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ABSTRACT

In this thesis, we survey some results on sum-free sets of integers, sum-free sets in finite
groups, and sum-free sequences, especially the reciprocal sum of the elements of a sum-free
sequence. By studying locally maximal sum-free sets, we derive(known) bounds on Ramsey
numbers R ( 3, 2 2} Also some generalizations of Schur's theorem are discussed. We use
group-theoretic aﬁd number-theoretic results in the thesis. As a final chapter, we present some

open problems.
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INTRODUCTION

C
v

Vs

The purpose of this thesis is to survey the results on sum-free sets of integers, sum-free sets
in finite groups, and sum-free sequences. Sum-free sets were introduced first by L. Schur
while he was giving a simple proof of Fermat’s Last Theorem over a finite field. A sum-free
set is a set in which no element can be expressed as the sum of two elements of the set. Schur
showed then it is impossible to partition the positive integers into finitely many classes so that
each class is sum-fyee. This is known as Schur’s theorem. It is the first example, other than
Dirichlet’s pigeon-hole principle, of what is called as Ramsey type theorems.

In Chapter 1, we give the necessary definitions and notations. We state, without proofs,
two versions of Ramsey’s theorem. We illustrate, by an example, how one can use sum-free
sets to obtain bounds on the Ramsey number R(3, 3, ..., 3, 2) which will be denoted by
R, (3, 2) for short. The Ramsey number R ( 3, 2 ) is the smallest positive integer such that
any coloring of the edges c_>f the complete graph with R, (3,2 ) vertices with n colors forces
the existence of a monochromatic Ks. |

Chapter 2 is the chapter in which we deal with sum-free sets of integers. We start with some
historical background, and give some motivation as to why we study sum-free sets. We state
the problem of Schur which can be phrased as “What is the lérgest integer f( n ) for which
there exists some way of partitioning the set { 1,2, ..., f(n) } into n sets, each of which is
sum-free?” The function f(n) is known as the Schur's function. We give the known upper and
lower bounds on the Schur's function f(n). We give some generalizations of Schur's theorem,
and define the corresponding functions for these generalizations. Using these functions, we
get better bounds on the Ramsey numbers R (3, 2).

In Chapter 3, we state and give detailed proofs of some fundamental addition theorems of
groups of finite order such as the Cauchy-Davenport theorem, Vosper’s theorem, and Kneser’s

theorem. These theorems are of vital importance in the study of sum-free sets in groups of
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finite order.We also give some more theorems about sum-free sets in finite abelian groups of
special orders, such as groups of prime power brders, or groups of order divisible by a certain
primé. In certain cases, depending upon | G |, the order of the group G, the stuructures and
sizes of sum-free sets are fully determined. At the end of the chapter, we mention about sum-
free sets in non-abelian groups. By A(G), we denote the cardinality of a largest maximal sum-
free setin G. We give upper and lower bounds on A(G).

The fourth chapter deals with sum-free sequences, especially With the reciprocal sum of the
elements of a sum-free sequence. We define a special class called - sequences whose
counting function satisfies a certain inequality. We give upper and lower bounds on the
reciprocal sum of the elements of a sum-free sequence. A conjecture of Erdds and its positivé
solution are presented in details.

In the last chapter, we give a list of what are, to the best of my knowledge,unsolved
problems and conjectures.

After the last chapter, we have an appendix in which we present four tables. In these tables,
we list the groups of “small order” and a representative of a maximal sum-free set from each
isomorphism class . )

We try to keep the notation standard. The only non standard one, I think, is the ues of

{ x15 X9, ...,xm1 }» to mean the set { x;, x5, ..., X, }inwhichx; < x, < ... < x .

my 1

We used the O and o notations as well. Other notations are self-explanatory.



Chapter {31

PRELIMINARIES

Definition 1.1. Let G be an additive semigroup and let S and T be subsets of G. We
define
S+T={s+tlse S,te T}
to be the sum of S gnd'T. In particular,
| S+S={s;+s, 8,5 € S}
Note that s+s € S+S foralls € S.

A subset S of an additive semigroup G will be called a sum-free set if and only if
S N (S+8) =0, the empty set, or equivalently if and only if the equation x; + x5 -x3=0
has no solution with x,, X5, X3 € S.

Sum-free sets have been studied in several contexts but mainly because of their connection
with the Ramsey numbers, R(k;, ks, ..., k,, r ) which will be defined later.

Definition 1.2. We call a set S an s-set if S contains s elements. Naturally, if T is a subset
of S and T contains r elements, T is said to be an r-subset of S. We will denote the cardinality of
the set S by | S|, and we will denote that T is a subset of the set Sby T < S.

Definition.1.3. Let S be an s-set a}nd let Hr(S) denote the collection of all r-subsets of S.

IIS)={TITcS and ITI =1}.
Further, let

Hr(S) =5 U SuU .. uUS,
be a partition of [ [.(S) into n mutually disjoint subsets.

Suppose that for some k 2 r, there exists a k-subset K of S such that all the r-subsets of K
belong to the same S; for some i. Then we call K a (k,S;)-subset of S with respect to the given

partition.
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Now we can state two versions of Ramsey's theorem without proofs. The proofs can be
found in Graham et. al [12].

Theorem (Ramsey [19]). Letn, k;, ks, ..., k,, T be positive integers with k;2r,1 <1 <
n. Then there exists a least integer R(k;, ..., k,, r) such that the following statement is true for
anys 2 R(ky, ..., k,, 1) |

For any s-set S and for any partition of H,( S ) into n subsets
S1, ..., S, there exists a subset K; which is a ( k;,S; )-subset of S
forsomei,1 <i < n.

We will denote the complete graph on k vertices by K and we will denote the set of vertices
of a graph H by V(H).

For r = 2, we can restate Ramsey's theorem in the language of graph theory.

Theorem (Ramsey). Given positive integers n, ky, ... , k, with each k; = 2, there exists a
least positive integer R(ky, ..., kg, 2 ) such that the following statement is true for every
s 2 R(ky, ..., ky,2).

For any edge-coloring of K with n colors there exists an i,
1 <1 < n, and a subset L of V( K;) of size k; such that
the complete graph on L is (edge) monochromatic of color i.

Ifk; = ky =... = k, = k 2 2, then we write Rp(k, 2 ) for R(k, ..., k;, 2). Thus
Ry(k, 2) is the smallest positive integer such that any coloring of the edges of the complete graph
on Ry(k, 2) vertices with n colors forces the existence of a monochromatic K.

Definition 1.4, If S is a sum-free setin a group Gand | T| < | S| for every subset T of
G which is sum-free, then we say S is a maximum sum-free set in G and we write | S | = A(G).
Thus MG) denotes the cardinality of a maximum sum-free set in G. A maximal sum-free set is
~one to which no new elements can be added so that the new set is still sum-free.

Definition 1.5. The Schur function f(n)vis defined as follows. For each n, f(n) is the
largest integer such that it is possible to partition the integers {1,2,...,f(n) } inton sets, none

of which contains a solution to the equation x; + X, - x3 =0} i.e., into n sum-free sets.
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We can generalize the idea of the Schur function. This generalization is due to P.Tur4n.

Definition 1.6. If m, n are positive integers, f(m, n) is defined to be the largest integer
such that the set { m, m + 1, ..., m + f(m, n) } can be partitioned into n sum-free sets.

We can also consider the function g(n), the largest positive integer such that it is possible to

partition the integers { 1,2, ..., g(n) } into n sets, none of which contains a solution to the
m

equation 2 a;x; = 0 where the a; are given integers, or we could define a Schur function on
i=1 '

a given system of simultaneous linear equations.

Definition 1.7. ( Rado ). The equation 2 ax; =0 1is n-fold regular if there exists a

A l

least positive integer h(n) such that whenever {1, 2, ..., h(n)+1 } is partitioned into n classes in
any manner, at least one of the classes contains a solution to the given equation. The equation is
said to be regular if it is n-fold regular for every n.

We will obtain some bounds on the Schur function f(n). The lower bound on f(n) has been
improved by considering various generalization of the problem. If we have a system (S) of
simultaneous linear equations, we proceed by partitioning sets of integers into (S)-free sets, that

is, into sets which contain no solution to the system (S).

In the following example, we illustrate the use of sum-free sets in order to find a bound on the

Ramsey number R, (3, 2).

Let G=2Z5, the integers modulo 5. Suppose that we partition 2 ; , the non-zero elements of

G, into two disjoint sum-free sets, S1={ 1,4 } and So={ 2, 3 }, and assign to the set Sk the
color Cy fork =1, 2. Let K5 be the complete graph on v, vi, ..., v4, and color the edge from vj
to vj in color Cxifi-j e Sg. Since Sk = -Sk, this induces a well-defined edge-coloring of the
graph.

Let v, v, v, be any three vertices of Kg and consider the triangle on these vertices.
Suppose that two of its edges { v,,v,, } and { v,,v,, }are colored C;. This means that
r-m,m-n € S;. Butsince Sk is sum-free, we have thenr-n=(r-m)+ (m-n) ¢ Sk so the

edge { v,.,v, }is colored in the other color and no monochromatic triangle can occur. This shows



that Ry (3,2) > 5. Itis easy to show 'that R5(3,2)=06. Suppose we cblor the edges of Kq
with two colors, say purple and-pink. Denote the vertex set by V( Kg ) = { v{,v5,V3,V4,V5,vg }.
If we consider a vertex, say vy, at least three edges incident with it are of the same color, say
purple. Suppose these edges are { vq,v5 }, { vy,v3 }, and { vy,v4 }. If we have one edge
among the vertices v, v4, and v, with the same color, then we have a purple triangle. If there is
no such an edge, then they all have to be colored pink, and hence we have a pink triahgle. If we
color the edges of K¢ with two colors, there will be a monochromatic triangle.

All the applications of sum-free sets to estimating Ramsey numbers are similar to this example,
in that they all depend on partitioning a group or a set of positive integers into a pairwise disjoint

. ‘ A
union of sum-free sets.



Chapter 2

SUM-FREE SETS OF INTEGERS

1.INTRODUCTION

Motivation: Pierre de Fermat conjectured, circa 1637, that it is impossible to separate a
cube into two cubes, or a biquadrate into two biquadrates, or in any power higher than the second
into powers of lilggdegree.”

That is, he. conj’ectured that the equation

"4yt = 20
where n is a positive integer greater than 2, has no solution in integers all different from zero.
Dickson [7] considered the following conjecture which is stronger than Fermat's conjecture.
If p,q are odd primes, then the congruence |
xP + yP + 2P = 0 (mbdq)
does not have a non-trivial integer solution. The congruence is Fermat's equation over the field
Fq with q elements.

Note that if, given p, there exist infinitely many primes q such that the above congruence does
not have a solution, then Fermat's theorem would hold for n - p. For a good account of
Fermat's Last Thereom, the reader is advised to take a look at the books by Edwards [8] and
Ribenboim {22].

In 1909, Leonard Eugene Dickson disproved his conjecture by proving that the given
congruence has a solution modulo q provided that

@-D*p-2%+6p-2 < q.
I. Schur [23] has simplified Dickson's proof in 1916 and in his proof he used the idea of sum-

free sets.
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2.SCHUR'S PROBLEM

We need a lemma to start with.

Lemma 2.1. For any integer n 22,
n

[nte =n! ) % (2.1)

=0
| @+l e |= @+ nle [+ 1. (2.2)

Proof: The proof follows from Taylor’s theorem.

Let us restate the problem of Schur. What is the largest integer f(n) for which there exists a
partitioning of the set { 1, 2, ..., f(n) } into n sets, each of which is sum-free?

Only the first fouk values of f(n) are known and for f(5) we have f(5) = 157. The known
values are f(1) = 1, f(2) =4, f(3) = 13, f(4) = 44. Tosee f(2) = 4 observe that { 1,4}, { 2,3 }
is a sum-free partition and f( 3) > 13 follows from the sets { 1,4, 10,13}, {2, 3,11, 12 }
and {5, 6, 8,9 }, where 7 can be placed in any one of these three sets.

L. Baumert (4] has found f(4) =44 and the first two sum-free partitions in 1965 using a
back-track programming technique. His first partition is given below.

A= 1{1,3,51517,19, 26, 28, 40, 42, 44 },
B= {2,7,8,18,21, 24, 27, 33, 37, 38, 43 },
C= {4,6,13,20,22,23,25, 30, 32, 39,41 },
D= {9,10,11, 12, 14, 16, 29, 31, 34, 35,36 }.

Baumert's method showed that there is no possibility of placing the first 45 positive integers
into four sets with the required condition. Also, A. S. Fraenkel (unpublished) independently
verified that f(4) = 44. He has a list of 273 partitions for this case and he believes that it is an
exhaustive collection.

We will discuss the construction of such sets later on. In 1978 Harold Fredricksen [11]
verified that £(5) 2 157 by using a back-track search technique. We give a partition below.

A=1{1,4,10, 16, 21, 23, 28, 34, 40, 43, 45, 48, 54, 60, 98, 104, 110,
113, 115, 118, 124, 130, 135, 137, 142, 148, 154, 157 },



B={23,8,9, 14, 19, 20, 24, 25, 30, 31, 37, 42, 47, 52, 65, 70, 88,
93, 106, 111, 116, 121, 127, 128, 133, 134, 138, 139, 144, 149,150, 155, 156 },

C={5,11, 12, 13, 15, 29, 32, 33, 35, 36, 39, 53, 55, 56, 57, 59, 77, 79, 81, 99, 101,
1102, 103, 105, 119, 122, 123, 125, 126, 129, 143, 145, 146, 147, 153 ),
D={6,7,17, 18, 22, 26, 27, 38, 41, 46, 50, 51, 75, 83, 107, 108,

112, 117, 120, 131, 132, 136, 140, 141, 151, 152 },
E = { 44, 49, 58, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 78,
80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 100, 109, 114 }.
Before investigating the problem of partitioning the integers into n sum-free sets we attemp to

get some idea of th’% magnitude of the problem. We now state the first theorem.

n_
Theorem 2.2. (Schur [23] ). 3 5 ! < f(n) £ [ nle] -1

Proof: (a) We will show first f(n) < | n!e | - 1. Suppose that the set

{1,2,...,N} can be partitioned into n sum-free sets S, S,, ..., S, . Without loss of

generality, we will assume that

m; = 1S3 1218§j! for 2 <i<n
and note that
N < myn. (2.3)
Let S1={x, Xy, ... ,xm1 }< - Look at the m; - 1 differences
XZ-XI’ X3-X1, ves ,xml-xl. .

They belong to the set { 1,2, ..., N} and since S is sum-free, they must be distributed among

the(n-1)setsS,,...,S . (Ifx.-x,; € S; for some j, 2 £j <m,, then we would have, since
2 n i 1

S11is sum-free,

(xj-x1)+x1=xj ¢ S1

which is not true since X; € S1.) Let S, be the set containing the largest number, call it m,, of

these m; - 1 differences x;-x; wherej e {(ij,iy, ...

imy )
As before,

m-1<my(n-1) (2.4)



The differences x; - xil, 2 < j £ m, must be distributed among the (n-2)sets S5, ...,S,
]

and let S5 be the set containing the largest number, call it mg, of these my - 1 differences. We
have then
my-1 < mg(n-2). (2.5)
Continuing in this fashion we get, for each integer v, m,, such that
mu-ISmuH(n-u). (2.6)

and dividing both sides by (n-v)! and rearranging yields
m,, < m'l)+1 1

(n-u)!'(n-u-l)!+(n-u)!

We will eventuq}ly arrive at a case where V =k and my = 1 for some k < n, so using

(2.3)and (2.6) we get:
ml < m2 + 1
(n-D! “(-2)  (n-1)!
my my 1
a2 @3 Tl

my_q PR + 1 '
(n-k+D!' " (m-k)! (n-k+1)P

where my = 1. Therefore, and summing over all v yields

1 1 1
Nsn!((n-l)!"'(n-2)!+"'+__(n-k)!)
1 1 1 1
Sn!((n-l)!+(n-2)!+"'+(n-k)!+(n-k+1)!+"‘+1)
=|nle] -1,

by Lemma 2. 1.

(b) Given a partition of the set { 1,2, ..., f(n) } into n sum-free sets Sy, S,, ... .S, we can

geta partition of { 1,2, ..., 3f(n) + 1 } into n + 1 sets as follows. ( This construction is due to

I.Schur [23].)
Let S1={ X171, X192, -+ X1t L S2={ X597, X995 +e0s X2t Yoooos Sn={ X1 X0 oo xn,tn}'

Form the following sets

10



S'l = [ 3x11’ 3x1‘1- 1, 3)(12, 3X12- 1, ceey 3x1,t1’ 3x1,t1'1 }

Sy =3%g1, 3%y1- 1, 3%pp, 3y 1, .., 39, 3xp -1 )

S = { 3,15 3xn1- 1, 3% 9, 3% o- lv, e 3x“¢n’ 3x“"n-1 }

n

t

Spr1=01,4,7,...,3tm) + 1 }.

It is easy to see that if any of the first n of the n + 1 sets are not sum-free, then the
corresponding set of the original n sets would not be sum-free. The set S,'1 +1 18 sum-free as all its
elements are cong"?‘uent to 1 modulo 3. Therefore we ha\)e

3f(n)+1 £ f(n+1).
Since f(1) = 1,
fn) > 1 +3+32+33+... +3ﬂ’1=~22-'——1..
We can improve this lower bound a little bit by using Fredricksen's result [11] which is that

f(5) 2 157. Thus
f(6) 2 3f(5)+123(157) +1

and hence
f(n) = 3™ (157)+3"0 4 .. +1 forn > 5

=35 (157)+(3™5-1)2

_3™3(315) -1

= 2 ,

Therefore
315
3n(-—- -1 |
n-5 i 243 )
f(n) > 3 (3215) L 5 | (2.7)

Remark: Whitehead improved the upper bound slightly to f(n) < | n! (e-1/24) | - 1.

11



3.AN IMPROVED LOWER BOQUND

We can improve the bound given i_nb( 2.7 ) above, but we need a definiton first.

Definition 2.3. Let g(r) be the smallest number of sum-free sets into which the set of
integers{ 1, 2, ... ,r } can be partitioned. Equivalently, we say thatif f(n-1) < r < f(n), then
g(r) =n. |

Lemma 2. 4. Forallr 2 9,300,217,

gr) < logr. | (2.8)

Proof: Given r, choose n so that

3n-6(315)-1 3n-5(315) -1

5 <r < o) . (2.9)
Now &
r < 3n-5(2315 ) - 1 < f(n)
implies
g(r) < n,
and
el < 3n-6(2315)'13r, forn > 16.
Therefore
n < logr,
$O
gr) < logr - forr 2 472.1
For the following theorem, we need a definition.
Definition 2. 5. Let m, k be positive integers and let X = 2 f(m) + 1. Write the numbers 1,
2,...,XK-1 in base X so that we have the following representation for each integer a:

a=aj;+a; X+ a2X2 + ... +ak_1Xk‘ 1
- where 0 < a; £ 2f(m)for 0 <1 < k-1
We call the integer a good if a; < f(m) for each i, and bad if a; 2 f(m) + 1 for at least one

value of i.

12




Theorem 2, 6.( Abbott and Hanson {2] ) For all positive integers m and k
. f(km + g(kf(m))) = (2f(m) + 1)K -1, (2.10.)

Proof: We will show that the good numbersin { 1,2, ..., Xk -1} canbe partitioned into
g(kf(m)) sum-free sets and the bad numbers into km sum-free sets. The theorem will then
follow. ‘

Let g(kf(m)) = N. We know that the set of integers { 1,2, ..., kf(m) } can be partitioned
into disjoint sum-free sets A, Ay, ..., Ay '

This partition induces a partition of the good integers in { 1,2, ..., XX- 1 } into N sum-free
sets By, By, ..., By in the following manner. |

For every a, 1 2 a < XK. 1, define
k-1
o(a) =Z a; , where a=a0+a1X+a2X2+ +ak_1Xk‘1
i=0

If a is a good integer, then a; < f(m) for each i; therefore 6(a) < kf(m) and hence

o(a) € Aj forsomej,1 < j < N. Foreachj,1 <j £ N, let
| Bj={all<asXk-1aisgoodandc(a) € A;)

It is not difficult to see that each Bj is sum-free. Forifa,be Bj, then either a + b is a bad
integer so belongs to none of the Bj, ora;+b; < f(m) for every i.” In this case suppose that
a+b e Bj. Then o(a), o(b) and 6(a + b) = ¢(a) + o(b) are integers from the set
{1,2,...,kf(m) } and all belonging to the set Aj. Since Aj is sum-free this is a contradiction,

and hence Bj is sum-free.

We now consider the bad integers in { 1, 2, ..., XK- 1 }. Divide the bad integers into k
k-1
classes C_q, Cy, ..., Cy o by placing a = Z a,;X! in class Cj, -1 £j <k-2if
i=0
a; < f(m) assume a_ ; =0for-1 < i < jand I 2 f(m) + 1. Nextdivide each of C ;, Cos s
. Cy.pinto m sets as follows.
LetDy, Dy, ..., D, be a sum-free partition of the set { 1,2, ..., f(m)} and split the numbers
in Cj into m sets Djl’ Djz, oo Djm in the following way.
Ifa € Cj ,thenf(m)+ 1< 25,1 < 2 f(m), and we assign a to the set Djs if and only if

13



3j,1=-1U (mod X ) for someu &€ D, Since 3j,1 is one of the numbers
f(m) + 1, f(m +2, ..., 2 f(m) exactly one such u can be found, and the partition is well-defined.

It remains to show that Djs is sum-free. Suppose that we canfinda, b,c € Djs such that

a+b=c. Wehave

k-1 k-1 k-1

a=3Y aX, b=>YbX,c =Y X!,
i=0 i=0 i=0

where a;, b;, ¢; < f(m) for i=0, 1, ..., j, aj,15 bj+1, Cj1 > f(m) + 1, and

aj+1=_—--u(modX), b.

J+15-v(modX), cj+15-w(modX)

where u, v, w € DS.
Since 3
T bj+1 =Cu t X,
it follows that
u+v =w(modX)
and since u,v,w < f(m) we must haveu + v = w. However, this contradicts the fact that Dy

is sum-free. Hence we have shown that Djs is sum-free. So we have partitioned the bad integers

into km sum-free sets. We previously partitioned the good integers into N sum-free sets and the
theorem follows.Hl )
Corollary 2.7. For all sufficiently large n, we have
f(n) > 315%5-clogn
where c is some positive absolute constant.
Proof: For large k, we have
£f(5k + g(kf(5))) = (2(157) +1)k-1=315K-1,
Let n be large. Choose k so that
S5k+g(kf(5) £ n < 5(k+1)+g(k+ DEGS)).
Then f(n = 315%-1, and
n < 5(k+1)+g(k+ DEGS))
or

gk +51)f(5)).

%<k+1:
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Hence by solving for k we get

n ((k+1)(5)) _n log( (k+1)(5)) _n
k>-5-—1-g 3 >-5--1 5 >-5-

-1-dlogn,

where d is a constant and k is sufficiently large. The corollary then follows.M

While the best upper and lower bounds for f(n) are quite far apart, we can still gain a little

more insight into the behaviour of f(n). Using Theorem 2. 6 we show that im  f(n) I/n exists
. Nn-—>oo

and equals L, although it is not known whether L is finite or infinite. We can state the following

as a corollary to Theorem 2. 6.
Corollary 2. 8. lrllrrl) f(n) /" exists.

Proof: Let o= liminf f(n)/™ < limsup f(n)V = B.
n-— oo n— oo

Suppose first th'gt B is finite. Lete > 0 be given, and let m be the smallest integer for which
f(m)/m > B-g (2.11)
By ( 2. 8 ), for sufficiently large k,
g(kf(m)) < log(kf(m) ) =logk + logf( m).
Hence, for fixed m
&(Ek(ﬂ)le 0 as  k — oo,
ie., gkf(m)) = o(k). Since g(kf(m)) = o(k), there exists an integer k; = k(€), such that for
k 2 kg, we have
km+g(kf(m)) < [km(1+¢) | (2.12)
Foranyn 2 | kym( 1 +¢€) |, define k by
|[km(1+¢€) | €£n<|[(k+1)m(1l+¢g) | (2.13)
Hence, by using (2. 10), (2. 12 ), and ( 2. 13),
f(n) 2 f( km(1+¢)|) > f(km+ g(kf(m))) = (2f(m) + Dk-1 > f(m)k.‘ |
In order to write this down, we used the facts that f(x) is an increasing function of x,
f(x) is an increasing function of x, the theorem, and a rough estimate, in turn. This implies that
@ > f)in > (B-g)kmn

by (2.11). Hence, by (2. 13),

liminf f@)™ > (B-¢)
n— oo

1/(1 + &) - m/n
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It follows that o =[. A similar argument deals with the case where B is infinite.li

4, APPLICATIONS OF SUM-FREE SETS TO ESTIMATES OF THE RAMSEY
| NUMBERS
We will be considering the second statement of Ramsey's theorem from Chapter 1.
Specifically, we are going to deal with R; (3, 2 ), where R (3, 2) is the smallest positive
integer such that coloring the edges of the complete graph on R ( 3, 2) vertices in n colors forces
the existence of a monochromatic triangle. We begin with a well known results.

Theorem 2. 9. For all sufficiently large n,

 Ra(32)> 315n/5-clogn 4 5.

Proof: We pfove
Ry (3,2)-1 2 f(n)+1 (2.14)
from which by Corollary 2. 7, the theorem follows.

To prove (2. 14),let A;, A,, ..., A, be a sum-free partition of the set { 1,2, ... , f(n) }
LetK = Kf(n) + 1 be the complete graph on f(n ) + 1 vertices xy, Xy, ... , Xg(n)-

We color the the edges of K with n colors Cy, C,, ..., C, by coloring the edge € joining
the vertex x; to the vertex X by the color C if [i-j| € Ap,. Suppose that this coloring gives us
a triangle with vertices x;, X;, X, all of whose edges are monochromatic under Cy,,. Assume
without loss of generality thati > j > k. Theni-j,i-k,j-k € A but (i-j)+(j-k)=1i-
k which contradicts the fact that A, is sum-free.

Therefore

R(3,2)-1 2 f(n)+1 > 315W3clogn

Theorem 2. 10. R ;(3,2) < (n+1)(Ry(3,2)-1)+2, wheren = 1.

Proof: Let K be the complete graphon (n+1) (R, (3,2)-1) + 2 vertices and consider a
coloring of K with (n + 1) colors. Choose a vertex v of K. Of the
(n+1)(R,(3,2)-1)+1 edges ending at v, at least R,( 3,2 ) must have the same color.
Suppose these join v to the vertices Xy, X, ..., Xg, where s 2 R (3,2). Consider the edges &

where 1 < i < j < s. If any one of them has the original color, then the triangle { x;, Xj, v }is
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monochromatic. If none of them has the original color fhen the complete graph K on x;, X,

..., Xg must be colored in the other n colors. But by the choice of s, this forces the existence of a

monochromatic triangle in K , and hence in K.
Corollary 2. 11. Since Ry( 3, 2) = 3, the theorem implies that

R (3,2) <3(n!),foralln > 1.

This theorem can be improved:
Corollary 2. 12. R (3,2)< [nle]+1,foralln 2

\'
—

Proof: We have
Ri(3,2) £ [lle]+1=3,

which is the startiri% point of our induction. If n = 1 and

R,(3,2) < [nle]+1,

then by Theorem 2. 10 and (2.2)
Rp1(3,2) €(n+1)[nle]+2 =[(n+Dle]+ 1.0
J.GENERALIZATION QF SCHUR’S THEQREM
In this section, we will study some generalizations of Schur's problem and give some better

bounds on f(n). The following results are due to Abbott and Hanson [2].
We consider the system (S) of (k 5 1) linear equations in (12() unknowns
Xij * Xjj+1 = Xij+l forl <i<j<k-1
We define the generalizations fy(n) and g, (m) of f(n) and g(m), given in Definition 1. 5 and

Definition 2. 3, respectively.
Definition 2. 13. Let A be a set of positive integers. A is called (S)-free if and only if it

contains no solution to the system (S).

By Rado's theorem, see Graham et.al.[12], the system is regular.

Define fi(n) as the largest positive integer so that the set { 1,2, ..., fi(n) } can be partitioned

into n (S)-free sets.
Define g (m) as the smallest number of (S)-free sets into which the set { 1,2, ..., m } can be

partitioned; or as before, if fi(n- 1) < m < fi(n), then g (m) =n.

17



Remark: When k =3 we obtain the functions f(n) ahd g(m). Similar theorems for fy (n) and
gi(m) can be proven. Also similar estimates for other Ramsey numbers can be given by using
fi(n). -

We now give without proof, a theorem concerning f, (n).

Theorem 2. 14. For all positive n and m,

fy(n + m) 2 2f (m) + 1)fi (n) + f (m).
Corollary 2. 15. For all positive n and m, |
f(n + m) 2 (2f(m) + 1 )f(n) + f(m).
Corollary 2. 16. Forn > 5, and for some absolute constant ¢, we have
2 fm) 2 ¢ 31595,

The proof of Corollary 2. 16 follows by induction on n by using Corollary 2. 15 with m = 5.

Note that the above lower bound is an improvement over the one we have in Corollary 2. 7.

Corollary 2. 17. For n 2 1, and for some constant ¢, ¢, = c(k), we have

f(m) 2 ¢ 2k - 3)1.
Theorem 2. 18. Let the system (S) be given and let the function fy (n) be ‘deﬁned. Hence
R, (k,2) 2 fi(n) +2,
and forn 2 1,k 2 2 and for some constant ¢y, ¢, = c(k),
Rp(k,2) 2 ¢ (2k-3)"
Corollary 2. 19. Forn 2 5, and for some absolute constant ¢, we have
R (3,2) 2 c315%5,

We now consider the function f(m, n) which is defined to be the largest positive integer such
that the set { m, m+ 1, ..., m+ f(m, n) } can be partitioned into n sum-free sets.

Form=1, we get f(1, n) = f(n) - 1. We also have

f(m,n) € mf(n)-1,
since the set { m, 2m, ... , m (f(n) + 1) } cannot be partitioned into n sum-free sets.
So we have

f(m,n) < m[n'e]-m-1.
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We will get some lower bound on f(m, n) as well.

Definition 2. 20.- A set S of positive integers is called strongly sum-free if and only if it

containg no solution to either of the equations

a+b=c, (2.15)

a+tb+1=c. | | (2.16)

Definition 2. 21. For any positive integer n, we define ¢(n) to be the largest positive
integer for which the set { 1,2, ..., ¢(n) } can be paﬂitioned into n strongly sum-free sets.
This function is well-defined by Rado's theorem. A lower bound on ¢(n + m) is given
without a proof in the following theorem.
Theorem 2. Zf For m and n positive,
6(n +m) 2 2f(m) ¢(n) + f(m) + ¢(n)
where f(n) is the Schur function for equation ( 2. 15 ).
We use this theorem to get a lower bound on f(m, n).
Theorem 2. 23. For m and n positive,
f(m,n) 2 m ¢(n) - 1.
Corollary 2. 24, For m and n positive,
f(m,n) 2 m@Bfn-1)+1)-1.
To prove Corollary 2. 24 we take n =1 and m = n - 1 in Theorem 2. 22 obtaining
o(m) = 3f(n-1)+1.
Then use Theorem 2. 23.8
Corollary 2, 25. Formand n positive and an absolute constant c,

f(m, n) >c m 315%5,

In this chapter, we studied the problem of Schur. We saw the connection between sum-free

sets and the Ramsey numbers R (3, 2). We gave upper and lower bound on the Schur’s

function f(n). Also some generalization of Schur’s theorem have been introduced.
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- Chapter 3

ADDITION THEOREMS FOR GRQUPS AND
SUM-FREE SETS IN GRQUPS

L.INTRODUCTION

In this chapter we will study sum-free sets in groups in particular we look at maximal sum-
free sets in abclian( groups of specific order; maximal sum-free sets in groups; and a little bit of
Group Ramsey Théory. We will be interested in finding the sizes and stuructures of sum-free sets
in abelian groups of specific order

We have to have some results about the addition of subsets of group elements. To start with,
we will fix the notation and some definitions.

In this chapter we only consider additive groups of finite order.

Let G denote an additive group. We reserve the notation < for sﬁbsets. AC will denote the
set-theoretic complement of A in G. A + B is defined as before, noting that A + @ = @. For
A ¢ G, we define the following sets in the natural way -A={-ala € A },kA={kala € A}
where k is an integer, ANB={ge Glge A,ge¢ B }.

Definition 3. 1. A sum-free set S is maximal if for every sum-free set T where
S ¢ Tc G, we have S =T. Let A(G) be the set of cardinalities of all maximal sum-free sets in
G and let A(G) = max A(G). Clearly, S is a maximal sum-free set if and only if
S U { g} isnot sum-free for any g € SC.

A symmetric sum-free partition of G* =G\ { 0 } is a partition

n
i=1
where S; =-S; and §; is sum-free, 1 < i £ n. From Greenwood and Gleason's paper [15], we

know that
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T Ry(3,2) 2 1GI+1
if such a partition for G* exists. From Street and Whitehead's paper [32], it suffices to study the
maximal sum-free sets in order to estimate the Ramsey numbers. Exploiting the nature of Ramsey

numbers, we can find an upper bound on the size of symmetric sum-free sets.

A sum-free covering of G* is a collection of sum-free sets 8 = {54, S5, ..., 5, } such that

n
G*=U Sl

i=1

IfSandT = ( T;, Ty, ..., T, } are two sum-free cerrings of G such that §; < T, for all
1 £1i £ n, we say that S is embedded in T.

We will also discuss the cardinality p(G) = min A(G) of the smallest possible maximal sum-
free set. We will ailio discuss specifically lower bounds on pu(G) when G is an elementary abelian
2-group. This is a good opportunity to give the definition of an elementary abelian p-group,
where p is any prime.

An abelian p-group G is an abelian group in which the order of each element is a power of p.
A known fact is that an abelian p-group G is the direct product of cyclic subgroups H;, 1 <i<n.
Moreover, the integer n and the orders of the H; are uniquely determinéd, up to ordering, by G.
If the order of H; is p®, we say that G is of type ( p°!, p®2, ..., p°®). In particular, if G is of
type (p, ..., p), G is called an elementary abelian p-group.

We now prove some preliminary results.

Theorem 3. 2. ( Mann [21] ) Let G be a finite abelian group and let A and B be subsets of
G. TheneitherG=A+B or IGI2/Al+IBI

Proof: Suppose G # A + B. Since (A +B)® =@, we can find an element g in ( A + B)°.
Define the set B' as follows.

B'={g-blbe B}={g}-B=g-B.
- The last equality is given just for simplicity of notation. From this definition of B' we have
immediately | B'l=1Bl,and B' ¢ G.
Suppose that A N B'#@. Thenthereexists a € A N B'. Hence a=g-b org=a+b

which is a contradiction. Therefore A must be disjoint from B'. This implies the following.
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IGI21Al+IB'I=1Al+|Bl.M

As a consequence, we have the following corollary.
Corollary 3. 3. Let S be a largest maximal sum-free set in a finite group G. Then

|G|

AMG)=1S1< 5

This upper bound is due to Erdos.
Note that this upper bound is best possible since it is achieved if we take G = Z,.
Definition 3. 4. Let G be an abelian group and let A and B be subsets of G,and g € G.
Then the transform of the pair ( A, B ) by g is the pair ( A%, B, ) where
ABA U (B+g), Bg=B N (A-g).
The transform we use here is similar to one that was introduced by Cauchy [5]. The next
lemma will give some idea about the connection between the pair ( A, B ) and the pair ( A8, B, ).
Lemma 3. 5. Let G be an abelian group, let A and B be subsets of G, andletg € G. Let
( A, B, ) be the transformed pair. Then we have the following.
6)) IAgI+IBgI=IAI+IBI;
(i) A%+ B, < A+B where, in particular, A5 + B, =@ if B;=@.
Proof: (i) We will use the definition of A8 and B,.
A1 +1Bgl=1A U (B+g)l+IB N (A-g)l
=IA U (B+g)l+I(B+g) N Al
=|Al+IB+gl-1(B+g) n Ai+I(B+g) n Al
=|Al+IB+gl
=|Al+IBI
(ii) Leta € A8 b e B;. Sobe B n (A-g)ie,b e B. If a e A, wehave
a+be A+Band therefore AB+B; c A+B. Ifa ¢ A, thena € B+g,soa=b; +g for
some b; € B. By definition By < A-g, sob= a;- g forsome a; € A. Hence
a+b=by+g+a;-g=by+a;=a;+b; € A+ B, since we are in an abelian group.

In each case, we have A8 + B; c A+BH
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2.CRITICAL PAIRS AND VOSPER'S THEOREM

Theorem 3. 6 is a fundamental inequality which was first proved by Cauchy [5] and was later
rediscovered by Davenport.

After proving this theorem we will turn to the main business of this section which is to
characterize those pairs A, B ( called critical pairs ) for which .the inequality in the Cauchy-
Davenport theorem is an equality. This characterization is the content of Theorem 3. 10, Vosper's
theorem [33]. o

Theorem 3. 6. (Cauchy-Davenport) Let G be the group of residues modulo p, where p is a
prime, and let A and B be subsets of G. Then

& |A+Bl 2 min(p,|Al+IBI-1).

Proof: If min (| Al,1B 1) =1, then the theorem is obviously true. If
|Al+1B!| > p,then Theorem 3.2. tells us we musthave G=A +B,sol A+ B|=p; the
theorem is still valid in this case.

Hence from now on we can assume |Al+IB| < p, min(1AL,IBl) = 2. Assume
furthermore,without loss of generality, that 0 € B. We will prove the theorem by induction on
IB 1.

(i) Claim: A# A + B.

To prove this claim, we choose b € B\ { 0 }. Fix one element a of A, then consider
a,a+b,...,a+kb foreveryk. If we had A = A + B, then the elements a,a+Db,...,a+kb
would be in A as well. Since this would be true for every k, then it would be true even fork =p
which tells us that A is the whole group, which is impossible by the assumptions |A1+|B| < p
andmin (| Al,|B1) 2 2. Then the claim follows.

(ii) Claim: For some elementaof A, |B,1 < [BI. If | B, =1B1 foreveryain A, then
B A-aor B+a ¢ A holdsforeveryain A. Hence A+B < A. Wehavealso 0 € B,
therefore A < A + B which gives the equality A = A + B which contradicts (i). So the claim
follows.

We are now ready to begin the induction proof.
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@(ii) If IBi=2, we wanttoshow | A+ B| = min (p,! Al+ 1), or more precisely
IA+Bl21Al+1. (Since |Al+2 < p,wehave |Al+1=min(p,lAl+1).)

Suppose |A+B1 < | Al. We know that A < A + B and we then have A = A + B which
contradicts (i).

(iv) Assume the theoremis valid for B! < n. vChooseB with | BI=n and then choose an
element a of A in such a way that | B,1 < B

We have by Lemma 3. 5 (ii),

|A+Bl 2 A%+ B,! = min(p,| A?1+IB,!-1)

> | A% +1B,l-1
')

lAl+IBI-1.
Observe that by our earlier comment, if min(p,| A% +[B,l-1)=p, then A%+ B, =G and
by Lemma 3. 5 (ii), A + B = G and we are done. So we assume
min(p,| A% +1B,l-1)=1A%I+IB,l-1
we have used the inducétion hypothesis and Lemma 3. 5 (i) in the second and the third step of the
above computation, respectively. B |
In Vosper's theorem, Theorem 3. 10, we will give necessary and sufficient conditions for
which
lA+Bl=min(p,|Al+IBI-1).
We need some terminology at this step.
Definition 3. 7. Let G be the group of residues modulo p, where p is a prime, and let A
and B be subsets of G. The pair ( A, B) is called a critical pair if and only if
lA+Bl=min(p,|Al+IBI-1).
Let G be an abelian group and let A and B be subsets of G. A is called an arithmetic
progression with difference d or a standard set with difference d if and only if
A={a+idli=0,1,...,lAl-1}, for some a,d € G,d=0.
| The pair ( A, B) is called a standard pair with difference d if and only if both A and B are

standard sets with difference d.
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If A is a subset of the cyclic group with elements{ 0, 1,2, ..., t- 1 } and with the addition
modulo t, we can define the gaps in A as follows. If a,a+n+1 € A,but a+1,a+2,...,a+
n € A® then we say that there is a gap of length n in A, occuring betweenaand a +n + 1.

It should be noted that, when we say A/H is a standard set with difference d we mean that

A={a+idl i=0,1,...,1Al-1}+H,forsome a,de G,d=0.

We will need the following lemma in order to prove Vosper's theorem.

Lemma 3. 8. Let G be an abelian group and let A, B, C and D be subsets of G. Suppose
A-B=C-D. Then

ANB=9¢ if and only if CnNnD=6@.

Corollary 3. 971et G be an abelian group and let K, L, M, and N be subsets of G. Then

@) (K+L) nM=@ ifandonlyif K n (M-L)=0;

@) (K-L) n (M+N)=¢ ifandonlyif (K-M) n (L+N)=@.

Theorem 3. 10. ( Vosper [33] ) Let G be the additive group of residues modulo p, where p
is a prime, and let A and B be subsets of G. Then the pair (A, B) is critical if and only if one of
the followiﬁg is satisfied.

@ Al+IBI > p,

@) min (IALIBI)=1,

(iii) A =(g-B)C, for some ginG, or

(iv) (A, B)is a standard pair.

Proof: First we will prove that each of the conditions (i)-(iv) will suffice for the pair (A, B)
to be critical.

If wehavel Al +IBI > p, then- by Theorem 3.2 we have G = A + B. In other Words,
| A+ B | =p, and hence we have

|A+Bl=min(p,|Al+IBl-1)=p,
so the pair ( A, B) is critical.

If we havemin (| A,IBl)=1,theniAi{+1B!|-1 < p and hence
|A+Bl=max (1ALIBI)=lAl+IBl-1=min(p,| Al+|BI-1). Hence the pair (A, B)
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is critical.
IfA=(g-B)C then we have A N (g-B)=@. So by Corollary 3. 9 (i),
(A+B) N {g)=0 whichtellsus |A+B! < p- 1. Since A=(g-B )’ we have
lAl=IBCI=p-lBI. Therefore | Al +! Bl =p. From Theorem 3. 6,
|A+Bl 2 min(p,p-1)=p-1.
So we have
|A+Bl=p-1=IAl+IBl-1
which means that the pair ( A, B ) is critical. |
If the pair ( A, B ) is a standard pair, then we have
A=(a+idli=0,1,...,1A1-1) and B={b+idli=0,1,..,1BI-1)
for some a,b,de G,d#0, hence
A+B={a+b+idl i=0,1,...,1AI+IBi-2}.
Therefore, we have
A+ Bl=min(p,|Al+IBl-1).
So the pair ( A, B) is a critical pair.
Next, we assume that the pair ( A, B ) is a critical pair. Then we will show that one of the
conditions (i)-(iv) is satified.
IflAl+1BI > p,then we have (i). If min (| Al,1B |) =1, then condition (ii) is obtained.
IflAl+I1Bl=p,then we have |A +Bl=p-1becausel A+Bl=min(p,p-1). So
A+B={g}° forsome gin G. Hence (A+B )N { g} =@, and by Corollary 3.9 (i)
A N (g-B)=0 yielding A ¢ (g-B)C. On the other hand, we have
|Al=p-1BI=1BC%I=1i(g-B)°l This tells us that A = ( g - B)*. So we have (iii).
Now we assume that |Al+IBl<pandmin(l/Al,IB|)>1. We will prove that condition
(iv) holds. The proof will be given in several steps.
First we list our claims and then we will prove them one by one.
Claim 1: The pair ( A, B) is standard if A is a standard set.
Claim 2: Let D =(A + B ). Then the pair (-A , D) is a critical pair.
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Claim 3: The pair ( A, B) is standard if A + B is a standard set.
Claim4: IfIBl =2 3and 0 € B, then there exists a € A such that
IBI > Byl 2 2.

Proof of Claim 1: For simplicity, we can assume that A={0,1,...,1Al-1}. Letus
consider the gaps in B. , |

If be B,then {b,b+1,...,b+IAl-1} < A+B. Wehavel A+B| < p-1 which
means that there are some elements of G not in A +B and in B there must be at least one gap of
length at least | A |,

Suppose now that B has at least one other gap. Then A + B contains all the elements of B
together with at 1ea;3t I Al-1 elements from the first gap together with at least one element from
the second gap. Whence we have

|IA+Bl 2 IBI+(lAl-1)+1=1Al+I|BI
which is impossible since the pair ( A, B ) is critical.

A fortiori B has only one gap, i. e., B is in arithmetic progression with difference 1, and the
pair ( A, B ) is a standard pair.

Corollary to Claim 1: If min (! Al,1 B!) =2, then the pair ( A, B ) is a standard pair.

Proof of Claim 2: We are givenD = (A + B )C. Thefefore (A+B)nD=@, sofrom
Corollary 3.9 (i), we have B N (D - A) =@ which implies thatB < (D - A )°.

Let (D-A)=E. SoE N (D-A)=0 implies (E+A) n D =@. Hence we have
E+A ¢ D€=A +B. On the other hand, we have B < E which implies A+B < A +E, so
we have equality, i.e., A+ B =A +E. Since the pair ( A, B ) iscriticaland| Al +IB| < p, we
have |

p-121Al+IBl-1=lA+Bl=lA+E| 2 min(p,|AI+I|EIl-1)=1Al+[EI-1,

The latter inequality yields | B| = | El. Therefore B =E, and so B =D - A. Now we can
find |
| D- Al by using the last equality.

ID-Al=IB%l=p-1Bland
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IDI=p-lA+Bl=p-1Al-IBI+1.
So
ID-Al=min(p,IDI+1-Al-1).
By definition the pair ( -A, D) is critical.
Proof of Claim 3: If A + B is a standard set, so is D = ( A +B)C. By the second claim, the
pair (-A, D) is critical. We also have , since IB| > 1,
|-Al+IDI=1Al+p-1Al-IBI+1=p-IBl+1 < p,
and
min (1-ALIDI) > 1.
By the first clair'/}x, (-A, D) is a standard pair, since D‘is a standard set. Hence -A is a standard
set too. Then A is standard and by the first claim, the pair ( A, B ) is a standard pair.
Proof of Claim 4: Let us define the following set.
Y={ae AIIBI > IB,l}
We will show that | Y| =2 2. Two cases may arise.
(@) Y=A. Thenobviously | Y| = 2.
(b) Y # A. Then,let Z=A\Y,and Z # @. Forall ze Z,B, < B and |B,! > | B!,
so B, =B. Therefore
B,=Bn(A-z)=B forall ze Z.
From the last equality, wehave B ¢ A-z,s0 B+2z < A. Since this last inclusion is true
forall ze Z,we have B+Z c A.
Therefore using Theorem 3. 6 and the hypothesis | B | > 3
p>lAI2IB+ZI 2IBI+I1ZI-121ZI+2.
So we have,
IYI=1AI-1Z] 2 2.
Now we want to show that for some a € Y, | B;| 2 2. Assume the contrary, i. e., for
everya € Y,[Byl < 2.

This assumption and the assumption that 0 € B implies that
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Bn(A-a)=(0}.

Letusdenote B\{0} byEsothatEN(A-a)=@. From Corollary 3. 9 (i), we have
(E+a) n A =@. Since thisis true foreverya € Y,wethenhave (E+Y) N A=@.

Weknowthat E+Y ¢ A+B,and A € A + B so we get

IE+YlvsIA+BI-IAl=lAl+lBI-1‘-IAI=I‘BI-1=IEI;

here we used the fact that the pair ( A, B ) is critical.

On the other hand, from Theorem 3. 6, and the facts that Y < AandE < B,and! Y| > 2,

p>IE+YI2I1EI+lYI-1 21El+1.

since | Y| 2 2. This is a contradiction, so | B;| 2 2 forsomea € Y.

This completeS'rt'?le proof of the claims.

We now prove the statement of the theorem by using induction on the size of B.

By the corollary to Claim 1, when | B | =2, (A, B) is a standard pair.

The induction hypothesis is that the pair ( A, B ) is a standard pair for2 < | B| < k; note that

our initial hypotheses are still in effect, thatis,| Al +IB| < pand min(l AL IB 1) > 1.

Let 3 < IBI| <k+1. Since 3 < |B], by the last claim, we have IB| > | B,| 2 2 for

some a € A. The idea is to show that the pair ( A3, B, ) is a critical pair. Since the pair ( A, B)

is critical and we assume that | Al+IB| < p

p-1>1Al+IBl-1=1A+B]|

> | A2+B,| by Lemma 3. 5 (ii)

> [A?]+|B,I-1 by Theorem 3. 6
[Al+IBI-1.

Hence
|A? +B, =A% +]B,l-1
which says that the pair ( A?, B, ) is a critical pair.

So the pair ( A%, B, ) is a standard pair byv the induction hypothesis, since IB| > | B;| = 2,
and | A?|+1B,!| < p. This implies that A2+ B, is a standard set.

Above we obtained
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|A2+B,l=1A+Bl

From Lemma 3. 5 (ii), we have A2+ B, < A + B. Hence, we have the equality
A%+ B, =A +B. Since A2+ B, is a standard set, so is A + B. Now we can refer to the third
claim so showing the pair ( A, B ) is a standard pair, and this proves the theorem.ll

We need a theorem of Kneser. Though we will not provide a proof here, it can be found in
Mann's book [21].

Theorem 3. 11. (Kneser) Let G be an abelian group, and let A and B be finite subsets of
G. Then there exists a subgroup H of G such that

A+B+H=A+B,

and

fA+Bl21A+HI+IB+HI-1HL

3.GENERALIZATIONS QF THE CAUCHY-DAVENPORT THEOREM
AND VOSPER'S THEOREM

In this section we will present some generalizations of the Cauchy-Davenport theorem and
Vosper's theorem. We need them to study sum-free sets in groups. This work was initiated by J.
H. B. Kemperman [17] and M. Kneser [18].

Before stating our first lemma of this section, we will give some definitions.

Definition 3. 12. Let G be an abelian group. Let C be a subset of G. If H is a non-trivial
subgroup of G such that C + H = C, then C is a union of cosets of Hin G. In this case C is
called periodic with period H. Note that H is not uniquely determined from this definition. Since

HC)={ge GI C+g=C}
is a subgroup of G, it is clear that H(C) is the largest period (stabilizer) of C.
In the case where C+ H =C implies that H= { 0 }, C is called aperiodic.

A subset C of G is called quasi-periodic if there exists a subgroup Hof G of order |[HI = 2
such that C=C' U C" where C' is the disjoint union of cosets of H in G and C" is contained in

another cosetof Hin G,i.e.,C" <« ¢ +H ¢ € C". We call C" residual. The sub group H is

called the quasi-period of C.
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Note that if C is quasi-periodic,2 < |H! < | Cl for each quasi-period H of C. If each
element g of G\ { 0'} = G* is of order greater than | C|, then C cannot be quasi-periodic. As the
terminology suggests, each periodic set is quasi—periodic as well.

Now we can state the first lemma of this section.

Lemma 3. 13. (Kemperman [17] ) Let G be an abeliah group. Suppose that a finite subset

C of G is the union of the proper non-empty subsets Cy, Cy, ..., Cy, n 2 1, such that for

i=0,1,...,n
Cl < IGI+IH(C) L (3.1)
Then
@) ICIJ'+IH(C)I_>.ICiI+IH(Ci)|. (3.2)°
for atleastone i=0, 1, ..., n, and

(ii) either C is quasi-periodic or there exists ¢ € C for which C-c¢=H; U Hy where Hy,
H, are finite subgroups of G of the same order with Hy n Hy={ 0 }.
We omit the proof.
Definition 3. 14. Let G be an abelian group, and let A and B be non-empty subsets of .G.
Then we say the sum A + B is small when
lIA+Bl <IAI+|BI-1.
Now we will give a theorem due to Kneser [18] which is a generalization of the Cauchy-
Davenport theorem.
Theorem 3. 15. (Kneser) Let G be an abelian group, and let A and B be finite subsets of
G. Assume that
IA+BlI < [AI+IB!l-1. (3.3)
Let H=H( A + B ) denote the largest period of A + B. Then H satisfies
[A+Bl+IHI=IA+HI+IB+HI (3.4)

We omit the proof.

4. A FURTHER VARIATION OF VOSPER'S THEOQOREM
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Next we will give a variation of Vosper's theorem. They will provide some information
concerning the order of a sum-set which is small compared Wiﬂ'l the orders of the summand sets.
Theorem 3. 16. ( Kemperman [17] ) Let G be an abelian group, and let A and B be finite
subsets of G with
|ALIBI 2 2, and IA+BI<IAI+IBI-1.
Then either A + B is a standard set or A + B is quasi-periodic.

The proof is too complicated and hence will be omitted.

S. CHARACTERIZATION QF PAIRS ( Ay B ) WHERE A + B IS

v SMALL

Given the pair l( A, B ) where the sum A + B is small is it possible to characterize the pair
(A, B)? Isitalso possible to construct such pairs? The forthcoming theorem will answer the
above questions. It shows that it is sufficient to consider the case when the sum A + B is
aperiodic.

Theorem 3. 17. Let G be an abelian group. The following construction produces exactly
all the pairs ( A, B ) of finite non-empty subsets of G where the sum A + B is small, i. e.,
lA+Bl < AI+IBI-1.

Construction: Pick a proper finite subgroup H of G and let v denote the natural mapping
v: G —> G/H. Next choose finite, non-empty subsets A*, B* of G/H so that A* + B* is
aperiodic and

| A* +B*|=| A* | +|B*|-1 | (3.5)

Finally, we let A and B be any subsets of v-1A* and v-1B*, respectively, with

IviA* A ACI+1vIB* A BC| < | HI | (3.6)

Then this construction generates a pair ( A, B ) satisfying ( 3. 3 ), and any pair satisfying

(3. 3) may be constructed in this way.

We omit the proof.
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6. PAIRS ( Ay B ) \WIH[‘IEIRIE A + B IS SMALL AND IS A STANDARD
| SET

In this section we will investigate the following problem.

Let G be an abelian group, and let A and B be finite non-empty subsets of G so that the sum
A+ Bsmall,andmin (| Al,IBl) = 2. We know from Theorem 3. 15 and Theorem 3. 16 that
either A + B is a standard set or A + B is quasi-periodic. Given such information on A + B, what
can we say about the pair (A, B )? We are only interested in the case where A + B is a standard
set . The following results are due to Kemperman [17].

Lemma 3. 18.’ Jet G be an abelian group of order n, and let A and B be finite non-empty
subsets of G whefe the sum A + B is a standard set with difference d, and | A + B < n. Then

IA+Bl 2 |Al+IBI-1.

Lemma 3. 19. Let G be an abelian group of order n, and let A and B be non-empty subsets
of G with the following properties. The sum A + B is small, A + B is a standard set wi;h
difference dand| A + B | < n - 2. Here n is the order of the element d. Then A and B are
standard sets of difference d, and we have

A+Bl=lAl+IBI-1.

We omit the proofs.

An immediate corollary is the following.

Corollary 3. 20. Let G be an abelian group, and let A and B be non-empty subsets of G.
Suppose that min (1 A, B1) = 2, the sum A + B is small andevery g € G\ { 0 } has order at
least| A + B |+2. Theneach of A, B and A + B are standard sets with difference d.

Note that the above corollary for the special case that G is a cyclic group of prime order is due

to Vosper [34], and was later rediscovered by S. Chowla and E. G. Straus.

7 MAIN RESULTS: SUM-FREE SETS IN GRQUPS

In the previous sections, we have prepared ourselves for the real meat of this chapter which is

sum-free sets in groups.
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We gave earlier in Corollary 3. 3 an upf)er bound on A( G ), the cardinality of a largest
maximal sum-free set in G. Now we give a lower bound on A( G ), also due to Erdés [11]. If G

is any finite abelian group, then

2I7Gl < MG).

In the introduction to this chapter, we noted that the upper bound is best possible and is

attainable if we take G = Z,. Now we will show that this lower bound is also best possible and
attainable if we take G = 2. |

Claim: In Z, a maximal sum-free set cannot have more than 2 elements.

Proof of the claim: In £, we can show, with some computations, that the 2-element sum-
free sets in Z7a1‘él)[ L3L{1L,54L{1,6},{2,3},{2,5},(2,6},{3,4},{4,5},and
{ 4,6 ). We can divide these nine sets into classes as follows. We take the setS={ 1,3 } and

consider kS, where 2 < k < 6 and we are doing the arithmetic modulo 7. We find that

28={2,6}, 3§=(3,2}, 4S ={ 4,5},
58={51}, 6S={6,4).
So we have a class
C;=(kS!1<k<6})=<{1,3}> _

Now we take T = { 1, 6 } and consider kT where 2 < k < 3. We get in this case
2T=1{2,5}, 3T=(3,4).
Hence we have another class
C=({kTl1<k<3)=<(1,6}>

It suffices to show that a representative of each class C; is maximal in order to show that these
nine sets are maximal. We will take S={ 1,3 }and T ={ 1, 6 } as representatives of classes C
and C,, respectively.

Let us look at the entire list of sum-free sets in Z.,.

We say that an element a is compatible with anelement b if { a, b } is a sum-free set.

According to the above definition and by inspection, we see that except 3, 5, and 6 no element

is compatible with 1. Again by inspection, we see that 1, 2, and 4 are compatible with 3. Since
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the set of compatible elements with 1 and the set of compatible elements with 3 have no element in
common, we cannot-add a third element to the set S to obtain a larger sum-free set.

Similarly, we can show that we cannot add a third element to the set T to obtéiin a larger sum-
free set. |

Therefore the classes C; and C, contain only maximal sum-free sets in Z4. Hence M(Z4)=2
which attains the lower bound.Hl |

In the theorem and corollary below, we will answer the following question.

Can one find a necessary and sufficient condition on G so that the upper bound on A( G ) is

attained, i. e., A( G ) = '—S—-’ 9

Although we arg mainly interested in abelian, finite groups the next theorem is proven for all
groups.
Theorem 3. 21. Let S be a finite subset of a group G. Then!S + S| =18 | if and only if
there exists a finite subgroup H of G so that |
S+H=S=H+S ad S-S=H=-S+8.
Proof: Assume for a finite subset S of G we have | S + S| =1S |. In order to show the

existence of a finite subgroup H of G, we choose 51, s, € S and define

Hl = 'Sl +S, H2 = S - S2'

Then _
IH; +Hyl=1-5;+S+S-5,1=1S+SI=I1S1=IH;!=1H,!|

and so is finite.

Now consider ( -s; +51) + (85~ 5, ) =0. This implies that 0 € H;and0 € H,,so
0 € H; +H,.

Then, since H) < H; + Hyand H, < H; + H, we have H UH, ¢ H; + H,. So

IHi OHy | £ 1H; +Hyl=1H;I=IHyL

Then we have H; + Hy =H; = H,. Let us call this set H. We would like to show that H is finite

subgroup of G.

Suppose h € H. Thenh=-s; +s3,and h =5, - s, for some s3,5, € S. So we have
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-h=-s5 + 5y, and -h = s, - 54, which imply -h € H. We already have 0 € H and H is closed
under addition, so H is a finite subgroup of G.
Since Hj =H, =H,wehave H=-s+S=S-sforalls € S. Addings to both sides of the
last equality.
s+H=S=H+s
foralls € S. Eventually, we get
S+H=S=H+S.
Now assume the converse. Since S+ H=H+ S =8, S is a union of left or right cosets of H

in G. That is,
S=U (s+H)=U _(H+s)
se S se S

Hence | S | is some muldple of | HI, say | S | =kl HI, where k is the number of cosets of H in
Gk 2 1.
SinceH=S-S,wehave |[HI=1S-S[21SI. Therefore we have |[H|=1S1and S is both a
left and a right coset of H. | |
Hence
S=s+H=H+s
foralls € S. Then we get
S+S=s+H+H+s=s+H+s,
and so
IS+SI=1HL
In other words
| IS+S1=1S1.M
Corollary 3. 22. Let G be an abelian group and let | G| =2m. Then A( G ) = m if and only
if G has a subgroup H of order m, and in this case the maximal sum-free set is the coset aH,
ae H
Proof: This follows directly from Theorem 3. 21 and the fact that every abelian group of

order 2m has a normal subgroup of order m.H
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A lower bound on A( G ) when G is abelian is hard to achieve. We will try to determine the
size and the structure of maximal sum-free sets S in arbitrary abelian groups G. We will study
certain cases depending on the prime divisors of | G |, the order of G, to find a lower bound on
AMG).

Except for Theorem 3. 21 G will denote an abelian group.‘

In Definition 3. 12, we have defined the largest period H( C ) for any subset C of G. Some
facts about H( C ) are listed below. |

(I C+H(C)=C,

(II) if C + K = C for some subgroup K of G, then K < H(C),

(III) the sﬁggroup generated by H(C) and H(D ), < H( C ), H(D ) >, is contained in
H(C+D),

(IV) H(S)=H(-S).

We will show that there exists a subgroup H of G such that
H=H(S+S)=H(S)=H(S - S) for a maximal sum-free set S in G.

The subgroup H=H(S + S ) sothat S + S + H=S + S exists by Theorem 3. 11. Hence we
have by Theorem 3. 15 either

IS+S1 2 2lS!
or
[IS+SI=2lS+HI-1HI , (3.7)

Lemma 3. 23. Let S be a maximal sum-free setin G, and lee H=H(S +S ). Then S + H
is a sum-free set in G and therefore S + H=S.

The proofs of the lemma and the following corollaries will be omitted.

Corollary 3. 24, Let S be a maximal sum-free setin G. Let H=H(S + S ). Then

H=H(S+S)=H(S)=H(S-S).

Corollary 3. 25. Let S be a maximal sum-free setin G. Let H=H(S +§ ).

Then either
IS+S1 2 2SI
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or
IS+S1=2ISI-1H],
and either
S-St 2281
or |
[S-S1=21S1-1HL
In the next lemma, we will give some upper bounds on A(G ) depending on the order of G.
Lemma 3. 26.(Diananda and Yap [7]) Let G be a finite group. We will consider the
following cases.
@ IGlI haé‘)at least one prime factor p of the form 3n + 2; without
loss of generality we may assume p is the smallest such prime,

(ii) no prime p of the form 3n + 2 divides | Gl, but 3| 1 G|,

(iii) | G!1is a product of primes each of which is of the form 3n + 1.

Then
|G lp+l) Igpﬂ) in case (i)
AG) < | (:; | in case (ii)
lGI-1 .
— in case (iii).

The proof of Lemma 3. 26 is omitted.

Note that the cases considered in the above lemma exhaust all possibilities for | G | and they are
mutually exclusive.

Remark: In cases (i) and (ii), the structures and sizes of maximal sum-free sets are fully
determined. That is, the upper bounds given above in the first two cases are exact values. Yet we
know very little about the third case. In the last case, even the size of the maximal sum-free sets is
known for special cases only.

We will demonstrate the first two cases by giving examples later on.

The following theorem deals with the case when | G| is divisible by a prime p of the form

3n + 2.
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Theorem 3. 27. In the first case of Lemma 3. 26 the upper bound is attainable. Also, if S
is a maximal sum-free set in G, then S is a union of cosets of some subgroup H of index p in G,
S/His a standard setin G/Hand S U (S +85)=G.

Proof: (i) Let us denote p by 3n - 1. Consider G = Zp. By Lemma 3. 26, M(G) < n. If
we look atthe setS={n,n+1,...,2n-1 }, we see that S is sum-free and | S | = n. This gives
AMG) =n.

The Cauchy-Davenport theorem (Theorem 3. 6) giVes {S+S1 2 2n-1, and since S is sum-
free we have IS +S1| < 2n-1. SolS+S1=2n- 1. Hence the pair (S, S) is critical and by
Vosper's theorem (Theorem 3. 11) the pair (S, S )isa staﬁdmd pair, so S is a standard set.

Without loss o"f') generality since p is prime, we can take d = 1, the common difference of the
progression. This gives us that, up to automorphism, S = { n,n+1,...,2n- 1 } is the only
possible set.

(i) We can generalize the idea in (i). Let K be a subgroup G of index p, and let g be an
element of order p so that

G=Ku (K+g)u ... v (K+(p-1)g).
Consider the set
2n-1
T=U (K+jg).
j=n
To show that T is sum-free, consider k + jg and k' +ig, where k, k' € Kand

n < i £ j < 2n-1. If we take the smallest possible value, n, for i and j, we end up with

k + k' + 2ng which is not in T. For larger values of i and j, we have the same conclusion. The
size of T is ‘G'gpﬂ), since there are n cosets and the size of K is l-g-l- Therefore T is a maximal

sum-free set in G and M(G) = 'G'gp“).

Assume now S is a maximal sum-free set with I%S-E;—Q elements. Assume H is a subgroup

of G for which the second option in ( 3. 7 ) holds. Then, we have

Gip+l) _ 1HI [1G |
S 3 |:IHI+1:|’

sothatlHl:I-;—il-.
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We know, from Lemma 3. 23, that S is a union of cosets of H. By the assumption,
ISI=qu—%-tg,and,(3.7)wcgetIS+SI+ISI 2 | GI. Since S is sum-free, we get
[S+SI1+1S| < G, hence we have the equality. Therefore S U (S+S) =G,

IS+S| =2lSI-IHI; Inviewofthelastequality weget! (S/H)+(S/H)I=2IS/HI-1, where
S/H is a subset of the factor group G/H. By an extension of Vosper's theorem (Diananda [6]),
we have S/H as a standard set, and this subset as in (i) is isomorphic to the set
{n,n+1,...,2n-1}.M |

Example: Take p=17. Thenin Z;;,M(Z7) =6andS={6,7,8,9,10,11 }isa
maximal sum-free set .

The followingz-/t’})eorem deals with the case when | G | is divisible by 3 but not by any prime p
of the form 3n + 2

Theorem 3. 28. In the second case of Lemma 3. 26 the upper bound is attainable. Also, if
S is a maximal sum-free set in G, then S is a union of cosets of some subgroup H of G, such that
G/H is the cyclic subgroup Z5,, for some m, S/H is a standard set in G/H and

[IS+S1=2[SI-1HI
Proof: (i) Obviously G has a subgroup K of order I-%ﬂand an element g of order 3 such that

G=Ku (K+g)u (K+2g).

Then it is easy to see that the set T = K + g is sum-free and has I-g,ﬂelernents. So T is maximal by

Lemma 3. 26, hence A(G ) = l—%

(ii) We now let S be a maximal sum-free setin G with| S| = gl Moreover, let H be a

subgroup of G which is the largest period of S + S. Hence Corollary 3. 24 it is the largest period

of S by, so S is a union of cosets of H, and | H | = -Ig%l-, for some m.

Since S N (S +S) =@, we have

IS+S1 <1GI-18i=1G1-19- 24

3 3
But Corollary 3. 25 tells us that we have either
IS+S1 2 2SI

or
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IS+SI=2[Si-1HI
Therefore we have to consider the following two cases.
@ 1S+Si=21S1-1H!
and
() IS+SI=2ISLI
Our claim is that (b) cannot happen. Actually, this was conjectured by Yap[41] and proved by
Street[28]. |
Observe that if A is any subset of G with the property that A = -A, then!| A | is odd if and only
if0 € Asincel Glisodd.
Since S is sum"-”%ree and no sum-free set can contain 0 and | S lis odd, then by the above
observation S#-S. But0 € (S-S)=-(S-S)and hencelS -S!isodd. Now
S N (S+S)=¢ and so by Corollary 3.9, we have (S-S ) N S =@. Hence
SN (S+S)=((S-S)NnS)u(Sn(S-5))
=((8-8) n§) U ((S-S) n (-8))
=(SU(S))n(S-95)
= 0.
By Corollary 3. 25, we have same possibilities for S - S that is, either
@) 1S-SI1=2ISI|-1HI
or
() 1S-Si=281
Since | S - S | is odd (b') is not possible. Hence we have (a').
Let us call the factor group G/H, G~, and its subset S/H, S~. Obviously S~ is a maximal sum-
free set in G~.
From Corollary 3. 24, we have
H=H(S)=H(S+S)=H(S-S).
Therefore both S~ and S~ - S~ are aperiodic. Note that
|S~-S~1=2IS~{-1=2m-1 (3.8)
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and
1S~ U (S~-S~)I=18~1+18~-8S~[-18~ N (S~-S~)I
=m+2m-1=3m-1=1G~I-1.
Hence Theorem 3. 16, and ( 3. 8 ) say that S~ - S~ is either quasi-periodic or a standard set.
Suppose now that S~ - S~ is quasi-periodic. That is, |
S~-S~=T" u T"
where ‘
T =T+ U~, T < t+U-~,
and U~ is a subgroup of G~ andt € T". Since S~-S~=-(S~-S~),wehave T" ¢ U~ If
S~n U~#0, th'é)n from S~ being sum-free we deduce that no complete coset of U~ is contained
in S~. But we assumed that S~ - S~ is quasi-periodic, so we must have S~ N U~ =@. But this
implies that S~ is periodic with period U~, which is another contradiction. Therefore
S~ - S~ must be a standard set with difference d. Now (3. 8 ) tells us that the order of d is 3m.
From Lemma 3. 19, we know that S~ is also a standard set with difference d, so
| S~+S~1=218~1-1
and
IS+Si=21St-1HI
Since | G~ | = 3m, and G~ contains an element d of order 3m, hence G~ turns out to be the
cyclic group Z5,. Ifn € Aut(G~) such thatn(d) = 1, then |
NS~)={mm+1,...,2m-1}.H

We give an example below.

Example: To illustrate the theorem, we take G = 23 @ Z3. ThenM(G) = ]—gj-l-= 3. Let

H=((0,0),(0,1),(0,2)}anddefineS=((1,0),(1,1),(1,2)}. Then
S=(1,0)+H,soS/H={(1,0) }. If we compute S + S, we see that S is sum-free and
IS+S1=2ISI-1HL AlsoS+S={(2,0),(2,1),(2,2)}=(2,0)+H. So
G=HuU ((LLO)+H) U ((2,0)+H).

Corollary 3. 29. Let G=2Z where m = 3™ for some n. Then there are precisely n non-
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isomorphic maximal sum-free sets in G.

Corollary 3. 30.- Let G be an elementary abelian 3-group. If S is a maximal sum-free set in
G, then S is a coset of a maximal subgroup of G.

Proof: Since | G | = 3" for some k, then G has a subgroup K of index 3, and an element g of

order 3 such that _
G=K u (K+g)u (K+2g).
Since the index of Kin G is 3, we have | K| = 3"' 1 50 K is maximal subgroup of G, and the
set S = K + g is obviously sum-free.ll
We note that if we drop the adjective “elementary” in Corollary 3. 30, a maximal sum-free set

Sina3-group G i'sf')not necessarily a union of cosets of a maximal subgroup H of G.

For this we take G = &g, then M G)=3. Theset S = {2, 3,7 } is a maximal sum-free set in
Zg, but it is not a coset of H= { 0, 3, 6 } which is a maximal subgroup of Z,.

Corollary 3. 31. Let p be a prime of the form 3n + 1.

(a) Consider G = 23p. If S is a maximal sum-free set in G, then

(ij S is a coset of the subgroup H of order p, and

(ii) S may be mapped under some h to the set { p,p+1,...,2p- 1} where n € Aut(G).

(b) ConsiderG=2,© 2@ Zp. If S is a maximal sum-free set in G, then

(1) S is acoset of the subgroup H of order 3p,

(ii) S is the union of p cosets of a subgroup K of G of order 3 where G/K is cyclic and S/K is
a maximal sum-free set in G/K.

The proof is omitted.

The following theorem deéls with the case when | G | is divisible by primes p of the form
3n+ 1.

Theorem 3. 32. In the third case of Lemma 3. 26, let m be the exponent of G; i. e., m is
the smallest positive integer such thatmg=0forallg € G.

Then

(m-1)IGI
3m

IGl - 1

< AMG) < 3
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Proof: It suffices to establish the lower bound since we have the upper bound by
Lemma 3. 26.
In G, there is a subgroup K of index m and an element g with order m where g € G\K.
Then we have a partition of G as follows
G=K u (K+g)u ... U (K+(m-1)g).
Then the following set is manifestly sum-free

T=(K+2g) U (K+5g) U ... U (K+(m-2)g).

There are mT-l terms in the union; the order of K is _lg(:;_l, hence | Tl = (m;r)llGl, which is

the required lower bound. M

It was conjectti%ed in Diananda and Yap's paper [7] that in this case A( G ) equals its lower
bound . Rhemtulla and Street [23] proved this conjecture for elementary abelian p-groups. This
will be our Theorem 3. 35.

In particular, if G is a cyclic group, then | G | = m and m is the exponent of G. Hence we have
the following corollary.

Coroliary 3. 33. If G is a cyclic group G = 2, where m is the product of primes of the

form 3n + 1, then

m-1
MG)==5~
Remark: If| G| =m, where m is a product of primes p each of which is of the form 3n + 1,
the minimum value of the quotient I;I—I;}-is %, which is Erdos’ lower bound.

We need some more terminology at this step.

Definition 3. 34. Let G be a group, H a subgroup of G and S a maximal sum-free set in G.
Then we say S avoids Hif and only if S » H=@, and S covers Hif and only if S N Hisa
maximal sum-free set in H.

We know the size and structure of maximal sum-free sets in a group G where all divisors of
| G| are congruent to 1 modulo 3 for the cyclic groups only. The next theorem will tell us about
the size of a maximal sum-free set in an elementary abelian p-group where p is a prime of the form

3n + 1.
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Theorem 3. 35. Let G be an elementary abelian p-group where p is a prime of the form
3n+ 1. Let| G| = pX for some k. Then A(G ) = np¥-1.

The next task is to determine the structure of the maximal sum-free sets in the group of order p,
p =3n+ 1. But first we will give an example to demonstrate the preceding theorem.

Example: To illustrate the theorem, take n =2,k = 5; sb
G=2,902,02,02:92,. LetS={2,3}102,02,®2Z,;® Z,. Thatis,
S={(xynLynynHys)lxe {2,3},y;e 24} Then, obviously, S is a maximal sum-free
setinGandAM(G)=1S1=2.74

Lemma 3. 36. Let G =2, where n = 3k + 1 is not necessarily prime. Let S be a sum-free
setin G satisfying')

[S1=k, S¢=S+8S, and S =-S. (3.9)

Then

) (S+g) nS=@ ifandonlyif g € S,

() ifI(S+g) n Sl=1forsomeg € G,thenl(S+g') N Si 2 k-3, where
g'=:izgandi%e S, and |

(i) if 1 (S+g) n Si=A > 1forsomeg € G, then there exists g’ € G such that
I(S+g)n S12k-(A+1). |

The next theorem will tell us about the structure of a maximal sum-free set in the group

G =Zp, where p=3n+1,n > 2. The proof will not be given here. The reader is advised to

refer to the paper by Rhemtulla and Street [24].
Theorem 3. 37. Let G =Zp and p=3n+1,n > 2. Then any maximal sum-free set S in G
may be mapped, under some automorphism of G, to one of the following sets:
A={nn+2,..,2n-1,2n+11},
B={nn+1,...,2n-1},
C={n+1,n+2, ,2n }.
If p=7,i. e. ,when n =2, sets of type A cannot occur.

In order to characterise the maximal sum-free sets in elementary abelian p-groups, p =3n + 1;
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we need one additional lemma.

Lemma 3. 38. LetG =Zp and p = 3n + 1, p prime (and consequently n even). Let S be a

maximal sum-free set in G with
(1) SisisomorphictoC={n+1,n+2,...,2n}, and

Gi) S < [%+1,...,57“}.

Then either
s=C o S=C=(§+L.,n2n+1,..,20)

We now are in a position that we can characterise the maximal sum-free sets S in an elementary
abelian p-group G. This characterization will be given in the next theorem without a proof.
However, the proé'% can be found in Rhemtulla and Street [24].

Theorem 3. 39. Let G be an elementary abelian p-group and | Gl =pX, p=3n+1, P prime
andn > 2, Let S be a maximal sum-free set in G. Let, moreover, G have the following
representation |

{ (ipige o) | ij € Zp, 1 <j<k}.

Then, under some automorphism of G, S can be mapped one of the following 2k + 1 sets:
KA = { (ippig ooeniy) i € A |
kAk-r= { (iy, g, ooryig ) I notalliy, ..., i, =0,ip € C}Y U {(0,...,04,,....0 ) iy € A}
forl <r<k-1;
kB ={ (i}, iy, ..0,i ) | iy € B );
kBk-r= { (i, dp, ooy ) I motalliy, ..., i,=0,i € C} U ((O,...,0,i,, ... 7 ) liy € B}
forl <r<k-1;
kC={ (ipip ... i) 1 i € CY=XA,=¥B,,
where the sets A, B, and C were defined in Theorem 3. 37.M

Remark: We noted earlier that if n = 2, then the sets of type A do not occur. IfI G| =7k,
then there are k + 1 non-isomorphic maximai sum-free sets, namely kBk-r and XC where
0<r<k-1L

We will state a theorem without a proof which characterises the maximal sum-free sets in cyclic
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groups of prime power order, for primes congruent to 1 modulo 3. A prime number p is said to
be bad if it is congruent to 1 modulo 3.
Lemma 3.40. Let G =2, n=3k + 1. Let S be a maximal sum-free set in G and let H be a

subgroup of G of order m. Let S, be the subset of H for which

Si+i=S N (H+i) |
where H + 1 generates G/H. Then the cosets of H, more than half of whose elements belong to
S, form a sum-free set in G/H. |

Theorem 3. 41. (Yap) LetG=2Z_,n=p®=3k + 1 and p is a bad prime. Then any

maximal sum-free set S may be mapped, under some automorphism of G, to one of the following
sets A
A={kk+2,...,2k-1,2k+1};
B={kk+1,..,2k-1};
C={k+1,k+2,...,2k }.
The proof of this theorem is quite long, it uses the Theorems 3. 15, 3. 16, 3. 17, the Lemmas
3. 23, 3. 36, 3. 40, and the Corollaries 3. 24.,and 3. 33.
A complete characterisation of maximal sum-free sets in abelian groups of order 3™n where
m 2 1 and every prime divisor pof n (if n > 1) is bad is given by H. P. Yap [45].
Theorem 3. 42. ( Yap ) Let G be an abelian group of order 3™n (m > 1) where every

prime divisor p of n is bad.

Then either there exists a non-trivial subgroup H, of order —[3—51-}-1, where 3q I | G 1, of G such

that S is a union of cosets of H and S/H is maximal sum-free set in G/H or

IS+S*I=1S1+1S*1-1where S*=-S U S, and thus S = (S + S$* )C is a standard set.

Corollary 3. 43. Under the same hypotheses of Theorem 3. 42, if G has exponent less

than or equal to | 3G l, then S is a union of cosets of a non-trivial subgroup H, of order --—‘:,S I,

of G and S/H is a maximal sum-free set in G/H.

Proof: Suppose that

S={s+id 1i=0,1,...3™ -1}, forsome s,d € G,d 0.
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If the order ofd € G is—l—;—}—l- , then S is a coset of a subgroup H, of order-% , of G. If the

order of d is strictly less than%(-}-l, then| S| < 13(,} | which is not possible. So we have the

corollary.ll

We will give the statements of two theorems only.

Theorem 3. 44, Let G = sz ® Zp, where p = 3k + 1. Let
Hy=<(p,0)>®<(0,1)>,andH;=<(1l,i)>for 1 £i <p,K=<(p,0)> LetSbe

a maximal sum-free setin G. If S| > kp(p+1), then there exists a A such that

kp+A=max{IS N Hl)

0<i<p
and 3
| IS " Ki=m <A <k
Theorem 3. 45. Assume the hypotheses of Theorem 3. 44. Let IS N H; I=kp +A,

p-1
H, = 1k={) K; where Ky =K, K, =x; + K, x; + X; =Xy, Xj + Xy = Xg, ..., and let moreover

x;+5;=8 N K, for 0 <i < p-1 Then
m a x{lSll,ISzl,...,lSp_ll} 2 k+2,
and at least one of the S; is empty.

For the proofs, see Yap [45].
One can show by using Theorem 3. 44, and Theorem 3. 45 that A( Zn® 24) =112

3. GROUP RAMSEY THEORY

In this sectidn, we will give a brief review of Group Ramsey Theory which deals with finding
the smallest number of sum-free sets needed to partition G* =G\ { 0 }.

The reader is advised to refer to Definition 3. 1. We will denote R,( 3,2 ) by R;,.

Theéorem 3. 46. Let G be an additive group. Every sum-free partition of G* can be
embedded in at least one covering of G* by maximal sum-free sets.

Proof: Let 8={S,,S,,...,S, } be a sum-free partition of G*. Then for each i we adjoin
elements of G* to §;, provided that §; is still sum-free, until a maximal sum-free set, T, is

obtained. Note that T; may not be unique. Now T = { T{, T,, ..., T, } is a covering of G* by
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maximal sum-free sets, each S; < T; and so0 8 is embedded in 7.

Corollary 3. 47.- Each of the maximal sum-free sets of the previous theorem has cardinality

less than R _;. |
Proof: Consider the following collection of maximal sum-free sets.
L=(TIS; c Tforsomei}.

L has a maximal element, say Tj. Hence forevery T € L,IT| < [ Tyl

We may assume, without loss of generality, S; < 'TO. Now, we form the collection
R ={Tp S5\ Ty, ..., S;\ T 1.

Foralli=2,3,...,n, wehave Ty N (§;\Ty)=@and S, c T(. This collection is a
sum-free partitiori’g)f G*. We know, from Section 1, that| G| < R,.;. This proves the
corollary..l

Since every sum-free partition of G* can be embedded into at least one covering of G* by
maximal sum-free sets, we need only consider coverings of G by maximal sum-free sets.

Greenwood and Gleason gave sum-free partitions of Zs, Z, @ Z, ® Z, ® Z,, Z,,; and
Whitehead gave the sum-free partitionsof 2, @ 2, ® 2, ® 2, and Z, @ Z.,. Also; we have

Z213=1{4,6,7,9} U {1,5,8,12} U (2,3,10, 11 }.

All the sets which appear in these partitions of G are maximal sum-free sets S;. These sets
have one additional property and that is that S; U (S; + S;) =G. We need the following
definition.

Definition 3. 48. Let G be a group, and let S be a maximal sum-free setin G. S is said to_
filGifG* < (S+S) U S. If every maximal sum-free set S in G fills G, then G is called a
filled group.

Note that if S fills G, we can have

(S+S) u S=G* if and only if S N (-S)=0,
(S+S)u S=G btherwise.
If G is a finite abelian group, then the necessary and sufficient conditions for G to be a filled

group are known. If G is a finite non-abelian group, then only necessary conditions are known.
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Theorem 3. 49. A finite abelian group G is filled if and only if it is

(i) an elementary abelian 2-group, or

(ii) 24, or

(iii) 2.

Theorem 3. 50. Let G be a filled finite non-abelian grdup. Then

(i) for any normal subgroup H of G, G/H is filled, and

(ii) if G' denotes the commutator subgroup of G, fhen G =G' or G/G' is an elementary
abelian 2-group or G/G' = Z5 and | G | is even.

We are not going to provide the proofs here, they can be found in Street and Whitehead [32].

We will give s'd‘}ne examples to show that the conditions in Theorem 3. 51 are not sufficient
for G to be filled. /

(1) Take G = D, the dihedral group of order 2n. Letn=6k +1 > 2and

D,=<s,t | sn=t2= 1, sts=s-1»>‘

If we choose

2k-1 4k 2k+1 4k
S={s ,..,8 ,8 t..,s t},

then S is a maximal sum-free set, which does not fill G.

(2) Take G = Q, the quaternion group of order 8; where

Q=<s,t | s4=1,32=t2,sts=t>.

Let S be the set of consisting of the ohly element of order 2. Then S is a maximalsum-free set
which does not fill G.

(3) WhenG=G'= A5, the alternating group of order five, G is not filled by the maximal
sum-free set

S = { (14)(23), (12)(35), (13)(45), (15)(24), (25)(34), (12)(34),
(15)(23), (14)(25), (24)(35), (14)(35), (123), (245) }.
By Theorem 3. 51 (i), SL(2, 5) is not a filled group, either.

We will now introduce method called isomorph rejection which is effective for generating the

family of maximal sum-free sets. This will be done by computing the family for ( 2, )4 in detail.
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Consider Aut( (2, )4 ). This group can be viewed as a vector space of dimension 4 over
GF(2) and hence Aut((2,)*) = GL(4,2).

Since any sum-free 1-set consists of a non-identity element, so it is isomorphic to { 0001 }.
Any sum-free 2-set must generate a subgroup of order 4 and so is isomorphic to { 0001, 0010 }.
Similarly, any sum-free 3-set generates a subgroup of order 8 andso is isomorphic to
{ 0001, 0010, 0100 }. If we have a sum-free 4-set, then either this set generates the whole
group, in which case it is isomorphic to | |

A = { 0001, 0010, 0100, 1000 }
or it is contained in a subgroup of order 8 and so by Corollary 3.30 is isomorphic to
- B = { 0001, 0010, 0100, 0111 }.

Any sum-free set which contains more than 4 elements must contain a subset isomorphic to
either A or B.

We see that A + A contains all the elements of ( 2, )4 which have exactly two ones. By
adjoining any one of 0111, 1011, 1101, 1110, and 1111 to A we can preserve its sum-freeness.
By a simple observation, we see that if we adjoin 1111 and any one of the other four, we cannot
have a sum-free set. But, on the other hand, we get sum-free sets as follows.

Ag=A U {1111}
and

Ag=A v {0111, 1011, 1101, 1110 }
which are both maximal. Hence 5,8 € A( (2, )4 ).

Now, consider the subgroup H = { 0000, 0011, 0101, 0110 }. Clearly H + 0001 = B and
B + B =H. Take an element of another coset of H, say B'=B U { 1000 }, and adjoin it to B,
then B'+B'=H U (H+ 1001 ), then we can adjoin the remaining elements of H + 1000 to B';
this construction gives Bg = (H+0001 ) U (H + 1000 ), we see that Bg = Aqg.

Take now an element of the other coset of H, say B" =B U { 1001 }, then
B"+B"=H U (H+ 1000 ), and by adjoining the remaining elements of H + 1001 to B" we
obtain Cg =(H + 0001 ) U (H+1001). We see that Cg =T(Bg), where T € GL(4,2)and
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when we consider the elements of ( 2, )4 as column vectors.

Hence we have only A and Ag.

In Table 4 of the Appendix we have only two non-abelian groups of order 16 which can be
partitioned into thBee sum-free sets. They are G4 and Gs. Partitions of (G4)* and (Gs)*is given
below. |

G*={rtstts,188} U {5,718, 18, (st)2, sts } U { rst, rts, tst, r(st)z, rtst },
Ge)*={r, r3, S, s3, r2s2 } U { r2, rs3, r2s, r2s3, r3s } u { s2, TS, rs2, r3s2, r3s3 ).

This partition of G4 gives a monochromatic triangle-free coloring of K ¢ isomorphic to the
coloring that one can obtain from a partition of ( Z,4 )2. This partition of G gives a
monochromatic triangle-free coloring of K4 isomorphic to the coloring that oné can obtain from a
partition of ( Z, )4. These two non-abelian groups are the only onies which can be partitioned into
three sum-free sets.(See Whitehead [39].)

For a discussion concerning sum-free sets and difference sets, see Street and Whitehead [31].
Also, in the same paper they determined some sum-free cyclotomic classes in finite fields and via
those classes they constructed difference sets, association schemes and block designs. Also, they
give a characterisation of sum-free sets in GF(q) for q = p2m where p" =1 (mod 3) and mis a
positive integer. As a corollary, they obtained

p™+1 < Ry(3,2)=R,
where e =p™ - 1.

The following lemma gives restriction the range of the set A(G) if G is an abelian group of

order 4n for some n.

Lemma 3. 51. Let G be an abelian group of order 4n. Then
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@) if n = 3, then 2n-1 ¢ A(G), and
@) if n = 6,then 2n-2 ¢ A(Q).
Now consider 5. There are at least three ways of partitioning Z ;5 into maximal
sum-free sets. We can consider the éubic residues and their multiplicative cosets in GF(13). This

gives us the partition we had before. We can consider the quartic residues and their multiplicative

cosets in GF(13). This gives us the following partition for Z4
213={1,3,9) U {2,56) U (410,12} U {7,811}

Thirdly, we consider the difference set { 0,1, 3,9 } in Z,5 and its shifts which contain 0, we

get
Z53=(13,9) U {2,812} U (457) U (610,11).

We now ask the following question. In how many ways can a group G be partitioned into
maximal sum-free sets?

From Table 1 of the Appendix, we see that, for Q, the quaternion group of order 8, u(Q) =1
and A(Q) =4. Itis also an open problem to have bounds for u(G). We know the following
about pW(G).

LetG=2& andletg € G* Consider the sum-freesetS=1{g,...,2g-1}. Hence

S+S={2g,..,4g-2} or {2g,..0..4g-n-2},
and S is maximal sum-free if

(1) g+2g-1 <n,or3g <n+1and

(2) 3(g+1) >n+1. Thus(Z,) < l:n ;- 1].

We can also think about a generalisation of Lemma 3. 51 to non-abelian groups. This question
has no solution at present. It would be desirable to generalise Lemma 3. 52 even for abelian
groups, in the following fashion.

Let| G1=4n. Does there exist a function ©(k), such thatif n > k, we have

2n-0k),...,2n-1 ¢ AG),but2n-0k)-1 € AG)?

Lemma 3. 51 would imply that ®(k) =0fork=0,1,2and ®(k) =1fork=3,4,5,0%k) 2
2fork = 6.
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We will discuss j1(G) when G is an elementary abelian 2-group. We will denote G by ( 2, ",

we know that the group G is filled.
Theorem 3. 52. If m is the smallest positive integer for which
Izl sm+(3).
then
R((Zy)") 2 mM
We can now obtain lower bounds for u( ( 2, )®) when n =3, 4, 5, 6. These are
4 < p((2y)), 5 < u((2)%),
8 < u((2,)°), 11 < u((2Z,)°).
The following‘c’:)'omputer results allow us to determine 1( ( 2, ) forn < 4.
(4)=A((2Zy)),
(5.8)=A(2y)%,
(9,10,16) < A((2Z2),
(13,17,18,20,32 ) < A((2Z,)).
Before closing this chapter, we will give a theorem and a conjecture concerning the sum-free
sets in non-abelian groups.
Theorem 3. 53. Let G a non-abelian group of order 3p, where p is a bad prime. If Sisa
maximal sum-free set in G, then S is a coset of the subgroup H of order p.
From the section on the main results, we know the following lower bound for a non-trivial
abelian group G.

21 G|
7

< AMG).

For non-abelain groups no such lower bound is known. If the commutator subgroup G'is

smaller than G, then

MG) = MGG Gl 2281

7

But if we have G = G', then there is no known non-trivial lower bound on A(G ). Thereis a

conjecture related to this instance.

Conjecture: For -4, the alternating group of degree n, we have
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(n-1)!

MA,) =

Since any coset of a proper subgroup is sum-free, we have
A(A,) 2D
But in reality, it is not hopeful to restrict the problem to cosets only. Because, for n =5, we have
other sum-free sets besides the cosets. The following two séts can be given as examples As.
S, = {(12345), (15432), (12543), (13452), (13425), (15243),
(13245), (15423), (12453), (13542), (12435), (15342)) },

Sy = { (14)(23), (15)(24), (15)(23), (14)(35), (12)(35), (25)(34),

(14)(25), (13)(45), (12)(34), (24)(35), (123), (245)) }.
2 :
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r Chapter 4

SUM-FREE SEQUENCES

1.INTRODUCTION

In this chapter, we will study sum-free sequences of positive integers. We will , in particular,
be interested in finding bounds on the reciprocal sum of the elements of a sum-free sequence.
We will start with a definition, and fix the notation. Unless otherwise stated, in this section,

when we say “a sequence,” we mean a strictly increasing sequence of positive integers.

Definition 4. 1:) A sequence A withterms a; < a, < ... s called sum-free if
" n-l

a # Z €8y with g = 0,1,
k=1

in other words, none of the terms a; < a, <. is the sum of other terms in 4.

Paul Erd6s [10] proved the following inequality.

Let A4 be a sum-free sequence, then

1
— < 103.
2 a

ake,q
We will define
1
o= 5 A =sup p(A)
ae 4 A

where the supremum is taken over all sum-free sequences 4.

If we take 4= { 2" } forn > 0, we see that 4is sum-free; hence p( A) =2. Therefore we
have 2 £ A < 103. |

Since we have p( ) = 2 for A4 as above, one might think that the reciprocal sum of any other
. sum-free sequence is dominated by p( A4). But we can give the following example to show that

this is not the case.

We now define a sequence U= { Uy } as follows: For1l < k < 14, let u, be given

1,2,4,38, 19,37, 55, 73, 91, 109, 127, 145, 163, 181.
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Let

i k-15
Us = 1+ Z'uk = 1016, then fork > 15 uy = 2% ;s
k=1
One easily sees that U is a sum-free sequence. On the other hand, we have
14
1 2 :
p(U)= — + — = 2.03510128... .

U Ups ,

Hence we have 2.035 < A < 103. E. Levine and J. O'Sullivan [18] showed that A < 4,
Later H. L. Abbott [1] established the lower bound 2.0648 < A. We will present his
construction later. Levine and O'Sullivan conjectured that A is much closer to 2 than to 4.
Abbott's constructién is an evidence for such a conjecture.

Notation. Let Abe a sum-free sequence with terms a; < a, <.... The counting function

A(x) of such a sequence is

AR = D, 1.

<
ak_ X

Erdés [10] proved the following inequality for A(x).
k

A(x)skf_1+zai+k (k>1,x20)

S
1= 1

Levine and O'Sullivan improved this inequality. This improvement is given in the next
theorem without a proof.

Theorem 4, 2. If 4 is sum-free, then

(S Ry

~
~
v
=
»”

v
o
~

k
X 1
A(")Sk+1+k+1,21ai ¥
1 =

Instead of this inequality, we will use a weaker version of it which is given below.

Theorem 4, 3. If 4 is sum-free, then
AK) S T * 3 (4.1)

for k 2 1,x 2 0.
Proof: Although we did not give a proof of Theorem 4. 2, we will use Theorem 4. 2 to
prove Theorem 4. 3.

From Definition 4. 1, we know that the sequence is strictly increasing. Hence, for
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i<ka < ak-(k-i).

Hence, by Theorem 4. 2,

k
X 1 . k
A(x)Sk+1+k+1|:.z(ak-k+1)}+7
1=

<

+
in the last line, we used k < a, .M

2.
Definition 4. 4. We call a sequence a ¥-sequence if it satisfies inequality (4. 1).
Note that every sum-free sequence is a ¥-sequence. We will denote the supremum of p( 4 )
by |, where supré})num is taken over all x-sequences. In this case, it is obvious that A < L.
Our aim is to establish u < 4.

We give an example of a sequence which is a -sequence, but not sum-free; Levine and

O'Sullivan made a conjecture based on this example.

Define the sequence  with terms p;, p,, ... as follows. Letp; =1. Assume now

Py Pys -+ Pp_1 have been defined. We define p as follows. Letp_ be the least integer so that

inequality (4. 1) isnot violatedfork =1, 2, ...,n- 1, viz.
p,=ma x(k+1)(n-p.).
1<k<n

Hence we have
o =1{1,245609,12, 15, 18,21, 24, 28,32, ... }.
For g, we have p( o ) = 3.01. Levine and O'Sullivan believe that p( % ) dominates the
reciprocal sum of any other y-sequence.

Conjecture ( Levine & O'Sullivan [18] ). u=p( # ).

2.AN ESTIMATE FOR w

In this section we will estimate p. We will deal with ¢-sequences. We will start with a

theorem.
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Theorem 4. 5.( Levine & O'Sullivan [18] ) Let 4 be a %-sequence, let N, M, and H be

positive integers so that M = 2H. Then

. N
3R% + 11R + 16 1 Y
"‘ms,go"(””\/ (N +1)2R +2H'1+2(p(ri)'fi<fi+1)

where

2
R=N+H, y= (N+1})(3R R+11R+16).

2
Since we will later give a theorem which is proven in a similar way to this, we omit the proof,
Corollary 4. 6.( Levine & O'Sullivan [18] ) Keeping the notation the same as in the

previous theorem, we get

3R“ + 11IR + 16 1
A) < (r) + 2 + + r. )/
P(A) < 2y p(x) \/ (N 1) T & el
Since A(n) £ n, we have
. 21‘
A(n 1
p(r)= Z E—(-IT(-l-)_l) < 2 m< log2.
n'e I 02 L1
Let N =4, and M = 2 in the above corollary to get :
4 16
1
p(Aa) < Z p(r) + 192 + 1 + 21log2 < 2 T 4.32 < 6.76
r=0 =1
for any %-sequence. Hence
L < 6.76. 4.2)

3.A DETAILED STUDY OF g

218

For the -sequence 0, all the terms less than 2™° were determined by a computér. We have

the following results due to Levine & O'Sullivan [18].

A% = 3360,
3360

-l- = 3.008466...,
p;

i=1
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r

18

Y o(r) = 2.995648...
r=0.

We find a bound on p( ) which is given in the following lemma without a proof.

Lemma 4. 7.( Levine & O'Sullivan [18] ) For the ¥-sequence A4,
log2 a :
p(r) < poeg + £ 4.3)

forr 2 0,k = 1.

Using inequality (4. 3 ) for the ¢-sequence g, we have
‘ M M
M log2 | kz 1 _Mlog2 P

'2'Fi'<k+1+2N 4.4)

i=1 i=1
where we made thg use of the fact that each r, > Nfori=1,2,....M.
Now we use inequality in Corollary 4. 6 to estimate p( o ) with N =18, and M = 20. The

choice of the latter is quite arbitrary. So we have

M M
p( o) < 299565 + 0.00145 + §1§+ Z p(ri) < 3 + Z p( I, ).
i=1 i=1

—

But (4. 3) gives
20

20 log2 | P -
;p(ri)< kK + 1 +2_1§‘

To make the right-hand-side small, we may choose k = 410. This gives p 410 = 8964 so that

20 log2 . 8964
PP) <3+ “p-+ g

p( @) < 3.0679... .

Hence we have

3 < p(p) < 3.0679.

4 MORE ON %-SEQUENCES

If we consider (4.2 ), we see a large discrepancy between it and the conjectured value
H=p(). Inthis section, we will try to narrow this gap. We give some lemmas and theorems

without proofs, and we show by means of them that if a y-sequence has a large reciprocal sum,
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then its first three terms must be the same as those of @. The work in this section is entirely
taken from Levine & O'Sullivan [18].

The first lemma of this section is a special case of Theorem 4. 3. We restrict x to the terms of
the sequence 4.

Lemma 4. 8. Ais a y-sequence if and only if

a.
iST(—Ti—LT-*—ak for k 2 1,i 2 1.

Lemma 4. 9. Leth, w, r, m be integers withr > 0,and0 £ h < w < m +r so that

N | h+1
@ T Sw+1,and

(i) m < .- (T- 1)(ph+ 1).
A
Let Bbe a x-sequence with terms b1 < b2 <... such that bi =p; i=1,2,...,,hand

b, =t =2 p,,. Let Abe a sequence obtained from Bas follows.

w
Replace the terms by, ....b by Ppyps Py anddeleed=t- Py terms brq+m where q =
L2,..,d
Then 4 is a ¢-sequence and
N 1 1 S 1
o) -p(B) = D (5 5) D,
' i=htl © ! ¢l e

Theorem 4. 10. Let Bbe a -sequence. Then there exists a ¥-sequence A with a; =1
such that p(4) 2 p( B).

Theorem 4. 11. Let Bbe a x-sequence. Then there exists a ¥-sequence .4 with a; =1,
a, = 2 such that p(4) = p( B).

Theorem 4. 12. Let Bbe a (-sequence. Then there exists a ¥-sequence 4 with a; =1,
ay =2, ay =4 such that p(4) 2 p( B).

Unfortunately, we do not get any further theorems like Theorems 4. 10 - 4. 12. There is no

general procedure for doing so. Even it is not possible to show for a (-sequence 4 with large

reciprocal sum should have a, = 6.
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By modifying the proofs of Theorems 4. 10 - 4. 12 one would show for a ¢-sequence 4 so
that p( A) > W - € with € sufficiently small must have a; =1, a) =2, and a; = 4. If € is small

enough, it is possible to show that either a, = 6 or 28 < a, < 64.

Theorem '4. 13. Let Bbe a¢-sequence. Then there exists a (-sequence A with
a,=1,a,=2,2,=4,and either a, =60r28 < a, < 64 such that p( ) = p(B).
9.A BETTER BSTIMATE FOR u

In this section, we wﬂl improve the bound (4. 2). | Keeping Theorem 4. 12 in mind, we take
a y-sequence A with a;=1,a,=2, ay = 4, and either a, =6ora, 2 28. Sowe have A(1) =1,
AQ2)=2,A3) =2, and A(4) = 3. The work in this section is entirely taken from Levine &
O'Sullivan [18].

Then
2 4
_ Am 23
g‘ p() = Z{ nm+ 1) - 20

From Theorem 4. 5, by taking N = 6, and M = 6, we get
6

6
| 1 1 2: Y
p(Aa) S; p(r) + g-\/ - tzt (P(ri) ) ri(ri+1))

Py

i=1-

wherey=-1-1-6-\]1253 =2212andr; 2 7fori=1,2,..,6.

Since
6 2 6 . 6
2oty = X a4 2 p(n) = e D plr)
r=0 =0 =3 =3
64
23 A(n)
=20 * 2n(n+1)’
n=5
we have
64 6
An) Y
p(A) < 2.0231 + IZS‘ TCES 2 (p( r,) - m}
= i=1

Now we have two cases to consider.
Case 1: Assumea, 2 28. For5 < n < 27,A(n) =3. Ifn > 27, then
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A(n) £ A(h -1)+1,sothat A(n) < n-24. From (4.1 ), we have fork=3, A(n) < ?2' + 4.

Hence
A() < min(n-24,[§- + 4]) =s,, forn > 27.
Therefore .
64 27 64
A(n) 3 2 Sh
Z Tm+ D) S 2 T+ D T LynmrD <75
n=5 n=5 . D=5

From Lemma 4.7, withk =3
Y log2 4 Y
P - ey y< 4+ (5? I CE 1)'}

Since ¥y = 2.2‘12, we get, forr 2 7,

4 Y
2—r CEE D < 0.
So
p(r)-r(rz_.l)<lo4gz, forr 2 7. (4.5)
Hence

p(A) < 20322 + 75 +&5-2- 3.84.

Case 2: Assume now a4 = 6. Again, from (4.1), we get fork=2,3,4
A(n) £ 7+ 2,A(n) < +4 and A(n) < T+ 6, respectively. So we have

i _A@ i [§+2] i [4E+4] i [%+6]

—_— — —— < 1.0926.
- n(n +1) = - n(n + 1) ry] n(n + 1) =20 n(n + 1)
Asin Case 1, we have
Y log2

p(r)-r(r+1)< = forr > 8.

We also have (4. 13 ) as well. Since r, 2 7,andr; 2 8fori 2 2, we get
6

2 Y log2  Slog2 _ 5log2
(p( ri ) - ri(ri + 1)) < 3 + 3 4 875.
i=1

Hence, we have

p(A) < 2.0322 + 1.0926 + .875 = 3.9998.
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!

Therefore we conclude the section with
U< 4.
| 6.A “CONJECTURE"” QF ERDJS
Erdo6s [12] conjectured that if a; <a, < .. is a sum-free sequence .4 with a; 2 n, then

pP(A) < log2 + g ,where € — Oasn — oo,

E. Levine [19] established Erds’ conjecture positively. He showed if 4 is any sequence
which satisfies (4.1 ), then p(A4) < log2 + O(a'm), where a = a;.

By taking the firstn + 1 terms as n, n + 1, ..., 2n, and the remaining terms as s, 2s, 4s, ...
n

wheres =1+ 2 §n +1), we see that the constant log2 is best possible.
=0

Theorem 4. 14.(Levine [19]) Let A4 be a sequence of integers with a; < a, < ... whose

counting function A(x) satisfies (4. 1). Then

p(A) < log2 + O(a'1/3), where a = aj.

Proof: We partition the positive integers into intervals
Jr)={nl2X<n<2%'}y, r=-1,0,1,2, ... .

We introduce N(r) as A2™1) - A(2T) and p(r)as 2 aL’ let tbe such thata e J(t).
a, € I(1) -k

Hence we have

and

We define the sets A and I” as follows. |
A={r =t N@ < 2@3)#2y
and

>t | N@) > 2@BP)+2y

p—]
I
-
\g
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Hence
<« 1
Z a = 2P+ X p(r).
k=1 re A re I’
'We now estimate the first term on the right-hand-side of the above.
Yoy s ¥ HD 42 27 = o)
re A re A ‘

Let '={s=r, I3, ... }. Hence we have

s 2 max(t4),
ri-eri-j (i21j),

I'i ?. i+S-1.

A .
Now consider T, and letq = [22rJ/ 3]. Since I € ', we have

q < N(r) < AQUTD,

Sowe have a < 21i*1, Hence for any ., we get

N(r. T+l
p(r) < (r.‘ <BZT) 2 L0
2Ti T q+ 1 of

and
pE) < 21- (2rj/3) +21+rj-ri.
1

We now consider the following partition for I,

Fi={re Flr<§—s},

I‘2={ri e Il > %g,andi < t},
L=\ (I T,

So we get

(4. 6)

We want to estimate the first term right-hand-side of the above ford =3, 2, and 1, in turn.

Ifr, e I‘3, by letting j = B—jl, we get




From (4. 6),
p@) < 2783 4212 o 92-G3),
1

If we sum the above over r; and keeping in mind that r; € I';impliest < i, we get

Z pry) < Z 22-013) = o2y,

reF i>t

Therefore

Z pr) < 0@1A).
T, e I"3 v

From (4. 6 ) by letting j = 1, one gets
pr) < ol-(@28/3) , plesTy
1

reI‘ i<t 4s
r.>—
1 3

So we have

=0(t12°28 4 213
=0@?? log(a + 1) + 2’13y,

since 223 = 0(a?3). Hence

Z p(r) = 0@l
rie I"2

Finally, we estimate the last case where d = 1. We let
p= A(zS) + [2(2SI3)+2]’
b= a5
m = largest integer in I

so thatp < A(25*1). Hence

2 o0 > L. > a1_+ > L

rely 2s<ap52m+1ak 2s<ap3b k b<ap52m+1 %
Then
A(b) - A28 1
Z pay < ARBE) Z . (4.7.)
rer, 2 b<ap$2m+1 k :

Since A(b) =AQS) + [2293+2] we get
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Ab) - A2 _ [29] 0@ = 0@B),

28 28

Our aim is to show that the second term on the right-hand-side of ( 4. 7 ) is bounded by log2.

‘Since m is the largest integer in I',;, we have m < %—s-, alsop 2 [2(23/ 3)+2], ands 2 4, so

we get
1

i)—+T-p<0.

Then, by (4. 1), we get
1 2m+1
AQ™H - A®b) < b FT +a,-p< ap=b,
from which we conclude that, in the last term of (4. 7 ), we are adding at most b distinct integers

so that each a, is larger than a On the other hand, that sum cannot exceed
1

b<n<2p?

Whence
1 1
= S Z T < log2.

b<a<? Kk b<n<®d
P

Therefore, we get

Z p(r) < log2 + 0(a'1/3).
T e 1"1

By putting necessary parts together, we arrive at

Z 51— < log2 + O(a'1/3).l
k=1 k

7.AN IMPROVED LOWER BQUND FOR A

In this section,we present a construction due to H. L. Abbott [1]. He improved the lower
bound given by Levine and O'Sullivan, which is A > 2.0351, to A > 2.0648. His construction

is given in the following theorem without a proof.

Theorem 4. 15. Let 4 be a (finite) sum-free set. Let ¢ = Z a, and 7 be an integer
ae 4

exceeding 0. Define integers k, m, n, r, and p as below.

_(T-0+ 2 _(T-0+1
<ty (U
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n=[£<_-_1_+_g_} rek-nt-1, p=(k;1 r;l)”,
Fc .

We choose and}’lin such a way thatr > 0. Define the sets B and Cas below.
| B={put+1tu=12,..,k},
C={(p+v)t+11lv=12,....,m+1}.
Then S=4 U B U C is a sum-free set. M

Abbott computed Z 1; for various sets A4 and various choices of 7. He noticed that if 4
seS

={1,2,4,8 } and t = 24., then

z L S 20648,
) S

se S
In this case, we obtain the following values
c =15, T = 24, k =55, m = 45,
n=2, r=06, p = 1521.
B={24u+11p=1,2,...,55},
C={24(1521+v)+11lv=12,..46}.

2 L > 2068w
se S

In this chapter, our main concern was to study a special class of sequences, namely sum-free

Then

sequences of positive integers. We also studied a related class of sequences, namely
x-sequences. We looked at the reciprocal sum of the elements of such sequences. In this way

we can control the lememnts of a ¢-sequence.
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Chapter 5

UNSQLVED PROBLEMS

In this last chapter, we present some unsolved problems related to sum-free sets.

(1) Finding the values of the Schur function f(n) is presently an unsolved problem. The last
“value” was four}g about ten years ago. It may be possible to find the exact value of f(5) with the
aidof a high-speéd computer.

(2) We know from Chapter 2, Corollary 2. 8, that the limit lrllrE> mf(n)l/n =L exists where
f(n) is the Schur function. It is not known if L is finite or infinite. P. Erdés is offering $100 for
the answer.

(3) Another problem about sum-free set is the following. Denote by h(n) the largest m for
which there exists some way of partitioning the set { 1,2, ..., m }into n sets which are sum-free
modulo m + 1; that is, they contain no solution of x +y = z ( mod (m + 1) ). The partitions
which give the values f(1) =1, f(2) =4, {(3) =13, f(4) = 44 are sum-free moduli 2, 5, 14, and 45,

respectively. The conjecture is that h(n) = f(n) for all n.

(4) It is shown that the limit lrilrg h(n) Un =1 * exists. It would be interesting to show that

L=L*

(5) In Theorem 3. 32, we gave the bounds

(m- DI G| | Gl-1
g < A(G) S
. . (m-DIGI .. .. .
Diananda and Yap [7] conjectured that A(G) = —3n if G is an abelian group of order
divisible by bad primes and of exponent m.
(6) The lower bound 217G | < M(G) is known for finite abelian groups. For any finite
AMG)

group, the conjecture is thatI-—G-l-can be arbitrarily small.
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(7) For what values of ndoes A(D, ) =A(2,@® &), where D, is the dihedral group of

ordér 2n? We know that this is true forn=2, 3, 6, 7.
(8) Itisdesirable to find bounds on p(G), the cardinality of the smallest sum-free set.

(9) From Theorem 3. 46, we know that every group can be by locally maximal sum-free sets.
Which groups can be partitioned into maximal sum-free sets‘?

(10) A result similar to that of Theorem 4. 10 must be true for sum-free sequences. But no
proof is known yet. |

(11) Determine the exact value of A and those sum-free sequences 4 for which p(A) = A.

(12) Prove that if a sum-free sequence A1is such that p(A4) is very close to A, then a; =1

(13) Intead of ‘1ntegers, consider the class of real-valued sequences A4 with the counting
function A(x) and terms 0 < a; S a, <... satisfying
AX) € T + (k2 1,x20)
What is the best bound for p(A) over this class of sequences?
The following problem, which I call the “reciprocal version of Schur's problem,” is of special

interest. The following is not known about it.

Assume that we partition the positive integers into finitely many classes, that is
.1 .1 1 oo
N =C; U G u...u C,. Then tthe equation <zt 7=z has a solution in C;.
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Appendix

In the following table, we give non-isomorphic maximal sum-free sets in groups of orders 2,
3,..., 11,13, 14, and 16. We will write the non—abeﬁan groups multiplicatively. We will
extend Table 1 to Table 2 in which we can have orders 12, 15, 16 ( all abelian cases ), 32 and 64
(for elementary abelian cases ). A group of isomorphism acting on a family of sets partitions the
family of sets int'(;)isomorphism classes, i. e. , into equivalence classes. A transversal is a set
containing exactly one member of each equivalence class.

We will denote the direct product of m copies of Z by ( Z )™ for simplicity; the dihedral
group by Dg¢; the non-abelian group of order 12 by I, where

I'=<'s,t| s4=t3=1,ts=st2>.

For the elementary abelian groups of orders 16, 32, and 64, we will use B, to denote the
generating set { 00...01, 00...010, ..., 10...00 } of the group ( Zz)n. The direct product
notation indicates cosets. |

These are taken from Street and Whitehaed[30] and Whitehaed[37].
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TABLE 1

T S S e,
[Gl G AG) Transversals
2 2, (1) (1}
3 2, (1) (1}
4 2, (1,2} (2),{1,3)
2,82, {2) {01, 11)
5 2 {2} (1,4)
6 2 (2,3) (2,3),(2,5),{1,3,5)
83 (2,3) { (123), (12) }, { (12), (13), (23) }
24 (2) | {2,3}),(3,4)
8 124 (2,3,4) {1,6},{26),{(3,4,5),({1,3,57)
2,92, {2,4} {(20,01},({01,11,21,31}, {10, 11, 30, 31 }
(Z,) (4) { 001, 011, 101, 111 }
D, {3,4) { s2, t,st'}, { t,st, szt, st }, s, s3, t, 5%t }
Q (1,4} { % L {t,st, szt, 3t )
9 2 (3) (3,4,5),{1,4,7)
(23) (3) (01, 11,21 )
10 2 (3,4,5) (3,4,5),{4,5,6},(1,4,6,9},
(1,3,5,7,9)
D (4,5) (s 8%, 8%, s%t ), ( t, st, s2t, st , st )
11 2, (3,4) (3,4,5),(4,5,6,7)
13 215 (3,4) (3,4,5),{1,3,9),(4,6,7,9},
(4,56,7),.(5,6,7,8)
14 214 (4,5,7) (2,5913),(4,56,7),
(5,6,7,8,9),{1,3,5,7,9, 11, 13}
D, {4,517} {s, st, s3t, St }, { szy, s3,t, st },
{ s3, s4, t, st, s%t )}, {t, st, szt, 3t , s4t, st , s6t }

- |
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TABLE 2

e e

1Gl G AG) Transversals
12 2., (3,4,6) (2,6,10),{3,4,5),(5,6,7,8),
| (1,4,7,101, (1,3,5,7,9, 11
2,2, (4,6} (01,04,11,14},{10,11,12,13,14,15)
r (2,3,4,6) (3,1}, (% st s22 ),
{s, St st ), (s, 24, 5208 ),
{s, s3, st, s3t st2 s3t2}
D, (4,6) {ss stst}{,s,st,sst},
{s, ,52t st} {s .3,st szt,s3t }
{s,s ,ss, st, s3t sst}
{t,st, st s3tsts5t}
Ay {3,4) { (123), (12)(34), (13)(24) },
{ (12)(34), (243), (143) },
{ (123), (243), (142), (134) }
15 Z,s (3,456} (1,3,11),(1,3,57)},(1,3,7,12},
| \ (1,3,512,14 ), { 1, 4,7, 10, 13 },
{1,4,6,9,11, 14}
16 Zy (4568) {1,3,10,12),(1,4,6,9),(1,4,6,15)
{1,4,9,14},(1,6,9,14 },
(1.6,10,14 }, { 2, 6, 10, 14 },
{1,3,8,10,15},{1,6,8, 13,15 },
(1,6,8,10,15),{1,4,7,9, 12, 15 }
(1.3,5,7,9,11, 13,15 )
2,923 (4,68} (01,06 11,16}, {01, 06, 11, 14 }
(01, 11, 14, 16 }, {01, 06, 10, 14 )
(02, 06, 10, 14 }, { 01, 06, 12, 16 }
(02,06, 12,16 }, { 01, 07, 11, 17, 14, 04 )
( 01, 03, 05, 07, 11, 13, 15, 17 }
{ 01, 03, 05, 07, 10, 12, 14, 16 }
(2, (3,458} (01,10,33}, {01,03,22,20 )
{ 01, 03, 10, 30, 22 },
{ 01, 03, 10, 30, 12, 32, 21, 23 }
(Z2,)%@2, {456) (112, 102,012,002 )
{ 001, 003, 112, 102, 012 }
{ 001,003, 011, 013, 101, 103, 111, 113 )
{ 001,003, 011, 013, 112 110, 102, 100 }
(2, (58) B, U (1111}, (2Z,)° ® 1000
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TABLE 3

G G A(G) Transversals

32 (2,)° {9,10,16 } Bg U { 01111, 10011, 10101, 10110 }
2,®{B, U {1111} )
(2,)* ® 10000

64 (2,5)° { 13,17, 18,20, 32 }

B¢ U { 001101, 010111, 011011, 011110,
- 100111, 110010, 110101 }

B¢ v { 001011, 001101, 001110, 010101,
010110, 011001, 011010, 011100, 011111, 100111 }

Z,® {Bs U {01111, 10011, 10101, 10110 } }
(2, ® (B, U {1111} )
(2,)° ® 100000

Whitehead [1975] gave a list of locally maximal sum-free sets in non-abelian groups of order

16. We have nine such groups. We will introduce the groups as below. We will represent the

groups by G; where 1

<1509

Gy=<r15| r2=s2,(rs)2=e >,

G2=<

G7=<

G8=<

s,tl s =t =e, t st
1,8, t | r2=s
r,s | r4=s

1,8, t | r2=s

2_2

r,s,tl r2=s =t", ISt = Str = 18 >,

4 _ 4 1 2=S-1>,

2:[2=(st)4=.(tr)2=(r8)2=e >,

4=(rs)2=(r'1s)2=e >,

2=t = () =(rs)? >,

s, t | 58=t2=(st)2=e >,

2.4,

r,s | r"s =(rs)2=e >,

Gg=<s,t | s4=t2=(st)2 >,

In the next table we will give the non-abelian groups of order 16 and their transversals.
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TABLE 4

Transversals

{3,4,5,8}

(2,4,5,6,8) (52, (5,852 622 ), (s, 85,1, 0, 22 ),

- {4,5,6,8}

s , s rs }, { s, s4, s7rs }, { s, s6, IS, s4rs )

S, szrs, $Ors | s2, s6, IS, strs 1
6, s2rs s6rs }, {s, s4, s7, STS, $3rs }

5, s7, IS, szrs s4rs s6rs )
5

s/ , SIS, s3rs ssrs, s'rs }

s
s,s
s, 3
3
T, s, t, (rs) }, {1, s, t, sr, rst, rtr, rts, srs },

L, S, It, tr,, St, tS, ST, SIS },
{rrs srrttrrstrts srs }

{s,
{
{
{
{s,
{
{

$
{s2,t t3 st st3, §2t2 3 (s s3, 3 st2 $°t, s2t3, s3t2}

{s,
, St, st3 s2t 52t3, s°t, s'q’t3 }
T, t, st, ts, rsts }, { s, t, It, (st) , Ttst },

S, t,sts,rtst }, {1, s, ¢, (st)2, Tsts, rtst },
t

, t, TS, St, ts, Sts, r(st)2 st },
, T1, St, ts, Tst, Tts, sts, ISts },
t, s It, sts, tst, rsts, rtst}

S,
r,s,rsrs}{rr,s,s
rr,s,rsrs }{rr3,s2rsr2s2 3 s },

{r, r3 IS, rs3 2 2} {r, r3 s, s3 rs2, rzs, 1'2s3,r3s2 L

r r IS, rs2 s3 r3s r3s2 3s3}

{
{ t}, {r, 3 , L, rzt ISt, (rs) t},
{

{t
{
{
{
{
{ ;
( 322,
{

rr,s s3 rt,r3t,st,st}

s,t,s3t}
4
3

{s s6,t,s4t}{4tsts2ts3t}
7ts2ts5t]{52 6tsts4tst}
5.7 ¢ 2 &
3

{s,s,s

{s,s7,s tststs6t}

tstststs4t s5t s6t s7t}

{
1,18t bo{s, s6, 155, 15’ L(s, st s, 18, 15° 1
6

{s,s,r18, rs4, rs7 L {s, s3, ss, s7, T, rsz, rs4, rs6 }
1,

?

S, s3, ss, s7, IS, rs3, rss, rs’

T, TS, rsz, rs3, rs4, rss, rs6, rs7 }

7} {s, s ) L, £ b 2 s6,t,t3,st,s5t 1
3, s5, s7 t, t3, s2t, s6t }
3 2.3

t, t7, st, s°t, 8L, s4t, sst, s6t, s7t }

For the groups ( Z, )° and ( Z, ), it is not known if we have the complete solutions.
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