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Abstract 

Object-oriented databases (OODB) have emerged to be a very active research area in 

database systems. Complex objects and behavior encapsulation are two very impor- 

tant concepts in object-oriented data modelling. In previous approaches, behavioral 

aspects of complex objects are generally defined directly in the implementation pro- 

gramming language. It is thus difficult for the database users to define application 

specific semantics for complex objects. In this thesis, we examine the behavioral 

aspects of complex objects in various OODB applications. In order to enable the 

database users to specify user semantics, we have designed and implemented a lan- 

guage called ODL (Object Definition Language). By using ODL, the user can define 

methods for complex objects in terms of methods defined for the constituent objects. 

An important component of ODL is the implementation of the concept of behav- 

ioral constraint, which, contrary to the traditional integrity constraints specified as 

boolean expressions, represents the relationship between various database operations 

and user-defined methods. Behavioral constraints can be specified in ODL. We have 

implemented an ODL code generator, which generates C++ code with Object Store 

DML. This code can be integrated with application programs and in the system thus 

obtained, the behavioral constraints can be enforced automatically. 
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Chapter 1 

Introduction 

In the last ten years, relational database systems have been the mainstream database 

management systems, especially for business applications. However, the relational 

database paradigm is not well suited to many advanced applications. Subsequently 

various object-oriented database systems (OODBs) have been developed to support 

these advanced applications such as Electronic Computer Aided Design (ECAD), 

Mechanical Computer Aided Design (MCAD), Computer Aided Software Engineering 

(CASE) and Geographical Information Systems (GIs). The data entities in these 

applications tend to have nested structures, and values of the attributes may be 

generated by procedures. While it is difficult and inconvenient for the relational data 

model to capture some of the complex structures and derived values, these structures 

can be represented easily in an object-oriented database system. 

Much research, especially in the academic community, has been devoted to object- 

oriented database modelling, i.e., capturing the application semantics by means of 

object-oriented modelling constructs, but little regard has been paid to efficiency. 
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This research is not directly related to the OODB products in the market. In contrast, 

OODB vendors are still busy on making their systems fast and robust. 

In this thesis, we attempts to bridge the gap between the two communities, ad- 

mittedly in a small way. We are interested in making it easy for an OODB user to 

express application semantics in a way accepted by the commercial OODBs. 

In this chapter, we will first present the strengths and weakness of the OODBs. 

After that, the problem areas of OODBs and the objectives of this thesis will be 

discussed. We will conclude this chapter with the organization of this thesis. 

1.1 OODB Concepts 

We give a brief overview of the core concepts of the object-oriented database systems, 

the architecture of the database programming language (DPL) and corresponding 

applications. 

1.1.1 Object-Orientation Basics 

With object-oriented data modelling, each data entity is modeled as an object. Each 

object is associated with a unique identifier (Object Identifier or OID). Each object has 

a structural part and a behavioral part. The structural part is a set of attributes and 

their types. The behavioral part is a set of procedures that operate on the structural 

part of the object [18]. 

The objects with same structure and behavior are grouped into a class which 

represents the abstract data type (ADT) or template for those objects. The types of 
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the attributes of an object can also be defined as classes that have complex structures. 

The nested structure is thus supported. An object with nested structures is usually 

referred to as a complex object or composite object. Since the domain of an attribute 

may be any class, the nested structures of complex objects form a hierarchy, usually 

called the class composition hierarchy. 

Object-oriented data modelling allows the database designers to define compli- 

cated semantics for objects by associating operations with them. The procedures 

that generate values for attributes are thus encapsulated within the class definition. 

Procedures associated with the class definition are usually referred to as methods or 

member-functions. All the methods defined in a class form a uniform interface by 

describing the behavioral aspects. 

An OODB user may derive a new class from an existing one. The new class is 

called the subclass of the existing class. The subclass inherits all the attributes and 

methods of the existing class, also known as its superclass. All the classes in an OODB 

system form a hierarchy, called a class hierarchy. 

A database constraint is a condition that any valid database state must observe. 

In OODB systems, since database operations can be encapsulated with objects and 

thus stored in the database, the concept of constraint can be extended to include the 

relationship between operations. Later in this thesis (chapter 2), we show how this 

concept can be extended to include behavioral aspects. 
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1.1.2 Database Programming Language 

In object-oriented databases, one important modification to the database architec- 

ture is the integration of the database with programming language environments. The 

combination of the object-oriented applications and the object-oriented databases has 

narrowed the gap between the applications and the databases usually found in rela- 

tional database systems. A large measure of so called "impedance mismatch", which 

refers to the transformations between the application data space and the database 

storage, is also reduced by this combination [5]. 

In essence, almost all the databases based on the object-oriented data model are 

what we call Object-oriented Database Programming Languages (ODPLs). These sys- 

tems are based on the object-oriented database programming language architecture: 

applications are written in a version of an existing object-oriented programming lan- 

guage which has been extended to incorporate database functionalities, such as persis- 

tent types, transaction structures, etc. Instead of traditional SQL-like Data Definition 

Languages (DDLs) and Data Manipulation Languages (DMLs), the databases are de- 

fined and manipulated by means of the programming constructs of the host language. 

Among these ODPLs, the most popular host languages include C++ and Smalltalk. 

To distinguish the database from the program variables, there are two classes of data 

for an ODPL: persistent objects and transient objects. The former remains accessible 

after a user session or application program execution while the latter does not. 

Many advantages are derivable from a tight integration of database and program- 

ming language environment. In contrast to traditional database systems, an object- 

oriented database programming language provides a language for database access that 

is computationally complete, i.e., the database language can perform any operations 
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that a programming language can. 

In relational databases, a data structure (e.g., a linked list) must be converted 

into a table before it can be stored into the underlying database. In contrast, with an 

ODPL, the only work required by a programmer to make a data structure persistent is 

to define it as a member of a persistent class. An ODPL, being object-oriented, is able 

to associate the procedures with the objects, and store procedures in the database. 

As in object-oriented programming languages, the object types are defined as 

classes. However, apart from the meaning of a user-defined type, a class also represents 

an extent, i.e., the set of objects that belong to this class. 

Performance is the most important reason why ODPLs are adopted by many 

developers of advanced applications. The architecture of ODPLs makes it possible 

to enhance performance for advanced applications. By using a client cache, the data 

can be retrieved directly into the application's programming space. This is beneficial 

especially for the data being used repeatedly. 

1.1.3 Problem Areas of Object-oriented Databases 

Although current OODB systems achieve very good performance for advanced ap- 

plications, they are still showing poor performance when used in some traditional 

applications, such as business applications. 

Another problem with current OODB systems is that since they have not been 

around for as long as the relational database systems have, many aspects of the sys- 

tems, such as integrity constraints, query languages, and so on, are not very polished. 

Reliability is also a problem. 
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By far, the most serious obstacle yet to be overcome by the current generation of 

OODB is the ease of use. This is the issue addressed by this thesis. By using object- 

oriented data models, objects in these applications are represented as combinations 

of various attributes. The operations performed on the attributes are represented 

as met hods (program code). However, the semantics associated with these methods 

in advanced applications tend to be complicated. With current OODB systems, the 

complicated semantics of object must be incorporated in the implementation of the 

methods. 

There are several disadvantages to capturing the semantics of objects directly in 

the code. 

Extra eflort must be made on communication between application users and 

application programmers. 

It is dificult for database users (other than designers) to understand the object 

semantics. 

The implementation of object semantics could be complicated and dificult to 

integrate with database functionalities. 

Any modification to the object semantics must involve manually changing the 

code by application programmers, which could be complicated and confusing. 

Due to individual programming habits of the application programmers, the meth- 

ods implemented tend to be less organized and may not reflect the object seman- 

tics correctly. 

In current OODB systems, these drawbacks are due to the lack of a uniform 
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language interface for complete object definition. These drawbacks have made object- 

oriented databases much more difficult for general users to use than relational databases. 

In this thesis, we will propose a solution for resolving this problem. 

1.2 Objectives of the Thesis 

In this thesis, we design and implement a language called Object Definition Language 

(ODL) for OODB systems in order to provide a high level and uniform interface for 

complete object definition. 

An object definition can be divided into three parts: the structural definition, the 

behavioral definition and the relationship definition. Since the structural definition 

of objects can be specified quite clearly using class definitions as in C++, our ODL 

will focus on the behavioral definition and the relationship definition of objects. The 

objectives of designing and implementing ODL are as follows: 

It should provide a clear and high level definition for object behavior (or meth- 

ods). It should thus be easier to understand for both the application users and 

application programmers. 

0 It must be able to incorporate complicated object semantics defined by database 

designers. Various constraints associated with methods should be easily specifi- 

able. 

0 It must support various behaviors of complex objects. In particular, it must 

support various relationships between the methods of complex objects and those 

of their constituent objects. 
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The implementation of the language should generate program modules that could 

be integrated easily with the rest of the application programs and the underlying 

database systems. 

The object semantics defined in the language should be correctly reflected and 

maintained in the corresponding program modules. 

With the database programming language architecture, the database function- 

alities and the application programs are combined into a single programming space. 

Application programmers are also responsible for designing the database for the users. 

Even a very simple database will have to be created by using application programs. 

By introducing ODL, we will be able to provide an interface between the database 

designer and the application programmer. ODL will allow database designers to 

directly define object behaviors and the associated semantics, especially constraints. 

In the implementation of ODL, the code for the method will be generated. The 

constraints specified in ODL will be maintained by the code. 

1.3 Thesis Organization 

In chapter 2, we discuss the motivation behind this research. By providing a series 

of examples, we will identify a category of integrity constraint associated with the 

methods in OODB applications. We will also discuss how to support complex object 

as views. Issues relating to customized query languages will also be discussed in 

chapter 2. In chapter 3, we present the design and the syntax of ODL. We will provide 

several examples illustrating how object semantics and complex object behavior can 
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be specified in ODL. In chapter 4, we describe the implementation of ODL. We have 

implemented the ODL on top of Objectstore, an object-oriented database system. 

We also discuss the integration of ODL with the rest of application programs. As 

an example, we have integrated methods specified in ODL code with an application 

package which supports a customized query language called DSQL. In chapter 5, we 

give a conclusion and discuss the future work. 



Chapter 2 

Motivation and Related Work 

Many researchers like to divide the short history of database systems into three eras, 

each of which is characterized by one generation of database system. The first gen- 

eration database systems can be called generically pre-relational database systems. 

They are based on network or hierarchical models. There are DDLs and DMLs as- 

sociated with these systems. The DDLs and DMLs are usually defined as low-level 

operations performed directly on the physical database. Therefore, such DDLs and 

DMLs are generally difficult to use. They provide low degree of data independence. 

For instance, a typical DDL contains many references to the physical organization of 

the underlying databases. 

The second generation of database systems are called relational databases because 

the data entities are uniformly defined as relations. The definition and manipulation 

of the databases are simplified to performing operations in SQL on the database 

tables. In particular, the DDL of a relational database system is very simple. For 

instance, to define a database in a relational database system is simply to create a set 
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of relations [8]. 

The OODBs are known as the third generation database systems. There is no 

separate language for object definition since the host language is used as the DDL. 

Clearly, the development of DDL from the second to the third generation database 

systems is at odds with the development from the first to the second generation. 

There are obviously many reasons why the DDL has to assume the full facilities as 

an object-oriented programming language. Some of which have been elaborated in 

chapter 1. As a result, we need to address fully the question of how a separate high 

level ODL can be justified. 

In this chapter, we discuss our motivation from three perspectives: an object defi- 

nition language can be used to describe the database constraints; an object definition 

language can be used to support user views; finally, an object definition language can 

also be used to support customized query languages. 

2.1 Incorporation of Constraints 

The term "integrity" refers to the accuracy or correctness of the data in the database. 

Integrity constraints provide a means [20] of ensuring that changes made to the 

database by authorized users do not result in a loss of data consistency. Thus, integrity 

constraints guard against accidental damage to the database. 

In relational database systems, changes to the databases are made by using oper- 

ators defined in SQL. The integrity constraints are associated with operators such as 

insert, delete, and update. 
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With current OODB systems, complicated computations and operations can be 

defined for objects. However, while all the manipulation and dependencies of an 

object have been put into the code, the relationships between objects, especially a 

complex object and its constituent objects are not clear to the user. Besides, almost 

all the manipulations and the enforcement of the integrity constraints are now left to 

the user. In this way, the database is only responsible for the storage management. 

Although this arrangement is quite flexible, this kind of system is potentially very 

dangerous. The database user has to make great effort to ensure the consistency of 

the system. 

2.1.1 Behavioral Constraints 

In OODB systems, changes to the databases are no longer made by using SQL op- 

erators. Instead, complicated computation along with database operations are inter- 

mixed. As a whole, they are defined as object methods. So the integrity constraints 

in OODB system are associated with object methods instead of SQL operators. 

One of the major differences between OODB integrity constraints and the in- 

tegrity constraints of relational databases is that the SQL operators are system de- 

fined whereas the methods are user defined. In order to see this, let us look at the 

following example. 

Example 2.1. 

In MCAD applications, the real world entities can be modeled as 3-D objects. Com- 

plex 3-D objects can be divided into simple ones such as cuboid, cylinder, pyramid, 
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frustum, and sphere. We can define them as classes of 3-D objects and group them 

into a superclass block. The definition of class block looks as follows: 

c l a s s  block( 

pr ivate  : 

Vertex block-center; 

STRING name ; 

publ i c  : 

void  move(f loat ,  f l o a t ,  f l o a t ) ;  

boolean ontopof (block) ; 

A block has two attributes: block-center of type Vertex representing its center 

and name of type STRING indicating its name. There are two methods defined for the 

block. The move will update the position of a block. ontopof is a predicate which 

tests whether this block is on the top of another block. 

Although block only has attributes block-center and name, its subclasses cuboid, 

cy l inder  etc. may have additional attributes such as f a c e .  Since a block is a com- 

plex object which has several other objects as its components (for instance, a cuboid 

has six f a c e  objects), the method move is also responsible for changing the positions 

of these component objects. 
I 

Based on the application semantics, there could be various relationships between ~ 
I 

the operations move and ontopof. For a block b l  to be moved, if there is currently I ~ 
another block b2 on the top of b l ,  i.e. b1.  ontopof (b2)=TRUE, then a constraint could 

either be "move b2 as well" or "reject". In the first case, the constraint requires that ~ 
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block b2 be moved together with b l ,  thus b2.move has to be called. In the second 

case, the operation of b l  .move will have to be rejected. 

From the example above, we can see that in object-oriented environments the con- 

straints must be associated with the user-defined operations (move, ontopof). For 

the class block, the modification of the block-center attribute may be implemented 

using a single database operation. However, the aforementioned two constraints can 

not be associated with the operation of changing the block-center since the mod- 

ifications of positions for constituent objects ( face objects) is also involved in the 

constraints. 

There are two important features that make such constraints different from tradi- 

tional database integrity constraints. 

They describe the relationships between database operations. 

0 The operations involved are user-defined. 

At any particular moment, all the information about the schema and data stored 

in a database are referred to as a state of the database. Except for object retrieval, 

every operation performed on a database state will change the database from the 

current state to another state. It thus represents a transition of database states. 

Some of the operations may cause a transition from a valid database state to an 

invalid database state. In many database applications, such invalid database states 

are inevitable as interim stages of database transitions. However, these invalid states 

should not remain in the database persistently. In fact, they must not remain outside 

a transaction so they are usually eliminated by performing other database operations 

that cause a transition from an invalid database state to a valid one. 
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Behavioral Constraint 
7 

Valid Invalid Valid 

Figure 2.1: Behavioral Constraint 

Example 2.1 shows a type of integrity constraint that applies to a user-defined 

operation that drives the database into an invalid state. The constraint requires 

that either the operation be rejected or some additional user-defined operations be 

performed in order to change the database back into a valid state. We call this type 

of integrity constraints behavioral constraints (BC) because they are effective over the 

behavioral aspects of the the object-oriented data model (Figure 2.1). 

2.1.2 Intra-Object and Inter-Object BCs 

A constraint that applies to a single object is called intra-object constraint. An exam- 

ple of such constraints for a person object is that years-of -schooling be at least 5 

less than age [16]. Constraints that apply across objects are called inter-object con- 

straints. For example, we may have a constraint that the age of a person must be at 



CHAPTER 2. MOTIVATION AND RELATED WORK 

least 12 greater than the age of any child of person. Similarly, we could also have 

intra-object behavioral constraints and inter-object behavioral constraints. 

Example 2.2. 

Suppose we have a class employee in an Ofice Information System (01s) application 

defined as follows: 

class employee( 

private : 

STRING name ; 

int age ; 

POSITIONS position; 

MONEY salary ; 

. . .  
public : 

void 

void 

3 

There are two user-defined methods raisesalary () and raiseposit ion (). An intra- 

object behavioral constraint may require that: 

"when the position of an employee is raised, the salary should be raised 

according to the employee's new position". 



CHAPTER 2. MOTIVATION AND RELATED WORK 

Example 2.3. 

In a Geographical Information System (GIs) application, we could have classes rep- 

resenting geographical objects. Two such classes are i n t e r s e c t i o n  and road. The 

attribute i n t e r s e c t i o n s  in class road  is a set of objects from i n t e r s e c t i o n  where 

all the intersections on the road object are recorded. 

class i n t e r s e c t i o n (  

p r i v a t e  : 

STRING 

road 

road  

v e r t e x  

. . .  
p u b l i c  : 

i n t e r s e c t  i o n  

name ; 

r d l  ; 

r d 2  ; 

l o c a t  ion  ; 

new (road , road ,  p o i n t )  ; 

c l a s s  road( 

p r i v a t e :  

SET- INTER i n t e r s e c t  i o n s  ; 

. . . . . . 
pub1 i c  : 

void  add- in te r  (STRING name, p o i n t  l o c a t i o n )  ; 
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An inter-object constraint is that: 

"when a new intersection is created with two roads, this new intersection 

must be recorded in each of the two roads". 

In this constraint, a method defined in class intersection triggers invocations of 

methods defined in another class road. The constraint is therefore an inter-object 

BC. 

2.1.3 BCs for Complex Objects 

For any complex object, the difference between its primitive attributes and component 

objects is significant. For the primitive attributes, the complex object has its own 

methods of attribute access manipulation. Component objects, on the other hand, are 

not simple values. Only operations performed on their attributes are meaningful. For 

those attributes defined as public, they can be accessed directly. However, for those 

attributes defined as private, they can only be accessed by invoking the corresponding 

methods of the class. 

The methods of an object represent their behavioral aspects. Because of the 

PART-OF relationships between the complex objects and their constituent objects 

[19], the complex objects can be viewed as formed by their constituent objects. There- 

fore, the behavior of a complex object will inevitably affect or be affected by the be- 

haviors of its component objects. This effect is actually determined by the behavioral 

constraints between the complex objects and their component objects. We now give 

an example to show this kind of behavioral constraint. 
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Example 2.4 

In an Office Information System (01s) application, there are two classes person and 

family defined as follows: 

class person( 

private : 

STRING name; 

I NT age ; 

char sex ; 

char married ; 

PERSON* spouse ; 

public : 

void marriage-record (char) ; 

class family( 

private : 

PERSON husband ; 

PERSON wife ; 

PERSON [I children; 

float income ; 

. . .  . . . 
pub1 ic : 

void divorce() ; 
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In class person, the attribute married indicates the person's marriage status by 

a single character (Y-married, N-never married, D-divorced, W-widowed, etc). The 

attribute spouse is a pointer referencing the spouse object. Because these attributes 

are declared as private, they can only be accessed by the methods defined in the class. 

The operation marr iagerecord 0 is responsible for making modifications to private 

attributes of class person. 

Each family object is a complex object formed by two objects husband and wife 

and a number of their children.  There is a public member-function divorce()  which 

is used to record the divorce transaction for all family objects. If the husband and 

the wife of a family divorce, the method d i v o r c e 0  will have to delete the family 

object from the database. However, before doing that, the method has to make sure 

the modification of the corresponding marriage status information has been changed 

in the objects husband and wife. This is a behavioral constraint between a method 

of class family and one of class person. 

Example 2.5 

As another example of a behavioral constraint for complex objects, consider a complex 

object cuboid, which is composed of six objects from class Face, while each of the 

face objects in turn contains four objects from class Edge. Each Edge object contains 

two objects from class Vertex. The definition for the above database schema is as 

follows: 

Class Cuboid ( 
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p r i v a t e  : 

STRING name; 

STRING c o l o r ;  

Vertex b lock-center ;  

Face t o p ,  bottom, l e f t ,  r i g h t ,  f r o n t  , back;  

. . . 
p u b l i c :  

void  r o t a t e ( c o o r d i n a t e ,  d e g r e e ) ;  

void  move(f l o a t ,  f l o a t ,  f l o a t )  ; 

C l a s s  Face { 

p r i v a t e :  

Vertex c e n t e r  ; 

Vector  normal ; 

STRING c o l o r ;  

Edge e d g e i ,  edge2, edge3, edge4; 

. . . 
p u b l i c  : 

void  r o t a t e ( c o o r d i n a t e ,  d e g r e e ) ;  

void  move(f l o a t ,  f l o a t ,  f l o a t )  ; 

C l a s s  Edge { 

p r i v a t e  : 



CHAPTER 2. MOTIVATION AND RELATED WORK 

Vector  normal ; 

f l o a t  l e n g t h ;  

Vertex x ,  y ;  

. . . 
p u b l i c :  

vo id  r o t a t e ( c o o r d i n a t e ,  d e g r e e ) ;  

vo id  move(f l o a t ,  f l o a t ,  f l o a t )  ; 

> 

Operations r o t a t e  and move have been defined for all three classes. Because the 

faces are components of the complex object cuboid, whenever a cuboid is rotated or 

moved, the faces that belong to it will also be rotated or moved. Therefore, there is a 

constraint between the operation of r o t  a t e  of the cuboid and that of its faces. Similar 

constraints exist between the operations of Face objects and that of their constituent 

Edge objects. 

2.2 Related Literature on Constraint Specifica- 

tion 

In essence, any database constraint can be maintained by implementation code. In re- 

lational databases, there are a limited number of operations supported by the system; 

consequently the constraints defined over the database states can be easily checked in 

between the executions of these operations. 
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2.2.1 Relational Database Constraints 

Two important integrity maintenance facilities in relational DBMS are attribute-based 

constraints and database triggers. However, it can be shown that they are not suitable 

for supporting behavioral constraints. 

In relational databases, data are generally simple values associated with attributes 

in relations. Constraints are usually expressed as boolean expressions representing 

conditions on data values. For a simple example, in the Sybase relational database 

system, the users may create a constraint on the user-id of one of their tables by 

defining a rule as follows: 

c r e a t e  r u l e  user - id  

a s  Guser-id i n  ('1389', '0736', '0877') 

This rule defines a constraint that the user-id has to be one of the three numbers. 

Any modification to the user-id will be checked against this rule. We call this type 

of constraint attribute-based or state-based because it is usually expressed over the 

attributes (although sometimes the attributes may be complex) in the database or 

the states of the database. 

Relational triggers, another type of integrity constraint, specify the relationships 

among database operations. For example, the syntax for creating triggers in the 

Sybase relational database is as follows: 

CREATE TRIGGER [owner.]trigger-name 

ON [owner . ]  table-name 

(FOR (INSERT, UPDATE, DELETE) 
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FOR (INSERT, UPDATE) 

AS 

IF UPDATE (column-name) 

[(AND I OR) UPDATE (column-name)] 

SQL-statements) 

From this syntax we can see that the triggers may only defined over operations 

INSERT, UPDATE, and DELETE. 

In relational databases, the triggers can be maintained and performed by the 

database management systems. This is because the semantics of all of the operations 

are well defined by the system. However, in an object-oriented database, the opera- 

tions performed on the objects are no longer defined by the system. The persistent 

programming language that a user uses is so powerful that any complicated operations 

can be specified and performed. While this is very convenient for the database user, 

the consistency of the database becomes more vulnerable because the application pro- 

grammer may easily violate the semantics of the objects. Due to the complexity of 

the object structure, it may be very expensive for the OODB to perform integrity 

checking. Indeed, it is impossible to perform such a checking if the user semantics of 

the objects are not known to the OODB. 
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2.2.2 Constraint Maintenance Mechanisms 

There have recently been many proposals for supporting database integrity constraints 

for advanced applications. In general, they can be classified into three different ap- 

proaches. 

The first approach tries to capture all the integrity constraints by using a uniform 

rule system [12,28, 291. The second approach insists on early detection and high level 

expression of the constraints. It involves associating the constraints with the class 

definition or providing a separate algebra for representing the constraint [7, 11, 13, 

16, 17, 25,311. The last approach heavily relies on the so-called active database model, 

where operations can act as triggers that cause the execution of other operations [2, 

9, 10, 21, 221. We will review three systems that are representative of each approach: 

the POSTGRES Rule System, ECA model and Constraint Compilation of Ode. 

2.2.3 POSTGRES Rule System 

Incorporating a rule system into a DBMS represents the effort of applying techniques 

of artificial intelligence to database systems. 

A successful example of an embedded rule system is the POSTGRES database 

system (which is based on an extended relational data mode1[28, 291). The rule 

system in the POSTGRES is very powerful. It subsumes not only the general scheme 

of integrity constraints but also other concepts such as materialized views and special 

procedures. 

In POSTGRES, the general format of the rules is as follows: 
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DEFINE RULE rule-name [AS EXCEPTION TO rule-name] 

ON event TO object  [[FROM clause]  WHERE clause]  

THEN DO [instead] a c t i o n  

In this format, an event can be one of the system defined operations such as 

r e t r i e v e ,  rep lace ,  d e l e t e ,  append, etc. An object is either a relation name or 

a relation name followed by a column name. The semantics of a rule is that when an 

operation is to be performed on a CURRENT tuple (for retrieves, replaces and deletes) 

and NEW tuple (for replaces and appends), all the rules that are defined on the event 

and the CURRENT or the NEW tuple will be found and the action parts will be executed. 

The rules are defined in such a way that actions could be made to the database either 

as an addition to or as an replacement of the event. If an action part is specified as 

instead then the event part will not be performed. 

POSTGRES takes a traditional production system approach to rule handling. 

There are two ways to enforce the rule semantics in POSTGRES. A "tuple level rule 

system" supports the rule system at execution time. When the execution engine is 

performing an event on the CURRENT tuple and/or the NEW tuple, the rule manager is 

responsible for finding all the rules defined on these tuples. The execution engine will 

then perform the event and the actions according to the rules. The "query rewrite 

implementation" is a module between the parser and the query optimizer. When a 

POSTGRES query is processed by this module, it will be transformed into an alternate 

form according to the applied rules. 

The POSTGRES rule system has several limitations on the application and main- 

tenance of its rules: 
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The events and the actions must be system defined operations. 

0 There is an overhead of performing the constraint maintenance since 

a separate rule system is used to undertake the rule management. 

0 The rule propagation may happen in POSTGRES system, i.e., an 

action of a rule may fire another rule. The rule propagation, however, 

is uncontrolled. 

2.2.4 ECA Model of HiPAC 

In contrast to relational database where data manipulation is performed in response 

to explicit requests from applications, an active DBMS is one which automatically 

executes specified actions when specified conditions arise. An architecture for an 

active DBMS that supports Event-Condition-Action (ECA) rules as a formalism for 

active database capabilities has been proposed in the HiPAC project [lo,  221. 

The major concept in the ECA model is the ECA rule. An ECA rule consists 

of three parts: an event, a condition, and an action. When the event occurs, the 

active DBMS will evaluate the condition; if the condition is satisfied, the action will 

be executed. 

Events may be primitive or composite. Primitive events are database operations 

that can be detected by components of the DBMS, or abstract events that are signaled 

by external processes. Composite events are constructed from the primitive events 

using algebraic operations (e.g. disjunction, sequence, closure, etc.). 

The condition is simply a collection of queries that are evaluated when the rule is 

triggered by its event. The action is a sequence of operations. They can be database 
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operations or external requests to application programs. 

There are two coupling modes in the ECA model. The E C  coupling specifies 

when the condition is evaluated relative to the transaction in which the triggering 

event is signalled. The C-A coupling specifies when the action is executed relative to 

the transaction in which the condition is evaluated. Both of the two coupling modes 

may have three possible options: immediate, separate and deferred. 

One of the advantages of the ECA model is that it separates the event and condi- 

tion parts of rules. The separation is useful because the events and the conditions play 

different roles: events specify when to check if a rule should fire; conditions specify 

what to check. 

There are several differences between the POSTGRES rules and the ECA rules. 

The event of the POSTGRES rule can only be a single database operation whereas 

the ECA event may be various composite database operations. The action of the 

POSTGRES rule is also a single database operation whereas the ECA action can be 

a sequence of operations or even user programs. 

Although the ECA model has extended the concepts of event and action, there 

are still some limitations. The events are still system defined operations. The con- 

dition checking can only be performed after the event has been identified. Like the 

POSTGRES rule system, a separate rule engine is still needed for perform the rule 

management. Uncontrolled rule propagation is also possible in the ECA model. 
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2.2.5 Constraint Compilation in Ode 

Ode is an object-oriented database system defined, queried and manipulated using the 

database programming language O++, an extension of the object-oriented program- 

ming language C++. Ode provides facilities for associating constraints and triggers 

with objects [13, 14, 161. 

In Ode, constraints are associated with the class definition. The constraints are 

specified in a "constraint section" using the following form: 

c o n s t r a i n t :  

c o n s t r a i n t l  : hand le r l  

c o n s t r a i n t 2  : hand le r2  

c o n s t r a i n t ,  : handler ,  

Constraints are said to be hard if the constraint checking is performed immediately 

after each database operation even though the end of the transaction is not reached. 

If the constraint checking is deferred to the end of the transaction, then the constraint 

is said to be soft. No structure of nested transactions has been employed in the Ode 

constraint maintenance mechanism. 

A recent version of the Ode constraint maintenance mechanism can accept higher 

level constraint specifications. For example, a constraint: 

there is at least one employee whose salary is more than half the depart- 

ment head's salary 

can be specified as: 
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foreach d in Dept (thereis e in d->emps[[11 

(e->sal () > d->head->sal() / 2 )  ) 

The constraint compilation mechanism accepts constraint specifications and trans- 

forms them into an object-oriented representation associated with class definition. 

This representation is localized and more efficient. 

In Ode, a trigger is also specified in the class definition. Each trigger has two 

parts: a condition and an action. The format of the trigger is quite similar to that 

of the constraint. However, there is a difference between a trigger and a constraint. 

A constraint action must maintain database integrity. The handler of a constraint is 

executed within the transaction where the constraint is violated. The trigger actions, 

on the other hand, are not executed in such transactions. 

Because the trigger actions are executed in a separate transaction, as suggested in 

[13], the trigger facility can not be used for integrity maintenance. In fact, even if the 

transaction being triggered has been aborted, the triggering transaction will not be 

affected. Therefore, the Ode triggers can only be used to specify independent actions 

which, whether executed or not, will never affect the validity of the database. Such 

trigger mechanisms are comparatively less meaningful for integrity maintenance. 

Compared to the ECA model, the constraints and triggers in Ode only deal with C- 

A coupling. The events are not explicitly specified. Instead, an execution mechanism 

will perform the checking just prior to the termination of each member-function. 

Since each constraint or trigger is associated with a class definition, for each member- 

function, only those constraints and triggers associated with the class are checked. 

One problem with this approach is that the E C  coupling is not explicitly specified, 
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it may thus be difficult to distinguish which event will trigger which action. For a 

simple example, if two member-functions f l  and f2  are both defined in class C, two 

constraints cl and c2 are defined for fi and f2 respectively. If cl and c2 have the same 

condition part, since both cl and c2 will be associated with C, when f l  is invoked 

and the condition is true, both actions in cl and c2 will be executed, which could 

potentially make the database inconsistent. 

Since it is not clear to the system how the transaction structure is incorporated 

with the methods, and also because the checking is performed at the end of each 

method, a problem may arise when a method is not embedded properly in a transac- 

tion. 

2.3 Complex Object as Views 

The database architecture proposed by the ANSI/SPARC Study Group on Data Base 

Management Systems (the so-called ANSI/SPARC architecture) [8] is divided into 

three levels, known as the internal ,  conceptual, and external levels. The internal  level 

is the one representing the structure of physical storage. The external level represents 

the users' viewpoint to the data. The conceptual level cames between the internal and 

the external levels - it is an abstract representation of the entire information content 

of the database. Further it is not confined to any particular language or hardware. The 

ANSI/SPARC architecture is a general framework for database management systems. 

The external level of a database system usually has a language as the interface 

between the user and the system. Different users of the database may have different 

languages as their hos t  languages. A data sublanguage - i.e., a subset of the total 
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language that is concerned specifically with database objects and operations, is usu- 

ally embedded within the host language which is responsible for providing various 

nondatabase facilities, such as local variables, computational operations, if-then-else 

logic, etc. Most traditional databases support a loosely coupled data sublanguage and 

host language in the sense that the two languages are clearly and easily separable. In 

OODB systems, especially those being called database programming languages, the 

data sublanguage and the host language are tightly coupled [5] .  

OODB systems are generally concerned with objects as data. However, there is 

no uniform external level interface between the user and the system. 

Database views provide the user with various exposures to the same set of data 

stored in the database. There are several important reasons for using views in the 

database systems. Firstly, views enhance logical data independence, which means the 

way a set of data being used by a user is independent of the structure how it is stored 

in the database. Secondly, views can exclude information that should be hidden from 

some users. These users would only have access to selected views instead of the whole 

database concept model. 

There has been extensive research work on relational views [3, 4, 6, 261. In rela- 

tional databases, a view is simply a derived relation and is specified by a relational 

query. The view mechanism maintains the definition for the view and will return the 

view table when the view name is referenced. 

Because of the similarities between a relation and the structural aspect of a class, a 

similar view concept has been defined in terms of a virtual class for OODBa. There 

have been several approaches for supporting views based on this definition. 

With different meaning from the "virtual class" used in C++ 
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2.3.1 Class Integration 

Several authors have proposed class integration as an approach for supporting object- 

oriented views [I, 27, 301. The basic idea of class integration is to insert the virtual 

class into the conceptual schema, i.e., the class hierarchy. 

The problem of building a view mechanism has been tackled at the schema level 

[30]. Aside from the concept of virtual class, [30] proposed the concepts of the virtual 

schemata and base schemata. The virtual schemata are defined as a different classifi- 

cation of the root class which may be chosen by some of the users. This classification 

corresponds to the intuition of some users. In [30], an infinite set of objects U, is 

defined to represent the set of all possible objects in a database. Each class C has a 

qualifying predicate PC associated with it: 

PC : U, -, {true, false) 

Obviously, objects in U,  will not be associated with any class C, rather, any virtual 

class V in a virtual schemata will choose objects from U, by its qualifying predicate 

Pv. Although the theoretical model works fine, the approach of [30] may not be 

applied practically because the object universe U, is difficult to implement in a real 

system. 

In [I], a framework for a view mechanism on top of the O2 object-oriented data 

model was proposed. The specifications of views are extended by introducing class 

generalization and the behavioral generalization as ways of populating the virtual 

classes. Two rules were proposed for computing the new class hierarchy for the virtual 

classes which only contain the existing objects. In other words, when there is a one- 

to-one mapping between the view objects and the objects in the base classes the view 
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could be integrated with other base classes to form a new schema. 

Suppose a view v is defined by including classes cl, ..., ck and objects from classes 

Ck+l, . . . , c,, then the class v will be placed at a position in the class hierarchy such that 

cl, ..., ck are its subclasses, and all superclasses of cl, ..., c, will also be its superclasses. 

The class integration of [I] fails to be a uniform approach because it does not deal 

with the situations when new or virtual objects, are included in the views. Moreover, 

because there is no description about the physical structure that the view objects 

associated with the virtual classes, it is not clear how the integration will benefit the 

retrieval of the view objects as well as how the consistency between the views and the 

base classes could be maintained. 

Another framework for object-oriented views known as MultiView was proposed 

in [27]. The model is similar to that of 0 2  in that it also performs the process of class 

integration. The purpose of the integration is to find a most appropriate location 

in the schema for a virtual class. However, the meaning of "most appropriate" is 

different from that of 0 2 .  For each virtual class VC, a set of direct superclasses and 

a set of direct subclasses can be defined using an object algebra. Intuitively, S is a 

direct superclass of a view VC if there is no superclass of VC which is also a subclass 

of S.  Similarly, St is a direct subclass of a view VC if there is no subclass of VC 

which is also a superclass of St. 

According to the approach in [27], a virtual class VC will be placed at  the location 

in the schema directly below all of its direct superclasses and directly above all of its 

direct subclasses. Views with virtual objects could also be treated uniformly in this 

approach of class integration. But still, the structure of how objects are associated 

2The classes from which the view is generated 
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with the classes in the schema is not clear. Therefore, as in [I], the question of how the 

view objects will be retrieved and how the consistency could be maintained remains 

unknown. 

2.3.2 Function Application 

A view mechanism on an object-oriented data model FUGUE has been presented in 

[15]. FUGUE is an object/functional model based on three primitive types: Object, 

Function, and Type as well as on the concept of function application. In the FUGUE 

model, a view is defined as a tuple of two sets, one of types and the other of objects, 

1.e. 

View V = [T:{types), O:{objects)] 

This definition of view is similar to  the concept of so-called type-closed view in [27]. 

All views defined in the FUGUE model must satisfy the type-closed condition, namely, 

for all o E 0, type(o) E T, for all t E T and for all f E functions(t) where 

f : signature(f) + t', t' E T. T contains those types that have already been de- 

fined in the base views (base classes) as well as derived types generated from the base 

views. The derived types are defined as data abstractions over some types in the base 

view. Similar to the view model in [I], views in FUGUE may also be populated by 

executing queries over the base view. The system will define the functions represent- 

ing the mapping between view objects and base objects according to the queries. The 

system will also generate functions representing the queries that are issued against 

the views. 
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By function application, the functions will be applied to the functions representing 

the view-base mapping and the queries can thus be performed directly on the base 

view. When a view object corresponds to multiple base objects in the view-base 

mapping, OIDs (object identifiers) of those base objects will be stored in the tuple 

representing the view object. The mapping function is responsible for extracting the 

OIDs from the tuple. 

The FUGUE view model depicts the nature of the view-base relationship. The 

function application mechanism is similar to a query rewrite process in [28]. In order 

to keep the consistency between views and base, the system only accepts well-formed 

views. A view is said to be well-formed if the functions that are allowed to perform 

on it are type-closed, value-closed as well as equivalence-preserving. The problem of 

consistency still remains when the base is updated. If the mapping functions perform 

qualifying predicates each time a query for a view is evaluated, then this approach 

would fall into the same category as a materialized view mechanism. Also, there is 

no description about how a view could be detected to be well-formed. 

2.3.3 Supporting Complex Objects 

The traditional view concept reflects part of the external level in the ANSIISPARC 

model. However, because of the tight coupling of the data sublanguage and the 

host language in a uniform language interface, together with the embedding of the 

behavioral aspects in the object-oriented data model, the traditional view concept is 

not very useful for advanced applications. In contrast, advanced applications require 

that complex objects be supported by the system to form various user views at the 

external level. 
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In the traditional class composition hierarchy, the arc from a complex class to 

its constituent classes represents the PART-OF relationship. However, the semantics 

of the PART-OF arc can be extended by modifying the methods of the complex 

class. Arbitrary relationships between the complex class and the base classes may 

be implemented. The qualifying predicate can be implemented in the constructor of 

the complex object. Destructor and other methods can be implemented similarly. In 

fact, with the DPL architecture, all user views can be implemented by the application 

programmer by defining complex objects. 

With the ODPL architecture, the concept of views can be replaced by an extension 

of the complex object. A formal comparison of these two concepts, however, is beyond 

the scope of this thesis. 

In order to keep the database consistent, not only must a user view map between 

its own structural part and those of its base classes, it must also maintain a mapping 

between its behaviors and those of the base classes. 

Languages have been proposed for constructing virtual classes in [l, 271. However, 

none of them can be used for describing the mapping of behaviors. The function 

application proposed in [15] can only handle limited behavior mapping. With the 

object-oriented data model, the virtual class construction corresponds to the con- 

struction of complex objects. Since a complex object is generally constructed by 

selecting appropriate constituent objects that satisfy certain semantic requirements 

(qualifying predicates), corresponding constraint checking must be performed. 

Another operation universally defined for user views is deletion. The deletion 

of views requires that the corresponding objects in the source classes must also be 

deleted. This can be represented as a behavioral constraint between the delete method 
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of the virtual class and that of the source class. 

Complex objects correspond to secalled updatable views, i.e., any updates made 

to an (updatable) view object will be reflected in their base objects. This requires 

that the mapping between the methods of complex objects and those of its constituent 

objects must be maintained. Since the mapping can be represented as a behavioral 

constraint, it is only possible to support updatable views by providing a high level 

specification which is capable of expressing behavioral constraints for the complex 

objects. 

2.4 Supporting Customized Query Languages 

Another motivation for designing an Object Definition Language is to support a Cus- 

tomized Query Language (CQL) for advanced database applications. 

There have been complaints about the lack of query languages in OODB sys- 

tems. Some recent DPLs do provide a query language, however, their capabilities 

vary greatly. Moreover, for advanced database applications, the declarativeness of a 

query language is incompatible with the procedurality of a programming language. 

Further, a query language may compromise the high performance offered by a database 

programming language. This is the motivation of using Customized Query Languages 

[33l. 

There are several advantages of CQLs over generic query languages: 

Embodying Application Semantics: More meaningful queries may be supported 

by incorporating object semantics with query language constructs. 
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0 Customized Query Optimization: Many spatial and multimedia applications re- 

quire specialized indexing techniques which can be made transparent in a CQL. 

0 Heterogeneous Databases Accessing: For applications that must access multiple 

databases of different types, a CQL isolates different application users from the 

database types. 

The main disadvantage of CQLs is that its design and the implementation can be 

complex where complex objects are involved. 

A CQL can be seen as a set of operations defined specifically on a data model. All 

the operations of a CQL should be supported by methods defined for the underlying 

objects. The mapping between CQL operators and the methods requires that object 

semantics be incorporated in object methods. If the object semantics can be correctly 

incorporated, the CQL may be supported. 

As an example, consider the Cuboid complex object described in Example 2.5. A 

simple customized query language could allow operations on cuboids that have been 

identified by a predicate. This predicate can be a simple one (for instance, color = 

"Red"). It may also be a complex one ( "on the top of" a cuboid named "Apollo"). 

Various computations of so-called "boundary representation" may be involved in order 

to build the complex predicate LLontopof". The following customized query [32]: 

move 01 t o  02 

where 

01 : name( 01 ) = "Apollo", 

02 : ontopof ( 03 ) = 02, 

03: name( 03 ) = "Moon" 
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moves the cuboid named Apollo to the top of cuboid named Moon. 

Building a CQL involves two tasks: implementation of the operations on the 

complex objects and predicate processing modules. The latter are quite generic, as 

they can be processed in the same way as the WHERE clauses are processed in SQL. 

Thus they can be pre-built. 

If the operations can be defined by the users for the complex objects in an object 

definition language, then the task of building a CQL is essentially one of linking 

the predicate processing modules with the methods for the corresponding operations 

of the complex objects. Consider the processing of the above query, we need a move 

method on an object identified by the where-clause. If the user defines all the methods 

via an ODL for the operations on the complex objects, the task of implementing a 

customized query language on the complex object can be greatly facilitated. 



Chapter 3 

Object Definition Language - 

ODL 

3.1 Overview 

We have discussed motivations for proposing an object definition language in OODB 

systems. The major advantage of providing such a language is that the user may use 

a high level representation to specify complete object definition. An object definition 

has three components: 

1. The structural aspects of objects, 

2. The behavioral aspects of the objects, and 

3. The relationships between objects. 
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The definition of the structural aspects of objects is similar to the definition of per- 

sistent data structures in an OODB system. This component of ODL simply specifies 

the attributes names and their types. The attributes of a complex object may be 

an object, or of pointer types. In actual implementations, the structural aspects of 

objects can be defined as class definitions. Typically, these definitions are written in 

header files and stored separately from other parts of object definitions. 

The signatures of the methods are also included in the structural part of object 

definitions, however, the actual definitions of the methods are usually provided sepa- 

rately. We will not elaborate further on this component of ODL since they are well 

defined in most of the OODB systems. 

The behavioral component of ODL defines the operations which are on complex 

objects. Key to the design of behavioral component of ODL is the perception that the 

behaviors of complex objects can be defined in terms of the behaviors of their con- 

stituent objects. The constraint rules are designed such that the constraint checking 

may be performed either before or after the event occurs. Complicated user semantics 

can thus be defined as constraint rules. 

The relationship component of ODL is needed primarily for the purpose of specify- 

ing constraints associated with the behaviors of the objects. As discussed in Chapter 

2, the behavioral constraint is a type of database constraint usually found in OODB 

applications. Behavioral constraints are effectively the relationship definition and 

are associated with behavioral definition of ODL. By doing so, we are able to define 

user-defined methods as the event of our constraint rules. 

In this chapter, we describe the design and the implementation of the behavioral 

component of the ODL. In the following sections, ODL is used to refer only to this 
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part of the object definition language. To justify our design, at the end of this chapter 

we will show how the ODL is applied to several examples. 

3.2 The General Scheme 

An ODL specification has two parts: a head  and a body. The ODL head starts with 

a class name indicating the class for which the method will be specified. The class 

name is followed by the method name and the parameter list. The class name and the 

method name is divided by two colons similar to the definitions of member-functions 

in C++. 

Within the parameter list, types are associated with the parameters. By intro- 

ducing such a parameter list, the head appears similar to a function definition and is 

thus natural to the programmers. Also, the specification of both manipulation and 

behavioral constraints in the body can be simplified by using parameters introduced 

in the head. 

An ODL body is specified within a pair of brackets. Each ODL body has two 

sections: a d o  section and a with section. Statements in the d o  section are function 

calls that represent the decomposition of the method. The functions invoked by 

these statements are user-defined procedures. This decomposition enables the users 

to clearly describe the relationships between methods of a complex object and that 

of its constituent objects. 

In the ODL, we not only want to specify the behavior decomposition of methods, 

we also want to capture the behavioral constraints and express them in higher level 
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language constructs. The behavioral constraints are expressed as constraint state- 

ments that are grouped in the with section of the ODL body. The general format of 

an ODL specification is as follows: 

. . .  
<act ion>  ; 

WITH: 

( c o n s t r a i n t ) ;  

< c o n s t r a i n t > ;  

. . . 
( c o n s t r a i n t ) ;  

3 

By using ODL, the database user is able to define complete contents for a method. 

After being accepted and processed, the specification will be mapped into a corre- 

sponding (possibly nested) transaction structure which not only reflects the database 

manipulation but also enforces the specified constraints. 
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3.3 Manipulation 

The manipulation (do) section of the ODL specification is an important component 

of the behavior description. The main purpose of providing such a construct in ODL 

is that the method can be decomposed into lower-level operations, i.e., the operations 

defined for the lower-level classes in the class composition hierarchy. The lower-level 

operations are also defined by the application programmer. The relationship between 

the method and its lower-level actions are specified more clearly. Moreover, many 

methods of complex objects are themselves complex operations consisting of methods 

defined for their constituent objects. The method composition is usually a sequential 

invocation of other methods or lower-level procedures. 

3.3.1 Format 

In order to capture the relationship between a method of a complex object and that 

of its components, an action statement in ODL has the following format: 

< a c t i o n >  := [ <path> 1 [. I ->] <method> ( [<arguments>] ) 

I FOREACH ( <component>, ..., <component> ) 

<pa th>  [. I ->I <method> ( [<arguments>] ) 

The two different formats of the action statement can be applied to different situations 

of method descriptions. Any method may be invoked by using the first format. The 

<pa th>  starts from the current class in the class composition hierarchy. It may be 

omitted if the method is simply another member-function of the current class. The 

<pa th>  also enables the user to invoke methods defined a number of levels down the 
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class composition hierarchy. 

When different paths, methods and arguments are involved in the actions, the user 

must invoke them explicitly one after another. However, it is often the case that the 

same method is defined for several components of the complex object with the same 

interface (signature). More often, some of the components of a complex object are 

actually from same class. When such methods are to be invoked for several compo- 

nents in a complex object, the second format can be used to group the components 

together where the method and arguments can be specified only once. 

3.3.2 FOREACH statement 

The FOREACH statement specifies a group of component objects on which the method is 

to be performed. The <path> in this format represents a path in the class composition 

hierarchy. It helps the system to find the definition and implementation corresponding 

to a method. The components within the parentheses must be the constituent objects 

from the current class. In the code generated, the method <method> will be invoked 

for each of the components. 

For example, consider a complex object from class cuboid: 

class Cuboid( 

VERTEX block-center; 

FACE top, bottom, left, right, front, back; 
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A method move applied on objects in class cuboid not only modifies the block-center  

of the cuboid but also moves the six component objects from class Face. The method 

can be represented as follows ( t h i s  is a keyword representing a pointer referencing 

the current object): 

void  ~ u b o i d : : m o v e ( f l o a t  dx,  f l o a t  dy ,  f l o a t  dz)  

do : 

this->block-center->move (dx, dy , dz)  ; 

fo reach  ( t o p ,  bottom, l e f t ,  r i g h t ,  f r o n t ,  back) : 

Face->move (dx , dy , dz)  ; 

wi th :  

/* c o n s t r a i n t s  */ 

1 

In this example, six faces are grouped into the f o r e a c h  statement. A method move 

is also defined in class Face and its implementation is different from the one being 

specified. By using the above specification, we are able to describe the relationship 

between methods defined on two levels. A move is also defined in class Vertex, it 

changes the value of a point object. It is invoked as a method performed on the 

block-center  attribute of the current object. 

Behavioral Constraints 

In ODL, an important aspect of behavioral description is the specification of behav- 

ioral constraints associated with the methods. A method can be seen as signaling an 
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event that occurs when the method is invoked. The constraints, on the other hand, 

are actions associated with conditions that can be checked either before or after the 

event occurs. 

Some of the approaches to constraint specification in the literature have combined 

operations, e.g., disjunction, sequencing and closure, defined as events [22]. However, 

those combinations of operations are arguably more related to user semantics and as 

such should be captured by the applications. In fact, since our concept of event is 

defined as a method of a class, combinations of finer events fit easily into our model. 

The do section of ODL also supports high level specifications of complex events. 

3.4.1 General Format 

There could be more than one condition associated with one method. The multiple 

conditions enable the users to set up control over the behavioral constraints. Different 

constraint actions may be specified for different conditions. Hence, the conditions 

specified for different constraint action sets are usually disjunct. When two conditions 

overlap, i.e., when they are both evaluated to be true, the constraint actions will 

be performed according to the order they are defined. The general format of the 

behavioral constraint following the keyword w i t h  is: 

WHERE [CPRE I POST] (condition) I TRUE] : [CPRE I POST]] 

<act  ion> ; 

<act  ion> ; 

. . . 
<act  ion> ; 
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The PRE and the POST appearing before < c o n d i t i o n >  indicate the time when the 

condition is to be checked. If neither PRE nor POST is specified, the condition will be 

checked after the event occurs. The PRE and the POST appeared before the actions de- 

termine the orders of invocations of the method and the constraint actions. If neither 

PRE nor POST is specified, the actions will be performed after the event occurs. It is 

obvious that a combination of a POST condition and a PRE action is not semantically 

valid and must be avoid in the specification. The actions in the behavioral constraint 

are actually function calls that invoke member-functions defined in various classes. 

The format of an action is as follows: 

[FOREACH < o b j e c t >  IN < c l a s s >  THAT [PRE I POST] < c o n d i t i o n > :  

( methods ) 

I [TOP] REJECTION 

1 methods 

The optional FOREACH clause plays a role of "filter" and returns a collection of objects. 

It selects objects from a particular class and examines them against the <cond i t i on> .  

For those objects that are "passed", the corresponding methods are performed. Under 

some conditions, a REJECTION may be specified as a single action. This action will 

simply deny the execution of the method because the execution of the method may 

possibly drive the database into an unrepairable invalid state. 

3.4.2 PRE and POST conditions 

Traditional constraint checking is usually performed after an event occurs or at the 

end of a transaction. However, in behavioral constraints, the conditions may not 
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necessarily be specified over the database states after the event has occurred. In fact, 

many behavioral constraints require that state of the database should be checked 

before the event occurs. Moreover, it is also possible that the value of a condition has 

changed after the event has occurred (due to modifications made within the method 

execution). For example, consider the following behavioral constraint on the method 

move of the object cuboid in a situation where two cuboids are glued together: 

"If a cuboid is on-top-of a block x ,  then when the cuboid is moved to 

another place, move x as well." 

The condition on-top-of should be checked before y is moved. If the condition is 

checked after the move operation, the truth value of the condition may not remain 

the same. In this constraint, x is an object and is referenced by its object identifier. 

In ODL, the operation of move and its constraints can be defined as: 

void Cuboid::move(float dx, float dy, float dz) 

do : 

this->block-center->move(dx, dy , dz) ; 

foreach (top, bottom, left, right, front, back) : 

Face->move (dx, dy , dz) ; 

with: 

where pre on-top-of (this, x) : 

(x .move (dx , dy , dz) 3 

3 
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The <conditions> field in the where clause is basically an extended boolean 

expression which returns TRUE or FALSE. The format of the <conditions> is as 

follows: 

C conditions AND conditions 

I conditions OR conditions 

I ( conditions ) 

I condition 

I THEREIS (object) IN <collection> THAT conditions ] 

The extended boolean expression, i.e., the THEREIS statement, makes it possible to 

check the boolean condition against the class extent. For example, as mentioned, on 

different application environment there could be different semantics for the method 

move of the class Cuboid. For example, if a user wants to define the constraint that 

no cuboid will be moved when there is anything on the top of it, i.e.: 

"If there is anything on the top of the cuboid, do not move it". 

This constraint can be represented using ODL as follows: 

void Cuboid::move(float dx, float dy, float dz) 

do : 

this->block-center->move (dx, dy , dz) ; 

f oreach (top, bottom, left, right, front, back) : 

o ace->move (dx, dy , dz) ; 

with: 
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where pre thereis x in block that on,top,of(x, this): 

(re j ect ion) ; 

3 

Note that the condition is checked before the event move occurs. The keyword thereis 

requires that objects in class block be checked until one is found that satisfies the 

condition on-top-of (x , this). 

3.4.3 Constraint Actions 

The constraint actions can either be function calls or rejections. There is a FOREACH 

clause that will select appropriate objects in a particular class. For example, consider 

the following constraint: 

"When a cuboid is moved, all the blocks that are on top of it must also be 

moved. " 

Before an object from class Cuboid is moved, all the objects from a super class block 

are selected and checked to see whether they are on the top of the one to be moved. 

Obviously, the condition should be specified as PRE. Using ODL, this constraint can 

be represented as follows: 

void ~uboid::move(float dx, float dy, float dz) 

do : 

this->block,center->move (dx, dy , dz) ; 

foreach (top, bottom, left, right, front, back) 



C H A P T E R  3. OBJECT DEFINITION LANGUAGE - ODL 53 

with: 

where t rue :  

< 
f oreach x i n  block that  pre on-top-of (x, t h i s )  : 

{x .move (dx , dy , dz) 3 

3 

In this constraint, all of the actions of moving each block that is on top of the cuboid 

will be put into a single transaction together with the move operation. Note the pre 

specifies the condition that is to be checked before the move is actually performed. 

REJECTION can be specified to express the rejection of a method when some con- 

ditions are satisfied. REJECTION is different from the usual "if (condition) then no- 

op" construct of programming languages in that it has richer semantics. When a 

REJECTION is specified, the calling transaction must be aborted, the operation per- 

formed by the method is thus rolled back. There is also a keyword TOP which, if spec- 

ified, will cause the top level transaction to abort when the condition for REJECTION 

is satisfied. For example, consider the complex objects person defined as: 

c l a s s  person( 

STRING name ; 

INT age ; 

*person spouse ; 
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The following constraint: 

"A person cannot marry with person p, i f  either of them currently has a 

spouse. >> 

expresses that no person is allowed to marry two people simultaneously. This con- 

straint can be expressed in ODL as follows: 

void person::marry(person p) 

do : 

this.spouse-update(p); 

with: 

where pre ((P. spouse ! = NULL) I I (this. spouse != NULL)) : 

(rej ect ion) 

) 

The spousewpdate is a member-function of class person that records the update of 

the spouse attribute. The REJECTIONin this constraint is not specified as TOP because 

aborting the current transaction should not affect the upper level transactions. We 

will give an example later in this chapter where the state of upper level transactions 

may be affected by aborting an inner level transaction. 
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3.5 More Examples 

In previous sections, we proposed our design of the object definition language ODL. 

Here we present some more examples to show that the language is capable of express- 

ing various complex object semantics for different OODB applications. 

3.5.1 Mutual Dependency 

As we have seen, the identification of behavioral constraints allows for users to specify 

database constraints more clearly. Moreover, it also eases the problem of constraint 

checking. The following example extracted from [13] shows a problem of constraint 

checking and how it can be handled with the ODL specification. 

Example 

Suppose we have the following class definition: 

class person 

private : 

. . .  
persistent person *spouse; 

public : 
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person pi, p2; 

A constraint specifies that 

(6 . zf a person has a spouse, then the spouse's spouse must be the person 

himself or herself" 

can be expressed in a traditional boolean expression as follows: 

(spouse == NULL) 1 1  (this == spouse->spouse); 

Initially, we suppose that the persons pl and p2 were not married. Now we consider 

the transaction to record the fact that pl and p2 have married each other. Because 

the spouse attribute is a private member in class person, the operation of modifying 

the spouse for a person is thus associated with the class itself. The moment p2 

is made the spouse of pl, the above constraint will be violated because the spouse 

field of pa has not been updated. The reverse problem occurs if pl is first made the 

spouse of p2. In either case, the transaction will be aborted. In fact, whenever a pair 

of complementary relationships has to be maintained between two objects, the same 

problem will occur. 

[13] suggests a deferred or transaction-level constraint checking mechanism in order 

to solve the above problem. However, while a deferred constraint checking mechanism 

will be expensive to implement, it is much easier if we could extend the scope of the 

transaction to include behavioral constraints. This can be achieved easily by describ- 

ing the behavior of marry in ODL. After the specification is accepted and processed 

by the system, the generated transaction will have a constraint maintenance part. 
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Instead of being performed always at the end of the transaction, the checking will be 

performed either before or after the method is invoked according to the specification. 

Constraint maintenance actions will be performed if violations are detected. 

Suppose the operation of recording the marriage for a person is defined as a method 

marry(person) in class person. Expressed in O D L ,  the behavior of marry will be: 

void person::marry(person p) 

{ 

do : 

this.spouse-update(p); 

with: 

where post (p. spouse ! = this) : 

{p.marry(this)); 

Only one method is invoked in the "do" section. The constraint will be checked after 

the attribute spouse is updated. If the spouse of the spouse is not the same as 

this, then a repairing action p .marry (this) is performed. The checking and the 

repairing action will both be included in the transaction of marry. By using the ODL 

specification and the corresponding code generation mechanism, the problem of "com- 

plementary aborting" encountered when using traditional constraint specification is 

avoided. This is because temporary violation of consistency is allowed with our ap- 

proach and the user-specified repairing actions can be performed by the system when 

such violation occurs. 
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It can be observed that a "recursive checking" problem will occur if the condition 

(p. spouse ! = t h i s )  in the where clause is specified as a p r e  condition. Suppose 

pl is to marry pz, if the condition is specified as pre, then pz .spouse ! = pl will be 

checked before the spouse attribute is updated and it will return true. Since the 

repairing action involves recursive call of marry, the condition pl . spouse ! = p2 will 

also be checked before any update is performed. This condition will also return true. 

A second repairing action will be performed and a recursive checking is incurred. The 

essence of this problem is that the repairing actions must not be performed before the 

violation happens. 

By providing such a counter example, we point out that even though ODL is 

capable of expressing complicated semantics of behavioral constraints, the users must 

still be careful about the specification. 

3.5.2 Recursive Checking 

The example in the above sub-section shows that some of the constraints with be- 

havioral properties are very difficult and expensive to maintain when expressed in 

traditional constraint specifications. However, they can be easily specified and main- 

t ained when expressed as behavioral constraints in ODL. 

Another example extracted also from [13] shows that the behavioral aspects of 

complex objects can be captured more easily in ODL. The maintenance of constraints 

can also be more natural and powerful. In CAD applications, constraints often involve 

other objects such as neighbors. Consider a row of adjacent cells on a chip that are 

placed next to each other. Except for the end cells, each cell has two neighbors. The 
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I 

Figure 3.1: The Domino Effect 

cells can be represented as complex objects that indirectly reference the neighboring 

objects (Figure 3.1): 

class c e l l  ( 

i n t  

i n t  

c e l l  

c e l l  

c e l l  

c e l l  

x ,  y ;  / / c e n t e r  c o o r d i n a t e s  

w ,  h ;  / /width h e i g h t  

* l e f t ;  / / l e f t  ne ighbor  

* r i g h t ;  / / r i g h t  ne ighbor  

c e l l ( i n t  x i ,  i n t  y1,  i n t  wid th ,  i n t  h e i g h t ) ;  

s h i f t  (dx) ; 

A cell must always satisfy the following constraints: 

1. It must be on the chip. 

2. It should be adjacent to but must not overlap its left neighbor(if any). 

3. It should be adjacent to but must not overlap its right neighbor(if any). 
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These conditions must be satisfied when a cell is created and when a cell is moved. Us- 

ing the specification proposed in [13], the constraints are expressed in the constraint  

section of the class definition: 

c l a s s  c e l l  ( 

. . .  
cons tra in t :  

x-w/2 >= XMIN && x+w/2 < XMAX; 

Because the constraints 2 and 3 involve behavioral properties, it is very difficult to 

specify them in traditional constraint formula. The above specifications are inevitably 

complicated and not very clear. However, if we introduce a predicate ad j acent defined 

as : 

boolean adjacent(ce l1  a ,  c e l l  b)(  

if ( a  == NULL) return (FALSE) ; 

i f  (b == NULL) return (FALSE) ; 

if ( ( a . x  + a.w/2 = b . x  - b.w/2) I I 

( a . x  - a.w/2 = b . x  + b.w/2)) 
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return (TRUE) 

else return(FALSE1; 

and a method update-center as updating the coordinates of the center for a cell, 

by using the specification of ODL, the constraints can be easily expressed as follows 

(note here the constraint is associated with the method shift instead of the whole 

class) : 

void cell::shift(int dx) 

< 
do : 

update,center(this.x + dx); 

with: 

where post  t this.^ + this.w / 2 > XMAX) 

or (this.x - this.w / 2 < XMIN)) 

: (top rejection); 

where pre adjacent (this, this .right) 

: pre (this.right.shift(dx)); 

where pre adjacent (this, this. left) 

: pre (this.left.shift(dx)); 

3 

In this example, a constraint violation domino effect occurs from the fact that moving 



CHAPTER 3. OBJECT DEFINITION LANGUAGE - ODL 62 

a cell violates the constraints and the repairing action also involves moving another 

cell. When a cell is moved, in order to ensure that its constraints are satisfied, 

the related neighbors of the cell must also be moved. This will in turn violate the 

neighbor's constraints. 

One problem with the constraint specification proposed in [13] is that if any cell is 

moved outside the chip (x-coordinate of left-end is less than XMIN or x-coordinate of 

right-end is greater than XMAX) during the repairing action, the resulting constraint 

violation cannot be repaired. This is because the updates of previous operations have 

already been recorded into the database and the corresponding transactions have 

been committed. The aborting of the current transaction will not be able to repair 

the damages made to the database. 

However, this problem can be eliminated by using our approach. Since our behav- 

ioral constraint enforcement mechanism associates the constraints with appropriate 

transact ion structures, each event shift and the corresponding repairing actions will 

be put into the same transaction. The generated code will be similar to the following 

(do-transaction0 {) is the transaction specification in the DML of Objectstore): 

do-transaction0 ( 

if adjacent (this, this. right) 

then this.right.shift(dx) 

else if adjacent (this, this. left) 

then this. left. shift (dx) ; 

update,center(this.x + dx); 
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Figure 3.2: The Generated Transaction Structure 

if ((this.x+ this.w / 2 > XMAX) 1 1  

(this .x - this .w / 2 < XMIN)) 

then { 

os~transaction::abort~top~level(); 

/* abort the top level transaction */ 

3 

A 

abort 

top-level-transaction d 

Repairing Action 

Repairing Action 

The above listing shows the code when the system procedures defined in ObjectStore 

are used. 0s-transaction: :abort-toplevel() is an ObjectStore system procedure 

which aborts the top level transaction [23]. When using other databases, the corre- 

sponding system routines can be used in the places of aborting actions. 

Update 

When the method shift is invoked in execution for a cell with several neighboring 

cells, a nested transaction structure will be built up because of the domino effect. Each 

level of the nested transaction corresponds to the operation on one particular cell. If 

any cell is moved outside of the chip, the top level transaction will be aborted because 

top is specified in the constraint. Therefore the whole transaction will be aborted 

Repairing Action 

+ inner-most transaction - 
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eventually and the constraints can be maintained, i.e., when any cell is moved outside 

the chip in a repairing action, the very first invocation of the method shift will be 

rejected. 

This example shows that in our approach the rule propagation will only occur in a 

controlled manner. All the rule propagations are pre-defined. They will be generated 

as appropriate transactions of updating the repairing (Figure 3.2). 

In this chapter, we have described the syntax of our ODL. We have also show 

that ODL can be used to defined objects in various applications. However, we do not 

define the formal semantics of the ODL since the semantics of our ODL is dependent 

on the semantics of user defined operations and a formal discussion of the semantics 

of the ODL will be out of the scope of this thesis. Because the ODL is intended to be 

a high level language for database designer and application programmers, its syntax 

and informal semantics are clear enough. 



Chapter 4 

Implement at ion 

In the previous chapters, we have described the language ODL for expressing the 

object definition, especially the behavioral aspects including the behavioral constraints 

of objects. In this chapter, we discuss the implementation issues for supporting ODL 

on top of an object-oriented database, namely, ObjectStore. We want to show that 

ODL can be used for specifying the object definitions, especially the behavior of 

objects and that the behavioral constraints expressed in ODL can be easily enforced. 

We have implemented a parser for ODL using YACC (Yet Another Compiler 

Compiler) and LEX. The code generator generates C++ code with appropriate Ob- 

jectstore functions. Since we did not provide a full computing capability with ODL, 

the met hods that involve various computation should be defined separately from those 

involving complex semantics. The generated code will then be integrated with the 

user's class definition and be compiled with the ObjectStore compiler. 
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The system module supporting ODL specifications is implemented on the appli- 

cation programming level. The ultimate goal of the system is to guarantee that the 

manipulation of the database be handled in accordance with the user semantics. One 

of the reasons that we pursue such a strategy of implementation is that we believe the 

programming interface between an application and the database management system 

is powerful enough to support various operations and the associated integrity con- 

straints. In fact, by embedding appropriate transaction structures to the application 

programs, the integrity of the database can be maintained, the behaviors of complex 

objects can also be properly supported. 

ObjectStore 

ObjectStore is a commercialized OODB system [23, 241. It is, in essence, a database 

programming language. ObjectStore combines the data query and management ca- 

pabilities of traditional databases with the flexibility and power of the C++ object- 

oriented programming language. It supports persistence orthogonal to type, transac- 

tion management, and associative queries. 

One of the Objectstore's most important features is that the persistence is specified 

on a per-instance basis and is independent of the types. Each type may have both 

persistent and non-persistent instances. The member-functions can operate on both 

persistent or non-persistent data. This feature has made it very easy to integrate 

application programs with the underlying database services. Complex objects that 

are transient in the application programming space can be defined as object-oriented 

views that correspond to some persistent objects in the database. 
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ObjectStore supports nested transactions. There are two kinds of transaction 

aborts in ObjectStore. When a system procedure 

0 s - t r a n s a c t  i on  : : a b o r t  () 

is called with no arguments, the innermost transaction is aborted. The outermost 

transaction may also be aborted if the system procedure 

0 s - t r a n s a c t  i on :  : a b o r t - t o p l e v e l  () 

is called from within a subtransaction. 

Another kind of abort is performed automatically by the system. The system- 

performed abort can occur in two circumstances. If a network failure affecting the 

current process occurs, the system usually aborts the current transaction of the pro- 

cess. All the sub-transactions nested within that current transaction are also aborted. 

Another situation where a transaction can also be aborted by the system is deadlock. 

ObjectStore is able to detect deadlocks and in the case of deadlock, one process in- 

volved will be picked to be aborted. 

Outline of the System 

We have implemented a system module that supports ODL on the top of ObjectStore. 

The module consists of an ODL parser and a code generator. A grammar of ODL is 

written and provided to YACC and LEX. The parser is generated by YACC and LEX 

based on the ODL grammar. When accepting the object definitions written ODL, 
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the parser will build a tree representation of the method specified. The code gen- 

erator will then traverse through the tree representation and generate corresponding 

code in C++ and Objectstore DML. The generated code corresponds to the method 

implementation (Figure 4.1). 

Specification a 

Figure 4.1: The Architecture of ODL Compiler 

The implementation of the method can thus be integrated with other user def- 

inition and implementations to form a complete application. In order to present a 

uniform interface for the application programmer, the method implementation may 

be either put into a static library or put into a Dynamic Linking Library (DLL). 
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Figure 4.2: Implementation Integration 
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As long as there is a consistent interface in the application program for the method 

(including the declaration), any modification on the ODL specification will not affect 

other parts of the application program. Therefore, any changes made to the semantics 

of the methods will be transparent to the application programmer. The application 

code will be simply compiled by Objectstore compiler. The integration of the code 

is realized dynamically (Figure 4.2). This means the system module of the ODL can 

maintain the object definitions by itself for the underlying OODB. 

Application Executable Code 

The ODL specification captures all function-calls and behavioral constraints ex- 

plicitly. When using ODL to describe the behaviors for objects, the users need to 

provide definitions for lower-level operations. 

Method Library 

c A / 



C H A P T E R  4.  IMPLEMENTATION 

CODL nodes 

I Condition I I Actions I 

Figure 4.3: The Structure of ODL Tree 

One of the important functionalities of the ODL module is to enforce behavioral 

constraints. The central part of an enforcement mechanism for behavioral constraints 

is the detection of the event. In our system, an event can be thought of as the 

operations specified in the "do section". After an event has been properly detected, the 

behavioral constraints associated with the event will easily be identified and enforced 

by the execution of the repairing actions. 

4.3 Code Generation 

The ODL parser generates a tree representation from the user specification. The code 

generator will then generate code based on the tree. The structure of the tree is 

showed in Figure 4.3. For example, in chapter 3, we gave an ODL specification for 
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the method shift of the class cell: 

void cell::shift(int dx) 

do : 

update-center(this.x + dx); 

with: 

where post  t this.^ + this.w / 2 > XMAX) 

or (this.x - this.w / 2 < XMIN)) 

: (top rejection); 

where pre adjacent(this, this.right) 

: pre (this.right.shift(dx)); 

where pre adjacent(this, this.left) 

: pre (this. left. shift (dx) 3; 

1 

the code generator will generate the following code when traversing the tree generated 

by the ODL parser: 

cell : : shift (int dx) 

.c 
do-transaction() 

( 

if adjacent (this, this. right) 
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this .right. shift (dx) ; 

if adjacent(this, this.left) 

this.left.shift(dx); 

update-center(this.x + dx); 

if  t this.^ + this. w / 2 > XMAX) 1 I 

(this.x - this.w / 2 < XMIN)) 

-C 

0s-transact ion : : abort () ; 

os,transaction::abort,top,level(); 

3 

)/* transaction */ 
3 

The conversions from ODL to the generated code are mostly quite straightforward. 

The functions that are invoked in the do section in ODL can be found in the system. 

They can be either generated from another ODL specification or defined directly by 

the user. Many low-level database manipulations are not included in ODL code so 

that it can be easily ported to other database systems. However, the users still need to 

implement the low-level operations themselves. These operations can thus be invoked 

by the ODL generated code. 

In the code generated from ODL specifications, both the operations for manipu- 

lating the database and the code for integrity maintenance are included in the same 

transaction. This is consistent with the semantics of the ODL specification. Since the 

database operations (such as update-center (this. x + dx) in the above example) 

may violate the consistency of the database, the repairing actions should be attached 
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to them. 

4.3.1 Condition Checking 

In code generation, the code for enforcing behavioral constraints has to be combined 

with the code for the "do section". One of the tasks for generating constraint code 

is to put the constraint checks in the proper places. Since the user may define a 

condition as PRE or POST, the condition checking may either appear before the "do 

section" or after. 

For those conditions that need to be checked before a "do section", the actions may 

be performed after the "do section". We introduce some new variables to store the 

results of the checking. These variables can later be used conveniently for determining 

the corresponding enforcement actions. In ODL, there is a THEREIS statement that 

specifies the existence of objects satisfying some conditions. In order to perform the 

checking correctly, we need to check every single object of the collection against the 

condition specified. The code generated thus contains a foreach statement of the 

Objectstore DML which performs an iteration of checking. For example, the code 

generated for the following statement in ODL: 

where pre t h e r e i s  x  i n  block t h a t  on-top-of ( x ,  t h i s )  : 

pre ( re  j e c t  ion) 

is as follows: 

foreach(x ,  block) 

( 
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i f  on-top-of (x ,  t h i s )  

-C2:=TRUE; 

where -C2 is a newly introduced boolean variable. These two statements will be put 

before the "do section" because of the p r e  specified in the where clause. 

4.3.2 FOREACH Statement 

A constraint enforcing action in ODL can be a function-call, a rejection or a f oreach  

statement. When it is a f o r e a c h  statement, a collection from which objects will 

be selected and a condition which sets up the criterion for object selection must 

also be specified. In code generation, the f o r e a c h  statement is also realized using 

the Objectstore f o r e a c h  statement. As an example, a f o r e a c h  statement in ODL 

stating that a move operation be performed for all objects from block  that satisfy an 

on-top-of condition is as follows: 

where t r u e :  

{ 

f oreach  x i n  b lock  t h a t  p r e  (on-top-of (x,  t h i s ) )  : 

p r e  {x.move(dx, dy ,  dz ) )  

3 
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will be translated into the following code: 

f oreach(x,  block) ( 

if (on-top-of ( x ,  t h i s )  ) 

< 
x .move(dx, dy , dz) ; 

3 

)/* foreach */ 

4.4 Application Integration: An Example 

As an example of applying ODL in applications of an object-oriented database, we 

have integrated ODL with a customized object-oriented query language known as 

Dynamic Spatial Query Language (DSQL) [33]. 

4.4.1 DSQL 

There have been efforts of developing customized query languages for various applica- 

tion areas of object-oriented databases to complement the limited query capabilities 

of some database programming languages. DSQL represents one such effort. DSQL is 

a customized query language for manipulating geometric objects in three dimensional 

(3-D) space. By using DSQL, the database user may perform retrieval, update and 

deletion on any spatial or non-spatial attributes of the objects stored in the database. 

One of the sample data domains of DSQL is called Block World, which consists of 

a collection of blocks (e.g. spheres, cylinders) in 3-D space. Various operations may 
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Figure 4.4: The DSQL Geometric Schema 

be applied to the blocks (e.g. move, rotate). The schema used for the Block World is 

a bi-level schema which is composed of a geometric object schema and a block object 

schema. 

Objects in the geometric schema are grouped into various classes with a class 

Geo-Obj as their superclass. Examples of such objects are vertices, edges, and various 

faces. The classes of geometric objects are grouped into a class hierarchy rooted at 

Geo-Obj (Figure 4.4). 

Objects in the block schema are grouped into various classes with a class Block as 

their superclass. Examples of such objects are sphere, cuboid, frustum. These classes 

of block objects are also grouped into a class hierarchy. The class hierarchy is rooted 
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Figure 4.5: The DSQL Block World Schema 

at Block (Figure 4.5). 

In this bi-level schema, the Geo- Obj is defined as the lower-level schema and the 

Block is defined as the upper-level schema. All the objects in the upper-level schema 

are constructed with objects in the lower-level schema. For instance, a cuboid is 

constructed with six faces. 

DSQL is an English-like, application-specific query language associated with spa- 

tial and non-spatial predicates. DSQL is also similar to SQL in that a number of 

high level operations such as insert and select are provided for database manipula- 

tion. However, unlike the SQL, which only provides generic query operators, DSQL 

also provides customized query operators such as move and rotate. 

4.4.2 Code Integration 

Because the DSQL is previously implemented [32] on top of an object-oriented database 

system, namely, ObjectStore, it can be seen as an application built on ObjectStore. 
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For the schema of the block world, various user semantics can be associated with 

the operations on block objects. Behavioral constraints can also be defined for those 

operations. The block world schema can be seen as a simplified MCAD schema. The 

importance of describing object behaviors in such an environment is to show that our 

approach can be applied in advanced database applications. 

In order to combine ODL with the implementation of DSQL, we must specify in 

ODL the methods involved in the DSQL queries. We can then generate the code for 

those methods. Since the DSQL query processing involves invocations of lower-level 

methods, the user semantics specified in ODL will be enforced when the generated 

code is integrated with DSQL implementation. 

We have implemented an example by providing ODL descriptions for move and 

rotate, two of the major methods defined for block objects as well as geographical 

objects. In particular, we have defined in ODL the method move for class Cuboid. In 

order to fully develop the move operation for Cuboid, we also provide the descriptions 

for the corresponding move methods for the components of the cuboid. A cuboid is 

composed of six objects from class Rect-Plane, which is a subclass of class Plane. 

Class Plane is a subclass of the class Face. Each Rect-Plane in turn consists of four 

objects from class Edge which is a subclass of class Curve. We have defined the virtual 

method function move for classes Face, Plane as well as Curve. For classes Cuboid, 

Rect-Plane and Edge, we have defined the method move in ODL. The ODL generator 

then generates the implementation code for those member functions. 

Not only have we implemented the method move for these classes by providing 

the specifications in ODL and integrating the generated code with other parts of the 



C H A P T E R  4. IMPLEMENTATlON 

system, we have also added the code for enforcing behavioral constraints by specify- 

ing the behavioral constraints in the ODL specifications. Figure 4.6 and Figure 4.7 

illustrate how the behavioral constraints are enforced by the generated code. 

Figure 4.6: The Database State Before move 

In a database, there are three cuboid objects, A, B and C. Figure 4.6 shows the 

database state before the operation move is performed. One of the constraints is: 

" W h e n  a n  object is t o  be moved, any  object o n  top  of it mus t  also be moved 

altogether." 

Figure 4.7 shows the database state after the move operation is performed on object 

B. The behavioral constraint is enforced since object C has also been moved with 

the object B. 
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Figure 4.7: The Database State After move 

4.4.3 Comparison of Implementations 

In the original implementation of the Block World [32], a bi-level block world schema 

was defined. A customized query language DSQL was also designed and implemented. 

The system can accept DSQL queries and perform corresponding operations on the 

database. There is also an X/Windows display mechanism that can be used to check 

the current database state. Although the implementation generated by the ODL 

generator performs similar database manipulation, it is different from the original 

implementation in several aspects. 

Firstly, the semantics of the move operation are implemented more clearly. This 

can be seen by examining the ODL specification. The move operation defined for the 

Cuboid simply consists of the moving of the block-center and six faces. The move 

operation of each face in turn consists the moving of the face center and the four 
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edges. The moving of an edge is simply the moving of the center. 

In the original implementation, the schema was designed to reflect the bi-level data 

modeling. For example, although a cuboid has six faces as its component objects, the 

faces are actually sharing the edges as their components. So in the original schema, a 

cuboid only has 12 edges. In our new implementation, however, we have constructed 

the data model differently. In a cuboid, even though the edges of two adjacent faces 

may have same value, we still created two different objects to represent them. So in 

our schema, a cuboid has 24 edges. By using such a schema, we are able to divide 

a complex object more easily into its component objects. This model also reflects 

the concept of the object identifier, i.e., even though two objects may have the same 

value, they are still different objects if their OIDs are different. 

Secondly, by specifying the behavior of move in ODL, we are able to define the 

behavioral constraints associated with it. The code generated by the ODL generator 

enforces the constraints automatically. In original implementation, there is no code 

for enforcing behavioral constraints. In fact, although behavioral constraints can be 

implemented by programmers, a manual implementation of complex behaviors has 

drawbacks compared to an ODL implementation. It lacks a formal specification of 

the behavioral constraints and is thus difficult to verify. It is also difficult for the 

programmer to include the code for enforcement if the operations are not defined 

strictly according to its user semantics. 

For instance, in the original implementation of DSQL, the display function is 

invoked from within the move to achieve the effect of displaying the database state 

after a block has been moved. However, the action of displaying the database state 

is not part of the move. Instead of putting the display in the move, a more clear 
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implementation should display the database state after each query has been processed. 

In summary, since we have provided ODL as a uniform specification for complex 

object behaviors, the implementation generated by the ODL generator is highly con- 

sistent with the user semantics. The code for integrity maintenance is also generated 

and combined with the methods automatically. By putting the methods generated 

from ODL into a dynamic linking library, the other parts of the application program 

do not need to be recompiled. Any changes made to the semantics of the behaviors 

can be easily added into the application code. The object definition written in ODL 

can also be solely maintained by the ODL module using the dynamic linking library. 



Chapter 5 

Conclusion and Future Work 

5.1 Thesis Summary 

In this thesis, we examine the behavior aspects of object definitions, especially com- 

plex objects in various applications of OODB. In particular, we examine the phenom- 

ena of behavioral constraints associated with object methods. 

In order to provide the database user with a more convenient and efficient way 

of supporting various complicated application specific semantics, we have designed a 

language ODL for object definition, especially for describing object methods and the 

associated behavioral constraints. 

In ODL, an object method is defined in terms of function calls which invoke 

other functions, especially methods defined for the constituent objects. A behavioral 

constraint is defined as a number of conditions and actions associated with a method. 

The execution of the method can be seen as an event. The checking of the conditions 
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can be performed either before or after the event happens. The actions may either be 

performed on a single object or on a set of objects that satisfy certain conditions. 

Compared to previous approaches for constraint specification and enforcement, 

our behavioral constraint specification is more powerful since the user-defined meth- 

ods are regarded as events. The user can put various database manipulations or event 

signals into their methods. The condition checking of our approach is more flexi- 

ble. The user may also change the boundary of the methods to adjust the points 

of checking. Because the maintenance of our constraint rules do not need a sepa- 

rate rule engine, the enforcement is thus more efficient than some of the previous 

approaches. By associating the method definitions with appropriate (possibly nested) 

transaction structures in the code, we are able to solve some problems encountered 

by some previous approaches of constraint maintenance. 

We have implemented a parser and a code generator for ODL. The parser accepts 

specifications written in ODL and generates an internal data structure to store the 

information. The code generator is designed to generate application code which uses 

Object Store as the underlying database management system. 

As an example, we have implemented methods for objects in a database called 

Block World using an ODL specification. In the method implementation generated 

by the ODL code generator, the enforcement of the behavioral constraints has been 

successfully integrated with other parts of the system. The implementation employs 

an interface between the class definition and the dynamically linked implementation 

of methods. 
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5.2 Contributions 

In this thesis, we present the design and the implementation of an object definition 

language, which can be used to specify objects, especially the behavioral aspects 

including constraints of objects, for advanced applications of OODB systems. The 

major contribution of this thesis can be described as follows. 

In current OODB systems, especially those DPLs, the only interface between the 

user and the DBMS is the host language (Persistent C++ or Smalltalk). There is no 

high level interface for the users to define their databases. Our ODL provides a high 

level language for object definition. 

We have investigated a particular category of database constraints called behavioral 

constraints, i.e., the constraints associated with database manipulation. Moreover, in 

an object-oriented database environment, the constraints can be associated with the 

user-defined object methods, especially methods of complex objects. By using our 

ODL, behavioral constraints can be specified more clearly. 

We have combined the concepts of the ECA model and the constraint compilation 

technique in Ode into the design and the implementation of our ODL. In our approach, 

methods are identified as events. We have also designed language constructs to allow 

the user to assert their condition checking either before or after the event occurs. 

The condition checking can be performed either on single objects or on collections of 

objects. 

We have implemented a prototype of the ODL. The ODL code generator generates 

C++ code associated with Objectstore DML. By executing the ODL code for the 

methods, the constraints associated with the methods can be enforced automatically. 



C H A P T E R  5. CONCLUSION A N D  FUTURE W O R K  

In order to show the usage of our ODL, we have used ODL as the definition 

language for defining objects in an application called Block World. The ODL code for 

the methods are generated and integrated with a customized query language DSQL. 

We also show that the implementation with ODL definition is clearer than the original 

implement ation. 

5.3 Future Work 

In this thesis, we tried to include the behavioral aspects especially behavioral con- 

straints in the object definition of OODB systems. We tried to provide the database 

user with a high level language for specifying objects. At the same time, the code 

generated from an ODL specification is also capable of performing corresponding con- 

straint enforcement. However, in order to provide the database user with a easy to 

use, more clear, and more efficient object definition language, a lot of work still needs 

to be done in the areas of object definition and user semantics maintenance. 

Currently, the structural aspects of objects are defined separately from definitions 

of behavioral aspects. A more complete ODL could include both parts in a uniform 

language interface. 

Further investigations of the semantics in various advanced applications are re- 

quired to gain a thorough understanding of the application specific constraints. 

In order to construct user views as complex objects, methods must be defined for 

automatic populating of the virtual class. A lot of work is still needed in order to 

support user views using complex objects. 
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Since one of the objectives of providing an ODL is to make it easy for the user to 

define the database, a more practical approach would be building a Graphical User 

Interface based on the ODL. 

As a long term goal, much work has to be done on the building of an integration of 

the ODL with the predicate processing modules so that a customized query language 

with operations on complex objects can be automatically generated once the ODL 

definition has been provided. 



Appendix A 

Syntax of ODL 

o d l  : : = method ; 

I o d l  method ; 

method : := TYPE-ID CLASS-ID : :  METHOD-ID ( pa rame te r s  ) ( do wi th  ) 

pa rame te r s  . . . .= parameter  

pa rame te r  

do 

doac t  i o n s  

I pa rame te r s  , parameter  

::= TYPE-ID ARG-ID 

. .= . .  DO : d o a c t i o n s  

: := d o a c t i o n  ; 

1 d o a c t i o n s  d o a c t i o n  ; 
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doact ion . .= . .  path . METHOD-ID ( arguments ) 

I path -> METHOD-ID ( arguments ) 

/ FOREACH ( components ) : CLASS-ID . METHOD-ID ( arguments ) 

I FOREACH ( components ) : CLASS-ID -> METHOD-ID ( arguments ) 

arguments : := ARG-ID 

1 arguments , ARG-ID 

components : := ATTR-ID 

I components , ATTR-ID 

with . .= . .  WITH : bcs 

I WITH : 

bcs . .= . . bc 

I bcs ; bc 

: := WHERE PRE conditions : PRE ( cactions 

I WHERE PRE conditions : POST ( cactions 3 

I WHERE POST conditions : ( cactions 3 

I WHERE TRUE : ( cactions ) 

conditions : :=  conditions AND conditions 

I conditions OR conditions 
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1 ( conditions ) 

1 condition 

I THEREIS OBJ-ID IN CLASS-ID THAT conditions 

condition 

expr 

path 

predicate 

cact ions 

caction 

: := expr OP expr 

I expr 

I NOT ( expr ) 

. . .= . path 

I NUM 

I predicate 

: :=  CLASS-ID 

I path . CLASS-ID 

I path INFER CLASS-ID 

: : = path ( arguments ) 

. .= . . caction 

I cactions ; caction 

: :=  FOREACH OBJ-ID IN CLASS-ID 

THAT POST conditions : ( methods ) 

I FOREACH OBJ-ID IN CLASS-ID 

THAT PRE conditions : ( methods 3 
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I TOP REJECTION 

I REJECTION 

I methods 

methods 

method 

. .= . . method 

I methods ; method 

: : =  CLASS-ID . METHOD-ID ( arguments ) 

I CLASS-ID -> METHOD-ID ( arguments ) 

I CLASS-ID . METHOD-ID ( ) 

I CLASS-ID -> METHOD-ID ( ) 

NUM : :=  (digit)+ 

letter : : = [a-zA-Z-*I 

digit : : = CO-91 

letter-or-digit : := [a-zA-Z-0-91 
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