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ABSTRACT 

One of the major achievements of medieval Islamic science is 

the construction of tables of values for certain functions 

relating to astronomy. These tables range in size from a few to 

250 000 entries and are generally based on trigonometric 

formulae. Al-Khalili's auxiliary tables, for example, contain 

over 13 000 entries and give values for the functions 

- Sin B Tan 4 ,  and Sin @, g(#,B) - f ( # m  = Cos # R 

[C~: y] that are accurate to the equivalent of G(x,y) = arc Cos - 
three or four significant decimal digits. The applications of 

these functions to problems of spherical astronomy are known; 

however, the texts are silent concerning how the entries were 

actually calculated. 

The purpose of this study is to develop computer-based 

methods implementing statistical tests to discover the numerical 

structure of al-Khalili's auxiliary tables. We have discovered 

an interpolation grid on the g(#,8) tables, as well as a likely 

interpolation scheme. Al-Khalili then used an equation, based 

on the sine addition formula, to generate the values of f(#,8) 

from corresponding entries in the g(#,B) table. Both of the 

above tables were constructed using trigonometric values rounded 

to two sexagesimal digits. Finally, the extent of the work done 

. on the G(x,y) table reveals a curious lack of concern for 

accuracy early in the calculation combined with a higher level 

of accuracy at a later stage. 

iii 



It is hoped that the techniques used in this study as well 

as other methods can be used to determine the structure of many 

other astronomical tables and so reveal a clear picture of the 

evolution of numerical techniques in medieval Islam. 
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CHAPTER 1 

INTRODUCTION 

1.1 Types - of Medieval Islamic Astronomical Tables 

No account of the history of Islamic science would be 

complete without an extensive examination of the various types 

of astronomical tables that appear in the manuscripts. These 

tables, which often appear not only in the astronomical 

handbooks (called zijes) but also in other contexts as well as 

independently, constitute a pinnacle of astronomical research of 

the medieval period and attest to the prodigious numerical 

ability and sheer patience of their constructors. While the 

methods of construction of most of these tables are unknown, 

their usefulness can be exemplified by the fact that the 

fourteenth century astronomer Shams al-Din al-Khalili's 

hour-angle and prayer tables were used until the late nineteenth 

century.' The tables have widely varying purposes, but can be 

roughly grouped into five categories: tables dealing directly 

with planetary and spherical astronomy, tables aiding religious 

ritual, tables to help in the construction of astronomical 

instruments, mathematically based astrological tables2 and 

I D. A. King, "al-Khalili", Dictionary of Scientific Biography 
( ~ e w  York: Charles Scribner's Sons, 197m, p. 259. We will study 
al-Khalili's auxiliary tables in detail in Chapter 3. 

2 ~ e  shall not deal with these tables here. A description may be 
found in E. S. Kennedy, "Mathematics Applied to ~strology",in 
Proceedings of -- the Sixteenth International Congress of the 
History - of Science: C. Meetings on Specialized Topics, 
Aug. 26 - Sept. 3, 1981, Bucharest, Romania, pp. 246-250. 



finally purely mathematical auxiliary tables used to assist in 

the computation of more complex functions. 

1 .  I .  I T a b 1  e s  o f  S p h e r i c a l  a n d  P l a n e t a r y  A s t r o n o m y  

Every Islamic zij contains a collection of tables of 

functions of spherical astronomy, the science which describes 

rules for changes o'f coordinates in the celestial sphere. An 

example of one of the most common functions to appear in tabular 

form is the oblique ascension, the angular distance along the 

celestial equator (taken in the direction opposite to that of 

the daily rotation) from the vernal equinox (TI to the horizon, 

as a function of the observer's terrestrial latitude and the 

angular distance along the ecliptic between T and the horizon. 

(See Fig. 1 . 1 . )  Tables of oblique ascensions with varying 

degrees of accuracy appear as early as the ninth century in 

Fabash al-YSsib's Z T j I 3  and reach their peak in the fourteenth 

century with the work of al-KSshi and particularly of Ulugh Beg, 

whose values were calculated to the equivalent of seven decimal 

digits. Other tables include functions such as the right 

ascension4 of various points of the ecliptic, the solar 

'M.-T. Debarnot, "The ZTj of vabash al-YSsib: 
Istanbul Yeni Cami 784/2", in Eds. D. A. King 
From Deferent to Equant: A Volume of Studies 
Science in thexncient - an3 Medievar~ear -- East 
Kenned G n X s  of the New York Academy of Sc 
d p .  47. 

A Survey of MS 
and G. Saliba. 
in the History of -- 
in Honor of E.S. . - - -  
iences v. 5 0 0 7  - 

4The angular distance along the celestial equator from the 
vernal equinox to the perpendicular projection of the ecliptic 
point onto the equator. The right ascension and the declination, 
the length of this projection, were used as the equatorial 
system of coordinates on the celestial sphere. S,ee Fig. 1 .2 .  



azimuth5 as a function of solar altitude, celestial longitude, 

and terrestrial latitude, and the longitude of the ascendant6 as 

a function of solar altit~de.~ 

Another group of tables distinct from the above functions 

are those relating to planetary astronomy. Other than the sun, 

the five visible planets and the moon are seen to make a path 

through the sphere of fixed stars, staying within a few degrees 

on either side of the ecliptic. Many Islamic astronomers 

constructed tables based on Ptolemaic models describing the 

paths of these planets. Their longitudinal motion was generally 

decomposed into two parts, as follows: 

h(t) = X(t) + e(t) (1.1) 
- 

where X(t) represents the true longitude at time t, h(t) is a 

linear function of t describing the mean longitudinal motion, 

and e(t) is a correction factor used to account for variations 

and retrogradations in the object's path, which in the medieval 

period was termed the equation. Planetary equation tables 

formed an integral part of the z i j e ~ . ~  

= ~ h e  angular distance along the horizon from the north point to 
the perpendicular projection of the sun onto the horizon. See 
Fig. 1.3. 

 h he location of the intersection of the ecliptic with the 
horizon. 

7 ~ .  A. King, "On the Astronomical Tables of the Islamic Middle 
Ages", Studia Copernicana 13 (1975)~ p. 45. 

e ~ .  S. Kennedy, A Survey of Islamic Astronomical Tables, 
Transactions of the ~merican Philosophical Society, New Series 
(~hiladelphia, 1956), vol. 56, pt. 2, p. 142. 



Fig. 1.1: The oblique Fig. 1.2: The right ascension 
ascension A4(h) of celestial a and declination 6 of star S, 
longitude A, where 4 is the where E is the obliquity of the 
the observer's terrestrial ecliptic, and T is the vernal 
latitude. equinoctial point. 

zon 

Fig. 1.3: The solar azimuth A and solar altitude a. Here N is 
the north point on the horizon. 



1 .  1 .  2 T a b 1  e s  w i t h  R e l i g i o u s  S i g n i f i c a n c e  

One of the principal features of the religion of Islam is 

the strict observance of certain rituals by the faithful around 

the world. These involve in particular the five daily prayers 

at specified times, the injunction to face the holy city of 

Mecca, the site of the Kaaba, and the observance of fasting 

during daylight hours in the sacred month of Ramadan. All three 

of these requirements give rise to non-trivial problems in 

spherical astronomy. The five daily prayer times are defined 

astronomically and must be strictly observed; the local 

direction of Mecca, known as the qibla, is required in order to 

orient the prayer walls of local mosques as well as the 

individual worshipper; and the beginning of each month in the 

Muslim calendar depends on the visibility of the lunar crescent 

when it is near the sun. 

Finding the qibla given the worshipper's terrestrial 

coordinates is one of the more complicated problems in spherical 

astronomy. Approximate methods of solution were described as 

early as AD 900 and were used as late as the fourteenth 

~entury.~ A modern exact solution to the qibla problem is given 

by 

------------------ 
9 ~ .  A. King, "al-Khalili's Qibla Table", Journal -- of Near Eastern 
Studies 34 (19751, note 3 p. 81, pp. 120-122. See also D. A. 
King, "The Earliest Islamic Mathematical Methods and Tables for 
Finding the Direction of Mecca", Zeitschrift - fur Geschichte der 
Arabisch-Islamischen Wissenschaften 3 (19861, pp. 82-149. 



sin 4 cos AL - cos 4 tan t$M 

q = arc cot I (1.2) 
sin AL 

where 4 and @M are the latitudes of the observer and of Mecca 

respectively, AL is the difference in longitude between the 

observer and Mecca, and q (the qibla) is the angular direction 

east or west of due south, depending on the longitude of the 

observer.1•‹ Exact solutions in medieval times were achieved 

through either geometric constr~ctions'~ or trigonometric 

formulae. Typical of medieval trigonometric solutions is that 

of al-MarrZkushi, a thirteenth century Moroccan astronomer: 
Sin h Tan 4 R Sin GM 

r I - cos 4 , 
I q = arc Cos I (1.3) 

Cos h 

where h, the height of the zenith of Mecca in the observer's 

sky, is determined by 

D. A. ~ i n g ' ~  has suggested that a method based on this formula 

may have been used by al-Khalili to create his qibla table of 

288.0 entries, which we will discuss later. 

------------------ 
'OD. A. King, "al-Khalili's Qibla Table", p. 82. 

"J. L. Berggren, "A Comparison of Four Analemmas for 
Determining the Azimuth of the Qibla", Journal -- for the History 
of Arabic Science 4 (1980)~ pp. 69-80. - 
1 2 ~ .  A. King, "al-KhalilT's Qibla Table", pp. 101, 104. See Sec. 
2.2 of this thesis for an explanation of the trigonometrical 
functions listed. 

1 3 ~ .  A. King, "al-Khalili's Qibla Table", p. 99. 



Prayer times depend on the location of the sun throughout 

the day and thus admit to an astronomical determination; hence, 

tables regulating prayer times fall under the category of 

astronomical timekeeping. Problems in this area involve the 

determination of time since the rising of the sun or a 

particular star given the object's current celestial coordinates 

and the observer's location. One Egyptian table, constructed by 

the thirteenth century astronomer Najm al-Din al-Mi9ri, serves 

for all latitudes and contains over 250 000 entries.14 Prior to 

the thirteenth century these tasks were performed by the 

muezzin, using primarily the basics of folk astronomy. After 

this time, however, the new occupation of muwaqqit (=timekeeper) 

originated in Egypt. These scholars were hired by mosques 

expressly to solve problems of timekeeping and the direction of 

the qibla. 

The prediction of the first visibility of the lunar crescent 

signifying the beginning of an Islamic month is perhaps the most 

difficult problem tackled by medieval astronomers. The moon 

makes a complete revolution around the celestial sphere inside a 

narrow band about ten degrees wide centred on the ecliptic every 

29 or 30 days, and hence passes the sun about once a month. The 

light of the sun blots out the moon from view when the angular 

1 distance between them is less than about degrees. The first 

. sighting of the moon as it emerges from the sun's light defines 

the beginning of a new month. Further complications add to the 
------------------ 
IUD. A. King, "On the Astronomical Tables of the Islamic Middle 
Ages", pp. 44-45. 



difficulty of the problem: the exact position of the moon in the 

band around the ecliptic will of course be crucial and will 

involve the use of lunar latitude tables; the apparent size of 

the moon will affect the visibility; and even seasonal 

conditions can alter the time of first sighting.15 Tables were 

constructed using methods of varying complexity and taking into 

account different factors, but the exact time could never be 

determined until the actual sighting. Even today the prediction 

of the first glimpse of the lunar crescent cannot always be made 

with complete accuracy. 

1. 1. 3 Inst rument Maki ng T a b 1  es 

Islamic astronomy did not, of course, consist entirely of 

table construction and use. Instruments such as astrolabes, 

quadrants and sundials were regularly used to obtain 

measurements and calculations both for immediate purposes and 

for use as arguments of certain astronomical functions. The 

construction of the best of these tools involves precise 

workmanship and, especially, accurate markings and curves. In 

particular, tables giving the locations of the standard curves 

found on sundials are relatively common. The marking of certain 

curves on the astrolabe also require precision, and tables 

giving the location of these curves for some terrestrial 

latitudes may also be found in the literature. 

150. Neugebauer, The Exact Sciences - in ~ntiquity, 2nd ed. ( ~ e w  
York: Dover, 1969),pp. 106-110. 



I .  I .  4 Mat hemat  i c a l  Tab1  e s  

We come now to the class of tables that is the source of the 

principal object of study in this thesis - the auxiliary tables. 

Most astronomical functions determined by medieval astronomers 

were found using exact or approximate trigonometric formulae. 

In order to relieve some of the tedium of repeated calculation 

as well as to provide tools for further research, various types 

of purely mathematical tables were constructed. The simplest of 

these are the sexagesimal (base 60) multiplication tables, which 

usually give the products a b, where a and b = 1, 2, ..., 60. 
These tables are convenient for use in sexagesimal 

multiplication. Other examples are trigonometric tables, 

generally giving the sine and tangent functions. These appear 

as early as the ninth century, resulting from contact with 

Indian mathematics. These tables reach their pinnacle in the 

work of Ulugh Beg, who in 1440 compiled sine and tangent tables 

for every minute of argument between O0 and 90•‹, to the 

equivalent of nine decimal places.16 

The most interesting use of purely mathematical tables in 

medieval Islam, however, is found in the class of tables that 

l 6  These tables are reproduced in C. Schoy, - Die 
Trigonometrischen Lehren Des Persischen Astronomen - Abu '1-RaihZn 
Muhammed Ahmad al-BirGni (Hannover: Orient-Buchhandlung Heinz 
Lafaire K.-G., 1927), pp. 92-108. The magnitude of Ulugh Beg's 
feat can be seen by the-fact that Isaac Newton attempted the 
same task (except to 15 decimal places) over 200 years later and 
gave up in frustration because "the sheer drudgery of the 
project exhausted his patience". He completed nine entries. See 
kichard E. Westfall, w ever at Rest: A ~ i o g r a p h ~  of Isaac Newton 
(Cambridge: Cambridge, 1980), -2: 



give values for auxiliary functions. Early in the development 

of functions for use in spherical and astronomical timekeeping 

one finds many recwrences of mathematical expressions that 

appear as parts of different functions; for instance, multiples 

of Sin e (where e is the obliquity of the ecliptic) are useful 

in calculating solar declinations.17 Repeated calculation of 

these quantities for different functions would quickly become an 

exercise in monotony. As early as the mid-ninth century Islamic 

scientists began to construct tables of these mathematical 

building blocks in order to simplify their own and their 

readers1 calculations, often reducing large and cumbersome 

equations to straightforward combinations of values taken from 

these tables. Some of the applications of al-Khalilils 

auxiliary tables, for example, are described in Sec. 3.2.1. The 

methods of calculation of some of these auxiliary tables will 

form the central object of this study. 

1.2 --- Uses of the Digital Computer -- in the Analysis - of Tables 

The advent of the digital computer has revolutionized almost 

every scientific field; hence, it is not surprising that its 

tremendous computational power has propelled forward the study 

of ancient and medieval astronomy. E. S. ~ennedy" and 

l 7  D. A. King, - The Astronomical Works of Ibn Yfinus (Yale: 
unpublished doctoral dissertation, 1972),y 96.bn Yinus 
constructed tables of (n/~) sin. e and  in]^) Cos e for 
n = 1, 2, ..., 60. 
''E. S. Kennedy, "The Digital Computer and the History of the 
Exact Sciencesw, Centaurus 12 (19671, pp. 107-113. 



0. Gingerichl9 in 1967 introduced the computer to the field and 

described its use in recomputation of astronomical and 

mathematical tables. In this way the accuracy of these tables 

can be checked easily over a large number of values. Kennedy 

has also, with the aid of a computer, compiled a list of 

geographical coordinates for certain locations given in Islamic 

astronomical works and has organized this large amount of data 

into alphabetical order as well as according to increasing 

longitude and latitude.20 

Since these early advances, however, while the digital 

computer has been transformed into a tool of incredible speed 

and potential, its use in the history of Islamic science has 

remained restricted to recomputation of tabular values. There 

remain many unexplored prospects in the reconstruction of 

astronomical and mathematical tables and their underlying 

parameters. For example, J. Hogendijk has recently begun to 

investigate this area by describing a method to determine the 

parameters behind lunar crescent visibility tables.21 Many 

opportunities remain, however, for the use of the statistical 

and numerical tools provided by the computer. 

------------------ 
''0. Gingerich, "Applications of High-speed Computers to the 
History of Astronomy", Vistas - in Astronomy 9 (19671, 
pp. 229-236. 

*OE. S. Kennedy and M. H. Kennedy, Geographical Coordinates of 
Localities from Islamic Sources (Frankfurt am Main: Institut fur 
Geschichte der Arabisch-Islamischen Wissenschaften, 1987). 

21J. Hogendijk, "Three Islamic Lunar Crescent Visibility Tables" 
(unpublished, 1987). 



1.3 - The Central Problem 

The numerical methods used by medieval Islamic astronomers 

for table computations, for example, have been largely ignored 

in current research. Theoretical presentations showing the 

applications of geometry and trigonometry in spherical astronomy 

abound, both in the medieval manuscripts and in current 

analysis. The methods used to generate the vast number of 

tables that appear in the zijes and other treatises, however, 

remain a mystery. This gap may owe something to a bias, both 

past and present, in favour of mathematical theory over 

computational methods: medieval scientists generally carefully 

justified the formulas used to solve problems based on their 

tables without explicitly describing and verifying the accuracy 

of the methods used to create the tables themselves, and modern 

analysis consists essentially of recomputation of tabular values 

to determine their accuracy. Certainly the determination of a 

mode of calculation solely from the tabular values would be a 

daunting task without the aid of a digital computer, but current 

technology allows for the application of mathematical and 

statistical analysis without having to perform thousands of 

computations by hand. This study will use these tools in an 

attempt to determine the methods of calculation used in the 

auxiliary tables of Shams al-Din al-Khalili. 



CHAPTER 2 

MATHEMATICAL PRELIMINARIES 

2.1 Arabic Arithmetic 

Sexagesimal arithmetic was the astronomers' mode of 

calculation from long before the medieval period. Its origins 

in numeration date back as far as the Old Babylonian period, 

c. 2000 BC, and its use by the Alexandrian astronomer Ptolemy in 

the mid-second century AD was responsible for its application to 

medieval astronomy and trigonometry. The Hellenistic version of 

sexagesimal representation used by Ptolemy (also used widely by 

Islamic astronomers) used the sexagesimal base only for 

fractional parts, while retaining decimal notation for the 

integral part. The characters used to represent individual 

sexagesimal digits were simply the letters of the ~rabic 

alphabet in order corresponding to the values 

1,2,.. ., 9,lO,2OI. ..,5O. This system, known as abjad 

numeration,' lends itself to some confusion due to the 

similarity of certain characters.  andw writing variations can 

render the symbols for 13, 18, 53, and 58, for example, 

virtually indistinguishable. This inevitably leads to a greater 

likelihood of scribal error in transcription than what would be 

encountered with other systems. The notation we will use for 

sexagesimal numbers is now conventional and accurately reflects 

'A detailed description of the Arabic numeral system may be 
found in R. A. K. Irani, "Arabic Numeral Forms", Centaurus 4 
(19551, pp. 1-12. 



how the numbers appear in the texts. The value 

1 0 6 ;  1 3 ,  48 

represents 106 + - l 3  + - 48 with the semicolon denoting the 60 602' 
sexagesimal point and the comma separating consecutive 

sexagesimal digits. 

The usefulness of the sexagesimal system in the computations 

required by astronomy and trigonometry becomes clear when one 

considers the long list of divisors of 60, but arithmetical 

procedures are not as easy in sexagesimal as in decimal 

arithmetic (or any other system with a reasonably small base). 

Addition and subtraction may be carried out with no difficulty 

analogously to decimal procedures, but multiplication and 

division are different matters. Multiplication of two numbers 

with, say, three sexagesimal digits each requires nine separate 

multiplications of two integers between 0 and 59. The decimal 

multiplication table can be memorized by any elementary school 

student, but the average reckoner would not be instantly able to 

determine the product of 47 and 54. The sexagesimal 

multiplication tables described in Sec. 1.1.4 were often used to 

speed calculation, but even then nine separate table searches 

would be required in order to compute the product discussed 

above. As a condition for ease of use of a hypothesized 

numerical method, then, we shall in further chapters prefer 

those methods that minimize the number of multiplications 

required to solve the problem. 



2.2 Triqonometry 

The earliest surviving example of a full-fledged 

trigonometric function and table occurs in Ptolemy's Almagest. 

In this book Ptolemy defines a function which gives the value of 

the length of a chord subtended by an arc 8 on a circle of 

radius R = 60 (see Fig. 2.1). Using an arc sum and half-arc 

formula and a clever method of estimation of the chord of l o ,  

Ptolemy calculates to three sexagesimal digits the value of the 

l o  lo, length of the chord ( which we call Crd 8 )  for arcs 8 = - 2 
10 1- 
2 

..., 180•‹.2 This table becomes the basis of all the 
trigonometrical procedures carried out in the Almagest. 

After some work with the chord function in plane and 

spherical trigonometry, it soon becomes clear that Ptolemy's 

chord function is not ideal. Often the value required is not 

the chord of the angle, but rather some multiple of the chord of 

double the angle. In fact, it is easy to see from Fig. 2.1 that 

1 R sin 8 = - Crd 28, 
2 

and so Ptolemy's chord function can be easily transformed into 

the much more useful sine function. This observation, however, 

was apparently never made by  elle en is tic mathematicians and it 

was left to their Indian counterparts to invent the sine. The 

first extant sine table is found in Surya Siddhanta and 

Aryabhatiya, c. 400 AD, with only 24 entries corresponding to 

For a full description of Ptolemy's method see G.J. Toomer 
(tr.), Ptolemy's Almagest (New York: Springer-Verlag, 1984), 
pp. 48-60. 



increments of 3;45 = The radius of the base circle is 

R = 3438 parts13 and the sine values given are integral 

multiples of 1 part. 

The introduction of Indian science to the 1slamic world 

signified, among many other advances, the beginning of the most 

productive era in the history of trigonometry. The use of a 

base circle with radius F! = 60 became standard, and in the ninth 

century Ijabash al-@sib composed the first known table of 

tangents.' The cosine and cotangent, and the less popular secant 

and cosecant, all gained acceptance, and most of the common 

trigonometric identities were discovered. Each trigonometric 

function was defined not as a ratio of sides, but as lengths of 

the appropriate lines in the base circle for the sine and 

cosine, and as shadow lengths for the tangent and cotangent. 

Each Islamic trigonometric function based on a circle with 

R = 60, consequently, is sixty times the modern ~ e r s i o n . ~  We 

shall use the conventional capitalized notation to represent the 

medieval functions; i.e., 

Sin 8 = R sin 8; Tan 8 = R tan 8; etc. (2.2) 

Islamic trigonometric tables generally give values for only the 
------------------ 
3 ~ h i s  radius value, according to E. S. Kennedy, was likely 
chosen so that the length of one minute of arc on the base 
circle would have a length of one part (using the Indian value 
of r ) .  

'S. Tekeli, "Ijabash al-YSsib", Dictionary of Scientific 
Biography (New York: Charles Scribner's SO=, 1 9 7 2 ) ~  p. 612. 

5~ base of 60 was not universal, however. Both Abu 1-Wafa' and 
Abfi Na$r Man?fir, for example, used R = 1, and R = 10 and 20 were 
occasionally used by al-Khalili. But we shall assume R = 60 
unless otherwise stated. 



Fig. 2.1: The relationship between the sine and chord of an arc. 
If the radius OB of the circle is R units in length, the chord 
of 8 is defined to be the length AE. The modern sine of 0/2 is, 
of course, AG/R, or AE/~R. 

sine and the tangent, since the two other common functions can 

be easily derived by the relations 

R~ Cos 8 = Sin (90" - 8) and Cot 8 = -  
Tan 19. 

(2.3) 

1.3 Interpolation Methods 

The use of interpolation methods to determine values of 

functions whose arguments lie between successive tabular entries 

as well as to create tabular entries within a grid of directly 

tabulated values dates back as far back as the astronomers of 

ancient Baby10n.~ There is little evidence, however, to suggest 

that Hellenistic scientists went much beyond linear 

interpolation. The theoretical development of higher order 

schemes came about through the efforts of others. Thus, among 

------------------ 
60. Neugebauer, The Exact Sciences in Antiquity, 2nd ed. ( ~ e w  
York: Dover, l969), -8, 135-1 36. 



Liu Cho (AD 544-6101 generated a second order scheme to apply to 

equally spaced intervals between nodes, and I-Hsing (AD 683-727) 

discovered a more general method to apply for unequally spaced 

nodes.? Islamic methods described in such treatises as Ibn 

YCnus' HZkimi Zii and the anonymous DastCr al-~unajjimin~ 

included linear, second and even third order schemes as well as 

inverse linear and quadratic schemes to determine, say, the arc 

Sine from a Sine table. Linear methods, however, were often 

considered too trivial to note, and third order schemes were 

exotic and are rarely found in the literature. Interpolation 

schemes based on functions other than polynomials such as the 

sine function exist, but are rare in medieval mathematics. 

Hence, almost every interpolation scheme described by Islamic 

authors is of second order. 

Not every interpolation scheme found in Islamic texts, 

however, is equivalent to passing a parabola through three given 

points. The most famous instance is al-BirCni's failed attempt 

to use second differences to generate a better interpolation 

formula. Given two tabular entries (x,, f(xo)) and (x,, f(x,)) 

the standard formula to approximate f(x) (where x0 < x < x,) 

with linear interpolation is 

where Af, = f(x,) - f(xo), the forward difference. Al-BirCni 

. attempted to extend this method to account for second order 
------------------ 
'5. Hamadanizadeh, Medieval Inter olation Theory (Columbia: 
unpublished doctoral d i s s e r t k  pp. 20-21, 22, 24-26. 

8J. Hamadanizadeh, Medieval Interpolation Theory, p. 31. 



differences by using the additional point (x.,, f(x.,)) and the 

formula 

where A2f., = Afo - A•’-,. This intuitively appealing extension 

from linear to quadratic interpolation is easily seen to pass 

through (xo, f(xo)) and (x,, f(x,)) but misses (x.,, f(x.,)) 

dramatically. In fact, J. Hamadanizadeh has remarked that the 

difference between al-BirGni's parabola and the true parabola in 

the domain Exo, x,] is equal to the difference between the true 

parabola and the line joining (xo, f(xo)) to (x,, f(xl)); i.e., 

al-BirSnils formula is precisely as distant from true second 

order interpolation as is linear interp~lation.~ 

Another example of an interpolation scheme differing from 

direct polynomial interpolation can be found in the DastSr 

al-Munajjimin.1•‹ The unknown author attributes this scheme to 

the tenth century mathematician AbG Ja'far al-KhEizin, and 

applies it to determining planetary longitudes on days between 

the directly computed values which are spaced ten days apart. 

~ i v e n  endpoints (x,, Xo) and (xlo, XI,), the author generates a 

second order formula based on the three points (x.,, X . , ) ,  

(XO, XO) and (xlo, X l O  + 5e') (where e' is a certain second 

difference) to calculate the values X1,...,X5. Another parabola 

is used to join (x,, h5) and (x,,, XI,). The resulting 'bent' 

'J. Hamadanizadeh, Medieval Interpolation Theory, p. 121. 

'O~or a detailed discussion see J. Hamadanizadeh, "Interpolation 
Schemes in Dust iir a1 -Munaj jimin", Centaurus 22 ( 1 9 7 8 ) ~  
pp. 44-52. 



union of two parabolae generally produces values between linear 

and second order interpolation; perhaps this change was due to a 

comparison with true longitudinal values of sample periods. 

For ease of reference, we shall refer to the entries that 

are computed directly as nodes, and to the set of nodes in a 

given table as the interpolation grid. A typical span of 

entries between two successive nodes will be called an 

internodal block. 

2.4 Definitions - of Terms Used in the Text ---- 

In the succeeding chapters certain notations will be used 

which may be unfamiliar to the reader. In order to clarify the 

meaning of these symbols, they are defined below. 

It will be convenient to use functional notation to indicate 

rounding procedures. To this end, we define 

where is the base of the number system ( 0  = 60 unless 

otherwise noted), Int(x) is the greatest integer less than or 

equal to x, and n is a positive integer giving the number of 

digits after the sexagesimal point to which x is to be rounded; 

for instance, 



In order to describe and compare the levels of 

sophistication of the various tables, it will be useful to 

introduce a term which measures the size of the error compared 

to the number of digits displayed in the table. Let 1 be the 

approximation to x, and let n be the number of digits displayed 

after the decimal point. We say P approximates x with k digits 

of error, where 

k = O  if 1 = rn(x); 

k = 1 + log P 1 otherwise. 

The meaning of this term is made clear by example. If r3(x) = 

47; 8,34,14 and 1 = 47; 8,34,15, then 1 differs from r3(x) by 1 

in the last place and hence approximates x with 1 digit of 

error. If, say, 1 = 47; 8,33,14, - then P approximates x with 

precisely 2 digits of error, and so on. (~ote, however, that 

the number of digits in error is generally not an integer.) 

This figure, then, describes how many meaningless digits appear 

in the approximation. 

The error representation scheme used in the text may be 

described as follows. The (rounded) exact value of a given 

function is written as usual: 

f ( 1 4 ~ , 6 9 ~ )  = 57;44. 

The value of the function given in the table itself is indicated 

by the use of a "T" preceding the symbol denoting the function, 

and if appropriate, the error in the final digit is shown in 

square brackets immediately after the function value. This 

error is calculated as follows: 



error = text - rn(exact value), ( 2 . 7 )  

where n is the number of digits given in the table after the 

sexagesimal point. Thus 

~f(14',69') = 57;43 [ - I ] .  



CHAPTER 3 

AL-KHAL~LI'S AUXILIARY TABLES 

al-KhalilT1s Life and Work --- 

Little is known about the life of Shams al-Din al-Khalili, 

other than that he was a contemporary of Ibn al-Shatir in the 

late fourteenth century. All his known works deal with the 

science of astronomical timekeeping,' presumably written in 

connection with his occupation as muwaqqit at the Umayyad mosque 

in Damascus. Other than a treatise on the use of a 

trigonometric quadrant, all of his known works are tables 

related to various functions of astronomical timekeeping. These 

include auxiliary tables to aid in keeping time by the sun for 

all latitudes as well as complete timekeeping tables for the 

latitude of Damascus, tables giving times of prayer for 

Damascus, an extensive qibla table, and tables converting 

ecliptic coordinates to equatorial coordinates for use in 

computations relating to lunar crescent visibility. But perhaps 

his most interesting works are his tables of major auxiliary 

functions to solve various problems of spherical astronomy. 

These relatively simple combinations of trigonometric functions 

solve nothing when taken individually, but when combined in 

certain ways they lead to the solution of a host of problems in 

'D. A. King, "Astronomical Timekeeping in Fourteenth Century 
Syria", in-~roceedinqs of the ~ i r s t  ~nternational symposium-for - 
the History of Arabic science (Aleppo: Institute for the History - - 
of Science, 197-1. 2, p. 80. 



spherical astronomy. 

3.2 - The Auxiliary Functions 

The first two of the three auxiliary functions calculated by 

al-KhalTli are quite similar in nature, and are called the 

"first and second functions" in the manuscripts. Translated 

into modern notation, the first function is defined by 

- R Sin 8 f(4.8) - Cos ) I 

and the second function by 

- Sin 8 Tan 4 g(4,e) - R I 

where ) is the local latitude and 8 is some other value 

depending on the application. Most of the texts do not define 

all three of the functions explicitly, but one of the 

manuscripts describes their mathematical form in a marginal 

note. The first and second functions are calculated for the 

following arguments: 

9 = 1•‹,20,...,550, and 21;30•‹ (the latitude of ~ecca) 
and 33;30•‹ (the latitude of ~amascus), 

producing a total of 5130 entries in each of the two tables. On 

each page of the document, the two functions are tabulated side 

by side for a fixed value of ) and all values of 8, arranged in 

columns of thirty entries. Fig. 3.1 below gives a schematic 

layout of one of these pages. In the following discussions, we 

shall refer to the argument that varies as one moves 

horizontally through the table as the horizontal argument, and 



to the other as the vertical argument. In the and g(@,8) 

tables, then, 9 is the horizontal argument and is the vertical 

argument. 

Fig. 3.1: A schematic layout of one of the pages of al-Khalili's 
tables showing values of and g($,O) for a given value of 
9 

The third auxiliary table represents perhaps the greatest 

feat of calculation of the three, due to the nature of the 

function it describes. It is defined as follows: 

G(x,~) = arc Cos [ ,I 
where the horizontal argument x is the "jayb al-tartib", or the 

"auxiliary Sine". This function is calculated for the arguments 

x = 1,2, ..., 59 
y = OO,lO,..., Int(arc Cos Rx), 

which results in 3420 entries. For larger values of y the 

argument - Rx is greater than 60 and the function value does 
Cos y 

not exist. In the manuscript these entries are filled in as 

0; 0, referring to an empty place. Thus, while the first two 

tables if written on a single very large page would be 



rectangular, the third table would be missing a curved area in 

the bottom right corner. 

All three functions are tabulated to two sexagesimal digits, 

one following the sexagesimal point. The values are for the 

most part reasonably accurate: about 50% of the entries agree 

with the correct (rounded) value, and almost all are in error by 

less than 5 in the second place. The manuscript used 

throughout, MS. Paris Biblioth&que Nationale, ar. 2558, fols. 

61v-104r, is the oldest of the known manuscripts (dated 1408), 

and is carefully and elegantly copied. Other than the columns 

for the latitude of Mecca in the and g($,O) tables, it is 

also complete. Appendix A contains some sample columns of all 

three tables. 

3 .  2 . 1  Some U s e s  o f  t h e  Aux i  1 i a r y  F u n c t  i  o n s  

Since many of al-Khalili's formulae for use in astronomy can 

be derived from the cosine law of spherical trigonometry 

(although there is no direct evidence that al-Khalili was 

familiar with it), it is not surprising that they have similar 

mathematical structure. These similarities lend themselves to 

the implementation of auxiliary functions in order to facilitate 

their computation. Several uses of the auxiliary functions 

outlined by al-Khalili are described below.2 

2The discussion in this section is taken primarily from D. A. 
King, "al-Khalili's Auxiliary Tables for Solving Problems of 
Spherical Astronomy", Journal -- for the History - of Astronomy 4 
(1973), pp.99-110. 



The formula to find the altitude of a celestial object in 

the prime vertical3 is easily seen to be 

ho = arc Sin [ ~ ~ : a ~ ~ ~ ]  I 

where 6 is the declination of the object and 4 is the local 

latitude. al-Khalili gives two different solutions to this 

problem using his auxiliary tables. Firstly, 

ho = arc Sin [ ~ ~ r a ~ ~ ~ ]  
= 90' - arc Cos [sin :,;a; 45"" I 

where $ = 90' - 4. Alternatively, 

Sin h, Tan 4 - - R Sin 6 
R Cos # ' 

so ho can be found by solving the equation 

In order to determine the solar azimuth (measured from the 

meridian), a precise formula is 

I 
R~ Sin 6 

Sin h Tan 4 - cos 4 a(h16,4) = arc Cos I (3.7) 
Cos h 

where h is the solar altitude, 6 is the declination, and # is 

the local latitude. This is clearly equivalent to 

a(h,6,4) = GIg(4,h) - f (6,6), hl. (3.8) 

An important corollary of this result is the qibla formula 

------------------ 
3 ~ h e  prime vertical is the great circle passing through the 
celestial north pole and the east and west points on the 
horizon. 



derived by al-MarrZkushi and quoted by al-Khalili. Inserting 

the zenith of Mecca in place of the sun in the observer's sky 

(so that h is the height of the zenith of Mecca and b = we 

derive (1.3), which is equivalent to 

q = G[g(#,h) - f (#,#M)r h I -  (3.9) 

Thus al-Khalili could have used his auxiliary tables to compute 

his qibla table, and in fact he mentions in his introduction to 

the qibla table that al-MarrZkushils method is the best solution 

to the qibla problem that he knows. King has already voiced his 

doubts regarding this po~sibility;~ we shall discuss it further 

in Sec. 3.7. 

3.3 The Derivation of the f(9,8) Table from the q(@,8) Table - -- --- 

Approximately 50 to 55% of the entries in the f(9,8) table 

are correct to both sexagesimal digits; the remaining entries 

are for the most part in error by one or two in the second 

sexagesimal place. The errors are, however, not uniformly 

distributed throughout the table: the entries in certain columns 

contain generally larger errors than those in other columns. 

Often within a given column in all three of al-Khalili's tables 

the errors appear to change continuously as the vertical 

argument varies. This may be a sign of interpolation, but it 

may also be caused either by a flawed value which in some way 

affects every entry in the column or by more indirect factors. 

a ~ .  A. King, "al-Khalili's Qibla Table", Journal -- of Near Eastern 
Studies 34 (19751, p. 106. 



Two regions of the f($I,8) table reveal distinct patterns. 

The first column, corresponding to 4 = lo, agrees in all but two 

entries with a two sexagesimal digit Sine table. That the 

entries are close to the Sine values is not surprising, since 

R Sin 8 , 60; 0 Sin 8, f(lO.8) = Cos 59;59 
which is only very slightly larger than Sin 8. However, 23 of 

the 90 entries in the $I = 1' column have an error of - 1  (using 

the error representation system described in Sec. 2.41, while 

none of the entries err on the positive side. Since 88 of the 

90 entries (including the 23 in error) agree with r,(Sin 81, it 

seems clear that al-Khalili simply approximated f(1•‹,8) with 

Sin 8. 

The two entries that fail to fit this pattern are those 

corresponding to 8 = 17' and 8 = 89'. In the case of 8 = 17', 

we have ~f(1',17') = 17;32 [-I], whereas r,(Sin 17') = 17;33. 

This discrepancy may be a copying error, for, in those sections 

of the g(4,B) table that were calculated using 

rl(Sin8) r,(~an)), g($I,8) = ii (3.10) 

the value used for r, (Sin 17') seems to be 17;32, the value 

found in Tf(1•‹,170). We will discuss this further in Sec. 3.4. 

The discrepancy for 8 = 89' is due to the second pattern 

found in the table. Where 8 = 3 = 90' - $I, the value of f (@,?I 

Sin R cos @ = R = 60; 0. • ’ ( # , a )  = cos $I Cos $I 

If interpolation had been used over a fixed grid throughout the 

table, only a small number of the entries on the diagonal 



through the table determined by 8 = $ would be calculated 

directly as nodal values. But in fact every tabular entry on 

this diagonal (other than ~f(8',82') = 60; 5 [+5], an obvious 

scribal error) is precisely 60; 0.5 This does not provide strong 

evidence against interpolation, for it is possible that 

al-Khalili superimposed this diagonal after completing the 

table. It is clear, however, that he recognized that 

f(f#J,$) = R = 60; 0 and used this result in the construction of 

this portion of the table. 

Al-KhalTli may have completed the bulk of the table in a 

variety of ways. Due to the excessive work involved in 

multiplication and division, however, it would have been in his 

interest to choose a method which minimizes the number of 

directly calculated entries. Thus the method of interpolation 

recommends itself, since only a small fraction of entries would 

need to be directly calculated. Attempts to find an 

interpolation grid (in the same fashion as the corresponding 

efforts for the g(f#J,8) table, described in Sec. 3.4.21, however, 

fail to produce any recognizable patterns. Other possible 

methods include treating each individual column as a multiple of 

a Sine table; i.e., 

R f(#,8) = - Sin 8. 
Cos f#J 

The constant - may be evaluated once for an entire column, 
Cos f#J 

or taken from a secant table. This method does not reduce the 

50f course, the columns corresponding to f#J = 21;30•‹ and 
f#J = 33;30•‹ do not have entries for 8 = 3 .  In the following 
discussions, we shall largely ignore these two columns. 



number of multiplications required, but it does mechanize the 

procedure an.d it uses the same value as a multiplicand for 90 

consecutive entries. The analogous method working over rows as 

opposed to columns is also possible, but given the 

representation of the table in the manuscripts this is unlikely. 

Attempts to reproduce the table via these and other methods fail 

to give a higher percentage agreement with the table than 

the percentage of correct entries in the table itself. 

Based on the diagonal corresponding to f(~,$), however, it 

is possible to construct a method which is by far the most 

efficient and most easily applied of those methods thus far 

considered and which also produces a remarkably high percentage 

agreement over most of the table. Applying the angle addition 

formula for Sines to f(@,$ + nlI6 we get 

- R Sin ( 3  + n) f(&$ + n) - Cos 4 
? 

- - Sin coos n + Tan 4 Sin n 
COS 4 R 

= Cos n + g(4,n). (3.13) 

Using the angle subtraction formula for Sines we get a similar 

formula for f(#,$ - n). So, another possible way to generate 

the f(4,8) table is from the g(4,8) table using the equation 

6 ~ h i s  formula was well-known to Islamic scientists at this time. 
See J. L. Berggren, Episodes -- in the Mathematics of Medieval 
Islam ( ~ e w  York: Springer-Verlag, 19861, pp. 135738 for a 
description of the proof given by Abu 1-Wafa'. 



This method has several advantages. The obvious rationale 

in favour of its use is the fact that it completely avoids the 

task of sexagesimal multiplication; a comparatively easy 

addition or subtraction is all that is required to generate an 

entry. It is also a stable algorithm: the errors involved in 

rounding Cos n and in using the tabular value for g(9,n) are not 

magnified by simply adding or subtracting the two quantities. 

Finally, given the layout of the table in the manuscripts, this 

method allows the reckoner to compute f($,8) directly from the 

appropriate entry in the adjacent g(@,--) column on the same 

It is of course easy to test this hypothesis by taking the 

two digit rounded value for r,(~os n), applying (3.14) using 

al-Khalili's g(9,n) value, and comparing the result obtained for 

f(@,3 f n) to the entry in the table. The results were 

discouraging for the first nine columns and two areas within the 

columns for 9 = 46' through 9 = 4g0.' In the remaining 80% of 

the table, the percentage agreement is high enough to be 

consistent with the hypothesis that al-KhalTli used this method, 

given the possibility of scribal and computational errors. Of 

781 tabular entries checked in this area (see Fig. 3.2), 749, or 

95.9%, matched with the calculation a b o ~ e . ~  

' These areas are for 8 = 1•‹,...,300, and 8 = 61•‹, ..., go0, the 
first and third columns in the manuscript. The entries here 

- present a considerably higher error level than elsewhere in the 
table, up to 5 in the second place. Perhaps these entries were 
copied from an earlier set of tables al-Khalili may have 
computed. 

 his comparison is successful both for those entries that are 



SI = Sine Values 

DC = Direct Computation (using 
two sexagesimal digit 
trigonometric values) 

EQ = Equation (3.14) 

Fig. 3.2: Schematic diagram of the meth0d.s used to generate 
al-Khalili's f ( @ , B )  table 



One may suppose that since the number of possible methods of 

calculation is bounded only by the imagination, it is impossible 

to prove rigorously that al-Khalili actually used (3.14) or a 

mathematically equivalent formula. This is, of course, true; 

however, there are compelling reasons to believe that no 

reasonable method other than (3.14) could possibly generate such 

a high match with the table. For, calculation of f(#,B) 

according to (3.14) introduces two errors: the rounding of 

Cos n, and the use of the tabular value g(#,n). Each of these 

two factors causes a particular error pattern over the 4000 

entries in question, and it seems unlikely that either pattern 

could be generated by any function other than one mathematically 

equivalent to r,(Cos n) or ~g(#,n). Yet the addition of the two 

error factors produces a match of 96% with the tabular values. 

A method that is truly distinct would not contain one or both of 

these factors and would introduce its own, caused by rounding 

and other means. The final error pattern produced by this 

method, while it may agree with that in the table for a certain 

percentage of entriesrg has a probability of fitting the error 

pattern for a large number of entries comparable to the chance 
------------------ 
8(cont'd) accurate to two sexagesimal digits, and for those that 
are not. Of the accurate entries, 399 of 416 agree with (3.14)~ 
and of the inaccurate entries, 350 of 365 agree. Both of these 
figures correspond to a match of 95.9%. 

gSuppose (for simplicity) that 50% of the tabular entries are 
correct, and that the remaining entries err by 1 in the last 
place, 25% in each direction. An independent method with the 
same error distribution has a 

(.5)2 + (.25)2 + (.2512 = .375, 
or 37.5% probability of agreeing with a given entry. Clearly 
over a large number of entries the percentage agreement will 
converge to this figure. 



that a randomly chosen house key has of opening a given lock. 

While (3.14) can be used to generate entries of g(4,B) from 

the table as well as vice versa, there are several 

reasons for believing that g(4,8), the "second function", is 

actually the table originally calculated. Firstly, whenever 

$ + n > 90" and $ - n c 0; i.e., c n and $ c n, (3.14) is 

useless for computing g from f, so a large area corresponding to 

approximately one quarter of the g(4,8) table is inaccessible 

from f(4,8) using this formula. Secondly, (3.14) produces from 

a single entry of the g(4,8) table two distinct entries in the 

f(4,8) table (provided 8 # $1. Finally, the g(4,8) table 

contains an interpolation grid not found in the f(4,8) table, as 

we shall see in Sec. 3.4.2. 

3.4 - The Construction -- of the q(@,8) Table 

The error levels in the g(4,8) table are, of course, roughly 

the same as those in the f(4,8) table. But whereas there are 

small zones in the f(4,8) table (for 4 = 46" through 49") where 

the errors reach 4 in the last place consistently, the g(4,8) 

table has none of these zones. Also, although for some values 

of the arguments the g(4,8) table simplifies to a 

straightforward function this fact does not in general appear to 

. have been utilized by al-Khalili. For instance, where 8 = 90•‹, 

g(4,9O0) = Sin Tan @ = Tan 4, 
R 

(3.15) 

and where 8 = $ = 90" - 4, 



g(4,$) = Sin a Tan = Sin 4, 
R 

(3.16) 

but neither of the corresponding areas show any more accurate 

entries than anywhere else in the tatle. The column for 4 = 45' 

is, however, a Sine table accurate to two sexagesimal digits. 

This, incidentally, shows that al-Khalili had access to sine 

values with this accuracy, even though his extant sine table is 

slightly less accurate. Considering the accuracy of the 

trigonometric tables of the fourteenth century, however, this is 

not surprising. 

3.4.1 A C o r r e l a t i o n  M e t h o d  t o  D e t e r m i n e  t h e  R o u n d i n g  P r o c e d u r e  

In order to determine the method of computation of some or 

all of the entries, it is important to be able to ascertain the 

accuracy to which some of the intermediate parameters were 

rounded. Explicit testing of all the various rounding 

techniques: for instance, g ( 4 . 8 )  = 1 
R 

r,(Sin 8 )  rn(~an 4 )  for 

pairs of values m and n; has several drawbacks. Firstly, in 

general this brute force method is very time-consuming; 

secondly, if an interpolation grid or similar method were used 

it could be difficult to spot the slightly increased percentage 

agreement as significant when the correct rounding procedure for 

the nodal entries is used; and finally, the usual advantage of a 

brute force method - a guarantee of success - does not apply 
here. It is possible, for instance, that al-~halili used, say, 

three sexagesimal digit values for trigonometric arguments that 

are flawed in the last digit. In this case brute force will not 

only fail, but may mislead one into more closely examining those 



hypotheses that by sheer chance exhibit a slightly higher 

percentage agreement. Clearly a more systematic method is 

required. 

Consider a given constant 4 and a hypothesized rounding 

procedure rn for Tan 4. The value al-Khalili would use for 

Tan 4 is then altered by the amount 

At = r,(~an 4) - Tan 4. (3.17) 

This results in a function value shift given by 

- Sin 8 (Tan 4 + At) Tg(4,8) - R 

- Sin 8 - Sin 8 Tan @ + At 
R R 

(3.18) 

Of course the rounding of Sin 8 will also cause an error but for 

each 4 we assume the application of the same set of values of 

Sin 8 and hence each column should be affected equally by this 

rounding. What (3.18) demonstrates is that if al-Khalili had 

used the hypothesized rounding procedure, the value of At should 

be linearly related to the average signed level of error found 

in the column. 

This linear relation will, of course, be complicated by 

several factors. Firstly, the final rounding of g(4,8) to two 

sexagesimal digits will alter the final error, perhaps 

significantly. Secondly, if al-KhalTlT used an interpolation 

scheme, only the nodal entries would be affected directly: the 

effect on the internodal entries would only be indirectly felt, 

through the values at the nodes. Finally, if the rounding 

procedure is sufficiently precise (A is very small), its effect 



on the final value will be minimal or unnoticeable. In the 

latter case it may be possible to find a method of direct 

calculation or an interpolation grid simply by assuming that 

al-Khalili's value of Tan d is accurate. 

Thus the linear relation may only be seen in a statistical 

sense, if at all. The statistical tool to determine whether the 

connection exists is, of course, the correlation coefficient. 

The measure of the total error in a given column that we will 

use is simply the sum of the signed errors in the last digit 

over the 90 entries in the column. Table 3 . 1  gives the values 

of At for the hypothesized rounding procedure r, and the total 

column error for 17 scattered values of 4. 

Total 
Column 
Error 

Table 3.1: Values of At and total column error for selected 
values of in the g(d,8) table 



The correlation coefficient between columns 2 and 3 in the 

above table is 0.6286. Assuming the two columns of data have a 

zero correlation, the probability of observing data with a 

correlation coefficient as high as this or higher is less than 

0.5%.1•‹ This result, then, provides good statistical evidence 

that al-Khalili used a two sexagesimal digit value of Tan 4. 

3 .  4 .  2 T h e  L o c a t i o n  o f  t h e  I n t e r p o l a t i o n  G r i d  

The correlation argument above produces a good statistical 

reason for the use of r,(~an @ )  in further research, but it 

leaves open several possibilities regarding its application. 

Considering the relative rarity of the tangent function, it is 

certainly possible that al-Khalili used Sine values more 

accurate than the r, values. Given the size of the table it is 

unlikely that al-Khalili computed every entry directly, but it 

is not impossible and one must never underestimate what a 

dedicated individual can do. If an interpolation scheme were 

used, there are still several possibilities regarding the 

location and spacing of the nodes, and as we have seen with the 

f(@,8) table, al-Khalili may have used different methods in 

different areas of the table. 

The obvious first hypothesis to attempt is, of course, the 

rounding procedure defined by 

g(@,8) = r1 I r, (Sin 8) r, (Tan I$ 

R 

'OD. V. Lindley & W. F. Scott, - New Cambridge Elementary 
Statistical Tables, Cambridge, 1984, p. 56. 



Table 3.2 below shows, for a span of six columns corresponding 

to 4 = 20•‹,...,250 and for each value of 8, the number N of 

tabular erLtries agreeing with calculation according to ( 3 . 1 9 ) .  

Table 3.2: The number tabular values of 
with (3 .19 )  for $J = 20•‹,...,250 

Of the entries whose 8 values are divisible by 5, 

that agree 

101 of 108, or 

93.5%, agree with calculation according to ( 3 . 1 9 ) .  Of the 

entries whose 8 values are not divisible by 5,  only 228 of 432, 

or 52.8%, agree with ( 3 . 1 9 ) .  So at least over $J = 20•‹,...,250, 

we have conclusive evidence that al-Khalili used an 

interpolation grid with nodes separated by 5"  of 8. 

Extending this study over the entire table, the same results 

are generated for most values of 4. A comparison for all values 

of 4 is given in Table 3.3. For 4 < 45O, the distribution of 

the numbers in Table 3.3 is clearly not random. 32 of the 



columns have a match of 15 out of 18 or better with (3.19!.11 Of 

the other thirteen columns, nine have matches of eight or less 

of 18 nodes. (See Fig. 3.3 for a histogram.) For 4 > 45' the 

pattern changes: almost all of these columns exhibit a failure 

of a sufficiently high level to reject the possibility of the 

use of rl(Tan 4). 

The extremely small percentage of failure over the nodal 

values compared with the percentage of failure over the 

internodal entries is firm evidence in favour of the 

hypothesized interpolation grid. But in order for the 

hypothesis to explain satisfactorily the nodal entries, the 

cause of the failure over the remaining columns needs to be 

shown. The fact that the columns that fail to match are 

scattered randomly seems to indicate that these columns should 

have been calculated as the surrounding columns were; possibly 

the error was caused by a different value of Tan 4. The third 

column of Table 3.3 reveals a strong pattern that supports this 

theory: of those columns that fail comparison with (3.19) on the 

nodal entries, the failures are almost entirely to one side, 

positive or negative, of the expected value. 

l 1  Assuming a 50% probability of a match with an independent 
method, the probability of a given column matching this well or 
better are less than 0.4%. Comparison of (3.19) with the 
internodal values in these same columns again reveals only 
approximately a 50% match. 



Table 3.3: Comparison of the number of nodal entries agreeing 
with (3.19) in the g($,f3) table, and the direction of the error 
in those columns with 5 or more failures 

Fig. 3.3: Histogram of column 2 of Table 3.3 for $ < 45"  

Table 3.4 below shows the results of recomputation of the 

nodal entries with a tangent value shifted up or down one 



minute, as suggested by the errors in Table 3.3. 

r, (Tan 4) 
Match 
with 

rl(Tan 4J) 

New 
Tan 4J 
Value 

Match 
with 

New Value 

e 3.4: Comparison of nodal entries in the g(4J,6) table with 
91, using a new Tan 4J value suggested by column 3 of Table 

The resulting match over the columns above is 233 of 264, or 

88.3%. On its own this result may not seem surprising: if some 

entries are too small, the use of a slightly higher value of 

Tan 4J should shift some entries up and hence produce a higher 

level of agreement. However, it is not hard to see that the 

match is too high to be attributed to this fact. In any case, 

the high match guarantees that the value of Tan 4J found by 

multiplying each nodal entry in the column by Sin 6 and taking 

the mean will be almost precisely the altered value used in 

Table 3.4. The reconstructed Tan 4J values, with errors 



illustrated, are shown in Table 3.5.'' 

Tan t#~ Tan 4 

Table 3.5: The reconstructed tangent values used by al-Khalili 
in the construction of the g(d,8) table 

''~or small values of 9 it is hard to verify any hypothesis, 
since the function values are very small. But for $ > 10•‹, a 
comparison over the nodal values in 24 selected columns reveals 
a match of 261 out of 285, or 91.6%, between (3.19) and 
al-Khalili's accurate tabular entries. The same comparison over 
the nodal values for al-Khalili's inaccurate entries produces a 
match of 130 out of 139, or 93.5%. 

An objection may be raised that the discovery of incorrect 
tangent values invalidates the test in Sec. 3.4.1, which used 
correct tangent values. Only a small percentage of the tangent 
values are incorrect, however, affecting the correlation only 
minimally. If the test were performed with the new tangent 
values, undoubtedly the correlation would be even higher. 



3 .  4 .  3 T h e  I n t e r p o l  a t  i o n  S c h e m e  

A comparison of the tabular values with direct computation 

according to (3.19), using the reconstructed tangent values, 

reveals two small regions with a high enough percentage 

agreement to support the direct calculation hypothesis over 

these entries. A small block near the centre and at the bottom 

of the table has a percentage agreement of 97.8%, and an area 

comprising most of the columns for high values of 9 has a 95.2% 

match.13 See Fig. 3.4 for an outline of these regions. The vast 

majority of the internodal values, however, remain unexplained. 

An examination of the first differences throughout the 

entire table reveals no consistent pattern. It is immediately 

clear, however, that linear and second order interpolation (the 

most likely possibilities from an historical viewpoint) fail to 

account for even small sections. Statistical tests searching 

for the effect of rn(Sin 8) on internodal values for different 

values of n also failed to find a relation. 

Over a large area covering almost 50% of the table, however, 

a uniform pattern emerges. This area has rather clearly defined 

boundaries, but the edges described in Fig. 3.4 are not to be 

taken as completely rigid. The method of interpolation that 

131n the latter area, it appears that al-Khalili is using 
Sin 17' = 17;32 [ - I ] ,  the same value that occurs in the first 
column of the f(4,8) table.  his value agrees with that in a 
sine table known to al-Khalili. See D. A. King, Shams al-Din 
al-Khalili -- and the Culmination of the Islamic Science of -- 
Astronomical Timekeeping (unpublished: Frankfurt university, 
19871, Table 3.1A, p. 177. 



matches the values in the table is a variant of linear 

interpolation, and may be described as follows. Let 

x = ~g(@,8 + 5') - ~g(@,8) in sixtieths, where 8 is divisible by 

5. Then x is the difference in tabular values at the ends of a 

m x typical span between two consecutive nodes. Let n + - = - 
5 5' 

where m and n are integers and 0 5 m I 4. For the first m 

entries, add n + 1 minutes to the previous entry; for the 

remaining entries, add n minutes to the previous entry. The 

agreement over the area in question is 327 of 357 blocks of 

entries between successive nodes, or 91.6%. This corresponds to 

a per entry agreement of 97.8%.14 

This variant of linear interpolation has several advantages. 

First, the values it produces are not likely to wander from the 

true g(@,8) values; that is, the interpolation function is 

stable. Second, these values are best for use with a function 

that is close to linear but has a small negative second 

derivative, precisely the nature of g(@,8) for fixed 4 .  

Finally, the method is very easy to'execute: only a simple 

addition is required for each tabular value after the average 

first difference has been found. These considerations show that 

this scheme is ideal for application to the calculation of the 

g(@,8) table. 

------------------ 
'&The 30 blocks that fail to match the hypothesized 
interpolation scheme imply at least 30 errors were made over the 
120 entries in these blocks (assuming the hypothesis to be 
true). Since there is no reliable way of knowing what number of 
the remaining 90 entries contain errors, we remove them from 
consideration. This gives 30 errors in 327-4 + 30 = 1352 
entries, or a 97.8% agreement. 



SI = Sine Values 

DC = Direct Computation (using 
two sexagesimal digit 
trigonometric values) 

LI = Variant of linear 
interpolation described 
on p. 46 

Fig. 3.4: Schematic diagram of the methods used to generate 
al-Khalili's g ( 4 , 9 )  table 



The objection may be raised that the area in question has an 

unusual shape, and in fact over a region similar to this one the 

probability that an independent method will match the suggested 

pattern is highest. This latter fact can be seen as follows: 

given any span of four entries between consecutive nodes g(4,8) 

and g(4,8 + 5"), if x = g(4,B + 5") - g(4,8) is divisible by 5 

the hypothesized scheme produces three second differences of 

zero; if x is not divisible by 5 it will produce one second 

difference of - 1  and two second differences of zero. This 

1 4  1 - -4 produces an average second difference of -- - + 0 - - - 
3 5 5 15 

minutes. This corresponds to the following average second 

derivative with respect to 8: 

But 

So the area of the table where the average second differences 

best correspond to the nature of the function is the area for 

which 

The band of the table where the entries are of this magnitude 

starts at the bottom, where 4 - 13" and 8 = 90•‹, and extends 

diagonally up to the right edge where 4 = 55" and 8 = 10". Near 

this zone a reasonably accurate independent method is most 

likely to agree with the hypothesized scheme, with the 

probability of agreement continuously decreasing as the entries 



diverge from this curve. 

While this argument d oes demonstrat 

a match should be higher over this area, it 

at the probability of 

is not sufficient to 

explain the match in the table. Firstly, the area that does 

match does not correspond very well to the curve where the 

probability of a match is greatest, particularly for 4 > 45'. 

Secondly, even where the probability of an independent method 

matching our scheme is highest, it is still very small. An 

example is the column for 4 = 3310, which was independently 
2 

computed, and the column for 4 = 45', which is just a copy of 

r,(Sin 8) for all 8. For both of these independently calculated 

columns, not one of the 18 internodal blocks matches with the 

hypothesized scheme. So clearly the fact that 91.6% of the 

blocks match in the area in question is far from coincidental. 

I cannot, however, satisfactorily explain why al-Khalili would 

have used this method in the central area and not in those areas 

immediately adjacent. 

3.5 Possible Reconstructions of G(x,y) - 

The G(x,y) table is probably the greatest computational feat 

of the three auxiliary functions. While the G(x,y) table 

contains less than 70% of the number of entries in either of the 

two other tables, each entry is considerably harder to compute. 

After the division Rx is performed, an arc Cosine is 
Cos y 

required, usually of an argument which cannot be read directly 



from a Sine or arc Sine table. The location of the final entry 

of any given column also cannot be determined trivially. 

Finally, the ~(x,y) function is not so well-behaved as either 

f(t$,8) or g(t$,8): while each column of the first two functions 

is a constant multiple of the Sine table, the curve produced by 

G(x,y) varies in slope and concavity in different regions of the 

table. This forces any fixed interpolation method 

simultaneously to match many different types of curves. Thus 

one might expect either a variety of interpolation methods, or 

possibly a finer grid. 

Certain values of x and y result in simplifications of the 

function G(x,y). For x = 0, 

G(x,Y) = arc cos [XI Cos y = arc Cos 0 = 90•‹, 

but al-Khalili does not include x = 0 as part of the domain of 

the table. For y = 0, 

~ ( x , y )  = arc cos [Co~xOO] = arc cos x, 

and for y = 60, 

~ ( x , y )  = arc cos [Co~x609] = arc cos 2x. 

But study of the two rows corresponding to these values of y 

fail to reveal any structure to the errors in these rows; in 

fact, even the pairs of values G(2x,0) and G(x,60) fail to 

match. 



3.5. I T h e  C a u s e  of A n o m a l o u s  E r r o r s  i n  t h e  G ( x ,  y) T a b 1  e  

The errors in the G(x,y) table show a similar distribution 

to those found in the first two tables. Approximately one half 

of the entries are accurate to the two sexagesimal digits 

displayed in the table, and most of the remaining entries err by 

one minute to either side. Some entries, however, show 

considerably larger errors of up to 30 minutes. Most of these 

so-called "anomalous errors"15 are found in regions 

corresponding to small values of x and large values of y, a fact 

consistent with the observation that G(x,y) changes most rapidly 

there with respect to y. 

The cause of these errors is easily found. Where the errors 

are large, the function G is very unstable with respect to y. 

The only computation performed using y in the evaluation of G, 

however, is the use of Cos y .  Considering al-Khalili's heavy 

use of two sexagesimal digit trigonometric values in the first 

two tables, the obvious first attempt is to compare the tabular 

values with computation according to 

G(x,y) = arc Cos [rl(& y)]' 

using accurate division and arc Cosine functions. 

The results of this comparison over entries in the table 

with an error of five or more minutes are shown in Table 3.6 

below. As the rightmost column giving the difference between 
------------------ 
I s ~ .  A. King, "al-KhalilT1s Auxiliary Tables for Solving 
Problems of Spherical Astronomy", pp. 101,  105. 



r 
the tabular values and reconstruction via ( 3 . 2 5 )  demonstrates, 

the error pattern caused by rounding Cos y to two sexagesimal 

digits is almost precisely that which occurs in the table. (It 

is easily checked that those entries with errors of less than 

five minutes show approximately the same agreement as those that 

appear in Table 3 . 6 . )  This result verifies not only that 

al-KhalTlT used two sexagesimal digit rounded values of Cos y, 

but also that after this point any other errors introduced have 

relatively minor effects. 

True Value Recomputed 

6 1 ; 3 4  
1 7 ; 4 5  
5 0 ; 2 0  
1 7 ; 4 5  
1 6 ; 4 6  
1 7 ;  2  
1 7 ; l O  
1 6 ; 4 6  
16:55 
1 5 ; 4 4  
1 4 ; 2 3  
1 3 ; 4 7  
1 1 ; 5 4  

9 ; 3 2  
7 ; 3 0  
4 ;20  
4;  36  
5;  2  

1 0 ; 5 6  

Difference 

The second and seventh entries above have been reconstructed as 
if they were scribal errors. The entries that actually appear 
in the table here are 1 7 ; 1 5  and 1 6 ; 1 0  respectively. 

Table 3.6: Comparison of computation via ( 3 . 2 5 )  with tabular 
values for those entries with anomalous errors in the G(x,y) 
table 



3 .  5 .  2 T h e  R o u n d i n g  P r o c e d u r e  i n  t h e  A r g u m e n t  o f  t h e  A r c  C o s i n e  

After the computation of Cos y, two steps remain to complete 

Rx hereafter the evaluation of G(x,y): first, the value - Cos y' 
called the argument of the arc Cosine, must be found; then the 

arc Cosine of the argument must be taken. Both of these 

procedures may be accomplished in a variety of ways. The 

argument may be easily calculated by simply dividing Cos y into 

Rx, but D. ~ i n g ' ~  has suggested that al-Khalili may have 

consulted a table for 

W y  R 
R Cos y' 

presumably using two-digit values of Cos y as we have found, and 

then multiplied the appropriate value in this table by x for 

each entry of the G(x,y) table. King notes that "no independent 

table of the Secant is contained in any known Islamic 

source",17 but we cannot ignore the possibility that al-Khalili 

was innovative. The arc Cosine operation is more difficult to 

deal with, since the argument is usually not an integer. Linear 

interpolation from an arc Cosine table or inverse linear 

interpolation from a Cosine table are possible, and these tables 

may well have had varying levels of accuracy and different 

spacings between entries. Also, we have no information 

concerning the rounding of the argument prior to the application 

of the arc Cosine algorithm and hence we cannot even be sure of 

l 6  D. A. King, wal-Khalili's Auxiliary Tables for Solving 
Problems of Spherical Astronomy", p. 109. 

'7"al-~halili's Auxiliary Tables for Solving Problems of 
Spherical Astronomy", p. 109. 



the exact value that al-Khalili started with when taking the arc 

Cosine. 

Before we begin to attempt to determine the method that 

al-KhalTli used to calculate entries of G(x,y) directly, 

however, we must choose an appropriate subset of the original 

table for use as a data set. Given that the probability that 

al-Khalili used some form of interpolation is high, those areas 

where interpolation may have been used to generate the entries 

should be avoided. Also, those areas where the function is most 

sensitive to changes in the arguments are to be preferred, since 

these entries leave clearer traces of the errors caused in 

calculation. Fortunately these two considerations lead to the 

use of the same data set, those entries near the bottom curved 

edge of the table. Our data set, then, is defined as follows: 

for each column, take those entries whose y arguments are 

greater than or equal to the highest value of y divisible by 5. 

This gives 132 entries, a suitably large number.18 

Calculation of the argument via either King's hypothesis or 

direct division leads to several possible results, given 

different levels of rounding. The results of direct division 

may be rounded to different levels: 

Argument = 

for some value of n. The method of calculation with the use of 

ls0ver the entire table this method produces 181 entries. At the 
time the tests were performed, however, the columns for x > 43 
had not yet been translated. 



a secant table also entails this set of possibilities, but it 

has an intermediate step where roundoff also occurs. This 

method may be represented by 

R ~rgument = .nix rm[ r,(Cosy) ] 1 ' 
for values of m and n. If m 2 2 in the latter formula (i.e., 

al-Khalili's secant table is accurate to at least three 

sexagesimal digits), the values produced by the two equations 

(3.27) and (3.28) are virtually identical, and the effect of the 

differences on the function values on the data set is 

insignificant. So we must consider two sets of possibilities: 

either m = 1 in (3.281, or n = 1,2,.. . in (3.27).19 

The hypothesis of the use of (3.28) with m = 1 is easily 

refuted. Since the arc Cosine is a decreasing function, 

arrangement of the tabular entries in ascending order by 

function value should correspond to a descending order in their 

respective arguments. But Table 3.7 illustrates that this is 

not the case with (3.28) and m = 1. Table 3.7 shows only a 

subset of the entire data set, but the somewhat random pattern 

in the rightmost column holds true throughout the data set. 

lg~ote that rejection of the first case would not eliminate the 
possibility that al-Khalili used a secant table: it only implies 
that the secant values would not have been calculated with 
m = 1. 



Tabular 
Value 

(3.28) 
With m = 1 

57; 34 
57;40 
57;20 
57:21 

(3.28) 
With m = 2 

Table 3.7: Comparison of the tabular values of G(x, with the Y) 
argument calculated via (3.28) with m = 1 and m = 2 for selected 
entries 

Of the remaining possible ways described to compute the 

argument, all but one produce values so close to Rx that 
r, (Cos y) 

they cause no distinguishable effect on the data entries. This 

final possibility to consider is the use of direct division and 

rounding to only two sexagesimal digits - (3.27) with n = 1. 

The error traces caused by this coarse rounding procedure should 

be noticeable on the data set, since these entries are sensitive 

to error. It is also the most reasonable hypothesis to 

consider, since al-Khalili has so far shown a preference for two 

values with two sexagesimal digits. 

In order to determine whether the two digit hypothesis is 

. valid, we assume the hypothesis and calculate the effect it 

should have on the tabular values. For notational simplicity, 

define 



f(x) = arc Cos(x), 

and Az = 2 - z. 
Then z is the exact value of the argument obtained by using 

al-Khalili's two digit cosine values, 2 is the argument rounded 

by our hypothesis, and Az is the change in the argument caused 

by rounding. 

We wish to determine whether Az correlates with the error in 

the tabular entries (measuring the latter error with the 

assumption that rl(Cos y) is the correct Cosine), much as we did 

with the columns in the g(d,8) table. However, in the previous 

case, the hypothesized rounding error had a linear relationship 

with the errors in the tabular entries (see (3.18)), an 

advantage not available in the present situation. But 

f(2) - f(z) 1 Az fl(z), 

since ( 2  - z) is small, or 

where Af(z) = f(2) - f(z). So Az should be linearly correlated 

with not with A•’ (z). 
f'tz)' 

The situation, however, presents additional complications. 

Two additional errors are generated when proceeding from z to 

the tabular entry. First, al-Khalili's unknown method of 

determining arc Cosines certainly introduces its own error, thus 

disturbing the correlation. Call i(z) the function that gives 

al-Khalili's arc Cosine for argument z. Then the tabular entry 



is r ( 2 .  This final rounding to two sexagesimal digits is 

the second error, and will also disturb the original 

correlation. 

The final rounding error is easily simulated, but the effect 

of using t instead of f is more difficult to copy, since I is 
unknown. Using the implicit assumption of the two sexagesimal 

digit hypothesis, however, the overall effect of the error 

caused by I may be found, albeit rather discretely, by 
calculating 

for each value in the data set. (~ote that r (i(2) ) is 

al-Khalili's tabular value.) Table 3.8 below gives the results 

of these calculations. 

Number of 
entries 

Table 3.8: The number of entries in the data set with e(f) equal 
to the number of minutes displayed 



So, our problem is now to determine the level of correlation 

between Az and AG (where AG is the actual error in the f'o 
tabular entry) after the two additional error factors described 

above are taken into account. The procedure we shall use is as 

follows: take 132 data points (x,y) randomly scattered in the 

domain in which the data set is located. 

Calculate z = Rx and find8 = rl(z) and Az = 8 - z. To 
rl(Cos y)' 

obtain the effect of al-Khalili's arc Cosine operation, take the 

arc Cosine and add a number of minutes randomly chosen according 

to the probability distribution represented in Table 3.8. 

Finally, round the result to two sexagesimal digits. This gives 

132 data points (Az, - AG 1, from which the correlation 
f' (2) 

coefficient may be easily found. 

It is true that al-~halili's arc Cosine operation is not 

likely to produce a randomly distributed error: certain values 

of 2 may be more likely to result in particular errors in the 

evaluation of ?(dl than others, but this will not affect the 

test. The correlation we are attempting to find uses the values 

of Az, not 8, as the abscissas. Given any 8, the set of 

possible values of z is the interval (8 - (0;0,30), 

8 + (0;0,30)1; thus, any value of Az is equally likely to 

produce the given value of 8. Hence Az is independent of 8, and 

the fact that the value of B may influence the error caused by 

. the use of ? does not change the expected correlation 

coefficient from the one produced by our test. 



The test described above was run 100 times and gave a set of 

correlation .coefficients loosely fitting a normal distribution. 

A histogram of these coefficients appears in Fig. 3.5 below. 

Fig. 3.5: Histogram of correlation coefficients produced by the 
above test 

The coefficients range between 0.4929 and 0.7798, with a mean of 

0.6447. The actual correlation coefficient between Az and 

AG where the value of G(x,y) is taken from al-Khalili's f'(z)' 
table, is 0.1078. 

Clearly the correlation coefficient found from al-Khalili's 

tabular values is sufficiently small immediately to reject the 

two sexagesimal digit hypothesis over the entire data set. If 

the 132 data points are in fact independent, the probability of 

obtaining a correlation coefficient as high or higher than 

0.1078 is approximately 11%.~' This probability is certainly 

much too high to allow us to conclude a relation between the 

data, but it leaves open the possibility that a small subset of 

the original data set is in fact correlated. Examination of the 

various subsets of the original data set most likely to have 

been calculated directly, however, consistently give small or 

2 0 ~ e w  - Cambridge Elementary Statistical Tables, pp. 56, 34. 



negative correlations. 

The two-digit hypothesis is now eliminated, and the logical 

next step is to test the three-digit hypothesis; i.e., (3.27) 

with n = 2. A histogram of the 100 correlation coefficients 

produced by the program applied to this new hypothesis is given 

in Fig. 3.6 below. 

Fig. 3.6: Histogram of the statistical test described above 

This set of coefficients has mean -0.00634, virtually zero. 

Hence, the effects of the use of a three digit argument as 

opposed to the use of the true argument Rx 
r, (Cos y) 

are so small 

that our statistical test could not detect them. 

While our statistical test firmly rejects the two digit 

hypothesis, in fact a more direct means may have been used to 

cause some doubt regarding its feasibility. For tabular entries 

that have very small values, the corresponding arguments are 

close to 60; 0 and the arc Cosine function is extremely 

sensitive to changes in the argument for these values. In fact, 

given the two-digit value for the argument, up to ten different 

. possible two-digit tabular values may have this number as a 

Cosine. Ten of the tabular entries with the smallest values are 

given below in Table 3.9. Column 4 gives the different possible 



tabular values whose cosines correspond to the two-digit 

argument of column 3. Column 5 gives the 'true' value of ~ ( x , y )  

according to (3.251, and the value 

appears in column 6. 

found in al-KhaliliWs 

2-Digit 
Argument 

table 

Possible 
arc Cosines 

True 
G(x,y) 

Table 3.9:  A closer com~arison of (3.25) with al-Khalilils 
tabular values for entries of G(x,y) with small values 

Note that the values for G(x,y) given by the use of a precise 

argument also fall within the ranges of column 4, but in fact 

they are considerably closer to the values in al-Khalili's table 

than would be expected by chance. 

Had the ranges found in column 4 of Table 3.9 above been of 

a similar size for a larger and more equally distributed set of 

tabular entries, the statistical test performed earlier would 

have been redundant; however, for most of the tabular entries 

the range defined as in column 4 is only one or two possible 

values. The results of the statistical test combined with Table 

3.9 are nevertheless enough to conclude that al-Khalili's values 



for the argument were taken to at least three sexagesimal 

digits, a curious fact since the denominator of the argument 

(Cos y) was taken to only two digits. Likewise, had al-Khalili 

used a Cosine table to generate arc Cosines the values in this 

table must have been accurate to at least three sexagesimal 

digits. Finally, the possibility that al-KhaPTli used an arc 

Cosine (or arc Sine) table is remote. Had he used such a table 

its values for integral arguments would surely have occurred 

along the first row of the table, for entries corresponding to 

G(x,O). But the errors contained in the first row are not 

reflected in the other tabular entries, whose values would rely 

on those in the first row, as we would expect if this arc Cosine 

table had been used. 

To proceed any further than this point is virtually 

impossible. Calculation via 

already produces a 70% agreement. In order to work any further 

according to the likely hypothesis that al-~halili used a 

reasonably accurate Cosine table, we require the Cosine values 

that al-Khalili would have used. Many such tables existed in 

the fourteenth century with the required accuracy, but the 

Cosine values they contain are of course not in perfect 

. agreement. 



3.6 Acceptable Error Levels in al-~halili's Table - 

Given a numerical table of the size of al-Khalili's tables 

entirely computed by hand, we may expect two types of error to 

alter the entries from the values that the algorithm used by the 

constructor should produce. Computational errors should occur 

at a level roughly proportional to the difficulty of the 

numerical operation, and scribal errors should cause randomly 

distributed errors. Scribal errors in the first digits are in 

general easy to detect, but those that occur in the final digit 

are usually impossible to distinguish from computational errors. 

It will be useful to check whether the error levels derived from 

the methods we have discovered agree with these considerations. 

Table 3.10 below gives the number of scribal errors found in the 

first three digits of the entries in those areas of al-Khalili's 

tables that have been explained, using the Paris manuscript as 

the sole source. (In this section only, digits shall refer to 

the individual characters; so 57;34, for instance, has four 

digits.) 

. Table 3.10: The location of scribal errors in the explained 
regions of al-Khalili's auxiliary tables 

1st Digit 
2ndDigit 
3rd ~ i g i t  

The large proportion of scribal errors in the third digit is to 

G 

1 
2 
6 

f 

1 
6 

g 

1 0  
1 
12 

Total 

2 
4 
24 



be expected, since the magnitude of an entry with an incorrect 

third digit is not markedly different from the correct value, 

and a scribe is less likely to catch it. Assuming as a very 

rough guess that the number of scribal errors in the fourth 

digit is between twice and three times the number in the third 

digit, we arrive at a figure of 48 to 72 scribal errors in the 

fourth digit of the 6600 entries, or 0.727% - 1.09%. So we 

shall use the figure of 1 %  as an estimate of the number of 

hidden scribal errors. 

Fortunately, the operations that we know al-Khalili used to 

calculate entries in his table correspond to either a single 

addition or a single multiplication. The calculation of f(@,8) 

from g(@,8) via 

f(@,+ 2 n) = Cos n + g(@,n) (3.33) 

generated a 95.9% success rate. Thus, assuming our 1% hidden 

scribal errors, al-Khalili's error rate with respect to addition 

is approximately 3%. The combined success rate in the g(@,8) 

table over the interpolation nodes and areas where direct 

calculation was used is 94.0%, corresponding to a 5% error rate 

with respect to multiplication. Considering the relative 

difficulty of multiplication as opposed to addition and the 

damping effect of serious errors being caught by observation, 

these figures are appropriate. 



3.7 - The Feasibility of -- the Construction - of al-Khalili's Qibla 
Table from his ~uxiliary Tables --- 

Al-Khalili's qibla table, probably his most impressive 

accomplishment, represents a vast amount of calculation. For 

the arguments 

4 = 10•‹,110,...,560, and 33;30•‹, 

and AL = 1•‹,20,...,600, 

where 4 is the worshipper's latitude and AL is his longitudinal 

difference from Mecca, the table gives the direction of Mecca 

relative to the meridian at the worshipper's location in degrees 

and minutes, for a total of 2880 entries. Roughly 1 of the 
4 

entries are correct to the two sexagesimal digits displayed, 

while most of the others are in error by less than five minutes. 

As the locations of the entries move nearer to Mecca, however, 

the errors increase to a maximum of 41 minutes as the function 

becomes more sensitive to smaii changes in the argument. 

While he does not explicitly state which formula he used, 

al-Khalili declares that he knows of no better method of qibla 

calculation than that of al-Marrakushi, who used the equation 

Sin h Tan 4 R Sin 4M 

C I - Cos , 1 
q = arc Cos 

Cos h 1 
where h, the height of the zenith of Mecca in the observer's 

- sky, is given by 
COS 4M COS 4 

Sin h = sin($ + - Vers AL 
~2 

. 
The nature of the above qibla formula immediately suggests the 



possibility of the use of al-Khalili's auxiliary tables to 

generate his qibla table using 

q = G([g(#,h) - f(#,$M)l, h). (3.36) 

King notes chat "al-Khalili's qibla values are generally 

more accurate than those which can be derived from his auxiliary 

tables in this way. Thus the possibility that he computed his 

qibla values independently of the auxiliary tables cannot be 

ruled out."2' I have not extensively examined the possibility of 

the use of the auxiliary tables, but several simple observations 

are enough to show that what King suggests is in fact a rather 

strong possibility. The obvious first reason is that the domain 

of the qibla table extends to 9 = 56", while the auxiliary 

tables end at 55". A more serious cause for doubt that the 

auxiliary tables were used is the fact that the errors in the 

f(#,B) table are not reflected in the qibla table. Since #M is 

constant, the same value fi#,#M) = f(#,21;30) should be used for 

an entire column of the qibla table. Several of the columns of 

the f(#,e) table contain entries for 8 = 21" and 22" that are 

both in error by several minutes. It is easily seen that an 

error of this size in the value of should result in an 

error in the qibla value of approximately the same magnitude, 

but these errors do not exist in the qibla table. The 

possibility of the use of the other two tables would require 

more examination, but I find it unlikely that the two-digit 

values in the auxiliary tables are enough to produce an accuracy 

------------------ 
2 1 ~ .  A .  King, "al-Khalili's Qibla Table", p. 108. 
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l e v e l  c lose  t o  t h e  l e v e l  found i n  the  q i b l a  t a b l e .  



CHAPTER 4 

CONCLUSION 

The study of the history of computational methods has in the 

past suffered from a lack of scholarly analysis, reflecting 

perhaps the outlook of the ancient and medieval mathematicians 

themselves, which placed it out of the realm of mathematics and 

into the category of common sense, self-taught practice. 

Ptolemy, for example, after the preliminary chapters of the 

Almagest, states that he has completed the discussion of all the 

mathematics required for the book without describing how any of 

his numerous tables were computed, even though Glowatzki and 

Gottschel have demonstrated that Ptolemy did more extensive 

calculation than he states on the chord table. This outlook 

continued through the Islamic medieval period, with the result 

that mathematical and astronomical tables, often fraught with 

numerical inaccuracies, were presented in the zijes as a fait 

a c c o m p l i .  The study presented here has described some methods 

to determine the numerical procedures used by Shams al-Din 

al-Khalili. Future work in the same vein should help to uncover 

the currently unknown numerical practices of scientists from a 

variety of historical periods. 

Even a cursory examination of the results presented here, 

. connected with some initial observations of other auxiliary 

tables, shows a level of improvement from the tenth to the 
------------------ 
'E. Glowatzki and H. Gottsche, Die Sehnentafel - des Klaudios 
Ptolemaios (Munich: Oldenbourg, 1976), pp. 60-71. 



fourteenth centuries. The sine tables of ?abash al-IjZsib from 

the ninth century2 and the mathematician AbG Nasr Mansfir from 

the tenth century13 for example, are taken by simply dividing 

each entry of Ptolemy's three sexagesimal digit chord table by 

two and displaying four digits, with the result that the last 

digit is always either 0 or 30. We have found that another 

table in AbG Nasr's -- Table of Minutes, defined by 

•’,(#I = sin E cos # (where E is the obliquity of the ecliptic) 

was calculated by rounding Ptolemy's value of 26 to two 

sexagesimal digits and using linear interpolation to obtain a 

value for sin E from the chord table. The values in the table, 

however, are displayed to four sexagesimal digits. This 

produces an average of 2.6 digits in error. Also, these tables 

(and most of the tables from this period) are quite small, 

consisting of a few hundred entries at most. This is not 

surprising, since early indications show that they were computed 

directly, entry-for-entry, without using timesaving techniques 

like interpolation. 

Al-Khalili's tables, on the other hand, may not be as 

accurate as the tables of AbG Nasr or ?abash al-YZsib, since 

they are given to only two sexagesimal digits, but the 

2~.-T. Debarnot, "The Zij of Fabash al-YZsib: A Survey of MS 
Istanbul Yeni Cami 784/2", in Eds. D. A. Kinq and G. Saliba. - 
From Deferent to Equant: A Volume of Studies in the History of 
Science in - thexncient - an3 ~ e d i e v a l ~ e a r  ----- E a s t i n x n o r  of E.S. 
Kenned nnnals of the New York Academy of Sciences v. 5 0 0 7  - 
d p .  46. 

j ~ e e  further C. Jensen, "AbG Nasr's Approach to Spherical 
Trigonometry as Developed in His Treatise The Tab1 e of Minutes", 
Centaurus 16 (1971), pp. 1-19. 



techniques and parameters used show considerably more 

sophistication. The tables contain an average of only 0.5 

digits in error; in fact, about half of the entries are exact to 

the two digits displayed. The trigonometric tables on which the 

tables are based are almost sufficient to produce accurate 

tabular values: the sine table consists of the correct sine 

values rounded to two sexagesimal digits, and about 75% of the 

tangent values are also correct to two digits. The methods that 

we have discovered al-Khalili used to compute the tables 

themselves exhibit a great deal of thought and foresight, since 

they are both stable and easy to implement. The interpolation 

scheme suggested for the g($,8) table, for instance, is 

essentially the simplest possible method, but it nicely suits 

the nature of the function as well. The formula used to 

generate entries of the f(@,8) table from corresponding values 

of g ( $ , @ !  is far from obvious, but it results in computations 

even quicker than those required for the g($,8) table and 

produces entries that are generally no less accurate than the 

entries from which they were generated. Finally, the great care 

taken in the application of the arc Cosine in the calculation of 

G(x,y) shows that al-Khalili had some idea of the instability 

involved with this function. Clearly al-Khalili spent a 

significant amount of effort in considering how to calculate all 

three of his tables; yet, none of this work is recorded or even 

mentioned. 



Al-Khalili's tables and others of his period display the 

application of more sophisticated procedures than earlier works, 

but when observed from a modern viewpoint they still contain 

some rudimentary errors. The use of tangent values less 

accurate than the number of digits desired in the tables, 

especially considering that better tangent values must have been 

available, is an oversight noticeable even to the untrained eye. 

Even more curious is the fact that while al-Khalili calculated 

the arc Cosine very carefully, and to at least three sexagesimal 

digits, he used only two digit Cosine values to compute the 

arguments for the arc Cosines, resulting in rather large errors 

in certain portions of the G(x,y) table. So it appears that 

while the art of numerical calculation was more highly developed 

in al-Khalili's tables than in those of AbC Na$r, it had not 

moved beyond practical, behind-the-scenes operation to a more 

systematic approach. 

The above speculations should give some indication of the 

usefulness of more advanced computational techniques in the 

study of the history of mathematics. Until now, the only 

published effort made to determine the numerical structure of 

mathematical tables of historical interest is the work of 

Glowatzki and Gottsche14 which is somewhat limited in scope.5 

------------------ 
a ~ .  Glowatzki and H. Gottsche, Sehnentafel - des Klaudios 
Ptolemaios, pp. 60-71. Glowatzki and Gottsche's main argument is 
that recalculation of chord values according to a method 
decribed in the Almagest requires at least five sexagesimal 
digits to achieve the accuracy found in Ptolemy's chord table. 

5G. J. Toomer, review of E. Glowatzki and H. Gottsche, in 
Centaurus 21 (19771, pp. 321-323. 



This thesis uncovers some information of interest on 

al-Khalili's auxiliary tables but falls short of presenting a 

full account of methods that could be used to find the numerical 

structure of other tables. The use of more advanced statistical 

tools would lead to more comprehensive methods, presenting the 

opportunity to explore the evolution of numerical techniques in 

the scientific works of medieval Islam and other cultures. 



APPENDIX A: SELECTED COLUMNS OF AL-KHALTLT'S AUXILIARY TABLES 

The error representation system used in the tables below, 
described fully in Sec. 2.4, is as follows: 

error = text - r,(exact value) 

R Sin 8 for 4 = 1 0  
Cos 9 





~ ( x , y )  = arc Cos Rx [-I for x  
Cos y  



APPENDIX B: A SEXAGESIMAL DESK CALCULATOR PROGRAM 

During the course of my research on al-Khalili's auxiliary 
tables, I found it extremely useful to have access to a program 
that emulates a desk calculator, but works i~ a sexagesimal 
rather than a decimal base. Included below is the core of the 
program, written in pseudo-code. The user will find it easy to 
modify the code below to any base and to suit virtually any 
application. 

The program stores numbers in fixed-point format, and relies 
on machine arithmetic only for operations with integers. A 
given number is stored as a vector with 13 integer elements. 
The first digit is a sign indicator (0 for positive, 1 for 
negative), the next six elements represent the integer portion 
of the number, and the remaining six store the fractional part. 
Thus x = -36,22;14,8 is stored as follows: 

X = ( 1  ,0,0,0,0,36,22,14,8,0,0,0,0) 
The use of six digits before and after the sexagesimal point 
should ensure sufficient accuracy for most purposes. 

For the sake of brevity I have included only the routines 
for addition, subtraction, and multiplication, as well as one 
machine-dependent sine function for illustration. All unary 
operations (functions of one variable, such as the sine or 
square root) should be coded in the program according to the 
generic example immediately following the sine evaluation 
function. All binary operations may be included in the "Case" 
statement near the end of the code labelled "Operation Entry 
Mode". 

The square bracket notation used in the code signifies 
certain characters or sets of characters that the user must 
specify to represent the given operation. In an interactive 
context, the command 

Input (char) 
instructs the computer to wait until a character is received. 
Finally, the three rightmost columns on the screen are reserved 
to output the names of the operations performed, and are called 
the operation column. 

Program SixtyCalc 

( *  V a r i  a b l  e s :  v e c t o r  v a r i  a b l  e s  r e p r e s e n t  i ng  n u m b e r s  
( *  a r e  r e p r e s e n t e d  b y  a  v e r t i c a l  b a r  a b o v e  t h e  name .  
( *  

- x :  c u r r e n t  number  b e i  ng e v a l  u a t  e d .  
( *  

- 
y :  i  n  b i  n a r y  o p e r a t i o n s ,  t h e  f i r s t  number  e n t e r e d .  

( *  : t h e  m e m o r y  v a r i a b l e .  
( *  c h a r :  c u r r e n t  c h a r a c t e r  b e i  ng e v a l u a t e d .  



( *  op: c o d e  n u m b e r  or s t r i n g  s i g n i f y i n g  t h e  b i n a r y  
( *  t o  be u s e d .  

( *  Ini t i  a1 i zat i o n  of V a r i  abl es 

- x := 0, y := 0, ii := 0, op := (nothing) 
1nput (char) 

( *  O p e r a t  i o n  E n t r y  M o d e  

If char = (digit or [+/-I or [.I) then - y := X 

goto number entry mode 

If char = [clear] then - 
x := 0, y := 0, op := (nothing) 
write("CLRW: operation column) 

If char = [Clear ~ntry] then - x := y, y := 0 
write("CE1': operation column) 

If char = [Store in Memory] then - fi := X 

write("STOW: operation column) 

If char = [Recall ~emory] then - 
If op # (nothing) then := x - x := iii 
write("RC~": operation column) 
display(SI) 

If char = [Sine] then 
z := decvalue(%) 
f := sin(z) - 
x := sixtyval(z) 
write("S1~": operation column) 
display(SI) 

( *  T h e  s t a t e m e n t  be1 ow is a  g e n e r i c  e x a m p l e  of a  m o n i c  
( *  o p e r a t i o n .  T h e  u s e r  m a y  s p e c i f y  t o  r e q u i r e m e n t s .  

If char - = [~onic operation] then 
x := monic operation(%) 
write("[Monic op]": operation column) 
display(%) 

If char = [a binary operation] then 
op := (operation) 
write(op: operation column) 



( *  U s e r - s u p p l  i e d  b i  n a r y  o p e r a t  i o n s  m a y  b e  i  n c l  u d e d  
( *  i n  t h e  C a s e  s t a t e m e n t  b e l o w .  

If char = [ = ]  then 
Case 

op = add: Z := add(E,y) - op = mult: z := mult(E,y) 
- - 

op = (nothing): z := x 

( *  T h e  f o l l o w i n g  l i n e  i s  c u r r e n t l y  w r i t t e n  f o r  e a s e  o f  
( *  u s e  i n  sums  o f  s e r i e s ;  e . g . ,  " 5  9 6 = 3 = "  w i l l  
( *  p r o d u c e  t h e  t w o  v a l u e s  I 1  a n d  1 4 .  T h e  u s e r  s h o u l d  
( *  a l t e r  t h i s  l i n e  a c c o r d i n g  t o  p r e f e r e n c e .  

Input (char) 
Goto beginning of Operation Entry Mode 

Procedure display(E) 

Move cursor one line down 
write (E: main screen) ( *  I n c l u d e  p u n c t u a t i o n .  
End 

( *  Number E n t  r  y  Mode 

( *  T h i s  c o d e  a l l o w s  e n t r y  o f  s e x a g e s i m a l  d i g i t s  u s i n g  
( *  t h e  d i g i t s  0 t h r o u g h  9 .  I n  b a t c h  o p e r a t i  o n ,  
( *  r e m o v e  a1 1 w r i t e  s t a t e m e n t s  i n  t h i s  s e c t i o n .  
( *  c u r r d i g :  T h e  l o c a t i o n  ( i n  E) o f  t h e  s e x a g e s i m a l  
( *  d i  g i  t  c u r r e n t  1 y  b e i  n g  e n t  e r e d .  

If char # digit then goto Operation Entry Mode 

If currdig > 13 then 
Input(char1 
Goto beginning of Number Entry Mode 

If digit > 5 then 
val := digit 

Else 
val := digit * 10 
1nput(digit2) 
val := val + digit2 

( *  Now t h a t  we h a v e  t h e  s e x a g e s i m a l  d i g i t ,  p r i n t  t h e  
( *  v a l u e  a n d  u p d a t e  v a r i  a b l  e s .  

If currdig > 7 then ( *  F r a c t i o n a l  p a r t .  



write(va1: main screen) 
~(currdig) := val 
currdig := currdig + 1 

Else ( *  I n t e g e r  p a r t .  
D o t = 3 t o 7  

x(t - 1 )  := x(t) 
x(7) := val 
write(integer digits: main screen) 

Input(char1 
Goto beginning of Number Entry Mode 

Real function decvalue(P) 

( *  F o r  u s e ,  a1 o n g  wi t  h  s i  x t  y v a l  , i n m a c h i  n e - d e p e n d e n t  
( *  r o u t i n e s  r e q u i r e d  b y  t h e  u s e r .  U s e  a c c o r d i n g  t o  
( *  t h e  e x a m p l e  g i v e n  f o r  t h e  s i n e  i n  O p e r a t i o n  E n t r y  Mode .  

val := 0 
Do t = 13 to 2 by - 1  

val := val + x(t) * 60(7-t) 
If x(1) = 1 then val := -val 
decvalue := val 
End 

Vector function sixtyval(z) 
- r := 0 
If z < 0 then r(1) := 1 
z := abs(z) 
If z > 606 then 

write("0verflow Error") 
sixtyval := 0 

Else 
Do t = 5 to 6 by -1 

r(7 - t) := Int(z/(60 
- 
r 

z := z - r(7 - t) * 60 
sixtyval := 

End 

Vector function add(P,y) 

( *  T h i s  r o u t i n e  p e r f o r m s  a d d i t i o n s  u s i n g  m a c h i n e  a r i t h m e t i c  
( *  o n l y  f o r  a d d i t i o n  o f  i n t e g e r s  l e s s  t h a n  6 0 .  

If x(l) = y(1) then ( *  Same s i g n :  a d d  a b s o l u t e  v a l u e s .  
z(1) = x(l) 
carry := 0 



~ ( t )  := ~ ( t )  + y(t) + carry 
carry := 0 
~f z(t) > 59 then 

carry := 1 
z(t) := z(t) - 60 

If carry = 1 then write("Warning: Overflow") - 
add : = z 

Else ( *  D i f f e r e n t  s i g n s :  s u b t r a c t  t h e  t w o  n u m b e r s .  

( *  T h e  f o l l o w i n g  I f  s t a t e m e n t  a l l o w s  u s  t o  a s s u m e  t h a t  2 
( *  h a s  a t  1 e a s t  a s  l a r g e  a b s o l u t e  v a l u e  a s  y.  

If abs(y) > abs(E) then 
add := add(E,y) 

Else 
z ( l )  := x(1) 
carry := 0 

Do t = 13 to 2 by - 1  
~ ( t )  := x(t) - y(t) - carry 
carry := 0 
If z(t) < 0 then 

carry := 1 
z(t) := z(t) + 60 

If carry = 1 then write("Warning: Overflown) 
add := Z 

End 

Vector function subtract(y,E) 
x(1) := 1 - x(1) 
subtract := add(y,E) 

Vector function mult(E,y) 

( *  T h i s  r o u t  i n e  u s e s  t h e  H i n d u  a n d  A r a b i  c  " g e l  o s i  a "  me t  hod  
( *  t o  m u l t i p l y  t w o  n u m b e r s .  
( *  m a t ( 1 - 1 2 , l - 2 4 ) :  u s e d  t o  s t o r e  t h e  t w o  s e x a g e s i m a l  d i g i t  
( *  p r o d u c t s  o f  p a i r s  o f  s i n g l e  d i g i t s  o f  t h e  o p e r a n d s .  

( *  S e t  u p  t h e  p r o d u c t  m a t r i x .  

D o t  = 1 to 12 
Do u = 1 to 12 

pdt := y(t + 1 )  * x(t + 1 )  
mat(t,2u-1) := 1nt(pdt/60) 
mat(t,2u) := pdt - 60 * mat(t,2u-1) 

( *  B e g i n  s u m  o f  p r o d u c t s :  f i r s t ,  d i a g o n a l s  t h a t  m i s s  t h e  



( *  u p p e r  r o w .  
carry := 0 
Do t = 13 to 8 by - 1  

z(t) := carry 
Do u = 24 ta (2t - 14) by - 1  

z(t) := z(t) + mat(t + 5 - 1nt(u/2),u) 
carry := 0 
~f z(t) > 59 then 

carry := 1nt(z(t)/60) 
~ ( t )  := z(t) - 60 * carry 

( *  Now c o n t i n u e  t o  s u m  t h e  p r o d u c t s  u s i n g  d i a g o n a l s  t h a t  
( *  r e a c h  t h e  t o p  r o w .  

Do t = 7 to 2 by - 1  
z(t) := carry 
Do u = 1 to (2t + 9) 

z(t) := z(t) + mat(t + 5 - 1nt(u/2),u) 
carry := 0 
I•’ z(t) > 59 then 

carry := 1nt(z(t)/60) 
z(t) := z(t) - 60 * carry 

If carry > 0 then write("Warning: Overflow") 
z(1) := abs{x(l) - ~ ( 1 ) )  - 
mult := z 
End 
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