
NOTICE AVIS

The quality of this microform is
heavity dependent upon the
quality of the original thesis
submilted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Same pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
phataoapy*

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. GW, and
subsequent amendments.

La qualit6 de cette microforme
depend grandement de la qualit6
de la thakse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualit6
sup6rieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'universit6
qui a confhr6 le grade.

La qualit6 d'impression de
certaines pages peut laisser h
dhsirer, surtout si les pages
originales ont bt6
dactylographibs h I'aide d'un
ruban us6 ou si I'universit6 nous
a fait parvenir une photocopie de
qualit4 inf&eure.

La reproduction, m8me partielle,
de cette microforme est soumise
a la Lei canadienne sur le droit
d'auteur, SRC 1970, c. G30, et
ses amendements subs8quents.

DOMAIN AND CONSTRAINT VISUALIZATION IN
COMPUTER-AIDED DESIGN

Enikii Ilona G s a

M.Sc- Technical University of Budapest, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

in the School
of

Engineering Science

@ Enik6 Ilona K z s a 1994
SIMON FRASER UNIVERSITY

March 1994

AN rights merved . This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

THE AUI'HOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
ItIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANYMEANSANDIN ANYFORMOR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLS ET NON EXCLUSIVE
PERME'ITAN'I' A LA BIBUOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DlSTRIBUER
OU VENDRE DES C O P B DE SA
THESE DE QUELQUE MAMERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHPP L'AIJTEUR CONSERVE LA PROPRIETE
OF THE COPYRIGHT IN HISIHER DU DROlT DAUTEUR QUI PROTEGE
THESIS. NEITHER THE THESIS NOR SA THESE. M LA THESE NI DES
SUBSTANTIAL EXTRACTS FROM IT EXTRAFTS SUBST- DE CEUEI
MAY BE PRINTED OR OTHERWISE CI NE DOIVENT ETRE IMPRIMES OU
REPR0DUCQ)WITHOuTHISPHER ALTREMENT REPRODUlTS SANS SON
PERMISSION. AUTORISATION. -

ISBN 0-612-01108-9

APPROVAL

Name:

Degree:

Title of thesis:

Master of Applied Science

Domain and Constraint Visualization in Computer-Aided
Design

Examining Committee: Dr. W. Havens
Associate Professor of Computing and Engineering Sci-
ences, Chairman

- <

d. J.C. DiU
"

Professor of Engineering Science
Senior Supervisor

Date Approved:

I

Dr. J.D. Jones
Associate Professor of Engineering Science
Supervisor

V

Dr. T. Calvert
Professor of Engineering Science
Examiner

PARTIAL COPYRIGHX' LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay

(the title of which is shown below) to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a request from the library of

any other university, or ather educational institution, on its own behalf or for one of its users. I

further agree that permissim for multiple copying of this work for scholarly prposes may be

granted by me or the Dean of Graduate Studies. It is understood that copying or publication of

this work for financial gain shall not be allowed without my written permission.

Abstract

The objective of this research is to explore interactive intelligent design w~th visual

a;& to the designer. Straightforward CAD/graphics methods work at too low a

level; they cannot interpret drawn objects. Through an appropriately structured

knowledge base, an expert system can supply the needed interpretation, can keep

track of design relationships; it is also desirable if the expert system can play a more

active role, suggesting design steps. Further, since automated design seems unlikely

and since design is an iterative interactive process, an approach whereby both system

and designer contribute to the solution is desired. Further, since designers work

visually, visualization tools are needed to supply graphic feedback.

This thesis describes FLOWER, Floor Layouts With Ezpert Recommendations, a

system for assisting with the layout of the floor plan of a house. A model-based rea-

soner with constraint propagation was combined with computer graphics visualization

techniques to achieve this goal. The reasoner generated information related to the

domains of design variables and constraints between them. This information is made

available to the graphics side of the system for visualization, helping the designer

see and understand the design space at each step of the interactive, iterative design

P-.

FLOWER and the user work together in a mixed-initiative style: the system gives

&hintsn to the designer about the outcome of certain design choices. For example,

when the designer choose8 to piace a room, the system shows the acceptable areas

of placement for that particular room. The system also provides feedback about the

choices, approving acceptable ones while indicating and explaining errors when they

Dedication

To Jennifer who was happily playing in K a h p while mommy was finishing her

thesis and to Shdram for all his encouragement a d support.

Acknowledgments

My sincere thanks to my supervisor Dr. John Dill for guiding and encouraging me

to work in this very interesting research topic and also supporting me throughout

the course of this I-esearch. I a m very grateful to my committee members, Dr. John

Jones, Dr. William Havens and Dr. Tom Calvert, for their assistance and valuable

comments.

I would like to express my appreciation to my colleague Cheryl Petreman, whom

originally T started to work on this area with. I would like to thank the members of

the Computer Graphics Research Lab at SFU for the lively environment, especially

Tm, Albert, Frank, Phil, Lyn, Sumo and Sang. Thanks is also given to Miron, Sue,

Mike and Russ from the Expert System Laboratory.

This work was also supported in part by the Natural Sciences and Engineering

Research Council and the EBCO Epic Chair for Expert Systems.

CONTENTS

... Abstract . 111

. Dedication iv

Acknowledgments . v

. List of Tables ix

List of Figures . X

. 1 Introduction 1

1.1 Motivation of Thesis . 1

. 1.2 The Design Process 2

. 1.3 Contribution of Thesis 5

. 1.4 Thesis Organization 6

. 2 LiteratureReview 8

. 2.1 Expert Systems in Architectural Design 9

. 2.2 Vimakdion 11

. 2.3 Intelligence Aids to the Design Proms 15

. 2.3.1 Automated Design Systems 16

. 2.3.2 Interactive Design Systems 22

. 3 FLOWER Scope and Functionality 29

. 3.1 Problem Definition 29

. 3.2 Solution Methodology 30

. 3.3 User's View of the System 32

. 3.4 Visualization of Constraints 32

. 4 System Architecture 38

. 4.1 The Knowledge Base 40

. 4.2 Constraint Propagation 51

. 4.3 Mediator 52

. 4.4 Knowledge Base / Database Update Routines 56

. 4.5 Graphics Module 56

. 5 User Interface 66

. 5.1 The Main Interface 66

. 5.2 Constraint Specification 68

. 5.3 Help Screen 68

. 6 Discussion and Summary 72

. 6.1 Discussion on Implementation 72

6.1.1 Rationale Behind Fixing Lower Left Corner 72

. 6.1.2 Alternative Methods of Removing Freedom 74

. 6.1.3 Division of Labour 77

. 6.2 Evaluation 80

. 6.2.1 Complexity 80

. 6.2.2 Rooms with Severd Relationships 81

. 6.2.3 Suggestion for Failure Correction 82

. 6.3 Future Work 82

. 6.3.1 Functional Improvements 83

. 6.4 Summary and Conclusion 85

Appendices

. A FLOWER . User's Manual 86

. Bibliography 91

viii

LIST OF TABLES

4.1 Table of Preference Coustraints . 44

LIST OF FIGURES

. 2.1 An Example of Apogds Data Model 18

2.2 An Example of Inference Rules Expressed as Snap Sites 19

2.3 An Example of Kamada" Model . 25

2.4 The Nqueens Problem Described in Kamada's Terms 27

3.1 Visualization Aids for Placing a Hallway. with No User-Set Constraints 34

3.2 Visualization to Place a Hallway. User-Specified Beaide Constraint 35

3.3 Visualization Aids for Placing a Master Bedroom with Several Urn-
Specified Constraint . 36

3.4 Placement of Master Bedmorn bas Failed 37

3.5 Placement of Master Bedmorn Fails Due to a No-Overlap Constraint 37

4.1 Structure of PLOWER Described in Kamada's Terms 39

. 4.3 Room Schema. 43

4.4 Rooms Should Be b i d e the House (i.e . rmm at (Xpos. Ypos) with

size (Width. Height) must fit in house of size (W. H) at (XI Y) $4

4.5 Preference Rules (dotted outline of a second room shows its p!acement

with respect to exkt ing [already placed) first room. to meet various

. cmtrajnts) 45

. . . 4-16 Beside Constraints: "room" should be beside existing "room B" 46

4.7 Close Canstraints: "room" should be close to existing "room B" . . . 47

4.8 Nem Constraints: 'room" should be near to existing 'room Bn 48

. . . . 4-9 Far Constraints: -room" should be far from existing "room B" 49

4.10 Mot-Beside Constraints: -roomm should not be beside existing "room B* 50

. 4.11 External Metbod 53

. 4.12 Indicated PIacement of Two Rooms Beside Each Other 54

. 4.13 Evaluated Placement of Two Rooms Beside Each Other 54

. 4.14 Sample of Somc Mediator Function 55

4-13 An Example of Knowledge Base Update Routines 57

. 4.16 Pictorial Reprpsentatb of a Roam 58

4-17 Visualization of Valid Plzeanent Area for Sew Room 59

. 4.18 Mls d Cdwlaiiar for Suggested Placement . part 1 60

. 4J9 Details of C;dcuEatiorr for Suggested Placement . part 2 61

. 42U lktaik a•’ Cahlat'nra for Sugpted Placement . part 3 62

. 4-21 DctailsdCillc;PlaltmforSn@edPlacement-@4 63

. 4.22 Details of Calculation for Suggested Placement . part 5 64

. 5.1 FLOWER . Main User Interface 67

. . 3.2 FLOWER Colours 69

. 5.3 FLOWER . Interface for Const.raint Specification 70

. 5.4 FLOWER . Help Interface 71

. 6.1 Inserting an Adjacent Room Above an Existing Room 75

. 6.2 Inserting an Adjacent Room Right of an Existing Room 75

. 6.3 Inserting an Adjacent Room Belorn an Existing Room 76

. 6.4 Inserting an Adjacent Room Left of an Existing Room 76

. 6.5 Using a Flag for Visualization 81

xii

CHAPTER 1

Irrt roduct ion

1.1 Motivation of Thesis

The objective of this thesis is to implement an interactive intelligent design appli-

cation with visual aids to the designer. Visualization helps a designer explore data

and information in order to gain greater understanding and insight into the design

process. Several existing techniques taken from ob ject-oriented expert systems, com-

puter graphics and user interface methodology were combined in order to achieve this

goal-

A system was < reated that assists with the design of a floor plan of a house. Using

current computer graphics technology alone for that purpose is limited in that it lacks

the ability to interpret the drawn objects. Lines are simply lines without a specific

meaning such as "these lines represent a room", with all the properties of a room,

such as walls, neighbors and other relations to other rooms. These constraints can

tie rooms together or separate them. The interpretation of the drawing is uampletely

left to the imagination of the designer. An expert system can supply the needed

interpretation through an appropriately structured knowledge base, and can easily

k p t d of many design relationships. However, an expert system on its own, i.e.

CHAPTER 1 . INTRODUCTION 2

without visualization tools and support, cannot supply needed visual feedback to

the designer. For instance, without appropriate graphic indications from the system,

consequences of poor or incorrect design choices are difficult for the designer to see.

Even those previous systems with a graphics environment and an expert system

suffered from a certain lack of interactiveness: i.e. their approach was to request a

design goal from the designer and then work toward a soh tion with no further input.

If not satisfied with the solution, the designer would have to restart from scratch,

completely discarding the solution, even if some elements of it were acceptable. Thus

we see the need to support an interactive, mixed-initiative approach.

This thesis presents a novel approach by creating a system that provides the user

with expert aid with FLOWER and the user working together in a mized-initiative

style. First, the system provides feedback about designer choices, "approvingn accept-

able choices and indicating errors when they occur. For some error types, the designer

may proceed but the error is marked. Other types of errors are unacceptable, so the

system would not accept such requests from the designer. Second, the system gives

suggestions to the designer about the outcome of certain design choices. For example,

when the designer chooses to place a room, the system shows the acceptable areas of

placement for that particular room, taking the current layout and constraint set into

consideration.

1.2 The Design Process

The area of intelligent CAD has long been of interest to researchers. Before applying

intelligence to CAD, it is helpful to understand how human perform this task and

much has been written (e-g. [I], [2], [37]) on design itself, as a process. The design

process can be divided into subtasks. Artificial intelligence can be applied to any of

these. However, A1 has so far only been successful in some of these ([2]).

CHAPTER 1. lNTRODUCTION 3

Rosenmann et.al. ([41]) describe design as a "goal-oriented decision-making activ-

ity in which, given a set of goals, a designer prescribes the form of some artifact so as

to satisfy a set of goals" and suggest that different levels of design can be achieved.

At the Ueasiestn level, when given a problem, one simply selects a solution from an

existing set of solutions. The goal is to make some modifications, if required. At

the next level, the designer knows the general form of the artifact, but the parts and

parameters of it have to be chosen. At the top level, the designer does not know even

the general form of the artifact. The solution is generated creatively, with trial and

error. The authors see expert systems as a tool that can be applied to the simplest

level of the design and in lesser ways at more advanced levels.

Pylyshyn ([37]) views problem-solving as a process of search through a Problem

Space. The problem statement starts with a specification of a set of states that

constitute the problem space, a set of operators that can be used to move about in

that space, a state (or set of states), that constitutes the starting state(s), and a state

(or set of states;, that is a god state. Problems which can be characterized in this

way are called Well Structured Problems. Problems which lack one or more of these

features are called IZl-Structured Problems. The problem with the design process is,

that it is clearly Ill-Structured. Design problems do not have a fixed problem space to

search through: finding one is part of the problem. GeneralIy ill-structured problems

are solved by formulating one or more well-structured subproblems and attempting

to solve them. Pylyshyn sees expert systems as capable of automating the design

process, but they need to satisfy certain requirements. As an example, such systems

must have the capabiIity to express mutuai constraints in such a way that consistency

and progressive constraint restriction can be monitored automatically.

In [1] and [2], Akin attempts to give a descriptive model of the design behavior

of architects. Ln his view, before attempting to make an expert system to model the

process, we must be familiar with the practice of design. Akin is skep t id ?bout

existing expert systems in CAD, especially regarding their participation in the design

process. The problem he sees is that there is very little known about the practical

CHAPTER 1. INTRODUCTION

expertise of the architects. He also observes that there may be debate and disagree-

ment about the correctness or goodness of design even among experts. The existing

expert systems are no more than helping tools in the various stages of design; they

do not automate the whole design process. However, he suggests that certain require-

ments must be considered in the development of expert system for design. One of

these was in fact the same as one of Pylyshyn's realizations: it should be possible to

organize problem constraints into a hierarchy, distinguishing between local and global

constraints. Also special representations of design elements are needed so that de-

pendencies between the hierarchically organized constraints and design elements can

be automatically propagated. Such a tool would allow the designer to predict the

consequences of modifications made at one level to elements on another.

Architectural design is generally a very complex process and is usually considered

as an area for human endeavgr and not for computers. The contribution of com-

puters and CAD to automated design has mostly been limited to drawing creation.

Intelligence still needs to be introduced.

Currently expert systems are introduced only in low-level architectural design

involving routine, simple tasks. Such expert systems are able to perform classification

and decision-making, when there is a known number of decision options. When the

knowledge is described, the expert systems can be created to perform certain 'design"

tasks. The existing expert systems are able to generate Ucorrectn answers as a human

would, but they are not able to *explainn the relationships that make those particular

choices right. At present, it is unrealistic to construct models of architectural design,

without oversimplification of the design task. I believe that in the future this would

be the aim of the researchers of this area.

Through the architectural design process, there are certain Design Codes, which

must be satisfied. Design codes include physical laws, heuristic rules and experimental

knowledge. It seemed a natural step to implement expert systems for checking whether

the design meets the code requirement. Such expert systems would not do design,

but would be a useful aid through the process. One of the significant difficulties

CHAPTER 1 . INTRODUCTION 5

of the implementation of such systems lies in acquiring the knowledge, even though

the codes are already structured. Several authors ([I41 and [40]) proposed expert

systems to make use of such codes. The usefulness of such systems is significant in

the architectural design, even though they are not part of the design process, only

assistants to it. These systems can free the designers from routine tasks so they can

concentrate on the design itself.

Other expert systems (e.g. Fixer ([15]), HI-RISE ([27], [28] and [29]), etc.) were

developed to assist the designer in specific architectural tasks. These systems will be

described in the next chapter.

As we can see from the above there has long been a need for a system that can

support design in a more intelligent way. It is not enough any more to simply rely on

passive participation in the design process. Of course there are routine tasks to be

performed throughout a design; for example existing expert systems are capable of

checking certain results. However, if we want a system that can be a real help when

designing, we wish the system to play a more active, supportive role. We want our

system to suggest design steps.

We also expect to be able to try out new ideas while taking design step.3. We would

like to make a step, see the outcome and then proceed or discard the step based on

some feedback from the system. In this way we could carry on with the trial and

error inherent in the design process. None of the expert systems mentioned above

have this ability of providing this kind of expert aid. As a consequence, FLOWER

was created to narrow the gap between systems that only passively participate in the

daign process and those that take over the design.

1.3 Contribution of Thesis

The previous section showed that although expert systems have been successfully

used in the design process, there is a problem in that they are not capable of working

CHAPTER 1. INTRODUCTION 6

interactively with the designer. They are passive problem solvers and give no or just

minimal help to explain their actions. CAD systems are interactive, however, the

designer is left alone to make all design decisions.

Therefore, the aim of our research was to create a system capable of

visualization of domain of design variables and design constraints: users actually

want to see how their design space changes as a result of their actions

letting the user design in a "human" way by means of trial and error and not

being fully automated

giving visual suggestions or guidelines on how to proceed with the design

checking design decisions and making corrective actions or marking problem

steps

FLOWER was created as a first step toward fulfilling the above requirements. As

noted in Chapter 2, we were unable to find a description of an existing system that

addressed all of these goals, though the need for such system is recognized by many.

The system closest to meeting our goals simply produced a long textual explanation

for the user about the system's decision ([3]).

Thesis Organization

A literature review is presented in Chapter 2. First, we briefly describe a few expert

systems in architectural design, then we give a short overview on visualization. Finally,

we present design systems using constraints. The main problem is that we were unable

to find papers which directly dealt with constraint visualization. It seems that the

lack of readily available constraint processing systems resulted in works where the

main focus mas on how to implement the constraints as opposed to wing them for

Herent purposes.

CHAPTER 1. INTRODUCTION 7

The scope of our system is presented in Chapter 3. The overall problem that

FLOWER addresses is defined first. The solution methodology is then explained,

followed by the user's view of the system. Finally, the details of our visualization

methods are described.

The fourth chapter describes the architecture of the system and the fifth chapter

gives an overview of the user interface of the program.

The final chapter presents an evaluation of the system, outlines direction for future

work and concludes with a brief summary.

A User's Manual is included in the Appendix.

CHAPTER 2

Literature Review

In this chapter we review relevant literature on our area of research. First we describe

some of the eisting expert system in architectural design in Section 2.1. These

systems were automating design and were not attempting to involve the user in the

design process. Next, in Section 2.2 we look at the use of constraints as a way to

express design goals. We describe some of the early systems first. The common finding

of these systems is that maintaining constraints should be left for the underlying

system and should not be the responsibility of the user. Several ways of dealing with

constraints were proposed by various authors. However, we want to do more than

just use constraints. Our goal is to create a design environment where the system can

help the designer by suggestion and explanation as opposed to just automating the

entire design process. We want to aisualize constraints and domains of variables, as a

pictorial explanation is almost always more beneficial to the user than a long textual

one.

Thus next we look at visualization in general and in particular visualizing rela-

tionships. In order to design our user interface such that it facilitates design snd

shows relations and design decision at the same time we reviewed general guidelines

first. We found thd the key in designing sucessful interface was in understanding the

risers and their tasks and then matching the interface to these requirements. Next, we

CHAPTER 2. LITERATURE REVIEW 9

decided to visualize relations using colours, thus we reviewed papers on colour usage

in user interfaces.

In the last section we review in more detail those papers most related to our

work. They can be categorized in two areas. First are those describing work on

automated design systems, all of which use constraints as a way of expressing design

goals. However, the user is left out of the design process. Only the final solution

is presented to him/her. Papers in the second group describe systems where users

took part in the design. In the one case, (s)he could browse through partial results

choosing the most suitable with which to continue. This system was still almost fully

automated, as the user could only choose from the system-generated solutions, and

was not able to give independent input. In another case, the user was an integral

part of the system communicating through a well-established link. We think that

our system is capable of more than that, since FLOWER can suggest design steps,

explain failures and suggest corrections.

2.1 Expert Systems in Architectural Design

In [40], the authors propose an expert system to make use of design codes. It is shown

to be useful in conjunction with a comprehensive computer-aided design system. The

nature and capabilities of the code checking expert system are described.

In [14], the authors propose another expert system which uses the results of the

above research. It is dso intended to function together with an architectural design

system. After a building design has been developed, the expert system assists the

designer in making sure that the plan is consistent with certain codes and regulations.

The usefulness of such systems is significant in the architectural design, even

though they are not part of the design process, only assistants to it. These sys-

tems can free the designers from routine tasks so they can concentrate on the design

itself.

CHAPTER 2. LITERATURE REVIEW 10

An interactive expert system - Fher ([15]) - was developed to help in the determi-

nation of fastener specifications. It is a knowledge-based system and no attempt was

made to deduce specification from the underlying physics or chemistry. The interac-

tion with the user is performed through dialogues. It will ask the user to provide data

about a fastener problem and it will offer alternatives from which the user can make a

selection. Following the dialogue session, the system will provide a final specification.

GerG et.al. ([17], [35]) proposed the concept of a prototwe as a conceptual schema

for representation of generalized design knowledge. The design experience is gener-

alized in a way that allows representation at the concept level in the form of a class

from which instances may be instantiated to meet the specific design situation. Class

and instance take their meaning from object-oriented programming. The develop-

ment of knowledge-based systems to aid or automate the design process requires the

identification of a representation schema for this design knowledge. A prototype is a

generalization of grouping elements in a design domain which provides the basis for

the design. Designers are capable of using prototypes and of generating new ones.

Maher ([27], [28] and [29]) developed a system called HI-RISE. It is a knowledge-

based expert system that performs preliminary structural design of high-rise buildings.

In the preliminary design process, the key terms are selection and constraints, in

Maher's opinion. The selection of a structural configuration implies that there is a

set of potential configurations from which to choose. The constraints may be grouped

into several categories, ranging from subjective constraints imposed by the architect

to functional constraints imposed by laws of nature.

The user takes part in the design process through the selection of a functional

system to be pursued further. The design knowledge is represented in the form of

schemas and rules. The schemas contain the description of the design subsystems and

components, and the rules represent design strategy and heuristic constraints.

As we can see 50m these examples there is a need to have intelligent aid to the

design process. Exkiing systems however, leave the user out of the design process.

CHAPTER 2. LITERATURE REVIEW

2.2 Visualization

This section reviews the area of visualization and especially visualizing relationships.

We were unable to find an article or book, that dealt explicitly with the problem of

constraint visualization. Relatively few books exist on constraints and those that do

are about constraint management systems, i.e. about their implementation. There is

much work on the use of constraints or how to draw them in a graph-like manner ([4],

[S], [12], [22], [23], [36] and [47]) but these are generally about mathematical/physical

constraints and not logical ones.

One of the best known such constraint-based systems is Thinglab ([lo]) and its

follow-up: Thinglab11 ([30]), Thinglab provides a set of so called things, which the

user can add to a graphics work place. It lets the user attach complex graphical

constraints to graphical objects: e.g. one can constrain a line to be horizontal.

A constraint is a relation that must be maintained. Using such relations proved to

be klpful in constructing user interfaces. Maintaining these relations should be left

for the underlying system and shouldn't be the responsibility of the user. In Thinglab

constraints are used for the following purposes:

to maintain consistency between underlying data and a graphical depiction of

that data on the screen

to maintain consistency among multiple views of data

to specify how information is to be formatted on the screen

0 to specify animation events that are to occur when a given event occurs in the

underlying system

to specify attributes of objects in animation, such as speed and trajectory

Constraints allow a declarative description of the user interface. With them the

user can specify tohat relations are to hold and the system wil l decide how to keep

CHAPTER 2. LITERATURE REVLEI\' 12

the rciations- blaintemce of consistency between data and displayed information or

among multiple views of the same data is a common problem in user-interface design.

The usage of constraints is one of several techniques to handle it. The advantage is

that a constraint relation can satisfy itself bidireciionally.

As we can see, Thinglab allows the user to constrain "thingsn together but it does

not show anything a b u t the "outcome" of those constraints. The user can create

thingl, then create thin@, then specify a constraint between them. Now, it is the

responsibility of the system to make sure that the constraint is held.

The designer takes a different approach in our system. First (s)he creates rooml.

Then (s)he can specify a relationship between the existing rooml and a not yet created

room2. When the user indicates (s)he wilt create room2, FLOWER shows all possible

spaces where that room can be placed, based on the specified constraint. If the user

places room2 on a suggested, suitable area then the constraint will be satisfied.

A second major system is Peridoi f 1321) which infers graphical constraints as the

user adds objects to a work area. To help Peridot infer dependency relationships

between z llew object and others, the user may select a particular object for Peridot's

attention, The constraints function in one direction only. The system confirms infer-

ences with the user as it infers constraints. It displays a textual explanation of the

constraint it thinks the user intended. Then the user is asked to accept or reject the

inference,

Several other interactive graphics systems permit the specification of constraints,

either directly or by demonstration. The original one was Sketch pad ([44]). In Sketch-

pad when the user merges two objects of the same type, constraints on either of them

are applied to the new merged part- It also Iets the user display a graphical repre-

sentation of constraints: they are shown as a circle containing a syrnbd representing

the type of constraint.

Another such system that pennits specification of constraints by the user is Juno

([=I). It also supports the direct application of graphical constraints. The user can

adect iaMLs repredenting constraints which the system applies to points previously

geIccted.

Ooe d the newer systems is Grace ([Rj). It is a graphical editor that lets users

defioe g a p b i d or geometric constraints. It provides mechanisms for constraint spec-

ification via simple mesas. T k indude simple direct-manipulation methods and a

comtfaint-by-&mm&ratioa facility that incorporate9 both novel heuristics for infer-

ring user-*- rela$ions and natural-language explanation tools that help the

user &taad the iderencing behavior of the system. This research was primarily

f 4 on two idem:

investigating user-interaction mechanisms for conveniently specifying and ob-

taining information about relationships

mowing towards guidelines for inferring constraints from user-demonstrated ex-

amples like in Peridd

An explanation facility rpas built in for cases when the visual feedback might not be

sufficieotly informative, might not always understand the 'behind-thescenes"

and exactly why constraints were iderred and others not. Grace pops

up o acparate window umtaining a natural language description of ail the constraints

it inkrred or chse not. to infer dong with a justification for each decision.

As can be seen, the gad d t he above research was primarily to construct a platform

k tbc mcr to specify constraints in some "smart" way. A secondary goal was to

d t & n them. In aome cartes an explanation facility was provided. The problem

wSb &d b p a g ~ ejcplanafian is that it can be very ambiguoas if the problem is

big. Usermr do want to 4 through pages of information d d b i n g

w-tiam tbat W to a prabkm- (Even if they did, it is a very painful procedure t c ~

go t h m & r bag list at aon&rainta that are affeded by a single action). This was

piart of mu m6tivath to ccmstruct a system whem the main idea is
and dowab. The user wants to & d y sec the consequences

- I . n I

* i .

$ 1 ; I t d & C * , *",&."; . i ?

' f - I Y Z . 3 , ,. "
t , ~ 2 * , .I

CHAPTER 2- LITERATURE REVIEW 14

of his fber action. @)he may also need guidelines for the next steps in the design.

Letting the user experiment while designing and to have a system - provided guidelines

was one of our aims.

Visudzation itself is a broad area and can be described as the graphical description

of a physical phenomena where the data itself need not be visual ([48]). In many

applica$ions the difficulty in dealing with large volumes of data led researchers to try

known techniques in different contexts. Visualization also has drawbacks: it is very

easy to get false impression by plotting data in a "pleasingn manner ([46]).

[49] also discusses some new and not-so new techniques for presenting data in some

sort of visual manner, e-g. using image processing of non-image data. Colour spectro-

grams or pseudo-colour animation of selected parameters can help review inspection

of large amounts of data in a very short time. Wolff states that visualization should

n d be viewed as the end result of a process of some scientific analysis, but rather as

the process itself, It should be more than an application of a technique for displaying

data.. It can be viewed as

"a paradigm for exploring regions of untapped reservoirs of knowledgen.

FLOWER helps the designer to take the next step in the design by showing the

domains of design variables. The aim is not just simply show tbat domain but to

suggest visually the next step to be taken.

In computer graphics systems there are two basic forms of visual design: drawing

systems and modeled systems. With the drawing systems, one can sketch ideas into

the computer using it as a sophisticated drawing board. The other alternative is

to give the machine a mathematical model of objects the designer wishes to create

and have the computer make images from that. The main idea of our new proposed

system (FLUWER) goes beyond this division. Creating a system tbat can be used aa

a drawing board if the designer wishes to draw only, and to have a system that givee

xwmmmenwions and supervises design decisions at the same t h e was our goal.

CHAPTER 2. LITERATURE REVIEW 15

Since our approach is to visualize relations using colours, we reviewed papers on

colour usage in user interfaces. Colours used in computer graphics are often selected in

an ad-hoc fashion, without considering their physical and psychological effects. Prob-

lems arise from the fact that there are no established algorithms that can be applied

to choosing colours, only heuristics. Maay of the existing guidelines suggest using or

not using a particular colour for a specific use, i.e. they are not general strategies or

design guidelines for selecting colours. One approach to select appropriate, effective

and tasteful colours for user interfaces is to use an expert system ([3l]).

In the area of the use of colour in visualization, Rheingans and Tebbs in [39]

visualize data by mapping the value of a variable to a d o u r value. Levkowitz and

Hermann also used colour scales to display image data in [26]. This suggested to

us that we should represent different types of constraints with a colour scale. The

spatial constraints are colour coded: the closer a room should be, the darker the gray

representing the constraint.

Frome in [16] contains some suggestions to consider when designing with colours:

colour aftereffects should be avoided if possible, colour differences can be increased to

make objects more visible, standard conventions should be followed. There may also

be cultural differences in interpreting colours ([g]).

2.3 Intelligence Aids to the Design Process

In this section we review several papers more specifically relevant to portions of our

work. The papers are sorted into two groups. First we describe systems that were

fnlly automated. Then we turn to those systems where the user plays a role in the

CHAPTER 2. LITERATURE REVIEW

2.3.1 Automated Design Systems

The work of Seligmann and Feiner on the use of expert system in designing illustrations

([42]) is discussed first. It shows that desigr, is a goal-driven process within a system

of constraints. When analyzing a partially completed design, their system backtracks

for generating a better solution so previous mistakes or off-track solutions can be

avoided.

Next we describe the work of Henry and Hudson ([la]) on using constraints in User

Interface Management Systems. Their work on designing screen layouts is very similar

to our work on placing rooms in a floor plan. Thus their ideas provided suggestions

to our work.

The research of Hudson and Yeatts in [20] is presented next. They described

a technique for integrating rule- based inference met hods into a direct manipulation

interface builder. Though they refer to the desirability of the designer control of the

process, their system followed an automated approach.

Finally we present the work of Baykan and Fox in [5], [6] and [7]. They investigated

constraint-directed heuristic search as means of performing design. Their application

was very similar to ours: they were designing layouts of kitchens. They were also

emphasizing on using constraints throughout the design process. They did not deal

with feedback from the user: their designing system is also fully automated.

Expert Systems in Illustration Design. An illustration is a picture that is

designed to portray meaning, i-e. meet some communicative intent. Seligmann and

Feiner describe IBIS ([42]), a system for automated design of intent-based illustratione.

Their design is a goal-driven process within a system of constraints, where the goal is

to achieve the purpose and the constraints are the illustrative techniques an illustrator - apply-

The idea behind the system is to generate presentations, each designed to satisfy

the same conununicative intent for a particular audience such that the illustration

CHAPTER 2. LITERATURE REVIEW 17

has the exact same meaning to many different people. IBIS designs illustrations to

fulfill a high-level description of the intent. The work described in this paper rep-

resented a new method for generating illustrations utilizing multi-level backtracking.

Evaluators analyze partially completed designs. Based on the evaluations the system

backtracks for generating a better solution. Illustration objects are generated based

on both the representation of the physical object and the communicative intent. This

way, the system also takes into consideration the physical properties of the object,

not just its intent. The multi-level backtracking idea seems to be very useful, since

it works like a developing design, which learns from previous mistakes or off-track

solutions. However, the precoded evaluators do their work with no user input taken

into co~sideration while the system is working.

Using Constraints in UIMS Design. If we think of placing windows on a

screen as a task similar to placing rooms in a floor plan, certain aspects of UIMS

work are applicable to our work. Henry and Hudson for example describe the Apogee

UIMS in [18] which uses a unified data model (from [38]) to support a range of tasks.

This active data model not only stores data, but also acts when changes occur in them

and is based on incremental attribute evaluation concepts. In this UIMS, interfaces

are treated as editors and browsers of data. Both the application and the user are

given access to the data Under this paradigm, the primary task of the user interface

is one of translation, i.e. the user actions have to be translated into internal data and

into actions within the application. Also, when the application changes data, these

changes have to be translated into new graphical images, presented to the user. An

d i v e data model can be used to automate these translations.

At the lexical and syntactic levels, graphical presentations are defined in terms

of att6bubes. Graphical images are updated automatically whenever the attributes

which define them change value. This allows simple specification of dynamically

changing layouts that can automatically adapt to make good use of available screen

spaoe-

At the semantic level or application interface level, the system allows important

CHAPTER 2. LITERATURE REVIEW

Object 1

Figure 2.1: An Example of Apogee's Data Model

application entities to be equationally related to the overall system of attributes. This

creates an automatic connection between changes in application entities and graphical

representations on the screen (shown in Figure 2.1).

An object-oriented data model is used in the Apogee UIMS, which supports multi-

ple inheritance for defining objects. Objects respond to a set of messages by invoking

methods, but their internal structure and implementation are completely hidden.

This work was similar to the work of Zanden et.al. ([a), in the sense that both

authors were using constraints describing a set of dynamically changing relationships.

Apogee allows constraints to directly reference objects but does not allow indirect

references, as does Zanden's work.

Both methods deal primarily with implementation of constraints: their application

is secondary. In FLOWER we want to use constraints without worrying how they

were implemented- Many researchers have pointed out the importance of being able

to use constraints in a design system (starting from [lo] and [32] etc.).

As we suggested above, there are some analogies between an UIMS and an intelli-

gent design system. P?acing windows in the screen and placing rooms into a flax plan

can be very similar. Thus some ideas in this article provide suggestions for FLOWER:

CHAPTER 2. LITERATURE REVIEW

f* pified et 1: object matches top position

+
12: object m h e s bottom position

1 7: object has same size
1

9
3:object has same height

Figure 2.2: An Example of Inference Rules Expressed as Snap Sites

how to show "besiden constraints, how to show a fixed position according to some

reference point, and how to show a variable size object.

Rule-Based Systems in Interface Design. Research in building user inter-

faces is going in two main directions. One set of systems (interface builders) provides

environments or editors that allow an interface to be specified with direct manipu-

lation. Others are highly automatic, constructing an interface with minimal (initial)

user efEort. Both directions have their own advantages and their drawbacks as well.

Hudson and Yeatts in [20] attempt to find a way to integrate these two approaches.

They describe a technique for integrating d e b a s e d inference methods into a direct

manipulation interface builder. The results and effects of the rules are presented to

the user. A direct feedback and control over the application rules are provided by

semantic snapping ([19]) techniques.

Figure 2.2 shows an example of some of their inference rules and the expressed

snap sib. The user is trying to place rectangular shapes to the work space. In this

example, (s)he idready placed the first object. When the user specifies the first corner

of the next rectangle, the system considers the set of predefined inference rules and

Hudson and YeaSts wanted their interface builder to meet the following criteria:

CHAPTER 2. LITERATURE REVIEW

a visual notation for all aspects of user interface design

direct expression of rule actions in the notation

0 facilities for user control over inference

support for a fairly wide range of inference rules.

The knowledge base of the interface builder holds at least one representation of

the user interface being specified. All actions adding to or modifying the design are

expressed as modifications to the original data structure. All act ions by both the user

and the inference engine are coded '- the knowledge base. The visual notations of the

various aspects of the interface uy4fi~ation are stored there as well. They provide

the "visibilityn and they are also the basis for both feedback and user control of the

inferencing process.

The main technique introduced in this paper is the use of semantic snapping to

portray actions in the knowledge base. Semantic snapping is an extension of the

conventional gravity field technique. The decision to snap can be made on the basis

of geometry and also on the basis of semantic tests carried out dynamically during

dragging. Furthermore this semantic snapping can provide a visual feedback when

snaps occur.

Experiments with a small prototype of the system proved that it is very useful

when the actions and the consequences of inference rules are immediately appacrent to

the designer and he/she is provided with dynamic control of the rules aa those rules

are part of the interface specification process.

The problem with this work is that they te~dcd to use the automated system as a

subsaitute for the human designer. Although they mentioned that the designer has to

have control, the described system. works independently of the designer (except for the

initial inputs). Their main scope was expressing knowledge about snapping; nothing

is said about what it is possible to do when designing. The user gets no guidelines

as to the pwsibiities for user interface design directions. FLOWER works together

CHAPTER 2. LITERATURE REVIEW 21

with the designer, it provides guidelines, explanat ion and suggestions on proceeding

with the design.

Using Constraints for Space Planning. Baykan and Fox investigated constraint-

directed heuristic search for space planning in [5], [6] and [7]. Space planning involves

topological relations such as adjacency and geometrical properties such as shape, di-

mension, distance and other functions of spatial arrangements. They found that it is

naturat to express space planning problems in terms of constraints. Experience with

space planning programs indicates that computing time was affected by the strengths

of constraints and their sequencing. Constraint-directed search attempts to formulate

general models for the representation of constraints. The objectives are to identify

and represent a variety of constraints and interactions between them (such as conflict,

competition and relaxation) for effective utilization during search.

They created Wright, a knowledge based design system that uses constraint-

directed opportunistic search to generate layouts in different space planning domains.

It consists of a knowledge base, a problem solver and a user interface. The knowl-

edge base contains knowledge about the application domain. Wright designs kitchen

layouts, thus knowledge is expressed about possible items in a kitchen and their re-

lations. For example, a kitchen can have sink, oven, counter, etc. Counter space has

size requirements, refrigerators should not be beside ovens, etc. The problem solver

focuses on the different aspects of space planning such as locating, dimensioning etc.

based on uncertainty measures associated with wnstraints.

Layouts are created by configurations of design units. Design units are considered

at different levels of detail. The design units form a hierarchy through which there is

inheritance of variables, values and constraints.

The highest level of abstraction for representing design states is the spatial level

(inside* contains, no overlap etc.). The next level uses ondimensional relations

(region-west-of, horizontally overlapping, etc.). The lowest level of abstraction is the

region-line adjacency network (a representation for generating layouts using rectan-

gular tegbns and horizontal and ve r t id lines).

CHAPTER 2. LITERATURE REVIEW 22

It is possible to design at each level of design representations. The goal tree con-

trois the focus of attention on the levels and representations and facilitates switching

between them. The g d tree is a hierarchy of goals and constraints starting with

general goals representing knowledge of the design domain.

The first st age of problem solving is pre-search analysis based on the initial (given)

constraints. The second stage is the opportunistic search. Gonstraints are selected

based on their uncertainties. Information for determining the uncertain ties of con-

straints are: importance of and severity of constraints and the size of design unit

affected by the constraint. Uncertainty is used as a measure for rating opportunism

of constraints and determining where to focus attention during search.

The system presenied by Baykan and Fox is similar to FLOWER in a sense that

both design simple layouts. Both systems use constraints to express design goals and

knowledge. However, Wright is yet another automated design system where the user

provides initial input and the system produces an "answer". There is no interaction

between Wright and the user during the design process. Wright was created to be a fast

designer where speed was gained through the way it handles the constraint satisfact ion

problem. Their goal was to produce a system using dependency-directed backtracking.

We were fortunate to have a system where this dependency-directed backtracking

already in place. Our task then was to develop a means for adding/integrating user

interaction.

2.3.2 Interactive Design Systems

We describe three papers in this section. Kochar in [25] is presented first. His work

was closely related to ours as he is intended to provide help throughout a design

P-

We then turn to the work of Kamada et-al. on visualization of abstract data in

[45]. Their work is important for the use of feedback from the user throughout the

CHAPTER 2. LITERATURE REVIEW

design process.

Finally, we present the work of Dill et-a1 (ill] and [13]) on intelligent computer

aided design. This work is the predecessor of FLOWER of our research group.

Supporting the User by Presenting Design Alternatives. The activity of

design can often be characterized by a search; in other words the designer examines

various alternatives at several stages during the design. The problem with current

CAD systems that they either expect the designer to have a complete design and just

use the system as an intelligent drawing board. In these systems, obviously all choices

are made by the user so the system isn't really assisting with the design at all. Other

systems generate (sometimes fairly large numbers of) design alternatives which are

presented to the user normally one after the other in a sequential manner. The user

must then determine on his/her own which one is the best.

The approach taken by Kochar ([25]) to this problem is among all the works

reviewed, the most closely related to our own. Kochar's system, FLATS is a prototype

for design automation via browsing and was constructed to demonstrate the paradigm

of cooperation between the user and the computer in CAD applied to the design of

small architectural floor plans. The system supports the exploratory aspect of design.

A structuring mechanism helps the user explore design alternatives in a systematic

way, by varying those properties of the design that are of primary interest.
5

Again, there is a major problem with this system. Although it does more than

just describe in text a set of affected design constraints, it does bombard the user with

possible solutions at certain stages of the design, which tends to be overwhelming to

the user. Most designers insist on playing an active role; they do not want to be

passive bystanders, selecting from a menu of generated designs.

This system is a positive step of course toward presenting design alternatives to

a user; still it does little more than the previously described systems, except for

generating a set of partial designs as opposed to presenting a complete design. In

oahw words, it still aukmates the design process, only it does so to a portion of a

CHAPTER 2. LITERATURE REVIEW 24

design. These partial designs are generated based on precoded knowledge, therefore

the designer cannot contribute to the design by adding new knowledge once the system

started to work.

Integrating the User into the Design Process. Interactive graphical user

interfaces based on direct menipdation are well established. To ease the burden of

the high cost of their creation, User Interface Management Systems (UIMS) are used.

However current user interfaces usually consider only the interaction architecture and

lack support for a consistent framework that allow visualization and manipulation

of high-level abstract data, i.e. the semantics of applications. Kamada et .al. have

been doing work (e.g. [21] and [24]) on visualization of abstract application data, i.e.

translation of abstract data into pictorial form. They have also extended their one-way

visualization framework to bi-directional translation between the data representation

of an application and the pictorial representations of the user interface in [45].

To lessen the need for continuously varying the mapping rules between the infinite

number of possible representations, they used two intermediate, universal represent a-

tions, and developed a set of rules for mapping one to the other. The intermediate

representations can be left unchanged, even if the application changes. The mapping

process handles the following representations:

Application's Data Representation (AR) -

this is application specific, and can be any kind, e.g. natural language, program

listing, data in a database

Abstract Structure Representation (ASR) -

this represents the underlying abstract structure, i.e. a set of relations among

abstract data; AR is translated into this form and vice versa

0 Visual Structure Representation (VSR) -

this is the underlying structure of a picture, i.e. a set of graphical relations

among graphical o@&q

CHAPTER 2. LITERATURE RE VIEW

AR:

t
ASR:

VSR:

PR:

Figure 2.3: A n Example of Karnada's Model

Pictorial Representation (PR) -

this is the representation of the picture to be rendered directly or_ display devices.

First AR is analyzed, and then ASR data are generated from it. Then the uisual

mapping is done, i.e. ASR is translated into VSR. (The mapping from VSR into ASR
is called inverse uisual mapping). Finally VSR is translated into the target PR. The

graphical relation data are first translated into geometrical constraints among picture

&jects. To determine the actual positions in the display-space, the constraints are

solved by constraint solvers.

AR c-, ASR * VSR * PR

Figure 2.3 illustrates an example of the four types of representations. In this exarn-

ple, the app1icaf;im's data is represented as a natural language sentence "J is daughter

CHAPTER 2. LITERATURE REVIEW 26

of E and S". The corresponding ASR data are daughter(J, fE, S]), os_person(J), etc.

The daughter is an abstract relation and the persons are abstract ohjects. The cor-

responding VSR data are aboue([E, S], J), etc. The above etc. are graphical relations

and the boxes are graphical objects. As a pictorial representation, a family tree picture

is generated in Figure 2.3.

Similar work has been done in SFU's Intelligent Systems Laboratory in the form

of the %chessn program. Here, after a user pIaces a chess piece, nchess determines the

location of the remaining pieces. In this application the chess pieces say queens and

the board form the pictorial representation. The VSR data is the board() The board()

describe graphical relations between graphical objects: it describes whet her the boxes

representing the chessboard should be drawn empty (e) or filled with a placed queen

(q). The ASR data are the makePzece- Q1 isa Queenpiece, etc. The placesafe is

an abstract relation between the abstract objects describing the constraints for safe

placement. Figure 2.4 illustrates this example. When the player places a queen on

the board PR is modified accordingly. The modified picture is translated then into

the board data. The reasoning engine evaluates the placement and t h e resultant ASR
of the board is again visuaJized to update PR.

Our FLOWER uses the same set of mappings. However, while Kamada's group

had to put a significant etfort into developing this communication path, it waa directly

available to us via the external object protocol access to Echidna. In FLOWER, the

Echidna knowledge base corresponds to ASR, while '+he knowledge baseldatabase

update routines correspond to VSR. Communication between ASR and VSR struc-

tures is facilitated through a module called mediator. Further details are provided in

Chapter 4.

We Eelieve that Kamada's work represents an important contribution to the area,

since it is one of the very few that acknowledge that user and system must work

together: that the user must not be left out of the design process.

Indeed they stated that there wasn't any other work which directly influend

theirs, The same thing is true for the constraint visualization. The p r o b h is thah

CHAPTER 2. LITERATURE REVIIfW

Figure 24: The Nqueens Problem Described in Kamada's Terms

CHAPTER 2. LITERATURE REVIEW 28

most systems are limited to just representing constraints and manipulating them.

For instance, in Kamada's example of the Othello game, the system does not suggest

next steps, nor indicate what choices might be available. We believe such capabilities

are desirable and have attempted t~o provide them with our constraint and domain

visualization techniques.

An Intelligent Basis for Design. Our research group at Simon Fraser Uni-

versity started to work on an intelligent CAD project ([ll]) with similar objectives

as those of FLOWER. First, a protocol analysis was conducted to identify problems

and di6culties of the design process. The results of the study was incorporated in

the next step, where a system was created to help with home design. The first design

task addressed was that of foundation design ([131). Given a partial design, defined

by AutoCAD drawings, the system works with the user to generate joist and beam

layout. The system supports the mixed-initiative paradigm, more on initiative from

the system. It can generate the entire layout or the user may interrupt the system at

any point to specify design constraints.

This system is a predecessor of FLOWER: i t has similar architecture and goals.

However, FLQWER allows more initiative of the user while giving guidance on com-

pleting a desjgn. The system of (131 does not advise on design steps, simply incorpo-

rates the designer wishes to the final solution.

CHAPTER 3

FLOWER - Scope and

Functionality

3.1 Problem Definition

Designing the layout of a building can be a tedious task even for an experienced

designer, when considering many initial requirements. Some routine tasks can be

done easily and some of them d d be automated and solved by a system. Rules

amdering building codes and physical laws can be coded and represented in the

howledge base.

h addition to the objective aspects of the design, there are subjective aspects,

mch ss aesthetic qualities. Obtaining such knowledge is difficult; encoding it is more

so. This seems to provide even mor;: reason for retaining the designer as an integral

part of the design b p *

We think that a system which use? some guidance from a designer but remains

indqrndent ewugh to make some decisions is very much needed. It is important

sacrsF the desiFper to have control over the design pr- while it is important to

CHAPTER 3. FLOWER - SCOPE AND FUNCTIONAtlTY 30

be able to automate as many tedious or repetitive steps as possible and to provide

guidance or direction when it is needed. With this motivation, the following objectives

were set:

1. to address a major limitation of current CAD technology: to provide interactive,

intelligent design assistance but not automated design

2. test the proposed constraint-based, mixed-initiative designer system

3. test how a visual aid (i.e. showing the domains of some design variables and/or

constraints between them) can help the designer to accomplish a design

4. gain further insight into the use of the Echidna Expert System for designing

Purposes

5. create a potentially useful tool for simple layout design tasks.

3.2 Solution Methodology

FLOWER is a design system where user and system can work together as equal

paxtners. The overall design scenario is as follows:

1. The user starts up the system and begins designing a floor plan. (See detailed

description of usage in Appendix). (S)he can move rooms around, experimenting

with the layout, then finalize their position.

2- The system mpenises design decisions to check that physical laws are obeyed.

The user may not override these relationships. It does however show the avail-

able spaces for 4 room. The user can can try whether a particular placement

of a room is valid and see the system's readion while proceeding toward a

complete design.

CHAPTER 3. FLOWER - SCOPE AND FUNCTIONALITY 3 1

As an example, it is physically impossible for rooms to overlap. Thus at any

stage, when the designer wishes to add a new room, the system will determine

the valid space for that room. The system acknowledges a valid placement and

the design session can be continued; however, the user cannot continue upon

invalid placement, unless (s)he removes the offending room.

3. Additional spatial relationships between existing rooms can be added. FLOWER

then checks and notifies the user about problems)ut lets the user proceed even

with "mistakes", The offending rooms will be marked. When the system indi-

cates a problem, it also gives a visual clue about what went wrong with placing

that room and another visual clue about fixing the problem.

For example, the user wants to place a bedroom and a bathroom, requiring them

to be close to each other. After the user specifies this relationship and places the

first room, the system will show possible locations for the second room that fulfill

all constraints. (In this case the set of constraints is: the "close" relationship;

"rooms must not overlap" and "rooms must be inside of house" physical laws.

The system evaluates the placement of the second room and if d i d , the design

session can be continued; while a misplaced room will be marked but the system

takes no corrective action. The system will "explain" though what was wrong

with the placement and suggest a corrective action.

By distinguishing between required and desired constraints, the system allows

the user more freedom while making the design decisions. If all constraints

had been considered serious, the designer could only make proper design steps.

~ ~ i s e the system would reject a l l steps that did not meet the requirements.

This way however, the designer has more liberty to try out ideas and return

later to .his probIqns.

For example, (s)he might say: I want the kitchen beside the bathroom but I do

not know yet exactly where; I will put it somewhere close, for now. FLOWER
wi l l not let b b e mistake go unnoticed. It will flag the user and suggest correc-

tive action. It will not kt the user leave the problem uncorrected indefinitely.

However, (s)he may work on other moms h t and later return to correct this

CHAPTER 3. FLOWER - SCOPE AND FUNCTlONALITY

problem.

User's View of the System

The user sees this system as a design partner. The system does not proceed in an

automated fashion, leaving the user out of the design decisions, nor does the user

complete a design alone only to find out in the end that it does not meet the original

requirements. The user can think of the system in the following ways:

helper

The system will suggest steps for the designer throughout the design process.

As an example, it will show the available spaces for a new room based on the

entire current constraint set.

0 strong critic

FLOWER also ehecks for serious mistakes during the design. In this case, the

system does not let the user continue while the problem remains. For example,

when a user places a room outside of the predefined house, the user is not able

to continue, unless (s)he removes that room.

0 soft-hearted critic - teacher

The system simply notes the problem, ezplaining what it was and sugguts cor-

rective steps.

3.4 Visualization of Constraints

The most important part of our work - in addition to creating a very simple design

system - is that FLOWER actually hetps the user in the process of design. This help

is threefold:

CHAPTER 3. FLOWER - SCOPE AND FUNCTIONALITY 33

a after the designer selects a room, the system shows all acceptable areas of the

placement of that room

a the system explains whether a certain step in the design was successful or not

a) if a constraint representing a physical law was violated, the system does

not allow the placement of any new room, until the problem is corrected

b) if a constraint representing a user preference was violated, then the place-

ment is allowed but the violation is shown and the offending relationship is

indicated

a it also suggests to the designer how to proceed when encountering a design step

that contradicts previously specified relationships the user preferred to be held.

The help that FLOWER provides is based on uisual clues, using colour. Each type

of constraint is represented with its own distinct colour. A part of the user interface

shows them, to help the user remember the meaning of the colours. The user interface

has an array of buttons, one for each room type, with a different colour for each room.

Ruoms are given the same d o u r as their buttons.

The designer's task is to place rooms in the flom plan. When a room is selected,

the designer can move that mom around the work area by the mouse. While trying

to select aa acceptable place for that room the room is shown in its assigned colour.

The first visual clue to the designer is the valid area of the available space for

the placement of that room, shaded to correspond to the coloi~r of the room. To

distinguish the representation of the room, the shaded area uses a lower saturation of

the same hue, For example, if the colour of the chosen room is red, the shaded area

wilt be pinkish. Figure 3.1 shows an example of such placement. Here, the designer

has already placed two ldmoms (shown yellow) and a bathroom (shown brown).

If the designer specifred preflzrences (such as a h i d e constraint) involving the

roam to be placed, then the shaded area for the mom placement will be shown in the

ahw of that constraint. Figure 3.2 shows an example of that. Suppose the designer

CHAPTER 3. FLOWER - SCOPE AND FUNCTIONALITY

Figure 3.2: Visualization to Place a Hallway, with User-Specified Beside Constraint

there will also be an indication for proper placement of that room in the form of

two arrows below the constraint indicator line; the arrows suggest whether the

designer should move the room closer (><) or further (0) away; the arrows

will only appear if the correction is possible (if the user specifies contradictory

constraints, there is no way to satisfy them, and no arrow appears)

If a room is in several different type of relationships to the existing rooms, e.g.

it has to be beside some but far away from others, the available area will still be

calculated, but the colour of it will be specific to the room to be placed and not to the

constraints. Again, the area will be shown with lower saturation of the room colour.

For example, the designer wants to place a master bedroom now. (S)he set the

following constraints: master bedmorn beside bedmm and master bedroom close bath-

morn. Now, the system will show the available area in light green (the original colour

of the master bedroam is green) as this room is in two different relationships. Again,

the beside constraint must be met for both bedrooms.

CHAPTER 3. FLOWER - SCOPE A N D FL~lliC'TI0,V.4 LIT1 *

Figure 3.3: Visualizat,ion Aids for Placing a Master Bedroom with Sevcral IJscr-
Specified Constraint

Figure 3.3 shows the available area for that master bedroom. 111 t l~ i s figr~rc! we

also can see that the user previously tried to place a hallway hut igr~orctd the visr~al-

ization. -4s a result, that hallway did not meet the user-specified requircrnents. As

me explained above, an explanation of the failure is shown now.

If the user ignores the visualization again and places the n~asterbedrtwm i~rlprop-

erly, the failure will be presented. This is shown in Figure 3.4. As can bc stxlrl fro~rl

the figure, the lines and arrows correspond to the colour of the failed cortstrai~~ts;

thus they are the same colour for hot h bedrooms (as they both werc: in the bc?riclc

constraint) but different for the bathroom (as it was in a close co~~strairl t) .

If the user attempts t o place that master bedroom again but rlow accidently placcw

i t such that it overlaps the bedrooms, the piacement will fail again but this time thcrc

will be no explanation why the placement failed. Here too, the room will be nlmwrr

outlined, but the outline will be thick (shown in Figure X.51, clearly distinguishatde

from the previous case. Sow, the user must remove this room in order to continue.

CIIA PTER 5. FLOWER - SCOPE A,VD Fb'NCTIONALITY

Figure 3.4: Placement of Master Bedroom has Failed

Figure 3.5: Placement. of Master Bedroom Fails Due to a No-Overlap Constraint

CHAPTER 4

System Architecture

Many researchers (e.g. [5], [Il l , 1131, 1181, [25]) suggest that constraints are a natural

way to express design goals. However, the lack of readily available constraint process-

ing systems generally resulted in work focused on implementation of those constraints.

Kamada et.al in 1451 emphasized the importance of a bi-directional translation be-

tween the data representation of an application and t he pictorial representations of

the user interface as a way to involve the user in the design process.

In our case, both the constraint processing system and a described bi-directional

translation were already available, allowing us to concentrate on further steps. We

wanted to create a truly mixed-initiative system. In FLOWER, the system can

1. suggest design steps by displaying the domain of design variables

2. evaluate design steps

3. explain incorrect steps by visual display of constraints

4. suggest corrections.

The structure of FLOWER can also be described in Kamada's terms (Figure 4.1).

In FLOWER, rooms form the Pictorial Representation. The VSR data are draw-house

CHAPTER 4. SYSTEM A RC'HITECT URE

AT:

t
ASR:

I
VSR:

v
PR:

(user picks a point for the next room to be placed)

room R2 isa room,
constrain(x,y,width,height),
R2:no_overlap(R I),
beside(R1 rn),

draw-house,
draw-room(new-room, list-of-oldrooms[)).

Figure 4.1: Structure of FLOSTER Described in Kamada's Terms

and draw~room(new~room, :kt .rf_oldroomslJI etc. The draw-room() describe graphical

relations between the room graphical objects as it incorporates the representation of

minimum and maximum sizes and colour information. The ASR data are the room

instantiations (room R2 isa room), and the constraints, 2hysical (R2:no-overlap(R1)

and user-specified (beside(bedroom, bathroom)). For example, no-overlap is an ab-

stract relation between the abstract objects R1 and R2. AR corresponds to the user's

request for placement of the next room by means of an input device (mouse).

Again, while Kamada's group had to put a significant effort in developiag the

communication channel, in our case, the mapping between ASR and VSR was al-

ready available through our reasoning engine's external object protocol. In our case

both AR and PR reside in the graphics side of our application. When the user in-

dicates the placement of a room, AR is recognized by the graphics modules and the

mapping between AR and ASR is done through knowledge base update routines and

the mediator code. The knowledge base update routines are responsible for the appli-

cation dependent part and the mediator code is responsible for the technicality of the

link. (Sections -1.3 and 4.4 give more details.) ASR is represented in the knowledge

base and becomes accessible through this link. VSR is represented by the graphics

database. When our reasoning engine evaluates the user's design goal, the result is

sent back to the graphics code again through the mediator and the graphics database

update routines, thus implementing the mapping from ASR to VSR. Then the up-

dated graphics database is mapped back to the graphics module, (VSR to PR) whew

the picture of the room is created.

Figure 4.2 shows a block diagram of our system, the components of which are

described in detail in the following sections.

The Knowledge Base

Keeping in mind that we tried to implement a simple layout planner, tlic following

were considered as a set of possible design rules:

1. houses are rectangular

2. rooms are the smallest element of the design, i.e ivalls, doors, etc. are not

considered

3. rooms are rectangular, and their edges are parallel to those of the house

4. size constraints: rooms have a minimum a d maximum size

5. restrictive constraints: rooms must be inside the house, i.e. the house is a

limiting perimeter for their placement

6. topological constraints, i-e. placement of rooms with respect to each other:

GRAPHICS MODULES

USER lhTTERFACE

Figwe -1.2: System Architecture

CHAPTER 4. SYSTE:.\I =1RCHITECTI:RE

a) rooms cannot bc on the top of each otaher

b) a given type of ruom can be beside or not, besid

another specific room type

e , close, nea .r from

7. functional constraints: rooms may be associated with common functions such

as fwd , sleeping, or baby-space.

8. practicality constraints: access to open air, daylight, airflow, ctc.

9. interconnection constraints: hallways or stairways - to connect other rooms

10. accessibility constraints: placement of windows, doors or closets

11. aesthetic constraints

We implemented the first seven rules for this version of FLOWER.

The knowledge base consists of the appropriate schemas. A schema is the unit

for representing objects and relations. Rooms (shown in Figure 4.3) are represented

by a schema with its variables (see design rule 2). Currently rooms are rectangular

with a specified minimum and maximum height and width for each room type. In

this implementation, we used integer domains for all variables. Rooms are described

by their lower left corner (Xpos, Ypos). (See Section 6.1.1 for a djscussion on this

restriction.) We constrain the Xpos and f'pos variables t o be bound. Rooms have

minimum and maximum width and height (see design rule 4) hy also constraining the

domains of the corresponding variables.

Rooms are gathered in a house which acts as a bounding box (Figure 4.4) and

rooms cannot overlap each other Rules 5 and 6 a); these are basic physical relationships

and hence cannot be ignored even temporarily by the designer.

Other relati~rrships between rooms such as beside or not beside constraints (design

huIe 6 b)) may be specified bj- the user ta be applied by the system. As an example,

the designer may want to haw the kitchen beside the dining room or the kitchen

CHAPTER 4. SYSTEM ARCHITECTURE

schema room

I
xcoord Xpos.
ycoord Ypos.
roomwidth Width.
roomheight Height.

Width

Xpos. Ypos

roomtype Type.

% accessors

all(Xpos, Ypos, Height, Width).

type(Type).

96 size setting

constrain_xO.
constrain_y().
mstrainw().
constrain-h().

9% physical laws

~ ~ 0 .
no-over1 ap0.

% designer ~ l e s

beside().
close().

near(>-

farO.
not-beside().

Figure 4.3: Room Schema

CHAPTER 4. S17STEM ARCNITECTL'RE

house

house(xcoord X, housewidth W,

ycoord Y, househeight H):-

Xpos >= X,

Ypos >= Y,

Xpos + Width =< X + W,
Ypos + Hcight =C Y + H.

Figure 4.4: Rooms Should Be Inside the House (i.e. room at (Xpos, Ypos) with size
(Width, Height) must fit in house of size (I+', H) at (X, Y)

1 Constraints I Meaning I Illustrated on 1

d: vertical or horizontal distance between rooms;
Dim: width or length of later placed room, deperldirlg on d.

Table 4.1 : Table of Preference Constraints

should be far from the bedroom. Figure 4.5 shows the spat la! ir?tcrpretation of design

rule 6 b).

The design d e s were expresed in the knowledge base as well. E.g. whuri two

rooms are beside each other, the3 could he beside either from the left, right, above or

befow.

Table 4.1 briefly describes the meaning of the topological constraints. The illus-

trating figures show an example of the correspariding code from the knowledge base.

*
not k s i d z . .

second room

Figure 1.5: Preference Rutes {dotted out line of a second room shows its placement
with rmylrt to existirrg [already placed) first room, t o meet various constraintsj

CHAPTER 4. SYSTEM ARCrHITECTliRE

%left

besi&(room Rb):-

Rb: all(xcoord Rbxpos,

ycoo~d Rbypos,
roomheigh t Rbheighi,
roomwidth Rbwidth),

Rbxpos + Rbwidrh =:= X p ,
Rbypos > Y p - Rbheight,
Rbypos < Y p + Height.

% above

beside(room Rb):-

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Rbypos =:= Ypos + Height,
Rbxpos > Xpos - Rbwidth,
Rbxpos < Xpos + Width.

%right n besi&(room Rb): -

I I Rb: all(xcwrd R b x p ,

y c m d Rbypos,
roomheight Rbhcight.

-

roomB LJ
room

% below

&&(roam Rb):-

Rb: dl(xcoord Rbxpos,
y c w d R b y p .
roomheight Rbheigh t ,
roomwidth Rbwidth),

Rbypos + Rbheight =:= Ypos,
Rbxpa~ > Xpos - Rbwidth,
Rbxpos < Xpos + wid&

Rbxpos =:= Xpos + Width,
Rbypos v Y p - Rbhcight,
Rbypos c Ypos + Hcight.

Figure 4.6: Beside Constraints: "room" should be beside existing "room B"

CHAPTER 4. SYSTEM ARCHITECTURE

order close.

Rb: all(xcoord Rbxpos,
ycoord Rbypos.

roomheight Rbheight,
roomwidth Rbwidth),

X p - 1 - 2*Rbwidfh =< R b x p ,
Rbxpos =< Xpos - 1 - Rbwidthh,
Rbypos >= Ypos -1 - 2*Rbheight,
R b y p s =< Y p s + Height + 1 + Rbheight.

Figure 4.7: Close Constraints: "room" should be close to existing B"

CHAPTER 4. SYSTEM ARCHITECTURE

order near.

room
% above

Rb: all(xcoord Rbxpos.

ycoord Rbypos,
roomheight Rbheight.
roomwidth Rbwidth),

Ypos + Height + 1 + 2*Rbheight < Rbypos,
Rbypos < Ypos + Height + 1 + 3*Rbheight.

Rbxpos > Xpos - 1 - PRbwidth,
Rbxpos < Xpos + Widrh + 1 + 3*Rbwidth.

8 below

Figure 4.8: Kear Constraints: "room" should be near to existing .'room B"

CHAPTER 4. SYSTEM ARCHITECTURE

order far.

%left

%right

46 above

96 below

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Rbypos < Ypos - 1 - S*Rbheight.

Figure 4.9: Far Constraints: "roomn should be far from existing "room B"

CHAPTER 4. SYSTEM ARCHITECTURE

Rb: all(xcoord Rbxpos,

ycoord Rbypos,
roomheight Rbheighi,
roomwidth Rbwidth),

D room

% left

Rbxpos + Rbwidth =G Xpos

or

(Rbxpos + Rbwidth =:= Xpos

and
(Rbypos =< Ypos - Rbheight

or
Rbypos >= Ypos + Height)),

Figure 4.10: NotBeside Constraints: "roomn should not he beside existing "room B"

CHAPTER 4. SYSTEM ARCHITECTURE

At this irnplementation hallways (see design rule 9) are treated as regular rooms,

so the designer has to place them along with the others. Also we didn't deal with

design rules 10, 8 and 11 at this time (see chapter 6.3 for future work).

Rooms with functional constraints (design rule 7) must satisfy a beside or close

relationship. FLOWER first tries to apply a beside constraint between the rooms,

and if that fails the system tries to apply a close constraint. If both fail then the

placement of the room will fail and that will be indicated to the user. This is the only

way that rooms can be either in a beside or in a close relationship. Otherwise, these

relationships are exclusive.

Constraint Propagation

The expert system used in FLOWER is the Echidna model-based reasoning engine.

FLOWER'S knowledge base is implemented in the Echidna object-oriented constraint

logic programming language. Echidna provides a schema knowledge representation, a

logic programming language which supports constraints among objects and a reason

maintenance system for efficient dependency backtracking. In Echidna, objects are

represented as predicate schemata and they are accessed by unifying goals (logical

messages) with the predicates (logical methods) defined within the schema. Schema

instances can be created, sent messages, or passed as arguments. More details about

Echidna can be found in 1431.

Constraints represent relationships between variables. A constraint network is

constructed during the design session, where the variables are the nodes and the con-

straints are the arcs between them. In Echidna, the internal propagation of constraints

narrows the domains of the variables involved, enabling a solution to be found more

efficiently. A constraint is activated whenever the domain of one of its arguments

is refined or bound to a particular value. This process can propagate among those

variables that share constraints on their parameters.

CHAPTER 4. SYSTEM ARCHITECTIVLT

4.3 Mediator

As described earlier, the abstract design goals (Iiamada's ASR) are expressed in

the knowledge base. However, a link had to be created through which a connection

can be established between the abstract and the visual representations. This link is

established through Echidnq's External Object Protocol (XOP). To send inform a t' ion

from the user interface code (called application from now on) to Echidna, queries

are issued over this link. Likewise, Echidna terms can be unified with the terms

constructed in the application. More about XOP can be found in 1431 also. This

connection (or mapping between ASR and VSR) is done by a combination of number

of C++ routines and Echidna codes.

In the knowledge base a method is created to be external. Calls to this external

method are made in the same way as to the other internal methods. External methods

are the means of letting Echidna know, that it should expect methods be defined

elsewhere (not on the knowledge base). External methods are generally used to get

queries from users.

An example from FLOWER'S knowledge base is shown in Figure 4.11. Iiere, the

uroommaker" external method expects tne size parameters of the room to be defined

by the user.

When the knowledge base is loaded and the Echidna compiler notices an ext,ernal

method declaration: the compiler asks the application for a method handler for that

method. The application creates a handler and gives it to the compiler.

The method handler defines a function which dynamically creates a method in-

stance whenever its method is called from Echidna. That method instance has an

associated array of arguments which correspond to the arguments of the Echidna

goal-

If an Echidna term which is an argument to an external method is refined or re-

stored, Echidna sends a message to the associated method instance in the application.

CHAPTER 4. SYSTEM ARCHITECTURE

schema room

I

init(Type, (0..63) Id):-
rm-maker(Id, Xpos, Width, Height, Ypos).

I

Figure 4.11: External Method

In this way, other parts of the design system (external to the expert system) can make

use of results generated by the reasoning engine, working with the knowledge base.

Here, we are specifically interested in changes to the domains of design variables.

For example, consider placing a second room beside an existing room. Since rooms

have variable size, the designer does not have to put the rooms precisely beside each

other; it is enough to overlap them by this zvailable difference between the minimum

and maximum sizes as an indication that (s)he wants those rooms to be beside each

other (shown in Figure 4.12).

When Echidna evaluates this placement, and the design goal succeeded, in this

case, it will refine the domains of the width variable of the earlier placed room.

At the same time, a message is sent to the associated method instance. Based on

this message, the pictorial representation can also be updated, reflecting the changes

(Figure 4-13),

If the room placement ~ ~ a s nat successful, i.e. a design goal failed and we undo

CHAPTER 4. SYSTEM -4 R CHITECT IrRE

earlier placed room

later placed room

Figure 4. f 2: Indicated Placement of Two Rooms Reside Each Other

earlier placed room

later placed room

Figure 4. t 4: Evduated Placement of Two Rooms Beside Each 0 t h

MethodHandler* MyAp~icalion::rc@srer_ext(char* name, inr nargs)

f

class Rm-maker-Handler: public MchdHandlcr

t
public:

virtual Mrthodfnsrancc* make-method-instance

Figure 4. li 4: Sample of %me Mediator Function

that, gwi, Echidna wilt restore the domains of the affected variables to their state

before that goal was issued.

The mediator supports cosnmunication between the reasoner and the graphics

part of FLOIYER. T ~ P routines here are those responsible for the technicality of

the commur;icatiort Wow. Func~ioras suppurled include creating the link. loading the

knowledge hiwe, custsrrrizfag the appliicatim. creating the handlers, issuing goals,

arndcsing goals. discorrnecting the link. etc. Figure 4.14 shows an example. Creation

of a method handler far the rrn-maker external method is shown on the top; and

creation of the methad instance 5s shown b l o w .

To have the full fundtiarrafit_v of the mapping between AR and PR, mother module

was created that contains the high!! application dependent code. This is described

CHAPTER 4. SI'STE-\I ARCHITECTLiRE

in the next section.

4.4 Knowledge Base / Database Update Routines

Routines [written in C) t o formulate and to issue the appropriate Echidna goals,

also to receive information from Echidna. These routines are more specific to the

application. Examples, of such rout in= are getting parameter domains for a specified

rmm, establishing ground d u e for parameters of a specified room, constraining the

values of some parameter (or combination of parameters) of t w rooms to be the same,

et c.

For example, when the designer places a room by the input device, an AR is

created. ;Ve need the mapping from AR to ASR, or in other words, we have to

issue the correqponding design goals. Fornulation of these goals is done here, in

the knowledge base update module. Then. the system issues these goals to Fxhidna

through the mediator module. After Echidna evaluated the design goal, the results are

sent back through the mediator code again. Then the interface update routines take

this information, forming a mapping between ASR and VSR. The interface (graphics)

module will be notified by t h e interface update module about the changes, and it will

present the pictorial representation (or mapping is done from VSR to YR). Figure 4.15

shows a knowledge base update routine-

4.5 Graphics Module

Following our earlier thread of describing our work in Kamada's terms, the graphics

module is responsible far generating the pictorial representation (PR) of the design

objects. It dso supports the user interface. The user interface is described in the next

chapter. Visualization functions are also supported here. The visualization however,

is not paxt of the general mapping; it is calculated here entirely, The reasons behind

CHAPTER 4. SYSTEM ARCHITECTURE

h t kb-set-alltint nu-id, float x p c ~ , float ypos, float height, float width)

Figure 4.15: An Example of Knowledge Base Update Routines

this decision are described in Section 6.1.3.

FORMS ([34]) was used to provide the layout of the user interface and GL (SGI's

Graphics Library) was used to manipulate the graphical objects and show the results

of the visualization.

Rooms are represented in the same way in the graphics database, as they are in

the knowledge base, with their lower left comer and their width and height. Each

room type (kitchen, bathmom, etc.) has a minimum and maximum width and height.

Rooms are represented visually as shown in Figure 4.16. The minimum size is

shown filled and the maximum size is shown outlined. When Echidna notifies the

graphics module that the domain of a variable has changed, the representation is

chaaged accordingly.

Visualization support is also provided by the pnphics module. As we recall,

FLOWER shows the following visual indications:

2. explanation of iucorrect steps

CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.16: Pictorial Representation of a Room

These routines will be described next.

Suggestion of design steps. The suggestion will be made by showing that area

where the lower left corner (room reference point) can go. The area is calculated

based on the sizes of the rooms and the constraints involved.

Figure 4.17 shows how the shaded area is calculated for a no-overlap constraint.

The suggested area for the placement of a room will consider all constraints in-

volving that room. First, subareas are calculated based on each constraint, then

intersection of the subareas will result in the final area presented to the user.

For example, suppose the user has already placed three rooms (R1 , R2 and R3) and

now wants to place a fourth room (R4) beside both R1 and R2 without overlapping

any rooms. Figure 4.18 shows this situation. First, the subareas for each beside

constraint wiH be calculated (Figure 4.19), and intersected (Figure 4.20). Next, the

areas for the no-overlap constraints will be calculated (Figure 4.21). Finally, the areas

calculated based on the no-overlap constraints will be subtracted from the previously

calculated intersection- Figure 4-22 shows the remaining final area. Only this final

&t is presented b the user.

Explanation of incorrect steps. If the user ignored FLOWER'S suqgeeted

CHAPTER 4. SYSTEM A RC'HITECTURE

area where h e new room
cannot go

F i w 4.17: Visualization of Valid Placement Area for New Room

CHAPTER 4. SYSTEM ,4RCHITEGTCrRE

R 1, R2. R3 are existing rooms.
R4 is to bc placed beside both R1 and R2,
wilhorrl overlapping any existing room

Figure 4.18: Details of Calculation for Suggested Placement - part 1

CNA PrfEH 4. SYSTEM A RCH1TECTC;RE

Figure 3.19: Details d Calculation for Suggested Placement - part 2

CH44 PTER 4. SYSTEM -4 RCHITECTI 'RE

r -
I

b - -r showstbeintersecdon
r -

I of - b e 5 i d e W ~ ~
- -f

lower left corner of R4 must go Itere

Figure 4.*Xk Details d Calculation far Suggc7ited Ylxentent - part 9

CHA f V K R 4. SYSTEM A RCHITECTZIRE

' - 1

r - i 1 sbows the intersection
f I - - of tbe "beside" subareas

.- - - . . ' shows tbe subamis calculated . .
* . . .
. - - - I for each room based on each

"no"no_overlap"constraintoverlap" collstraint

bere, the area sbows where tbe

lower-left corner of R4 cannot go

Figure 4.21: Details of Calculation for Suggested Placement - part 4

CHAPTER 4. SYSTEM ARCHITECT I'R E

calculated based on

all constraints

Figure 4.22: Details of Calculation for Suggested Placernerrt - part 5

CHAPTER 4. SYSTEM ARCHITECTURE

placement, a visual explanation of this mistake will be presented. Through the map-

ping from ASR to VSR, the database update module will notify the graphics module

about the failure of a design goal and the visual representation (PR) will be as de-

scribed earlier in Section 3.4.

Suggestion for correction. On encountering a problem step, the graphics mod-

ule will show, based on the failed constraints, whether the rooms should be further

away or closer to each other to satisfy the failed relationship, as described earlier in

Section 3.4

CHAPTER 5

User Interface

5.1 The Main Interface

The user can interact with FLOWER via the following interfaces. The main interface

(Figure 5.1) is responsible for almost all actions. The main area of it is the drawing

board of the designer. Here (s)he can specify the perimeter of the house and place

the rooms.

There are several buttons and menus are placed around the drawing area.

a Floor Plan

Used to specify the perimeter of the house. The user must do this at the

beginning of the design session, before any room placements.

0 Room Buttons

Roam buttons are located at the right side of the user interface and show room

types and colours. The room buttons are grouped together. On selecting a room

Figure .i.l: FLOWER - Main User Interface

button, all other room buttons are released, and a new room of the selected type

is displayed, ready to he drasetf into place. I t will have the same cofour as the

rmnl button. The user can drag the room around the drawing board and place

i t . Ijpon placement, all appropriate constraint,^ will automatically be applied.

0 Add Rooms

Hooms can also be added by specifying all their parameters. The user can pick

a point and then rubberband a box representing a new room. This room has

not only its lower left corner constrained but its upper right corner as well.

However, it will not have a preset minimum or maximum size: al! parameters

are completely the user's choice. Since there isn't anything k n ~ w n ahead about

this room. there w-711 not he any visualization available for it. However. when

this room is placed. the no overlay and bounding box constraints still have to

held.

This button invokes the Constraint Specijcation interface (described in the next

section).

Help

Help invokes the Help Interface (described in section 5.3).

Colours

A table is shown t o the user as a reminder/explanation of the coIour usage (see

in Figure 5.2)-

0 REMOVE

The user can remove those rooms in a failed relationship.

5.2 Constraint Specificat ion

The user can state hisi l ? r preferences by the means of the Constraint Specification

interface (shown in Figure 5.3).

The user can specify constraints either using menus or (s)he can input her / his own

constraint. A box is shown with all added constraints. This box can also be cleared

entirely or individual constraints can be deleted from it .

5.3 Help Screen

The user is provided with help about the usage of the system. A box is shown with

the available help when actixrating the Help interface (shown in Figure 5.4),

Figure 5 2 : FLO\YER - C'olours

F i g r e .73: FLOWER - hrterface for ('onst mint Spccificat iur~

Welcome to FLOWER!

A floor plan has to be specified first.
Push on the 'Floor Plan" button. Its
coforwill chaqge to green, showing
that the system is ready for selection.

Now, place the mouse where the first
comer of the floor plan should be
and press the LEFT mouse button. White
holding the LEFT mouse button down,
drag the mouse to the other comer and
release it.

Rooms can be added only aller the door
plan was drawn. Select the button
corresponding the desired room type.
Visual aid will aDoear for valid

Figure 5.4: FLOWER - Help Interface

CHAPTER 6

Discussion and Summary

6.1 Discussion on Implementat ion

6.1.1 Rationale Behind Fixing Lower Left Corner

In our implementation a room is positioned based on its lower left corner. The fol-

lowing describes the reasons for this.

An earlier approach we tried was to represent a room just with its edges, i.e.

Right, Left, Bottom, Top. Then n-e wouid include constraints describing the physical

realization of a room, such as the left edge is to the left of the right edge and that the

bottom edge is below the top edge. etc,

We ihen encountered a probiem that resulted in the requirement to have a con-

straint which pins d o m the Iocation of a room, The reasons for this arise from the

constraint solving techniques used in CLP languages. This is hest illustrated through

the use of an example:

If the only constraints an Right are:

a Right - L e f t < 10

0 Right - L e f t > 5

and Echidna has calculated that dornain(le f t) = {1,2,3,4,5) then conceptually we

expect the following:

0 if L e f t = 1 then dumain(Riyht) = (6,7,8,9,10,11)

i f L e f t = 2 then donauin(Right) = (7,8,9,10,11,12)

i f L e f t = 3 then domazn(Right) = {8,9,10,11,12.13)

if L e f t = 4 then dornainCRight) = (9,10,11,12,13,14)

if L e f t = 5 then d o m a i n (R i g h f) = {10,11,12,13,14,15)

However, Echidna will return:

This leads to having a room in which

the distance from the minimum Ieft edge to the maximum right edge is greater

than the maximum width allowable for the room, and

the distance from the maximum left edge to the minimum right edge is less than

the minimum width allowable for the room.

It is necessary to 'pick" a value for one of the edges, say Left = 5 for Echidna

to return h ~ i n (~ g h t) = 10,11,12,13,14,15. Unfortunately, this requires that we

b e a degree of freedom.

A similar argument has us fix the Botforn edge.

Since either way we would lose degrees of freedom, we decided to specify those

positions directly. This way we gained in execution time while losing a degree of

freedom.

6.1.2 Alternative Methods of Removing Freedom

We have shown that we are zquired to give u p two location degrees of freedom

in order to maintain width and height consistency in our database. Our choice of

fixing the bottom left corner was arbitrary and made in the interests of keeping the

implementation simple.

An alternative implementation would require that the designer be required to spec-

ify constraints which eliminate a degree of freedom in both the vertical and horizontal

directions whenever a room I s added. This could be done by providing the designer

with a choice of how to specify the Iocation constraint - either

I. by explicitly placing a room somewhere within the floor plan, or

2. by specifying that an edge of this room is bound to an edge of another room

The explicit specification in method 1 is fairly simple to obtain. It could be

implemented in one of the fullowing ways:

By having the designer select which comer of the rcmm to fix and then have him

move the room around the screen until in the desired position.

Have the designer select an edge to fix in the horizontal direction, then allow

him to move that edge until it is in the desired position. Repeat for the vertical

direction.

Figure 6.1: Inserting an Adjacent Room Above an Existing Room

Figure 6.2: Inser ,ting an Adjacent Room Right of an Exis ting Room

The desired way of implementing method 2 would be to have the designer place the

maximum room size at a given location and to have the system automatically insert

edge bindings between the new room and any other rooms i t happens to be "beside".

The system could ensure that both a horizontal and vertical degree of freedom has

k n removed before allowing the additioa.

If - in order to propagate the new constraints - Echidna changes the domain

of an edge t-ariable, a message i d 1 be sent to the graphics which names the object

whose edge domain has been altered. The application then knows that the new room

must be adjacent to the old room and adds a beside constraint (Figures 6.1 and 6.2).

However, since our implementation fixes the lower left corner of the room, the

domains of the Width and Height variables contain the only degrees of freedom that

Figure 6.3: Inserting an Adjace

m
nt Room Below an Existing Room

Figure 5.4: Inserting an Adjacent Room Left of an Existing Room

Echidna can use t o propagate the constraints of the new room. This means that

inserting a room below or to the left of an existing room will change the domains

of the top and right edges sf the new room - meaning that Echidna will not name

the object to which our new room is adjacent. Thus, the beside constraints will not

be imposed (Figures 6.3 and 6.4). The no-overlap constraints are, however, adequate

to reduce the top and right edges of the new room so that the maximum size "fits"

within the allowable space.

It would be nice to have Echidna inform the application as to which object caused

the domain change of the new rmm. However, this would involve meta-reasoning and

this is not part of any CLP language. In the absence of this information, a possible way

to deviate the problem would be to maintain a redundant database (outside Echidna)

CHAPTER 6. DISCUSSION AND S UMMARY

of all of the objects and provide search routines (within the graphics module) which

could determine the identity of the needed object.

6.1.3 Division of Labour

A fundament~l choice was needed between creating a system where all intelligence is

encoded in the knowledge base or a system where the designing job is divided between

the expert system and another (or more) high-level module. Obviously, other modules

were created e.g. for visualization purposes. We decided on encoding only the basic

schema and their constraints in the knowledge base. As a result, evaluation of design

goals are done by the reasoaing engine but the routines that suggest the available

steps by visualizing domains of design variables are a part of the graphics module.

The decision was based on the following considerations:

0 One of the purposes of this research was to demonstrate that constraint and

domain visualization can help a designer in his/her work. It seemed more natural

to calculate those visual aids in the graphics side that dealt more with pure

geornet ry than logical relations.

0 We think that the time to calculate that area is important from the nser's point

of view. We also are aware of the fact that the reason behind being fast in

geometrical ca!culation is due to the very simp'? geometrical shapes (all roous

are rectangular in this implementation). If rooms have more complex shapes,

the graphics side visualization might not necessarily be faster.

Alternatively, calculating areas for visualization purposes could have been done

witbin Echidna, even with the existing simple knowledge base. We investigated the

following methods:

1. obtaining all possible solutions and extracting the valid placement area from

there

CHAPTER 6. DISCUSSION -4 XD S UiCIAIA RI'

This could be implemented fairly easily: when the user indicates that (s)he

wants to place a new room, a goal can go to Echidna: get all solutions for the

placement of that room. After getting all solutions, Echidna can return a list

of those rooms and then the application can extract the needed coordinates for

the area. Then the "get all solutions" goal can be undone and the user can

proceed with the placement. However, we note that VLY-based systems were

never intended to calculate all points in a 2D solution space, though in principle

it is possible to do so.

However, this will take a considerable amount of time, especially at the begin-

ning of the design session, when almost the whole area of the house is available

for room placement. On the other hand, the calculation of valid placement area

on the graphics side is very fast as there we only comp1:te bounds of the needed

area, solving a simpler problem than that expected from the reasoning engine.

We expect that with a hirly constrained design space, the time for Echidna to

compute all solutions would be considerably shorter, and the graphics cornpu ting

time would be increasint though it would likely still be faster.

2. trying to solve the cmstraints without actually getting the variables ground,

and expectirg that the domains will give the acceptable areas.

Unfortunately, the domains do not give acceptable areas. We run into exactly

the same problem as described earlier In 6.1.1. Suppose, the user wants to place

a room without overlappi~g a previously placed room. Now, the user expects

the system to show the available area for the lower-left corner of the new room

before actually placing the room. In other words, the lower-left corner of the

rmm is not yet constrained. If we were to issue the no-overlap constraint and

check how the domains of X and Y change, Echidna returns the domains of both

variables unrefined. This will result in an area much bigger than is actually

expected if we were to draw this. If one of these variables is constrained, then

and only then will Echidna return the "expectedn results.

3. by using real intervals and using notin ' (which currently works only for con-

stants, hut once implemented could give a perfect solution if we only had two

rooms) For simple rectangular rooms the graphics side visualization will still be

faster.

Another issue to investigate was the use of real interval variables, instead of

integers. Our original no-overlap constraint was formulated as follows:

(Xpos > Rbxpos + Rbwidth)or (6.1)

f Xpos -+ W i d t h 5 Rbxps)or (6.2)

(Ypos 2 Rbypos $ R b h e i g h t) ~ (6.3)

(Ypos + Height 5 Rbypos). (6.4)

Those variables that belong to the previously placed room start with Rb (e.g.

Rbxpos etc), anci the others (e .g. Xpos etc.) belong to the new room. Un-

fortunately, the or operator is not yet implemented in Echidna for constraints

containing variables which have real interval domains. Thus, the constraint had

to be reformulated. An obviously easy implementation of this constraint could

be

notin(Xpos - W i d t h , Rbxpos, Rbxpos + Rbwidt h) , (6.5)

notin(Ypos - Height , R b y p s , Rbypos + Rbheight). (6-6)

However notin currently works only for intervals defined by constants. Once

this is implemented, it will give a perfect, reasonably fast solution, if we only

have no more than two rooms altogether. If we had more than two rooms,

Echidna will still not be able to simply return a description of a complex shape

b t i n (E 1 , R1, R2) means that El is not any vaIue in [Rl,R2]

(a big rectangle with many littale rectangular holes) describing all no-overlay

constraints. We would get severely split intervals for b0t.h X and Y variables,

and the graphics module will have to compute that complex shape.

6.2 Evaluation

6.2.1 Complexity

Use of different colours for Jifferent constraints could be a problem if the total com-

plexity of the system is high. The complexity of the system can be described by thc

number of rooms and the number of relationships between them.

Assigning colours to rooms is not a problem since in the current system the numbcr

of room types is very limited. The number of constraints could be a problem if we

were to extend our system to be a fult-scale C X 3 system. At this point however, the

user can only specify five types of spatial constraints (beside, not beside, near, close,

far). Right now we are using different shades of grey to represent constraints. Adding

more and different type of relationships will result in a problem. It is unlikely that we

will run out of colours, but it is very likely that the user will not be able to distinguisn

between them.

Unfortunately, this is a serious problem, as we cannot rely 011 hoping that the user

will not want to add new constraints. One solution could be that the user is presented

with a subset of constraints at any gken time. This is a restriction but it avoids the

confusion of many colours.

Another way of dealing with this would be to support some other visual repre-

sentation. For example, a flag (something attached to an object) could show some of

the constraints. Again, this could also represent a problem if we have too many con-

straints. Figure 6.2.1 shows a flag indicating two rooms being in a beside constraint.

CHAPTER 6. DISCUSSION A N D SUMMARY

beside

Figure 6.5: Using a Flag for Visualization

We could also use s combination of colours and flags. We could show the available

areas of placement in the constraint's colour, but indicate a violated constraint with

a flag.

6.2.2 Rooms with Several Relationships

Naturally, when designing a 0oor layout, rooms are expected to appear in more than

one relationship. As long as the designer is placing them properly there will be no

problem. However, (again naturally), the user cannot be expected to do so. Our

system will then give a visual representation of the problem.

When the newly added room is part of several constraints, the room will be con-

nected by lines representing all failed constraints to all other rooms in the failed

relationships.

If many rooms are involved, the design space gets slightly(?) cluttered with the

lines. However, the designer can easily solve this problem by removing the offending

room.

We have to realize though that t.he aim of the designer is to properly place the

rooms after experimenting with some of the possible problems. If the designer is just

CHAPTER 6. DISGC~SSION AND SC~M.Iii-\HY

arbitrarily placing the rooms. thus musing a problem for himself, well, even the best

systems cannot deal with him.

6.2.3 Suggestion for Failure Correction

At this implementation FLOWER provides some suggestions for how to proceed if

constraints have failed. When it '.explainsn the failure by drawing thc failed con-

straint lines between the offending rovms, arrows are displayed to show whether the

offending room has to be moved closer or further. This is shown however, for each

lines separately; thus if the room was in many failed relations it is very difficult to see

the correct direction.

A better solution would be to have FLOWER move the offending room to a place

where the relations are satisfied if that exists. This corrective action does not have

to be accepted by the user, (s)he could overrule it by removing the room from the

workspace. The difficulty of this method lies in the fact that there will be many ways

to correctly place the room, and the system would have to try to match the placement

to the one that the user specified earlier (hut failed). Mat c11ing could for example bc

based on the closest distance from the user picked placement point to an available

pcht.

6.3 Future Work

As we stated in earlier chapters, FLOIVER is a first attempt to gerterate an intcl-

ligent, mixed-initiative design system with domain and constraint visualization. I t

can be improved i~ various ways starting from little improvements (siich as routines

that facilitate file saving, loading, restarting). These additions will 11ot improve the

functionality of the system but wiU make it more user-friendly.

Another visual improvement is to change the pictorial representation of the room

CHAPTER 6. DISCt'SSIO.1- .YD SI-,\W 1.4 RIT

t o avoid the current as-mmet rl-. It can bc dorw for esarr~ylr, by 1i;it.ing f tic r0~)111

reference point be the middle of the room. In tllis way, ivc still rw lovc* t 1 t p v . s of

freedom but at least we obtain s_vmmetry.

63.1 Functional Improvements

implementing new cctnst rairtts

Only a limited number of constraints wrre implemcr~tet~ i n this first v t~sion of

FLOWEX We implemented dimensional, restrictive, topological and lt~nctiortal

constraints. However, many other constraint typcs would be uscful additions:

Accessibility constraints. When the designer finished placing rooms, the*

program could automatically insert doors between thern. Thc doors could bc

accepted or rejected or moved as the designer wishes.

Windows could be also inserted in outside walls, and after cornplctirig tlic win-

dow design, a 3 5 representation of the house could be presented to the user.

Closets should be inside other rooms. with openings to thcm.

Practicality constraints. Window placement could be affected by coristraints,

such as access to sunshine. Size and number of window should also be infiucnced

by these constraints.

Interconnection constraints. In the current version we treated hallways just

as regular r-.xns. However, hallways have different properties: e.g. t hcy must

connect rooms together.

Stairways shouid connect different ffoors together and stair location should he

the same place at both lex~els.

Aesthetic constraints. Criteria stiIl need to be identified, along with methods

for implementing these constraints. However, this is an area where the user

should refy on her ova intuition more than in any other case. If pretty can he

coded, i t won't be pretty any more..

moving rooms

Another extension is to allow the user to "change his/her mind" and move an

already inserted room. In this way he/she would get complete design freedom.

A relaxed version of this is to let the user move the room that was placed last,

as long as (s)he did not indicate further placement.

nun- rectcngular rooms

Rooms only are rectangular in the current version. It will be another major

extension path to a!low the placing of arbitrary shaped (but still Manhattan)

polygons.

The graphics system would need to be extended to allow the designer to specify

the shape of each room. One problem is that if the clser can draw any shape,

then the visualization will have to wait, until the user finished the drawing.

Formulating the constraints in the knowledge base is another issue. Formulating

close/near/far constraints would he somewhat easier as the dist,ance between

rooms can be measured between some defined 'hidpoints" of the polygons.

However, for the beside constraints it will be more difficult.

more initiative from the system

We can free the designer from some repetitive tasks by allowing partial automa-

tion at some stages of the design. E.g. when the rooms are placed already,

the system could aut.omatica1ly place the passages. Clearly the user still has to

accept the placement.

Another initiative of the system can be placement of a roo;-, based on the

specification of the designer. E.g. the designer can indicate the placement of

a room and associated constraints. As a response, the system can still show

the available area for the placement of that room while presenting a default

placement to the user. Again, the designer can accept the placement or change

the location of the room with the advice of the system.

6.4 Summary and Conclusion

The objective of this research was to explore interactive intelligent dcsign with visual

aids to the designer. lye developed a system that showed that constraints arc a

natural way t o express design goals. Maintaining those constraints is nlanaged by the

system and is not the responsibility of the user. The user is not elirninatcd from the

design process but rather is incorporated. Because an explanation facility should bc

an integral part of an intelligent design system to meet users' needs for fccdback on

their actions, FLOWER provides such explanation via visualization of dcsign variable

domains and constraints on them. The system we developed also works with the

user in a mixed-initiativestyle. In this way, FLON'ER support.; itztrracliae intelligent

design by providing visual suggestions or guidelines on how to proceed wi tli t I i c ~ design,

checking design decisions, suggesting corrective actions and rrarking problem steps.

As a result of implementing this system we have addressed ,z major limitation of

current CAD technology: we have shown that it is possible to actively hclp a designer

with the design process, without automating it. We have shown that visualizdion of

variable domains and design constraints can provide this active help. Finally, we have

shown that the FLOWER system can provide intelligent help for designing simple

floor layouts.

Appendix A

FLOWER - User's Manual

Defining the Floor Plan

In order to startup the design. the user must specify the perimeter of the floor plan. If

he/she fails to do so, none of the functions of the program can be zctivated. The floor

plan defines the boundaries of the building (i.e. &outside concrete walls"). Constraints

are automatically created to ensure that no part of any room can be outside of this

region,

To specify the boundaries of the house, the user must select the Floor Plan button.

The red light on this button will change to green by the selection. The user can the

move the mouse into the Workspace area and specify one corner of the floor plan (this

is the only case when the corner is not restricted to be the upper-left corner), by

holding the left mouse button. She/he can then move the mouse while still holding

the button and rubberband a rectangular area. Releasing the button will specify the

other corner of the floor plan.

Specifying Constraints

At the beginninr of the design session or any time later during the actual design the

designer can specify constraints related to the location/placerncr.t of t h e rooms. To

add the constraints the designer has to choose the C'onsirclinfs buttons. \\'hen this

button is pushed a !ittie winclow appears on front of the designer. 'l'herc arc thrcc

small rectangles in the window. In the first and the last rectangles names of rooms

are shown (i.e. kitchen. living room, etc.) and in the middle rcctangtc the types of

available constraints are shown. The constraints implemcntcd at this niolncnt are

spatial by nature: beside. close, near, far. 'The designer does not havc to type in

his/her choices - just has to scroll through the available possibilities by clicking ttic:

right mouse button. M;hen (s)he made a f nal choice in all three windows (s)lle can Ict

the system know this by ciicking on the Back to the System button. These constraints

are taken into consideration by the system when the designer actually tries to place

those rooms part of that constraint.

Adding Rooms

After the floor plan has been defined, the room buttons became activated. There arc

eight types of room. The types correspond to eight buttons of the user interface.

Seven of them are located on the left side of the screen grouped together, showing

the similarities of the rooms. The difference between these rooms lies only in their

size. To visually distinguish between them, each button is shown in different colours.

The room icons hold the same colour information as their buttons. Otherwise each

room has a defined minimum and maximum size and a reference point, the lower left

corner. The reference point of a room is the place where the room gets inserted into

the floor plan.

The following roams are implemented: hallway, master bedroom, bedroom, liv-

ing room, kitchen, dining room, bathroom. The micimum size of these rooms are

somewhat corresponding to room sizes in reality, i.e. the m ~ t e r bedroom is bigger

than the bedroom and the l i ~ i n g room is bigger than the dining room. Since the

sizes are given as range, the designer still has some freedom to make or break these

conventions.

To add a room, the designer selects the but ton representing the desired room type.

As soon as the room t ~ p e is selected a shading of t,he valid positions for placement of

the reference point of that room.

After the room type is selected and the shadow appear., the designer doesn't have

to insert that room. EJe/she can pick d h e r type of room and look at the available

area for that one.

When the designer presses the left mouse button down the default room appears.

Moving the mouse with the left button held down will move this defauIt room around

the design area. When the mouse button is released, the default room will be tem-

porarily drawn with the lower left comer at the mouse location. The room is then

added to the knourledge base.

The remaining one type of rooms can be added by a different menu. By choosing

the By Size menupoint from the Add Rooms menu, the designer can add a free sized

room to the design. He/she can then move the mouse into the work space area and

specify the upper-!eft corner of the floor plan by holding the left mouse button. She/he

can then move the mouse while still holding the button and rubberband the new room

area. Releasing the button will specify the other corner of it. There is no available

placing information for this type of room, since its size is completely free, so it could

fit anywhere.

The free sized rooms can be used to fill the floor plan up completely. When the

user inserts only the previous type of rooms, there could be "emptyn spaces in the

floor area. By inserting a free sized room to those places, the designer can fill up the

gaps. (These rooms can be considered as closet spaces or extra hallways.)

The addition of a room causes the biioiving constrairtts to be a~~tonlatically in-

serted irlto the Echidna knowledge base:

The room must be contained witliin the floor plan.

0 The room must have a wid? h/heiglit smaller than the rni~limurn and larger than

the maximum for that room type, when this range is spccifird, ix. it is not a

free sized room.

The bottom left corner of the room is fixed to be the point which the designer

selected

The new room must not overlap an exist.ing room.

Other constraints that the designer specified before regarding this room.

In the event that the new room overlaps an existing room, the atlditiori of this

room is rejected. AlI the goals are undone and the room must be removed from the

floor plan.

However, when the designer specified constraints are not met, the system gives the

following visual cicles: the appearance of the original room changes, it will hc showrl

outlined and an explanation is provided about the failure. Also a suggestion is given

about possible corrective steps.

If the addition of these constraints to the knowledge base is consistent, thcn the

new room will be redrawn to reflect any changed edge domains. The visual aid for

insertion is cleared. If the designer wishes to add the same type of room again, he/she

could do so, without needing to push the same type of button again. To activate the

visual aid again he/she has to move the mouse in the work space area. The new

shadow will appear showing again the actual available places. 0 bviously the designer

can choose from the other rooms, if he/& wishes to do so.

As it was previously mentioned, each room are shown in different. colour. By

clicking on a room button, this colour will be turned of and the pushed button is shown

in white. In this way, the designer can see which room was selected. Furthermore,

the appearing shaded area will also correspond to the same colour. To still clearly

show the room icon, t h e shaded area will appear with using the same hue, but in low

saturated. So e.g. the colour of the chosen room is red, then the shaded area will be

pinkish.

Getting Help

To make the program even more user friendly, help facilities are added to it. The

designer can ask for help at any time of the session by choosing from the Help menu.

A little window will appear and brief information about the usage can be obtained.

Based on the selection a scrohble text will be shown about the various aspects of the

program. Help files are available about how to use the program in general; how to

draw a floor plan; how to add rooms, what the difference is between the room buttons

and the room menu, i-e. between the constrained sized and free sized rooms; what

the shaded area means; what happens when a constraint fails and how to exit the

program. A button (Back to FLGIVER) on the help screen h a to be pushed in order

to get back to the program again, and the design could be coatinued.

Leaving the Program

When the design session is finished, the user can exit by hitting the Exit button. A

built-in safety feature exists against accidental exiting. The user is asked whether

realIy meant to quit, or it was just an accidental mouse movement. If heishe didn't

mean to leave, he/she can return to hislher design and Just simply continue the design

session.

REFERENCES

[l j 0. Akin. How do architects design. In :l r-iificial Intt l l igc ncf and I J d f t rw Rirog-
nition in Computer Aided Design, pages 65 103. IFlP Sorth Itolland f'uhlishing
Company. 1 %'8.

[2j 0. Akin. Expertise of t i e architect. 111 E r p e r f Systrnzs jor 6 n g i n r c r i u g Dcrigtr,
pages 173-198. Academic Press. 1988.

131 S.R. Alpert. Graceful interact ion 5.vi th graphical constraints. IEKE C.'omput cr
Gmphics and Applications, l3('t):8'2-!ll, 1993.

[4] A. Barr and R. Barzel. -4 modelling system based on dynamic constraints. ACM
SIGGRA PH Computer Graphics, Z(4) : 179- 183, 1983.

C.A. Baykan and M.S. Fox. An investigation of opportunist.ic constraint satis-
faction in space planning. In Tenth Infernational Joint Conference on Artificial
Intelligence, pages 1035-1038, August 1987.

E6j C.A. Baykan and M.S. Fox. Constraint satisfaction techniques for spatial plan-
ning. Extended Abstract, October 1985.

hi'] C.A. Baykan and MS. FOX. Opportunistic constraint-directed search in space ,
, "

planning. In IFIP Working G r o u p 5.2 Workshop on Intelligent CAD, pages 1-6,
1988.

[8f E. Bier and M-Stone. Snap-dragging. ACAISIGGRAPH Computer Graphics,
20(4):233-240, 1986.

I91 M. Blonsky. On Signs. Basil Blackwell, Oxford, 1985.

[lo] A. Borning and R. Duisberg. Constraint-based tools for building user interfaces.
A CM TOG, 5(4):34.5374, 1986.

REFERENCES 92

[l l) T. Calvert, -3. Dickinson, J. Dill, IY. Havens, J. Jones, and L. Bartxam. An
intelligent basis for design. In IEEE Pacific Rim Conference on Computers,
Communications and Signal Processing, pages 371-37.5, Victoria, BC, May 9-10
1991.

f12j P.P. Chen. The entity relationship model - towards a unified view of data. ACM
Database Systems, 1 (1):9-36, 1976.

[13] J. Dill, J. Jones, and Stefan W. Joseph. Intelligent computer aided design. In-
ternata'onal Journal of CADCAM and Computer Graphics, 8(2):175-184, 1993.

[14] C.L. Dym, R.P. Henchey, E.A. Dellis, and S. Gonick. A knowledge-based system
for automated architectural code checking. Computer-Aided-Design, 20:137-145,
1986.

[I 51 W.H. Fawcett. Design knowledge in architectural CAD. Computer-Aided-Design,
20:83-90, 1988.

[16] F.S. Frome. Improving colour CAD systems for users: Some suggestions from
human factor studies. IEEE Design and Test, pages 18-27, 1984.

I171 J.S. Gero, M.L. Maher, and W. Zhang. Chunking structural design knowledge as
prototypes. In Artificial InteCligence in Engineering Design, pages 3-21. Elsvier,
1988.

[18] T.R. Henry and S.E. Hudson. Using active data in a UIMS. In A CM SIGGRAPH
Symposium on User Interface Softurare, pages 1-67-178, Banff, AL, Canada, Oc-
tober 17-19 1988.

[19] S.E. Hudson. Adaptive semantic snapping - a technique for semantic feedback
at the lexical level. In CHI'90, pages 65-70, April 1990.

I201 S.E. Hudson and A . K . J'eatts. Smoothly integrating rule-based techniques into a
direct manipulation interface builder. In UIST'91, pages 145-153, Hilton Head,
SC, November 11-13 1991.

1211 T. Kamada. Visualizing Abstract Objects and Relations - A Constraint Based
Approach. World Scientific, Singapore, 1989.

[22] T. Kamada and S. Kawai. Advanced graphics for visualization of shielding rela-
tions. Computational Vision, Graphical Image Processing, 43(3):294..312, 1988.

[22] T. Kamada and S. Kawai. A simple method for computing general position
~n displaying 3D objects. Computational Vzsion, Graphical Image Processing,
41(1):43-56, 1988.

REFERENCES

[24j T. Kamada and S. Kawai. A general framework for visualizing abstract objects
and relations. AC31 TOG. 10(!):1-39, 1990.

1251 S. Kochar. A protoiype sj-stem for design aut,omation via t,he browsing paradigm.
In Graphics Interface '90, pages 136-166, Halifax, ES, May 14-18 1990.

[26] H. Levkowitz and G. Hermann. Colour scales for image data. IEEE C'onzputcr
Graphics and Appficafions. 1 'S(1):Z-SO, 1992.

[27] M.L. Maher. HI-RISE and beyo~d: directions for expert systems ~ I I drsigll.
Computer-Aided-Design, l7:421-42?, 1985.

[28] M.L. Maher. Expert sy~ tems for structural design. In Expert Sysf6~:s in Engi-
neering, pages 147-161. Springier-Verlag, 1957.

[29] &f.L. Maher. HI-RISE: An expert system for preliminary structural design. In
Expert Systems for Engineering Design, pages 37-53,. Academic Prcss, 1988.

[30] J.H. Maloney, A, Borning, and B.S. Freeman-Benson. Constraint technology for
user-interface construction in Thinglab 11. In OOPSLA, pages 351-388, 1989.

[31] B.J. Meier. ACE: A colour espert system for user interface design. 1 1 1 AC'M
SIGGRAPH Symposium on User Interface Software, pages 1 17-- 128, Bariff, A I,,
Canada, October 17-19 1988.

[32] B.A. Myers. Creating User Interfaces by Demonstration. Academic Press, San
Diego, CA, 1988.

1331 G. Nelson. Juno, a constraint-based graphics system. In A CM SIG'C'RA PH,
pages 235-243, July 1985.

[34] M.H. Overmars. Forms library; a graphical user interface toolkit for silicon graph-
ics workstations version 2.2. Department of Computer Science, Utrcct Universiky,
1993.

[35] R. Oxman and J.S. Gero. Designing by proto~,pe refinement in architecture. In
Artificial Intelligence in Engineering Design, pages 395-412. Elsvier, 1988.

[36] J.C. Platt and A.H. Barr. Constraint methods for flexible models. AC'M SIC-
GRAPH Computer Graphics, Z (4) :X"7-288, 1988.

1371 2. Pylyshyn. The design process: Lecture notes. Lecture Notes of University of
Western Ontario, 1988.

REFERENCES

I381 T.W. Reps. Generating Language-Bused Environments. 3flT Press, Cambridge,
MA, 1984.

(391 P. Rheingans and 3. Tebbs. .A tool for dynamic explorations of colour mappings.
In ACM SIG'G'RAPH Syrnposiunt on Ed-ser Interface Snfturnre, pages 145-146,
1990.

PO] M.A. Rosenmann and J.S. Gero. Design codes as expert systems. Comyuter-
Aided-Design, I7:399-403. 1985.

(411 h1.A. Rosenmann, J.S. C'ero, P.J. Wutchinson, and R. Osrnan. Expert sys-
tems application in computer-aided design. Computer-Aided- Design, 18546-551,
1986.

[42] D.D. Seligmann and S. Feiner. Automated generation of intent-based 3D illus-
trations. ACM SlCCRA PH Computer Graphics, 25(4):123--132, 1991.

f43j S. Sidebottom, W. Havens, and S. Kindersley. Echidna constraint reasoning
syskem (version 1): Programming manual. Expert Systems Laboratory. Centre
for Systems Science, 1992.

[44] I.E. Sutherland. Sketchpad: A man-machine graphical communication system.
In Spring Joint Computer G'orljerr nce, pages 329-346, Montvale, NJ, 1963.

[45] S. Takahashi, S. Matsuoka, A. Yonezawa, and T. Kamada. A genera1 framework
for bi-directional translation between abstract and pictoria! data. In UIST'91,
pages 165-174. Hilton Head: SC, 3overnber 11-13 1991.

f46] E.R. Tufte. Envisioning information. Graphics Press, Chesire, CT, 1990.

f47] A. Witkin and M. Kass. Spacetime constraints. ACM SIGGRAPH Computer
Graphics, 22(4): 159-168, 1988.

[481 A. Wolfe, h4. Brown, D. Greenberg. 31. Keeler, -4.R. Smith, and L. Yaeger. The
visualization roundtabte. A CM SIGGRA PH course notes, 22(19):2-12, 1988.

[49f R.S. Wolff. Visualization in the eye of the scientist,. il CM SIGGRAPH course
notes, 22f 19):l%20i 1988.

$0) B.V. Zanden, B.A. Myers, D. Giuse, and P. Skkely. The importance of pointer
variables in constraint models. In CWT'91, pages 155-164, Hilton Head, SC,
November 11-13 1991.

