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ABSTRACT

One of the major achievements of medieval Islamic science is
the construction of tables of values for certain functions
relating to astronomy. These tables range in size from a few to
250 000 entries and are generally based on trigonometric
formulae. Al-Khalili's auxiliary tables, for example, contain

over 13 000 entries and give values for the functions

f£(p,0) = RSin 6 (4 ) = SiD GRTa“ ¢ and

Cos ¢
arc Cos {E§§_§] that are accurate to the equivalent of

G(x,y)
three or four significant decimal digits. The applications of
these functions to problems of spherical astronomy are known;
however, the texts are silent concerning how the entries were

actually calculated.

The purpose of this study is to develop computer-based
methods implementing statistical tests to discover the numerical
structure of al-Khalili's auxiliary tables. We have discovered
an interpolation grid on the g(¢,6) tables, as well as a likely
interpolation scheme. Al-Khalill then used an equation, based
on the sine addition formula, to generate the values of f(¢,6)
from corresponding entries in the g(¢,6) table. Both of the
above tables were constructed using trigonometric values rounded
to two sexagesimal digits. Finally, the extent of the work done
on the G(x,y) table reveals a curious lack of concern for
accuracy early in the calculation combined with a higher level

of accuracy at a later stage.
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It is hoped that the techniques used in this study as well
as other methods can be used to determine the structure of many
other astronomical tables and so reveal a clear picture of the

evolution of numerical techniques in medieval Islam.
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CHAPTER 1

INTRODUCTION

1.1 Types of Medieval Islamic Astronomical Tables

No account of the history of Islamic science would be
complete without an extensive examination of the various types
of astronomical tables that appear in the manuscripts. These
tables, which often appear not only in the astronomical
handbooks (called zijes) but also in other contexts as well as
independently, constitute a pinnacle of astronomical research of
the medieval period and attest to the prodigious numerical
ability and sheer patience of their constructors. While the
methods of construction of most of these tables are unknown,
their usefulness can be exemplified by the fact that the
fourteenth century astronomer Shams al-Din al-Khalili's
hour-angle and prayer tables were used until the late nineteenth
century.' The tables have widely varying purposes, but can be
roughly grouped into five categories: tables dealing directly
with planetary and spherical astronomy, tables aiding religious
ritual, tables to help in the construction of astronomical

instruments, mathematically based astrological tables? and

' D. A. King, "al-Khalili", Dictionary of Scientific Biography
(New York: Charles Scribner's Sons, 1978), p. 259. We will study
al-Khalili's auxiliary tables in detail in Chapter 3.

2We shall not deal with these tables here. A description may be
found in E. S. Kennedy, "Mathematics Applied to Astrology", in
Proceedings of the Sixteenth International Congress of the
History of Science: C. Meetings on Spec1al1zed Topics,

Aug. 26 - Sept. 3, 1981, Bucharest, Romania, pp. 246-250.




finally purely mathematical auxiliary tables used to assist in

the computation of more complex functions.
1.1.1 Tables of Spherical and Planetary Astronomy

Every Islamic 21j contains a collection of tables of
functions of spherical astronomy, the science which describes
rules for changes of coordinates in the celestial sphere. An
example of one of the most common functions to appear in tabular
form is the oblique ascension, the angular distance along the
celestial equator (taken in the direction opposite to that of
the daily rotation) from the vernal equinox (T) to the horizon,
as a function of the observer's terrestrial latitude and the
angular distance along the ecliptic between T and the horizon.
(See Fig. 1.1.) Tables of oblique ascensions with varying
degrees of accuracy appear as early as the ninth century in
Habash al-Hasib's 21j,? and reach their peak in the fourteenth
century with the work of al-Kashl and particularly of Ulugh Beg,
whose values were calculated to the equivalent of seven decimal
digits. Other tables include functions such as the right

ascension’ of various points of the ecliptic, the solar

®M.-T. Debarnot, "The Z7; of Habash al-Hasib: A Survey of MS
Istanbul Yeni Cami 784/2", in Eds. D. A. King and G. Saliba,
From Deferent to Equant: A Volume of Studies in the History of
Science 1n the Ancient and Medieval Near East in Honor of E. S.

“The angular distance along the celestial equator from the
vernal equinox to the perpendicular projection of the ecliptic
point onto the equator. The right ascension and the declination,
the length of this projection, were used as the equatorial
system of coordinates on the celestial sphere. See Fig. 1.2.



azimuth® as a function of solar altitude, celestial longitude,
and terrestrial latitude, and the longitude of the ascendant® as

a function of solar altitude.’

Another group of tables distinct from the above functions
are those relating to planetary astronomy. Other than the sun,
the five visible planets and the moon are seen to make a path
through the sphere of fixed stars, staying within a few degrees
on either side of the ecliptic. Many Islamic astronomers
constructed tables based on Ptolemaic models describing the
paths of these planets. Their longitudinal motion was generally
decomposed into two parts, as follows:

At) = X(t) + el(t) (1.1)
where A(t) represents the true longitude at time t, A(t) is a
linear function of t describing the mean longitudinal motion,
and e(t) is a correction factor used to account for variations
and retrogradations in the object's path, which in the medieval
period was termed the equation. Planetary equation tables

formed an integral part of the zIjes.®

SThe angular distance along the horizon from the north point to
the perpendicular projection of the sun onto the horizon. See
Fig. 1.3.

§The location of the intersection of the ecliptic with the
horizon,

’D. A. King, "On the Astronomical Tables of the Islamic Middle
Ages", Studia Copernicana 13 (1875), p. 45.

8E. S. Kennedy, A Survey of Islamic Astronomical Tables,
Transactions of the American Philosophical Society, New Series
(Philadelphia, 1956), vol. 56, pt. 2, p. 142,
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1.1.2 Tables with Religious Significance

One of the principal features of the religion of Islam is
the strict observance of certain rituals by the faithful around
the world. These involve in particular the five daily prayers
at specified times, the injunction to face the holy city of
Mecca, the site of the Kaaba, and the observance of fasting
during daylight hours in the sacred month of Ramadan. All three
of these requirements give rise to non-trivial problems in
spherical astronomy. The five daily prayer times are defined
astronomically and must be strictly observed; the local
direction of Mecca, known as the gibla, is required in order to
orient the prayer walls of local mosques as well as the
individual worshipper; and the beginning of each month in the
Muslim calendar depends on the visibility of the lunar crescent

when it is near the sun.

Finding the gibla given the worshipper's terrestrial
coordinates is one of the more complicated problems in spherical
astronomy. Approximate methods of solution were described as
eafly as AD 900 and were used as late as the fourteenth
century.® A modern exact solution to the gibla problem is given

by

°D. A. King, "al-Khalili's Qibla Table", Journal of Near Eastern

Studies 34 (1975), note 3 p. 81, pp. 120-122. See also D. A,
King, "The Earliest Islamic Mathematical Methods and Tables for
Finding the Direction of Mecca", Zeitschrift fir Geschichte der
Arabisch-Islamischen Wissenschaften 3 (1986), pp. 82-149.




sin ¢ cos AL - cos ¢ tan ¢y

g = arc cot -
sin AL

(1.2)

where ¢ and ¢y are the latitudes of the observer and of Mecca
respectively, AL is the difference in longitude between the
observer and Mecca, and q (the gibla) is the angular direction
east or west of due south, depending on the longitude of the
observer.'® Exact solutions in medieval times were achieved
through either geometric constructions''! or trigonometric
formulae. Typical of medieval trigonometric solutions is that

of al-Marrakushl, a thirteenth century Moroccan astronomer:
Sin h Tan ¢] R Sin ¢y

[
| |

q = arc Cos (1.3)

Cos h

where h, the height of the zenith of Mecca in the observer's
sky, is determined by
Cos ¢y Cos ¢

2
R
D. A. King'? has suggested that a method based on this formula

Sin h = Sin(¢ + ¢y) - Vers AL

may have been used by al-Khalill to create his gibla table of

2880 entries, which we will discuss later.

'°D, A. King, "al-Khalili's Qibla Table", p. 82.

'1J. L. Berggren, "A Comparison of Four Analemmas for
Determining the Azimuth of the Qibla", Journal for the History
of Arabic Science 4 (1980), pp. 69-80.

'2p, A, King, "al-Khalili's Qibla Table", pp. 101, 104. See Sec.
2.2 of this thesis for an explanation of the trigonometrical
functions listed.

3D, A. King, "al-KhalIli's Qibla Table", p. 99.



Prayer times depend on the location of the sun throughout
the day and thus admit to an astronomical determination; hence,
tables regulating prayer times fall under the category of
astronomical timekeeping. Problems in this area involve the
determination of time since the rising of the sun or a
particular star given the object's current celestial coordinates
and the observer's location. One Egyptian table, constructed by
the thirteenth century astronomer Najm al-Din al-Misrl, serves
for all latitudes and contains over 250 000 entries.'® Prior to
the thirteenth century these tasks were performed by the
muezzin, using primarily the basics of folk astronomy. After
this time, however, the new occupation of muwaqqgit (=timekeeper)
originated in Egypt. These scholars were hired by mosques
expressly to solve problems of timekeeping and the direction of

the gibla.

The prediction of the first visibility of the lunar crescent
signifying the beginning of an Islamic month is perhaps the most
difficult problem tackled by medieval astronomers. The moon
makes a complete revolution around the celestial sphere inside a
narrow band about ten degrees wide centred on the ecliptic every
29 or 30 days, and hence passes the sun about once a month. The
light of the sun blots out the moon from view when the angular
distance between them is less than about 9% degrees. The first
sighting of the moon as it emerges from the sun's light defines

the beginning of a new month. Further complications add to the

'4p, A. King, "On the Astronomical Tables of the Islamic Middle
Ages", pp. 44-45,



difficulty of the problem: the exact position of the moon in the
band around the ecliptic will of course be crucial and will
involve the use of lunar latitude tables; the apparent size of
the moon will affect the visibility; and even seasonal
conditions can alter the time of first sighting.'® Tables were
constructed using methods of varying complexity and taking into
account different factors, but the exact time could never be
determined until the actual sighting. Even today the prediction
of the first glimpse of the lunar crescent cannot always be made

with complete accuracy.
1.1.3 Instrument Making Tables

Islamic astronomy did not, of course, consist entirely of
table construction and use. 1Instruments such as astrolabes,
qguadrants and sundials were regularly used to obtain
measurements and calculations both for immediate purposes and
for use as arguments of certain astronomical functions. The
construction of the best of these tools involves precise
workmanship and, especially, accurate markings and curves. 1In
pafticular, tables giving the locations of the standard curves
found on sundials are relatively common. The marking of certain
curves on the astrolabe also require precision, and tables
giving the location of these curves for some terrestrial

latitudes may also be found in the literature.

'%0. Neugebauer, The Exact Sciences in Antiquity, 2nd ed. (New
York: Dover, 1969), pp. 106-110.




1.1.4 Mat hematical Tables

We come ﬁow to the class of tables that is the source of the
principal object of study in this thesis — the auxiliary tables.
Most astronomical functions determined by medieval astronomers
were found using exact or approximate trigonometric formulae.

In order to relieve some of the tedium of repeated calculation
as well as to provide tools for further research, various types
of purely mathematical tables were constructed. The simplest of
these are the sexagesimal (base 60) multiplication tables, which
usually give the products a - b, where a and b = 1, 2, ..., 60.
These tables are convenient for use in sexagesimal
multiplication. Other examples are trigonometric tables,
generally giving the sine and tangent functions. These appear
as early as the ninth century, resulting from contact with
Indian mathematics. These tables reach their pinnacle in the
work of Ulugh Beg, who in 1440 compiled sine and tangent tables
for every minute of argument between 0° and 90°, to the

equivalent of nine decimal places.'®

' The most interesting use of purely mathematical tables in

medieval Islam, however, is found in the class of tables that

'6 These tables are reproduced in C. Schoy, Die
Trigonometrischen Lehren Des Persischen Astronomen Abu ‘1l-Raihan
Muhammed Ahmad al-Birunl (Hannover: Orient-Buchhandlung Heinz
Lafaire K.-G., 1927), pp. 92-108. The magnitude of Ulugh Beg's
feat can be seen by the fact that Isaac Newton attempted the
same task (except to 15 decimal places) over 200 years later and
gave up in frustration because "the sheer drudgery of the
project exhausted his patience". He completed nine entries. See
Richard E. Westfall, Never at Rest: A Biography of Isaac Newton

(Cambridge: Cambridge, 1980), p. 112.




give values for auxiliary functions. Early in the development
of functions for use in spherical and astronomical timekeeping
one finds many recurrences of mathematical expressions that
appear as parts of different functions; for instance, multiples
of Sin e (where e¢ is the obliquity of the ecliptic) are useful
in calculating solar declinations.'’” Repeated calculation of
these quantities for different functions would quickly become an
exercise in monotony. As early as the mid-ninth century Islamic
scientists began to construct tables of these mathematical
building blocks in order to simplify their own and their
readers' calculations, often reducing large and cumbersome
equations to straightforward combinations of values taken from
these tables. Some of the applications of al-Khalili's
auxiliary tables, for example, are described in Sec. 3.2.1. The
methods of calculation of some of these auxiliary tables will

form the central object of this study.

1.2 Uses of the Digital Computer in the Analysis of Tables

The advent of the digital computer has revolutionized almost
every scientific field; hence, it is not surprising that its
tremendous computational power has propelled forward the study

of ancient and medieval astronomy. E. S. Kennedy'® and

'7 D. A. King, The Astronomical Works of Ibn ¥YGnus (Yale:
unpublished doctoral dissertation, 1972), p. 96. lbn Yinus
constructed tables of (n/R) « Sin € and (n/R) « Cos ¢ for
n=1, 2, ..., 60,

'8F, S. Kennedy, "The Digital Computer and the History of the
Exact Sciences", Centaurus 12 (1967), pp. 107-113,

10



O. Gingerich'® in 1967 introduced the computer to the field and
described its use in recomputation of astronomical and
mathematical tables. 1In this way the accuracy of these tables
can be checked easily over a large number of values. Kennedy
has also, with the aid of a computer, compiled a list of
geographical coordinates for certain locations given in Islamic
astronomical works and has organized this large amount of data
into alphabetical order as well as according to increasing

longitude and latitude.?°

Since these early advances, however, while the digital
computer has been transformed into a tool of incredible speed
and potential, its use in the history of Islamic science has
remained restricted to recomputation of tabular values. There
remain many unexplored prospects in the reconstruction of
astronomical and mathematical tables and their underlying
parameters. For example, J. Hogendijk has recently begun to
investigate this area by describing a method to determine the
parameters behind lunar crescent visibility tables.?' Many
opportunities remain, however, for the use of the statistical

and numerical tools provided by the computer.

'90. Gingerich, "Applications of High-Speed Computers to the
History of Astronomy", Vistas in Astronomy 9 (1967),
pp. 229-236.

2°E, S. Kennedy and M. H. Kennedy, Geographical Coordinates of
Localities from Islamic Sources (Frankfurt am Main: Institut fir
Geschichte der Arabisch-Islamischen Wissenschaften, 1987).

21J. Hogendijk, "Three Islamic Lunar Crescent Visibility Tables"
(unpublished, 1987).
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1.3 The Central Problem

The numerical methods used by medieval Islamic astronomers
for table computations, for example, have been largely ignored
in current research. Theoretical presentations showing the
applications of geometry and trigonometry in spherical astronomy
abound, both in the medieval manuscripts and in current
analysis. The methods used to generate the vast number of
tables that appear in the zijes and other treatises, however,
remain a mystery. This gap may owe something to a bias, both
past and present, in favour of mathematical theory over
computational methods: medieval scientists generally carefully
justified the formulas used to solve problems based on their
tables without explicitly describing and verifying the accuracy
of the methods used to create the tables themselves, and modern
analysis consists essentially of recomputation of tabular values
to determine their accuracy. Certainly the determination of a
mode of calculation solely from the tabular values would be a
daunting task without the aid of a digital computer, but current
teéhnology allows for the application of mathematical and
statistical analysis without having to perform thousands of
computations by hand. This study will use these tools in an
attempt to determine the methods of calculation used in the

auxiliary tables of Shams al-Din al-KhalilTl.

12



CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 Arabic Arithmetic

Sexagesimal arithmetic was the astronomers' mode of
calculation from long before the medieval period. 1Its origins
in numeration date back as far as the 0ld Babylonian period,

c. 2000 BC, and its use by the Alexandrian astronomer Ptolemy in
the mid-second century AD was responsible for its application to
medieval astronomy and trigonometry. The Hellenistic version of
sexagesimal representation used by Ptolemy (also used widely by
Islamic astronomers) used the sexagesimal base only for
fractional parts, while retaining decimal notation for the
integral part. The characters used to represent individual
sexagesimal digits were simply the letters of the Arabic
alphabet in order corresponding to the values
1,2,...,9,10,20,...,50. This system, known as abjad
numeration,' lends itself to some confusion due to the
siﬁilarity of certain characters. Handwriting variations can
render the symbols for 13, 18, 53, and 58, for example,
virtually indistinguishable. This inevitably leads to a greater
likelihood of scribal error in transcription than what would be
encountered with other systems. The notation we will use for

sexagesimal numbers is now conventional and accurately reflects

'A detailed description of the Arabic numeral system may be
found in R. A. K. Irani, "Arabic Numeral Forms", Centaurus 4
(1955), ppo 1-12.

13



how the numbers appear in the texts. The value

106 ; 13 , 48

48
602’

sexagesimal point and the comma separating consecutive

represents 106 + %% + with the semicolon denoting the

sexagesimal digits.

The usefulness of the sexagesimal system in the computations
required by astronomy and trigonometry becomes clear when one
considers the long list of divisors of 60, but arithmetical
procedures are not as easy in sexagesimal as in decimal
arithmetic (or any other system with a reasonably small base).
Addition and subtraction may be carried out with no difficulty
analogously to decimal procedures, but multiplication and
division are different matters. Multiplication of two numbers
with, say, three sexagesimal digits each requires nine separate
multiplications of two integers between 0 and 59. The decimal
multiplication table can be memorized by any elementary school
student, but the average reckoner would not be instantly able to
determine the product of 47 and 54. The sexagesimal
multiplication tables described in Sec. 1.1.4 were often used to
speed calculation, but even then nine separate table searches
would be required in order to compute the product discussed
above. As a condition for ease of use of a hypothesized
numerical method, then, we shall in further chapters prefer
those methods that minimize the number of multiplications

required to solve the problem.

14



2.2 Trigonometry

The earliest surviving example of a full-fledged
trigonometric function and table occurs in Ptolemy's Almagest.
In this book Ptolemy defines a function which gives the value of
the length of a chord subtended by an arc 6 on a circle of
radius R = 60 (see Fig., 2.1). Using an arc sum and half-arc
formula and a clever method of estimation of the chord of 1°,
Ptolemy calculates to three sexagesimal digits the value of the
length of the chord ( which we call Crd ) for arcs 6 = %°, 1°,

1=°, ..., 180°,2 This table becomes the basis of all the

1 N

trigonometrical procedures carried out in the Almagest.

After some work with the chord function in plane and
spherical trigonometry, it soon becomes clear that Ptolemy's
chord function is not ideal. Often the value required is not
the chord of the angle, but rather some multiple of the chord of
double the angle. 1In fact, it is easy to see from Fig. 2.1 that

R sin 6 = % Crd 26, (2.1)
and so Ptolemy's chord function can be easily transformed into
the much more useful sine function. This observation, however,
was apparently never made by Hellenistic mathematicians and it

was left to their Indian counterparts to invent the sine. The

first extant sine table is found in Surya Siddhanta and

Aryabhatiya, c. 400 AD, with only 24 entries corresponding to

2 For a full description of Ptolemy's method see G.J. Toomer
(tr.), Ptolemy's Almagest (New York: Springer-Verlag, 1984),
pp. 48-60.
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30
34 L]
R = 3438 parts,?® and the sine values given are integral

increments of 3;45 = The radius of the base circle is

multiples of 1 part.

The introduction of Indian science to the Islamic world
signified, among many other advances, the beginning of the most
productive era in the history of trigonometry. The use of a
base circle with radius R = 60 became standard, and in the ninth
century Habash al-Hasib composed the first known table of
tangents.® The cosine and cotangent, and the less popular secant
and cosecant, all gained acceptance, and most of the common
trigonometric identities were discovered. Each trigonometric
function was defined not as a ratio of sides, but as lengths of
the appropriate lines in the base circle for the sine and
cosine, and as shadow lengths for the tangent and cotangent.
Each Islamic trigonometric function based on a circle with
R = 60, consequently, is sixty times the modern version.’ We
shall use the conventional capitalized notation to represent the
medieval functions; i.e.,

Sin 8 = R sin 6; Tan 6 = R tan 6; etc. (2.2)

Islamic trigonometric tables generally give values for only the

3This radius value, according to E. S. Kennedy, was likely
chosen so that the length of one minute of arc on the base
circle would have a length of one part (using the Indian value
of w).

%S. Tekeli, "Habash al-Hasib", Dictionary of Scientific
Biography (New York: Charles Scribner's Sons, 1972), p. 612,

5A base of 60 was not universal, however. Both Abu l-Wafa' and
Abu Nasr Mansur, for example, used R = 1, and R = 10 and 20 were
occasionally used by al-Khalili. But we shall assume R = 60
unless otherwise stated.
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Fig. 2.1: The relationship between the sine and chord of an arc.
If the radius OB of the circle is R units in length, the chord
of 6 is defined to be the length AE. The modern sine of 6/2 is,
of course, AG/R, or AE/2R.

sine and the tangent, since the two other common functions can
be easily derived by the relations

Cos @ = Sin (90° - ) and Cot 8 = R? . (2.3)
Tan 6

1.3 Interpolation Methods

The use of interpolation methods to determine values of
functions whose arguments lie between successive tabular entries
as well as to create tabular entries within a grid of directly
tabulated values dates back as far back as the astronomers of
ancient Babylon.® There is little evidence, however, to suggest
that Hellenistic scientists went much beyond linear
interpolation. The theoretical development of higher order

schemes came about through the efforts of others. Thus, among

€0. Neugebauer, The Exact Sciences in Antiquity, 2nd ed. (New
York: Dover, 1969), pp. 28, 135-136.
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Liu Cho (AD 544-610) generated a second order scheme to apply to
equally spaced intervals between nodes, and I-Hsing (AD 683-727)
discovered a more general method to apply for unequally spaced
nodes.’ Islamic methods described in such treatises as Ibn

Yinus' HakimiI ZiIj and the anonymous Dastlr al-Munajjimin®

included linear, second and even third order schemes as well as
inverse linear and quadratic schemes to determine, say, the arc
Sine from a Sine table. Linear methods, however, were often
considered too trivial to note, and third order schemes were
exotic and are rarely found in the literature. Interpolation
schemes based on functions other than polynomials such as the
sine function exist, but are rare in medieval mathematics.
Hence, almost every interpolation scheme described by Islamic

authors is of second order.

Not every interpolation scheme found in Islamic texts,
however, is equivalent to passing a parabola through three given
points. The most famous instance is al-Birlni's failed attempt
to use second differences to generate a better interpolation
formula. Given two tabular entries (x,, f(x,)) and (x,, £(x,))
the standard formula to approximate f(x) (where x, < x < Xx;)

with linear interpolation is

X"xo
f(x) = f(x,) + —————— Af,, (2.4)
X1"xO
where Af, = f(x,) - £(x,), the forward difference. Al-Birtni

attempted to extend this method to account for second order

7J. Hamadanizadeh, Medieval Interpolation Theory (Columbia:
unpublished doctoral dissertation, 1976), pp. 20-21, 22, 24-26.

8J. Hamadanizadeh, Medieval Interpolation Theory, p. 31.
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differences by using the additional point (x.,, f£(x.,)) and the
formula
X - Xo X - Xo 1
£(x) = £(xo) + ——0 [Af, LT X0 e 1, (2.5)
° X1 T Xo ! Xy T Xq 1_|
where A%f , = Af, - Af_,. This intuitively appealing extension

from linear to quadratic interpolation is easily seen to pass
through (x,, f(x,)) and (x,, f(x,)) but misses (x_.,, f£(x_.,))
dramatically. In fact, J. Hamadanizadeh has remarked that the
difference between al-Birtni's parabola and the true parabola in
the domain [x,, x,] is equal to the difference between the true
parabola and the line joining (x,, f(x,)) to (x,, £(x,)); i.e.,
al-Biruni's formula is precisely as distant from true second

order interpolation as is linear interpolation.?®

Another example of an interpolation scheme differing from
direct polynomial interpolation can be found in the Dastur

al-Munajjimin.'® The unknown author attributes this scheme to

the tenth century mathematician Abl Ja‘far al-Khazin, and
appiies it to determining planetary longitudes on days between
the directly computed values which are spaced ten days apart.
Given endpoints (xo,, Ao) and (x,,, \,o), the author generates a
second order formula based on the three points (x.,, A.;),

(xo, XAo) and (x,0, Nyo + 5e') (where e' is a certain second
difference) to calculate the values A;,...,As. Another parabola

is used to join (x5, As) and (%x,0, Ayo). The resulting 'bent’

J. Hamadanizadeh, Medieval Interpolation Theory, p. 121.

'°Por a detailed discussion see J. Hamadanizadeh, "Interpolation
Schemes in Dastur al-Munajjimin", Centaurus 22 (1978),
pp. 44-52.
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union of two parabolae generally produces values between linear
and second order interpolation; perhaps this change was due to a

comparison with true longitudinal values of sample periods.

For ease of reference, we shall refer to the entries that
are computed directly as nodes, and to the set of nodes in a
given table as the interpolation grid. A typical span of
entries between two successive nodes will be called an

internodal block.

2.4 Definitions of Terms Used in the Text

In the succeeding chapters certain notations will be used
which may be unfamiliar to the reader. 1In order to clarify the

meaning of these symbols, they are defined below.

It will be convenient to use functional notation to indicate
rounding procedures. To this end, we define

Int( x-87 + %)
r (x) = g ' (2.6)

whére B is the base of the number system (B = 60 unless
otherwise noted), Int(x) is the greatest integer less than or
equal to x, and n is a positive integer giving the number of
digits after the sexagesimal point to which x is to be rounded;
for instance,

r,(36;13,48,30) = 36;13,49.
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In order to describe and compare the levels of
sophistication of the various tables, it will be useful to
introduce a term which measures the size of the error compared
to the number of digits displayed in the table. Let % be the
approximation to x, and let n be the number of digits displayed
after the decimal point. We say X approximates x with k digits
of error, where

k =0 if § = rn(x);

X - (x)
. logﬁ{| S |}

=~
]

otherwise,

The meaning of this term is made clear by example. If r,(x) =
47; 8,34,14 and X = 47; 8,34,15, then & differs from r,(x) by 1
in the last place and hence approximates x with 1 digit of
error. If, say, X = 47; 8,33,14, then % approximates x with
precisely 2 digits of error, and so on. (Note, however, that
the number of digits in error is generally not an integer.)
This figure, then, describes how many meaningless digits appear

in the approximation.

The error representation scheme used in the text may be
deécribed as follows. The (rounded) exact value of a given
function is written as usual:

£(14°,69°) = 57;44,
The value of the function given in the table itself is indicated
by the use of a "T" preceding the symbol denoting the function,
and if appropriate, the error in the final digit is shown in
square brackets immediately after the function value. This

error is calculated as follows:
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error = text - r (exact value), (2.7)
where n is the number of digits given in the table after the
sexagesimal point. Thus

T£(14°,69°) = 57;43 [-1].
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CHAPTER 3

AL-KHALILT'S AUXILIARY TABLES

3.1 al-Khalili's Life and Work

Little is known about the life of Shams al-Din al-Khaliliy,
other than that he was a contemporéry of Ibn al-Shatir in the
late fourteenth century. All his known works deal with the
science of astronomical timekeeping,' presumably written in
connection with his occupation as muwaggit at the Umayyad mosque
in Damascus. Other than a treatise on the use of a
trigonometric quadrant, all of his known works are tables
related to various functions of astronomical timekeeping. These
include auxiliary tables to aid in keeping time by the sun for
all latitudes as well as complete timekeeping tables for the
latitude of Damascus, tables giving times of prayer for
Damascus, an extensive gibla table, and tables converting
ecliptic coordinates to equatorial coordinates for use in
computations relating to lunar crescent visibility. But perhaps
his most interesting works are his tables of major auxiliary
functions to solve various problems of spherical astronomy.
These relatively simple combinations of trigonometric functions
solve nothing when taken individually, but when combined in

certain ways they lead to the solution of a host of problems in

'‘D. A. King, "Astronomical Timekeeping in Fourteenth Century
Syria", in Proceedings of the First International Symposium for
the History of Arabic Science (Aleppo: Institute for the History
of Science, 1976), Vol. 2, p. 80.
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spherical astronomy.

3.2 The Auxiliary Functions

The first two of the three auxiliary functions calculated by
al-Khalill are quite similar in nature, and are called the
"first and second functions" in the manuscripts. Translated
into modern notation, the first function is defined by

R Sin 6
£(¢,6) = , 3.1
(¢,6) Cos (3.1)

and the second function by

g(¢,6) = Sin GRTa“ ¢ (3.2)

where ¢ is the local latitude and 6 is some other value

depending on the application. Most of the texts do not define
all three of the functions explicitly, but one of the
manuscripts describes their mathematical form in a marginal
note. The first and second functions are calculated for the
following arguments:

6 = 1°,2°,...,90°

¢ = 1°,2°,...,55°, and 21;30° (the latitude of Mecca)
and 33;30° (the latitude of Damascus),

producing a total of 5130 entries in each of the two tables. On
each page of the document, the two functions are tabulated side
by side for a fixed value of ¢ and all values of 6, arranged in
columns of thirty entries. Fig. 3.1 below gives a schematic
layout of one of these pages. 1In the following discussions, we
shall refer to the argument that varies as one moves

horizontally through the table as the horizontal argument, and
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to the other as the vertical argument. In the f(¢,6) and g(¢,6)

tables, then, ¢ is the horizontal argument and 8 is the vertical

argument,
! o
¢ = 36
6 value | £(9,6) | g(e,6)
1 [31]61)1;18 |38;13(64;52|0;46 |22;27(38; 7
2 |32|62]2;36 |39;19(65;29|1;32 [23; 6[38;28
3 [33]|63]3;54 |40;24|66; 6|2;18 |23;45(38;49

29159(89|35;58|63;34(74:10(21;: 9[37:22|43:35
30(60[90(37; 6|64;14|74:11[21:48(37:46/43:36

Fig. 3.1: A schematic layout of one of the pages of al-Khalili's
tables showing values of f(¢,6) and g(¢,68) for a given value of
¢

The third auxiliary table represents perhaps the greatest

feat of calculation of the three, due to the nature of the

function it describes. It is defined as follows:

_ Rx
G(x,y) arc Cos {EB§_§}' (3.3)

where the horizontal argument x is the "jayb al-tartib", or the
"aﬁxiliary Sine". This function is calculated for the arguments
x=1,2,...,59
y = 0°,1°,..., Int(arc Cos Rx),

which results in 3420 entries. For larger values of y the

Rx
Cos

not exist. In the manuscript these entries are filled in as

argument is greater than 60 and the function value does

0; 0, referring to an empty place. Thus, while the first two

tables if written on a single very large page would be
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rectangular, the third table would be missing a curved area in

the bottom right corner.

All three functions are tabulated to two sexagesimal digits,
one following the sexagesimal point. The values are for the
most part reasonably accurate: about 50% of the entries agree
with the correct (rounded) value, and almost all are in error by
less than 5 in the second place. The manuscript used
throughout, MS. Paris Bibliothégue Nationale, ar. 2558, fols.
61v-104r, is the oldest of the known manuscripts (dated 1408),
and is carefully and elegantly copied. Other than the columns
for the latitude of Mecca in the £(¢,6) and g(¢,6) tables, it is
also complete. Appendix A contains some sample columns of all

three tables.
3.2.1 Some Uses of the Auxiliary Functions

Since many of al-Khalilli's formulae for use in astronomy can
be derived from the cosine law of spherical trigonometry
(although there is no direct evidence that al-Khalili was
familiar with it), it is not surprising that they have similar
mathematical structure. These similarities lend themselves to
the implementation of auxiliary functions in order to facilitate
their computation. Several uses of the auxiliary functions

outlined by al-Khalili are described below.?2

2The discussion in this section is taken primarily from D. A.
King, "al-Khalili's Auxiliary Tables for Solving Problems of
Spherical Astronomy", Journal for the History of Astronomy 4
(1973), pp.99-110.
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The formula to find the altitude of a celestial object in

the prime vertical® is easily seen to be

= in {R Sin &
ho = arc Sin [ Sin }, (3.4)
where § is the declination of the object and ¢ is the local
latitude. al-Khalili gives two different solutions to this

problem using his auxiliary tables. Firstly,

= in R Sin &
hy = arc Sin 1 Sin @ }

= 900 - arc COS Sin 5 Tan 450
Cos ¢

= 90° - G[g(45°,8), 3], (3.5)

where ¢ = 90° - ¢. Alternatively,

Sin hy Tan ¢ _ R Sin §
R Cos ¢ '

so ho, can be found by solving the equation

gle,ho) = £(¢,8). (3.6)

In order to determine the solar azimuth (measured from the

meridian), a precise formula is

Sin h Tan o R? Sin &

in an - “Cos o

a(h,8,¢) = arc Cos Cos ¢ , (3.7)
Cos h

where h is the solar altitude, &§ is the declination, and ¢ is
the local latitude. This is clearly equivalent to
a(h,8,¢) = Glg(¢,h) - f(¢,8), hl. (3.8)

An important corollary of this result is the gibla formula

’The prime vertical is the great circle passing through the
celestial north pole and the east and west points on the
horizon.
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derived by al-Marrakushi and quoted by al-Khalili. Inserting
the zenith of Mecca in place of the sun in the observer's sky
(so that h is the height of the zenith of Mecca and & = ¢y), we
derive (1.3), which is equivalent to

q = Glg(¢,h) - £(¢,¢y), hl. (3.9)
Thus al-Khalili could have used his auxiliary tables to compute
his gibla table, and in fact he mentions in his introduction to
the gibla table that al-Marrakushi's method is the best solution
to the gibla problem that he knows. King has already voiced his
doubts regarding this possibility;*® we shall discuss it further

in Sec. 3.7.

3.3 The Derivation of the f(¢,6) Table from the g(¢,6) Table

Approximately 50 to 55% of the entries in the f(¢,6) table
are correct to both sexagesimal digits; the remaining entries
are for the most part in error by one or two in the second
sexagesimal place. The errors are, however, not uniformly
distributed throughout the table: the entries in certain columns
coﬁtain generally larger errors than those in other columns.
Often within a given column in all three of al-Khalili's tables
the errors appear to change continuously as the vertical
argument varies. This may be a sign of interpolation, but it
may also be caused either by a flawed value which in some way

affects every entry in the column or by more indirect factors.

D. A. King, "al-Khalili's Qibla Table", Journal of Near Eastern
Studies 34 (1975), p. 106.
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Two regions of the f(¢,6) table reveal distinct patterns.

[}

The first column, corresponding to ¢ = 1°, agrees in all but two

entries with a two sexagesimal digit Sine table. That the

entries are close to the Sine values is not surprising, since

o oy _ R Sin 6 _ 60; 0
£E(1°,8) = G5e 17 ~ 59:89

which is only very slightly larger than Sin 6. However, 23 of

Sin 6,

the 90 entries in the ¢ = 1° column have an error of -1 (using
the error representation system described in Sec. 2.4), while
none of the entries err on the positive side. Since 88 of the
90 entries (including the 23 in error) agree with r,(Sin 6), it
seems clear that al-Khalill simply approximated £(1°,6) with
Sin 6.

The two entries that fail to fit this pattern are those

corresponding to 6 17° and @ = 89°. 1In the case of 6 = 17°,

we have Tf(1°,17°)

17;32 [-1], whereas r,(Sin 17°) = 17;33.
This discrepancy may be a copying error, for, in those sections
of the g(¢,6) table that were calculated using

g(¢,6) = % - r,(sin 6) « r,(Tan ¢), (3.10)
the value used for r,(Sin 17°) seems to be 17:;32, the value

found in T£(1°,17°). We will discuss this further in Sec. 3.4,

The discrepancy for 9§ = 89° is due to the second pattern

found in the table. Where 6

% = 90° - ¢, the value of £f(¢,d)

is

_ R Sin ¢ _ R Cos ¢ _ - . 11
£(¢,9) Cos 3 Cos R = 60; 0. (3.11)
If interpolation had been used over a fixed grid throughout the

table, only a small number of the entries on the diagonal
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through the table determined by 6 = ¢ would be calculated
directly as nodal values. But in fact every tabular entry on
this diagonal (other than Tf(8°,82°) = 60; 5 [+5], an obvious
scribal error) is precisely 60; 0.5 This does not provide strong
evidence against interpolation, for it is possible that
al-Khalill superimposed this diagonal after completing the
table. It is clear, however, that he recognized that

f(¢,8) = R = 60; 0 and used this result in the construction of

this portion of the table.

Al-Khalilil may have completed the bulk bf the table in a
variety of ways. Due to the excessive work involved in
multiplication and division, however, it would have been in his
interest to choose a method which minimizes the number of
directly calculated entries. Thus the method of interpolation
recommends itself, since only a small fraction of entries would
need to be directly calculated. Attempts to find an
interpolation grid (in the same fashion as the corresponding
efforts for the g(¢,68) table, described in Sec. 3.4.2), however,
fail to produce any recognizable patterns. Other possible
methods include treating each individual column as a multiple of
a Sine table: i.e.,

R

£(¢,6) = Cos o Sin 6. (3.12)

may be evaluated once for an entire column,

R
Cos ¢

or taken from a secant table. This method does not reduce the

The constant

0f course, the columns corresponding to ¢ = 21;30° and
¢ = 33;30° do not have entries for § = §. In the following
discussions, we shall largely ignore these two columns.
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number of multiplications required, but it does mechanize the
procedure and it uses the same value as a multiplicand for 90
consecutive entries. The analogous method working over rows as
opposed to columns is also possible, but given the
representation of the table in the manuscripts this is unlikely.
Attempts to reproduce the table via these and other methods fail
to give a higher percentage agreement with the £(¢,6) table than

the percentage of correct entries in the table itself.

Based on the diagonal corresponding to f(¢,9), however, it
is possible to construct a method which is by far the most
efficient and most easily applied of those methods thus far
considered and which also produces a remarkably high percentage
agreement over most of the table. Applying the angle addition

formula for Sines to f(¢,9 + n),® we get

£(9,3 - B 5in {3+ n)

R . % [Sin @ Cos n + Sin n Cos 3]
Cos ¢
Sin 8 ~os n + Tan ¢ Sin n
Cos ¢ R
= Cos n + g(¢,n). (3.13)

+

n)

Using the angle subtraction formula for Sines we get a similar
formula for £(¢,9 -~ n). So, another possible way to generate
the f(¢,60) table is from the g(¢,8) table using the equation

f(¢,9 £+ n) = Cos n + g(¢,n). (3.14)

fThis formula was well-known to Islamic scientists at this time.
See J. L. Berggren, Episodes in the Mathematics of Medieval
Islam (New York: Springer-Verlag, 1986), pp. 135-138 for a
description of the proof given by Abu l-wWafa'.
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This method has several advantages. The obvious rationale
in favour of its use is the fact that it completely avoids the
task of sexagesimal multiplication; a comparatively easy
addition or subtraction is all that is required to generate an
entry. It is also a stable algorithm: the errors involved in
rounding Cos n and in using the tabular value for g(¢,n) are not
magnified by simply adding or subtracting the two qQuantities.
Finally, given the layout of the table in the manuscripts, this
method allows the reckoner to compute f(¢,8) directly from the

appropriate entry in the adjacent g(¢,--) column on the same

page.

It 1s of course easy to test this hypothesis by taking the
two digit rounded value for r,(Cos n), applying (3.14) using
al-Khalili's g(¢,n) value, and comparing the result obtained for
f(¢,%9 £ n) to the entry in the table. The results were
discouraging for the first nine columns and two areas within the
columns for ¢ = 46° through ¢ = 49°.7 In the remaining 80% of
the table, the percentage agreement is high enough to be
consistent with the hypothesis that al-Khalill used this method,
given the possibility of scribal and computational errors. Of
781 tabular entries checked in this area (see Fig. 3.2), 749, or

95.9%, matched with the calculation above.®

? These areas are for 6 = 1°,...,30°, and 6 = 61°,...,90°, the
first and third columns in the manuscript. The entries here
present a considerably higher error level than elsewhere in the
table, up to 5 in the second place. Perhaps these entries were
copied from an earlier set of tables al-Khalili may have
computed.

® This comparison is successful both for those entries that are
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SI = Sine Values

DC = Direct Computation (using
two sexagesimal digit
trigonometric values)

EQ = Equation (3.14)

Fig. 3.2: Schematic diagram of the methods used to generate
al-Khalili's f(¢,8) table
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One may suppose that since the number of possible methods of
calculation 'is bounded only by the imagination, it is impossible
to prove rigorously that al-Khalill actually used (3.14) or a
mathematically equivalent formula. This is, of course, true;
however, there are compelling reasons to believe that no
reasonable method other than (3.14) could possibly generate such
a high match with the table. For, calculation of f(¢,6)
according to (3.14) introduces two errors: the rounding of
Cos n, and the use of the tabular value g(¢,n). Each of these
two factors causes a particular error pattern over the 4000
entries in question, and it seems unlikely that either pattern
could be generated by any function other than one mathematically
equivalent to r,(Cos n) or Tg(¢,n). Yet the addition of the two
error factors produces a match of 96% with the tabular values.

A method that is truly distinct would not contain one or both of
these factors and would introduce its own, caused by rounding
and other means. The final error pattern produced by this
method, while it may agree with that in the table for a certain
percentage of entries,® has a probability of fitting the error

pattern for a large number of entries comparable to the chance

8 (cont'd) accurate to two sexagesimal digits, and for those that
are not. Of the accurate entries, 399 of 416 agree with (3.14),
and of the inaccurate entries, 350 of 365 agree. Both of these
figures correspond to a match of 95.9%.

Suppose (for simplicity) that 50% of the tabular entries are
correct, and that the remaining entries err by 1 in the last
place, 25% in each direction. An independent method with the
same error distribution has a

(.5)% + (.25)% + (.25)% = ,375,
or 37.5% probability of agreeing with a given entry. Clearly
over a large number of entries the percentage agreement will
converge to this figure.
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that a randomly chosen house key has of opening a given lock.

While (3.14) can be used to generate entries of g(¢,6) from
the f(¢,0) table as well as vice versa, there are several
reasons for believing that g(¢,6), the "second function", is
actually the table originally calculated. Firstly, whenever
¢ +n>090°and 9 - n< 0; i.e., ¢ <nand ¢ < n, (3.14) is
useless for computing g from £, so a large area corresponding to
approximately one quarter of the g(¢,0) table is inaccessible
from £(¢,0) using this formula. Secondly, (3.14) produces from
a single entry of the g(¢,0) table two distinct entries in the
f(¢,6) table (provided 6 # @). Finally, the g(¢,8) table
contains an interpolation grid not found in the f(¢,60) table, as

we shall see in Sec. 3.4.2.

3.4 The Construction of the g(¢,6) Table

The error levels in the g(¢,0) table are, of course, roughly
the same as those in the f(¢,6) table. But whereas there are
small zones in the f(¢,60) table (for ¢ = 46° through 49°) where
the errors reach 4 in the last place consistently, the g(¢,6)
table has none of these zones. Also, although for some values
of the arguments the g(¢,8) table simplifies to a
straightforward function this fact does not in general appear to
have been utilized by al-Khalili. For instance, where 8 = 90°,

g(¢,90°) = Sin 90; Tan ¢ . 7an ¢, (3.15)

and where 6 = % = 90° - ¢,
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g(¢,3) = Sin BRTa“ ¢ - Sin ¢, (3.16)

but neither of the corresponding areas show any more accurate

entries than anywhere else in the takle. The column for ¢ = 45°
is, however, a Sine table accurate to two sexagesimal digits.
This, incidentally, shows that al-Khalili had access to sine
values with this accuracy, even though his extant sine table is
slightly less accurate. Considering the accuracy of the
trigonometric tables of the fourteenth century, however, this is

not surprising.
3.4.1 A Correlation Method to Determine the Rounding Procedure

In order to determine the method of computation of some or
all of the entries, it is important to be able to ascertain the
accuracy to which some of the intermediate parameters were
rounded. Explicit testing of all the various rounding
techniques; for instance, g(¢,6) = % « rnp(Sin 6) - ry(Tan ¢) for
pairs of values m and n; has several drawbacks. Firstly, in
general this brute force method is very time-consuming;
secondly, if an interpolation grid or similar méthod were used
it’could be difficult to spot the slightly increased percentage
agreement as significant when the correct rounding procedure for
the nodal entries is used; and finally, the usual advantage of a
brute force method — a guarantee of success — does not apply
here. It is possible, for instance, that al-Khalilil used, say,
three sexagesimal digit values for trigonometric arguments that

are flawed in the last digit. 1In this case brute force will not

only fail, but may mislead one into more closely examining those
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hypotheses that by sheer chance exhibit a slightly higher
percentage agreement. Clearly a more systematic method is

required.

Consider a given constant ¢ and a hypothesized rounding
procedure r, for Tan ¢. The value al-Khalill would use for
Tan ¢ is then altered by the amount
At = r (Tan ¢) - Tan ¢. (3.17)

This results in a function value shift given by

Tg(¢,9) = Sin 6 (Tgn ¢ + At)

- Sin 6 Tan ¢ ., Sin 6
= At 22—, (3.18)

Of course the rounding of Sin 6 will also cause an error but for

each ¢ we assume the application of the same set of values of
Sin 6 and hence each column should be affected equally by this
rounding. What (3.18) demonstrates is that if al-KhaliIll had
used the hypothesized rounding procedure, the value of At should
be linearly related to the average signed level of error found

in the column.

This linear relation will, of courée, be complicated by
several factors. Firstly, the final rounding of g(¢,6) to two
sexagesimal digits will alter the final error, perhaps
significantly. Secondly, if al-Khalill used an interpolation
scheme, only the nodal entries would be affected directly: the
effect on the internodal entries would only be indirectly felt,
through the values at the nodes. Finally, if the rounding

procedure is sufficiently precise (A is very small), its effect
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on the final value will be minimal or unnoticeable. 1In the
latter case it may be possible to find a method of direct
calculation or an interpolation grid simply by assuming that

al-Khalili's value of Tan ¢ is accurate.

Thus the linear relation may only be seen in a statistical
sense, if at all. The statistical tool to determine whether the
connection exists is, of course, the correlation coefficient.
The measure of the total error in a given column that we will
use is simply the sum of the signed errors in the last digit
over the 90 entries in the column. Table 3.1 gives the values
of At for the hypothesized rounding procedure r, and the total

column error for 17 scattered values of ¢.

Total
¢ At Column
Error

1° |+0; 0, 9,42 +6
2° |+0; 0,17, 7 +6
10°|+0; 0,13,22 +4
16°|-0; 0,17, 1 -67
20°}-0; 0,17,35 -47
21°1+0; 0, 5,22 +10
22°|-0; 0,29,40 -41
23°1-0; 0, 6,34 -33
24°|+0; 0,10,36 -40
25°1+0; 0,17,32 -10
30°|-0; 0,27,40 -115
36°{+0;: 0,26,48 0
42°1-0; 0,27,18 +1
46°|+0; 0, 5,25 +13
47°|+0; 0,28,19 -2
48°|-0; 0,12,21 -60
55°1-0; 0,20, 2 -23

Table 3.1: Values of At and total column error for selected
values of ¢ in the g(¢,6) table
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The correlation coefficient between columns 2 and 3 in the
above table is 0.6286. Assuming the two columns of data have a
zero correlation, the probability of observing data with a
correlation coefficient as high as this or higher is less than
0.5%.'%° This result, then, provides good statistical evidence

that al-Khalill used a two sexagesimal digit value of Tan ¢.
3.4.2 The Location of the Interpolation Grid

The correlation argument above produces a good statistical
reason for the use of r,(Tan ¢) in further research, but it
leaves open several possibilities regarding its application.
Considering the relative rarity of the tangent function, it is
certainly possible that al-Khalili used Sine values more
accurate than the r, values. Given the size of the table it is
unlikely that al-Khalili computed every entry directly, but it
is not impossible and one must never underestimate what a
dedicated individual can do. If an interpolation scheme were
used, there are still several possibilities regarding the
location and spacing of the nodes, and as we have seen with the
f(é,e) table, al-Khalili may have used different methods in

different areas of the table.

The obvious first hypothesis to attempt is, of course, the

rounding procedure defined by

g(4,8) = r, r,(Sin G)Rr,(Tan ¢) . (3.19)

'°D, V. Lindley & W. F. Scott, New Cambridge Elementary
Statistical Tables, Cambridge, 1984, p. 56.
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Table 3.2 below shows, for a span of six columns corresponding
to ¢ = 20°,...,25° and for each value of 6, the number N of

tabular entries agreeing with calculation according to (3.19).

6 N |6 N {6 N |6 N [6 N |6 N
1 3 |16 |5 |31 |6 |46 |5 |61 |2 [76 |3
2 2 |17 [4 |32 |3 |47 |4 |62 |2 (77 |O
3 4 |18 |5 |33 (4 [48 |4 |63 |3 |78 |2
4 3 119 |4 |34 (4 [49 |6 |64 |2 |79 |2
5 5 |20 [5 {35 |5 [50 |6 |65 |6 |80 |6
6 3 |21 |2 {36 |5 (51 |4 |66 |4 |81 |5
7 2 (22 |2 |37 |2 |52 |4 |67 |2 |82 |2
8 3 |23 {3 |38 |3 [53 |4 |68 {3 |83 |2
9 3 |24 |2 |39 |2 |54 |5 |69 |3 (84 |2
10 {5 |25 [6 |40 |6 |55 |6 |70 |6 [85 |6
11 |3 |26 |4 (41 |1 |56 [2 |71 |2 {86 [4
12 {4 |27 |3 (42 |2 |57 [3 |72 |2 |87 |3
13 |2 |28 |4 {43 |6 (58 |2 |73 |1 |88 |3
14 [1 |29 |6 |44 |6 |59 (3 |74 |2 (89 |5
15 |4 |30 {6 |45 |6 |60 |6 |75 |6 [90 |5

Table 3.2: The number of tabular values of g(¢,8) that agree
with (3.19) for ¢ = 20°,...,25°

Of the entries whose 6 values are divisible by 5, 101 of 108, or
93.5%, agree with calculation according to (3.19). Of the
entries whose 6 values are not divisible by 5, only 228 of 432,
or 52.8%, agree with (3.19). So at least over ¢ = 20°,...,25°,
we’have conclusive evidence that al-Khalili used an

interpolation grid with nodes separated by 5° of 6.

Extending this study over the entire table, the same results
are generated for most values of ¢. A comparison for all values
of ¢ is given in Table 3.3. For ¢ < 45°, the distribution of

the numbers in Table 3.3 is clearly not random. 32 of the
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columns have a match of 15 out of 18 or better with (3.19).'' Of
the other thirteen columns, nine have matches of eight or less
of 18 nodes. (See Fig. 3.3 for a histogram.) For ¢ > 45° the
pattern changes: almost all of these columns exhibit a failure
of a sufficiently high level to reject the possibility of the

use of r,(Tan ¢).

The extremely small percentage of failure over the nodal
values compared with the percentage of failure over the
internodal entries is firm evidence in favour of the
hypothesized interpolation grid. But in order for the
hypothesis to explain satisfactorily the nodal entries, the
cause of the failure over the remaining columns needs to be
shown. The fact that the columns that fail to match are
scattered randomly seems to indicate that these columns should
have been calculated as the surrounding columns were; possibly
the error was caused by a different value of Tan ¢. The third
column of Table 3.3 reveals a strong pattern that supports this
theory: of those columns that fail comparison with (3.19) on the
nodal entries, the failures are almost entirely to one side,

positive or negative, of the expected value.

'1 Assuming a 50% probability of a match with an independent
method, the probability of a given column matching this well or
better are less than 0.4%. Comparison of (3.19) with the
internodal values in these same columns again reveals only
approximately a 50% match.
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¢ Nodes |+/- é Nodes |[+/-
Correct Correct

1 12 1/5 29 5 0/13

2 15 30 5 0/13

3 18 31 17

4 17 32 7 0/11

5 17 33 18

6 17 33.5]4 0/14

7 18 34 18

8 15 35 17

9 14 36 16

10 14 37 17/17

1" 17 38 17

12 17 39 18

13 17/17 40 7 0/11

14 16 41 18

15 7/16 0/9 42 8 10/0

16 7/15 1/7 43 16

17 6/15 0/9 44 16

18 18 45 18

19 18 46 12/17 2/3

20 18 47 11/16 1/4

21 18 48 10 1/7

22 17 49 14

23 17 50 1M 7/0

24 14 51 8 0/10

25 17 52 4 0/14

26 17 53 7 0/11

27 18 54 5/17 0/12

28 5 1/12 55 14

Table 3.3: Comparison of the number of nodal entries agreeing
with (3.19) in the g(¢,6) table, and the direction of the error
in those columns with 5 or more failures

1- 4 *
- 8 *kkkkkkkk
9-12 *

13~16 **,kkkkkkk%k
17-18 *kkkkkkkkkkkkkkkkkkkkkkkk

Fig. 3.3: Histogram of column 2 of Table 3.3 for ¢ < 45°

Table 3.4 below shows the results of recomputation of the

nodal entries with a tangent value shifted up or down one
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minute, as suggested by the errors in Table 3.3.

Match New Match
¢ |r,(Tan ¢) with Tan ¢ with
r,(Tan ¢) Value |New Value
15 16; 5 7/16 16; 4 15/17
16 17:12 7/15 17311 15/17
17 18;:21 6/15 18;20 15/15
28 31:54 5/18 31;53 17/18
29 33;16 5/18 33;15 16/18
30 34:38 5/18 34;37 17/18
32 37;:30 7/18 37;29 16/18
40 50;21 7/18 50;20 16/17
42 54; 1 8/18 54;: 2 14/18
48 66; 38 10/18 66;37 10/18
50 71:30 11/18 71;31 16/18
51 74; 6 8/18 74; 5 16/18
52 76;:48 4/18 76:47 16/18
53 79;37 7/18 79;36 18/18
54 82;35 5/17 82;34 16/18

Table 3.4: Comparison of nodal entries in the g(¢,6) table with
(3.19), using a new Tan ¢ value suggested by column 3 of Table

3.3

The resulting match over the columns above is 233 of 264, or

88.3%.

On its own this result may not seem surprising: if some

entries are too small, the use of a slightly higher value of

Tan ¢ should shift some entries up and hence produce a higher

level of agreement.

match is too high to be attributed to this fact.

However,

it is not hard to see that the

In any case,

the high match guarantees that the value of Tan ¢ found by
multiplying each nodal entry in the column by Sin 6 and taking
the mean will be almost precisely the altered value used in

Table 3.4. The reconstructed Tan ¢ values, with errors
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illustrated, are shown in Table 3.5.'2

¢ Tan ¢ L3 Tan ¢
1 1; 3 29 |33;15 [-1]
2 2: 6 30 |34:;37 [-1]
3 3;: 9 31 |36; 3

4 4:12 32 |37:29 [-1]
5 5;15 33 |38;58

6 6:18 34 140;28

7 7:22 35 {42; 1

8 8;26 36 |43;36

9 9;30 37 145;13

10 {10;35 38 146;53

11 11:40 39 148;35

12 |12;45 40 |50;20 [~-1]
13 113;51 41 |52; 9

14 {14;58 42 154; 2 [+1]
15 {16; 4 [-1] 43 }55;57

16 {17;11 [-1] 44 |57;56

17 [18;20 [-1] 45 |60; O

18 119:30 46 |62; 8

19 120:40 47 |64;21

20 |21;:50 48 |-—----

21 123; 2 49 |169; 1

22 |24;14 50 71331 [+1]
23 |25;28 51 {74; 5 [-1]
24 |26;43 52 176;47 [-1]
25 |27;59 53 [79:36 [-1]
26 {29;16 54 [182;34 [-1]
27 |30;34 55 [85;41

28 [31;53 [-1]

Table 3.5: The reconstructed tangent values used by al-Khalilil
in the construction of the g(¢,8) table

'2Por small values of ¢ it is hard to verify any hypothesis,
since the function values are very small. But for ¢ > 10°, a
comparison over the nodal values in 24 selected columns reveals
a match of 261 out of 285, or 91.6%, between (3.19) and
al-Khalilil's accurate tabular entries. The same comparison over
the nodal values for al-Khalili's inaccurate entries produces a
match of 130 out of 139, or 93.5%.

An objection may be raised that the discovery of incorrect
tangent values invalidates the test in Sec. 3.4.1, which used
correct tangent values. Only a small percentage of the tangent
values are incorrect, however, affecting the correlation only
minimally. If the test were performed with the new tangent
values, undoubtedly the correlation would be even higher.
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3.4.3 The Interpolation Scheme

A comparison of the tabular values with direct computation
according to (3.19), using the reconstructed tangent values,
reveals two small regions with a high enough percentage
agreement to support the direct calculation hypothesis over
these entries. A small block near the centre and at the bottom
of the table has a percentage agreement of 97.8%, and an area
comprising most of the columns for high values of ¢ has a 95.2%
match.'? See Fig. 3.4 for an outline of these regions. The vast

majority of the internodal values, however, remain unexplained.

An examination of the first differences throughout the
entire table reveals no consistent pattern. It is immediately
clear, however, that linear and second order interpolation (the
most likely possibilities from an historical viewpoint) fail to
account for even small sections. Statistical tests searching
for the effect of ry(sin 6) on internodal values for different

values of n also failed to find a relation.

. Over a large area covering almost 50% of the table, however,
a uniform pattern emerges. This area has rather clearly defined
boundaries, but the edges described in Fig. 3.4 are not to be

taken as completely rigid. The method of interpolation that

'3In the latter area, it appears that al-Khalill is using

Sin 17° = 17332 [-1], the same value that occurs in the first
column of the f(¢,6) table. This value agrees with that in a
sine table known to al-Khalili. See D. A. King, Shams al-Din
al-Khalill and the Culmination of the Islamic Science of
Astronomical Timekeeping (unpublished: Frankfurt University,
1987), Table 3.1A, p. 177.
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matches the values in the table is a variant of linear
interpolation, and may be described as follows. Let
x = Tg(¢,6 + 5°) - Tg(¢,0) in sixtieths, where 6 is divisible by

5. Then x is the difference in tabular values at the ends of a

X
gr
where m and n are integers and 0 £ m < 4, For the first m

typical span between two consecutive nodes. Let n + % =

entries, add n + 1 minutes to the previous entry; for the
remaining entries, add n minutes to the previous entry. The
agreement over the area in question is 327 of 357 blocks of
entries between successive nodes, or 91.6%. This corresponds to

a per entry agreement of 97.8%.'"

This variant of linear interpolation has several advantages.
First, the values it produces are not likely to wander from the
true g(¢,6) values; that is, the interpolation function is
stable. Second, these values are best for use with a function
that is close to linear but has a small negative second
derivative, precisely the nature of g(¢,8) for fixed ¢.

Finally, the method is very easy to execute: only a simple
addition is required for each tabular value after the average
first difference has been found. These considerations show that
this scheme is ideal for application to the calculation of the

g(¢,0) table.

'4The 30 blocks that fail to match the hypothesized
interpolation scheme imply at least 30 errors were made over the
120 entries in these blocks (assuming the hypothesis to be
true). Since there is no reliable way of knowing what number of
the remaining 90 entries contain errors, we remove them from
consideration. This gives 30 errors in 3274 + 30 = 1352
entries, or a 97.8% agreement.
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SI = Sine Values

DC = Direct Computation (using
two sexagesimal digit
trigonometric values)

LI = Variant of linear

interpolation described
on p. 46

Fig. 3.4: Schematic diagram of the methods used to generate
al-Khalili's g(¢,6) table
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The objection may be raised that the area in question has an
unusual shape, and in fact over a region similar to this one the
probability that an independent method will match the suggested
pattern is highest. This latter fact can be seen as follows:
given any span of four entries between consecutive nodes g(¢,6)
and g(¢,6 + 5°), if x = g(¢,6 + 5°) - g(¢,6) is divisible by 5
the hypothesized scheme produces three second differences of
zero; if x is not divisible by 5 it will produce one second
difference of -1 and two second differences of zero. This

1 4

produces an average second difference of 3 "% 0 - % = %%

minutes. This corresponds to the following average second

+

derivative with respect to 6:

2 ="415l=_4.1 ____1
Dy2g(9,6) ——év—— 5 &5 575 (3.20)
But
2 = |8in 6 Tan ¢}~ . _{ = _|2 ,
Dy2g(¢,6) [ = } [180] g(e,0). (3.21)

So the area of the table where the average second differences
best correspond to the nature of the function is the area for

which

_{_m |2 . =~
[180} 9(¢,6) 225’
or g(¢,0) = 14.59 14;35.

The band of the table where the entries are of this magnitude
starts at the bottom, where ¢ = 13° and 6 = 90°, and extends
diagonally up to the right edge where ¢ = 55° and § =~ 10°, Near
this zone a reasonably accurate independent method is most
likely to agree with the hypothesized scheme, with the

probability of agreement continuously decreasing as the entries
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diverge from this curve.

While this argument does demonstrate that the probability of
a match should be higher over this area, it is not sufficient to
explain the match in the table. Firstly, the area that does
match does not correspond very well to the curve where the
probability of a match is greatest, particularly for ¢ > 45°.
Secondly, even where the probability of an independent method
matching our scheme is highest, it is still very small. An
example is the column for ¢ = 3350’ which was independently
computed, and the column for ¢ = 45°, which is just a copy of
r,(sin 6) for all 6. For both of these independently calculated
columns, not one of the 18 internodal blocks matches with the
hypothesized scheme. So clearly the fact that 91.6% of the
- blocks match in the area in question is far from coincidental.
I cannot, however, satisfactorily explain why al-Khalilil would
have used this method in the central area and not in those areas

immediately adjacent.

3.5 Possible Reconstructions of G(x,y)

The G(x,y) table is probably the greatest computational feat
of the three auxiliary functions. While the G(x,y) table
contains less than 70% of the number of entries in either of the

two other tables, each entry is considerably harder to compute.

RX
Cos

required, usually of an argument which cannot be read directly

After the division is performed, an arc Cosine is
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from a Sine or arc Sine table. The location of the final entry
of any given column also cannot be determined trivially.
Finally, the G(x,y) function is not so well-behaved as either
£(¢,0) or g(¢,8): while each column of the first two functions
is a constant multiple of the Sine table, the curve produced by
G(x,y) varies in slope and concavity in different regions of the
table. This forces any fixed interpolation method
simultaneously to match many different types of curves. Thus
one might expect either a variety of interpolation methods, or

possibly a finer grid.

Certain values of x and y result in simplifications of the

function G(x,y). For x =0,

G(x,y) = arc Cos [ Rx ] = arc Cos 0 = 90°, (3.22)
Cos y

but al-Khalill does not include x = 0 as part of the domain of

the table. For y = 0,

- Rx _
G(x,y) = arc Cos [Cos 0°] arc Cos x, (3.23)

and for y = 60,
_ Rx -
G(x,y) = arc Cos [ESE_EE?] arc Cos 2x. (3.24)

But study of the two rows corresponding to these values of y
fail to reveal any structure to the errors in these rows; in
fact, even the pairs of values G(2x,0) and G(x,60) fail to

match.

50



3.5.1 The Cause of Anomalous Errors in the G(x,y) Table

The errors in the G(x,y) table show a similar distribution
to those found in the first two tables. Approximately one half
of the entries are accurate to the two sexagesimal digits
displayed in the table, and most of the remaining entries err by
one minute to either side. Some entries, however, show
considerably larger errors of up to 30 minutes. Most of these
so-called "anomalous errors"'® are found in regions
corresponding to small values of x and large values of y, a fact
consistent with the observation that G(x,y) changes most rapidly

there with respect to y.

The cause of these errors is easily found. Where the errors
are large, the function G is very unstable with respect to y.
The only computation performed using y in the evaluation of G,
however, is the use of Cos y. Considering al-Khalili's heavy
use of two sexagesimal digit trigonometric values in the first
two tables, the obvious first attempt is to compare the tabular

values with computation according to

_ Rx
G(x,y) = arc Cos [——-——-r1(Cos y)], (3.25)

using accurate division and arc Cosine functions.

The results of this comparison over entries in the table
with an error of five or more minutes are shown in Table 3.6

below. As the rightmost column giving the difference between

5D, A. King, "al-Khalili's Auxiliary Tables for Solving
Problems of Spherical Astronomy", pp. 101, 105.
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the tabular values and reconstruction via‘(3.25) demonstrates,
the error pattern caused by rounding Cos y to two sexagesimal
digits is almost precisely that which occurs in the table. (It
is easily checked that those entries with errors of less than
five minutes show approximately the same agreement as those that
appear in Table 3.6.) This result verifies not only that
al-Khalill used two sexagesimal digit rounded values of Cos vy,
but also that after this point any other errors introduced have

relatively minor effects.

X |y |True Value|al-Khalili [Recomputed|Difference
1 |88 61;28 61;34 [+6] 61;34 0
1 (89 17:15 17;45 [+30] 17:45 0
2 |87 50;:26 50;20 [-6] 50;20 0
2 |88 17;:14 17:45 [+31] 17;45 0
3 (87 17:11 16;46 [-25] 16;46 0
4 (86 17: 7 17; 1 [-6] 17; 2 1
5 |85 17; 2 17;10 [+8] 17;10 0
6 |84 16;56 16:46 [-10] 16;46 0
7 |83 16;48 16:55 [+7] 16:55 0
12|78 15;51 15;43 [-8] 15;:44 1
17(73 14;17 14:;23 [+6] 14;23 0
18|72 13;53 13:46 [-7] 13;47 1
22|68 11;:49 11:54 [+5] 11;54 0
25|65 9:38 9:32 [-6] 9:32 0
27|63 7:36 7:30 [-6] 7:30 0
29|61 4:28 4:20 [-8] 4:20 0
36(53 4;27 4;36 [+9] 4:36 0
43|44 4:56 5: 3 [+7] 5; 2 -1
55{21 10;55 11; 1 [+6] 10;56 -5

The second and seventh entries above have been reconstructed as
if they were scribal errors. The entries that actually appear
in the table here are 17;15 and 16;10 respectively.

Table 3.6: Comparison of computation via (3.25) with tabular

values for those entries with anomalous errors in the G(x,y)
table
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3.5.2 The Rounding Procedure in the Argument of the Arc Cosine

After the computation of Cos y, two steps remain to complete

Rx
Cos y

called the argument of the arc Cosine, must be found; then the

the evaluation of G(x,y): first, the value , hereafter

arc Cosine of the argument must be taken. Both of these
procedures may be accomplished in a variety of ways. The
argument may be easily calculated by simply dividing Cos y into
Rx, but D. King'® has suggested that al-Khalili may have
consulted a table for

Sec v _ R = 1° °
R Cos y, Y ,.--,89 ’ (3.26)

presumably using two-digit values of Cos y as we have found, and
then multiplied the appropriate value in this table by x for
each entry of the G(x,y) table. King notes that "no independent
table of the Secant is contained in any known Islamic

source",'’ but we cannot ignore the possibility that al-Khalilil
was innovative. The arc Cosine operation is more difficult to
deal with, since the argument is usually not an integer. Linear
interpolation from an arc Cosine table or inverse linear
inferpolation from a Cosine table are possible, and these tables
may well have had varying levels of accuracy and different
spacings between entries. Also, we have no information
concerning the rounding of the argument prior to the application

of the arc Cosine algorithm and hence we cannot even be sure of

'6¢ D, A. King, "al-Khalili's Auxiliary Tables for Solving
Problems of Spherical Astronomy", p. 108.

17"al-Khalili's Auxiliary Tables for Solving Problems of
Spherical Astronomy", p. 109.
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the exact value that al-Khalill started with when taking the arc

Cosine.

Before we begin to attempt to determine the method that
al-Khalill used to calculate entries of G(x,y) directly,
however, we must choose an appropriate subset of the original
table for use as a data set. Given that the probability that
al-Khallll used some form of interpolation is high, those areas
where interpolation may have been used to generate the entries
should be avoided. Also, those areas where the function is most
sensitive to changes in the arguments are to be preferred, since
these entries leave clearer traces of the errors caused in
calculation. Fortunately these two considerations lead to the
use of the same data set, those entries near the bottom curved
edge of the table. Our data set, then, is defined as follows:
for each column, take those entries whose y arguments are
greater than or equal to the highest value of y divisible by 5.

This gives 132 entries, a suitably large number.'®

Calculation of the argument via either King's hypothesis or
direct division leads to several possible results, given
different levels of rounding. The results of direct division

may be rounded to different levels:

Argument = rn[?77%§§_§7]' (3.27)

for some value of n. The method of calculation with the use of

'80ver the entire table this method produces 181 entries. At the
time the tests were performed, however, the columns for x > 43
had not yet been translated.
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a secant table also entails this set of possibilities, but it
has an intermediate step where roundoff also occurs. This

method may be represented by

Argument = rn[x - rm[FTTE§§_§T]}' (3.28)

for values of m and n. If m =2 2 in the latter formula (i.e.,
al-Khalili's secant table is accuréte to at least three
sexagesimal digits), the values produced by the two equations
(3.27) and (3.28) are virtually identical, and the effect of the
differences on the function values on the data set is
insignificant. So we must consider two sets of possibilities:

either m = 1 in (3.28), or n = 1,2,... in (3.27).1'°®

The hypothesis of the use of (3.28) with m = 1 is easily
refuted. Since the arc Cosine is a decreasing function,
arrangement of the tabular entries in ascending order by
function value should correspond to a descending order in their
respective arguments., But Table 3.7 illustrates that this is
not the case with (3.28) and m = 1. Table 3.7 shows only a
subset of the entire data set, but the somewhat random pattern

in the rightmost column holds true throughout the data set.

'*Note that rejection of the first case would not eliminate the
possibility that al-Khalill used a secant table: it only implies
that the secant values would not have been calculated with

m= 1,

55




x |y Tabular (3.28) (3.28)
' Value With m = 1{With m = 2
1179163 7 [+2] 57;34 57:39
10/80{16:;15 [-3] 57:40 57:36
40146116:21 [+2] 57:20 57:35
37(50]116;23 57:21 57;:34
9 |81]|16:26 [-3] 57:36 57;33
33|55|16:30 [+1] 57:45 57:32
27162|16:32 [-2] 57;36 57: 31
8 [82|16:39 57:28 57:29
3 |87|16;46 [-25] 57:27 57:27
6 |84}16:46 [-10] 57;:24 57:27
7 |83116;55 [+7] 57;:24 57:24

Table 3.7: Comparison of the tabular values of G(x,y) with the
argument calculated via (3.28) with m = 1 and m = 2 for selected
entries

Of the remaining possible ways described to compute the

Rx
r,(Cos y)

they cause no distinguishable effect on the data entries. This

argument, all but one produce values so close to that
final possibility to consider is the use of direct division and
rounding to only two sexagesimal digits - (3.27) with n = 1,

The error traces caused by this coarse rounding procedure should
be noticeable on the data set, since these entries are sensitive
tolerror. It is also the most reasonable hypothesis to
consider, since al-Khalilil has so far shown a preference for two

values with two sexagesimal digits.

In order to determine whether the two digit hypothesis is
valid, we assume the hypothesis and calculate the effect it
should have on the tabular values. For notational simplicity,

define
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f(x) arc Cos(x),

g = — RX
r,(Cos y)’

zZ =r,(2),

and Az = Z - z.

Then z is the exact value of the argqument obtained by using
al-Khalili's two digit cosine values, Z is the argument rounded
by our hypothesis, and Az is the change in the argument caused

by rounding.

We wish to determine whether Az correlates with the error in
the tabular entries (measuring the latter error with the
assumption that r;(Cos y) is the correct Cosine), much as we did
with the columns in the g(¢,6) table. However, in the previous
case, the hypothesized rounding error had a linear relationship
with the errors in the tabular entries (see (3.18)), an

advantage not available in the present situation. But

£(2) - £(2) = Az - £'(2), (3.29)
since (2 - z) is small, or
. Af(z)
Az = 2 (3.30)

wvhere Af(z) = f(2) - £(z). So Az should be linearly correlated

with éiiél, not with Af(z).
£'(2)

The situation, however, presents additional complications.
Two additional errors are generated when proceeding from z to
the tabular entry. First, al-Khalili's unknown method of
determining arc Cosines certainly introduces its own error, thus
disturbing the correlation. Call f(z) the function that gives

al-Khalili's arc Cosine for argument z. Then the tabular entry
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is r,(£(2)). This final rounding to two sexagesimal digits is
the second error, and will also disturb the original

correlation.

The final rounding error is easily simulated, but the effect
of using f instead of f is more difficult to copy, since £ is
unknown. Using the implicit assumption of the two sexagesimal
digit hypothesis, however, the overall effect of the error

caused by £ may be found, albeit rather discretely, by

calculating
e(f) = r (£(2)) - r,(arc Cos(%)) (3.31)

for each value in the data set. (Note that r,(£(%2)) is
al-Khalili's tabular value.) Table 3.8 below gives the results

of these calculations.

Minutes|Number of
entries

5 2
4 0
3 3
2 12
1 27
0 58
-1 24
-2 4
-3 0
-4 2

Table 3.8: The number of entries in the data set with e(f) equal
to the number of minutes displayed
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So, our problem is now to determine the level of correlation
between Az and fé%ET (where AG is the actual error in the
tabular entry) after the two additional error factors described
above are taken into account. The procedure we shall use is as
follows: take 132 data points (x,y) randomly scattered in the

domain in which the data set is located.

RXx
r1(COS Y),

obtain the effect of al-Khalili's arc Cosine operation, take the

Calculate z = and find 2 = r,(z) and Az = 2 - z. To
arc Cosine and add a number of minutes randomly chosen according
to the probability distribution represented in Table 3.8.
Finally, round the result to two sexagesimal digits. This gives
132 data points (Az, ¥$%27), from which the correlation

coefficient may be easily found.

It is true that al-Khalili's arc Cosine operation is not
likely to produce a randomly distributed error: certain values
of Z may be more likely to result in particular errors in the
evaluation of £(£) than others, but this will not affect the
test. The correlation we are attempting to find uses the values
of Az, not Z, as the abscissas. Given any 2, the set of
possible values of z is the interval (2 - (0;0,30),

2 + (0;0,30)]; thus, any value of Az is equally likely to
produce the given value of 2., Hence Az is independent of %, and
the fact that the value of 2 may influence the error caused by
the use of f does not change the expected correlation

coefficient from the one produced by our test.
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The test described above was run 100 times and gave a set of
correlation coefficients loosely fitting a normal distribution.
A histogram of these coefficients appears in Fig. 3.5 below.

0.46-0.50 *x*

0.50-0,54 ***x*xx%
0.54-0.58 ****

0.58_0.62 hkkkkhkkhkhkkdhkdhkkkkkkkk

0.62_0.66 khkkhkhkkhkhkhkhkkhkkhkkhkhkkhkhkkhkhkkhkkkkkkk
0.66_0.70 khkhkhkkhkkhkkdhkdhkkkkkkkkk

0.70_0.74 khkkkkkkkkkkk

Fig. 3.5: Histogram of correlation coefficients produced by the
above test

The coefficients range between 0.4929 and 0.7798, with a mean of
0.6447. The actual correlation coefficient between Az and
fé%ET' where the value of G(x,y) is taken from al-Khalili's

table, is 0.1078.

Clearly the correlation coefficient found from al-Khalili's
tabular values is sufficiently small immediately to reject the
two sexagesimal digit hypothesis over the entire data set. If
the 132 data points are in fact independent, the probability of
obtaining a correlation coefficient as high or higher than
0.1078 is approximately 11%.2%° This probability is certainly
much too high to allow us to conclude a relation between the
data, but it leaves open the possibility that a small subset of
the original data set is in fact correlated. Examination of the
various subsets of the original data set most likely to have

been calculated directly, however, consistently give small or

20New Cambridge Elementary Statistical Tables, pp. 56, 34.
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negative correlations.

The two-digit hypothesis is now eliminated, and the logical
next step is to test the three-digit hypothesis; i.e., (3.27)
with n = 2, A histogram of the 100 correlation coefficients
produced by the program applied to this new hypothesis is given

in Fig., 3.6 below.

=0.3 — ~0.2 ***

-0.2 — -0.1 kkkkkkhkkkkkk

-0.1 — +0.0 khkkkkhkhkkhkkkhkkhkkkhkhkkkhkkkkkkhkhkkhkhkkkkikk
+0.0 — +0.1 khkkkkkhkkhkhkkkkhkhkhkhkkhkhkkkkhkhkkkkhkkhkkkkk
+0.1 — +0.2 *kXkkkkkkkhkkX

Fig. 3.6: Histogram of the statistical test described above

This set of coefficients has mean -0.00634, virtually zero.

Hence, the effects of the use of a three digit argument as

Rx
r1(COS Y)

that our statistical test could not detect them.

opposed to the use of the true argument are so small

While our statistical test firmly rejects the two digit
hypothesis, in fact a more direct means may have been used to
cause some doubt regarding its feasibility. For tabular entries
that have very small values, the corresponding arguments are
close to 60; 0 and the arc Cosine function is extremely
sensitive to changes in the argument for these values. In fact,
given the two-digit value for the argument, up to ten different
possible two-digit tabular values may have this number as a
Cosine. Ten of the tabular entries with the smallest values are

given below in Table 3.9, Column 4 gives the different possible
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tabular values whose cosines correspond to the two-digit
argument of column 3. Column 5 gives the 'true' value of G(x,y)
according to (3.25), and the value found in al-Khalili's table

appears in column 6.

x |y |2-Digit Possible True al-Khalilil
Argument |arc Cosines| G(x,y)
31|58 58;29 12;53-12;56 12;53 12;53
32157| 58:45 11:41-11;45 11;:44 11:44
33|56| 59; 1 10;21-10;25 10;23 10;23
34|55| 59:16 8:55- 9; 1 8:56 8:56
35(54} 59;33 6:58- 7;: 5 7: 3 7; 3
3653} 59;48 4;35- 4;46 4;36 4;36
37(51| 58;:47 11;32-11;35 11;34 11;34
38|50 59; 7 9;48- 9;53 9;50 9;50
39[49}) 59;26 7:50- 7:56 7:50 7:50
4048) 59;47 4;47- 4;57 4:57 4;56

Table 3.9: A closer comparison of (3.25) with al-Khalili's
tabular values for entries of G(x,y) with small values

Note that the values for G(x,y) given by the use of a precise
argument also fall within the ranges of column 4, but in fact
they are considerably closer to the values in al-KhalIli's table

than would be expected by chance.

Had the ranges found in column 4 of Table 3.9 above been of
a similar size for a larger and more equally distributed set of
tabular entries, the statistical test performed earlier would
have been redundant; however, for most of the tabular entries
the range defined as in column 4 is only one or two possible
values. The results of the statistical test combined with Table

3.9 are nevertheless enough to conclude that al-Khalili's values
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for the argument were taken to at least three sexagesimal
digits, a curious fact since the denominator of the argument
(Cos y) was taken to only two digits. Likewise, had al-Khalili
used a Cosine table to generate arc Cosines the values in this
table must have been accurate to at least three sexagesimal
digits. Finally, the possibility that al-Khalill used an arc
Cosine (or arc Sine) table is remote. Had he used such a table
its values for integral arguments would surely have occurred
along the first row of the table, for entries corresponding to
G(x,0). But the errors contained in the first row are not
reflected in the other tabular entries, whose values would rely
on those in the first row, as we would expect if this arc Cosine

table had been used.

To proceed any further than this point is virtually

impossible. Calculation via

G(x,y) = arc Cos[rz[;—Tg%§—§7}} (3.32)
1

already produces a 70% agreement. In order to work any further
according to the likely hypothesis that al-Khalili used a
reasonably accurate Cosine table, we require the Cosine values
that al-Khalill would have used. Many such tables existed in
fhe fourteenth century with the required accuracy, but the
Cosine values they contain are of course not in perfect

agreement.
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3.6 Acceptable Error Levels in al-Khalili's Table

Given a numerical table of the size of al-Khalili's tables
entirely computed by hand, we may expect two types of error to
alter the entries from the values that the algorithm used by the
constructor should produce. Computational errors should occur
at a level roughly proportional to the difficulty of the
numerical operation, and scribal errors should cause randomly
distributed errors. Scribal errors in the first digits are in
general easy to detect, but those that occur in the final digit
are usually impossible to distinguish from computational errors.
It will be useful to check whether the error levels derived from
the methods we have discovered agree with these considerations.
Table 3.10 below gives the number of scribal errors found in the
first three digits of the entries in those areas of al-Khalili's
tabies that have been explained, using the Paris manuscript as
the sole source. (In this section only, digits shall refer to
the individual characters; so 57;34, for instance, has four

digits.)

1st Digit 0 2
2nd Digit 2 1 1 4
3rd Digit | 6 | 6 | 12| 24

-—
-—

Table 3.10: The location of scribal errors in the explained
regions of al-Khalili's auxiliary tables

The large proportion of scribal errors in the third digit is to
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be expected, since the magnitude of an entry with an incorrect
third digit is not markedly different from the correct value,
and a scribe is less likely to catch it. Assuming as a very
rough guess that the number of scribal errors in the fourth
digit is between twice and three times the number in the third
digit, we arrive at a figure of 48 to 72 scribal errors in the
fourth digit of the 6600 entries, or 0.727% - 1.09%. So we
shall use the figure of 1% as an estimate 6f the number of

hidden scribal errors.

Fortunately, the operations that we know al-Khalili used to
calculate entries in his table correspond to either a single
addition or a single multiplication. The calculation of f(¢,6)
from g(¢,68) via

f(¢,9 £ n) = Cos n * g(¢,n) (3.33)
generated a 95.9% success rate. Thus, assuming our 1% hidden
scribal errors, al-Khalili's error rate with respect to addition
is approximately 3%. The combined success rate in the g(¢,6)
table over the interpolation nodes and areas where direct
calculation was used is 94.0%, corresponding to a 5% error rate
with respect to multiplication. Considering the relative
difficulty of multiplication as opposed to addition and the
damping effect of serious errors being caught by observation,

these figures are appropriate.
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3.7 The Feasibility of the Construction of al-Khalili's Qibla
Table from his Auxiliary Tables

Al-Khalili's gibla table, probably his most impressive
accomplishment, represents a vast amount of calculation. For
the arguments

¢ = 10°,11°,...,56°, and 33;30°,
and AL = 1°,2°,...,60°,

where ¢ is the worshipper's latitude and AL is his longitudinal
difference from Mecca, the table gives the direction of Mecca
relative to the meridian at the worshipper's location in degrees
and minutes, for a total of 2880 entries. Roughly % of the
entries are correct to the two sexagesimal digits displayed,
while most of the others are in error by less than five minutes.
As the locations of the entries move nearer to Mecca, however,
the errors increase to a maximum of 41 minutes as the function

becomes more sensitive to small changes in the argument.

While he does not explicitly state which formula he used,
al-Khalilil declares that he knows of no better method of gibla

calculation than that of al-Marrakushi, who used the equation

Sin h Tan ¢] R Sin ¢y

|
R Cos ¢
g = arc Cos ’

where h, the height of the zenith of Mecca in the observer's

(3.34)

Cos h

sky, is given by

Cos ¢y Cos ¢
RZ

The nature of the above gibla formula immediately suggests the

Sin h = Sin(¢ + ¢y) - Vers AL . (3.35)
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possibility of the use of al-Khalili's auxiliary tables to
generate his gibla table using

q = G{[g(¢,h) - f(¢,ey) ], hl. (3.36)

King notes that "al-Khalili's gibla values are generally
more accurate than those which can be derived from his auxiliary
tables in this way. Thus the possibility that he computed his
gibla values independently of the auxiliary tables cannot be
ruled out."?' I have not extensively examined the possibility of
the use of the auxiliary tables, but several simple observations
are enough to show that what King suggests is in fact a rather
strong possibility. The obvious first reason is that the domain
of the gibla table extends to ¢ = 56°, while the auxiliary
tables end at 55°. A more serious cause for doubt that the
auxiliary tables were used is the fact that the errors in the
f(¢,6) table are not reflected in the gibla table. Since oM is
constant, the same value f(¢,¢y) = £(¢,21;30) should be used for
an entire column of the gibla table. Several of the columns of
the f(¢,6) table contain entries for 6 = 21° and 22° that are
both in error by several minutes. It is easily seen that an
error of this size in the value of f(¢,¢y) should result in an
error in the gibla value of approximately the same magnitude,
but these errors do not exist in the gibla table. The
possibility of the use of the other two tables would require
more examination, but I find it unlikely that the two-digit

values in the auxiliary tables are enough to produce an accuracy

2'D. A. King, "al-Khalili's Qibla Table", p. 108.
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level close to the level found in the gibla table.
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CHAPTER 4

CONCLUSION

The study of the history of computational methods has in the
past suffered from a lack of scholarly analysis, reflecting
perhaps the outlook of the ancient and medieval mathematicians
themselves, which placed it out of the realm of mathematics and
into the category of common sense, self-taught practice.
Ptolemy, for example, after the preliminary chapters of the
Almagest, states that he has completed the discussion of all the
mathematics required for the book without describing how any of
his numerous tables were computed, even though Glowatzki and
Gottsche' have demonstrated that Ptolemy did more extensive
calculation than he states on the chord table. This outlook
continued through the Islamic medieval period, with the result
that mathematical and astronomical tables, often fraught with
numerical inaccuracies, were presented in the zIjes as a fait
accompli. The study presented here has described some methods
to determine the numerical procedures used by Shams al-Din
al;Khalili. Future work in the same vein should help to uncover
the currently unknown numerical practices of scientists from a

variety of historical periods.

Even a cursory examination of the results presented here,
connected with some initial observations of other auxiliary

tables, shows a level of improvement from the tenth to the

'E. Glowatzki and H. Gottsche, Die Sehnentafel des Klaudios
Ptolemaios (Munich: Oldenbourg, 1976), pp. 60-71.
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fourteenth centuries. The sine tables of Habash al-Hasib from
the ninth century? and the mathematician Abl Nasr Mangir from
the tenth century,?® for example, are taken by simply dividing
each entry of Ptolemy's three sexagesimal digit chord table by
two and displaying four digits, with the result that the last
digit is always either 0 or 30. We have found that another
table in AbU Nasr's Table of Minutes, defined by

£,(¢) = sin e cos ¢ (where ¢ is the obliquity of the ecliptic)
was calculated by rounding Ptolemy's value of 2¢ to two
sexagesimal digits and using linear interpolation to obtain a
value for sin e from the chord table. The values in the table,
however, are displayed to four sexagesimal digits. This
produces an average of 2.6 digits in error. Also, these tables
(and most of the tables from this period) are quite small,
consisting of a few hundred entries at most. This is not
surpfising, since early indications show that they were computed
directly, entry-for-entry, without using timesaving techniques

like interpolation.

- Al-Khalili's tables, on the other hand, may not be as
accurate as the tables of AbU Nasr or Habash al-H3sib, since

they are given to only two sexagesimal digits, but the

*M.-T. Debarnot, "The Z7j of Habash al-H3sib: A Survey of MS
Istanbul Yeni Cam1 784/2", in Eds. D. A. King and G. Saliba,
From Deferent to Equant: A Volume of Studies in the History of
Science in the Ancient and Medieval Near East 1 in Honor of E. S.
Kenned T_nnals of the New York Academy of Sciences v. 500,
1987),

’See further C. Jensen, "Abl Nasr's Approach to Spherical
Trigonometry as Developed in His Treatise The Table of Minutes" '
Centaurus 16 (1971), pp. 1-19.
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techniques and parameters used show considerably more
sophistication. The tables contain an average of only 0.5
digits in error; in fact, about half of the entries are exact to
the two digits displayed. The trigonometric tables on which the
tables are based are almost sufficient to produce accurate
tabular values: the sine table consists of the correct sine
values rounded to two sexagesimal digits, and about 75% of the
tangent values are also correct to two digits. The methods that
we have discovered al-Khalili used to compute the tables
themselves exhibit a great deal of thought and foresight, since
they are both stable and easy to implement. The interpolation
scheme suggested for the g(¢,6) table, for instance, is
essentially the simplest possible method, but it nicely suits
the nature of the function as well. The formula used to
generate entries of the £(¢,60) table from corresponding values
of g(¢,6) is far from obvious, but it results in computations
even quicker than those required for the g(¢,68) table and
produces entries that are generally no less accurate than the
entries from which they were generated. Finally, the great care
taken in the application of the arc Cosine in the calculation of
G(x,y) shows that al-Khalilil had some idea of the instability
involved with this function. Clearly al-Khalill spent a
significant amount of effort in considering how to calculate all
three of his tables; yet, none of this work is recorded or even

mentioned.
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Al-Khalili's tables and others of his period display the
application of more sophisticated procedures than earlier works,
but when observed from a modern viewpoint they still contain
some rudimentary errors. The use of tangent values less
accurate than the number of digits desired in the tables,
especially considering that better tangent values must have been
available, is an oversight noticeable even to the untrained eye.
Even more curious is the fact that while al-Khalili calculated
the arc Cosine very carefully, and to at least three sexagesimal
digits, he used only two digit Cosine values to compute the
arguments for the arc Cosines, resulting in rather large errors
in certain portions of the G(x,y) table. So it appears that
while the art of numerical calculation was more highly developed
in al-Khal7li's tables than in those of Abu Nasr, it had not
moved beyond practical, behind-the-scenes operation to a more

systematic approach.

The above speculations should give some indication of the
usefulness of more advanced computational techniques in the
study of the history of mathematics. Until now, the only
published effort made to determine the numerical structure of
mathematical tables of historical interest is the work of

Glowatzki and Gdttsche,® which is somewhat limited in scope.?

“E. Glowatzki and H. Gottsche, Die Sehnentafel des Klaudios
Ptolemaios, pp. 60-71. Glowatzkl and Gottsche's main argument is
that recalculation of chord values according to a method
decribed in the Almagest requires at least five sexagesimal
digits to achieve the accuracy found in Ptolemy's chord table.

5G. J. Toomer, review of E. Glowatzki and H. Gdttsche, in
Centaurus 21 (1977), pp. 321-323,
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This thesis uncovers some information of interest on
al-Khalili's auxiliary tables but falls short of presenting a
full account of methods that could be used to find the numerical
structure of other tables. The use of more advanced statistical
tools would lead to more comprehensive methods, presenting the
opportunity to explore the evolution of numerical techniques in

the scientific works of medieval Islam and other cultures.
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APPENDIX A: SELECTED COLUMNS OF AL-KHALTLT'S AUXILIARY TABLES

The error representation system used in the tables below,
described fully in Sec. 2.4, is as follows:

error = text - r,(exact value)
_ R Sin 6 = [¢)
£(9,0) “Cos 7 for ¢ 1

6 £(¢,6) 6 f(9,6) 6 £(9,0)
1 |1 3 31130;54 61]152;29
2 [2; 6 32|31;48 62(52;:59
3 {3;: 8 33(32;41 63|53;28
4 411 34133;33 64|53;56
5 |5;:14 35(34;25 65(54;:23
6 [6;16 3613516 66154:;49
7 17:19 37136; 7 67]55;14
8 |8;21 38|36;56 [-1]]|68]55:38
9 19;23 39(37:46 691]56; 1
10{10;:25 40)38;34 70156;23
11111;27 41139;22 71156;:44
12]12;28 [-1]|42(40; 9 72157; 4
13[13;30 43]140:;55 [-1]]|73([57;23
14(14; 31 44141;41 74157; 41
15[115;:32 45142:;:26 75(57:;57 [-1]
16(16;32 46143:10 76|58:13 [-1]
17{17:32 [-1]]47(43:53 77(58:28
18(18;32 [-1]{48|44;35 [-1]|78|58;:;41 [-1]
19119:32 49145:17 79158;54
20120; 31 50]45;58 80i{59; 5 [-1]
21121:30 51146;38 81159;:16
22122;:29 52(47;17 8259;:;25 [-1]
23123;:27 53(47;55 [-1][83]59;33 [-1]
243124;24 54(48;32 [-1](84(59;40 [-1]
25(25:21 [-1]|55(49; 9 85(59;46 [-1]
26126;:18 56149;:45 8659:51 [-1]
27127;14 [-1]|57|50;19 [-1]]87|59;55 [-1]
28128;10 58150;53 88|59:58
29(29; 5 [-1]|59|51;26 89(60; 0
30130; O 60{51;58 90(60; 0 [-1]
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g(¢,6) = Sin GRTan [ for ¢ = 350

N — = 2 o o o 2 2 DO NI WN —
OWONOWOTE=WN—-O

MDD N
=W -

NN
~

w NN
o Ww o

g(¢,0) 6 gl(¢,6) 6 g(e¢,6)
0;44 31|21;40 [+2]|61]36;:45
1;28 32(22;17 [+1]]62137; 6
2:12 33[22;54 [+1](63(37;26
2:56 34123;:30 64(37;46
3;40 35124; 6 65(38; 5
4:;24 [+1] |36]124;41 [-1])]66(38;23
5: 8 [+1] [37(25;16 [-1]|67|38;40
5:52 [+1] [38]25;51 [-1]|68|38;57
6:35 [+1] |39(26;26 6939;13
7:18 40(27;: 0 70139;29
8: 1 41127333 [-1]171139;44 [+1]
8:44 42(28; 6 [-1]172139;58 [+1]
9:27 43128;39 73140; 11
10:10 44129;11 74({40;23
10353 [+1](45]|29;43 [+1]|75|40;35
11;35 46|30;14 [+1]]|76(40;46
12;17 47130;44 77(40;56
12:59 48131:14 [+1]]|78|41: 6
13;:41 49131;43 [+1]179141:15 [+1]
14:22 50(32;11 80[40;23 [+1]
15: 3 51132;38 [-1]|81]41;:30
15:44 52|33; 5 [-1]|82]|41:36
16:25 53(33;32 [-1]|83|41;:42
17: 5 54133:59 84|41;47
17;:45 55134:25 85(41;51
18:25 56{34;50 86|41;55
19; 4 57135;:;14 87141:58 [+1]
19;43 58|35;37 [-1]|88|41;59
20;22 59(36; 0 [-1]]|89|42; O
21; 1 [+1]]60([36;23 90(42; 1
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G(x,y) = arc Cos [E§§_§J for x = 40

y G(x,y) y G(x,y)

0 |48;10 [-1]}30]39;40

1 [48;10 [-1]]31]38;57

2 |48; 9 [-1]]32(38;10 [-1]
3 |48; 7 33|37;:21

4 [48; 4 34136;29 [+1]
5 |48; 0 35/35;32

6 [47;:54 36134;30

7 |47;48 37133;24 [-1]
8 |47;41 38(32;13

9 |47;33 39(30;56
10(47;25 [+1]]40]29;31
11(47;14 [+1]]41]27;57
12147; 2 42126;12 [-1]
13(46;49 [-1]]|43]24;:17
14146;35 [-1]]44{22; 5 [+1]
15(46;21 45(19;30 [+2]
16(46; 6 [+1]]|46(16;21 [+2]
17(45;49 [+1]|47{12; 9 [-1]
18(45;30 4814:56 [+1]
19145;10

20(44;49

21144;26

22|44; 2

23143;35 [-1]

24143; 8

25142;39

2642; 8 [+1]

27(41;34

28140;58

29140;20
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APPENDIX B: A SEXAGESIMAL DESK CALCULATOR PROGRAM

During the course of my research on al-Khallli's auxiliary
tables, I found it extremely useful to have access to a program
that emulates a desk calculator, but works ir a sexagesimal
rather than a decimal base. Included below is the core of the
program, written in pseudo-code. The user will find it easy to
modify the code below to any base and to suit virtually any
application,

The program stores numbers in fixed-point format, and relies
on machine arithmetic only for operations with integers. A
given number is stored as a vector with 13 integer elements.
The first digit is a sign indicator (0 for positive, 1 for
negative), the next six elements represent the integer portion
of the number, and the remaining six store the fractional part.
Thus x = -36,22;14,8 is stored as follows:

= (1,0,0,0,0,36,22,14,8,0,0,0,0)

The use of six digits before and after the sexagesimal point
should ensure sufficient accuracy for most purposes.

For the sake of brevity I have included only the routines
for addition, subtraction, and multiplication, as well as one
machine-dependent sine function for illustration. All unary
operations (functions of one variable, such as the sine or
square root) should be coded in the program according to the
generic example immediately following the sine evaluation
function. All binary operations may be included in the "Case"
statement near the end of the code labelled "Operation Entry
Mode".

The square bracket notation used in the code signifies
certain characters or sets of characters that the user must
specify to represent the given operation. In an interactive
context, the command

Input (char)
instructs the computer to wait until a character is received.
Finally, the three rightmost columns on the screen are reserved
to output the names of the operations performed, and are called
the operation column.

Program SixtyCalc

(* Variables: vector variables representing numbers
(* are represented by a vertical bar above the name.
(* X: current number being evaluated.

(* y: in binary operations, the first number entered.
(* m: the memory variable.

(* char: current character being evaluated.
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(* op: code number or string signifying the binary
(* to be used.
(* Initialization of Variables
X :=0, ¥y :=0, m =0, op := (nothing)
Input(char)
(* Operation Entry Mode

If char = (digit or [+/-] or [.]) then
y := X
goto number entry mode

If char = [Clear] then

X := 0, § := 0, op := (nothing)

write("CLR": operation column)
If char = [Clear Entry] then

X 1=y, y:=0

write("CE"- operation column)
If char = [Store in Memory] then

m := X

write("STO": operation column)

If char = [Recall Memory] then
I1f op # (nothing) then § := X
X :=m
write("RCL": operation column)
display(Xx)

If char = [Sine] then
z := decvalue(X)
f := sin(z)
X := sixtyval(z)
write("SIN": operation column)

display(x)
(* The statement below is a generic example of a monic
(* operation. The user may specify to requirements.
If char = [Monic operation] then

X := monic operation(Xx)
write("[Monic op]": operation column)
display(X)

If char = [a binary operation] then

op := (operation)
write(op: operation column)
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(* User~supplied binary operations may be included
(* in the Case statement below.

If char = [=] then

Case

op = add: Z := add(x,y)

op = mult: Z := mult(X,y)

op = (nothing): z := X
(* The following line is currently written for ease of
(* use in sums of series; e.g., "S5 + 6 = 3 =" will
(* produce the two values 11 and 14. The user should
(* alter this line according to preference.

y := X, X 1= 2
Input(char)
Goto beginning of Operation Entry Mode
Procedure display(X)

Move cursor one line down

write (X: main screen) (* JInclude punctuation.
End
(* Number Entry Mode
(* This code allows entry of sexagesimal digits using
(* the digits 0 through 9. In batch operation,
(* remove all write statements in this section.
(* currdig: The location (in X) of the sexagesimal
(* digit currently being entered.

If char # digit then goto Operation Entry Mode

'If currdig > 13 then
Input (char)
Goto beginning of Number Entry Mode

If digit > 5 then
val := digit

Else
val := digit * 10
Input(digit2)
val := val + digit2
(* Now t hat we have the sexagesimal digit, print the
(* val ue and update variables.

If currdig > 7 then (* Fractional part.
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write(val: main screen)

x(currdig) := val

currdig := currdig + 1
Else (* Integer part.

Dot = 3 to 7
x(t - 1) = x(t)
x(7) := val
write(integer digits: main screen)
Input(char)

Goto beginning of Number Entry Mode

Real function decvalue(X)

(* For use, along with sixtyval, in machine-dependent
(* routines required by the user. Use according to
(* the example given for the sine in Operation Entry Mode.
val := 0
Do t = 13 to 2 by -1
val := val + x(t) * e0(7-t)
If x(1) = 1 then val := -val
decvalue := val
End

Vector function sixtyval(z)

r :=0

If z < 0 then r(1) := 1
z := abs(z)

If z > 60 then

write("Overflow Error")
sixtyval := 0
Else
Dot = 5 to 6 by -1
r{(7 - t) := Int(z/(eotg)
z :=z -r(7 - t) *¥ 60
sixtyval := T
End

Vector function add(Xx,y)

(* This routine performs additions using machine arithmetic
(* only for addition of integers less than 60.
I1f x(1) = y(1) then (* Same sign: add absolute values.
z(1) = x(1)
carry := 0

Dot = 13 to 2 by -1
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z(t) := x(t) + y(t) + carry
carry := 0
If z(t) > 59 then

carry := 1

z(t) := z(t) - 60

If carry = 1 then write("Warning: Overflow")

add := 2z
Else (* Different signs: subtract the two numbers.
(* The following If statement allows us to assume t hat X
(* has at least as large absolute value as y.

I1f abs(§) > abs(X) then
add := add(%,y)

Else
z(1) = x(1)
carry := 0

Dot = 13 to 2 by -1
z(t) := x(t) - y(t) - carry
carry := 0
1f z(t) < 0 then
carry := 1
z(t) := z(t) + 60

If carry = 1 then write("Warning: Overflow")
add := 2z
End

Vector function subtract(y,X)
x(1) := 1 - x(1)
subtract := add(y,Xx)

Vector function mult(X,y)

(* This routine uses the Hindu and Arabic "gelosia” met hod
(* to multiply two numbers.

(* mat (1-12,1-24): used to store the two sexagesimal digit
(* products of pairs of single digits of the operands.

(* Set up the product matrix,

Dot =1 to 12
Do u=1+to 12
pdt := y(t + 1) * x(t + 1)
mat (t,2u-1) := Int(pdt/60)
mat (t,2u) := pdt - 60 * mat(t,2u-1)

(* Begin sum of products: first, diagonals that miss t he
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(*

upper row.

carry := 0

Do

Do

If

t = 13 to 8 by -1
z(t) := carry
Do u = 24 to (2t - 14) by -1
z(t) := z(t) + mat(t + 5 - Int(u/2),u)
carry := 0
If z(t) > 59 then
carry := Int(z(t)/60)
z(t) := z(t) - 60 * carry

Now continue to sum the products using diagonals that
reach the top row.

t =7 to 2 by -1
z(t) := carry
Do u =1 to (2t + 9)
z(t) := z(t) + mat(t + 5 - Int(u/2),u)
carry := 0
I1f z(t) > 59 then
carry := Int(z(t)/60)
z(t) := z(t) - 60 * carry

carry > 0 then write("Warning: Overflow")

z(1) := abs{x(1) - y(1)}
mult := Z
End
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