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ABSTRACT
Outbreaks of t he Douglas-fir tussock moth, Orgyia

pseudotsugata (McDunnough), have recurred periodically, at 7 to

10 year intervals, since the first recorded observation in 1916
in Chase, B.,C., The decline of outbreaks in California, Arizona
and British Columbia has been attributed to a nuclear
polyhedrosis virus (NPV). The association between the
Douglas—-fir tussock moth and its viral disease is chosen to test
the hypothesis that microparasites are responsible for the
periodic population fluctuations of the insect. The test is done
using Anderson and May’s model and variants thereof. The

parameter values for the model are derived from published data
and from a laboratory experiment. The basic model is expanded to
include density-dependent mortality, vertical transmission,
incubation period and the effect of random fluctuations on the
growth rate,. Sensitivity analysis conducted for each model
disclosed that none of the versions generated the observed
behavior of the Douglas—fir tussock moth in the field. The
periodicity of the outbreaks in field populations cannot be
explained solely by the dynamics of the viral disease because
the virus is too short-lived and the growth rate of the insect
population too high. Therefore, other processes are likely to
influence the period of the «cycles and the density of

Douglas—-fir tussock moth populations.
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I. Introduction

Insect populations often exhibit spectacular increases and
declines in density over very short time. Attempts to explain
the sudden release of a population from endemic to epidemic
level and its subsequent demise have 1led to hypotheses Dbased
upon fluctuations in weather patterns (Greenbank, 1956; Watt,
1968; Ives, 1973), insect-plant relationships (Baltensweiler,
1964; White, 1974, 1976, 1978; Dempster & Pollard, 1981), and
the interaction between the insect and its natural enemies (May,
1976; Hassell,1978).

The climatic release hypothesis postulates that favorable
weather conditions will promote population growth to outbreak
levels as the insects increase beyond the control of natural
enemies (Greenbank, 1956; Ives, 1973). According to Watt (1968),
the important factor that determines the degree to which the
weather influences the insect is the evolved sensitivity of the
species to variations in weather patterns. If a given species is
under the control of a density dependent agent , it will be more
sensitive to extreme changes in weather than a species normally
under density independent control. But even in those instances
where the weather pattern can be correlated with the variations
in the ©population trends, the mechanisms causing population
change are still unknown. The observation that outbreaks of the

spruce budworm, Choristoneura fumifera (Clem.), the forest tent




caterpillar, Malacosoma disstria, and the black-headed budworm,

Acleris variana (Fern.),to mention only a few, are preceded by

2-5 years of dry summers, does not explain the mechanisms
underlying such a rapid increase let alone the ©periodic nature
of their fluctuations (Wellington, 1954; Silver, 1960;
Greenbank, 1963; Ives, 1973).

One avenue of investigation is to estimate the quality of
the food source and its effect on the 1insect. White (1974,
1976,1978) postulates that weather—induced stress of the host
plant increases its nutritional quality thus enhancing survival
and growth of the insect populations feeding on the plant. The
nutritional value of the food source can either explain the
initiation of an outbreak when nitrogen is made available or its
decline when the food quality is inadequate; mature tree leaves
are a relatively poor source of food for lepidopterous larvae
and the result is slowly growing larvae (Scribner and TFeeney,
1979). Longer development time of the insect may in turn render’
the larvae more susceptible to predators, parasitoids ‘and
diseases through 1increased exposure to enemies or lessened
resistance to pathogens (Price et al., 1980). For example, a
significant decline in oak leaf quality following defoliation
did reduce gypsy moth larval growth and changes in ©population
density could be driven in part by the response of the host
plant to the feeding ©pressure of the 1insect (Schultz and
Baldwin, 1982). However, Myers (1981) and Mason (1981b) failed

to provide evidence that the Western tent caterpiltar,



Malacosoma californicum pluviale (Dyar), and the Douglas-fir

tussock moth,0rgyia pseudotsugata(McDunnough), are affected by

host quality.

Models that only include the interaction between a predator
and its prey or a parasitoid and its host, generate stable limit
cycles given certain parameter values (De Bach, 1941; Beddington
et al., 1975; May, 1976; Hassell, 1978). In nature, however, the

situation is more complex as other factors intervene. Analysis

of field populations indicates that low insect density is often
maintained by either predators or parasitoids while
intraspecific competition for food prevents the population from
increasing (Readshaw, 1965; McNamee, 1979; McNamee et al.,
1981). The upper density 1limit of the insect <can also be
determined by a pathogen. Diseases that are transmitted through
contact with susceptible individuals need a threshold density of
hosts in order to maintain an infection (Anderson and May 1981),
and depending on the value of this threshold the disease could"
reach epizootic proportion before starvation takes its toll.
Anderson and May (1981) propose that the cyclic pattern of 1low
and high 1insect densities can be explained by the dynamics of
the insect-disease interaction alone. At low host density the
incidence of the disease 1is wvirtually nil and as the insect
population increases the pathogens, which were present in some
latent form in the environment or the host, multiply and bring
about the decline of the host population. Anderson and May

(1980, 1981) analysed data pertaining to the larch budmoth,



Zeirephera grisenea(Hubner), in Switzerland for evidence that a

viral disease accounts for the oscillating population patterns.
This insect erupts every 9 to 10 years and given the parameter
values Anderson and May estimated for this insect, the model
generates stable cycles of the desired period.

In Western North America the Douglas-fir tussock moth,
hereafter referred to as the tussock moth, is periodically a

conspicuous defoliator of Douglas-fir, Pseudotsuga menziessi

var.glauca (Beissn.) Franco, as well as true firs (Abies spp.)
In Oregon and California, six serious infestations have recurred
at about ten vyear intervals since 1936 (Wickman et al., 1973)
and in the interior of British Columbia, the driest stands of
Douglas—-fir have also been regularly subject to epidemics since
1916 (Sudgen, 1957). Survey records in Arizona also indicate an
oscillating pattern of outbreaks with a periodicity of 9 to 10
years {(Mason, 1977). A nuclear polyhedrosis virus (NPV) usually
appears during the declining phase of an outbreak and is
hypothesized to be a factor in the population dynamics of the
tussock moth (Morris, 1963; Mason and Thompson, 1971). The
association between the tussock moth and its viral disease
raises the ©possibility of testing the Thypothesis that this
disease is responsible for the periodic population fluctuations

of the tussock moth.



IT. Biology of the Douglas-fir tussock moth

Life-cycle

The Douglas-fir tussock moth has one generation per year.
The eggs are laid in the fall and hatch the following spring in
late May or early June depending on the temperature. By the time
the larvae emerge new plant shoots have flushed and the first
and second instars disperse to the new foliage by spinning silk
threads.The larve are then blown away by the wind. The dispersal
period may vary between 10 to 20 days but the larvae usually
remain within a relatively small distance from the source tree,
probably no further than 200 m (Mitchell, 1979)., The larvae feed
on foliage for about 2.5 to 3 months and the number of instars.
varies between five and six, the male having one instar less
than the female. Pupation begins about mid-August and the adults
emerge two weeks later, with the males preceeding the females.
Adult tussock moths do not feed. Mating occurs shortly after
emergence and the wingless adult female lays her eggs on the
cocoon from which she emerged. The eggs are laid in a single egg

mass and may contain from 150 to 200 eggs (Beckwith, 1978).



Host types

The distribution of the tussock moth over the range of host
types 1is 1illustrated in Fig. 1. In California and Southern
Oregon the tussock moth 1is mainly a defoliator of white

fir,Abies concolor (Gord. & Glend) Linl.,while in the

Southwestern United States it feeds on both white fir and

Douglas-fir. In the Northwestern states grand fir,Abies grandis

(Dougl.) Lindl., and Douglas—~fir are defoliated but not always
at the same intensity. In Boise, Idaho, grand fir was the
preferred host but Douglas-fir was severely attacked in Weiser,
Idaho. The principal host in the interior of British Columbia is

Douglas-fir (Sudgen, 1957).

Epidemic populations

Past outbreaks

The Douglas—-fir tussock moth was first noted in 1916 near
Chase B.C. Local infestations have recurred repeatedly since
that first report and the interval between infestations up to
1957 in the interior of British Columbia is represented in
Fig.2a. The papers from which those figures are drawn do not
specify if the insect reinfested the same stands but a
synchronous pattern of outbreaks among regions is apparent. In
1939, 1949 and 1955 the population collapse was attributed to a

virus disease although no quantitative information on the



Fig. 1. Distribution of Douglas-fir tussock moth as determined
by collecting and pheromone trapping. (From Livingston and
Daterman, 1977),.
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Fig. 2. Records of occurence of Douglas—-fir tussock moth
infestations (a) in the interior of British Columbia and (b)) in

Aztec Peak,Arizona . (Redrawn from Sudgen, 1957 and Mason,
1977).
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prevalence of infection was reported (Sudgen, 1957).

In the United States the first recorded occurence of the
tussock moth dates back to 1927 at Janbridge, Nevada. The
following year the insect was noticed at Boise and Weiser, Idaho
(Balch, 1932). California and Oregon have a history of severe
outbreaks that recurred at about 10 year intervals since 1936
(Wickman et al., 1973). Among the affected regions were Mammoth
Lakes, California 1935-37; Stanislaws National Forest,
California 1954-6; Modoc National Forest, California 1963-65;
Troy, Oregon 1945-7; Burns, Oregon in 1963-65; and Clearwater
National Forest, Northern Idaho 1943-45, 1962-64 and 1972-74,
The most damaging outbreak on record has been reported in the
Blue Mountains of Northeastern Oregon in 1972-76 when the
tussock moth reached densities of 765 early instar lajvae/m ’ of
foliage (Mason, 1976). Aztec Peak, Arizona has been subject to
at least two outbreaks (Fig. 2b) (Mason, 1974).

A tussock moth outbreak lasts from 3 to 4 years and is
characterised by 3 distinct phases: the release, peak and
decline phases, (Wickman et al. 1973; Mason, 1974). Outbreaks
occur following several years of inconspicuous buildup of the
population in a stand with usually one or two seasons of rapid
increase during which noticeable damage to the trees occurs.
Tree defoliation becomes apparent when densities exceed 33 early
instar larvae/m2 of foliage (Mason,1977). Defoliation is usually
concentrated 1in discrete geographic patches with little spread

to ad jacent areas. In severe outbreaks the upper quarter to half



of the crown of the tree is often defoliated and a reduction of
radial growth may occur if more than 507 of the tree is
defoliated (Wickman, 1978). For example, the growth of white fir
in California was reduced wup to 74% wunder heavy feeding
pressure. Another consequence of defoliation is top-kill. If
more than 60% of the crown is defoliated, tree mortality may
ensue but often mortality is due to secondary attacks by bark

beetles (Wickman, 1978).

Host quality

In general, outbreaks are more prevalent on ridgetops and
upper slopes, on low productivity sites and in mature and
overmature stands (Stoszek et al., 1981). The interpretation put
forth by Stoszek et al. (1981) is that the trees in such ©places
where the soils are less fertile, shallower and drier, are more.
likely to be subject to stresses caused by water and nutrient
deficiencies. Such stress factors increase the proportion of
soluble nitrogen in the foliage (White, 1974, 1978) and as a
result may favor tussock moth population increase via enhanced
survival of the larvae.

Mason (1981b) tested the hypothesis that tussock moth
outbreaks develop 1in response to changes in host foliage
quality. He compared the quality of the foliage in typical
outbreak sites with that in sites with no outbreak history and

concluded that foliage quality is not responsible for the sudden
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increase in insect density prior to an epidemic (Mason, 1981b).
In a study done on locally abundant populations in the Eldorado
National Forest, California, in 1971 , tussock moth larvae were
put on caged branches and examined for adverse effects of
foliage quality. The same procedure was followed for sites where
no outbreaks had been reported. T he production of frass,
fecundity, 1larval survival and the proportion of late instars
that pupated were not significantly different between the
outbreak and non-outbreak sites.

Further research is needed to elucidate the role of Thost
quality on the release of tussock moth populations. However,
quality of the host may at least contribute to the decline of
the outbreak. Current-year foliage is necessary for the survival
of the first two instars .When new shoots are unavailable the
insects will =either starve or disperse in order to increase
their chance of finding preferred foliage (Mason and Baxter,
1970). When fed old growth foliage under laboratory conditions,
stresed larvae take more time to develop than non-stressed
larvae fed new foliage (Beckwith, 1976). Another consequence of
food shortage is a reduction in the production of eggs.
Fecundity data for populations in Northeastern Oregon at the end
of the first and second season of apparent tree defoliation
indicate a 30% reduction in the mean number of eggs/mass (Mason
et al., 1977). The mean fecundity dropped significantly from 151

eggs/mass in 1972 to 105 eggs/mass in 1973,
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Virus epizootiology

Numerical changes in tussock moth populations appear to be
related to a complex of natural enemies including a virus
disease which is often cited as a major mortality agent in the
declining phase of an outbreak (Sudgen, 1957; Morris, 1963;
Wickman et al., 1973; Mason, 1974).

Two nuclear polyhedrosis viruses (NPV) are known to infect

Orgyia pseudotsugata . One type of polyhedral inclusion body

(PIB) contains a single virus rod and is designated as SV while

the other has bundles of virus rods and is designated as BV. The
SV has been found throughout the range of the host from British
Columbia, Washington, Oregon, Idaho, Montana, California and
Arizona. The BV virus 1is more limited and has been collected
only in British Columbia, Washington, Idaho, Montana and
Northern Oregon. Sometimes both viruses are found in the same
insect population but only rarely will  one individual beb
infected with both viruses (Hughes, 1976).

An epizootic generally develops when t he eggs are
contaminated with virus present in the female or the forest. As
the larvae hatch they eat part of their egg shell and Dbecone
infected with the virus. The virus multiplies inside the body
cavity and when the larva dies, it ruptures and 1liberates
inclusion bodies that contaminate the foliage upon which the

healthy larvae will feed. These in turn will propagate the virus

as they die. It appears that the initial incidence of infection

12




in the first instar as well as population density will influence
the speed at which the epizootic will spread (Wickman et al,.

1973).

Endemic populations

Tussock moths are notoriously difficult to detect Dbetween
2

outbreaks., At densities less than 0.15 larvae/m the moths are

rare, being found on less than 27 of the branches. Low densities

are considered to be between 0.15 and 3 1arvae/m2 with less than

25% of the branches infested. At suboutbreak level the densities
2

are between 3 to 30 larvae/m (Mason, 1977). Densities above

this latter figure are termed outbreak densities.

Associated with those low densities is a complex of
invertebrate predators and ©parasitoids that may play a
regulatory role 1in low populations of tussock moth. In central
California they appear to be preventing the ©populations from
reaching high densities (Dalhsten et al., 1977). Among the
parasitoids identified , the most common were tachinids which
accounted for 73% of all parasitism. The effect of predators,
however, is more difficult to determine since many of them
remove the entire prey. Invertebrate predators such as certain
coccinellids, pentatomids and spiders are suspected of Dbeing
natural ennemies of the caterpillars but their influence has not

been quantified (Mason, 1976; Dahlsten et al., 1977). Generally,

the incidence of virus between outbreaks is very low or appears

13



to be absent. Even 1if the virus is wundetectable in the
population it may still be present in the forest floor
environment and reintroduced to the insect population by airborn

dust particles (Thompson & Scott, 1979).
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ITII. The approach

From the ©previous discussion, it is c¢clear that many
variables <change during the course of a tussock moth outbreak.
The foliage condition, disease prevalence and probably predator
and parasitoid densities are varying and yet there are
relatively few good data on the dynamic responses of most of
these components. My objective is to test the hypothesis that
the explicit representation of the dynamics of the disease and
host 1insect alone are sufficient to generate periodic outbreak
patterns of the tussock moth which resemble the patterns
observed in the field. In other words, I am focusing on the
disease hypothesis as opposed to the food or predator hypothesis
of population regulation. The unspecified effects of food or
predators are implicitly included in a model where density
dependent factors increase mortality at high host insect
densities.

The hypothesis of the importance of disease in the tussock
moth population <cycles 1is tested in several WaysSe Various
modifications of Anderson and May’s (1981) free-living stages
model (Model G) are used with parameter estimates for the
tussock moth situation derived from the literature and a
laboratory experiment. These versions of the model tested are
different from Anderson and May’s in that the free-living stages

are included with each process examined and all the ©processes

15



are combined in one model in a way appropriate for the tussock
moth., These processes include wvertical transmission of the
disease, density-dependent mortality and an incubation period of
infection (see section V, "The models".) The behavior of each
version of the model is examined to determine if the tussock
moth population cycles seen in nature are properly reflected by
the model, using parameter estimates derived for the tussock
moth. Sensitivity analyses are also performed to cover a range

of parameter estimates.

16



IV. The models

Basic model

Anderson and May’s (1981) free-living stages model (Model
G), which is the basic model for my purpose, is condensed into 4
differential equations describing the dynamics of the total host
insect population (N), the infected hosts (Y), the susceptible
hosts (X), and the long-lived infective stages of the virus (W).
Generally epidemiological models describe human populations and
focus primarily on the transmission of the disease from the
infected to the susceptible hosts without keeping track of
changes in the abundance of the host population and of the
pathogen. Anderson and May (1981) break new ground by explicitly
modelling the dynamics of the host as well as the microparasite
populations.

The assumptions of Anderson and May’s (1981) model G is
that the host rate of population growth is determined by an
intrinsic rate of increase (r) in the absence of the disease s
minus a disease-induced death rate (a) of infected hosts where
(a) is the per capita death rate. The se parameters are
instantaneous TrTates (see section on "Estimation of parameters"
for their values).

dN/dt=rN-gqY (1)

17



T he intrinsic growth rate r is equal to the rate at which new
susceptibles are introduced (a), minus the rate at which they
die (b)), due to factors other than the viral disease.

The rate at which hosts acquire infection is assumed to Dbe
proportional to the number of susceptible hosts (X) and the
number of infective stages of the virus (W). The infected
individuals (Y) are lost at a rate Q+b,

dY/dt=BWX-(a+b)Y (2)
(R ) is the transmission coefficient between infective viruses
and susceptible hosts.

The infective stages are produced at a rate (A) determined
by the number of viral particles (A ) produced during the
lifetime of the infection 1/ a+b. The losses from the virus
population are accounted for by the rate of mortality of the
viral particles (u) and by the absorption into the insect B N.

dW/dt=AY-(u+BN)W (3)
Since, by definition, the total host insect population (Nj
equals the sum of infected (Y) and uninfected (X) individuals,
the dynamics for the susceptible hosts (X) are given by the
identity equation:
X=N-Y (4)
The processes 1incorporated in the basic model are

schematically illustrated in Fig.3

18



Fig. 3. Schematic representation of the processes incorporated
in the basic model. (Adapted from Anderson and May, 1981).
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Density—-dependent model

In the basic model the only constraint limiting the growth
of the tussock moth is the virus. In reality other processes
such as food depletion or the action of predators and
parasitoids will eventually 1limit population increase. I
modified the basic model by adding density dependent mortality
which encompasses all these processes. The equations are similar
to the basic model except that the insect natural death rate (b)
is replaced by the function

b’=b+cN (5)
where (b) is the smallest value of the natural death rate at low
host density , or the minimum natural death rate, and (c)
represents the severity of density-dependent constraints on the
natural mortality. The parameter (b’) can be treated as a
constant when (c¢) 1is equal to O or as a linear function of
density when (c) 1is greater than Zero (Fig. 4). The_
disease—~induced mortality rate (0) is always density dependent
and is derived from the identity function

o=d~b’ (6)

where (d) is the total host mortality.

Incubation period model

T he tussock moth virus does not kill its host readily once
a larva has contracted the infection and an incubation period of

about 1 to 2 weeks is generally required before the insect dies.
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Fig. 4. The relation between the total mortality and the density?
of the host (N) is illustrated under two assumptions. a) The
host natural mortality (b) is constant while the disease-induced §
host mortality (g ) is density-dependent. b) Both (b) and (a) are
density—-dependent.
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It 1is often hypothesized that a delay in the response of a
mortality agent to changes in host density may produce cyclic
oscillations (Berryman, 1978b; May, 1973). Whether this general
statement can be extended to the tussock moth ©population 1is
explored in the incubation period version of the model. The
incubation period of infection is modelled by adding a new class
of infected but not yet infectious individuals (M) which acquire
the infection at the rate BWX, and are lost through natural
death and transfer from the infected class to the infectious
compartment at a rate (V) (Fig.5).

dM/dt=BWX~-(b+v )M (7)
Consequently the gains in infecteds is measured by VM and the
losses include natural and disease-induced mortality (b+xu)Y

dy/dt=wW-(b+ta)Y (8)

Equations (1) and (3) remain unchanged.

Vertical transmission model

In addition to <contamination among conspecifiqs, or
horizontal transmission, a female infected in the later stages
of her 1life can transmit the virus directly to her offspring.
Some pathogens are present on the surface of some eggs and the
larvae become infected when they emerge and eat the egg shell.
Also referred to as transovum transmission, this mechanism is
one of the two means of vertical transmission, the other being

the transmission of the virus directly to the embryo in the egg
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Fig. 5. Schematic representation of the processes incorporated
in the incubation period model. (Adapted from Anderson and May,
1981).
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shell called transovarial transmission (Finn, 1975). Vertical
transmission is often found in insect species which have a small
probability of contracting the infection from their conspecifics
(Thomson, 1958; Burges, 1973). Since the tussock moth larvae
emerging from previously surface sterilized eggs will not
contract the disease, so transmission is transovum. In the
vertical transmission version a proportion p of the births goes
directly to the infected class while the rest forms the pool of
susceptibles (Fig. 6).
dY/dt=BwWX-(a+b)Y+apyY (9)

Equations (1) and (3) are unchanged.

Combined model

The combined model includes all the processes mentioned
above in the basic, density-dependent, latency and vertical
transmission models. This combined model represents the tussock
moth situation as <closely as is discernible from the existing
data. The larvae become infectious after a given incubation
period. (Fig. 7)

dyY/dt=vM-(a+b’)Y (10)
A proportion of the births go directly to the infecteds but not
yet infectious class.
dM/dt=RWX-(b "+v )M+apM (11)
The parameters (b)’ and (g) are density-dependent. The larval

and the wviral populations grow at the same rate as in the
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Fig. 6. Schematic representation of the processes incorporated

in the vertical transmission model. (Adapted from Anderson and
May, 1981).
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Fig. 7. Schematic representation of the processes incorporated
in the combined model.
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]

previous versions (equations (1) and (3)).

Stochastic model

In the previous versions of the model only one outcome is
possible given certain parameter values, i.e. the models are
deterministic. However, in nature those parameter values are not
fixed from year to year and variation around a mean value 1is
expected. All the processes included in the model are subject to
fluctuations but I focus on the growth rate (r) because it
incorporates natality and mortality and is a major influence on
the dynamical behavior of the equations. Random fluctuations are
incorporated in the basic and combined models in order to test
whether variability in recruitment of offspring can change the
periodicity or lack of periodicity observed in the deterministic
versions of these models. The growth rate (r”) in the equation

dN/dt=r'N- Y (12)

is either equal to

r’=re (13)
or

r’'=r+v (14)
where (v) is a normally distributed variate with mean zero and
variance .

A succinct summary of each version of the model is given in

Table 1.
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Table 1. Models reviewed in the sensitivity analysis.
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Model

Variables and
processes included

Equations

A. Basic model

B. Density dependent
model

C. Incubation model

D. Vertical
transmission model

E. Combined model

Total host population (N)
Infected hosts (Y)
Susceptible hosts (X)
Free-living infective
stages (W)

Density dependent
death rate of the
host population (d)

New class of infected
but not infectious
hosts (M)

Proportion of offsprings
of infected hosts go
directly to the infected
class

Inclusion of all the
above processes

F. Stochastic growth Random fluctuations on

rate model

the growth rate

dN/dt=rN-Y
dy/dt= BWX-({+b)Y
X=N-Y
dW/dt=A Y- (uBN)W

As in model A except
b'=b+cN
d=a+b"'

As in model A except
dM/dt= BWX- (V+b)M
dY/dt=vM-(@+b)Y

As in model A except
dY/dt= BWX~(@+b)+apY

As in model A except
dM/dt= BWX-(b'+V)MtapM
dy/dt=vM-(a+b')Y
dN/dt=(a-b'")N-aY

As in model A and E
except
r'=re
or
r'=rt+v

R:transmission coefficient,

rate,

random variate.

A:virus production rate,
v ‘incubation coefficient,

a:disease-induced death rate, b:natural death
r:host growth rate,
u:virus death rate, v:normally distributed

a:host birth rate,
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V. Data sources

The data used in the estimation of the model parameters are
from the western part of the United States and Canada. Included
are populations that fluctuate at low density in the absence of
the virus in Mare’s Egg Spring, Ore. and Eldorado National
Forest, Calif. (Mason and Torgersen, 1977; Mason et al., 1983),
and populations that reached high densities, up to 118 early
instar 1arvae/m2 and whose rapid decline was attributed to a
nuclear polyhedrosis wvirus in Aztec Peak, Ariz. and Modoc
National Forest, Calif. (Mason and Thompson, 1971;R.R. Mason,
pers. comm.B.

— Unfortunately, there is no population of tussock moth which
has been studied extensively enough to provide t he data
necessary to estimate all of the parameters of even one version.
of the model. Therefore, I pieced together parameter estimates

from different populations, and ensured that only comparable

populations were included in the analysis.

Mare’s Egg Spring, Oregon population

The 8 study plots in this area are mixed conifer stands

composed of white fir, pondorosa pine, Pinus ponderosa,

]l Range and Wildlife Habitat Lab., La Grande, Oregon
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Douglas-fir and incense cedar, Libocedrus decurrens (Torr.). The

area has never experienced an outbreak and the study was
conducted from 1975 to 1977, Usually the branches are sampled
from the mid-bole of the tree but for these 1low density
populations the branches were taken from the lower crown and the
results were comparable with the standard sampling method.
Concomitantly with the sampling, larvae were stocked on branches
in order to identify more precisely the mortality agents (Mason

& Torgersen, 1977).

Eldorado National Forest, Calif. population

The tussock moth was sampled in a mixed conifer forest
dominated by white fir, ponderosa pine and 1incense cedar. The
samples were taken from the mid-bole of the tree. There were 4
plots at Iron Mountain and 4 other plots at Plummer Ridge. Small.
outbreaks of tussock moth were recorded in 1953, 1962 and 1970
in Iron Mountain but damage was not as eXxtensive as the
infestations in the other western states. Plummer Ridge has only
one record of moderate populations, in 1970, but densities did
not reach levels of noticeable defoliation. In 1978-79, the
years from which the data are obtained, t he tussock moth was
believed to be in the release phase but they decreased instead
of erupting. The virus was not detected and parasitoids and
predators probably kept the population under control (Mason et

al. 1983).
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Modoc National Forest, Calif. population

T he study area is composed of white fir and pondorosa pine

and the mid-crown of the trees was sampled. The 5 study plots
2

had maximum densities over 80 early instar larvae/m and the

virus disease was responsible for 41.3%7 of the total mortality

(Mason & Thompson, 1971).

Aztec Peak, Ariz. population

The forest is a mixed conifer type comprised of white fir,
Douglas fir and ponderosa pine. The data used in the model were
obtained from 10 plots surveyed during the release phase of an
outbreak and these are used to estimate the intrinsic growth,
rate. The outbreak was light with densities of 50 early instar
larvae/m2 and the virus was present in the collapse phase. Only

early instar larvae were sampled for 8 years (Mason, pers.

COmM. ).

Other field data sources

Situations exist where the ©populations do not fit into
either of these two categories. This is the case in northeastern

Oregon where in 1973 the tussock moth increased to extremely
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2
high levels (765/m ) without being hampered by the virus disease

which appeared very late in the outbreak and accounted, in
conjunction with parasites, for 117 of the total mortality
(Mason, 1976). After a couple of years of heavy feeding pressure
by the insect, the plots were defoliated to various degrees
ranging from severe to light. Because of the starvation suffered
by the larvae this population will not be used to 1investigate
virus-related mortality at the larval stage.

Populations sprayed with the virus as a mean of Dbiological
control are also informative and in one example in Oregon the
experimental spray was conducted in the Wallowa-Whitman National
Forest in 1973 (Slelzer et al., 1975). Douglas-fir and grand fir
were sampled to monitor the effect of the spray. Screening
agents to block ultra-violet radiation were also added to the
spray formulation which resulted in a 107 increase in mortality
over the formula of virus only. Virus caused mortality was first
observed in the treated plots about 14 days following the spray
after which the natural process of contamination took over. A
similar study was conducted in Kamloops, B.C. in 1975 (Stelzer

et al., 1977).
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ViI. Estimation of Parameters

Because the equations of the various models used here are
in continuous form, parameter estimates must be in instantaneous
rates, not finite rates. To convert from finite rates, which are
the type of data normally gathered in field studies, to
instantaneous rates the natural logarithm of the finite rate is
used because the general model describing changes in numbers is

rt
N =N e (15)
t+1 t
If t is set to 1 time unit, and here t is one year, the natural
logarithm of the finite annual survival rate (N /N ) is the

t+1 t
instantaneous annual growth rate r.

Growth rate ,r,

The parameter r represents the maximum growth rate of the
insect population and an adequate approximation is the increase
in density between generations, when the insect is not food
limited. In a continuous time model the instantaneous growth
rate is calculated by taking the natural log of the trend index
(N /N ) at maximum increase. For example, during the release

t+1 t
phase of an outbreak in Aztec Peak, Arizona, the ratio of the
mean densities of 10 plots for the year 1967 to 1968, is 5.3,

(Mason, R.R. pers. comm., ) which when converted to an

instantaneous rate is 1.7/year (Table 2).
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Table 2. Table of baseline values for the parameters of the
basic model.

34A




!

— 6O LXL £ 1uaioy}900 uoisSIWSUELY
0'9-0'v 0¢S n ‘sjeld yjeap jeinjeu SnIiA
V ‘ease|/paonpoud
g0 L X{¥-, 01X a0 LX2 $8Ip0OQ UOISNIOULl JO J8aquWnN
G'LL-6'9 6'8 0 ‘a@)el yjeap paonpul-aseasi(
Gg'g-0¢c oe g ‘ajes yleap |einjeu }0ssu|
6'v-€v LY e ‘a)es yuig
L'eg-v'L L J ‘ajed yimoun
S31VWILS3 H313WVvHVd
40 SANIVA (4v3aA/)

WNWIXVYIN ANV WNNWINIW

ANTVA 3INIT3SvE

H313WVHVd

24 RB



Birth rate ,a,

The data are from the endemic populations in order to
exclude the =effect of starvation on fecundity. The number of
eggs per individual varied between 71 and 136 with a mean of 109
(Mason and Torgersen, 1977; Mason et al., 1983). The sex ratio
was close to unity. Therefore, the average instantaneous birth
rate (a) is 4.7 with a minimum at 4.3 and a maximum at 4.9 but

in the sensitivity analysis the birth rate is constant at 4.7.

Natural mortality rate ,b,

In the Anderson and May model (1981), the natural mortality
rate {(b) includes all the mortality agents operating in
populations free of the virus. Information on such agents is
available from the low density populations that are sampled soon
after hatching from the 1larval stage to the pupal stage. The
data on the moth stage are an estimation of the density of
adults that emerged from the pupae.

If equation (15) is modified to represent weekly changes in
survival of a cohort of insects, then t=1 week and the exXponent
becomes the natural mortality rate b. The equation 1is then
transformed by taking the natural logarithms

1n(N ) =1n(N )-bt (16)
t 0
where b, the instantaneous per capita death rate, is the slope

of the regression line. A linear regression was performed on the

35



number of larvae surviving over time, and the close fit to the
linear relation gives support to the assumption that the
instantaneous death rate is constant throughout the insect 1life
span (Fig. 8). The instantaneous death rate calculated for the 5
sets of field data range from 2.6 to 5.0 for the 12 week period
(Table 3).

These values only account for the 3 month period while the
insects are active. The rest of the year is spent in the egg
stage where mortality also occurs. The instantaneous death rate,
which is the natural logarithm of the proportion of the density
of first instar larvae that emerged in the spring over the
density of weggs the previous fall, is very low (0.5 insect/9
months or 0.17 insect/3months). Since 1instantaneous mortality
rates are additive, the larval mortality for 3 months is added
to the egg mortality for 3 periods of 3 months and the values of
b for the complete life-cycle range from 3.1 to 5.5 insect/year
with a mean of 4.6,

The value of 3.1 was estimated from a study done with
stocked larvae, but the cohort had not been followed t he
following year and it 1is not known if this value reflects a
stable or increasing population. The other values of (b) come
from populations that declined the following year and the
natural death rate is probably overestimated. For the purpose of
the model the natural death rate should be estimated from an
increasing population, when the mortality from different sources

is at a minimum, since it enters 1in the definition of the
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Fig.

8.

Rate of disappearance of larvae and pupae.

Mason and Torgersen, 1977).
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Table 3. Regression statistics for field plots used to estimate
the natural death rate (b). (Y=a+bx where Y=1n of dens. (/m2)
and x=weeks)
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Plot Larval death P r
rate,b (/wk)
Mare's Egg Spring,
Oregon
1975 0.26 0.009 .919
1976 0.41 0.001 .976
Stocked cohort 0.22 0.001 .980
Sierra Nevada,
California 1978
Iron Mountain 0.35 0.006 .943
Plummer ridge 0.42 0.007 .933
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intrinsic rate of increase. The value of t he intrinsic growth
rate 1is 1.7 and the birth rate is 4.7. When those values are
substituted in the equation r=a-b, the resulting death rate is
3.0. Considering the limited amount of data on natural
mortality, statistical measures of deviation from the mean of
4.6 derived above are meaningless and the Trange of values

included in the sensitivity analysis represents the best

=

approximation of the mortality rates observed in  the field.

Disease~induced mortality rate ,Qa,

The same regression procedure as the one used for the
estimation of (b) is followed for the disease~induced death rate
(o) but this time using a population in the decline phase of an
outbreak in plots where the virus is an important mortality
agent. The data come from 5 plots in outbreak in the Modoc
National Forest in California (Mason & Thompson,1971).

The death rate calculated from the regression slope
represents the mortality during the three month period when the
insect is active. The mean total death rate is 9.2/3 months with
a minimum at 6.2 and a maximum at 11.8. Mortality in the egg
stage has to be added to those figures in order to estimate the
total annual mortality. Unfortunately no information 1is
available on the egg survival through the winter for these plots
but it can be calculated from the life tables of an outbreak

population in Northeastern Oregon. This population was
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previously discarded because the virus was very late to appear
in the larvae but the data show that for those plots where first
instars were present the year following the collapse, between 13
and 32%Z of the larvae (n=6 plots) died from the virus disease
soon after emergence (R.R. Mason, pers. comm.). The disease must
have been transmitted from the adult to the eggs by absorption
on the surface of the shell. The resulting instantaneous death
rate (ln of proportion surviving) of 2.7/9 months is higher than
in a virus-free situation and this mean value is then added to
the mortality during the 3 month period. The yearly total death
rate in the presence of t he virus is now 11.9/year with a
minimum at 8.9 and a maximum at 14.5. Since (a) is the added or
excess mortality caused by the virus, the natural death rate
must be removed from the total mortality to estimate the
disease-induced death rate. Given a value of 4.6 for (b), (g) is
7.3/year and the maximum and minimum estimates are 9.9 and 3.4,
respectively. However, given a (b) of 3.0 the value of (o )
ranges between 6.9 and 11.5 with a mean at 8.9. The values of
o tested in the sensitivity analysis are between 5.3 and 11.3.
The values of the disease-induced death rate (&), are very
similar to the rates calculated wusing plots that had been
sprayed with the virus in British Columbia and Oregon (Stelzer
et al. 1975; 1977). In those cases the mean total death rate 1is
8.6 with a minimum at 7.9 and a maximum at 10.7, Since the main
mortality agent is the virus and nearly all the larvae collected

for rearing died of the wvirus, the total death rate in the
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sprayed pPlots can be considered to represent a maximum
disease-induced mortality rate, albeit in artificially -enhanced
conditions. Since generally no egg masses are found following a

spray operation the egg survival is considered to be nil.

Rate of production of viral infective stages ,\,

T he infective stages are not released at a regular rate
once an insect becomes infected. Dissemination only occurs when
t he infected host dies, ruptures and releases the wviral
particles onto the foliage. The rate of production ( A) <can be
estimated as follows:

A=ACot+db) (17)
where ( A is the number of inclusion bodies (PIB) produced
during the expected lifespan of the infection, (1/ a+b). The
number of PIBs produced varies with the age and the size of the
larva at the time of death. Thompson and Scott (1979) measured
the average production of inclusion bodies per early instar
larva to be 1x107 PIB, as opposed to 4x108 PIB for each late
instar larva. Over a period of 50 days the average number of
PIB/larva was 1.8x108. This value is not far from the average
yield/larva of 6.7x10 PIB obtained in the pilot plant where the
virus is mass prodﬁced (Martignoni, 1978). In the computer
program, the value of ()\) is changed evergtime (a) and (b) are

modified but since (A) which is set at 2x10 PIB, is so much

larger than ( &) and b, the overall value for (A) in the above
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equation is not greatly affected.

Rate of mortality of the infective particles ,u,

The viral particles are contained in a protein crystal that
offers a certain degree of ©protection against environmental
conditions. If not exposed directly to wultraviolet radiation
from the sun, the polyhedra can survive for long periods of
time. Jaques (1975)demonstrated the persistence of the <cabbage
looper nuclear polyhedrosis virus in the soil for as long as six
years. Thompson and Scott (1979) also found active polyhedra in
the forest soil and in the 1litter, 11 years after an NPV
epizootic in the tussock moth. In another case where the last
tussock moth outbreak occured in 1936-38, some soil samples,
taken in 1979, revealed the presence of active virus at a very
low concentration (<<45 PIB/cm3) (Thompson et al.,1981). This
persistence of viral particles in the environment permits the
virus to survive periods of low host insect density. Presumably
the virus is continually reintroduced to the foliage through
dust transport (Thompson & Scott, 1979)., Once it is present on
the canopy it can spread through normal contagion if the density
of the moth is high enough.

Although a small quantity of viral particles <can persist
for an extended length of time in the duff, the majority are
deactivated on the foliage within the first year. Using Thompson

and Scott’s (1979) data, Anderson and May (1981) estimate the
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expected virus 1lifespan on the foliage to be between 2 to 3
months, Data regarding this parameter are very limited but I
have tentatively set a baseline value for (u) at 5.0, which
corresponds to a 2.5 month lifespan (u=l/expected lifespan) and
a maximum and minimum value at 4.0 and 6.0 which represent a
three and two month lifespan respectively. These values reflect
a low survival of the inclusion bodies. The possibility that
viruses are more persistent in the environment will be explored
in the sensitivity analysisj; (u) values will be varied from 0.5

to 7.5.

Transmission coefficient LB,

According to Anderson and May (1980) the transmission
coefficient (B) is impossible to determine. However, they claim
that since it is a scalar that only affects the magnitude of the
insect density (N) and not the prevalence of infection (Y/N),
they set its value arbitrarily to lxlO—g. Simulations done her;
confirmed that different values of ( B) do not affect the
existence or periodicity of the cycles as long as (r) is close
to or higher thalN 1.0. However while doing the sensitivity
analysis on the parameters (b) and (u), with the basic model, I
observed exceptions to this generalization but these exceptions

turn out to be unimportant (see section IX "Sensitivity

analysis'").
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Density-dependent mortality

Because (r) is treated as a constant in Anderson and May’s
model (1981), they do not account for the ©possibility of
decreased recruitment at high density. The evidence that such a
phenomenon occurs is scant but data from Aztec Peak show a
pattern of decreased recruitment at higher densities (Fig. 9).
This method of analysis is not a formal test of
density-dependence because of two biaises introduced by having
the independent variable N included in the dependent variable
N /N and a measuremeﬁt error on the independent variable

t+l t

(Sokal and Rohlf, 1969). However, for the purposes of the model
it 1s more informative to look at changes in the mortality
rates. As shown in Fig. 10, there is a trend of 1increased
mortality at higher density for the plots used in the estimation
of (b) and (@).

T he linear function describing the <changes in total
mortality is

d=4.7+0,07N (18)
The modified death rate is determined by
b’=b+cN (19)
where (b)), which represents the minimum insect natural
mortality, takes on values between 2.6 and 4.0 in the
simulations and (c), which represents the severity of the

density-dependent constraints, is varied from 0.0 to 0.06. Those

values insure that the natural mortality does not exceed the
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Fig. 9. Recruitment of Douglas-fir tussock moth in Aztec Peak
for the years 1967-1970 and 1975-1978. (Data from Mason, R.R,

pers. comm. ).
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Fig.

10.

Density-dependent total mortality

tussock moth populations. (Data from Mason
Mason R.R. pers. comm.; Mason and Thompson,
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total mortality.

Incubation period (1/v)

During the summer of 1981 I tried to simulate a virus
epizootic on stocked Douglas-firs. The experiment did not
provide the =expected information on the rate of spread of the
disease but some of the data can be used to estimate the length
of the incubation period. Tussock moth larvae were obtained from
egg masses collected in Hedley, British Columbia, in April 1981
where a minor infestation was under way. In June the egg masses
were surface sterilized in 0.1%7 sodium hypochlorite in order to
prevent undesirable contamination. When the 1larvae reached
second instar, they were placed on contaminated Douglas-fir

7
foliage that had been immersed in a suspension of virus (4x10

PIB/ml). The original inoculum, provided by I.S. Otvog, for
this fresh suspension of virus was from a 1975 artificially
induced epizootic in Kamloops. After 36 h of feeding on the
foliage, 30 larvae were put on small Douglas-fir trees (Ilm high)
covered with a fine mesh. Thg experimental plot was situated on
Burnaby mountain. Larvae were enumerated every day for the
following 2 weeks until all the larvae died.

The larvae started to die 7 days after being inoculated

(Fig. 11). The incubation period from the day of contraction of

the infection was estimated by dividing the cumulative sum of

2 Pacicifc Forest Research Service, Victoria B.C.
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Fig. 11. Survivorship curve for D0ugla7s—fir tussock moth larvae
experimentally infected with NPV (4x10 PIB/ml)
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the average number of organism surviving from day (t) to day
(t+l1) by the number of individuals present at the beginning
(Krebs, 1978). The incubation period is then between 8-9 days
and 1is ajusted for the 3 month period of insect activity. Given
a minimum of 7 days and a maximum of 12 days the value of (V)
,calculated by setting (1/v ) equal to the incubation period,

ranges from 7 to 12 with a mean at 10/year.

Vertical transmission

The percentage of first instars dead as a result of the
viral infection is a reasonable estimate of the amount of
vertical transmission occuring, since at that time mortality due
to contagion has not yet occured given the 1length of the
incubation period. In the 1last year of the outbreak in Modoc
National Forest, 107Z of early instars were infected and as
previously mentioned between 13 and 327% of the recently emerged
larvae died from the virus in Northeastern Oregon. However lower
values are more common. In the fall of 1973 in Northern Idaho,
egg masses were collected in order to assess the potential for
defoliation by the tussock moth the next spring (Tunnock et al.,
1974). The eggs were put to hatch wunder controlled <conditions
and the ©percentage of larvae —contracting the disease was
recorded. The results from 91 collecting points range from 0% to
one plot with 30%Z disease, but since the data are log normally

distributed the geometric mean (antilog(l/nXlog p)) of 2.0% 1is
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used (Fig. 12).

Random variation on growth rate ,v,

The distribution of the trend indices for the 10 plots from
which the growth rate (r) is estimated is shown in Fig.l3a.
Because of the 1low number of replicates it is impossible to
distinguish among the fit of several different theoretical
distributions of the data. However if trend indices, for the
same plots, covering 8 vyears are included, the resulting
distribution is clearly log normal (Fig. 13b) and a
multiplicative log-normally distributed noise term 1is <chosen
because the survival of the larvae depends on a series of
successive and relatively independent survival rates from one
stage to the other (Mason, 198la; Peterman, 1981). For
comparison an additive normally distributed error term 1is also .,
used.

In the multiplicative log~normal model

v
r’=re (20)
as well as the additive normal model
r’=r+v (21)
v is a normally distributed random variate with mean O and
standard deviation of 0.3.
The value of 0,3 for the standard deviation of the ratio of

the means (r=N /N ) is calculated from the following formula
t+1l t
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Fig. 12. Prevalence of the virus in newly emerged Douglas-fir
tussock moth larvae in Northern Idaho (Data from Tunnock et al.

1974) .
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Fig. 13. Trend indices for populations of Douglas-fir tussock

moth in Aztec Peak for the years (a) 1967-1968 and (b) 1967—19704
and 1975-1978. (Data from Mason R.R. pers. comm.).
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(Villegas C., pers. comm%)
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<2

where E =Y and N =X and since N and N are correlated
t+1 t t+1 t
(r=.986) the correlation coefficient is embeded in the formula.

3 Department of Mathematics, Simon Fraser University
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VIiI. Simulations

Simulations were performed with each version of the models
by using a differential equation solver package (DVERK) (IMSL
1982)., This package takes the differential equations which,
given initial conditions for the state variables and parameter
estimates, describe <changes 1in state variables and calculates
values for those variables at the end of 0.2 year to obtain a
better resolution. Initial wvariable conditions used were 100

2
insects/m for the total host population comprised of 10
infected and 90 susceptible hosts.The initial virus density is

6 2
10 PIB/m . Simulations were rtun for 100 years.
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VITII. Criteria for evaluating model performance

Before solving the differential equations with the
estimated parameter values, it is necessary to establish the
criteria that describe the field situation and that will serve
to evaluate the results of the simulations (Table 4). The
maximum host density comprises values between 30 and 154 early

2
instar larvae/m , based on studies in Arizona and California.
Although greater population densities have been Trecorded in
Oregon, they are not 1included in the upper limit because the
course of the outbreak was different from regions where the
virus is a more predominant mortality factor.

Between outbreaks the tussock moth usually persists at low
levels and a value for the minimum density should be below 1

2
early instar larvae/m . Intervals between peak densities may be
several years 1long and a group of researchers from the
University of Washington came to the conclusion that outbreaks
over the entire @geographic range of the tussock moth occured
every 8 to 9 years (Mason and Luck, 1978). Intervals as short as
7 years and as long as 10 years have been observed so a range of
periods between 7-10 years is acceptable (Sudgen, 1957; Wickman
et al. 1973). As for the density of wviral particles, the
confidence on this indicator 1is low since only indirecg
7

estimations are available and any result in the 10 and 10

range is acceptable. It is more informative to 1look at the

55



Table 4. Table of criteria for the behavior of Douglas-fir
tussock moth populations in the field.
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CRITERION OBSERVED VALUES
Period 7-10 years

B Prevalence of infection 25-50%
Amplitude of oscillations 30-150 hosts/m?

) Maximum host density 30-150 hosts/m?
Minimum host density <<1 host/m?
Virus density 107-10° PiBs/m?
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prevalence of the disease in the larval stages where 25 to 50%
of the insects die of the virus. However, as in any
predator-prey model, the wvirus 1lags behind the peak in host
abundance which is the reason for the 2 measures of prevalence,
one taken at maximum host density and one taken slightly later
when virus prevalence is maximum. Since the resolution in the
field data 1is usually not fine enough to differentiate between
the two, Anderson and May’s (1981) convention is followed and
emphasis 1is on the maximum prevalence of the virus. Therefore,
prevalence at maximum host density and density of virus are not
important indicators wupon which the decision of rejecting the
applicability of the model to the tussock moth will rest. More
importance is given to the period between outbreaks, the
amplitude of the population cycles and the maximum prevalence of

the disease.
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IX. Sensitivity analysis

It would be time consuming to go through a set of
simulations one b; one, changing one parameter at a time and
analysing the time series, such as the one presented in Fig.l4,
A faster method is to incorporate in the simulation program
equations that calculate the above-mentioned characteristics of
the time series. Among the statistical indicators chosen are the
maximum and minimum densities from which the amplitude 1is
calculated. The amplitude is O if the solution is an equilibrium
point or greater than O when cycles are generated. To determine
the stability of the cycles, the difference in amplitude from
one cycle to the next is measured. The oscillations are stable
if the difference 1s 0, 1increasing in amplitude if the
difference 1is greater than O, or decreasing in amplitude if the
difference 1is 1less than O. The other indicators are the
prevalence of infection at maximum host density; the maximum
prevalence; the maximum density of virus ©particles (PIB); and
the period of the cycles. The performance 1indicators are
calculated for the last 50 years of the 100 years simulations.
If more than one cycle appears in these 50 years, then the value
of the performance indicator is averaged over the cycles (e.g.
if there are 3 cycles, with periods of 8, 10 and 12 years then

the average period would be 10 years).

58



Fig. 14, Time series for the basic model (®=8.9, r=1.7, b=3.0,;
8 <9
a=4.,7,A=2x10" ,B=1x10, u=5.0)
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New values for the indicators are generated each time a
parameter is changed and all these results are summarized in the
form of nomograms also known as response surfaces or isopleth
diagrams., These graphs illustrate the numerical change in a
given indicator when 2 parameters are modified. Except for those
2 parameters under scrutiny, ¢the ©baseline conditions remain
constant throughout the simulations. This way the sensitivity of
certain parameters considered important is evaluated for the
effect they have on each indicator. These nomograms graphically
summarize the results of different simulations. Nomograms with a
finer grid resolution do not affect the results and the same
scale for the virus natural death rate is wused for all the
nomograms except for the Dbasic model nomograms where some
intermediate values are omitted.

The next step is to determine the range of parameters that
most closely reflect the field situation. This 1is achieved by
isolating the region of each graph where the isopleths
correspond to the behavior of that particular indicator in

nature.

Basic model

On each nomogram in Fig.l5, the wvirus mnatural mortality
rate (u) increases along the Y axis and the natural death rate
of the insect (b) varies along the X axis . When the wvalue of

(b) 1increases the <corresponding insect population growth rate
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Fig. 15. Nomograms of the basic model witha =5.3 (a=4.7, A =2xl(ﬁ§
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(r) decreases ; when b=4,0 (r) has a value of 0.7. Values of the
growth rate lower than 0.7 have not been 1included in the
sensitivity analysis because at low wvalues of (r) a slight
change in the transmission coefficient affected the pattern of
infection (Table 5) to the point where sometimes the model
produces periods of  Thost population fluctuation near those
observed in the field. Those results are unreliable because the
value of the period is not constant for different values of the
transmission coefficient, and even if the desired period is
obtained (e.g. 9 years), the performance of the other indicators
is inadequate.

The model is run with a single set of parameter estimates
and the value for each of the 8 indicators 1is generated, e.g.
the period for the last 50 years., The model is run again for a
new combination of (u) and (b) while keeping all the other
parameters constant., In order to explore all the possible
combinations, of (u) and (b) 64 simulations are necessary and
each nomogram in Fig. 15 represents the result of those 64 runs.
As shown, there exists different pairs of (u) and (b) which give
rise to the same period, e.g. 8 vyears. Those points which
represent a period of 8 years are joined and referred to as an
isopleth, The same procedure is applied to all the indicators.
In Figs.15 to 18, the same simulations are done for different
disease—-induced mortality rates.

When (0) is small the maximum and minimum total host

populations are relatively insensitive to variations in (b) but
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Table 5. The effect of the transmission coefficient on the

pattern of infection at low growth rate with the basic model.

8
(a=4.7 to 5.6, b=4.6, 2=8.,9, N=2x10 ).
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Virus Growth Transmission Max. host Min. host Maximum period
death rate coefficient densiEy densiEy prevalence (years)
rate (/year) (/year) (/m™) (/m*)
(/vear)
1.0 0.1 1x1078 — 0.16x10°°  — 9%
1x107° 20.2 0.52 0.198 44
1x107 10 117.0 15.0 0.085 28
0.3 1x1078 13.7  0.25x107°  0.836 67
1x107° 22.6 0.38 0.279 19
1x1071° 182.0 6.8 0.219 17
3.0 0.1 1x1078 14.2 0.02 0.747 71
1x107° 20.9 10.7 0.421 14
1x10710 627.0  17.6 0.395 39
5.0 0.1 1x1078 13.1 0.26 0.643 50
1x107° 35.7 17.4 9.567 13
1x10710 1315. 26.0 0.601 42
0.3 1x1078 9.5 0.48 0.476 12
1x1077 38.6 16.8 0.111 7
1x1071° 951.0 47.9 0.480 12
0.6 1x1078 6.7 0.91 0.360 6
1x107° 45.6 14.9 0.204 5
1x10710 679.0  87.9 0.365 6
1.0 1x1078 4.6 1.7 0.253 4
1x107° 40.1 19.6 0.210 4
1x10710 464.0 159.0 0.258 4
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they <change more significantly with the mortality of the virus
(u) (Fig. 15 ¢,d). Viruses that are 1long-lived (small virus
death rate, u) depress the maximum host densities since they are
more persistent in the environment and are available longer for
reinfection. Viruses that have a short life-span (high death
rate, u) permits the host population to stabilize at a higher
density since it has 1little time to contaminate another host
before it is deactivated (Fig.l5 c). On the other hand, the life
expectancy of the virus is not a major influence on the number
of viral particles produced and the maximum prevalence of
infection, both of which vary mainly with (b) instead of (u)
(Fig. 15 f,g). The turnover rate of the host population
determines how many viral particles are eventually produced and
at the same time determines the prevalence of the disease. When
new susceptibles are produced at a low rate the pathogen is
maintained in a small fraction of the population.

Paradoxically, if the pathogenecity of the virus is
increased (large o) the maximum host density attained is higher
for all the combinations of (u) and (b) (Fig. 15¢, 1l6c, 1l7c,
18c). Intuitively a more efficient virus should depress its host
density to a lower equilibrium. But a virulent pathogen kills
its host before a sufficient amount of viruses 1is produced to
infect the remainder of the population, thereby leaving a higher
proportion of the host population free of the disease. When (a )
is dincreased t he prevalence <changes with (u) and not (b) as

previously observed (Figs.l6g, 17g, 18g). So the capacity of the
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Fig. 17. Nomograms of the basic model with a=9.3 (a=4.7,

-9
A=2xl(§, B=1x10 )
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Fig. 18. Nomograms of the basic model with % =11.3 (a=4.7,

8 -9
A =2x10, B=1x10 )
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virus to persist outside 1its host becomes important as fewer
pathogens are produced. A pathogen which is able to survive long
periods of time outside its Thost depresses its maximum host
density to the point that if (u) is smaller than 1.0 a highly
pathogenic virus exterminates its insect host (Figs. 16-18c,g).
At the opposite end of the spectrum a short lived virus does not
generate periodic oscillations (Figs. 16-18e).

The unshaded area in Fig. 19a represents the combination of
parameter values which give periods of host population cycles of
7 to 10 years, the periods observed in the field. It is apparent
that for (&) equal to 5.3 the value of the natural virus death
rate (u) necessary to generate reasonable periods is much 1lower
than the baseline condition of 5/year. As @ ) is increased the
range of parameter values giving rise to a period between 7 to
10 years, 1is enlarged but not enough to include a reasonable
combination of (u) and (b) near those observed in the field. For
example, at (0) equal to 11.3, which is larger than the baseline
condition of 8.9, when (u) is an acceptable 4.0, (r) is equal to
0.8 (b=3.9) which is too low, and when (r) is 1.5 (b=3.2), (u)
is too low at 1.5 (Fig. 19d). Therefore, none of the simulations
of the basic model fulfill, with reasonable parameter values,
the major criteria already specified for the tussock moth in

Table 4.
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Fig. 19. Period of Douglas-fir tussock moth population cycles

(years) at different values of disease induced mortality (a).
8
(a) a=5.3 (b) a=7.3 (¢) a=9.3 (d) o =11.3, (a=4.7, A=2x10,

-9
g=1x10 ).
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Density-dependent model

In Fig.20 the X axis represents the minimum insect natural
death rate (b) in equation (5), and the Y axis is the same as
before. In the first set of simulations (b) is kept constant and
only (@) is increased with density (Fig. 20a). In Fig. 20b and c
both (b) and (a) are density dependent,

Including density-dependent mortality produces a single
stable equilibrium point except for parameter combinations of
short-lived virus {(large u) and rapidly increasing hosts (small
b), which generate stable <cycles of 2 years. The dampening
effect of host insect densities increases with the degree of
density dependent constraints. When the reproductive rate is low
(lLarge b) and the virus short lived (large u), the hosts escape
the 1influence of the virus as the latter goes to extinction and
the prevalence drops to practically zero (Fig. 20b,c). With,
higher reproductive rates and for a given virus mortality rate,
enough virus particles are produced by dying larvae to sustain
higher incidences of disease in the host population. Thus the
density-dependent model is rejected as a representation of the
tussock moth in the field because it does not produce regular

host population cycles using reasonable parameter values.
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Fig. 20. Nomograms of density-dependent model for various degree
of severity of density-dependent constraints. (a) c¢=0.00 (b)

8 -9
¢=0.03 (c) ¢=0.06. (a=4.7, A=2x10, B=1x10")
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Incubation period model

When an incubation period is added to the basic model the
cycles observed with the basic model disappear. Only the maximum
total host density is included in the nomograms on Fig. 21 since
the minimum and maximum host density are equal and they each
represent the equilibrium density. Since the virus is not
produced immediately after the infectionmn 1is contracted, fewer
pathogens are present in the environment to infect other hosts
and the longer the incubation period (small V) the higher the
equilibrium density. If the incubation period is short
(targe v ), the virus is more readily available for infection and
the equilibrium point is lowered.

Fig.21 shows that the prevalence is relatively independent
of changes in (u) and is largely influenced by variations in
(b). When the insect natural mortality is high many infected
hosts die before the end of the incubation period. The
prevalence is therefore lower as (b) increases (Fig.21). Also,
since the wvirus 1is present in the insect Dbecause of the
incubation period, its capability to survive in the =environment
does not influence the ©prevalence. Increasing (a) does not
permit the population to escape the influence of the pathogen as
observed with the basic model because the latent period prevents

the rapid loss of infected individuals (Fig.22).
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Fig.

21.

Nomograms for the

incubation coefficient. (a)

8
A=2x10

-9
B=1x10 )

il itk
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Fig. 22. Nomograms for the incubation period model for two
values of disease-induced death rate (o). (a) a =5.3

(b) o=11.3. (a=4.7, A=2x10°, B -1x10"3
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Vertical transmission model

Adding vertical transmission does not modify the results
obtained with the basic model. Vertical transmission occurs when
a female larva becomes infected late during its life cycle but
is still able to reproduce. The virus contaminates the surface
of the egg when the female is ovipositing so that the larvae
emerging from those eggs contract the disease t he next spring
(Finn, 1975)., Viruses from the environment can also contaminate
the eggs. The simulations were done with 2% of the offspring of
the infected hosts passing directly to the infected class (Fig.
23). The nomograms for other values of (o) are similar to Fig.l5
to 18. Even with a proportion of 307 the results are not
drastically different from the basic model (Fig. 24). Prevalence
is higher since the infected class has more recruits at birth.
The vertical model behaves similarly to the basic model except
that the region of the desirable period is slightly enlarged but'
not enough to encompass a reasonable combination of u and r even
when the proportion of offfspring passing directly to the

infected class is increased to 307%.

Combined model

In t he combined model all the processes previously
mentioned and which are known to occur in the field population

of the tussock moth are included and the resul t of t he
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Fig. 23. Nomograms for the vertical transmission model. (a=4.7,
8 -9
A=2x10 , B=1x10 , a=7.3, prop=0.02)
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Fig. 24. Nomograms for the vertical transmission model. (a=4.7,

8 -9
A=2x10 , B=1x10 , a=7.3, prop=0.30)

77A



DIFFERENCE IN AMPLITUDE

a) (TOTAL POPULATION) - PERIOD
e)
7.5
7 ]
6.5
8 4
5.5 4
5 p
4.5 4
4 4
3.5 | 3.
3
2.5 / 8.
21 i
1.51 ———-_/ 1.'_// 1 // 514
é e 33 TS:/—f’/mm
RMPLITUDE MAXIMUM PIB
L) (TOTAL POPULATION) ) (XE10)
7.57 1
e~ B.5 0.5
; 5 < 0.
5.91 0. /0
QO 5447 / 7/
> 4.5 o5 :
\ -
~'3 g&
23 I L
2.5
S 1 g 0.8 1. 1/
. =g, /
< il= 0.7 5. (B e =\ =33,
gc) "7 MRXIMUM TOTRL HOST POPULATION 9) MAXIMUM PREVALENCE %
7.57 1
© 3] ) -
— 6.57 |
(W) 8-\ 0. 4 47.
= 55 Q. <3
_.3 4 gj J0. 4 / 48./
c .4 440, /
. 3.57 4 —
(2] 3 50. |,
E 2.5. E /
= 6. —
> ].5.\ - 4 ////54
g ile a7 wae 0 B
d) MINIMUM TOTAL HOST POPULATION PREVRLENCE RT MAXIMUM HOST DENSITY %
7-5] 0. 0. 20. h)’m. 24. 0. 6.
6.51
B 10.
5.5
5.
451 2.
4.
3.5 10.
3
2.51
2
1.51
11 .
5 g‘
. 2.6.2.8 3.2 3 8 4 23436384

. 3
b, host atural death rate /year)

778




simulations is a stable equilibrium point for various
combinations of the parameter values (Fig. 25). The dampening
effects of density-dependent mortality and latency are largely
responsible for the loss of periodicity when compared with the
basic model and hence the combined model is not an adequate
representation of the dynamics of the tussock moth in the field

since no stable cycles are generated.

Stochastic effects

The oscillations are not as regular when random variation
is introduced (Fig. 26a,b). For this reason the previous
algorithm which measured the amplitude and the period 1is no
longer suitable. An alternative approach is time series analysis
which calculates the period of host population cycles using the
Box—-Jenkins method of analysis (Dixom, 1981). A function C 1is

K
calculated at lag K

c=-rl; (N - N)(N_, -N) k=0,1,2...

t t+k

where K is expressed in years and N is the total insect
population. Each value of C 1is compared with the result when
K
the lag 1is set to zero (C ) and the ratio (r =C /C ) is the
0 K K O
sample autocorrelation function (SACF) . The period of the

insect population <c¢ycles 1is the value of K for which r is

maximum (Fig. 26c).
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Fig. 25. Nomograms for the combined model for different values
of incubation coefficient (v) and of severity of

8 -9
density-dependent constraints (c) (a=4.7, A=2x10 , RB=1x10 ,

a=7.3)
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.

. Fige. 26. (2) and (b) Sample time series of8the stochagtic
version of the basic model (u=5.0, A=2x10", B=1x10, 0a=8.9)
(c¢) Correlogram of the above time series of the insect
population.
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The results in Table 6 show that the distribution of the
error term does not substantially modify the period and the
introduction of random variation shortens the period observed
with the deterministic wversion of the basic model having the
same parameter values. The solution for the deterministic
combined model was a stable point equilibrium and in this case
stochasticity produced cycles but t he strong dampening
influences in the model confine the period to approximately 3
years as shown in the example of Fig. 26.

Table 7 summarizes the performance of the indicators for

each model analysed.
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Table 6. Period of simulations with the stochastic version of
the basic and combined models using baseline conditions.
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Stochastic basic model

Stochastic combined model Deterministic

model

Distribution of r

Distribution of r

lognormal normal lognormal normal
Virus
mean mean mean mean
death . . . - .
rate period range period range period range period range period
() (years) (n=30) (years) (n=30) (years) (n=30) (years) (n=30) (years)
1.0 5.0 0.0-10. 5.0 1.2-9.6 3.0 2.0-~5.0 3.2 1.6-5.0 7.2
2.0 3.7 1.2-6.4 3.7 1.2-6.2 2.9 1.2-5.0 3.2 1.2-5.0 4.4
3.0 2.9 1.2-5.6 3.1 1.2-5.0 3.4 1.4~-5.0 3.1 1.2-5.0 3.5
4.0 2.7 1.2-5.2 2.8 1.2-4.8 3.2 1.4~5.4 3.0 1.2-5.0 3.0
5.0 2.6 1.2-4.6 2.6 1.2-4.0 3.0 1.2-5.2 2.8 1.2-5.0 2.7
6.0 2.7 1.2-4.2 2.6 1.4-4.0 2.9 1.2-5.0 2.8 1.2-5.0 2.5
7.0 2.4 1.2-4.0 2.2 1.2-4.0 2.8 1.2-5.0 3.0 1.4-5.0 2.4
8.0 2,2 1.4-3.8 2.1 1.2-3.6 2.8 1.2~5.0 2.9 1.6-4.4 2.3
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Table 7. Performance of the indicators for each model.
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MODEL HOST DENS. OSCILLATIONS VIRUS MAXIMUM
MAX. MIN. AMPLITUDE PERIOD DENS. PREVALENCE

Basic model Y N N N Y Y
Density-dependent model Y N N N Y Y

Incubation period model Y N N N Y N

Vertical transmission model Y N N N Y Y

Combined model Y N N N Y Y

Stochastic model N

Y: CRITERION MET N: CRITERION NOT MET
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X, Discussion

When addressing the topic of population fluctuations in
insects, 2 questions must be considered. First, what( are the
agents responsible for the release of an outbreak and second,
are they different from the agents causing the decline of the
population? In a cyclic population the agent(s) that determine
the periodicity of the «c¢cycles must also be identified. In
Anderson and May’s (1981) model G, one factor, a directly
transmitted disease, is responsible for the periodic
fluctuations in the density of its host. The sensitivity
analysis done on this basic model, wusing parameter estimates
derived from the Douglas-fir tussock moth/virus association,
does not support this hypothesis on the role of the virus. Of
all the versions of the model tested this version did come the
closest to generating behavior similar to that observed in the
field for the tussock moth, The TrTesults suggest that the
virus—host interaction is not the main driving force in the
tussock moth cycle. However, before discarding the hypothesis
that the observed population <cycles are a result of virus
dynamics we must examine closely the assumptions and parameter
estimates for biases which might affect the results. The
parameters are discussed in the context of the basic model but

the arguments raised are valid for the different versions of the

model .
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In t he basic model t he virus is the only factor
constraining the growth of the host population and the insect
mortality caused by the virus is encompassed in the parameter O,
The linear regression method outlined in the "Estimation of
Parameters" section is not significantly biased if the mortality
is independent of age and if all individuals are 1infected at
t ime zero. The logarithm of larval density plotted over time is
a linear relationship which indicates that mortality is
relatively constant for all ages of the larvae. Second instar
larvae need to ingest between 10-20 inclusion bodies before
becoming infected (Hughes, 1978). Older larvae, because of their
larger size, need a higher dosage of virus to initiate infection
which would generate age-~dependent mortality if sublethal
infections were common in the field. However, given the large
number of viral particles liberated when an infected host dies,
a susceptible larva probably ingests enough viruses to initiate-
an infection regardless of the size of the larva.

In populations sprayed with the virus the probadbility of
ingesting the pathogens 1is even Thigher. In addition, those
experimental populations are sprayed early in the life cycle in
order to prevent defoliation. So the ©populations that come
closest to meeting the aboved-mentioned requirements regarding
t he timing of mortality and infection, are sprayed populations.
The value for the disease—-induced death rate estimated from
those <cases 1is in the same order of magnitude as the results

from the Modoc National forest in California, which were used to
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estimate (o). This method is therefore not noticably biased and
the range of values of (o ) 1is representative of the field
situétion.

During the epizootics in California and Arizona (Mason and
Thompson, 1971; Mason, 1974) the viral disease Acontributed to
the decline of the population, but even in the absence of the
virus the populations would eventually have decreased as food
becamne scarce. For example, during the Blue Mountains outbreak
in Oregon, where the virus appeared 1late in the 1life «cycle,
starvation limited the number of insects (Mason, 1976). None of
the versions of the model discussed in this thesis simulate the
dynamics of foliage growth and destruction but, it is unlikely
that the period of the <cycles in the field depends on the
regeneration time of the food source. Wickman (1980) found that
the growth of white fir reached pre-outbreak level 5 years after
a tussock moth infestation while outbreaks occur after 7 to 10
years. More important could be changes in the nutritional
quality of the foliage, and future research should examine its
possible effects on the release and decline of outbreaks.

In the field the action of a virus on a population is not
easily dissociated from other mortality factors that operate
simul taneously. The estimated disease-induced death rate is
underestimated if infected individuals in the ©population are
killed by a predator or a parasitoid before the end of the
incubation period of the disease. On the other hand (g ) 1is

overestimated when stresses, such as starvation and temperature,
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favor wviral infections (Steinhaus, 1958)., Other pathogens,
including bacteria, protozoa and fungi, may either have a
synergistic effect or delay mortality of the host (Tanada,
1976). The interplay of these factors can lead to a very complex
situation but it is unclear to what extent it affects the
estimated value of the pathogenicity of the virus. If (g ) 1is
overestimated the only way to obtain the desired period would be
to modify either the values of (r) or (u) which is unlikely. A
more pathogenic virus would produce cycles with a longer period
but not enough for the desired period to fall within the range
of observed values for the tussock moth population growth rate
(r) and the virus natural death rate (u).

In the basic model many simplifying assumptions are
included in the definition of the growth rate (r), as defined by
the birth rate (a) minus the natural death rate (b). First, the
birth rate is assumed to be unaffected by infection or any other-
process that would tend to reduce fecundity at high host
density. There is no evidence that the +virus decreases the
reproductive potential of the female However, in Oregon there
was a significant drop in fecundity and high mortality due to
starvation during the decline phase of the outbreak following
extensive defoliation (Mason et al. 1977). The Blue Mountains
outbreak is the most severe on record but during a typical virus
epizootic moderate defoliation is more the norm and starvation
related mortality 1is not as widespread (Mason, 1974; Mason and

Thompson, 1971). There could still be a reduction in fecundity
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even if starvation related mortality is low, but is not 1likely
to be important. On the other hand the release of an outbreak
could be associated with increased fecundity but the relatively
small changes observed cannot be responsible for the very high
rate of population increase (Mason, 1981). The analysis of low
density populations indicates that larval survival is the most
important influence on inter-generation trends (Mason and
Torgersen, 1977; Mason and Overton, 1983; Mason et al. 1983).
The basic model incorporates larval survival in the
parameter (b), the natural death rate., In the simulations, the
natural mortality is not influenced by changes in the efficiency
of the predators and parasitoids. It is not known which
mortality agent is relaxed in the field in order to permit the
population to increase rapidly but parasitism and predation are

the most 1likely candidates. Telenomus californicus, an egg

parasite, is more common in areas with no history of outbreaks
or where outbreaks have not been frequent or severe than 1in
areas that have had recent severe outbreaks (Mason and
Torgersen, 1977). The degree of parasitization varied between
15-60% of the eggs being parasitized in the non-outbreak areas
while it was virtually nil in the other instances. Mason and
Torgersen (1977) surmise that the parasite, in the absence of
alternative hosts, cannot survive periods of extremely low host
densities between outbreaks.

Other parasitoids include larval parasitoids which cause a

higher ©percentage of mortality at low host density (Mason and
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Torgersen, 1977). The percentage of parasitized larvae was less
than 15% during the decline of an outbreak (Mason, 1976) and
over 25% 1in a low density population (Torgersen and Dahlsten,
1978). As for cocoon parasitism it is usually high, frequently
over 50%7 (Torgersen and Dahlsten, 1978;Dahlsten et al. 1970;
Dahlsten et al. 1977).

Another component of tussock moth mortality is predation
which is more difficult to quantify because the prey is wusually
removed from the branch but attempts have been conducted to
separate losses due to predation and dispersal. Observations on
stocked <cohorts of tussock moth suggest that losses of young
larvae are mostly due to arthropod predation while birds were
mostly responsible for predation on the mature larvae (Mason and
Torgersen, 1983)., Predation accounted for 47.2% of the total
loss and 40.5% was attributed to dispersal. More studies on the
spatial distribution of parasitoids and predators in relation to
the density of the insects and the presence of alternate preys
or hosts, are needed to clarify the impact of those natural
enemies on tussock moth populations.

The available information indicates that T. californicus

may be an important agent in constraining the tussock moth at a
low density and its absence could favor population growth if
predators and other parasitoids are unable to compensate for the
greater number of 1larvae emerging. The fluctuations in the
insect growth rate are probably mediated through changes in its

natural mortality rather tham in its fecundity and this
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possibility is explored in the density dependent version of the
model.

In the basic model the value of (r) is greater than 1.0 and
as a result the cycles generated are shorter than the desired
value since the population has the potential to increase rapidly
following a crash., The period of the cycles could be lengthened
if the virus natural mortality rate (u) was lower.

T he virﬁs death rate (u) 1is ©probably one of the most
difficult parameters to estimate in the field. The virus is very
susceptible to deactivation by sunlight so 1its survival is
largely dependent on the amount of shade provided by the tree
but once it has leached to the soil it can survive for many
years. It should be taken into <consideration that the wviral
particles present 1in the soil are not a total loss from the
point of view of the virus ©population since they are still
available for future reinfection for wup to 40 years mostly'
through wind transport (Thompson et al. 1981). 1In addition
predators and parasitoids often contribute to the spread of the
disease by passing out infective feces or contaminating healthy
larvae after picking up pathogens from infected hosts and
ovipositing in new hosts (Reardon and Podgwaite, 1976;
Entwistle, 1977; Raimo et al., 1977; ©Lautenschlager and
Podgwaite, 1979). The net effect on the quantity of virus
present in the environment should be measured in the field at
the time of an epizootic. Branches «could be collected at

intervals and tested in bioassays for the presence of the virus.
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One problem with this approach is that the virus 1is not
distributed uniformly over the tree so branches with different
initial densities of virus are compared. If the same experiment
were done under controlled conditions then the physical setting
of the forest, which may or may not enhance the survival of the
virus, is not duplicated. More detailed information on the
mortality process in the virus population would be an important
contribution but the model only requires a value for the mean
survival time of the virus. An expected lifespan of 2 to 3
months, the baseline value used in the simulations, is realistic
but the sensitivity analysis indicates that it is not long
enough to generate cycles of the desired period. The combination
of a short-lived wvirus with a host ©population with a high
reproductive potenti;l produces cycles of a shorter period than
the ones observed in the field. According to the basic model,
cyclic behavior tends to Dbe produced by highly pathogenic
diseases with 1long 1lived 1infective stages reproducing in a
slowly growing host ©population. Incorporating a density
dependent Thost population growth rate does not increase the
likelihood of generating cycles of the desired period.

The inclusion of a density-dependent growth rate, singly or
in combination with other processes, dampens the oscillations to
the point that the cyclic behavior is lost and the tussock moth
population reaches a single equilibrium point. Because of the
lack of information on the exact shape of the density dependent

function only a 1linear relationship has been assumed but
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nonlinear functions would probably result in dampened
oscillations also.

The addition of processes documented in the field, i.e.
virus incubation period and vertical transmission, also failed
to produce cycle periods in the observed range. The results with
the vertical transmission model are virtually the same as the
basic model but the incubation period of infection version
generates a single equilibrium point. Interactions with other
trophic levels, i.e. predators and food, probably have more
influence on the ©periodicity of the outbreaks than what is
assumed in these modified versions of Anderson and May’'s (1981)
model .

Anderson and May’s model falls in the category of general
models (Oster, 1981) that are "aimed at understanding general

properties of ecosystems"

but which are not useful for analysing
a particular set of data. Anderson and May (1981) analyse data
from the larch budmoth population in Switzerland, but their
method of estimating the ©parameter values 1is not <clearly
defined. At one point they generalize that forest insect ©pests
"exhibit relatively low rates of annual population
growth...typically around wunity" (Anderson and May, 1981).
However the intrinsic growth rate (r) is an important component
in determining the cyclic behavior of the model. As shown here a
small variation in (r) affects the periodicity of the

oscillations and it is curious that "their rough estimate" of

1.0/year for the larch budmoth falls in the range required to
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generate the period of 10 years observed in the field. In their
sweeping generalization about the growth rate of forest insects
equalling 1.0, they include the spruce budworm. Referring to the
Morris (1963) data they approximate (r) to be 1.0 which is quite
different from the value of 1.6 put forward by Ludwig et
al.(1978) using the same set of data. This discrepancy points to
the subjectivity involved in the process of estimating parameter
values. In addition, the limited amount of detailed processes
included in the model precludes a quantitative validation of the
model . Anderson and May (1980) emphasize the gqualitative
performance of the model, i.e., the generation of cycles is a
step in the right direction. But the generation, by Anderson and
May’s model, of cycles of the right period for the larch budmoth
may just be fortuitous and a result of the way the model was
built.

It is justifiable to simplify and compress birth, mortality
and virus transmission processes into as few parameters as
possible. Such a simplification facilitates analysis of the
equations by focusing on one element of the system considered to
be important, in this case the virus. The assumptions may
describe few, if any, insect populations. But even in a crude
form this model is still a wvaluable aid in formulating
hypotheses and designing experiments, But one objection to
Anderson and May’s model (1981) is that it 1is expressed 1in
differential equations which usually apply for continuously

reproducing organisms. Neither the larch budmoth nor the tussock
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moth fall into that category. The ©pathogens fulfill that
requirement during the period when the hosts are available but
the viruses are not reproducing for the rest of the year. So we
are faced with the problem of transforming parameters that
represent discrete increments in time into instantaneous rates.
When this type of model is applied to univoltine insects realism
is sacrificed for ease of analysis. My attempt to translate the
differential equations of the Dbasic model into difference
equations generated numerical instability because the virus is
continually reproducing during one generation of the insect. One
alternative would be to break down the host population into
instar or size <classes. But a model partitioned into size
classes would have to incorporate submodels describing the
growth of the foliage and the effect of climatic factors and
foliage consumed on the growth and survivorship of the 1larvae
because the production of inclusion bodies increases with the_
size of the larvae. The result would be a very detailed and
complex model.

A certain degree of complexity is necessary if the model 1is
to be wused 1in evaluating management options. The tussock moth
model developed by the USDA was constructed for management
purposes and contains many state variables (Colbert et al.
1979). It consists of a series of submodels arranged in a
hierarchical structure with resolution at the regional, forest,
stand, tree and branch level. Defoliation by the tussock moth is

incorporated in the branch model. An outbreak is invoked by the
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user so that the length of the inter-outbreak period is not the
result of interactions between the processes described by the
equations but by an arbitrary decision based on past
observations of cycle length. The whole exercise 1is a wmere
recapitulation of the events that occurred during the Blue
Mountains outbreak in 1971-74, Most of the parameters and
functions describing growth, mortality, fecundity and feeding
are derived from the data collected at the time but they can be
modified to some extent to accomodate different situations. This
type of model may be reasonably reliable if the features of the
next outbreak do not differ considerably from the previous
records but correspondence between the predictions and the
events 1is no guarantee that the assumptions are still wvalid.
Other assumptions may lead to the same predictions. This type of
model provides little insight into the mechanisms underlying the
tussock moth/forest association let alone the periodicity of the.
outbreaks.

Using a simple logistic model Berryman (1978a) postulates
that population cycles in the tussock moth are caused by
time~delays in the response of density—-dependent processes.
Contrary to the USDA model his model is very simple but as he
himself acknowledges '"the identification of the Dbiological
processes giving rise to the time delays remains an unsolved
problem”, They <could be <caused by predators, parasitoids,

diseases or depletion of the food source.
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McNamee et al. (1981) developed an approach which is
halfway between simple theoretical models and detailed empirical
process models and which wuses number of key processes to
determine the equilibrium structure of many forest insects,
including the tussock moth. The equilibrium structure is derived
from a set of recruitment curves which illustrate the rate of
population change for a range of defoliator densities under
different forest conditions. The intersection of the recruitment
curve with the 1line representing a constant population from
generation to generation is the equilibrium point which can
either be stable or unstable. Similar recruitment curves are
developed for the forest biomass and the parasite/disease
complex and the temporal behavior of the system is derived from
the combination of these processes. According to this framework,
McNamee et al. (1981) conclude that the periodicity of the
tussock moth outbreaks is '"determined largely by the interaction
between...the defoliator and the parasitoid or disease". This
conclusion is reached using a minimum of qualitative information
regarding the impaét of natural enemies and the extent of
intraspecific competition so their conclusions are very
speculative.

There is reasonable empirical evidence that pathogens may
play an important role in the natural control of certain forest
insects (Katagari, 1969; Stairs, 1972; Henry, 1981). The data
that support this hypothesis come mostly from the introduction

of viruses on non-native pests., The best known examples are of
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the European spruce sawfly,Gilpinia hercynia, and the European

pine sawfly, Neodripion sertifer. In New Brunswick an introduced

viral disease stoppgd the increase 1in density of the spruce
sawfly populations wuntil introduced parasitoids maintained the
population at a low endemic level (Bird and Elgee, 1957). 1In
Ontario where parasitoids were absent, recurring epizootics of
the virus caused the decline of the pine sawfly (Bird and Burke,
1961)., In the first example the disease and the parasitoids were
complementary and compensatory while in the second case repeated
epizootics 1limited sawfly increases (Bird and Burk, 1961; Bird
and Elgee, 1957; Neilson and Morris, 1963; Stairs, 1972; Burges,
1973)., 1In another example in western Samoa, the introduction of
the rhinoceros beetle caused extensive damage to coconut trees.
A viral disease (ROV) was introduced from Malaya and it 1is
apparently keeping the beetle population at a stable equilibrium
density (Zelazny, 1973).

In populations of gypsy moth and tent caterpillar a wviral
disease is commonly found naturally when densities are high and
is held responsible for the decline of the insects (Clark and
Thompson, 1954; Clark, 1955,1958; Campbell, 1963; Docane, 1970).
The epizootics follow a similar pattern of a low initial source
of contaminants that spread among the population and reach a
high incidence of infection at the late instars. Whether such
cyclic patterns will persist or eventually dampen out 1is

unknown.
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Taking 1into account the genetic configuration of the
parasite and host populations, the parasitic association will
either tend towards homeostasis (Pimentel, 1968) or cyclic
oscillations (Person, 1966)., Diseases select for resistant
individuals but because the pathogen has a short generation time
it can respond quickly to the appearance of resistance in the
host population and evolve greater pathogenecity. However, t he
evolution of greater virulence in order to overcome the
increased resistance of the host may not be desirable for the
parasite since too virulent a pathogen could cause the
extinction of the host as well as of its own population. There
should exist an upper limit to the degree of pathogenecity that
will not endanger the parasite itself and theoretically a stable
association may follow as less virulent pathogens are selected
for (Levin and Pimentel, 1981; Anderson and Mavy, 1982;
Bremermann and Pickering, 1983). If less virulent strains of the
myxomatosis virus had not appeared, the rabbits in Australia
would have been eliminated, but once those strains were present
they were selected for and the association has stabilized
(Fenner and Myers 1978).

Another possibility is that an increase in virulence would
leave the host at a selective disadvantage and as the old mode
of resistance in the presence of a highly wvirulent disease
becomes useless, selection for wvirulence is decreased and a
cyclic oscillation may become established (Person, 1966). In

cyclic populations, such as the tussock moth where the virus is
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undetectable between outbreaks, the selection for resistance in
the host is great during the epizootic ©phase but once the
infection has subsided and the population is at a low density,
the selection is relaxed and there is a return to susceptibility
(Martignoni and Schmid, 1961; Briese and Mende, 1981). Increases
in the resistance of the tussock moth to the virus following an
outbreak have never been studied but it would be difficult to
detect given the short course of an outbreak. On the other hand
bioassays done on 3 successive generations of an inbred strain
of tussock moth have failed to show significant changes in the
virulence of the virus as measured by the LD50 (Martignoni and
Iwai, 1978).

It would probably be possible to select for a more virulent
strain of virus artificially, with the aim of using it as a
biological control agent. But caution should be exercised as the
outcome of spraying a highly pathogenic virus 1is not known.
According to the basic model increasing the disease-induced
mortality rate increases the maximum host density because the
virus kills its host before adequate transmission can occur and
before the larvae can produce a high number of viral particles.
Small larvae produce fewer inclusion bodies and even though it
is preferable to spray early in the life cycle in order to limit
defoliation of the trees, the quantity of viral particles
available for future reinfection may be decreased. Instead of
being a self-sustained system as 1is observed in California,

Arizona and British Columbia, it may become necessary to
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reintroduce the wvirus <continuously or run the risk of
precipitating a severe outbreak such as the Blue Mountains
outbreak in Oregon.

The viral disease is only one of the possible explanations
regarding the periodicity of the tussock moth outbreaks.
Anderson and May’s approach does not explain the periodicity of
the outbreaks but the role of the virus should be given careful
consideration because of its potential as a biological control
agent and because of the evolutionary consequences of the
association between the virus and its host. But the role of the
virus cannot be isolated from the other levels of interaction of
the host with its natural =enemies and its food source. It
appears that the tussock moth may be kept at low densities
through the action of predators and parasitoids but once the
insects increase beyond a certain threshold density, a wviral
disease or food depletion causes the population to decline. The
viral disease will cause the population to decrease before heavy
defoliation which protects the trees. However long term
management practices should be based on the knowledge of the
mechanisms that favor the release of the insect population to
high densities, so that those mechanisms can be elimated.

Although Anderson’s and May’s model does not provide a
satisfying answer to the question whether the virus <causes the
periodic outbreaks of the tussock moth, it raises the
possibility that the virus might play an important role.

Comparisons between populations with virus and without virus
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would be most informative.
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