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- Abstract

Testing the hypothesis that a sample of data arises from a specified distribution, called
goodness-of-fit, is an important problem in statistics. To date most of the research has
focussed on continuous distributions. Tests based on the empirical distribution function,
and in particular the Cramér-von Mises statistics, have been shown to be powerful tests of
fit for such distributions.

Discrete distributions are important to many areas of research, and often arise with
medical data. In this thesis, the Cramér-von Mises statistics are developed for the Binomial
and Poisson distributions. The asymptotic distributions of the test statistics are derived,
and the distributions for finite samples are obtained by Monte Carlo methods. They are
shown to converge rapidly to their asymptotic distributions. Power studies are given to
compare the new tests to other tests which have been proposed for these distributions.

Another important research area is testing goodness-of-fit for regression models. Here the
hypothesis is that the data are from a specified distribution, but with mean value dependent
on a set of covariates. The regression model for normally distributed observations has been
extensively studied. In this thesis, several analogues to the Cramér-von Mises statistics are
derived for testing goodness-of-fit for discrete regression models. Asymptotic theory is given

and the properties of the test statistics are examined.
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Chapter 1

Introduction

In order to model a phenomenon, a researcher will often want to determine if a set of data
follows a specific probability distribution. This is done by utilizing a procedure to compare
the sample data to the hypothesized distribution. The study of the procedures to perform
‘this comparison is known as goodness-of-fit.

The usual situation is to obtain a sample, Y1,Y2; - -, Yn, Of independent and identically
distributed observations from a distribution with cumulative distribution function, F(y).
Usually, the distribution function contains unknown parameters. Another situation arises
when each sample value, y;, comes from a distribution, F(y;,#;), with parameter 8; (or
vector 6f parameters 8;) which is different for each y;. The parameters, usually unknown,
are related‘to the observations by an underlying model.

Goodness-of-fit techniques are generally used for one of two reasons. The first reason
is to justify the application of specific estimation or hypothesis testing procedures. This
rationale has become less important in recent years with the development of robust statistical
procedures. The other rea.sonr, which remains extremely important, is for prediction of future
observations. Although the parameter values may be robustly estimated, information about
the extreme tail percentiles for environmental assessment or confidence intervals for medical
prediction requires knowledge of the correct probability distribution.

A ‘powerful set of goodness-of-fit procedures, at least for continuous distributions, is
based on the empirical distribution function (EDF). The EDF, F,(y) is defined as:

the number of observed values <y
n

Fo(y) =

The fit is judged by the degree of closeness between the EDF and the cumulative distribution

1



CHAPTER 1. INTRODUCTION 2

function, F(y). Tests of this type are referred to as EDF tests of fit.
The importance of the EDF to statistics is through the Glivenko-Cantelli Theorem (see
e.g. Shorack and Wellner, 1986) which states that
sup | £1.{y) ~ F(y) |-—0

—ooy<oo

almost surely as n — 0o. The first EDF statistic was proposed by Kolmogorov (1933), and
is defined by
D=Sl;pan(y)-F(y) |

Since then, many other similar statistics have been proposed, for example, by Smirnov,
(1939) and Kuiper (1960). Another family of EDF statistics for continuous distributions
are the Cramér-von Mises statistics first proposed by Cramér (1928). These statistics have
been found to be more powerful than test statistics based on the supremum, especially at
detecting deviations in the tail of the distribution. (see e.g. Stephens, 1986). The general
form of the Cramér-von Mises statistics is

@ =n [ [Fuy) - FW)P(u)dF(w)

-_—0

where ¥(y) is a weight function. When the weight function is the identity, the statistic is
the Cramér-von Mises statistic, W?; when the ¥(y) = {F(y)[1 — F(y)]}~", the statistic is
the Anderson-Darling statistic, A2.

The classical statistic for examining goodness-of-fit for discrete distributions is the y*
test proposed by Pearson (1900). However, with continuous distributions and infinite valued
discrete distributions the statistic requires grouping of the data which causes a loss of
information and thus a loss of power. Even for finite valued discrete distributions, more
powerful tests may exist. Choulakian, Lockhart and Stephens (1994 ) have discussed Cramér-
von Mises statistics for discrete distributions, and have set forth the general definitions and
asymptotic theory.

In this thesis, Cramér-von Mises statistics are adapted to give tests for the Poisson and
the binomial distributions. Also, the asymptotic and finite sample properties of these tests
are examined. Finaily, the Cramér-von Mises tests of fit are developed for the important
case ofindependenf but not identica.lly distributed discrete variables. Throughout this thesis

such variables will be referred to as i.n.i.d.



Chapter 2

on

jual ®

Poisson Distributi

2.1 Introduction

In this chapter, the Cramér-von Mises statistics are developed as tests for the Poisson
distribution. In section 2.2, the definitions of the Cramér-von Mises statistics, W2, U? and
A?, aré given, and the basic theory is presented in section 2.3. In section 2.4, the percentage
points to make tests for the Poisson distribution are given for the cases where the mean, p,
is known and also for the case where u is estimated by Z. In section 2.5 power studies are
presented. Comparisons are made with the well known dispersion test which is found to be
powerful, as expected, against distributions with larger variance. In many other cases, A2

is found to have good power and is recommended for use as an omnibus test for the Poisson

distribution.

2.2 Definitions
2.2.1 Known Mean

Let p; be the Poisson probability of observing a count j, defined by

uje"'l-‘
7!

pj =

where the mean, u, is known. Suppose N independent observations are given; let o; be the
observed number of outcomes j, and let Np; = €; be the expected number in cell j. Let

S; = Z{__:oo; and T = Ef=oe¢. Then S;/N and H; = T; /N give, respectively, the cumulative
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observed histogram and the cumulative expected histogram of the data, corresponding to the
empirical distribution function Fy(z) and the cumulative distribution function, F(z), in the
continuous case. Suppose Z; = 5; —1T,. j=1,2.... The Cramér-von Mises statistics W32,
U? and A? for the Poisson distribution (and any other discrete distribution with infinite

support) are then defined by

w? = NT'Y%Zip;, (2.1)
U* = NT'T%0(Z; - Z2)’p;, (2.2)
A* = NT'YR,Z2p;/{H;(1- Hj)}, (2.3)

where Z = Y"52,Z;p;-

It is convenient to put these expressions into matrix notation. Note that in the following
discussion, all vectors and matrices are infinite dimensional. Let a prime, for example Z',
denote the transpose of a vector or matrix. Let Z be the vector with jth element Z;, I be the
identity matrix, and p’ be the vector (py, p2,...). Suppose D is the diagonal matrix whose
j-th diagonal entry is p;, and let G be the diagonal matrix whose j-th diagonal element is
H;(1 - H;). Then

w? = Z'DZ/N;
U = Z'(I-D11)D(I -11'D)Z/N;
A? = Z'DG7'Z/N.
The S; and T; may be defined in terms of the o; and e;. Arrange these quantities into

column vectors S, T, o, e (so that, for example, the j-th component of S is 5;). Then

Z=S-T = Ad whered = 0 — e and A is the partial-sum matrix

( 0 )
0

— e e
— = O
=)

0 |. (2.4)

\1 11 - 1)
In matrix notation, the Pearson x? statistic, defined by YK (0; — €;)%/e; is

x5 =d'D'd/N.
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Since the Poisson distribution has infinite support, the distribution must be divided into K

cells to calculate the Pearson x? statistic.

2.2.2 Modified Cramér-von Mises Statistics

The above definitions of the Cramér-von Mises statistics W2, U2 and A? are chosen to be
analogous to the corresponding statistics for testing for continuous distributions. However,
various modifications are possible; for example, greater weight may be given to certain parts
of the tested distribution (see, for example, de Wet and Venter, 1973). If the p; are omitted
(or equivalently the classical Cramér-von Mises statistics are weighted by the inverse of p;)
in definitions (2.1) - (2.3), greater weight will be given to deviations in the tails, and the new
statistics, now called W2 and A2, may give better power against longer-tailed alternative

distributions. Then

W2 = NT'©2,2Z, (2.5)
A = NTIER,Z2/{H(1 - Hy)). (2.6)

In matrix form the statistics can be written

W2 = Z'Z/N
A2 = Z'G7'Z/N

where G is the diagonal matrix whose j-th diagonal element is H;(1 — H;).

2.2.3 Estimated Mean

To test for the Poisson distribution with unknown mean, u, estimate 4 by maximum likeli-
hood, that is, i = . The Cramér-von Mises statistics will again be calculated from (2.1) -
(2.3) and (2.5) - (2.6), but using Z;, p; and H;. For example,

ﬂje—ﬁ

pi=

k]

J!

and p is the vector of p; values.
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2.3 Distribution Theory

2.3.1 Known mean

For any finite valued discrete distribution, if the null hypothesis is true, the vector o has
a multinomial distribution with parameter p; the mean vector and covariance matrix are
Np and N(D — pp’) respectively. Thus, under the null hypothesis, d/v/N converges in
distribution to a multivariate normal random variable with mean zero and covariance matrix,
3o = D - pp’, as N — oo, by application of the central limit theorem. Furthermore,
the random variable Z/v/N = Ad/vN converges in distribution to a random variable
with an asymptotic multivariate normal distribution with mean zero and covariance matrix,
¥ = AXpA’ with 4, jth element o;; = min{H;, H;} — H;H;.

If a random variable, X, has an asymptotic multivariate normal distribution with mean
zero and covariance matrix ¥, and ¥ = XQX for positive definite symmetric matrix Q,

then Y can be written
Y =K 222, (2.7)

where Z; are independent standard normal random variables and A; are the eigenvalues of the
matrix, Q/2X£QY/2. All the Cramér-von Mises statistics are of the general form Z'MZ/N,
where M is positive definite and symmetric. Let X = M1/2Z/\/17. For an infinite valued
discrete distribution, a Cramér-von Mises statistic S has an asymptotic distribution which is
a sum of weighted x? random variables with weights equal to the eigenvalues of the matrix,
Sy = MY/2EMY2. We can write

S = ZMZ/N = X'X = 2, \(w:/X)?, (2.8)

where the A; are the eigenvalues of ¥ x, and w; are the corresponding eigenvectors, nor-
malized so ttat w;/Xw; = §;;. Here §;; is Kroneker’s § with §;; = 1 fori =5 and §;; = 0
otherwise. In (2.8), the term s; = (w;'X) is called the i-th component of the statistic. The
components, s;, take different values for different statistics, since they depend on the eigen-
vectors of M. The normalization of the w; makes the variance of each s; = 1. As N — o0,
the s; have distributions which are independent and each standard normal, and a typical

statistic has an asymptotic distribution
S =52, \s?, (2.9)

where the s? are independent x? variables, the same result as shown above.
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For practical calculations, an infinite valued discrete distribution, such as the Poisson,
must be curtailed after a finite number of terms. It is proposed that this be done at cell K

when pp < 1073/N. Inclusion of further terms does not significantly change the value of

the statistic.

2.3.2 Estimated Mean

Let 8 = (61, 6,] where 6, is a vector of p; known parameters and 8, is a vector of p;
parameters estimated from the data, and let 8¢ be the vector of true values of the parameters.
Let 6; be the maximum likelikood estimator of @, and assume suitable regularity conditions
which ensure the application of regular maximum likelihood asymptotics (see e.g. Cox and
Hinkley, 1974, or Bishop, Fienberg and Holland, 1975). Then, as ¥ .— oo, the variable
d/VN = (0 —&)/V/N converges in distribution to a mean zero multivariate normal random

variable with covariance matrix
3, =X, - B(B'D"!B)B (2.10)

where € is the vector of expected numbers using the estimated parameters, X is as before,
D is the diagonal matrix whose j-th diagonal entry is p; and B is the p; by K matrix with

7, 7th element
9p;
09;

(Bishop, Fienberg and Holland, 1975). Here, K is the number of cells in the discrete distri-

bution, and §; is the zth unknown parameter. When there is only one unknown parameter
(2:10) reduces to

2o = Zo-gg'/g’D7'g,
where g is the vector with jth element,

Op;
o8

For the Poisson distribution, the mean, p, is replaced by the maximum likelihood esti-

mate, Z and

9 = (G e —e#pd)/j!
= Pj-1—Dj.
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It is easily seen that g; can also be written
Pj,. \ A
gi = (i - n). (2.11)
1
If follows that
g'D7'g =1/u,

the inverse of the Poisson variance. Then
3o = o — pgg'. (2.12)

Likewise, as N — oo, 2/\/N = AEI/\/N converges in distribution to a mean zero multivari-

ate normal random variable with covariance matrix,

-

T = AXA’
= AXoA' - Agg'A’'/g'D7 g
= X - upp’ (2.13)

since Ag = —p.

As before, the percentage points for the asymptotic distribution of a typical statistic are
determined by finding the eigenvalues ); of £x = M/25M!/2 for the statistic, and using
(2.9) and Imhof’s method (Imhof, 1961).

2.4 Calculation of Percentage Points

2.4.1 Known Mean
Moments

In order to determine the asymptotic percentage points for each statistic, it is necessary to
determine the matrix, M, and compute the eigenvalues of the infinite-dimensional matrix
Xx = MY25MY2. From the representation (2.9) the cumulants of the test statistics are
given by

| K; = 2715 - D)ITE, N

In particular, the mean is ) 72, A; and the variance is 25°22. A2, The mean of each statistic

can also be calculated exactly using the multinomial distribution of o, and this calculation
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can be used to ciseck the accuracy of the eigenvalue decomposition. Recall that 5; = Zf-;ooi

and T; = Z{:ofi‘ Then, for statistic W?
E(W?) = E[L3%(S; - T;)'p)]
= Y32opiEl(S; - T5)°]
= ZJ??_-DPJ'V“T[SJ']
= L5zopiHi(1~ Hj).
The meansrdf the other Cramér-von Mises statistics can be similarly derived and are as

follows:
E(U?) = E(W?) - 220y opip;(min{H;, H;} — H:Hj),
E(AY) = 1,
EWn) = TRoHi(1-Hj)<p.
Note that the means of the statistics do not depend on the sample size, N.

The identities given above show that

(2t ) N
£| £ 7 )

for any sequence K, — oo where w; are the weights associated with the particular Cramér-
von Mises statistic. This can be combined with the well known asymptotic normality of
d/\/ﬁ for any fixed K, to establish rigorously the asymptotic distributions given in section
2.3, for W2, U?, A? and W2. See Guttorp and Lockhart (1988) for a similar argument.

The statistic A2, defined in (2.6), however, has infinite expected value (both asymptotic
and finite sample) when testing for the Poisson distribution or any other distribution with
infinite support; this is because the expectation of each term is one. The expectations of
the individual terms of Z are equal to the variance of the terms of the cumulative observed
histogram. Since for A% the terms are weighted by the inverse of the variance, the expec-
tation is unity. For this reason, the statistic A2, will not be considered further. Note that
the Pearson y? statistic also has infinite mean if the data are not categorized into a finite
number of cells.

For different values of the known mean p of the tested Poisson distribution, the means
and variances of the asymptotic distributions of the Cramér-von Mises statistics are given
in Ta.ble 2.1. The means and variances of the statistics when testing for a continuous

dlstrlbutlon (Stephens, 1976a, Case 0) are indicated by p = oo, and are discussed below.
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Percentage Points

The asymptotic distribution of a typical test statistic is an infinite sum of weighted \3
variables with weights equal to the eigenvalues of the covariance matrix of the statistic. In
practice, this sum must be curtailed at a finite number of terms in order to obtain percentage
points. This has been done as follows. For various values of the mean, i, of the Poisson
distribution, the A; have been calculated for : = 1, ..., A" where A has been chosen to make
the final values of A; sufficiently small that the percentage points do not change with the
addition of more eigenvalues. The eigenvalues were found using S-PLUS (S-PLUS, 1991),
and the percentage points were then found by Imhof’s method.

For W2, the matrix M is equal to D, the diagonal matrix with the Poisson probabilities,
p;, on the diagonal. The percentage points for W2 are recorded in Table 2.2 for selected
values of pu. , , ,

" For the statistics U?%, A% and W2, the M matrices are (I - D11')D(I - 11'D), DG ™!
and I, respectively. The percentage points for these statistics have been calculated as above
and are recorded in Table 2.2.

‘Since for the Poisson distribution, y is neither a location nor a scale parameter, the
asymptotic points depend on the parameter . There is an interesting connection between
these points and the points used for testing a known continuous distribution, given by
Stephens (1986), where such a test situation is called Case 0. As g — oo, the percentage
points for W2, U? and A? tend to those for Case 0. Thus, for large values of g, the Case
0 points can be used as an approximation for the exact points. However, for smaller values
of 1 more accurate results will be found by using Table 2.2.

In order to examine the rate of convergence of the percentage points to the asymptotic
points, the percentage points of W2, U2, A% and W2 for known p have been found by Monte
Carlo simulation using 25,000 samples. The standard error of estimation of the level of the
pth percentage point is approximately \/p(1—~p—)_/-ﬁ where n is the number of simulations;
for the .95 percentage point the standard error is 0.0014.

Percentage points for £ = 1,10 and various sample sizes, N, are given in Tables 2.3 and
2.4. These points converge rapidly to the asymptotic points, which can be used for samples
of size greater than 10: The rapid convergence of points for finite samples to the asymptotic
values also occurs for the Cramér-von Mises tests for continuous distributions. For example,

suppose the asymptotic point 2.783 is used for a 5% test for A? with known mean, g = 1
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when N=10. [f the given percentage point for N=10, 2.736, is correct, the actual a level
obtained by the test would be o' = .049.
An S function (Becker, Chambers and Wilks, 1988; S-PLUS, 1991) has been written to

compute the Cramér-von Mises statistics and their asymptotic p-values.

Table 2.1: Asymptotic mean and variance for the Cramér-von Mises statistics for testing
for the Poisson distribution with known mean p, for selected values of u.

w2 U? A? w2

g Mean Var Mean Var Mean Var Mean Var

.1 .078 .0122 .0071 .0001 1.000 1.668  .091 .015

. 171 .0454 0538 .0048 1.000 1.062 337 141

1 .172 .0316 .0718 .0053 1.000 .827  .524 253

5 .169 .0275 .0760 .0043 1.000 .738 .660 350

2 - .168 .0262 .0778 .0040 1.000 .694 .772 .448

5

0

167 .0237 .0812 .0033 1.000 .623 1.246 1.047

167 .0230 .0823 .0030 1.000 .601 1.773 2.050
20 .167 .0226 .0828 .0029 1.000 .590 2.515 4.056
50 .167 .0225 .0831 .0028 1.000 .584 3.984 10.074

100 167 .0222 .0832 .0028 1.000 .582 5.638 20.106
oo 1667 .0222 .0832 .0028 1.000 .580
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Table 2.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean u, for selected values of .

Ww? Upper tail significance level «

.25 A5 .10 05 .025 01 005 001
104 164 .209 300 .338 518 614 841
222 333 .427 597 769 1.013 1.199 1.435
228 317 .391 .523 .660 .848  .993 1.339
216 .297 .365 .486 .614 .788  .923 1.243
212 289 .354 471 .593 .760 .889 1.196
211 .286 .350 .466 .587 .751 879 1.181
210 .280 .349 464 .584 .747 .874 1.175
211 285 .348 462 .582 .744 871 1.171
100 .210 .284 .348 .462 .381 .744 .870 1.169

oc .209 .284 .347 .461 .581 .743 .869 1.167

Gt N ..
=== B VIS I

U? Upper tail significance level
g 25 15 .10 .05 .025 .01 .005 .001
1 .009 .015 .019 .027 .031 .047 .056 - .076
5 .070 .106 .137 .193 .250 .329 .389  .533
1 .097 .33 .163 .215 .269 .342 399 .533
2 .104 .135 .159 .201 .243 .299 340 .44l
5 .106 .133 .155 .193 .230 .280 .317  .405
10 .106 .132 .154 .190 .226 .274 .310 .394
20 .105 .132 .153 .188 .224 .271 .307 .390
50 .105 .131 .152 .187 .223 .269 .305 .387

100 .105 .131 .152 .187 .222 .269 .304 .387
oo .105 .131 .152 .187 .222 .268 .304 .385
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Table 2.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean g, for selected values of p. (continued)

A? Upper tail significance level a
i 25 15 .10 .05 .025 .01 .005 .001
.1 1.303 1.982 2.557 3.589 4.664 6.128 7.260 8.436
5 1.320 1.836  2.265 3.035 3.838 4.936 5.787 7.805
1 1.311 1.758 2.124 2.783 3.467 4379 5.127 6.849
2 1.284 1.688 2.025 2.627 3.257 4.123 4.787 6.376

5 1.262 1.647 1.968 2544 3.146 3.970 4.609 6.124
10 1.255 1.634 - 1.950 2.518 3.111 3.924 4.548 6.046
20 1.252 1.628 1.942 2505 3.094 3.901 4.525 6.008
50 1.249 1.624 1.936 2497 3.084 3.887 4.511 5.985

100 1.249 1.623 1.935 2495 3.081 3.882 4.391 5.977
oo 1.248 1.610 1.933 2.492 3.070 3.857 4.500 6.000

w2 Upper tail significance level «
7 .25 .15 .10 .05 .025 .01 .005 .001
1 .119 .184 .238 .336 .439 .587 .684 767
) 442 632 2792 1.087 1.378 1.797 2.115 2.769
1 689 939 1.146  1.513 1.896 2421 2.825 3.789
2 993  1.320 1.593 2.081 2.593 3.266 3.836 5.124

-5 1.575 2.077 2497 3.252 4.042 5.126 5.960 7.943
10 2.229 2932 3.522 4.582 5.691 7.209 8.382 11.171
20 3.153 4.143 4974 6.469 8.032 10.171 11.826 15.752
50 4.985 6.549 7.860 10.218 12.685 16.059 18.680 24.868
1000 7.051 9.260 11.113 14.445 17.932 22.702 26.403 35.151
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Table 2.3: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean p=1, for selected sample sizes. The asymptotic
points are shown for comparison.

p=1

w? Upper tail significance level o
N 25 .15 .10 .05 .025 .01
5] 234 296 .366 478 .586 .870
10 226 310 .368 .514 .675 .802
15 239 321 393 531 626 811
20 2231 322 .383 .497 .638 .817
40 228 316 .389 .515 .656 .824
50 .230 .313 .387 .521 .655 .840
100 230 318 .394 519 .654 .844
oC 2228 317 .391 .523 .660 .848

U? Upper tail significance level a
N 25 .15 .10 .05 .025 .01
) .106 .146 .167 .182 .233 .282
10 102,130 .164 213 256 .346
15 .095 .138 .161 .211 .264 .322
20 .098 .132 .162 .209 .267 .327
40 .097 132 .162 .214 .264 .344
50 .094 .131 .164 .214 .262 .332
100 099 134 .162 .213 .267 .338
0o .097 .133 .163 .215 .269 .342

14
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Table 2.3: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean p=1, for selected sample sizes. The asymptotic
points are shown for comparison. (continued)

pn=1

A? Upper tail significance level a
N .25 15 .10 .05 .025 .01
5 1.294 1.701 2224 2.637 3.908 4.751
10 1.360 1.747 2.191 2.736 3.608 4.551
15 1.365 1.745 2.0564 2.732 3.486 4.531
20 1.289 1.758 2.126 2.796 3.574 4.582
40 1.309 1.761 2.115 2.792 3.460 4.448
50 1.294 1.743 2.108 2.769 3.485 4.436
100 1.319 1.770 2.128 2.786 3.448 4.396
oo 1.311 1.758 2.124 2.783 3.467 4.379

Upper tail significance level a
N .25 .15 .10 05 025 .01

5 731 940 1.217 1.316 1.915 2.381
10 716 909 1.151 1.442 1.913 2.488
15 704 919 1.117 1.497 1.933 2.371
20 696 950 1.129 1.475 1.878 2.488
40 690 926 1.137 1.512 1.900 2.393
50 684 923 1.136 1.515 1.889 2.426

100 694 944 1.161 1.531 1.905 2.428
00 689 939 1.146 1.513 1.896 2.421
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Table 2.4: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean p=10, for selected sample sizes. The asymptotic
points are shown for comparison.

pw =10

w? Upper tail significance level «
N 25 .15 100 .05 025 .01
5 2215 289 .348 .459 .565 .696
10 213 286 .347 457 .566 .729
15 211 286 .346 458 .580 .750
20 211 288 .351 .460 .576 .722
40 211 287 .350 .464 .580 .744
50 211 284 .348 .469 .586 .733
100 210 286 .351 .462 584 .743
00 211 286 .350 .466 .587 .751

U? Upper tail significance level a
N 25 .15 .10 .05 .025 .01
5 106 .132 .151 183 .210 .247
10 105 132 152 .186 218 .264
15 105 0131 .152 187 .224 273
20 105 1132 152 (188 .224 .266
40 105 132 .152 (188 .222 .267
50 106 .131 152 187 223 .269
100 106 132 153 .188 .220 .266
00 106 .132 154 190 .226 .274
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Table 2.4: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with known mean p=10, for selected sample sizes. The asymptotic
points are shown for comparison. (continued)

p =10

A? Upper tail significance level a

N .25 .15 .10 .05 .025 .01

5 1.262 1.653 . 1.934 2.593 3.233 4.101
10 1.253 1.631 1.954 2.526 3.163 3.990
15 1.255 1.630 1.952 2.557 3.192 4.026
20 1.251 1.644 1.960 2.520 3.107 3.873
40 1.257 1.647 1.942 2,513 3.090 3.956
50 1.254 1.624 1.946 2.536 3.130 3.918
100 1.244 1.632 1.950 2.507 3.132 3.928
00 1.255 1.634 1.950 2.518 3.111 3.924

w2 Upper tail significance level o
N .25 15 .10 .05  .025 .01
5 2:255 2942 3.523 4.580 5.737 7.217
10 2.246 2.945 3.532 4.572 5.701 7.122
15  2.230 2.918 3.495 4.594 5.692 7.284
20 2.221 2.948 3.527 4.567 5.639 6.998
40  2.230 2.952 3.505 4.584 5.604 7.244
50  2.224° 2905 3.499 4.608 5.687 7.122
100 2.234 2986 3.589 4.712 5.761 7.257

00 2,229 2932 3.522 4.582 5.691 7.209
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2.4.2 Estimated Mean

Moments

The asymptotic percentage points for the various statistics, for testing for the Poisson
distribution with mean estimated by z, may be calculated as for the case where the mean
p is known, except that the matrix X is replaced by . It is now necessary to compute the
eigenvalues of the matrix £x = MY2£M"/2. The M matrices for the statistics are those
defined in section 2.4.1.

Once again the asymptotic means and variances of the statistics can be determined from
the representation (2.9). The asymptotic means can also be Written explicitly using (2.13).
The means of W2, A? and W} for testing for the Poisson distribution with estimated mean

are as follows:

E(Wz) = Z?:onHj(l - Hj) - #Z??:OP?,
E(AY) = 1-pY 23 /{H;(1- H))},
EW2) = YRoHi(1-Hj) - pTXep.

Once again the means of the statistics do not depend on the sample size, N. Unlike the case
where the mean, y, is known, the expected value of A2 is no longer identically one. The mean
and variance of the asymptotic distributions of the statistics are found in Table 2.5. For
comparison, the means and variances of the statistics when testing for a normal distribution
with known variance and unknown mean (Stephens, 1976a, Case 1) are indicated by p = oo,

and are discussed below.

Percentage Points

The percéntage points for the Cramér-von Mises statistics are recorded in Table 2.6 for
selected values of u. As p tends to infinity the points for W2, U? and A? tend to the points
for testing for a normal distribution with known variance but unknrown mean (Case 1), given
by Stephens (1986). The Case 1 points could be used as an approximation for the exact
points for large values of u; however, for smaller i more accurate results will be found in
Table 2.6.

For finite NV, the percentage points of W2, U?, A% and W2 for estimated g have been
found by Monte Carlo simulations using 25,000 samples. Percentage points for 4 = 1,10

and various sample sizes, N, are found in Tables 2.7 and 2.8. These points also converge
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rapidly to the asymptotic points; these can therefore be used for samples of size greater

than 10.

Table 2.5: Asymptotic mean and variance for Cramér-von Mises statistics for testing for the

Poisson distribution with estimated mean pu, for selected values of pu.

w2 U? A? w2

i Mean Var - Mean Var Mean Var Mean Var
1 .0042 .0000 .0013 .0000 .124 .028 .082 .00l
5 .0450 .0035 .0365 .0024  .347 .146 .104 .015
1 .0658 .0048 .0609 .0045 .432 .148 .215 .043
2 .0700 .0033 .0659 .0030 .480 .120 .357 .072
5 .0727 .0026 .0688 .0024 .504 .099 .606 .152
10 .0738 .0024 .0699 .0022 .512 .092 . .875 .284
20 .0743 .0023 .0705 .0021 .516 .089 1.250  .549
50 .0745 .0022 .0708 .0020 .518 .087 1.987 1.342
100 .0747 .0022 .0709 .0020 .519 .086 2.816 2.665
> .0748 .0021 .0710 .0020 .519
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Table 2.6: Asymptotic percentage points for Cramér-von Mises statistics for testing for the
Poisson distribution with estimated mean p, for selected values of p.

w? Upper tail significance level o
7 25 .15 .10 .05 .025 .01 .005 .001
.1 .006 .009 .011 .016 .018 .028 .033 .045
5 .059 .090 .116 .164 .213 .280 .332 .4355
1 .088 .123 .152 .203 .257 .330 .389 .556
2 .093 .121 .144 .182 .221 .273 .315 .408
5 .094 .119 .139 .172 .206 .251 .285 .366
10 .094 .118 .137 .169 .201 .244 .277 .354

20 .094 .117 .135 .167 .199 .241 .273 .349
50 .094 .117 .135 .166 .199 .239 .271 .346
100 .094 .117 .135 .166 .197 .239 .270 .345
oo .094 .117 .134 .165 .197 .238 .270 .345

U? Upper tail significance level a

7 25 .15 .10 .05 .025 .01 .005 .001
.1 .002 .003 .004 .005 .006 .009 .010 .014
.5 .048 .074 .096 .136 .177 .231 .276 .378
1
2

.081 .115 .143 .194 .246 .319 .375 .507

.088 .115 .136 .173 .211 .262 .302 .395

5 .089 .113 .132 .164 .196 .240 .274 .333
10 .089 .112 .130 .160 .192 .234 .266 .343
20 .089 .111 .128 .159 .189 .231 .263 .338
50 .089 .111 .128 .158 .188 .229 .261 .335
100 .089 .110 .128 .157 .188 .229 .260 .335
oo .088 .110 .127 .157 .187 .228 .259 .334
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Table 2.6: Asymptotic percentage points for Cramér-von Mises statistics for testing for the
Poisson distribution with estimated mean y, for selected values of p. (continued)

A? Upper tail significance level «

i .25 15 .10 05 .025 .01  .005 .001
1 .162 .251 325 460 601 784 937 1.286
5 .456 649 811 1.104 1.414 1.828 2.151 2.849
1 577  .769 921 1.191 1.465 1.812 2.119 2.762
2 630 .796 .927 1.151 1.377 1.681 1.913 2.465
5
0
0

640 .790 .908 1.112 1.319 1.598 1.813 2.322
.641 .786  .900 1.099 1.301 1.573 1.783 2.281
.641 - .783  .897 1.093 1.292 1.562 1.769  2.262
50 .641 .782 .894 1.089 1.287 1.555 1.761  2.249
100 .641 .782 .894 1.088 1.286 1.553 1.758  2.245
oo .644 782 .894 1.087 1.285 1.551 1.756  2.241

Upper tail significance level «
U .25 .15 .10 .05 .025 .01  .005 .001
1. .011 .017 .022 .031 .040 .053 .063 .069
S50 136 0 199 253 .350 439 .590  .697 .857
1 .287 .391 475 624 .778 .988 1.158 1.536
2
5
0

472 602 .705 .881 1.058 1.295 1.472 1.908
773959 1.106 1.359 1.616 1.961 2.227 2.854
1.100 1.355 1.557 1.906 2.261 2.738 3.106 3.975
20 1.560 1.914 2.196 2.685 3.181 3.849 4.363 5.581
50 2468 3.024 3.468 4.235 5.014 6.064 6.872 8.778
100 3.492 4.276 4.902 5.984 7.084 8.566 9.706 12.412
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Table 2.7: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with estimated mean p=1, for selected sample sizes. The asymptotic
points are shown for comparison.

p=1

w? Upper tail significance level o
N 25 .15 .10 .05 .025 .01
5 .08 .110 .146 .207 .207 .237
10 .084 .128 .135 .192 .240 .281
15  .087 .121 .154 .196 .251 .306
20 .086 .121 .148 .200 .258 .324
40  .087 .121 .150 .200 .252 .324
50 .088 .123 .153 .206 .258 .332
100 .089 .125 .154 .206 .261 .336
00 .088 .123 .152 .203 .257 .330

U? Upper tail significance level o
N 25 .15 .10 .05 .025 .01
5 .078 .110 .145 .196 .200 .230
10 079 .120 .129 .189 .233 .264
15 .083 .110 .151 .187 .243 .293
20 .081 .113 .137 .92 .245 .311
40 .080 .112 .141 .191 .242 312
50 .082 .116 .143 .194 .245 317
100 .082 .116 .145 .196 .250 .324
o0 .081 .115 .143 .194 .246 .319
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‘able 2.7: Monte Carlo percentage points for the Cramér-von Mises statistics for testing for
the Poisson distribution with estimated mean p=1, for selected sample sizes. The asymptotic
points are shown for comparison. (continued)

p=1

A? Upper tail significance level o
N 25 .15 .10 .05 .025 .01
5 554 702 792 1.027 1.184 1.818
10 574 697 .884 1.155 1.418 1.644
15 857 751 .894 1.175 - 1.458 1.775
20 567 .749 914 1.150 1.430 1.862
40 564 748 .901 1.165 1.454 1.840
50 578 770 924 1.191 1.453 1.821
100 581 772 932 1.200 1.486 1.871
00 577 769 921 1.191 1.465 1.812

w2 Upper tail significance level a
N 25 .15 .10 .05 .025 .01
5 .247 .435 .505 .551 .636 1.006
10 292 386 .464 .631 .750  .997
15 287 408 478 .604 .768  .946
20 287 .38 472 620 .777  .970
40 281 .388 .463 .606 .770 .971
50 .288 388 470 .622 .775 1.008
100 286 .390 469 .621 .776  .987
o0 287 391 475 624 778  .988
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Table 2.8: Monte Carlo percentage points for the Cramér-von Mises statistics for testing
for the Poisson distribution with estimated mean u=10, for selected sample sizes. The
asymptotic points are shown for comparison.

p =10

w? Upper tail significance level a
N 25 .15 .10 .05 025 .01
5 095 119 .138 .165 .195 .227
10 095 118 137 168 .197 .234
15 094 117 135 .166 .197 .237
20 094 118 .137 .169 .199 .240
40 .095 .118 .137 .168 .198 .239
50 095 118 137 169 .200 .241
100 094 .118 .136 .169 .202 .245
o0 .094 .118 .137 .169 .201 .244

U? Upper tail significance level a
N 25 15 10 .05 .025 .01
5 092 .114 .132 .160 .190 .223
10 091 113 .131 162 .190 .226
15 090 .112 .129 .159 .189 .229
20 .090 .112 .130 .161 .190 .232
40 090 112 .131 .160 .189 .229
50 .090 .112 .130 .160 .191 .233
100 .089 112 .129 .160 .193 .234
oo .089 .112 .130 .160 .192 .234
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Table 2.8: Monte Carlo percentage points for the Cramér-von Mises statistics for testing
for the Poisson distribution with estimated mean p=10. for selected sample sizes. The
asymptotic points are shown for comparison. {continued)

=10

A? Upper tail significance level a
N .25 .15 10 05 025 .01
) .603 744 845 1.041 1.227 1.525
10 623 .764 .878 1.067 1.271 1.556
15 625 763 876 1.068 1.261 1.532
20 634 777 .891 1.085 1.298 1.586
40 .641 .788 .903 1.095 1.294 1.571
50 641 783 894 1.100 1.296 1.579
100 641 .786 902 1.101 1314 1.570
oc 641  .786 900 1.099 1.301 1.573

Upper tail significance level «
N .25 15 .10 .05 .025 .01
5 1.065 1.308 1.492 1.813 2.123 2.547
10 1.081 1.322 1.511 1.841 2.177 2.623
15  1.082 1.324 1.520 1.862 2.184 2.628
20 1.100 1.348 1.543 1.89¢ 2.223 2.721
40  1.104 1.358 1.564 1.891 2.244 2.703
50 1.097 1.354 1.553 1.888 2.232 2.710
100 1.100 1.351 1.556 1.913 2.289 2.757
20 1.100 1.355 1.557 1.906 2.261 2.738
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2.5 Power Comparisons

We now consider the power of the Cramér-von Mises statistics for testing for the Poisson
distribution in the more common situation when the mean is estimated from the sample.
Where possible. asymptotic power calculations for the Cramér-von Mises statistics and other
tests of fit have been made. These have been supplemented by simulations to determine the

relative powers for finite samples.

2.5.1 The Test Statistics
The test statistics compared are the following:
1. The Cramér-von Mises statistics defined in Section 2.2.

2. The dispersion test. This is the most commonly used goodness-of-fit test for the
Poisson distribution, and was suggested by R. A. Fisher (Kendall and Stuart, Volume
2, 1973). It is defined as follows:

Z}il(%’ - £)?

z

D= (2.14)

This test is often used as a one sided test to detect overdispersed alternatives, however,
is used here as a two-sided test to guard against all alternative distributions. Potthoff
and Whittinghill (1966b) show that a test based on D is the score (locally most

powerful) test against the negative binomial distribution.

3. The k-component smooth test. This is an analogue of the Neyman smooth test for
continuous distributions (Neyman, 1937). Such analogues were examined first by
Scott (1949) and later by Barton (1955). More recently, they have been developed for
testing for the Poisson distribution by Rayner and Best {1989). These tests are con-
structed to have optimal power against local alternatives whose distributions depart
smoothly from the distribution being tested. The alternatives are functions of poly-
nomials orthonormal to the distribution under test. For the Poisson distribution, the
orthonormal functions are Poisson-Charlier polynomials, A;(7; ). The ith polynomial
is defined as follows:

hi(jip) = /2 S (—1) i C (2.15)

t=0
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where C7 is the binomial coefficient for z successes in n trials.

The test statistic is then defined as
i k+1
Sk=NT"'>V?2 (2.16)
=2
where V; = Zﬁzlhi(zj,:i). The one-component statistic 51 = V} is a standardized
version of the dispersion test, §), = (D — N)?/2N. The four-component smooth test

was recommended by Rayner and Best.

4. Statistics based on the probability generating function (PGF). These have been pro-
posed by several authors (Kocherlakota and Kocherlakota, 1986; Rueda et al, 1991;
Nakamura and Perez-Abreu, 1993). Two statistics were examined, called P and T

below. They are found as follows.

Let ¢(t) be the PGF and ¢n(t) be the empirical probability generating function.

(a) Rueda et al (1991) proposed the following test statistic:

P= [[(6n(0) - pl0)) 1

This statistic is an extension of the statistic proposed by Kocherlakota and
Kocherlakota (1986); their statistic was the difference between the empirical
probability generating function and the PGF at a specific point, .

(b) For the Poisson distribution, log#(t) = u(t — 1). Nakamura and Perez-Abreu
propose a statistic based on the the departure of log ¢,(¢) from a straight line,

using the value of the second derivative. The statistic is referred to as 7.

5. Correlation and regression tests of fit. These have been proposed and evaluated for
several distributions (Spinelli, 1980). The tests compare the sample order statistics
with their expected value or some other asymptotically equivalent value. Let r(x,y)
denote the correlation between vectors x and y, and m be the vector of expectations

of Poisson order statistics. The correlation statistic is defined as
R = N[1 - r*(x, m)], (2.17)

where x is the vector of sample order statistics.
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6. The Pearson x? statistic defined in section 2.4.1. As pointed out above, the Poisson
distribution must be categorized in order for the Pearson y? test to be used. Since the
cell probabilities, and thus the categorization, depend on the value of the mean, u, a
single a priori categorization procedure is impossible to develop. Two categorization

procedures were examined for each of p = 1, 10.

Forp=1

(a) X2 - Three groups k = 0,1,2+
(b) X2 - Five groups k = 0,1,2,3,4+

For p =10

(a) X? - Five groups k=0-6,7-8,9~-10,11 — 12,13+
(b) X2 - Ten groups k=0-5,6,7,8,9,10,11,12,13,14+.

2.5.2 Asymptotic Power

The asymptotic powers of the Cramér-von Mises statistics and the smooth statistics, Sk, with
k = 1,2,3,4, were examined against the negative binomial alternative. For the purposes
of the asymptotic power comparison let the negative binomial distribution be defined as

follows:

1

L(y++~Y ( T )y( 1 )"'
Pr{Y =y} = , 2.18
¥ =} yIT(y~1) \147vu/ \l1+7u (2.18)

fory = 0,1,...and 7,4 > 0. The mean and variance of Y are p and p(1+yp), respectively.
At v = 0, (2.18) reduces to the Poisson distribution. Thus Hg is: ¥ = 0. Let u be estimated
by maximum likelihood, that is, i = Z. Under Hi, let v = 6/\/17, thus y - 0as N — oo
and H; reduces to Hy.

In section 2.2.1, the i-th component of a test statistic, s; = (w;’X), was defined. Under

Hy, the s? are independent and each distributed standard normal. Under H,, the s; are
independent and normally distributed with variance 1, but with mean »; which is not zero.

For the k-component smooth statistics the mean v; is §w;’g where g is the vector with jth

element
aPr{Y =j}
%= ey
Y =0

- (219)



CHAPTER 2. POISSON DISTRIBUTION ‘ 29

and where p; is the Poisson probability of observing a count j defined in section 2.2.1 above.

For the Cramér-von Mises statistics and W2, the mean of s; is
swiM!/?Ag = —éw;M'/?p (2.20)

where A is the partial-sum matrix given in (2.4) and p is the vector of Poisson probabilities.
Equations (2.19) and (2.20) can be derived as follows. Let py and p,; be the vectors of
cell probabilities under the null and alternative hypotheses, respectively. Also let eg and e;

be the vectors of expected numbers in each cell. Then under the alternative hypothesis:
E(d/VN) = E(o-ey)/VN
= [E(o~e1) +(e1 ~=0)}/VN
= VN(p; - po)-

The vector p, is a function of the parameter vy. A Taylor expansion around y = 0, gives

BN = VNy &

0*p
2 1
0y 0+\/ﬁ7 d7?

y=

+0(1/VN)

~y=0

=0
op,
6 .
op,
6 B

v=0

Equation (2.19) comes from differentiating (2.18) with respect to v and evaluating it at

4 = 0. For the Cramér-von Mises statistics, the expectation of X is needed.

E(X) = EMY?Z)/VN
= E(M'Y?2Ad/VN)
= M'Y2AE(d/VN).

Since the matrix A applied to the vector of first differences of probabilities given in (2.19) is
equal to —p, the mean of s; becomes —6w;’M'/?p. It is easy to show that the covariance of
d under the alternative hypothesis is the same as the covariance under the null hypothesis.

The asymptotic power is compared along the lines proposed by Durbin and Knott (1972)
and Durbin, Knott and Taylor (1975), and developed by Stephens (1976b). The test based
on the maximum likelihood estimator of the parameter, v, will be the locally most powerful

unbiased test (Cox and Hinkley, 1974). The variance of the maximum likelihood test for .the
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Poisson distribution against the negative binomial alternative is the inverse of the Cramér-

2
E(a log f ) =u?/2.
y=0

072
The parameter, 6, is chosen to make the power for this test a fixed value. Here the value

used is 0.5G. For a 0.05-level test to give a two-sided power of 0.50, § = 1.96\/‘2/,u.

Rao lower bound,

Powers for the Cramér-von Mises statistics were computed by fitting a curve of the
form a + bX,Z,, where a, b, p are chosen so that the first three cumulants match those of the
statistics. Powers for smooth tests were determined by evaluating the appropriate non-

central x? distribution. The asymptotic powers are given in Table 2.9.

Results and comments

The results of the asymptotic power analysis show that for negative-binomial alternatives,
A? has the best power among the Cramér-von Mises tests, and is nearly as powerful as
the best test, with W2 slightly worse. The results also indicate that adding additional
components to the smooth statistic reduces the asymptotic power. The smooth statistic with
two components has similar power to A% and smooth statistics with additional components

have progressively worse power than A2

Table 2.9: Asymptotic power of the Cramér-von Mises statistics for testing for the Poisson
distribution with estimated mean, pu.

This table gives the asymptotic power (%) of the Cramér-von Mises test for selected values
of the mean, u, against a negative-binomial alternative with parameter () chosen to give
the locally most powerful test, the dispersion test, a power of 50%.

I Test Statistics

W2 U? A? W2 S5, S3 S
1 49 48 47 48 40 34 31
5 41 36 40 40 40 34 31
1 33 29 37 36 40 34 31
2 28 27 37 35 40 34 31
)
0

28 28 37 35 40 34 31
98 29 38 36 40 34 31
20 28 29 38 36 40 34 31
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2.5.3 Finite Samples

For finite samples, Monte Carlo studies were used to estimate power. Common alternatives
to the Poisson distribution can be categorized by the ratio of the variance to the mean;
this is equal to one for the Poisson distribution. Distributions with variance larger than the
mean are considered overdispersed, and with variance smaller than the mean are referred to
as underdispersed.

The most common overdispersed alternative to the Poisson distribution is the negative
binomial. This distribution arises as the number of failures before K successes with prob-
ability of failure, p, but can also be regarded as a Poisson-Gamma mixture; that is, the
distribution produced when the parameter of a Poisson distribution itself has a Gamma
distribution. Another overdispersed alternative examined was a mixture of two Poisson
variables. For underdispersed alternatives, the binomial and discrete uniform distributions
- were examined. Finally, distributions where the parameters could be chosen to give the
variance equal to the mean, as for the Poisson distribution, were also investigated. The
beta-binomial distribution and the discrete uniform distribution were chosen in this cate-
gory. Figures 2.1 and 2.2 show the probability functions for the Poisson distribution with
mean, g4 = 1, and the beta-binomial distribution with parameters (a = 1,8 = 2, K = 3)
which have the same mean and variance.

Comparisons of power for the Cramér-von Mises statistics and the other tests of fit,
when used in testing against the above alternatives, are given in Tables 2.10 and 2.11. One
thousand samples of size 20 were generated from each alternative distribution with means
of 4 = 1 and g = 10. The finite null percentage points of all statistics compared were
found by Monte Carlo simulation using 25,000 samples. The maximum standard error of
the power results is equal to .5/4/1000 ~ 1.6%. Random samples were generated using
IMSL subroutines (IMSL, 1987).

Results and comments

1. Asexpected, the dispersion test and the one-component smooth test perform very well
for overdispersed alternatives, with the one-component smooth test having slightly
better power. The statistics A2 and W2, the four-component smooth test and the
statistics based on the probability generating function also have good power against

overdispersed alternatives. The statistics, W? and U? have lower power than A?, and
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Figure 2.1: Probability function of a Poisson distribution with mean, p = 1
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0.0
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Figure 2.2: Probability function of a beta-binomial distribution (e = 1,8 = 2, K = 3) with
mean and variance both equal to 1.
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both the Pearson x? statistic and the correlation statistic perform very poorly.

2. For underdispersed alternatives, the dispersion test has the best power. The next most
powerful tests are the one-component smooth test and the Cramér-von Mises statistics
which have approximately equal power. The four component smooth test and the
probability generating function statistic, 7', are especially poor. The correlation test
was the most powerful at detecting underdispersed distributions with 4 = 1, but had

very poor power against underdispersed alternatives with u = 10.

3. Against alternatives with the mean equal to the variance, the Cramér-von Mises statis-
tics have the best power. Since the dispersion test and the one-component smooth
test primarily detect differences between the mean and variance, they do very poorly
against these alternatives. The four-component smooth test and the probability gener-
ating function statistic, P, also have poor power. The power of the correlation statistic

was inconsistent, very good against some alternatives and poor against others.

With the exception of the Cramér-von Mises statistics, all statistics gave very poor power
against at least one of the classes of alternatives. For over- or under-dispersed alternatives,
the dispersion test or the standardized dispersion test (one-component smooth test) are
recommended. However, if an omnibus goodness-of-fit test for the Poisson distribution is
desired, and in particular, if the alternative is “close” to the Poisson in the sense that the

variance is almost equal to the mean, then A? is the recommended statistic.
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Table 2.10: Power Comparison

This table gives the percentage of 1000 samples rejected by the statistics for a sample of
size 20. Alternative distributions with a mean, u, of 1 were generated. The parameters and
variance of the alternative distribution, o2, are indicated. All tests are at the 5% level.

Alternative Distribution (o?) Test Statistics

w2 p? A2 WX P T
Overdispersed
Neg Bin[K = 3,p=.25] (1.33) 88 69 125 118 123 189
Neg Bin[K = 1,p = .5] (2) 343 261 457 410 426 530
5P(.2)+.5P(1.8) (1.64) 338 306 403 382 412 429
5P(0)+.5P(2.0) (2) 791 756 821 781 789 775
Underdispersed
Binomial[p=.5,K=2] (.5) 373 370 393 433 468 91
Discrete Uniform[0,2] (.67) 165 158 206 206 83 95

Equal Dispersion
Beta-Binomialla=1,8=2,K=3] 71 73 73 77 34 63

Overdispersed
Neg Bin[K = 3,p = .25} (1.33) 149 198 176 30 93 31

Neg Bin[K = 1,p = .5] (2) 490 544 505 160 285 100
5P(.2)+.5P(1.8) (1.64) 351 437 417 37 113 10
5P(0)+.5P(2.0) (2) 681 753 783 105 218 19
Underdispersed

Binomial[p=.5,K=2] (.5) 497 380 211 44 18 604
Discrete Uniform[0,2] (.67) 165 71 104 2 21 477

Equal Dispersion
Beta-Binomialla=1,4=2,K=3] 14 10 45 3 5 25
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Table 2.11: Power Comparison

This table gives the percentage of 1000 samples rejected by the statistics for a sample of
size 20. Alternative distributions with a mean, yu, of 10 were generated. The parameters
and variance of the alternative distribution, ¢2, are indicated. All tests are at the 5% level.

Alternative Distribution (a?) Test Statistics

w2 U? A W P T
Overdispersed
Neg Bin[K = 30,p = .25] (13.3) 90 86 158 141 68 61
Neg Bin[K = 10,p = .5] (20) 347 316 553 501 571 610
5P(8)+.5P(12) (14) 162 156 269 243 254 295
5P(7)+.5P(13) (19) 438 425 612 580 620 637
Underdispersed
Binomial[p=.33,K=30] (6.7) 133 155 120 126 59 24
Binomial[p=.5,K=20] (5) 358 374 344 358 178 90
Discrete Uniform[7,13] (4) 337 375 435 421 292 68

Equal Dispersion
Beta-Binomialle=2,8=.6, K=13] 741 685 748 738 402 745

Discrete Uniform[5,15] 129 132 130 133 3 156
D S5 S8 X} X} R
Overdispersed
Neg Bin[K = 30,p = .25] (13.3) 165 205 204 68 61 64
Neg Bin[K = 10,p = .5] (20) 608 648 606 224 209 89
5P(8)+.5P(12) (14) 260 307 254 112 89 33
5P(7)+.5P(13) (19) 640 688 601 295 249 27
Underdispersed
Binomial[p=.33,K=30] (6.7) 170 130 19 100 82 57
Binomial[p=.5,K=20] (5) 479 389 62 253 179 108
Discrete Uniform(7,13] (4) 794 641 76 349 484 243

Equal Dispersion
Beta-Binomialje=2,6=.6, K=13] 126 116 551 196 848 906
Discrete Uniform[5,15] 8 6 12 103 80 110
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2.6 Examples

2.6.1 Example 1

The data in Table 2.12, taken from Zar (1974), show the number of sparrow nests found
in a one hectare area. The cumulative observed and expected histograms are given in
Figure 2.3, and the standardized difference is plotted in Figure 2.4. The standardized
difference is the difference between the observed and expected values divided by the standard
deviation to give asymptotic standard normal values. The sample mean and variance are
1.1 and .810, respectively, indicating a small amount of underdispersion. The values and
significance levels of the Cramér-von Mises statistics and other test statistics are found
in Table 2.13. The Cramér-von Mises statistics were calculated by stopping at the first
seven terms, and the Pearson x? statistics was calculated after grouping the data for cells
three or greater. The Cramér-von Mises statistics and the Pearson x? all suggested evidence
against the Poisson hypothesis, with significance levels around 0.05. The dispersion test and
standardized dispersion test did not reject the Poisson hypothesis, as each had a significance

level greater than 0.10.

Table 2.12: Sparrow Nest Data

No. of Frequency Cumulative Cumulative Standardized Pr(X=x)

nests Frequency Expected Difference
0 9 9 13.32 -1.45 3328
1 22 31 27.96 1.05 .3661
2 6 37 36.02 0.52 .2013
3 2 39 38.97 0.03 .0738
4 1 40 39.96 0.47 .0203
5 0 40 39.99 0.20 .0044
6 0 40 40.00 0.08 .0008
7 0 40 40.00 0.03 .0001
8 0 40 40.00 0.01 .0000
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Figure 2.3: Cumulative observed (—) and expected (- -) histograms for the sparrow nest
data.
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Figure 2.4: Standardized difference between the observed and expected histograms for the
sparrow nest data.
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Table 2.13: Test statistics for the sparrow nest data

Test Value Significance
Statistic Level
w? 24 027
U? 24 024
A? 1.16 .054
w2 .72 .038
D 28.59 185
51 1.59 .208
X% 5.99 050

2.6.2 Example 2

The data in Table 2.14 show the frequency of radioactive decay counts of Polonium, taken
from Hoaglin (1980), and reproduced in Rayner and Best (1989). The cumulative observed
and expected histograms are found in Figure 2.5, and the difference is plotted in Figure
2.6. The standardized difference is the difference between the observed and expected values
divided by the standard deviation to give asymptotic standard normal values. The sample
mean and variance are 3.87 and 3.70, respectively, indicating Poisson dispersion. The values
and significance levels of the Cramér-von Mises statistics and other test statistics are found
in Table 2.15. The Cramér-von Mises statistics were calculated by stopping after the first
fourteen terms, and the Pearson x? statistic was calculated after grouping the data for
~ cells eleven or greater. The Cramér-von Mises statistics, A2 and W2 rejected the Poisson
hypothesis, and the significance levels for W? and U? were just larger than 0.05. The
dispersion test and standardized dispersion test each had a significance level around 0.10,

and the Pearson x? test accepted the Poisson hypothesis.
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Table 2.14: Radioactive Decay Counts of Polonium

Count Frequency Cumulative Cumulative Standardized Pr(X=x)

Frequency Expected Difference

0 57 57 54.31 0.37 .0282

1 203 260 264.59 -0.30 .0R06

2 383 643 671.65 -1.28 .1561

3 525 1168 1196.97 -1.14 2014

4 532 1700 1705.41 -0.22 .1950

5 408 2108 2099.10 0.44 .1510

6 273 2381 2353.14 1.84 .0974

7 139 2520 2493.64 2.52 .0539

8 45 2565 2561.63 0.50 .0261

9 7 2592 2590.88 0.27 .0112

10 10 2602 2602.20 -0.08 .0043

11 4 2606 2606.19 -0.14 .0153

12 0 2606 2607.47 -2.04 .0005

13 1 2607 2607.86 -2.28 .0001

14 1 2608 2607.96 0.19 .0001

Table 2.15: Test statistics for the Polonium count data

Test Value Significance
Statistic Level
w? .16 .060
2 .15 .069
A? 1.25 033
w2 1.26 042
D 2488.92 ' .096
S) 2.71 .099

\p 12.96 226
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Figure 2.5: Cumulative observed (—) and expected (- -) histograms for the Polonium count
data.
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Figure 2.6: Standardized difference between the observed and expected histograms for the
Polonium count data.



Chapter 3

Binomial Distribution

3.1 Introduction

In this chapter, the Cramér-von Mises statistics are developed as tests for the binomial
distribution. In section 3.2, the definitions of the Cramér-von Mises statistics and the basic
theory are given. In section 3.3, the percentage points to make tests for the binomial
distribution are given for the cases where the probability of success, 8, is known and also for
the case where 8 is estimated. In section 3.4 power studies are presented. Comparisons are
made with the Pearson x? test and the score test for the beta-binomial distribution which is
found to be powerful against distributions with larger variance. In many other cases, A? is

found to have good power and is recommended for use as an omnibus test for the binomial

distribution.

3.2 Cramér-von Mises Statistics

Let X be a binomial random variable, with parameters 6 and K'; the probability that X = j,

pj is given by

p; = p;(6, K) = Cfo'(1 - 6)F
where j =0,1,..., K and K and 8 are known. Suppose the random sample to be tested is
x1,%2,...,Tn. When 8 is not known, and is estimated by maximum likelihood, the estimate

isf=3/K = zﬁ-vzi z;/KN. The Cramér-von Mises statistics will again be calculated as for

4]
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the Poisson distribution, using ZJ‘, p; and ij. Here,
b= C/(1- )<,

where 7 = 0,1,..., K, and p is the vector of p; values.

From section 2.3.2 the asymptotic covariance matrix of the variable d/vN = (0—&)/VN
is

3o = %o -gg'/gD'g,
where X is defined in section 2.3.1. The vector g has jth component
g; = CKEO'(1- 0K~ — (K = j)(1 - 6)K~i-1gi]
= K(pj-1(0,K —1)—p;(6,K - 1), (3.1)

where p;(#, K — 1) is the binomial probability of observing a count j given a probability of
success, 8, in K — 1 trials (with p_;(8, K — 1) = px(6, K — 1) = 0). By combining terms in

a different way, g; can be written

R (j - Kg) . ) ¥
g9; = 0(1 . 0) py. (‘}2)
Using (3.2) it is easily seen that g'D~'g = K/[f(1 — 8)]. Then
R 6(1-8) ) o
3o = - ! 3.
0 20 K gg K (‘ ;)

and as N — o0, Z/V/N = AEI/\/N converges in distribution to a mean zero maultivariate

normal random variable with covariance matrix,

3 = AEA
= AXoA’' - Agg’'A’/g'D7!g
= X - K6(1-0)rr, (3.4)
where r is the vector with jth element r; = p;(6, K — 1); the result follows since Ag = — A'r.

3.3 Moments and Percentage Points

3.3.1 Known 4

The mean value of the W? statistic becomes, for known 6;

E(W?) = E[TE(S; - Ti)pi]
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= TR opiE(S; - T5)7
S opiVar(S;]
= YiopHi(1- Hj).

I

The means of the other test statistics can be similarly derived and are as follows:

E(U?* = EW? -y K oK pipj(min{H,, H;} - H:H,)
E(A*) = 1-pk

For the modified statistics of section 2.2.2;

EW2) = TEH;(1-H;)<0K
E(AY) = K

Note that the means of the test statistics do not depend on the sample size N. For different
values of the number of trials, K, and for different values of the known probability of success,
#, the means and variances of the asymptotic distributions for all these statistics are given

in Table 3.1 for K = 5 and 20 and a range of values of 8.

Tables

For Table 3.1 and in all other tables occurring in this chapter, for reasons of space, only a

small selection will be given of the various values which have been calculated.

Percentage Points

As before, the asymptotic distribution of a typical test statistic is a sum of weighted x?2
variables, with weights equal to the eigenvalues of the covariance matrix, X x, of the statistic.
The A; have been calculated for various values of the number of trials, K, and the success
probability, 8, using S-PLUS (S-PLUS, 1991). The percentage points were then found by
Imhof’s method (Imhof, 1961).

For W2, the matrix M is equal to D, the diagonal matrix with the binomial probabilities,
p;. on the diagonal. For statistics U2, A2, W2 and A2, the M matrices are (I— D11")D(I1—
11'D), DG™', I and G™!, respectively. The asymptotic percentage points for all these

statistics are recorded in Table 3.2 for K’ = 5 and 20 and a range of values of 6.
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Since for the binomial distribution A" and # are neither location nor scale parameters,
the asymptotic points depend on these parameters. There is a connection between these
points and the points used for testing for a known continuous distribution, given by Stephens
(1986), where such a test situation is called Case 0. As K tends to infinity, the percentage
points for W2, U? and A? tend to those for Case 0. These points were given in the preceding
chapter.

For finite samples, percentage points for & = 20, § = .5 and for various N, are given
in Table 3.3. With the exception of the statistic, A%, the points converge rapidly to the
asymptotic points, which can be used for samples of size greater than 10. This is typical for
all the extensive tables which have been produced. Even for A2 , additional simulations for
sample size 500 and 1000 show that the points do in fact converge to the asymptotic points,
but extremely slowly.

An S function (Becker, Chambers and Wilks, 1988; S-PLUS, 1991) has been written to

compute the Cramér-von Mises statistics and their asymptotic p-values.
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Table 3.1: Asymptotic mean (M) and variance (V) for the Cramér-von Mises test statis-
tics for testing for the binomial distribution with known success probability 8, for selected
number of trials K and selected values of 6.

8

K=5
W2
M \"

U2
M \Y

AZ
M \Y

M

01
. .05
.10
.20
.30
40
.50
.60
.70
.80
.90
.95
.99

0.044 0.004
0.140 0.037
0.168 0.044
0.163 0.028
0.159 0.026
0.157 0.024
0.155 0.024
0.152 0.023
0.146 0.022
0.133 0.022
0.085 0.013
0.036 0.003
0.002 0.000

K =20
W2
M A%

0.002 0.000
0.029 0.002
0.056 0.005
0.071 0.005
0.074 0.005
0.074 0.004
0.073 0.004
0.069 0.004
0.062 0.004
0.051 0.003
0.039 0.003
0.023 0.001
0.002 0.000

UZ
M v

1.000 1.817
1.000 1.332
1.000 1.034
1.000 0.805
0.998 0.728
0.990 0.694
0.969 0.675
0.922 0.656
0.832 0.614
0.672 0.493
0.409 0.239
0.226 0.085
0.049 0.005

A?
M \4

0.048
0.198
0.326
0.476
0.558
0.601
0.615
0.601
0.558
0.476
0.326
0.198
0.048

M

0.004
0.063
0.138
0.217
0.264
0.294
0.304
0.294
0.264
0.217
0.138
0.063
0.004

Vv

U‘U\U\U\U\U\U\U\U\U\U\U\U\g

.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
.99

0.125 0.030
0.170 0.031
0.166 -0.026
0.165 0.024
0.165 0.023
0.164 0.023
0.164 0.023
0.163 0.022
0.162 0.022
0.159 0.022
0.150 0.021
0.128 0.021
0.025 0.001

0.021 0.001
0.072  0.005
0.077 0.004
0.080 0.003
0.081 0.003
0.081 0.003
0.081 0.003
0.081 0.003
0.081 0.003
0.079 0.003
0.069 0.003
0.052 0.003
0.017 0.001

1.000 1.435
1.000 0.821
1.000 0.692
1.000 0.635
1.000 0.618
1.000 0.609
1.000 0.605
1.000 0.602
0.999 0.602
0.989 0.604
0.878 0.588
0.642 0.436
0.182 0.056

0.167
0.513
0.734
0.996
1.146
1.228
1.254
1.228
1.146
0.996
0.734
0.513
0.167

0.046
0.244
0.410
0.692
0.894
1.015
1.055
1.015
0.894
0.692
0.410
0.244
0.046

20
20
20
20
20
20
20
20
20
20
20
20
20
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Table 3.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with known success probability 8, for selected number of trials A
and selected values of 6.

W2
9

K=5

.25

15

Upper tail significance level a

10

.05

025

01

005

.001

.01
.05
.10
.20
.30
40
.50
.60
.70
.80
.90
.95
.99

U2
6

0.059
0.184
0.219

0.218

0.208
0.206
0.203
0.199
0.193
0.176
0.111
0.048
0.003

25

0.091
0.285
0.328
0.301
0.288
0.284
0.279
0.274
0.267
0.251
0.171
0.074
0.005

15

0.120
0.373
0.420
0.370
0.355
0.348
0.342
0.336
0.327
0.314
0.222
0.098
0.006

Upper tail significance level o

.10

0.170
0.523
0.586
0.493
0.477
0.465
0.457
0.449
0.437
0.425
0.313
0.137
0.009

.05

0.191
0.686
0.759
0.621
0.604
0.587
0.577
0.567
0.551
0.543
0.408
0.180
0.010

025

0.294
0.894
0.996
0.794
0.778
0.753
0.741
0.728
0.707
0.707
0.537
0.229
0.015

.01

0.358
1.074
1.178
0.930
0.913
0.882
0.869
0.854
0.827
0.832
0.642
0.230
0.018

.005

0.481
1.179
1.417
1.251
1.232
1.190
1.176
1.151
1.114
1.184
0.872
0.234
0.020

.001

.01
.05
.10
.20
.30
.40
.30
.60
.70
.80
90
.95
.99

0.003
0.038
0.073
0.097
0.099
0.100
0.098
0.094
0.083
0.068
0.051
0.030
0.003

0.004
0.059
0.112
0.133
0.133
0.134
0.130
0.126
0.114
0.096
0.077
0.047
0.004

0.006
0.077
0.144
0.163
0.161
0.160
0.156
0.151
0.139
0.119
0.099
0.062
0.005

0.008
0.109
0.203
0.214
0.207
0.205
0.200
0.194
0.183
0.159
0.139
0.087
0.008

0.009
0.142
0.264
0.267
0.256
0.250
0.245
0.238
0.229
0.201
0.181
0.114
0.009

0.014
0.183
0.347
0.339
0.321
0.311
0.305
0.300
0.291
0.259
0.238
0.146
0.013

0.017
0.223
0.412
0.394
0.371
0.356
0.352
0.338
0.339
0.304
0.281
0.178
0.016

0.019
0.310
0.564
0.536
0.490
0.461
0.462
0.436
0.453
0.432
0.337
0.245
0.018
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Table 3.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with known success probability 8, for selected number of trials A

and selected values of #. (continued)

A2
0

K=5

25

15

Upper tail significance level o

.10

.05

025

.01

.005

.001

.01
.05
.10
.20
.30
.40
.50
.60
70
.80
.90
95
99

wﬂ

m

0

1.310
1.312
1.328
1.318
1.300
1.286
1.263
1.212
1.099
0.887
0.534
(.295
0.065

.25

2.024
1.899
1.837
1.756
1.714
1.690
1.661
1.607
1.487
1.239
0.785
0.448
0.100

15

2.625
2.397
2.260
2.114
2.054
2.022
1.988
1.931
1.809
1.533
0.999
0.578
0.131

Upper tail significance level o

.10

3.707
3.295
3.006
2.755
2.661
2.613
2.570
2.505
2.371
2.059
1.383
0.811
0.183

.05

4.856
4.320
3.788
3.420
3.294
3.230
3.176
3.103
2.959
2.610
1.773
1.054
0.242

.025

6.338
5.510
4.853
4.348
4.155
4.064
3.993
3.879
3.759
3.362
2.331
1.385
0.318

.01

7.570
6.512
5.679
5.034
4.832
4.730
4.650
4.555
4.385
3.940
2.753
1.641
0.367

.005

0.357
8.443
7.648

6.711

6.382
6.241
6.159
6.071
5.865
5.955
3.363
1.908
0.413

.001

.01
.05
.10
.20
.30
40
.50
.60
.70
.80
.90
.95
.99

0.063
0.258
0.428
0.631
0.731
0.783
0.800
0.783
0.731
0.631
0.428
0.258
0.063

0.098
0.390
0.616
0.863
0.983
1.049
1.070
1.049
0.983
0.863
0.616
0.390
0.098

0.127
0.502
0.776
1.051
1.189
1.269
1.294
1.269
1.189
1.051
0.776
0.502
0.127

0.178
0.703
1.066
1.392
1.564
1.664
1.695
1.664
1.564
1.392
1.066
0.703
0.178

0.235
0.912
1.367
1.745
1.954
2.076
2.114
2.076
1.954
1.745
1.367
0.912
0.235

0.307
1.197
1.772
2.226
2.496
2.630
2.687
2.630
2.496
2.226
1.772
1.197
0.307

0.368
1.417
2.104
2.598
2.901
3.077
3.133
3.077
2.901
2.598
2.104
1.417
0.368

0.410
1.673
2.662
3.485
3.882
4.114
4.190
4.114
3.882
3.485
2.662
1.673
0.410
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lable 3.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with known success probability 6, for selected number of trials A
and selected values of 8. (continued)

K=35

A% Upper tail significance level a

0 .25 .15 .10 .05 025 .01 005 .001
01 6.623 8.125 9.258 11.116 12.910 15.212 16.918 20.883
.05 6.614 8.159 9.336 11.287 13.191 15.668 17.524 22.004
.10 6.605 8.196 9.421 11.472 13.493 16.155 18.165 22.915
.20 6.589 8.254 9.552 11.756 '13.963 16.907 19.158 24.473
30 6.577 8.294 9.643 11.955 14.289 17.425 19.838 25.549
40 6.570 8.317 9.697 12.072 14481 17.730 20.210 26.172
.50 6.568 8.324 9.715 12.111 14.545 17.830 20.357 26.381
.60 6.570 8.317 9.697 12.072 14.481 17.730 20.210 26.172
70 6.577 8.294 9.643 11.955 14.289 17.425 19.838 25.549
.80 6.589 8.254 9.552 11.756 13.963 16.907 19.158 24.473
90 6.605 8.196 9.421 11.472 13.493 16.155 18.165 22.915
.95 6.614 8.159 9.336 11.287 13.191 15.668 17.524 22.004
99 6.623 8.125 9.258 11.116 12910 15.212 16.918 20.883

K =20

w? Upper tail significance level

0 .25 .15 .10 .05 .025 .01 .005 .001
.01 0.164 0.255 0.332 0.466 0.616 0.803 0.964 1.073
.05 0.226 0.314 0.386 0.515 0.650 0.835 0.978 1.317
10 0.215 0.294 0.362 0.482 0.609 0.782 0.915 1.232
.20 0.211 0.288 0.352 0.469 0.591 0.758  0.887 1.193
.30 0.210 0.285 0.349 0.465 0.585 0.750 0.878 1.180
.40 0.209 0.284 0.348 0.462 0.582 0.746 0.872 1.173
.50 0.208 0.283 0.346 0.460 0.579 0.742 0.868 1.167
.60 0.207 0.282 0.344 0.458 0.577 0.738 0.864 1.161
.70 0.206 0.280 0.342 0.455 0.573 0.733  0.859 1.154
.80 0.203 0.277 0338 0450 0.566 0.726 0.849 1.141
.90 0.195 0.266 0.327 0435 0.548 0.703 0.823 1.108
.95 0.169 0.241 0.302 0.413 0.533 0.687 0.814 1.132
.99 0.033 0.052 0.067 0.095 0.124 0.160 0.160 0.209
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Table 3.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with known success probability 8, for selected number of trials A

and selected values of §. (continued)

U2
0

K =20

.25

.15

Upper tail significance level a

.10

.05

.025

.01

.005

.001

01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
99

0.027
0.097
0.103
0.105
0.106
0.106
0.106
0.106
0.105
0.104
0.092
0.069
0.023

.25

0.043
0.133
0.135
0.134
0.134
0.133
0.133
0.133
0.134
0.133
0.121
0.096
0.036

15

0.056
0.163
0.160
0.157
0.156
0.155
0.155
0.155
0.156
0.155

0.144

0.118
0.046

Upper tail significance level o

.10

0.079
0.215
0.202
0.196
0.194
0.193
0.192
0.193
0.193
0.194
0.184
0.157
0.066

.05

0.103
0.269
0.245
0.235
0.231
0.230
0.230
0.230
0.231
0.232
0.224
0.197
0.086

025

0.131
0.342
0.302
0.286
0.281
0.280
0.279
0.280
0.281
0.283
0.276
0.252
0.110

.01

0.132
0.398
0.347
0.325
0.319
0.317
0.317
0.317
0.319
0.321
0.316
0.295
0.112

.005

0.134
0.540
0.446
0.415
0.408
0.404
0.404
0.404
0.407
0.411
0.408
0.397
0.112

.001

1.304
1.313
1.285
1.269
1.264
1.262
1.261
1.262
1.263
1.258
1.146
0.842
0.237

1.921
1.757
1.689
1.657
1.646
1.642
1.640
1.639
1.640
1.634
1.520
1.173
0.362

2.446
2.121
2.024
1.979
1.965
1.958
1.955
1.953
1.953
1.946
1.829
1.451
0.467

3.390
2.775
2.624
2.557
2.536
2.525
2.520
2.516
2.514
2.503
2.378
1.946
0.656

4.331
3.454
3.252
3.162
3.133
3.119
3.111
3.105
3.100
3.086
2.950
2.465
0.853

5.716
4.370
4.110
3.989
3.951
3.931
3.919
3.910
3.903
3.884
3.705
3.175
1.121

6.753
5.105
4.776
4.632
4.584
4.565
4.548
4.533
4.523
4.501
4.340
3.724
1.329

8.238
6.812
6.374
6.152
6.087
6.053
6.032
6.016
6.001
5.971
5.724
5.026
1.820
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Table 3.2: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with known success probability 8, for selected number of trials &

and selected values of 8. (continued)

W2
0

K =20

15

Upper tail significance level o

.10

.05

025

.01

.005

.001

.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
.99

A2
0

.25

0.329
0.921
1.260
1.673
1.915
2.046
2.088
2.046
1.915
1.673
1.260
0.921
0.329

15

0.424
1.124
1.520
2.013
2.302
2.459
2.510
2.459
2.302
2.013
1.520
1.124
0.424

Upper tail significance level «

.10

0.595
1.485
1.988
2.625
2.999
3.202
3.267
3.202
2.999
2.625
1.988
1.485
0.595

.05

0.772
1.862
2.477
3.264
3.727
3.980
4.060
3.980
3.727
3.264
2.477
1.862
0.772

.025

1.015
2.377
3.110
4.134
4.724
5.043
5.148
5.043
4.724
4.134
3.110
2.377
1.015

.01

1.202
2,777
3.666
4.817
5.497
5.867
5.985
5.867
5.497
4.817
3.666
2,777
1.202

.005

1.438
3.722
4.897
6.406
7.354
7.820
7.980
7.820
7.354
6.406
4.897
3.722
1.438

.001

.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
95
.99

23.86
23.97
24.07
24.21
24.30
24.35
24.36
24.35
24.30
24.21
24.07
23.97
23.86

26.59
26.90
27.22
27.70
28.02
28.20
28.26
28.20
28.02
27.70
27.22
26.91
26.59

28.55
29.05
29.56
30.33
30.85
31.15
31.24
31.15
30.85
30.33
29.56
29.05
28.55

31.64
32.46
33.33
34.67
35.56
36.07
36.24
36.07
35.56
34.67
33.33
32.46
31.64

34.50
35.68
36.94
38.90
40.20
40.95
41.20
40.95
40.20
38.90
36.94
35.68
34.50

38.03
39.73
41.58
44.44
46.34
47.43
47.78
47.43
46.34
44.44
41.58
39.73
38.03

40.57
42.70
45.04
48.64
51.02
52.38
52.82
52.38
51.02
48.64
45.03
42.70
40.57

46.16
49.41
53.00
58.48
62.04
64.06
64.72
64.06
62.04
58.48
53.00
49.41
46.16
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Table 3.3: Monte Carlo percentage points for the Cramér-von Mises test statistics testing
for the binomial distribution with known success probability # = .5, and number of trials

K = 20. The asymptotic points are shown for comparison.

K=20 6=.5

w? Upper tail significance level o
N .25 .15 .10 .05 .025 .01
5 0.219 0.281 0.341 0.454 0.564 0.700
10 0.211 0.284 0.345 0.453 0.563 0.714
15 0.207 0.284 0.348 0.462 0.579 0.724
20 0.207 0.285 0.346 0.459 0.569 0.729
40 0.211 0.283 0.345 0.457 0.571 0.735
50 0.206 0.282 0.350 0.462 0.582 0.739
100 0.209 0.279 0.344 0.465 0.586 0.739
00 0.208 0.283 0.346 0.460 0.579 0.742

U? Upper tail significance level a
N .25 .15 .10 .05 .025 .01
5 0.106 0.132 0.150 0.182 0.220 0.256
10 0.105 0.132 0.154 0.190 0.226 0.268
15 0.105 0.132 0.154 0.191 0.222 0.265
20 0.105 0.132 0.153 0.189 0.226 0.269
40 0.106 0.134 0.156 0.192 0.228 0.274
50 0.104 0.132 0.153 0.190 0.224 0.277
100 0.105 0.133 0.154 0.191 0.228 0.272
00 0.106 0.133 0.155 0.192 0.230 0.279

A? Upper tail significance level a
N .25 15 .10 .05  .025 .01
5 1.243 1.637 1.994 2.651 3.284 4.178
10 1.263 1.645 1.985 2.558 3.164 4.034
15 1.243 1.645 1.969 2.573 3.205 3.975
20 1.253 1.648 1.962 2.570 3.172 3.979
40 1.268 1.646 1.956 2.519 3.114 3.914
50 1.254 1.648 1.978 2.548 3.154 3.910
100 1.258 1.620 1.944 2543 3.144 3.976
00 1.261 1.640 1.955 2.520 3.111 3.919



CHAPTER 3. BINOMIAL DISTRIBUTION 3

o

Table 3.3: Monte Carlo percentage points for the Cramér-von Mises test statistics testing
for the binomial distribution with known success probability § = .5, and number of trials
K = 20. The asymptotic points are shown for comparison. (continued)

K=20 6=.
w2 Upper tail significance level a
N .25 .15 .10 .05 .025 .01

5 1.588  2.112 2.513 3.243  3.991 5.032
10 1.600 2.082 2.505 3.250 4.026 5.086
15 1.570 2.085 2.521 3.304 4.074 5.074
20 1.572  2.084 2.521 3.296 4.056 5.142
40 1.600 2.102 2505 3.243  4.019 5.140
50 1.574 2.099 2338 3.269 4.092 5.091

100 1.584 2.062 2.489 3.283 4.110 5.190
0o 1.585 2.088 2.510 3.267 4.060 5.148

Upper tail significance level «
N .25 .15 .10 .05 .025 .01
5 13.044 18.285 25.506 46.752 58.148 199.391
10 14.229 21.973 26.699 39.431 97.077 115.409
15 15.511 20.660 25.991 46.502 70.282 94.160
20 15.451 20.859 27.195 48.676 59.152  95.150
40 17.032 24.074 28.657 38.458 54.522 152.088
50 18.110 23.575 28.305 38.071 65.781 127.135
100 17.859 23.108 28.498 45.954 66.182 86.277
oo 24360 28.260 31.240 36.240 41.200 47.780
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3.3.2 Estimated 4

The mean values of W2, A2, W2 and A2, for testing for the binomial distribution with

estimated 8 are as follows:

E(W?) = TKopiH;(1- Hj) - K6(1-0)TK ;12p;
E(A?) = 1-pk - K6(1-0) K or2p;/{H;(1~ H;)}

E(W3) = SIoH;(1-Hj)— K6(1—0)T K r?
E(AL) = K-~1-K6(1-0)x K r2/{H,(1~ H;)}

where p; = p;(0, K) and r; = p;(6, K — 1).
Once again the means of the statistics do not depend on the sample size, N. The mean

and variance of the asymptotic distribution of each statistic are given in Table 3.4.

Percentage Points

The percentage points for the Cramér-von Mises statistics are recorded in Table 3.5 for
selected values of K = 5,20 and a range of values of . As K tends to infinity the points for
W2, U? and A? tend to the points for testing for a normal distribution with known variance
but estimated mean {Case 1), given by Stephens (1986).

For finite N, the percentage points of W2, U2, A%, W2 and A2 for estimated success
probability, 8, have been found by Monte Carlo simulation using 25,000 samples. Percentage
points for A = 20, # = .5 and various sample sizes, N, are given in Table 3.6. These points
converge rapidly to the asymptotic points (except for A2)); these can therefore be used for

samples of size greater than 10.
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Table 3.4: Asymptotic mean (M) and variance (V) for the Cramér-von Mises test statistics
for testing for the binomial distribution with estimated success probability 8, for selected
number of trials K and selected values of 6.

K=5

w? U? A? w2

8 M \' M A" M A" M Vv M A"
.01 0.001 0.000 0.000 0.000 0.064 0.008 0.002 0.000 394 784
.05 0.017 0.001 0.011 0.000 0.238 0.093 0.034 0002 374 7.31
.10 0.041 0.003 0.036 0.002 0.350 0.157 0.093 0.014 3.55 6.79
.20 0.060 0.004 0.058 0.004 0.441 0.162 0.188 0.038 3.27 6.01
.30 0.062 0.003 0.059 0.003 0.474 0.148 0.240 0.046 3.09 5.46
40 0.063 0.003 0.059 0.003 0.485 0.145 0.265 0.049 298 5.13
.50 0.063 0.003 0.059 0.003 0.478 0.148 0.273 0.051 295 5.02
.60 0.062 0.003 0.057 0.003 0.447 0.151 0.265 0.049 298 5.13
.70 0.060 0.003 0.052 0.003 0379 0.138 0.240 0.046 3.09 5.46
.80 0.049 0.004 0©.039 0.003 0.263 0.087 0.188 0.038 3.27 6.01
.90 0.019 0.001 0.013 0.000 0.108 0.019 0.093 0.014 355 6.79
.95 0.004 0.000 0.003 0.000 0.036 0.002 0.034 0.002 - 3.74 7.3l
.99 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.000 394 7.84

K=20
w? U? A? w2 A?

8 M \4 M \4 M \% M \ M \
.01 0.125 0.030 0.021 0.001 1.000 1.435 0.167 0.046 18.75 38.00
.05 0.064 0.605 0.060 0.004 0.433 0.150 0.209 0.042 18.05 38.48
.10 0.068 0.003 0.065 0.003 0.481 0.122 0.338 0.067 17.47 39.10
.20 0.071 0.003 0.067 0.003 0.502 0.107 0477 0.104 16.71 40.12
.30 0.071 0.003 0.068 0.002 0.509 0.103 0.555 0.131 16.27 40.87
.40 0.072 0.003 0.068 0.002 0.5313 0.101 0.597 0.147 16.02 41.31
.50 0.072 0.003 0.068 0.002 0517 0.102 0.611 0.152 1595 41.47
.60 0.072 0.003 0.068 0.002 0.520 0.104 0.597 0.147 16.02 41.31
.70 0.071 0.003 0.067 0.002 0.524 0.109 0.555 0.131 16.27 40.87
.80 0.070 0.003 0.065 0.002 0522 0.120 0.477 0.104 16.71 40.12
.90 0.066 0.003 0.058 0.003 0438 0.134 0338 0.067 17.47 39.10
95 0.049 0.003 0.039 0002 0.260 0.077 0.209 0.042 18.05 38.48
99 0.025 0.001 0.017 0.001 0.182 0.056 0.167 0.046 18.75 38.00
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Table 3.5: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with estimated success probability 8, for selected number of trials
K and selected values of 6.

W2
0

K=5

.25

15

Upper tail significance level o

.10

.05

025

.01

.005

.001

.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
90
.95
.99

LT2

0.001
0.022
0.054
0.080
0.084
0.084
0.085
0.083
0.081
0.064
0.024
0.005
0.000

.25

0.002
0.034
0.083
0.114
0.113
0.112
0.113
0.111
0.111
0.096
0.038
0.008
0.000

15

0.003
0.045
0.107
0.142
0.136
0.136
0.136
0.135
0.135
0.122
0.050
0.010
0.000

Upper tail significance level «

.10

0.004
0.063
0.152
0.192
0.176
0.176
0.175
0.174
0.176
0.170
0.070
0.015
0.000

.05

0.004
0.083
0.199
0.244
0.217
0.218
0.214
0.215
0.218
0.219
0.091
0.017
0.000

025

0.006
0.105
0.259
0.315
0.268
0.273
0.265
0.269
0.274
0.288
0.121
0.026
0.000

.01

0.007
0.107
0.310
0.371
0.312
0.318
0.307
0.315
0.318
0.340
0.163
0.030
0.000

.005

0.008
0.108
0.423
0.492
0.409
0.422
0.398
0.417
0.419
0.464
0.196
0.041
0.000

.001

.01
.05
.10
.20
.30
40
.50
.60
.80
.90
.95
.99

0.000
0.014
0.047
0.077
0.080
0.079
0.079
0.076
0.071
0.051
0.017
0.004
0.000

0.000
0.022
0.073
0.110
0.108
0.107
0.106
0.103
0.098
0.078
0.026
0.006
0.000

0.000
0.029
0.095
0.138
0.131
0.130
0.128
0.124
0.120
0.100
0.035
0.008
0.000

0.001
0.040
0.133
0.188
0.169
0.169
0.166
0.162
0.159
0.140
0.049
0.011
0.000

0.001
0.045
0.175
0.239
0.209
0.210
0.204
0.200
0.199
0.181
0.064
0.014
0.000

0.001
0.070
0.228
0.311
0.263
0.265
0.255
0.254
0.253
0.238
0.083
0.018
0.000

0.001
0.083
0.274
0.368
0.302
0.308
0.294
0.292
0.294
0.282
0.100
0.022
0.000

0.001
0.114
0.300
0.477
0.397
0.409
0.380
0.387
0.394
0.333
0.111
0.031
0.000
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Table 3.5: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with estimated success probability 8, for selected number of trials
K and selected values of 8. (continued)

AZ
0

K =5

.25

15

Upper tail significance level a

.10

.05

.025

.01

.005

.001

.01
.05

.10

.20
.30
40
.50
.60
.70
.80
.90
.95
.99
W2

m

0

0.085
0.310
0.461
0.595
0.636
0.647
0.641
0.602
0.507
0.346
0.141
0.047
0.002

.25

0.133
0.470
0.661
0.796
0.825
0.831
0.829
0.794
0.692
0.495
0.214
0.073
0.004

15

0.172
0.606
0.831
0.960
0.973
0.977
0.977
0.947
0.844
0.621
0.276
0.095
0.005

Upper tail significance level a

.10

0.244
0.849
1.133
1.236
1.227
1.228
1.230
1.212
1.111
0.849
0.386
0.134
0.007

.05

0.319
1.102
1.442
1.518
1.482
1.480
1.485
1.480
1.386
1.080
0.502
0.175
0.008

.025

0.410
1.448
1.883
1.914
1.824
1.817
1.826
1.930
1.762
1.413
0.659
0.235
0.012

.01

0.500
1.714
2.262
2.182
2.070
2.040
2.083
2.112
2.057
1.657
0.780
0.273
0.015

.005

0.681
2.010
2.955
2.895
2.705
2.684
2.707
2.761
2.738
2.325
0.936
0.375
0.016

.001

.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
99

0.002
0.044
0.120
0.251
0.325
0.356
0.365
0.356
0.325
0.251
0.120
0.044
0.002

0.004
0.063
0.181
0.349
0.432
0.465
0.477
0.465
0.432
0.349
0.181
0.068
0.004

0.005
0.089
0.233
0.430
0.519
0.551
0.565
0.551
0.519
0.430
0.233
0.089
0.005

0.007
0.125
0.325
0.574
0.662
0.700
0.717
0.700
0.662
0.574
0.325
0.125
0.007

0.008
0.164
0.422
0.723
0.809
0.850
0.869
0.850
0.809
0.723
0.422
0.164
0.008

0.012
0.213
0.553
0.927
1.008
1.054
1.072
1.054
1.008
0.927
0.553
0.213
0.012

0.014
0.252
0.591
1.085
1.148
1.213
1.227
1.213
1.148
1.085
0.591
0.252
0.014

0.020
0.284
0.899
1.460
1.491
1.583
1.586
1.583
1.491
1.460
0.899
0.284
0.020
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Table 3.5: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with estimated success probability 8, for selected number of trials
K and selected values of 8. (continued)

K =5

A2 Upper tail significance level a

g .25 .15 .10 05 025 01 005 .001
01 530 6.65 7.68 937 11.02 13.15 14.74 18.37
.05 5.03 633 733 8.99 1062 12.74 14.33 18.01
10 476 6.02 6.99 8.61 1021 12.32 1391 17.61
20 437 555 647 8.03 9.58 11.63 13.20 16.86
B0 412 525 613 7.63 9.12 11.11 12.60 16.19
40 399 508 593 738 884 10.77 1221 15.72
S50 394 502 587 730 8.74 10.65 12.06 15.54
.60 399 508 593 738 884 10.77 12.21 15.72
70 412 525 613 7.63 9.12 11.11 12.60 16.19
.80 437 555 647 8.03 9.58 11.63 13.20 16.86
890 476 6.02 699 861 10.21 1232 1391 17.61
95 503 633 733 899 10.62 12.74 1433 18.01
99 530 665 T7.68 937 11.02 13.15 14.74 1837

K=20

w2 Upper tail significance level a

0 .25 15 .10 05 .025 01 .005 .001
.01 0.164 0.255 0.332 0.466 0.616 0.803 0.964 1.073
.05 0.086 0.121 0.149 0.200 0.253 0.326 0.383 0.567
.10 0.091 0.119 0.141 0.180 0.219 0.272 0.313 0.407
220 0.093 0.118 0.138 0.173 0.207 0.253 0.288 0.370
.30 0.093 0.118 0.137 0.170 0.204 0.248 0.282 0.362
40 0.093 0.117 0.137 0.169 0.202 0.246 0.280 0.359
.50 0.093 0.117 0.136 0.169 0.202 0.246 0.279 0.358
.60 0.093 0.117 0.136 0.169 0.202 0.247 0.280 0.359
.70 0.093 0.117 0.137 0.170 0.204 0.249 0.283 0.363
.80 0.092 0.118 0.138 0.172 0.207 0.253 0.289 0.372
90 0.089 0.117 0.139 0.177 0.215 0.265 0.305 0.397
.95 0.065 0.095 0.120 0.166 0.214 0.279 0.329 0.417
99 0.033 0.052 0.667 0.095 0.124 0.160 0.160 0.209



CHAPTER 3. BINOMIAL DISTRIBUTION

Table 3.5: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with estimated success probability 8, for selected number of trials
K and selected values of 8. (continued)

U2
0

K =20

.25

15

Upper tail significance level o

.10

.05

025

.01

005

.001

.01
.05
.10
.20
.30
40
.50
.60
.70
.80
.90
.95
.99

AZ
g

0.027
0.080
0.086
0.088
0.088
0.088
0.088
0.088
0.087
0.086
0.078
0.050
0.023

.25

0.043
0.114
0.113
0.113
0.112
0.111
0.111
0.111
0.110
0.109
0.103
0.075
0.036

15

0.056
0.142
0.135
0.132
0.131
0.130
0.129
0.129
0.129
0.128
0.123
0.095
6.046

Upper tail significance level o

.10

0.079
0.193
0.172
0.165
0.163
0.161
0.161
0.160
0.160
0.160
0.157
0.132
0.066

.05

0.103
0.246
0.211
0.199
0.195
0.193
0.193
0.192
0.192
0.192
0.191
0.172
0.086

025

0.131
0.318
0.262
0.244
0.239
0.236
0.235
0.235
0.235
0.236
0.240
0.224
0.110

.01

0.132
0.374
0.303
0.278
0.272
0.269
0.268
0.267
0.267
0.268
0.271
0.265
0.112

005

0.134
0.493
0.398
0.360
0.351
0.347
0.345
0.344
0.344
0.346
0.351
0.361
0.112

.001

.01
.05
10
.20
.30
.40
.50
.60
.70
.80
90
95
.99

1.304
0.580
0.633
0.644
0.648
0.651
0.655
0.660
0.667
0.672
0.580
0.342
0.237

1.921
0.773
0.801
0.799
0.800
0.802
0.806
0.812
0.823
0.837
0.760
0.482
0.362

2.446
0.928
0.933
0.922
0.920
0.921
0.925
0.933
0.947
0.966
0.904
0.599
0.467

3.390
1.198
1.159
1.132
1.127
1.127
1.132
1.142
1.160
1.190
1.156
0.810
0.656

4.331
1.472
1.387
1.346
1.336
1.336
1.342
1.354
1.377
1.416
1.413
1.030
0.853

5.716
1.833
1.693
1.633
1.619
1.618
1.625
1.640
1.669
1.722
1.759
1.331
1.121

6.753
2.127
1.928
1.853
1.837
1.835
1.843
1.860
1.894
1.957
2.027
1.564
1.329

8.238
2.770
2.484
2.378
2.352
2.353
2.359
2.385
2.427
2.516
2.661
2.098
1.820
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Table 3.5: Asymptotic percentage points for the Cramér-von Mises statistics for testing for
the binomial distribution with estimated success probability 8, for selected number of trials
K and selected values of 8. (continued)

WZ
8

K =20

.25

15

Upper tail significance level o

.10

.05

.025

.01

.005

.001

.01
.05
.10
.20
.30
40
.50
.60
.70
.80
.90
.95
.99

A‘Z
0

0.217
0.279
0.448
0.617
0.711
0.762
0.779
0.762
0.711
0.617
0.448
0.279
0.217

25

0.329
0.381
0.573
0.771
0.884
0.945
0.964
0.945
0.884
0.771
0.573
0.381
0.329

15

0.424
0.465
0.672
0.892
1.020
1.089
1.111
1.089
1.020
0.892
0.672
0.455
0.424

Upper tail significance level o

.10

0.595
0.613
0.841
1.101
1.254
1.338
1.365
1.338
1.254
1.101
0.841
0.613
0.595

.05

0.772
0.765
1.011
1.313
1.492
1.590
1.621
1.590
1.492
1.313
1.011
0.765
0.77

.025

1.015
0.973
1.239
1.597
1.811
1.929
1.967
1.929
1.811
1.597
1.239
0.973
1.015

01

1.202
1.136
1.419
1.814
2.056
2.189
2.232
2.189
2.056
1.814
1.419
1.136
1.202

005

1.438
1.517
1.826
2.330
2.636
2.805
2.859
2.805
2.636
2.330
1.826
1.517
1.438

.001

.01
05
.10
.20
.30
.40
.50
.60
.70
.80
90
95
.99

22.44
21.69
21.06
20.25
19.76
19.50
19.42
19.50
19.76
20.25
21.06
21.69
22.44

25.06
24.36
23.77
23.03
22.60
22.36
22.29
22.36
22.60
23.03
23.77
24.36
25.06

26.95
26.29
25.76
25.09
24.71
24.50
24.44
24.50
24.71
25.09
25.76
26.29
26.95

29.92
29.37
28.94
28.43
28.15
28.00
27.95
28.00
28.15
28.43
28.94
29.37
29.92

32.66
32.24
31.95
31.62
31.45
31.37
21.35
31.37
31.45
31.62
31.95
32.24
32.66

36.06
35.84
35.75
35.70
35.71
35.73
35.74
35.73
35.71
35.70
35.75
35.84
36.06

38.50
38.46
38.53
38.73
38.89
38.99
39.02
38.99
38.89
38.73
38.53
38.46
38.50

43.87
44.30
44.84
45.67
46.21
46.51
46.61
46.51
46.21
45.67
44.84
44.30
43.87
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Table 3.6: Monte Carlo percentage points for the Cramér-von Mises test statistics testing
for the binomial distribution with estimated success probability 8 = .5, and number of trials

K = 20. The asymptotic points are shown for comparison.

K=20 6=.5

w? Upper tail significance level o
N .25 .15 .10 .05 .025 .01
3 0.096 0.121 0.137 0.157 0.196 0.225
10 0.094 0.118 0.137 0.168 0.201 0.241
15 0.093 0.116 0.135 0.167 0.197 0.235
20 0.093 0.117 0.135 0.167 0.199 0.240
40 0.094 0.118 0.137 0.171 0.204 0.244
50 0.093 0.116 0.134 0.166 0.198 0.242
100 0.093 0.116 0.135 0.166 0.201 0.243
0o 0.093 0.117 0.136 0.169 0.202 0.246

U? Upper tail significance level «
N .25 .15 .10 .05 .025 .01
5 0.091 - 0.115 0.133 0.152 0.186 0.222
10 0.089 0.112 0.130 0.161 0.193 0.232
15 0.088 0.111 0.129 0.159 0.188 0.226
20 0.088 0.111 0.129 0.159 0.191 0.231
40 0.090 0.112 0.130 0.162 0.194 0.234
50 0.088 0.110 0.127 0.158 0.189 0.230
100 0.088 0.110 0.128 0.158 0.192 0.232
oo 0.088 0.111 0.129 0.161 0.193 0.235

A? Upper tail significance level o
N .25 .15 .10 .05 025 .01
5 0.610 0.757 0.836 1.081 1.284 1.645
10 0.636 0.783 0.905 1.120 1.337 1.641
15 0.637 0.788 0.906 1.105 1.313 1.608
20 0.639 0.789 0902 1.110 1.326 1.609
40 0.652 0.805 0.921 1.128 1.347 1.614
50 0.646 0.797 0911 1.120 1.347 1.613
100 0.652 0.795 0916 1.122 1.339 1.600
oo 0.655 0.806 0925 1.132 1.342 1.625
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Table 3.6: Mente Carlo percentage points for the Cramér-von Mises test statistics testing
for the binomial distribution with estimated success probability § = .5, and number of trials
K = 20. The asymptotic points are shown for comparison. (continued)

K=20 6=.5
w2 Upper tail significance level «
N .25 15 .10 .05 .025 .01

5 0.755 0.941 1.034 1.282 1.531 1.842
10 0.769 0.352 1.090 1.339 1.590 1.914
15 0.765 ©.945 1.084 1.324 1.560 1.870
20 0.770 0.945 1.086 1337 1.584 1.892
40 0.782 0.967 1.104 1.363 1.621 1.934
50 0.771 0948 1.094 1345 1.602 1.923

100 0.777 0955 1.694 1.350 1.611 1.922
00 0.779 06.964 1.111 1.365 1.621 1.967

A Upper tail significance level a
N .25 .15 .10 .05 .025 .01
5 5916 7.631 10.068 16.586 28.239  55.986
10 7.575 10.257 13.578 24.027 41.820 84.035
15 8.349 11.523 15.222 26.157 43.964 80.888
20 8.984 12.156 16.014 26.474 44.892 86.868
40  10.452 14.166 18.795 28.542 46.034 110.188
50 10.848 15.134 19.613 29.580 47.834 111.561
100 12.130 15.733 19.247 32.628 55.947 85.529
oo 19.420 22290 24.440 27.950 31.350 35.740
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3.4 Power Comparisons

We now consider the power of the Cramér-von Mises statistics for testing for the binomial
distribution in the mmore common situation when the probability of success is estimated
from the sample. Where possible, calculations have been made of asymptotic power for
the Cramér-von Mises statistics and other tests of fit. These have been supplemented by

simulations to determine the relative powers for finite samples.

3.4.1 The Test Statistics

The test statistics compared are the following:

1. The Cramér-von Mises statistics.

2. The Kolmogorov-Smirnov statistic. The Kolmogorov-Smirnov statistic is a popular
goodness-of-fit statistic for continuous distributions although it has been shown to
have poor power relative to the Cramér-von Mises statistics. The statistic has been
developed for discrete distributions by Pettitt and Stephens (1977) and for the Poisson
distribution by Campbell and Oprian (1979). The statistic is the maximum discrep-

ancy between the cumulative observed and the cumulative expected histogram.

3. The Pearson x% statistic using K + 1 cells. This statistic is the most common test of

fit for discrete distributions.

4. The likelihood ratio statistic, G. This statistic arises as the likelihood ratio test for

the multinomial distribution. It is defined

G? = 25°K o;In(0;/N p;),

L Js1=2

where o; is the observed number in cell 7 and p; is the estimated probability in cell 2

(Bishop et al, 1975).

5. The dispersion test. This is the analogue of the Poisson dispersion test and is at-

tributed to Fisher (Kendall and Stuart, Volume 2, 1973).

7=1

Tz~ K6)®
T Ké(1-6)
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This test is often used as a one sided test to detect overdispersed alternatives, but is
used here as a two-sided test to guard against all alternative distributions. It has been
shown that a test based on D is the score test against the beta-binomial distribution by
Potthoff and Whittinghill (1966a) for known probability of success, 8, and by Tarone
(1979) when @ is estimated by Z/K. The score test is

S =(D-N)/\/2N(K -1). (3.5)

6. The k-component smooth test. This has been developed for testing for the binomial
distribution by Rayner and Best (1989). For the binomial distribution, the orthonor-
mal functions used in the test are Krawtchouk polynomials. The ith polynomial is
defined as follows:

: . L. _0 i—t (1 . 0) t
(i 0 K)= JoK=3 (7 _ A S K .
w0, K) = S0l (=) (B5) e (36)

where C7 is the binomial coefficient for z successes in n trials.

The test statistic is then defined as
k+1

Se=N"1YV? (3.7)
1=2

where V; = E?’:Ihi(xj;é,l('). The one-component statistic $; = V;? is similar to the

score test against the beta-binomial alternative;

Vo = =, {(e; ~ KO)? + (20 - 1)o; + K61 - )} /6(1 - 6) /2K (K - 1),

where K is the number of trials. The k-component statistic is equivalent to the Pearson
x? statistic. The tests based on the first component, the second component and the

sum of the first two components were examined.

7. Generating function statistics.

As was noted for the Poisson distribution, test statistics can be based on the prob-
ability generating function. We have adapted the statistic, P, given by Rueda et al
(1991) for the binomial distribution. For this distribution, P(2) = ((1—6) +6t)¥, and
the computing formula for P becomes:
1
P = 1/n2ﬁ12?’=1m -
1-— (1 - 9)2K+1
02K +1)

22?:12?;00_71‘(@(1 -0F 7/ (z;+5+ D)+
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A statistic, analogous to P, can be based on the moment generating function (MGF).
Let #(¢) be the MGF and ¢, () be the empirical moment generating function. The

suggested test statistic is:
1
M = [(@a(0) - o)t

For the binomial distribution, #(¢) = ((1 — 6) + 8e')X, and the computing formula for

M is as follows:
T ts — 1

M = l/nzﬁlzlem~

. R . AeIJ+-7' -1
225\;12}8:00;(9](1 - H)K ]“‘E:—J— +
2K . . -

3 CHE(1 - 6)K~igi(el — 1)/
1=0

3.4.2 Asymptotic Power

Calculations of asymptotic power can be made in a similar way to those for the Poisson
distribution. These powers were evaluated against the beta-binomial alternative. Let the
beta-binomial distribution be defined as follows:

o0+ ) A T (1 -8 4 97)

75! (1 +m)

forj=10,1,...,K,0< 8 < 1,7 > 0. The mean and variance of Y are K8 and K68(1-6)(1-+
Kv)/(14 7), respectively. At v = 0, (3.8) reduces to the binomial distribution. Thus
is: 7 = 0. Let 8 be estimated by maximum likelihood, that is, 6 = z/K. Under H,, let
v = 6/\/17, thus y — 0 as N — oo and H; reduces to Hy.

For the Pearson x? test the mean of a typical component, s; is now éw;'g where g is the

Pr{Y =j} = C}‘H (3.8)

vector with jth element
oPr{Y = j}
9 = T oy
g
K(K -1 . .
= A= a0, K~ 2+ (1= 00, K -2 - pi(0.K))  (39)
and where p;(8, K) is the binomial probability of observing a count j defined in section 3.2
above, p;_2(8, K —2) = 0 for j < 2 and p;(8, K —2) = 0 for j > K —2. For the Cramér-von

Mises and the modified Cramér-von Mises test statistics the mean of s; is

swi/M™V2Ag - (3.10)
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where A is the partial-sum matrix as before. Again the covariance of d under the alternate
hypothesis is the same as the covariance under the null hypothesis.

The parameter, §, is chosen to make the power for the test based on the m.l.e. equal
to 0.50, as was done for the Poisson distribution. For an 0.05-level test to give a two-sided
power of 0.50, 6 = l.Qﬁ/m. Powers for the Pearson x? test were determined by
evaluating the appropriate non-central x? distribution, and powers for the other statistics

were obtained by fitting a + bxg. The asymptotic powers are given in Tables 3.7.

Results and comments

The results of the asymptotic power analysis show that for beta-binomial alternatives, A2
has the best power among the Cramér-von Mises tests, and is nearly as powerful as the best
test. Compared to the two-component smooth test, S;, A2 has slightly better power for a
small number of trials and slightly lower power for a large number of trials. The modified
W? test statistic has slightly lower power than A2, but better than W2 or U2. The modified
A? statistic, A2, has poor power relative to A%, particularly when the probability of success
is different from 0.5. As expected, the power of the Pearson x? test is very high for binomial

families with a small number of trials, but is very poor for binomial families with a large

number of trials.
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Table 3.7: Asymptotic power of the Cramér-von Mises test statistics for testing for the
binomial distribution with estimated success probability, 6.

This table gives the asymptotic power (%) of the Cramér-von Mises test for selected values
of the number of trials, A, and probability of success, § = .1 and 8 = .5, against a beta-
binomial alternative with parameter () chosen to give the locally most powerful test a
power of 50%.

6=.1
Test Statistics
K W2 U? A W2 A% xfo NS
2 50 50 50 50 50 40 40
3 48 47 47 48 41 34 40
4
5
6

46 44 45 45 36 31 40

43 41 43 43 33 28 40

41 38 41 41 31 26 40

8 36 34 40 38 29 23 40
10 33 30 39 37 27 21 40
12 31 30 38 36 26 19 40
20 28 28 37 35 24 15 40
40 28 28 37 35 23 14 40
50 28 28 37 35 23 11 40

=5
Test Statistics
w2 y? A2 W,?l A,Z,, x}; S5

K
2 50 50 50 50 50 40 40
3 34 30 42 40 46 34 40
4 30 29 39 36 44 31 40
5 29 28 38 36 42 28 40
6 29 28 38 35 41 26 40
8 28 28 38 35 39 23 40
10 28 28 38 35 38 21 40
12 28 28 38 35 37 19 40
20 28 28 38 35 34 15 40
40 28 29 38 36 32 14 40
50 28 29 38 36 31 11 40
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3.4.3 Finite Samples

Power studies were undertaken for finite samples using simulation. Common alternatives
to the binomial distribution can be categorized by the ratio of the variance to the mean;
this is equal to A @(1 — 8) for the binomial distribution. Distributions with variance larger
than the binomial variance are considered overdispersed, and those with smaller variance
are underdispersed. 7

The most common overdispersed alternative to the binomial distribution is the beta-
binomial (BB). This distribution, included in the power study, is a mixture of binomial
distributions with common number of trials, K, and with the probability of success, 8, sam-
pled from a beta distribution. This distribution is also referred to as the Polya-Eggenberger
or binomial-beta distribution. Other overdispersed distributions examined were the mixture
of two binomial random variables, the discrete uniform (DU) and the truncated Poisson dis-
tribution (TP). For underdispersed alternatives, the discrete uniform, Hypergeometric (H)
and a “subnormal” binomial mixture (SB) (Johnson, Kotz and Kemp, 1992) were exam-
ined. The “subnormal” binomial distribution arises when each of the K trials has a different
probability of success, and these probabilities are fixed for all samples. Finally, distributions
~ which could have variance equal to that of the binomial distribution (binomial dispersion)
were also investigated. The discrete uniform distribution was chosen where possible; other-
wise, distributions with dispersion equal to the binomial were constructed.

Comparisons of power for the Cramér-von Mises tests and the other tests of fit, when
used in testing against the above alternatives are given in Tables 3.8 - 3.11 for values of
the number of trials, K, equal to 5 or 20. One thousand samples of size 20 were generated
from each alternative distribution with mean equal to .1K and .5K. The finite percentage
points of all statistics compared were found by Monte Carlo simulation using 25,000 samples.
The maximum standard error of the power results is equal to 5/\/1—06—0- ~ 1.6%. Random
samples were generated using IMSL subroutines (IMSL, 1987).

Results and Comments

1. As expected, the binomial dispersion test, D, and the one-component smooth test,

S1. perform very well for overdispersed alternatives, with A% and x% only marginally
p P g

worse.

For underdispersed alternatives, D once again has the best power with A2 close behind.

b
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For these alternatives % has lower power.

3. For alternatives with binomial dispersion, all three Cramér-von Mises statistics have

more power than the §; or 5.

rha

Overall, A% performs very well as an omnibus test statistic.
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Table 3.8: Power Comparison

This table gives the percentage of 1000 samples rejected by the statistics for a sample of size
20 for testing for the binomial distribution with 5 trials. Alternative distributions with a
mean, p = K8 = .5, corresponding to # equal to .1 were generated. The binomial variance
is .45. All tests are at the 5% level.

Alternative Distribution (o?) Test Statistics

w2 U? A? W2 A%, KS R
Overdispersed
BB[a = .7, = 6.3] (.675) 267 237 366 299 383 299 24
BBla =1,5=1] (.9) 511 439 626 532 633 531 104
.5B(.01)+.5B(.19) (.612) 186 183 252 215 252 210 14
.9B(.05)+.1B(.19) (.9) 441 352 590 458 648 465 98
Underdispersed
DU[0,1] (.25) 407 407 407 407 124 407 584
SB[.01*4,.46] (.288) 261 261 235 261 55 261 375 -

$9 S Dy X3 G* P M

Overdispersed
BB[a = .7, 8 = 6.3] (.675) 366 382 333 363 313 299 287
BBla =1,8=1] (.9) 640 649 602 620 574 542 528
.5B(.01)4+.5B(.19) (.612) 250 263 217 246 208 195 192
.9B(.05)+.1B(.19) (.9) 627 632 613 641 575 489 463
Underdispersed
DU[92,1} (.25) 249 249 407 124 407 407 407

SB[.01*4,.46] (.288) 120 120 238 55 214 261 261
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Table 3.9: Power Comparison

This table gives the percentage of 1000 sumples rejected by the statistics for a sample of size
20 for testing for the binomial distribution with 5 trials. Alternative distributions with a
mean, p = K8 = 2.5, corresponding to @ equal to .5 were generated. The binomial variance
is 1.25. All tests are at the 5% level.

Alternative Distribution (02) Test Statistics
w2 U? A* W2 A% KS R

Overdispersed
BB[a =3.5,0=3.5] (1.875) 192 182 298 257 377 199 8

BB[a =, 8 =] (2.5) 528 482 729 673 823 539 4
5B(1/3)+.5B(2/3) (1.806) 202 188 292 259 353 201 334
.75B(.4)+.25B(.8) (1.850) 648 604 776 732 822 639 2
DU{0,5] (2.92) 151 158 143 163 66 149 51
TP[e = 3.272, K = 4] (1.342) 195 182 338 272 428 203 11
Underdispersed

A[M=8,m=>5,X=4] (.536) 520 509 540 542 344 490 586

MBJ.1,.1,.5,.9,.9] (.61) 447 441 443 464 250 396 522
Binomial Dispersion

DU[1,4] (1.25) 763 720 913 872 953 779 4
C[.083,0,.417,.417,0,.083]

(1.25) 579 567 655 495 345 501 770

$ S D, X2 G* P M
BB[a = 3.5, =3.5](1.875) 370 360 352 324 206 334 261
BB[a =, 8 =] (2.5) 825 805 819 755 574 746 643
5B(1/3)+.5B(2/3) (1.806) 334 318 316 298 196 297 234
.75B(.4)+.25B(.8) (1.850) 835 808 818 756 628 723 604

DU[0,5] (2.92) 954 947 951 917 828 900 830
TP{p = 3.272, K = 4] (1.342) 405 401 391 341 223 310 234
Underdispersed

H[M=8,m=5,X=4] (.536) 715 375 729 275 424 170 5
MBI.1,.1,.5,.9,.9] (.61) 568 216 581 200 358 132 7
Binomial Dispersion

DU[1,4] (1.25) 1 1 2 174 196 11 39

C[.083,0,.417,.417,0,.083]
(1.25) 206 239 205 999 999 237 307
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Table 3.10: Power Comparison
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size
20 for testing for the binomial distribution with 20 trials. Alternative distributions with a
mean, u = K& = 2, corresponding to 8 equal to .1 were generated. The binomial variance
is 1.8. All tests are at the 5% level.

Alternative Distribution (o?)

Test Statistics

W? U? A? W2 A% KS R
Overdispersed
BB[a = 3.7,0 = 3.7] (2.7) 153 140 264 237 349 180 43
BB[a = 7/6,3 = 63/6] (4.5) 397 355 589 536 632 420 76
.5B[.05]+.5B[.15] (2.75) 216 200 309 288 327 225 25
.9B[.075]+.1B[.325] (3.94) 370 264 549 455 709 345 285
DU[0,4] (2.0) 257 252 282 290 94 244 119
Underdispersed
DU[1,3] (2/3) 452 457 671 584 73 498 825
H[M =40,m =20, X=4](.923) 740 741 773 766 245 606 917
$B[.05%19,.95] (.902) 262 285 291 313 22 297 278
Binomial Dispersion
C[.15,.3,.1,.3,.15,0*16] (1.8) 401 408 310 318 19 354 230

$ 5 D, X} G* P M

Overdispersed
BB[a = 3.7, = 3.7] (2.7) 349 339 301 319 230 243 205
BB[a =7/6,3=63/6] (4.5) 663 641 630 599 507 540 442
.5B[.05]+.5B[.15] (2.75) 358 353 317 295 220 300 268
9B[.075]4.1B[.325] (3.94) 649 684 623 691 573 349 214
DUJ[0,4] (2.0) 39 203 25 157 232 219 255
Underdispersed
DU[1,3] (2/3) 899 589 948 68 917 876 582
H{M =40,m=20,X=4)(.923) 835 630 875 121 661 608 246
SB[.05*%19,.95] (.902) 369 302 422 21 291 569 516
Binomial Dispersion
C[-15..3,.1,.3,.15,0%16] (1.8) 10 69 12 91 316 66 85
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Table 3.11: Power Comparison
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size
20 for testing for the binomial distribution with 20 trials. Alternative distributions with a
mean, ¢ = K = 10, corresponding to 8 equal to .5 were generated. The binomial variance

is 5. All tests are at the 5% level.

Alternative Distribution (o2)

Test Statistics

W?2 U? A? W2 Al KS R
Overdispersed
BB[a = 18.5,3 = 18.5] (7.5) 147 139 282 222 335 136 32
BB[ax = 35/6,3=35/6] (12.5) 581 565 821 . 764 849 554 15
.5B[.4]+.5B[.6] (10.93) 336 328 497 444 450 301 18
.75B[.45]+.25B[.65] (7.85) 181 181 340 256 367 173 28
DU[6,14] (20/3) 296 298 341 353 76 280 71
DU[5,15] (10.0) 684 668 824 801 649 629 45
TP = 10.019, K = 20) (9.81) 319 311 596 493 635 302 31
Underdispersed
DU[8,12] (2.0) 329 357 446 447 0 376 357
H[M =30,m =20, X =15]
(1.72) 708 723 706 731 4 527 220
SB[.1*¥10,.9%10] (1.8) 711 719 699 724 5 548 251
Binomial Dispersion
C[0*7,.2,.15,.1,.1,.1,.15,.2,0*7]
(5.0) 323 338 312 338 5 284 432

-1

(g
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Table 3.11: Power Comparison (continued)
This table gives the percentage of 1000 samples rejected by the statistics for a sample of size
20 for testing for the binomial distribution with 20 trials. Alternative distributions with a
mean, g = K& = 10, corresponding to # equal to .5 were generated. The binomial variance

is 5. All tests are at the 5% level.

Alternative Distribution (o?)

Test Statistics -

$1 S, Dy, X3} G* P
Overdispersed
BB[a = 18.5,4 = 18.5] (7.5) 336 352 293 300 230 309
BB[a = 35/6,8 = 35/6] (12.5) 879 876 861 813 752 856
.5B[.4]+.5B][.6] (10.93) 555 514 506 392 360 509
.75B[.45]+.25B[.65] (7.85) 397 410 359 330 258 314
DU[6,14] (20/3) 122 79 89 105 250 61
DU[5,15] (10.0) 815 770 778 534 606 743
TPy = 10.019, K = 20] (9.81) 656 663 623 606 514 570
Underdispersed
DU([8,12] (2.0) 700 65 800 1 197 342
H[{M =30,m=20, X =15]
(1.72) 825 305 879 3 177 597
SB{.1*10,.9*10] (1.8) 764 264 818 3 197 548
Binomial Dispersion
C[0%7.2,15,1,.1,1,.15,.2,0*7] ,
(5.0) 1 0 1 104 391 5
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3.5 Example

Table 3.12 records the data from a dice throwing experiment due to Weldon, discussed by
Pearson (1900) and presented in Rayner and Best (1989). The data show the number of
occurrences of a 5 or 6 on any die from a throw of 12 dice repeaied 26,306 times. The
sample mean and variance are 4.044 and 2.698, respectively, and the estimated probability
of success is .3377. Clearly, the probability of success is 1/3 for a fair die, so this data could
be tested for a binomial distribution with known probability of success equal to 1/3. For
this reason expected frequencies are given for both known probability of success and for the
probability of success equal to the estimated value, .3377. We define the standardized dif-
ference as the difference between the observed and expected values divided by the standard
deviation. Asymptotically, the standardized difference has a standard normal distribution.
The cumulative observed and expected histograms are found in Figures 3.1 and 3.3 for
known and estimated success probabilities, respectively. The standardized differences are
plotted in Figures 3.2 and 3.4. The values and significance levels of the Cramér-von Mises
statistics and other test statistics are given in Table 3.13.

The Cramér-von Mises statistics and the Pearson x? test reject the hypothesis of a
binomial distribution with probability of success equal to 1/3, but do not reject the binomial

hypothesis when the parameter can be estimated from the data.
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Table 3.12: Welden Dice Data

=1

W

No. of Frequency Cum. Cum. Std. Cum. Std.
S5orb Frequency Expected Difference Expected Difference
p=1/3 p=.3377

0 185 185 202.75 -1.251 187.38 -0.174

1 1149 1334 1419.25 -2.326 1333.89 0.003

2 3265 4599  4764.61 -2.651 4549.13 0.813

3 5475 10074 10340.22 -3.361  10013.83 0.764

4 6114 16188 16612.78 -5.429  16283.18 -1.208

5 5194 21382 21630.83 -4.013  21397.83 -0.251

6 3067 24449  24558.03 -2.699  24440.37 0.207

7 1331 25780 25812.54 -1.479  25770.10 0.432

8 403 26183 26204.58 -2.147  26193.86 -1.028

9 105 26288 26291.69 -0.977  26289.89 -0.471

10 14 26302 26304.76 -2.483  26304.58 -2.166

11 4 26306 26305.95 0.222 26305.94 0.241

12 0 26306 26306.00 26306.00
Table 3.13: Test statistics for the Weldon dice data

Known Parameter Estimated Parameter
Test Value Significance Value  Significance
Statistic Level Level
w? 2.85 <.001  0.12 0.13
U? 0.58 <.001 0.12 0.12
A? 14.64 <.001 0.60 0.30
w2 13.75 <.001  0.60 0.22
Az, 92.14 <.001  9.05 0.42
D 26646 0.54
xb 41.31 <.001 13.16 0.36
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Figure 3.1: Cumulative observed (—) and expected (- -) histograms for Weldon’s dice data
with (p=1/3).
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Figure 3.2: Standardized difference between the observed and expected histograms for Wel-
don’s dice data with (p=1/3).
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Figure 3.3: Cumulative observed (—) and expected (- -) histograms for Weldon’s dice data
with (p=.3377).
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Figure 3.4: Standardized difference between the observed and expected histograms for Wel-
don’s dice data with ($=.3377).



Chapter 4

Discrete Uniform Distribution

4.1 Introduction

The discrete uniform distribution with K cells is the distribution for which p; = 1/K for
j=1,..., K. Choulakian, Lockhart and Stephens (1994) have discussed Cramér-von Mises
statistics for the discrete uniform distribution, and have found analytically the eigenvalues
and eigenvectors needed for the asymptotic distributions. The authors also discuss the
components of the various statistics and give the asymptotic percentage points for each test
statistic. In this chapter, asymptotic power comparisons are made following the lines of the

comparisons for the Poisson and binomial distributions.

4.2 Power Comparisons

4.2.1 Lehmann Alternative

The asymptotic powers of the Cramér-von Mises test statistics were examined against the
Lehmann alternative to the discrete uniform distribution. The Lehmann alternative is

defined as follows:

Pr{Y <j}=(/K) (4.1)

forj=1,...,K,7>0. At y = 1, (4.1) reduces to the discrete uniform distribution. Thus
Hyis: v =1. Under Hy,let vy=1+ 6/\/17; thus as N — oo, H; becomes Hy.

78
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The i-th component of a test statistic, s; = (w;X), now has mean dw;/Ag where A is

the partial-sum matrix, and g is the vector with jth element

- oPr{Y =3} j j) Jj-1 (j—l
9=y ‘1{1“(1{ Tk "x )

The variance of the maximum likelihood test for the discrete uniform distribution against

the Lehmann alternative is the inverse of the Cramér-Rao lower bound. As before, the
parameter, 6, is chosen to make the power for the test based on the m.l.e. equal to 0.5. For
a 0.05-level test to give a two-sided power of 0.50, § = 1.96/\/1 where J is the Cramér-Rao

lower bound

&*log f
P ( g

) — K—lzﬁljz(j —1)[logj —log(j — 1)]*.
=0

The asymptotic powers for the Cramér-von Mises test statistics, the first two components
and the sum of the first two components of 42, and the Pearson x? statistic, are given in

Table 4.1. Also included in the table are the results for the continuous uniform distribution

corresponding to K = oo.

Results and comments

Against Lehmann alternatives, A% has the best power among the Cramér-von Mises tests,
and is nearly as powerful as the best test. As expected, the power of the Pearson x? test is
very high for distributions with a small number of cells, but is very poor for distributions
with a large number of cells. The power of the first component of A? is slightly lower
than that of A2. The power of the second component is negligible reflecting the fact the
Lehmann alternative is primarily a shift in the mean. The power of the sum of the first
two components gives power less than the first component reflecting the utilization of a

cermponent with very little power.

4.2.2 One Parameter Beta-Binomial Alternative

The asymptotic powers of the Cramér-von Mises test statistics were also examined against
the one parameter beta-binomial alternative. Let the one parameter beta-binomial distri-
bution be defined as follows:

_rd+1) LG+l -j+7) T(2y) (4.2)
FG+Dr(-5+1)  Tl+2y) [T '

Pr{Y =j+1} =
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for j = 0,1,...,5,y > 1,l = K — 1 where K is the total number of cells for which the
distribution has non-zero probability. Thus, the distribution of Y is over the same range as
that of the discrete uniform distribution over 1,2,..., K. The mean and variance of Y are
[/2+1= (K +1)/2and (K —1)[2y+ (K —1)]/4(27+ 1), respectively. Aty = 1, (4.2) reduces
to the discrete uniform distribution. Thus Hy is: v = 1. Under H,, let y = 1 4+ §/ VN, so
that in the limit A, approaches Hy.
For a typical component the mean is §w;’Ag where A is the partial-sum matrix, and g
is the vector with jth element
- apPr{Y =}
9; = ay
= {2¥(2)-¥(1)-¥(K))+ UK -)+¥(:i+1)}/K

where ¥(a) is the digamma function defined ¥(a) = ['(a)’/T(a).

Again the parameter, 8, is chosen to make the power of the test based on the m.l.e.
equal to 0.50. For a 0.05-level test to give a two-sided power of 0.50, § = 1.96/v/J, where J
is the Cramér-Rao lower bound

0*log f
(2

l
) =K 'Y (VG+1D)+¥(-j+1)+C}
=0

=0

Here ¥’ is the trigamma function, and
C =4¥'(2) - 4¥'(1 + 2) — 2¥'(1).

The asymptotic powers for the Cramér-von Mises test statistics, the first two components
and the sum of the first two components of A2, and the Pearson x? statistic, are given in
Table 4.2. Also included in the table are the results for the continuous uniform distribution
corresponding to K = oo, for which value the beta-binomial alternative becomes a one-

parameter beta distribution.

Results and comments

The results of the asymptotic power analysis show that against one-parameter beta-binomial
alternatives, U? has the best power among the Cramér-von Mises tests, and clearly greater
power than Pearson y2. None of the test statistics examined had power approaching that of
the best test. The power of the Pearson x? test is highest for discrete uniform distributions

with a moderate number of cells (5 or 6), but is very poor for discrete uniform distributions



CHAPTER 4. DISCRETE UNIFORM DISTRIBUTION

i s
—

with a large number of cells. The power of the first component of A? gives no power as the
mean of the alternative distribution is identical to that of the null distribution. The power
of the second component is nearly as large as that of the best test reflecting the fact that the
beta-binom:al alternative gives primarily a shift in the variance. The power of the sum of
the first two components is less than that of the second component reflecting the inclusion
of a component with very little power.

The asymptotic power of the Cramér-von Mises statistics is overall very poor for one-
parameter beta-binomial alternatives. The eigenvalues for W2 and A?, and thus the relative
weights given to each component are decreasing with increasing . Therefore, the largest
weight is given to the first component, the next largest weight to the next component,
etc. The first component offers no power, since the alternative distribution has the same
mean as the null distribution. Any statistic which gives relatively higher weight to the
second component (variance) will have higher power. U? gives identical weight to pairs of
components, thus giving the second component a higher weight than AZ.

The examination of the asymptotic power of tests of fit for the uniform distribution
against the one-parameter beta-binomial distribution suggests that no one test statistic will

be most powerful against all alternatives.
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Table 4.1: Asymptotic power of the Cramér-von Mises test statistics for testing for the
discrete uniform distribution.

This table gives the asymptotic power (%) of the Cramér-von Mises statistics, the first
component of A%, §;, the second component of A%, §;, and the Pearson x? statistic for
selected values of the number of cells, K, against a Lehmann alternative with parameter
() chosen to give the locaily most powerful test a power of 50%.
Test Statistics
K W? U? A? S S5 S5+ 5, ng

2 50 50 50 50 - ~ 50
3 48 40 48 48 08 40 40
4 46 34 47 47 09 40 34
5 45 31 46 45 10 40 31
6 44 28 45 44 10 39 28
8 43 25 45 43 11 39 24
10 42 23 44 43 11 38 21
12 42 23 44 43 11 38 20
20 40 21 43 41 11 38 16
40 40 20 42 40 11 37 11
50 39 20 42 40 11 37 11
co 39 19 41 40 11 36 -

Table 4.2: Asymptotic power of the Cramér-von Mises test statistics for testing for the
discrete uniform distribution.

This table gives the asymptotic power (%) of the Cramér-von Mises statistics, the first
component of A%, S;, the second component of A%, S, and the Pearson x? statistic for
- selected values of the number of cells, K, against a one parameter beta-binomial alternative
with parameter (-y) chosen to give the locally most powerful test a power of 50%.

Test Statistics

K I’V2 U2 A2 Sl 52 Sl+52 X?;
3 08 14 08 05 19 14 14
4 10 25 11 05 33 26 22
5 11 30 14 05 41 32 24
6 12 33 15 05 44 35 24
8 11 34 16 05 47 37 23
10 11 33 16 05 47 38 21
12 11 33 16 05 47 38 19
20 10 31 16 05 46 37 16
40 10 29 16 05 45 36 12
50 10 29 15 05 44 35 11

oo 09 25 14 05 41 32 -



Chapter 5

Regression Models

5.1 Introduction

In this chapter, the empirical process and Cramér-von Mises statistics are introduced and
developed for tests on variables from a discrete distribution which are independent but not
identically distributed. (i.n.i.d.). In section 5.2 the definitions of the empirical processes are
given. The distributions of the empirical processes and the respective Cramér-von Mises
statistics are shown in section 5.3 for known parameters and in section 5.4 for unknown
parameters. The theory is illustrated for Poisson regression, logistic regression and comple-
mentary log-log regression and some percentage points are given in section 5.6. In section
5.7, power comparisons are given for testing for Poisson regression. Finally, examples are

presented to illustrate the techniques.

5.2 Definitions

The definitions of the empirical process and Cramer-von Mises statistics for continuous i.i.d.

variables, continuous i.n.i.d. variables and discrete i.i.d. varizbles will first be reviewed.

1.1.D. Continuous Variables

Let y1,¥2,...,yn be a sample of independent and identically distributed observations with
continuous distribution function G(y). The hypothesis to be tested is that G(y) = F(y)

83
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where F(y) is completely specified. The empirical process of the sample is defined as
Yn(y) = VN[Fn(y) - F(y)], —c0<y<oo

where Fy(y) is the proportion of y; less than or equal to y, the empirical distribution
function, and F(y) is the distribution function. For continuous distributions, if ¥ has
distribution F(y), then U = F(Y') is distributed as a uniform random variable on [0,1].
This is referred to as the probability integral transformation. Also, let u; = F(y;) and Un(2)
be the proportion of u; less than or equal to t. Statistics based on the empirical process

Yn(y) are equivalent to statistics based on the process
Zn(t) = VN{UN() -t} 0<t<1.

In particular, Cramér-von Mises statistics for testing fully specified continuous distributions

are defined as follows:

w? = /I[ZN(t)]Zdt, (5.1)
0

U o= /I[ZN(t)-ﬁ]ﬂ’dt, (5.2)
0

= [znP/e0- o, (5.3)

where Zy = [J Zn(t)dt. The weight function for A%, 1/¢(1—t), is the inverse of the variance

of the process Zy{t), at ¢.
Let u(1), u(2), - - -, ¥(n) be the u; arranged in ascending order, and U= Zf\;lu;/N. The

computing formulas of the Cramér-von Mises statistics can be written

w? = NTL {ug - (2i - 1)/(2V)} + 1/(12N), (5.4)
U? = W2~ N(U - .5)% (5.5)
AY = —N - (UN)TE (2 - Dlnugy +1n{l — uypr -9} (5.6)

Independent Non-Identically Distributed Continuous Variables

To extend the discussion to the i.n.i.d. case, let ¥y, 32, ..., ynv be a sample of independent
observations with continuous distribution functions. Suppose the null hypothesis is that

F(yi;7:) is the distribution of y;. We refer to F(y;v:) as Fi(y).
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Let 1{L} be the indicator function taking the value 1 when L is true and 0 otherwise.

The empirical distribution function, Fx(y) can be written as a sum of indicator functions.

Fx(y) = (I/NMTN 1{yi < y).

The expected value of 1{y; < y} is Pr(Y; < y) = Fi(y). Let U; = Fy(Y;); then each random
variable, U;, is distributed uniformly on [0,1]. Also define u; = F;(y;); then

vN

Yu(t) = —mEL{{um<th - Pr(Ui<t)
VN ey
= —N—Zi-_-l{l{"i <} - t]},
= VN{Un(®)-1}, O0<t<l. (5.7)

The process, Yn(t), is referred to as the residual process.
The definitions and computing formulas of the Cramér-von Mises statistics for testing
for i.n.i.d. continuous distributions are identical to those given in the previous section with

the uniform process Zn(t) replaced by the residual process.

I1.I.D. Discrete Variables

Let 41,¥2,...,yn be a sample of independent and identically distributed observations with
discrete distribution function G(y), and let the null hypothesis be: G(y) = F(y), where
F(y) is completely specified. For discrete distributions, the empirical process is the same as

for continuous distributions but the range of the variable is now discrete; thus
Yi(i) = VNIENG) = FG) 1=0,1,2,..

The transformation U = F(Y') can be made but U will not now be distributed as a uniform

random variable. Let U n(t) be defined as above; then
Zn(t) = VN{Un() - Pr(U < t)}.

Note that Pr(U < t) <1, with equality if and only if ¢ is in the closure of the range of F.
It will be useful to recall the notation introduced in 2.2. Let p; be the probability of
observing a count j; for simplicity, the sample space will be assumed to be the integers from
1 to K, where K can be infinite.
Suppose N independent observations are given; let o; be the observed number of out-

comes j, and let Np; = e; be the expected number in cell 7. Let 55 = Z{zla,-, T; = Elee;



CHAPTER 5. REGRESSION MODELS 86

and If; = Zlepi, and define Z, = 5; - T;, 7 = 1,2,....K. The Cramér-von Mises statistics

W2, U2, A% and W2 for discrete distributions are then

w? = NTISE 7%, (5.8)
vt = NS,z - 20, (5.9)
A' = NTICRZp /{H;(1- Hj)), (5.10)
W2 = NT'TR 22 (5.11)

where Z = Zf‘;lepj

These statistics can also be expressed as a weighted sum of the empirical process:

w? = TR Y20G)ps, (5.12)
U = K (Yn) - Ya)%p;, (5.13)
A = TR YE()pi/{H;(1- H))}, (5.14)
Wi = TEYR0G), (5.15)

where Yv = S5 Y (j)p;.

I.N.I.D. Discrete Variables- Empirical Processes

There are four possible residual processes which can be examined for i.n.i.d. discrete vari-
ables. Let F(y;;v:) be the distribution function of observation 3;, ¢ = 1,...,N. It will be
supposed that these distributions are from the same parametric family (for example, the
Poisson family), but each y; has a different v;. However, several random variables could
have the same distribution (e.g. the Poisson with the same mean). Let M be the number
of different distributions and N; the number of observations from the ith distribution. Let
yi, I = 1,..., N; be the observations with distribution ¢, ¢ = 1,..., M. The four residual

processes will now be defined.

1. Untransformed. Each individual y; is compared to F; on the original scale.

Yin(G) = {,;_Zi\él{l{yi <7} - E()},

= ‘}szgd[z&ll{ya <iH-FE()},

= VN{F~(G)-F(G)}  i=12,...K




CHAPTER 5. REGRESSION MODELS 87

where F(j) = ;\’“IZ?’:’P\ZH(]’}. This process effectively compares the empirical dis-

tribution function with the average distribution function.
2. F-transformed. Let U; = Fi(Y;). and u; = F;(y;), where F;(j) = Pr(Y¥: < j). Then

Yan(t) = \{\{\?Zﬁl{l{w <t} - Pr(li < )}

= VN{Un(t)- Py ()}, 0<t<1

where Py (t) = 1\"IZ?LN.-PT[IJ§ < t]. This process transforms each observation to

the uniform scale and compares it to its expected value, and is the natural analogue

of the residual process for continuous random variables.
3. G-transformed. Let V; = Gi(Y;), and v; = G(y;), where G;(j) = Pr(Y; < j). Then
Yan(t) = Eh{l{n <t} - Pr(Vi<n),
= VN{Va(t)-Py(t)), 0<t<1

where Py (t) = N-'"M, N;Pr[V; < t]. The reason for examining this process will

become apparent when the test statistics are defined.

4. Random-transformed. Let U” = F'(Y;) = Fi(Y:) — 6ipi(Y;), where é; is a random
variable distributed as uniform on [0,1], and p;(7) = Pr(y; = 7). Then, the variable
U™ = F*(Y) is distributed uniformly on [0,1]. Also let u] = F7(y;) = Fi(y:) — éipi(yi).
Define

VN

N

= YN <o -y,

= VN{Uz()-1}, 0<t<L

Yan(t) = SN {1{u] <t} - Pr(U; < 1)

This process is equivalent to the residual process Yy(t) for continuous random vari-

ables.

Note that when all the F; are continuous, Y2 N(7}, Y3 n(t) and Y3 n(1) are equivalent.
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I.N.I.D. Discrete Variables- Cramér-von Mises Statistics

A set of Cramér-von Mises statistics, W2, U2, A%, and W2, were developed based on each

of the above processes as follows.

1. The following statistics come from applying the definition of the discrete Cramér-von

Mises statistics given in (5.12 - 5.15) to the untransformed process Y; n(7):

w2 = YK NG)IG), (5.16)
v = K MaG) - neG), (5.17) .
A = K myPPG)/{HEGYL - H()}, (5.18)
W2, = TGP (5.19)

where p(7) = LMipi(i), Yinv = L an()p(i) and H() = £L,p(i). When
F; = F for all ¢ these test statistics are identical to those defined for a common

discrete distribution.

2. The F-transformed process leads to statistics similar to the Cramér-von Mises statistics

for continuous distributions. The test statistics are the integral of the squared process

over [0,1].

wi = [, (5.20)
07 = [ - Falat (5.21)
45 = [ D@ /o - v, (5.22)

where Y2 y = [§ Y2, n(t)dt. For A2, the weight function, 1/w(t)[1—w(2)],is the inverse

of the variance of the process at ¢, with
w(t) = Py,(1).

. The G-transformed process leads to statistics similar to that of the F-transformed

process.
1

wi = [P, (5.23)

v = /l[}g‘N(t)-m]zdt, (5.24)
0

A2 = / [an () {w()[1 - w()}]}dt, (5.25)
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where Y3 ny = fol Y3 n(t)dt, and

In order to compute the test statistics based on the F- and G-transformed processes,

numerical integration must be used.

4. The random-transformed process is equivalent to the continuous empirical process

on [0,1], and the test statistics are identical to the Cramér-von Mises statistics for

continuous distributions.
w2 = /Ol[n,N(t)]?dt,
U o= /01[Y4,N(t)-?4;]2dt,
2 = [ WP/ - o,

where Yo n = f3 Yan(t)dt.

(5.26)
(5.27)

(5.28)

The G-transformed process was examined because when F; = F, for all ¢, and F' is

discrete, W2 = W2, where W? is the statistic defined for i.i.d. discrete distributions given
in (5.8); however, Wf # W2, Similar results hold for U; and A;. To see this, let §; =

I_0;/N and j =1,2,..., K, and observe the following identities:
=1 g
1.

Un(t) = N'CE 1{Fy) <1}

) Sia/N i F(G-1)<t < F(j)
] if Fyvy) <t <1

for jr =1,2,...,K, where So = F(0) = 0, and y(n is the largest observation.

wD) = NSV 1Gw) < 1)

{%WiWWSKﬂHU

{1 fG(yny) <t

S;/N i F(j—1)<t< F(j)
1 if Flyyny—1) <t <1

since G(7) = F(j —1).
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3.
Py(t) = Pr[F(Y)<1
0 if0<t< F(1)
= $ F(j-1) if F(j—1)<t< F(j)
1 ft=1.
4.

Pv(t) = PT[G(Y) < t]
_ [ FG) #FG-1) <t < FG)
1 ift=1.

Using the above identities, we obtain

wi = [ Den(old

= N/l{VN(t)—PV(t)}zdt
0
F(3)

- K N — F(i)1?
- NZ]:I F(j-l)[SJ/N F(])] dt

= NTK,[S;/N - FG)PF(G) - F(5 - 1)]
= NYLSi/N - FG)Pp(H)
= Wi

In contrast, we have

w? = /0 A

1
= N /0 {UN(t) = Py(t))2dt
e [FO
= NZ"zl/F(' ‘)[SJ_I/N F(j - 1))%dt

i~1
= NEL[Si1/N ~ F( - DPF(@) - F(G - 1)]
= NE[Sia/N ~ F(G - 1))
= NTISUSH/N - FG)IPp(i + 1).
Thus, in the case where the sample consists of i.i.d. random variables, the statistics sz,
U} and A% do not reduce to the Cramér-von Mises statistics for discrete data defined in

(5.8-5.11).
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5.3 Distribution Theory - Known Parameters

5.3.1 Introduction

In this section, it will be shown that when the number of different distributions is fixed and
finite, the untransformed empirical process Y n(j), defined in section 5.2, converges to a
mean zero multivariate normal distribution with a given covariance matrix. As before, let
M be the number of different distributions, N; be the number of observations from the ith
distribution, and N = 1M, N;. Also, let

N,‘/N -+ ¢; as N — oo (5.29)

where 0 < ¢; < 1.

For the ith distribution, let o;, p;, d; and Z; be the vectors o, p, d and Z defined as
in section 2.2, and let D; be the corresponding D. Also, let Fi(j) = i:o pi(k). Then
d;/v/N; = (0; — N;p;)/+/N; has an asymptotic multivariate normal distribution with mean
zero and covariance matrix, Xo; = D; — p;p!. Also, the statistic Z;/\/N; has an asymptotic
multivariate normal distribution with mean zero and covariance matrix ¥; = AX g, A’ with
7, kth-element o; jx = min{ Fi(5), Fi(k)} — F;(j)Fi(k).

The empirical process Y3 n(j) can now be written as a finite sum of K dimensional
vectors, where K is the number of cells of the discrete distribution. Let Y, x be the vector

with jth element Y; (7). Then

VN
Yinv = TZ{M—_-lZi

N I AN
- ﬁZt:l\/N—tzl/\/jv—l

N;
= gl\/“ﬁzi/\ﬁv—i

Let Y; = limy_o Y1,v. Then since Z;/+/N; is asymptotically multivariate normal with
mean zero and since Z;, Z; are independent for 7 # ¢/, Y, is distributed multivariate normal

with mean zero and covariance matrix, X;, with j, kth element
M, cilmin{ Fi(5), Fi(k)} = F(G)Fi(k)]-

The four test statistics defined in terms of ¥ x given in (5.16 - 5.19) are of the general

form Z'MZ, where M is positive definite and symmetric. As before, the test statistics can
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be written asymptotically as a weighted sum of independent x? variables, and percentage

points can be found.

5.4 Estimated Parameters

5.4.1 Introduction

The more important problem where parameters must be estimated before testing fit will now
be discussed, with reference to Y¥; (). The specific situation considered is when parameters
are given by a generalized linear model (McCullagh and Nelder, 1989). The parameter v;
in F(yi;~:) becomes the mean u; of y;. The vector of means, u, depends on a matrix of
known covariates, X, and a vector 8 of parameters. This is done through the relationship

= g(n), and 7 = X@. The function, g(-), or sometimes g~!(-) is the link between the
random and systematic components. The distributions are assumed to come from a member
of the exponential family, but each with a different mean.

Let 8 = [0},8,]' where 8, is a vector of p; known parameters and 8, is a vector of
p2 parameters estimated from the data, and let @y be the vector of true values of the
parameters. Let &3 be the maximum likelihood estimator of 8; and F(y) = F(y; 8;,0;) be
the estimated distribution function.

Regularity conditions are assumed such that the maximum likelihood estimator can be

written O1n fi(si.6)
0 0 — N n fi\¥i, ]
VN@-06)= \/_ I 15, — tEN (5.30)
where limy_ o en = 0, and
. - 31nfi(y£,9)31nfi(yi,9)l
= lim N7 I%N . .
T =N, =P [ 06, 08, lo-o, (5:31)
The regularity conditions include the following:
1. For all ¢, Fi(y, 0) has a density f;(y,8) such that ﬂ"—go%ﬁ exists, and
Jln fi(yu 0) l
Fl|— 5.32
{ a02 0= 00 ( )
2. For all N, the matrices
- Oln fi(y:,0) 01n fi(y:, 0)
=N'YNE d ’ l : .
jN El 1 [ 802 8012 0=00 (5 33)



CHAPTER 5. REGRESSION MODELS 93

exist and converge to the finite positive-definite matrix 7 as limy_..

3. Since y; is discrete, it follows that for all 7,
7,0 < 9.8

(5.34)

20, lg-9, ~=' 00, lg-0,
4. For each j, the function g2(j) exists such that
: . - 0Fi(7,6) /
= lim NTIYN 2D . (5.35
92(7) pm 2= 96, |g-0, (5.35)

5.4.2 LN.I.D. Discrete Variables
The process Y; n(j)

Suppose Z; is Z; with 0 replaced by the m.le. 8. Similarly, let ¥; n(j) become }A’l'N( 7).
Let Y1 v be the vector with jth element Y1, n(5). The vector can be written

3 N
YI,N = 1:, Z‘\i] Zi

= }ﬁlemz,-/m

[N . -
= ©M Tv‘zi/\/_ATi

= Z:M=1\/C_azn/\/17:
¥ M, VeiAd;/V/N;. (5.36)

g

where A is the partial sum matrix. Let Yl = limy_, o0 ?1,N- Each &;/\/N.- is asymptotically
multivariate normal with mean zero, but the vectors are not independent and the distribu-
tion of Y is not immediately obvious. In order to show that the asymptotic distribution

of YI,N is multivariate normal the following is required.

1. Let D be the vector of length KM formed by appending the vectors, d;/v/N;, in a
column. Since each d;/\/N; is independent and asymptotically K dimensional mul-
tivariate normal with covariance mairix Zy;, D is asymptotically M K dimensional
multivariate normal with covariance matrix made up of M partitions, the ith parti-

tion having the matrix ¥g; on the diagonal.

2. Let £ be the vector of length KM formed by appending the vectors, d;//N; in a

column.
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3. Suppose C; is a K by A diagonal matrix, with all diagonal elements equal to the

constant \/c; defined in (5.29).

4. Let C be the K by MK matrix formed by placing the M matrices C; side by side.
Then define d = CD and d = CE. From (5.36) it can be seen that Y, y = Ad.

5. Let R; be the po by K matrix with j, kth element

Opi(k,0)
00, ’

where @3, is the jth component of 8.
6. Let R be the p, by M K matrix formed by placing the matrices, R;, side by side.
7. Suppose p; and p; are the vectors of length K with jth element p;(j) and ;(7)-
8. Let p and p be the vectors of length M K formed by stacking the vectors, p; and p;.
9. Let P be the M K by MK diagonal matrix with the vector p on the diagonal.

10. Suppose N; is a vector of length K with each element +/;, and N be the vector of
length M K formed by stacking the vectors N;. Then define V' as the MK by MK

diagonal matrix with the components of vector N on the diagonal.

11. Let. M be the MK by MK diagonal matrix with diagonal elements N /VN. The
diagonal elements are thus the ,/c; each repeated K times.

Suppose L, a vector of length p,, is RP™IND. The kth element of L is given by

Z‘_IZA o,(])p}(}).‘p;(j) agg(o_i,ke)
i S g
= TE S0 )ﬂyf’—(—]’—m TM N, E[ﬂ‘}_?iy"_o)]
T (5.37)

= )_d:l 602"

since the second term is 0 from (5.32). Therefore, combining {5.30) and (5.37) we have,

VN(@B-8)= :/I—N—,J“RP";’V’D ten, (5.38)
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where limy_.o e = 0. Also, using the assumed regularity conditions, it can be shown that

VN[p-p] = VNR(8,-8,)+¢n,

1
ﬁR’leR'P_lJ\/’D +en. (5.39)

where limy ..o £y = 0. Thus,

d = c¢
= C[D-N(p-p)

N N
- D~ RI —17273-—1 D
cl vN J vN

= ¢{I- MR'T'RP"'M} D (5.40)

as N — oo. Since (5.40) is a linear combination of asymptotic multivariate normal random
variables, it is asymptotically multivariate normally distributed. Finally since le,N can be
written as a linear combination of El, it is asymptotically multivariate normally distributed.

The vector ?1,N is easily shown to have mean zero; its covariance can be derived as
follows. Let Fi(j) = ‘,’;=1 pi(k). Then

Cov[Y1,x(5), Y1,5(E)]
= EM~()Yn(k)
N N
= B S (< ) - ROV S (1w < B} - A
i=1 =1
N N
= N72Y Y EWVN{Uy <3} - EOWN {1 < k} = Fu(k)}]
1=11¢=1
N N
= N72Y Y EWVN{U{u <5} - BG) + £() - BG)}
1=11¢=1

VN{1{ys < k} — Fa(k) + Fa(k) — Fu(k)}]

N N
= N2 N EIN{M{y <} - F(G)H1{ye <k} = Fu(k)} -

1=1 =1
2E[N{1{y; < j} = F:(5)}{Fu(k) - Fo(k)}] +

E[{F(5) ~ BG)HFe(k) - Fa(k)}]
N N

= N72) Y {4-2B+C}.

=1i=
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Notice that

N N
N2 N4 Cov[Y1,n(7), Y1,n(k)]

=11'=1

= K ci[min{F(j), Fi(k)} = F:(3) Fi(k)].

This is the covariance of the discrete empirical process with known parameters. From (5.39),

C can be written

B B2 ~ 60)] + en (B2~ 02)

OR(3,0) o9 .
08, 00, N

,0F (k 0)]+ ex]

E[(82 - 62)(6; - 6,)']

which has a limit

aE(J) e)j—l a-Ft'(ka 0)
A 46,

as N — 0o, where J is given in (5.31). The term B can be derived as follows,

B = E[N{1{y <j} - B Fu(k) - Fo(k)}]

= EVN{1{5 <3} - RO g 202 = 62) + )]
= 6Eé(02’0){E[1{yi < j}O2 — 02) + en] + Fi(§)E[(6: — 62)] + en
= 2B gy < )82 - 02) + el
2
’: Qﬂé%%’—o—) TE| 1{y1<]}zalnf,(k 9)]
- AT ‘{Z TR LD )+ en
_ OFu(k,0) 6f.(l o 4
= o8, I{Z
_ 0Ru(k,0) e
= 26 J 26, +Eén

using the results (5.30 - 5.32). The limiting value of B is the same as that of C. Combining
the result for each term, and letting £, = Cov[Yl,N(j), f/l,N(k)], we have
B = TMiamin{F(j), F(k)} ~ B@)E(F)] -

6E(]7 0) -1 6E’(k7 0)
12 i1=1CiCi! 8012 ‘-7 302
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As before, the test statistics can be written asymptotically as a weighted sum of inde-

pendent x? variables and percentage percentage points found.

The process Y,;,N(t)

Since the process, Yy n(t), is equivalent to that of ¥, (t) for continuous distributions, the

convergence of Yy n(t) to a mean zero Gaussian process with covariance function
p(s,t) = min(s,t) — st — ga(s)' J 1 ga(2),
where

(Fr1(¢,0),0]
90,

ga(t) = Jim NIT, O
0=0,

follows from the application of the result from Loynes (1980) for non-i.i.d. continuous

distributions.

The processes Y3 y(t) and Y3 n(2)

The covariance functions for these two processes can be found in a similar manner to the
covariance matrix for ¥; y(j). Define F~(t) = max{j : F(j) < t} and G(t) = max{j :
G(j) < t}, so that Pr[F(Y) <t] = F[F~(t)] and Pr[G(Y) < t] = G[G™(t)]. Then

pa(s,t) = Tiemin{E[F(s)], BIF7 ()]} - BIF () EIF (1) -
. aE[I:;_(S70)10] - aE'[F;T(tva)»o]
ZLM=1 Zﬁlclc" 6012 j ! 802 ’

and

pa(s,t) = YLH,amin{Gi[G] (s)], GIGT (1)]} — GG} ()IGIGT (1) -

0Gi(G; (5,8).6] ,,9G+(G;(1,0),6]
Zz—lz =1 CiCy 88, j (902

The convergence of statistics based on these processes will be discussed in section 5.6.

We next turn to a discussion of three commonly used regression models.

5.5 Covariances - Specific Models

5.5.1 Poisson Regression

Poisson regression is a commonly used method to relate an observed count with a set of

explanatory variables. Let ¥, %2,...,yn be a sample of observed counts and X be a matrix
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of explanatory covariates consisting of row vectors, X;, which contain the covariates for the
ith count. Each count, y; is assumed to be Poisson distributed with mean, p;. The mean,

i, is related to the parameters and explanatory variables by the following link:
i = mig(n;) = m; exp{X;60}

where 7; is the linear predictor, X;8. A Poisson regression model is also referred to as a
log-linear model, since g~!(-) is the logarithmic function. The term, m;, is referred to as
an offset, and is often modeled as an additional term in the linear predictor with parameter
equal to 1. In this case the covariate, log(m;), would be included in the linear predictor.

The density for the #th count, y; is

ki

. ] exp(—ps
fi(7) = ]S £)
m exp{jX'0} exp(—m; exp{X.0})

7! ’

and the log-density at y; is

log fi(y:) = wilogp: — pi —log(u!)
= y:logm; + y:X;0 — m; exp{X 0} — log(y:!).

Ndw,
602 6=86,
m’
= 5 [exp(~m; exp{X;0}) exp{; X[0};X;~
exp{;jX;0};X; exp(—m; exp{X;60})m; exp{X;0}X]
exp(—m; exp{X'0})m’

= i ~ [exp{sX}0}i — exp{(j + 1)X[8}m;] X!

= m;exp{X;0} [

exp(—m; exp{X;0}) exp{(j — 1)Xi0}
(-1
exp(—mi exp{X:60}) exp{(j)Xi0} | -,
7! '
= miexp{Xi0}[fi(7 — 1) - fi()] X}
= wilfi(7-1) - (D)X
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Therefore,
dFi(5,0}
—_— = —u; fi(7)XE.
96, lo_o, wi fi( )X
Also,
Blogfi(yive} _ / / '
90, |0=00 =X —m; EJ\P{XiO}Xn
and
3210gfi(y;,0) I} I}
B B = -m;exp{X;0}(XiX;),
2 8=0,
= —p(XiXo)
Thus,

J = Jim NI p(XiX).

5.5.2 Logistic Regression

Logistic regression is used to relate an observed binomial random variable with a set of
explanatory variables. Let y;,¥s,...,y~ be a sample of observed counts, and X be a matrix
of explanatory covariates consisting of row vectors, X;, which contain the covariates for the
ith count. Each count, y; is assumed to be binomially distributed with probability, =, of
success, and number of trials, m;. Let the means, y; = m;w; be related to the parameters
and explanatory variables by the following link:

where 7; is the linear predictor, X;8. Thus, g~!(7) = log[r /(1 — )], the logit function. An
important property of the logistic regression model is that the parameters have the same
interpretation whether the data are sampled prospectively or retrospectively; for this reason
it is often used in epidemiological research.

The density for the ith count, y; is

fi(jami) = C;ni'/'l'{(l—-ﬂi)m"_j
= CPgm) [ - g(m)™,

and the log-density at y; is

log fi(yi,mi) = wyilogmi+ (mi—yi)log(l —mi)+C
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= X0 — y;log(1 + exp{X!0}) — m;log(1 + exp{X;0}) +
yilog(1 + exp{Xi6}) + C
= X0 — m;log(l + exp{X0}) + C

where C is a term that does not involve the parameters. Now,

0£i(4,0)
96: lg-6,
i [ exp{X;6} e N
. Nmi—j— exp{X;6} AT
(mi -])[1 - g(nt)] 1(1 +exp{X,-0})2g(n')] x‘l}
— ™, - Ami—1— exp{X;O}
- Cj 9(m:) 1[1*9(77‘)] l(1+exp{X;0})2
(711 = g(m)] = (mi — 5)g(m)] X;
exp{X,'O} s

= C?'g(ﬂi)j—l{l - g(ni)]m‘_j_l (1+ exp{X.0})2 U — mig(n)] x:
= mig(m)[1 - g} fi(G — 1, mi — 1) = fi(4,m; — )] X].

Therefore, 8RL3,0)
0F(;,0 I
00, ’0_90 = —mig(m)[L - ¢(n)]fi(7,mi — DX
Also,
Glog fily:, 9} l ' exp{Xi0} _,
ettt . = ,X‘- End 1 : x‘
a02 0:00 ¥ m (1 + eXP{X,a})
and
azbgf‘(y”o)l exp{Xi0) iy
AN - 7 X:X:),
0=0, (1 + exp{X’ 9})2( )
= —mig(n:)[1 - g(m))(XiXa)-
Thus,

J = Jim NS mig(n)[1 - g(nm))(XiX).

5.5.3 Complementary Log-Log Regression

Complementary log-log regression is an alternate method to relate an observed binomial
random variable to a set of explanatory variables. The situation is as for logistic regression

but with the following link:

pi = mig(n;) = my[1 — exp(— exp{X;0})]
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where 7); is the linear predictor, X;6. Notice that 1 — g(7:) = exp(n;). Once again, the name

of the procedure refers to the inverse link function,

g7 (7)) = log[— log(1 — ;).

where 7; = p;/m,. The complementary log-log regression model is often used in the analysis
of limited dilution assays.

Let (; = exp7;, then the density for the ith count, y; is

fi(j,mi) = C';"‘W{(l-m)mi-j

= Clg(mY[l —g(m)™,
and the log-density at y; is

log fi(yi,mi) = wilogwmi+ (mi—yi)log(l -m)+C
= yloglg(m)] + (mi — )i + C

where C is a term that does not involve the parameters. Now, let

! 0 1
g (m)= '——gg: )

Then
9£1,6)
90, lo-6,
= O [ig(my™ g (m)l1 - g(n)™ -
(mi — 7)1~ g(m)™ g’ (n)g(n))
= CTg'(m)g(m)Y "' [1 = g(m)™ 7" [g(m) — (mi = 7)g(m:))
= mig'(m) [fi(G - 1,mi — 1) = fi(§,mi - 1))
= mi(l — g(m)ICGfi(G - 1, mi = 1) = fi(d, mi — D] X]

since g'(7) = [1 — g(m:)];i- Therefore,

dF(j,6} o 1 — a2 (s — 1)X
%0, z&-&o = ~my[1 — g(m))¢; fil g, mi = 1)X.
Also,
a1 1 ,,0 ! 3 !
ogge(-zy } ;0_ 0, 3G — g(n))/9(m) X — (mi — 7)GX
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and
d?log fi(y:,0)
0032

6=06,

B {y(ﬁ)’z l9(m){1 — 9(m)]i — g(m)l1 - g(m))CE-

(1- 9(77;)]2({2] —(mi — yi)Ci} (XiXy:)
[ =g () — g = 11 - 90160 - s = wis| (X0
g("h‘)z , : 1 )64 1)161 141 161 i< ).
Now E[y] = pi = mig(n;), and
82 IOg fi(yt'so)
E [ 003 '

0:00]

o (Lt g g (1 ol -

mi¢; — mig(n;)¢) (XiXs),
_ Gl =gl e e — ol be
= (P IR fg(a) - ¢ - mici g(ml} (XEX)

2L = 9()] iy
ﬂ;C,z Y]
= o) - %)

since [1 — g(m:)]/9(m) = [exp(¢) — 1). Thus,

(2
TJ = ]}im N-IyN nid; (XiX;).

= exp(G:) = 1]
5.6 Calculation of Percentage Points

The Cramér-von Mises statistics based on the untransformed process, }71, ~(7), were defined
in (5.16 - 5.19). Asymptotic percentage points have then been found in the usual way.

For the Poisson regression model, the number of cells was truncated at K, where K
was chosen to make the final values of A; sufficiently small that the percentage points do
not change with the addition of more eigenvalues. For binomial models (logistic regres-
sion, complementary log-log regression), K is the maximum number of trials for any one
observation.

For W2, the matrix M is equal to D, the diagonal matrix with the average probability
of falling into cell j, p(j), on the diagonal, where 5(75 = M p:(5). For the statistics U2,
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A?% and W2, the M matrices are the matrices corresponding to those in the i.i.d. case, but
averaged over all distributions.

For the statistics based on the empirical processes, )}‘2'1\;’(1‘.) and Y3 (1), it is assumed
without proof that the empirical process converges to a Gaussian process. Then, for a
statistic based on the precess f/-z'N(t), it is necessary to find the eigenvalues of the covariance
function, p,(s,t). where p,(s,t) = pa(s,t)\/¥(s)¥(t) and ¥(s) is the weight function of the
appropriate Cramér-von Mises statistic. These are the weights in the usual asymptotic
distribution of the statistic and percentage can then be found. Similarly, percentage points
can be obtained for the statistics based on Yz n(2).

The eigenvalues above were approximated as follows. The interval [0, 1] was discretized
into K points, the covariance function was evaluated at each of the points. The eigenvalues
of the resulting matrices were then found. For the percentage points presented below, a
discretization of K = 50 was used. The eigenvalues were found using S-PLUS (S-PLUS,
1991), and the percentage points were then found by Imhof’s method.

In order to examine the rate of convergence of percentage points for finite samples to
the asymptotic points, percentage points were generated by Monte Carlo simulation using
10,000 samples. The results are given in Tables 5.1 through 5.8 for a variety of Poisson
regression models. The standard error of estimation of the level of the pth percentage point
is approximately \/p(1 — p)/n where n is the number of simulations; for the .95 percentage
point the standard error is .22%.

All the points given are for models with one estimated parameter, the overall mean.
Points are given for the statistics, W2, A2, W7, A}, W2, AZ, for each of the following

models:

Model 1 Two equally proportioned distributions with p; = .5, up = 1.5;
Model 2 Two equal proportioned distributions with gy = 5, uo = 15;

Model 3 Two unequal proportioned distributions with yg; = .9 (with sampling proportion,
p=.9), p2 = 1.9 (p=.1);

Mocdel 4 Two unequal proportioned distributions with py = 9 (p=.9), u2 = 19 (p=.1);

Model 5 Five equally proportioned distributions with gy = .2, o = .6, u3 = 1.0, ug = 1.4
and ps = 1.8;



CHAPTER 5. REGRESSION MODELS 104

Model 8 Five equally proportioned distributions with p; = 2, s = 6, uz = 10, py = 14

and pus = 18;

Model 7 Ten equaily proportioned distributions with p; = .1, puy = 3, ..., pe = 1.7,
#10 = 1.9;

Model 8 Ten equally proportioned distributions with x4 =1, p; = 3, ..., ug = 17 and
10 = 19.

In the table, N refers to the total sample size. For example, when generating from Model
2, a sample of size 20 consists of 10 observations from a Poisson distribution with mean,
u = 5, and 10 observations from a Poisson distribution with mean, y = 15.

In é.ll cases the points converge rapidly to the asymptotic points, which can be used
for samples of size greater than 20, and in some cases for sample sizes of greater than 10.
Similar results were found for the other statistics defined in section 5.2. The convergence of
the Monte Carlo points to the asymptotic points gives strong empirical evidence that the
limiting processes for Yz,N(t) and 173,N(t) are Gaussian.

An S function (Becker, Chambers and Wilks, 1988; S-PLUS, 1991) has been written to

compute the statistics and their asymptotic p-values, for the Poisson and logistic regression

models.
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Table 5.1: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 1. The asymptotic points are shown
for comparison.

w2
N

.25

Upper tail significance level o

15

.10

.05

025

.01

10
20
30
50
100
oo

A2
N

0.097
0.094
0.093
0.094
0.093
0.093

.25

0.126
0.129
0.131
0.134
0.131
0.130

Upper tail significance level o

15

0.159
0.159
0.159
0.164
0.163
0.161

.10

0.205
0.215
0.213
0.217
0.220
0.216

05

0.250
0.273
0.276
0.276
0.279
0.274

.025

0.322
0.343
0.351
0.362
0.362
0.352

.01

10
20
30
50
100

2
w;

0.510
0.557
0.560
0.564
0.555
0.558

.25

0.744
0.738
0.735
0.756
0.740
0.743

Upper tail significance level «

15

0.854
0.910
0.886
0.901
0.903
0.893

10

1.095
1.136
1.145
1.172
1.171
1.158

.05

1.352
1.436
1.442
1.469
1.454
1.431

.025

1.637
1.732
1.815
1.848
1.825
1.778

.01

10
20
30
50
100

0.068
0.068
0.066
0.068
0.067
0.068

0.087
0.088
0.087
0.091
0.089
0.090

0.101
0.106
0.104
0.108
0.107
0.108

0.131
0.137
0.132
0.139
0.138
0.139

0.154
0.164
0.162
0.170
0.172
0.171

0.186
0.205
0.205
0.215
0.221
0.213
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Table 5.1: Monte Carlo percentage points for selected sample sizes are given for the

Cramér-von Mises statistics for testing for Model 1.

for comparison. (continued)

2
Ay
N

.25

Upper tail significance level a

.15

.10

.05

.025

.01

10
20
30
50

100

0.482
0.482
0.474
0.483
0.482
0.474

25

0.617
0.655
0.640
0.664
0.655
0.645

Upper tail significance level «

.15

0.717
0.790
0.774
0.798
0.803
0.787

.10

0.884
1.008
0.997

1.046

1.051
1.036

.05

1.098
1.217
1.211
1.314
1.322
1.298

025

1.366
1.579
1.541
1.671
1.736
1.656

.01

100

A2

0.091

0.089
0.090

- 0.092

0.091
0.089

.25

0.119
0.119
0.123
0.121
0.123
0.120

Upper tail significance level «

.15

0.141
0.145
0.146
0.147
0.151
0.145

.10

0.181
0.188
0.193
0.197
0.199
0.191

.05

0.222

0.232
0.241
0.253
0.242
0.239

025

0.266
0.291
0.301
0.320
0.313
0.304

.01

10
20

~ 30
30
100

0.556
0.553
0.559
0.568
0.567
0.548

0.700
0.712
0.718
0.723
0.739
0.709

0.815
0.837
0.854
0.865
0.871
0.842

1.015
1.069
1.091
1.122
1.123
1.079

1.184
1.328
1.353
1.385
1.366
1.327

1.466
1.588
1.677
1.758
1.728
1.666

The asymptotic points are shown
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Table 5.2: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 2. The asymptotic points are shown

for comparison.

W2
N

.25

Upper tail significance level «

.15

10

.05

025

.01

10
20
30
50
100
(o o]
A2

u

N

0.078
0.079
0.078
0.078
0.077
0.078

.25

0.098
0.099
0.097
0.097
0.095
0.097

Upper tail significance level o
15

0.114
0.115
0.115
0.113
0.111
0.113

.10

0.143
0.142
0.145
0.139
0.139
0.142

.05

0.173
0.169
0.173
0.169
0.170
0.172

025

0.207
0.214
0.212
0.208
0.212
0.214

.01

10
20
30
50
100
00

wi
N

0.546
0.558
0.553
0.559
0.552
0.560

.25

0.674
0.683
0.681
0.686
0.674
0.685

Upper tail significance level o

15

0.779
0.786
0.784
0.780
0.768
0.787

10

0.963
0.959
0.968
0.963
0.950
0.967

.05

1.153
1.159
1.164
1.127
1.149
1.156

025

1.407
1.419
1.408
1.373
1.416
1.415

.01

10
20
30
50
100

0.100
0.103
0.101
0.102
0.100
0.101

0.123
0.127
0.127
0.126
0.126
0.125

0.141
0.147
0.145
0.145
0.145
0.145

0.170
0.181
0.179
0.177
0.179
0.178

0.203
0.213
0.213
0.210
0.212
0.212

0.240
0.253
0.261
0.256
0.256
0.256
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Table 5.2: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 2. The asymptotic points are shown
for comparison. (continued)

A% Upper tail significance level a
N .25 15 .10 05 025 .01
10 0.652 0.793 0.913 1.115 1.337 1.626
20 0.692 0.844 0.952 1.166 1.385 1.691
30 0.691 0.849 0961 1.173 1.407 1.701
50 0.689 0.842 0.960 1.159 1.382 1.666

100 0.688 0.845 0.960 1.169 1.368 1.684
oc 0.675 0.826 0.946 1.152 1.361 1.642

w? Upper tail significance level o
N .25 .15 .10 .05 .025 .01
10 0.101 0.125 0.144 0.173 0.207 0.245
20 0.104 0.129 0.149 0.182 0.218 0.260
30 0.102 0.126 0.147 0.182 0.219 0.263
50 0.103 0.128 0.147 0.180 0.218 0.257

100 0.102 0.127 0.146 0.182 0.212 0.261
oo 0.102 0.126 0.146 0.179 0.213 0.258

A? Upper tail significance level o

N .25 .15 .10 .05 .025 .01

10 0.643 0.778 0.887 1.077 1.279 1.533

20 0.673 0.821 0.937 1.146 1.365 1.624
30 0.668 0.825 0.929 1.140 1.347 1.629

50 0.672 0.822 0.933 1.146 1.324 1.568
106 0.667 0.817 0.928 1.131 1.342 1.651

oo 0.656 0.803 0.919 1.119 1.323 1.596
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Table 5.3: M(_)nte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 3. The asymptotic points are shown
for comparison.

w?
N

.25

Upper tail significance level o

15

.10

.05

025

.01

10
20
30
50
100
0o

A2

u

N

0.093
0.093
0.090
0.093
0.091
0.091

.25

0.126
0.131
0.125
0.128
0.127
0.127

Upper tail significance level «

.15

0.151
0.157
0.154
0.157
0.155
0.157

.10

0.196
0.212
0.203
0.208
0.209
0.210

.05

0.264
0.260
0.260
0.263
0.261
0.265

025

0.299
0.328
0.332
0.329
0.333
0.340

.01

10
20
30
50
100

2
W;
N

0.582
0.571
0.559
0.576
0.571
0.575

25

0.744
0.756
0.759
0.762
0.754
0.765

Upper tail significance level a

15

0.852
0.906
0.913
0.917
0.911
0.917

.10

1.114
1.163
1.150
1.189
1.187
1.185

05

1.407
1.486
1.431
1.460
1.447
1.459

025

1.816
1.844
1.802
1.785
1.773
1.811

.01

10
20
30
50
100

0.063
0.064
0.063
0.064
0.064
0.064

0.088
0.092
0.087
0.091
0.090
0.091

0.107
0.114
0.110
0.113
0.112
0.114

0.149
0.154
0.152
0.153
0.153
0.156

0.188
0.192
0.191
0.191
0.193
0.200

0.238
0.252
0.247
0.253
0.253
0.259
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Table 5.3: Monte Carlo percentage points for selected sample sizes are given for the

Cramér-von Mises statistics for testing for Model 3.

for comparison. (continued)

A
N

.25

Upper tail significance level o

.15

16

.05

.025

.01

10
20
30
50
100

0.484
0.542
0.507
0.544
0.585
0.592

0.725
0.723
0.681
0.724
0.743
0.786

Upper tail significance level «
.25

.15

0.924
0.888
0.843
0.869
0.878
0.939

.10

1.422
1.165
1.162
1.118
1.132
1.206

.05

1.896
1.538
1.558
1.464
1.410
1.472

.025

2.401
2.160
2.171
1.985
1.918
1.824

.01

100

A2

0.089
0.089
0.088
0.088
0.089
0.087

.25

0.123
0.125
0.120
0.124
0.122
0.121

Upper tail significance level a

.15

0.139
0.153
0.148
0.152
0.152
0.150

10

0.191
0.203

0.200

0.203
0.203
0.201

.05

0.238
0.256
0.248
0.252
0.253
0.254

.025

0.303
0.314
0.331
0.315
0.315
0.327

.01

10
20
30
50
100

0.545
0.569
0.563
0.567
0.571
0.558

0.736
0.759
0.743
0.754
0.755
0.741

0.856
0.900
0.887
0.912
0.900
0.890

1.129
1.149
1.147
1.156
1.166
1.149

1.296
1.414
1.394
1.404
1.403
1.415

1.703
1.762
1.799
1.764
1.770
1.773

The asymptotic points are shown
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Table 5.4: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 4. The asymptotic points are shown
for comparison.

w2 Upper tail significance level «
N .25 .15 .10 .05  .025 .01
10 0.099 0.122 0.140 0.172 0.205 0.239
20 0.101 0.123 0.143 0.172 0.208 0.245
30 0.099 0.123 0.141 0.173 0.205 0.249
50 0.098 0.122 0.142 0.174 0.207 0.252

100 0.099 0.123 0.141 0.178 0.212 0.265
co 0.098 0.122 0.141 0.174 0.207 0.251

A? Upper tail significance level a
N .25 .15 .10 05 .025 .01
10 0.605 0.733 0.834 1.011 1.195 1.407
20 0.617 0.750 0.852 1.013 1.200 1.456
30 0.610 0.737 0.834 1.010 1.193 1.442
50 0.606 0.738 0.845 1.017 1.196 1.462
100 0.615 0.750 0.850 1.032 1.233 1.497

oo 0.611 0.743 0.846 1.023 1.199 1.434

w? Upper tail significance level
N .25 15 .10 05 .025 .01
10 0.096 0.119 0.138 0.168 0.198 0.236
20 0.098 0.122 0.140 0.170 0.202 0.245
30 0.094 0.119 0.139 0.167 0.201 0.244
50 0.096 0.120 0.139 0.171 0.205 0.248

100 0.097 0.121 0.141 0.175 0.208 0.257
oo 0.096 0.120 0.139 0.171 0.204 0.248
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Table 5.4: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 4. The asymptotic points are shown
for comparison. (continued)

A
N

.25

Upper tail significance level «

.15

.10

.05

025

.01

10
20
30
50
100

0.646
0.669
0.650
0.659
0.670
0.648

.25

0.789
0.816
0.801
0.813
0.823
0.797

Upper tail significance level «

.15

0.904
0.944
0.921
0.939
0.944
0.915

10

1.117
1.146
1.108
1.138
1.171
1.120

.05

1.310
1.370
1.324
1.344
1.403
1.329

.025

1.615
1.658
1.668
1.619
1.680
1.612

.01

100

A2

0.096
0.099
0.095
0.096
0.097
0.096

.25

0.120
0.122
0.119
0.121
0.121
0.120

Upper tail significance level a

15

0.138
0.141
0.139
0.139
0.140
0.139

10

0.169
0.1i71
0.171
0.173
0.175
0.172

05

0.196
0.203
0.201
0.204
0.211
0.204

.025

0.240
0.245
0.240
0.250
0.263
0.248

.01

10
20
30
50
100

0.631
0.649
0.633
0.643
0.651
0.628

0.768
0.793
0.779
0.797
0.795
0.772

0.881
0.907
0.891
0.905
0.915
0.886

1.066
1.109
1.082
1.102
1.133
1.084

1.259
1.308
1.284
1.324
1.343
1.285

1.502
1.601
1.570
1.857
1.642
1.556
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Table 5.5: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 5. The asymptotic points are shown
for comparison.

W2
N

.25

Upper tail significance level o

.15

10

.05

.025

.01

3
10
20
30

0.093
0.095
0.089
0.087
0.089
0.091
0.090

.25

0.119
0.127
0.123
0.125
0.125
0.126
0.126

Upper tail significance level o

15

0.134
0.154
0.153
0.151
0.155
0.159
0.155

.10

0.211
0.192
0.210
0.203
0.205
0.211
0.208

.05

0.224
0.262
0.259
0.256
0.261
0.263
0.263

.025

0.251
0.302
0.333
0.334
0.339
0.336
0.338

.01

100

2
W;

0.519
0.585
0.544
0.565
0.569
0.580
0.572

.25

0.692
0.740
0.750
0.747
0.750
0.773
0.761

Upper tail significance level a

15

0.811
0.835
0.898
0.910
0.907
0.927
0.912

.10

1.088
1.118
1.178
1.148
1.163
1.204
1.180

.05

1.195
1.379
1.483
1.424
1.444
1.470
1.453

.025

1.530
1.650
1.819
1.768
1.808
1.875
1.812

.01

10
20
30
50
100

0.066
0.068
0.068
0.069
0.069
0.069
0.070

0.084
0.087
0.087
0.089
0.090
0.089
0.090

0.099
0.10%
0.103
0.105
0.105
0.105
0.107

0.126
0.126
0.130
0.132
0.133
0.134
0.136

0.133
0.153
6.158
0.161
0.160
0.164
0.165

0.172
0.184
0.198
0.199
0.195
0.206
0.205
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Table 5.5: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 5. The asymptotic points are shown
for comparison. (continued)

A% Upper tail significance level a
N .25 15 .10 .05 .025 .01
5 0.415 0.503 0.613 0.716 0.892 1.102
10 0.431 0.539 0.625 0.762 0.930 1.141
20 0.430 0.548 0.638 0.793 0.961 1.191
30 0.437 0.556 0.647 0.816 0.988 1.200
50 0.444 0.566 0.659 0.819 0.989 1.167
100 0.435 0.556 0.649 0.819 1.012 1.233
oo 0.431 0.550 0.647 0.815 0.989 1.223

w2 Upper tail significance level a
N .25 .15 .10 05  .025 .01
5 0.080 0.106 0.132 0.160 0.180 0.246
10 0.087 0.113 0.i34 0.165 0.206 0.250
20 0.086 0.113 0.135 0.177 0.222 0.280
30 0.087 0.114 0.137 0.177 0.215 0.270
50 0.088 0.116 0.136 0.176 0.215 0.276
100 0.086 0.113 0.137 0.182 0.226  0.280
oo 0.086 0.113 0.136 0.:75 0.217 0.273

A? Upper tail significance level o
N .25 15 .10 .05 .025 .01
5 0.480 0.626 0.732 0.882 1.148 1.255
10 0.525 0.664 0.775 0.952 1.164 1.413
20 0.528 0.676 0.805 1.017 1.261 1.574
30 0.533 0.6v5 0.797 1.018 1.237 1.505
50 0.546 0.689 0.802 1.015 1.241 1.557
100 0.538 0.684 0.809 1.055 1.276 1.541
co 0.529 0.678 0.799 1.011 1.231 -1.531
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Table 5.6: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 6. The asymptotic points are shown
for comparison.

w?
N

.25

Upper tail significance level o

.15

10

.05

.025

.01

b
10
20
30
50

100
oo
A?

u

N

0.088
0.088
0.089
0.089
0.089
0.088
0.089

.25

0.108
0.109
0.110
0.109
0.111
0.109
0.110

Upper tail significance level o

15

0.125
0.125
0.129
0.125
0.129
0.127
0.127

.10

0.154
0.152
0.160
0.154
0.158
0.157
0.156

.05

0.179
0.179
0.188
0.185
0.191
0.186
0.186

025

0.212
0.213
0.226
0.221
0.230
0.224
0.225

.01

5
10
20
30
50

100

72
Wy
N

0.573
0.589
0.599
0.599
0.599
0.600
0.605

25

0.700
0.716
0.729

727
0.729
0.734
0.736

Upper tail significance level «

15

0.808
0.812
0.837
0.833
0.838
0.836
0.839

10

0.993
0.994
1.033
1.011
1.027
1.019
1.017

.05

1.191
1.179
1.233
1.197
1.229
1.201
1.198

025

1.446
1.415
1.515
1.454
1.496
1.439
1.442

.01

10
20
30
50
100

0.096
0.096
0.095
0.097
0.096
0.095
0.095

0.119
0.117
0.119
0.118
0.120
0.118
0.119

0.135
0.135
0.136
0.138
0.138
0.137
0.138

0.162
0.162
0.165
0.168
0.172
0.167
0.170

0.187
0.189
0.196
0.199
0.205
0.199
0.202

0.222
0.220
0.235
0.242
0.252
0.238
0.246
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Table 5.6: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 6. The asymptotic points are shown
for comparison. (continued)

Af« Upper tail significance level o
N .25 .15 .10 .05  .025 .01
5 0.618 0.750 0.868 1.057 1.288 1.594
10 0.635 0.775 0.889 1.088 1.288 1.584
20 0.648 0.794 0.906 1.100 1.304 1.615
30 0.659 0.805 0.917 1.113 1.327 1.599
50 0.662 0.807 0.928 1.145 1.366 1.689
100 0.658 0.800 0.915 1.119 1.321 1.582
oo 0.644 0.789 0.904 1.105 1.309 1.586

W2 Upper tail significance level o
N .25 15 .10 .05 .025 .01
5 0.097 0.119 0.135 0.163 0.191 0.227
10 0.095 0.118 0.134 0.163 0.191 0.222
20 0.096 0.119 0.137 0.167 0.196 0.237
30 0.097 0.119 0.138 0.169 0.200 0.240
50 0.096 0.121 0.140 0.171 0.207 0.251
100 0.095 0.119 0.136 0.168 0.199 0.243
oo 0.096 0.119 0.138 0.170 0.202 0.245

A? Upper tail significance level o
N .25 .15 .10 .05 .025 .01
5 0.607 0.734 0.835 1.012 1.194 1.461
10 0.621 0.756 0.868 1.042 1.217 1.480
20 0.631 0.771 0.876 1.063 1.263 1.584
<30 0.638 0.779 0.894 1.076 1.295 1.546
50 0.644 0.788 0.904 1.116 1.334 1.599
100 0.635 0.777 0.890 1.068 1.272 1.501
oo 0.624 0.765 0.877 1.072 1.270 1.536
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Table 5.7: Monte Carlo percentage points for selected sample sizes are given for the

Cramér-von Mises statistics for testing for Model 7.

for comparison.

W2
N

.25

Upper tail significance level o

15

.10

05

025

.01

10
20
30
50
100
0
A2

(3

N

0.091
0.093
0.091
0.090
0.091
0.091

.25

0.120
0.126
0.127
0.128
0.127
0.126

Upper tail significance level o

15

0.150
0.154
0.161
0.156
0.155
0.156

.10

0.201
0.205
0.218
0.210
0.210
0.209

.05

0.246
0.260
0.275
0.275
0.269
0.265

025

0.319
0.327
0.343
0.350
0.338
0.341

.01

10
20
30
50
100

2
W;

0.525
0.528
0.534
0.531
0.539
0.537

.25

0.682
0.714
0.721
0.720
0.711
0.713

Upper tail significance level o

.15

0.830
0.826
0.860
0.869
0.861
0.857

.10

1.092
1.105
1.130
1.132
1.114
1.109

.05

1.277
1.336
1.395
1.410
1.385
1.369

.025

1.719
1.673
1.763
1.755
1.734
1.712

01

10
20
30
50
100

0.064
0.066
0.066
0.065
0.065
0.066

0.081
0.082
0.082
0.082
0.082
0.083

0.094
0.096
0.095
0.095
0.097
0.098

0.116
0.120
0.118
0.117
0.120
0.122

0.137
0.141
0.141
0.139
0.145
0.147

0.162
0.174
0.175
0.173
0.175
0.180

The asymptotic points are shown
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Table 5.7: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 7. The asymptotic points are shown
for comparison. (continued)

2
Af
N

.25

Upper tail significance level a

15

.10

.05

025

.01

10
20
30
50
100
(e ]
W2

g

N

0.478
0.499
0.498
0.500
0.503
0.503

.25

0.596
0.627
0.617
0.623
0.636
0.635

Upper tail significance level a

.15

0.685
0.725
0.721
0.724
0.738
0.742

.10

0.855
0.897
0.912
0.899
0.920
0.931

.05

1.038
1.088
1.088
1.074
1.108
1.125

025

1.339
1.354
1.360
1.361
1.381
1.390

.01

10
20

0.085
0.086

- 0.086

0.086
0.086
0.085

.25

0.111
0.111
0.112
0.112
0.112
0.110

Upper tail significance level o

.15

0.130
0.130
0.134
0.133
0.134
0.129

.10

0.161
0.167
0.169
0.168
0.167
0.164

.05

0.195
0.199
0.201
0.205
0.205
0.199

025

0.235
0.251
0.253
0.254
0.255
0.248

01

100

0.527
0.534
0.538
0.541
0.539
0.530

0.653
0.661
0.675
0.674
0.677
0.660

0.761
0.776
0.777
0.777
0.794
0.764

0.943
0.946
0.954
0.966
0.967
0.945

1.109
1.138
1.153
1.164
1.152
1.129

1.329
1.410
1.406
1.381
1.388
1.378
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Table 5.8: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 8 The asymptotic points are shown
for comparison.

W2
N

.25

Upper tail significance level o

.15

.10

.05

.025

.01

10
20
30
50
100
o0
A2

u

N

0.064
0.064
0.063
0.063
0.063
0.063

.25

0.076
0.076
0.076
0.075
0.075
0.076

Upper tail significance level o

.15

0.085
0.085
0.086
0.085
0.084
0.086

.10

0.100
0.100
0.103
0.102
0.100
0.102

.05

0.115
0.116
0.120
0.120
0.116
0.119

.025

0.137
0.135
0.143
0.142
0.140
0.140

.01

10
20
30
50
100

2
Wi

0.436
0.441
0.442
0.442
0.446
0.446

.25

0.512
0.516
0.522
0.519
0.518
0.525

Upper tail significance level «

.15

0.570
0.572
0.583
0.582
0.576
0.585

.10

0.676
0.673
0.693
0.684
0.672
0.687

.05

0.777
0.773
0.785
0.783
0.767
0.787

025

0.948
0.902
0.939
0.923
0.893
0.919

.01

10
20
30
50
100

0.101
0.100
0.101
0.101
0.102
0.101

0.125
0.124
0.126
0.124
0.127
0.126

0.143
0.143
0.144
0.144
0.147
0.146

0.174
0.177
0.177
0.174
0.178
0.180

0.201
0.210
0.206
0.207
0.212
0.213

0.246
0.249
0.244
0.252
0.254
0.258
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“able 5.8: Monte Carlo percentage points for selected sample sizes are given for the
Cramér-von Mises statistics for testing for Model 8. The asymptotic points are shown
for comparison. (continued)

A7
Al

25

Upper tail significance level a

.15

10

.05

025

.01

10
20
30
50
100
0o

wy

N

0.663
0.677
0.688
0.688
0.702
0.680

.25

0.810
0.824
0.847
0.836
0.850
0.829

Upper tail significance level «

15

0.925
0.939
0.972
0.950
0.969
0.947

10

1.126
1.152
1.159
1.150
1.164
1.151

.05

1.351
1.365
1.364
1.337
1.354
1.356

.025

1.709
1.674
1.581
1.630
1.633
1.631

.01

10
20
30
50
100

AZ

0.106
0.106
0.106
0.107
0.108
0.106

.25

0.130
0.131
0.131
0.131
0.133
0.132

Upper tail significance level o

15

0.151
0.151
0.150
0.150
0.153
0.153

.10

0.182
0.183
0.185
0.185
0.188
0.187

.05

0.211
0.219
0.219
0.219
0.220
0.223

025

0.254
0.266
0.260
0.264
0.271
0.269

.01

10
20
30
50
100

0.657
0.674
0.674
0.673
0.680
0.663

0.799
0.812
0.808
0.816
0.824
0.810

0.911
0.915
0.926
0.928
0.941
0.926

1.101
1.107
1.132
1.129
1.136
1.127

1.302
1.321
1.314
1.324
1.333
1.330

1.583
1.612
1.556
1.611
1.593
1.603
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5.7 Power Comparisons

For the test of the Poisson regression model with one estimated parameter, the overall mean,
the power of the Cramér-von Mises statistics has been examined, The following tests of fit

were included in the comparison.
1. The Cramér-von Mises statistics defined in Section 5.2.

2. The Deviance. The deviance is the log-likelihood ratio statistic comparing the pro-
posed model against a fully parameterized model (McCullagh and Nelder, 1989). The

deviance statistic for Poisson regression is defined

D =25 | [zjlog(z;/it;) — (y; ~ &),

where fi; is the estimated mean for that observation. This statistic has also been
referred to as G? (Bishop, Fienberg and Holland, 1975). The test is asymptotically
distributed as va_p where p is the number of estimated parameters, but the chi-
square approximation is not considered adequate for small sample sizes (McCullagh

and Nelder, 1989). This limits its accuracy as a goodness-of-fit test.

3. Generalized Pearson x? statistic. The generalized Pearson statistic is an extension of

the dispersion test defined in section 2.5. The test is defined as

xb =YL, (5.41)
g

(McCullagh and Nelder, 1989).

4. The score test against the negative binomial distribution. This test was proposed
by Dean and Lawless (1989) and Dean (1992), generalizing the work of Collings and
Margolin (1985). The statistic is

_{EhiE—m) - zj}

NI

Common alternatives to the Poisson distribution can be distinguished by the ratio of

Py (5.42)

the variance to the mean; this is equal to one for the Poisson distribution. Distributions
with variance larger than the mean are considered overdispersed, and with variance smaller

than the mean are referred to as underdispersed. The same alternatives used in the power
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comparisons presented in section 2.5 are examined. The overdispersed alternatives exam-
ined were the negative binomial and the Poisson mixture, the binomial was included as an
underdispersed alternative and the beta-binomial and the discrete uniform were used as
alternatives with dispersion approximately equal to the mean.

Comparisons of power for the Cramér-von Mises statistics and the other tests of fit,
when used in testing against the above alternatives, are given in Tables 5.9 and 5.11 for the

three Poisson regression models numbered 1, 2 and 8 in the previous section.

Model 1 Two equally proportioned distributions with p; = .5, ug = 1.5;
Model 2 Two equal proportioned distributions with g3 = 5, p2 = 15;

Model 8 Ten equally proportioned distributions with py = 1, up = 3, ..., g = 17 and
#10 = 19.

Random samples of size 20 from a common alternative distribution, with mean equal to
the hypothesized Poisson mean, were generated using IMSL subroutines (IMSL, 1987). For
example, for a sample of size 20 from a negative binomial alternative with mean structure
given by mbdel 2, 10 observations were generated from a negative binomial with a mean 5
and 10 observations were generated from a negative binomial distribution with mean equal
to 15.

The critical values (percentage points of the null distribution) for all the test statistics
used for comparison were found by Monte Carlo simulation using 10,000 samples. The num-
ber of Monte Carlo samples used for the power studies was 1000. The maximum standard

error of the power results is equal to .5/v/1000 = 1.6%.

Resulis and comments

1. The Cramér-von Mises statistics based on the untransformed empirical process, W?
and A2 have generally worse power than the other Cramér-von Mises statistics par-

ticularly when the overall mean is large, such as when x = 10.

2. As expected, the dispersion-based score tests and the deviance statistic perform very
well for overdispersed alternatives, with the deviance having slightly better power. The
A? statistics, Af,, Ag and A2, also have good power against overdispersed alternatives.

The W2 statistics have lower power than A2 statistics.
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3. For underdispersed alternatives, the dispersion-based tests have the best power. The
Cramér-von Mises statistics have lower power than the dispersion based tests. The

W? statistics had generally higher power than the A? statistics for these alternatives.

4. Against alternatives with the mean equal to the variance, the Cramér-von Mises statis-
tics have the best power. Since the dispersion-based tests primarily detect differences

between the mean and variance, they perform very poorly against these alternatives.

The gain in power to detect alternatives with similar mean and variance by the use

W

of the Cramér-von Mises statistics over other test statistics is somewhat offset by the
greater computational difficulty in calculating the test statistics and their p-values.

The computational difficulty increases with the number of unique estimated means.

The Cramér-von Mises statistics A} and Ag are shown to be powerful statistics for
testing for Poisson regression models, particularly if the alternative is “close” to the Poisson
in the sense that the variance is almost equal to the mean. The statistic, Ag has slightly
better power than A%, and is the recommended statistic for testing for Poisson regression

models.
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Table 5.9: Power Comparison

This table gives the percentage of 1000 samples rejected by the statistics for a sample of
size 20. Alternative distributions were generated with the Model 1 mean structure. The
variance of the alternative distribution relative to the Poisson variance is indicated for each
distribution. All tests are at the 5% level.

Alternative Distribution

Test Statistics

| w2 oA wPoAr w2 oA

Overdispersed

Negative Binomial (2) 291 349 322 332 316 437

Poisson Mixture (1.64) 262 324 286 332 248 343

Underdispersed

Binomial (.5) 77 79 61 70 95 81

Equal Dispersion

Discrete Uniform 77 60 242 153 264 258
W2 A2 x%, Dev Pg

Overdispersed

Negative Binomial (2) 267 341 444 457 443

Poisson Mixture (1.64) 209 259 287 393 385

Underdispersed

Binomial (.5) 79 80 119 121 123

Equal Dispersion

Discrete Uniform 149 134 144 88 76
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Table 5.10: Power Comparison

This table gives the percentage of 1000 samples rejected by the statistics for a sample of
size 20. Alternative distributions were generated with the Model 2 mean structure. The
variance of the alternative distribution relative to the Poisson variance is indicated for each
distribution. All tests are at the 5% level.

Alternative Distribution Test Statistics
2 2 2 2 2 2
Ww. A, Wy A W A

u

Overdispersed
Negative Binomial (2) 144 295 352 552 342 517
Poisson Mixture (1.64) 166 304 335 568 317 516

Underdispersed

Binomial (.5) 102 97 390 344 376 346
Equal Dispersion

Beta-Binomial 710 740 940 929 973 978
Discrete Uniform 72 62 94 68 96 85

W2 A2 x} Dev Pp

Overdispersed
Negative Binomial (2) 348 540 604 616 536
Poisson Mixture (1.64) 335 531 544 575 607

Underdispersed
Binomial (.5) 102 97 484 461 691

Equal Dispersion
Beta-Binomial 947 940 231 375 346
Discrete Uniform 92 63 18 15 16
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This table gives the percentage of 1000 samples rejected by the statistics for a sample of
size 20. Alternative distributions were generated with the Model 8 mean structure. The
variance of the alternative distribution relative to the Poisson variance is indicated for each

Table 5.11: Power Comparison

distribution. All tests are at the 5% level.

Alternative Distribution

Test Statistics

W2 A2 WP A} WP A?
Overdispersed
Negative Binomial (2) 155 250 335 524 318 500
Poisson Mixture (1.64) 213 308 354 580 326 490
Underdispersed
Binomial (.5) 19 14 448 387 442 426
Equal Dispersion :
Beta-Binomial 98 120 874 872 949 957
‘Discrete Uniform 58 43 91 3 82 69
W2 A2 x%, Dev Pg
Overdispersed
Negative Binomial (2) 307 511 591 503 503
Poisson Mixture (1.64) 308 335 547 571 621
Underdispersed
Binomial (.5) 403 364 504 804 511
Equal Dispersion :
Beta-Binomial 894 896 223 373 342
Discrete Uniform 84 71 10 12 11



CHAPTER 5. REGRESSION MODELS 127

5.8 Examples

5.8.1 Example: non-I.I.D. Binomial

The data listed below, taken from Kupper and Haseman (1978), show the numbers (here
called successes) of an unspecified laboratory event in pregnant mice. There are ten pregnant
mice in each of a treatment and a control group. The data may represent number of fetal
abnormalities (events) out of a number of live births (trials). The number of events/trials

is given below:

CONTROL GROUP: 0/5,2/6,0/7,0/7, 0/8,
0/8, 0/8, 1/9, 2/9, 1/10.

TREATMENT GROUP:  0/5,2/5,1/7,0/8, 2/8,
3/8,0/9, 4/9,1/10, 6/10.

Two different models were examined: No treatment difference (common probability of
success), and a model with two parameters (separate probabilities of success). In addition,

the two treatment groups were individually tested for the binomial distribution.

Treatment Group

The estimated success probability of the treatment group data is 0.241 and the estimated

residual variance is 3.374. Let the expected residual binomial variance be defined as
(N = p) 'S Kibi(1 - 6),

where K; is the number of trials, é,- is the estimated success probability for the i observation
and p is the number of estimated parameters. Then, the expected residual variance is
1.603, indicating that this data set has greater than binomial dispersion. Figures 5.1-
5.6 show plots of the residual empirical distribution function with the average residuai
distribution function, and plots of the standardized residual empirical process for each of
the three empirical processes, labeled ¥ x(j), Y2 n(t) and Y3 & (), and defined in 5.4.2. The
standardized residual empirical process is the value of the residual process divided by its
standard deviation to give pointwise asymptotic standard normal values, and is the process

used in the calculation of the A2 test statistics.
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The values and significance levels of the Cramér-von Mises statistics and a score test,
N4, with its small sample correction (Dean, 1992), are found in Table 5.12. The score
test strongly rejects the binomial hypothesis, whereas the Cramér-von Mises statistics give
mixed results. Only A? and Ag (based on the F- and G-transformed residual processes ,Y> y

and Y3 ) reject the binomial hypothesis, although A2 and sz give near-significant results.

Table 5.12: Test statistics and significance levels for the laboratory data from the treatment

group only.
Test Value Significance
Statistic Level
w? .08 .292
Ul .08 293
A? 1.07 .066
w2 59 .120
Wf .15 .065
Ufz 12 091
A? 1.14 .039
w2 11 .148
U, ; 11 125
Al 91 079
Ny 2.57 .010

N g(corrected)  2.82 .005
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Figure 5.1: Cumulative observed (—) and average expected (- -) histogram for the treatment
group laboratory data.
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Figure 5.2: Standardized difference between the observed and average expected histogram
~ for the treatment group laboratory data.
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Figure 5.3: F-transformed empirical distribution function (—) and average F-transformed
distribution function (- -) for the treatment group laboratory data.
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Figure 5.4: Standardized F-transformed residual empirical process plot for the treatment
group laboratory data.
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Figure 5.5: G-transformed empirical distribution function (—) and average G-transformed
distribution function (- -) for the treatment group laboratory data.
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Figure 5.6: Standardized G-transformed residual empirical process plot for the treatment
group laboratory data.
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Control Group

The plots of the (F-transformed) residual empirical distribution function with the average
residual distribution function, and the standardized residual empirical process are shown
in Figures 5.7 and 5.8. The estimated probability of success is 0.078 and the estimated
residual variance is 0.676. The expected residual binomial variance is 0.615, which supports
binomial dispersion. The values and significance levels of the Cramér-von Mises statistics
and the score test for overdispersion are found in Table 5.13. All test statistics failed to

reject the Binomial hypothesis.

Table 5.13: Test statistics and significance levels for the laboratory data from the control
group only.

Test Value Significance
Statistic Level
w? 0.04 .36
Ul 0.04 33
A? 0.32 40
w2 0.11 37
Wj 0.03 .34
Uy 0.03 .29
A"‘; 0.21 .30
W} 0.05 .34
U? 0.05 31
A_:'; 0.35 .36
Na 0.24 .81

Na(corrected)  0.48 63
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Figure 5.7: F-transformed empirical distribution function (—) and average F-transformed
distribution function (- -) for the control group laboratory data.
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Figure 5.8: Standardized residual empirical process plot (F-transformed) for the control
group.
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Total Group

Two models were examined:
1. The model with a single probability of success, estimated to be 0.160.

2. The model with separate probabilities of success for each of the treatment and control

groups, estimated to be 0.02405 and 0.078, respectively.

The residual plots of the standardized empirical process (F-transformation) for each of the
two groups are found in Figures 5.9 and 5.10, respectively. The values and significance levels
of the Cramér-von Mises statistics and the score test for overdispersion, for each of the two
models, are found in Table 5.14. For the model with a single probability of success, all the
tests, with the exception of W2 and U2, strongly reject the binomial model. The statistics,
W2 and U2 show only weak evidence against this model. For the model with separate
probabilities of success, the results are not as consistent, although most statistics give weak

evidence against the model. The corrected score statistic gives the most significant result.

Table 5.14: Test statistics and significance levels for the laboratory data - single success
probability and separate success probability models.

Common Success Prob. Separate Success Prob.
Test Value Significance Value Significance
Statistic Level Level
w? 0.20 .045 0.10 .159
U2 0.17 .065 0.07 .229
A? 1.84 .009 0.73 .092
w2 0.88 .020 0.38 .150
Wj 0.29 .003 0.07 .196
U‘é 0.20 .009 0.05 315
A 1.62 .005 0.94 .051
w? 0.25 .008 0.12 .100
U;q 0.23 .011 0.11 .084
Az 1.79 .004 0.78 .089
Ny ' 3.88 <.001 2.01 .044

N 4(corrected) 4.05 <.001  2.80 .005
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Figure 5.9: Standardized residual empirical process plot (F-transformed) for the model with
a single probability of success.
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Figure 5.10: Standardized residual empirical process plot (F-transformed) for the model
with separate probabilities of success.
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5.8.2 Example: Poisson Regression

The data in Table 5.15 come from a study of cancer in 4213 male aluminum workers (Spinelli

et al, 1991). The data were combined into 44 subgroups created by a cross-classification of

exposure and age. The variables are

1. Exposure to Coal Tar Pitch Volatiles (1=<1 BSM-year of exposure, 2=1-5 BSM-years
of exposure, 3=5-10 BSM-years of exposure, 4=10+ BSM-years of exposure)

2. Age (1=20-29, 2=30-34, ... 10=70-74, 11=754+).
3. Number of bladder cancer cases.

4. Person-years at risk in that sub-group.
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Table 5.15: Bladder cancer in aluminum workers data.

Subgroup Exposure Level Age No. of Cases Person-Years at Risk

1 11 0 1332.11

2 1 2 0 1388.75

3 1 3 1 1696.86

4 1 4 0 2061.61

5 1 5 0 2183.38

6 1 6 0 2068.96

7 17 0 1711.92

8 1 8 1 1246.69

9 19 1 773.91
10 110 0 412.83
11 111 1 225 .61
12 2 1 0 1615.40
13 2 2 0 1866.16
14 2 3 0 2009.76
15 2 4 0 2081.41
16 2 5 0 1966.08
17 2 6 1 1557.57
18 2 7 0 1048.04
19 2 8 0 635.21
20 2 9 0 371.64
21 2 10 0 204.39
22 2 11 0 83.41
23 31 0 200.91
24 3 2 0 678.42
25 3 3 0 1190.94
26 3 4 0 1482.89
27 3 5 0 1535.35
28 3 6 1 1362.64
29 3 7 0 851.45
30 3 8 0 456.51
31 3 9 0 215.72
32 3 10 0 99.26
33 3 1 1 31.79
34 4 1 0 3.12
35 4 2 0 102.99
36 4 3 0 420.73
37 4 4 0 1136.63
38 4 5 0 1564.33
39 4 6 1 1587.80
40 4 7 2 1102.41
41 4 8 3 663.04
42 4 9 0 337.23
43 4 10 3 102.19
44 4 11 0 11.55
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The main purpose of the study was to determine if the risk of bladder cancer increased
with increasing exposure to coal tar pitch volatiles. A Poisson regression model (Poisson
error, log link) was fitted. Age was treated as a factor and exposure was analyzed as a

continuous covariate to assess trend. The following models were fitted to the data.
1. Constant + Person-Years(Offset)
2. Constant + Person-Years(Offset) + Age
3. Constant + Person-Years(Offset) + Exposure
4. Constant + Person-Years(Offset) + Age + Exposure

The residual plots of the standardized empirical process (F-transformation) for each of the
four models are found in Figures 5.11 to 5.17, respectively. Table 5.16 shows the significance
levels of the Cramér-von Mises test statistics and a score test for overdispersion (against the
beta-binomial distribution), Pg (Dean, 1992). The score test and a small sample corrected

version of the score test are presented.

Table 5.16: Test statistics and significance levels for the laboratory data - single success
probability and separate success probability models.

Significance Level
Test Statistic Modell Model 2 Model 3 Model 4

w2 .336 893 .690 871
U? 419 816 718 .789
A2 267 .763 .626 .804
w2 .290 715 .602 757
Wj .002 344 .003 512
U; 010 414 .021 451
A3 <.001 .386 .026 428
w? 227 771 105 817
Uj7 122 .649 .070 755
A? <.001 343 <.001 731
Py .002 227 .026 .335

Pg(corrected) <.001 029 .012 871
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Figure 5.11:

Offset only.
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Figure 5.12:

Offset only.

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Standardized residual empirical process plot (F-transformed) for Model 1,
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Standardized residual empirical process plot (G-transformed) for Model |,
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Figure 5.13: Standardized residual empirical process plot (F-transformed) for Model 2,
Offset + Age.
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Figure 5.14: Standardized residual empirical process plot (G-transformed) for Model 2,
Offset + Age.
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Figure 5.15: Standardized residual empirical process plot (F-transformed) for Model 3,
Offset + Exposure.
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Figure 5.16: Standardized residual empirical process plot (G-transformed) for Model 3,
Offset + Exposure.
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Figure 5.17: Standardized residual empirical process plot (F-transformed) for Model 4,
Offset + Age + Exposure.
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Figure 5.18: Standardized residual empirical process plot (G-transformed) for Model 4,
Offset + Age + Exposure.
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As would be expected from the Monte Carlo power simulations in section 5.7, the
Cramér-von Mises statistics based on the untransformed process have little power to de-
tect departures from the Poisson model. The statistics, A%, A2, W} and Pg clearly reject
Models 1 and 3. Similarly, all the test statistics accept the Poisson hypothesis for Model 4,
the final model proposed. There is some disagreement between the tests for Model 2. All the
Cramér-von Mises statistics accept the Poisson hypothesis for this model. The uncorrected
score test also accepts the model, whereas the corrected score test rejects the Poisson model.
For model 2, the estimated residual variance is 0.676. The estimated Poisson variance, de-
fined as (N — p)‘lziilﬁ,', where f1 is the estimated mean for the ith observation, is 0.485,
indicating slight overdispersion. An examination of the residual processes in Figures 5.13

and 5.14 indicate that the data fit the Poisson model fairly well.
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