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Abstract 

Testing the hypothesis that a sample of data arises from a specified distribution, called 

goodness-of-fit, is an important problem in statistics. To date most of the research has 

focussed on continuous distributions. Tests based on the empirical distribution function, 

and in particular the Cramfir-von Mises statistics, have been shown to be powerful tests of 

fit for such distributions. 

Discrete distributions are important to many areas of research, and often arise with 

medical data. In this thesis, the Cram&-von Mises statistics are developed for the Binomial 

and Poisson distributions. The asymptotic distributions of the test statistics are derived, 

and the distributions for finite samples are obtained by Monte Carlo methods. They are 

shown to  converge rapidly to  their asymptotic distributions. Power studies are given to 

compare the new tests t o  other tests which have been proposed for these distributions. 

Another important research area is testing goodness-of-fit for regression models. Here the 

hypothesis is that the data are from a specified distribution, but with mean value dependent 

on a set of covariates. The regression model for normally distributed observations has been 

extensively studied. In this thesis? several analogues to the Cram&-von Mises statistics are 

derived for testing goodness-of-fit for discrete regression models. Asymptotic theory is given 

and the properties of the test statistics are examined. 
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Chapter 1 

Introduction 

In order to model a phenomenon, a researcher will often want to  determine if a set of dzta 

follows a specific probability distribution. This is done by utilizing a procedure to compare 

the sample data to  the hypothesized distribution. The study of the procedures to perform 

this comparison is known as goodness-of-fit. 

The usual situation is to obtain a sample, yl , yz, . . . , y, , of independent and identically 

distributed observations from a distribution with cumulative distribution function, F ( y ) .  

'iJsually, the distribution function contains unknown parameters. Another situation arises 

when each sample value, y;, comes from a distribution, F(yi7 B * ) ,  with parameter 8, (or 

vector of parameters 8;) which is different for each yi. The parameters, usually unknown, 

are related to the observations by an underlying model. 

Goodness-of-fit techniques are generally used for one of two reasons. The first reason 

is to  justify the application of specific estimation or hypothesis testing procedures. This 

rationale has become less important in recent years with the development of robust statistical 

procedures. The other reason, which remains extremely important, is for prediction of future 

observations. Although the parameter values may be robustly estimated, information about 

the extreme tail percentiles for environmental assessment or confidence intervals for medical 

prediction requires knowledge of the correct probability distribution. 

A powerful set of goodness-of-fit procedures, at least for continuous distributions, is 

based on the empirical distribution function (EDF). The EDF, F,(y) is defined as: 

the number of observed values < y 
Fn(d = n 

The fit is judged by the degree of closeness between the EDF and the cumulative distribution 



function. F ( y ) .  Tests of this type are referred to as EDF tests of fit. 

The importance of the EDF to statistics is through the Clivenko-Carltelli Theorcr~~ (see 

e.g. Shorack and Wellner. 1986) which states that 

almost surely as n - m. The first EDF statistic was proposed by Kolmogorov ( 1933). i~td 

is defined by 

= s u p  I F n ( y ) -  F ( Y )  I .  
Y 

Since then, many other similar statistics have been proposed, for example, by Srnirnov, 

(1939)  and Kuiper (1960) .  Another family of EDF statistics for continuous distributions 

are the Cram&-von Mises statistics first proposed by Cram& f 1928). These statistics have 

been found to  be more powerful than test statistics based on the supremum, especidly atr 

detecting deviations in the tail of the distribution. (see e.g. Stephens, 1986). The general 

form of the Cram&-von Mises statistics is 

where + ( y )  is a weight function. When the weight function is the identity, the statistic is 

the Cram&-von Mises statistic, W2; when the +(y)  = { F ( y ) [ l  - F ( y ) ] ) - ' ,  the statistic is 

the Anderson-Darling statistic, A2. 

The classicd statistic for examining goodness-of-fit for discrete distributions is the y" 

test proposed by Pearson (1900). However, with continuous distributions and infinite valued 

discrete distributions the statistic requires grouping of the data which causes a loss of 

information and thus a loss of power. Even for finite valued discrete distributions, rnorc 

powerful tests may exist. Choulakian, Lockhart and Stephens (1994) have discussed Cram&- 

von Mises statistics for discrete distributions, and have set forth the general definitions and 

asymptotic theory. 

In this thesis, Cram&-von Mises statistics are adapted to give tests for the Poisson and 

the binomial distributions. -Also, the asymptotic and finite sample properties of these tcsts 

are examined. Finally, the Cram&-von Mises tests of fit are developed for the importarit 

case of independent but not identically distributed discrete variables. Throughout this t,kc?sis 

such variables will be referred to as i.n.i.d. 



Chapter 2 

Poisson Distribution 

2.1 Introduction 

In this chapter, the CramCr-von Mises statistics are developed as tests for the Poisson 

distribution. In section 2.2, the definitions of the Cram&-von Mises statistics, w2, UZ and 

A ~ ,  are given, and the basic theory is presented in section 2.3. In section 2.4, the percentage 

points t o  make tests for the Poisson distribution are given for the cases where the mean, p,  

is known and also for the case where p is estimated by Z. In section 2.5 power studies are 

presented. Comparisons are made with the well known dispersion test which is found to be 

powerful, as expected, against distributions with larger variance. In many other cases, A2 

is found to  have good power and is recommended for use as an omnibus test for the Poisson 

distribution. 

2.2 Definitions 

2.2.1 Known Mean 

Let p; be the Poisson probability of observing a count j, defined by 

where the mean, p, is known. Suppose iV independent observations are given; let oj  be the 

observed number of outcomes j ,  and let N p j  = ej be the expected number in cell j. Let 

S, = ~ : - , o ,  - and Tj  = '&e;. Then Sj /$  and H j  = Tj/N give, respectively, the cumulative 
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obsercd hisiogmm and the cunzuialire erpected histogram of the data. corresponding to ttir 

empirical distribution function Fav(x) and the cumulative distribution function, F ( x ) ,  in the 

continuous case. Suppose Z j  = S, - T,. J = 1 .2 . .  . .. The Cram&-von Xlises statistics 1,1-', 

C" and A2 for the Poisson distribution (and any other discrete distribution with infi~litc 

support) are then defined by 

where 2 = CgaZjpj. 
It  is convenient to put these expressions into matrix notation. Note that in the following 

discussion, all vectors and matrices are infinite dimensional. Let a prime, for example Z', 
denote the transpose of a vector or matrix. Let Z be the vector with j th element Z j  , I be the 

identity matrix, and p' be the vector (pl,pn,.  . .). Suppose D is the diagonal matrix whose 

j - th  diagonal entry is pj,  and let G be the diagond matrix whose j - th  diagonal element is 

Hj(l - H j ) .  Then 

The  Sj and Tj  may be defined in terms of the oj  and e, .  Arrange these quantities into 

column vectors S, T, o, e (so that ,  for example, the j - t h  component of S is S,). Ttml 

Z = S - T = Ad where d = o - e and A is the partial-sum matrix 

K In matrix notation, the f earson X2 statistic, defined by xi=, (o; - c;j2/e; is 
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Since the Poisson distribution has infinite support, the distribution must be divided into K 

cells to calculate the Pearson X2 statistic. 

2.2.2 Modified Cram&-von Mises Statistics 

The above definitions of the Crambr-von Mises statistics W2, U2 and A2 are chosen to be 

analogous to the corresponding statistics for testing for continuous distributions. However, 

various modifications are possible; for example, greater weight may be given to certain parts 

of the tested distribution (see, for example, de Wet and Venter, 1973). If the pj are omitted 

(or equivalently the classical Cram&-von Mises statistics are weighted by the inverse of p j )  

in definitions (2.1) - (2.3), greater weight will be given to deviations in the tails, and the new 

statistics, now called W i  and A:, may give better power against longer-tailed alternative 

distributions. Then 

In matrix form the statistics can be written 

where G is the diagonal matrix whose j-th diagonal element is H j ( l  - Elj). 

2.2.3 Estimated Mean 

To test for the Poisson distribution with unknown mean, p, estimate p by maximum likeli- 

hood, that is, ji = I. The Cram&-von Mises statistics will again be calculated from (2.1) - 

(2.3) and (2.5) - (2 .6 ) ,  but using zj,  @j and fij. For example, 

and p is the vector of pj values. 
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2.3 Distribution Theory 

2.3.1 Known mean 

For any finite valued discrete distribution, if the null hypothesis is true. the vect,or o Ilas 

a multinomial distribution with parameter p; the mean vector and covariance m;ktris arc 

N p  and N(D - pp') respectively. Thus, under the null hypothesis, d l 0  converges in 

distribution to  a multivariate normal random variable with mean zero and covariance matrix, 

Eo = D - pp', as N -- m, by application of the central limit theorem. Furthermore, 

the random variable z/O = A d / a  converges in distribution to a random variable 

with an asymptotic multivariate normal distribution with mean zero and covariance matrix, 

E = AE~A'  with i, j t h  element a;j = min(Hi, H 3 )  - H;H3. 

If a random variable, X, has an asymptotic multivariate normal distribution with mean 

zero and covariance matrix E, and Y = XQX for positive definite symmetric matrix Q ,  

then Y can be written 

Y = g?i1x;z,2, (2.7)  

where 2; are independent standard normal random variables and Xi are the eigenvalues of the 

matrix, Q ' /~cQ*/~.  All the Cramkr-von Mises statistics are of the general form Z I M Z / N ,  

where M is positive definite and symmetric. Let X = M1I2z / f i .  For an infinite v a l ~ d  

discrete distribution, a Cram&-von Mises statistic S has an asymptotic distribution which is 

a sum of weighted X2 random variables with weights equal to  the eigenvdues of the matrix, 

Ex = M'/~xM'/~.  We can write 

S = ZIMZ/N = X'X = C ~ ~ X ; ( W ~ ' X ) ~ ,  (2.8) 

where the A; are the eigenvalues of Ex, and w; are the corresponding eigenvectors, nor- 

malized so t f a t  witZwi = Sjj- Here Sij is Kroneker's 6 with 6ij = 1 for i = j and 5,, = 0 

otherwise. In (2.81, the term si = (wi1X) is called the i-th component of the statistic. The 

11 en- components, s i ,  take different values for different statistics, since they depend on the r,'g 

vectors of M. The normalization of the w; makes the variance of each s; = 1. As N -. m, 

the s; have distributions which are independent and each standard normal, and a typical 

statistic has an asymptotic distribution 

where the s: are independent X: variables, the same result as shown above. 
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For practical calculations. an infinite valued discrete distribution, such as the Poisson, 

must be curtailed after a finite number of terms. It is proposed that this be done at cell K 

when ph- < 10-~/ff. Inclusion of further terms does not significantly change the value of 

the statistic. 

2.3.2 Estimated Mean 

Let 8 = [8/1,8$ where Q1 is a vector of pl known parameters and 8 2  is a vector of p2 

parameters estimated from the data, and let go be the vector of true values of the parameters. 

Let $2 be the maximum likelihood estimator of 8 2  and assume suitable regularity conditions 

which ensure the application of regular maximum likelihood asymptotics (see e.g. Cox and 

Hinkley, 1974, or Bishop, Fienberg and Holland, 1975). Then, as N 4 m, the variable 

d/ f i  = (o - e)/a converges in distribution to a mean zero multivariate normal random 

variable with covariance matrix 

where e is the vector of expected numbers using the estimated parameters, Co is as before, 

D is the diagonal matrix whose j-th diagonal entry is pj and B is the pz by K matrix with 

i, j th  element 
a ~ j  - 
86; 

(Bishop, Fienberg and Holland, 1975). Here, K is the number of cells in the discrete distri- 

bution, and 8; is the i th unknown parameter. When there is only one unknown parameter 

(2.10) reduces to 

20 = Co - gg'/g'~-fg, 

where g is the vector with j th  element, 

For the Poisson distribution, the mean, p, is replaced by the maximum likelihood esti- 

mate, 2 and 



CHAPTER 2. POISSON DISTRIB UTIOX 

It is easily seen that gj can also be written 

If follows that 

gfI3-lg = 1/p, 

the inverse of the Poisson variance. Then 

Likewise, as N - m, 2 / f i  = ~ d / a  converges in distribution to  a mean zero multivari- 

ate normal random variable with covariance matrix, 

since Ag = -p. 

As before, the percentage points for the asymptotic distribution of a typical statis tic are 

determined by finding the eigenvalues A; of gx = M ' / ~ ~ M ' / ~  for the statistic, and using 

(2.9) and Imhof's method (Imhof, 1961). 

2.4 Calculation of Percentage Points 

2.4.1 Known Mean 

Moments 

In order to determine the asymptotic percentage points for each statistic, it is necessary to 

determine the matrix, M, and compute the eigenvalues of the infinite-dimensional matrix 

Ex = M'/~I=M'/~. From the representation (2.9) the cumulants of the test statistics arc 

Zn particular, the mean is Cg,A; and the variance is 2C;",,Af. The mean of each statistic 

can also be calculated exactly using the multinornial distribution of o, and this calculation 



can he used to cimk the accuracy of the eigenvalue decomposition. Recall that SJ = CI=Oo; 
and T, .-- CI=a~;. Then: for statistic W 2  

The means of the other Cram&-von Mises statistics can be similarly derived and are as 

follows: 

Note that the means of the statistics do not depend on the sample size, N. 

The identities given above show that 

for any sequence K ,  -. oo where wj are the weights associated with the particular Cram&- 

von Mises statistic. This can be combined with the well known asymptotic normality of 

(I/* for any fixed K, to establish rigorously the asymptotic distributions given in section 

2.3, for W2, U2, A2 and W; . See Guttorp and Lockhar t (1988) for a similar argument. 

The statistic A:, defined in (2.6), however, has infinite expected value (both asymptotic 

and finite sample) when testing for the Poisson distribution or any other distribution with 

infinite support; this is because the expectation of each term is one. The expectations of 

the individual terms of Z are equal to the variance of the terms of the cumulative observed 

histogram. Since for A: the terms are weighted by the inverse of the variance, the expec- 

tation is unity. For this reason, the statistic Ak will not be considered further. Note that 

the Pearson y2 statistic also has infinite mean if the data are not categorized into a finite 

number of cells. 

For different values of the known mean p of the tested Poisson distribution, the means 

and variances of the asymptotic distributions of the Cram&-von Mises statistics are given 

in Table 2.1. The means and variances of the statistics when testing for a continuous 

distribution (Stephens, 1976a, Case 0) are indicated by p = m, and are discussed below. 



Percentage Points 

The asymptotic distribution of a typical test statistic is an infinite sun1 of weighted 

variables with weights equal to the eigenvalues of the covariance mntris of t lie statistic.. I n  

practice, this sum must be curtailed at a finite number of terms in order to obtain pcrrcnti~gv 

points. This has been done as follows. For various values of the meaI1. p, of the Poisso~i 

distribution, the X i  have been calculated for i = 1, ..., li where li has been chosen to ntitkc. 

the final values of A, sufficiently small that the percentage points do not change with ttw 

addition of more eigenvaiues. The eigenvalues were found using S-PLUS (S-P LUS, 199 1). 

and the percentage points were then found by Tmhof's method. 

For W2, the matrix M is equal to D. the diagonal matrix with the Poisson probabilities, 

pj, on the diagonal. The percentage points for W2 are recorded in Table 2.2 for selected 

values of p. 

For the statistics li2, A2 and W z ,  the M matrices are ( I  - D1l1)D(I[ - l l l D ) ,  DG-I 

and I, respectively. The percentage points for these statistics have been calculated as above 

and are recorded in Table 2.2. 

Since for the Poisson distribution, p is neither a location nor a scale parameter, thc 

asymptotic points depend on the parameter p. There is an interesting connection bctweer~ 

these points and the points used for testing a known continuous distrihtior~, giwn by 

Stephens (!986), where such a test situation is called Case 0. As p --. m, the percentage 

points for W2, U2 and tend to those for Case 0. Thus, for large values of p. the Casc 

0 points can be used as an approximation for the exact points. However, for srnaller valrti!s 

of p more accurate results will be found by using Table 2.2. 

In order to examine the rate of convergence of the percentage points to the asymptotic 

points, the percentage points of W2, U2, A2 and WA for known p have been found by Morltc 

Carlo simulation using 25,000 samples. The standard error of estimation of the level of t h e  

pth percentage point is approximately where n is the number of sirrtulallicmj; 

for the -95 percentage point the standard error is 0.0014. 

Percentage p i n t s  for p = 1,10 and various sample sizes, N, are given in Tables 2.3 a r r  d 

2.4. These points converge rapidly to the asymptotic points, which can he used for mrnples 

afsize greater than :O. The rapid convergence of points for finite samples to the asymptotic 

values also occurs for the Cram&-von Mises tests for continuous distributions. For exarri pic, 

suppose the asymptotic point 2.783 is used for a 5% test for AZ with known mean, / A  = I 



when 3=10. If the given percentage point for X=10. 2.736. is correct, the actual (I. level 

obtained by the test would be a' = .049. 

An S function (Becker. Chambers and Wilks. 1988; S-PLUS. 1991) has been written to  

compute the Cramdr-von Mises statistics and their asymptotic ~ - ~ a l u e s .  

Table 2.1: Asymptotic mean and variance for the Cram&-von Mises statistics for testing 
for the Poisson distribution with known mean p, for selected values of p. 

~1 Mean Var Mean Var Mean Var Mean Var 
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Table 2.2: Asymptotic percentage points for tbhe Cram&-von Mises st,atistics for testing for  
the Poisson d iskbut ion  with known mean p,  for selected values of p.  

14' Upper tail significance level a 
p .25 .l.5 .10 -05 .025 .01 .005 
.1 -104 .I64 .209 .300 .338 -518 .614 
.5 -222 .333 -427 597 .769 1.013 1.199 
1 -228 .3 17 .391 523 .660 .848 .993 
2 -216 .297 .365 .486 .614 .788 .923 
5 .212 .289 .354 .471 .593 .760 ,889 

10 -211 286 -350 .466 .587 .751 .879 
20 .210 .280 .349 .464 .584 -747 .874 
50 .211 .285 348 .462 582 .744 .871 

100 .210 -284 248 .462 581 .744 .870 
m 209 .284 .347 .461 .581 -743 .869 

U 2  Upper tail significance level cr 
u .25 .15 .10 .05 .025 .01 .005 .OOl 
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Table 2.2: Asymptotic percentage points for the Cram&-von Mises statistics for testing for 
the Poisson distribution with known mean p,  for selected values of p. (continued) 

Upper tail significance level a 

w$ Upper tail significance level a 

.5 
1 
2 
5 

10 
20 
5 0 

LOO 
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Table 2.3: Monte Carlo percentage points for the Cramkr-von hlises statistics for test,ing for 
the Poisson distribution with known mean p=1, for selected sample sizes. The asymptotic 
points are shown for comparison. 

p = l  
Upper tail significance level a 

.25 .15 -10 .05 -025 .01 
.234 .296 .366 .478 .586 .870 
.226 .310 .368 514 .675 202 
239  .321 .393 .531 .626 .811 
.231 .322 ,383 .497 .638 .817 
.228 .316 .389 .515 .656 .824 
.230 .313 .387 .521 :655 .840 
.230 .318 .394 .519 .654 .844 
.228 ,317 .391 .523 ,660 .848 

U 2  Upper tail significance level a 
N .25 1 .10 .05 .025 .01 
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Table 2.3: Monte Carlo percentage points for the Cram&-von Mises statistics for testing for 
the Poisson distribution with known mean p=1, for selected sample sizes. The asymptotic 
points are shown for comparison. (continued) 

Upper tail significance level cr 
.I5 .10 -05 .025 .01 

1.701 2.224 2.637 3.908 4.751 
1.747 2.191 2.736 3.608 4.551 
1.745 2.054 2.732 3.486 4.531 
1.758 2.126 2.796 3.574 4.582 
1.761 2.115 2.792 3.460 4.448 
1.743 2.108 2.769 3.485 4.436 
1.770 2.128 2.786 3.448 4.396 
1.758 2.124 2.783 3.467 4.379 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 

.731 .940 1.217 1.316 1.915 2.381 
-716 .909 1.151 1.442 1.913 2.488 
.704 .919 1.117 1.497 1.933 2.371 
.696 .950 1.129 1.475 1.878 2.488 
.690 .926 1.137 1.512 1.900 2.393 
'684 .923 1.136 1.515 1.889 2.426 
.694 .944 1.161 1.531 1.905 2.428 
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Table 2.4: Monte Carlo percentage points for the Cram&-von Mises statistics for testing for 
the Poisson distribution with known mean p=10, for selected sample sizes. The asyruptnt ic 
points are shown for comparison. 

p = 10 
W 2  Upper tail significance level a 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 
.lo6 .I32 .I51 .I83 .210 .247 
.lo5 .I32 .I52 .I86 .218 264 
.lo5 .131 .I52 .I87 .224 .273 
.lo5 -132 .I52 .188 .224 ,266 
.lo5 .I32 .I52 .188 .222 .267 
.lo6 .I31 .I52 .I87 .223 .269 
.lo6 .I32 .I53 .188 -220 .266 
.lo6 .I32 .154 .190 .226 .274 



Table 2.4: Monte Carlo percentage points for the Cram&-von Mises statistics for testing for 
the Poisson distribution with known mean p=10, for selected sample sizes. The asymptotic 
points arc shown for comparison. (continued) 

p = 10 
A2 Upper tail significance level cu 
iV .25 -1.5 -10 .05 .025 .O1 
5 1.262 1.653 1.984 2.593 3.233 4.101 

10 1.253 1.631 1.954 2.526 3.163 3.990 
1.5 1.255 1.630 1.952 2.557 3.192 4.026 
20 1.251 1.644 1.960 2.520 3.107 3.873 
41! 1.257 1.647 1.942 2.513 3.090 3.956 
SO 1.254 1.624 1.946 2.536 3,130 3.918 

100 1.244 1.632 1.950 2.507 3.132 3.928 
rx3 1.255 1.634 1.950 2.518 3.111 3.924 

Upper tail significance level a 
.15 .10 .05 -025 .01 

2.942 3.523 4.580 5.737 7.217 
2.945 3.532 4.572 5.701 7.122 
2.918 3.495 4.594 5,692 7.284 
2.948 3.527 4.567 5.639 6.998 
2.952 3.505 4.584 5.604 7.244 
2.905 3.499 4.608 5.687 7.122 
2.986 3.589 4.712 5.761 7.257 
2.932 3.522 4.582 5.691 7.209 
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2.4.2 Estimated Mean 

Moments 

The asymptotic percentage points for the various statistics. for testing for the Poisson 

distribution with mean estimated by F ,  may be calculated as for the case where the meark 

p is known, except that the matrix C is replaced by 2. It is now necessary to compute the 

eigenvalues of the matrix %x = M ' : ~ % M ' / ~ .  The M matrices for the statistics arc thost. 

defined in section 2.4.1. 

Once again the asymptotic means and variances of the statistics can be determined from 

the representation (2.9). The asymptotic means can also be written explicitly using (2.13). 

The means of W 2 ,  A* and W: for testing for the Poisson distribution with estimated mea,n 

are as follows: 

Once again the means of the statistics do not depend on the sample size, N.  Unlike the casc 

where the mean, p, is known, the expected value of A2 is no longer identically one. The mean 

and variance of the asymptotic distributions of the statistics are found in Table 2.5. For 

comparison, the means and variances of the statistics when testing for a normal distribi~tioii 

with known variance 2nd unknown mean (Stephens, 1976a, Case 1) are indicated by p = m, 

and are discussed below. 

Percentage Points 

The percentage points for the CramCr-von Mises statistics are recorded in Table 2.6 for 

selected values of p. As p tends to infinity the points for W 2 ,  U 2  and A2 tend to the points 

'1 ven for testing for a normal distribution with known variance but unknown mean (Case l) ,  b' 

by Stephens (1986). The Case 1 points could be used as an approximation for the exact 

points for large d u e s  of p; however, for smaller p more accurate results will he found i n  

Table 2.6. 

For finite N, the percentage points of W 2 ,  U 2 ,  and W: for estimated p have been 

found by Monte Carlo simulations using 25,000 samples. Percentage points for IL = 1 , 1 0  

and various sample sizes, N, are found in Tables 2.7 and 2.8. These points also converge 
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rapidly to the asymptotic points; these can therefore be used for samples of size greater 

than 10. 

Table 2.5: Asymptotic mean and variance for Cram&-von Mises statistics for testing for the 
Poisson distribution with estimated mean p,  for selected values of p. 

W 2  U 2  A2 wi 
p Mean Var Mean Var Mean Var Mean Var 

.1 .0042 .OOOO .0013 .OOOO .l24 .028 .082 .001 

.5 .0450 .0035 .0365 .0024 .347 .I46 .lo4 .015 
1 .0658 .0048 .0609 .0045 .432 .I48 .215 .043 
2 .0700 .0033 -0659 .0030 ,480 .I20 .357 .072 
5 .0727 .0026 .0688 .0024 .504 .099 .606 .I52 
10 .0738 .0024 .0699 .0022 .512 .092 .875 .284 
20 -0743 .0023 .0705 .0021 .516 .089 1.250 .549 
50 .0745 .0022 .0708 .0020 .518 .087 1.987 1.342 
100 .0747 .0022 .0709 .0020 .519 .086 2.816 2.665 

00 .0748 .0021 .0710 .0020 .519 



Table 2.6: Asymptotic percentage points for Cram&-von Mises statistics for testing for the 
Poisson distribution with estimated mean p, for selected values of p. 

W 2  Upper tail significance level a 

U 2  Upper tail significance level a 
p .25 .15 .10 .05 .025 .01 .005 .001 
.1 .002 .003 .004 .005 .006 .009 ,010 .014 
.5 .048 .074 .096 .136 .I77 .231 .276 .378 
1 .081 .I15 .143 .I94 .246 .319 .375 .507 
2 .088 .I15 .I36 .I73 .211 .262 .302 .395 
5 .089 .I13 .I32 .I64 .I96 .240 .274 .353 

10 .089 .I12 .I30 .160 .I92 -234 .266 ,343 
20 .089 .I11 .128 .159 .I89 .231 .263 .338 
50 .089 .I11 .I28 .I58 .I88 .229 .261 .335 

100 .089 .I10 .128 .I57 .I88 -229 .260 .335 
00 .088 -110 .I27 .I57 -187 .228 .259 .334 
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Table 2.6: Asymptotic percentage points for Cram&-von Mises statistics for testing for the 
Poisson distribution with estimated mean p,  for selected values of p. (continued) 

Upper tail significance level a 
.25 .15 .10 .05 -025 .01 .005 .001 

.I62 .251 .325 .460 .601 .784 .937 1.286 

.456 .649 .811 1.104 1.414 1.828 2.151 2.849 
3 7 7  .769 -921 1.191 1.465 1.812 2.119 2.762 
.630 .796 -927 1.151 1.377 1.681 1.913 2.465 
.640 .790 .908 1.112 1.319 1.598 1.813 2.322 
.641 .786 .900 1.099 1.301 1.573 1.783 2.281 
.641 .783 .897 1.093 1.292 1.562 1.769 2.262 
.641 -782 .894 1.089 1.287 1.555 1.761 2.249 
,641 ,782 .894 1.088 1.286 1.553 1.758 2.245 
.644 .782 .894 1.087 1.285 1.551 1.756 2.241 

El Upper tail significance level a 
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Table 2.7: Monte Carlo percentage points for the Cram&-von Mises statistics for tcstirlg for 
the Poisson distribution with estimated mean p=1, for selected sample sizes. The asymptotic 
points are shown for comparison. 

p = l  
W 2  Upper tail significance level cr 

N .25 .15 .10 .05 .025 .O1 
5 .086 .110 -146 .207 .207 -237 

10 .084 .128 .I35 .I92 .240 .281 
15 .087 .I21 .I54 -196 .251 ,306 
20 .086 .121 .I48 -200 .258 -324 
40 .087 .I21 .150 .200 .252 .324 
50 .088 .123 .I53 .206 .258 .332 

100 .089 .I25 ,154 .206 .261 .336 
00 .088 .I23 .I52 .203 257 .330 

Upper tail significance level cx 
.25 .15 .10 .05 .025 .01 

.078 .I10 .145 .I96 .200 .230 

.079 .I20 .I29 .I89 .233 .264 

.083 .I10 .I51 .I87 .243 .293 

.081 .113 .I37 .I92 .245 .311 

.080 .I12 .I41 .I91 .242 .312 

.082 .I16 .I43 .I94 .245 .317 

.082 ,116 .I45 .I96 .250 .324 
-081 .I15 -143 .I94 .246 .319 
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?table 2.7: Monte Carlo percentage points for the Cram&-von Mises statistics for testing for 
the Poisson distribution with estimated mean p=1, for selected sample sizes. The asymptotic 
poillts are shown for comparison. (continued) 

p = l  
A2 Upper tail significance level a 
N .25 .1.5 .10 .05 .025 .01 

Upper tail significance level cr 
.15 .10 .05 .025 .01 

.435 .505 .551 3 3 6  1.006 

.386 .464 .631 .750 397  

.408 .478 .604 .768 -946 
,386 .472 .620 .777 .970 
.388 .463 .606 .770 -971 
.388 .470 .622 .775 1.008 
390  .469 .621 .776 .987 
.391 -475 .624 .778 .988 
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Table 2.8: Monte Carlo percentage points for the Cram&-von Llises statistics far testing 
for the Poisson distribution witih estimated mean p=10, for selected sample sizcs. T ~ I P  
asymptotic points are shown for comparison. 

/L = 10 
W 2  Upper tail significance level cr 

N .25 -1-5 .10 .05 .025 .01 

Upper tail significance level a 
.25 -15 .10 -05 .025 -01 

.092 .114 .132 -160 -190 223 

.091 .I13 .I31 .I62 .I90 ,226 

.090 A12 .I29 .I59 .189 .229 

.090 .112 .130 .I61 .I90 .232 

.090 .I12 -131 .I60 .I89 -229 

.090 .I12 -130 -160 -191 .233 
-089 .I12 -129 .I60 .193 .234 
.089 -112 .I30 .I60 .192 234 



Table 2.8: Slonte Carlo percentage points for the Cram&-von Ilises statistics for testing 
for the Poisson distribution with estimated mean p=10. for selected sample sizes. The 
asymptotic points are shown for comparison. (continued) 

11 = 10 
tlpper tail significance level cr 

.25 .1.5 .10 .0.5 .02.5 .01 
.603 .744 -84.5 1.041 1.227 1.525 
,623 .764 3 7 8  1-06? 1.271 1.556 
.625 -763 -876 1.068 1.261 1.532 
.634 .T77 3 9 1  1.085 1.298 1.586 
.641 .788 -903 1.095 1.294 1.571 
'641 -783 -894 1.100 1.296 1.579 
,641 .786 .902 1.101 1.3i3 1.570 
,641 .786 -900 1.099 1.301 1.573 

Epper tail significance level a 
.25 .15 .10 -0.5 .02.5 .01 

1.065 1.308 1.492 1.813 2.123 2.547 
1.081 1.322 1.511 1.841 2.177 2.623 
1.082 1.323 1.520 1.862 2.184 2.628 
1.100 1.348 1.543 1.890 2.223 2.721 
1.104 1.358 1.564 1.891 2.244 2.703 
1.097 1.354 1.353 1.888 2.232 2.710 
1.100 1.351 1.556 1.913 2.289 2.757 
1.100 1.353 1.557 1.906 2.261 2.738 



2.5 Power Comparisons 

?Ye nox consider the power of the Cram&-von Slises statistics for testing for the Poissotl 

distribution in the more common situation when the mean is estimated from the sample. 

?Yhere possible. asymptotic power calculations for the Cram&--von Xlises statistics and othcr 

tests of fit have been made. These have been supplemented by simulations to  determine the 

relative powers for finite samples. 

2.5.1 The Test Statistics 

The test statistics compared are the following: 

1. The Cramkr-von Mises statistics defined in Section 2.2. 

2. The dispersion test. This is the most commonly used goodness-of-fit test for the 

Poisson distribution, and was suggested by R. A.  Fisher (Kendall and Stuart, Volurxlc! 

2. 1973). It is defined as follows: 

This test is often used as a one sided test to detect overdispersed alternatives, howtwer, 

is used here as a two-sided test to guard against all alternative distributions. Pott hoff 

and Whittinghill (1966b) show that a test based on D is the score (locally most 

powerful) test against the negative binomial distribution. 

3. The k-component smooth test. This is an analogue of the Neyman smooth test for 

continuous distributions (Xeyman, 1937). Such analogues were examined first by 

Scott (1949) and later by Barton f 19.55). Nore recently, they have been developed for 

testing for the Poisson distribution by Rayner and Best (1989) .  These tests arc coa- 

structed to  have optimal power against local alternatives whose distributions depart 

smoothly from the distribution being tested. The alternatives are functions of poly- 

nomials crrthorrormd to the distribution under test. For the Poisson distribution, the 

orthonormal functions are Poisson-Charlier polynomials. h , ( j ;  p) .  The it  h polynorriial 

is defined as follows: 
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where C': is the binomial coefficient for x successes in n trials. 

The test statistic is then defined as 

where V,  = ZE, hi(zj, 3). The one-component statistic s1 = V '  is a standardized 

version of the dispersion test, = (D - N)2/2N. The four-component smooth test 

was recommended by Rayner and Best. 

4. Statistics based on the probability generating function (PGF). These have been pro- 

posed by several authors (Kocherlakota and Kocherlakota, 1986; Rueda et al, 1991; 

Nakamura and Perez-Abreu, 1993). Two statistics were examined, called P and T 

below. They are found as follows. 

Let +(t) be the PGF and +,(t) be the empirical probability generating function. 

(a) Rueda et al (1991) proposed the following test statistic: 

This statistic is an extension of the statistic proposed by Kocherlakota and 

Kocherlakota (1986); their statistic was the difference between the empirical 

probability generating function and the PGF at  a specific point, t .  

(b)  For the Poisson distribution, log#(t) = p(t - 1). Nakamura and Perez-Abreu 

propose a statistic based on the the departure of log &(t) from a straight line, 

using the value of the second derivative. The statistic is referred to as T. 

5. Correlation and regression tests of fit. These have been proposed and evaluated for 

several distributions (Spinelli, 1980). The tests compare the sample order statistics 

with their expected vdue or some other asymptotically equivalent value. Let r ( x ,  y)  

denote the correlation between vectors x and y ,  and rn be the vector of expectations 

of Poisson order statistics. The correlation statistic is defined as 

R = N[l  - r2(x, m)], (2.17) 

where x is the vector of sample order statistics. 
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6. The Pearson X 2  statistic defined in section 2.4.1. As pointed out above, thc I'oissor~ 

distribution must be categorized in order for the Pearson k 2  test to be used. Since the 

cell probabilities, and t h u ~  the categorization, depend on the value of the mean. p, ;I 

single a priori categorization procedure is impossible to develop. Two categorization 

procedures were examined for each of p = 1,lO. 

For p = 1 

(a) X: - Three groups k = 0,1,2+ 

(b) Xi - Five groups k = 0,1,2,3,4+ 

For p = 10 

(a) X: - Five groups k = 0 - 6,7 - 8,9 - 1 0 , l l -  12,13+ 

(b) X: - Ten groups k = 0 - 5,6,7,8,9,10,11,12,13,14+. 

2.5.2 Asymptotic Power 

The asymptotic powers of the Cram&-von Mises statistics and the smooth statistics, S k ,  with 

k = 1,2,3,4,  were examined against the negative binomial alternative. For the purposes 

of the asymptotic power comparison let the negative binomial distribution be defined as 

follows: 

for y = 0,1,.  . . and y, p > 0. The mean and variance of Y are p and p(1+ y p ) ,  respectively. 

At y = 0, (2.18) reduces to  the Poisson distribution. Thus Ho is: y = 0. Let /I be estimated 

by maxirqum likelihood, that is, ji = 3. Under HI, let y = 6 / n ,  thus y - 0 as N - oo 
and HI reduces t o  Ao. 

In section 2.2.1, the i-th component of a test statistic, s; = ( w i t X ) ,  was defined. Under 

Ho, the sa are independent and each distributed standard normal. Under H I ,  the s; arc 

independent and normally distributed with variance 1, but with mean v; which is not zero. 

For the k-component smooth statistics the mean v; is 6 w i t g  where g is the vector with j th  

element 
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and where pJ is the Poisson probability of observing a count j defined in section 2.2.1 above. 

For the Cram&-von Mises statistics and WA, the mean of s; is 

where A is the partial-sum matrix given in (2.4) and p is the vector of Poisson probabilities. 

Equations (2.19) and (2.20) can be derived as follows. Let po and pl be the vectors of 

cell probabilities under the null and alternative hypotheses, respectively. Also let eo and el 

be the vectors of expected numbers in each cell. Then under the alternative hypothesis: 

The vector pl is a function of the parameter y.  A Taylor expansion around y = 0, gives 

Equation (2.19) comes from differentiating (2.18) with respect to  y and evaluating it a t  

y = 0. For the Cram&-von Mises statistics, the expectation of X is needed, 

Since the matrix A applied to the vector of first differences of probabilities given in (2.19) is 

equal to -p, the mean of s; becomes - 6 w ; ' ~ ' / ~ p .  It is easy to show that the covariance of 

d under the alternative hypothesis is the same as the covariance under the null hypothesis. 

The asymptotic power is compared along the lines proposed by Durbin and Knott (1972) 

and Durbin, Knott and Taylor (1975), and developed by Stephens (1976b). The test based 

on the maximum likelihood estimator of the parameter, y , will be the locally most powerful 

unbiased test (Cox and Hinkley, 1974). The variance of the maximum likelihood test for the 
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Poisson distribution against the negative binomial alternative is the  invcrse of tht. ('ra111i.r- 

Rao lower bound, 

The parameter, 6, is chosen to make the power for this test a fixed value. Here thc valtte 

used is 0.50. For a 0.05-level test to give a two-sided power of 0.50, 6 = 1.96&/p. 

Powers for the Cram&-von Mises statistics were computed by fitting a curve of thr 

form a + bX;, where a ,  b,p are chosen so that the first three cumulants match those of the 

statistics. Powers for smooth tests were determined by evaluating the appropriate non- 

central X2 distribution. The asymptotic powers are given in Table 2.9. 

Results and comments 

The results of the asymptotic power analysis show that for negative-binomial alternatives, 

has the best power among the Cram&-von Mises tests, and is nearly as powerful as 

the best test, with W$ slightly worse. The results also indicate that adding additional 

components to the smooth statistic reduces the asymptotic power. The smooth statistic with 

two components has similar power to A h n d  smooth statistics with additional cornp~ticnt~s 

have progressively worse power than A2. 

Table 2.9: Asymptotic power of the Cram&-von Mises statistics for testing for the I'oissotl 
distribution with estimated mean, p. 

This table gives the asymptotic power (%) of the Cram&-von Mises test for selected values 
of the mean, p,  against a negative-binomial alternative with parameter (y) chosen to give 
the locally most powerful test, the dispersion test, a power of 50%. 

Test Statistics 
U2 A2 W$ S2 5'3 5'4 

48 47 48 40 34 31 
36 40 40 40 34 31 
29 37 36 40 34 31 
27 37 35 40 34 31 
28 37 35 40 34 31 
29 38 36 40 34 31 
29 38 36 40 34 31 
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2.5.3 Finite Samples 

For finite samples, iMonte Carlo studies were used to  estimate power. Common alternatives 

to the Poisson distribution can be categorized by the ratio of the variance to the mean; 

this is equal to one for the Poisson distribution. Distributions with variance larger than the 

mean are considered overdispersed, and with variance smaller than the mean are referred to  

as underdispersed. 

The most common overdispersed alternative to the Poisson distribution is the negative 

binomial. This distribution arises as the number of failures before K successes with prob- 

ability of failure, p, but can also be regarded as a Poisson-Gamma mixture; that is, the 

distribution produced when the parameter of a Poisson distribution itself has a Gamma 

distribution. Another overdispersed alternative examined was a mixture of two Poisson 

variables. For underdispersed alternatives, the binomial and discrete uniform distributions 

were examined. Finally, distributions where the parameters could be chosen to  give the 

variance equal to  the mean, as for the Poisson distribution, were also investigated. The 

beta-binomial distribution and the discrete uniform distribution were chosen in this cate- 

gory. Figures 2.1 and 2.2 show the probability functions for the Poisson distribution with 

mean, p = 1, and the beta-binomial distribution with parameters (a = 1,P = 2 , K  = 3) 

which have the same mean and variance. 

Comparisons of power for the Cramkr-von Mises statistics and the other tests of fit. 

when used in testing against the above alternatives, are given in Tables 2.10 and 2.11. One 

thousand samples of size 20 were generated from each alternative distribution with means 

of p = 1 and p = 10. The finite null percentage points of all statistics compared were 

found by Monte Carlo simulation using 25,000 samples. The maximum standard error of 

the power results is equal t o  . 5 / m  ~h 1.6%. Random samples were generated using 

IMSL subroutines (IMSL, 1987). 

Results and comments 

1. As expected, the dispersion test and the one-component smooth test perform very well 

for overdispersed alternatives, with the one-component smooth test having slightly 

better power. The  statistics A2 and W:, the four-component smooth test and the 

statistics based on the probability generating function also have good power against 

overdispersed alternatives. The statistics, W 2  and U 2  have lower power than A2, and 



Figure 2.1: Probability function of a Poisson distribution with mean, p = I 

Figure 2.2: Probability function of a beta-binomial distribution (a = 1, P = 2, K = 3) with 
mean and variance both equal to  1. 



both the Pearson X 2  statistic and the correlation statistic perform very poorly. 

2. For underdispersed alternatives, the dispersion test has the best power. The next most 

powerful tests are the one-component smooth test and the Cramkr-von Mises statistics 

which have approximately equal power. The four component smooth test and the 

probability generating function statistic, T, are especially poor. The correlation test 

was the most powerful at detecting underdispersed distributions with p = 1, but had 

very poor power against underdispersed alternatives with p = 10. 

3. Against alternatives with the mean equal to the variance, the Cram&-von Mises statis- 

tics have the best power. Since the dispersion test and the one-component smooth 

test primarily detect differences between the mean and variance, they do very poorly 

against these alternatives. The four-component smooth test and the probability gener- 

ating function statistic, P, also have poor power. The power of the correlation statistic 

was inconsistent, very good against some alternatives and poor against others. 

With the exception of the Cram&-von Mises statistics, all statistics gave very poor power 

against at least one of the classes of alternatives. For over- or under-dispersed alternatives, 

the dispersion test or the standardized dispersion test (one-component smooth test) are 

recommended. However, if an omnibus goodness-of-fit test for the Poisson distribution is 

desired, and in particular, if the alternative is "close" to the Poisson in the sense that the 

variance is almost equal to the mean, then A2 is the recommended statistic. 



CHAPTER 2. POISSON DISTRIB C'TIOiY 

Table 2.10: Power Coxnpa.rison 

This table gives the percentage of 1000 samples rejected by the statistics for a sample of 
size 20. Alternative distributions with a mean? p ,  of 1 were generated. The parameters and 
variance of the alternative distribution, a2, are indicated. All tests are a t  the 5% level. 

Alternative Distribution ( a2 )  Test Statistics 

Neg Bin[K = 3, p = -251 (1.33) 88 69 125 118 123 189 
Neg Bin[K = l , p  = .5] (2) 343 261 457 410 426 530 
.5P(.2)+.5P(1.8) (1.64) 338 306 403 382 412 429 
.5P(O)+ .5P(2.0) (2) 791 756 821 781 789 775 

Underdispersed 
Binomial[p=.5,K=2] (.5) 373 370 393 433 468 91 
Discrete Uniform[0,2] (.67) 155 158 206 206 83 95 

Equal Dispersion 
Beta-Binomial[a=l,P=2,K=3] 71 73 73 77 34 63 

Overdispersed 
Neg Bin[h' = 3 ,p  = .25] (1.33) 149 198 176 30 93 31 
Neg ~ i n [ K  = 1 , p  = .5] (2) 490 544 505 160 285 100 
.5P(.2)+.5P(1.8) (1.64) 351 437 417 37 113 10 

.5P(0)+.5P(2.0) (2) 681 753 783 105 218 19 

Underdispersed 
Binomial[p=.5,K=2] (.5) 497 380 211 44 18 604 
Discrete Uniform[O,2] (.67) 165 71 104 2 21 477 

Equal Dispersion 
Beta-Binomial[a = 1, P = 2, K =  31 14 10 45 3 5 2.5 
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Table 2.1 1: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sample of 
size 20. Alternative distributions with a mean, p ,  of 10 were generated. The parameters 
and variance of the alternative distribution, 0 2 ,  are indicated. All tests are a t  the 5% level. 

Alternative Distribution (c2) Test Statistics 
W2 U 2  A2 WA Y T 

Overdispersed 
Neg Bin[K = 30, p = .25] (13.3) 90 86 158 141 68 61 
Neg Bin[K = 10,p = .5] (20) 347 316 553 501 571 610 
.5P(8)+.5P(S2) (14) 162 156 269 243 254 295 
.5P(7)+.5P(13) (19) 438 425 612 580 620 637 

Underdispersed 
Binomial[p=.33,K=30] (6.7) 133 155 120 126 59 24 
Binomial[p=.5,K=20] (5) 358 374 344 358 178 90 
Discrete Uniform[7,13] (4) 337 375 435 421 292 68 

Equal Dispersion 
Beta-Binomial[a = 2, ,O = .6, K = 131 741 685 748 738 402 745 
Discrete Uniform[5,15] 129 132 130 133 3 156 

D S, 4 X ;  Xi R 
Overdispersed 
Neg Bin[K = 30,p = .25] (13.3) 165 205 204 68 61 64 
Neg  in[^ = 1O.p = .5] (20) 608 648 606 224 209 89 
.5P(8)+.5P(12) (14) 260 307 254 112 89 33 
.5P(7)+.5P(13) (19) 640 688 601 295 249 27 

Underdispersed 
Binomial[p=.33,K=30] (6.7) 170 130 19 100 82 57 
Binomial[p=.5,K=20] (5) 479 389 62 253 179 108 
Discrete Uniform[7,13] (4) 794 641 76 349 484 243 

Equal Dispersion 
Beta-Binomial[cr = 2, ,,!3 = .6, K= 131 126 116 551 196 848 906 
Discrete Uniform[5,15] 8 6 12 103 80 110 
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2.6 Examples 

2.6.1 Example 1 

The data in Table 2.12, taken from Zar (1974), show the number of sparrow r~c.sts Souittl 

in a one hectare area. The cuniulative observed and expected histograms art9 givcrl it1 

Figure 2.3, and the standardized difference is plotted in Figure 2.4. The star~clartlint~tl 

difference is the difference between the observed and expected values divided by the st.anclart1 

deviation to give asymptotic standard normal values. The sample mean and variaricc arc 

1.1 and .810, respectively, indicating a small amount of underdispersion. The values i ~ r t t l  

significance levels of the Cram&-von Mises statistics and other test statistics are found 

in Table 2.13. The Cramkr-von Mises statistics were calculated by stopping at the first 

seven terms, and the Pearson x2 statistics was calculated after grouping the data for cells 

three or greater. The Cram&-von Mises statistics and the Pearson X 2  all suggested evidence 

against the Poisson hypothesis, with significance levels around 0.05. The dispersion test and 

standardized dispersion test did not reject the Poisson hypothesis, as each had a signi ficancc 

level greater than 0.10. 

Table 2.12: Sparrow Nest Data 

No, of Frequency Cumulative Cumulative Standardized Pr(X=x) 
nests 

0 
1 
2 
3 
4 
5 
6 
7 
8 

Frequency 
9 

31 
3 7 
39 
40 
40 
40 
40 
40 

Expected 
13.32 
27.96 
36.02 
38.97 
39.96 
39.99 
40.00 
40.00 
40.00 

Difference 
-1.45 
1.05 
0.52 
0.03 
0.47 
0.20 
0.08 
0.03 
0.01 
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Figure 2.3: Cumulative observed (-) and expected (- -) histograms for the sparrow nest 
data. 

Figure 2.4: Standardized difference between the observed and expected histograms for the 
sparrow nest data. 



Table 2.13: Test statistics for the sparrow nest data 

Test Value Significance 
Statistic Level 

2.6.2 Example 2 

The data in Table 2.14 show the frequency of radioactive decay counts of Poloniuni, take11 

from Hoaglin (1980), and reproduced in Rayner and Best (1989). The cumulative observcd 

and expected histograms are found in Figure 2.5, and the differerice is plotted in  Figure 

2.6. The standardized difference is the difference between the observed and expected v- ~t I ~ ( 3 s  

divided by the standard deviation to give asymptotic standard normal values. The sarnplc 

mean and variance are 3.87 and 3.70, respectively, indicating Poisson dispersion. The vai ues 

and significance levels of the CramCr-von Mises statistics and other test statistics are Sou t i t1 

in Table 2.15. The Cram&-von Mises statistics were calculated by stopping after t ht: first 

fourteen terms, and the Pearson X2 statistic was calculated after grouping the data for 

cells eleven or greater. The Cram&-von Mises statistics, A' and W; rejected the Poissot~ 

hypothesis, and the significance levels for W2 and U 2  were just larger than 0.05. 'l'ht: 

dispersion test and standardized dispersion test each had a significance level around 0.10, 

and the Pearson X2 test accepted the Poisson hypothesis. 



Count Frequency 

2.14: Radioactive Decay Counts of Polonium 

Cumulative Cumulative Standardized Pr(X=x) 
Frequency Expected Difference 

.5 7 54.31 0.37 .0282 
260 
643 

1168 
1 TOO 
2108 
2381 
2520 
256.5 
2592 
2602 
2606 
2606 
2607 
2608 

Test Vdue 
Statistic 
W 2  -16 
[:z -15 
-.t2 1.25 

1.26 
D 2488.92 

Table 2.15: Test statistics for the Polonium count data 

Significance 
Leid  
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Figure 2.5: Cumulative observed (-) and expected (- -) histograms for the Polonium count 
data. 

CU 

l-' 

0 

CV 

Figure 2.6: Standardized difference between the observed and expected histograms fbr the 
Polonium count data. 



Chapter 3 

Binomial Distribution 

3-1 Introduction 

In this chapter, the Cram&-von Mises statistics are developed as tests for the binomial 

distribution. In section 3.2, the definitions of the Cram&-von Mises statistics and the basic 

theory are given. In section 3.3, the percentage points to  make tests for the binomial 

distribution are given for the cases where the probability of success, 0, is known and also for 

the case where 8 is estimated. In section 3.4 power studies are presented. Comparisons are 

made with the Pearson x2 test and the score test for the beta-binomial distribution which is 

found to be powerful against distributions with larger variance. In many other cases, A2 is 

found to have good power and is recommended for use as an omnibus test for the binomial 

distribution. 

3.2 Cram&-von Mises Statistics 

Let X be a binomial random variable, with parameters 8 and K; the probability that X = j ,  

pj is given by 

pj = pj(O, K )  = C?I(I - O I K - j  

where j = 0, I,. . ..A- wand It' and 0 are known. Suppose the random sample to  be tested is 

~ 1 . 2 2 ~ .  . . . XN. Mrhen 8 is not known, and is estimated by maximum likelihood, the estimate 

is 4 = i / R  = x%Izj /Kl~.  The Cram&-von Mises statistics will again be calculated as for 



the Poisson distribution, using z;, li, and hi. Here, 

where j = 0,1 , .  . . . I{. and p is the vector of pJ values. 

From section 2.3.2 the asymptotic covariance matrix of the variable dl* = ( o - e ) / O  
is 

20 = Eo - gg ' /g '~- 'g ,  

where Co is defined in seciion 2.3.1. The vector g has j t h  component 

g, = c f [ j @ ~ - ~ ( l  - o ) ~ - J  - ( K  - j ) ( l  - 8 ) K - ~ - l o ~  I 
= K(J+~(~, K - 1) - p,(8, Ii - I) ,  (3.1) 

where pi(@, K - 1) is the binomial probability of observing a count j given a probability of 

success, 8, in K - 1 trials (with ~ - ~ ( 8 ,  K - 1) = pK(8, K - 1) = 0). By combining terms in  

a different way, gj can be written 

Using (3.2) i t  is easily seen that g1D-lg = K/[O(1- 8)]. Then 

and as N 3 m, 2 / f l  = Ad/* converges in distribution t o  a mean zero multivariate 

normal random variable with covariance matrix, 

where r is the vector with j t h  element rj = pile, K - 1); the result follows since Ag = -1i'r. 

3.3 Moments and Percentage Points 

3.3.1 Known 8 

The  mean value of the W2 statistic becomes, for known 8; 
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The means of the other test statistics can be similarly derived and are as follows: 

For the modified statistics of section 2.2.2; 

Note that the means of the test statistics do not depend on the sample size N. For different 

values of the number of trials, K, and for different values of the known probability of success, 

6, the means and variances of the asymptotic distributions for all these statistics are given 

in Table 3.1 for K = 5 and 20 and a range of values of 6. 

Tables 

For Table 3.1 and in all other tables occurring in this chapter, for reasons of space, only a 

small selection will be given of the various values which have been calculated. 

Percentage Points 

As before, the asymptotic distribution of a typical test statistic is a sum of weighted 

variables, with weights equal to  the eigenvalues of the covariance matrix, Ex, of the statistic. 

The A; have been calculated for various values of the number of trials, K, and the success 

probability, 6, using S-PLUS (S-PLUS, 1991). The percentage points were then found by 

Imhof's method (Imhof, 1961). 

For kV2, the matrix M is equal to  D, the diagonal matrix with the binomial probabilities, 

pj, on the diagonal. For statistics U2, A2, W; and A;, the M matrices are (I-D1lt)D(I- 

l l tD) ,  DG-', I and G-l, respectively. The asymptotic percentage points for all these 

statistics are recorded in Table 3.2 for K = 5 and 20 and a range of values of 6. 
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Since for the binomiai distribution K and B are neither location nor scale parameters. 

the asymptotic points depend on these parameters. There is a connection between t,tlcsc 

points and the points used for testing for a known continuous distribution, given by S tephc~rrs 

(1986), where such a test situation is called Case 0. As Ii tends to infinity, the percc~ntngc 

points for W2, u2 and A2 tend to those for Case 0. These points were given in the preceding 

chapter . 
For finite samples, percentage points for I< = 20, 0 = .5 and for various N ,  are givw 

in Table 3.3. With the exception of the statistic, A;, the points converge rapidly to the 

asymptotic points, which can be used for samples of size greater than 10. This is typical for 

all the extensive tables which have been produced. Even for A:, additional simulations for 

sample size 500 and 1000 show that the points do in fact converge to  the asymptotic points, 

but extremely slowly. 

An S function (Becker, Chambers and Wilks, 1988; S-PLUS, 1991) has been written to 

compute the Cram&-von Mises statistics and their asympt;otic p-values. 
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Table 3.1: Asymptotic mean (M) and variance (V) for the Cram&-von Mises test statis- 
tics for testing for the binomial distribution with known success probability 8, for selected 
nuabe r  of trials Ji and selected values of 0. 



Table 3.2: Asymptotic percentage points for the Cram&-von Mises statistics for testing for 
the binomial distribution with known success probability 8, for selected number of trials 1; 
and selected values of 9. 

Upper tail significance level a 
.10 .05 .025 .01 .005 

0.120 0.170 0.191 0.294 0.358 
0.373 0.523 0.686 0.894 1.074 
0.420 0.586 0.759 0.996 1.178 
0.370 0.493 0.621 0.794 0.930 
0.355 0.477 0.604 0.778 0.913 
0.348 0.465 0.587 0.753 0.882 
0.342 0.457 0.577 0.741 0.869 
0.336 0.449 0.567 0.728 0.854 
0.327 0.437 0.551 0.707 0.827 
0.314 0.425 0.543 0.707 0.832 
0.222 0.313 0.408 0.537 0.642 
0.098 0.137 0.180 0.229 0.230 
0.006 0.009 0.010 0.015 0.018 

Upper tail significance level a 
-10 -05 .025 .01 .005 

0.006 0.008 0.009 0.014 0.017 
0.077 0.109 0.142 0.183 0.223 
0.144 0.203 0.264 0.347 0.412 
0.163 0.214 0.267 0.339 0.394 
0.161 0.207 0.256 0.321 0.371 
0.160 0.205 0.250 0.311 0.356 
0.156 0.200 0.245 0.305 0.352 
0.151 0.194 0.238 0.300 0.338 
0.139 0.183 0.229 9.291 0.339 
0.119 0.159 0.201 0.259 0.304 
0.099 0.139 0.181 0.238 0.281 
0.062 0.087 0.114 0.146 0.178 

.001 
0.48 1 
1.179 
1.417 
1.251 
1.232 
I.. 190 
1.176 
1.151 
1.114 
1.184 
0.872 
0.234 
0.020 



Table 3.2: Asymptotic percentage points for the Cramer-von Mises statistics for testing for 
the binomial distribution with known success probability 8, for selected number of trials f< 
and selected values of 6 .  (continued) 

Ii- = 5 
Upper tail significance level a 

.25 .I5 .10 .05 .025 .O1 .005 
1.310 2.024 2.625 3.707 4.856 6.338 7.570 
1.312 1.899 2.397 3.295 4.320 5.510 6.512 
1.328 1.837 2.260 3.006 3.788 4.853 5.679 
1.318 1.756 2.114 2.755 3.420 4.348 5.034 
1.300 1.714 2.054 2.661 3.294 4.155 4.832 
1286 1.690 2.022 2.613 3.230 4.064 4.730 
1.263 1.661 1.988 2.570 3.176 3.993 4.650 
1.212 1.607 1.931 2.505 3.103 3.879 4.555 
1.099 1.487 1.809 2.371 2.959 3.759 4.385 
0.887 1.239 1.533 2.059 2.610 3.362 3.940 
0.534 0.785 0.999 1.383 1.773 2.331 2.753 
C.295 0.448 0.578 0.811 1.054 1.385 1.641 
0.065 0.100 0.131 0.183 0.242 0.318 0.367 

Upper tail significance level a 
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Table 3.2: Asymptotic percentage points for the Cramer-von Mises statistics for testing f ~ r  
the binomial distribution with known success probability H ,  for selected nunlber of t,rials h' 
and selected values of 8.  (continued) 

Upper tail significance level a 

Upper tail significance level a 
.10 .05 .025 -01 

0.332 0.466 0.616 0.803 
0.386 0.515 0.650 0.835 
0.362 0.482 0.609 0.782 
0.352 0.469 0.591 0.758 
0.349 0.465 0.585 0.750 
0.348 0.462 0.582 0.746 
0.346 0.460 0.579 0.742 
0.344 0.458 0.577 0.738 
0.342 0.455 0.573 0.733 
0.338 0.450 0.566 0.726 
0.327 0.435 0.548 0.703 
0.302 0.413 0.533 0.687 
0.067 0.095 0.124 0.160 
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Table 3.2: Asymptotic percentage points for the Cram&-von Mises statistics for testing for 
the binomial distribution with known success probability 9, for selected number of trials I< 
and selected values of 9. (continued) 

Upper tail significance level a 
.10 .05 .025 .01 .005 

0.056 0.079 0.103 0.131 0.132 
0.163 0.215 0.269 0.342 0.398 
0.160 0.202 0.245 0.302 0.347 
0.157 0.196 0.235 0.286 0.325 
0.156 0.194 0.231 0.281 0.319 
0.155 0.193 0.230 0.280 0.317 
0.155 0.192 0.230 0.279 0.317 
0.155 0.193 0.230 0.280 0.317 
0.156 0.193 0.231 0.281 0.319 
0.155 0.194 0.232 0.283 0.321 
0.144' 0.184 0.224 0.276 0.316 
0.118 0.157 0.197 0.252 0.295 
0.046 0.066 0.086 0.110 0.112 

Upper tail significance level cr 
.10 .05 .025 .01 .005 

2.446 3.390 4.331 5.716 6.753 
2.121 2.775 3.454 4.370 5.105 
2.024 2.624 3.252 4.110 4.776 
1.979 2.557 3.162 3.989 4.632 
1.965 2.536 3.133 3.953. 4.584 
1.958 2.525 3.119 3.931 4.565 
1.955 2.520 3.111 3.919 4.548 
1.953 2.516 3.105 3.910 4.533 
1.953 2.514 3.100 3.903 4.523 
1.946 2.503 3.086 3.884 4.501 
1.829 2.378 2.950 3.705 4.340 
1.451 1.946 2.465 3.175 3.724 
0.467 0.656 0.853 1.121 1.329 
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Table 3.2: Asymptotic percentage points for the Cram&-von i'vlises statistics for testirtg for 
the binomial distribution with known success probability 6? for selected number of trials 1i 
and selected values of 0. (continued) 

Upper tail significance level a 
.10 .05 .025 .01 .005 

0.424 0.595 0.772 1.015 1.202 
1.124 1.485 1.862 2.377 2.777 
1.520 1.988 2.477 3.110 3.666 
2.013 2.625 3.264 4.134 4.817 
2.302 2.999 3.727 4.724 5.497 
2.459 3.202 3.980 5.043 5.867 
2.510 3.267 4.060 5.148 5.985 
2.459 3.202 3.980 5.043 5.867 
2.302 2.999 3.727 4.724 5.497 
2.013 2.625 3.264 4.134 4.817 
1.520 1.988 2.477 3.110 3.666 
1.124 1.485 1.862 2.377 2.777 
0.424 0.595 0.772 1.015 1.202 

Upper tail significance level cr 
.10 .05 .025 .01 .005 
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'Sable 3.3: Monte Carlo percentage points for the Cram&-von Mises test statistics testing 
for the binomial distribution with known success probability 0 = .5, and number of trials 
K = 20. The asymptotic points are shown for comparison. 

K = 2 0  8=.5 
W 2  Upper tail significance level a 
N .25 -1.5 .10 .05 .025 .01 

Upper tail significance level cy 
.15 .10 .05 .025 .O1 

0.132 0.150 0.182 0.220 0.256 
0.132 0.154 0.190 0.226 0.268 
0.132 0.154 0.191 0.222 0.265 
0.132 0.153 0.189 0.226 0.269 
0.134 0.156 0.192 0.228 0.274 
0.132 0.153 0.190 0.224 0.277 
0.133 0.154 0.191 0.228 0.272 
0.133 0.155 0.192 0.230 0.279 

Upper tail significance level cr 
.15 .10 .05 -025 .01 

1.637 1.994 2.651 3.284 4.178 
1.645 1.985 2.558 3.164 4.034 
1.645 1.969 2.573 3.205 3.975 
1.648 1.962 2.570 3.172 3.979 
1.646 1.956 2.519 3.114 3.914 
1.648 1.978 2.548 3.154 3.910 
1.620 1.944 2.543 3.144 3.976 
1.640 1.955 2.520 3.111 3.91s 



Table 3.3: Monte Carlo percentage points for the Cramer-von Mises test statistics tcstirlg 
for the binomial distribution with k n o w  success probability H = .5,  and number of' trials 
I< = 20. The a s y ~ p t o t i c  points are shown for comparison. (continued) 

h- = 20 8 = .5 

IV; Upper tail significance level a 

Upper tail significance level a 
-15 .10 .05 .025 

18.285 25.506 46.752 58.148 
21.973 26.699 39.431 97.077 
20.660 25.991 46.502 70.282 
20.859 27.195 48.676 59.152 
24.074 28.657 38.458 54.522 
23.575 28.305 38.071 65.781 
23.108 28.498 45.954 66.182 
28.260 31.240 36.240 41.200 



3.3.2 Estimated t9 

The mean values of W 2 ,  A ~ ,  CVz and A$ for testing for the binomial distribution with 

estimated r9 are as follows: 

where pj = p,(B, K) and T j  = pj(8, K - 1). 
Once again the means of the statistics do not depend on the sample size, N. The mean 

and variance of the asymptotic distribution of each statistic are given in Table 3.4. 

Percentage Points 

The percentage points for the Cram&-von Mises statistics are recorded in Table 3.5 for 

selected values of K = 5,20 and a range of values of 8. As K tends to infinity the points for 

W2, U2 and A* tend to the points for testing for a normal distribution with known variance 

but, estimated mean (Case I), given by Stephens (1986). 

For finite N ,  the percentage points of W', U2, A2, Wz and A: for estimated success 

probability, 8, have been found by Monte Carlo simulation using 25,000 samples. Percentage 

points for = 20, 8 = -5 and various sample sizes, N ,  are given in Table 3.6. These points 

converge rapidly to the asymptotic points (except for A:); these can therefore be used for 

samples of size greater than 10.. 
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Table 3.4: Asymptotic mean (M) and variance ( V )  for the Cram&-von Mises test statistics 
for testing for the binomial distribution with estimated success probability 8, for selectcci 
number of trials K and selected values of 0. 
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Table 0.5: Asymptotic percentage points for the Cram&-von hiIises statistics for testing for 
the binomial distribution with estimated success probability 0, for selected number of trials 
K and selected values of 0. 

K = 5 
W 2  Upper tail significance level a 

0 .25 -1.5 .10 .05 .025 .01 .005 .001 

Upper tail significance level a 
-10 .05 -025 .01 

0.000 0.001 0.001 0.001 
0.029 0.040 0.045 0.070 
0.095 0.133 0.175 0.228 
0.138 0.188 0.239 0.311 
0.131 0.169 0.209 0.263 
0.130 0.169 0.210 0.265 
0.128 0.166 0.204 0.255 
0.124 0.162 0.200 0.254 
0.120 0.159 0.199 0.253 
0.100 0.140 0.181 0.238 
0.035 0.049 0.064 0.083 
0.008 0.011 0.014 0.018 
0.000 O*OOO 0.000 0.000 
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Table 3.5: Asymptotic percentage points for the Cram&-von hlises statistics for t,esting for 
the binomial distribution with estimated success probability 0, for selected number of trials 
K and selected values of 0. (continued) 

K = 5  
Upper tail significance level cr 

.25 .15 .10 .05 .025 -01 .005 
0.085 0.133 0.172 0.244 0.319 0.410 0.500 
0.310 0.470 0.606 0.849 1.102 1.448 1.714 
0.461 0.661 0.831 1.133 1.442 1.883 2.262 
0.595 0.796 0.960 1.236 1.518 1.914 2.182 
0.636 0.825 0.973 1.227 1.482 1.824 2.0'70 
0.647 0.831 0.977 1.228 1.480 1.817 2.040 
0.641 0.829 0.977 1.230 1.485 1.826 2.083 
0.602 0.794 0.947 1.212 1.480 1.930 2.112 
0.507 0.692 0.844 1.111 1.386 1.762 2.057 
0.346 0.495 0.621 0.849 1.080 1.413 1.657 
0.141 0.214 0.276 0.386 0.502 0.659 0.780 
0.047 0.073 0.095 0.134 0.175 0.235 0.273 
0.002 0.004 0.005 0.007 0.008 0.012 0.015 

Upper tail significance level cr 
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'Sable 3.5: .Asymptotic percentage points for the Cram&-von Mises statistics for testing for 
the binomial distribution with estimated success probability 6 ,  for selected number of trials 
K and selected values of 8. (continued) 

Upper tail significance level a 
-10 .05 -025 .O1 .005 

7.68 9.37 11.02 13.15 14.74 
7.33 8.99 10.62 12.74 14.33 
6.99 8.61 10.21 12.32 13.91 
6.47 8.03 9.58 11.63 13.20 
6.13 7.63 9.12 11.11 12.60 
5.93 7.38 8.84 10.77 12.21 
5.87 7.30 8.74 10.65 12.06 
5.93 7.38 8.84 10.77 12.21 
6.13 7.63 9.12 11.11 12.60 
6.47 8.03 9.58 11.63 13.20 
6.99 8.61 10.21 12.32 13.91 
7.33 8.99 10.62 12.74 14.33 
7.68 9.37 11.02 13.15 14.74 

Upper tail significance level a 
.15 .10 -05 -025 .01 .005 

0.255 0.332 0.466 0.616 0.803 0.964 
0.121 0.149 0.200 0.253 0.326 0.383 
0.119 0.141 0.180 0.219 0.272 0.313 
0.118 0.138 0.173 0.207 0.253 0.288 
0.118 0.137 0.170 0.204 0.248 0.282 
0.117 0.137 0.169 0.202 0.246 0.280 
0.117 0.136 0.169 0.202 0.246 0.279 
0.117 0.136 0.169 0.202 0.247 0.280 
0.117 0.137 0.170 0.204 0.249 0.283 
0.118 0.138 0.172 0.207 0.253 0.289 
0.117 0.139 0.177 0.215 0.265 0.305 
0.095 0.320 0.166 0.214 0.279 0.329 
0.052 0.067 0.095 0.124 0.160 0.160 
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Table 3.5: Asymptotic percentage points for the Cram&-von Mises statistics for testi~rg for 
the binomial distribution with estimated success probability 6 ,  for selected number of trials 
K and selected values of 8. (continued) 

K = 20 
u2 Upper tail significance level a 

6 .25 .15 .lo .05 -025 .01 .005 -001 

Upper tail significance level a 



Table 3.5: Asymptotic percentage points for the Cram&-von Mises statistics for testing for 
the binomial distribution with estimated success probability 8,  for selected number of trials 
It' and selected values of 8. (continued) 

Upper tail significance level cr 
.I0 .05 .025 . O 1  .005 

Upper tail significance level cr 
.10 .05 .025 .01 .005 

26.95 29.92 32.66 36.06 38.50 
26.29 29.37 32.24 35.84 38.46 
25.76 28.94 31.95 35.75 38.53 
25.09 28.43 31.62 35.70 38.73 
24.71 28.15 31.45 35.71 38.89 
24.50 28.00 31.37 35.73 38.99 
24.44 27.95 31.35 35.74 39.02 
24.50 28.00 31.37 35.73 38.99 
24.71 28.15 31.45 35.71 38.89 
25.09 28.43 31.62 35.70 38.73 
25.75 28.94 31.95 35.75 38.53 
26.29 29.37 32.24 35.84 38.46 
26.35 29.92 32.66 36.06 38.50 
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Table 3.6: Monte Carlo percentage points for the Cram&-von &fises test statistics testitlg 
for the binomial distribution with estimated success probability 8 = 5 ,  and number of trials 
K = 20. The asymptotic points are shown for comparison. 

I< = 20 8 = .5 
W 2  Upper tail significance level a 

N .25 .15 -10 .05 .02.5 .01 
5 0.096 0.121 0.137 0.157 0.196 0.225 

10 0.094 0.118 0.137 0.168 0.201 0.241 
15 0.093 0.116 0.135 0.167 0.197 0.235 
20 0.093 0.117 0.135 0.167 0.199 0.240 
40 0.094 0.118 0.137 0.171 0.204 0.244 
50 0.093 0.116 0.134 0.166 0.198 0.242 

100 0.093 0.116 0.135 0.166 0.201 0.243 
00 0.093 0.117 0.136 0.169 0.202 0.246 

U2 Upper tail significance level a 

Upper tail significance level a 
-15 -10 -05 -025 -01 - 

0.757 0.836 1.081 1.284 1.645 
0.783 0.905 1.120 1.337 1.641 
0.788 0.906 1.105 1.313 1.608 
0.789 0.902 1.110 1.326 1.609 
0.805 0.921 1.128 1.341 1.614 
0.797 0.911 1.120 1.347 1.613 
0.795 0.916 1.122 1.339 1.600 
0.806 0.925 1.132 1.342 1.625 
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Table 3.6: Monte Carlo percentage points for the Cram&-von Mises test statistics testing 
for the binomial distribution with estimated success probability 8 = .5, and number of trials 
K = 20. The asymptotic points are shown for comparison. (continued) 

It' = 20 0 = .5 

w: Upper tail significance level a 
N .25 .15 .10 .05 .025 .01 
5 0.755 0.941 1.034 1.282 1.531 1.842 

10 0.769 0.352 1.090 1.339 1.590 1.914 
15 0.765 0.945 1.084 1.324 1.560 1.870 
20 0.770 0.945 1.086 1.337 1.584 1.892 
4Q 0.782 0.967 1.104 1.363 1.621 1.934 
50 0.771 0.948 1.094 1.345 1.602 1.923 

100 0.777 0.955 1.094 1.350 1.611 1.922 
oo 0.779 0.564 1.111 1.365 1.621 1.967 

Upper tzil significance level a 
.15 .10 .05 .025 

7.631 10.068 16.586 28.239 
10.257 13.578 24.027 41.820 
11.523 15.222 26.157 43.964 
12.156 16.014 26.474 44.892 
14.166 18.795 28.542 46.034 
15.134 19.613 29.580 47.834 
15.733 19.247 32.628 55.947 
22.290 24.440 27.950 31.350 



3.4 Power Comparisons 

We now consider the power of the Cram&-von Mises statistics for testing for thc bir~olnial 

distribution in the :nore common situation when the probability of success is cstiniattd 

from the sample. Where possible, calculations haw been made of asyrnytotic power for 

the Cram&-von Mises statistics and other tests of fit. These have been supplemt?.utcd by 

simulations to  determine the relative powers for finite samples. 

3.4.1 The Test Statistics 

The test statistics compared are the following: 

The Cram&-von Mises statistics. 

The Kolmogorov-Smirnov statistic. The Kolmogorov-Smirnov statistic is a popular 

goodness-of-fit statistic for continuous distributions although it has been shown to 

have poor power relative to  the Cram&-von Mises statistics. The statistic has been 

developed for discrete distributions by Pettitt and Stephens (1977) and for the Poisson 

distribution by Campbell and Oprian (1979). The statistic is the maximurn discrep- 

ancy between the cumulative observed and the cumulative expected histogram. 

The Pearson X$ statistic using K + 1 cells. This statistic is the most common test of 

fit for discrete distributions. 

The likelihood ratio statistic, G2.  This statistic arises as the likelihood ratio test for 

the multinomial distribution. It is defined 

where o; is the observed number in cell i and pi is the estimated probability in cell i 

(Bishop et al, 1975). 

The dispersion test. This is the analogue of the Poisson disperaion test and is i ~ t -  

tributed to Fisher (Kendall and Stuart, Volume 2, 1973). 
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This test is often used as a one sided test to detect overdispersed alternatives, but is 

used here as a two-sided test to guard against all alternative distributions. It has been 

shown that a test based on D is the score test against the beta-binomial distribution by 

Potthoff and Whittinghill (1966a) for known probability of success, 0, and by Tarone 

(1979) when 0 is estimated by z I K .  The score test is 

s = (D - N ) I  J;No. 

6. The k-component smooth test. This has been developed for testing for the binomial 

distribution by Rayner and Best (1989). For the binomial distribution, the orthonor- 

ma1 functions used in the test are Krawtchouk polynomials. The ith polynomial is 

defined as follows: 

where CF is the binomial coefficient for z successes in n trials. 

The test statistic is then defined as 

where V,  = ~ % ~ h ~ ( x ~ ;  9, K) .  The one-component statistic = V: is similar to  the 

score test against the beta-binomial alternative; 

V2 = c , N _ ~  { ( x j  - ~ 8 ) ~  + (20 - 1 ) ~ ~  + KO(I - 9)) /8(1- 9) J2K(K-1), 
where K is the number of trials. The k-component statistic is equivalent to  the Pearson 

X2 statistic. The tests based on the first component, the second component and the 

sum of the first two components were examined. 

7. Generating function statistics. 

As was noted for the Poisson distribution, test statistics can be based on the prob- 

ability generating function. We have adapted the statistic, P, given by Rueda et a1 

(1991) for the binomial distrihtion. For this distribution, P( t )  = ((1 - 4) + ~ t ) ~ ,  and 

the computing formula for P becomes: 
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A statistic, analogous to  P, can be based on the moment generating funct.ion (hlGE').  

Let $( t )  be the MGF and & ( t )  be the empirical moment generating function. Tlrc 

suggested test statistic is: 

For the binomial distribution, $ ( t )  = ((1 - 8) + 8 e t ) K 7  and the computing fortnula for 

M is as follows: 

3.4.2 Asymptotic Power 

Calculations of asymptotic power can be made in a similar way to those for the Poisson 

distribution. These powers were evaluated against the beta-binomial alternative. Let the 

beta- binomial distribution be defined as follows: 

for j = 0,1, ..., K,O< B < 1,y > 0. Themean and varianceofy are KBand Ii'8(1-(9)(1+- 

K y ) / ( l +  y),  respectively. At y = 0, (3.8) reduces to the binomial distribution. T h u s  fIo 

is: y = 0. Let B be estimated by maximum likelihood, that is, 6 = f / K .  Urrder H I ,  Ict 

y = 6 / D ,  thus y --* 0 as N --* oo and H1 reduces t o  Ho. 

For the Pearson X2 test the mean of a typical component, s; is now 6w;'g where g is tht: 

vector with j t h  element 

- - K'K - 1 ) { ~ p j - 2 ( ~ , ~  - 2) + ( I  - 8)pj(B, K - 2) - pi($, K ) )  
2 

(3.9) 

and where pi(@, K )  is the binomial probability of observing a count j defined in section 3.2 

above, pjh2(B, K - 2) = O for j < 2 and pjjO, K - 2) = 0 for j > K - 2. For the Cram&-vorr 

Mises and the modified CramCr-von Mises test statistics the mean of s; is 
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where A is the partial-sum matrix as before. Again the covariance of d under the alternate 

hypothesis is the same as the covariance under the null hypothesis. 

'The parameter, 6, is chosen to make the power for the test based on the m.1.e. equal 

to 0.50, as was done for the Poisson distribution. For an 0.05-level test to  give a two-sided 

power of 0.50, 6 = 1 . 9 6 / J ~ ( ~  - 1)/2. Powers for the Pearson x2 test were determined by 

evaluating the appropriate non-central x2 distribution, and powers for the other statistics 

were obtained by fitting a + bX;. The asymptotic powers are given in Tables 3.7. 

Resalts and comments 

The results of the asymptotic power analysis show that for beta-binomial alternatives, 

has the best power among the Cram&-von Mises tests, and is nearly as powerful as the best 

test. Compared to  the two-component smooth test, S2, A2 has slightly better power for a 

small number of trials and slightly lower power for a large number of trials. The modified 

W 2  test statistic has slightly lower power than A', but better than W2 or U2. The modified 

A2 statistic, A&, has poor power relative to A2, particularly when the probability of success 

is different from 0.5. As expected, the power of the Pearson x2 test is very high for binomial 

families with a small number of trials, but is very poor for binomial families with a large 

number of trials. 
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Table 3.7: Asymptotic power of the Cram&-von Mises test statistics for testing for t Ilr 

binomial distribution with estimated success probability, 8. 

This table gives the asymptotic power (%) of the Cram&-von Mises test, for selected v;tlues 
of the number of trials, h-, and probability of success, 8 = .1 and 8 = .5, agaixlst a beta- 
binomial alternative with parameter (y ) chosen to give the locally most powerful test, a 

power of 50%. 

8 =  -1 
Test Statistics 

K W2 U2 A2 W: A: X: S2 
50 50 40 40 

6 =  .5 
Test Statistics 

K W 2  U 2  A2 W z  A; X$ S2 
2 50 50 50 50 50 40 40 



3.4.3 Finite Samples 

f'cwrjr studies were undertaken for finite samples using simulation. Common alternatives 

to the birlornial distribution can be categorized by the ratio of the variance to  the mean; 

this is equal to  fi-8(1 - 8) for the binomial distribution. Distributions with variance larger 

than the binomial variance are considered overdispersed, and those with smaller variance 

are underdispersed. 

The most common overdispersed alternative to the binomial distribution is the beta- 

binomial (BB). This distribution, included in the power study, is a mixture of binomial 

distributions with common number of trials, K ,  and with the probability of success, 8, sam- 

pled from a beta distribution. This distribution is also referred to  as the Polya-Eggenberger 

or bi nornial- beta distribution* Other overdispersed distributions examined were the mixture 

of two binornial random variables, the discrete uniform (DU) and the truncated Poisson dis- 

tribution (TP). For underdispersed alternatives, the discrete uniform, Hypergeometric (H) 

and a "subnormal" binomial mixture (SB) (Johnson, Kotz and Kemp, 1992) were exam- 

ined. The "subnormal" binomial distribution arises when each of the K trials has a different 

probability of success, and these probabilities are fixed for all samples. Finally, distributions 

which could have variance equal to that of the binomial distribution (binomial dispersion) 

were also investigated. The discrete uniform distribution was chosen where possible; other- 

wise, distributions with dispersion equal t o  the binomial were constructed. 

Comparisons of power for the CramQ-von Mises tests and the other tests of fit, when 

used in testing against the above alternatives are given in Tables 3.8 - 3.11 for values of 

the number of trials. Ki', equal to  5 or 20. One thousand samples of size 20 were generated 

from each alternative distribution with mean equal to .1K and S K .  The finite percentage 

points of ail statistics compared were found by Monte Carlo simulation using 25,000 samples. 

The maximum standard error of the power results is equal t o  . 5 / m  = 1.6%. Random 

samples were generated wing IMSL subroutines (IMSL. 1587). 

Results and Comments 

1. -4s expected, the binomial dispersion test, D, and the one-component smooth test, 

s,. perform very for overdispersed alternatives, with A2 and X; only marginally 

worse. 

2. For underdispersed alternatives, D once again has the best power with AQlose behind. 



For these alternatives \$ has lower power. 

3. For alternatives with binomial dispersion, all three Cramdr-von Mises statistics havc 

more power than the S1 or 

4. Overall, .42 performs very well as an omnibus test statistic. 



Table 3.8: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sample of size 
20 for testing for the binomial distribution with 5 trials. Alternative distributions with a 
mean, p = K 8  = -5, corresponding to 8 equal to .1 were generated. The binomial variance 
is .45. All tests are at the 5% level. 

Alternative Distribution (a2) 
W 2  LJ2 

B B [ ~  = I , /?=  l] (-9) 511 439 
.5B(.01)+.5B(.19) (-612) 186 183 
.9B(.05)+.lB(.l9) (-9) 441 352 
Underdispersed 
DU[O,l] (.25) 407 407 
SB[.01*4,.46] (.288) 261 261 

Test Statistics 
A 2 W 2 A k  K S  R 

U nderdispersed 
DU[O,l] (-25) 249 249 407 124 407 407 407 
SB[.01C4,.46] (-288) 120 120 238 55 214 261 261 



Table 3.9: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sarnplc of size 
20 for testing for the binomial distribution with 5 trials. Alternative distributions wit11 a 
mean, p = Kt? = 2.5, corresponding to  t? equd to  .5 were generated. The binomial variancr 
is 1.25. All tests are a t  the 5% level. 

Alternative Distribution (a2) Test Statistics 
W2 U2 A2 W: A: A-S R 

Overdispersed 
BB[a = 3.5,P = 3-51 (1.875) 192 182 298 257 377 199 8 
BB[o =,P =] (2.5) 528 482 729 673 823 539 4 
SB(1/3)+.5Bf2/3)(1.806) 202 188 292 259 353 201 334 
.75B(.4)+.25B(.8) (1.850) 648 601 776 732 822 639 2 
DU[0,5] (2.92) 151 158 143 163 66 149 51 
TP[P = 3.272, = 41 (1.342) 195 182 338 272 428 293 11 
Underdispersed 
H[M = 8, m= 5, X=4] (.536) 520 509 540 542 344 490 586 
MB[.1,.1,.5,.9,.9] (-61) 447 441 443 464 250 396 522 
Binomial Dispersion 
DIf[1,4] (1.25) 763 720 913 872 953 779 4 
6[.083,0,.417,.417,0,.083] 
(1.25) 579 567 655 495 345 501 770 

Underdispersed 
H[1M=8, m=5, X=4] (-536) 715 375 729 275 424 170 5 
MB[.1,.1,.5,.9,.9] (.61) 568 216 581 200 358 132 7 
Binomial Dispersion 
DU[1,4] (1.25) 1 1 2 174 196 11 39 
Cf.083,0,.417..417,0,.083] 
( 1.25) 206 239 205 999 999 237 307 



Table 3.10: Power Comparison 
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size 
20 for testing for the biaomid distribution with 20 trials. Alternative distributions with a 
mean, p = KB = 2, corresponding to 8 equd to .l were generated. The binomial variance 
is 1.8. All tests are at  the 5% level. 

Alternative Distribution (c2) 
W 2  U 2  

Overdispersed 
BB[a = 3.7, /3 = 3.71 (2.7) 1.53 140 
BB[a = 7 / 6, P = 63/61 (4.5) 397 355 

Test Statistics 
A2 W i  A% K S  R 

Underdispersed 
DU[1,3] (2/3) 452 457 671 584 73 498 825 
H[M=40,m=20,X=4](.923) 740 741 773 766 245 606 917 
SB[.05* 19,.95] (.902) 262 285 291 313 22 297 278 
Binomial Dispersion 
C[.15,.3,.1,.3,.15,0*16] (1.8) 401 408 310 318 19 354 230 

Underdispersed 
WVI (213) 

Binomial Dispersion 
C[.15,.3..1..3..15,0*16] (1.8) 10 69 12 91 316 66 85 



Table 3.1 1: Power Comparison 
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size 
20 for testing for the binomial distribution with 20 trials. Alternative distributions wit ti a 
mean, p = h'8 = 10, corresponding to 6' equal to .5 were generated. The binomial variance 
is 5. All tests are a t  the 5% level. 

Alternative Distribution (u2) 

Overdispersed 
BB[a = 18.5, P = 18-51 (7.5) 
BB[a = 35/6, ,3 = 35/61 (12.5) 
.SB[.4]+.5B[.6] (10.93) 
.75B[.45]+ .25B[.65] (7.85) 
DU[6,14] (20 / 3) 
DU[5,15] (10.0) 
T P b  = 10.019, K = 201 (9.81) 
Underdispersed 
DU[8,12] (2.0) 

Test Statistics 
A2 W: A: K S  

Binomial Dispersion 
C[0*7,.2,.15,.1,.1,.1,.15,.2,0*7] 



Table 3.11 : Power Comparison (continued) 
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size 
20 for testing for the binomial distribution with 20 trials. Alternative distributions with a 
mean, p = K6 = 10, corresponding to 6 equal to .5 were generated. The binomial variance 
is 5. All tests are a t  the 5% level. 

Alternative Distribution (a2) Test Statistics - 

Overdispersed 
BB[a = 18.5,P = 18.51 (7.5) 336 352 293 300 230 309 

U nderdispersed 
DU[8,12] (2.0) 

Binomial Dispersion 
C[0*7,.2,.15,.1,.1,.1,.15,.2,0*7] 



3.5 Example 

Table 3.12 records the data from a dice throwing experiment due to Weldon, discussed \by 

Pearson (1900) and presented in Rape r  and Best (1989). The data show the number of 

occurrences of a 5 or 6 on any die from a throw of 12 dice repea'led 26,306 times. 'rtltt 

sample mean and variance are 4.044 and 2.698, respectively, and the estimated probability 

of success is .3377. Clearly, the probability of saccess is 113 for a fair die, so this data could 

be tested for a binomial distribution with known probability of success equal to 113. For 

this reason expected frequencies are given for both known probability of success and for the 

probability of success equal to  the estimated value, .3377. We define the standardi:ed dzf- 

ference as the difference between the observed and expected values divided by the standard 

deviation. Asymptoticafly, the standardized difference has a standard normal distribution. 

The cumulative observed and expected histograms are found in Figures 3.1 and 3.3 for 

known and estimated success probabilities, respectively. The standardized differences arc 

plotted in Figures 3.2 and 3.4. The values and significance levels of the Cram&-von Mises 

statistics and other test statistics are given in Table 3.13. 

The Cram&-von M i s s  statistics and the Pearson X2 test reject the hypothesis of a 

binomial distribution with probability of success equal to 113, but do not reject the binorriial 

hypothesis when the parameter can be estimated from the data. 



No. of 
5 or 6 

Frequency 

Table 3.12: Weldcn Dice Data 

Cum. 
Frequency 

Cum. 
Expected 

p=1/3 
202.75 

1419.25 
4764.61 

10340.22 
16612.78 
21630.83 
24558.03 
25812.54 
26204.58 
26291.69 
26304.76 
26305.95 
26306.00 

Std. 
Difference 

Cum. 
Expected 
p=.3377 

187.38 
1333.89 
4549.13 

10013.83 
16283.18 
21397.83 
24440.37 
25770.10 
26193.86 
26289.89 
26304.58 
26305.94 
26306.00 

Table 3.13: Test statistics for the Weldon dice data 

Known Parameter Estimated Parameter 

Test Value 
Statistic 
W2 2.85 
UZ 0.58 
A2 14.64 
w2 13.75 
-4: 92.14 
D 
X$ 41.31 

Significance 
Level 

Value Significance 
Level 

Std. 
Difference 



CHAPTER 3. BiNOMff4 L DfSTrLilB rT7lOrlr 

Figure 3.1: Cumulative observed (-) and expected (- -) histograms for Weldon's dice data 
with (p=1/3). 

Figure 3.2: Standardized difference between the observed and expected histograms for Wel- 
don's dice data with (p=1/3). 
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Figure 3.3: Cumulative observed (-) and expected (- -) histograms for Weldon's dice data 
with @=.3377). 

Figure 3.4: Standardized difference between the observed and expected histograms for Wel- 
don's dice data with (13=.3377). 



Chapter 4 

Discrete Uniform Distribution 

The discrete uniform distribution with K cells is the distribution for which pi = l / l i  for 

j = 1,. . . , K. Choulakian, Lockhart and Stephens (1994) have discussed Cramdr-von Mises 

statistics for the discrete uniform distribution, and have found analytically the eigenvalues 

and eigenvectors needed for the asymptotic distributions. The authors also discuss the 

components of the various statistics and give the asymptotic percentage points for each test 

statistic. In this chapter, asymptotic power comparisons are made following the lines of the 

comparisons for the Poisson and binomial dist ributions. 

4.2 Power Comparisons 

4.2.1 Lehmann Alternative 

The asymptotic powers of the Cramdr-von Mises test statistics were examined against the 

Lehmann alternative to  the discrete uniform distribution. The Lehmann alternative is 

defined as follows: 

for j = 1,. . . , K,y > 0. At y = 1, (4.1) reduces to the discrete uniform distribution. Th~rj 

ITo is: y = 1. Under 6, let y = 1 + b/*; thus as N -. m, H I  becomes Ho. 



The i-th component of a test statistic, .s; = (w;'X), now has mean 6w;'Ag where A is 

the partial-sum matrix, and g is the vector with j th  element 

The variance of the maximum likelihood test for the discrete uniform distribution against 

the Lehmann alternative is the inverse of the Cram&-Rao lower bound. As before, the 

parameter, 6, is chosen t o  make the power for the test based on the m.1.e. equal to 0.5. For 

a 0.05-level test to give a two-sided power of 0.50,6 = 1.96/t/;T, where J is the Cram&-Rao 

lower bound 

dZ log f 

E (  dr2 

The asymptotic powers for the Cram&-von Mises test statistics, the first two components 

and the sum of the first two components of A2, and the Pearson X2 statistic, are given in 

Table 4.1. Also included in the table are the results for the continuous uniform distribution 

corresponding to  K = oo. 

Results and comments 

Against Lehmann alternatives, A2 has the best power among the Cram&-von Mises tests, 

and is nearly as powerful as the best test. As expected, the power of the Pearson x2 test is 

very high for distributions with a small number of cells, but is very poor for distributions 

with a large number of cells. The power of the first component of A2 is slightly lower 

than that of A2. The power of the second component is negligible reflecting the fact the 

Lehmann alternative is primarily a shift in the mean. The power of the sum of the first 

two components gives power less than the first component reflecting the utilization of a 

component with very little power. 

4.2.2 One Parameter Beta-Binomial Alternative 

The asymptotic powers of the Cram&-von Mises test statistics were also examined against 

the one parameter beta-binomial alternative. Let the one parameter beta-binomial distri- 

bution be defined as follows: 



for j = 0,1,.  . ., I ,y  > 1,1 = K - 1 where K is the total number of cells for which the 

distribution has non-zero probability. Thus, the distribution of Y is over the same range iks 

that of the discrete uniform distribution over 1 ,2 . .  . . , I<. The mean and variance of \.- ;Lre 

1/2+ 1 = ( K +  1)/2 and ( K -  1)[2y + ( K -  1)]/4(2y+l), respectively. At y = 1, (4.2) reduces 

to the discrete uniform distribution. Thus Ho is: 7 = 1. Under H I ,  let y = I + hi*, so 

that in the limit HI approaches Ho. 

For a typical component the mean is SwifAg where A is the partial-sum matrix, and g 

is the vector with j th  element 

where @(a) is the digamma function defined @(a) = r(a)'/r(a). 

Agah the parameter, 6, is chosen to make the power of the test based on the m.1.e. 

equal to 0.50. For a 0.05-level test to give a two-sided power of 0.50, 6 = 1.96 /a, where J 

is the Cram&-Ran, lower bound 

Here @' is the trigamma function, and 

The asymptotic powers for the Cram&-von Mises test statistics, the first two components 

and the sum of the first two components of A2, and the Pearson x2 statistic, are given i n  

Table 4.2. Also included in the table are the results for the continuous uniform distrihu tiori 

corresponding to M = oo, for which value the beta-binomial alternative becomes a orie- 

parameter beta distribution. 

Results and comments 

The resdts of the asymptotic power analysis show that against one-parameter beta- t~irtornial 

alternatives, u2 has the best power among the Cram&-von Mises testr?, and clearly greater 

power than Pearson X2. None of the test statistics examined had power approaching that of 

the best test. The power of the Pearson X 2  test is highest for discrete uniform distributiorls 

with a moderate number of cells (5 or 61, but is very poor for discrete uniform distributions 



with a large number of cells. The power of the first component of .A2 gives 110 power as the 

mean of the alternative distribution is identical to that of the null distribution. The powcr 

of the second component is nearly as large as that of the best test reflecting the fact that tghe 

beta-binonr;ctI alternative gives primarily a shift in the variance. The power of the sum of 

the first two components is less than that of the second component reflecting the inclusion 

of a component with very little power. 

The asymptotic power of the Cram&-von Mises statistics is overall very poor for one- 

parameter beta-binomid alternatives. The eigenvalues for W 2  and A2,  and thus the relative 

weights given to  each component are decreasing with increasing i. Therefore, the largest 

weight is given to the first component, the next largest weight to  the next component, 

etc. The first component offers no power, since the alternative distribution has the same 

mean as the null distribution. Any statistic which gives relatively higher weight to the 

second component (variance) will. have higher power. u2 gives identical weight to pairs of 

components, thus giving the second component a higher weight than A2. 

The examination of the asymptotic power of tests of fit for the uniform distribution 

against the one-parameter beta-binomial distribution suggests that no one test statistic will 

be most powerful against all alternatives. 
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Table 4.1: Asymptotic power of t.he Cram&-von Mises test statistics for testing for the 
discrete uniform distribution. 

'rhjs table gives the asymptotic power (%) of the CramCr-von Mises statistics, the first 
comporlent of A2, S1, the second component of A2, S2, and the Pearson x2 statistic for 
selected values of the number of cells, K ,  against a Lehmann alternative with parameter 
(7) chosen to give the locally most powerful test a power of 50%. 

'Test Statistics 
K W2 U2 A' S1 S2 Sl+S2 X ;  
2 50 50 50 50 - - 50 
3 48 40 48 48 08 40 40 
4 46 34 47 47 09 40 34 
5 45 31 46 45 10 40 31 
6 44 28 45 44 10 39 28 
8 43 25 45 43 11 39 24 

10 42 23 44 43 11 38 21 
12 42 23 44 43 11 38 20 
20 40 21 43 41 11 38 16 
40 40 20 42 40 11 37 11 
50 39 20 42 40 11 37 11 
00 39 19 41 40 11 36 - 

Table 4.2: Asymptotic power of the Cram&-von Mises test statistics for testing for the 
discrete uniform distribution. 

This table gives the asymptotic power (%) of the CramCr-von Mises statistics, the first 
component of A2, St, the second component of A2, S2, and the Pearson x2 statistic for 
selected values of the number of cells, K, against a one parameter beta-binomial alternative 
with parameter (7) chosen to give the locally most powerful test a power of 50%. 

Test Statistics 
K W2 U2 A2 S1 S2 S1+S2 xg 
3 08 14 08 05 19 14 14 
4 10 25 11 05 33 26 22 
5 11 30 14 05 41 32 24 
6 12 33 15 05 44 35 24 
8 11 34 16 05 47 37 23 

10 11 33 16 05 47 38 21 
12 11 33 16 05 47 38 19 
20 10 31 16 05 46 37 16 
40 10 29 16 05 45 36 12 
50 10 29 15 05 44 35 11 
m 09 25 14 05 41 32 - 



Chapter 5 

Regression Models 

5.1 Introduction 

In this chapter, the empirical process and Cram&-von Mises statistics are introduced ant1 

developed for tests on variables from a discrete distribution which are independent but not 

identically distributed. (i.n.i.d.). In section 5.2 the definitions of the empirical processes arc? 

given. The distributions of the empirical processes and the respective Cram&-von Mises 

statistics are shown in section 5.3 for known parameters and in section 5.4 for unknown 

parameters. The theory is illustrated for Poisson regression, logistic regression and comple- 

mentary log-log regression and some percentage points are given in section 5.6. In section 

5.7, power comparisons are given for testing for Poisson regression. Finally, examples are 

presented to  illustrate the techniques. 

5.2 Definitions 

The definitions of the empirical process and Cramer-von Mises statistics for continuous i.i.d. 

variables, continuous i.n.i.d. variables and discrete i.i.d. varizbles will first be reviewed. 

I.I.D. Continuous Variables 

Let yl, y2,. . . , y~ be a sample of independent and identically distributed observations wi th  

continuous distribution function G(y). The hypothesis to be tested is that G(y) = F(y)  
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where F(y) is completely specified. The empirical process of the sample is defined as 

where EV(y) is the proportion of y; less than or equal to y ,  the empirical distribution 

function: and F(y) is the distribution function. For continuous distributions, if Y has 

distribution F(y), then U = F ( Y )  is distributed as a uniform random variable on [0,1]. 

This is referred to as the probability integral transfornation. -41~0, let u; = F(yi) and UeW(t) 

be the proportion of u; less than or equal to t. Statistics based on the empirical process 

Yv(y) are equivalent to  statistics based on the process 

In particular, Cram&-von Mises statistics for testing fully specified continuous distributions 

are defined as follows: 

where = Ji ZN(t)dt. The weight function for a2, l / t ( l  -t), is the inverse of the variance 

of the process ZN(t), a t  t. 

Let u(*), a(?), . . . , U(N) be the u; arranged in ascending order, and U = C ~ ~ U ~ / N .  The 

computing formulas of the Cra.mitr-von Mises statistics can be written 

Independent Non-Identically Distributed Continuous Variables 

To extend the discussion to  the i.n.i.d. case, let yl, y2, . . ., y~ be a sample of independent 

observations with continuous distribution functions. Suppose the null hypothesis is that 

F(y;;?;) is the distribution of yi. We refer to F(y;yi) as Fi(y). 



CHAPTER 5. REGRESSIO-V MODELS $5 

Let 1 { L )  be the indicator function taking the value 1 when L is true and 0 otherwise. 

The empirical distribution function. F2v(y) can be written as a sum of indicator functions. 

The expected value of l (yi  5 y) is P T ( ~ <  5 y )  = F;(y). Let IT; = F,(Y,): then each randotu 

variable, li;, is distributed uniformly on [OJ]. Also define ZL; = F i ( y i ) ;  then 

= { N )  - t 0 5 t 5 1. (5.7)  

The process, YN(t), is referred to as the residual process. 

The definitions and computing formulas of the Cram&-von Mises statistics for testing 

for i.n.i.d. continuous distributions are identical to those given in the previous section with 

the uniform process Z N ( t )  replaced by the residual process. 

I.I.D. Discrete Variables 

Let yl, yz, . . . , y~ be a sample of independent and identically distributed observations with 

discrete distribution function G(y), and let the null hypothesis be: G(y) = F(y),  where 

F( y) is completely specified. For discrete distributions, the empirical process is the same as 

for continuous distributions but the range of the variable is now discrete; thus 

The transformation U = F ( Y )  can be made but U will not now be distributed as a uniform 

random variable. Let U N ( t )  be defined as above; then 

Note that PT(U 5 t)  < t ,  with equality if and only if t is in the closure of the range of 1.'. 

It will be useful t o  recall the notation introduced in 2.2. Let pj be the probability of 

observing a count j ;  for simplicity, the sampie space will be assumed to be the integers from 

1 t o  K, where K can be infinite. 

Suppose N independent observations are given; let oj be the observed number of ont- 

comes j ,  and let Np,  = e j  be the expected number in cell j .  Let Sj = ~ : = ~ * i ,  T, = x i = l e ;  



and / I ,  = CS,,p,, and define 2, = S, - T I ,  j = 1,2 , .  . ..K. The Cram&-von Mises statistics 

U". 1;2, A 2  and f.VA for discrete distributions are then 

- h' where Z = X I = ,  Zipl. 
These statistics can also be expressed as a weighted sum of the empi~ical process: 

I.N.I.D. Discrete Variables- Empirical Processes 

There are four possible residual processes which can be examined for i.n.i.d. discrete vari- 

ables. Let F( y;; 7;) be the distribution function of observation y;, 2 = 1, . . . , N. It will be 

supposed that these distributions are from the same parametric family (for example, the 

Poisson family), but each y; has a different yi. However, several random variables could 

have the same distribution (e.g. the Poisson with the same mean). Let M be the number 

of different distributions and 1% the number of observations from the ith distribution. Let 

y;l, I = I , .  . . , Nj be the observations with distribution i, i = 1,. . . , M. The four residual 

processes will now be defined. 

1. Untransformed. Each individual y; is compared t o  Fj on the original scale. 
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where F ( j )  = ~ - ~ ~ ~ ~ , ~ l - ~ & ( j ) .  This process effectively compares: the crnpiricai dis- 

tribution function with the average distribution function. 

F-transformed. Let C', = F,(l;). and u,  = I;;(y,), where F , ( j )  = P r ( 1 ;  5 j ) .  Ttm 

where Fu,(t) = N - ' C ~ ~ ~ ~ V $ ' T [ U ~  5 11- This process transforms each observation to 

the uniform scale and compares it to its expected value, and is the natural anaiogue 

of the residual process for continuous random variables. 

G-transformed. Let V; = G ; ( x ) ,  and v; = G,(y;), where G,(j) = Pr(1;  < j ) .  Then 

where Pv,(t) = N-'C;!!!~~V;PT[X _< t]. The reason for examining this process will 

become apparent when the test statistics are defined. 

Random-transformed. Let fits = F;'(II';) = F;(Y;) - b;p;(k;.), where 6; is a random 

variable distributed as uniform on [O,l],  and p;( j )  = Pr(y; = j ) .  Then, the variable 

li* = F8(Y)  is distributed uniformly on [0,1]. Also let u: = F;l(y,) = F,( y;) - 6;pi(y;). 

Define 

This process is equivalent to the residual process Y N ( t )  for continuous random vari- 

ables. 

Note that when all the f i  are continuous, Yz,lv(j)r Y ~ , N ( L )  and Y 4 , ~ ( t )  are equivalent. 
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I.N.I.D. Discrete Variables- Crarndr-von Mises Statistics 

A set of CrarnCr-von Mises statistics, W 2 ,  CT2, A ~ ,  and IY;, were developed based on each 

of the above processes as follows. 

1. The following statistics come from applying the definition of the discrete Cram&-von 

Mises statistics given in (5.12 - 5.15) to the untransformed process Y 1 p ( j ) :  

- - - 
where p( j )  = E E I p i ( j ) ,  = E g t K . ~ ( j ) p ( j )  and H ( j )  = C;,,P(~). When 

F, = F for all 2 these test statistics are identical to  those defined for a common 

discrete distribution. 

2. The F-transformed process leads to  statistics similar to  the Cram&-von Mises statistics 

for continuous distributions. The test statistics are the integral of the squared process 

over [0,1]. 

where = J: Y 2 , ~ ( t ) d t .  For A2, the weight function, l / w ( t ) [ l  - w(t)] ,  is the inverse 

of the variance of the process a t  t, with 

3. The G-transformed process leads to statistics similar to  that of the F-transformed 

process, 
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v'here = Y&v(t)dt ,  and 

w ( t )  = f i . f , ( t ) .  

In order to compute the test statistics based on the F- and G-transformed processes, 

numerical integration must be used. 

4. The random-transformed process is equivalent to the continuous empirical process 

on [0,1], and the test statistics are identical to the Cram&-von Mises statistics for 

continuous distributions. 

where = Y 4 , ~ ( t ) d t .  

The G-transformed process was examined because when F; = F, for all i, and F is 

discrete, w,? = W 2 ,  where W 2  is the statistic defined for i.i.d. discrete distributions given 

in (5.8); however, WfZ # W 2 .  Similar results hold for U: and A:. To see this, let S j  = 

&Q;/N and j = 1,2, . . . , X, and observe the following identities: 

for j = 1,2, .  . . , K ,  where So = F ( 0 )  = 0, and y ( ~ )  is the largest observation. 

since G ( j )  = F( j - 1)- 
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Pu(t) = Pr[F(Y)  5 t ]  

if 0 5 t  < F ( 1 )  

= 1 " j -  I) i f F ( j -  1 ) s ; .  F ( j )  

1 i f t  = 1. 

Using the above identities, we obtain 

In contrast, we have 

Thus. in the case where the sample consists 0fi.i.d. random variables, the statistics W j ,  

Uf and A) do not reduce to  the Cram&-von Mises statistics for discrete data defined in 
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5.3 Distribution Theory - Known Parameters 

5.3.1 Introduction 

In this section, it will be shown that when the number of different distributions is fixed arid 

finite. the untransformed empiricd process Y l , ~ ( j ) ,  defined in section 5.2, converges to ;t 

mean zero multivariate normal distribution with a given covariance matrix, A s  before, let 

be the number of different distributions, X i  be the number of observations from the it11 

distribution, and N = ~i!!, N;. Also, let 

where 0 < c; < 1. 

For the ith distribution, let sj, pi, d; and Z; be the vectors o, p, d and Z  defined as 

in section 2.2, and let D; be the corresponding D. Also, let Fi(j) = xi-, - p;(b).  Then 

d i / e  = (0; - ~ ~ ~ ~ ) / m  has an asymptotic multivzriate normal distribution with mean 

zero and covariance matrix, Eo; = D; - pip:. Also, the statistic Z ; / m  has an asymptotic 

multivariate normal distribution with mean zero and covariance matrix X; = AXo;At with 

j, kth element a;,jk = min{&(j), &(k)) - Fj(j)Fi(k). 

The empirical process YljN(j) can now be written as a finite sum of K dimensional 

vectors, where K is the number of cells of the discrete distribution. Let YllN be the vector 

with j t h  element Y1,N(j). Then 

Let Y1 = limN+ocj Y 1 , ~ .  Then since Z ; / a  is asymptotically multivariate normal with 

mean zero and since Zi, Zit are independent for i # it, Y1 is distributed multivariate normal 

with mean zero and covariance matrix, E l ,  with j, kth element 

The four test statistics defined in terms of Y r , ~  given in (5.16 - 5.19) are of the general 

form ZtMZ, where M is positive definite and symmetric. As before, the test statistics can 
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be written asymptotically as a weighted sum of independent 2: variables, and percentage 

points can be found. 

5.4 Estimated Parameters 

5.4. f Introduction 

The more important problem where parameters must be estimated before testing fit will now 

be discussed, with reference to Y1,N(j). The specific situation considered is when parameters 

are given by a generalized linear model (McCullagh and Nelder, 1989). The parameter y; 

in F(y i ;  y;) becomes the mean p; of y;. The vector of means, p ,  depends on a matrix of 

known covariates, X, and a vector 0 of parameters. This is done through the relationship 

p = g(q), and q = X8. The function, g(-), or sometimes g-l(-) is the link between the 

random and systematic components. The distributions are assumed to  come from a member 

of the exponential family, but each with a different mean. 

Let 8 = [8;,sl,Jf where 81 is a vector of pl known parameters and e2 is a vector of 

pz parameters estimated from the data, and let O0 be the vector of true values of the 

parameters. Let e2 be the maximum likelihood estimator of 8 2  and ~ ( y )  = P(y; el, e2)  be 

the estimated distribution function. 

Regularity conditions are assumed such that the maximum likelihood estimator can be 

written 

where limN,, i~ = 0, and 

The regularity conditions include the following: 

a h  "@ exists, and 1. For all i, Fi(y ,  8 )  has a density fi(y, 8) such that :z 

2. For dl N, the matrices 
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exist and converge to the finite positive-definite matrix J as iims,,. 

3. Since y; is discrete, it follows that for all j ,  

4. For each j; the function g2(j) exists such that 

gz(j) = lim X-'~fj=, 
N-co aFi(j7 8'2 I 8=80 

5.4.2 I.N.I.D. Discrete Variables 

The process PlgN(j) 

Suppose ii is 2; with 6 replaced by the m.1.e. 8. Similarly, let YImN(j) become P l t N ( j ) .  

Let qlVN be the vector with j th  element Y*,,V(~). The vector can be written 

where A is the partial sum matrix. Let = limw-co Y ~ , ~ .  Each d; /mjs  afiyrnptotically 

multivariate normal with mean zero, but the vectors are not independent and the distri bu- 

tion of y* is not immediately obvious. In order to show that the asymptotic distrihutiori 

of Y ~ , ~  is multivariate normal the foliowing is required. 

1. Let D be the vector of length X M  formed by appending the vectors, d;/fi, in a 

column. Since each d;/m is independent and asymptotically K dimensional mul- 

tivariate normal with covariance matrix Eai, 3 is asyrnptoticdly MK dintensional 

multivariate normal with covariance matrix made up of M partitions, the i th parti- 

tion having the matrix & on the diagonal. 

2. Let E be the vector of length KM formed by appending the vectors, d ; / n  i n  a 

column. 
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3. Suppose C ,  is a K by K diagonal matrix, with all diagonal elements equal to the 

constant 6 defined in (5.29). 

4. Let C be the K by M K  matrix formed by placing the M matrices C ;  side by side. 

Then define d = CD and d = CE. From (5.36) it can be seen that Y ~ , ~ J  z ~ 4 .  

.5. Let R, be the p;! by A' matrix with j ;  kth element 

where e2, is the j th  component of & . 

6. Let R be the p2 by M K  matrix formed by placing the matrices, R7 side by side. 

7. Suppose pi a d  6; are the vectors of length K with j th  element p ; ( j )  and f i i ( j ) .  

8. Let p and $ be the vectors of length M K  formed by stacking the vectors, pi and pi. 

9. Let P be the iMK by MK diagonal matrix with the vector p on the diagonal. 

10. Suppose N; is a vector of length K  with each element m, and N be the vector of 

length M K  formed by stacking the vectors N;. Then define N as the MK by M K 

diagonal matrix with the components of vector N on the diagonal, 

11. Let M be the iMK by MK diagonal matrix with diagonal elements ~ / a .  The 

diagonal elements are thus the JcT each repeated K times. 

Suppose L, a vector of length p2, is RP-'ND. The kth element of L is given by 

since the second term is 0 from (5.32). Therefore, combining (5.30) and (5.37) we have, 
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where lim~,, E N  = 0. -USO, using the assumed regularity conditions, it can bc shown t h a t  

&[fi - P] = fiz1(e2 - 82) + El\., 

- 1 
- -R'J-"RP-~NV -+ E N .  fi (5.39) 

where limN,, EN = 0. Thus, 

d = C& 

= C[V - .M(P - p)] 

as N -+ m. Since (5.40) is a linear combination of asymptotic multivariate normal random 

variables, it is asymptotically multivariate normally distributed. Finally since can be 

written as a linear combination of d, i t  is asymptotically multivariate normally distributed. 

The  vector YI,N is easily shown to have mean zero; its covariance can be derived as 

follows. Let & ( j )  = xi=, pi(k) .  Then 
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Notice that 

This is the covariance of the discrete empirical process with known parameters. From (5.391, 

C can be written 

which has a limit 

as N -. oo, where J is given in (5.31).  The term B can be derived as follows, 

- - aF,& 8 )  1 j A($, 8)  f i ( l ) }  + E N  ae; "- {C I=l ae2 
aF;l(k, 8 )  j - - afd4 8 ) )  + E N  

ae; "-l{C k1 ae2 

using the results (5.30 - 5.32). The limiting value of 3 is the same as that of C. Combining 

the result for each term, and letting = C O V [ ? ; , ~ ( ~ ) ,  ?l ,N(k)] ,  we have 
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As before, the test statistics can be written asymptotically as a weighted sum of inde- 

pendent xT variables and percentage percentage points found. 

The process &,,v(t) 

Since the process, ~4 , i v ( t ) ,  is equivalent to  that of c , ( t )  for continuous distributions, the 

convergence of ~4, ,v ( t )  to a mean zero Gaussian process with covariance function 

where 

follows from the application of the result from Loynes (1980) for non-i.i.d. continuous 

distributions. 

The processes y2,N(t) and y3,N(t) 

The covariance functions for these two processes can be found in a similar manner to the 

covariance matrix for y1,N(j). Define F-(t)  = max{j : F ( j )  5 t )  and G-(t)  = max{j : 

G ( j )  5 t } ,  so that Pr[F(Y)  5 t]  = F[F-(t)] and Pr[G(Y) < t]  = G[G-(t)].  Then 

and 

P ~ ( s ,  t )  = ~ ~ ~ c ; [ m i n { ~ ; [ ~ ~ ( s ) ]  ,G;[G; ( t ) ] }  - Gi[G1(9)]Gi[Gr ( t  )]  - 

The convergence of statistics based on these processes will be discussed in section 5.6. 

We next turn to  a discussion of three commonly used regression models. 

5.5 Covariances - Specific Models 

5.5.1 Poisson PLegression 

Poisson regression is a commonly used method to relate an observed count with a set of 

explanatory variables. Let yl, 312,. . . , y~ be a sample of observed counts and X be a matrix 
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of explanatory covariates consisting of row vectors, Xi, which contain the covariates for the 

ith count. Each count, y; is assumed to  be Poisson distributed with mean, p;. The mean, 

pi,  is related to the parameters and explanatory variables by the following link: 

pi = m;g(q;) = m; exp{X;@) 

where 7; is the linear predictor, Xi@. A Poisson regression model is also referred to as a 

log-linear model, since g-I(.) is the logarithmic function. The term, mi, is referred to as 

an offset, and is often modeled as an additional term in the linear predictor with parameter 

equal to 1. In this case the covariate, log(m;), would be included in the linear predictor. 

The density for the i th  count, y; is 

and the log-density at yi is 

Now, 
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Therefore. 

.&o, 

and 

Thus, 

5.5.2 Logistic Regression 

Logistic regression is used to  relate an observed binomial random variable with a set of 

explanatory variables. Let yr, yl, . . . , y~ be a sample of observed counts, and X be a matrix 

of explanatory covariates consisting of row vectors, Xi, which contain the covariates for the 

i th count. Each count, yi is assumed to be binomially distributed with probability, a,, of 

success, and number of trials, mi. Let the means, p~1; = m;n; be related to the parameters 

and explanatory variables by the following link: 

where 77; is the linear predictor, Xi@. Thus, g- ' (T) = l o g [ ~ / ( l -  T)], the logit function. An 

important property of the logistic regression model is that the parameters have the same 

interpretation whether the data are sampled prospectively or retrospectively; for this reason 

it is often used in epidemiological research. 

The density for the ith count, y, is 

and the log-density a t  yi is 
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= z,iXI$ - mi log(1 + exp{X)9)) + C 

where C is a term that does not involve the parameters. Now, 

Therefore, 

Also, 
slog k ( ~ i ,  @I I 

= Y;XI - m; 
exp {X{i3) 

a02 840 (1 + exp{xIB)) 
and 

Thus, 

c7 = N-w lim f l - '~~ , rn ;~ (qJ [ l -  g(q;)](X:X;). 

5.5.3 Complementary Lug-Log Regression 

Complementary log-log regression is an alternate method to relate an observed binomial 

random variable to  a set of explanatory variables. The situation is as for logistic regression 

but with the following link: 
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where vi is the linear predictor. X,B. Sotice thrit 1 - g ( q , )  = esp(q,).  Once again, the name 

of the procedzre refers to  the inverse link function, 

where ;ri = ,ui/m,. The complementary log-log regression model is often used in the analysis 

of limited dilution assays. 

Let (; = exp 77;, then the density for the ith count. y; is 

and the log-density at yy; is 

where C is a term that  does not involve the parameters. Now, let 

Then 

since g1(%) = [l - g(~i ) ] f~ -  Therefore, 

Also- 
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and 

Now E[yi] = pi = m;g(v;), and 

-1 N nit: J = lim N xi=, (X:Xa). 
~ + o o  [ex~(Cj) - 11 

5.6 Calculation of Percentage Points 

The CramCr-von Mises statistics based on the untransformed process, PlfN(j j, were defined 

in (5.16 - 5.19). Asymptotic percentage points have then been found in the usual way. 

For the Poisson regression model, the number of cells was truncated at K, where Ii 

was chosen to  make the final values of A; sufficiently small that the percentage points do 

not change with the addition of more eigenvalues. For binomial models (logistic regres- 

sion, complementary log-log regressioc), h' is the maximum number of trials for any one 

observation. 

For W:, the matrix M is equal to  a, the diagonal matrix with the average probability - - 
of falling into cell j, p(j), on the diagonal, where p( j )  = xg lp ; ( j ) .  For the statistics U:, 
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A: and w:, the M matrices are the matrices corresponding to those in the i.i.d. case, but  

averaged over all distributions. 

For the statistics based on the empirical processes, %,,v(t)  and $3,v(f). it is assu~~lcti 

without proof that the empirical process converges to a Gaussian process. Then, for ;I 

statistic based on the prccess ~ 2 , ~ ( t ) ,  i t  is necessary to find the eigenvalues of the covariance 

function, &(s, t) .  where @,(s, t )  = p2(s1 t ) J m  and @(s) is the weight functiou of the 

appropriate Cram&-von Mises statistic. These are the weights in the usuai asy nlptotic 

distribution of the siatistic and percentage can then be found. Similarly, percentage points 

can be obtained for the statistics based on y3,N(t). 

The eigenvalues above were approximated as follows. The interval 10, I] was discretized 

into K points, the covariance function was evaluated at each of the points. The eigenvalues 

of the resulting matrices were then found. For the percentage points presented below, a 

discretization of K = 50 was used. The eigenvalues were found using S-PLUS (S-PLUS, 

1991), and the percentage points were then found by Imhof's method. 

In order to examine the rate of convergence of percentage points for finite samples to 

the asymptotic points, percentage points were generated by Monte Carlo simulation using 

10,000 samples. The results are given in Tables 5.1 through 5.8 for a variety of Poissor~ 

regression models. The standard error of estimation of the level of the pth percentage point 

is approximately Jw where n is the number of simulations; for the .95 percentage 

point the standard error is .22%. 

All the points given are for models with one estimated parameter, the overall mean. 

Points are given for the statistics, W:, A:, Wf, Aj, Wi ,  A;, for each of the followir~g 

models: 

Model 1 Two equally proportioned distributions with p~ = .5, p2 = 1.5; 

Model 2 Two equal proportioned distributions with p1 = 5, p2 = 15; 

Model 3 Two unequal proportioned distributions with p1 = .9 (with sampling proportion, 

p=.9), p2 = 1.9 (p=.l); 

Model 4 Two unequal proportioned distributions with p1 = 9 (p=.9), p2 = 19 (p=. 1); 

Model 5 Five equally proportioned distributions with p1 = .2, pz = -6,  p~ = 1.0, p4 = 1.4 

and ps = 1.8; 
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Model 6 Five equally proportioned distributions with p1 = 2, p2 = 6 ,  p3 = 10, p4 = 14 

and p.5 =. 18; 

Model 7 Ten equaily proportioned distributions with pl = .I ,  p2 = .3, . . ., p9 = 1.7, 

plo = 1.9; 

Model 8 Ten equally proportioned distributions with pl = 1, p2 = 3, . . ., p9 = 17 and 

plo = 19. 

In the table, N refers to the total sample size. For example, when generating from Model 

2, a sample of size 20 consists of 10 observations from a Poisson distribution with mean, 

p = 5, and 10 observations from a Poisson distribution with mean, p = 15. 

In all cases the points converge rapidly to the asymptotic points, which can be used 

for samples of size greater than 20, and in some cases for sample sizes of greater than 10. 

Similar results were found for the other statistics defined in section 5.2. The convergence of 

the Monte Carlo points to the asymptotic points gives strong empirical evidence that the 

limiting processes for Y Z , N ( ~ )  and ~ 3 , N ( t )  are Gaussian. 

An S function (Becker, Chambers and Wilks, 1988; S-PLUS, 1991) has been written to 

compute the statistics and their asymptotic p-values, for the Poisson and logistic regression 

models. 
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Table 5.1: Monte Carlo percentage points for selected sample sizes are given for the 
Cram&-von Mises statistics for testing for Model 1. The asymptotic points are sllown 
for comparison. 

wz Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
10 0.097 0.126 0.159 0.205 0.250 0.322~- 
20 0.094 0.129 0.159 0.215 0.273 0.343 
30 0.093 0.131 0.159 0.213 0.276 0.351 
50 0.094 0.134 0.164 0.217 0.276 0.362 

100 0.093 0.131 0.163 0.220 0.279 0.362 
CQ 0.093 0.130 0.161 0.216 0.274 0.352 

A2 Upper tail significance level cy 
N .25 .15 .10 .05 .025 .01 
10 0.510 0.744 0.854 1.095 1.352 1.637 
20 0.557 0.738 0.910 1.136 1.436 1.732 
30 0.560 0.735 0.886 1.145 1.442 1.815 
50 0.564 0.756 0.901 1.172 1.469 1.848 

100 0.555 0.740 0.903 1.171 1.454 1.825 
00 0.558 0.743 0.893 1.158 1.431 1.778 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 

0.068 0.087 0.101 0.131 0.154 0.186 
0.068 0.088 0.106 0.137 0.164 0.20.5 
0.066 0.087 0.104 0.132 0.162 0.205 
0.068 0.091 0.108 0.139 0.170 0.215 
0.067 0.089 0.107 0.138 0.172 0.221 
0.068 0.090 0.108 0.139 0.171 0.213 
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Table -5.1: Monte Carlo percentage points for selected sample sizes are given for the 
Cramk-von Mises statistics for testing for Model 1. The asymptotic points are shown 
for comparison. (continued) 

Upper tail significance level a 
.25 .15 .10 .05 .025 . O 1  

0.482 0.617 0.717 0.884 1.098 1.366 
0.482 0.655 0.790 1.008 1.217 1.579 
0.474 0.640 0.774 0.997 1.221 1.541 
0.483 0.664 0.798 1.046 1.314 1.671 
0.482 0.655 0.803 1.051 1.322 1.736 
0,474 0.645 0.787 1.036 1.298 1.656 

w," Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
10 0.091 0.119 0.141 0.181 0.222 0.266 
20 0.089 0.119 0.145 0.188 0.232 0.291 
30 0.090 0.123 0.146 0.193 0.241 0.301 
50 0.092 0.121 0.147 0.197 0.253 0.320 

100 0.091 0.123 0.151 0.199 0.242 0.313 
00 0.089 0.120 0.145 0.191 0.239 0.304 

4 Upper tail significance level a 
N 2 5  .15 .10 .05 .025 . O 1  
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Table 5.2: Monte Carlo percentage points for selected sample sizes arc given fc>r tttc 

Cram&-von Mises statistics for testing for Model 2. The asymptotic points arc shown 
for comparison. 

w2 tr'pper tail significance level a 
N .25 -15 .LO .05 -025 .O1 
10 0.078 0.098 0.114 0.143 0.173 0.207 
20 0.079 0.099 0.115 0.142 0.169 0.214 
30 0.078 0.097 0.115 0.145 0.173 0.212 
50 0.078 0.097 0.113 0.139 0.169 0.208 

100 0.077 0.095 0.111 0.139 0.170 0.212 
KI 0.078 0.097 0.113 0.142 0.172 0.214 

Upper tail significance level a 
.15 -10 .05 .025 

0.674 0.779 0.963 1.153 
0.683 0.786 0.959 1.159 
0.681 0.784 0.968 1.164 
0.686 0.780 0.963 1.127 
0.674 0.768 0.950 1.149 
0.685 0.787 0.967 1.156 

Upper tail significance level a 
-25 .15 -10 .05 -025 .01 

0.100 0.123 0.141 0.170 0.203 0.240 
0.103 0.127 0.147 0.181 0.213 0.253 
0.101 0.127 0.145 0.179 0.213 0.261 
0.102 0.126 0.145 0.177 0.210 0.256 
0.100 0.126 0.145 0.179 0.212 0.256 
0.101 0.125 0.145 0.178 0.212 0.256 



Table rj.2: Monte Carlo percentage points for selected sample sizes are given for the 
Cramkr-von Mises statistics for testing for Model 2. The asymptotic points are shown 
for comparison. [continued) 

A'/ Gpper tail significance level a 

w: Upper tail significaace level a 

4 Upper tail significance level cu 
N .25 .15 .10 .05 .025 .O1 



Table -5.3: Monte Carlo percentage points for selected sample sizes are given for the 
Cram&-von Mises statistics for testing for Model 3. The asymptotic points are shown 
for comparison. 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 

0.093 0.126 0.151 0.196 0.264 0.299 
0.093 0.131 0.157 0.212 0.260 0.328 
0.090 0.125 0.154 0.203 0.260 0.332 
0.033 0.128 0.157 0.208 0.263 0.329 
0.091 0.127 0.155 0.209 0.261 0.333 
0.091 0.127 0.157 0.210 0.265 0.340 

-4 Upper tail significance level cr 
N .25 .15 .10 .05 .025 .O1 

Upper tail significance level CY 

.15 .10 .05 .025 .O1 
0.088 0.107 0.149 0.188 0.238 
0.092 0.114 0.154 0.192 0.252 
0.087 0.110 0.152 0.191 0.247 
0.091 0.113 0.153 0.191 0.253 
0.090 0.112 0.153 0.193 0.253 
0.091 0.114 0.156 0.200 0.259 
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Table 5.3: Monte Carlo percentage points for selected sample sizes are given for the 
Cram&-von Mises statistics for testing for Model 3. The asymptotic points are shown 
for comparison. (continued) 

Upper tail significance level cy 
.15 .I0 .05 .025 .O1 

0.725 0.924 1.422 1.896 2.401 
0.723 0.888 1.165 1.538 2.160 
0.681 0.843 1.162 1.558 2.171 
0.724 0.869 1.118 1.464 1.985 
0.743 0.878 1.132 1.410 1.918 
0.786 0.939 1.206 1.472 1.824 

w? Upper tail significance level a 

A; Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
10 0.545 0.736 0.856 1.129 1.296 1.703 
20 0.569 0.759 0.900 1.149 1.414 1.762 
30 0.563 0.743 0.887 1.147 1.394 1.799 
50 0.567 0.754 0.912 1.156 1.404 1.764 

100 0.571 0.755 0.900 1.166 1.403 1.770 
00 0.558 0.741 0.890 1.149 1.415 1.773 
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Table 5.4: Monte Carlo percentage points for selected sampie sizes are given for the 
Cram&-von Mises statistics for testing for Model 4. The asymptotic points are shown 
for comparison. 

w,2 Upper tail significance level cr 
ilr .25 .15 .10 .05 .025 .01 

At Upper tail significance level a 
N .25 .15 .10 .05 .025 . O 1  
10 0.605 0.733 0.834 1.011 1.195 1.407 
20 0.617 0.750 0.852 1.013 1.200 1.456 
30 0.610 0.737 0.834 1.010 1.193 1.442 
50 0.606 0.738 0.845 1.017 1.196 1.462 

100 0.615 0.750 0.850 1.032 1.233 1.497 
00 0.611 0.743 0.846 1.023 1.199 1.434 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 

0.096 0.119 0.138 0.168 0.198 0.236 
0.098 0.122 0.140 0.170 0.202 0.245 
0.094 0.119 0.139 0.167 0.201 0.244 
0.096 0.120 0.139 0.171 0.205 0.248 
0.097 0.121 0.141 0.175 0.208 0.257 
0.096 0.120 0.139 0.171 0.204 0.248 
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Table 5.4: Monte Carlo percentage points for selected sample sizes are given for the 
CramCr-von Mises statistics for testing for Model 4. The asymptotic points are shown 
for comparison. (continued) 

4 Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
10 0.646 0.789 0.904 1.117 1.310 1.615 
20 0.669 0.816 0.944 1.146 1.370 1.658 
30 0.650 0.801 0.921 1.108 1.324 1.668 
50 0.659 0.813 0.939 1.138 1.344 1.619 

100 0.670 0.823 0.944 1.171 1.403 1.680 
00 0.648 0.797 0.915 1.120 1.329 1.612 

w,' Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
10 0.096 0.120 0.138 0.169 0.196 0.240 
20 0.099 0.122 0.141 0.i71 0.203 0.245 
30 0.095 0.119 0.139 0.171 (2.201 0.240 
50 0.096 0.121 0.139 0.173 0.204 0.250 

100 0.097 0.121 0.140 0.175 0.211 0.263 
00 0.096 0.120 0.139 0.172 0.204 0.248 

4 Upper tail significance level cr 
N .25 .15 .10 .05 .025 . O 1  
10 0.631 0.768 0.881 1.066 1.259 1.502 
20 0.649 0.793 0.907 1.109 1.308 1.601 
30 0.633 0.779 0.891 1.082 1.284 1.570 
50 0.643 0.797 0.905 1.102 1.324 1.557 

100 0.651 0.795 0.915 1.133 1.343 1.642 
00 0.628 0.772 0.886 1.084 1.285 1.556 
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Table 5.5: Monte Carlo percentage points for selected sample sizes are given for thta 
Cram&-von Mises statistics for testing for Model 5. The asymptotic points are shown 
for comparison. 

Upper tail significance level a 
.15 .10 .05 .025 .01 

0.119 0.134 0.211 0.224 0.251 
0.127 0.154 0.192 0.262 0.302 
0.123 0.153 0.210 0.259 0.333 
0.125 0.151 0.203 0.256 0.334 
0.125 0.155 0.205 0.261 0.339 
0.126 0.159 0.211 0.263 0.336 
0.126 0.155 0.208 0.263 0.338 

4 Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
5 0.519 0.692 0.811 1.088 1.195 1.530 

10 0.585 0.740 0.835 1.118 1.379 1.650 
20 0.544 0.750 0,898 1.178 1.483 1.819 
30 0.565 0.747 0.910 1.148 1.424 1.768 
50 0.569 0.750 0.907 1.163 1.444 1.808 

100 0.580 0.773 0.927 1.204 1.470 1.875 
00 0.572 0.761 0.912 1.180 1.453 1.812 

wr' Upper tail significance level a 
N .25 .15 .10 .05 .025 .O1 
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Table 5.5: Monte Carlo percentage points for selected sample sizes are given for the 
Cram&-von Mises statistics for testing for Model 5. The asymptotic points are shown 
for comparison. (continued) 

Upper tail significance level a 
2 5  -15 .10 -05 .025 

0.415 0.503 0.613 0.716 0.892 
0.431 0.539 0.625 0.762 0.930 
0.430 0.548 0.638 0.793 0.961 
0.437 0.556 0.647 0.816 0.988 
0.444 0.566 0.6.59 0.819 0.989 
0.435 0.556 0.649 0.819 1.012 
0.431 0.550 0.647 0.815 0.989 

Upper tail significance level a 
.25 .15 .10 .05 .025 

0.080 0.106 0.132 0.160 0.180 
0.087 0.113 0.134 0.165 0.206 
0.086 0.113 0.135 0.177 0.222 
0.087 0.114 0.137 0.177 0.215 
0.088 0.116 0.136 0.176 0.215 
0.086 0.113 0.137 0.182 0.226 
0.086 0.113 0.136 0.i15 0.217 

4 Upper tail significance level a 
N 2 5  .15 .10 .05 .025 .01 



Table 5.6: Monte Carlo percentage points for selected sample sizes are give11 for the 
Cram&-von Mises statistics for testing for Model 6. The asymptotic p0int.s are shown 
for comparison. 

Upper tail significance level a 
.15 .10 -05 .025 

Upper tail significance level a 
.15 -10 .05 -025 .01 

0.700 0.808 0.993 1.191 1.446 
0.716 0.812 0.994 1.179 1.415 
0.729 0.837 1.033 1.233 1.515 
0.727 0.833 1.011 1.197 1.454 
0.729 0.838 1.027 1.229 1.496 
0.734 0.836 1.019 1.201 1.439 
0.736 0.839 1.017 1.198 1.442 

Upper tail significance level cr 
-15 -10 -05 -025 

0.119 0.135 0.162 0.187 
0.117 0.135 0.162 0.189 
0.119 0.136 0.165 0.196 
0.118 0.138 0.168 0.199 
0.120 0.138 0.172 0.205 
0.118 0.137 0.167 0.199 
0.119 0-138 0.170 0-202 
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Table 5.6: Monte Carlo percentage points for selected sample sizes are given for the 
Cram&-von Mises statistics for testing for Model 6. The asymptotic points are shown 
for comparison. (continued) 

4 Upper tail significance level a 
N .25 .15 .10 .05 .025 .01 
5 0.618 0.750 0.868 1.057 1.288 1.594 

10 0.635 0.775 0.889 1.088 1.288 1.584 
20 0.648 0.794 0.906 1.100 1.304 1.615 
30 0.659 0.805 0.917 1.113 1.327 1.599 
50 0.662 0.807 0.928 1.145 1.366 1.689 

180 0.658 0.800 0.915 1.119 1.321 1.582 
00 0.644 0.789 0.904 1.105 1.309 1.586 

w," Upper tail significance level a 
N .25 .15 .10 .05 .025 .ill 
5 0.097 0.119 0.135 0.163 0.191 0.227 

10 0.095 0.118 0.134 0.163 0.191 0.222 
20 0.096 0.119 0.137 0.167 0.196 0.237 
30 0.097 0.119 0.138 0.169 0.200 0.240 
50 0.096 0.121 0.140 0.171 0.207 0.251 

100 0.095 0.119 0.136 0.168 0.199 0.243 
00 0.096 0.119 0.138 0.170 0.202 0.245 

Upper tail significance level a 
.15 .10 -05 .025 

0.734 0.835 1.012 1.194 
0.756 0.868 1.042 1.217 
0.771 0.876 1.063 1.263 
0.779 0.894 1.076 1.295 
0.788 0.904 1.116 1.334 
0.777 0.890 1.068 1.272 
0.765 0.877 1.072 1.270 
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Table 5.7: Monte Carlo percentage points for selected sample sizes are give11 for the 
Cram&-von Mises statistics for testing for Model 7. The asymptotic points are shown 
for comparison. 

w: Upper tail significance level a 
N .25 .15 .10 .O5 .025 -01 
10 0.091 0.120 0.150 0.201 0.246 0.319 
20 0.093 0.126 0.154 0.205 0.260 0.327 
30 0.091 0.127 0.161 0.218 0.275 0.343 
50 0.090 0.128 0.156 0.210 0.275 0.350 

100 0.091 0.127 0.155 0.210 0.269 0.338 
0.091 0.126 0.156 0.209 0.265 0.341 

Upper tail significance level a 
.15 .10 .05 .025 . O 1  

0.682 0.830 1.092 1.277 1.719 
0.714 0.826 1.105 1.336 1.673 
0.721 0.860 1.130 1.395 1.763 
0.720 0.869 1.132 1.410 1.755 
0.711 0.861 1.114 1.385 1.734 
0.713 0.857 1.109 1.369 1.712 

Upper tail significance level a 
.25 .15 -10 .05 .025 .01 

0.064 0.081 0.094 0.116 0.137 0.162 
0.066 0.082 0.096 0.120 0.141 0.174 
0.066 0.082 0.095 0.118 0.141 0.17-5 
0.065 (3.082 0.095 0.117 0.139 0.173 
0.065 0.082 0.097 0.120 0.145 0.175 
0.066 0.083 0.098 0.122 0.147 0.180 
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Table 5.7: Monte Carlo percentage points for selected sample sizes are given for the 
Cramhr-von Mises statistics for testing for Model 7. The asymptotic points are shown 
for comparison. (continued) 

Upper tail significance level a 
.15 .10 .05 .025 .O1 

0.596 0.685 0.855 1.038 1.339 
0.627 0.725 0.897 1.088 1.354 
0.617 0.721 0.912 1.088 1.360 
0.623 0.724 0.899 1.074 1.361 
0.636 0.738 0.920 1.108 1.382 
0.635 0.742 0.931 1.125 1.390 

Wi Upper tail significance level cr 

A; Upper tail significance level cr 
N .25 .15 -10 .05 .025 .O1 
10 0.527 0.653 0.761 0.943 1.109 1.329 
20 0.534 0.661 0.776 0.946 1.138 1.410 
30 0.538 0.675 0.777 0.954 1.153 1.406 
50 0.541 0.674 0.777 0.966 1.164 1.381 

100 0.539 0.677 0.794 0.967 1.152 1.388 
00 0.530 0.660 0.764 0.945 1.129 1.378 
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Table 5.8: Monte Carlo percentage points for selected sample sizes are given for tht. 

Cram&-von Mises statistics for testing for Model 8. The asymptotic points are shown 
for comparison. 

Upper tail significance level cr 
.25 .15 .10 .05 .025 .01 

0.064 0.076 0.085 0.100 0.115 0.137 
0.064 0.076 0.085 0.100 0.116 0.135 
0.063 0.076 0.086 0.103 0.120 0.143 
0.063 0.075 0.085 0.102 0.120 0.142 
0.063 0.075 0.084 0.100 0.116 0.140 
0.063 0.076 0.086 0.102 0.119 0.140 

Upper tail significance level a! 
.15 .10 .05 .025 .01 

Upper tail significance level a 
.25 .15 .10 .05 .025 .01 

0.101 0.125 0.143 0.174 0.201 0.246 
0.100 0.124 0.143 0.177 0.210 0.249 
0.101 0.126 0.144 0.177 0.206 0.244 
0.101 0.124 0.144 0.174 0.207 0.252 
0.102 0.127 0.147 0.178 0.212 0.254 
0.101 0.126 0.146 0.180 0.213 0.258 
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Table 5.8: Monte Carlo percentage points for selected sample sizes are given for the 
Cramdr-von Mises statistics for testing for Model 8. The asymptotic points are shown 
for comparison. (continued) 

A7 Upper tail significance level a 
hT .25 -15 .I0 .05 .025 .01 
10 0.663 0.810 0.925 1.126 1.351 1.709 
20 0.677 0.824 0.939 1.152 1.365 1.674 
30 0.688 0.847 0.872 1.159 1.354 1.581 
50 0.688 0.836 0.950 1.150 1.337 1.630 

100 0.702 0.850 0.969 1.164 1.354 1.633 
00 0.680 0.829 0.947 1.151 1.356 1.631 

w,' Upper tail significance level a 
N .25 .15 .10 .05 .025 -01 
10 0.106 0.130 0.151 0.182 0.211 0.254 
20 0.106 0.131 0.151 0.183 0.219 0.266 
30 0.106 0.131 0.150 0.185 0.219 0.260 
50 0.107 0.131 0.150 0.185 0.219 0.264 

100 0.108 0.133 0.153 0.188 0.220 0.271 
cx, 0.106 0.132 0.153 0.187 0.223 0.269 

4 Upper tail significance level a 
N .25 .15 .10 .05 .025 . O 1  
10 0.657 0.799 0.911 1.101 1.302 1.583 
20 0.674 0.812 0.915 1.107 1.321 1.612 
30 0.674 0.808 0.926 1.132 1.314 1.556 
50 0.673 0.816 0.928 1.129 1.324 1.611 

100 0.680 0.824 0.941 1.136 1.333 1.593 
00 0.663 0.810 0.926 1.127 1.330 1.603 



5.7 Power Comparisons 

For the test of the Poisson regression model with one estimated parameter, the overail ~ucao, 

the power of the Cramdr-von Xlises statistics has been examined. The following - tests of f it  

were included in the comparison. 

1. The Cramkr-von Mises statistics defined in Section 5.2. 

2. The Deviance. The deviance is the log-likelihood ratio statistic comparing the pro- 

posed model against a fully parameterized model (McCullagh and Nelder, 1989). The 

deviance statistic for Poisson regression is defined 

where jij is the estimated mean for that observation. This statistic has also been 

referred to as G2 (Bishop, Fienberg and Holland, 1975). The test is asymptotically 

distributed as X&-, where p is the number of estimated parameters, but the rhi- 

square approximation is not considered adequate for small sample sizes (McCullagh 

and Nelder, 1989). This b i t s  its accuracy as a goodness-of-fit test. 

3. Generalized Pearson X2 statistic. The generalized Pearson statistic is an extension of 

the dispersion test defined in section 2.5. The test is defined as 

(McCullagh and Nelder, 1989). 

4. The score test against the negative binomial distribution. This test w w  proposed 

by Dean and Lawless f 1989) and Dean ( 1  992), generalizing the work of Collings and 

Margolin (1985). The statistic is 

Common aiternatives to the Poisson distribution can be distinguished by the ratio o f  

the variance to  the mean; this is equal to one for the Poisson distribution. Dktri butior~s 

with variance larger than the mean are considered oveniispmwd, and with variance smaller 

than the mean are referred to as underdispersed. The same alternatives used in the power 
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comparisons presented in section 2.5 are examined. The overdispersed alternatives exam- 

ined were the negative binomial and the Poisson mixture, the binomial was included as an 

!~nderdispersed alternative and the beta-binomial and the discrete uniform were used as 

alternatives with dispersion approximately equal to the mean. 

Comparisons of power for the Cram&-von Mises statistics and the other tests of fit, 

when used in testing against the above alternatives, are given in Tables 5.9 and 5.11 for the 

three Poisson regression models numbered 1, 2 and 8 in the previous section. 

Model 1 Two equally proportioned distributions with p1 = .5, pz = 1.5; 

Model 2 Two equal proportioned distributions with pl = 5, p2 = 15; 

Model 8 Ten equally proportioned distributions with p1 = 1, p2 = 3 ,  . . ., p9 = 17 and 

plo = 19. 

Random samples of size 20 from a common alternative distribution, with mean equal to 

the hypothesized Poisson mean, were generated using IMSL subroutines (IMSL, 1987). For 

example, for a sample of size 20 from a negative binomial alternative with mean structure 

given by model 2, 10 observations were generated from a negative binomial with a mean 5 

and 10 observations were generated from a negative binomial distribution with mean equal 

to 15. 

The critical values (percentage points of the null distribution) for all the test statistics 

used for comparison were fclund by Monte Carlo simulation using 10,000 samples. The num- 

ber of Monte Carlo samples used for the power studies was 1000. The maximum standard 

error of the power results is equal to  . 5 / m  x 1.6%. 

Results and comments 

1. The Cram&-von Mises statistics based on the untransformed empirical process, Wz 

and A2 have generdy worse power than the other Cram&-von Mises statistics par- 

ticularly when the overall mean is large, such as when p = 10. 

2. As expected, the dispersion-based score tests and the deviance statistic perform very 

well for overdispersed alternatives, with the deviance having slightly better power. The 

A* statistics, A;, -4; and A:, also have good power against overdispersed alternatives. 

The W 2  statistics have lower power than A2 statistics. 
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3. For underdispersed alternatives. the dispersion-based tests have the best power. The 

Cram&-von Mises statistics have lower power than the dispersion based tests. The 

W 2  statistics had generally higher power than the 4"tatistics for these alternatives. 

4. rigainst alternatives with the mean equal to the variance, the Cram&-von Mlises statis- 

tics have the best power. Since the dispersion-based tests primarily detect differertces 

between the mean and variance, they perform very poorly against these alternatives. 

5. The gain in power to detect alternatives with similar mean and variance by the usc 

of the Cram&-von Mises statistics over other test statistics is somewhat offset by the 

greater computational difficulty in calculating the test statistics and their p-values. 

The computational difficulty increases with the number of unique estimated means. 

The CramBr-von Mises statistics A; and A: are shown to be powerful statistics for 

testing for Poisson regression models, particularly if the alternative is "close" to the Poisson 

in the sense that the variance is almost equal to the mean. The statistic, A: has slightly 

better power than A), and is the recommended statistic for testing for Poisson regression 

models. 
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Table 5.9: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sample of 
size 20. Alternative distributions were generated with the Model 1 mean structure. The 
variance of the alternative distribution relative to the Poisson variance is indicated for each 
distribution. All tests are at the 5% level. 

Alternative Distribution Test Statistics 
w: A: w; A; w,2 AL 

Overdispersed 
Negative Binomial (2) 291 349 322 332 316 437 
Poisson Mixture (1.64) 262 324 286 332 248 343 

Underdispersed 
Binomial (.5) 77 79 61 70 95 81 

Equal Dispersion 
Discrete Uniform 77 60 242 153 264 258 

Overdispersed 
Negative Binomial (2) 267 341 444 457 443 
Poisson Mixture (1.64) 209 259 287 393 385 

Binomial ( 5 )  79 80 119 121 I23 

Equal Dispersion 
Discrete Uniform 149 134 144 88 76 
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Table 5.10: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sarnple of 
size 20. Alternative distributions were generated with the Model 2 mem structure. 'Ttle 
variance of the alternative distribution relative to  the Poisson variance is indicated for pncI1 

distribution. All tests are a t  the 5% level. 

Alternative Distribution Test Statistics 
W: A t  W; A; W i  A: 

Overdispersed 
Negative Binomial (2) 144 295 352 552 342 517 
Poisson Mixture (1.64) 166 304 335 568 317 516 

Underdispersed 
Binomial (.5) 102 97 390 344 376 346 

Equal Dispersion 
Beta-Binomial 
Discrete Uniform 72 62 94 68 96 85 

W," A: X$ Dev PB 
Overdispersed 
Negative Binomial (2) 348 540 604 616 536 
Poisson Mixture (1.64) 335 531 544 575 607 

Binomial (.5) 102 97 484 461 691 

Equal Dispersion 
Beta-Binomial 947 940 231 375 346 
Discrete Uniform 92 63 18 15 16 
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Table 5.11: Power Comparison 

This table gives the percentage of 1000 samples rejected by the statistics for a sample of 
size 20, Alternative distributions were generated with the Model 8 mean structure. The 
variance of the alternative distribution relative to the Poisson variance is indicated for each 
distribution. All tests are at  the 5% level. 

Alternative Distribution Test Statistics 

Overdispersed - 
Negative Binomial (2) 155 250 335 524 318 500 
Poisson Mixture (1.64) 213 308 354 580 326 490 

Underdispersed 
Binomial (A) 19 14 448 387 442 426 

Equal Dispersion 
Beta-Binomial 
Discrete Uniform 58 43 91 73 82 69 

W,? A: x$ Dev PB 
Overdispersed 
Negative Binomial (2) 307 511 591 503 503 
Poisson Mixture (1.64) 308 335 547 571 621 

Underdispersed 
Binomial (.5) 

Equal Dispersion 
Beta-Binomial 
Discrete Uniform 84 71 10 12 11 
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5.8 Examples 

5.8.1 Example: non-I.I.D. Binomial 

The data listed below, taken from Kupper and Haseman (1975), show the ntinlbers (here 

called successes) of an unspecified laboratory event in pregnant mice. There are ten pregnant 

mice in each of a treatment and a control group. The data may represent number of fetal 

abnormalities (events) out of a number of live births (trials). The number of events/trials 

is given below: 

CONTROL GROUP: ~ 5 , 2 / 6 , 0 / 7 , 0 / 7 , 0 / 8 ,  

0/8,0/8, 1/9,2/9, 1/10. 

TREATMENT GROUP: 015, 215, 1/7,0/8, 218, 

318, 019, 419, 1/10,6/10. 

Two different models were examined: No treatment difference (common probability of 

success), and a model with two parameters (separate probabilities of success). In addition, 

the two treatment groups were individually tested for the binomial distribution. 

Treatment Group 

The estimated success probability of the treatment group data is 0.241 and the estimated 

residual variance is 3.374. Let the expected residual binoiial variance be defined as 

where K; is the number of trials, 6; is the estimated success probability for the i observation 

and p is the number of estimated parameters. Then, the expected residual variance is 

1.603, indicating that this data set has greater than binomial dispersion. Figures 5.1- 

5.6 show plots of the residual empirical distribution function with the average residual 

distribution function, and plots of the standardized residual empirical process for each of 

the three empirical processes, labeled y I v N ( j ) ,  y a , ~ ( t )  and ~s ,N( t ) ,  and defined in 5.4.2. The 

stasdardized residual empiricd process is the value of the residual process divided by its 

standard deviation to  give pointwise asymptotic standard normal values, and is the process 

used in the calculation of the A2 test statistics. 
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The values and significance levels of the Cram&-von Mises statistics and a score test, 

NA,  with its small sample correction (Dean, 1992), are found in Table 5.12. The score 

test strongly rejects the binomial hypothesis, whereas the Cramkr-von Mises statistics give 

mixed results. Only A? and A: (based on the F- and G-transformed residual processes 

and &J) reject the binomial hypothesis, although A: and W; give near-significant results. 

Table 5.12: Test statistics and significance levels for the laboratory data from the treatment 
group only. 

Test Value Significance - 

Statistic Level 

WI? .08 -292 

c .08 .293 
A: 1-07 .066 

wf .59 .I20 

w/' .15 .065 
LTj .12 .091 

A: 1.14 .039 
W2 .11 .I48 

U! -11 .I25 
A; .91 .079 
h' A 2.57 .010 
N A  (corrected) 2.82 .005 
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Figure 5.1: Cumulative observed (-) and average expected (- -) histogram for the treatment 
group laboratory data. 

Figure 5.2: Standardized difference between the observed and average expected histogram 
for the treatment group laboratory data. 
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Figure 5.3: F-transformed empirical distribution function (-) and average F-transformed 
distribution function (- -) for the treatment group laboratory data. 

Figure 5.4: Standardized F-transformed 
group laboratory data. 

residual empirical process plot for the treatment 
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Figure 5.5: G-transformed empirical distribution function (-) and average G-transformed 
distribution function (- -) for the treatment group laboratory data. 

Figure 5.6: Standardized G-transformed residual empirical process plot for the treatment 
group laboratory data. 
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Control Group 

The plots of the (F-transformed) residual empirical distribution function with the average 

residual distribution function, and the standardized residual empirical process are shown 

i n  Figures 5.7 and 5.8. The estimated probability of success is 0.078 and the estimated 

residual variance is 0.676. The expected residual binomial variance is 0.615, which supports 

binomial dispersion. The values and significance levels of the Cram&-von Mises statistics 

and the score test for overdispersion are found in Table 5.13. All test statistics failed to  

reject the Binomial hypothesis. 

Table 5. 13: Test statistics and significance levels for the laboratory data  from the control 
group only. 

Test Value Significance 
Statistic Level 

0.04 -36 

4 ur 
"3 *. u; 
A; 
N A 
N A  (corrected) 
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Figure 5.7: F-transformed empirical distribution function (-) and average F-transformed 
distribution function (- -) for the control group laboratory data. 

Figure 5.8: 
group. 

0.0 0.2 0.4 0.6 0.8 1 .O 

Standardized residual empirical process plot (F- transformed) for the colt trol 
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Total Group 

Two models were examined: 

1. The model with a single probability of success, estimated to be 0.160. 

2. The model with separate probabilities of success for each of the treatment and control 

groups, estimated to be 0.02405 and 0.078, respectively. 

The residual plots of the standardized empirical process (F-transformation) for each of the 

two groups are found in Figures 5.9 and 5.10, respectively. The values and significance levels 

of the Cramdr-von Mises statistics and the score test for overdispersion, for each of the two 

models, are found in Table 5.14. For the model with a single probability of success, a l l  the 

tests, with the exception of W: and U:, strongly reject the binomial model. The statistics, 

W: and U: show only weak evidence against this model. For the model with separate 

probabilities of success, the results are not as consistent, although most statistics give weak 

evidence against the model. The corrected score statistic gives the most significant result. 

Table 5.14: Test statistics and significance levels for the laboratory data - single success 
probability and separate success probability models. 

Common Success Prob. Separate Success Prob. 
Test Value Significance Value Significance 
Statistic Level Level 

W: 0.20 .045 0.10 .I59 
uz 0.17 .065 0.07 .229 
4 1.84 .009 0.73 .092 
W i  0.88 .020 0.38 .I50 

7 0.29 .003 0.07 .I96 
0.20 .009 0.05 .315 

A j  1.62 -005 0.94 .051 
W2 0.25 .008 0.12 .lo0 

i' C$ 0.23 -011 0.11 .084 
4 1.79 -004 0.78 .089 
A'A 3.88 < .001 2.01 .044 
N A  (corrected) 4.05 <.001 2.80 ,005 
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Figure 5.9: Standardized residual empirical process plot (F-transformed) for the model with 
a single probability of success. 

0.0 0.2 0.4 0.6 0.8 1 .O 

Standardized residual empirical process plot (F-transformed) for the rr~odcl 
with separate probabiities of success. 



5.8.2 Example: Poisson Regression 

The data in Table .5.1.5 come from a stud? of cancer in 4213 male aluminum workers (Spinelli 

et a!, 1991). The data were combined into 44 subgroups created by a cross-classification of 

exposure and age. The variables are 

I. Exposure to Coal Tar Pitch volatiles (1=<1 BSM-year of exposure, 2=1-5 BSM-years 

of exposure, 3=5-10 BSM-years of exposure, 4=10+ BSM-years of exposure) 

2. Age (1=20-29,2=30-34, ... 10=?0-74, 11=75+). 

3. Number of bladder cancer cases. 

4. Person-years a t  risk i~ that sub-group. 
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Table 5.15: Bladder cancer in aluminum workers data. 

Subgroup Exposure Level Age 30. of Cases Person-Years at Risk 
1 1 0 1332.11 1 
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The main purpose of the study was to determine if the risk of bladder cancer increased 

with increasing exposure to coal tar pitch volatiles. A Poisson regression model (Poisson 

error, log link) was fitted. Age was treated as a factor and exposure was analyzed as a 

continuous covariate to assess trend. The following models were fitted to  the data. 

1. Constant + Person-Years( Offset ) 

2. Constant + Person-Yearsfoffset) + Age 

3. Constant + Person-Years(0ffset) + Exposure 

4. Constant + Person-Years(0ffset) + Age + Exposure 

The residual plots of the standardized empirical process (F-transformation) for each of the 

four models are found in Figures 5.11 t o  5.17, respectively. Table 5.16 shows the significance 

levels of the Cram&-von Mises test statistics and a score test for overdispersion (against the 

beta-binomial distribution), PB (Dean, 1992). The score test and a small sample corrected 

version of the score test are presented. 

Table 5.16: Test statistics and significance levels for the laboratory data - single success 
probability and separate success probability models. 

Significance Level 
Test Statistic Model 1 Model 2 Model 3 Model 4 
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Figure 5.1 1: Standardized residual empirical process plot (F-transformed) for Model 1, 
Offset only. 

Figure 5.12: Standardized residual empirical process plot (G-transformed) for Model 1 ,  
Offset only. 
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Figure 5.13: 
Offset + Age. 

Figure 5.14: 
Offset + Age. 

0.0 0.2 0.4 

Standardized residual empirical 

0.6 

process plot 

0.8 1 .0 

(F- transformed) for Model 2, 

0.0 0.2 0.4 

Standardized residual empirical process plot (G-transformed) for Model 2, 
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Figure 5.15: 

0.0 0.2 0.4 

Standardized residual empirical 
Offset + Exposure. 

0.6 

process plot 

0.8 1 .O 

(F-transformed) for Model 3, 

Figure 5.16: 

0.0 0.2 0.4 

Standardized residual empirical process plot (G-transformed) for Model 3, 
Offset + Exposure. 



CHAPTER 5 .  REGRESS108 MODELS 

Figure 5.17: Standardized residual empirical process plot (F-transformed) for Model 4, 
offset + Age + Exposure. 

Figure 5.18: 

0.0 0.2 0.4 0.6 0.8 1 .O 

Standardized residual empirical process plot (G-transformed) for Model 4, 
Offset + Age + Exposure. 
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As would be expected from the Monte Carlo power simulatiotls in section 5.7, t h e  

Cram&-von Mises statistics based on the untransformed process have little power to tie- 

tect departures from the Poisson model. The statistics, A;,  A:, 1.V; a d  dB clearly rttjert 

Models 1 and 3. Similarly. zll the test statistics accept the Poisson hypothesis for Motit31 -1, 

the final model proposed. There is some disagreement between the tests for Model 2. A11 tlw 

Cram&-von Mises statistics accept the Poisson hypothesis for this model. The uncorrect,t:d 

score test also accepts the model, whereas the corrected score test rejects the Poisson modd .  

For model 2, the estimated residual variance is 0.676. The estimated Poisson variance, tic- 

fined as (A7 - p ) - l ~ E l j i , ,  where ji is the estimated mean for the i th observation, is 0.185, 

indicating slight overdispersion. An examination of the residual processes i n  Figures 5.13 

and 5.14 indicate that the data  fit the Poisson model fairly well. 
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