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Abstract 

We explore the relation between vertex- and edge-transitivity and arc-transitivity 

of various graphs. We exhibit several families of graphs whose vertex- and edge- 

transitivity imply arc- transitivity. In particular, we show that any vertex- and edge- 

transitive graph with twice a prime number of vertices is arc- transitive by simplifying 

the proof of a theorem by Cheng and Oxley, in which they classify all vertex- and 

edge-transitive graphs of order twice a prime. A graph which is vertex- and edge- 

transitive but not arc-transitive is said to be f-transitive. We present Bouwer's 

construction, which yields one f -transitive graph for each even degree greater than 

2, and exhibit several families of f -transitive metacirculants. In particular, we find 

a new family of f-transitive metacirculants with 4 blocks. 
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Chapter 1 

Introduction 

We begin with a set of definitions and known results from the theory of permutation 

groups. For any terms not defined here, the reader is referred to [19]. 

Let H be a permutation group acting on a finite set R. A set A G R is a fixed 

block of H (or is fixed setwise by H) if H(A) = A, where H(A) denotes the set 

{g(a) : g E H, a E A). The degree of H is the number of points in R which are not 

fixed by H. Similarly, the degree of a permutation g E H is the number of points 

in R which are not fixed by g. A permutation group is transitive on R if it has 

only the trivial fixed blocks 0 and R. A minimal fixed block of H other than 0 is 

called an orbit of H .  Thus any permutation group acts transitively on each of its 

orbits. It is easy to see that each point a E R lies in exactly one orbit of H ,  that 

is, H(a) .  Hence the orbits of H partition R. We thus have an equivalent definition 

of transitivity: a permutation group H is transitive on R if for any a ,  /3 E R there 

exists g E H such that g(cr) = p. 
Let S C R. The set Hs = { g  E H : g(a) = a for all a E S )  is called the 

stabilizer of the set of points S and it is a subgroup of H. We write Ha for Ht,) 

and Hap for H{,,p1. The following is a simple but very useful result. 

Theorem 1.0.1 (Orbit-Stabilizer Theorem), For any permutation group H act- 

ing on R and any a E $2, 

IHI = IHal . IH(4I.  



PROOF. Since H, is a subgroup of H ,  IHI = IH,I IH : Hal. Define a function 

a : H ( a )  + {gH, : g E H )  by a(P)  = gH, if g(a)  = p. Since g(a)  = h(a)  implies 

h-'g E Ha and hence gH, = hH,, a is well-defined. If a(P) = a(?), then for 

g, h E H such that g(a)  = ,f3 and h(a) = 7, gH, = hH,. Hence g(a) = h(a) and so 

,d = 7. This proves that a is a bijection. Therefore I H(a)l  = I H : H, I .  0 

It follows from Theorem 1.0.1 that for any orbit A of H, the length ]A/  of A is 

a divisor of the order of H .  

A permutation group H is called regular if it is transitive and if for each a E R, 

H, = 1. By the Orbit-Stabilizer Theorem, a transitive permutation group H is 

regular if and only if [HI = 101, that is, if and only if its order and degree are equal. 

Notice also that in a regular group H, for any a, ,B E fl there exists a unique g f H 

with g(a)  = P. 
A Frobenius group is a transitive permutation group of degree n such that the 

minimum of degrees of elements g # 1 is n - 1. In other words, a Frobenius group 

H is a transitive non-regular group such that Hap = 1 for all a, P E R, a # P. The 

following non-trivial result is due to Frobenius (see [19]). 

Theorem 1.0.2 In a Frobenius group of degree n, the elements of degree n together 

with the identity form a regular group. 

A set r 2 R is a block of the permutation group H if for any g E H, either 

g ( r )  = I? or g ( r )  n r = 0. The sets 0, a, and {a), for any a E 0, are the trivial 

blocks. A permutation group is primitive if it has no blocks other than the trivial 

ones; otherwise, it is imprimitive. It is easy to see that a primitive permutation 

group H # (1) is transitive. 

Proposition 1.0.3 The length of a block of a transitive permutation group H di- 

vides the degree of H .  

PROOF. Let I' be a block of a transitive permutation group H and let g E H. We 

show that g ( r )  is a block too. Take any h E H and let u = g-'hg. If h(g(I'))ng(I') # 



0, then g u ( r ) n g ( r )  # 0 and so u(I ')nr # 0. Since I? is a block, this implies u ( r )  = r. 
Thus h(g(I '))  = g ( r )  and so g ( r )  is a block. Since H  is transitive, { g ( r )  : g E H )  

is a partition of R into blocks of the same length. Thus II'( divides 101. 0 

We immediately have 

Corollary 1.0.4 A transitive permutation group of prime degree is primitive. 

A permutation group H is 2-transitive (or doubly transitive) if for any crl, cr2,  

pl, and p2 in R with crl # cr2 and pl # p2, there exists g E H such that g(a;) = p; 
for i = 1,2. It is easy to see that a transitive permutation group H  is 2-transitive 

on R if and only if Ha is transitive on R - cr for some a E R. It can be shown 

that every 2-transitive permutation group is primitive. The converse is not true. 

However, Liebeck and Sax1 [9] have proved the following. 

Theorem 1.0.5 Let p be a prime. A primitive permutation group of degree 2p is 

doubly transitive provided that p # 5.  The only primitive groups of degree 10 which 

are not doubly transitive are the symmetric group S5 and the alternating group A5 

acting on the set of 2-element subsets of a 5-element set. 

This result will be a crucial point in the proof of Theorem 2.1.7. In the same 

proof, we shall be heavily using the next result due to Burnside (see [14], p. 53)) 

which gives a nice description of transitive permutation groups of prime degree in 

terms of affine linear transformations of 2,. 

Theorem 1.0.6 Let H  be a transitive permutation group acting on a p-element set 

R, where p is a prime. Then either H  is doubly transitive or we can identify R with 

Zp such that 



Now let H be a transitive but not doubly transitive permutation group acting 

on R, and let a E R. Then Ha is not transitive on R - cr. Let A R - cr be an 

orbit of H,. Define A' by 

A' = {g(cr) : g E H such that a E g(A)). 

It can be shown that A' is also an orbit of Ha, that (A')' = A, and that [A'[ = 1 A 1 .  
The orbits A and A' are called paired orbits of Ha. 

The following result together with Theorem 1.0.2 will be used in proving Theo- 

rem 2.1.10 (see [19]). 

Theorem 1.0.7 Let H be a primitive but not doubly transitive permutation group. 

If Ha has an orbit A with length 2, then H is a Frobenius group and it contains a 

regular normal subgroup of index 2. 

We continue with some graph-theoretic preliminaries. Any terms not defined 

here can be found in [4]. 

The complete graph on n vertices, the n-cycle, and the path with n vertices will 

be denoted by K,, C,, and P,, respectively. K,,, denotes the complete bipartite 

graph with vertex classes of sizes m and n, respectively. The disjoint union of the 

graphs GI and Gz is denoted by GI + Gz. Gc is the complement of the graph G and 

N ( x )  is the set of neighbours of the vertex x in the given graph. K: is called the 

edgeless graph on n vertices. Adjacency in the given graph is denoted by -. 
Let G = (V, E )  be a graph with vertex set V and edge set E. The set of arcs of 

G is A(G) = {(u, v) : uv E E). G is said to be vertex-transitive, edge-transitive, and 

arc-transitive (or 1-transitive) if its automorphism group Aut(G) acts transitively 

on the vertices, edges, and arcs of G, respectively. Clearly, arc-transitivity implies 

edge-transitivity. However, there exist edge-transitive graphs which are not arc- 

transitive, vertex-transitive graphs which are not edge-transitive and edge-transitive 

graphs which are not vertex-transitive. The objective of this thesis is to explore the 

relation between vertex- and edge-transitivity and arc-transitivity of various graphs. 

In Chapter 2 we exhibit several families of graphs whose vertex- and edge-transitivity 



imply arc-transitivity and in the much longer Chapter 3 we talk about graphs which 

are vertex- and edge-transitive but not arc-transitive. Such graphs are called i- 
transitive or half-transitive. The study of this topic started with Tutte [16] in 1966 

and Bouwer [5] in 1970. 

Let r be a group and let A E r be such that 1 # A = A-', where A-' = (6-I : 

S E A). The Cayley graph K ( r ,  A) has vertex set r and edge set {x (x6) : x E r, S E 

A). A circulant graph C ( n ;  S )  is a graph with vertex set {uO, ~ 1 , .  . . , u,-1) and u; 

adjacent to u j  if and only if j - i E S ,  where S C Z,, and S = -S = { ( - s )  mod n : 

s E S). In other words, a circulant graph is a Cayley graph on a cyclic group. The 

following result is well-known. 

Theorem 1.0.8 A graph with a prime number of vertices is vertex-transitive if and 

only if it is a circulant graph. 

PROOF. It is obvious that a circulant graph is vertex-transitive. Now let G be 

a vertex-transitive graph of order p, where p is a prime. By the Orbit-Stabilizer 

Theorem, IAut(G)I is divisible by p. Hence Aut(G) contains an element p of order 

p. Since p is acting on p vertices, it must be a pcycle (uo ul . . . It is then 

easy to see that we can determine the symbol S of G using p. 0 

The following can be shown by elementary group theory (see [7], p. 49). 

Proposition 1.0.9 Every group of order p2, where p is a prime, is abelian. 

This statement, together with the next result due to MaruSiE [ll], will be used 

in proving Corollary 2.1.5. 

Proposition 1.0.10 Every vertex-transitive graph of order p2, where p is a prime, 

is a Cayley graph on a group of order p2. 

We conclude with several observations of a number-theoretic nature. 



For any positive integer n 2 2, Zn is a commutative ring with identity 1. The 

set Z,* of units of Zn is a multiplicative group of order p(n),  where p is the Eu- 
Q1 Q2 Q k ler p-function. If n = p, p2 . . . pk , where pl, p2,. . . ,pk are distinct primes and 

a l ,  a2, . . . , crk are positive integers, then 

The following can be said about the structure of Z,* (see [3]). 

Theorem 1.0.11 The multiplicative group Z,* is cyclic if and only if n = 2, n = 4, 

n is an odd prime power, or  n is twice an odd prime power. If n = nln2 where nl 

and n2 are relatively prime, then Z,* is isomorphic to the direct product Zi1 x Z,*2. 

And finally, a famous theorem of Dirichlet's (again, see [3]). 

Theorem 1.0.12 An arithmetic progression of numbers of the form ak+  b contains 

infinitely many primes whenever a # 0 and gcd(a, b) = 1. 



Chapter 2 

When vertex- and 
edge-t ransit ivity imply 
arc4 ransit ivity 

2.1 Graphs whose vertex- and edge-transitivity 
imply arc-transitivity 

The following lemma will be used frequently to establish the arc-transitivity of 

various graphs. 

Lemma 2.1.1 Let G be a vertex-transitive graph having a vertex x such that for 

any y, y' E N(x)  there exists an automorphism of G that fixes x and maps y to y'. 

Then G is arc-transitive. 

PROOF. Take any two edges uv, u'v' in G. Since G is vertex-transitive, there exist 

g, h E Aut(G) such that g(u) = x and h(ul) = x. Let y = g(v) and y' = h(vl). Let 

f E Aut(G) be such that f (x) = x and f (y) = y'. Such an automorphism exists 

by the assumption of the lemma. We now have h-' f g(u) = u' and h-' f g(v) = v'. 

Since uv and u'v' were arbitrary, G is arc-transitive. 0 

The first result concerning graphs whose vertex- and edge-t ransitivity force the 

graph to be arc-transitive is due to Tutte [16]. The combinatorial proof we present 

here was given by Cheng and Oxley [6]. 



Proposition 2.1.2 Let G be a vertex- and edge-transitive graph of degree r where 

r is odd. Then G is arc-transitive. 

PROOF. Evidently, if G has an automorphism that interchanges the endpoints of 

an edge, then, since G is edge-transitive, G is arc-transitive. Assume that G is not 

arc-transitive and fix an edge e of G. Assign a direction to e .  Then, for each edge 

f distinct from el there is an automorphism mapping e to f and hence inducing a 

direction on f .  If there are two such automorphisms a1 and a 2  inducing different 

directions on f ,  then ala,' fixes the edge f and interchanges its endpoints - a 

contradiction. It follows that we obtain a directed graph G such that Aut(G) C 
Aut (G). Since G is vertex-transitive, the indegrees of all vertices of G are the same. 

Likewise, all the outdegrees are the same. But since the sum of the indegrees equals 

the sum of the outdegrees, each vertex has its indegree and outdegree equal. Thus 

G has even degree - a contradiction. 

The next result appears in [2] and has several consequences. The assertions of 

Corollaries 2.1.4 and 2.1.5 are mentioned in [2] whereas Corollary 2.1.6 is new. 

Proposition 2.1.3 Every vertex- and edge-transitive Cayley graph on an abelian 

group is also arc-transitive. 

PROOF. Let G = K ( r ,  A) be an edge-transitive Cayley graph on an abelian group 

r. Define a : I' -+ I? by a(x)  = x-l for all x E r. Then, since r is abelian and 

since A-' = A, a maps any edge {x, 26) onto the edge {x-', x-lb-l) so that a is 

an automorphism of G. For any g E I?, let pg be the automorphism of G defined by 

pg (x) = gx. Then pba interchanges the endpoints of the edge {1,6). Consequently, 

G is arc-transitive. 0 

Corollary 2.1.4 Every vertex- and edge-transitzve graph of order p, where p is a 

prime, is arc-transitive. 



PROOF. Let G be a vertex- and edge-transitive graph on a prime number of vertices. 

Then, by Theorem 1.0.8, G is a circulant graph, that is, a Cayley graph on a cyclic, 

and hence abelian, group. The result now follows by Proposition 2.1.3. 0 

Corollary 2.1.5 Every vertex- and edge-transitive graph of order p2, where p is a 

prime, is arc-transitive. 

PROOF. This follows immediately from Propositions 1.0.10, 1.0.9, and 2.1.3. 

Corollary 2.1.6 Every edge-transitive Cayley graph on a dihedral group is arc- 

transitive. 

PROOF. Let G = K(r, A) be an edge-transitive Cayley graph on a dihedral group 

r. If A contains an element S of order 2, then ps(x) = Sx interchanges the end- 

points of the edge (1,S) and so G is arc-transitive. Otherwise, G consists of two 

disjoint isomorphic subgraphs which are Cayley graphs on a cyclic group. Hence by 

Proposition 2.1.3, G is arc-transitive. 0 

The following result has been proved by Cheng and Oxley in [6]. The proof is 

rather long and will be worked out in full detail in section 2.2. 

Theorem 2.1.7 Every vertex- and edge-transitive graph of order 2p, where p is a 

prime, is arc-transitive. 

In [2], Alspach, MarusiE, and Nowitz have shown the following. 

Theorem 2.1.8 Every vertex- and edge-transitive graph of order less than 27 is 

arc-transitive. 

PROOF. If there exists a $-transitive graph of order n < 27, then by Corollaries 2.1.4 

and 2.1.5, and by Theorem 2.1.7, n E {8,12,15,16,18,20,21,24). McKay [12] has 

published a list of all vertex-transitive graphs with 19 or fewer vertices. He also 



included information about the orders of vertex-stabilizers and automorphisms that 

interchange the endvertices of an edge. This additional information eliminates all 

but thirteen graphs, none of which is edge-transitive. Vertex-transitive graphs with 

20 and 21 vertices, amongst others, have been catalogued by McKay and Royle [13]. 

None of them are $-transitive. Finally, Praeger and Royle [15] have shown that 

every vertex- and edge-transitive graph with 24 vertices is also arc-transitive. Hence 

there is no $-transitive graph of order less than 27. 0 

The last result we present in this section is due to Yu [18]. But first we need a 

lemma. 

Lemma 2.1.9 Let G be a $-transitive graph. Then for any u E V(G) and any 

v E N(u), N(u) is the disjoint union of A, and A:, where A, is the orbit of 

Aut(G), containing v, and A: is the paired orbit of Aut(G),. 

PROOF. Since G is not arc-transitive, by Lemma 2.1.1, Avt(G), is not transitive on 

N(u).  Thus A, # N(u). Obviously, A, G N(u) and, by the definition of a paired 

orbit (see page 4), A: C N(u). For any x E N(u) there exists g E Aut(G) such that 

g({u,v)) = {u,x). If g(u) = u, then g(v) = x so that x E A,. If g(u) = x, then 

g(v) = u so that g(u) = x E A:. Hence N(u) = A, U A',. Suppose that A, = A:. 

Choose f E Aut(G) with f (v) = u. Since A, = A:, f (u) E A,. Since v E A,, there 

exists h E Aut(G), such that h(f(u)) = v. But then h f interchanges u and v, a 

contradiction. Hence N(u) is the disjoint union of A, and A:. 0 

Theorem 2.1.10 Let G be a vertex- and edge-transitive graph of degree 4. If 
Aut(G) is primitive on V(G), then G is arc-transitive. 

PROOF. Suppose that G is a $-transitive graph of degree 4 such that I? = Aut(G) is 

primitive on V(G). By Lemma 2.1.9, for any u E- V(G) and any v E N(u), N(u) is 

the disjoint union of A, and A',. Since IN(u)l = 4 and since paired orbits have the 



same length, [A, 1 = 2 so that r, has an orbit of length 2. Then by Theorem 1 .O.7, 

r is a Frobenius group. Since 

and since II',,I = 1 for a Frobenius group, 

where n = IV(G)I. Hence lrul = 2 and so there are exactly two automorphisms 

of G that fix u; one of them is the identity and the other has order 2. Since every 

element of a Frobenius group (other than the identity) has degree at least n - 1, 

any g E r - (1) that fixes a point has the cyclic decomposition 

where n = 2k + 1. If g and h are distinct automorphisms of this form, then they have 

no transpositions in common since otherwise gh # 1 would fix two vertices. Hence 

every transposition occurs at most once in the cyclic decompositions of the elements 

of degree n - 1. By Theorems 1.0.2 and 1.0.7, the elements of degree n together 

with the identity form a regular normal subgroup of index 2 in I?. Hence I' contains 

p = n automorphisms of degree n - 1. Thus the number of distinct transpositions 

contained in automorphisms of degree n - 1 is . n = (';). Therefore, for any 

two vertices u and v, we can find an automorphism that interchanges u and v, 

contradicting the assumption that G is +-transitive. 0 

2.2 Vertex- and edge-transitive graphs of order 
twice a prime 

In [6], Cheng and Oxley have characterized all vertex- and edge-transitive graphs of 

order twice a prime. As a by-product, their characterization shows that these graphs 

are all arc-transitive. The aim of this section is to prove only this by-product. We 



shall therefore follow the argument of [6] taking short cuts whenever possible. Thus 

we shall avoid the use of the characterization of finite simple groups. Lemma 2.2.4, 

however, is new; its proof is based on the proof of Lemma 6.1 and a part of the 

proof of Theorem 6.2 in [lo]. This lemma could also be used in the proof of Cheng 

and Oxley to avoid introducing group characters. 

Throughout this section let G be a vertex- and edge-transitive graph of order 

2p, where p is a prime. Because of Proposition 2.1.2, we may assume G has even 

degree. 

When p = 2, G is either the edgeless graph (K4)' or C4 and both are arc- 

transitive. The regular graphs of order 6 and of even degree are the edgeless graph 

(K6)', 2K3, C6, and (3K2)'. They are all arc-transitive. We may therefore assume 

that p 2 5. 

By Theorem 1.0.5, either Aut(G) is doubly transitive, Aut(G) is imprimitive, 

or Aut(G) is primitive but not doubly transitive and p = 5. In the first case, G is 

either the edgeless graph (K2,)' or the complete graph K2, and hence arc-transitive. 

In the last case we recall that the only primitive groups of degree 10 which are not 

doubly transitive are S5 and A5 acting on the set V = {{a, b) : a, b E & , a  # b). 

Let G be a vertex- and edge-transitive graph with V(G) = V whose automorphism 

group is either S5 or A5 acting on V. Since G is edge-transitive, for every pair of 

adjacent vertices {a, b) and {c, d), [{a, b) n {c, d)I is the same. If this number is 0, 

then G is the Petersen graph; if it is 1, G is the complement of the Petersen graph. 

Both graphs are well known to be arc-transitive. 

For the rest of the proof we shall assume that Aut(G) is imprimitive. Thus 

Aut(G) has a block containing p vertices or a block containing 2 vertices. We treat 

these two cases separately. The next two lemmas, however, will be used in both 

cases. 

Lemma 2.2.1 The graph G has the property that either no edge joins two vertices 

in diferent blocks of Aut(G), or no edge joins two vertices in the same block of 

Aut (G) . 



PROOF. This follows immediately from the definition of a block using the fact that 

G is edge-transitive. 0 

Lemma 2.2.2 Suppose that the graph G is bipartite having as its vertex classes 

two disjoint copies, {O,l,. . . , p  - 1) and {O', 1', . . . , (p - I)'), of 2,. If G has an 

automorphism T which, for all i E Z,, maps i to i + 1 and i' to (i + I)', then G is 

arc-transitive. 

PROOF. Consider the permutation p of V(G) which, for all i E Z,, maps i to 

(-i)' and i' to -i. If ij ' E E(G), then so is p(ijl) since p(ijl) = (-i)'(-j) = 
. . 

T-'-J(jli). Thus p is an automorphism of G. By Lemma 2.1.1, since G is vertex- 

transitive, it is enough to show that for any elements i' and j' of N(O), there is an 

automorphism fixing 0 and mapping i' to j'. Since G is edge-transitive, it certainly 

has an automorphism p that maps (0, if) to (0, j'). If p fixes 0, p is the required 

automorphism. We therefore suppose that p maps 0 to j' and i' to 0. But then the 

automorphism p - j p  has the desired effect. 0 

The following lemma settles the case when Aut(G) has a block of size p. 

Lemma 2.2.3 If G is a vertex- and edge-transitive graph of order 2p, where p is 

an odd prime, such that Aut(G) has a block of size p, then G is arc-transitive. 

PROOF. Let A be a block of Aut(G) of size p. Then V(G) - A is also a block of 

Aut(G) and we denote it by A'. 

Suppose that G has an edge that joins two vertices in A or joins two vertices 

in A'. Then by Lemma 2.2.1, there is no edge with one endpoint in A and the 

other endpoint in A' so that G is disconnected. The induced subgraphs G[A] and 

GIA1] are vertex- and edge-transitive graphs on a prime number of vertices, hence, 

by Corollary 2.1.4, they are arc-transit ive. Consequently, G is arc-transitive. 

We may therefore assume that G is a bipartite graph having A and A' as its 

vertex classes. If G is the complete bipartite graph Kp,p, then G is arc-transitive. 

Hence we may assume that this is not the case. 



Since G is vertex-transitive, by the Orbit-Stabilizer Theorem, IAut(G)I is divis- 

ible by p. Hence G has an automorphism n of order p. As p is odd, n(A) = A and 

n(A1) = A'. Denote nl = nlA and n2 = Suppose that w2 = 1. Then nl is a 

pcycle. From this it follows that every vertex in A' is adjacent to every vertex in 

A so that G is isomorphic to K,,, - a contradiction. Similarly, we may assume that 

nl # 1. 

Thus n = nln2 where nl and nz are disjoint pcycles. Evidently, A and A' may 

be identified with distinct copies, (0, 1,. . . , p  - 1) and {Of, 1', . . . , (p - I)'), of 2,. 

Moreover, these identifications can be made in such a way that the automorphism 

n found above maps i to i + 1 and it to (i + 1)' for all i E 2,. It now follows from 

Lemma 2.2.2 that G is arc-transitive. 0 

For the rest of the section we assume that G is a vertex- and edge-transitive 

graph of order 2p such that Aut(G) has a block A. of size 2 but no blocks of size 

p. As Aut(G) is transitive on V(G), by the Orbit-Stabilizer Theorem, there is 

an automorphism T of G of order p. Moreover, Ao, T(Ao), T~(Ao) ,  . . . , ( Ao) 
are distinct blocks of Aut(G). For convenience, we shall denote these blocks by 

Ao, A1,. . . , where, for i E Z,, A; = {i,it) and T maps i to i + 1 and i' to 

(i + 1)'. As before, we denote the sets (0, 1, . . . , p  - 1) and {Of, 1', . . . , (p - 1)') by 

A and A', respectively. 

We first note that, by Lemma 2.2.1, if G has an edge ii' for some i E Z,, then G 

is isomorphic to pK2 and hence G is arc-transitive. We may therefore assume that, 

for all i E Z,, ii' is not an edge of G. 

Let c be the graph induced by G on the blocks of Aut(G). Thus c has vertex- 

set {; : i E 2,) and edge-set {;; : G has an edge between blocks A; and Aj). If 

8 E Aut(G), then 8 induces an automorphism 8 on c. Thus the map from Aut(G) 

to Aut(c)  that sends 9 to 8 is a group homomorphism. Let Aut(G) be the image 

of Aut(G) under this homomorphism. Evidently -Aut(G) acts transitively on both 

v(G) and ~ ( c )  and so c is a vertex- and edge-transitive graph of order p. By 

Corollary 2.1.4, ~ u t ( c )  acts transitively on the arcs of as well. 



Next we consider the number e(A;, Aj) of edges of G between the blocks A; and 

Aj  of Aut(G). Clearly 0 5 e(A;, Aj) < 4. Since G is edge-transitive, for all pairs of 

adjacent blocks A; and Aj, e(Ai, Aj) takes the same value which we denote by e(G). 

For any pair A; and Aj of blocks of Aut(G), the subgraph G[A;, Aj] induced by 

A; U Aj is bipartite and edge-transitive. No such graph has exactly 3 edges so that 

e(G) # 3. 
If e(G) = 4, then G[A;, Aj] % K2,2 for each pair of adjacent blocks A; and Aj. 

Consequently, each automorphism of c is induced by an automorphism of G. Since 
- 
G is arc-transitive, it follows that G is too. 

From now on we may assume that either e(G) = 1 or e(G) = 2. Now Aut(G) 

acts transitively on v(G), thus it may in fact act doubly transitively on ~ ( c ) .  The 

next lemma shows that this does not happen. 

Lemma 2.2.4 Let G be a vertex- and edge-transitive graph of order 2p, where p is 

an odd prime. Suppose Aut(G) has a block of size 2 but no block of size p, and that 

e(G) E {1,2), where e(G) denotes the number of edges between two adjacent blocks 

of size 2 in G. Then Aut(G) does not act doubly transitively on ~ ( c ) .  

Figure 2.1: Lemma 2.2.4, Case 1 and Case 2 

PROOF. Let G satisfy the assumptions of the lemma and suppose that Aut(G) is 

doubly transitive. Then c is a complete graph and the subgraphs G[A;, Aj] of G, 



for any two blocks A; and Aj, are all isomorphic. According to what the graphs 

G[A;, Aj] are, there are three possibilities. We will show that none of them actually 

occurs. 

Case 1.  G[Ai,Aj] 2 P3+ K1 for all i , j  E Z,, i # j .  

Since Aut(G) is doubly transitive, there exists 8 E Aut(G) that interchanges the 

blocks A, and Aj, contradicting the structure of the graph G[A;, Aj]. 

Case 2. G[A;, Aj] Z 2K2 for all i, j E Z,, i # j. 
Define the sets S = {k E Z,* : k - 0) and T = {k E Z,* : k' N 0). Notice that, 

because of the structure of the graphs G[A;, Aj], k - 0 if and only if k' - 0' and 

kt - 0 if and only if k - 0'. Also, using the automorphism T of G, we can see that 

i N i + r if and only if r E S, i' - (i + T)' if and only if T E S,  i - (i + T)' if and only 

if r E T,  and i' - i + r if and only if T E T. The sets S and T have the following 

properties: S = -S, T = -T, S n T = 0, and S U T = 2,' since c is complete. For 

r E Z,', let S + r denote the set {k + r : k E S). We define T + r similarly. 

It follows from the properties listed above that 

By the definitions of the sets S and T ,  

i + k E N(i) n N(i + r )  if and only if k E S r l  ( S  + r )  

and 

(i + k)' E N(i) n N(i + r) if and only if k E T n (T + r) .  

For any i E Z,, r E Z,* we thus have 

so that IN(i) n N(i + r)l is odd for any i E Z,, r E Z,*. 



Similarly, 

i + k E N(i1) n N(i + r )  if and only if k E T n ( S  + r )  

and 

(i + k)' E N(i1) n N(i + r )  if and only if k E S f l  ( T  + r) ,  

which implies 

so that I N(i') n N(i  + r )  1 is even for any i E Z,, r E 2,'. 

Now, if A and A' are not blocks of Aut(G), then there exist 8 E Aut(G), i, j, k E 

A and I' E A' such that 8(i) = j and 8(k) = P .  But then we must have IN(i) n 
N(k)l = I N ( j )  n N(lf)l, which is impossible since I N(i) n N(k)l is odd and I N ( j )  n 
N(1')I is even. Hence Aut(G) has a block of size p, contradicting the assumption of 

the Lemma. 

Figure 2.2: Lemma 2.2.4, Case 3 

Case 3. G[A;, Aj] E! K2 + 2 K 1  for all i, j E Z,, i # j. 
Let H be the graph with V(H) = V(G) such that f ir  all i ,  j E Z,, i # j, the subgraph 

H[Ai, Aj] of H induced by A, U Aj is the bipartite complement of G[Ai, Aj]. Thus 

H[A;, Ail E! P4. Notice, also, that Aut(G) Aut(H). 



Let (A;, Aj) and (Ak, Al) be two pairs of distinct 2-blocks of Aut(G). Since 

Aut(G) is doubly transitive on the vertices of C = R, we can map an end-edge 

of the path H[Ai, Aj] to any of the two end-edges of the path H[Ak, All, but it is 

impossible to map it to the central edge of the path H[Ak, All. Hence there exists an 

edge orbit Q c E(H) of Aut(H) such that for the subgraph H[Q] of H induced by 

Q, H[Q] n H[A;, Aj] 2 2K2 for any i, j E Z,, i # j .  Now, to the graph H[Q] we can 

apply the procedure of Case 2 to show that Aut(H[Q]) has blocks of size p. Since 

Aut(G) 2 Aut(H) Aut(H[Q]), Aut(G) has blocks of size p - a contradiction. 

This completes the proof of the lemma. 0 

To complete the proof of Theorem 2.1.7 for Aut(G) having blocks of size 2 and 

no block of size p, we may now assume that Aut(G) is not doubly transitive. As 

before, e(G) E {1,2}. By Theorem 1.0.6, we may identify v(C) with Z,, so that 

One important consequence of (2.1) that we shall use frequently is that a member of 

Aut(G) that fixes two distinct vertices in V(C) must be the identity. Since by (2.1), 

the mapping z I+ x + 1 is in Aut(G), we may assume that the automorphism T of 

G acts as previously defined, that is, for all i E Z,, ~ ( i )  = i + 1 and ~ ( i ' )  = (i + 1)'. 

The next lemma shows that no vertex of G is joined to two vertices in the same 

block. 

Lemma 2.2.5 If i and j are in Z,, then at least one of i j  and ij' is not in E(G) 

and at least one of i l j  and ilj' is not in E(G). 

PROOF. Since T E Aut(G), it suffices to show that if a E Z,', then Oa and Oa' 

cannot both be in E(G). Assume the contrary. Then, by applying T" to Oa and 

Oal, we get that both a(2a) and a(2a)' are edges. Moreover, since e(G) 5 2, neither 

a'(2a) nor a'(2a)' is in E(G). Also, neither O'a nor O'a' is in E(G). Now G has an 

automorphism 8 that maps (0, a} to (0, a'}. Hence either 

(1) 8(0) = 0 and B(a) = a', or 



(2) d(0) = a' and O(a) = 0. 

In the first case, 8 fixes both and 7i and hence is the identity. Thus 8 fixes 
- 
2a. Since d(a) = a', d(a1) = a and so d({a, 2a, (2a)')) = {a', 2a, ( 2 ~ ) ' ) .  However, 

G[{at ,2a, (2a)')l is an edgeless graph, while G[{a, 2a, (2a)')l is not - a contradiction. 

In the second case, d(0') = a and d(a' ) = 0'. Thus d( (0, a'}) = {Of, a'}. Since 

Oaf E E(G), we should have O'a' E E(G) - a contradiction. 0 

On combining the last lemma with the following result we get that no vertex of 

G is joined to vertices in both A and A', where we recall that A = {0,1,. . . , p - 1) 

and A' = {Of, 1', . . . , (p - 1)'). 

Lemma 2.2.6 If i, j, and k are distinct elements of Z,, then at least one of ki and 

k j '  is not in E(G), and at least one of k'i and k'j' is not in E(G). 

PROOF. It suffices to prove the first assertion. Assume that Zp does contain distinct 

elements i, j, and k such that both ki and kj' are in E(G). As the automorphism 

T - ~  maps k to 0, we lose no generality in assuming that k = 0. Then, as G is edge- 

transitive, there is an autornorphism d of G such that d({0, i))  = (0, j'). Hence 

either 

(1) d(0) = 0 and d(i) = j', or 

(2) d(0) = j' and d(2) = 0. 

Consider the first case. As Aut(G) c {ax + b : a E Z,', b E Z,), there exist a E 2,' 

and b E Zp such that B(z) = ax + b for all x E 2,. Now 8(0) = 0 and 8(;) = 7,  
- - 

so g(5) = ji-lx for all x E 2,. In particular, d(t i) = for all t in Z. Thus 

d(t2) E {tj, (tj)') and we show next that, for all non-negative integers t ,  

if t is even 
q t 2 )  = { (t;y if t is odd. 

We prove (2.2) by induction. It is certainly true if  t is 0 or 1. Suppose that (2.2) 

holds for all integers not exceeding t. We also assume initially that t is odd. We want 



to prove that, in that case, 8((t + 1)i) = ( t  + 1 ) j .  If not, then 8((t + 1)i) = ( ( t  + 1) j ) '  

and so 

T - ~ ~ ~ T ~ ' ( { o ,  i } )  = ~ - ~ j 8 ( { t i ,  ( t  + l ) i } )  = T-tj({( t j ) ' ,  ( ( t  + l ) j ) ' } )  = {O ' ,  j ' } .  

Since Oi E E(G),  O'j' E E(G). But Oj '  is also in E(G),  and we have a contradiction 

to the previous lemma. 

If t  is even and if 8((t + 1)i) = ( t  + 1 )  j ,  then 

T - ~ ~ ~ T ~ ~ ( { o ,  i } )  = ~-"je({ti, (t  + l ) i } )  = ~ - ~ j ( { t j ,  ( t  + l ) j } )  = (0,  j } .  

Since Oi E E(G),  we must have O j  E E(G). But we also have Oj' E E(G), contra- 

dicting Lemma 2.2.5. Hence, if t  is even, 8((t + 1)i) = ( ( t  + l ) j ) ' ,  and by induction, 

(2.2)  holds. Thus, as p is odd, 8(pi) = ( p j ) ' ,  that is, 8(0) = 0' - a contradiction. 

In the second case, we let a = T - ~ O .  Then a(O) = 0' and a( i )  = - j .  Thus 
- - 
o(0) = a and F ( i )  = so that, by (2.1) ,  we have a(.) = -ji-lx. Hence a@) = -tj 

for all t  in 2. Thus a(t i)  E {-tj ,  (-tj) '},  and we show that, for all non-negative 

integers t ,  

if t  is even 
a(t i)  = 

if t  is odd. (2.3) 

This statement is true for t  = 0 and t  = 1. Suppose (2.3) holds for all positive 

integers not exceeding t .  If t  is odd and a((t  + 1)i) = -(t + l ) j ,  then 

so that O j  E E(G). But, by Lemma 2.2.5, this contradicts the assumption that 

Oj '  E E(G). Hence a((t  + 1)i) = (-(t  + 1) j ) ' .  

If t  is even and if a((t  + 1)i) = (-(t  + l ) j ) ' ,  then 

T ( ~ + ~ ) ~ u T ~ ~ ( { o ,  i } )  = dt+l)ja({ti, ( t  + l ) i } )  = dt+lP({(-tj)', (-(t  + I ) j ) ' } )  = { j ' ,  0') 

so that O'j' E E(G),  contradicting Oj'  E E(G). Hence a(( t  + 1)i) = -(t + l ) j  if t  is 

even. 



Therefore, by induction, (2.3) holds. But then, as in the first case, a(0) = 

a(pi) = -pj = 0, a contradiction. 

This completes the proof. 0 

We now establish that every edge of G must join a vertex in A to a vertex in A'. 

Lemma 2.2.7 Both G[A] and GIA1] are edgeless graphs. 

PROOF. Suppose that i j  E E(G) for some i ,  j E Z,, i # j .  Then r-'(ij) E E(G), 

that is, O(j - i) E E(G). If Ok' E E(G) for some k E Z,, then we have a contradiction 

by one of the Lemmas 2.2.5 and 2.2.6. Hence N(0) c A, and so, for all m E Z,, 

Thus G has no edge joining A and A'. But then, for all i, A; is not a block of Aut(G) 

- a contradiction. 

Hence G[A] is an edgeless graph and, by symmetry, so is GIA1]. 0 

Now, by Lemma 2.2.7, G is bipartite with A and A' as its vertex classes. But 

then A and A' are blocks of Aut(G), contradicting the assumption that Aut(G) has 

no blocks of size p. 

This completes the proof of Theorem 2.1.7. 



Chapter 3 

Half-t ransit ive graphs 

3.1 Bouwer's family of $-transitive graphs 

In [16], where he proved that every vertex- and edge-transitive graph of odd degree 

is arc-transitive (see Proposition 2.1.2), Tutte stated that it was not known whether 

this extends to vertex- and edge-transitive graphs of even degree. This question was 

first answered in the negative by Bouwer [5] .  In fact, Bouwer was able to  prove the 

following. 

Theorem 3.1.1 For each integer N 2 2, there exists a $-transitive graph of degree 

2N.  

We present Bouwer's proof of Theorem 3.1.1 in this section. 

He starts by constructing a wider class of graphs. Let N ,  m, and n be integers 

greater than 1 such that 

2" = 1 (mod n).  (3.1) 

Let the graph X(N,  m, n) have the vertex set V = Zm x (z.)~-' and let the vertices 

a = (i, a2, a3, . . . , aN) and ,d = (i + 1, b2, b3, . . . , bN) be adjacent whenever either 

(1) b, = a, for r = 2,3,.  . . , N,  or 

( 2 )  there exists a unique k E {2,3,. . . , N )  such that bk # ak; for this k, bk = 

ak + 2'. 



(Note that the operations are always carried out in the appropriate ring, that is, 

either Zm or Zn.) The edge ap  is called of type k, if (2) holds; otherwise, ap  is of 

type 1. Since ak + 2' = ak for i E Zm would imply 2" 0 (mod n), contradicting 

(3.1), the types of the edges are well-defined. We note that for m > 3, the graph 

X(N,m,  n) is regular of degree 2N, each vertex being incident with exactly two 

edges of each of the N types. 

Proposition 3.1.2 The graph X(N, m, n) is vertex- and edge-transitive. 

PROOF. Denoting, generically, a vertex and its image (with respect to a mapping 

from V to V) by (i, a2,. . . , aN) and (i', a',, . . . , ah),  respectively, we define mappings 

Sk, R, and Tk ( k  = 2,3,. . . , N)  from V to V as follows: 

Sk: i t - '  - 2; ak = ak + 1 and a', = a, for r # k; 

R: i = i - 1 a', = 1 + 2-'a, for all r E {2,3,. . . , N} ; 
. N 

Tk: i l = i ;  a; = 2' - C a, and a', = a, for r # k. 
s=2 

Notice that, by (3.1), the element 2-' is defined in 2,. It is easy to see that these 

mappings are bijections. To see that they are automorphisms, let a = (i, a2,. . . , aN) 

and /? = (i + 1, b2,. . . , bN) be adjacent vertices, and let, for 8 E {Sk : k = 

2,. . . , N )  U {R} U {Tk : k = 2,. . . , N),  8((i, a2,. . . , aN)) = (i', a',, . . . , a h )  and 

8((i + 1, b2, .  . . , bN)) = (i' + 1, b',, . . . , bk). We observe the following. If 8 = S k ,  then 

i' = i and b', - a', = b, - a, for all r E (2,. . . , N). If 8 = R, then i' = i - 1 and 

b',-a', =2-'(b,-a,) for all r E (2 ,..., N). If 8 = Tk, then i t =  i ,  b',-a', = b,-a, 

for r # k, and 

N N N 2' if ap is of type 1 
I I bk - ak = (2"' - C b,) - (2' - C a,) = 2' - C(b, - a,) = 

8=2 3=2 ~ = 2  ( 0 otherwise. 

Therefore, Sk, R, and Tk (k = 2,. . . , N) are automorphisms of the graph. 

To show that X(N, m, n) is vertex-transitive, take any vertex a = (i, a2,. . . , aN) E 

V and let ,B = R ( a ) .  Then P is of the form (0, b2,. . . , bN). Now, under Sk (k = 



2,3, . . . , N),  the k-th coordinate of a vertex increases by 1 (modulo n)  while the other 

coordinates remain unchanged. It follows that s ;~~s ;~~  . . . sibN(O, b2,.. . , bN) = 

0 0 . . . 0 )  Since a E V was arbitrary, we deduce that the graph is vertex- 

transitive. 

Let a = (2,2,2,.  . . ,2)  and ,f3 = (3,2,2,. . . ,2) be vertices in the graph. Then 

R(P) = a and R(a)  = (1,2,2,. . . ,2);  

s ; ~ - ~ T ~ ( ~ )  = a and s ; ~ - ~ T ~ ( P )  = (3, c2, cg, . . . , cN), 

where ck = 6 and c, = 2 for r # k; and 

s ;~-~T~R( /? )  = a and s ; ~ - ~ T ~ R ( ~ )  = (1, d2, d3, . . . , dN), 

where dk = 0 and d, = 2 for r # k. Hence the mappings R, s ; ~ - ~ T ~ ,  and s ; ~ - ~ T ~ R  

transform the edge a/3 to each of the other edges incident with a .  We conclude that, 

since the graph is vertex-transitive, it is edge-transitive. 0 

Bouwer mentions in his paper [5] that for some triples (N, m,  n) (e.g. (2,3,7), 

(2,6,7), and (2,4,5)) the graphs X (N, m, n) are also arc-transitive. However, he 

then shows that the graphs X(N,  6,9), which we shall denote by XN, are not arc- 

transitive. This is done by classifying the 6-cycles in the graph and showing that if 

XN is arc-transitive, there must be an automorphism which maps a 6-cycle onto a 

6-cycle of a type that does not appear in the graph. 

Let C be a t-cycle in XN. If C can be traversed in such a way that the first 

coordinates of the vertices in C occur in the sequence il, i2, . . . , it ,  then ((il , i2, . . . , it)) 
will be called a traversing sequence of C. Traversing sequences of the same cycle are 

called equivalent. 

It is easy to  see that the only possible non-equivalent traversing sequences of a 

4-cycle in XN are 

( q ~ )  ((i,i + 1,i + 2 , i  + 1)) and 

(q2) ( ( i 7 i + 1 7 i 7 i + l ) ) .  



Similarly, the only possible non-equivalent traversing sequences of a 6-cycle in 

X N  are 

( h i )  (( i ,  i + 1, i + 2, i + 3, i + 4, i + 5)), 

(hz )  (( i ,  i + 1, i ,  i + 1, i ,  i + I ) ) ,  

(h3) ( ( 2 , ~  + 1,i + 2,i + l , i , i  + I ) ) ,  

(h4) ( ( i , i+  l , i + 2 , i +  l , i + 2 , i +  1)), and 

(he) ( ( i , i+  1,i + 2 , i  +3 , i  +2 , i  + 1)). 

This information will be used in the following lemma. 

Lemma 3.1.3 The graph X N  = X ( N ,  6,9) has girth 6. Any 6-cycle C in the graph 

has a traversing sequence ( h i ) ,  ( h 2 ) ,  or (h3) .  The following can be said about the 

types of the edges in C with respect to its traversing sequence. 

( h l )  Each pair of opposite edges are of the same type. 

( h 2 )  Each pair of opposite edges are of the same type with diflerent pairs being 

of digerent types. 

(h3)  The edges alternate between two distinct types. 

Moreover, all of those possibilities are in fact realized in the graph. 

PROOF. By construction, X N  contains no loops or multiple edges. Also, since m = 6 

is even, X N  contains no odd cycle so that it is bipartite. Hence X N  has girth at 

least 4. We shall explore the cycles of length 4 and 6 in X N .  

Let C be a fixed t-cycle for t E {4,6).  For any k E {2,3,.  . . , N )  and any edge e 

of C define 
1 if e is of type k 

c(k ,  e )  = 
0 otherwise. 

We observe the following simple facts. 

( a )  Since the edge types are well-defined, for any edge e of C ,  c(k,  e )  = 1 for at 

most one k E {2,3,.  . . , N ) .  

( b )  If the 2-path aPr lies on C and if the first coordinates of a and 7 are equal, 

then the edges a@ and ,By are of diflerent types. 



The edges of C will be denoted by el, e2, . . . , et according to the traversal of C 
in which the first coordinates of the vertices encountered occur in the same order as 

in the given traversing sequence. 

Let k E {2,3,. . . , N )  and let e = crp be an edge on C .  If a = (i, a2,. . . , a N )  and 

P = ( j ,  b2,.  . . , bN), then ak and bk are related by 

and by 

bk = ak - c(k, e)2'-' if j = i - 1. 

We call the term c(k, e)2', or respectively, -c(k, e)2'-l, the change in the k-th coor- 

dinate as we pass from the vertex a to the vertex p along the edge e. In a traversal 

of C ,  where we start and end at  the same vertex, the changes in the k-th coordinates 

of the successive vertices encountered must sum to zero. Thus we associate with C 

a linear equation (in Z9) in the t variables c(k, e,), i = 1,2, .  . . , t ,  with coefficients 

independent of k. From its solution, and the conditions (a) and (b), we readily 

determine the possible combinations of the edge types along C. 

We now try to solve the linear equations associated with possible 4- and 6-cycles 

in X N .  We categorize these cycles according to their traversing sequences. 

Case (ql): traversing sequence ((i, i + 1, i + 2, i + 1)). The equation corresponding 

to a 4-cycle with this traversing sequence is 

and, dividing both sides by 2' and using the fact that we are looking for solutions 

in { O , l ) ,  it can be reduced to 

By observation (b), the edges el and e4 are of different types so that at  least one of el 

and e4 is of type k', for some k' E {2,. . . , N). ~ e t c ( k ' ,  el) = 6 and c(kl, e4) = 1 - 6 

where 6 E (0, 1). The equation (3.2) is then of the form 1 + 22 = 2y and thus has 

no solution in {O,l). 



Since by (b), any two consecutive edges must be of different types, there exists 

k' E (2, . . . , N) such that c(kl, el) = S and c(kl, en) = 1 - S for some S E { O , l ) .  The 

equation (3.3) is then simplified to 1 + x = 0 which has no solution in { O , l ) .  

We conclude that X N  has no 4-cycle. 

Case (hl): traversing sequence ((i, i + 1, i + 2, i + 3, i + 4, i + 5)). After simplifying 

the equation using the fact that Z3 - 1 (mod 9) and rearranging the terms we 

obtain 

One possibility is that all edges are of type 1. If not, then, without loss of generality, 

we may assume that el is of type k' E (2,.  . . , N), that is, c(kl, el) = 1. Using k = k' 

in (3.4) we can see that we must have c(V, e4) = 1 since otherwise one side of the 

equation is odd while the other side is even. Similarly we can check that each of the 

other two pairs of opposite edges are of the same type. 

Case (h2): traversing sequence ((i, i + 1, i, i + 1, i, i + 1)). The equation can be 

reduced to 

By (b), no two consecutive edges are of the same type. Fix j E {1,2, . . . ,6). If ej is 

of type k' for some k' E (2,. . . , N),  then c(kl, ej) = 1 and c(kl, ej-i) = c(kl, ej+i) = 

0. The equation (3.5) for k = k' then implies c(kl, ej+2) = c(kl, ej+4) = 0 and 

c(kl, ej+3) = 1. From this it follows that each pair of opposite edges are of the same 

type and that different pairs are of different types. 

Case (h3): traversing sequence ((i, i + 1, i + 2, i + 1, i, i + 1)). We simplify the 

equation to 



By (b), e2 and e3 are of different types, e4 and e5 are of different types, and so are 

e6 and el. Hence there exist k' E (2, .  . . , N )  and 6 E (0 , l )  such that c(kl, e2) = 6 

and c(kl, e3) = 1 - 6. Using k = k' in (3.6) we then have 

with the only solution c(kl, e4) = c(kt, e6) = 6 and c(kl, el) = c(kl, e5) = 1 - 6. Thus 

there are three alternate edges of C that are of the same type kt E (2, . . . , N).  By 

(b) none of the remaining edges can be of the type k' so that if they are not all of 

type 1, then one of them is of type k" # k', k" E (2,. . . , N). Setting k = k" in (3.6) 

we find, similarly as above, that all three of the remaining edges are of the same 

type k" # k'. 

Case (h4): traversing sequence ((i, i + 1, i + 2, i + 1, i + 2, i + 1)). We obtain the 

equation 

By (b), el and e6 are of different types. Hence there exist k' E (2,. . . , N )  and 

6 E { O , 1 )  such that c(kl,el) = 6 and c(k1,e6) = 1 - 6. Now, setting k = k' 

in equation (3.7), one side of the equation is odd while the other side is even, a 

contradiction. 

Case (h5): traversing sequence ((i, i + 1, i + 2, i + 3, i + 2, i + 1)). The equation is 

and since el and e6 must be of different types, the same argument as in Case (h4) 

yields a contradiction. 

From the solutions we found in cases (hl), (hz), and (h3) it follows that all 

possibilities listed in the statement of the lemma are realized in the graph. 0 

If el, e2,. . . , e, are edges of the graph XN, let *xN[el, e2,. . . , e,] denote the sub- 

graph of XN induced by the edge set {el, e2, . . . , e,). Adjacent edges e and f of 

the graph XN will be called opposed if the three vertices of XN[e, f ]  have pairwise 



distinct first coordinates, and properly opposed if they are opposed and of different 

ty pee 

Lemma 3.1.4 Let e and f be two adjacent edges of the graph XN. If e and f 

are properly opposed, the subgraph XN[e, f ]  is contained in exactly N + 1 distinct 

6-cycles. Otherwise, XN[e, f ]  is contained in exactly N distinct 6-cycles. In each 

case, the 6-cycles are pairwise disjoint except for the three vertices and the two edges 

of X ~ [ e , f l -  

PROOF. Let e = ap and f = py. 

If e and f are properly opposed, we may assume that the first coordinates of 

the vertices a, p, and y are, respectively, j, j + 1, and j + 2, that e is of type kt 

and that f is of type k" # kt. Let C be a 6-cycle that contains XN [e, f]. Then, by 

Lemma 3.1.3, the traversing sequence of C is either (hl ) or (h3). In case (hl), C is 
uniquely defined by choosing the type k"' for the third pair of opposite edges. Hence 

there are N possibilities. In case (h3), C is uniquely defined by e and f .  Thus a 

pair of properly opposed edges lie in exactly N + 1 6-cycles. 

Now let e and f be opposed but not properly opposed. Then e and f are of the 

same type k' and, again, we may assume that the first coordinates of the vertices a, 

P, and y are j, j + 1, and j + 2, respectively. If C is a 6-cycle that contains XN[e, f], 

then C must fall under case (hl) of Lemma 3.1.3 and thus is uniquely defined by 

the choice of the type of the third pair of opposite edges. This produces exactly N 

possibilities. 

Finally, suppose that e and f are not opposed. Then, by (b), they must be of 

different types, and the first coordinates of the vertices a, P, and y are either 

(1) j, j + 1, and j, or 

(2) j + 1, j, and j + 1, 

respectively. In either case, if C is a 6-cycle that contains XN [e, f ]  , then the travers- 

ing sequence of C is either (hz) or (h3). With traversing sequence (hn), C is uniquely 

defined by the choice of the type of the third pair of opposite edges. Since this type 

must be distinct from the types of e and f ,  we have N - 2 possibilities. With 



traversing sequence (h3), there are two possibilities. In case (I), either e = e2 and 

f = e3 or e = e5 and f = e6. In case (2), either e = e4 and f = e5 or e = e6 and 

f = el. Thus in both cases there are altogether N 6-cycles containing XN [e, f] .  

Now suppose that C = crPy6&$ and C' = a/376'&'4' are distinct 6-cycles con- 

taining the edges e = a@ and f = &. Since, checking the possibilities listed in 

Lemma 3.1.3, any three consecutive edges lie in at most one 6-cycle, 6 # 6' and 

$ # 4'. Suppose that E = d. Then 7605' is a 4-cycle, contradicting Lemma 3.1.3. 

Hence C and C' are disjoint except for the edges e and f .  0 

Corollary 3.1.5 Properly opposed edges remain properly opposed under any auto- 

morphism of the graph. 

PROOF. An automorphism of the graph preserves the number of 6-cycles in which 

a pair of adjacent edges lie. The result then follows by Lemma 3.1.4. 0 

We now present Bouwer's proof of the main result. 

Proposition 3.1.6 The graphs XN = X(N, 6,9) are not arc-transitive. 

PROOF. We treat the cases N > 3 and N = 2 separately. 

Case N > 3. Let e = crp be any given edge of the graph, cr = (i, a2,. . . , aN), 

P = (i + 1, b2, . . . , bN). Since N > 3, there exist two distinct edges dl = crSl and 

d2 = which are properly opposed to e. The edges e, dl, and d2 are of distinct 

types. Let the type of d; be k; (i  = 1,2). Let c; be the edge of type kg-, properly 

opposed to d;, having the vertex 6; in common with di (i = 1,2). Now, if XN is 

arc-transitive, then there exists an automorphism 0 which interchanges the vertices 

cr and p. By Corollary 3.1.5, 0 maps the subgraph XN [cl, dl, d2, c2] to a subgraph 

XN [ci, di , d',, c',], where di = P6: and d', = /36; are edges properly opposed to e while 

c: = S:$ (i = 1,2) is an edge properly opposed to di (see Figure 3.1). However, 

the subgraph XN[cl, dl, d2, c2] is seen to be contained in a 6-cycle (with traversing 

sequence (h3)), while considering the first coordinates of its vertices, we deduce from 



- - - -  type k - type k1 
. . . . . . . type k2 
- type unknown 

Figure 3.1: Proposition 3.1.6, Case N 2 3 

Lemma 3.1.3 that the subgraph XN[c;, di, di, ~ $ 1  is not contained in a 6-cycle. This 

is a contradiction. 

Case N = 2. In this case, there are only two possible types for an edge. Con- 

sequently, it is not difficult to see that for any given edge e, there is a unique cycle 

C that contains e such that any two adjacent edges in C are properly opposed. By 

tracing out C, we find it to be an 18-cycle. Let e = ap, a = (i, a2) and P = ( i+ l ,  b2). 

Let el = ppl and fl = aal be edges properly opposed to e. Define inductively, for 

i = 2,3,4,5, the edges e; = ,8;-1/3; and f; = a;-1 a; to be properly opposed to e;-1 

and f;-l, respectively. As mentioned above, these edges lie on an l&cycle so that 

they are pairwise distinct. The subgraph XN[el, e2, e3] has vertices /3, &, P2, and P3 
whose first coordinates are i + 1, i + 2, i + 3, and i + 4, respectively. Checking the 

possibilities in Lemma 3.1.3 we can see that XN[&, e2, e3] is contained in a unique 

6-cycle Cl (with traversing sequence (hl)). The edges of C1 are, in order, el, e2, e3, 

hl, h2, and h3, where hl # e4 since hl is of the same type as el (by Lemma 3.1.3) 



- type k' 
- type k" # k' 

Figure 3.2: Proposition 3.1.6, Case N = 2 

and e4 is not. Also, h3 # e since h3 is of the same type as e3 and e is not. Similarly, 

X ~ [ f l ,  f2 ,  f3] has vertices a, crl, a 2 ,  and a3 whose first coordinates are, respectively, 

i, i - 1, i - 2, and i - 3 so that XN[fl, f2, f3] is contained in a unique 6-cycle C2 

(which has traversing sequence (hl)). The edges of C2 are, in order, fl,  f2, f3, 91, 

g2, and g3, where gl # f4 and g3 # e since gl and f4, as well as g3 and e, are of 

distinct types (see Figure 3.2). 

Now, if XN is arc-transitive, there exists an automorphism 0 of XN that in- 

terchanges the vertices CY and @. Then 0 must map the 18-cycle C to itself and 

thus interchange the 6-cycles C1 and C2. Consequently, 0 interchanges the sub- 

graphs XN[g2,gl, f4, f5] and XN[h2, hl, e4, e5]. The first coordinates of the vertices 

in XN[g2,g1, f4, f5] are i - 5, i - 4, i - 3, i - 4, and i - 5, respectively, and check- 

ing the types of these edges, we can see that XNb2,gl ,  f4, f5] lies in a 6-cycle with 

traversing sequence (h3). On the other hand, the first coordinates of the vertices in 

XN[h2, hl, e4, e5] are, in order, i, i - 1, i - 2, i - 1, and i ,  so that Xpi[h2, hl, e4, e5] 



is not contained in a 6-cycle by Lemma 3.1.3. This is a contradiction. 

We conclude that the graphs XN = X(N, 6,9) are +-transitive. 

3.2 Metacirculant graphs M ( a ;  m, n) 

In sections 3.2, 3.3, and 3.4 we talk about a large family of graphs which proves to 

be a rich source of $transitive graphs. These graphs are called metacirculants and 

were first defined by Alspach and Parsons in [I]. In fact, we will only be interested 

in a subfamily of metacirculant graphs, namely, the graphs M(cr; m, n), which are 

vertex- and edge-transitive. Among these graphs we find several infinite families of 

1-transitive 2 graphs and, in particular, Holt's graph M(4; 3,9), which is the unique 

smallest +-transitive graph of degree 4. Furthermore, Xu has recently proved [I?] 

that all +-transitive graphs of prime-cube order and degree 4 are metacirculants (see 

Theorem 3.3.4). This strengthens a conjecture of B. Alspach and D. MaruiiE which 

asserts that every $-transitive graph of degree 4 is a metacirculant. All this makes 

met acirculants extremely interesting in the context of $-t ransitivity, and yet, not 

much is known about them. 

Most of this section follows Section 3 in [2]. Our Corollary 3.2.16, however, is a 

generalization of Corollary 3.8 in [2]. 

We first define general metacirculants as in [I]. Let 

where superscripts and subscripts are always reduced modulo m and n, respectively. 

Let Zi  denote the multiplicative group of units of Zn and let a E 2;. We define 

two permutations p and T on V by 

p(vi) = v, i+l 
and r(v:) = vaj . 

It is easy to see that (p, T )  is a transitive permutation group on V. Notice that 

0 0 0 1 1  1 m-1 vm-l p = (vo v, . . . vn- 1 ) (vo v, . . . vn-, ) . . . . . . (v, 1 . . . v~-;l) 



so that (p) is a cyclic group of order n with m orbits VO, V1,. . . , Vm-' where Vi = 

{v: : j E Zn)  for i = 0,1,. . . , m - 1. 

Let a be the order of a in 2:. We show that b =lcm(a, m) is the order of r .  We 

have 
b ( v . )  a = vitb = v' 

f a f  f 

since b - 0 (mod m) and ab 1 (mod n). Hence rb = 1 and the order of r divides 

b. On the other hand, if rc = 1, then 

so that c G 0 (mod m) and a "  z 1 (mod n). Hence both m and a divide c and so b 

divides c. Thus the cyclic group (r) has order b. 

Also, for any vi E V, 

so that rpr-I = pa. Thus the group (p, r) has the presentation 

We would like to construct all graphs G with V(G) = V such that (p , r )  5 
Aut(G). Let p = LYJ. Notice that, if (p, r) 5 Aut(G), then vj - v$', in G 

if and only if T-'(vj) - r-'( vj+, i+r)  if and only if v:-ij v&~+,-~, if and only if 

p-a-'j(~:-ij) - P-a-'j(v~-ij+a-ih) if and only if v: - vL-~,. Hence, to construct 

such G it suffices to specify the sets 

for 0 5 r 5 p and to determine what conditions these sets ST must satisfy in order 

that (p, r) 5 Aut(G). 

Since we do not want G to have loops, 0 f So and since p E Aut(G), we need 

So = -So. Further, s E ST if and only if v: N v: if and only if rm(v,O) - rm(v,') if 

and only if v: - vLmS if and only if a m s  E ST. Thus ST = amSr. If m is even, s E S, 



if and only if v: -- v: if and only if rP(v,O) .- rp(vf) if and only if vQ -- vz,, if and 

only if p-a'a(v6) -- p-a"(v~,,) if and only if vf,,, -- v,O if and only if -a's E S,. 

Thus S, = -apS,. 

We summarize the above conditions as follows: 

(1) 0 4 s o  = - so ,  
(2) amSr = Sr for 0 5 r 5 p, 

(3) abS, = -S, if m is even, 
' i+r (4) E(G) = {{vl:,v,+,,): 0 5 r < p and h E aiSr). 

Definition 3.2.1 Let m > 1, n 2 2, a E Zl and p = 171. Also, let So, S1, . . . , S, 

be subsets of Zn satisfying conditions (1) - (3). The (m, n)-metacirculant G = 

G(m,n, a, So, Sly.. . , S,) is a graph with V(G) = V and with E(G) given by (4). 

By the way we have obtained the definition of metacirculant graphs, the following 

result is immediate. 

Theorem 3.2.2 The metacirculant G = G(m, n, a, So, Sl, . . . , S,) is vertex-tran- 

sitive with (p, T)  5 Aut(G). Conversely, any graph G' with vertex set V and (p, T)  5 
Aut(G1) is an (m, n)-metacirculant. 

We proceed to define the graphs M(a ;  m,n).  Let n > 5 be an integer and let 

a E Z: be an element of order m or 2m, where m > 2. Define M(a;  m, n) to be the 

metacirculant G(m, n, a, 0, {-1,1), 0,. . . ,0). Notice that, if the order of a is 2m, 

then am -1 (mod n) by condition (2) in the definition of a metacirculant. Thus 

M(a ;  m, n) is the graph with vertex set 

By Theorem 3.2.2, M(a ;  m, n) is vertex-transitive with (P, T) 5 Aut(G). The orbits 

VO,V1, ..., v m - 1  of p will be referred to as the blocks of M(a ;  m, n) although they 



need not be blocks of imprimitivity of its automorphism group. Recall that, for 

general metacirculants, the order of T is lcm(a, m) where a is the order of a .  Hence 

for the graphs M(a;  m, n), the order of T is m. Also, for the mapping n defined 
i+l vi , va+, l  

by ~ ( v j )  = vCj, ~ ( v j v j + ~ , i )  = -J -,-so, so that n is another automorphism of 

M(cr; m, n), which will prove useful. It is easy to check that np = pn-'n and 

n r  = rn .  This, together with r p  =  pa^, implies 

We now establish the edge-transitivity of M(a;  m, n). 

Lemma 3.2.3 M(a;  m, n) is edge-transitive. 

PROOF. Let e = (for some 6 E {-1,l)) be any edge of M(a ;m,n) .  We 

have 
-ai jT-i(v; v!+l a i j  0 1 0 1 

P 3 J+6ai) = f-  (va-ij va-ij+6) = V, Vs. 

Since also 
0 1 0 1 

n(v0 v-1) = vo v1, 

any edge can be mapped to v; v,'. Hence M(a;  m, n) is edge-transitive. 0 

We shall see in Theorem 3.4.5 that the case m = 2 is not particularly interesting. 

Hence we assume for the rest of the section that m 2 3. When testing the graphs 

M(a ;  m, n) for arc-transitivity, we will be dealing with a special kind of cycles, which 

we now define. 

Definition 3.2.4 A cycle C of M(a ;  m, n) of length at least m is said to be coiled 

if every subpath of C having m vertices intersects each of VO, V1,. . . , v m - 1  

It is easy to see that a coiled cycle must have length a multiple of m. 

Definition 3.2.5 The coiled girth of M(a ;  m, n) is the length of a shortest coiled 

cycle in M(a ;  m, n). 



Proposition 3.2.6 The coiled girth of M(a;  m, n) is either m or 2m. 

PROOF. Assume that M(o; m, n) does not contain a coiled cycle of length m. 

Consider the closed trail 

Since M(a ;  m, n) has no coiled cycles of length m, the vertices of the closed trail are 

pairwise distinct. Thus, it is a coiled cycle of length 2m and M(cr; m, n) has coiled 

girth 2m. 0 

Using the coiled girth cycles of M(a ;  m, n) we obtain natural edge-partitions of 

M(a ;  m, n) as follows. If M(a ;  m, n) has coiled girth m, let C be a coiled m-cycle, 

0 1  2 0 
= 'j 'j+6o vj+6~+61a . . '~i~+61a+...+~~-2am-2 'j 9 

where 6; E {- 1,l) for all i E (0, . . . , m - 2). Let p(C) denote the coiled m-cycle 

obtained by applying p to the vertices of C, that is, 

0 1 2 0 dC) = ',+I 'j+l++ v j+~+6~+6~a  . . . 'Z:&+&a+...+Sm-2am-2 'j+le 

Then the coiled m-cycles C, p(C), p2(C), . . . , pn-l (C) are pairwise vertex-disjoint so 

that they form a 2-factor of M(a ;  m, n). It is not difficult to see that the remaining 

edges also form a 2-factor made up of coiled m-cycles C', p(C1), p2 (C'), . . . , pn-l (C'), 

where 
0 1  2 0 C' = 'j Vj-6. 'j-60-619.. . vTi:ol_61a -...- 6,-2am-2 'j. 

We call the edge-partition C, p(C), p2(C), . . . , pn-'(C), C', p(C1), p2(C'), . . . , pn-'(C') 

the p-partition of M(a ;  m, n) induced by C. 

If the coiled girth of M(a ;  m, n) is 2m, let C be a coiled 2m-cycle with the 

property that of the two edges from V' to Vi+' in C, one is of the form vji v;::~, 

and the other is of the form vji v;::,~. (The proof of Proposition 3.2.6 gives an 

example of such a cycle.) Then the coiled 2m-cycles C, p(C), P~(C) ,  . . . , pn-' (C) are 

pairwise edge-disjoint so that they form a partition of the edge set of M(a ;  m, n) 

into 2m-cycles. This partition is also called the p-partition of M(a ;  m, n) induced 

by C .  



Definition 3.2.7 If M(a ;  m, n )  has coiled girth m and the p-partition of M(a; m, n)  

induced by every coiled m-cycle yields the same 2-factorization of M(a ;  m, n ) ,  then 

we say that M(a ;  m, n )  is tightly coiled. Otherwise, M(a ;  m, n )  is loosely coiled. 

A similar definition applies in the case that the coiled girth of M(a ;  m, n )  is 2m. 

However, we show that in that case M(a ;  m, n )  is always loosely coiled. 

Lemma 3.2.8 If M(a;  m, n )  has coiled girth 2m, then it is loosely coiled. 

PROOF. We have seen in Proposition 3.2.6 that 

is a coiled 2m-cycle. Another coiled 2m-cycle is 

Clearly, C and C' induce distinct p-partitions. Hence M(a ;  m, n )  is loosely coiled. 

0 

We now set about proving some lemmas which will be helpful in establishing 

that certain graphs M(a ;  m, n )  are $transitive. 

Lemma 3.2.9 Let M = M(a;  m, n ) ,  m 2 3. The subgraph M[VV', VV'+'] induced by 

the two adjacent blocks VV' and Vi+l is a 2n-cycle if n is odd, and consists of two 

disjoint n-cycles if n is even. 

PROOF. Since M[VV', VV'+'] is 2-regular, it is a disjoint union of cycles. Now 

vi "+l . '+' is a cycle in M[VV', VV'+'] if and only if k is the smallest 3+ai . - - vj+kai 

positive even integer such that kaV' EE 0 (mod n ) .  Since a E Z i ,  ka' G 0 (mod n )  if 

and only if k z 0 (mod n ) .  Hence k = 2n if n is odd, and k = n if n is even. 

Lemma 3.2.10 Let M = M(a;  m, n ) ,  m > 3. If u E Aut(M) fixes two adjacent 

blocks pointwise, then a is the identity. 



PROOF. Let a fix V' and v'+' pointwise. Then a fixes v'-' setwise. By the previous 

lemma, M [v'-' , v'] is either a 2n-cycle or two n-cycles and a fixes alternate vertices 

of the cycle(s). Hence a fixes every vertex of the cycle(s) and thus it fixes v'-' 
pointwise. Continuing in this way establishes the result. 0 

Lemma 3.2.11 Let M = M(a ;m,n ) ,  m 2 3. If a E Aut(M) fixes a block of M 

pointwise, then a is the identity. 

PROOF. Without loss of generality we may assume that V1 is the block of M fixed 

by a. The neighbours of v: are vy, v!~, v:, and 2,. The neighbours of vi are $, 
0 v,, vi+,, and vi-,. Suppose that vy is not fixed by o. Then v; and vi have another 

neighbour in common. Note that v!, # v: because -1 5 3 (mod n) contradicts 
2 2 n 2 5. Clearly, v: # vi+, and v!, # vi-,. Hence either v, = v2-, or v!, = vi+,. 

2 - If v, - vi-, , then 201 = 2 (mod n) so that, since a # 1, a = y. Hence 

n must be even. If n is a multiple of 4, say n = 4k, then a = 2k + 1 so that 

a2 = 4k2 + 4k + 1 1 (mod n), contradicting m 2 3. If n = 4k + 2 for some k E N, 

then a = 2k + 2, contradicting a E 2:. 

Similarly, if v!, = vi+,, then 2a E -2 (mod n) so that, since a # -1, a = F. 
Again, n must be even. But n = 4k implies a = 2k - 1 so that a2 = 1 (mod n), and 

n = 4k + 2 implies a = 2k, so that a 4 2:. In both cases we have a contradiction. 

Thus the only possibility is that a fixes v:. Continuing in this way we obtain 

that V0 is fixed pointwise by a. Hence by the preceding lemma a is the identity. 

0 

Lemma 3.2.12 Let M = M(a; m, n) and suppose that whenever a E Aut(M) fixes 

two adjacent vertices of M,  a is the identity. Then either Aut(M) = ( p , ~ , ? r )  or 

IAut(M)I = ~ I ( P ,  7 7 7 4  I .  

PROOF. Let e be any edge of M. By hypothesis, if a is an automorphism of M 

that fixes the edge e, then either a is the identity or a interchanges the endpoints 



of e and a 2  = 1. Moreover, if a1 and 0 2  are two automorphisms that interchange 

the endpoints of e, then 0 1 0 2  = 1 so that a2 = a;' = al .  Hence the stabilizer of 

e either contains just the identity or it has order 2. Since M is edge-transitive, the 

Orbit-S tabilizer Theorem yields 

Since J (p ,  7, T ) )  = 2mn, the result follows. 0 

Lemma 3.2.13 Let m and n be odd, m 2 3, and let M = M(a;  m,n) have coiled 

girth m and be loosely coiled. Let x E V i  and let y, y' E V'-' and z ,  z' E Vi+' be the 

four neighbours of x .  Then each of the triples yxz,  y'xz, yxz', and y'xz' is contained 

in a coiled m-cycle. 

PROOF. Suppose that the triple yxz' is not contained in a coiled m-cycle. Then 

y'xz is not contained in a coiled m-cycle either so that every coiled m-cycle through 

x contains either yxz or y'xz'. Since M is loosely coiled, there exist at least two 

coiled m-cycles C and C' that contain the triple yxz. Moreover, C and C' contain a 

triple uvw and uvw', respectively, such that w' # w. Let a be an automorphism of 

M that takes v to x. Then o ( C )  and a (C i )  are rn-cycles containing x. In fact, a ( C )  

and a(C1)  are coiled because m is odd. But then either a ( C )  or a(C1)  is a coiled 

m-cycle that contains either yxz' or y'xz, contradicting the assumption. Hence the 

result follows. U 

Lemma 3.2.14 Let m and n be odd, m 2 3, and let M = M(a;  m,n) have coiled 

girth m and be loosely coiled. Then any automorphism of M that fixes two adjacent 

vertices is the identity. 

PROOF. Suppose x E V i  and y E Vi-' are two-adjacent vertices of M fixed by 

a E Aut(M). Let y' be the other neighbour of x in V'-' and let z and z' be the two 

neighbours of x in V'+'. Then a fixes {y ' ,  z ,  z'} setwise. Since m is odd, M contains 



no non-coiled m-cycles. Hence the triple yxy' is not in an m-cycle. On the other 

hand, by Lemma 3.2.13, each of the two triples yxz and yxz' lies in an m-cycle. 

Therefore a must also fix y' in addition to fixing x and y . For the same reason, a 

must fix the other neighbour of y' in V'. Since m is odd, M[Vi, V'-'1 is a 2n-cycle 

so that, continuing in this way, we see that a fixes all vertices of V' and Vi-'. By 

Lemma 3.2.10, the conclusion follows. 0 

Theorem 3.2.15 Let m and n be odd, m 2 3. Let M = M(a ;m,n )  have coiled 

girth m and be loosely coiled. Then M is $-transitive. 

PROOF. By Lemmas 3.2.14 and 3.2.12, either Aut(M) = (p,r,w) or (Aut(M)I = 

21 (p, T, w)  1 .  Suppose M is arc-transitive. Then, by the Orbit-Stabilizer Theorem, 

4mn divides IAut(M)I so that, by the previous statement, IAut(M)I = 4mn. Also, 

there exists a E Aut(M) that interchanges two adjacent vertices of M. Without 

loss of generality we may assume that these two vertices are vg and v,'. Clearly, 

a @ (p, T, w)  since otherwise (p, T, w)  would act transitively on the arcs of M. Hence 

Aut (M) = (p, T, w,  a) and, by Lemma 3.2.14, a has order 2. 

Since a interchanges vg and v,', it interchanges the sets { V ' ~ , V ~ ' ,  vIIL,~} and 
0 1 2  0 1 2  1 0 m-1 {vi, v:+,, v;,} of their neighbours. Now, the triples vo v1 vl+,, vo v1 vl-,, v1 vo v -,,, 

and v: v: v z '  are contained in m-cycles but viv: v: and v', v: v: are not, so that 

a must interchange v'l and v,O. Continuing in this fashion along the 2n-cycle 

MIVO, V1] (beginning with v', and v,O and their neighbours), we see that a in- 

terchanges V0 and V'. consequently, a interchanges Vm-' and V2, Vm-2 and V3, 

and so on. Thus Aut(M) = (p, T,T,  a) acts imprimitively with the orbits of p as 

blocks. 

It is not difficult to see that the action of a on the vertices of MIVO, V1] is in 
-i+l fact given by a($) = v-~+,  . Hence for any vj E V0 U V1, 

implying that the restriction of apa  to MIVO, V1] is the restriction of P-'. Thus the 

restriction of to MIVO, V1] is the identity so that, by Lemma 3.2.10, is 



the identity. Notice also that 

so that npn = p-'. But then 

so a n  commutes with p. 

Clearly, the action of arr on the orbits of p is identical to the action of a. Thus, 

since m is odd, there is an orbit V' of p which is fixed by an .  We determine the action 

of a n  on the vertices of V' as follows. Let an(vd) = 216. Then, since UT commutes 

with p, on(vf) = mrp(v~) = pon(v~)  = vi+,. Inductively, we obtain or(v;) = v:+* 

so that the action of a n  on V' is the same as that of pk. Let 7 = a ~ p - ~ .  Then 

y fixes the block V' pointwise. Hence by Lemma 3.2.11, y is the identity and thus 

a = pkn. But then a E (p, 7, n),  a contradiction. 

Thus M is $transitive. 0 

In general, it is not easy to determine for which values of the parameters a, m, 

and n the graph M(a ;  m, n) has coiled girth m and is loosely coiled. In [2], the 

authors propose the following sufficient condition: n is prime and a is a divisor of 

n - 1 whose order m is odd and composite. We extend this condition in the next 

corollary. 

Corollary 3.2.16 Let p be an odd prime such that p - 1 = km'd where m', d > 1 

are odd. Let n = ps for some s E N and let a E 2: have order m = m'dps-' . Then 

the graph M = M(a;  m, n) is f -transitive. 

PROOF. First notice that the group 2: is cyclic by Theorem 1.0.11 so that, since m 

divides p(n)  = (p - l)ps-', there exists a E 2: with order m. 

Next we show that ad - 1 can not be a zero divisor in the ring 2,. Assume the 

contrary. Then atd - 1 is a zero divisor for all t E {1,2, . . . , m'pS-' - 1) because ad - 1 

divides atd-1. Since the order of a is m, the elements atd-1, t = 1,2, .  . . , m'pS-'-1, 



are pairwise distinct. We would thus have rntpS-' - 1 > pS-l - 1 zero divisors in Z,,, 

a contradiction. 

Hence ad - 1 E Z: and, consequently, a - 1 E 2:. Therefore, om I 1 (mod n) 

implies 

1 + ad + aZd + . . . + 3 0 (mod n) (3.9) 

and 

1 + a +  a 2 +  . . .+ am-' = O  (modn).  (3.10) 

Because of congruence (3. lo), 

is a coiled m-cycle so that M has coiled girth m. From equations (3.9) and (3.10) 

we obtain 

- l+a+ . . .+ad-1 -ad+ad+ ' . . .+a2d- ' -~2d+a2d+1+ . . .+am-1~O (modn).  

This equation gives rise to a coiled m-cycle which does not appear in the p-partition 

of M induced by C. Hence M is loosely coiled and thus f-transitive by Theo- 

rem 3.2.15. 0 

The corollary we have just proved implies that whenever n is a prime of the 

form 9k + 1 and a E Z: has order 9, M(a;  9, n) is f-transitive. Since by Dirichlet's 

Theorem 1 .O. 12 there are infinitely many primes of the form 9 k+ 1, there are infinitely 

many !-transitive graphs of degree 4. Three more infinite families of f-transitive 

graphs of degree 4 will be found in the next two sections. 



3.3 Metacirculant graphs M ( a ;  3, n) 

In the previous section, the general case for m and n odd is covered when M(a;  m, n) 

has coiled girth m and is loosely coiled. The other cases are covered in this section, 

but only for m = 3. The results we prove here appear in [2]. However, we present a 

new proof for Lemma 3.3.2, which substitutes for Lemmas 4.1 and 4.2 in [2]. 

Throughout this section we assume that n is odd and that m = 3. Recall that 

the order of cu is either 3 or 6 so that either a3 = 1 (mod n) or cu3 -1 (mod n). 

Since a3 = -1 (mod n) implies (-a)3 r 1 (mod n), and since the graphs M(a ;  3, n) 

and M(-a; 3, n) are isomorphic, we may as well assume that a has order 3. 

Lemma 3.3.2 has the same conclusion as Lemma 3.2.14, except that now we 

do not need the assumption that the graph is loosely coiled and this requires a 

completely different proof. The approach we use here (unlike in [2]) is an algebraic 

classification of all 6-cycles in the graph M(a ;  3, n). (An equivalent method will be 

used in Section 3.4 for the graphs M(a;  4, n).) First we need a set of definitions. 

Definitions 3.3.1 Let a E {m, 2m) be the order of a in 2:. Let P = v; v;: . . . va.* 3k 

beapa th in  M(a ;m,n)andle t  Ar E {fa': i = 0 , 1 ,  ..., a-1)for l  =0 ,1 ,  ..., k-1. 

If A, = j1+, - j, for 1 = 0,1,. . . , Ic - 1, then 

is called a jump sequence of the path P. Notice that if (Ao, Al, . . . , Ak-1) is a jump 

sequence of a given path, then so is . . , -A1, -Ao)  In addition, if v; = v;:, 

that is, if P is a cycle, then cyclically permuting the entries in (Ao, A,, . . . , A,-,) 

yields another jump sequence for P. We shall not distinguish between jump se- 

quences of the same path or cycle. Furthermore, if (Ao, Al , .  . . , Ak-1) is a jump 

sequence of a cycle, then 

A. + A1 + . . . + = 0 .  (mod n) 

must hold. This is the congruence equality associated with the jump sequence 

(A07 A17 . ., Ak-1). 



If (Ao, A,, . . . , A,-,) is a jump sequence for the path P, then for any s E 

{0,1, ..., a -  1) and any 6 E {-1,1), 

will be called a type sequence of the path P. Two type sequences will be called 

equivalent if one can be obtained from the other by cyclically permuting the entries 

(for cycles only), reversing the order and/or the signs of the entries, and/or multi- 

plying all entries by the same power of a. In other words, all type sequences of the 

same path or cycle are equivalent. Notice that, for cycles, equivalent type sequences 

give equivalent congruence equalities in the sense that they differ only by a factor 

of fa'. 

The sequence ((io, il, . . . , ik-l, ik)) or ((iO, il, . . . , ik-1)) will be referred to as a block 
'k-1 ,,)',k sequence of the path or cycle, respectively, P = v i  v;: . . . vjk-l ;,. Notice that for 

two block sequences of the same cycle, one can be obtained from the other by cycli- 

cally permuting the entries and/or reversing their order. We shall not distinguish 

between block sequences of the same cycle. 

Lemma 3.3.2 Let n 2 9 be odd and let a E 2: have order 3. Then every automor- 

phism of M = M(a ;  3, n) that fixes two adjacent vertices is the identity. 

PROOF. The Holt graph M(4; 3,9) plays a special role in this proof. We therefore 

first observe that the graphs M(a ;  3,9) are isomorphic for all a E 2,' of order 3. 

Well, if a and a1 are two order-three elements of Z,', then a1 a2 (mod 9). Define 

-'+I. Since a' (a2)-' a mapping o from M(a ;  3,9) to M(a2;  3,9) by o(vj) = vj 

(mod 9) for i = 0,1,2, we have 

so that a is an isomorphism. We may therefore assume that a = 4 whenever n = 9. 

Next we would like to classify all 6-cycles in M. It is not difficult to see that 

the following are the only possible non-equivalent block sequences of a 6-cycle in 

M(a ;  3, n): 



( A )  ((i , i+ l , i+2, i , i+ l , i+2)) ,  

(B)  ( ( 2 ,  i  + 1, i  + 2, i ,  i  + 2, i  + I)), 
( c )  ((i,i + 1,i + 2,i + l , i  + 2,i + l ) ) ,  

(D) ((i , i+ 1,i,i+ 1,i+2,i + I ) ) ,  and 

(E) ( ( 2 ,  i  + 1,  i ,  i  + 1 ,  i ,  i  + 1)). 

We examine the equations associated with these block sequences. Throughout 

this proof, let 6,Si,6i E {-1 , l )  for i  = 0,1,2.  

The block sequences ( A )  and (B)  are associated with the type sequences (SO,  Sla, 

S2a2, S;, Sia, Sia2) and (So, S1a, S2a2, S ! p 2 ,  4 a ,  So) ,  respectively. In both cases, the 

equation associated with the cycle has the form 

Since n is odd, this may be reduced to 

E o  + &la + &2a2 G 0 (mod n) ,  

where E;  = +(tii + 6 3  E {- 1,0 ,1)  for i  = 0,1,2.  Suppose that none of € 0 ,  € 1 ,  € 2  is 

zero. Then ej = 6; for all i ,  so that a subpath of the 6-cycle is a 3-cycle, which is 

impossible. Hence at least one of the E ,  is zero. Notice that it can not happen that 

exactly two of the E; are zero. Hence either E; = 0 for all i or exactly one of the 

E ;  is zero. The latter possibility implies either 1 + 6a G 0 (mod n)  or 1 + 6a2 G 0 

(mod n) ,  both contradicting the fact that the order of a is 3. 

Hence E ,  = 0 and 6: = -Si for all i  = 0,1,2.  Since the block sequence ( B )  

requires S i  = S2, the only type sequences we obtain from this are of the form 

The block sequence (C) requires a type sequence of the form ( 1 ,  Gcu, Sa, Sa, Ga, 1) 

so the equation is 2 + 4Sa G 0 (mod n) ,  that is, 2Sa G -1 (mod n). Cubing both 

sides we obtain 86 r -1 (mod n )  so that n E {3,7,9). Since we have assumed that 



n > 9, we must have n = 9. The corresponding multiplier is a = 4 but then the 

equation is satisfied only for S = 1. We thus obtain the type sequence 

where a = 4 and n = 9. 

The block sequence (D) requires 4+2Sa = 0 (mod n). This implies n E {3,7,9), 

Hence n = 9. But the equation can not be satisfied for a = 4. 

The block sequence (E) implies 6 = 0 (mod n), clearly impossible. 

With the information we have gathered, the proof splits into three cases. 

Case 1. M has coiled girth 3. 

Since M has coiled girth 3, at least one of the equations a2 + a + 1 = 0 (mod n), 

a2 + a - 1 = 0 (mod n), and a2 - a - 1 G 0 (mod n) must hold. In fact, exactly one 

of these equations holds since otherwise we would have either 2 = 0 (mod n), 2a r 0 

(mod n), or 2(a + 1) 1 0 (mod n). Since a3 3 1 (mod n), ( a  - l ) (a2  + a +  1) 0 

(mod n). This implies that either a2 + a + 1 = 0 (mod n) or a2 + a + 1 is a zero 

divisor in 2,. If a2 + a + 1 is a zero divisor, then a2 + a + 1 f 2 (mod n) because 2 

is not a zero divisor in 2, when n is odd. Hence a2 + a - 1 f 0 (mod n). Therefore, 

since M has coiled girth 3, either a2 + a + 1 0 (mod n) or a2 - a - 1 r 0 

(mod n) (but not both) must hold. In either case, each edge of M lies in a unique 

3-cycle. Notice that for n = 9 and a = 4 none of these two congruences holds so 

that M(4; 3,9) has coiled girth 6. Hence, when M has coiled girth 3, all 6-cycles in 

M have a block sequence (A),  that is, they are coiled. 

Let o be an automorphism of M that fixes the vertices vg and v,'. First assume 

that a2 + a + 1 G 0 (mod n). Then v: v: v:+, is a 3-cycle so that o fixes v:+,. 

Suppose that o interchanges the other two neighbours of v,', that is, v: and v:-,. 

But the triple v,O v: v:-, lies in a 6-cycle while v; v: v! does not. Hence o fixes v: 

and v:-, as well. Continuing in this way, since n is odd, establishes that VO and Vl 

are fixed pointwise. Hence by Lemma 3.2.10, a is the identity. 

The case when a2 - a - 1 - 0 (mod n) is done in a very similar way. 



Figure 3.3: The Holt graph M(4; 3,9)  



Case 2. M has coiled girth 6 and n > 9. 

Suppose a E Aut(M) fixes the vertices v: and v,'. Notice that M contains no non- 

coiled 6-cycles while each 2-path with a block sequence ((i, i + 1, i + 2)) lies in exactly 

two coiled 6-cycles. Hence a fixes v: in addition to fixing vg and vi. Continuing in 

this way, since n is odd, we see that a fixes V0 and V1 pointwise. Hence a is the 

identity. 

Case 3. Holt's graph M = M(4; 3,9) .  

First observe the following. A 2-path with a type sequence (1 , l )  and a block se- 

quence ((i + 1, i, i + 1)) lies in exactly two 6-cycles. In particular, for a 2-path with a 

jump sequence (1 , l )  and block sequence ((i + 1, i, i + 1)) these two &cycles have jump 

sequences (1, a, a, a, a, 1) and (a2, 1,1 ,1 , l ,  a2), respectively. The same is true of a 

2-pat h with a type sequence (1,l)  and a block sequence ((i, i + 1, i)), except that for 

a 2-path with a jump sequence (1,l)  and a block sequence ((i, i + 1, i)) both 6-cycles 

have a jump sequence (a2, 1,1,1,1, a2). Further, a 2-path with a type sequence 

(-a2, 1) lies in exactly two 6-cycles, both of which are coiled, while a 2-path with 

a type sequence (a2 ,  1) lies in exactly three 6-cycles, two of which are coiled. For 

example, a 2-path with a jump sequence (a2, 1) lies in 6-cycles with jump sequences 
2 ( l , a , - a  ,-1,-a,a2),  (1 , -a , -a2, - l ,a ,a2) ,  and (a2,1,1,1,1,a2).  

Now let a be an automorphism of M that fixes the vertices vg and v,'. Since 

the 2-paths v!, v: vf and v:, v: v,' lie in exactly two 6-cycles each, while the 2-path 

v?,, v: v: lies in three 6-cycles, a fixes ~ 2 , ~ .  The three 6-cycles containing ~ 2 , ~  v: v: 

are 

2 0 1 2  vo 1 2 C1 = V-,2 V0 V l  Vl+, 1 + , 3 - ~ 2  Va-,2 V-,2 7 

Hence o(vi) E {v:, v:+,, v:-,}. Now v,0 vi v: lies in exactly two 6-cycles while 

vg vt v:+, lies in three 6-cycles because it has a type sequence (a2, 1). Thus a(v:) # 
v .  If a($) = v:-,, then a(C3) = C2 SO that u(vt) = But v:vZ,. v: 



Figure 3.4: Theorem 3.3.3 

lies in exactly two 6-cycles (type sequence (1 , l ) )  while v',-,~ ~ 1 , ~  v: lies in three 

6-cycles, a contradiction. Thus the only possibility is that a fixes v:. Continuing 

in this way along the 18-cycle MIVO, V1] and using Lemma 3.2.10 establishes the 

result. 0 

Theorem 3.3.3 Let n 2 9 be odd and let cr E 2:: have order 3. The graph M = 

M(a ;  3, n) is ;-transitive. 

PROOF. Suppose M is arc-transitive. Then there exists a E Aut(M) that inter- 

changes the vertices vg and v,'. By Lemma 3.3.2, a has order 2. The group (p, T, n) 

acts transitively on the edges of M,  but not on the arcs of M because I (p, T, n) 1 = 6n. 

Hence a $! (p, T, n)  and, by Lemma 3.2.12, IAut(M)I = ((p, T, n, a) 1 = 21(p, T, n)  I. 

Thus Aut(M) = (p, T, n)  ~ o ( p ,  T, ?r) = (p, T, n) U (p, T, n)a ,  that is, (p, T, n)  is normal 

in Aut(M). 

Orient the edge v: v,l from v: to v,' obtaining the arc a = (v:, v,'). The group 

(p, T, n)  acting on (v:, v,') gives an orientation of M which we denote by M*. The 

group (p, T, n)  acts transitively on the arcs of M* and since [(p, T, n)  I = 6n = 

IA(M*) 1 ,  (p, T, n)  acts regularly on the arcs of M*. This means that for any arc b of 



M *  there exists a unique f b  E (p, 7, T) such that fb(a) = b. Then a(b) = a fb(a) = 

f,a(a) for a unique c E A(M*). Thus a maps any arc of M* to a reversed arc of M* 

so that a is orientation reversing on M*. We now carefully examine the action of a .  

Notice that (v:, v',) = T(V& vf), (v;, vi) = p2?r(v,D, vi), (v:, v;+,) = pr(v,D, vi), 

and (vf, vT-,) = ~TT(V;, 21:) are arcs of M*. Hence, since a interchanges v,O and vi 

and is orientation reversing, a must also interchange v', and v:. Similarly, since 

(v:, v!J) is an arc of M*, and (v!,, v!,) is the only arc of M* whose terminal vertex 

is v!,, a interchanges v!J and v!,. Continuing in this way, we see that a must 

interchange v: and for all k E 2,. Hence V2 is fixed setwise. 

Now vi and v:+,, have the common neighbour v?+, in V2. Thus v; and v!,, = 

o(vi+,,) have a common neighbour in V2. But then 2a  I f 2 a 2  (mod n)  implying 

a I f 1 (mod n), which contradicts the assumption that the order of a is 3. 

Therefore no such a exists and M is ;-transitive as required. 0 

Since a graph M ( a ;  3, n)  exists for every prime n of the form 3k + 1, we now 

know that there are infinitely many $ -transitive graphs M ( a ;  3, n). In particular, we 

have proved that the graph M(4; 3,9) is i-transitive. This graph was named after 

D. F. Holt [8] who discovered it in 1981 (clearly, not as a metacirculant), although 

it was not until recently that Alspach, MaruiiE, and Nowitz [2] have shown that 

this graph is a $-transitive graph of smallest degree and with the smallest number 

of vertices (Theorem 2.1.8). In addition, they have asked how many $-transitive 

graphs of order 27 and degree 4 there are up to isomorphism. This question was 

answered by Xu in the following form [17]. 

Theorem 3.3.4 For any odd prime p there are, up to isomorphism, precisely 9 
f -transitive graphs of order p3 and degree 4. They are all metacirculants. 

We therefore have 

Corollary 3.3.5 Up to isomorphism there is only one $-transitive graph of order 

27 and degree 4, namely, the Holt graph. 



3.4 Metacirculant graphs M ( q 4 , n )  

In the previous two sections we have been able to establish f -transitivity of certain 

graphs M ( a ;  m, n) only with the condition that both m and n are odd. In this 

section we present new results concerning f -transitivity of the metacirculant graphs 

M(a ;  4, n). The approach we use here is classification of &cycles in M(a ;  4, n )  with 

respect to their block sequences. The only case when we shall not be able to establish 

either arc-transitivity or $-transitivity of the graphs M(a; 4, n) is when the order of 

a is 4 and either n is a multiple of 5 but not a prime power or n is a multiple of 4. 

In addition, we will show that the graphs M(a;  2, n) are arc-transitive. 

We begin with a couple of lemmas concerning general graphs M(a;  m, n). 

Lemma 3.4.1 Let n r 0 (mod 4) and a E 2:. If am = -1 (mod n), then m is odd 

and a = 3 (mod 4). If am = 1 (mod n), then m is even o r a  = 1 (mod4). 

PROOF. Since a E Z,* and n is even, a must be odd. Let a = 2k + 1 for some 

k E 2,. 

If am = - 1 (mod n), then am + 1 = 0 (mod 4). Thus we have 

so that m and k must both be odd. Hence also a = 3 (mod 4). 

If am 1 (mod n), then am - 1 - 0 (mod 4). We have 

0 r am - 1 = (2k + 1)" - 1 2mk (mod 4). 

Hence at least one of m and k must be even. Therefore either m is even or a E 1 

(mod 4) or both. 

Lemma 3.4.2 Let n be even. Then M(a; m, n). is connected if and only if m is 

odd. If n = 2 (mod 4) and m is even, then M(a; m,n)  consists of two connected 

components which are both isomorphic to M ( a  mod :; m, :) 



PROOF. Since n is even, a is odd and M[Vi, Vi+'] consists of two disjoint n cycles. 

One cycle alternates between vertices of V' with odd subscripts and vertices of Vi+' 

with even subscripts, and the other cycle alternates between vertices of Vi with even 

subscripts and vertices of Vi+' with odd subscripts. It is now clear that M ( a ;  m, n )  

is connected if and only if m is odd. 

Now let n = 2 (mod 4) and let m be even. Then we get exactly two components 

and p(vj) = vj+, is an isomorphism between them. Choose the component with 

vertex set V' = {v; : i E Z,, j E Z,, i j (mod 2)) and let Vk be the vertex set of 

the graph M ( a  mod k; m, k), where k = ;. Define o : V' + Vk by o(vj) = vjmdk. 

Since each of the sets {O,2, . . . .n - 2) and {1,3,. . . , n - 1) modulo k produces all of 

Zk, u is a bijection. Since also 1 - j r a' (mod n) implies (I mod k) - (j  mod k)  

(a mod k)' (mod k) for any j, 1 E Z,, i E Z,, a is an isomorphism between the 

connected component of M(a; m, n)  with vertex set V' and M(cr mod k; m, k). 

Theorem 3.4.3 If the order of a is 4 and a2 r -1 (mod n), then M ( a ;  4, n) is 

arc-transitive. 

PROOF. Define o(v;) = v~j::. Since the order of a is 4 and a2 I -1 (mod n), 

a2 - a-2 (mod n)  and a -a-' (mod n). Hence, for any S E {-1,1), we have 

so that a is an automorphism of M(a ;  4, n). Since o interchanges the endpoints of 

the edge v; v,' , M(a ;  4, n) is arc-transitive. 0 

Corollary 3.4.4 Let p be an odd prime, n = pk for some k E N ,  and a E Z,* have 

order 4. Then M ( a ;  4, n) is arc-transitive. 

PROOF. Since n is an odd prime power, Z,* is cyclic by Theorem 1.0.11. Therefore, 

since the order of a is 4, a2 = -1 (mod n). The result now follows from Theo- 

rem 3.4.3. 0 



As a by-product, the same automorphism as in the proof of Theorem 3.4.3 works 

in proving the following statement. 

Theorem 3.4.5 M(a;  2, n) is arc-transitive. 

PROOF. With a defined as in the proof of Theorem 3.4.3, we have 

i+l i+l ' - i+l ' ~ j + ~ ~ i )  = v > + ~  v I ; + ~ - ~ ~ ~  - v - ~ + I  va -]+I-6a8 . 

because i - -i (mod 2). Thus a is an automorphism of M(a;  2, n) that reverses the 

edge v,O vf . 

Lemma 3.4.6 Let n be a prime. If al, a 2  E 2,: both have order 8, then M(a1; 4, n) 

and M(a2;  4, n) are isomorphic. 

PROOF. If a E 2: is an element of order 8, then, since 2,: is cyclic, a4 - -1 (mod n) 

and all elements of 2,: of order 8 are a, a3, -a, and -a3. M(a; 4, n) and M(-a; 4, n) 

are clearly isomorphic with the identity mapping being an isomorphism. Now define 

a mapping from M(a;  4, n) to M ( 4 ;  4, n) by o(v;) = v-'+'. 3 Since a' I (a3)-' for 

i = 0,2, and a' -(a3)-' (mod n) for i = 1,3, we have 

i+l i+l -i - vTi+l v-i a(v: v ~ + ~ ~ ~ )  = V; 'j+6ai - 3 j*6(a3)-i 

so that a is an isomorphism. This proves the lemma. 0 

Consequently, for any prime n it is enough to consider the graph M(a ;  4, n) for one 

order-eight element a of 2,: only. 

We proceed to explore 8-cycles in the graphs M(a ;  4, n). 

Lemma 3.4.7 If n is odd, the order of a is 8 and a4 -1 

, Recall Definitions 3.3.1. 

(mod n), then M(a;  4, n) 

has coiled girth 8. Furthermore, every coiled 8-cycle has a type sequence 

2 (1, ha, b2a2, &a3, -1, -&a, -b2a , -&a3), 

where 61, S2,S3 E {-1,l).  All choices for the 6; are realizable in the graph. 



PROOF. First note that, since a has order 8, cp(n) must be divisible by 8, where cp 

is the Euler cp-function. 

We now show that M(a ;  4, n) has coiled girth 8. Conversely, suppose that the 

graph contains a coiled 4-cycle with a type sequence 

for some S1,S2,S3 E {-1,l). Then 

1 + S1a + S2a2 + S3a3 = 0 (mod n) 

must hold. Expressing 

S2a2 - - (1 + &a + &a3) (mod n) 

and then squaring both sides we obtain 

-1 = 1 +a2 -a2+2S1a+2S3a3 -2S1S3 (mod n) 

(2 - 26163) + 2S1a + 2S3a3 G 0 (mod n). (3.12) 

From equalities (3.1 1) and (3.12) we can eliminate the terms with a and a3 simul- 

t aneously thus obtaining 

2S1S3 + 2S2a2 z 0 (mod n) 

or 

-S2a2 = S1S3 (mod n) 

since gcd(2, n) = 1. Squaring both sides again yields -1 G 1 (mod n) which in turn 

implies n = 2, a contradiction. Hence M(a ;  4, n) has coiled girth 8. 

The above method will be called squaring elimznation. 

We now explore coiled 8-cycles. A coiled &cycle has a type sequence 



for some 6:,Sr E (-1,  I ) ,  i = 0 , .  . . ,3 ,  such that 

holds. This equation can be simplified to 

EO + &la + e2a2 + e3a3 E 0 (mod n) (3.13) 

where E ;  = (6: + 6;) E { - 1,0,1).  We now apply the squaring elimination method 

described in the first part of the proof to (3.13) thus obtaining 

The only posible values for (e: - E;  + ~ E ~ E ~ ) ~  and (E: - e i  + 2 e 1 ~ 3 ) 2  are 0,1,4, 

and 9. But whenever -e E e' (mod n)  for E ,  e' E {0 ,1 ,4 ,9)  and at least one of 

e and e' is non-zero, n E {3,5,9,13)  is forced which is a contradiction. Hence 

e: - E;  + 2eoe2 = E; - E;  + 2ele3 = 0 ,  which implies e; = 0 for all i = 0 , .  . . ,3. 

Therefore Sy = -6: for i = 0 , .  . . ,3 ,  and the lemma is proved. 0 

Next we state a result similar to that of Lemma 3.4.7 for the case that the order 

of a is 4. Notice that, by Theorem 3.4.3, we may assume that a2 $ -1 (mod n)  

and hence that n is not an odd prime power. 

Lemma 3.4.8 Let n be odd with n f 0 (mod 5 )  and let a have order 4 with a2 + 
- 1 (mod n) .  If M = M ( a ;  4,  n )  has coiled girth 4, then (substituting a by -a if 

necessary) every coiled 4-cycle in M has a type sequence 

Furthermore, every coiled 8-cycle has a type sequence of the form 

where 61, 62, S3 E { - 1 , l ) .  If M has coiled girth 8, all choices for 61, 62, and S3 are 

realizable. If M has coiled girth 4, all choices for S1, S2, and S3 are realizable except 

forb1 = 62 = 63 = 1. 



PROOF. First assume that M has coiled girth 4. Then either a3 + a2 + cr + 1 - 0 

(mod n), a3+a2+a-1 = 0 (mod n), a3+a2-a-1 = 0 (mod n), or a3-a2+a-1 

0 (mod n). Sincea4 r 1 (mod n), either a3+a2+a+l = 0 (mod n)  or a3+a2+a+l 

is a zero divisor in 2,. 

If a3 + a2 + a + 1 s 0 (mod n), then a3 + a2 + a - 1 f 0 (mod n) since 

2 f 0 (mod n), (r3 + a2 - (r - 1 f 0 (mod n) since 2(cr + 1) f 0 (mod n), and 

a3 - a2 + Q - 1 $ 0 (mod n) since 2(a2 + 1) f 0 (mod n). Therefore every coiled 

4-cycle has a type sequence (1, a, a2, cr3). 

Now suppose that a3 + a2 + a + 1 is a zero divisor in 2,. Since 2 is not a zero 

divisor, a3+a2+cr-1 $ 0  (mod n). Suppose that a3+cr2-a-1 0 (mod n). Then 

a3+a2+a+ l  - 2 ( a + 1 )  (modn)so tha t  0 = a 4 - 1  r ( a - l ) ( a 3 + a 2 + a + 1 )  E 

2(a - l)(a + 1) z 2(a2 - 1) (mod n). Thus a2 r 1 (mod n), contradicting the 

assumption that the order of a is 4. Hence a3 - a2 + cr - 1 - 0 (mod n) is the 

only possibility. But then (-a)3 + (-a)2 + (-a) + 1 = 0 (mod n). Therefore, 

since the graphs M(a ;  4, n) and M(-a; 4, n) are isomorphic, we may assume that if 

M(a ;  4, n) has coiled girth 4, then a3 + a2 + a + 1 = 0 (mod n). 

Next we explore coiled 8-cycles. As in the proof of the previous lemma, a coiled 

8-cycle has a type sequence of the form 

for some 6:) 6; E {-1,1), i = 0,. . . ,3, and this is associated with the equation 

EO + elcr + &2(r2 + &3cr3 0 (mod n), (3.14) 

where ~i = ? (6: + 6;) E {- 1 0 1 Applying the squaring elimination met hod 

described in the proof of Lemma 3.4.7 and using (cr2)2 1 (mod n), (3.14) yields 

and, squaring again, 

( ~ f  + E: - 2 ~ 0 ~ 2 ) ~  f (E: + E; - 2 ~ 1 ~ 3 ) ~  (mod n). 



The only posible values for e = e: + c i  - 2c0c2 and e' = e i  + e i  - 2cle3 are 0 , f  1 , f  2, 

3 ,  and 4. Thus whenever c2 = el2 (mod n )  and c2 # el2, n E {3,5,7,9,15)  is forced. 

But n is not a multiple of 5 nor is it a prime power so that we must have c2 = el2. 

Consequently, E' = f e so that ea2 f E (mod n) .  This eliminates all possibilities 

except E = 0 and e = 3. If e = 3, then ~ 0 . 5 2  # 0 and hence e' is even, contradicting 

the assumption E' = f e .  Hence e = e' = 0. Now, if none of the e ,  is zero, then 

(3.14) ,implies that our coiled &cycle has a subpath which is a coiled 4-cycle, clearly 

impossible. It is now easy to see that we must have c; = 0 for all i and the conclusion 

follows. 0 

We would now like to classify the non-coiled &cycles in M ( a ;  4 ,  n).  It is not 

difficult to check that the following are the only possible block sequences for a non- 

coiled 8-cycle: 

( a )  ( ( i , i +  l l i + 2 , i +  l , i , i +  1 1 i + 2 , i +  I ) ) ,  

( b )  ( ( i , i + l , i + 2 , i + 3 , i + 2 , i + l , i , i + l ) ) ,  

( c )  ((i,i + 1, i  + 2 , i  + l , i , i  + 1,i  + 2 , i  +3) ) ,  

( d )  ( ( i , i+  l l i + 2 , i +  l , i , i +  l , i , i +  I ) ) ,  

( e )  ( ( i , i + l , i 1 i + l , i + 2 , i + 3 , i + 2 , i + 3 ) ) ,  

( f )  ((i,i+ l , i , i+ l , i , i+ l 1 i + 2 , i + 3 ) ) ,  

( g )  ( ( i , i + l , i + 2 , i + 3 , i , i + 3 , i + 2 , i + l ) ) ,  

( h )  ((i,i+l,i+2,i+3,i+2,i+3,i+2,i+l)), 

( i )  ( ( i , i + l , i + 2 , i + 3 , i + 2 , i + l , i + 2 , i + l ) ) ,  

( j )  ( ( z , i + l , i + 2 , i + l , i + 2 , i + l , i + 2 , i + l ) ) ,  

(k) ( ( i , i +  l , i + 2 , i +  l , i + 2 , i +  l , i , i +  I ) ) ,  

( I )  ((i, i + 1, i ,  i + 1, i ,  i + 1, i ,  i + I ) ) ,  and 

(m)  ((i,i+l,i,i+l,i+2,i+l,i+2,i+3)). 

Lemma 3.4.9 Let n be odd and let the order of a be 8 with a4 - -1 (mod n) .  

The following is the list of all type sequences of the non-coiled 8-cycles occurring 



in M(a;  4, n). Each type  sequence is preceded by a letter corresponding to i ts  block 

sequence. 

(a) (1, a, a ,  -1, -1, -a, -a, 1) 

PROOF. A cycle with a given type sequence occurs in the graph M(a ;  4, n) if and 

only if the corresponding congruence equality holds. For each of the block sequences 

(a)-(m) we will find all possible non-equivalent type sequences associated with it. 

To the congruence equation of each of the type sequences we will apply the squar- 

ing elimination method from the proof of Lemma 3.4.7 to either confirm the type 

sequence or prove that it does not occur. 



Throughout this proof let S1, 62, S3 E {- 1 , l ) .  

The block sequence (a) yields one of the following type sequences: 

(a1) (1,61~,61% -1, -1, -&a, -&a, I) ,  

(a2) ( L b ,  S l a , l , l , S l ~ ,  61% I) ,  

(a3) (1,Sla,61a,1,1,-Sla,-61a,1), or 

(a4) (1,61a, 61% -1, -1,61a, &a, 1). 

The type sequences (az), (a3), and (a4) imply 4+4S1a = 0 (mod n), 4 = 0 (mod n), 

and 4Sla - 0 (mod n), respectively, and each of these congruences is easily seen to 

yield a contradiction. The congruence equation for (al), however, holds for any n 

and any a .  We obtain ( l ,a ,a , -1 , -1 , -a , -a ,1)  and (1 , -a , -a , -1 , - l , a ,a , l ) ,  

but these two type sequences are equivalent hence it is enough to make a note of 

The block sequence (b) requires one of these two type sequences: 

(b l )  (1,S1a,S2a2,S2a2,S1a,1,1,1) Or 

(b2) (1, &a, 62a2, 62a2, -&a, 1,1,1). 

The type (bl) gives 

4 + 2S1a + 2S2a2 G 0 (mod n) (3.15) 

which (after applying the squaring elimination method) implies n E (9,171. But 

4 9 )  = 6 is not divisible by 8 so that n = 17. Using a = 2 (by Lemma 3.4.6 we 

may pick any order-eight element of 2:) we can check that the equation (3.15) is 

satisfied only for 61 = 1, S2 = -1, and this produces the type sequence 

From (b2) we get 4 + 2S2a2 0 (mod n), which yields n = 5, a contradiction. 

The block sequence ( c )  is associated with one of the following type sequences: 

( ~ 1 )  (1, &a ,b la ,  171, -61% 62a2, 63a3), 



3 + Sla + S2a2 + &a3 = 0 (mod n)  (3.16) 

and this implies n = 17. Using a = 2 we can see that (3.16) can be satisfied only 

when S1 = S2 = S3 = 1 and thus we obtain the type sequence 

(1 ,2 ,2 ,1 ,1 ,  -2, 22, 23). 

The equation for ( c2 )  is 

- 1 + %la + S2a2 + &a3 f 0 (mod n )  (3.17) 

and again this implies n = 17. Using a = 2, (3.17) can hold only when S1 = 62 = 

63 = 1. Thus we get 

(1,2,2,-1,-1,2,22,23).  

The equation for (c3)  is -1 + S1a + S2a2 + S3a3 = 0 (mod n). Since the graph 

has coiled girth 8,  it can not be satisfied. 

The equation for ( c4 )  is 3 + 3S1a + S2a2 + S3a3 G 0 (mod n)  and this implies 

n E (25,491, which is impossible since neither ~ ( 2 5 )  = 20 nor ~ ( 4 9 )  = 42 is divisible 

by 8. 

The block sequence (d) is associated with the type sequence 

The equation is 6 + 2S1a 0 (mod n) ,  which implies n = 41. Using a = 3,  S1 = -1 

is forced and so we have the type sequence 

With the block sequence (e) we are looking for the type sequence 



which requires 

3 + 610 + 362a2 + &a3 z 0 (mod n). 

By squaring elimination we need n = 41. Using a = 3, we can check that there are 

two possibilities: either 61 = S3 = -1 and 62 = 1, or S1 = 62 = -1 and 63 = 1. We 

thus obtain two non-equivalent type sequences, 

and 
2 3 (1,l) 1) -3, -32) -32) -3 ) 3 ). 

The block sequence (f)  requires the type sequence 

and so the equation is 

This implies n E (73,971. 

Using a = 10 for n = 73, (3.18) can hold only when 61 = -1 and S2 = 63 = 1. 

We obtain the type sequence 

For n = 97 and a = 33, (3.18) can be satisfied only when S1 = 62 = 63 = -1 

giving the type sequence 

In the rest of the proof we will show that cycles with block sequences (g)-(m) 

do not occur. 

The block sequence (g) requires an equation of the form 

2 + 2ela + 2e2a2 + 2e3a3 G 0 (mod n) 



for some €1, €2 E {- 1,0,1) and t g  E {- 1, l ) .  Dividing this equation by 2, we get 

the equation (3.13) with €0 = 1 and €3 E {- 1 , l ) .  It now follows from the proof of 

Lemma 3.4.7 that this equation can not be satisfied. 

The block sequence ( h )  is associated with one of 

2 + 2b1a + 4b2a2 = 0 (mod n) 

and 

2 + 4b2a2 = 0 (mod n). 

The first equation implies n = 17, but a = 2 does not satisfy any equation of this 

form. The second equation implies n = 5, a contradiction. 

The block sequence (i) needs one of the following two equations: 

2 + 4b1a + 2b2a2 r 0 (mod n) 

and 

2 + 2Sla + 2h2a2 = 0 (mod n). 

The latter is impossible by the proof of Lemma 3.4.7, and the first one implies 

n E {3,9), a contradiction. 

The block sequence (j) is associated with 

2 + 6 b 1 a = 0  (mod n), 

which implies n = 41. But using a = 3, the equation can not be satisfied. 

The block sequence (k) implies 

4 + 4Sla = 0 (mod n), 

which is easily seen to be impossible to satisfy. 

The block sequence ( I )  requires 8 0 (mod n), clearly impossible. 

The block sequence (m) implies 

3 + 3b1a + &a2 + &a3 = 0 (mod n), 



which is the same equation as for (c4) and hence impossible. 

This completes the proof. 

We continue with an analogue of the previous lemma for the case that the order 

of a is 4. 

Lemma 3.4.10 Let n be odd such that n $ 0 (mod 5) and let a have order 4 with 

a2 $ -1 (mod n). The following is the list of all type sequences of the non-coiled 

8-cycles occurring in M = M ( q 4 , n ) .  Each type sequence is preceded by a letter 

corresponding to its block sequence. 

M has coiled girth 8 : 

(a) ( l ,a ,a , -1 , -1 , -a , -a , l )  

M has coiled girth 4 : 

(a) ( l , a ,a , -1 , -1 , -a , -a , l )  

( ~ 3 )  (1, -a, -a, -1, - 1 , ~ ,  -a2, -a3) 

PROOF. We shall examine the type sequences associated with the block sequences 

(a)-(m) in a way very similar to that of the proof of Lemma 3.4.9, except that when 

applying the squaring elimination method we are now using (a2)2 r 1 (mod n). We 

also let 61, 62, S3 E {- 1,l) and we label the type sequences as before. Notice that, 

since a2 $ -1 (mod n), n is not a prime power. 

The case with the block sequence (a) is done in exactly the same way as in the 

proof of Lemma 3.4.9. 

The type sequence (bl) requires 4 + 2Sla + 2S2a2 r 0 (mod n). This implies 

-(4& - l)a2 5 (mod n) and (462 - 25 (mod n). Since 9 r 25 (mod n) is 

impossible, we must have 62 = - 1. Hence 5a2 5 (mod n). Since gcd(n, 5) = 1, 

this implies a2 I 1 (mod n) which is a contradiction. 

From the type sequence (b2) we get 4 + 2S2a2 r 0 (mod n), which yields n = 3, 

a contradiction. 



The equation for the type sequence (cl) is 3 + + S2a2 + S3a3 r 0 (mod n). 

This implies (361 - l)a2 = 6163 - 5 (mod n) and (3S1 - 1)2 (6163 - 5)2 (mod n). 

Since none of 4 G 16 (mod n), 4 = 36 (mod n), and 16 r 36 (mod n) can hold, 

S1 = -1 and 6163 = 1. But then 4a2 - 4 (mod n), a contradiction. 

The equation for the type sequence (c2) is - 1 + 3S1a + S2a2 + S3a3 = 0 (mod n). 

Again, this implies 4a2 - 4 (mod n). 

The type sequence (c3) is (1, S1 a, S1a, - 1, - 1, -S1a, b2a2, S3a3) and the corre- 

sponding equation is -1 + S1a + S2a2 + S3a3 z 0 (mod n). This equation can 

be satisfied if and only if M has coiled girth 4. In that case we may assume by 

Lemma 3.4.8 that S1 = S2 = S3 = -1. Hence M contains &cycles with a type 

sequence 
2 (1, -a, -a, -1, -1,a, -a , --a3). 

The equation for the type sequence (c4) is 3 + 3S1a + S2a2 + b3a3 = 0 (mod n). 

This implies (362 - 5)a2 36163 - 5 (mod n) and (362 - 5)2 = (3S1S3 - 5)2 (mod n). 

Hence either 4 G 64 (mod n), 2a2 = 2 (mod n), or 8a2 = 8 (mod n). The first pos- 

sibility implies that n divides 15, which is impossible, and the other two possibilities 

contradict the fact that the order of a is 4. 

The block sequence (d) is associated with the equation 6 + 2Sla E 0 (mod n). 

This implies n = 5, a contradiction. 

With the block sequence (e), the equation 3 + Sla + 3&a2 + S3a3 z 0 (mod n) 

is needed. This implies a2 - f 1 (mod n), a contradiction. 

The block sequence (f)  requires 5 + Sla + S2a2 + S3a3 0 (mod n). This implies 

n E {3,5,9,15,27,45) which is a contradiction since each of these numbers is either 

a prime power or a multiple of 5. 

The block sequence (g) yields an equation of the form 1 + &la + & 2 a 2  + c3a3 G 0 

(mod n) for some el, e2 E {- 1,0,1) and c3 E {- 1,l). By the proof of Lemma 3.4.8, 

this equation can not be satisfied to give a type sequence of an 8-cycle. 

The block sequence ( h )  is associated with one of 2 + 2S1a + 4&a2 r 0 (mod n) 

and 2 + 4S2a2 3 0 (mod n). The first equation implies a2 = 1 (mod n) and the 

second equation implies n = 3. 



The block sequence (i) needs one of the following two equations: 2 + 4&a + 
2b2a2 = 0 (mod n)  and 2 + 2b1a + 2b2a2 r 0 (mod n). The latter is impossible by 

the proof of Lemma 3.4.8, and the first one implies a2 - 1 (mod n). 

The block sequence (j) is associated with 2 + 6bla 0 (mod n), which implies 

n = 5, impossible. 

The equations 4 + 4Sla 0 (mod n) and 8 = 0 (mod n)  for the block sequences 

(k) and (1)) respectively, are easily seen to be impossible to satisfy. 

The equation for the block sequence (m) is the same as for the type sequence 

(c4) and hence impossible. 

This covers all cases. 0 

Definition 3.4.11 The triple (kl, k2, k3) is called the 2-path code of the graph 

M(a ;  4, n) if every 2-path with the type sequence (I ,  1) lies in exactly kl 8-cycles, 

every 2-path with the type sequence (a3, 1) lies in exactly k2 8-cycles, and every 

2-path with the type sequence (-a3, 1) lies in exactly k3 8-cycles in M(a ;  4, n). 

Similarly, (kl, k2, k3) is called the 2-path code of a given type sequence of an 

8-cycle if every 2-path with the type sequence (1 , l )  lies in exactly kl 8-cycles, 

every 2-path with the type sequence (a3, 1) lies in exactly k2 8-cycles, and every 

2-path with the type sequence (-a3, 1) lies in exactly k3 &cycles with the given 

type sequence. 

Lemma 3.4.12 Let n be odd, let the order of a be 8 and let a4 r -1 (mod n). If 

n 4 {17,41,73,97), then the 2-path code of M ( a ;  4, n)  is (2,5,5). The 2-path code 

of M(2; 4,17) is (8,12,12), the 2-path code of M(3; 4,41) is (13,12,7), the 2-path 

code of M(10; 4,73) is (6,8,6), and the 2-path code of M(33; 4,97) is (6,6,8). 

PROOF. First notice that it is enough to count the number of &cycles for the 2-paths 

with jump sequences (1,1), (a3, I ) ,  and (-a3, 1). 

By Lemma 3.4.7, a 2-path with a jump sequence (a3, 1) or (-a3, 1) lies in exactly 

four coiled 8-cycles, and a 2-path with jump sequence (1,l) does not lie in a coiled 

8-cycle. 



Thus it remains to consider the non-coiled &cycles. By Lemma 3.4.9, the only 

possible type sequences for a non-coiled 8-cycle are those denoted by (a)-(f2). For 

each type sequence, all possible jump sequences are obtained by multiplying each 

term of the type sequence by a', i = 0,1,. . . ,7. Here, one has to be careful, because 

two distinct powers of a might give the same jump sequence. (This happens if the 

sequence has some kind of symmetry.) Once we have found all possible pairwise 

distinct jump sequences of a given type sequence, we simply count the number of 

occurrences of the jump sequence of a 2-path. Note that (- 1, -I),  (-1, -a3), and 

(- 1, a3) count as occurrences of (1, I ) ,  (a3, I) ,  and (-a3, I) ,  respectively. With jump 

sequence (1,l)  we have to distinguish between occurrences of (1,l) with the block 

sequence ((i + 1, i, i + 1)) and those with corresponding block sequence ((i, i + 1, i)) . 
But since the number of occurrences of the subsequences of the form ((i + 1, i, i + 1)) 

in a block sequence of any cycle is the same as the number of occurrences of the 

subsequences of the form ((i, i + 1, i)), we can limit ourselves to counting the number 

of occurrences of the jump sequence (1,l)  with corresponding block sequence of the 

form ((i + 1, i, i + 1)). 

Following the above method for every type sequence we obtain the following 

table. 

type sequence 2-path code 

(a) ( I ,  a, a, -1, -1, -a, -a, 1) (27 1) 1) 

( b )  (1, a, -a2, -a2, a, 1,1, 1) (2 , l )  1) 

(CI) ( I ,  a, a) 1)17 -Q, a2 ,  a3) (2,3, 3, 

( ~ 2 )  ( l , a , ~ , - 1 , - l , a , a ~ , a ~ )  (2,393) 

(4 ( 1 7 - a > - a 7 1 1 1 7 1 ) 1 ) 1 )  (3>1,0) 

(el) (1,1,1, -a, a2, a2, a2, -a3) (493, 1) 

(e2) (1,1,1, -a, -a2, -a2, -a2, a3) (473, 1) 



type sequence 2-path code 

Using Lemma 3.4.9, we now sum up the 2-path codes of the type sequences cor- 

responding to the given value of n to obtain the 2-path code of the graph M(a ;  4, n). 

This completes the proof. 

Lemma 3.4.13 Let n be odd such that n $ 0 (mod 5) and let a have order 4 with 

a2 f - 1 (mod n). The 2-path code of M = M(a;  4, n) is (4,6,9) if M has coiled 

girth 4, and (2,5,5) if M has coiled girth 8. 

PROOF. We use the method described in the proof of the preceding lemma and the 

information about the 8-cycles from Lemmas 3.4.8 and 3.4.10. The only difference 

is that, since - 1 $! {ai : i = 0,1,2,3), all possible jump sequences are obtained 

from a given type sequence by multiplying each term of the type sequence by a' and 

-ai, i = 0,1,2,3. Again we have to make sure that we count occurrences of the 

jump sequences (1, I ) ,  (a3, I) ,  and (-a3, 1) only in distinct jump sequences of the 

8-cycles. 

If M has coiled girth 8, we obtain the following table. 

type sequence 2-path code 

(a) ( l , a , a , - I , - I , - a , - a , I )  ( 2 , L l )  

coiled (0747 4) 

If M has coiled girth 4, the table is somewhat different. 



type sequence 2-path code 

(a) ( l , a ,a , -1 , -1 , -a , -a , l )  (%17 1) 

(cg) ( I ,  -a, -a, -1, -1, a ,  -a2, -a3) (27 2, 4) 

coiled (0737 4) 

Summing up the 2-path codes of the type sequences of the cycles we obtain the 

result. 0 

We now have all the information we need to prove that certain graphs M(a;  4, n) 

are $transitive. 

Lemma 3.4.14 Let n be odd. In addition, either let the order of a be 8 with cr4 r 

-1 (mod n) or let the order of a be 4 with a2 $ -1 (mod n) and n $ 0 (mod 5). 

Let (kl, k2, k3) be the 2-path code of the graph M = M(a;4,n) .  If k2 # k1 # k3, 

then M is f -transitive. 

PROOF. First we show that any automorphism of M that fixes two adjacent vertices 

is the identity. 

Suppose that a E Aut(M) fixes the vertices v,O and v:. Then a fixes the set 
3 {v!~, v:,~, v,,) setwise. Since the 2-paths ~ 3 , ~  v,O v: and v:, v,O v,' are contained in 

k2 and k3 8-cycles, respectively, and v', v,O v,' is contained in kl # k2, kg &cycles, 

a must fix d l  as well. Hence a fixes {v!,, vZl+,, v~,- ,)  setwise. Now, the jump 

sequence of v!,+, 01, v: is (-a, I), which is equivalent to (a3, I ) ,  so that v!,,+, vLl v,O 

lies in k2 &cycles. Similarly, the jump sequence of v!,,-, vL1 v: is (a, I) ,  which is 

equivalent to (-a3, l), SO that vZ1-, vll  v: lies is k3 8-cycles. Since v!, v!, v; lies 

in kl &cycles, v02 must be fixed by a. And so on. 

Since n is odd, MIVO, V1] is a 2n-cycle and so we can see that a must fix V0 and 

V1 pointwise. Hence a must be the identity. 

Now suppose that M is arc-transitive. Then. there exists an automorphism I3 

that interchanges the vertices v,O and v,'. Since O2 fixes v,O and v:, O2 must be the 

identity by the above argument. Therefore I3 has order 2. 



Clearly, 8 interchanges {v!, , ~ 3 ~ 3 ,  $3 } and {vi, v;-~,  v?+,}. NOW, the 2-path 

vi l  v,O v: cannot be mapped to v ? - ~  v,' v; or v:+, vi vt since kl # k2, k3, hence 8 inter- 

changes v', and v;. Then 8 interchanges {@,, vll+,, v3,-,} and {vi, vi-,, , v;+,,}, 

which implies, by an argument similar to the above, that 8 interchanges vO2 and vi. 

And so on. 

Again, since n is odd, MIVO, V1] is a 2n-cycle and so we can see that 8 inter- 

changes V0 and V1. Consequently, 8 interchanges V2 and V3. This implies that any 

coiled 8-cycle is mapped to a coiled &cycle. 

Let's see how 8 acts on the coiled &cycles that contain the 2-path v23 v,O v,'. First 

we assume that the coiled girth of M is 8. By Lemmas 3.4.7 and 3.4.8, v,O v,' is 

contained in the coiled 8-cycles 

We have seen that 8(v$) E {v;+,, v;-~). 

If B(V:~) = v?+,, then B(v:+,) = v& since O2 = 1. Hence 8(C2) contains the 

3-path v?+, v,' v,D v23 and so B(C2) E {CI, Cz). 
If 8(C2) = C2, then 8 interchanges ~:+,-,2+,3 and 2)~-,2+,3. But, since MIVO, V1] 

is a 2n-cycle, 8 reverses exactly two edges on this cycle, that is, vg vi and v? vi. This 

forces a - a2 + a3 0 (mod n), which contradicts the proofs of Lemmas 3.4.7 and 

3.4.8. 
1 If 8(C2) = Cl, then 8 interchanges v:+,+,~+,~ and ~,- ,~+,3 .  But the action of 

2 3 8 on VO is given by B(v7) = v!j+l so that -a - a - a a - a2 + a3 (mod n) is 

forced. This implies a2 -1 (mod n), a contradiction. 

Hence 8(vi3) = v:-, SO that 8(C3) E {C3, C4}. By an argument similar to 

the above, B(C3) = C3 forces -a + a2 + a3 r 0 (mod n), and 8(C3) = C4 forces 

a - a2 - a3 E -a - a2 + a3 (mod n), which are both easily seen to be impossible. 



If the coiled girth of M is 4, the only coiled 8-cycles that contain the 2-path 
2 v23 v: v: are C2, C3, and C4. If O(V;~) = v;+,, then 8(C2) = C2. If 8(vi3) = vl-,, 

then f3(C2) E {C3, C4). In both cases, a contradiction is obtained as before. 

This proves that M(o;  4, n) can not be arc-transitive. 0 

Lemma 3.4.15 The graphs M(a; 4,73) and M(u; 4,97) are f -transitive. 

PROOF. First we show that M(10; 4,73) is $-transitive. Suppose not. Then there 

exists an automorphism 8 that interchanges the vertices v,O and v,'. Hence 19 inter- 

changes {vll ,  ~ 3 ~ 3 ,  vi3) and {$, vt-,, vt+,). By Lemma3.4.12 the 2-paths v', v: v:, 
3 0 1  0 1 0  va3 vO v ,  v2 v1 vO, and v;+, v: v: lie in six &cycles each, and the 2-paths v:,, v,O vi 

and vt-, vi v: lie in eight 8-cycles each, and thus 8 must interchange da3 and vl-,. 

Repeating the same argument several times we can see that 0 fixes the cycle 

interchanging pairs of its vertices in the obvious way. By Lemmas 3.4.7 and 3.4.9, 

the 3-path P = v: v: vf-, v;-,+,, lies in exactly three 8 cycles; one is C1 and the 

other two are 

By the same lemmas, there are exactly three 8-cycles that contain the 3-path 

P' = ~ i ~ - ~ ~  v3_a3 v: v:; one is C1 and the other two are 

and 
0 1 2  3 2 3 2 3 0 

= '0 '1 '1+a 'l+a-a2 vl+a-2a2 'l+a-3a2 va2-a3 '-a3 '0' 



Since 8 fixes C1 and interchanges P and PI, it maps {C2,  C3)  onto {Ci ,  C;). It 
1 0 follows then that 8(v~-,+,2+,3) = va+a2-a3 and 8 ( ~ ~ - ( . + ~ 2 + ~ 3 )  = ~ : + ~ - ~ ~ 2  at the 

same time, an obvious contradiction. 

Hence M ( a ;  4,73) is $-transitive. 

Similarly we prove that M(33; 4,97) is $-transitive. Suppose M(33; 4,97) is arc- 

transitive. Then there exists an automorphism 8 that interchanges the vertices vg 

and v,' . From the 2-pat h code of M ( a ;  4,97), it follows that 8 fixes the 8-cycle 

3 3 2 by interchanging pairs of its vertices ( v i ,  v,'), (TI:+,, va3),  ( v ~ + ~ + ~ ~ ,  va2+a3), and 
1 

( ~ ? + ~ + ~ 2 + , 3  7 va+a2+a3 ). The 3-path P = v,O v,' v:+, v;+a+a2 lies in exactly three 8- 
cycles; one is Cl and the other two are 

and 
0 1 2  3 0 3 0 3 0 

C3 = v~ v1 %+a v1+a+a2 vl+a+a 2+&3 v-3a3 v-2a3 v-a3 vo- 

The three path PI = vi3 vg v,' also lies in exactly three 8-cycles; one is Cl 
and the other two are 

Since 8 fixes Cl and maps P to PI, it maps {C2,C3) onto {C i ,  C;). Hence 
1 ~ ( v Y + + , + , ~ + , ~ )  E { ~ - ~ + ~ 2 + ~ 3 , ~ , ' + ~ ~ } .  But we have seen before that B ( v ~ + ~ + ~ , + , ~ )  

- - v,+,~+,~. 1 Hence either -a + a2 + a3 r a + a2 + a3 or 1 + 4a e a + a2 + a3 

(mod n) ,  which implies either a r 0 or 136 r 0 (mod 97), a contradiction. 

Hence M ( a ;  4,97) is f -transitive. 0 

We are now ready for the main result. 



Theorem 3.4.16 If the order of a is 8 and a4 = -1 (mod n), the graph M(a ;  4, n) 

is $-transitive whenever it exists. 

PROOF. If n = 0 (mod 4), then M(a;4,n)  does not exist by Lemma 3.4.1. If 

n is odd, then M(a ;4 ,n)  is &transitive by Lemmas 3.4.12, 3.4.14, and 3.4.15. If 

n r 2 (mod 4), then, by Lemma 3.4.2, M(a; 4, n) consists of two disjoint copies of 

M ( a  mod ;; 4,;) so that it is :-transitive by the previous observation. 0 

Notice that the graph M(a;4,n)  exists for any prime n such that 8 divides 

cp(n) = n - 1. By Dirichlet's Theorem 1.0.12 there are infinitely many primes of 

the form 8k + 1 so that Theorem 3.4.16 produces an infinite family of $transitive 

graphs of degree 4. The smallest member of the family has 68 vertices. 

Theorem 3.4.17 The graph M(a;  4, n) is $-transitive if the order of a is 4 with 

a2 $ -1 (mod n) and n is not a multiple of 4 or a multiple of 5. 

PROOF. If n is odd, the result follows from Lemmas 3.4.13 and 3.4.14. If n r 2 

(mod 4), M(a; 4, n) consists of two disjoint copies of M(a mod ;; 4, ;), which are 
1 Z-transitive. 0 

Theorem 3.4.17 produces another infinite family of +-transitive graphs. We can 

see this as follows. Let p, q # 5 be distinct primes congruent to 1 modulo 4 (by 

Dirichlet's theorem there are infinitely many such primes), say p = 4k + 1 and 

q = 41 + 1. Let n = pq. Then, by Theorem 1.0.11, 2: is isomorphic to the direct 

product of cyclic groups (b) and (c) of orders p - 1 and q - 1, respectively. Since 

( b 2 k ~ 1 ) 4  = ( c ~ [ ) ~  = 1 and (bk~21)4 = (b2k)2 = 1, (b) x (c) contains two elements, bZkc1 

and bkc21, whose squares are distinct elements of order 2. Consequently, there exists 

a E 2; of order 4 such that a2 $ -1 (mod n). For this a, the graph M(a ;  4, n) is 

l-transitive 2 by Theorem 3.4.17. 
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