ay 
for 2P Si at  200 MeV. for 28Si at  200 MeV. 

Figure 5.16 POM calculation of Figure 5.17 POM calculation of -4y 
for 28Si at  200 MeV. for 28Si at  200 MeV. 



' '~i(5,~) Ep=250 MeV ROM - NROM --- 

- 
for 28 Si at 250 MeV. 

Figure 5.19 RPOM calculation of Ay 
for 2sSi at 250 MeV. 

Figure 5.20 POM calculation of Figure 5.21 POM calculation of Ay 
for 28 Si at  250 MeV. for 28Si at 250 MeV. . 



28 ~ i ( p , p )  Ep=40O MeV ROM - NROM --- 

Figure 5.22 RPOM calculation of for 28Si at  400 MeV. 

Figure 5.23 POM calculation of for 2%i at 400 MeV. 



'24 ~ g ( $ , p )  Ep=250 MeV ROM - NROM --- 

Figure 5.24 RPOM calculation of % 
for 2"g at  250 MeV. 

Figure 5.25 RPOhd calculation of ,4y 
for 24Mg at  250 MeV. 

Figure 5.26 POM calculation of % Figure 5.27 POM calculation of ,4y 
for 24Mg at  250 MeV. for 24Mg at  250 hIeT7. 
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5.3 DWPOM and RDWPOM 

This section studies the inelastic collective states with spin transfer J and parity 7; 

of J r  = 2+. In the DWBA with phenomenological Wood-Saxon potentials, the potential 

parameters are taken from ground state fit since the elastic process dominates most in 

the reactions. The observables obtained from the experiment are both the differential 

cross sections and analyzing powers for the 2+ state. The code used here is PLTRK(or 

ECIS79). PLTRK calculates a and A, in both the DWPOM and the RDWPOM, while 

ECIS79 only uses the Schrodinger DWPOM. 

Just like what happens in the ground state, the'2+ data also have higher cross 

sections for the lower beam energies as expected. 

The 2+ results from the experiment and distorted wave calculations are shown in 

figures 5.28, 5.29, 5.30 and 5.31. The solid line is the prediction from RDWPOM and 

the dashed-dot ted curve is from Schrzdinger DWPOM with equal deformation length- 5 

(@RcR$c = PIcRIc = pRsoRRso = @IsoRIso = PcRc). The dotted curve is 

for DWPOM but with equal-@ value. The e q u a l 4  method is found better than the 

equal-@ one. 

The calculation is found to be in good agreement with the TRIUMF 250 MeV data. 

For 28Si at 400 MeV, the fit to the elastic data is not well transfered to the 2'. This 

could be due the lack of the analyzing powers in the fitting process. Table 5.3 gives 

the deformation lengths result and the result from other experiments(B179, Ch72, Du78, 

Ha81, Ha84, Ka85, Le79, Mi74, Re71, Re72, Ta65 and Ya76). It is found that the 

deformation length is more or less equal with up to 40% deviations from this experiment 

at different energies. This implies that the collective model with a certain deformation 

length is suitable for describing the low-lying states. In order to understand the distorted 



powers(and spin rotation parameters Q, if possible) are suggested. One can also see that 

the minima of the cross section and analyzing power calculations are different from one 

model to the other. From the figures, it is seen that the minima of RDWPOM are at 

more forward angles than that of the DWPOM. 

One can also see that for different nucleus, the deformation is also different by just 

comparing the 250 MeV data for 28Si and 2 4 ~ g .  The 6; value of 24Mg is much larger 

that that of 28Si. That is to say, bi is target dependent. If one takes the ,BR value from 

the electromagnetic result(Ch72) into DWPOM(equa1 deformation length) method, one 

needs to take ~ 2 5 %  reduction on the cross section of the 2+ state for 28Si and 

~ 3 5 %  for 24Mg(Latter in microscopic study, a reduction is also found). 



I m~i(&) 2+ , Ep=200 MeV 

Figure 5.28 DWPOM-equal P(dotted line), DWPOM-equal b(dashed-dot ted line ) 
and RDWPObI(so1id line) calculations for 28Si at 200 MeV. 



Figure 5.29 DWPOM-equal /?(dotted line), DWPOM-equal &(dashed-dotted line) 
and RDWPOM(so1id line) calculations for 28Si at 250 MeV. 



I I 

"si(p,p') 2+ , Ep=400 MeV 

Ex=1.779 MeV DWBA 

Figure 5.30 DWPOM-equal ,O(dotted line), DWPOM-equal &(dashed-dotted line) 
and RDWPOM(so1id line) calculations for 28Si at 400 MeV. 



2+ , ~ ~ = 2 5 0  MeV 

Ex=1.369 MeV DWBA 

Figure 5.31 DWPOM-equal /?(dotted line), DWPOM-equal S(dashed-dot,ted line) 
and R D W P O M ( S O ~ ~ ~  line) calculations for 24Mg at 250 MeV. 



Comparisons of Deformation lengths 

250, 28Si 
250, 28Si 
250, 28Si 

Table 5.2 Deformation lengths from (p,p7) and comparisons. (6) means same 
deformation length is applied and, (P), same deformation parameter 
is used. 

Reference 
Present 
Present 
Present 

Ep(MeV) ,Target 
200, 28Si 
200, 28Si 
200, 28Si 

400, 28Si 
400, 28Si 
400, 28Si 

* , 28Si 
65, 28Si 

25-40, 28Si 
56, 28Si 

104, 28Si 
10-15, 28Si 
45-63, 28 Si 
250, 24Mg 
250, 24Mg 
250, 24Mn 

DWPOM(6) 
DWPOM(P) m 

RDWPOM 

Model 
DWPOM(6) 
DWPOM(P) 

RDWPOM 

DWPOM(6) 
DWPOM(P) 

RDWPOM 
( e 8 )  
(P~P') 
(P,P'> 
(d9d') 

(Q1 Q9) 
(n,nl) 

(160,16 0 ) )  
DWPOM(6) 
DWPOM(P) 

RDWPOM 

PR(29  
1.32 
1.68 
1.25 
1.24 
1.63 
1.32 

j 

Present 
Present 
Present 

1.31 
1.36 
1.36 

1.468* 
1.17 
1.31 
1.18 
1.25 
1.47 
1.35 
1.68 
2.16 
1.55 

Present 
Present 
Present 

Ch72 
Ka85 
Le79 
Ha81 

Re71,72 
Ha84 
Du78 

Present 
Present 
Present 



5.4 LF and DD 

A microscopic DWIA(or IA) Love-Franey t-matrix calculation was carried out. 

These results are denoted with LF. The DWMM Hamburg code uses the PARIS83 force 

and a density-dependent G-matrix(instead of t-matrix), and the results are denoted with 

DD. Both approximations can be calculated by using the optical model program DW83 

with associated forces, optical model potentials and shell model transition densities which 

are consistent with the electromagnetic data. The matter density is taken from the 

electron 3-parameter Fermi model(Ja74) and the size of the proton is then unfolded. 

The point density is thus put into the potential calculations for both the t-matrix and 

the G-matrix. The calculated potential is then applied in the calculation of observables. 

In LF, the force used is LF85(see Fr85). In DD, the PARIS83 force(Ri84) is applied. 

Both forces are energy-dependent. LF is tabulated up to 1 GeV while DD is valid only 

below approximately 400 MeV. The 3-parameter Fermi density with size of the proton 

unfolded has the value listed in Table 5.3. 

The shell model transition density and isoscalar effective charge are taken from a 

global fit to electromagnetic data in the sd-shell(see Br83 and Br86): 

The Harmonic oscillator length parameters b2f+(fm). 

Effective charge normalization ep  + e,(2+ only, En78): 

28Si : 1.78 (1.71) 



Table 5.3 Three parameter Fermi densities from (e,el) with proton size unfolded 

for 28Si and 24Mg. 

Table 5.4 0+ to 2+ one-body transition density matrix elements from the shell 

mode! of B r o ~ n  m10 Wilderrthd. 3-1 mem3 d3/2 pwticle- s1/2 hole ete. 

EP(M~V) Target Z b x  Reduction factor I t N N  I 

Table 5.5 Potential reduction factors for microscopic calculations. Both DWIA 

and DWMM have the same values. 



'\ 

The one-body transition density matrix elements for 0+ to 2+(first) are listed in 

Table 5.4 with the particle-hole configurations in the order of 0d512, Isll2 and O C Z ~ , ~ .  

The force of LF is from LF85 based on the SP84 amplitude of Arndt. The DD force 

is taken from PARIS83. Figures 5.32 and 5.33 give the LF and DD optical potentials 

such that the energy dependent potentials can be compared easily. Note that in these 

pictures the optical potentials were not reduced. 

From figures 5.34 to 5.53, we utilize them to demonstrate that in order to fit the 

data better, the reduction of the optical model potentials is necessary. 

Table 5.5 lists the potential reduction values. Since the 28Si data at 250 MeV has 

both observables, it is used to prove our reducing assumption on the potentials. Figure 

5.34 shows that for the DD version, the ground state observables are improved signif- 

icantly when one reduces the optical potentials (all the 4 parts of the potentials) by 

25%. Finally, one takes the effective charge for 2+ which is less than the average ef- 

fective charge. For 28Si, the effective charge for 2+ is 1.71. The 2+ calculation shows 

that a n  extra  -28%(40%) reduction should b e  pu t  in  Si(Mg) cross sections 

prediction. Note that this reduction does not apply on the ground state. 



Nov. 10, 1986 

0 

Figure 5.32 LF full strength optical potentials for 28Si at 200 MeV(so1id curve). 250 
MeV(dashed curve) and 400 MeV(dotted curve). 



Figure 5.33 DD full strength optical potentials for 28Si at 200 MeV(so1id curve). 250 
MeV(dashed curve) and 400 MeV(dotted curve). 



Figure 5.34 DD(dashed line) and DD with 75% optical potentials(so1id line) for "Si 
Of at 250 MeV. 
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10' 
= ~ i @ , ~ ' j  2+ , ~ ~ = 2 5 0  MeV 

A I Ex=1.779 MeV DD I 

Figure 5.35 DD(dashed line) and DD with 75% optical potentials(so1id line) for 28 Si 
2+ at 250 MeV. 



I \ %3iG,;) Ep=250 MeV LF 

Figure 5.36 LF(dashed line) and LF with 75% optical potentials(so1id line) for 28Si 
O+ at 250 MeV. 



lo' 
si6,p'j 2+ , ~pi250 MeV 

h I Ex=1.779 MeV LF I 

Figure 5.37 LF(dashed line) and LF with '75% optical potentials(solid line) for 28Si 
2+ at 250 MeV. 



2+ , Ep=250 MeV 

Ex=1.779 MeV DDLF 1. 
I 

Figure 5.38 LF with 45% potentials(dashed line) and DD with 75% potentials(so1id 
line) for 28Si 2'- at 250 MeV. 



With the reduction on the optical potentials shown in table 5.5, it is found that 

the improvement can apply to both DD and LF at all energies which can be reached at 

TRIUMF. However, the reduction factor may not necessarily be the same at different 

energies or with different target nuclei. The LF result of 28Si at 250 MeV beam energy 

is shown in figures 5.36 and 5.38. Table 5.6 shows the reaction cross section calculation 

with various models. These values are comparable with the results of Dymarz(Dy85). 

Since DD is the medium-modified prediction from LF and is suitable in the energy 

range between 100 to 400 MeV, it can be expected that the 250 MeV result from DD 

should be better than that of LF. Figure 5.38 proves that the medium modification 

are important for the 2+ state. Also, comparing figures 5.34 and 5.36, one can confirm 

immediately that DD is slightly more successful. This is due to Pauli blocking effects 

and a local modification of the short range force. On the other hand, LF only considers 

a single collision which is not affected by other particles nearby. The data from other 

energies and different targets are shown in figures 5.39 to 5.53 for both DD and LF 

predictions. Similar conclusions are obtained. 

For high energy(see 400 MeV prediction), the assumption of a single collision within 

a very short period of time is not naive anymore because of the high velocity of the beam. 

Also the Fermi energy compared to the incident energy is so small that one can neglect 

the blocking effect from the Fermi sea. 



Total reaction cross sections 

Target 

28 Si 

Ex(MeV) Model 

POM1 
P O M ~  
R P O M ~  
R P O M ~  
DWMM 
DWMM*.85 
DWIA 
DWIA*.85 

POM1 
POM2 
RPOM1 
RPOM2 
DWMM 
DWMM*.75 
DWIA 
DWIA*.75 

POM1 
P O M ~  
RPOM1 
RPOM2 
DWMM 
DWMM*.75 
DWIA 
DWIA*.75 

POM1 
POM2 
RPOM1 
RPOM2 
DWMM 
DWMM*.75 
DWIA 
DWIA*.75 

Table 5.6 The values of reaction cross sections of various models for (p,p) experiment: 
POM, RPOM, DD, LF, DD*rf(reduction factor) and LF*rf. 



Figure 5.39 DD(dashed line) and DD with '75% optical pot entials(so1id line) for " Si 
O+ at 200 MeV. 



Ex=1.779 MeV DD 

Figure 5.40 DD(dashed line) and DD with 75% optical potentials(solid line) for 28Si 
2 '-  at 200 MeV. 



\ %i&) Ep=200 MeV LF 

Figure 5.41 LF(dashed line) and LF with 75% optical potentials(so1id line) for 2eSi 
O+ a.t 200 MeV. 



10' - I I 

a~i@,~') 2+ , Ep=200 MeV 

Ex=1.779 MeV LF 

Figure 5.42 LF(dashed line) and LF with 75% optical potentials(solid line) for 28Si 
2+ at 200 MeV. 



A Ex=1.779 MeV DDLF 

Figure 5.43 LF with 75% potentials(dashed line) and DD with 75% potentials(so1id 
line) for 2eSi 2+ at 200 MeV. 
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Figure 5.44 DD(dashed line) and DD with 75% optical pot entials(so1id line) for 28 Sj 

0' at 400 MeV. 



I I 

w ~ i ( ~ , p ' )  2+ , Ep=400 MeV 

MeV 

Figure 5.45 DD(dashed line) and DD with 75% optical potentials(so1id line) for ?'Si 
2+ at 400 MeV. 



10" I I 

=si(p,p) Ep=400 MeV LF - 10% - - 
ti 
3 
B - 10' - - 
C a 
2 lo-' - - 
a 

10" I 

. - 
0 20 40 60 

0, ( d 4  

Figure 5.46 LF(dashed line) and LF with 75% optical potentials(so1id line) for 28Si 
O+ at 400 MeV. 



es~i(p,p') 2+ , Ep=400 MeV 

Ex=1.779 MeV LF 

Figure 5.47 LF(dashed line) and LF with 75% optical potentials(so1id line) for 28Si 
2+ at 400 MeV. 



a~i(p,ptj 2+ , ~ ~ = 4 0 0  MeV 

Ex=1.779 MeV DDLF 

Figure 5.48 LF with 75% potentials(dashed line) and DD with 75% potentials(so1id 
line) for 28Si 2+ at 400 MeV. 



Figure 5.49 DD(dashed line) and DD with 75% optical potentials(so1id line) for '4Mg 
0' a t  250 MeV. 



* ~ ~ 6 , ~ ' )  2 + Ep=250 MeV 

Ex=1.369 MeV DD ---l I 

Figure 5.50 DD(dashed line) and DD with 75% optical potentials(so1id line) for '"!Ig 
2+ at 250 MeV. 



Figure 5.51 LF(dashed line) and LF with 75% optical potentials(so1id line) for '4Mg 
O+ a.t 250 MeV. 



A Ex=d.369 MeV LF 

Figure 5.52 LF(dashed line) and LF with 75% optical potentials(so1id line) for '4hIg 
2+ at 250 MeV. 



" M ~ ( & ~ ; )  2+ , ~ & 2 5 0  MeV 

Ex=1.369 MeV DDLF 

Figure 5.53 LF with 75% ~otentials(dashed line) and DD with 75% potentials(so1id 
line) for 2Wg 2+ at 250 MeV. 
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Reducing the potential lowers the 0+ cross section, thereby slightly increasing the 

2+ cross section. At the same time, the analyzing power oscillations become large and 

spread to larger angles. It is also shown that the reduction factor necessary to fit the O+ 

data also brings the results for the 2+ into the better agreement. 



CHAPTER VI 

CONCLUSIONS 

Proton elastic and inelastic scattering study offers the information about nuclear 

structure and nuclear interactions. 

The Phenomenological Optical Model(P0M) with all the Wood-Saxon(WS) poten- 

tial parameters set free fits the data well. The Dirac (Relativistic) Phenomenological 

Optical Model(RP0M) gives an unconventional shape(wine bottle shape) of the effec- 

tive optical potential where scalar and vector parts of the potentials are explained as the 

exchange of scalar and vector mesons. Fitted POM and RPOM optical potential param- 

eters are not unique because the spin rotation parameter data are missing. Inside the 

nucleus, the potentials change dramatically. Even so, the observable calculations for the 

elastic process and the inelastic behavior are reasonably predicted from these ambiguous 

WS potential parameters. The RPOM with the radius-dependent potentials(wine-bot tle 

shape) does slightly better than the POM at forward angles and local extrema. 

Data for the collective 2+ states of 28Si and 24Mg are well reproduced by the Dis- 

torted Wave POM(DWP0M) and the Dirac (Relativistic) DWPOM(RDWP0M) by 

using the optical parameters from elastic scattering and deforming the spherical nucleus 

to an ellipsoidal shape. The deformation lengths PR's (or the reduced transition prob- 

abilities B(EL)) were fitted. The electromagnetic result gives larger deformation length 

than proton scattering one. 

Microscopic Optical Model calculations which are consistent with existing electro- 

magnetic data reproduce experimental (p,pl) data for the proton energies above 200 

MeV. The shell model structure used in this paper is extracted from the shell model 

9 1 



of Brown and Wildenthal. With the active sd-shell for the 2+ state of 28Si and 24Mg, 

this study gives prediction of (p', p') cross sections larger than the experimental values. 

By reducing the cross sections to -70% of its original value, good agreement is then 

obtained at various enerigies(60R for 24 Mg). 

The prediction of DWIA and DWMM using shell model transition densities shows 

that the strong proton-nucleus interaction calculation has discrepencies when cqmpared 

to differential cross section data. For the bombarding energies below 400 MeV, the Ham- 

burg potential derived from the PARIS83 force which includes Pauli blocking and short 

range corrections does a slightly better job than the IA. The microscopic calculations 

with the Density Dependence (DD) or the Love-F'raney (LF) interaction do not agree 

with the data in normalization and in angle extrema. Reducing all the optical potentials 

seems able to fix both the normalization and the angle shifts in one step for the ground 

state. This procedure shows that the microscopic Schrodinger formulation over-estimates 

the optical potentials for the light nuclei at intermediate energies, whereas the nuclear 

structure is less in doubt as the major problem. 

It is very clear now that both microscopic and macroscopic calculations give larger 

cross section prediction than the experimental data if one takes the electromagnetic 

results as a guide. Two conclusions can be drawn: 

1) Non-relativistic IA and MM overestimate the optical potentials. 

2) The 2+ state is overpredicted in both microscopic and macroscopic calculations. 

This indicates that the DWIA and DWMM are not quantitatively reliable to investigate 

low-lying collective states. It should be noted that all hadronic probes(see p.62) suffer 

from the same defect. ' 
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