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Abstract 

The objective of this research is to explore interactive intelligent design w~th  visual 

a;& to the designer. Straightforward CAD/graphics methods work at too low a 

level; they cannot interpret drawn objects. Through an appropriately structured 

knowledge base, an expert system can supply the needed interpretation, can keep 

track of design relationships; it is also desirable if the expert system can play a more 

active role, suggesting design steps. Further, since automated design seems unlikely 

and since design is an iterative interactive process, an approach whereby both system 

and designer contribute to the solution is desired. Further, since designers work 

visually, visualization tools are needed to supply graphic feedback. 

This thesis describes FLOWER, Floor Layouts With Ezpert Recommendations, a 

system for assisting with the layout of the floor plan of a house. A model-based rea- 

soner with constraint propagation was combined with computer graphics visualization 

techniques to achieve this goal. The reasoner generated information related to the 

domains of design variables and constraints between them. This information is made 

available to the graphics side of the system for visualization, helping the designer 

see and understand the design space at each step of the interactive, iterative design 

P-. 

FLOWER and the user work together in a mixed-initiative style: the system gives 

&hintsn to the designer about the outcome of certain design choices. For example, 

when the designer choose8 to piace a room, the system shows the acceptable areas 

of placement for that particular room. The system also provides feedback about the 

choices, approving acceptable ones while indicating and explaining errors when they 
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CHAPTER 1 

Irrt roduct ion 

1.1 Motivation of Thesis 

The objective of this thesis is to implement an interactive intelligent design appli- 

cation with visual aids to the designer. Visualization helps a designer explore data 

and information in order to gain greater understanding and insight into the design 

process. Several existing techniques taken from ob ject-oriented expert systems, com- 

puter graphics and user interface methodology were combined in order to achieve this 

goal- 

A system was < reated that assists with the design of a floor plan of a house. Using 

current computer graphics technology alone for that purpose is limited in that it lacks 

the ability to interpret the drawn objects. Lines are simply lines without a specific 

meaning such as "these lines represent a room", with all the properties of a room, 

such as walls, neighbors and other relations to other rooms. These constraints can 

tie rooms together or separate them. The interpretation of the drawing is uampletely 

left to the imagination of the designer. An expert system can supply the needed 

interpretation through an appropriately structured knowledge base, and can easily 

k p  t d  of many design relationships. However, an expert system on its own, i.e. 
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without visualization tools and support, cannot supply needed visual feedback to 

the designer. For instance, without appropriate graphic indications from the system, 

consequences of poor or incorrect design choices are difficult for the designer to see. 

Even those previous systems with a graphics environment and an expert system 

suffered from a certain lack of interactiveness: i.e. their approach was to request a 

design goal from the designer and then work toward a soh tion with no further input. 

If not satisfied with the solution, the designer would have to restart from scratch, 

completely discarding the solution, even if some elements of it were acceptable. Thus 

we see the need to support an interactive, mixed-initiative approach. 

This thesis presents a novel approach by creating a system that provides the user 

with expert aid with FLOWER and the user working together in a mized-initiative 

style. First, the system provides feedback about designer choices, "approvingn accept- 

able choices and indicating errors when they occur. For some error types, the designer 

may proceed but the error is marked. Other types of errors are unacceptable, so the 

system would not accept such requests from the designer. Second, the system gives 

suggestions to the designer about the outcome of certain design choices. For example, 

when the designer chooses to place a room, the system shows the acceptable areas of 

placement for that particular room, taking the current layout and constraint set into 

consideration. 

1.2 The Design Process 

The area of intelligent CAD has long been of interest to researchers. Before applying 

intelligence to CAD, it is helpful to understand how human perform this task and 

much has been written (e-g. [I], [2], [37]) on design itself, as a process. The design 

process can be divided into subtasks. Artificial intelligence can be applied to any of 

these. However, A1 has so far only been successful in some of these ([2]). 
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Rosenmann et.al. ([41]) describe design as a "goal-oriented decision-making activ- 

ity in which, given a set of goals, a designer prescribes the form of some artifact so as 

to satisfy a set of goals" and suggest that different levels of design can be achieved. 

At the Ueasiestn level, when given a problem, one simply selects a solution from an 

existing set of solutions. The goal is to make some modifications, if required. At 

the next level, the designer knows the general form of the artifact, but the parts and 

parameters of it have to be chosen. At the top level, the designer does not know even 

the general form of the artifact. The solution is generated creatively, with trial and 

error. The authors see expert systems as a tool that can be applied to the simplest 

level of the design and in lesser ways at more advanced levels. 

Pylyshyn ([37]) views problem-solving as a process of search through a Problem 

Space. The problem statement starts with a specification of a set of states that 

constitute the problem space, a set of operators that can be used to move about in 

that space, a state (or set of states), that constitutes the starting state(s), and a state 

(or set of states;, that is a god state. Problems which can be characterized in this 

way are called Well Structured Problems. Problems which lack one or more of these 

features are called IZl-Structured Problems. The problem with the design process is, 

that it is clearly Ill-Structured. Design problems do not have a fixed problem space to 

search through: finding one is part of the problem. GeneralIy ill-structured problems 

are solved by formulating one or more well-structured subproblems and attempting 

to solve them. Pylyshyn sees expert systems as capable of automating the design 

process, but they need to satisfy certain requirements. As an example, such systems 

must have the capabiIity to express mutuai constraints in such a way that consistency 

and progressive constraint restriction can be monitored automatically. 

In [1] and [2], Akin attempts to give a descriptive model of the design behavior 

of architects. Ln his view, before attempting to make an expert system to model the 

process, we must be familiar with the practice of design. Akin is skep t id  ?bout 

existing expert systems in CAD, especially regarding their participation in the design 

process. The problem he sees is that there is very little known about the practical 
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expertise of the architects. He also observes that there may be debate and disagree- 

ment about the correctness or goodness of design even among experts. The existing 

expert systems are no more than helping tools in the various stages of design; they 

do not automate the whole design process. However, he suggests that certain require- 

ments must be considered in the development of expert system for design. One of 

these was in fact the same as one of Pylyshyn's realizations: it should be possible to 

organize problem constraints into a hierarchy, distinguishing between local and global 

constraints. Also special representations of design elements are needed so that de- 

pendencies between the hierarchically organized constraints and design elements can 

be automatically propagated. Such a tool would allow the designer to predict the 

consequences of modifications made at one level to elements on another. 

Architectural design is generally a very complex process and is usually considered 

as an area for human endeavgr and not for computers. The contribution of com- 

puters and CAD to automated design has mostly been limited to drawing creation. 

Intelligence still needs to be introduced. 

Currently expert systems are introduced only in low-level architectural design 

involving routine, simple tasks. Such expert systems are able to perform classification 

and decision-making, when there is a known number of decision options. When the 

knowledge is described, the expert systems can be created to perform certain 'design" 

tasks. The existing expert systems are able to generate Ucorrectn answers as a human 

would, but they are not able to *explainn the relationships that make those particular 

choices right. At present, it is unrealistic to construct models of architectural design, 

without oversimplification of the design task. I believe that in the future this would 

be the aim of the researchers of this area. 

Through the architectural design process, there are certain Design Codes, which 

must be satisfied. Design codes include physical laws, heuristic rules and experimental 

knowledge. It seemed a natural step to implement expert systems for checking whether 

the design meets the code requirement. Such expert systems would not do design, 

but would be a useful aid through the process. One of the significant difficulties 
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of the implementation of such systems lies in acquiring the knowledge, even though 

the codes are already structured. Several authors ([I41 and [40]) proposed expert 

systems to make use of such codes. The usefulness of such systems is significant in 

the architectural design, even though they are not part of the design process, only 

assistants to it. These systems can free the designers from routine tasks so they can 

concentrate on the design itself. 

Other expert systems (e.g. Fixer ([15]), HI-RISE ([27], [28] and [29]), etc.) were 

developed to assist the designer in specific architectural tasks. These systems will be 

described in the next chapter. 

As we can see from the above there has long been a need for a system that can 

support design in a more intelligent way. It is not enough any more to simply rely on 

passive participation in the design process. Of course there are routine tasks to be 

performed throughout a design; for example existing expert systems are capable of 

checking certain results. However, if we want a system that can be a real help when 

designing, we wish the system to play a more active, supportive role. We want our 

system to suggest design steps. 

We also expect to be able to try out new ideas while taking design step.3. We would 

like to make a step, see the outcome and then proceed or discard the step based on 

some feedback from the system. In this way we could carry on with the trial and 

error inherent in the design process. None of the expert systems mentioned above 

have this ability of providing this kind of expert aid. As a consequence, FLOWER 

was created to narrow the gap between systems that only passively participate in the 

daign process and those that take over the design. 

1.3 Contribution of Thesis 

The previous section showed that although expert systems have been successfully 

used in the design process, there is a problem in that they are not capable of working 
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interactively with the designer. They are passive problem solvers and give no or just 

minimal help to  explain their actions. CAD systems are interactive, however, the 

designer is left alone to make all design decisions. 

Therefore, the aim of our research was to create a system capable of 

visualization of domain of design variables and design constraints: users actually 

want to see how their design space changes as a result of their actions 

letting the user design in a "human" way by means of trial and error and not 

being fully automated 

giving visual suggestions or guidelines on how to proceed with the design 

checking design decisions and making corrective actions or marking problem 

steps 

FLOWER was created as a first step toward fulfilling the above requirements. As 

noted in Chapter 2, we were unable to find a description of an existing system that 

addressed all of these goals, though the need for such system is recognized by many. 

The system closest to  meeting our goals simply produced a long textual explanation 

for the user about the system's decision ([3]). 

Thesis Organization 

A literature review is presented in Chapter 2. First, we briefly describe a few expert 

systems in architectural design, then we give a short overview on visualization. Finally, 

we present design systems using constraints. The main problem is that we were unable 

to find papers which directly dealt with constraint visualization. It seems that the 

lack of readily available constraint processing systems resulted in works where the 

main focus mas on how to implement the constraints as opposed to wing them for 

Herent purposes. 
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The scope of our system is presented in Chapter 3. The overall problem that 

FLOWER addresses is defined first. The solution methodology is then explained, 

followed by the user's view of the system. Finally, the details of our visualization 

methods are described. 

The fourth chapter describes the architecture of the system and the fifth chapter 

gives an overview of the user interface of the program. 

The final chapter presents an evaluation of the system, outlines direction for future 

work and concludes with a brief summary. 

A User's Manual is included in the Appendix. 



CHAPTER 2 

Literature Review 

In this chapter we review relevant literature on our area of research. First we describe 

some of the eisting expert system in architectural design in Section 2.1. These 

systems were automating design and were not attempting to involve the user in the 

design process. Next, in Section 2.2 we look at the use of constraints as a way to 

express design goals. We describe some of the early systems first. The common finding 

of these systems is that maintaining constraints should be left for the underlying 

system and should not be the responsibility of the user. Several ways of dealing with 

constraints were proposed by various authors. However, we want to do more than 

just use constraints. Our goal is to create a design environment where the system can 

help the designer by suggestion and explanation as opposed to just automating the 

entire design process. We want to aisualize constraints and domains of variables, as a 

pictorial explanation is almost always more beneficial to the user than a long textual 

one. 

Thus next we look at visualization in general and in particular visualizing rela- 

tionships. In order to design our user interface such that it facilitates design snd 

shows relations and design decision at the same time we reviewed general guidelines 

first. We found thd the key in designing sucessful interface was in understanding the 

risers and their tasks and then matching the interface to these requirements. Next, we 
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decided to visualize relations using colours, thus we reviewed papers on colour usage 

in user interfaces. 

In the last section we review in more detail those papers most related to our 

work. They can be categorized in two areas. First are those describing work on 

automated design systems, all of which use constraints as a way of expressing design 

goals. However, the user is left out of the design process. Only the final solution 

is presented to him/her. Papers in the second group describe systems where users 

took part in the design. In the one case, (s)he could browse through partial results 

choosing the most suitable with which to continue. This system was still almost fully 

automated, as the user could only choose from the system-generated solutions, and 

was not able to give independent input. In another case, the user was an integral 

part of the system communicating through a well-established link. We think that 

our system is capable of more than that, since FLOWER can suggest design steps, 

explain failures and suggest corrections. 

2.1 Expert Systems in Architectural Design 

In [40], the authors propose an expert system to make use of design codes. It is shown 

to be useful in conjunction with a comprehensive computer-aided design system. The 

nature and capabilities of the code checking expert system are described. 

In [14], the authors propose another expert system which uses the results of the 

above research. It is dso intended to function together with an architectural design 

system. After a building design has been developed, the expert system assists the 

designer in making sure that the plan is consistent with certain codes and regulations. 

The usefulness of such systems is significant in the architectural design, even 

though they are not part of the design process, only assistants to it. These sys- 

tems can free the designers from routine tasks so they can concentrate on the design 

itself. 
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An interactive expert system - Fher ([15]) - was developed to help in the determi- 

nation of fastener specifications. It is a knowledge-based system and no attempt was 

made to deduce specification from the underlying physics or chemistry. The interac- 

tion with the user is performed through dialogues. It will ask the user to provide data 

about a fastener problem and it will offer alternatives from which the user can make a 

selection. Following the dialogue session, the system will provide a final specification. 

GerG et.al. ([17], [35]) proposed the concept of a prototwe as a conceptual schema 

for representation of generalized design knowledge. The design experience is gener- 

alized in a way that allows representation at the concept level in the form of a class 

from which instances may be instantiated to meet the specific design situation. Class 

and instance take their meaning from object-oriented programming. The develop- 

ment of knowledge-based systems to aid or automate the design process requires the 

identification of a representation schema for this design knowledge. A prototype is a 

generalization of grouping elements in a design domain which provides the basis for 

the design. Designers are capable of using prototypes and of generating new ones. 

Maher ([27], [28] and [29]) developed a system called HI-RISE. It is a knowledge- 

based expert system that performs preliminary structural design of high-rise buildings. 

In the preliminary design process, the key terms are selection and constraints, in 

Maher's opinion. The selection of a structural configuration implies that there is a 

set of potential configurations from which to choose. The constraints may be grouped 

into several categories, ranging from subjective constraints imposed by the architect 

to functional constraints imposed by laws of nature. 

The user takes part in the design process through the selection of a functional 

system to be pursued further. The design knowledge is represented in the form of 

schemas and rules. The schemas contain the description of the design subsystems and 

components, and the rules represent design strategy and heuristic constraints. 

As we can see 50m these examples there is a need to have intelligent aid to the 

design process. Exkiing systems however, leave the user out of the design process. 
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2.2 Visualization 

This section reviews the area of visualization and especially visualizing relationships. 

We were unable to find an article or book, that dealt explicitly with the problem of 

constraint visualization. Relatively few books exist on constraints and those that do 

are about constraint management systems, i.e. about their implementation. There is 

much work on the use of constraints or how to draw them in a graph-like manner ([4], 

[S], [12], [22], [23], [36] and [47]) but these are generally about mathematical/physical 

constraints and not logical ones. 

One of the best known such constraint-based systems is Thinglab ([lo]) and its 

follow-up: Thinglab11 ([30]), Thinglab provides a set of so called things, which the 

user can add to a graphics work place. It lets the user attach complex graphical 

constraints to graphical objects: e.g. one can constrain a line to be horizontal. 

A constraint is a relation that must be maintained. Using such relations proved to 

be klpful in constructing user interfaces. Maintaining these relations should be left 

for the underlying system and shouldn't be the responsibility of the user. In Thinglab 

constraints are used for the following purposes: 

to maintain consistency between underlying data and a graphical depiction of 

that data on the screen 

to maintain consistency among multiple views of data 

to specify how information is to be formatted on the screen 

0 to specify animation events that are to occur when a given event occurs in the 

underlying system 

to specify attributes of objects in animation, such as speed and trajectory 

Constraints allow a declarative description of the user interface. With them the 

user can specify tohat relations are to hold and the system wil l  decide how to  keep 
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the rciations- blaintemce of consistency between data and displayed information or 

among multiple views of the same data is a common problem in user-interface design. 

The usage of constraints is one of several techniques to handle it. The advantage is 

that a constraint relation can satisfy itself bidireciionally. 

As we can see, Thinglab allows the user to constrain "thingsn together but it does 

not show anything a b u t  the "outcome" of those constraints. The user can create 

thingl, then create thin@, then specify a constraint between them. Now, it is the 

responsibility of the system to make sure that the constraint is held. 

The designer takes a different approach in our system. First (s)he creates rooml. 

Then (s)he can specify a relationship between the existing rooml and a not yet created 

room2. When the user indicates (s)he wilt create room2, FLOWER shows all possible 

spaces where that room can be placed, based on the specified constraint. If the user 

places room2 on a suggested, suitable area then the constraint will be satisfied. 

A second major system is Peridoi f 1321) which infers graphical constraints as the 

user adds objects to a work area. To help Peridot infer dependency relationships 

between z llew object and others, the user may select a particular object for Peridot's 

attention, The constraints function in one direction only. The system confirms infer- 

ences with the user as it  infers constraints. It displays a textual explanation of the 

constraint it thinks the user intended. Then the user is asked to accept or reject the 

inference, 

Several other interactive graphics systems permit the specification of constraints, 

either directly or by demonstration. The original one was Sketch pad ([44]). In Sketch- 

pad when the user merges two objects of the same type, constraints on either of them 

are applied to the new merged part- It also Iets the user display a graphical repre- 

sentation of constraints: they are shown as a circle containing a syrnbd representing 

the type of constraint. 

Another such system that pennits specification of constraints by the user is Juno 

([=I). It also supports the direct application of graphical constraints. The user can 



adect iaMLs repredenting constraints which the system applies to points previously 

geIccted. 

Ooe d the newer systems is Grace ([Rj). It is a graphical editor that lets users 

defioe g a p b i d  or geometric constraints. It provides mechanisms for constraint spec- 

ification via simple mesas. T k  indude simple direct-manipulation methods and a 

comtfaint-by-&mm&ratioa facility that incorporate9 both novel heuristics for infer- 

ring user-*- rela$ions and natural-language explanation tools that help the 

user &taad the iderencing behavior of the system. This research was primarily 

f 4  on two idem: 

investigating user-interaction mechanisms for conveniently specifying and ob- 

taining information about relationships 

mowing towards guidelines for inferring constraints from user-demonstrated ex- 

amples like in Peridd 

An explanation facility rpas built in for cases when the visual feedback might not be 

sufficieotly informative, might not always understand the 'behind-thescenes" 

and exactly why constraints were iderred and others not. Grace pops 

up o acparate window umtaining a natural language description of ail the constraints 

it inkrred or chse not. to infer dong with a justification for each decision. 

As can be seen, the gad d t he above research was primarily to construct a platform 

k tbc mcr to specify constraints in some "smart" way. A secondary goal was to 

d t & n  them. In aome cartes an explanation facility was provided. The problem 

wSb &d b p a g ~  ejcplanafian is that it can be very ambiguoas if the problem is 

big. Usermr do want to 4 through pages of information d d b i n g  

w-tiam tbat W to a prabkm- (Even if they did, it is a very painful procedure t c ~  

go t h m &  r bag list at aon&rainta that are affeded by a single action). This was 

piart of mu m6tivath to ccmstruct a system whem the main idea is 
and dowab. The user wants to & d y  sec the consequences 

- I .  n I 

* i .  

$ 1 ;  I t d &  C * , *",&."; . i ? 

' f -  I Y Z  . 3 ,  ,. " 
t , ~ 2  * ,  .I 
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of his fber action. @)he may also need guidelines for the next steps in the design. 

Letting the user experiment while designing and to have a system - provided guidelines 

was one of our aims. 

Visudzation itself is a broad area and can be described as  the graphical description 

of a physical phenomena where the data itself need not be visual ([48]). In many 

applica$ions the difficulty in dealing with large volumes of data led researchers to try 

known techniques in different contexts. Visualization also has drawbacks: it is very 

easy to get false impression by plotting data in a "pleasingn manner ([46]). 

[49] also discusses some new and not-so new techniques for presenting data in some 

sort of visual manner, e-g. using image processing of non-image data. Colour spectro- 

grams or pseudo-colour animation of selected parameters can help review inspection 

of large amounts of data in a very short time. Wolff states that visualization should 

n d  be viewed as the end result of a process of some scientific analysis, but rather as 

the process itself, It should be more than an application of a technique for displaying 

data.. It can be viewed as 

"a paradigm for exploring regions of untapped reservoirs of knowledgen. 

FLOWER helps the designer to take the next step in the design by showing the 

domains of design variables. The aim is not just simply show tbat domain but to 

suggest visually the next step to be taken. 

In computer graphics systems there are two basic forms of visual design: drawing 

systems and modeled systems. With the drawing systems, one can sketch ideas into 

the computer using it as a sophisticated drawing board. The other alternative is 

to give the machine a mathematical model of objects the designer wishes to create 

and have the computer make images from that. The main idea of our new proposed 

system (FLUWER) goes beyond this division. Creating a system tbat can be used aa 

a drawing board if the designer wishes to draw only, and to have a system that givee 

xwmmmenwions and supervises design decisions at the same t h e  was our goal. 
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Since our approach is to visualize relations using colours, we reviewed papers on 

colour usage in user interfaces. Colours used in computer graphics are often selected in 

an ad-hoc fashion, without considering their physical and psychological effects. Prob- 

lems arise from the fact that there are no established algorithms that can be applied 

to choosing colours, only heuristics. Maay of the existing guidelines suggest using or 

not using a particular colour for a specific use, i.e. they are not general strategies or 

design guidelines for selecting colours. One approach to select appropriate, effective 

and tasteful colours for user interfaces is to use an expert system ([3l]). 

In the area of the use of colour in visualization, Rheingans and Tebbs in [39] 

visualize data by mapping the value of a variable to a d o u r  value. Levkowitz and 

Hermann also used colour scales to display image data in [26]. This suggested to 

us that we should represent different types of constraints with a colour scale. The 

spatial constraints are colour coded: the closer a room should be, the darker the gray 

representing the constraint. 

Frome in [16] contains some suggestions to consider when designing with colours: 

colour aftereffects should be avoided if possible, colour differences can be increased to 

make objects more visible, standard conventions should be followed. There may also 

be cultural differences in interpreting colours ([g]). 

2.3 Intelligence Aids to the Design Process 

In this section we review several papers more specifically relevant to portions of our 

work. The papers are sorted into two groups. First we describe systems that were 

fnlly automated. Then we turn to those systems where the user plays a role in the 
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2.3.1 Automated Design Systems 

The work of Seligmann and Feiner on the use of expert system in designing illustrations 

([42]) is discussed first. It shows that desigr, is a goal-driven process within a system 

of constraints. When analyzing a partially completed design, their system backtracks 

for generating a better solution so previous mistakes or off-track solutions can be 

avoided. 

Next we describe the work of Henry and Hudson ([la]) on using constraints in User 

Interface Management Systems. Their work on designing screen layouts is very similar 

to our work on placing rooms in a floor plan. Thus their ideas provided suggestions 

to  our work. 

The research of Hudson and Yeatts in [20] is presented next. They described 

a technique for integrating rule- based inference met hods into a direct manipulation 

interface builder. Though they refer to the desirability of the designer control of the 

process, their system followed an automated approach. 

Finally we present the work of Baykan and Fox in [5], [6] and [7]. They investigated 

constraint-directed heuristic search as means of performing design. Their application 

was very similar to ours: they were designing layouts of kitchens. They were also 

emphasizing on using constraints throughout the design process. They did not deal 

with feedback from the user: their designing system is also fully automated. 

Expert Systems in Illustration Design. An illustration is a picture that is 

designed to portray meaning, i-e. meet some communicative intent. Seligmann and 

Feiner describe IBIS ([42]), a system for automated design of intent-based illustratione. 

Their design is a goal-driven process within a system of constraints, where the goal is 

to achieve the purpose and the constraints are the illustrative techniques an illustrator - apply- 

The idea behind the system is to generate presentations, each designed to satisfy 

the same conununicative intent for a particular audience such that the illustration 
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has the exact same meaning to many different people. IBIS designs illustrations to 

fulfill a high-level description of the intent. The work described in this paper rep- 

resented a new method for generating illustrations utilizing multi-level backtracking. 

Evaluators analyze partially completed designs. Based on the evaluations the system 

backtracks for generating a better solution. Illustration objects are generated based 

on both the representation of the physical object and the communicative intent. This 

way, the system also takes into consideration the physical properties of the object, 

not just its intent. The multi-level backtracking idea seems to be very useful, since 

it works like a developing design, which learns from previous mistakes or off-track 

solutions. However, the precoded evaluators do their work with no user input taken 

into co~sideration while the system is working. 

Using Constraints in UIMS Design. If we think of placing windows on a 

screen as a task similar to placing rooms in a floor plan, certain aspects of UIMS 

work are applicable to our work. Henry and Hudson for example describe the Apogee 

UIMS in [18] which uses a unified data model (from [38]) to support a range of tasks. 

This active data model not only stores data, but also acts when changes occur in them 

and is based on incremental attribute evaluation concepts. In this UIMS, interfaces 

are treated as editors and browsers of data. Both the application and the user are 

given access to the data Under this paradigm, the primary task of the user interface 

is one of translation, i.e. the user actions have to be translated into internal data and 

into actions within the application. Also, when the application changes data, these 

changes have to be translated into new graphical images, presented to the user. An 

d i v e  data model can be used to automate these translations. 

At the lexical and syntactic levels, graphical presentations are defined in terms 

of att6bubes. Graphical images are updated automatically whenever the attributes 

which define them change value. This allows simple specification of dynamically 

changing layouts that can automatically adapt to make good use of available screen 

spaoe- 

At the semantic level or application interface level, the system allows important 
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Object 1 

Figure 2.1: An Example of Apogee's Data Model 

application entities to be equationally related to the overall system of attributes. This 

creates an automatic connection between changes in application entities and graphical 

representations on the screen (shown in Figure 2.1). 

An object-oriented data model is used in the Apogee UIMS, which supports multi- 

ple inheritance for defining objects. Objects respond to a set of messages by invoking 

methods, but their internal structure and implementation are completely hidden. 

This work was similar to the work of Zanden et.al. ([a), in the sense that both 

authors were using constraints describing a set of dynamically changing relationships. 

Apogee allows constraints to directly reference objects but does not allow indirect 

references, as does Zanden's work. 

Both methods deal primarily with implementation of constraints: their application 

is secondary. In FLOWER we want to use constraints without worrying how they 

were implemented- Many researchers have pointed out the importance of being able 

to use constraints in a design system (starting from [lo] and [32] etc.). 

As we suggested above, there are some analogies between an UIMS and an intelli- 

gent design system. P?acing windows in the screen and placing rooms into a flax plan 

can be very similar. Thus some ideas in this article provide suggestions for FLOWER: 
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Figure 2.2: An Example of Inference Rules Expressed as Snap Sites 

how to show "besiden constraints, how to show a fixed position according to some 

reference point, and how to show a variable size object. 

Rule-Based Systems in Interface Design. Research in building user inter- 

faces is going in two main directions. One set of systems (interface builders) provides 

environments or editors that allow an interface to be specified with direct manipu- 

lation. Others are highly automatic, constructing an interface with minimal (initial) 

user efEort. Both directions have their own advantages and their drawbacks as well. 

Hudson and Yeatts in [20] attempt to find a way to integrate these two approaches. 

They describe a technique for integrating d e b a s e d  inference methods into a direct 

manipulation interface builder. The results and effects of the rules are presented to 

the user. A direct feedback and control over the application rules are provided by 

semantic snapping ([19]) techniques. 

Figure 2.2 shows an example of some of their inference rules and the expressed 

snap sib. The user is trying to place rectangular shapes to the work space. In this 

example, (s)he idready placed the first object. When the user specifies the first corner 

of the next rectangle, the system considers the set of predefined inference rules and 

Hudson and YeaSts wanted their interface builder to meet the following criteria: 
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a visual notation for all aspects of user interface design 

direct expression of rule actions in the notation 

0 facilities for user control over inference 

support for a fairly wide range of inference rules. 

The knowledge base of the interface builder holds at least one representation of 

the user interface being specified. All actions adding to or modifying the design are 

expressed as modifications to the original data structure. All act ions by both the user 

and the inference engine are coded '- the knowledge base. The visual notations of the 

various aspects of the interface uy4fi~ation are stored there as well. They provide 

the "visibilityn and they are also the basis for both feedback and user control of the 

inferencing process. 

The main technique introduced in this paper is the use of semantic snapping to 

portray actions in the knowledge base. Semantic snapping is an extension of the 

conventional gravity field technique. The decision to snap can be made on the basis 

of geometry and also on the basis of semantic tests carried out dynamically during 

dragging. Furthermore this semantic snapping can provide a visual feedback when 

snaps occur. 

Experiments with a small prototype of the system proved that it is very useful 

when the actions and the consequences of inference rules are immediately appacrent to 

the designer and he/she is provided with dynamic control of the rules aa those rules 

are part of the interface specification process. 

The problem with this work is that they te~dcd to use the automated system as a 

subsaitute for the human designer. Although they mentioned that the designer has to 

have control, the described system. works independently of the designer (except for the 

initial inputs). Their main scope was expressing knowledge about snapping; nothing 

is said about what it is possible to do when designing. The user gets no guidelines 

as to the pwsibiities for user interface design directions. FLOWER works together 
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with the designer, it provides guidelines, explanat ion and suggestions on proceeding 

with the design. 

Using Constraints for Space Planning. Baykan and Fox investigated constraint- 

directed heuristic search for space planning in [5], [6] and [7]. Space planning involves 

topological relations such as  adjacency and geometrical properties such as shape, di- 

mension, distance and other functions of spatial arrangements. They found that it is 

naturat to express space planning problems in terms of constraints. Experience with 

space planning programs indicates that computing time was affected by the strengths 

of constraints and their sequencing. Constraint-directed search attempts to formulate 

general models for the representation of constraints. The objectives are to identify 

and represent a variety of constraints and interactions between them (such as conflict, 

competition and relaxation) for effective utilization during search. 

They created Wright, a knowledge based design system that uses constraint- 

directed opportunistic search to generate layouts in different space planning domains. 

It consists of a knowledge base, a problem solver and a user interface. The knowl- 

edge base contains knowledge about the application domain. Wright designs kitchen 

layouts, thus knowledge is expressed about possible items in a kitchen and their re- 

lations. For example, a kitchen can have sink, oven, counter, etc. Counter space has 

size requirements, refrigerators should not be beside ovens, etc. The problem solver 

focuses on the different aspects of space planning such as locating, dimensioning etc. 

based on uncertainty measures associated with wnstraints. 

Layouts are created by configurations of design units. Design units are considered 

at different levels of detail. The design units form a hierarchy through which there is 

inheritance of variables, values and constraints. 

The highest level of abstraction for representing design states is the spatial level 

(inside* contains, no overlap etc.). The next level uses ondimensional relations 

(region-west-of, horizontally overlapping, etc.). The lowest level of abstraction is the 

region-line adjacency network (a representation for generating layouts using rectan- 

gular tegbns and horizontal and ve r t id  lines). 
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It is possible to design at each level of design representations. The goal tree con- 

trois the focus of attention on the levels and representations and facilitates switching 

between them. The g d  tree is a hierarchy of goals and constraints starting with 

general goals representing knowledge of the design domain. 

The first st age of problem solving is pre-search analysis based on the initial (given) 

constraints. The second stage is the opportunistic search. Gonstraints are selected 

based on their uncertainties. Information for determining the uncertain ties of con- 

straints are: importance of and severity of constraints and the size of design unit 

affected by the constraint. Uncertainty is used as a measure for rating opportunism 

of constraints and determining where to focus attention during search. 

The system presenied by Baykan and Fox is similar to FLOWER in a sense that 

both design simple layouts. Both systems use constraints to express design goals and 

knowledge. However, Wright is yet another automated design system where the user 

provides initial input and the system produces an "answer". There is no interaction 

between Wright and the user during the design process. Wright was created to be a fast 

designer where speed was gained through the way it handles the constraint satisfact ion 

problem. Their goal was to produce a system using dependency-directed backtracking. 

We were fortunate to have a system where this dependency-directed backtracking 

already in place. Our task then was to develop a means for adding/integrating user 

interaction. 

2.3.2 Interactive Design Systems 

We describe three papers in this section. Kochar in [25] is presented first. His work 

was closely related to ours as he is intended to provide help throughout a design 

P- 

We then turn to the work of Kamada et-al. on visualization of abstract data in 

[45]. Their work is important for the use of feedback from the user throughout the 
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design process. 

Finally, we present the work of Dill et-a1 (ill] and [13]) on intelligent computer 

aided design. This work is the predecessor of FLOWER of our research group. 

Supporting the User by Presenting Design Alternatives. The activity of 

design can often be characterized by a search; in other words the designer examines 

various alternatives at several stages during the design. The problem with current 

CAD systems that they either expect the designer to have a complete design and just 

use the system as an intelligent drawing board. In these systems, obviously all choices 

are made by the user so the system isn't really assisting with the design at all. Other 

systems generate (sometimes fairly large numbers of) design alternatives which are 

presented to the user normally one after the other in a sequential manner. The user 

must then determine on his/her own which one is the best. 

The approach taken by Kochar ( [25])  to this problem is among all the works 

reviewed, the most closely related to our own. Kochar's system, FLATS is a prototype 

for design automation via browsing and was constructed to demonstrate the paradigm 

of cooperation between the user and the computer in CAD applied to the design of 

small architectural floor plans. The system supports the exploratory aspect of design. 

A structuring mechanism helps the user explore design alternatives in a systematic 

way, by varying those properties of the design that are of primary interest. 
5 

Again, there is a major problem with this system. Although it does more than 

just describe in text a set of affected design constraints, it does bombard the user with 

possible solutions at certain stages of the design, which tends to be overwhelming to 

the user. Most designers insist on playing an active role; they do not want to be 

passive bystanders, selecting from a menu of generated designs. 

This system is a positive step of course toward presenting design alternatives to 

a user; still it does little more than the previously described systems, except for 

generating a set of partial designs as opposed to presenting a complete design. In 

oahw words, it still aukmates the design process, only it does so to a portion of a 
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design. These partial designs are generated based on precoded knowledge, therefore 

the designer cannot contribute to the design by adding new knowledge once the system 

started to work. 

Integrating the User into the Design Process. Interactive graphical user 

interfaces based on direct menipdation are well established. To ease the burden of 

the high cost of their creation, User Interface Management Systems (UIMS) are used. 

However current user interfaces usually consider only the interaction architecture and 

lack support for a consistent framework that allow visualization and manipulation 

of high-level abstract data, i.e. the semantics of applications. Kamada et .al. have 

been doing work (e.g. [21] and [24]) on visualization of abstract application data, i.e. 

translation of abstract data into pictorial form. They have also extended their one-way 

visualization framework to bi-directional translation between the data representation 

of an application and the pictorial representations of the user interface in [45]. 

To lessen the need for continuously varying the mapping rules between the infinite 

number of possible representations, they used two intermediate, universal represent a- 

tions, and developed a set of rules for mapping one to the other. The intermediate 

representations can be left unchanged, even if the application changes. The mapping 

process handles the following representations: 

Application's Data Representation (AR) - 

this is application specific, and can be any kind, e.g. natural language, program 

listing, data in a database 

Abstract Structure Representation ( ASR) - 

this represents the underlying abstract structure, i.e. a set of relations among 

abstract data; AR is translated into this form and vice versa 

0 Visual Structure Representation (VSR) - 

this is the underlying structure of a picture, i.e. a set of graphical relations 

among graphical o@&q 
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AR: 

t 
ASR: 

VSR: 

PR: 

Figure 2.3: A n  Example of Karnada's Model 

Pictorial Representation (PR) - 

this is the representation of the picture to be rendered directly or_ display devices. 

First AR is analyzed, and then ASR data are generated from it. Then the uisual 

mapping is done, i.e. ASR is translated into VSR. (The mapping from VSR into ASR 
is called inverse uisual mapping). Finally VSR is translated into the target PR. The 

graphical relation data are first translated into geometrical constraints among picture 

&jects. To determine the actual positions in the display-space, the constraints are 

solved by constraint solvers. 

AR c-, ASR * VSR * PR 

Figure 2.3 illustrates an example of the four types of representations. In this exarn- 

ple, the app1icaf;im's data is represented as a natural language sentence "J is daughter 
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of E and S". The corresponding ASR data are daughter(J, fE, S]), os_person(J), etc. 

The daughter is an abstract relation and the persons are abstract ohjects. The cor- 

responding VSR data are aboue([E, S], J), etc. The above etc. are graphical relations 

and the boxes are graphical objects. As a pictorial representation, a family tree picture 

is generated in Figure 2.3. 

Similar work has been done in SFU's Intelligent Systems Laboratory in the form 

of the %chessn program. Here, after a user pIaces a chess piece, nchess determines the 

location of the remaining pieces. In this application the chess pieces say queens and 

the board form the pictorial representation. The VSR data is the board() The board() 

describe graphical relations between graphical objects: it describes whet her the boxes 

representing the chessboard should be drawn empty (e) or filled with a placed queen 

(q). The ASR data are the makePzece- Q1 isa Queenpiece, etc. The placesafe is 

an abstract relation between the abstract objects describing the constraints for safe 

placement. Figure 2.4 illustrates this example. When the player places a queen on 

the board PR is modified accordingly. The modified picture is translated then into 

the board data. The reasoning engine evaluates the placement and t h e  resultant ASR 
of the board is again visuaJized to update PR. 

Our FLOWER uses the same set of mappings. However, while Kamada's group 

had to put a significant etfort into developing this communication path, it waa directly 

available to us via the external object protocol access to Echidna. In FLOWER, the 

Echidna knowledge base corresponds to ASR, while '+he knowledge baseldatabase 

update routines correspond to VSR. Communication between ASR and VSR struc- 

tures is facilitated through a module called mediator. Further details are provided in 

Chapter 4. 

We Eelieve that Kamada's work represents an important contribution to the area, 

since it is one of the very few that acknowledge that user and system must work 

together: that the user must not be left out of the design process. 

Indeed they stated that there wasn't any other work which directly influend 

theirs, The same thing is true for the constraint visualization. The p r o b h  is thah 
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Figure 24: The Nqueens Problem Described in Kamada's Terms 
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most systems are limited to just representing constraints and manipulating them. 

For instance, in Kamada's example of the Othello game, the system does not suggest 

next steps, nor indicate what choices might be available. We believe such capabilities 

are desirable and have attempted t~o provide them with our constraint and domain 

visualization techniques. 

An Intelligent Basis for Design. Our research group at Simon Fraser Uni- 

versity started to work on an intelligent CAD project ([ll]) with similar objectives 

as those of FLOWER. First, a protocol analysis was conducted to identify problems 

and di6culties of the design process. The results of the study was incorporated in 

the next step, where a system was created to help with home design. The first design 

task addressed was that of foundation design ([131). Given a partial design, defined 

by AutoCAD drawings, the system works with the user to generate joist and beam 

layout. The system supports the mixed-initiative paradigm, more on initiative from 

the system. It can generate the entire layout or the user may interrupt the system at 

any point to specify design constraints. 

This system is a predecessor of FLOWER: i t  has similar architecture and goals. 

However, FLQWER allows more initiative of the user while giving guidance on com- 

pleting a desjgn. The system of (131 does not advise on design steps, simply incorpo- 

rates the designer wishes to the final solution. 



CHAPTER 3 

FLOWER - Scope and 

Functionality 

3.1 Problem Definition 

Designing the layout of a building can be a tedious task even for an experienced 

designer, when considering many initial requirements. Some routine tasks can be 

done easily and some of them d d  be automated and solved by a system. Rules 

amdering building codes and physical laws can be coded and represented in the 

howledge base. 

h addition to the objective aspects of the design, there are subjective aspects, 

mch ss aesthetic qualities. Obtaining such knowledge is difficult; encoding it is more 

so. This seems to provide even mor;: reason for retaining the designer as an integral 

part of the design b p *  

We think that a system which use? some guidance from a designer but remains 

indqrndent ewugh to make some decisions is very much needed. It is important 

sacrsF the desiFper to have control over the design pr- while it is important to 
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be able to automate as many tedious or repetitive steps as possible and to provide 

guidance or direction when it is needed. With this motivation, the following objectives 

were set: 

1. to address a major limitation of current CAD technology: to provide interactive, 

intelligent design assistance but not automated design 

2. test the proposed constraint-based, mixed-initiative designer system 

3. test how a visual aid (i.e. showing the domains of some design variables and/or 

constraints between them) can help the designer to accomplish a design 

4. gain further insight into the use of the Echidna Expert System for designing 

Purposes 

5. create a potentially useful tool for simple layout design tasks. 

3.2 Solution Methodology 

FLOWER is a design system where user and system can work together as equal 

paxtners. The overall design scenario is as follows: 

1. The user starts up the system and begins designing a floor plan. (See detailed 

description of usage in Appendix). (S)he can move rooms around, experimenting 

with the layout, then finalize their position. 

2- The system mpenises design decisions to check that physical laws are obeyed. 

The user may not override these relationships. It does however show the avail- 

able spaces for 4 room. The user can can try whether a particular placement 

of a room is valid and see the system's readion while proceeding toward a 

complete design. 
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As an example, it is physically impossible for rooms to overlap. Thus at any 

stage, when the designer wishes to add a new room, the system will determine 

the valid space for that room. The system acknowledges a valid placement and 

the design session can be continued; however, the user cannot continue upon 

invalid placement, unless (s)he removes the offending room. 

3. Additional spatial relationships between existing rooms can be added. FLOWER 

then checks and notifies the user about problems )ut lets the user proceed even 

with "mistakes", The offending rooms will be marked. When the system indi- 

cates a problem, it also gives a visual clue about what went wrong with placing 

that room and another visual clue about fixing the problem. 

For example, the user wants to place a bedroom and a bathroom, requiring them 

to be close to each other. After the user specifies this relationship and places the 

first room, the system will show possible locations for the second room that fulfill 

all constraints. (In this case the set of constraints is: the "close" relationship; 

"rooms must not overlap" and "rooms must be inside of house" physical laws. 

The system evaluates the placement of the second room and if d i d ,  the design 

session can be continued; while a misplaced room will be marked but the system 

takes no corrective action. The system will "explain" though what was wrong 

with the placement and suggest a corrective action. 

By distinguishing between required and desired constraints, the system allows 

the user more freedom while making the design decisions. If all constraints 

had been considered serious, the designer could only make proper design steps. 

~ ~ i s e  the system would reject a l l  steps that did not meet the requirements. 

This way however, the designer has more liberty to try out ideas and return 

later to .his probIqns. 

For example, (s)he might say: I want the kitchen beside the bathroom but I do 

not know yet exactly where; I will put it somewhere close, for now. FLOWER 
wi l l  not let b b e  mistake go unnoticed. It will flag the user and suggest correc- 

tive action. It will not kt the user leave the problem uncorrected indefinitely. 

However, (s)he may work on other moms h t  and later return to correct this 
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problem. 

User's View of the System 

The user sees this system as a design partner. The system does not proceed in an 

automated fashion, leaving the user out of the design decisions, nor does the user 

complete a design alone only to find out in the end that it does not meet the original 

requirements. The user can think of the system in the following ways: 

helper 

The system will suggest steps for the designer throughout the design process. 

As an example, it will show the available spaces for a new room based on the 

entire current constraint set. 

0 strong critic 

FLOWER also ehecks for serious mistakes during the design. In this case, the 

system does not let the user continue while the problem remains. For example, 

when a user places a room outside of the predefined house, the user is not able 

to continue, unless (s)he removes that room. 

0 soft-hearted critic - teacher 

The system simply notes the problem, ezplaining what it was and sugguts cor- 

rective steps. 

3.4 Visualization of Constraints 

The most important part of our work - in addition to creating a very simple design 

system - is that FLOWER actually hetps the user in the process of design. This help 

is threefold: 
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a after the designer selects a room, the system shows all acceptable areas of the 

placement of that room 

a the system explains whether a certain step in the design was successful or not 

a) if a constraint representing a physical law was violated, the system does 

not allow the placement of any new room, until the problem is corrected 

b) if a constraint representing a user preference was violated, then the place- 

ment is allowed but the violation is shown and the offending relationship is 

indicated 

a it also suggests to the designer how to proceed when encountering a design step 

that contradicts previously specified relationships the user preferred to be held. 

The help that FLOWER provides is based on uisual clues, using colour. Each type 

of constraint is represented with its own distinct colour. A part of the user interface 

shows them, to help the user remember the meaning of the colours. The user interface 

has an array of buttons, one for each room type, with a different colour for each room. 

Ruoms are given the same d o u r  as their buttons. 

The designer's task is to place rooms in the flom plan. When a room is selected, 

the designer can move that mom around the work area by the mouse. While trying 

to select aa acceptable place for that room the room is shown in its assigned colour. 

The first visual clue to the designer is the valid area of the available space for 

the placement of that room, shaded to correspond to the coloi~r of the room. To 

distinguish the representation of the room, the shaded area uses a lower saturation of 

the same hue, For example, if the colour of the chosen room is red, the shaded area 

wilt be pinkish. Figure 3.1 shows an example of such placement. Here, the designer 

has already placed two ldmoms (shown yellow) and a bathroom (shown brown). 

If the designer specifred preflzrences (such as a h i d e  constraint) involving the 

roam to be placed, then the shaded area for the mom placement will be shown in the 

ahw of that constraint. Figure 3.2 shows an example of that. Suppose the designer 
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Figure 3.2: Visualization to Place a Hallway, with User-Specified Beside Constraint 

there will also be an indication for proper placement of that room in the form of 

two arrows below the constraint indicator line; the arrows suggest whether the 

designer should move the room closer (><) or further (0) away; the arrows 

will only appear if the correction is possible (if the user specifies contradictory 

constraints, there is no way to satisfy them, and no arrow appears) 

If a room is in several different type of relationships to the existing rooms, e.g. 

it has to be beside some but far away from others, the available area will still be 

calculated, but the colour of it will be specific to the room to be placed and not to the 

constraints. Again, the area will be shown with lower saturation of the room colour. 

For example, the designer wants to place a master bedroom now. (S)he set the 

following constraints: master bedmorn beside bedmm and master bedroom close bath- 

morn. Now, the system will show the available area in light green (the original colour 

of the master bedroam is green) as this room is in two different relationships. Again, 

the beside constraint must be met for both bedrooms. 
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Figure 3.3: Visualizat,ion Aids for Placing a Master Bedroom with Sevcral IJscr- 
Specified Constraint 

Figure 3.3 shows the available area for that master bedroom. 111 t l~ i s  figr~rc! we 

also can see that the user previously tried to  place a hallway hut igr~orctd the visr~al- 

ization. -4s a result, that hallway did not meet the user-specified requircrnents. As 

me explained above, an explanation of the failure is shown now. 

If the user ignores the visualization again and places the  n~asterbedrtwm i~rlprop- 

erly, the failure will be presented. This is shown in Figure 3.4. As can bc stxlrl fro~rl 

the  figure, the lines and arrows correspond to the colour of the failed cortstrai~~ts; 

thus they are the same colour for hot h bedrooms (as they both werc: in the bc?riclc 

constraint) but different for the bathroom (as it was in a close co~~strairl t) .  

If the user attempts t o  place that master bedroom again but rlow accidently placcw 

i t  such that it overlaps the bedrooms, the piacement will fail again but this time thcrc 

will be no explanation why the placement failed. Here too, the room will be nlmwrr 

outlined, but the outline will be thick (shown in Figure X.51, clearly distinguishatde 

from the previous case. Sow, the user must remove this room in order to  continue. 
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Figure 3.4: Placement of Master Bedroom has Failed 

Figure 3.5: Placement. of Master Bedroom Fails Due to a No-Overlap Constraint 



CHAPTER 4 

System Architecture 

Many researchers (e.g. [5], [Il l ,  1131, 1181, [25])  suggest that constraints are a natural 

way to  express design goals. However, the lack of readily available constraint process- 

ing systems generally resulted in work focused on implementation of those constraints. 

Kamada et.al in 1451 emphasized the importance of a bi-directional translation be- 

tween the data representation of an application and t he pictorial representations of 

the user interface as a way to involve the user in the design process. 

In our case, both the constraint processing system and a described bi-directional 

translation were already available, allowing us to concentrate on further steps. We 

wanted to  create a truly mixed-initiative system. In FLOWER, the system can 

1. suggest design steps by displaying the domain of design variables 

2. evaluate design steps 

3. explain incorrect steps by visual display of constraints 

4. suggest corrections. 

The structure of FLOWER can also be described in Kamada's terms (Figure 4.1). 

In FLOWER, rooms form the Pictorial Representation. The VSR data are draw-house 
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AT: 

t 
ASR: 

I 
VSR: 

v 
PR: 

(user picks a point for the next room to be placed) 

room R2 isa room, 
constrain(x,y,width,height), 
R2:no_overlap(R I), 
beside(R1 rn), 

draw-house, 
draw-room(new-room, list-of-oldrooms[)). 

Figure 4.1: Structure of FLOSTER Described in Kamada's Terms 

and draw~room(new~room, :kt .rf_oldroomslJI etc. The draw-room() describe graphical 

relations between the room graphical objects as it incorporates the representation of 

minimum and maximum sizes and colour information. The ASR data are the room 

instantiations (room R2 isa room), and the constraints, 2hysical (R2:no-overlap(R1) 

and user-specified (beside(bedroom, bathroom)). For example, no-overlap is an ab- 

stract relation between the abstract objects R1 and R2. AR corresponds to the user's 

request for placement of the next room by means of an input device (mouse). 

Again, while Kamada's group had to put a significant effort in developiag the 

communication channel, in our case, the mapping between ASR and VSR was al- 

ready available through our reasoning engine's external object protocol. In our case 

both AR and PR reside in the graphics side of our application. When the user in- 

dicates the placement of a room, AR is recognized by the graphics modules and the 



mapping between AR and ASR is done through knowledge base update routines and 

the mediator code. The knowledge base update routines are responsible for the appli- 

cation dependent part and the mediator code is responsible for the technicality of the 

link. (Sections -1.3 and 4.4 give more details.) ASR is represented in the knowledge 

base and becomes accessible through this link. VSR is represented by the graphics 

database. When our reasoning engine evaluates the user's design goal, the result is 

sent back to the graphics code again through the mediator and the  graphics database 

update routines, thus implementing the mapping from ASR to VSR. Then the up- 

dated graphics database is mapped back to the graphics module, (VSR to PR) whew 

the picture of the room is created. 

Figure 4.2 shows a block diagram of our system, the components of which are 

described in detail in the following sections. 

The Knowledge Base 

Keeping in mind that we tried to implement a simple layout planner, tlic following 

were considered as a set of possible design rules: 

1. houses are rectangular 

2. rooms are the smallest element of the  design, i.e ivalls, doors, etc. are not 

considered 

3. rooms are rectangular, and their edges are parallel to those of the house 

4. size constraints: rooms have a minimum a d  maximum size 

5. restrictive constraints: rooms must be inside the house, i.e. the house is a 

limiting perimeter for their placement 

6. topological constraints, i-e. placement of rooms with respect to each other: 



GRAPHICS MODULES 

USER lhTTERFACE 

Figwe -1.2: System Architecture 
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a )  rooms cannot bc on the top of each otaher 

b)  a given type of ruom can be beside or not, besid 

another specific room type 

e ,  close, nea .r from 

7. functional constraints: rooms may be associated with  common functions such 

as fwd ,  sleeping, or baby-space. 

8. practicality constraints: access to open air, daylight, airflow, ctc. 

9. interconnection constraints: hallways or stairways - to connect other rooms 

10. accessibility constraints: placement of windows, doors or closets 

11. aesthetic constraints 

We implemented the first seven rules for this version of FLOWER. 

The  knowledge base consists of the appropriate schemas. A schema is the unit 

for representing objects and relations. Rooms (shown in Figure 4.3) are represented 

by a schema with its variables (see design rule 2). Currently rooms are rectangular 

with a specified minimum and maximum height and width for each room type. In 

this implementation, we used integer domains for all variables. Rooms are described 

by their lower left corner (Xpos, Ypos). (See Section 6.1.1 for a djscussion on this 

restriction.) We constrain the Xpos and f'pos variables t o  be bound. Rooms have 

minimum and maximum width and height (see design rule 4)  hy also constraining the 

domains of the corresponding variables. 

Rooms are gathered in a house which acts as a bounding box (Figure 4.4) and 

rooms cannot overlap each other Rules 5 and 6 a); these are basic physical relationships 

and hence cannot be ignored even temporarily by the designer. 

Other relati~rrships between rooms such as beside or not beside constraints (design 

huIe 6 b)) may be specified bj- the  user ta be applied by the system. As an example, 

the designer may want to haw the kitchen beside the dining room or the kitchen 
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schema room 

I 
xcoord Xpos. 
ycoord Ypos. 
roomwidth Width. 
roomheight Height. 

Width 

Xpos. Ypos 

roomtype Type. 

% accessors 

all(Xpos, Ypos, Height, Width). 

type(Type). 

96 size setting 

constrain_xO. 
constrain_y(). 
mstrainw().  
constrain-h(). 

9% physical laws 

~ ~ 0 .  
no-over1 ap0. 

% designer ~ l e s  

beside(). 
close(). 

near(>- 

farO. 
not-beside(). 

Figure 4.3: Room Schema 
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house 

house(xcoord X, housewidth W, 

ycoord Y, househeight H):- 

Xpos >= X, 

Ypos >= Y, 

Xpos + Width =< X + W, 
Ypos + Hcight =C Y + H. 

Figure 4.4: Rooms Should Be Inside the House (i.e. room at (Xpos, Ypos) with size 
(Width, Height) must fit in house of size (I+', H )  at (X, Y )  

1 Constraints I Meaning I Illustrated on 1 

d: vertical or horizontal distance between rooms; 
Dim: width or length of later placed room, deperldirlg on d. 

Table 4.1 : Table of Preference Constraints 

should be far from the bedroom. Figure 4.5 shows the spat la! ir?tcrpretation of design 

rule 6 b). 

The design d e s  were expresed in the knowledge base as well. E.g. whuri two 

rooms are beside each other, the3 could he beside either from the left, right, above or 

befow. 

Table 4.1 briefly describes the meaning of the topological constraints. The illus- 

trating figures show an example of the correspariding code from the knowledge base. 



* 
not k s i d z  . . 

second room 

Figure 1.5: Preference Rutes {dotted out line of a second room shows its placement 
with rmylrt to existirrg [already placed) first room, t o  meet various constraintsj 
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%left 

besi&(room Rb):- 

Rb: all(xcoord Rbxpos, 

ycoo~d Rbypos, 
roomheigh t Rbheighi, 
roomwidth Rbwidth), 

Rbxpos + Rbwidrh =:= X p ,  
Rbypos > Y p  - Rbheight, 
Rbypos < Y p  + Height. 

% above 

beside(room Rb):- 

Rb: all(xcoord Rbxpos, 
ycoord Rbypos, 
roomheight Rbheight, 
roomwidth Rbwidth), 

Rbypos =:= Ypos + Height, 
Rbxpos > Xpos - Rbwidth, 
Rbxpos < Xpos + Width. 

%right n besi&(room Rb): - 

I I Rb: all(xcwrd R b x p ,  

y c m d  Rbypos, 
roomheight Rbhcight. 

- 

roomB LJ 
room 

% below 

&&(roam Rb):- 

Rb: dl(xcoord Rbxpos, 
y c w d  R b y p .  
roomheight Rbheigh t , 
roomwidth Rbwidth), 

Rbypos + Rbheight =:= Ypos, 
Rbxpa~ > Xpos - Rbwidth, 
Rbxpos < Xpos + wid& 

Rbxpos =:= Xpos + Width, 
Rbypos v Y p  - Rbhcight, 
Rbypos c Ypos + Hcight. 

Figure 4.6: Beside Constraints: "room" should be beside existing "room B" 
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order close. 

Rb: all(xcoord Rbxpos, 
ycoord Rbypos. 

roomheight Rbheight, 
roomwidth Rbwidth), 

X p  - 1 - 2*Rbwidfh =< R b x p ,  
Rbxpos =< Xpos - 1 - Rbwidthh, 
Rbypos >= Ypos -1 - 2*Rbheight, 
R b y p s  =< Y p s  + Height + 1 + Rbheight. 

Figure 4.7: Close Constraints: "room" should be close to existing B" 
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order near. 

room 
% above 

Rb: all(xcoord Rbxpos. 

ycoord Rbypos, 
roomheight Rbheight. 
roomwidth Rbwidth), 

Ypos + Height + 1 + 2*Rbheight < Rbypos, 
Rbypos < Ypos + Height + 1 + 3*Rbheight. 

Rbxpos > Xpos - 1 - PRbwidth, 
Rbxpos < Xpos + Widrh + 1 + 3*Rbwidth. 

8 below 

Figure 4.8: Kear Constraints: "room" should be near to existing .'room B" 
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order far. 

%left 

%right 

46 above 

96 below 

Rb: all(xcoord Rbxpos, 
ycoord Rbypos, 
roomheight Rbheight, 
roomwidth Rbwidth), 

Rbypos < Ypos - 1 - S*Rbheight. 

Figure 4.9: Far Constraints: "roomn should be far from existing "room B" 
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Rb: all(xcoord Rbxpos, 

ycoord Rbypos, 
roomheight Rbheighi, 
roomwidth Rbwidth), 

D room 

% left 

Rbxpos + Rbwidth =G Xpos 

or 

(Rbxpos + Rbwidth =:= Xpos 

and 
(Rbypos =< Ypos - Rbheight 

or 
Rbypos >= Ypos + Height)), 

Figure 4.10: NotBeside Constraints: "roomn should not he beside existing "room B" 
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At this irnplementation hallways (see design rule 9) are treated as regular rooms, 

so the designer has to place them along with the others. Also we didn't deal with 

design rules 10, 8 and 11 at this time (see chapter 6.3 for future work). 

Rooms with functional constraints (design rule 7) must satisfy a beside or close 

relationship. FLOWER first tries to apply a beside constraint between the rooms, 

and if that fails the system tries to apply a close constraint. If both fail then the 

placement of the room will fail and that will be indicated to the user. This is the only 

way that rooms can be either in a beside or in a close relationship. Otherwise, these 

relationships are exclusive. 

Constraint Propagation 

The expert system used in FLOWER is the Echidna model-based reasoning engine. 

FLOWER'S knowledge base is implemented in the Echidna object-oriented constraint 

logic programming language. Echidna provides a schema knowledge representation, a 

logic programming language which supports constraints among objects and a reason 

maintenance system for efficient dependency backtracking. In Echidna, objects are 

represented as predicate schemata and they are accessed by unifying goals (logical 

messages) with the predicates (logical methods) defined within the schema. Schema 

instances can be created, sent messages, or passed as arguments. More details about 

Echidna can be found in 1431. 

Constraints represent relationships between variables. A constraint network is 

constructed during the design session, where the variables are the nodes and the con- 

straints are the arcs between them. In Echidna, the internal propagation of constraints 

narrows the domains of the variables involved, enabling a solution to be found more 

efficiently. A constraint is activated whenever the domain of one of its arguments 

is refined or bound to a particular value. This process can propagate among those 

variables that share constraints on their parameters. 



CHAPTER 4. SYSTEM ARCHITECTIVLT 

4.3 Mediator 

As described earlier, the abstract design goals (Iiamada's ASR) are expressed in 

the knowledge base. However, a link had to be created through which a connection 

can be established between the abstract and the visual representations. This link is 

established through Echidnq's External Object Protocol (XOP). To send inform a t' ion 

from the user interface code (called application from now on) to Echidna, queries 

are issued over this link. Likewise, Echidna terms can be unified with the terms 

constructed in the application. More about XOP can be found in 1431 also. This 

connection (or mapping between ASR and VSR) is done by a combination of number 

of C++ routines and Echidna codes. 

In the knowledge base a method is created to be external. Calls to this external 

method are made in the same way as to the other internal methods. External methods 

are the means of letting Echidna know, that it should expect methods be defined 

elsewhere (not on the knowledge base). External methods are generally used to get 

queries from users. 

An example from FLOWER'S knowledge base is shown in Figure 4.11. Iiere, the 

uroommaker" external method expects tne size parameters of the room to be defined 

by the user. 

When the knowledge base is loaded and the Echidna compiler notices an ext,ernal 

method declaration: the compiler asks the application for a method handler for that 

method. The application creates a handler and gives it to the compiler. 

The method handler defines a function which dynamically creates a method in- 

stance whenever its method is called from Echidna. That method instance has an 

associated array of arguments which correspond to the arguments of the Echidna 

goal- 

If an Echidna term which is an argument to an external method is refined or re- 

stored, Echidna sends a message to the associated method instance in the application. 
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schema room 

I 

init(Type, (0..63) Id):- 
rm-maker(Id, Xpos, Width, Height, Ypos). 

I 

Figure 4.11: External Method 

In this way, other parts of the design system (external to the expert system) can make 

use of results generated by the reasoning engine, working with the knowledge base. 

Here, we are specifically interested in changes to the domains of design variables. 

For example, consider placing a second room beside an existing room. Since rooms 

have variable size, the designer does not have to put the rooms precisely beside each 

other; it is enough to overlap them by this zvailable difference between the minimum 

and maximum sizes as an indication that (s)he wants those rooms to be beside each 

other (shown in Figure 4.12). 

When Echidna evaluates this placement, and the design goal succeeded, in this 

case, it will refine the domains of the width variable of the earlier placed room. 

At the same time, a message is sent to the associated method instance. Based on 

this message, the pictorial representation can also be updated, reflecting the changes 

(Figure 4-13), 

If the room placement ~ ~ a s  nat successful, i.e. a design goal failed and we undo 
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earlier placed room 

later placed room 

Figure 4. f 2: Indicated Placement of Two Rooms Reside Each Other 

earlier placed room 

later placed room 

Figure 4. t 4: Evduated Placement of Two Rooms Beside Each 0 t h  



MethodHandler* MyAp~icalion::rc@srer_ext(char* name, inr nargs) 

f 

class Rm-maker-Handler: public MchdHandlcr 

t 
public: 

virtual Mrthodfnsrancc* make-method-instance 

Figure 4. li 4: Sample of %me Mediator Function 

that, gwi, Echidna wilt restore the domains of the affected variables to their state 

before that goal was issued. 

The mediator supports cosnmunication between the reasoner and the graphics 

part of FLOIYER. T ~ P  routines here are those responsible for the technicality of 

the commur;icatiort Wow. Func~ioras suppurled include creating the link. loading the 

knowledge hiwe, custsrrrizfag the appliicatim. creating the handlers, issuing goals, 

arndcsing goals. discorrnecting the link. etc. Figure 4.14 shows an example. Creation 

of a method handler far the rrn-maker external method is shown on the top; and 

creation of the methad instance 5s shown b l o w .  

To have the full fundtiarrafit_v of the mapping between AR and PR, mother module 

was created that contains the high!! application dependent code. This is described 
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in the  next section. 

4.4 Knowledge Base / Database Update Routines 

Routines [written in C )  t o  formulate and to issue the appropriate Echidna goals, 

also to receive information from Echidna. These routines are more specific to the 

application. Examples, of such rout in= are getting parameter domains for a specified 

rmm, establishing ground d u e  for parameters of a specified room, constraining the 

values of some parameter (or combination of parameters) of t w  rooms to be the same, 

et c. 

For example, when the designer places a room by the input device, an AR is 

created. ;Ve need the mapping from AR to ASR, or in other words, we have to 

issue the correqponding design goals. Fornulation of these goals is done here, in 

the knowledge base update module. Then. the system issues these goals to Fxhidna 

through the mediator module. After Echidna evaluated the design goal, the results are 

sent back through the mediator code again. Then the interface update routines take 

this information, forming a mapping between ASR and VSR. The interface (graphics) 

module will be notified by t h e  interface update module about the changes, and it will 

present the pictorial representation (or mapping is done from VSR to YR). Figure 4.15 

shows a knowledge base update routine- 

4.5 Graphics Module 

Following our earlier thread of describing our work in Kamada's terms, the graphics 

module is responsible far generating the pictorial representation (PR) of the design 

objects. It dso supports the user interface. The user interface is described in the next 

chapter. Visualization functions are also supported here. The visualization however, 

is not paxt of the general mapping; it is calculated here entirely, The reasons behind 



CHAPTER 4. SYSTEM ARCHITECTURE 

h t  kb-set-alltint nu-id, float x p c ~ ,  float ypos, float height, float width) 

Figure 4.15: An Example of Knowledge Base Update Routines 

this decision are described in Section 6.1.3. 

FORMS ([34]) was used to provide the layout of the user interface and GL (SGI's 

Graphics Library) was used to manipulate the graphical objects and show the results 

of the  visualization. 

Rooms are represented in the same way in the graphics database, as they are in 

the knowledge base, with their lower left comer and their width and height. Each 

room type (kitchen, bathmom, etc.) has a minimum and maximum width and height. 

Rooms are represented visually as shown in Figure 4.16. The minimum size is 

shown filled and the maximum size is shown outlined. When Echidna notifies the 

graphics module that the domain of a variable has changed, the representation is 

chaaged accordingly. 

Visualization support is also provided by the  pnphics module. As we recall, 

FLOWER shows the following visual indications: 

2. explanation of iucorrect steps 
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Figure 4.16: Pictorial Representation of a Room 

These routines will be described next. 

Suggestion of design steps. The suggestion will be made by showing that area 

where the lower left corner (room reference point) can go. The area is calculated 

based on the sizes of the rooms and the constraints involved. 

Figure 4.17 shows how the shaded area is calculated for a no-overlap constraint. 

The suggested area for the placement of a room will consider all constraints in- 

volving that room. First, subareas are calculated based on each constraint, then 

intersection of the subareas will result in the final area presented to the user. 

For example, suppose the user has already placed three rooms (R1 , R2 and R3) and 

now wants to place a fourth room (R4) beside both R1 and R2 without overlapping 

any rooms. Figure 4.18 shows this situation. First, the subareas for each beside 

constraint wiH be calculated (Figure 4.19), and intersected (Figure 4.20). Next, the 

areas for the no-overlap constraints will be calculated (Figure 4.21). Finally, the areas 

calculated based on the no-overlap constraints will be subtracted from the previously 

calculated intersection- Figure 4-22 shows the remaining final area. Only this final 

&t is presented b the user. 

Explanation of incorrect steps. If the user ignored FLOWER'S suqgeeted 
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area where h e  new room 
cannot go 

F i w  4.17: Visualization of Valid Placement Area for New Room 
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R 1, R2. R3 are existing rooms. 
R4 is to bc placed beside both R1 and R2, 
wilhorrl overlapping any existing room 

Figure 4.18: Details of Calculation for Suggested Placement - part 1 
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Figure 3.19: Details d Calculation for Suggested Placement - part 2 
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b - -r showstbeintersecdon 
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I of - b e 5 i d e W ~ ~  
- -f 

lower left corner of R4 must go Itere 

Figure 4.*Xk Details d Calculation far Suggc7ited Ylxentent - part 9 
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' - 1  

r - i 1 sbows the intersection 
f I - - of tbe "beside" subareas 

.- - - . . ' shows tbe subamis calculated . . 
* .  . . 
. - - - I  for each room based on each 

"no"no_overlap"constraintoverlap" collstraint 

bere, the area sbows where tbe 

lower-left corner of R4 cannot go 

Figure 4.21: Details of Calculation for Suggested Placement - part 4 
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calculated based on 

all constraints 

Figure 4.22: Details of Calculation for Suggested Placernerrt - part 5 
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placement, a visual explanation of this mistake will be presented. Through the map- 

ping from ASR to VSR, the database update module will notify the graphics module 

about the failure of a design goal and the visual representation (PR) will be as de- 

scribed earlier in Section 3.4. 

Suggestion for correction. On encountering a problem step, the graphics mod- 

ule will show, based on the failed constraints, whether the rooms should be further 

away or closer to each other to satisfy the failed relationship, as described earlier in 

Section 3.4 



CHAPTER 5 

User Interface 

5.1 The Main Interface 

The user can interact with FLOWER via the following interfaces. The main interface 

(Figure 5.1) is responsible for almost all actions. The main area of it is the drawing 

board of the designer. Here (s)he can specify the perimeter of the house and place 

the rooms. 

There are several buttons and menus are placed around the drawing area. 

a Floor Plan 

Used to specify the perimeter of the  house. The user must do this at the 

beginning of the design session, before any room placements. 

0 Room Buttons 

Roam buttons are located at the right side of the user interface and show room 

types and colours. The room buttons are grouped together. On selecting a room 



Figure .i.l: FLOWER - Main User Interface 

button, all other room buttons are released, and a new room of the selected type 

is displayed, ready to  he drasetf  into place. I t  will have the same cofour as the 

rmnl button. The user can drag the room around the drawing board and place 

i t .  Ijpon placement, all appropriate  constraint,^ will automatically be applied. 

0 Add Rooms 

Hooms can also be added by specifying all their parameters. The user can pick 

a point and then rubberband a box representing a new room. This room has 

not only its lower left corner constrained but its upper right corner as well. 

However, it will not have a preset minimum or maximum size: al! parameters 

are completely the user's choice. Since there isn't anything k n ~ w n  ahead about 

this room. there w-711 not he any visualization available for it. However. when 

this room is placed. the no overlay and bounding box constraints still have to  

held. 



This button invokes the Constraint Specijcation interface (described in the next 

section). 

Help 

Help invokes the Help Interface (described in section 5.3). 

Colours 

A table is shown t o  the user as a reminder/explanation of the  coIour usage (see 

in Figure 5.2)- 

0 REMOVE 

The user can remove those rooms in a failed relationship. 

5.2 Constraint Specificat ion 

The user can state hisi l ? r  preferences by the means of the Constraint Specification 

interface (shown in Figure 5.3).  

The user can specify constraints either using menus or (s)he can input her / his own 

constraint. A box is shown with all added constraints. This box can also be cleared 

entirely or individual constraints can be deleted from it .  

5.3 Help Screen 

The user is provided with help about the usage of the system. A box is shown with 

the available help when actixrating the  Help interface (shown in Figure 5.4), 



Figure 5 2 :  FLO\YER - C'olours 



F i g r e  .73: FLOWER - hrterface for ('onst mint  Spccificat iur~ 



Welcome to FLOWER! 

A floor plan has to be specified first. 
Push on the 'Floor Plan" button. Its 
coforwill chaqge to green, showing 
that the system is ready for selection. 

Now, place the mouse where the first 
comer of the floor plan should be 
and press the LEFT mouse button. White 
holding the LEFT mouse button down, 
drag the mouse to the other comer and 
release it. 

Rooms can be added only aller the door 
plan was drawn. Select the button 
corresponding the desired room type. 
Visual aid will aDoear for valid 

Figure 5.4: FLOWER - Help Interface 
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Discussion and Summary 

6.1 Discussion on Implementat ion 

6.1.1 Rationale Behind Fixing Lower Left Corner 

In our implementation a room is positioned based on its lower left corner. The fol- 

lowing describes the reasons for this. 

An earlier approach we tried was to represent a room just with its edges, i.e. 

Right, Left, Bottom, Top. Then n-e wouid include constraints describing the physical 

realization of a room, such as the left edge is to the left of the right edge and that the 

bottom edge is below the top edge. etc, 

We ihen encountered a probiem that resulted in the requirement to have a con- 

straint which pins d o m  the Iocation of a room, The reasons for this arise from the 

constraint solving techniques used in CLP languages. This is hest illustrated through 

the use of an example: 

If the only constraints an Right are: 



a Right - L e f t  < 10 

0 Right - L e f t  > 5 

and Echidna has calculated that dornain(le  f t )  = {1,2,3,4,5) then conceptually we 

expect the following: 

0 if L e f t  = 1 then dumain(Riyht) = (6,7,8,9,10,11) 

i f  L e f t  = 2 then donauin(Right) = (7,8,9,10,11,12) 

i f  L e f t  = 3 then domazn(Right )  = {8,9,10,11,12.13) 

if L e f t  = 4 then dornainCRight) = (9,10,11,12,13,14) 

if L e f t  = 5 then d o m a i n ( R i g h f )  = {10,11,12,13,14,15) 

However, Echidna will return: 

This leads to having a room in which 

the distance from the minimum Ieft edge to the maximum right edge is greater 

than the maximum width allowable for the room, and 

the distance from the maximum left edge to the minimum right edge is less than 

the minimum width allowable for the room. 

It  is necessary to 'pick" a value for one of the edges, say Left = 5 for Echidna 

to return h ~ i n ( ~ g h t )  = 10,11,12,13,14,15. Unfortunately, this requires that we 

b e  a degree of freedom. 



A similar argument has us fix the Botforn edge. 

Since either way we would lose degrees of freedom, we  decided to specify those 

positions directly. This way we gained in execution time while losing a degree of 

freedom. 

6.1.2 Alternative Methods of Removing Freedom 

We have shown that we are zquired to give u p  two location degrees of freedom 

in order to  maintain width and height consistency in our database. Our choice of 

fixing the bottom left corner was arbitrary and made in the interests of keeping the 

implementation simple. 

An alternative implementation would require that the designer be required to spec- 

ify constraints which eliminate a degree of freedom in both the vertical and horizontal 

directions whenever a room I s  added. This could be done by providing the designer 

with a choice of how to  specify the Iocation constraint - either 

I. by explicitly placing a room somewhere within the floor plan, or 

2. by specifying that an edge of this room is bound to an edge of another room 

The explicit specification in method 1 is fairly simple to obtain. It could be 

implemented in one of the fullowing ways: 

By having the designer select which comer of the  rcmm to fix and then have him 

move the room around the screen until in the desired position. 

Have the designer select an edge to fix in the horizontal direction, then allow 

him to move that edge until it is in the desired position. Repeat for the vertical 

direction. 



Figure 6.1: Inserting an Adjacent Room Above an Existing Room 

Figure 6.2: Inser ,ting an Adjacent Room Right of an Exis ting Room 

The desired way of implementing method 2 would be to have the designer place the 

maximum room size at a given location and to have the system automatically insert 

edge bindings between the new room and any other rooms i t  happens to be "beside". 

The system could ensure that both a horizontal and vertical degree of freedom has 

k n  removed before allowing the additioa. 

If - in order to propagate the new constraints - Echidna changes the domain 

of an edge t-ariable, a message i d 1  be sent to the graphics which names the object 

whose edge domain has been altered. The application then knows that the new room 

must be adjacent to the old room and adds a beside constraint (Figures 6.1 and 6.2). 

However, since our implementation fixes the lower left corner of the room, the 

domains of the Width and Height variables contain the only degrees of freedom that 



Figure 6.3: Inserting an Adjace 

m 
nt Room Below an Existing Room 

Figure 5.4: Inserting an Adjacent Room Left of an Existing Room 

Echidna can use t o  propagate the constraints of the new room. This means that 

inserting a room below or to the left of an existing room will change the domains 

of the top and right edges sf the new room - meaning that  Echidna will not name 

the object to  which our new room is adjacent. Thus, the beside constraints will not 

be imposed (Figures 6.3 and 6.4). The no-overlap constraints are, however, adequate 

to reduce the top and right edges of the new room so that the maximum size "fits" 

within the allowable space. 

It would be  nice to have Echidna inform the application as to  which object caused 

the domain change of the new rmm. However, this would involve meta-reasoning and 

this is not part of any CLP language. In the absence of this information, a possible way 

to deviate the  problem would be to maintain a redundant database (outside Echidna) 
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of all of the objects and provide search routines (within the graphics module) which 

could determine the identity of the needed object. 

6.1.3 Division of Labour 

A fundament~l choice was needed between creating a system where all intelligence is 

encoded in the knowledge base or a system where the designing job is divided between 

the expert system and another (or more) high-level module. Obviously, other modules 

were created e.g. for visualization purposes. We decided on encoding only the basic 

schema and their constraints in the knowledge base. As a result, evaluation of design 

goals are done by the reasoaing engine but the routines that suggest the available 

steps by visualizing domains of design variables are a part of the graphics module. 

The decision was based on the following considerations: 

0 One of the purposes of this research was to demonstrate that constraint and 

domain visualization can help a designer in his/her work. It seemed more natural 

to calculate those visual aids in the graphics side that dealt more with pure 

geornet ry than logical relations. 

0 We think that the time to calculate that area is important from the nser's point 

of view. We also are aware of the fact that the reason behind being fast in 

geometrical ca!culation is due to the very simp'? geometrical shapes (all roous 

are rectangular in this implementation). If rooms have more complex shapes, 

the graphics side visualization might not necessarily be faster. 

Alternatively, calculating areas for visualization purposes could have been done 

witbin Echidna, even with the existing simple knowledge base. We investigated the 

following methods: 

1. obtaining all possible solutions and extracting the valid placement area from 

there 
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This could be implemented fairly easily: when the user indicates that (s)he 

wants to  place a new room, a goal can go to Echidna: get all solutions for the 

placement of that room. After getting all solutions, Echidna can return a list 

of those rooms and then the application can extract the needed coordinates for 

the area. Then the "get all solutions" goal can be undone and the user can 

proceed with the placement. However, we note that VLY-based systems were 

never intended to calculate all points in a 2D solution space, though in principle 

it is possible to  do so. 

However, this will take a considerable amount of time, especially at  the begin- 

ning of the design session, when almost the whole area of the house is available 

for room placement. On the other hand, the calculation of valid placement area 

on the graphics side is very fast as there we only comp1:te bounds of the needed 

area, solving a simpler problem than that expected from the reasoning engine. 

We expect that with a hirly constrained design space, the time for Echidna to 

compute all solutions would be considerably shorter, and the graphics cornpu ting 

time would be increasint though it would likely still be faster. 

2. trying to  solve the cmstraints without actually getting the variables ground, 

and expectirg that the domains will give the acceptable areas. 

Unfortunately, the domains do not give acceptable areas. We run into exactly 

the same problem as described earlier In 6.1.1. Suppose, the user wants to place 

a room without overlappi~g a previously placed room. Now, the user expects 

the system to show the available area for the lower-left corner of the new room 

before actually placing the room. In other words, the lower-left corner of the 

rmm is not yet constrained. If we were to issue the no-overlap constraint and 

check how the domains of X and Y change, Echidna returns the domains of both 

variables unrefined. This will result in an area much bigger than is actually 

expected if we were to  draw this. If one of these variables is constrained, then 

and only then will Echidna return the "expectedn results. 



3. by using real intervals and using notin ' (which currently works only for con- 

stants, hut once implemented could give a perfect solution if we only had two 

rooms) For simple rectangular rooms the graphics side visualization will still be 

faster. 

Another issue to investigate was the use of real interval variables, instead of 

integers. Our original no-overlap constraint was formulated as follows: 

(Xpos > Rbxpos + Rbwidth)or (6.1) 

f Xpos -+ W i d t h  5 Rbxps)or  (6.2) 

(Ypos 2 Rbypos $ R b h e i g h t ) ~  (6.3) 

(Ypos + Height 5 Rbypos). (6.4) 

Those variables that belong to the previously placed room start with Rb (e.g. 

Rbxpos etc), anci the others (e .g.  Xpos etc.) belong to the new room. Un- 

fortunately, the or operator is not yet implemented in Echidna for constraints 

containing variables which have real interval domains. Thus, the constraint had 

to be reformulated. An obviously easy implementation of this constraint could 

be 

notin(Xpos - W i d t h ,  Rbxpos, Rbxpos + Rbwidt h ) ,  (6.5) 

notin(Ypos - Height ,  R b y p s ,  Rbypos + Rbheight). (6-6) 

However notin currently works only for intervals defined by constants. Once 

this is implemented, it will give a perfect, reasonably fast solution, if we only 

have no more than two rooms altogether. If we had more than two rooms, 

Echidna will still not be able to simply return a description of a complex shape 

b t i n ( E 1 ,  R1, R2) means that El  is not any vaIue in [Rl,R2] 



(a big rectangle with many littale rectangular holes) describing all no-overlay 

constraints. We would get severely split intervals for b0t.h X and Y variables, 

and the graphics module will have to compute that complex shape. 

6.2 Evaluation 

6.2.1 Complexity 

Use of different colours for Jifferent constraints could be a problem if the total com- 

plexity of the system is high. The complexity of the system can be described by thc 

number of rooms and the number of relationships between them. 

Assigning colours to  rooms is not a problem since in the current system the numbcr 

of room types is very limited. The number of constraints could be a problem if we 

were to extend our system to be a fult-scale C X 3  system. At this point however, the 

user can only specify five types of spatial constraints (beside, not beside, near, close, 

far). Right now we are using different shades of grey to represent constraints. Adding 

more and different type of relationships will result in a problem. It is unlikely that we 

will run out of colours, but it is very likely that the user will not be able to distinguisn 

between them. 

Unfortunately, this is a serious problem, as we cannot rely 011 hoping that the user 

will not want to add new constraints. One solution could be that the user is presented 

with a subset of constraints at any gken time. This is a restriction but it avoids the 

confusion of many colours. 

Another way of dealing with this would be to support some other visual repre- 

sentation. For example, a flag (something attached to an object) could show some of 

the constraints. Again, this could also represent a problem if we have too many con- 

straints. Figure 6.2.1 shows a flag indicating two rooms being in a beside constraint. 
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beside 

Figure 6.5: Using a Flag for Visualization 

We could also use s combination of colours and flags. We could show the available 

areas of placement in the constraint's colour, but indicate a violated constraint with 

a flag. 

6.2.2 Rooms with Several Relationships 

Naturally, when designing a 0oor layout, rooms are expected to appear in more than 

one relationship. As long as the designer is placing them properly there will be no 

problem. However, (again naturally), the user cannot be expected to do so. Our 

system will then give a visual representation of the problem. 

When the newly added room is part of several constraints, the room will be con- 

nected by lines representing all failed constraints to all other rooms in the failed 

relationships. 

If many rooms are involved, the design space gets slightly(?) cluttered with the 

lines. However, the designer can easily solve this problem by removing the offending 

room. 

We have to realize though that t.he aim of the designer is to properly place the 

rooms after experimenting with some of the possible problems. If the designer is just 
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arbitrarily placing the rooms. thus musing a problem for himself, well, even the best 

systems cannot deal with him. 

6.2.3 Suggestion for Failure Correction 

At this implementation FLOWER provides some suggestions for how to proceed if 

constraints have failed. When it '.explainsn the failure by drawing thc  failed con- 

straint lines between the offending rovms, arrows are displayed to show whether the 

offending room has to be moved closer or further. This is shown however, for each 

lines separately; thus if the room was in many failed relations it is very difficult to see 

the correct direction. 

A better solution would be to  have FLOWER move the offending room to a place 

where the relations are satisfied if that exists. This corrective action does not have 

to be accepted by the user, (s)he could overrule it by removing the room from the 

workspace. The difficulty of this method lies in the fact that there will be many ways 

to correctly place the room, and the system would have to try to match the placement 

to  the one that the user specified earlier (hut failed). Mat c11ing could for example bc 

based on the closest distance from the user picked placement point to an available 

pcht. 

6.3 Future Work 

As we stated in earlier chapters, FLOIVER is a first attempt to gerterate an intcl- 

ligent, mixed-initiative design system with domain and constraint visualization. I t  

can be improved i~ various ways starting from little improvements (siich as routines 

that facilitate file saving, loading, restarting). These additions will 11ot improve the 

functionality of the system but wiU make it more user-friendly. 

Another visual improvement is to change the pictorial representation of the room 
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t o  avoid the current as-mmet rl-. It can bc dorw for esarr~ylr, by 1i;it.ing f tic r0~)111 

reference point be the middle of the room. In  tllis way, ivc still rw lovc*  t 1 t p v . s  of 

freedom but at least we obtain s_vmmetry. 

63.1  Functional Improvements 

implementing new cctnst rairtts 

Only a limited number of constraints wrre implemcr~tet~ i n  this first v t~sion of 

FLOWEX We implemented dimensional, restrictive, topological and lt~nctiortal 

constraints. However, many other constraint typcs would be uscful additions: 

Accessibility constraints. When the designer finished placing rooms, the* 

program could automatically insert doors between thern. Thc doors could bc 

accepted or rejected or moved as the designer wishes. 

Windows could be also inserted in outside walls, and after cornplctirig tlic win- 

dow design, a 3 5  representation of the house could be presented to the user. 

Closets should be inside other rooms. with openings to thcm. 

Practicality constraints. Window placement could be affected by coristraints, 

such as access to sunshine. Size and number of window should also be infiucnced 

by these constraints. 

Interconnection constraints. In the current version we treated hallways just 

as regular r-.xns. However, hallways have different properties: e.g. t hcy must 

connect rooms together. 

Stairways shouid connect different ffoors together and stair location should he 

the same place at both lex~els. 

Aesthetic constraints. Criteria stiIl need to be identified, along with methods 

for implementing these constraints. However, this is an area where the user 

should refy on her ova intuition more than in any other case. If pretty can he 

coded, i t  won't be pretty any more.. 



moving rooms 

Another extension is to allow the user to "change his/her mind" and move an 

already inserted room. In  this way he/she would get complete design freedom. 

A relaxed version of this is to let the user move the room that was placed last, 

as long as (s)he did not indicate further placement. 

nun- rectcngular rooms 

Rooms only are rectangular in the current version. It will be another major 

extension path to a!low the placing of arbitrary shaped (but still Manhattan) 

polygons. 

The graphics system would need to be extended to allow the designer to specify 

the shape of each room. One problem is that if the clser can draw any shape, 

then the visualization will have to wait, until the user finished the drawing. 

Formulating the constraints in the knowledge base is another issue. Formulating 

close/near/far constraints would he somewhat easier as the dist,ance between 

rooms can be measured between some defined 'hidpoints" of the polygons. 

However, for the beside constraints it will be more difficult. 

more initiative from the system 

We can free the designer from some repetitive tasks by allowing partial automa- 

tion at some stages of the design. E.g. when the rooms are placed already, 

the system could aut.omatica1ly place the passages. Clearly the user still has to 

accept the placement. 

Another initiative of the system can be placement of a roo;-, based on the 

specification of the designer. E.g. the designer can indicate the placement of 

a room and associated constraints. As a response, the system can still show 

the available area for the placement of that room while presenting a default 

placement to the user. Again, the designer can accept the placement or change 

the location of the room with the advice of the system. 



6.4 Summary and Conclusion 

The objective of this research was to explore interactive intelligent dcsign with visual 

aids to the designer. lye developed a system that showed that constraints arc a 

natural way t o  express design goals. Maintaining those constraints is nlanaged by the 

system and is not the responsibility of the user. The user is not elirninatcd from the 

design process but rather is incorporated. Because an explanation facility should bc 

an integral part of an intelligent design system to meet users' needs for fccdback on 

their actions, FLOWER provides such explanation via visualization of dcsign variable 

domains and constraints on them. The system we developed also works with the 

user in a mixed-initiativestyle. In this way, FLON'ER support.; itztrracliae intelligent 

design by providing visual suggestions or guidelines on how to proceed wi tli t I i c ~  design, 

checking design decisions, suggesting corrective actions and rrarking problem steps. 

As a result of implementing this system we have addressed ,z major limitation of 

current CAD technology: we have shown that it is possible to actively hclp a designer 

with the design process, without automating it. We have shown that  visualizdion of 

variable domains and design constraints can provide this active help. Finally, we have 

shown that the FLOWER system can provide intelligent help for designing simple 

floor layouts. 



Appendix A 

FLOWER - User's Manual 

Defining the Floor Plan 

In order to startup the design. the user must specify the perimeter of the floor plan. If 

he/she fails to do so, none of the functions of the program can be zctivated. The floor 

plan defines the boundaries of the building (i.e. &outside concrete walls"). Constraints 

are automatically created to ensure that no part of any room can be outside of this 

region, 

To specify the boundaries of the house, the user must select the Floor Plan button. 

The red light on this button will change to green by the selection. The user can the 

move the mouse into the Workspace area and specify one corner of the floor plan (this 

is the only case when the corner is not restricted to be the upper-left corner), by 

holding the left mouse button. She/he can then move the mouse while still holding 

the button and rubberband a rectangular area. Releasing the button will specify the 

other corner of the floor plan. 



Specifying Constraints 

At the beginninr of the design session or any time later during the actual design the 

designer can specify constraints related to the location/placerncr.t of t h e  rooms. To 

add the constraints the designer has to choose the C'onsirclinfs buttons. \\'hen this 

button is pushed a !ittie winclow appears on front of the designer. 'l'herc arc thrcc 

small rectangles in the  window. In the first and the last rectangles names of rooms 

are shown (i.e. kitchen. living room, etc.) and in the middle rcctangtc the types of 

available constraints are shown. The constraints implemcntcd at this niolncnt are 

spatial by nature: beside. close, near, far. 'The designer does not havc to type in 

his/her choices - just has to scroll through the available possibilities by clicking ttic: 

right mouse button. M;hen (s)he made a f nal choice in all three windows (s)lle can Ict 

the system know this by ciicking on the Back to the System button. These constraints 

are taken into consideration by the system when the designer actually tries to place 

those rooms part of that constraint. 

Adding Rooms 

After the floor plan has been defined, the room buttons became activated. There arc 

eight types of room. The types correspond to eight buttons of the user interface. 

Seven of them are located on the left side of the screen grouped together, showing 

the similarities of the rooms. The difference between these rooms lies only in their 

size. To visually distinguish between them, each button is shown in different colours. 

The room icons hold the same colour information as their buttons. Otherwise each 

room has a defined minimum and maximum size and a reference point, the lower left 

corner. The reference point of a room is the place where the room gets inserted into 

the floor plan. 



The following roams are implemented: hallway, master bedroom, bedroom, liv- 

ing room, kitchen, dining room, bathroom. The micimum size of these rooms are 

somewhat corresponding to room sizes in reality, i.e. the  m ~ t e r  bedroom is bigger 

than the bedroom and the l i ~ i n g  room is bigger than the  dining room. Since the 

sizes are given as range, the designer still has some freedom to make or break these 

conventions. 

To add a room, the  designer selects the but ton representing the desired room type. 

As soon as the room t ~ p e  is selected a shading of t,he valid positions for placement of 

the reference point of that room. 

After the room type is selected and the shadow appear., the designer doesn't have 

to insert that room. EJe/she can pick d h e r  type of room and look at the available 

area for that one. 

When the designer presses the left mouse button down the default room appears. 

Moving the mouse with the left button held down will move this defauIt room around 

the design area. When the mouse button is released, the default room will be tem- 

porarily drawn with the lower left comer at  the mouse location. The room is then 

added to the knourledge base. 

The remaining one type of rooms can be added by a different menu. By choosing 

the By Size menupoint from the Add Rooms menu, the designer can add a free sized 

room to the design. He/she can then move the mouse into the work space area and 

specify the upper-!eft corner of the floor plan by holding the left mouse button. She/he 

can then move the mouse while still holding the button and rubberband the new room 

area. Releasing the button will specify the other corner of it. There is no available 

placing information for this type of room, since its size is completely free, so it could 

fit anywhere. 

The free sized rooms can be used to fill the floor plan up completely. When the 

user inserts only the previous type of rooms, there could be "emptyn spaces in the 

floor area. By inserting a free sized room to those places, the designer can fill up the 



gaps. (These rooms can be considered as closet spaces or extra hallways.) 

The addition of a room causes the biioiving constrairtts to be a~~tonlatically in- 

serted irlto the Echidna knowledge base: 

The room must be contained witliin the floor plan. 

0 The room must have a wid? h/heiglit smaller than the  rni~limurn and larger than 

the maximum for that  room type, when this range is spccifird, ix. it is not a 

free sized room. 

The bottom left corner of the room is fixed to be the point which the designer 

selected 

The new room must not overlap an exist.ing room. 

Other constraints that the designer specified before regarding this room. 

In the event that the new room overlaps an existing room, the atlditiori of this 

room is rejected. AlI the goals are undone and the room must be removed from the 

floor plan. 

However, when the designer specified constraints are not met, the system gives the 

following visual cicles: the appearance of the original room changes, it will hc showrl 

outlined and an explanation is provided about the failure. Also a suggestion is given 

about possible corrective steps. 

If the addition of these constraints to the knowledge base is consistent, thcn the 

new room will be redrawn to reflect any changed edge domains. The visual aid for 

insertion is cleared. If the designer wishes to add the same type of room again, he/she 

could do so, without needing to push the same type of button again. To activate the 

visual aid again he/she has to  move the mouse in the work space area. The new 

shadow will appear showing again the actual available places. 0 bviously the designer 

can choose from the other rooms, if he/& wishes to do so. 



As it was previously mentioned, each room are shown in different. colour. By 

clicking on a room button, this colour will be turned of and the pushed button is shown 

in white. In this way, the designer can see which room was selected. Furthermore, 

the appearing shaded area will also correspond to the same colour. To still clearly 

show the room icon, t h e  shaded area will appear with using the same hue, but in low 

saturated. So e.g. the colour of the chosen room is red, then the shaded area will be 

pinkish. 

Getting Help 

To make the program even more user friendly, help facilities are added to it. The 

designer can ask for help at any time of the session by choosing from the Help menu. 

A little window will appear and brief information about the usage can be obtained. 

Based on the selection a scrohble text will be shown about the various aspects of the 

program. Help files are available about how to use the program in general; how to 

draw a floor plan; how to add rooms, what the difference is between the room buttons 

and the room menu, i-e. between the constrained sized and free sized rooms; what 

the shaded area means; what happens when a constraint fails and how to exit the 

program. A button (Back to FLGIVER) on the help screen h a  to be pushed in order 

to get back to  the program again, and the design could be coatinued. 

Leaving the Program 

When the design session is finished, the user can exit by hitting the Exit button. A 

built-in safety feature exists against accidental exiting. The user is asked whether 

realIy meant to quit, or it was just an accidental mouse movement. If heishe didn't 

mean to leave, he/she can return to  hislher design and Just simply continue the design 

session. 
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