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Abstract

The objective of this research is to explore interactive intelligent design with visual
aids to the designer. Straightforward CAD/graphics methods work at too low a
level; they cannot interpret drawn objects. Through an appropriately structured
knowledge base, an expert system can supply the needed interpretation, can keep
track of design relationships; it is also desirable if the expert system can play a more
active role, suggesting design steps. Further, since automated design seems unlikely
and since design is an iterative interactive process, an approach whereby both system
and designer contribute to the solution is desired. Further, since designers work

visually, visualization tools are needed to supply graphic feedback.

This thesis describes FLOWER, Floor LayOuts With Expert Recommendations, a
system for assisting with the layout of the floor plan of a house. A model-based rea-
soner with constraint propagation was combined with computer graphics visualization
techniques to achieve this goal. The reasoner generated information related to the
domains of design variables and constraints between them. This information is made
available to the graphics side of the system for visualization, helping the designer
see and understand the design space at each step of the interactive, iterative design

process.

FLOWER and the user work together in a mixed-initiative style: the system gives
“hints” to the designer about the outcome of certain design choices. For example,
when the designer chooses to place a room, the system shows the acceptable areas
of placement for that particular room. The system also provides feedback about the
choices, approving acceptable ones while indicating and explaining errors when they

occuar.
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CHAPTER 1

Introduction

1.1 Motivation of Thesis

The objective of this thesis is to implement an interactive intelligent design appli-
cation with visual aids to the designer. Visualization helps a designer explore data
and information in order to gain greater understanding and insight into the design
process. Several existing techniques taken from object-oriented expert systems, com-
puter graphics and user interface methodology were combined in order to achieve this
goal.

A system was created that assists with the design of a floor plan of a house. Using
current computer graphics technology alone for that purpose is limited in that it lacks
the ability to interpret the drawn objects. Lines are simply lines without a specific
meaning such as “these lines represent a room”, with all the properties of a room,
such as walls, neighbors and other relations to other rooms. These constraints can
tie rooms together or separate them. The interpretation of the drawing is completely
left to the imagination of the designer. An expert system can supply the needed
interpretation through kan appropriately structured knowledge base, and can easily
keep track of many design relationships. However, an expert system on its own, i.e.
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without visualization tools and support, cannot supply needed visual feedback to
the designer. For instance, without appropriate graphic indications from the system,

consequences of poor or incorrect design choices are difficult for the designer to see.

Even those previous systems with a graphics environment and an expert system
suffered from a certain lack of interactiveness: i.e. their approach was to request a
design goal from the designer and then work toward a solution with no further input.
If not satisfied with the solution, the designer would have to restart from scratch,
completely discarding the solution, even if some elements of it were acceptable. Thus

we see the need to support an interactive, mixed-initiative approach.

This thesis presents a novel approach by creating a system that provides the user
with expert aid with FLOWER and the user working together in a mized-initiative
style. First, the system provides feedback about designer choices, “approving” accept-
able choices and indicating errors when they occur. For some error types, the designer
may proceed but the error is marked. Other types of errors are unacceptable, so the
system would not accept such requests from the designer. Second, the system gives
suggestions to the designer about the outcome of certain design choices. For example,
when the designer chooses to place a room, the system shows the acceptable areas of
placement for that particular room, taking the current layout and constraint set into

consideration.

1.2 The Design Process

The area of intelligent CAD has long been of interest to researchers. Before applying
intelligence to CAD, it is helpful to understand how human perform this task and
much has been written (e.g. [1], [2], [37]) on design itself, as a process. The design
process can be divided into subtasks. Artificial intelligence can be applied to any of

these. However, Al has so far only been successful in some of these ([2]).
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Rosenmann et.al. ([41]) describe design as a “goal-oriented decision-making activ-
ity in which, given a set of goals, a designer prescribes the form of some artifact so as
to satisfy a set of goals” and suggest that different levels of design can be achieved.
At the “easiest” level, when given a problem, one simply selects a solution from an
existing set of solutions. The goal is to make some modifications, if required. At
the next level, the designer knows the general form of the artifact, but the parts and
parameters of it have to be chosen. At the top level, the designer does not know even
the general form of the artifact. The solution is generated creatively, with trial and
error. The authors see expert systems as a tool that can be applied to the simplest

level of the design and in lesser ways at more advanced levels.

Pylyshyn ([37]) views problem-solving as a process of search through a Problem
Space. The problem statement starts with a specification of a set of states that
constitute the problem space, a set of operators that can be used to move about in
that space, a state (or set of states), that constitutes the starting state(s), and a state
(or set of states), that is a goal state. Problems which can be characterized in this
way are called Well Structured Problems. Problems which lack one or more of these
features are called Ill-Structured Problems. The problem with the design process is,
that it is clearly Ill-Structured. Design problems do not have a fixed problem space to
search through: finding one is part of the problem. Generally ill-structured problems
are solved by formulating one or more well-structured subproblems and attempting
to solve them. Pylyshyn sees expert systems as capable of automating the design
process, but they need to satisfy certain requirements. As an example, such systems
must have the capability to express mutual constraints in such a way that consistency

and progressive constraint restriction can be monitored automatically.

In [1] and [2], Akin attempts to give a descriptive model of the design behavior
of architects. In his view, before attempting to make an expert system to model the
process, we must be familiar with the practice of design. Akin is skeptical about
existing expert systems in CAD, especially regarding their participation in the design
proc&sé. The problem he sees is that there is very little known about the practical



CHAPTER 1. INTRODUCTION 4

expertise of the architects. He also observes that there may be debate and disagree-
ment about the correctness or goodness of design even among experts. The existing
expert systems are no more than helping tools in the various stages of design; they
do not automate the whole design process. However, he suggests that certain require-
ments must be considered in the development of expert system for design. One of
these was in fact the same as one of Pylyshyn’s realizations: it should be possible to
organize problem constraints into a hierarchy, distinguishing between local and global
constraints. Also special representations of design elements are needed so that de-
pendencies between the hierarchically organized constraints and design elements can
be automatically propagated. Such a tool would allow the designer to predict the

consequences of modifications made at one level to elements on another.

Architectural design is generally a very complex process and is usually considered
as an area for human endeavor and not for computers. The contribution of com-
puters and CAD to automated design has mostly been limited to drawing creaticn.
Intelligence still needs to be introduced.

Currently expert systems are introduced only in low-level architectural design
involving routine, simple tasks. Such expert systems are able to perform classification
and decision-making, when there is a known number of decision options. When the
knowledge is described, the expert systems can be created to perform certain “design”
tasks. The existing expert systems are able to generate “correct” answers as a human
would, but they are not able to “explain” the relationships that make those particular
choices right. At present, it is unrealistic to construct models of architectural design,
without oversimplification of the design task. I believe that in the future this would

be the aim of th= researchers of this area.

Through the architectural design process, there are certain Design Codes, which
must be satisfied. Design codes include physical laws, heuristic rules and experimental
knowledge. It seemed a natural step to implement expert systems for checking whether
the design meets the code requirement. Such expert systems would not do design,
but would be a useful aid through the process. One of the significant difficulties
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of the implementation of such systems lies in acquiring the knowledge, even though
the codes are already structured. Several authors ([14] and [40]) proposed expert
systems to make use of such codes. The usefulness of such systems is significant in
the architectural design, even though they are not part of the design process, only

assistants to it. These systems can free the designers from routine tasks so they can

concentrate on the design itself.

Other expert systems (e.g. Fizer ({15]), HI-RISE ([27], [28] and [29]), etc.) were

developed to assist the designer in specific architectural tasks. These systems will be

described in the next chapter.

As we can see from the above there has long been a need for a system that can
support design in a more intelligent way. It is not enough any more to simply rely on
passive participation in the design process. Of course there are routine tasks to be
performed throughout a design; for example existing expert systems are capable of
checking certain results. However, if we want a system that can be a real help when
designing, we wish the system to play a more active, supportive role. We want our

system to suggest design steps.

We also expect to be able to try out new ideas while taking design steps. We would
like to make a step, see the outcome and then proceed or discard the step based on
some feedback from the system. In this way we could carry on with the trial and
error inherent in the design process. None of the expert systems mentioned above
have this ability of providing this kind of expert aid. As a consequence, FLOWER
was created to narrow the gap between systems that only passively participate in the

design process and those that take over the design.

1.3 Contribution of Thesis

The previous section showed that although expert systems have been successfully
used in the design process, there is a problem in that they are not capable of working
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interactively with the designer. They are passive problem solvers and give no or just
minimal help to explain their actions. CAD systems are interactive, however, the

designer is left alone to make all design decisions.

Therefore, the aim of our research was to create a system capable of

e visualization of domain of design variables and design constraints: users actually

want to see how their design space changes as a result of their actions

e letting the user design in a “human” way by means of trial and error and not

being fully automated
e giving visual suggestions or guidelines on how to proceed with the design

e checking design decisions and making corrective actions or marking problem

steps

FLOWER was created as a first step toward fulfilling the above requirements. As
noted in Chapter 2, we were unable to find a description of an existing system that
addressed all of these goals, though the need for such system is recognized by many.
The system closest to meeting our goals simply produced a long textual explanation

for the user about the system’s decision ([3}).

1.4 'Thesis Organization

A literature review is presented in Chapter 2. First, we briefly describe a few expert
systems in architectural design, then we give a short overview on visualization. Finally,
we present design systems using constraints. The main problem is that we were unable
to find papers which directly dealt with constraint visualization. It seems that the
lack of readily available constraint processing systems resulted in works where the

main focus was on how to implement the constraints as opposed to using them for

different purposes.
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The scope of our system is presented in Chapter 3. The overall problem that

FLOWER addresses is defined first. The solution methodology is then explained,

followed by the user’s view of the system. Finally, the details of our visualization

methods are described.

The fourth chapter describes the architecture of the system and the fifth chapter

gives an overview of the user interface of the program.

The final chapter presents an evaluation of the system, outlines direction for future

work and concludes with a brief summary.

A User’s Manual is included in the Appendix.



CHAPTER 2

Literature Review

In this chapter we review relevant literature on our area of research. First we describe
some of the existing expert system in architectural design in Section 2.1. These
systems were automating design and were not attempting to involve the user in the
design process. Next, in Section 2.2 we look at the use of constraints as a way to
express design goals. We describe some of the early systems first. The common finding
of these systems is that maintaining constraints should be left for the underlying
system and should not be the responsibility of the user. Several ways of dealing with
constraints were proposed by various authors. However, we want to do more than
just use constraints. Qur goal is to create a design environment where the system can
help the designer by suggestion and explanation as opposed to just automating the
entire design process. We want to visualize constraints and domains of variables, as a
pictorial explanation is almost always more beneficial to the user than a long textual

one.

Thus next we look at visualization in general and in particular visualizing rela-
tionships. In order to design our user interface such that it facilitates design and
shows relations and design decision at the same time we reviewed general guidelines
first. We found that the key in designing successful interface was in understanding the
users and their tasks and then matching the interface to these requirements. Next, we

8
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decided to visualize relations using colours, thus we reviewed papers on colour usage

in user interfaces.

In the last section we review in more detail those papers most related to our
work. They can be categorized in two areas. First are those describing work on
automated design systems, all of which use constraints as a way of expressing design
goals. However, the user is left out of the design process. Ornly the final solution
is presented to him/her. Papers in the second group describe systems where users
took part in the design. In the one case, (s)he could browse through partial results
choosing the most suitable with which to continue. This system was still almost fully
automated, as the user could only choose from the system-generated solutions, and
was not able to give independent input. In another case, the user was an integral
part of the system communicating through a well-established link. We think that
our system is capable of more than that, since FLOWER can suggest design steps,

explain failures and suggest corrections.

2.1 Expert Systems in Architectural Design

In [40], the authors propose an expert system to make use of design codes. It is shown
to be useful in conjunction with a comprehensive computer-aided design system. The

nature and capabilities of the code checking expert system are described.

In [14], the authors propose another expert system which uses the results of the
above research. It is also intended to function together with an architectural design
system. After a building design has been developed, the expert system assists the

designer in making sure that the plan is consistent with certain codes and regulations.

The usefu]nt;cs of such systems is significant in the architectural design, even
though they are not part of the design process, only assistants to it. These sys-
tems can free the designers from routine tasks so they can concentrate on the design

itself.
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An interactive expert system - Fizer ([15]) - was developed to help in the determi-
nation of fastener specifications. It is a knowledge-based system and no attempt was
made to deduce specification from the underlying physics or chemistry. The interac-
tion with the user is performed through dialogues. It will ask the user to provide data
about a fastener problem and it will offer alternatives from which the user can make a

selection. Following the dialogue session, the system will provide a final specification.

Ger6 et.al. ([17], [35]) proposed the concept of a prototype as a conceptual schema
for representation of generalized design knowledge. The design experience is gener-
alized in a way that allows representation at the concept level in the form of a class
from which instances may be instantiated to meet the specific design situation. Class
and instance take their meaning from object-oriented programming. The develop-
ment of knowledge-based systems to aid or automate the design process requires the
identification of a representation schema for this design knowledge. A prototype is a
generalization of grouping elements in a design domain which provides the basis for

the design. Designers are capable of using prototypes and of generating new ones.

Maher ([27], [28] and [29]) developed a system called HI-RISE. It is a knowledge-
based expert system that performs preliminary structural design cf high-rise buildings.
In the preliminary design process, the key terms are selection and constraints, in
Mabher’s opinion. The selection of a structural configuration implies that there is a
set of potential configurations from which to choose. The constraints may be grouped
into several categories, ranging from subjective constraints imposed by the architect

to functional constraints imposed by laws of nature.

The user takes part in the design process through the selection of a functional
system to be pursued further. The design knowledge is represented in the form of
schemas and rules. The schemas contain the description of the design subsystems and

components, and the rules represent design strategy and heuristic constraints.

As we can see from these examples there is a need to have intelligent aid to the

design process. Exisiing systems however, leave the user out of the design process.



CHAPTER 2. LITERATURE REVIEW 11

2.2 Visualization

This section reviews the area of visualization and especially visualizing relationships.
We were unable to find an article or book, that dealt explicitly with the problem of
constraint visualization. Relatively few books exist on constraints and those that do
are about constraint management systems, i.e. about their implementation. There is
much work on the use of constraints or how to draw them in a graph-like manner ([4],
[8], [12], [22], [23], [36] and [47]) but these are generally about mathematical/physical

constraints and not logical ones.

One of the best known such constraint-based systems is Thinglab ([10]) and its
follow-up: ThinglabII ([30]). Thinglab provides a set of so called things, which the
user can add to a graphics work place. It lets the user attach complex graphical

constraints to graphical objects: e.g. one can constrain a line to be horizontal.

A constraint is a relation that must be maintained. Using such relations proved to
be helpful in constructing user interfaces. Maintaining these relations should be left
for the underlying system and shouldn’t be the responsibility of the user. In Thinglab

constraints are used for the following purposes:

e to maintain consistency between underlying data and a graphical depiction of

that data on the screen
e to maintain consistency among multiple views of data
® to specify how information is to be formatted on the screen

e to specify animation events that are to occur when a given event occurs in the

underlying system

e to specify attributes of objects in animation, such as speed and trajectory

Constraints allow a declarative description of the user interface. With them the
user can specify what relations are to hold and the system will decide how to keep



CHAPTER 2. LITERATURE REVIEW 12

the relations. Maintenance of consistency between data and displayed information or
among multiple views of the same data is a common problem in user-interface design.
The usage of constraints is one of several techniques to handle it. The advantage is

that a constraint relation can satisfy itself bidirectionally.

As we can see, Thinglab allows the user to constrain “things” together but it does
not show anything about the “outcome” of those constraints. The user can create
thingl, then create thing2, then specify a constraint between them. Now, it is the
responsibility of the system to make sure that the constraint is held.

The designer takes a different approach in our system. First (s)he creates rooml.
Then (s)he can specify a relationship between the existing room1 and a not yet created
room2. When the user indicates (s)he will create room2, FLOWER shows all possible
spaces where that room can be placed, based on the specified constraint. If the user

places room2 on a suggested, suitable area then the constraint will be satisfied.

A second major system is Peridot ([32]) which infers graphical constraints as the
user adds objecis to a work area. To help Peridot infer dependency relationships
between 2 uew object and others, the user may select a particular object for Peridot’s
attention. The constraints function in one direction only. The system confirms infer-
ences with the user as it infers constraints. It displays a textual explanation of the
constraint it thinks the user intended. Then the user is asked to accept or reject the

inference.

Several other interactive graphics systems permit the specification of constraints,
eitaer directly or by demonstration. The original one was Sketchpad ([44]). In Sketch-
pad when the user merges two objects of the same type, constraints on either of them
are applied to the new merged part. It also lets the user display a graphical repre-
sentation of constraints: they are shown as a circle containing a symhoi representing

the type of constraint.

Another such system that permits specification of constraints by the user is Juno
([33])- it also supports the direct application of graphical constraints. The user can
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select icons representing constraints which the system applies to points previously
selected.

One of the newer systems is Grace ({3]). It is a graphical editor that lets users
define graphical or geometric constraints. It provides mechanisms for constraint spec-
ification via simple means. These include simple direct-manipulation methods and a
constraint-by-demonstration facility that incorporates both novel heuristics for infer-
 ring user-demonstrated relations and natural-language explanation tools that help the
user understand the inferencing behavior of the system. This research was primarily
focused on two ideas:

e investigating user-interaction mechanisms for conveniently specifying and ob-

taining information about relationships

e moving towards guidelines for inferring constraints from user-demonstrated ex-
amples like in Peridot

An explanation facility was built in for cases when the visual feedback might not be
sufficiently informative. Users might not always understand the “behind-the-scenes”
activity and exactly why certain constraints were inferred and others not. Grace pops
upa sepmte window containing a natural language description of all the constraints
it inferred or chose not to infer along with a justification for each decision.

As can be seen, the goal of the above research was primarily to construct a platform

for the user to specify constraints in some “smart” way. A secondary goal was to

maintain them. In some cases an explanation facility was provided. The problem

with patural language explanation is that it can be very ambiguous if the problem is

significantly big. Users do not want to read through pages of information describing

‘actions that lead to a problem. (Even if they did, it is a very painful procedure to
go through a long list of constraints that are affected by a single action). This was

an important part of our motivation to construct a system where the main idea is

mduugmtnmts and domains. The user wants to actually see the consequences
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of his/her action. (S)he may also need guidelines for the next steps in the design.
Letting the user experiment while designing and to have a system - provided guidelines

was one of our aims.

Visualization itself is a broad area and can be described as the graphical description
of a physical phenomena where the data itself need not be visual ([48]). In many
applications the difficulty in dealing with large volumes of data led researchers to try
known techniques in different contexts. Visualization also has drawbacks: it is very

easy to get false impression by plotting data in a “pleasing” manner ([46]).

[49] also discusses some new and not-so new techniques for presenting data in some
sort of visual manner, e.g. using image processing of non-image data. Colour spectro-
grams or pseudo-colour animation of selected parameters can help review inspection
of large amounts of data in a very short time. Wolff states that visualization should
not be viewed as the end result of a process of some scientific analysis, but rather as
the process itself. It should be more than an application of a technique for displaying
data. It can be viewed as

”a paradigm for exploring regions of untapped reservoirs of knowledge”.

FLOWER helps the designer to take the next step in the design by showing the
domains of design variables. The aim is not just simply show that domain but to
suggest visually the next step to be taken.

In computer graphics systems there are two basic forms of visual design: drawing
systems and modeled systems. With the drawing systems, one can sketch ideas into
the computer using it as a sophisticated drawing board. The other alternative is
to give the machine a mathematical model of objects the designer wishes to create
and have the computer make images from that. The main idea of our new proposed
system (FLOWER) goes beyond this division. Creating a system that can be used as
a drawing board if the designer wishes to draw only, and to have a system that gives
recommendations and supervises design decisions at the same time was our goal.
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Since our approach is to visualize relations using colours, we reviewed papers on
colour usage in user interfaces. Colours used in computer graphics are often selected in
an ad-hoc fashion, without considering their physical and psychological effects. Prob-
lems arise from the fact that there are no established algorithms that can be applied
to choosing colours, only heuristics. Many of the existing guidelines suggest using or
not using a particular colour for a specific use, i.e. they are not general strategies or
design guidelines for selecting colours. One approach to select appropriate, effective

and tasteful colours for user interfaces is to use an expert system ([31]).

In the area of the use of colour in visualization, Rheingans and Tebbs in [39]
visualize data by mapping the value of a variable to a colour value. Levkowitz and
Hermann also used colour scales to display image data in [26]. This suggested to
us that we should represent different types of constraints with a colour scale. The
spatial constraints are colour coded: the closer a room should be, the darker the gray

representing the constraint.

Frome in [16] contains some suggestions to consider when designing with colours:
colour aftereffects should be avoided if possible, colour differences can be increased to
make objects more visible, standard conventions should be followed. There may also

be cultural differences in interpreting colours ([9]).

2.3 Intelligence Aids to the Design Process

In this section we review several papers more specifically relevant to portions of our
work. The papers are sorted into two groups. First we describe systems that were
fully automated. Then we turn to those systems where the user plays a role in the

design.
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2.3.1 Automated Design Systems

The work of Seligmann and Feiner on the use of expert system in designing illustrations
([42]) is discussed first. It shows that design is a goal-driven process within a system
of constraints. When analyzing a partially completed design, their system backtracks
for generating a better solution so previous mistakes or off-track solutions can be

avoided.

Next we describe the work of Henry and Hudson ([18]) on using constraints in User
Interface Management Systems. Their work on designing screen layouts is very similar
to our work on placing rooms in a floor plan. Thus their ideas provided suggestions

to our work.

The research of Hudson and Yeatts in [20] is presented next. They described
a technique for integrating rule-based inference methods into a direct manipulation
interface builder. Though they refer to the desirability of the designer control of the

process, their system followed an automated approach.

Finally we present the work of Baykan and Fox in [5], [6] and [7]. They investigated
constraint-directed heuristic search as means of performing design. Their application
was very similar to ours: they were designing layouts of kitchens. They were also
emphasizing on using constraints throughout the design process. They did not deal

with feedback from the user: their designing system is also fully automated.

Expert Systems in Hlustration Design. An illustration is a picture that is
designed to portray meaning, i.e. meet some communicative intent. Seligmann and
Feiner describe IBIS ([42]), a system for automated design of intent-based illustrations.
Their design is a goal-driven process within a system of constraints, where the goal is

to achieve the purpose and the constraints are the illustrative techniques an illustrator
can apply.

The idea behind the system is to generate presentations, each designed to satisfy
the same communicative intent for a particular audience such that the illustration
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has the ezact same meaning to many different people. IBIS designs illustrations to
fulfill a high-level description of the intent. The work described in this paper rep-
resented a new method for generating illustrations utilizing multi-level backtracking.
Evaluators analyze partially completed designs. Based on the evaluations the system
backtracks for generating a better solution. Illustration objects are generated based
on both the representation of the physical object and the communicative intent. This
way, the system also takes into consideration the physical properties of the object,
not just its intent. The multi-level backtracking idea seems to be very useful, since
it works like a developing design, which learns from previous mistakes or off-track
solutions. However, the precoded evaluators do their work with no user input taken

into consideration while the system is working.

Using Constraints in UIMS Design. If we think of placing windows on a
screen as a task similar to placing rooms in a floor plan, certain aspects of UIMS
work are applicable to our work. Henry and Hudson for example describe the Apogee
UIMS in [18] which uses a unified data model (from [38]) to support a range of tasks.
This active data model not only stores data, but also acts when changes occur in them
and is based on incremental attribute evaluation concepts. In this UIMS, interfaces
are treated as editors and browsers of data. Both the application and the user are
given access to the data. Under this paradigm, the primary task of the user interface
is one of translation, i.e. the user actions have to be translated into internal data and
into actions within the application. Also, when the application changes data, these
changes have to be translated into new graphical images, presented to the user. An

active data model can be used to automate these translations.

At the lexical and syntactic levels, graphical presentations are defined in terms
of attributes. Graphical images are updated automatically whenever the attributes
which define them change value. This allows simple specification of dynamically
changing layouts that can automatically adapt to make good use of available screen

space.

At the semantic level or application interface level, the system allows important
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15

Object 1

Obj_l.xmax + 15 = Obj_2.xmin; Object_2

Figure 2.1: An Example of Apogee’s Data Model

application entities to be equationally related to the overall system of attributes. This
creates an automatic connection between changes in application entities and graphical

representations on the screen (shown in Figure 2.1).

An object-oriented data model is used in the Apogee UIMS, which supports multi-
ple inheritance for defining objects. Objects respond to a set of messages by invoking

methods, but their internal structure and implementation are completely hidden.

This work was similar to the work of Zanden et.al. ([50]), in the sense that both
authors were using constraints describing a set of dynamically changing relationships.
Apogee allows constraints to directly reference objects but does not allow indirect

references, as does Zanden’s work.

Both methods deal primarily with implementation of constraints: their application
is secondary. In FLOWER we want to use constraints without worrying how they
were implemented. Many researchers have pointed out the importance of being able

to use constraints in a design system (starting from [10] and [32] etc.).

As we suggested above, there are some analogies between an UIMS and an intelli-
gent design system. Placing windows in the screen and placing rooms into a floor plan

can be very similar. Thus some ideas in this article provide suggestions for FLOWER:
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Figure 2.2: An Example of Inference Rules Expressed as Snap Sites

how to show “beside” constraints, how to show a fixed position according to some

reference point, and how to show a variable size object.

Rule-Based Systems in Interface Design. Research in building user inter-
faces is going in two main directions. One set of systems (interface builders) provides
environments or editors that allow an interface to be specified with direct manipu-
lation. Others are highly automatic, constructing an interface with minimal (initial)

user effort. Both directions have their own advantages and their drawbacks as well.

Hudson and Yeatts in [20] attempt to find a way to integrate these two approaches.
They describe a technique for integrating rule-based inference methods into a direct
manipulation interface builder. The results and effects of the rules are presented to
the user. A direct feedback and control over the application rules are provided by
semantic snapping ([19]) techniques.

Figure 2.2 shows an example of some of their inference rules and the expressed
snap sites. The user is trying to place rectangular shapes to the work space. In this
example, (s)he already placed the first object. When the user specifies the first corner
of the next rectangle, the system considers the set of predefined inference rules and
snaps the opposite corner to one of these.

Hudson and Yeatts wanted their interface builder to meet the following criteria:
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e a visual notation for all aspects of user interface design
e direct expression of rule actions in the notation
e facilities for user control over inference

support for a fairly wide range of inference rules.

The knowledge base of the interface builder holds at least one representation of
the user interface being specified. All actions adding to or modifying the design are
expressed as modifications to the original data structure. All actions by both the user
and the inference engine are coded ‘- the knowledge base. The visual notations of the
various aspects of the interface spccification are stored there as well. They provide
the “visibility” and they are also the basis for both feedback and user control of the

inferencing process.

The main technique introduced in this paper is the use of semantic snapping to
portray actions in the knowledge base. Semantic snapping is an extension of the
conventional gravity field technique. The decision to snap can be made on the basis
of geometry and also on the basis of semantic tests carried out dynamically during
dragging. Furthermore this semantic snapping can provide a visual feedback when

snaps occur.

Experiments with a small prototype of the system proved that it is very useful
when the actions and the consequences of inference rules are immediately apparent to
the designer and he/she is provided with dynamic control of the rules as those rules

are part of the interface specification process.

The problem with this work is that they tended to use the automated system as a
substitute for the human designer. Although they mentioned that the designer has to
have control, the described system works independently of the designer (except for the
initial inputs). Their main scope was expressing knowledge about snapping; nothing
is said about what it is possible to do when designing. The user gets no guidelines
as to the possibilities for user interface design directions. FLOWER works together
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with the designer, it provides guidelines, explanation and suggestions on proceeding

with the design.

Using Constraints for Space Planning. Baykan and Fox investigated constraint-
directed heuristic search for space planning in [5], [6] and [7]. Space planning involves
topological relations such as adjacency and geometrical properties such as shape, di-
mension, distance and other functions of spatial arrangements. They found that it is
natural to express space planning problems in terms of constraints. Experience with
space planning programs indicates that computing time was affected by the strengths
of constraints and their sequencing. Constraint-directed search attempts to formulate
general models for the representation of constraints. The objectives are to identify
and represent a variety of constraints and interactions between them (such as conflict,

competition and relaxation) for effective utilization during search.

They created Wright, a knowledge based design system that uses constraint-
directed opportunistic search to generate layouts in different space planning domains.
It consists of a knowledge base, a problem solver and a user interface. The knowl-
edge base contains knowledge about the application domain. Wright designs kitchen
layouts, thus knowledge is expressed about possible items in a kitchen and their re-
lations. For example, a kitchen can have sink, oven, counter, etc. Counter space has
size requirements, refrigerators should not be beside ovens, etc. The problem solver
focuses on the different aspects of space planning such as locating, dimensioning etc.

based on uncertainty measures associated with constraints.

Layouts are created by configurations of design units. Design units are considered
at different levels of detail. The design units form a hierarchy through which there is
inheritance of variables, values and constraints.

The highest level of abstraction for representing design states is the spatial level
(inside, contains, no overlap etc.). The next level uses one-dimensional relations
(region-west-of, horizontally overlapping, etc.). The lowest level of abstraction is the
region-line adjacency network (a representation for generating layouts using rectan-
gular regions and horizontal and vertical lines).
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It is possible to design at each level of design representations. The goal tree con-
trols the focus of attention on the levels and representations and facilitates switching
between them. The goal tree is a hierarchy of goals and constraints starting with

general goals representing knowledge of the design domain.

The first stage of problem solving is pre-search analysis based on the initial (given)
constraints. The second stage is the opportunistic search. Constraints are selected
based on their uncertainties. Information for determining the uncertainties of con-
straints are: importance of and severity of constraints and the size of design unit
affected by the constraint. Uncertainty is used as a measure for rating opportunism

of constraints and determining where to focus attention during search.

The system presenied by Baykan and Fox is similar to FLOWER in a sense that
both design simple layouts. Both systems use constraints to express design goals and
knowledge. However, Wright is yet another automated design system where the user
provides initial input and the system produces an “answer”. There is no interaction
between Wright and the user during the design process. Wright was created to be a fast
designer where speed was gained through the way it handles the constraint satisfaction
problem. Their goal was to produce a system using dependency-directed backtracking.
We were fortunate to have a system where this dependency-directed backtracking
already in place. Our task then was to develop a means for adding/integrating user

mteraction.

2.3.2 Interactive Design Systems

We describe three papers in this section. Kochar in [25] is presented first. His work -
was closely related to ours as he is intended to provide help throughout a design

- process.

We then turn to the work of Kamada et.al. on visualization of abstract data in
[45]. Their work is important for the use of feedback from the user throughout the
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design process.

Finally, we present the work of Dill et.al ([11] and [13]) on intelligent computer
aided design. This work is the predecessor of FLOWER, of our research group.

Supporting the User by Presenting Design Alternatives. The activity of
design can often be characterized by a search; in other words the designer examines
various alternatives at several stages during the design. The problem with current
CAD systems that they either expect the designer to have a complete design and just
use the system as an intelligent drawing board. In these systems, obviously all choices
are made by the user so the system isn’t really assisting with the design at all. Other
systems generate (sometimes fairly large numbers of) design alternatives which are
presented to the user normally one after the other in a sequential manner. The user

must then determine on his/her own which one is the best.

The approach taken by Kochar ([25]) to this problem is among all the works
reviewed, the most closely related to our own. Kochar’s system, FLATS is a prototype
for design automation via browsing and was constructed to demonstrate the paradigm
of cooperation between the user and the computer in CAD applied to the design of
small architectural floor plans. The system supports the exploratory aspect of design.
A structuring mechanism helps the user explore design alternatives in a systematic

way, by varying those properties of the design that are of primary interest.

x

Again, there is a major problem with this system. Although it does more than
just describe in text a set of affected design constraints, it does bombard the user with
possible solutions at certain stages of the design, which tends to be overwhelming to
the user. Most designers insist on playing an active role; they do not want to be

passive bystanders, selecting from a menu of generated designs.

This system is a positive step of course toward presenting design alternatives to
a user; still it does little more than the previously described systems, except for
generating a set of partial designs as opposed to presenting a complete design. In
other words, it still automates the design process, only it does so to a portion of a
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design. These partial designs are generated based on precoded knowledge, therefore
the designer cannot contribute to the design by adding new knowledge once the system

started to work.

Integrating the User into the Design Process. Interactive graphical user
interfaces based on direct manipulation are well established. To ease the burden of
the high cost of their creation, User Interface Management Systems (UIMS) are used.
However current user interfaces usually consider only the interaction architecture and
lack support for a consistent framework that allow visualization and manipulation
of high-level abstract data, i.e. the semantics of applications. Kamada et.al. have
been doing work (e.g. [21] and [24]) on visualization of abstract application data, i.e.
translation of abstract data into pictorial form. They have also extended their one-way
visualization framework to bi-directional translation between the data representation

of an application and the pictorial representations of the user interface in [45].

To lessen the need for continuously varying the mapping rules between the infinite
number of possible representations, they used two intermediate, universal representa-
tions, and developed a set of rules for mapping one to the other. The intermediate
representations can be left unchanged, even if the application changes. The mapping

process handles the following representations:

e Application’s Data Representation (AR) -

this is application specific, and can be any kind, e.g. natural language, program

listing, data in a database

e Abstract Structure Representation (ASR) -
this represents the underlying abstract structure, i.e. a set of relations among
abstract data; AR is translated into this form and vice versa

e Visual Structure Representation (VSR) -

this is the underlying structure of a picture, i.e. a set of graphical relations
among graphical objects; ‘
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AR: J is daughter of E and S

ASR: daughter(J, {E,S]).

is_person(J).
_is_person(E).
is_person(S).
VSR: above({E,S].J,ygap),
4 hor_list([E,S].xgap),

connect({E,S],J, bottom, top),
box(E,width, height, label(x)),
box(S ...

PR:

J

Figure 2.3: An Example of Kamada’s Model

e Pictorial Representation (PR) -

this is the representation of the picture to be rendered directly or display devices.

First AR is analyzed, and then ASR data are generated from it. Then the visual
' mapping is done, i.e. ASR is translated into VSR. (The mapping from VSR into ASR
is called inverse visual mapping). Finally VSR is translated into the target PR. The
graphical relation data are first translated into geometrical constraints among picture
objects. To determine the actual positions in the display-space, the constraints are

solved by constraint solvers.

AR «— ASR «— VSR «— PR

- Figure 2.3 illustrates an example of the four types of representations. In this exam-
ple, the application’s data is represented as a natural language sentence “J is daughter
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of E and 5”. The corresponding ASR data are daughter(J,[E, S]), ts_person(J), etc.
The daughter is an abstract relation and the persons are abstract objects. The cor-
responding VSR data are above([E, S],J), etc. The above etc. are graphical relations
and the bores are graphical objects. As a pictorial representation, a family tree picture

is generated in Figure 2.3.

Similar work has been done in SFU’s Intelligent Systems Laboratory in the form
of the “nchess” program. Here, after a user places a chess piece, nchess determines the
location of the remaining pieces. In this application the chess pieces say queens and
the board form the pictorial representation. The VSR data is the board() The board()
describe graphical relations between graphical objec!s: it describes whether the boxes
representing the chessboard should be drawn empty (e) or filled with a placed queen
(q)- The ASR data are the makePiece:- QI isa QueenPiece, etc. The placesafe is
an abstract relation between the abstract objects describing the constraints for safe
placement. Figure 2.4 illustrates this example. When the player places a queen on
the board PR is modified accordingly. The modified picture is translated then into
the board data. The reasoning engine evaluates the placement and the resultant ASR
of the board is again visualized to update PR.

Our FLOWER uses the same set of mappings. However, while Kamada’s group
had to put a significant effort into developing this communication path, it was directly
available to us via the external object protocol access to Echidna. In FLOWER, the
Echidna knowledge base corresponds to ASR, while the knowledge base/database
update routines correspond to VSR. Communication between ASR and VSR struc-
tures is facilitated through a module called mediator. Further details are provided in
Chapter 4.

We believe that Kamada’s work represents an important contribution to the area,
since it is one of the very few that acknowledge that user and system must work
together: that the user must not be left out of the design process.

Indeed they stated that there wasn’t any other work which directly influenced
theirs. The same thing is true for the constraint visualization. The problem is that
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First queen is placed A2.

1
ASR: makepicce:- Q1 isa QueenPiece.
location(Row, Col).
placesafe:-
P:location(PRow, PCol),
abs(Row - PRow) =\= abs(Col - PCol).

VSR: board([e.q.c.£].

) [eccel.
(XX XK
[e.ce.c)).
{ 1 2 3 4
PR: A o
B
C
D

Figure 2.4: The Nqueens Problem Described in Kamada’s Terms
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most systems are limited to just representing constraints and manipulating them.
For instance, in Kamada’s example of the Othello game, the system does not suggest
next steps, nor indicate what choices might be available. We believe such capabilities
are desirable and have attempted to provide them with our constraint and domain

visualization techniques.

An Intelligent Basis for Design. Our research group at Simon Fraser Uni-
versity started to work on an intelligent CAD project ([11]) with similar objectives
as those of FLOWER. First, a protocol analysis was conducted to identify problems
and difficulties of the design process. The results of the study was incorporated in
the next step, where a system was created to help with home design. The first design
task addressed was that of foundation design ([13]). Given a partial design, defined
by AutoCAD drawings, the system works with the user to generate joist and beam
layout. The system supports the mixed-initiative paradigm, more on initiative from
the system. It can generate the entire layout or the user may interrupt the system at

any point to specify design constraints.

This system is a predecessor of FLOWER: it has similar architecture and goals.
However, FLOWER allows more initiative of the user while giving guidance on com-
pleting a design. The system of [13] does not advise on design steps, simply incorpo-

rates the designer wishes to the final solution.



CHAPTER 3

FLOWER - Scope and
Functionality

3.1 Problem Definition

Designing the layout of a building can be a tedious task even for an experienced
designer, when considering many initial requirements. Some routine tasks can be
done easily and some of them could be automated and solved by a system. Rules
considering building codes and physical laws can be coded and represented in the

knowledge base.

In addition to the objective aspects of the design, there are subjective aspects,
such as aesthetic qualities. Obtaining such knowledge is difficult; encoding it is more
so. This seems to provide even mor: reason for retaining the designer as an integral

part of the design loop.

\ We think that a system which uses some guidance from a designer but remains
independent enough to make some decisions is very much needed. It is important to
~ allow the designer to have control over the design process while it is important to

29
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be able to automate as many tedious or repetitive steps as possible and to provide
guidance or direction when it is needed. With this motivation, the following objectives

were set:

1. to address a major limitation of current CAD technology: to provide interactive,

intelligent design assistance but not automated design
2. test the proposed constraint-based, mixed-initiative designer system

3. test how a visual aid (i.e. showing the domains of some design variables and/or

constraints between them) can help the designer to accomplish a design

4. gain further insight into the use of the Echidna Expert System for designing
purposes

5. create a potentially useful tool for simple layout design tasks.

3.2 Solution Methodology

FLOWER is a design system where user and system can work together as equal

partners. The overall design scenario is as follows:

1. The user starts up the system and begins designing a floor plan. (See detailed
description of usage in Appendix). (S)he can move rooms around, experimenting
with the layout, then finalize their position.

2. The system supervises design decisions to check that physical laws are obeyed.
The user may not override these relationships. It does however show the avail-
able spaces for each room. The user can can try whether a particular placement
of a room is valid and see the system’s reaction while proceeding toward a
complete design. '
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As an example, it is physically impossible for rooms to overlap. Thus at any
stage, when the designer wishes to add a new room, the system will determine
the valid space for that room. The system acknowledges a valid placement and
the design session can be continued; however, the user cannot continue upon

invalid placement, unless (s)he removes the offending room.

3. Additional spatial relationships between existing rooms can be added. FLOWER
then checks and notifies the user about problems )ut lets the user proceed even
with “mistakes”, The offending rooms will be marked. When the system indi-
cates a problem, it also gives a visual clue about what went wrong with placing

that room and another visual clue about fixing the problem.

For exarnple, the user wants to place a bedroom and a bathroom, requiring them
to be close to each other. After the user specifies this relationship and places the
first room, the system will show possible locations for the second room that fulfill
all constraints. (In this case the set of constraints is: the “close” relationship;
“rooms must not overlap” and “rooms must be inside of house” physical laws.
The system evaluates the placement of the second room and if valid, the design
session can be continued; while a misplaced room will be marked But the system
takes no corrective action. The system will “explain” though what was wrong

with the placement and suggest a corrective action.

By distinguishing between required and desired constraints, the system allows
the user more freedom while making the design decisions. If all constraints
had been considered serious, the designer could only make proper design steps.
Otherwise the system would reject all steps that did not meet the requirements.
This way however, the designer has more liberty to try out ideas and return

later to ‘his problems.

For example, (s)he might say: I want the kitchen beside the bathroom but I do
. not know yet exactly where; I will put it somewhere close, for now. FLOWER
will not let the mistake go unnoticed. It will flag the user and suggest correc-
tive action. It will not let the user leave the problem uncorrected indefinitely.
| However, (s)he may work on other rooms first and later return to correct this




CHAPTER 3. FLOWER - SCOPE AND FUNCTIONALITY 32

problem.

3.3 User’s View of the System

The user sees this system as a design partner. The system does not proceed in an
automated fashion, leaving the user out of the design decisions, nor does the user
complete a design alone only to find out in the end that it does not meet the original

requirements. The user can think of the system in the following ways:

e helper

The system will suggest steps for the designer throughout the design process.
As an example, it will show the available spaces for a new room based on the

entire current constraint set.

e strong critic

FLOWER also checks for serious mistakes during the design. In this case, the
system does not let the user continue while the problem remains. For example,
when a user places a room outside of the predefined house, the user is not able

to continue, unless (s)he removes that room.

e soft-hearted critic - teacher

The system simply notes the problem, ezplaining what it was and suggests cor-
rective steps.

3.4 Visualization of Constraints

The most important part of our work - in addition to creating a very simple design
system - is that FLOWER actually helps the user in the process of design. This help
s threefold:
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e after the designer selects a room, the system shows all acceptable areas of the

placement of that room

¢ the system explains whether a certain step in the design was successful or not

a) if a constraint representing a physical law was violated, the system does

not allow the placement of any new room, until the problem is corrected

b) if a constraint representing a user preference was violated, then the place-
ment is allowed but the violation is shown and the offending relationship is

indicated

e it also suggests to the designer how to proceed when encountering a design step

that contradicts previously specified relationships the user preferred to be held.

The help that FLOWER provides is based on visual clues, using colour. Each type
of constraint is represented with its own distinct colour. A part of the user interface
shows them, to help the user remember the meaning of the colours. The user interface
has an array of buttons, one for each room type, with a different colour for each room.

Rooms are given the same colour as their buttons.

The designer’s task is to place rooms in the floor plan. When a room is selected,
the designer can move that room around the work area by the mouse. While trying

to select an acceptable place for that room the room is shown in its assigned colour.

The first visual clue to the designer is the valid area of the available space for
the placement of that room, shaded to correspond to the colour of the room. To
distinguish the representation of the room, the shaded area uses a lower saturation of
the same hue. For example, if the colour of the chosen room is red, the shaded area
will be pinkish. Figure 3.1 shows an example of such placement. Here, the designer

has already placed two bedrooms (shown yellow) and a bathroom (shown brown).

If the designer specified preferences (such as a beside constraint) involving the
‘room to be plaqed, then the shaded area for the room placement will be shown in the
‘colour of that constraint. Figure 3.2 shows an example of that. Suppose the designer
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Ol Pl R

Figure 3.2: Visualization to Place a Hallway, with User-Specified Besi:de Constraint

o there will also be an indication for proper placement of that room in the form of
two arrows below the constraint indicator line; the arrows suggest whether the
designer should move the room closer (><) or further (<>) away; the arrows
will only appear if the correction is possible (if the user specifies contradictory

constraints, there is no way to satisfy them, and no arrow appears)

If a room is in several different type of relationships to the existing rooms, e.g.
it has to be beside some but far away from others, the available area will still be
calculated, but the colour of it will be specific to the room to be placed and not to the

constraints. Again, the area will be shown with lower saturation of the room colour.

For example, the designer wants to place a master bedroom now. (S)he set the
following constraints: master bedroom beside bedroom and master bedroom close bath-
room. Now, the system will show the available area in light green (the original colour
of the master bedroom is green) as this room is in two different relationships. Again,

the beside constraint must be met for both bedrooms.
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Figure 3.3: Visualization Aids for Placing a Master Bedroom with Several Uscr-
Specified Constraint

Figure 3.3 shows the available area for that master bedroom. In this figure we
also can see that the user previously tried to place a hallway but ignored the visual-
ization. As a result, that hallway did not meet the user-specified requirements. As

we explained above, an explanation of the failure is shown now.

If the user ignores the visualization again and places the masterbedroom improp-
erly, the failure will be presented. This is shown in Figure 3.4. As can be seen from
the figure, the lines and arrows correspond to the colour of the failed constraints;
thus they are the same colour for both bedrooms (as they both were in the beside

constraint) but different for the bathroom (as it was in a close constraint).

If the user attempts to place that master bedroom again but now accidently places
it such that it overlaps the bedrooms, the piacement will fail again but this time there
will be no explanation why the placement failed. Here too, the room will be shown
outlined, but the outline will be thick (shown in Figure 3.5), clearly distinguishable

from the previous case. Now, the user must remove this room in order to continue.



CHAPTER 3. FLOWER - SCOPE AND FUNCTIONALITY

Figure 3.5:

Figure 3.4: Placement of Master Bedroom has Failed

s
R

Placement of Master Bedroom Fails Due to a No_Overlap Constraint

37



CHAPTER 4
System Architecture

Many researchers (e.g. [5], [11], [13], [18], [25]) suggest that constraints are a natural
way to express design goals. However, the lack of readily available constraint process-
ing systems generally resulted in work focused on implementation of those coastraints.
Kamada et.al in [45] emphasized the importance of a bi-directional translation be-
tween the data representation of an application and the pictorial representations of

the user interface as a way to involve the user in the design process.

In our case, both the constraint processing system and a described bi-directional
translation were already available, allowing us to concentrate on further steps. We
wanted to create a truly mized-initiative system. In FLOWER, the system can

1. suggest design steps by displaying the domain of design variables

2. evaluate design steps

3. explain incorrect steps by visual display of constraints

4. suggest corrections.

The structure of FLOWER can also be described in Kamada'’s terms (Figure 4.1).
In FLOWER, rooms form the Pictorial Representation. The VSR data are draw_house

38
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AF: (user picks a point for the next room to be placed)
ASR: room RZ isa room,
A constrain(x,y,width,height),
R2:no_overlap(R1),
beside(R1,R2),
Y
VSR: draw_house,

A draw_room(new_room, list_of_oldrooms[]).

Figure 4.1: Structure of FLOWER Described in Kamada’s Terms

and draw_room(new_room, i;st_of_oldroomsf]) etc. The draw_room() describe graphical
relations between the room graphical objects as it incorporates the representation of
minimum and maximum sizes and colour information. The ASR data are the room
instantiations (room R2 isa room), and the constraints, physical (R2:no_overlap(R1)
and user-specified (beside(bedroom, bathroom)). For example, no_overlap is an ab-
stract relation between the abstract objects R1 and R2. AR corresponds to the user’s

request for placement of the next room by means of an input device (mouse).

Again, while Kamada’s group had to put a significant effort in developing the
communication channel, in our case, the mapping between ASR and VSR was al-
ready available through our reasoning engine’s external object protocol. In our case
both AR and PR reside in the graphics side of our application. When the user in-
dicates the placement of a room, AR is recognized by the graphics modules and the
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mapping between AR and ASR is done through knowledge base update routines and
the mediator code. The knowledge base update routines are responsible for the appli-
cation dependent part and the mediator code is responsible for the technicality of the
link. (Sections 4.3 and 4.4 give more details.) ASR is represented in the knowledge
base and becomes accessible through this link. VSR is represented by the graphics
database. When our reasoning engine evaluates the user’s design goal, the result is
sent back to the graphics code again through the mediator and the graphics database
update routines, thus implementing the mapping from ASR to VSR. Then the up-
dated graphics database is mapped back to the graphics module, (VSR to PR) where

the picture of the room is created.

Figure 4.2 shows a block diagram of our system, the components of which are

described in detail in the following sections.

4.1 The Knowledge Base

Keeping in mind that we tried to implement a simple layout planner, the following

were considered as a set of possible design rules:

1. houses are rectangular

2. rooms are the smallest element of the design, i.e walls, doors, etc. are not

considered
3. rooms are rectangular, and their edges are parallel to those of the house
4. size constraints: rooms have a minimum and maximum size

5. restrictive constrainis: rooms must be inside the house, i.e. the house 13 a

limiting perimeter for their placement

6. topological constraints, i.e. placement of rooms with respect to each other:
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ECHIDNA
XOP MEDIATOR
KNOWLEDGE KB /DB
BASE UPDATE
(KB) ROUTINES

GRAPHICS
DATABASE
(DB)

GRAPHICS MODULES

USER INTERFACE

Fisure 4.2: Svstem Architecture
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a) rooms cannot be on the top of each other

b} a given type of room can be beside or not beside, close, near or far from

another specific room type

7. functional constraints: rooms may be associated with common functions such

as food, sleeping, or baby-space.
8. practicality constraints: access to open air, daylight, airflow, etc.
9. interconnection constraints: hallways or stairways - to connect other rooms
10. accessibility constraints: placement of windows, doors or closets

11. aesthetic constraints

We implemented the first seven rules for this version of FLOWER.

The knowledge base consists of the appropriate schemas. A schema is the unit
for representing objects and relations. Rooms (shown in Figure 4.3) are represented
by a schema with its variables (see design rule 2). Currently rooms are rectangular
with a specified minimum and maximum height and width for each room type. In
this implementation, we used integer domains for all variables. Rooms are described
by their lower left corner (Xpos, Ypos). (See Section 6.1.1 for a discussion on this
restriction.) We constrain the Xpos and Ypos variables to be bound. Rooms have
minimum and maximum width and height {see design rule 4) by also constraining the

domains of the corresponding variables.

Rooms are gathered in a house which acts as a bounding box (Figure 4.4) and
rooms cannot overlap each other Rules 5 and 6 a); these are basic physical relationships

and hence cannot be ignored even temporarily by the designer.

Other relationships between rooms such as beside or not beside constraints (design
rule 6 b)) may be specified by the user to be applied by the system. As an example,

the designer may want to have the kitchen beside the dining room or the kitchen
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Width

schema room

{
xcoord Xpos.

ycoord Ypos.
roomwidth Width.
roomheight Height.

roomtype Type.

% ACCESSOrS

all(Xpos, Ypos, Height, Width).

type(Type).

%econstraints
% size setling
Height constrain_x().
constrain_y().
constrain_w().
constrain_h().

Xpos, Ypos

% physical laws
house().
no_overlap().

% designer rules

beside().
close().
near().

far().
not_beside().

}
Figure 4.3: Room Schema
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house(xcoord X, housewidth W,
ycoord Y, houscheight H):-

= room Xpos >= X,

Ypos>=Y,

Xpos + Width=< X+ W,
\ Ypos + Height =< Y + H.
house
Figure 4.4: Rooms Should Be Inside the House (i.e. room at (Xpos, Ypos) with size
(Width, Height) must fit in house of size (W, H) at (X, Y)

[ Constraints | Meaning | Mustrated on |
beside d=20 Figure 4.6
close 1 <d<2Dim Figure 4.7
near 2Dim <d <4Dim Figure 4.8
far d > 4Dim Figure 4.9
not beside d>0 Figure 4.10

d: vertical or horizontal distance between rooms;
Dim: width or length of later placed room, depending on d.

Table 4.1: Table of Preference Constraints

should be far from the bedroom. Figure 4.5 shows the spatia! interpretation of design

rule 6 b).

The design rules were expressed in the knowledge base as well. E.g. when two
roonis are beside each other, they could be beside either from the left, right, above or
below.

Table 4.1 briefly describes the meaning of the topological constraints. The illus-

trating figures show an example of the corresponding code from the knowledge base.
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Figure 4.5: Preference Rules (dotted outline of a second room shows its placement
with respect to existing (already placed) first room, to meet various constraints)
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% above

beside(room Rb):-

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Rbypos =:= Ypos + Height,
Rbxpos > Xpos - Rbwidth,

Rbxpos < Xpos + Width.
%left %right
beside(room Rb):- beside(room Rb):-

Rb: all(xcoord Rbxpos, Rb: al}(xcoord Rbxpos,
ycoord Rbypos, ycoord Rbypos,
roomheight Rbheight, roomheight Rbheight,
roomwidth Rbwidth), roomwidth Rbwidth),

) ¢ — —| widih)
Rbxpos + Rbwidth =:= Xpos, roomB @ —— Rbxpos =:= Xpos + Width,
Rbypos > Ypos - Rbheight, room Rbypos > Ypos - Rbhcight,
Rbypos < Ypos + Height. Rbypos < Ypos + Height.
% below
beside(room Rb):-
Rb: alxcoord Rbxpos,

ycoord Rbypos,

roombheight Rbheight,

roomwidth Rbwidth),

Rbypos + Rbheight =:= Ypos,
Rbxpos > Xpos - Rbwidth,
Rbxpos < Xpos + Width.

Figure 4.6: Beside Constraints: “room™ should be beside existing “room B”
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roomB

order close.

%left
close(room Rb):-

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Xpos - 1 - 2*Rbwidth =< Rbxpos,

Rbxpos =< Xpos - 1 - Rbwidthh,

Rbypos >= Ypos -1 - 2*Rbheight,

Rbypos =< Ypos + Height + 1 + Rbheight.

%right
% above

% below

Figure 4.7: Close Constraints: “room” should be close to existing “room B”
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order near.

%left

%right
room
% above

near(room Rb):-

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Ypos + Height + 1 + 2*Rbheight < Rbypos,
Rbypos < Ypos + Height + 1 + 3*Rbheight,
Rbxpos > Xpos - 1 - 4*Rbwidth,

¢ Rbxpos < Xpos + Width + 1 + 3*Rbwidth.

roomB % below

Figure 4.8: Near Constraints: “room” should be near to existing “room B”
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order far.

roomB

%left

%right

% above

% below

far(room Rb):=
Rb: all(xcoord Rbxpos,

ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

Rbypos < Ypos - 1 - 5*Rbheight.

room

Figure 4.9: Far Constraints: “room” should be far from existing “room B”
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roomB

not_beside(room Rb):-

Rb: all(xcoord Rbxpos,
ycoord Rbypos,
roomheight Rbheight,
roomwidth Rbwidth),

% left

Rbxpos + Rbwidth =\= Xpos
or
(Rbxpos + Rbwidth =:= Xpos
and
(Rbypos =< Ypos - Rbheight
or
Rbypos >= Ypos + Height)),

%right
%above

Jobelow

50

Figure 4.10: Not_Beside Constraints: “room” should not be beside existing “room B”
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At this implementation hallways (see design rule 9) are treated as regular rooms,
so the designer has to place them along with the others. Also we didn’t deal with
design rules 10, 8 and 11 at this time (see chapter 6.3 for future work).

Rooms with functional constraints (design rule 7) must satisfy a beside or close
relationship. FLOWER first tries to apply a beside constraint between the rooms,
and if that fails the system tries to apply a close constraint. If both fail then the
placement of the room will fail and that will be indicated to the user. This is the onlv

way that rooms can be either in a beside or in a close relationship. Otherwise, these

relationships are exclusive.

4.2 Constraint Propagation

The expert system used in FLOWER is the Echidna model-based reasoning engine.
FLOWER’s knowledge base is implemented in the Echidna object-oriented constraint
logic programming language. Echidna provides a schema knowledge representation, a
logic programming language which supports constraints among objects and a reason
maintenance system for efficient dependency backtracking. In Echidna, objects are
represented as predicate schemata and they are accessed by unifying goals (logical
messages) with the predicates (logical methods) defined within the schema. Schema
instances can be created, sent messages, or passed as arguments. More details about

Echidna can be found in {43].

Constraints represent relationships between variables. A constraint network is
constructed during the design session, where the variables are the nodes and the con-
straints are the arcs between them. In Echidna, the internal propagation of constraints
narrows the domains of the variables involved, enabling a solution to be found more
efficiently. A constraint is activated whenever the domain of one of its arguments
is refined or bound to a particular value. This process can propagate among those

variables that share constraints on their parameters.



CHAPTER 4. SYSTEM ARCHITECTURE 52

4.3 Mediator

As described earlier, the abstract design goals (Kamada’s ASR) are expressed in
the knowledge base. However, a link had to be created through which a connection
can be established between the abstract and the visual representations. This link is
established through Echidna’s External Object Protocol (XOP). To send information
from the user interface code (called application from now on) to Echidna, queries
are issued over this link. Likewise, Echidna terms can be unified with the terms
constructed in the application. More about XOP can be found in [43] also. This
connection {or mapping between ASR and VSR) is done by a combination of number
of C++ routines and Echidna codes.

In the knowledge base a method is created to be external. Calls to this external
method are made in the same way as to the other internal methods. External methods
are the means of letting Echidna know, that it should expect methods be defined
elsewhere (not on the knowledge base). External methods are generally used to get

queries from users.

An example from FLOWER’s knowledge base is shown in Figure 4.11. Here, the
“room_maker” external method expects the size parameters of the room to be defined

by the user.

When the knowledge base is loaded and the Echidna compiler notices an external
method declaration, the compiler asks the application for a method handler for that

method. The application creates a handler and gives it to the compiler.

The method handler defines a function which dynamically creates a method in-
stance whenever its method is called from Echidna. That method instance has an
associated array of arguments which correspond to the arguments of the Echidna
goal.

If an Echidna term which is an argument to an external method is refined or re-

stored, Echidna sends a message to the associated method instance in the application.



CHAPTER 4. SYSTEM ARCHITECTURE 53

extern rm_maker(_, , , , ).

schema room

init(Type, {0..63} 1d):-
m_maker(ld, Xpos, Width, Height, Ypos).

}
Figure 4.11: External Method

In this way, other parts of the design system (external to the expert system) can make
use of results generated by the reasoning engine, working with the knowledge base.

Here, we are specifically interested in changes to the domains of design variables.

For example, consider placing a second room beside an existing room. Since rooms
have variable size, the designer does not have to put the rooms precisely beside each
other; it is enough to overlap them by this available difference between the minimum
and maximum sizes as an indication that (s)he wants those rooms to be beside each

other (shown in Figure 4.12).

When Echidna evaluates this placement, and the design goal succeeded, in this
case, it will refine the domains of the width variable of the earlier placed room.
At ihe same time, a message is sent to the associated method instance. Based on
this message, the pictorial representation can also be updated, reflecting the changes

(Figure 4.13).

If the room placement was not successful, i.e. a design goal failed and we undo
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earlier placed room

later placed room

Figure 4.12: Indicated Placement of Two Rooms Beside Each Other

earlier placed room

later placed room

Figure 4.13: Evaluated Placement of Two Rooms Beside Each Other
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MethodHandler* My Application:register_ext(char* name, int nargs)

if (strcmp{name, “rm_maker”) == 0}
retum new Rm_maker_Handler();
return NULL;

class Rm_maker_Handler: public McthodHandler

{
public:
vinual MethodInstance® make_method_instance
(Argument** args, inl nargs, MecthodInternal mi)

{

return new Rm_maker_Instance(args, nargs, mi);

Figure 4.14: Sample of Some Mediator Function

that goal, Echidna will restore the domains of the affected variables to their state

before that goal was issued.

The mediator supports communication between the reasoner and the graphics
part of FLOWER. The routines here are those responsible for the technicality of
the communrication flow. Functions supported include creating the link, loading the
knowledge base, customizing the application. creating the handlers, issuing goals,
undoing goals. disconnecting the link. etc. Figure 4.14 shows an example. Creation
of a method handler for the rimm_maker external method is shown on the top; and

creation of the method instance is shown below.

To have the full functionality of the mapping between AR and PR, another module
was created that contains the highly application dependent code. This is described
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in the next section.

4.4 Knowledge Base / Database Update Routines

Routines (written in C) to formulate and to issue the appropriate Echidna goals,
also to receive information from Echidna. These routines are more specific to the
application. Examples of such routines are getting parameter domains for a specified
room, establishing ground value for parameters of a specified room, constraining the
values of some parameter {or combination of parameters) of two rooms to be the same,

etc.

For example, when the designer places a room by the input device, an AR is
created. We need the mapping from AR to ASR, or in other words, we have to
issue the corresponding design goals. Formulation of these goals is done here, in
the knowledge base update module. Then, the system issues these goals to Echidna
through the mediator module. After Echidna evaluated the design goal, the results are
sent back through the mediator code again. Then the interface update routines take
this information, forming a mapping between ASR and VSR. The interface (graphics)
module will be notified by the interface update module about the changes, and it will
present the pictorial representation (or mapping is done from VSR to PR). Figure 4.15

shows a knowledge base update routine.

4.5 Graphics Module

Following our earlier thread of describing our work in Kamada‘s terms, the graphics
module is responsible for generating the pictorial representation (PR) of the design
objects. It also supports the user interface. The user interface is described in the next
chapter. Visualization functions are also supported here. The visualization however,
is not part of the general mapping; it is calculated here entirely. The reasons behind
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int kb_set_all(int rm_id, float xpos, float ypos, float height, float width)

{
char goal(80];
int goal_num;

sprintf(goal, "R%d:all(%d,%d,%d.%d).”, rm_id,
(int)xpos, (int)ypos, (int)height, (int) width);
return(issue_goal (goal, &goal_num);
}

Figure 4.15: An Example of Knowledge Base Update Routines

this decision are described in Section 6.1.3.

FORMS ([34]) was used to provide the layout of the user interface and GL (SGI’s
Graphics Library) was used to manipulate the graphical objects and show the results

of the visualization.

Rooms are represented in the same way in the graphics database, as they are in
the knowledge base, with their lower left corner and their width and height. Each
room type (kitchen, bathroom, etc.) has a minimum and maximum width and height.

Rooms are represented visually as shown in Figure 4.16. The minimum size is
shown filled and the maximum size is shown outlined. When Echidna notifies the

graphics module that the domain of a variable has changed, the representation is

changed accordingly.

Visualization support is also provided by the grzphics module. As we recall,
FLOWER shows the following visual indications:

1. suggestions for next design steps
2. explanation of incorrect steps

3. suggestion for corrections.
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A
ML
ml
Xy mw: minimumwidth,
S P MW :maximumwidth,
. omw i ml: minimumlength,
- )
: MW ML:maximumlength
: '

Figure 4.16: Pictorial Representation of a Room

These routines will be described next.

Suggestion of design steps. The suggestion will be made by showing that area
where the lower left corner (room reference point) can go. The area is calculated

based on the sizes of the rooms and the constraints involved.
Figure 4.17 shows how the shaded area is calculated for a no_overlap constraint.

The suggested area for the placement of a room will consider all constraints in-
volving that room. First, subareas are calculated based on each constraint, then

intersection of the subareas will result in the final area presented to the user.

For example, suppose the user has already placed three rooms (R1, R2 and R3) and
now wants to place a fourth room (R4) beside both R1 and R2 without overlapping
any rooms. Figure 4.18 shows this situation. First, the subareas for each beside
constraint will be calculated (Figure 4.19), and intersected (Figure 4.20). Next, the
areas for the no_overlap constraints will be calculated (Figure 4.21). Finally, the areas
calculated based on the no_overlap constraints will be subtracted from the previously
calculated intersection. Figure 4.22 shows the remaining final area. Only this final
result is presented to the user.

Explanation of incorrect steps. If the user ignored FLOWER’s suggested



CHAPTER 4. SYSTEM ARCHITECTURE

N room to be placed
(newroom)

\______ carlier placed room

(oldroom)

arca where the new room
cannot go

draw_rectangle(x,.y,width,height);

draw_rectangie(oldroomx - newroomx,
oldroomy - newroomy,
newroomminwidth,
oldroomminheight + newroomminheight.
NO_OVERLAPCOLOR);

Figure 4.17: Visualization of Valid Placement Area for New Room
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R1

R4

R2

R1, R2, R3 are existing rooms,
R4 is 10 be placed beside both R1 and R2,
without overlapping any existing room

Figure 4.18: Details of Calculation for Suggested Placement - part 1
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Figure 4.19: Details of Calculation for Suggested Placement - part 2
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o Cw
e AN

__: shows the intersection

;! of "beside” subareas:

lower left comer of R4 must go here
for it to be beside both R] and R2

Figure 4.20: Details of Calculation for Suggested Placement - part 3
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R4

I_ i shows the intersection
Lo of the "beside” subareas

shows the subareas calculated
for each room based on each

"no_overlap” constraint

here, the area shows where the

lower-left comer of R4 cannot go

Figure 4.21: Details of Calculation for Suggested Placement - part 4



CHAPTER 4. SYSTEM ARCHITECTURE

R4

. shows the final area
calculated based on
all constraints

Figure 4.22: Details of Calculation for Suggested Placement - part 5
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placement, a visual explanation of this mistake will be presented. Through the map-
ping from ASR to VSR, the database update module will notify the graphics module
about the failure of a design goal and the visual representation (PR) will be as de-

scribed earlier in Section 3.4.

Suggestion for correction. On encountering a problem step, the graphics mod-
ule will show, based on the failed constraints, whether the rooms should be further

away or closer to each other to satisfy the failed relationship, as described earlier in

Section 3.4
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User Interface

5.1 The Main Interface

The user can interact with FLOWER via the following interfaces. The main interface
(Figure 5.1) is responsible for almost all actions. The main area of it is the drawing
board of the designer. Here (s)he can specify the perimeter of the house and place

the rooms.

There are several buttons and menus are placed around the drawing area.

e Floor Plan

Used to specify the perimeter of the house. The user must do this at the

beginning of the design session, before any room placements.

e Room Buttons

Room buttons are located at the right side of the user interface and show room

types and colours. The room buttons are grouped together. On selecting a room
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Figure 5.1: FLOWER - Main User Interface

button, all other room buttons are released, and a new room of the selected type
is displayed, ready to be dragged into place. It will have the same colour as the
room button. The user can drag the room around the drawing board and place

it. Upon placement, all appropriate constraints will automatically be applied.

e Add Rooms

Rooms can also be added by specifying all their parameters. The user can pick
a point and then rubberband a box representing a new room. This room has
not only its lower left corner constrained but its upper right corner as well.
However, it will not have a preset minimum or maximum size: all parameters
are completely the user’s choice. Since there isn’t anything known ahead about
this room, there will not be any visualization available for it. However, when
this room is placed. the no overlap and bounding box constraints still have to

held.

e CONSTRAINTS
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This button invokes the Constraint Specification interface (described in the next

section).

e Help

Help invokes the Help interface (described in section 5.3).

e Colours

A table is shown to the user as a reminder/explanation of the colour usage (see

in Figure 5.2).

s REMOVE

The user can remove those rooms in a failed relationship.

5.2 Constraint Specification

The user can state his;\ =r preferences by the means of the Constraint Specification

interface (shown in Figure 5.3).

The user can specify constraints either using menus or (s)he can input her/his own
constraint. A box is shown with all added constraints. This box can also be cleared

entirely or individual constraints can be deleted from it.

5.3 Help Screen

The user is provided with help about the usage of the system. A box is shown with

the available help when activating the Help interface (shown in Figure 5.4).
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Figure 5.2: FLOWER - Colours
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Figure 5.3: FLOWER - Iuterface {or Constraint Specification
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Welcome to FLOWERI

A floor plan has to be specified first.

Push on the “Floor Plan* button. its
color will change to green, showing
that the system is ready for selection.

Now, place the mouse where the first

comer of the fioor plan should be

and press the LEFT mouse button. ¥hile
holding the LEFT mouse button down,
drag the mouse to the other corner and
release it.

Rooms can be added only after the floor
plan was drawwn. Select the button
comesponding the desired room type.
Visual aid will appear for valid

Figure 5.4: FLOWER - Help Interface
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Discussion and Summary

6.1 Discussion on Implementation

6.1.1 Rationale Behind Fixing Lower Left Corner

In our implementation a room is positioned based on its lower left corner. The fol-

lowing describes the reasons for this.

An earlier approach we tried was to represent a room just with its edges, 1.e.
Rght, Left, Bottom, Top. Then we would include constraints describing the physical
realization of a room, such as the left edge is to the left of the right edge and that the

bottom edge is below the top edge, etc.

We then encountered a probiem that resulted in the requirement to have a con-
straint which pins down the location of a room. The reasons for this arise from the
constraint solving techniques used in CLP languages. This is best illustrated through

the use of an example:

If the only constraints on Right are:
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o Right — Left <10
o Right — Left > 5

and Echidna has calculated that domain(Left) = {1,2,3,4,5} then conceptually we
expect the following:

o if Left =1 then domain(Right) = {6,7,8,9,10,11}

o if Left =2 then domain(Right) = {7,8,9,10,11,12}

o if Left = 3 then domain(Right) = {8,9,10,11,12.13)
o if Left = 4 then domain(Right) = {9,10,11,12,13, 14}

o if Left = 5 then domain(Right) = {10,11,12,13, 14,15}
However, Echidra will return:

e domain(Left) = {1.2.3,4,5}

o domain(Right) = {6.7,8,9,10,11,12,13,14,15}
This leads to having a room in which

o the distance from the minimum left edge to the maximum right edge is greater

than the maximum width allowable for the room, and

e the distance from the maximum left edge to the minimum right edge is less than

the minimum width allowable for the room.

It is necessary to “pick™ a value for one of the edges, say Left = 5 for Echidna
to return domain(Right) = 10,11,12,13,14,15. Unfortunately, this requires that we
lose a degree of freedom.
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A similar argument has us fix the Bottom edge.

Since either way we would lose degrees of freedom, we decided to specify those
positions directly. This way we gained in execution time while losing a degree of

freedom.

6.1.2 Alternative Methods of Removing Freedom

We have shown that we are required to give up two location degrees of freedom

in order to maintain width and height consistency in our database. Our choice of

fixing the bottom left corner was arbitrary and made in the interests of keeping the
®

implementation simple.

An alternative implementation would require that the designer be required to spec-
ify constraints which eliminate a degree of freedom in both the vertical and horizontal
directions whenever a room is added. This could be done by providing the designer

with a choice of how to specify the location constraint — either

1. by explicitly placing a room somewhere within the floor plan, or

2. by specifying that an edge of this room is bound to an edge of another room

The explicit specification in method 1 is fairly simple to obtain. It could be

implemented in one of the following ways:

e By having the designer select which corner of the room to fix and then have him

move the room around the screen until in the desired position.

e Have the designer select an edge to fix in the horizontal direction, then allow
him to move that edge until it is in the desired position. Repeat for the vertical

direction.
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Figure 6.1: Inserting an Adjacent Room Above an Existing Room

Figure 6.2: Inserting an Adjacent Room Right of an Existing Room

The desired way of implementing method 2 would be to have the designer place the
maximum room size at a given location and to have the system automatically insert
edge bindings between the new room and any other rooms it happens to be “beside”.
The system could ensure that both a horizontal and vertical degree of freedom has

been removed before allowing the addition.

If — in order to propagate the new constraints — Echidna changes the domain
of an edge variable, a message will be sent to the graphics which names the object
whose edge domain has been altered. The application then knows that the new room
must be adjacent to the old room and adds a beside constraint (Figures 6.1 and 6.2).

However, since our implementation fixes the lower left corner of the room, the

domains of the Width and Height variables contain the only degrees of freedom that
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|

Figure 6.3: Inserting an Adjacent Room Below an Existing Room

e

Figure 6.4: Inserting an Adjacent Room Left of an Existing Room

Echidna can use to propagate the constraints of the new room. This means that
inserting a room below or to the left of an existing room will change the domains
of the top and right edges of the new room - meaning that Echidna will nof name
the object to which our new room is adjacent. Thus, the beside constraints will not
be imposed (Figures 6.3 and 6.4). The no-overlap constraints are, however, adequate
to reduce the top and right edges of the new room so that the maximum size “fits”

within the allowable space.

It would be nice to have Echidna inform the application as to which object caused
the domain change of the new room. However, this would involve meta-reasoning and
this is not part of any CLP language. In the absence of this information, a possible way
to alleviate the problem would be to maintain a redundant database (outside Echidna)
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of all of the objects and provide search routines (within the graphics module) which

could determine the identity of the needed object.

6.1.3 Division of Labour

A fundament>~] choice was needed between creating a system where all intelligence is
encoded in the knowledge base or a system where the designing job is divided between
the expert system and another (or more) high-level module. Obviously, other modules
were created e.g. for visualization purposes. We decided on encoding only the basic
schemas and their constraints in the knowledge base. As a result, evaluation of design
goals are done by the reasoning engine but the routines that suggest the available

steps by visualizing domains of design variables are a part of the graphics module.

The decision was based on the following considerations:

e One of the purposes of this research was to demonstrate that constraint and
domain visualization can help a designer in his/her work. It seemed more natural
to calculate those visual aids in the graphics side that dealt more with pure

geometry than logical relations.

e We think that the time to calculate that area is important from the user’s point
of view. We also are aware of the fact that the reason behind being fast in
geometrical calculation is due to the very simp’e geometrical shapes (all rooias
are rectangular in this implementation). If rooms have more complex shapes,

the graphics side visualization might not necessarily be faster.

Alternatively, calculating areas for visualization purposes could have been done
within Echidna, even with the existing simple knowledge base. We investigated the

following methods:

1. obtaining all possible solutions and extracting the valid placement area from

there
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This could be implemented fairly easily: when the user indicates that (s)he
wants to place a new room, a goal can go to Echidna: get all solutions for the
placement of that room. After getting all solutions, Echidna can return a list
of those rooms and then the application can extract the needed coordinates for
the area. Then the “get all solutions” goal can be undone and the user can
proceed with the placement. However, we note that CLP-based systems were
never intended to calculate all points in a 2D solution space, though in principle

it is possible to do so.

However, this will take a considerable amount of time, especially at the begin-
ning of the design session, when almost the whole area of the house is available
for room placement. On the other hand, the calculation of valid placement area
on the graphics side is very fast as there we only compi:te bounds of the needed

area, solving a simpler problem than that expected from the reasoning engine.

We expect that with a fairly constrained design space, the time for Echidna to
compute all solutions would be considerably shorter, and the graphics computing

time would be increasing . though it would likely still be faster.

2. trying to solve the constraints without actually getting the variables ground,

and expectirg that the domains will give the acceptable areas.

Unfortunately, the domains do not give acceptable areas. We run into exactly
the same problem as described earlier in 6.1.1. Suppose, the user wants to place
a room without overlapping a previously placed room. Now, the user expects
the system to show the available area for the lower-left corner of the new room
before actually placing the room. In other words, the lower-left corner of the
room is not yet constrained. If we were to issue the no_overlap constraint and
check how the domains of X and Y change, Echidna returns the domains of both
variables unrefined. This will result in an area much bigger than is actually
expected if we were to draw this. If one of these variables is constrained, then

and only then will Echidna return the “expected” results.
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3. by using real intervals and using notin ' (which currently works only for con-
stants, but once implemented could give a perfect solution if we only had two
rooms) For simple rectangular rooms the graphics side visualization will still be

faster.

Another issue to investigate was the use of real interval variables, instead of

integers. Qur original no_overlap constraint was formulated as follows:

(Xpos > Rbzpos + Rbwidth)or (6.1)
(Xpos + Width < Rbzpos)or (6.2)
(Ypos > Rbypos + Rbheight)or (6.3)
(Ypos + Height < Rbypos). (6.4)

Those variabies that belong to the previously placed room start with Rb (e.g.
Rbxpos etc), and the others (e.g. Xpos etc.) belong to the new room. Un-
fortunately, the or operator is not yet implemented in Echidna for constraints
containing variables which have real interval domains. Thus, the constraint had
to be reformulated. An obviously easy implementation of this constraint could

be

notin( Xpos — Width, Rbzpos, Rbxpos+ Rbwidth), (6.5)
notin(Y pos — Height, Rbypos, Rbypos + Rbheight). (6.6)

However notin currently works only for intervals defined by constants. Once
this is implemented, it will give a perfect, reasonably fast solution, if we only
have no more than two rooms altogether. If we had more than two rooms,

Echidna will still not be able to simply return a description of a complex shape

'notin(El, R1, R2) means that E1 is not any value in [R1,R2]
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(2 big rectangle with many little rectangular holes) describing all no_overlap
coustraints. We would get severely split intervals for both X and Y variables,

and the graphics module will have to compute that complex shape.

6.2 Evaluation

6.2.1 Complexity

Use of different colours for different constraints could be a problem if the total com-
plexity of the system is high. The complexity of the system can be described by the

number of rooms and the number of relationships between them.

Assigning colours to rooms is not a problem since in the current system the number
of room types is very limited. The number of constraints could be a problem if we
were to extend our system to be a full-scale CA. system. At this point however, the
user can only specify five types of spatial constraints (beside, not beside, near, close,
far). Right now we are using different shades of grey to represent constraints. Adding
more and different type of relationships will result in a problem. It is unlikely that we
will run out of colours, but it is very likely that the user will not be able to distinguisn

between them.

Unfortunately, this is a serious problem, as we cannot rely on hoping that the user
will not want to add new constraints. One solution could be that the user is presented
with a subset of constraints at any given time. This is a restriction but it avoids the

confusion of many colours.

Another way of dealing with this would be to support some other visual repre-
sentation. For example, a flag (something attached to an object) could show some of
the constraints. Again, this could also represent a problem if we have too many con-

straints. Figure 6.2.1 shows a flag indicating two rooms being in a beside constraint.
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beside

Figure 6.5: Using a Flag for Visualization

We could also use a combination of colours and flags. We could show the available
areas of placement in the constraint’s colour, but indicate a violated constraint with

a flag.

6.2.2 Rooms with Several Relationships

Naturally, when designing a floor layout, rooms are expected to appear in more than
one relationship. As long as the designer is placing them properly there will be no
problem. However, (again naturally), the user cannot be expected to do so. Our

system will then give a visual representation of the problem.

When the newly added rcom is part of several constraints, the room will be con-
nected by lines representing all failed constraints to all other rooms in the failed

relationships.

I many rooms are involved, the design space gets slightly(?) cluttered with the
lines. However, the designer can easily solve this problem by removing the offending

rooInI.

We have to realize though that the aim of the designer is to properly pldce the

rooms after experimenting with some of the possible problems. If the designer is just
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arbitrarily placing the rooms, thus causing a problem for himself, well, even the best

systems cannot deal with him.

6.2.3 Suggestion for Failure Correction

At this implementation FLOWER provides some suggestions for how to proceed if
constraints have failed. When it “explains” the failure by drawing the failed con-
straint lines between the offending rooms, arrows are displayed to show whether the
offending room has to be moved closer or further. This is shown however, for each
lines separately; thus if the room was in many failed relations it is very difficult to see

the correct direction.
>

A better solution would be to have FLOWER move the offending room to a place
where the relations are satisfied if that exists. This corrective action does not have
to be accepted by the user, (s)he could overrule it by removing the room from the
workspace. The difficulty of this method lies in the fact that there will be many ways
to correctly place the room, and the system would have to try to match the placement
to the one that the user specified earlier (but failed). Matching could for example be
based on the closest distance from the user picked placement point to an available

point.

6.3 Future Work

As we stated in earlier chapters, FLOWER is a first attempt to generate an intel-
ligent, mixed-initiative design system with domain and constraint visualization. It
can be improved it various ways starting from little improvements (such as routines
that facilitate file saving, loading, restarting). These additions will not improve the

functionality of the system but will make it more user-friendly.

Another visual improvement is to change the pictorial representation of the room
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to avoid the current asyvmmetry. It can be done for example, by having the room
reference point be the middle of the room. In this way, we still remove degrees of

freedom but at least we obtain symmetry.

6.3.1 Functional Improvements

e implementing new constraints

Only a limited number of constraints were implemented m this first version of
FLOWER. We implemented dimensional, restrictive, topological and functional

constraints. However, many other constraint types would be useful additions:

Accessibility constraints. When the designer finished placing rooms, the
program could automatically insert doors between them. The doors could be

accepted or rejected or moved as the designer wishes.

Windows could be also inserted in outside walls, and after completing the win-

dow design, a 3D representation of the house could be presented to the user.
Closets should be inside other rooms, with openings to them.

Practicality constraints. Window placement could be aflected by constraints,
such as access to sunshine. Size and number of windows should also be influenced

by these constraints.

Interconnection constraints. In the current version we treated hallways just
as regular ~~oms. However, hallways have different properties: e.g. they must

connect rooms together.

Stairways shouid connect different floors together and stair location should be

the same place at both levels.

Aesthetic constraints. Criteria still need to be identified, along with methods
for implementing these constraints. However, this is an arca where the user
should rely on her own intuition more than in any other case. If pretly can be

coded, it won’t be pretiy any more..
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® mouving rooms

Another extension is to allow the user to “change his/her mind” and move an
already inserted room. In this way he/she would get complete design freedom.
A relaxed version of this is to let the user move the room that was placed last,

as long as (s}he did not indicate further placement.

® non-rectengular rooms

Rooms only are rectangular in the current version. It will be another major

extension path to allow the placing of arbitrary shaped (but still Manhattan)
polygons.

The graphics system would need to be extended to allow the designer to specify
the shape of each room. One problem is that if the user can draw any shape,
then the visualization will have to wait, until the user finished the drawing.
Formulating the constraints in the knowledge base is another issue. Formulating
close/near/far constraints would be somewhat easier as the distance between
rooms can be measured between some defined “midpoints” of the polygons.

However, for the beside constraints it will be more difficult.

® more inttialive from the system

We can free the designer from some repetitive tasks by allowing partial automa-
tion at some stages of the design. E.g. when the rooms are placed already,
the system could automatically place the passages. Clearly the user still has to

accept the placement.

Another initiative of the system can be placement of a roo based on the
specification of the designer. E.g. the designer can indicate the placement of
a room and associated constraints. As a response, the system can still show
the available area for the placement of that room while presenting a default
placement to the user. Again, the designer can accept the placement or change

the location of the room with the advice of the system.
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6.4 Summary and Conclusion

The objective of this research was to explore interactive intelligent design with visual
aids to the designer. We developed a system that showed that constraints are a
natural way to express design goals. Maintaining those constraints is managed by the
systern and is not the responsibility of the user. The user is not eliminated from the
design process but rather is incorporated. Because an explanation facility should be
an integral part of an intelligent design system to meet users’ needs for feedback on
their actions, FLOWER provides such explanation via visualization of design variable
domains and constraints on them. The system we developed also works with the
user in a mixed-initiative style. In this way, FLOWER supports inferactive intelligent
design by providing visual suggestions or guidelines on how to proceed with the design,

checking design decisions, suggesting corrective actions and r-arking problem steps.

As a result of implementing this system we have addressed 2 major limitation of
current CAD technology: we have shown that it is possible to actively help a designer
with the design process, without automating it. We have shown that visualization of
variable domains and design constraints can provide this active help. Finally, we have
shown that the FLOWER system can provide intelligent help for designing simple

floor layouts.
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FLOWER - User’s Manual

Defining the Floor Plan

In order to startup the design. the user must specify the perimeter of the floor plan. If
he/she fails to do so, none of the functions of the program can be activated. The floor
plan defines the boundaries of the building (i.e. “outside concrete walls”). Constraints

are automatically created to ensure that no part of any room can be outside of this

region.

To specify the boundaries of the house, the user must select the Floor Plan button.
The red light on this button will change to green by the selection. The user can the
move the mouse into the Workspace area and specify one corner of the floor plan (this
is the only case when the corner is not restricted to be the upper-left corner), by
holding the left mouse button. She/he can then move the mouse while still holding
the button and rubberband a rectangular area. Releasing the button will specify the

other corner of the floor plan.
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Specifying Constraints

At the beginning of the design session or any time later during the actual design the
designer can specify constraints related to the location/placement of the rooms. To
add the constraints the designer has to choose the Constraints buttons. When this
button is pushed a little window appears on front of the designer. There are three
small rectangles in the window. In the first and the last rectangles names of rooms
are shown (i.e. kitchen. living room, etc.) and in the middle rectangle the types of
available constraints are shown. The constraints implemented at this moment are
spatial by nature: beside, close, near, far. The designer does not have to type in
his/her choices - just has to scroll through the available possibilities by clicking the
right mouse button. When (s}he made a final choice in all three windows (s)he can let
the system know this by clicking on the Back to the System button. These constraints
are taken into consideration by the system when the designer actually tries to nlace

those rooms part of that constraint.

Adding Rooms

After the floor plan has been defined, the room buttons became activated. There are

eight types of room. The types correspond te eight buttons of the user interface.

Seven of them are located on the left side of the screen grouped together, showing
the similarities of the rooms. The difference between these rooms lies only in their
size. To visually distinguish between them, each button is shown in different colours.
The room icons hold the same colour information as their buttons. Otherwise each
room has a defined minimum and maximum size and a reference point, the lower left
corner. The reference point of a room is the place where the room gets inserted into

the floor plan.
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The following rooms are implemented: hallway, master bedroom, bedroom, liv-
ing room, kitchen, dining room, bathroom. The mirimum size of these rooms are
sornewhat corresponding to room sizes in reality, 1.e. the master bedroom is bigger
than the bedroom and the living room is bigger than the dining room. Since the

sizes are given as range, the designer still has some freedom to make or break these

conventions.

To add a room, the designer selects the button representing the desired room type.
As soon as the room type is selected a shading of the valid positions for placement of

the reference point of that room.

After the room type is selected and the shadow appears, the designer doesn’t have

to insert that room. He/she can pick other type of room and look at the available

area for that one.

When the designer presses the left mouse button down the default room appears.
Moving the mouse with the left button held down will move this default room around
the design area. When the mouse button is released, the default room will be tem-
porarily drawn with the lower left corner at the mouse location. The room is then

added to the knowledge base.

The remaining one type of rooms can be added by a different menu. By choosing
the By Size menupoint from the Add Rooms menu, the designer can add a free sized
room to the design. He/she can then move the mouse into the work space area and
specify the upper-left corner of the floor plan by holding the left mouse button. She/he
can then move the mouse while still holding the button and rubberband the new room
area. Releasing the button will specify the other corner of it. There is no available
placing information for this type of room, since its size is completely free, so it could

fit anywhere.

The free sized rooms can be used to fill the floor plan up completely. When the
user inserts only the previous type of rooms, there could be “empty” spaces in the

floor area. By inserting a free sized room to those places, the designer can fill up the
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gaps. (These rooms can be considered as closet spaces or extra hallways.)

The addition of a room causes the following constraints to be automatically in-

serted into the Echidna knowledge base:

e The room must be contained within the floor plan.

¢ The room must have a width/height smaller than the minimum and larger than
the maximum for that room type, when this range is specified, i.e. it is not a

free sized room.

e The bottom left corner of the room is fixed to be the point which the designer

selected
e The new room must not overlap an existing roorm.

e Other constraints that the designer specified before regarding this room.

In the event that the new room overlaps an existing room, the addition of this
room is rejected. All the goals are undone and the room must be removed from the

floor plan.

However, when the designer specified constraints are not met, the system gives the
following visual clues: the appearance of the original room changes, it will be shown
outlined and an explanation is provided about the failure. Also a suggestion is given

about possible corrective steps.

If the addition of these constraints to the knowledge base is consistent, then the
new room will be redrawn to reflect any changed edge domains. The visual aid for
insertion is cleared. If the designer wishes to add the same type of room again, he/she
could do so, without needing to push the same type of button again. To activate the
visual aid again he/she has to move the mouse in the work space area. The new
shadow will appear showing again the actual available places. Obviously the designer

can choose from the other rooms, if he/she wishes to do so.
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As it was previously mentioned, each room are shown in different colour. By
clicking on a room button, this colour will be turned of and the pushed button is shown
in white. In this way, the designer can see which room was selected. Furthermore,
the appearing shaded area will also correspond to the same colour. To still clearly
show the room icon, the shaded area will appear with using the same hue, but in low

saturated. So e.g. the colour of the chosen room is red, then the shaded area will be

pinkish.

Getting Help

To make the program even more user friendly, help facilities are added to it. The
designer can ask for help at any time of the session by choosing from the Help menu.
A little window will appear and brief information about the usage can be obtained.
Based on the selection a scrollable text will be shown about the various aspects of the
program. Help files are available about how to use the program in general; how to
draw a floor plan; how to add rooms, what the difference is between the room buttons
and the room menu, i.e. between the constrained sized and free sized rooms; what
the shaded area means; what happens when a constraint fails and how to exit the
program. A button (Back to FLGWER) on the help screen hes to be pushed in order

to get back to the program again, and the design could be continued.

Leaving the Program

When the design session is finished, the user can exit by hitting the Erit button. A
built-in safety feature exists against accidental exiting. The user is asked whether
really meant to quit or it was just an accidental mouse movement. If he/she didn’t
mean to leave, he/she can return to his/her design and just simply continue the design

session.
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