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ABSTRACT 

In this thesis, we survey some results on sum-fiee sets of integers, sum-free sets in finite 

groups, and sum-free sequences, especially the reciprocal sum of the elements of a sum-free 

sequence. By studying locally maximal sum-free sets, we derive(known) bounds on Ramsey 

numbers R,( 3,2 ). Also some generalizations of Schur's theorem are discussed. We use 
.A 

group-theoretic and number-theoretic results in the thesis. As a final chapter, we present some 

open problems. 
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IINTIRODUJCTIION 
r 

/ 

The purpose of this thesis is to survey the results on sum-free sets of integers, sum-free sets 

in finite groups, and sum-free sequences. Sum-free sets were introduced first by I. Schur 

while he was giving a simple proof of Fermat's Last Theorem over a finite field. A sum-free 

set is a set in which no element can be expressed as the sum of two elements of the set. Schur 

showed then it is impossible to partition the positive integers into finitely many classes so that 

each class is sum-fqee. This is known as Schur's theorem. It is the first example, other than 

Dirichlet's pigeon-hole principle, of what is called as Ramsey type theorems. 

In Chapter 1, we give the necessary definitions and notations. We state, without proofs, 

two versions of Ramsey's theorem. We illustrate, by an example, how one can use sum-free 

sets to obtain bounds on the Ramsey number R(3,3, . . ., 3,2) which will be denoted by 

%( 3,2  ) for short. The Ramsey number R,( 3 , 2  ) is the smallest positive integer such that 

any coloring of the edges of the complete graph with R,( 3 ,2  ) vertices with n colors forces 

the existence of a monochromatic K3. 

Chapter 2 is the chapter in which we deal with sum-free sets of integers. We start with some 

historical background, and give some motivation as to why we study sum-free sets. We state 

the problem of Schur which can be phrased as "What is the largest integer f( n ) for which 

there exists some way of partitioning the set ( 1,2, . . . , f( n ) ) into n sets, each of which is 

sum-free?" The function f(n) is known as the Schur's function. We give the known upper and 

lower bounds on the Schur's function f(n). We give some generalizations of Schur's theorem, 

and define the corresponding functions for these generalizations. Using these functions, we 

get better bounds on the Ramsey numbers %( 3 , 2  ). 

In Chapter 3, we state and give detailed proofs of some fundamental addition theorems of 

groups of finite order such as the Cauchy-Davenport theorem, Vosper's theorem, and Kneser's 

theorem. These theorems are of vital importance in the study of sum-free sets in groups of 

1 



finite order.We also give some more theorems about sum-free sets in finite abelian groups of 

special orders, such as groups of prime power orders, or groups of order divisible by a certain 

prime. In certain cases, depending upon 1 G I, the order of the group G, the stuructures and 

sizes of sum-free sets are fully determined. At the end of the chapter, we mention about sum- 

free sets in non-abelian groups. By h(G), we denote the cardinality of a largest maximal sum- 

free set in G. We give upper and lower bounds on h(G). 

The fourth chapter deals with sum-free sequences, especially with the reciprocal sum of the 

elements of a sum-free sequence. We define a special class called X- sequences whose 

counting function s;gtisfies a certain inequality. We give upper and lower bounds on the 

reciprocal sum of the elements of a sum-free sequence. A conjecture of Erdos and its positive 

solution are presented in details. 

In the last chapter, we give a list of what are, to the best of my knowledge,unsolved 

problems and conjectures. 

After the last chapter, we have an appendix in which we present four tables. In these tables, 

we list the groups of "small order" and a representative of a maximal sum-free set from each 

isomorphism class 

We try to keep the notation standard. The only non standard one, I think, is the ues of 

( x ,  x . )<, to mean the set ( xl, x2, ..., 
X m l  xml 

} in which xl < x2 < ... < xml 

We used the 0 and o notations as well. Other notations are self-explanatory. 



Chapter 1 

Definition 1.1. Let G be an additive semigroup and let S and T be subsets of G. We 

define 

S + T = { s + t  I s E S , t  E T )  

to be the sum of S p d  T. In particular, 

S + S = { s 1 + s 2  I Sl,S2 E S ) .  

Note that s + s E S + S for all s E S. 

A subset S of an additive semigroup G will be called a sum-free set if and only if 

S n ( S + S ) = IZ), the empty set, or equivalently if and only if the equation xl + x2 - x3 = 0 

has no solution with XI, x2, x3 E S. 

Sum-free sets have been studied in several contexts but mainly because of their connection 

with the Ramsey numbers, R( kl, k2, . . ., &, r ) which will be defined later. 

Definition 1.2. We call a set S an s-set if S contains s elements. Naturally, if T is a subset 

of S and T contains r elements, T is said to be an r-subset of S. We will denote the cardinality of 

the set S by I S I, and we will denote that T is a subset of the set S by T E S. 

Definition.l.3. Let S be an s-set and let n r ( s )  denote the collection of all r-subsets of S. 

I ~ , ( S ) = { T I T S S  a n d l ~ l  = r ) .  

Further, let 

n , ( s )  =sl  s2 , ... s, 
be a partition of K ( s )  into n mutually disjoint subsets. 

Suppose that for some k 2 r, there exists a k-subset K of S such that all the r-subsets of K 

belong to the same Si for some i. Then we call K a (k,Si)-subset of S with respect to the given 

partition. 



Now we can state two versions of Ramsey's theorem without proofs. The proofs can be 

found in Graham et. a1 [12]. 

Theorem (Ramsey [19]). Let n, kl, k2, . . ., k,, r be positive integers with ki 2 r, 1 I i I 

n. Then there exists a least integer R( kl, . . ., h ,  r ) such that the following statement is true for 

anys 2 R(kl ,  ..., h , r ) .  

For any s-set S and for any partition of m( S ) into n subsets 

S1, . . ., S, there exists a subset Ki which is a ( ki,Si )-subset of S 

for some i, 1 I i I n. 

We will denote the complete graph on k vertices by Kk and we will denote the set of vertices 

of a graph H by ~ ( k ) .  
For r = 2, we can restate Ramsey's theorem in the language of graph theory. 

Theorem (Ramsey). Given positive integers n, kl, . . . , kn with each ki 2 2, there exists a 

least positive integer R( kl, . . . , h ,  2 ) such that the following statement is true for every 

s 2 R(kl  ,..., k n , 2 ) .  

For any edge-coloring of K, with n colors there exists an i, 

1 I i I n, and a subset L of V( K, ) of size ki such that 

the complete graph on L is (edge) monochromatic of color i. 

If kl = k2 = . . . = k, = k 2 2, then we write Rn( k, 2 ) for R( kl, . . ., h, 2 ). Thus 

R,( k, 2 ) is the smallest positive integer such that any coloring of the edges of the complete graph 

on R,( k, 2 ) vertices with n colors forces the existence of a monochromatic Kk. 

Definition 1.4. If S is a sum-free set in a group G and I T I 2 1 S 1 for every subset T of 

G which is sum-free, then we say S is a maximum sum-free set in G and we write I S I = h(G). 

Thus h(G) denotes the cardinality of a maximum sum-free set in G. A maximal sum-free set is 

one to which no new elements can be added so that the new set is still sum-free. 

Definition 1.5. The Schur function f(n) is defined as follows. For each n, f(n) is the 

largest integer such that it is possible to partition the integers { 1,2, . . . , f(n) ) into n sets, none 

of which contains a solution to the equation xl + x2 - x3 = 0 ; i.e., into n sum-free sets, 



We can generalize the idea of the Schur function. This generalization is due to P.Turh. 

Definition 1.6. If m, n are positive integers, f(m, n) is defined to be the largest integer 

such that the set { m, m + 1, . . . , m + f(m, n) ) can be partitioned into n sum-free sets. 

We can also consider the function g(n), the largest positive integer such that it is possible to 

partition the integers { 1,2, . . . , g(n) ) into n sets, none of which contains a solution to the 
m 

equation aixi = 0 where the ai are given integers, or we could define a Schur function on 
i= 1 

a given system of simultaneous linear equations. 

Definition 1.7. ( Rado ). The equation aixi = 0 is n-fold regular if there exists a 
1 

$ 
least positive integer h(n) such that whenever { 1,2, . . ., h(n)+l ) is partitioned into n classes in 

any manner, at least one of the classes contains a solution to the given equation. The equation is 

said to be regular if it is n-fold regular for every n. 

We will obtain some bounds on the Schur function f(n). The lower bound on f(n) has been 

improved by considering various generalization of the problem. If we have a system (S) of 

simultaneous linear equations, we proceed by partitioning sets of integers into (S)-free sets, that 

is, into sets which contain no solution to the system (S). 

In the following example, we illustrate the use of sum-free sets in order to find a bound on the 

Ramsey number R2 ( 3 ,2  ). 

Let G=iZ5, the integers modulo 5. Suppose that we partition Z; , the non-zero elements of 

G, into two disjoint sum-free sets, S1= { 1 , 4  ) and S2 = { 2 , 3  ), and assign to the set Sk the 

color Ck for k = 1,2. Let Kg be the complete graph on vo, vl, . . ., vq, and color the edge from vi 

to vj in color Ck if i - j E Sk. Since Sk = -Sk, this induces a well-defined edge-coloring of the 

graph. 

. Let v,, v,, v, be any three vertices of K5 and consider the triangle on these vertices. 

Suppose that two of its edges ( vr,vm ] and { vm,v, )are colored Ck. This means that 

r - m, m - n E Sk. But since Sk is sum-free, we have then r - n = (r - m) + (m - n) e Sk SO the 

edge ( v,,v, )is colored in the other color and no monochromatic triangle can occur. This shows 



that R2 ( 3,2 ) > 5. It is easy to show that R2( 3 ,2  ) = 6,  Suppose we color the edges of K6 

with two colors, say purple and pink. Denote the vertex set by V( K6 ) = { V1,V2,V3,V4,V5,V6 ). 

If we consider a vertex, say vl, at least three edges incident with it are of the same color, say 

purple. Suppose these edges are { vl,v2 ), { vl,v3 ), and { vl,v4 ). If we have one edge 

among the vertices v2, v3, and v4 with the same color, then we have a purple triangle. If there is 

no such an edge, then they all have to be colored pink, and hence we have a pink triangle. If we 

color the edges of Kg with two colors, there will be a monochromatic triangle. 

All the applications of sum-free sets to estimating Ramsey numbers are similar to this example, 

in that they all depend on partitioning a group or a set of positive integers into a pairwise disjoint 
4 

union of sum-free sets. 



Chapter 2 

1 .INTRODUCTION 

Motivation: Pierre de Fermat conjectured, circa 1637, that " it is impossible to separate a 

cube into two cubes, or a biquadrate into two biquadrates, or in any power higher than the second 

into powers of likqdegree." 

That is, he conjectured that the equation 

xn + yn = zn 

where n is a positive integer greater than 2, has no solution in integers all different from zero. 

Dickson [7] considered the following conjecture which is stronger than Fermat's conjecture. 

If p,q are odd primes, then the congruence 

xP + yP + zP = 0 (modq)  

does not have a non-trivial integer solution. The congruence is ~ermat's equation over the field 

Fq with q elements. 

Note that if, given p, there exist infinitely many primes q such that the above congruence does 

not have a solution, then Fermat's theorem would hold for n = p. For a good account of 

Fermat's Last Thereom, the reader is advised to take a look at the books by Edwards [8] and 

Ribenboim [22] .  

In 1909, Leonard Eugene Dickson disproved his conjecture by proving that the given 

congruence has a solution modulo q provided that 

(p - - 2)2 + 6p -2 5 q. 

I. Schur [23] has simplified Dickson's proof in 1916 and in his proof he used the idea of sum- 

free sets. 



We need a lemma to start with. 

Lemma 2.1. For any integer n 2 2, 
n 

Proof: The proof follows from Taylor's the0rem.H 

Let us restate the problem of Schur. What is the largest integer f(n) for which there exists a 

partitioning of the set { 1,2, . . . , f(n) ) into n sets, each of which is sum-free? 

Only the first f o h  values of f(n) are known and for f(5) we have f(5) 2 157. The known 

values are f(1) = 1, f(2) = 4, f(3) = 13, f(4) = 44. To see f(2) 2 4 observe that { 1,4 ), { 2,3  ) 

is a sum-free partition and f( 3 ) 2 13 follows from the sets { 1,4, 10, 13 ), (2, 3, 11, 12 ) 

and {5,6,8,9 ), where 7 can be placed in any one of these three sets. 

L. Baumert [4] has found f(4) = 44 and the first two sum-free partitions in 1965 using a 

back-track programming technique. His first partition is given below. 

A = ( 1, 3, 5, 15, 17, 19, 26, 28, 40, 42, 44 1, 

B = { 2,7, 8, 18,21, 24, 27, 33, 37, 38,43 ), 

C = { 4, 6, 13, 20, 22, 23, 25, 30, 32, 39, 41 ), 

D =  {9,10,11,12,14, 16,29,31,34,35,36).  

Baumert's method showed that there is no possibility of placing the first 45 positive integers 

into four sets with the required condition. Also, A. S. Fraenkel (unpublished) independently 

verified that f(4) = 44. He has a list of 273 partitions for this case and he believes that it is an 

exhaustive collection. 

We will discuss the construction of such sets later on. In 1978 Harold Fredricksen [I 11 

verified that f(5) 2 157 by using a back-track search technique. We give a partition below. 

A =  { l , 4 ,  10, 16,21,23,28,34,40,43,45,48, 54,60,98, 104, 110, 

113, 115, 118, 124,130, 135, 137, 142,148, 154,157 ), 



102, 103, 105, 119, 122, 123, 125, 126, 129, 143, 145, 146, 147, 153 ), 

D = { 6, 7, 17, 18, 22, 26, 27, 38,41,46, 50, 51,75, 83, 107, 108, 

112, 117, 120, 131, 132, 136, 140, 141, 151, 152 ), 

E =  { 44, 49, 58, 61, 62, 63, 64, 66, 67, 68, 69,71,72,73,74,76,78, 

80, 82, 84, 85, 86, 87, 89, 90,91, 92, 94, 95, 96, 97, 100, 109, 114 ). 

Before investigating the problem of partitioning the integers into n sum-free sets we attemp to 
3 get some idea of the magnitude of the problem. We now state the first theorem. 

3"- 1 
Theorem 2.2. (Schur [23] ) . -F S f(n) 5 L n! e ] - 1. 

Proof: (a) We will show first f(n) 5 L n! e 1 - 1. Suppose that the set 

{ 1, 2, . . . , N } can be partitioned into n sum-free sets Sly S2, . . . , Sn . Without loss of 

generality, we will assume that 

m1 = IS1 I2 I Si I 

and note that 

N I m,n. 

Let S1= { xl, x2, ... , ), . Look at the ml - 1 differences 
X m l  

They belong to the set { 1, 2, . . . , N ) and since S1 is sum-free, they must be distributed among 

the ( n - 1 ) sets S2, . . . ,Sn . ( If xj - xl E S 1 for some j, 2 5 j < ml, then we would have, since 

Sl is sum-free, 

( x j - x l ) + x l = x j  e Sl 

. which is not true since xj E S1.) Let S2 be the set containing the largest number, call it m2, of 

these ml - 1 differences xj - xl where j E { il, i2, . . . , im2 } <. 

As before, 

m l - 1  S m 2 ( n - 1 )  



The differences x. - xil, 2 5 j I m2 must be distributed among the ( n - 2 ) sets S3, . . . ,Sn 
'j 

and let Sg be the set containing the largest number, call it q, of these m2 - 1 differences. We 

have then 

m2- 1 I m3(n -2 ) .  

Continuing in this fashion we get, for each integer u, m, such that 

m u - 1  I % + l ( n - u ) .  

and dividing both sides by ( n - u )! and rearranging yields 

mu - < %+l + 1 
(n - u) !  (n - u - l ) !  (n - u) !  

We will eventuqly arrive at a case where u = k and mk = 1 for some k 5 n, so using 

( 2.3  ) and ( 2.6 ) we get: 

ml c m2 1 
( n -  I)! - ( n - 2 ) !  + ( n -  I)! 

rnk- 1 mk 1 
(n - k + l ) !  '(n - k)! + ( n  - k + I)!' 

where mk = 1. Therefore, and summing over all u yields 

by Lemma 2.1. 

(b) Given a partition of the set ( 1,2, . . ., f(n) } into n sum-free sets S1, S2, . . . ,Sn we can 

get a partition of ( 1, 2, . . ., 3f(n) + 1 } into n + 1 sets as follows. ( This construction is due to 

Form the following sets 



It is easy to see that if any of the first n of the n + 1 sets are not sum-free, then the 

corresponding set of the original n sets would not be sum-free. The set s:+~ is sum-free as all its 

elements are conghent to 1 modulo 3. Therefore we have 

Since f(1) = 1, 
3"- 1 f(n) 2 l + 3 + 3 2 + 3 3 +  ... +3"-l=- 2 

We can improve this lower bound a little bit by using Fredricksen's result [ l l ]  which is that 

f(5) 2 157. Thus 

and hence 

f(n) 2 3n-5 ( 157 ) + 3"-6 + . .. + 1 for n 2 5 

Therefore 

Remark: Whitehead improved the upper bound slightly to f(n) I L n! ( e - 1/24) J - 1. 



, 

%AN IMPROVED Lc(pWIE%W BOUND 

We can improve the bound given in ( 2.7 ) above, but we need a definiton first. 

Definition 2.3. Let g(r) be the smallest number of sum-free sets into which the set of 

integers( 1,2, . . . , r ] can be partitioned. Equivalently, we say that if f(n - 1) < r I f(n), then 

g(r) = n. 

Lemma 2. 4. For all r 2 9,300,217, 

g(r) < log r. ( 2 . 8 )  

Proof: Given r, choose n so that 

Now 

implies 

and 

Therefore 

n < log r, 

for n 2 16. 

for r 2 472.. 

For the following theorem, we need a definition. 

Definition 2. 5. Let m, k be positive integers and let X = 2 f(m) + 1. Write the numbers 1, 

2, . . . , xk - 1 in base X so that we have the following representation for each integer a: 

a = a o + a l x + a 2 x 2 +  ... +ak-l  x k -  1 , 

where 0 I ai I 2 f ( m ) f o r  0 I i I k - 1 .  

We call the integer a good if ai 2 f(m) for each i, and bad if ai 2 f(m) + 1 for at least one 

value of i. 



Theorem 2. 6.( Abbotr and Hanson [2] ) For all positive integers m and k 

f(km + g(kf(m))) 2 (2f(m) + l)k -1. ( 2. 10.) 

Proof: We will show that the good numbers in ( 1,2, . . . , xk - 1 } can be partitioned into 

g(kf(m)) sum-free sets and the bad numbers into km sum-free sets. The theorem will then 

follow. 

Let g(kf(m)) = N. We know that the set of integers { 1,2, . . . , kf(m) ) can be partitioned 

into disjoint sum-free sets Al, A2, . . . , AN. 

This partition induces a partition of the good integers in ( 1,2, . . . , xk - 1 } into N sum-free 

sets B1, B2, ... , BN in the following manner. 

For every a, 1 1 a 5 xk - 1, define 
k- 1 

o ( a )  =x ai,  ~ h e r e a = a ~ + a ~ ~ + a ~ ~ ~ + . , .  +ak- l  x k - 1  
i=O 

If a is a good integer, then % 5 f(m) for each i; therefore o( a ) 5 kf(m) and hence 

o(a) E A, for some j, 1 5 j 5 N. For each j, 1 5 j 5 N, let 

It is not difficult to see that each Bj is sum-free. For if a, b E Bj, then either a + b is a bad 

integer so belongs to none of the B,, or % + bi 5 f(m) for every i .  In this case suppose that 

a + b E B,. Then o(a), o(b) and o(a + b) = o(a) + o(b) are integers from the set 

( 1 2, . . . , k ( m )  } and all belonging to the set A,. Since Aj is sum-he  this is a contradiction, 

and hence Bj is sum-free. 

We now consider the bad integers in { 1,2, . . . , xk - 1 ) . Divide the bad integers into k 
k- 1 

classes C-l, Co, . . ., Ck-z by placing a = aixi in class Cj, - 1 5 j 5 k - 2 if 
i=O 

% 5 f(m) assume a-l = 0 for -1 5 i 5 j and aj+l 2 f(m) + 1. Next divide each of C-l, Co, . . ., 
. Ck-2 into m sets as follows. 

Let Dl, D2, . . . , Dm be a sum-free partition of the set ( 1,2, . . ., f(m)} and split the numbers 

in C, into m sets Djl, Dj2, .. ., D. in the following way. J m 

If a E Cj , then f(m) + 1 5 5 2 f(m), and we assign a to the set Dj, if and only if 



aj+l = - u ( mod X ) for some u E D,. Since aj+l is one of the numbers 

f(m) + 1, f(m + 2, . . .. , 2  f(m) exactly one such u can be found, and the partition is well-defined. 

It remains to show that Dj, is sum-free. Suppose that we can find a, b, c E Djs such that 

a + b = c. We have 
k- 1 k- 1 k- 1 

a = C aixi, b = C bixi, c = C c i ~ i ,  
i=O i=O i=O 

where ai, bi, ci 2 f(m) for i= 0, 1, . . . , j, aj+l, bj+l, cj+l 2 f(m) + 1, and 

aj+l = - u ( mod X ), bj+l = - v ( mod X ), cjcl= - w ( mod X ) 

where u, v, w E D,. 

Since , 2 

- aj+l + bj+1 - Cj+ l  + X ,  

it follows that 

u + v  = w ( m o d X )  

and since u, v, w I f(m) we must have u + v = w. However, this contradicts the fact that D, 

is sum-free. Hence we have shown that Djs is sum-free. So we have partitioned the bad integers 

into krn sum-free sets. We previously partitioned the good integers into N sum-free sets and the 

theorem fol1ows.l 

Corollary 2.7. For all sufficiently large n, we have 

f(n) > 3 15n/5-c10g 

where c is some positive absolute constant. 

Proof: For large k, we have 

f(5k + g(kf(5))) 2 ( 2( 157 ) + 1 )k -1 = 3 1 5 ~  - 1. 

Let n be large. Choose k so that 

5k + g(kf(5)) I n < 5( k + 1 ) + g((k + l)f(5) ). 

Thenf(n 2 3 1 5 ~ -  1, and 

n < 5( k + 1 ) + g((k + l)f(5)) 



where d is a constant and k is sufficiently large. The corollary then fo1lows.D 

While the best upper and lower bounds for f(n) are quite far apart, we can still gain a little 

more insight into the behaviour of f(n). Using Theorem 2. 6 we show that lim f(n)lIn exists 
n + =  

and equals L, although it is not known whether L is finite or infmite. We can state the following 

as a corollary to Theorem 2.6. 

Corollary 2. 8. lim f(n)lIn exists. 
n + =  

Proof: Let a =  liminf f (n) l ln  S limsup f(n)'In = P. 
n + 00 n + =  

2 
Suppose first that P is finite. Let e > 0 be given, and let m be the smallest integer for which 

By ( 2. 8 ), for sufficiently large k, 

g( kf( m )) < log( kf( m ) ) = logk + logf( m ). 

Hence, for fixed m 
g(kf(m)) ) 0 

k as k + =, 

i.e. , g(kf(m)) = o(k). Since g(kf(m)) = o(k), there exists an integer % = kg(•’), such that for 

k 2 kg, we have 

k m + g ( k f ( m ) )  < Lkrn(1 +&)A. 

For any n 2 L kom( 1 + E ) J, define k by 

Hence, by using ( 2. 10 ), ( 2. 12 ), and ( 2. 13 ), 

f( n ) 2 f(L km( 1 + E )A ) > f( km + g( kf(m) ) ) 2 ( 2f( m ) + ilk -1 > f(mlk. 

In order to write this down, we used the facts that f(x) is an increasing function of x, 

f(x) is an increasing function of x, the theorem, and a rough estimate, in turn. This implies that 

f(n) 'In > f(m)wn > ( P - & ) km/n 

by ( 2. 11 ). Hence, by ( 2. 13 ), 
1/(1 + E) - m/n 

liminf f(n)lJn 2 ( P - E )  
n + =  



It follows that a = P. A similar argument deals with the case where P is infinite.. 

&APPLllUTITONS OF SUM-FREE SETS ESTMATES OF THE RAMSBY 

NUMBERS 

We will be considering the second statement of Ramsey's theorem from Chapter 1. 

Specifically, we are going to deal with RJ 3 ,2  ), where R,( 3,2 ) is the smallest positive 

integer such that coloring the edges of the complete graph on R,( 3,2 ) vertices in n colors forces 

the existence of a monochromatic triangle. We begin with a well known results. 

Theorem 2. 9. For all sufficiently large n, 

4 R,( 3,2 ) > 315"/5-c"g" + 2. 

Proof: We prove 

R , (3 ,2 ) -1  2 f ( n ) + l .  ( 2. 14.) 

from which by Corollary 2.7, the theorem follows. 

To prove ( 2. 14 ), let Al, A2, . . . , A, be a sum-free partition of the set { 1,2, . . . , f(n) ). 

Let K = Kfb) + be the complete graph on f( n ) + 1 vertices xo, xl, . . . , xfby 

We color the the edges of K with n colors C1, C2, . . . , C, by coloring the edge eij joining 

the vertex 3 to the vertex xj by the color C, if I i - j I E A,. Suppose that this coloring gives us 

a triangle with vertices 3 ,  xj, xr all of whose edges are monochromatic under C,. Assume 

withoutlossofgeneralitythati > j > k. T h e n i - j , i - k , j - k  E Ambut ( i - j ) + ( j - k ) = i -  

k which contradicts the fact that A, is sum-free. 

Therefore 

R,( 3 ,2  ) - 1 s f( n ) + 1 > 315n/5-c10gn .I 

Theorem 2. 10. R,+l( 3 ,2  ) I ( n + 1 ) (R,( 3 , 2  ) - 1 ) + 2, where n 2 1. 

Proof: Let K be the complete graph on ( n + 1 ) ( R,( 3 ,2  ) - 1 ) + 2 vertices and consider a 

coloring of K with (n + 1) colors. Choose a vertex v of K. Of the 

( n + 1 ) ( R,( 3 ,2  ) - 1 ) + 1 edges ending at v, at least RJ 3 ,2  ) must have the same color. 

Suppose these join v to the vertices xl, x2, .. ., x,, where s 2 R,( 3,2 ). Consider the edges eij 

where 1 S i < j 5 s. If any one of them has the original color, then the triangle { xi, xj, v ) is 

16 



monochromatic. If none of them has the original color then the complete graph K, on xl, x2, 

. . ., x, must be colored in the other n colors. But by the choice of s, this forces the existence of a 

monochromatic triangle in K, , and hence in K.M 

Corollary 2. 11. Since R1( 3, 2 ) = 3, the theorem implies that 

Rn( 3, 2 ) I 3( n !), for all n 2 1. 

This theorem can be improved: 

Corollary 2. 12. R,( 3, 2 ) I [ n! e ] + 1, for all n 2 1. 

Proof: We have 

R1(3,2)  I [ l ! e ] + 1 = 3 ,  

which is the starti& point of our induction. If n 2 1 and 

Rn(3, 2 )  I [n! e l  + 1, 

then by Theorem 2. 10 and ( 2.2 ) 

Rn+l( 3 ,2  ) I ( n + 1 )[ n! e ] + 2 = [ (n + I)! e ] + 1.. 

In this section, we will study some generalizations of Schur's problem and give some better 

bounds on f(n). The following results are due to Abbott and Hanson [2]. 

We consider the system (S) of (k ; l) linear equations in (i) unknowns 

X' ' + Xj,j+l = Xi, j+l  
1 J  

for1 l i  < j  l k - 1 .  

We define the generalizations fk(n) and gk(m) of f(n) and g(m), given in Definition 1. 5 and 

Definition 2.3, respectively. 

Definition 2. 13. Let A be a set of positive integers. A is called (S)-free if and only if it 

contains no solution to the system (S). 

By Rado's theorem, see Graham et.al.[l2], the system is regular. 

Define fk(n) as the largest positive integer so that the set ( 1,2, . . ., fk(n) ) can be partitioned 

into n (S)-free sets. 

Define gk(m) as the smallest number of (S)-free sets into which the set { 1,2, . . ., m ) can be 

partitioned; or as before, if fk(n - 1) < m I fk(n), then gk(m) = n. 



Remark: When k = 3 we obtain the functions f(n) and g(m). Similar theorems for fk(n) and 

gk(m) can be proven. Also similar estimates for other Rarnsey numbers can be given by using 

fk("). 

We now give without proof, a theorem concerning fk(n). 

Theorem 2. 14. For all positive n and my 

fk(n + m) 2 (2fk(m) + 1 )fk(n) + fk(m). 

Corollary 2. 15. For all positive n and m, 

Corollary 2. 16. For n 2 5, and for some absolute constant c, we have 
, ,a 

f(n) 2 c 3 1 9 .  

The proof of Corollary 2. 16 follows by induction on n by using Corollary 2. 15 with m = 5. 

Note that the above lower bound is an improvement over the one we have in Corollary 2.7. 

Corollary 2. 17. For n 2 1, and for some constant ck, ck = ~ ( k ) ,  we have 

fk(n) 2 ~k (2k - 3)". 

Theorem 2.18. Let the system (S) be given and let the function fk(n) be defined. Hence 

R,( k7 2 ) 1 fk(n) $. 2, 

and for n 2 1, k 2 2 and for some constant ck, ck = c(k), 

Corollary 2. 19. For n 2 5, and for some absolute constant c, we have 

Rn( 3, 2 ) 2 c 315"'~. 

We now consider the function f(m, n) which is defined to be the largest positive integer such 

that the set { m, m + 1, . . . , m + f(m, n) ) can be partitioned into n sum-free sets. 

Fo rm= 1, we get f(1, n) = f(n) - 1. We also have 

since the set { m, 2m, . . . , m (f(n) + 1) ) cannot be partitioned into n sum-free sets. 

So we have 



We will get some lower bound on f(m, n) as well. 

Definition 2. 20. A set S of positive integers is called strongly sum-free if and only if it 

contains no solution to either of the equations 

a + b = c ,  ( 2. 15 ) 

a + b + l = c .  ( 2 . 1 6 )  

Definition 2. 21. For any positive integer n, we define $(n) to be the largest positive 

integer for which the set ( 1,2, . . ., $(n) ) can be partitioned into n strongly sum-free sets. 

This function is well-defined by Rado's theorem. A lower bound on $(n + m) is given 

without a proof in the following theorem. 

Theorem 2. 2 2  For m and n positive, 

$(n + m) 2 2 f b )  $(n) + f(m) + $(n) 

where f(n) is the Schur function for equation ( 2. 15 ). 

We use this theorem to get a lower bound on f(m, n). 

Theorem 2. 23. For m and n positive, 

f(m, n) 2 m $(n) - 1. 

Corollary 2. 24. For rn and n positive, 

f(m, n) 2 m (3 f(n- 1) + 1) - 1. 

To prove Corollary 2.24 we take n = 1 and m = n - 1 in Theorem 2.22 obtaining 

$(n) 2 3 f(n - 1) + 1. 

Then use Theorem 2.23.H 

Corollary 2.25. For m and n positive and an absolute constant c, 

f(m, n) > c m 315~1~.  

In this chapter, we studied the problem of Schur. We saw the connection between sum-free 

sets and the Ramsey numbers Rn( 3 ,2  ). We gave upper and lower bound on the Schur's 

function f(n). Also some generalization of Schur's theorem have been introduced. 



Chapter 3 
kUDDlPIflION TMIEORBMS FOR GROUPS AND 

SUM-IFRBE SETS IN GROUPS 

In this chapter we will study sum-free sets in groups in particular we look at maximal sum- 

free sets in abelian poups of specific order; maximal sum-free sets in groups; and a little bit of 

Group Rarnsey Theory. We will be interested in finding the sizes and stuructures of sum-free sets 

in abelian groups of specific order 

We have to have some results about the addition of subsets of group elements. To start with, 

we will fix the notation and some definitions. 

In this chapter we only consider additive groups of finite order. 

Let G denote an additive group. We reserve the notation c for subsets. AC will denote the 

set-theoretic complement of A in G. A + B is defined as before, noting that A + 0 = 0. For 

A 5: G, we define the following sets in the natural way -A = { -a I a E A ), kA = ( ka I a E A ) 

wherekisaninteger,A\B= { g~ G l g ~  A , g e  B ). 

Definition 3. 1, A sum-free set S is maximal if for every sum-free set T where 

S G T c G, we have S = T. Let A(G) be the set of cardinalities of all maximal sum-free sets in 

G and let h(G) = max A(G). Clearly, S is a maximal sum-free set if and only if 

S u { g ) is not sum-free for any g E SC. 

A symmetric sum-free partition of G* = G \ { 0 } is a partition 

where Si = -Si and Si is sum-free, 1 I i I n. From Greenwood and Gleason's paper [15], we 

know that 



if such a partition for G* exists. From Street and Whitehead's paper 1321, it suffices to study the 

maximal sum-free sets in order to estimate the Ramsey numbers. Exploiting the nature of Ramsey 

numbers, we can find an upper bound on the size of symmetric sum-free sets. 

A sum-free covering of G* is a collection of sum-free sets S = { S1, S2, . .., Sn ) such that 
n 

G* = V Si. 
i= 1 

If S and 7 = ( TI, T2, , . ., T, ) are two sum-free coverings of G such that Si c Ti for all 

1 5 i I n, we say that S is embedded in 7. 

We will also discuss the cardinality p(G) = min A(G) of the smallest possible maximal sum- 
> 

free set. We will &so discuss specifically lower bounds on p(G) when G is an elementary abelian 

2-group. This is a good opportunity to give the definition of an elementary abelian p-group, 

where p is any prime. 

An abelian p-group G is an abelian group in which the order of each element is a power of p. 

A known fact is that an abelian p-group G is the direct product of cyclic subgroups q, 1 I i I n. 

Moreover, the integer n and the orders of the Hi are uniquely determined, up to ordering, by G. 

If the order of Hi is pei, we say that G is of type ( pel, pE, . . . , pea ). In particular, if G is of 

type ( p, . . . , p ), G is called an elementary abelian p-group. 

We now prove some preliminary results. 

Theorem 3.2. ( Mann [21] ) Let G be a finite abelian group and let A and B be subsets of 

G. TheneitherG=A+B or I G 1 2 I A I + I B I .  

Proof: Suppose G # A + B. Since ( A + B)C ;t QI, we can find an element g in ( A + B)C. 

Define the set B' as follows. 

- The last equality is given just for simplicity of notation. From this definition of B' we have 

immediately I B' I = I B I, and B' E G. 

Suppose that A n B' # 0. Then there exists a E A n B'. Hence a = g - b or g = a + b 

which is a contradiction. Therefore A must be disjoint from B'. This implies the following. 



As a consequence, we have the following corollary. 

Corollary 3.3. Let S be a largest maximal sum-free set in a finite group G. Then 

I G I  h(G) = I  S Is --T, 

This upper bound is due to Erdos. 

Note that this upper bound is best possible since it is achieved if we take G = Z2. 

Definition 3.4. Let G be an abelian group and let A and B be subsets of G, and g E G. 

Then the transform of the pair ( A, B ) by g is the pair ( Ag, Bg ) where 
4 

~ g k ~  u ( ~ + g ) ,  B g = B  n ( A - g ) .  

The transform we use here is similar to one that was introduced by Cauchy 151. The next 

lemma will give some idea about the connection between the pair ( A, B ) and the pair ( ~ g ,  Bg ). 

Lemma 3.5. Let G be an abelian group, let A and B be subsets of G, and let g E G. Let 

( Ag, Bg ) be the transformed pair. Then we have the following. 

(i) IAgl+lBgl=IAI+IBI ;  

(ii) Ag + Bg G A + B where, in pardcular, Ag + Bg = e) if Bg = e). 

Proof: (i) We will use the definition of ~g and Bg. 

I A ~ I + I B ~ I = I A  u ( B + g ) l + l B  n ( A - g ) l  

= I A  u ( B + g ) l + l ( B + g )  n A1 

= I A l + I B + g l - l ( B + g )  n A I + I ( B + g )  n Al 

= I A I + I B + g l  

= I A I + I B I .  

( i i ) L e t a ~  Ag,b E Bg. SO b E B n ( A - g )  i.e.,b E B. I f a ~  A,wehave 

a + b e A + B and therefore + Bg E A + B. If a 1 A, then a E B + g, so a = bl + g for 

some bl E B. By definition Bg c A - g, so b = a1 - g for some a1 E A. Hence 

a + b = bl + g + a1 - g = bl + a1 = a1 + bl E A + B, since we are in an abelian group. 

In each case, we have ~g + Bg c A + B.. 



2,CWIISPIICAL PAIIRS AND a%OSPEWQS TWEORIEM 

Theorem 3.6 is a fundamental inequality which was first proved by Cauchy [5] and was later 

rediscovered by Davenport. 

After proving this theorem we will turn to the main business of this section which is to 

characterize those pairs A, B ( called critical pairs ) for which the inequality in the Cauchy- 

Davenport theorem is an equality. This characterization is the content of Theorem 3. 10, Vosper's 

theorem [33]. 

Theorem 3. 6. (Cauchy-Davenport) Let G be the group of residues modulo p, where p is a 

prime, and let A and B be subsets of G. Then 

I A + B I  t m i n ( p , I A I + I B I - 1 ) .  

Proof: If min ( I A I, I B I ) = 1, then the theorem is obviously true. If 

I A I + I B I > p, then Theorem 3.2. tells us we must have G = A + B, so I A + B I = p; the 

theorem is still valid in this case. 

Hence from now on we can assume 1 A I + I B I I p, rnin ( I A I ,  I B 1 ) 2 2. Assume 

furthermore,without loss of generality, that 0 E B. We will prove the theorem by induction on 

I B I. 

(i) Claim: A # A + B. 

To prove this claim, we choose b E B \ ( 0 ). Fix one element a of A, then consider 

a, a + b, . . ., a + kb for every k. If we had A = A + B, then the elements a, a + b, .. ., a + kb 

would be in A as well. Since this would be true for every k, then it would be true even fork  = p 

which tells us that A is the whole group, which is impossible by the assumptions I A I + I B I I p 

and min ( l A I ,  1 B I ) 2 2. Then the claim follows. 

(ii) Claim: For some element a of A, I B, 1 < I B I. If 1 B, I = I B I for every a in A, then 

B c A - a or B + a c A holds for every a in A. Hence A + B c A. We have also 0 E B, 

therefore A E A + B which gives the equality A = A + B which contradicts (i). So the claim 

follows. 

We are now ready to begin the induction proof. 



(iii) If I B I = 2, we want to show 1 A + B 1 2 min ( p, I A I + 1 ), or more precisely 

I A + B I  2 I A I + l .  (Since I A I + 2  5 p , w e h a v e I A I + l = r n i n ( p , I A I + l ) . )  

Suppose I A + B I I I A I. We know that A r A + B and we then have A = A + B which 

contradicts (i). 

(iv) Assume the theorem is valid for 1 B I < n. Choose B with I B I = n and then choose an 

element a of A in such a way that I B, I < I B I. 

We have by Lemma 3.5 (ii), 

I A + B I  2 

2 

, A  - - 

Observe that by our earlier comment, if min( p, 1 A, I + I B, I - 1 ) = p, then + B, = G and 

by Lemma 3.5 (ii), A + B = G and we are done. So we assume 

min(p, IAaI+IBaI-  l ) = l A a l + l ~ , I -  1 

we have used the induction hypothesis and Lemma 3.5 (i) in the second and the third step of the 

above computation, respectively.lP 

Ir, Vospeis theorem, Theorem 3. 10, we wi!! give necessary md sufficient condit,ions fm  

which 

l A + B I = m i n ( p , I A l + I B I - 1 ) .  

We need some terminology at this step. 

Definition 3.7. Let G be the group of residues modulo p, where p is a prime, and let A 

and B be subsets of G. The pair ( A, B ) is called a critical pair if and only if 

I A + B I = m i n ( p , I A I + I B I - 1 ) .  

Let G be an abelian group and let A and B be subsets of G. A is called an arithmetic 

progression with difference d or a standard set with difference d if and only if 

A =  { a + i d I  i = 0 ,  1, ..., IAI - 1 ), for some a, d E G, d f 0. 

The pair ( A, B ) is called a standard pair with difference d if and only if both A and B are 

standard sets with difference d. 
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If A is a subset of the cyclic group with elements( 0, 1,2, . . ., t - 1 ) and with the addition 

modulo t, we can define the gaps in A as follows. If a, a + n + 1 E A, but a + 1, a + 2, . . ., a + 
n E A', then we say that there is a gg of length n in A, occuring between a and a + n + 1. 

It should be noted that, when we say A/H is a standard set with difference d we mean that 

A = ( a + i d I  i = 0 , 1 ,  ..., I A I - 1  }+H,forsome a , d ~  G,d#O. 

We will need the following lemma in order to prove Vosper's theorem. 

Lemma 3.8. Let G be an abelian group and let A, B, C and D be subsets of G. Suppose 

A - B = C - D .  Then 

A n B = @  if and only if C n D = @ .  

Corollary 3.9.) Let G be an abelian group and let K, L, M, and N be subsets of G. Then 

(i) ( K + L )  n M = @  ifandonlyif K n ( M - L ) = @ ;  

(ii) ( K - L )  n ( M + N ) = @  ifandonlyif ( K - M )  n ( L + N ) = @ .  

Theorem 3. 10. ( Vosper [33] ) Let G be the additive group of residues modulo p, where p 

is a prime, and let A and B be subsets of G. Then the pair ( A, B ) is critical if and only if one of 

the following is satisfied. 

(ii) min (I A I, I B I) = 1, 

(iii) A = ( g -  B)C, for some g inG,  or 

(iv) ( A, B ) is a standard pair. 

Proof: First we will prove that each of the conditions (i)-(iv) will suffice for the pair ( A, B ) 

to be critical. 

If we have 1 A I + I B I > p, then by Theorem 3.2 we have G = A + B. In other words, 

1 A + B I = p, and hence we have 

I A + B I = m i n ( p , I A I + I B l - l ) = p ,  

so the pair ( A, B ) is critical. 

Ifwehavemin(IAI,IBI)=l,thenIAI+IBI-1 5 pandhence 

IA+BI=max(IAI,IBI)=IAI+lBI-l=rnin(p,IAl+IBI-1). Hencethepair(A,B) 



is critical. 

I fA=(g -B)C , thenwehave  A n ( g - B ) = 0 .  SobyCorollary3.9(i), 

( A  + B ) n ( g } =0 which tells us I A + B I I p - 1. Since A = ( g  - B )C, we have 

I A I = I BC I = p - I B I. Therefore I A I + I B I = p. From Theorem 3.6, 

I A + B I  2 m i n ( p , p - l ) = p - 1 .  

So we have 

I A + B I = p - l = I A I + I B I - 1  

which means that the pair ( A, B ) is critical. 

If the pair ( A, B ) is a standard pair, then we have 

A = {  a + i d ~  i = 0 , 1 ,  ..., I A I - 1  and B = { b + i d l  i = O , l ,  ..., I B I - 1 )  

for some a, b, d E G, d # 0 , hence 

A + B = { a + b + i d I  i = 0 , 1  

Therefore, we have 

I A +  B I = m i n ( p , I A I + l B  

So the pair ( A, B ) is a critical pair. 

Next, we assume that the pair ( A, E ) is a critical p&r. TE-er? we wi!! show that m e  s f  the 

conditions (i)-(iv) is satified. 

If I A I + I B I > p, then we have (i). If min ( I A I, I B I ) = 1, then condition (ii) is obtained. 

I f IAI+IBI=p, thenwehave I A + B I = p - l b e c a u s e I A + B I = m i n ( p , p - 1 ) .  So 

A + B  = { g for some ginG.  Hence ( A  + B  ) n { g } =0, and by Corollary 3.9 (i) 

A n ( g - B ) = yielding A G ( g - B)C. On the other hand, we have 

I A I = p - I B I = I BC I = I ( g - B )C 1. This tells us that A = ( g - B ) ~ .  So we have (iii). 

Now we assume that I A I + 1 B 1 < p and min ( I A I, 1 B I ) > 1. We will prove that condition 

(iv) holds. The proof will be given in several steps. 

First we list our claims and then we will prove them one by one. 

Claim 1: The pair ( A, B ) is standard if A is a standard set. 

Claim 2: Let D = ( A + B )C. Then the pair ( -A , D ) is a critical pair. 



Claim 3: The pair ( A, B ) is standard if A + B is a standard set. 

Claim 4: If 1 B I 2 3 and 0 E B, then there exists a E A such that 

l B l  > IB,I 2 2. 

Proof of Claim 1: For simplicity, we can assume that A = { 0, 1, . . ., I A I - 1 ). Let us 

consider the gaps in B. 

If b E B,then { b , b + l ,  ..., b + I A I - 1 )  c A + B .  WehaveIA+BI  < p - 1  which 

means that there are some elements of G not in A + B and in B there must be at least one gap of 

length at least I A I. 

Suppose now that B has at least one other gap. Then A + B contains all the elements of B 
2 

together with at least I A I - 1 elements from the first gap together with at least one element from 

the second gap. Whence we have 

I A + B I  2 I B I + ( I A I - l ) + l = I A I + I B I  

which is impossible since the pair ( A, B ) is critical. 

A fortiori B has only one gap, i. e. , B is in arithmetic progression with difference 1, and the 

pair ( A, B ) is a standard pair. 

Coro!lary to Claim 1: If min ( ! A I, I B I ) = 2, then b e  pair ( A, B ) is a stmdard pair. 

Proof of Claim 2: We are given D = ( A + B )C. Therefore ( A + B ) n D = 0 ,  so from 

Corollary 3. 9 (i), we have B n ( D - A ) = 0 which implies that B c ( D - A )C. 

Let ( D - A ) C = E .  SoE  n ( D - A ) = @  implies(E+A) A D = 0 .  Hencewehave 

E + A E DC = A + B. Qn the other hand, we have B E E which implies A + B c A + E, so 

we have equality, i. e., A + B = A + E. Since the pair ( A, B ) is critical and I A I + 1 B I < p, we 

have 

p - 1  2 I A I + I B I - l = I A + B I = I A + E l  2 m i n ( p , I A I + I E I - l ) = I A I + I E I - 1 .  

The latter inequality yields 1 B 1 2 1 E I. Therefore B = E, and so BC = D - A. Now we can 

find 

I D - A 1 by using the last equality. 

I D - A l = I B C I = p - I ~ l a n d  



IDI=p-IA+BI=p-IAI-IBI+l. 

So 

I D - A I = m i n ( p , I D l + I - A I -  1).  

By definition the pair ( -A, D ) is critical. 

Proof of Claim 3: If A + B is a standard set, so is D = ( A + B )C. By the second claim, the 

pair ( -A, D ) is critical. We also have , since I B I > 1, 

I-AI+IDI=IAl+p-IAI-IBI+l=p-IBI+l < p, 

and 

min( l -AI , IDI)  > 1. 
2 

By the fust claim, ( -A, D ) is a standard pair, since D is a standard set. Hence -A is a standard 

set too. Then A is standard and by the first claim, the pair ( A, B ) is a standard pair. 

Proof of Claim 4: Let us define the following set. 

Y = { a  E A1 IBI > IB,I) 

We will show that I Y 1 2 2. Two cases may arise. 

(a) Y = A. Then obviously I Y I 2 2. 

(b) Y # A. Then,!et Z=,4 \Y7and Z + $3. Fcra! Z E  Z2Bz G I3 and IBz! 1 IBI, 

so Bz = B. Therefore 

B , = B n ( A - z ) = B  for all z E 2. 

From the last equality, we have B c A - z, so B + z c A. Since this last inclusion is true 

for all z E Z, we have B + Z c A. 

Therefore using Theorem 3.6 and the hypothesis I B 1 2 3 

p > 1Al 2 I B + Z I  2 I B 1 + 1 2 1 - 1  2 121+2.  

SO we have, 

I Y I = I A I - I Z I  2 2. 

Now we want to show that for some a E Y, I B, 1 2 2. Assume the contrary, i. e., for 

every a E Y, I B,I < 2. 

This assumption and the assumption that 0 E B implies that 



Let us denote B \ ( 0 ) by E so that E n ( A - a ) = 0. From Corollary 3.9 (i), we have 

( E + a ) n A = 0. Since this is true for every a E Y, we then have ( E + Y ) n A = 0. 

Weknowthat E + Y  E A+B,and A G A+Bsowege t  

here we used the fact that the pair ( A, B ) is critical. 

On the other hand, from Theorem 3. 6, and the facts that Y c_ A and E c B, and I Y 1 2 2, 

p > l E + Y I  2 I E I + I Y I - 1  2 I E l + l .  

since I Y 1 2 2. This is a contradiction, so I Ba 1 2 2 for some a E Y. 

This completesiie proof of the claims. 

We now prove the statement of the theorem by using induction on the size of B. 

By the corollary to Claim 1, when I B I = 2, (A, B) is a standard pair. 

The induction hypothesis is that the pair ( A, B ) is a standard pair for 2 5 1 B 1 5 k; note that 

our initial hypotheses are still in effect, that is, I A 1 + I B I < p and min(l A I, I B I) > 1. 

Let 3 I I B I I k + 1. Since 3 I I B 1, by the last claim, we have I B I > I Ba 1 2 2 for 

some a E A. The idea is to show that the pair ( Aa, B, ) is a critical pair. Since the pair ( A, R ) 

is critical and we assume that I A I + I B I < p 

p - 1  > I A I + I B I - l = I A + B I  

2 lAa+BaI by Lemma 3.5 (ii) 

2 lAaI+IBaI -1  byTheorem3.6 

= I A I + I B I - 1 .  

Hence 

IAa+BaI=IAaI+IBaI-  1 

which says that the pair ( Aa, Ba ) is a critical pair. 

So the pair ( Aa, Ba ) is a standard pair by the induction hypothesis, since I B I > I Ba 1 2 2, 

and I Aa I + I Ba I < p. This implies that Aa + Ba is a standard set. 

Above we obtained 



lAa+BaI=IA+BI .  

From Lemma 3.5 (ii), we have Aa + Ba E A + B. Hence, we have the equality 

Aa + Ba = A + B. Since Aa + Ba is a standard set, so is A + B. Now we can refer to the third 

claim so showing the pair ( A, B ) is a standard pair, and this proves the theorem.. 

We need a theorem of Kneser. Though we will not provide a proof here, it can be found in 

Mann's book [21]. 

Theorem 3. 11. ( Kneser ) Let G be an abelian group, and let A and B be finite subsets of 

G. Then there exists a subgroup H of G such that 

A + B + H = A + B ,  

and 2 

I A + B I  2 I A + H I + I B + H I - I H I .  

In this section we will present some generalizations of the Cauchy-Davenport theorem and 

Vosper's theorem. We need them to study sum-free sets in groups. This work was initiated by J. 

H. B. Kernperman 1171 and M. Kneser [I 81. 

Before stating our first lemma of this section, we will give some definitions. 

Definition 3. 12. Let G be an abelian group. Let C be a subset of G.  If H is a non-trivial 

subgroup of G such that C + H = C, then C is a union of cosets of H in G. In this case C is 

called periodic with period H. Note that H is not uniquely determined from this definition. Since 

H ( C ) = { g  E GI C + g = C )  

is a subgroup of G, it is clear that H(C) is the largest period (stabilizer) of C. 

In the case where C + H = C implies that H = ( 0 ), C is called aperiodic. 

A subset C of G is called quasi-periodic if there exists a subgroup H of G of order I H 1 2 2 

such that C = C' u C" where C' is the disjoint union of cosets of H in G and C" is contained in 

another coset of H in G, i. e. , C" c c + H c E C''. We call C" residual. The subgroup H is 

called the quasi-period of C. 



Note that if C is quasi-periodic, 2 < I H I < I C 1 for eakh quasi-period H of C. If each I 

element g of G \ ( 0 ) = G* is of order greater than 1 C I, then C cannot be quasi-periodic. As the 

terminology suggests, each periodic set is quasi-periodic as well. 

Now we can state the first lemma of this section. 

Lemma 3.13. ( Kemperman [17] ) Let G be an abelian group. Suppose that a finite subset 

C of G is the union of the proper non-empty subsets Co, C1, . . ., C,, n 2 1, such that for 

i = 0, 1, ..., n 

ICI c ICi l+lH(Ci) l .  

Then 

6) 
> I C i + I H ( C ) I  2 lCiI+IH(Ci) l .  

for at least one i = 0, 1, . . ., n, and 

(ii) either C is quasi-periodic or there exists c E C for which C - c = H1 u H2 where HI, 

H2 are finite subgroups of G of the same order with H1 n H2 = { 0 ). 

We omit the proof. 

Definition 3. 14. Let G be an abelian group, and let A and B be non-empty subsets of G. 

Ther. we say the sum A + •’3 is sma!! when 

I A + B I  S I A I + I B I - 1 .  

Now we will give a theorem due to Kneser [18] which is a generalization of the Cauchy- 

Davenport theorem. 

Theorem 3.15. (Kneser) Let G be an abelian group, and let A and B be finite subsets of 

G. Assume that 

I A + B I  S I A I + I B I - 1 .  ( 3 . 3 )  

Let H = H( A + B ) denote the largest period of A + B. Then H satisfies 

I A + B I + I H I = I A + H I + I B + H I ,  ( 3 . 4 )  

We omit the proof. 



Next we will give a variation of Vosper's theorem. They will provide some information 

concerning the order of a sum-set which is small compared with the orders of the summand sets. 

Theorem 3.16. ( Kemperman [17] ) Let G be an abelian group, and let A and B be finite 

subsets of G with 

l A l , l B l  2 2, and I A + B I  I I A I + I B I - 1 .  

Then either A + B is a standard set or A + B is quasi-periodic. 

The proof is too complicated and hence will be omitted. 

So CWARACTEWIIZATIIQW QP PAIIRS ( A. IB 1 WHIERIE A + IB ITS 

I 
SMALL 

Given the pair ( A, B ) where the sum A + B is small is it possible to characterize the pair 

( A, B )? Is it also possible to construct such pairs? The forthcoming theorem will answer the 

above questions. It shows that it is sufficient to consider the case when the sum A + B is 

aperiodic. 

Theorem 3.17. Let G be an abelian group. The following construction produces exactly 

all the pairs ( A, B ) of finite non-empty subsets of G where the sum A + B is small, i. e., 

I A + B I  I I A I + I B I - 1 .  

Construction: Pick a proper finite subgroup H of G and let v denote the natural mapping 

v : G + G/H. Next choose finite, non-empty subsets A*, B* of G/H so that A* + B* is 

aperiodic and 

I A * + B * I = I A * I + l B * I - 1  ( 3 . 5 )  

Finally, we let A and B be any subsets of VIA* and v-~B*, respectively, with 

IV-IA* n ~ ~ l + l v ' l ~ *  ~ B ~ I  < I H I  ( 3 . 6 )  

Then this construction generates a pair ( A, B ) satisfying ( 3.3 ), and any pair satisfying 

( 3. 3 ) may be constructed in this way. 

We omit the proof. 



In this section we will investigate the following problem. 

Let G be an abelian group, and let A and B  be finite non-empty subsets of G so that the sum 

A  + B small, and min ( I A  1 ,  I B  I) 2 2. We know from Theorem 3. 15 and Theorem 3.16 that 

either A  + B is a standard set or A  + B  is quasi-periodic. Given such information on A  + B, what 

can we say about the pair ( A, B  )? We are only interested in the case where A  + B  is a standard 

set . The following results are due to Kemperman [17]. 

Lemma 3.18. +et G be an abelian group of order n, and let A  and B  be finite non-empty 

subsets of G where the sum A  + B  is a standard set with difference d, and I A  + B  I < n. Then 

I A + B I  2 I A I + I B I - 1 .  

Lemma 3.19. Let G be an abelian group of order n, and let A  and B be non-empty subsets 

of G with the following properties. The sum A  + B is small, A  + B  is a standard set with 

difference d and I A  + B  I I n - 2. Here n is the order of the element d. Then A  and B  are 

standard sets of difference d, and we have 

I A + B I = I A I + I B I - 1 .  

We omit the proofs. 

An immediate corollary is the following. 

Corollary 3.20. Let G be an abelian group, and let A and B  be non-empty subsets of G. 

Suppose that min ( 1 A  I ,  I B  1 ) 2 2, the sum A  + B  is small and every g E G \ { 0 ) has order at 

least I A  + B I + 2. Then each of A, B  and A  + B  are standard sets with difference d 

Note that the above corollary for the special case that G is a cyclic group of prime order is due 

to Vosper [34], and was later rediscovered by S. Chowla and E. G. Straus. 

'7 MAUW WESUJILTS; SUM=PREE SETS IN GROUPS 

In the previous sections, we have prepared ourselves for the real meat of this chapter which is 

sum-free sets in groups. 



We gave earlier in Corollary 3.3 an upper bound on h( G ), the cardinality of a largest . 

maximal sum-free set in G. Now we give a lower bound on h( G ), also due to Erdos [l 11. If G 

is any finite abelian group, then 
21 G I - 

7 < h( G ). 

In the introduction to this chapter, we noted that the upper bound is best possible and is 

attainable if we take G = Z2. Now we will show that this lower bound is also best possible and 

attainable if we take G = Z7. 

Claim: In Z7 a maximal sum-free set cannot have more than 2 elements. 

Proof of the claim: In Z7, we can show, with some computations, that the 2-element sum- 

freesetsinZ7af6? 1 , 3 ) , (  1 , 5 ) , (  1 , 6 ) , ( 2 , 3 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 3 , 4 ) , ( 4 , 5 ) , a n d  

( 4 ,6  ). We can divide these nine sets into classes as follows. We take the set S = ( 1 , 3  ) and 

consider kS, where 2 I k I 6 and we are doing the arithmetic modulo 7. We find that 

2 S = ( 2 , 6 ) ,  3 s  = ( 3 , 2  ), 4 S = ( 4 , 5 ) ,  

5 s  = ( 5 , l  ), 6 S = ( 6 , 4 ) .  

So we have a class 

C l = [ k S !  1 1 5  k I 6 ) = < ( ! , 3 ) > .  

Now we take T = { 1 ,6  ) and consider kT where 2 I k I 3. We get in this case 

2 T = ( 2 , 5 } ,  3 T = ( 3 , 4 ) .  

Hence we have another class 

C 2 = ( k T I  1 I k I 3 ) = < { 1 , 6 ) > .  

It suffices to show that a representative of each class Ci is maximal in order to show that these 

nine sets are maximal. We will take S = ( 1 ,3  ) and T = ( 1 ,6  ) as representatives of classes C1 

and C2, respectively. 

Let us look at the entire list of sum-free sets in Z7. 

We say that an element a is compatible with an element b if ( a, b ) is a sum-free set. 

According to the above definition and by inspection, we see that except 3,5, and 6 no element 

is compatible with 1. Again by inspection, we see that 1,2, and 4 are compatible with 3. Since 



the set of compatible elements with 1 and the set of compatible elements with 3 have no element in 

common, we cannot add a third element to the set S to obtain a larger sum-free set. 

Similarly, we can show that we cannot add a third element to the set T to obtain a larger sum- 

free set. 

Therefore the classes C1 and contain only maximal sum-free sets in Z7. Hence h( Z7 ) = 2 

which attains the lower bound.. 

In the theorem and corollary below, we will answer the following question. 

Can one find a necessary and sufficient condition on G so that the upper bound on h( G ) is 
I G I attained, i. e., h( G ) = ? 

J 
Although we are mainly interested in abelian, finite groups the next theorem is proven for all 

groups. 

Theorem 3.21. Let S be a finite subset of a group G. Then I S + S I = I S I if and only if 

there exists a finite subgroup H of G so that 

S + H = S = H + S  and S - S = H = - S + S .  

Proof: Assume for a finite subset S of G we have I S + S I = I S I. In order to show the 

existence of a finite subgoup of G, we h o s e  sl, s2 E S dehr: 

HI = -sl + S, H2 = S - ~ 2 .  

Then 

IHl+H21=I-~l+S+S-~21=IS+SI=ISI=IH11=IH21 

and so is finite. 

Now consider ( -sl + sl ) + ( s2 - s2 ) = 0. This implies that 0 E H1 and 0 E Hz, so 

0 E H1 + H2. 

Then, since H1 c H1 + H2 and H2 c H1 + H2 we have H1 u H2 c H1 + H2. SO 

IH1uH21 I IH1+H21=IH11=IH21. 

Then we have H1 + H2 = H1 = H2. Let us call this set H. We would like to show that H is finite 

subgroup of G. 

Suppose h E H. Then h = -sl + s3, and h = s4 - s2 for some sg, s4 E S. So we have 



-h = -s3 + sl, and -h = s2 - s4 which imply -h E H. We already have 0 E H and H is closed 

under addition, so H is a finite subgroup of G. 

Since HI = H2 = H, we have H = -s + S = S - s for all s E S. Adding s to both sides of the 

last equality. 

s + H = S = H + s  

for all s E S. Eventually, we get 

Now assume the converse. Since S + H = H + S = S, S is a union of left or right cosets of H 

in G. That is, 

Hence I S I is some multiple of I H I, say 1 S I = kl H 1, where k is the number of cosets of H in 

left and a right coset of H. 

Hence 

S = s + H = H + s  

for all s E S. Then we get 

S + S = s + H + H + s = s + H + s ,  

and so 

I S + S I = I H I .  

In other words 

I S + S I = I S I . P I  

Corollary 3.22. Let G be an abelian group and let I G I = 2m. Then h( G ) = m if and only 

if G has a subgroup H of order m, and in this case the maximal sum-free set is the coset aH, 

a e H. 

Proof: This follows directly from Theorem 3.21 and the fact that every abelian group of 

order 2m has a normal subgroup of order m . l  



A lower bound on h( G ) when G is abelian is hard to achieve. We will try to determine the 

size and the structure of maximal sum-free sets S  in arbitrary abelian groups G. We will study 

certain cases depending on the prime divisors of I G I ,  the order of G, to find a lower bound on 

h( G 1. 

Except for Theorem 3.21 G will denote an abelian group. 

In Definition 3. 12, we have defined the largest period H( C ) for any subset C of G. Some 

facts about H( C ) are listed below. 

(I) C + H ( C )  = C, 

(11) if C + K = C for some subgroup K of G, then K I H( C ), 
?r 

(111) the sdbgroup generated by H( C ) and H( D ), < H( C ), H( D ) >, is contained in 

H( C + D ), 

(IV) H( S  ) =H( -S ). 

We will show that there exists a subgroup H of G such that 

H = H( S  + S  ) = H( S  ) = H( S  - S  ) for a maximal sum-free set S  in G. 

The subgroup H = H( S  + S  ) so that S  + S  + H = S  + S exists by Theorem 3. 11. Hence we 

have by Theorem 3. 15 either 

I S + S I  2 21SI 

Lemma 3.23. Let S  be a maximal sum-free set in G, and let H = H( S  + S  ). Then S  + H 

is a sum-free set in G and therefore S + H = S. 

The proofs of the lemma and the following corollaries will be omitted. 

Corollary 3. 24. Let S be a maximal sum-free set in G. Let H = H( S  + S  ). Then 

Corollary 3. 25. Let S  be a maximal sum-free set in G. Let H = H( S  + S  ). 

Then either 

I S + S I  2 21S1 



or 

and either 

IS+SI=21SI - IHI ,  

I S - S I  2 21SI 

or 

I S - S I = 2 1 S I - l H l .  

In the next lemma, we will give some upper bounds on h( G ) depending on the order of G. 

Lemma 3.26.(Diananda and Yap [7]) Let G be a finite group. We will consider the 

following cases. 
2 (i) I G I has at least one prime factor p of the form 3n + 2; without 

loss of generality we may assume p is the smallest such prime, 

(ii) no prime p of the form 3n + 2 divides I G I, but 3 ] 1 G 1, 

(iii) 1 G I is a product of primes each of which is of the form 3n + 1. 

Then 

in case (i) 

I G I*  in case (ii) 

in case (iii). 

The proof of Lemma 3.26 is omitted. 

Note that the cases considered in the above lemma exhaust all possibilities for I G I and they are 

mutually exclusive. 

Remark: In cases (i) and (ii), the structures and sizes of maximal sum-free sets are fully 

determined. That is, the upper bounds given above in the first two cases are exact values. Yet we 

. know very little about the third case. In the last case, even the size of the maximal sum-free sets is 

known for special cases only. 

We will demonstrate the first two cases by giving examples later on. 

The following theorem deals with the case when I G I is divisible by a prime p of the form 

3n + 2. 



Theorem 3. 27. In the first case of Lemma 3. 26 the upper bound is attainable. Also, if S 

is a maximal sum-free set in G, then S is a union of cosets of some subgroup H of index p in G, 

S/H is a standard set in G/H and S u ( S + S) = G. 

Proof: (i) Let us denote p by 3n - 1. Consider G = Zp. By Lemma 3.26, h(G) 5 n. If 

we look at the set S = { n, n + 1, ..., 2n - 1 ), we see that S is sum-free and I S I = n. This gives 

The Cauchy-Davenport theorem (Theorem 3.6) gives I S + S 1 2 2n - 1, and since S is sum- 

Vosper's theorem (Theorem 3. 11) the pair ( S, S ) is a standard pair, so S is a standard set. 
rt 

Without loss of generality since p is prime, we can take d = 1, the common difference of the 

progression. This gives us that, up to automorphism, S = ( n, n + 1, . . . , 2n  - 1 ) is the only 

possible set. 

(ii) We can generalize the idea in (i). Let K be a subgroup G of index p, and let g be an 

element of order p so that 

Consider the set 
2n- 1 

T =  V ( K + j g ) .  
j=n 

To show that T is sum-free, consider k + jg and k' +ig, where k, k' E K and 

n 5 i 5 j 5 2n -1. If we take the smallest possible value, n, for i and j, we end up with 

k + k' + 2ng which is not in T. For larger values of i and j, we have the same conclusion. The 
\GI( +1) IGI size of T is +, since there are n cosets and the size of K is - Therefore T is a maximal 

P '  * 

W p + l )  sum-free set in G and h(G) - 3D . 
L 

Assume now S is a maximal sum-free set with y(p+l) elements. Assume His  a subgroup 
3 P 

of G for which the second option in ( 3.7 ) holds. Then, we have 

IGI 
so that I H I = -. 

P 



We know, from Lemma 3.23, that S is a union of cosets of H. By the assumption, 
IGI( +1) I S I = ~ , ~ ~ ~ ( ~ . ~ ) W ~ ~ ~ ~ I S + S I + I S I  2 IGI. SinceSissum-free,weget 

3~ 

I S + S I + 1 S I I I G I, hence we have the equality. Therefore S u ( S + S ) = G, 

I S + S I = 2 1 S I - I H I .  Inviewofthelastequalityweget1(S/H)+(S/H)I=21S/HI-1,where 

S/H is a subset of the factor group G/H. By an extension of Vosper's theorem (Diananda [6]),  

we have S/H as a standard set, and this subset as in (i) is isomorphic to the set 

{ n , n +  1, .,. , 2 n -  1 }.M 

Example: Take p = 17. Then in Z 17, h( 22 17 ) = 6 and S = { 6,7,8,9, 10, 11 ) is a 

maximal sum-free set. 
2 

The following theorem deals with the case when 1 G I is divisible by 3 but not by any prime p 

of the form 3n + 2 

Theorem 3.28. In the second case of Lemma 3.26 the upper bound is attainable. Also, if 

S is a maximal sum-free set in G, then S is a union of cosets of some subgroup H of G, such that 

G/H is the cyclic subgroup Z3, for some m, S/H is a standard set in G/H and 

I S + S I = 2 1 S I - I H I .  
IGi Proof: (i) Obviously G has a subgroup K of order - =d m. element g of order 3 swh that 4 

G = K  u ( K + g )  u ( K + 2 g ) .  
IGI Then it is easy to see that the set T = K + g is sum-free and has -j-elements. So T is maximal by 

IGI 
Lemma 3.26, hence h( G ) = 7 

IGI (ii) We now let S be a maximal sum-fkee set in G with I S I = Moreover, let H be a 

subgroup of G which is the largest period of S + S. Hence Corollary 3.24 it is the largest period 
lGl of S by , so S is a union of cosets of H, and I H I = for some m. 

Since S n ( S + S ) = 0, we have 

But Corollary 3.25 tells us that we have either 



I S + S  I=21SI-IHI.  

Therefore we have to consider the following two cases. 

(a) 1 S + S I = 2 1 S I - I H I  

and 

(b) IS+SI=21SI .  

Our claim is that (b) cannot happen. Actually, this was conjectured by Yap[41] and proved by 

Street[28]. 

Observe that if A is any subset of G with the property that A = -A, then I A I is odd if and only 

if 0 E A since I G I is odd. 
2 

Since S is sum-free and no sum-free set can contain 0 and I S I is odd, then by the above 

observation S z -S. But 0 E ( S - S ) = -( S - S ) and hence I S - S I is odd. Now 

S n ( S + S ) = 0 and so by Corollary 3.9, we have ( S - S ) n S = 0. Hence 

S n ( S + S ) = ( ( S - S )  n S )  u ( S  n ( S - S ) )  

= ( ( S - S )  n S )  u ( ( S - S )  n ( - S ) )  

= ( S  u ( - S ) )  n ( S - S )  

= ;a. 

By Corollary 3. 25, we have same possibilities for S - S that is, either 

(a') I S - S I = 2 1 S 1 - I H I  

or 

(b') IS - S  I=21S I .  

Since I S - S I is odd (b') is not possible. Hence we have (a'). 

Let us call the factor group G/H, G-, and its subset S/H, S-. Obviously S- is a maximal sum- 

free set in G-. 

From Corollary 3.24, we have 

H = H ( S ) = H ( S + S ) = H ( S - S ) .  

Therefore both S- and S- - S- are aperiodic. Note that 

IS--S-I=21S-I-1=2m-1 



and 

IS- u (S--S-)l=IS-I+JS--S-I-IS- n (S--S-)I 

= m + 2 m - 1 = 3 m - l = I G - 1 - 1 .  

Hence Theorem 3. 16, and ( 3. 8 ) say that S- - S- is either quasi-periodic or a standard set. 

Suppose now that S- - S- is quasi-periodic. That is, 

S--S-=T' u T" 

where 

T' = T' + U-, T" t + U-, 

and U- is a subgroup of G- and t E T". Since S- - S- = -( S- - S- ), we have T" c U-. If 
2 S- n U- # 0 ,  then from S- being sum-free we deduce that no complete coset of U- is contained 

in S-. But we assumed that S- - S- is quasi-periodic, so we must have S- n U- = 0. But this 

implies that S- is periodic with period U-, which is another contradiction. Therefore 

S- - S- must be a standard set with difference d. Now ( 3. 8 ) tells us that the order of d is 3m. 

From Lemma 3. 19, we know that S- is also a standard set with difference d, so 

IS-+S-I=21S-1-1 

and 

I S + S I = 2 I S I - I H I .  

Since I G- I = 3m, and G- contains an element d of order 3m, hence G- turns out to be the 

cyclic group Z3m. If q E Aut(G-) such that q(d) = 1, then 

q(S-)= ( m , m + l ,  ... , 2 m -  1 ).M 

We give an example below. 
IGI Example: To illustrate the theorem, we take G = Z3 Q Z3. Then h( G ) = -j-= 3. Let 

H = ( ( 0 , 0 ) , ( 0 , 1 ) , ( 0 , 2 ) ) a n d d e f i n e S = ( ( 1 , 0 ) , ( 1 , 1 ) , ( 1 , 2 ) ) .  Then 

S = ( l , O ) + H , s o S / H =  ( ( 1 , O )  ). IfwecomputeS+S,weseethatSissum-freeand 

I S + S I = 2 1 S I - I H I .  A l s o S + S = ( ( 2 , 0 ) , ( 2 , 1 ) , ( 2 , 2 ) ) = ( 2 , 0 ) + H .  So 

G = H  u ( ( l , O ) + H )  u ( ( 2 , O ) + H ) .  

Corollary 3. 29. Let G = Z, where m = 3" for some n. Then there are precisely n non- 



isomorphic maximal sum-free sets in G. 

Corollary 3. 30.. Let G be an elementary abelian 3-group. If S is a maximal sum-free set in 

G, then S is a coset of a maximal subgroup of G. 

Proof: Since I G I = 3" for some k, then G has a subgroup K of index 3, and an element g of 

order 3 such that 

G = K  u ( K + g )  u ( K + 2 g ) .  

Since the index of K in G is 3, we have I K I = 3"-' so K is maximal subgroup of G, and the 

set S = K + g is obviously sum-free.ll 

We note that if we drop the adjective "elementary" in Corollary 3.30, a maximal sum-free set 
4 S in a 3-group G is not necessarily a union of cosets of a maximal subgroup H of G. 

For this we take G = Zg, then h( G ) = 3. The set S = {2,3,7  } is a maximal sum-free set in 

Zg, but it is not a coset of H = { 0 , 3 , 6  ] which is a maximal subgroup of Zg. 

Corollary 3. 31, Let p be a prime of the form 3n + 1. 

(a) Consider G = Z3p. If S is a maximal sum-free set in G, then 

(i) S is a coset of the subgroup H of order p, and 

(ii) S may be mapped lander some h to the set ( p, p + I, . . . , 2 p  - I ) where q E Aut(G). 

(b) Consider G = Z3 d Z3 d Zp. If S is a maximal sum-free set in G, then 

(i) S is a coset of the subgroup H of order 3p, 

(ii) S is the union of p cosets of a subgroup K of G of order 3 where G/K is cyclic and S/K is 

a maximal sum-free set in G/K. 

The proof is omitted. 

The following theorem deals with the case when I G I is divisible by primes p of the form 

Theorem 3. 32. In the third case of Lemma 3. 26, let m be the exponent of G; i. e., m is 

the smallest positive integer such that mg = 0 for all g E G. 

Then 
(m-1)IGI IGI - 1 

3m <;I(G) 5 3 . 



Proof: It suffices to establish the lower bound since we have the upper bound by 

Lemma 3.26. 

In G, there is a subgroup K of index m and an element g with order m where g E G \ K. 

Then we have a partition of G as follows 

G = K  u ( K + g )  u ... u ( K + ( m -  1)g) .  

Then the following set is manifestly sum-free 

T = ( K + 2 g )  u ( K + 5 g )  u ... u ( K + ( m - 2 ) g ) .  
m- 1 I G I There are terms in the union; the order of K is - , hence 1 T I = (m-l)IGI, which is 

3 3m 

the required lower b0und.U 

It was conjectded in Diananda and Yap's paper [7] that in this case h( G ) equals its lower 

bound . Rhemtulla and Street [23] proved this conjecture for elementary abelian p-groups. This 

will be our Theorem 3. 35. 

In particular, if G is a cyclic group, then I G I = m and m is the exponent of G. Hence we have 

the following corollary. 

Corollary 3. 33. If G is a cyclic group G = Z,, where m is the product of primes of the 

form 3n + I, the:: 
m- 1 

h ( G ) = -  3 .  

Remark: If I G I = m, where m is a product of primes p each of which is of the form 3n + 1, 
m-1 2 the minimum value of the quotient -is -, which is Erdos' lower bound. 3m 7 

We need some more terminology at this step. 

Definition 3. 34. Let G be a group, H a subgroup of G and S a maximal sum-free set in G. 

Then we say S avoids H if and only if S n H = a, and S covers H if and only if S n H is a 

maximal sum-free set in H. 

We know the size and structure of maximal sum-free sets in a group G where all divisors of 

I G I are congruent to 1 modulo 3 for the cyclic groups only. The next theorem will tell us about 

the size of a maximal sum-free set in an elementary abelian p-group where p is a prime of the form 

3n + 1. 



B I 

Theorem 3.35. Let G be an elementary abelian p-group where p is a prime of the form 

3n + 1. Let I G I = pk for some k. Then h( G ) = npk-l. I 

The next task is to determine the structure of the maximal sum-free sets in the group of order p, 
I 

p = 3n + 1. But first we will give an example to demonstrate the preceding theorem. 

Example: To illustrate the theorem, take n = 2, k = 5; so 

G = Z 7 @ Z 7 @ Z 7 Q Z 7 @ Z 7 .  L e t S = { 2 , 3  ) @ Z 7 @ Z 7 @ Z 7 @ Z 7 .  Thatis, 

S = { ( x, yl, y2, y3, y4) I x E { 2, 3 ), yi E Z7 ). Then, obviously, S is a maximal sum-free 

set in G and h( G ) = I S 1 = 2.74. 

Lemma 3. 36. Let G = En,  where n = 3k + 1 is not necessarily prime. Let S be a sum-free 

2 
set in G satisfying 

l S I = k ,  SC = S + S, and S = -S. ( 3 . 9  

Then 

(i) ( S + g )  n S = O  ifandonlyif g E S, 

(ii) i f I ( S + g )  n S I = l f o r s o m e g  E G , t h e n I ( S + g l )  n S1 2 k-3,where 

g ' = q  andf .9  E S,and 

(iii) if ! ( S + g ) n S ! = h > 1 fcr some g E G, then there~xists g' E C- S U C ~  that 

I ( S + g 1 )  n SI  2 k - ( h + l ) .  

The next theorem will tell us about the structure of a maximal sum-free set in the group 

G =Zp, where p = 3n + 1, n > 2. The proof will not be given here. The reader is advised to 

refer to the paper by Rhemtulla and Street [24]. 

Theorem 3.37. Let G =Zp and p = 3n + 1, n > 2. Then any maximal sum-free set S in G 

may be mapped, under some automorphism of G, to one of the following sets: 

A = { n , n + 2  ,... , 2 n - 1 , 2 n + 1  ), 

B = { n , n + l ,  ..., 2 n - 1  ), 

C =  ( n + l , n + 2  ,..., 2 n ) .  

If p = 7, i. e. ,when n = 2, sets of type A cannot occur. 

In order to characterise the maximal sum-free sets in elementary abelian p-groups, p = 3n + 1; 



we need one additional lemma. 

Lemma 3.38. Let G =Zp and p = 3n + 1, p prime (and consequently n even). Let S be a 

maximal sum-free set in G with I 

(i) S is isomorphic to C = ( n + 1, n + 2, ... , 2n ), and 
n 5n 

(ii) S ( T+ 1, ... , T ). 

Then either 

We now are in a position that we can characterise the maximal sum-free sets S in an elementary 

abelian p-group G. This characterization will be given in the next theorem without a proof. 
2 

However, the proof can be found in Rhemtulla and Street [24]. 

Theorem 3.39. Let G be an elementary abelian p-group and I G I = pk, p = 3x1 + 1, p prime 

and n > 2. Let S be a maximal sum-free set in G. Let, moreover, G have the following 

representation 

{ ( i l , i 2  ,..., i k )  1 ij E ZP, 1 2 j I k ) .  

Then, under some automorphism of G, S can be mapped one of the following 2k + 1 sets: 

k ~ ~ =  ( ( i l ,G,  ..., i k )  I ik E A 1; 

k ~ k , = ( ( i l , i 2  ,..., ik ) I  notallil ,..., i ,=O,ik E C )  u ( ( 0  ,..., 0,$+1 ,..., i k )  lik E A )  

for1 5 r I k - 1 ;  

k ~ k = ( ( i l , i 2 , . . . , i k )  I ik E B ) ;  

k ~ k . r = { ( i l , i 2  ,..., i k ) I  notallil ,..., ir=O,ik E C )  u ( ( 0  ,..., 0,$+1 ,..., i k )  lik E B )  

for1 5 r 5 k - 1 ;  

= ( ( il, i2, . . ., it ) I ik E C } = k ~ o  = 

where the sets A, B, and C were defined in Theorem 3. 37.M 

Remark: We noted earlier that if n = 2, then the sets of type A do not occur. If I G I = 7k, 

then there are k + 1 non-isomorphic maximal sum-free sets, namely k~k. ,  and where 

We will state a theorem without a proof which characterises the maximal sum-free sets in cyclic 



groups of prime power order, for primes congruent to 1 modulo 3. A prime number p is said to 

be bad if it is congruent to 1 modulo 3. 

Lemma 3.40. Let G =Zn, n = 3k + 1. Let S be a maximal sum-free set in G and let H be a 

subgroup of G of order m. Let Si be the subset of H for which 

S i + i = S  n ( H + i )  

where H + 1 generates G/H. Then the cosets of H, more than half of whose elements belong to 

S, form a sum-fiee set in GiH. 

Theorem 3.41. ( Yap ) Let G =iZ,, n = pe =3k + 1 and p is a bad prime. Then any 

maximal sum-free set S may be mapped, under some automorphism of G, to one of the following 

sets 2 

A =  { k , k + 2 ,  ,.. , 2 k -  1 ,2k+  1 ); 

B = { k , k + l ,  ..., 2 k - 1 ) ;  

The proof of this theorem is quite long, it uses the Theorems 3. 15,3. 16,3. 17, the Lemmas 

3. 23, 3. 36, 3. 40, and the Corollaries 3. 24.,and 3. 33. 

A complete characterisation of maximd sum-free sets ir? abelian grocps of order 3mn where 

m 2 1 and every prime divisor p of n ( if n > 1 ) is bad is given by H. P. Yap [45]. 

Theorem 3.42. ( Yap ) Let G be an abelian group of order 3mn ( m 2 1 ) where every 

prime divisor p of n is bad. 
I G I Then either there exists a non-trivial subgroup H, of order -, where 3q I I G I, of G such 
3q 

that S is a union of cosets of H and S/H is maximal sum-free set in G/H or 

I S + S* I = I S 1 + I S* I - 1 where S* = -S u S, and thus S = ( S + S* )C is a standard set. 

Corollary 3. 43. Under the same hypotheses of Theorem 3. 42, if G has exponent less 
IGI I G I than or equal to 7 ,en S is a union of cosets of a non-trivial subgroup H, of order - 

3q ' 

of G and S/H is a maximal sum-free set in G/H. 

Proof: Suppose that 
m-1 

S = ( s + i d  I i = 0 , 1 ,  ..., 3 n - l ) , f o r s o m e  s ,d  E G,dfO.  



- -- 
IF 

IGI  If the order of d E G isT, then S is a coset of a subgroup H, of orderT I G 1 3 0 f ~ .  Ifthe 
I G I 

1 
I G l ,  thenlS I c order of d is strictly less thanT which is not possible. So we have the 

corollary. I 

We will give the statements of two theorems only. 

Theorem 3. 44. Let G = Zp2 @ Zp,  where p = 3k + 1. Let 

H o = c ( p , O ) > C B c ( O ,  l ) > , a n d H i = c ( l , i ) > f o r  1 5 i 4 p , K = < ( p , O ) > .  Le tSbe  

a maximal sum-free set in G. If I S I > kp( p + 1 ), then there exists a h such that 

and 2 

Theorem 3. 45. Assume the hypotheses of Theorem 3.44. Let I S n H1 I = kp + h, 
P-1 

HI = V Ki where Kg = K, Ki = xi+ K, xl + xl = x2, x1 + x2 = x3, ..., and let moreover 
i=O 

xi + Si = S n K, for 0 I i I p - 1. Then 

and at least one of the Si is empty. 

For the proofs, see Yap [45]. 

One can show by using Theorem 3.44, and Theorem 3.45 that h( Z72 @ Z7 ) = 112. 

In this section, we will give a brief review of Group Rarnsey Theory which deals with finding 

the smallest number of sum-free sets needed to partition G* = G \ ( 0 1. 

The reader is advised to refer to Definition 3. 1. We will denote R,( 3 ,2  ) by R,. 

Theorem 3.46. Let G be an additive group. Every sum-free partition of G* can be 

embedded in at least one covering of G* by maximal sum-free sets. 

Proof: Let S = { S1, S2, . . ., S, } be a sum-free partition of G*. Then for each i we adjoin 

elements of G* to Si, provided that Si is still sum-free, until a maximal sum-free set, Ti, is 

obtained. Note that Ti may not be unique. Now 7 = { TI, T2, . . ., T, ) is a covering of G* by 



maximal sum-free sets, each Si c Ti and so S is embedded in 7.1 

Corollary 3.47. Each of the maximal sum-free sets of the previous theorem has cardinality 

less than R,-l. 

Proof: Consider the following collection of maximal sum-free sets. 

L =  ( T I Si c Tfor somei ). 

L has a maximal element, say To Hence for every T E L, I T I S I To I. 

We may assume, without loss of generality, S1 E To Now, we form the collection 

R = ( TO, S2\T0, ..., S,\TO }. 

Fora l l i=2 ,  3, ..., n, wehave To n (S i \TO)=OandS1  c To. Thiscollectionisa 
A 

sum-free partition of G*. We know, from Section 1, that 1 G I I R,,l. This proves the 

corollary..l 

Since every sum-free partition of G* can be embedded into at least one covering of G* by 

maximal sum-free sets, we need only consider coverings of G by maximal sum-free sets. 

Greenwood and Gleason gave sum-free partitions of Z5, Z2 0 Z2 0 Z2 $ Z2, Z4i; and 

Whitehead gave the sum-free partitions of Z4 $ Z4 CB Z4 0 Z4 and Z7 $ Z7. Also, we have 

Z i 3 =  (4, 697, 9 ) w (1, 5 ,  8, 12 ) u (2, 3, 10, 11 j. 

All the sets which appear in these partitions of G are maximal sum-free sets Si. These sets 

have one additional property and that is that Si u ( Si + Si ) = G. We need the following 

definition. 

Definition 3. 48. Let G be a group, and let S be a maximal sum-free set in G. S is said to 

fill G if G* c ( S + S ) u S. If every maximal sum-free set S in G fills G, then G is called a 

filled group. 

Note that if S fills G, we can have 

( S + S )  u S = G *  if and only if S n (-S) = 0 ,  

( S + S )  u S = G  otherwise. 

If G is a finite abelian group, then the necessary and sufficient conditions for G to be a filled 

group are known. If G is a finite non-abelian group, then only necessary conditions are known. 



Theorem 3.49. A finite abelian group G is filled if and only if it is 

(i) an elementary abelian 2-group, or 

(ii) Z 3, or 

(iii) q. 
Theorem 3.50. Let G be a filled finite non-abelian group. Then 

(i) for any normal subgroup H of G, G/H is filled, and 

(ii) if G' denotes the commutator subgroup of G, then G = G' or GIG' is an elementary 

abelian 2-group or GIG' z Z5 and I G 1 is even. 

We are not going to provide the proofs here, they can be found in Street and Whitehead [32]. 
;a 

We will give some examples to show that the conditions in Theorem 3.5  1 are not sufficient 

for G to be filled. 

(1) Take G = D,, the dihedral group of order 2n. Let n = 6k + 1 2 2 and 
n 2 -1 

D n = c s , t  I s = t  = l , s t s = s  >. 

If we choose 
2k- 1 4k 2k+l 4k 

S = { s  , ,  s , s  t ,..., s t ] ,  

then S is a maximal sxnfree set, which does not fill G. 

(2) Take G = Q, the quaternion group of order 8; where 
4 2 2 

Q = < s , t  I s = 1 , s  = t  , s t s = t > .  

Let S be the set of consisting of the only element of order 2. Then S is a maximalsum-free set 

which does not fill G. 

(3) When G = G' = A5, the alternating group of order five, G is not filled by the maximal 

sum-free set 

We will now introduce method called isomorph rejection which is effective for generating the 

family of maximal sum-free sets. This will be done by computing the family for ( Z2 )4 in detail. 



4 Consider Aut( ( Z2 ) ). This group can be viewed as a vector space of dimension 4 over 

GF(2) and hence Aut( ( 2 2  )4 ) s GL( 4 ,2  ). 

Since any sum-free 1-set consists of a non-identity element, so it is isomorphic to { 0001 ). 

Any sum-free 2-set must generate a subgr~up of order 4 and so is isomorphic to { 0001,0010 ). 

Similarly, any sum-free 3-set generates a subgroup of order 8 andso is isomorphic to 

{ 0001,0010,0100 ). If we have a sum-free 4-set, then either this set generates the whole 

group, in which case it is isomorphic to 

A = { 0001,0010,0100, 1000 ) 

or it is contained in a subgroup of order 8 and so by Corollary 3.30 is isomorphic to 

B = { 0001,0010,0100,0111 ). 

Any sum-free set which contains more than 4 elements must contain a subset isomorphic to 

either A or B. 

We see that A + A contains all the elements of ( Z2 )4 which have exactly two ones. By 

adjoining any one of 0111, 1011, 1101, 1110, and 1111 to A we can preserve its sum-freeness. 

By a simple observation, we see that if we adjoin 11 11 and any one of the other four, we cannot 

have a sum-free set. But, on the other hand, we get sum-free sets as foliows. 

A5=A u { 1111 ) 

and 

A8=A U { 0111, 1011, 1101, 1110 ) 

which are both maximal. Hence 5, 8 E A( ( Z2)4). 

Now, consider the subgroup H = ( 0000,001 1,0181,0110 ). Clearly H + 0001 = B and 

B + B = H. Take an element of another coset of H, say B' = B u { 1000 ), and adjoin it to B, 

then B' + B' = H u ( H + 1001 ), then we can adjoin the remaining elements of H + 1000 to B'; 

this construction gives B8 = ( H + 0001 ) u ( H + 1000 ), we see that B8 = A8. 

Take now an element of the other coset of H, say B" = B u { 1001 ), then 

B" + B" = H u ( H + 1000 ), and by adjoining the remaining elements of H + 100 1 to B" we 

obtain C8 = ( H + 0001 ) u ( H + 1001 ). We see that C8 = T(B8), where T E GL( 4,2 ) and 



4 when we consider the elements of ( Z2 ) as column vectors. 

Hence we have only As and As. 

In Table 4 of the Appendix we have only two non-abelian groups of order 16 which can be 

partitioned into three sum-free sets. They are G4 and G5. Partitions of (G4)* and (G5)*is given 
2 

below. 
2 2 (G4)* = ( r, t, st, ts, rsts ) u { s, rs, rt, (st) , sts ) u ( rst, rts, tst, r(st) , rtst ), 

This partition of G4 gives a monochromatic triangle-free coloring of KI6 isomorphic to the 

coloring that one can obtain from a partition of ( Z4 )2. This partition of G5 gives a 

monochromatic triangle-free coloring of KI6 isomorphic to the coloring that one can obtain from a 

partition of ( Z 2  )4. These two non-abelian groups are the only ofies which can be partitioned into 

three sum-free sets.(See Whitehead [39].) 

For a discussion concerning sum-free sets and difference sets, see Street and Whitehead 1311. 

Also, in the same paper they determined some sum-free cyclotomic classes in finite fields and via 

those classes they constructed difference sets, association schemes and block designs. Also, they 

give a characterisation of sum-free sets in GF(q) for q = p2m where pm = 1 (mod 3) and m is a 

positive integer. As a corollary, they obtained 

p2m + 1 5 Re( 3 , 2 )  =Re 

m wheree=p - 1. 

The following lemma gives restriction the range of the set A(G) if G is an abelian group of 

order 4n for some n. 

Lemma 3.51. Let G be an abelian group of order 4n. Then 



(i) if n 2 3,then 211-1 e A(G),and 

(i) if n 2 6, then 2n -2 ei A(G). 

Now consider Z 13. There are at least three ways of partitioning Z 13 into maximal 

sum-free sets. We can consider the cubic residues and their multiplicative cosets in GF(13). This 

gives us the partition we had before. We can consider the quartic residues and their multiplicative 

cosets in GF(13). This gives us the following partition for Z 13 

i Z 1 3 = ( l , 3 , 9 }  u ( 2 , 5 , 6 }  u ( 4 , 1 0 , 1 2 )  u { 7 , 8 , 1 1 } .  

Thirdly, we consider the difference set ( 0, 1 ,3 ,9  } in Z 13 and its shifts which contain 0, we 

We now ask the following question. In how many ways can a group G be partitioned into 

maximal sum-free sets? 

From Table 1 of the Appendix, we see that, for Q, the quaternion group of order 8, p(Q) = 1 

and h(Q) = 4. It is also an open problem to have bounds for p(G). We know the following 

about p(G). 

Let G = 2, and let g E G*. Consider the sum-free set S = ( g, . . ., 2g - 1 ). Hence 

S + S =  ( 2 g  ,..., 4 g - 2 )  or {2g,  ..., 0, ..., 4 g - n - 2 1 ,  

and S is maximal sum-free if 

(1) g + 2 g -  1 5 n,or3g I n + l  and 

(2) 3(g+ 1 )  > n +  1. Thusp(Zd 2 

We can also think about a generalisation of Lemma 3.5 1 to non-abelian groups. This question 

has no solution at present. It would be desirable to generalise Lemma 3.52 even for abelian 

groups, in the following fashion. 

- Let I G I = 4n. Does there exist a function O(k), such that if n 2 k, we have 

2n - O(k), . . ., 2n - 1 e A(G), but 2n - O(k) - 1 E A(G)? 

Lemma 3.51 would imply that O(k) = 0 fork = 0, 1 ,2  and O(k) = 1 fork = 3,4,5,O(k) 2 

2 fork 2 6. 



We will discuss p(G) when G  is an elementary abelian 2-group. We will denote G by ( Z 2  )", 

we know that the group G  is filled. 

Theorem 3. 52. If m is the smallest positive integer for which 

then 

P( ( z2 1" 2 m.. 

We can now obtain lower bounds for p( ( Z 2  )" ) when n = 3,4,5,6. These are 

4 5 P ( ( z ~ ) ~ ) ,  5 5 ~ ( ( z ~ ) ~ ) ,  

8 2 ~ ( ( 2 , ) ~ ) ~  11 6 ~ ( ( 2 ~ ) ~ ) .  
4 The following computer results allow us to determine p( ( Z2 )" ) for n i 4. 

{ 4 1 = A(( Zz 13). 

{ 5 , s  1 = A(( Z 2  14), 

{ 9, lo, 16 ) r A(( z2 )'I, 
{ 13, 17, 18,20, 32 ) G A(( Z 2 ) 4 .  

Before closing this chapter, we will give a theorem and a conjecture concerning the sum-free 

sets in fiofi-abeliafi groups. 

Theorem 3. 53. Let G a non-abelian group of order 3p, where p is a bad prime. If S is a 

maximal sum-free set in G, then S is a coset of the subgroup H of order p. 

From the section on the main results, we know the following lower bound for a non-trivial 

abelian group G. 
21 G 1 

7 5 h( G ). 

For non-abelain groups no such lower bound is known. If the commutator subgroup G' is 

But if we have G = G', then there is no known non-trivial lower bound on h( G ). There is a 

conjecture related to this instance. 

Conjecture: For a,, the alternating group of degree n, we have 



Since any coset of a proper subgroup is sum-free, we have 
(n - I)! 

U A n ) 2  2 

But in reality, it is not hopeful to restrict the problem to cosets only. Because, for n = 5, we have 

other sum-free sets besides the cosets. The following two sets can be given as examples 

Sl  = {(12345), (15432), (12543), (13452), (13425), (15243), 



Chapter 4 

In this chapter, we will study sum-free sequences of positive integers. We will , in particular, 

be interested in finding bounds on the reciprocal sum of the elements of a sum-free sequence. 

We will start with a definition, and fix the notation. Unless otherwise stated, in this section, 

when we say "a sequence," we mean a strictly increasing sequence of positive integers. 

Definition 4. l3 A sequence A with terms al < % < . . . is called sum-free if 
. . 

n- 1 

an # C &kak with ek= 0, 1, 
k=l 

in other words, none of the terms al < a2 s.. . is the sum of other terms in A 

Paul Erdos [lo] proved the following inequality. 

Let A be a sum-free sequence, then 

< 103. 

ak€ a 

We will define 

, ( A ) =  x h=sup  p ( m )  
a €  a m 

where the supremum is taken over all sum-free sequences A 

If we take A = { 2" ) for n 2 0, we see that Ais sum-free; hence p( A )  = 2. Therefore we 

have2 I h < 103. 

Since we have p( A )  = 2 for A as above, one might think that the reciprocal sum of any other 

sum-free sequence is dominated by p( A). But we can give the following example to show that 

this is not the case. 

We now define a sequence 'U = ( uk ) as follows: For 1 5 k 5 14, let uk be given 

1, 2, 4, 8, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181. 



Let 

One easily sees that U is a sum-free sequence. On the other hand, we have 
14 

- 2.03510128 ... . 
k=l 

Hence we have 2.035 < h < 103, E. Levine and J. O'Sullivan [I81 showed that h < 4. 

Later H. L. Abbott [1] established the lower bound 2.0648 < h. We will present his 

construction later. Levine and O'Sullivan conjectured that h is much closer to 2 than to 4. 

Abbott's constructihn is an evidence for such a conjecture. 

Notation. Let A be a sum-free sequence with terms al < % <. . . . The counting function 

A(x) of such a sequence is 

A(x) = 1 . 
a k l  x 

Erdos [lo] proved the following inequality for A(x). 
k 

Levine and O'Sullivan improved this inequality. This improvement is given in the next 

theorem without a proof. 

Theorem 4. 2. If A is sum-free, then 

Instead of this inequality, we will use a weaker version of it which is given below. 

Theorem 4. 3. If A is sum-free, then 
X A(x) I - k +  1 + a k  

for k 2 l , x  2 0. 

Proof: Although we did not give a proof of Theorem 4.2, we will use Theorem 4.2 to 

prove Theorem 4. 3. 

From Definition 4. 1, we know that the sequence is strictly increasing. Hence, for 

57 



Hence, by Theorem 4.2, 

X 
5- k + 1 + ak, 

in the last line, we used k I a k . l  

Definition 4. 4. We call a sequence a %-sequence if it satisfies inequality ( 4. 1 ). 

Note that every sum-free sequence is a X-sequence. We will denote the supremum of p( A)  
..t 

by p, where supremum is taken over all %-sequences. In this case, it is obvious that h I p. 

Our aim is to establish p < 4. 

We give an example of a sequence which is a X-sequence, but not sum-free; Levine and 

O'Sullivan made a conjecture based on this example. 

Define the sequence 63 with terms pl, p2. . . . as follows. Let pl = 1. Assume now 

pl, p2, . . ., pnel have been defined. We define pn as follows. Let p, be the least integer so that 

inequality ( 4. 1 ) is noi violated for ic = 1, 2, . . ., n - 1, viz. 

Hence we have 

@ ={1,2,4,6,9,12,15,18,21,24,28,32 ,... ). 
For @, we have p( @ ) z 3.01. Levine and O'Sullivan believe that p( @ ) dominates the 

reciprocal sum of any other %-sequence. 

Conjecture ( Levine & O'Sullivan [18] ). p = p( 63 ). 

In this section we will estimate p. We will deal with X-sequences. We will start with a 

theorem. 



Theorem 4. S.(Levine & O'Sullivan [18] ) Let fl be a X-sequence, let N, M, and H be 

positive integers so that M = 2H. Then 
M 

where 

Since we will later give a theorem which is proven in a similar way to this, we omit the proof. 

Corollary 4.6.( Levine & O'Sullivan [18] ) Keeping the notation the same as in the 

previous theorem,,&e get 

Since A(n) I n, we have 
2' 

Let N = 4, and M = 2 in the above coroiiary to get 

for any X-sequence. Hence 

For the %-sequence @, all the terms less than 218 were determined by a computer. We have 

the following results due to Levine & O'Sullivan [18]. 

~ ( 2 ' ~ )  = 3360, 



We find a bound on p( r ) which is given in the following lemma without a proof. 

Lemma 4. 7.( Levine & O'Sullivan [18] ) For the X-sequence A, 

forr 2 0 , k  2 1. 

Using inequality (4.3 ) for the %-sequence p ,  we have 
M M 

M log2 

i= 1 I= 1 

.-t 
where we made the use of the fact that each r > N for i = 1,2, . . ., M. 

Now we use inequality in Corollary 4.6 to estimate p( p ) with N = 18, and M = 20. The 

choice of the latter is quite arbitrary. So we have 

But (4. 3 ) gives 
20 

To make the right-hand-side small, we may choose k = 410. This gives P~~~ = 8964 so that 
20 10 2 8964 

p ( p )  < 3 + ++- 
218 

Hence we have 

3 < p( p ) < 3.0679. 

If we consider (4.2 ), we see a large discrepancy between it and the conjectured value 

p = p(@). In this section, we will try to narrow this gap. We give some lemmas and theorems 

without proofs, and we show by means of them that if a %-sequence has a large reciprocal sum, 



then its first three terms must be the same as those of @. The work in this section is entirely 

taken from Levine & O'Sullivan [18]. 

The first lemma of this section is a special case of Theorem 4.3. We restrict x to the terms of 

the sequence A 

Lemma 4. 8. A is a X-sequence if and only if 

for k 2 1, i 2 1. 

Lemma 4.9. Let h, w, r, m be integers with r > 0, and 0 I h < w < m + r so that 
r -  1 

(i) 7 < h + l  and w + 1' 

(ii) m 5 rph+l - ( r  - l)(ph + 1 ). 
A 

Let 23 be a X-sequence with terms bl < b2 <. . . such that bi = pi, i = 1,2, . . ., h and 

bw = t 2 p,. Let be a sequence obtained from !B as follows. 

Replace the terms bh+l, . . . ,b, by ph+l, . . . ,p,; and delete d = t - ph+l terms brq+, where q = 

ly  2, ,.., d. 

Then A is a %-sequence and 

Theorem 4. 10. Let 23 be a %-sequence. Then there exists a %-sequence A with al = 1 

such that p( A )  2 p( 'B ). 

Theorem 4. 11. Let !B be a X-sequence. Then there exists a %-sequence A with al = 1, 

a2 = 2 such that p( A )  2 p( !B ). 

Theorem 4. 12. Let B be a X-sequence. Then there exists a X-sequence A with al = 1, 

Unfortunately, we do not get any further theorems like Theorems 4. 10 - 4. 12. There is no 

- general procedure for doing so. Even it is not possible to show for a %-sequence A with large 

reciprocal sum should have a4 = 6. 



By modifying the proofs of Theorems 4. 10 - 4. 12 one would show for a %-sequence A so I 
that p( A )  > p - E with E sufficiently small must have al = 1, % = 2, and a3 = 4. If E is small 

enough, it is possible to show that either a4 = 6 or 28 S a4 S 64. 

Theorem 4. 13. Let /B be a X-sequence. Then there exists a X-sequence A with 

al = 1, a2 = 2, a3 = 4, andeither a4 = 6 01-28 2 a4 I 64 such that p( A )  2 ~(2.3).  

5,dh BE4PU'II%R ESTlWATB FOR @ 

In this section, we will improve the bound ( 4.2 ). Keeping Theorem 4. 12 in mind, we take 

a X-sequence A with al = 1, a2 = 2, a) = 4, and either a4 = 6 or a4 Z 28. So we have A(l) = 1, 

A(2) = 2, A(3) = 2, and A(4) = 3. The work in this section is entirely taken from Levine & 

Then 

From Theorem 4.5, by taking N = 6, and M = 6, we get 
6 

Since 

. wehave 

Now we have two cases to consider. 

Case 1: Assume a4 2 28. For 5 5 n I 27, A(n) = 3. If n > 27, then 



A(n) 5 A(n - 1) + 1, so that A(n) 5 n - 24. From ( 4. 1 ), we have fork = 3, A(n) S $ + 4. 

Hence 

A(n) 5 min ( n - 24, + 4 ) = sn, for n > 27. [; I 
Therefore 

n(n + 1) - + Sn < -75. n(n + 1) n(n + 1) 
n=5 n=5 n=5 

From Lemma 4.7, with k = 3 

Since y n 2.232, we get, for r 5 7, 

Hence 

Case 2: Assume now a4 = 6. Again, fiom ( 4. 1 ), we get for k = 2,3,4 
n n n 

A(n) 5 7 + 2, A(n) 5 7 + 4, and A(n) I + 6, respectively. So we have 3 

As in Case 1, we have 

We also have ( 4. 13 ) as well. Since rl 2 7, and ri 2 8 for i 2 2, we get 
6 

Hence, we have 



Therefore we conclude the section with 

Erdos [12] conjectured that if al < % < . . . is a sum-free sequence A with al 2 n, then 

p( A )  < log2 + en, where E, + 0 as n + -. 
E. Levine [19] established Erdos' conjecture positively. He showed if Ais  any sequence 

which satisfies ( 4. 1 ), then p( A )  < log2 + 0(a-'I3), where a = al. 

By taking the first n + 1 terms as n, n + 1, . . ., 2x1, and the remaining terms as s, 2s, 4s, . . . 
n 

where s = 1 + (n + i ), we see that the constant log2 is best possible. 
i=O A 

Theorem 4. 14.(Levine [19]) Let A be a sequence of integers with al < a2 < . . . whose 

counting function A(x) satisfies ( 4. 1 ). Then 

p( A )  < log2 + ~ ( a " ~ ~ ) ,  where a = al. 

Proof: We partition the positive integers into intervals 

1 
We introduce N(r) as ~(2"') - A(21 and p( r ) as -, let t be such that a E J(t). 

a, E J(T) % 

Hence we have 

and 

We define the sets A and r as follows. 



Hence 

We now estimate the first term on the right-hand-side of the above. 

Let l? = { s = rl, 5 ,  r3, . . . )<. Hence we have 

r . - r .  2 i - j  
1 J ( i  2 j ) ,  

ri 2 i + s - 1 .  
J 21-13 Now consider r., and let q = [2 J 1. Since r. E r, we have 

J J 

q < N(T~) 5 ~ ( 2 ~ j + l ) .  

So we have a, < 2'j". Hence for any r., we get 

We now consider the following partition for T, 
4s 

r l = { r  E r I r S T ) ,  

4s r 2 = { r i  E r I ri >-,andi 5 t), 3 

So we get 

We want to estimate the first term right-hand-side of the above ford = 3,2, and 1, in turn. 

If ri E r3 ,  by letting j = - , we get ld 



From ( 4. 6 ), 

p(ri) < 2 4 3  + 21-i/2 22 - (8) 

If we sum the above over ri and keeping in mind that ri E r3 implies t c i, we get 

Therefore 

From ( 4. 6 ) by letting j = 1, one gets 

p(ri) < 2 
1 - (2~13) + 21+~-ri 

,4 
So we have 

= 0(a-213 log(a + 1) + a-ID), 

since 2 - "I3 = ~ ( a - ~ ~ ~ ) .  Hence 

Finally, we estimate the last case where d = 1. We let 

p = ~ ( 2 ' )  + [ 2  (2sD)+2] 

b = ap, 

m = largest integer in T1, 

so that p < ~(2"'). Hence 

Then 

Since A(b) = ~ ( 2 ' )  + [2 0s13)+2], we get 



Our aim is to show that the second term on the right-hand-side of ( 4.7 ) is bounded by log2. 

Since m is the largest integer in rl, we have m 5 F, also p 2 [2 (2s13)+2], and s 2 4, so 

we get 
P' 
p+l- p < 0. 

Then, by ( 4. 1 ), we get 

from which we conclude that, in the last term of ( 4.7 ), we are adding at most b distinct integers 

so that each ak is Uvger than ap. On the other hand, that sum cannot exceed 

b c n I 2 b  

Whence 

Therefore, we get 
K' p(r) < iog2 + ~ ( a - ' / q .  

rE  r l  

By putting necessary parts together, we arrive at 
00 a 

In this section,we present a construction due to H. L. Abbott [I]. He improved the lower 

bound given by Levine and O'Sullivan, which is h > 2.0351, to h > 2.0648. His construction 

is given in the following theorem without a proof. 

Theorem 4. 15. Let A be a (finite) sum-free set. Let o. = a, and r be an integer 
a~ a 

exceeding o. Define integers k, m, n, r, and p as below. 



We choose and A in such a way that r >. 0. Define the sets B  and Cas below. 

B = { p ~ + 1  I p = 1 , 2  ,..., k ) ,  

Then S = A u B  u C is a sum-free set.M 

Ab bott computed \ for various sets A and various choices of T. He noticed that if A 
S E S  

= { 1,2,4, 8 ) and z = 24., then 

'- > 2.0648. 
S 

S E S  

In this case, we obtain the following values 

In this chapter, our main concern was to study a special class of sequences, namely sum-free 

sequences of positive integers. We also studied a related class of sequences, namely 

X-sequences. We looked at the reciprocal sum of the elements of such sequences. In this way 

we can control the lememnts of a X-sequence. 



Chapter 5 
UNSOLVED PROBLEMS 

In this last chapter, we present some unsolved problems related to sum-free sets. 

(1) Finding the values of the Schur function f(n) is presently an unsolved problem. The last 

"value" was founQ , about ten years ago. It may be possible to find the exact value of f(5) with the 

aid of a high-speed computer. 

(2) We know from Chapter 2, Corollary 2. 8, that the limit lim f(n) = L exists where 
' n + =  

f(n) is the Schur function. It is not known if L is finite or infinite. P. Erdijs is offering $100 for 

the answer. 

(3) Another problem about sum-free set is the following. Denote by h(n) the largest m for 

which there exists some way of partitioning the set ( 1,2, . . ., m )into n sets which are sum-free 

modulo m + 1; that is, they contain no solution of x + y - z ( mbd (m + 1) ). The partitions 

which give the values f(1) =1, f(2) = 4, f(3) =13, f(4) = 44 are sum-free moduli 2,5, 14, and 45, 

respectively. The conjecture is that h(n) = f(n) for all n. 
(4) It is shown that the limit lim h(n)lln = L* exists. It would be interesting to show that 

n 3 m  

L = L*. 

(5) In Theorem 3.32, we gave the bounds 

(m - 1)l G I I G I - 1  
3m 5 h ( G )  5 3 , 

(m - I if G is an abelian group of order Diananda and Yap [7] conjectured that h(G) = 3m 

divisible by bad primes and of exponent m. 
21 G I 

(6) The lower bound 7 5 h(G) is known for finite abelian groups. For any finite 

h(G) group, the conjecture is that can be arbitrarily small. 



(7) For what values of n does A( D, ) = A( Z2 Cf3 2, ), where D, is the dihedral group of 

order 2n? We know that this is true for n = 2, 3,6,7.  , 

(8) It is desirable to find bounds on k(G), the cardinality of the smallest sum-free set. 

(9) From Theorem 3.46, we know that every group can be by locally maximal sum-free sets. 

Which groups can be partitioned into maximal sum-free sets? 

(10) A result similar to that of Theorem 4. 10 must be true for sum-free sequences. But no 

proof is known yet. 

(1 1) Determine the exact value of h and those sum-free sequences Afor which p(A) = h. 

(12) Prove that if a sum-free sequence Ais  such that p(A) is very close to h, then al = 1. 

(13) Intead oflntegers, consider the class of real-valued sequences A with the counting 

function A(x) and terms 0 I al I a2 I.. . satisfying 

What is the best bound for p(A) over this class of sequences? 

The following problem, which I call the "reciprocal version of Schur's problem," is of special 

interest. The following is not known about it. 

Assume  at we partitior, the positive imegers into finitely many classes, that is 
1 1 1  N = C1 u C2 u . . . u C,. Then tthe equation ;; + - = - has a solution in Ci. 

Y z 



Appendix 

In the following table, we give non-isomorphic maximal sum-free sets in groups of orders 2, 

3, . . . , 1 1, 13, 14, and 16. We will write the non-abelian groups multiplicatively. We will 

extend Table 1 to Table 2 in which we can have orders 12, 15, 16 ( all abelian cases ), 32 and 64 

(for elementary abelian cases ). A group of isomorphism acting on a family of sets partitions the 
4 

family of sets into isomorphism classes, i. e. , into equivalence classes. A transversal is a set 

containing exactly one member of each equivalence class. 

We will denote the direct product of m copies of Z, by ( Z, )m for simplicity; the dihedral 

group by D6; the non-abelian group of order 12 by T, where 

2 r = < s, t I s4 = t3 = 1, ts =st  >. 

For the elementary abelian groups of orders 16,32, and 64, we will use B, to denote the 

generating set { 00.. .GI, 00.. .010, . . . , 10. . .OO ) of the group ( Z2 )". The direct product 

notation indicates cosets. 

These are taken from Street and Whitehaed[30] and Whitehaed[37]. 



T A B L E  1 

1 G I  G A@) Transversals 



T A B L E  2 

IGI G NG) Transversals 



T A B L E  3 

IGI G 4 G )  Transversals 

32 ( z2 )5 ( 9, 10, 16 } B5 u { 01111,10011,10101, 10110 ) 

Whitehead [I9751 gave a list of locally maximal sum-free sets in non-abelian groups of order 

16. We have nine such groups. We will introduce the groups as below. We will represent the 

groups by Gi where 1 I i I 9. 

2 2 G I = <  r , s  I r 2 = s  , ( r s )  = e  >, 

G2 = < r, S, t I r2 = s2 = t2, rst = SIT = trs >, 

In the next table we will give the non-abelian groups of order 16 and their transversals. 



G A@) Transversals 

Gl ( 394, 57 8 I 6  3  4  7  6  4  { s, s , s rs I, ( s, s , s rs I ,  ( s, s , rs ,  s rs I,  
6 2  6  2  6  4  ( s , s  , s r s , s r s ) , ( s  , s  , r s , s r s ] ,  

2 6 2  6  4  7  3  { s  , s  , s r s , s r s ] , { s , s , s , s r s , s r s ] ,  
3  5  7  2 4 6  ( s , s  , s  , s  , r s , s r s , s r s , s r s ) ,  
3  5 7  3  5  7  { s , s  , s  , s  , s r s , s r s , s r s , s r s ]  

G2 ( 4 9 8 )  
2  

( r s, t, s 1, ( r, s, t, rsr, rst, rtr, rts, srs 1, 
{ r, s, rt, tr,, st, ts, rsr, srs 1, 
( r, rs, sr, rt, tr, rst, rts, srs ) 

G3 ( 27 4, 57 6, 8 2  2  3  2  2 2  3  3  2 2  
{ s  , t  l , ( s , s  , t , s t  ) , { s , s  , t , t  7s t 1, 

2  { r, t, st, ts, rsts ), ( s, t, rt, (st) , rtst 1, 

6 3 4 7  3 5 7  2 4 6  ( S , S  , r , r s  , T S  , r s  ) , ( s , s  , S  , S  , r , r s  , IS , IS } 
3 5 7  3 5 7  ( s , s , s , s , r s , r s , r s , r s  1, 

2 3 4 5 6 7  
( r, rs, rs , rs , rs , rs , rs , rs ) 

G9 
4 7  6  3  2 6  3  5  ( 3 , 4 , 6 , 8 ]  ( s , s  , s  I , ( s , s  , t , t  I , {  s , s  , t , t  , s t , s  t ) ,  

3 5 7  3 2  6  
{ S,s , s  , s  , t , t  , s  t , s  t I 7  

3  2 3 4 5 6 7  { t , t , s t , s  t , s  t , s  t , s  t , s  t , s  t ]  

5  6  For the groups ( Z2 ) and ( Z2 ) , it is not known if we have the complete solutions. 
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