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Cooper and McEvoy have defined a jump operator on the enumeration 

degrees (e-degrees) and have shown that the set of e-degrees of 

sets is the same as the set of e-degrees below 0;. They have also 

defined the concept of a low e-degree (in the natural way). Cooper has 

shown that the z2 e-degrees are dense. Gutteridge has proved the 

existence of a minimal pair of Z2 e-degrees. 

We have proved the following results about e-degrees: 

Theorem 1. For euery finite partial order (9, s*) , if 

* * * 
p o <  pl < ... < pnE f ,  a < a < ... < e a  < 0;. po#O 

O e l e  n e 

implies a O #  Oe and pn# l implies an#  O;, then there exists an 

embedding f of f in the % degrees such that f(pi) = ai for 

every i 5 n. 

Definition. A degree a is said to be splitting if there exists a pair 

of degrees b and c strictly below a with a = b v  c.  

Theorem 2. There exists a non-zero low non-splitting degree. 

h r e m  3, For every non-zero low degree a there exists a 2 degree 
2 

b such that a le b and for euery z a, either z < b or there - e 
exists y < a such that y v  z = a and y Se b. e 

Corollary 4. There exists a pair of incomparable Z2 degrees a and 

b such that for every z < a, z Ie b. 
e ,  

Theorem 5. For every pair of distinct I2 degrees a and b, 

{z: z Ce a} # {z:  z <e b}. 

Theorem 6 (Diamond). There exists a pair of low degrees a and b 

such that a A b = 0 and a v  b = 0;. 
e 
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CHAPTER I 

INTRODUCTION AND TERMINOLOGI 

Enumeration reducibility is a very natural reducibility between 

subsets of w .  It was first defined by Friedberg and Rogers [1959]. 

Intuitively. A is enumeration reducible to B (written A Ie B) if 

there is an effective procedure for producing an enumeration of A from 

any enumeration of B. For a more detailed discussion of the intuition. 

see Rogers [I9671 (pp. 145-147). Turing reducibility is often viewed as 

a reducibility between totat (everywhere defined) functions. The beauty 

of enumeration reducibility is that if we identify functions with their 

graphs (defined in 91.2) then e-reducibility extends Turing reducibility 

to the set of partiat functions. 

Enumeration degrees are defined in a manner analogous to Turing 

degrees. 0 denotes the least e-degree, consisting of all the r.e. 
e 

sets. Gutteridge [I9711 has shown that there are no minimal e-degrees, 

hence the enumei-ation degrees are not elementarily equivalent to the 

Turing degrees. Of particular interest are those e-degrees containing a 



E2 set. It is easy to work with these degrees as E2 sets allow 

effective approximations (see 51.3); Cooper [I9841 has shown that the 

I2 e-degrees are dense, and are precisely the degrees below 0' e 

(defined in •̃ 1.3), hence they possess the nice property that they are 

closed downwards under Ie. Some of these features suggest an analogy 

between the I e-degrees and the r.e. Turing degrees. In fact Cooper 2 

has asked if these two classes are elementarily equivalent. This is 

answered in the negative by the Diamond Theorem (see Chapter V) which 

contrasts with Lachlan's [I9661 Non-Diamond Theorem for the r.e. Turing 

degrees. Cooper and Copestake [ta] have shown that the Z2 e-degrees 

properly contain the simpler class of A2 e-degrees, hence the former 

is a proper class. 

The results in this thesis may be viewed in the following context. 

Let <(I2) denote the E2 e-degrees with least element Oe and 

greatest element 0 let Th($(%)) denote the theory of !V:(12) in 

L = {I, 0, 1). the language of partial order with least and greatest 

elements. By Theorem 2.1.1 the sentences in I%($(%)) of the form 

(Vx)(Elyl) ...( 3yn)a(x,y l,...,yn), where a is quantifier-free, are 

decidable; in fact, any such sentence which is consistent is true in 

<(%). h answer to Question 1 (see Appendix) combined with the 

- results in this thesis would suffice to decide all sentences of the form 

(Vxl)(Vx2)(3y)a(xl.x2.y), (a quantifier-free). 



51.2 BASIC NOTATION 

w is the set of non-negative integers. + and denote partial 

functions while f denotes total functions. Other lower case italic 

letters range over elements of w or o U (-1). x A y - -df n x - y  if 

x 2 y, and 0 otherwise. 2" denotes the power set of w. Upper case 

italic letters range over subsets of w with D, E and F being 

reserved for finite sets. yA denotes the characteristic function of 

A: we write A(x) for xA(x). . A h  denotes {y E A: y < x), while 

At-[>XI denotes {y € A: y > x ) .  I A /  denotes the cardinality of A. 

max F denotes the greatest element ,of F if F # 0, and -1 

otherwise. Analogously, min A denotes the least element of A if 

A # 0, and otherwise. 
- 

A C B means A C B but A # B. A denotes the complement of A 
* 

and A - B =dfn A fl 3. A = B means that the symmetric difference of 

A and B is finite. A B B =dfn {a: x E A) U {b+l: x E B). 

C = A U B means C = A U B and A and B are disjoint. 

2 <x,y> =dfn !(x + 2xy + y2 + 3x + y). <* . *>  is a recursive 
L 

bijection from wxw to w (see Rogers [I9671 (p. 64)). Note that 

max {x, y} I <x,y>. <x,y,z> denotes <<x.y>.z>; < * , * , * >  is a 

recursive bijection from w x m  to w. ( x ) ~  and (x)~ are defined by 

x = <(x)~. (x)+ 

A[Y] denotes {x € A: (x) = y) and A denotes 

{(x)~: x E A ['I}. A[<Y] denotes u {A[=': z < y): AII~l, A[>~~ and 



A~"] are defined analogously. For a function q, graph q =dfn 

{<x.y>: q(x) = 9). 

If D = {xo < xl < ... < x } then the canonical index of D is n 
X n + . . . + 2 ; the canonical index of O is 0. 4 denotes 

the set with canonical index z. We often identify a finite set with 

its canonical index, and write <D,x> for <z,x> where D = DZ. 

<w2 is the set of finite sequences of 0's and 1 's. <"a and 
<o 
(w U (-1)) are the sets of finite sequences of elements of w and 

o U (-1) respectively. u, T and t. range over elements of %, 

<o or (w U - 1 )  The length of o (written lh(o)) is ldom 01. n2 

is the set of finite sequences of 0's and 1's of length n. ubx 

denotes the restriction of u to {y: y < x). e(o) =dfn lh(u) 1 and 

A 

while a C T means a C T but a # T .  u T denotes the concatenation 

of a followed by T .  

Lower case boldface letters range over e-degrees. In Chapter I1 

they also range over elements of arbitrary partial orders. a v b 

denotes the least upper bound of a and b and a A b the greatest 

lower bound. 

Read "is defined" for 1, "is undefined" for f. "the least x 

such that" for px and "there exist infinitely many x such that" 

Q) 

for 3 x .  V denotes an infinite disjunction. and mark the end 

of a proof. 



51.3 ENUMERATION REDUCIBILITY 

We assume that the reader is familiar with the 

recursion theory as found in Part A of Soare [1987] 

basic concepts of 

Definition 1.3.1. 

.l. A sequence of finite sets  IF^},^ is called a recursive sequence 

or strong array if there exists a recursive function f ( s )  such 

that F~ = Df(s) for every s. 

.2. A recursive sequence of finite sets { A ~ } ~ ~  is called a recursive 

enumeration of an r.e. set A if A' E A s+l for every s, and 

jWe lea denotes a fixed acceptable numbering of the r.e. sets and 

{'Z}e. s~ denotes a fixed standard enumeration of the r.e. sets. The 

symbol K is reserved for {e: e E We} which has Turing degree O m .  

Intuitively. A is enumeration reducible to B if there is an 

effective procedure for producing an enumeration of A from any 

enumeration of B. There is a natural one-one correspondence between 

all such procedures and the r.e. sets (see Rogers [I9671 (pp. 145-147)). 

Hence the i-th enumeration operator (e-operator) is defined by 



8, R, P and Qi range over e-operators. Note that for every i, Pi 

is a mapping from 2•‹ to 2•‹ which is monotone, that is, if A C B 

then Pi(A) E Pi(B). We identify an e-operator with its associated r.e. 

set and write Wi(B) for Pi(B). Formally: 

Definitian 1.3.2. 

.l. A is enumeration reducible (e-reducible) to B ( A Se B) if A = 

Wi(B) for some i. 

.2. A zz B if A Se B and B Se A. e 

.3. A and B are incomparable (A le B) if A ie B and B ie A. 

It is clear that is an equivalence relation. An enumeration e 

degree (e-degree) is an equivalence class under Lower case 
e ' 

boldface letters range over e-degrees, and occasionally over Turing 

degrees. deg A denotes the e-degree containing A. If P is a e 

property of sets then an e-degree has property P if it contains a set 

with property P. The e-degrees 

dege(A O B), where A E a and 

on e-operators by: (Pi @ Pj)(A) 

form an 

B E b. 

= Pi(A) 

upper semi-lattice: a v b = 

We also define a join operation 

If we identify a function with its graph then e-reducibility may 

also be viewed as a reducibility between functions, both total and 

partial. The equivalence classes of partial functions are called 

partial degrees. The e-degrees and partial degrees are isomorphic as 

every e-degree contains the graph of a function: if A E a then 

consider {<x,l>: x E A). A is total if it is the graph of a total 



function. It is easily proved that A < B if and only if xA (e yg -T 
(see Rogers [I9671 (pp. 151-153)). Hence the e-degrees restricted to 

the total degrees are isomorphic to the Turing degrees. We denote the 

upper semi-lattice isomorphism degT A + dege xA by f*. When we speak 

of a Turing degree as an e-degree we are referring to its image under 

f*. 

0 denotes the e 

If A is r.e. then 

least e-degree which consists of all the r.e. sets. 

T = 
e YA' Hence the r.e. Turing degrees are 

isomorphic to the U1 e-degrees. 

Definition 1.3.3. An e-degree a is quasi-minimaL if a >e Oe 

and for every non-zero b Se a, b is non-total. 

Medvedev [1955] proved that there are quasi-minimal e-degrees, 

thereby showing that the e-degrees are indeed a proper extension of the 

Turing degrees. Case [1971] showed that the e-degrees do not form a 

lattice, that there is a minimal pair of e-degrees and that no total 

e-degree is minimal. Gutteridge [I9711 showed that there is a minimal 

pair of r.e. Turing degrees which is a minimal pair of 27, e-degrees. 

He also proved that there are no minimal e-degrees and relativised to 

show that no total e-degree has a minimal cover; furthermore he showed 

that any e-degree has at most countably many minimal 

Cooper [I9841 has shown that the Z2 e-degrees 

and Cooper [1985] have proved that every low minimal 

degrees is a minimal pair of U e-degrees but that 1' 

covers . 

are dense. McEvoy 

pair of r.e. Turing 

there is a minimal 



pair of high r.e. Turing degrees which is not a minimal pair of 

e-degrees. 

Cooper [I9841 and McEvoy [1985] have defined a jump operator on the 

e-degrees: 

Definition 1.3.4. (deg, A)' = dege J(A). where J(A) = xK and 
A 

KA = {e: e E We(A)}. 

a* denotes the jump of a. McEvoy has shown that the jump is 

* 
preserved under the isomorphism f . Hence 0; = dege xK. Cooper has 

shown that the set of z2 e-degrees is exactly the set of e-degrees 

below 0:. 

Definition 1.3.5. A sequence of recursive sets is 

uniformly recursive if there is a recursive function f(s,x) such that 

AS(x) = f(s.x) for every x ,  s. 

It is easily seen that A is if and only if there is a 

uniformly recursive sequence {AS) 
SEW such that 

A = {x: 3t (Vs > t) [x E AS]}. 

Such a sequence is called a I: -approximation to A. If, in addition. 2 

lim As(x) exists for every x ,  it is called a A -approximation. 
S 

2 



Clearly A is A2 if and only if A has a A2-approximation. Cooper 

and Copestake [ta] have constructed a $ e-degree which is not A2. 

McEvoy and Cooper [I9851 have extended the concept of lowness to 

the e-degrees: 

Definition 1.3.6. 

.l. A is low if J(A) E 0;. 

.2. A low approximation to A is a A approximation { A ~ } ~ ~ ~  2- such 

that for every e, { w ~ ( A ~ ) ) ~ ~  is a A approximation to We(A). 2- 

McEvoy has shown that a set is low if and only if it has a low 

approximation. A low approximation to A is equivalent to a 

0 A approximation to KA zdfn 2- {<x.e>: x E W,(A)). hence A is low if 

0 
and only if KA is A2. Since the enumeration jump is an extension of 

the Turing jump every low Turing degree is a low e-degree, however 

McEvoy [I9851 has shown that there is a low quasi-minimal degree, hence 

the low e-degrees are a proper extension of the low Turing degrees. 

51.4 SOME TECHNICAL TOOLS 

The main results in this thesis involve the construction of 2 2 

sets and e-operators, or equivalently, r.e. sets. We do this using the 

finite injury priority method, or methods similar to it in those cases 



where the requirements are infinitary. Traditionally these methods are 

used to construct a recursive enumeration of an r.e. set, however the 

similarity between a strong array and a uniformly recursive sequence 

allows us to use the same methods to construct a 2 approximation to a 2- 

Z2 set. 

Typically we begin with a recursive list of conditions involving 

the set(s) to be constructed. Each such condition is called a 

requirement. We order the requirements in descending order of priority. 

Hence if Rm and Rn denote the r t h  and n-th requirements with 

m < n then Rm has higher priority than Rn, or equivalently. R n 

has Lower priority than Rm. We then outline a recursive procedure for 

constructing the recursive sequence which we call a construction. We 

think of the s-th member of the sequence as being constructed at stage 

s. We say that a requirement is satisfied or met if it holds at the end 

of the construction. Since requirement Ro has highest priority, our 

goal is to ensure that it is satisfied. then R1 and so on. Hence we 

may take an action at stage s to satisfy requirement R (m < n) m 

even if it means undoing an action taken at a previous stage in order to 

satisfy Rn. thereby injuring requirement R at stage s. If each n 

requirement is injured only finitely often this is called the finite 

injury priority method. All the constructions in this thesis fit into 

this general framework though not all are finite injury. 

At each stage we would like our actions to be based on true 

information about the various sets involved. Hence the following 

concept and related results are useful: 



Definition 1.4.1. Let be a P 2 -approximation to A E 

S2. We say that s is a true stage in the approximation if A' G A. 

Cooper has proved the following result, though the proof in [I9841 

is less direct than the one given here. 

Proposition 1.4.2. Euery % set has a P -approximation with 2 

infinitely many true stages. 

~ o o f  . Let A E X2 and be a 2 approximation to A. 2- 

We can assume that AS is finite for every s by replacing it with 

Asps if necessary. For every n, set u(n) = <n.O> = pu [(u)~ = n] 

by definition of <* , *>.  For every s. set B' = 

fl {At: u((s)~) < t < s}. The desired E2-approximation {xS}seu is 

defined by: 

I gS, otherwise. 

Clearly B' E xs c AS and if t < s and (t)O = (s)~ then B~ 2 BS . 

Hence for every n, Bn = lin BS exists, therefore t(n) = 
(s)o"l 

pt [(t),=n and (Vs 2 t) [(~)~=n a BS = Bn] ] is def ined . 
-s 

Let 1 denote the set to which {A is an approximation. 

S 
Then a C A, since is C A for every s . Suppose x E A. Then we 



can choose s ' such that x E AS for every s > s ' . Let 

* 
F = {(s)~: s 2 s'} and s = max {s'} U {t(n)+l: n E F). Suppose 

* * 
s > s . If (s)~ E F then x E = AS by choice of s . Otherwise 

* 
~((s)~) > s so, hence x E B' E is by definition of B' and choice 

of s'. Therefore x E X ,  so i = A .  

For every n. at(") = B G f l  {AS : s 2 u(n) } A, hence {g}sEu n 

contains infinitely many true stages. .I 

Sometimes it is more convenient to take action on behalf of a 

requirement R at pre-designated stages, say stages s+l where n 

(s)~ = n. 

Ropositicm 1.4.3. For euery A E % there exists a 

B -approximation t 
2 to A such that for euery n, {A )(t)O=n 

is a 2 -approximation to A with infinitely many true stages. 2 

Proof. Let A E and be a B approximation to A 
2- 

with infinitely many true stages (Proposition 1.4.2). Set as = 

(S)~+(S) n + W 1  
A for every s. Then {at} = {A - - 

( 'lo'" 
n+h -t 

{A }ha since n is an increasing function: hence {A }(t)oa 

is a B approximation to A with infinitely many true stages. 2- 

Suppose x E A. Then we can choose s ' such that x E A' for 

every s > s'. Choose s" such that (s)~ + (s)~ > S' for every 

s > s". Then x E A (S)o+(S)l = as for every s > s". Hence {as}sEu 



If x E Wi(A) then there must be <D.x> E Wi such that D G A. 

We think of D as the reason that x E Wi(A). If A E Z2 and {A'}~~ 

is a L' approximation to A, then use functions help us keep track of 2- 

the reason that an element x E w;(A') or a finite set F C w:(nS). 

U s e  functions. 

Let €I be an e-operator and X E 3. Let be a fixed 

recursive enumeration of 9 and { x ~ } ~ ~ ~  a fixed Z approximation to 2- 

otherwise 

u(B,X,y,s) = h(B.Xsyss) D where z = px [y E €I 
z (DJ and 

U. 
Vu [h(€I.X,y.s) ( u ( s + Dx c X I], otherwise 

1 if F !€ w:(xS), 
H(0.X.F.s) = { p < s 3 [F w e and vu [I  6 u 5 s 3 D ExU]~. 

otherwise. 



h(8.X.y. s) and H(8.X. y. s) are called history functions. 

Remrk. If U(B.X.~.S)~ G xS+' (u(B.x.F,s)~ G xS+l) then 

h(8.~.y,s+l)l = h(8.X.y.s) and u(~.~.~.s+l)~ = u(8,X.y.s) 

(H(~.x.F.s+~)~ = H(8.X.F.s) and u(B.x,F.s+~)~ = U(8,X.F.s)). Hence if 

Y E 8(X) (F S 8(X)). then h(8.X.y.s) and u(8.X.y.s) (H(8.X.F.s) 

and U(8.X.F.s)) reach limits denoted by h(8,X.y) and u(9.X.y) 

(H(8 ,X. F) and U(8.X. F) ) respectively. 

Note that the definition of h(8.X.y.s) and u(8,X.y.s) only 

t 
On {' t 

and {X Itis. Hence given recursive sequences 

t 
{et}t<s and {X }t<s. - h(O.X,y.s) and u(8,X.y.s) are defined as 

above. 



CHAPTER I1 

EMBEDDING PARTIAL ORDERS IN THE % E-DEGREES 

52.1 INTRODUCTION 

We denote the least and greatest elements of a partial order by 0 

and 1, respectively. Cooper has shown that the E2 e-degrees are 

dense. Using essentially the same method as that used in [1984]. we 

generalize this to: 

* 
Theoren2.1.1. For euery finite partial. order (9, ), if 

* * * 
po < p < ... ( pn E 9. a. (e a1 <e ... <e a < Ol, po # 0 

n 'e 

implies a0 # Oe and pn# 1 impplies an # OL, then there exists an. 

embedding f of f in %(%) such that f(pi) = at for euery 

i < n. 



52.2 PROOF OF THEOREM 

* 
Suppose ( 9  ) po. pl, .... pn. and ag, al, .... a satisfy n 

the hypothesis of the theorem. W.1.o.g. we can assume that 9 contains 

least and greatest elements. For simplicity we first assume that 

Pn = 1 and ag >e Oe. Let Q = 9 - {po. pl, . . . , pn}. We partition Q 
* 

into sets Pi, where i 5 n and Qi = {q E Q: i = pj [q 2 p ] } .  Let 

A .  E ai for i I n. For every q E Q we construct a Z2 set B 
L 9 

such that for every i n, q E Qi, 

and the following maximal independence properties hold: 

and 

(2.2.3) 



For every s  E 9, set 

Then 

* x 
Now it is clear that s  2 t implies f  ( s )  Ie f  ( t ) .  Suppose t i s.  

Assume t = Pi ( i  <_ n ) .  Then f ( t )  = at and 

By 2.2.2 f ( t )  = ai ie f ( s ) .  

Assume t = q, where q E Q. (i  < n )  . Then deg, B < f  ( t )  and 
7. Q -e 

By 2.2.3 deg, B $ f ( s ) .  therefore f ( t )  ie f ( s ) .  Hence f is the 
'-4 e 



desired embedding. 

Lemma 2.3.1 below is the key to the proof of the theorem. In order 

to apply the lemma set ki = lQil for i 2 n, and Pi = 

{qiSOs ~ i , ~ .  .... t,k--l}. Then B is B of the lemma. Let 
I. Qi. j i,j 

Q: = U, Qj for t 2 n. The lemma is a slightly stronger result than 
J< t  * 

needed because it states that given {B : q E Qk}. for some k < n. 
q 

such that for every i 2 k, q E Qi. 2.2.1, 2.2.2 and 2.2.3 hold with 
* * 

Q replaced by s. this set can be extended to {Bq: q E Qk+l} such 

that for every i 2 k+l, q E Qi, 2.2.1, 2.2.2 and 2.2.3 hold with 4 
* 

replaced by Q 
k+l' 

If pn # 1, then an # O;, and we consider the extended sequences 

* * * * .  
po< p l <  ... < pn< 1 and a g <  a < 

e 1 e " '  
<e an <e 0;. If 

- { P  p . . . , p}, and consider the truncated sequences 
* * * 

p1 < p2 < ... < pn and al <e % ce ... 
<e an. 



52.3 THE KEY LEMMA 

Lea 2.3.1. Giuen n, kg, hi. .... kn. % sets 
AO <e Ai ( ... ce A Md BiSj. for i < n. j ( hi, S U C ~  that for 

euery i < n, 

.I. BiYj 5, At for every j ( k i ' 

.3. 3 1 ( @ A,) @ ( @ B ) for every j ( ki. 
i.j e 1(i L (n , m<k, L ,m 

there exist Bn,j. for j (kn, such thut BnSj 6, An for every 

j < kn, and for euery i 6 n. 

i (@ A,)@( @ 'i, j e l(i 
B ) foreuery j(k 

1 .m i ' 1 Sn, m(k, 

I 

Roof. Fix n, kg. .... kn. 
(1 < n, j < hi) satisfy the hypot 

Assume that A (i 6 n) and B i.j 

:hesis. 



Let C be defined by: 

. if i n, 
C and 

0, otherwise, 

0, otherwise. 

Note that C q An. 

We will construct e-operators 8 for j < kn, satisfying 
j ' 

certain requirements and will set B = ej(c). In terms of the 8 
n. j 

h 
j 

N 

(j < kn) we define other e-operators 8 and 8 by: 
j 

= {<F,<x, j>>: j < kn and <F,x> E 8.) 
1 

and 

h 

' j  
= {<F,<x,k>>: k < kn. k # j and <F,x> E 

A 

for j < kn. Note that g(~) ge @ Oj(C) and 8 .(C) 
j <kn 1 

Elements i(r), j(r) and e(r), sets Cr and CrBz. and 

requirement r are defined as follows. 



Case 1. r E 0 mod 2. 

Subcase 1.1. r = 4<i.e>. 

If i 2 n, then i ( r )  = is  e(r) = e and j ( r)  is undefined. 

Also: 

0, if i < 2. < n. 
and Cr {21+1) = c {22+1). 

c { ~ ~  , o therni se , 

~{ ' ) t z .  if L = 2i. 
C 
rsz C . otherwise. r 

Requirement r is: 

Note Cr q ( @ At) @ ( @ B ) Therefore Ai ie Cr, and 
L < i  L <n L .m 

m<kl 

C E C r @ A i t z E e C .  
r .z  e r 

If i > n then i s  j )  e ) ,  Cr and C are undefined 
r.2 

and requirement r is the empty requirement. 

. Subcase 1.2. r = 4<isj.e>+2. 

If i < n  and j < k i  then i ( r )  = i ,  j ( r)  = j and e(r )  = e .  



{2L+1) 0, if l = <i,j>, 
and cr 

c{~'), 0 therwise . = { C{2i+l) , otherwise; 

c{')rz, if 1 = 2<i. j>+l, 
C r .z C {I), otherwise. r 

Requirement r is: 

Note Cr ( 0 At) 0 ( 0 e 
B ) Therefore 

l<i l <n , m<k, L .m Bi. 'e 'r9 

and C r,z=e - Cr 0 BiSjIz 5 Cr. 
If i 1 n or j 2 ki then i ) ,  j )  ( Cr and C are 

r.2 

undefined and requirement r is the empty requirement. 

Case 2. r = 2<j,e>+l. 

If j < kn then j(r) = j. e(r) = e and i(r) is undefined. 

Also: 

0, if 1, = 2n, 

r = { c{l) 
, otherwise; 



c{')rz. if L = h, 
C 
r.2 C {'I, otherwise. r 

Requirement r is: 

Note Cr Ee ( @ AL) d ( @ BL ,m) % An-1. Therefore An ie Cr. 
L <n L <n 

m<kL 

and Cr,= Ee Cr d AnPz \ Cr. 
If j 2 kn then i )  j )  e )  Cr and C are undefined r , z 

and requirement r is the empty requirement. 

The natural order of the requirements is the order of priority. It 

is easily checked that if all the requirements are met then the lemma is 

proved. In order to satisfy requirement r, we construct e-operators 

8 for j < kn, and set 
j ,r '  

oS is the set of instructions <F,x> which have been enumerated into 
- j .r  

8 by the end of stage s: {€I;, r)sEw is a recursive enumeration of 
j .r  



8 Set 
j.r. 

A 

and 8 j,>r = 'j - ej,<r. andlet < and 8 be defined 
j,<r 

analogously. "s "s 
@S}sE(,,* {Bj}sEo* { Q s E o s  Wj, <r)sEw~ {BY, <r)sEw and 

1 
A N 

{8j, >r sea denote the natural recursive enumerations of 5. 8 j* '<r* 
A 

'j.<rs 'j,<r and 8 .is&- k.q sEw 
respectively, generated by (8' ) 

(k < kn). 
Choose e-operators Ri, for i < n. and Pi, j, for i < n. 

j < hi, such that Ai = Ri(An) and B = P (A,). Let {R:)sEw 
i. j is j 

and {*;sf}sEw be recursive enumerations of fl i and 9 i,j 

respectively. Let (A') he a 2 approximation t o  A such that ' -n sew 2- n 

for every r , {A:} (s) -r is a 2 approximation to An with 
0- 2- 

infinitely many true stages. " 1 and {Bi, j sE" are 

S S 2 approximations to Ai and B 2- respectively, where A: = Ri(An) 
i,j 

and B~ - S (0 {cS}sEos {c;ls, i j  i n and {~S,z)sEo are the natural 

2 approximations to C. Cr and C 2- respectively, generated by 
I-, Z 

{'L;}~~ 

Length of agreement functions. 

If requirement r is empty then L(r,s)f. 

Assume requirement r is not empty. 



Case 1. r 0 mod 2. 

Subcase 1.1. r = 4<i.e>. 

L(r,s) = pz [z = s or A;(Z) z w:(c~ r BS(cS))(z)1. 

Subcase 1.2. r = 4<iSj,e>+2. 

L(r,s) = pz [z = s or B' (2) # wI(cS~ r BS(cS))(z)]. i,j 

Case 2. r = 2<j,e>+l. 

~(r,s) = w [z = s or BS(C~){~}(~) J g wI(c: o ~;(C~)){~}(Z)I. 

We attend to requirement r at stages s+l. where (s)~ = r. Let 

T denote the set  of true stages in {A:}~~. Note that T is also a 

Suppose r = 4<i,e> (i 5 n). We arrange that for z E 

wS(CS e r @ B(cS))r~(r,s), z E wS(CZ r B'(F' U cS ) )  where FS cS is 
e r,z 

finite, and lim F' = F G C  (F finite). This is done in sucha way 
SET 

that if L(r,s) + a  as s increases in T, then z E 

We(Cr @ ?)(F U C )) for every z E W (C @ G(c)). If requirement r . z e r 

fails, Ai Ie Cr, by a kind of hack and forth construction as follows. 

whichis a contradiction. Begin enumerating W (C O G(F U C ))  G Ai. e r r . z 
for z = 0. As elements enter this set add them to Cr {2i} to build 

C 
I', Z 

for increasing values of z, and continue enumerating 

w (C B(F u c 1) G A ~ .  Since z E we(cr o G(F u c 1) for every e r r.2 r . 2 
z E We(Cr @ B(c)) = Ai, every element of A is enumerated. 

i 



If r = 4 < i , j , e > + 2  ( i  < n, j < k )  we use the above strategy. 

with Ai replaced by B and Cr {2i} replaced by Cr {2<i , j>+l)  
i . J  

Suppose r = 2 < j , e > + l  ( j  < kn) . We code A ( L ,  1 into 

B ~ ( c ~ ) { ~ } ;  in addition, as in the previous strategy, we arrange that 

for Z E W ~ ( C : O ~ ~ ( C ~ ) ) { ~ ) ~ L ( ~ , S ) .  e J Z E W ~ ( C : O ~ ~ ( F ~ U C ~  J r ,z  )){') 

where FS EcS is finite, and limFS= F C C  ( F  finite). Again, 
sf3 

this is done in such a way that if L ( r , s )  + a  as s increases in T. 
A 

{r) then z E W e ( C r 0 6 . ( F U C  )){r} for every z E W  (C @ B . ( C ) )  . 
J r ,  Z e r J 

If requirement r fails. An Ie Cr as follows, which is a 

contradiction. There exists m such that B .(C){')P[>m] = A t[>m]. 
J n 

Enumerate elements of A E(m+l) and begin enumerating 
n 

w (C o 6 .(F u c )){')r[>m] c B ~ ( c ) { ~ ) P [ > ~ ]  c for z = m+l. AS 
e r  J r.2 

elements enter this set add them to C 
r 12") to build C for 

r $2 

increasing values of z. Continue enumerating 

w e (C r o G j ( ~  u c r ~ >  A since z E we(cr B 6 .(F u c )){r' r , J r $2 

for every z E W (C @ ~ . ( c ) ) { ' ) P [ > ~ I  = B~(C){')P[>IIL] = A P[>m]. every 
e r  J n 

element of An is enumerated. 

Construction. 

Stage 0. 

Do nothing. 

Stage s+l. 

Let r = ( s ) ~ .  If requirement r is empty. do nothing. 



Otherwise do the following. For every z ,  set 

Case 1. r 0 mod 2. 

Let e = e(r). 

For every z, x such that 

enumerate <ES.w> into OkSr* where x = 2<w,k>+l for some k; (note 
2 

k < k ). If z satisfies 1.1 and E: G C. re say s+l is 
R 

(r,z)-active. 

Case 2. r 1 mod 2. 

Let j = j(r) and e = e(r). 

For every z E ~i~(~(r.s)+l). enumerate <cS.<z.r>> into OjSr. 

For every z ,  x such that 

enumerate <ESSw> into ekSr, where x = 2<w,k>+l for some k; (note 
Z 



k < k and k # j). If z satisfies 2.1 and E: C C, we say s+l is n 

(r,z)-active. 

End of construction. 

0 - 1  Proposition 1. For euery k < kn, r, Ok,r(w) C o . 

Proof. It suffices to show that for every k < kn, r, s, 
S 

'k, r (o) C wCLrl. The proof is by induction on s. 8iSr = 0 for every 

k < kn, r. Assume 8' (a) E w 
k. r 

Ch1 for every k < kn. r. ~f r g (s10 

s+l S then Ok,r = 8k,r for every k < kn. Suppose r = (s)~ and <F.w> is 

enumerated into 8 
k. r 

at stage s+l, where k < kn. From the 

construction, requirement r cannot be empty. 

Case 1. r 0 mod 2. 

Let e = e ( r ) .  Then 2<w,k>+l E u(We,Cr O g(~).z,s) - C: @ gS(~') 
Z 

for some z E W:(C: O GS(cS) ) PL(~, s) . Hence <a. k> E CS(cS) - gs (E:) . 

Now Gsr(cS) G G:r(~E) (Proposition 2). Therefore a E 

S s S S 
OE(cS) - g,<r(~s) = ekSlr (C E Bk s - >r(4 C a CLrl by the induction 

hypothesis. 

Case 2. r E 1 mod 2. 

Let j = j(r) and e = e(r). If k = j ,  then a = <z,r> € o [ 2r 1 

for some z .  Otherwise 2<w,k>+l E 
h 

u(we,c, o e.(C),<z,r>,s) - cS for some z E 
J r J Z  



w:(c: @ %(c~)){~}FL(~. s). Hence <m.k> E 6:(cS) - 3(ES). The rest 
J J z 

goes as in Case 1. 0 

Proposition 2. For every r, z, if requirement r is not empty 

and r = (s)~ then, 

"'S 
.I. e,r(cs) r gyr(~:), 
.2. if r E 0 mod 2 and z E wS (cS @ gS(~S))F~(r,s) then 

e(r) r 
-s+l .I. z E W S  (cF@B (E:)). 

e(r) 

-2. if s+l is (r.2)-actiue then c:ECr, ~ s , ~ c C ~ , ~ ,  

"'S e r c S  G c and z E w (Cr @ g(c)) , 

.3. if r r l mod 2 and z E WS (cS @ 6s(r)(~S)){r}F~(r,s) then 
e(r) r 

.I. z E is (cS O 2+l (E~)){'), 
e(r) r ~(r) z 

S .2. if s+l is (r,z)-actiue then Cr G Cry c:!, E C r,zy 
"'S 

A 

e,r(cS)cB,r(c) and Z E W  (C r e  (c)){~}. 
e(r) j(r) 

Proof. Assume requirement r is not empty and r = (s)~. From 
N "'S S s 

the construction. U(B<r.C.B<r(C ).s) G Ez, therefore 1 holds. 

Suppose r ~ O m o d 2  and z E W S  (C:@~~(C~))FL(~.S). Let 
e(r) 

e = e(r). Then either z E w~(c: @ BS(~:)) or by the action taken at 

cS $ gs+1 
r (E:). Therefore 2.1 holds. 

S s 
Assume in addition that s+l is (r.2)-active. Then Cr G CrSz E 

E: E C. Therefore C: E Cr and cS E C "S 

r, z r, z' BY 1. e<,(cS) E 
-S B,r(~E) G g,,(~) and by 2.1, z E W~(C; @ G~+~(E~)) We(Cr Q G(C)). 

The proof of 3 is similar. 0 



Proposition 3. For euery r, 

. I .  requirement r is satisfied, 

.2. 'k,r (C) is finite for euery k < kn. 

Roof. The proof is by induction on r. Assume 1-2 hold for every 

r < q. We show that 1-2 hold for r = q. If requirement q is empty 

thenfromtheconstruction 9 = 0  forevery k<kn, soweare 
k. q 

done. 

Assume requirement q is not empty. It follows from the induction 

hypothesis that u(~<~.c,~<~(c)) is finite. 

Case 1. q 0 mod 2. 

Let i = i(q) and e = e(q). If q 0 mod 4 set X = *i and 

2' = 21. If q 2 mod 4 let j = j(q); set X = 
'i. j 

and 2 * = 

2 1 Then requirement q is "X # We(C @ g(C))'*. Suppose X = 
q 
s We(Cq B &c) ) . We define enumerat ions, {X * and { c ; I ~ } ~ ~ ~  of 

sets X' and C* respectively as follows. 
4 

s {L) U 
s+l (2) (Cq , if z.=L'. 'cq 1 = { (C;IS) {I), o theni se . 



It is clear that X' Ie C . 
4 

Claim 1. X' = X. 

Roof. We show that X" E X and C" E C for every s, by 
4 

0 induction. Hence X' C X. C' C. since C E C, and xo0 = 0. 
4 4 

Assume ctS E C and X" G X. Then ceS+' E C by definition of C. 
4 4 

Therefore C X U W (C Q G(c)) = X, and we are done. 
e 4 

Since We(C Q G(C*~+~)) for every s, We(Cq e g(c;l)) c 
4 4 

X'. We show that XPz G X' for every z, by induction. Hence 

x c X'. 

Assume XPz C X'. If z Q X then we are done. 

Suppose z € X = W,(C- Q g(C)). Choose s € T such that (s), = 
Y V 

"'S q, z € w:(c~ Q gS(~S))P~(q,s). B<~(C~) = g<q(~) and 

U(~,~,C,~~~(C~).S) = u(~<~.C,~<~(C)). Then cs 4 G C 4 and c:,. G Cq,.. 
N 

since s E T. Therefore E; E ~ ( 5  ,C.B<q(C)) U Cq,Z C;l by the < 4 
induction hypothesis. Now z € w:(cS Q ~'+'(EE)) (Proposition 2). so 

4 

z f W (C Q &c*)) C X' . Therefore Xf (z+l) G X '  , and we are done. 
e 4 4 

X < Cq by Claim 1, which is a contradiction. Therefore X # - e 
We(Cq Q B(C)), so 1 holds. 

Claim 2. For every z, there are only finitely many (q,z)-active 

stages . 



Proof. Suppose not. Choose 2 giving a contradiction and a 

(4.2)-active stage t+l such that U(g .C,~<~(C).S) has reached a 
N 

< 4 
limit by stage t. Then gt (Ct) = 9 (C) (Proposition 2), therefore 

(4 < q 
t t  

E: = u(~<~,c,~<~(c)) u ct q, Z' and 2 E We(C 4 O ( E ) )  (Proposition 
t 2). since c E c and c:,~ E cqSz (Proposition 2). we can choose a 
4 4 

stage t * > t such that C' E cs and ct E cS for every s > t'. 
4 4 q.z 4.2 

Let s+l > t' be a (4.2)-active stage. It follows from the 

definition of E: and the choice of t and t * that EL G E:. 
Therefore z E w:(cS O gS(E;)), which is a contradiction. 0 

4 

By 1 we can choose a least y such that X(y) 8 We(Cq O G(C))(~). 
Choose a stage t such that 

Claim 3. For every z ) y, there are no (4,~)-active stages 

after stage t. 

Proof. Suppose not. Choose z > y and a (4.2)-active stage 

s+l > t. Note L(q,s) > z > y and from the construction, ES C E: C C. 
Y 

Case 1. y E X. 

Then y E w:(cS 8 gS(~S))~~(q.s). Therefore y E We(C4 @ g(c)) 
4 

(Proposition 2), which contradicts the choice of y. 



Case 2. y E We(Cq O B(c) ) . 
Then y E xS. Therefore y E xSkz = (cS ){' 'I G c{' ' I  G x 

q ,z q .z 
(Proposition 2). which contradicts the choice of y. 0 

Let k < kn. From the construction w E 8 (C) if and only if 
k. q 

t there exist z ,  t such that <Ez,w> is enumerated into €I at 
ks q 

(q,z)-active stage t+l. The set of stages t for which there exists 

x such that t is (q,x)-active is finite (Claims 2 and 3). Since 

only finitely many instructions are enumerated into 8 at each 
k* q 

stage. 2 holds. 

Case 2. q lmod 2. 

Let j = j(q) and e = e(q). Then requirement q is "O~(C){~} z 
A A 

(9) \(cq o 8 j(~) ){q}**. Suppose 8 .(c){'} = we(cq o 9 j(~) ) . 
3 

Since 8 (C) is finite, (by the induction hypothesis), 
j. <4 

m = max (€Ij, <•÷(C) ) is defined. 

Claim 4. For every z, i f  z E €IS (c~){~} then z E A:. 
j, q 

Roof. Assume z E 8' (c~){~}. Then there exists an instruction 
j.q 

<F.<z,q>> E as such that F 5 CS . Suppose such an instruct ion is 
j.q 

enumerated into 8 at stage t+l s. An inspection of the 
j.q 

construction shows that q = (t)O. z E A;k~(q.t) and F = C' E CS. 

{W = AS* {W C (C ) zE(C) n 0 



Claim 5. e . (c) {q} r [>m] = Anr [>m]. 
J 

Roof. Let z > m. 

Suppose z E 0 (c){Q}. Then z C 0 (c){'}, so z E 0 (c){~} 
j j. <4 j.4 

(Proposition 1). Choose s E T such that z E es (c~)'~'. Then 
j.4 

z E A: E A (Claim 4). 

Suppose z E An. Choose s E T such that (s)~ = q and z E 

~ ( L ( s ) + l )  Then CS E C and <CS.<z,q>> is enumerated into 0 
jsq 

14) ,, at stage s+l. Therefore z E 0.(C) . 
J 

We define enumerations. {A;'}~~ and of sets A; and 

C' respectively as follows. 
4 

c S L  u A if I. = 2n. 
(c;s+l){L} = { otherwise. 

It is clear that A; Se C . 
4 

Claim 6. A; = A . n 

Roof. We show that A;' E An and C" E C for every s, by 
4 

0 induction. Hence A; E An. Clearly Ce0 E C and A; E An. Assume 
4 



C" C and A;' E An. Then c"+~ c C by definition of C. 
4 4 

Therefore A:'+' - c A n u W (C e Gj(~)){q}t[>ml = A U 8j(~){q}P[>m] = A 
e 4 n n 

(Claim 5). and we are done. 

Since W~(C @ i.(caS+l))r[>m] A;'+' for every s. 
A 

4 J 4  

W (C O ~.(C')){~}t[>m] c A;. We show that Atz c A; for every z. by 
e 4 J 4 

induction. Hence An E A;. 
,o Assume Antz E A;. By definition of An . we can assume z > m. 

If z 6 An, we are done. 
n 

suppose z E AnI[>m] = ej(c){q}ptl = we(cq a ej(c))W [>.I. 

Choose s E T such that (s)~ = q. z E wS(CS O ~?(~~)){~}t-L(q.s). 
e 4 J 

-S e,pS) = 8 (c) and ~ ( 8  ,C.~S~(C") ,s) = ~(i3<~.~.i3<~(~)).  hen cS G 
(4 <4 4 

C and cs q,z c c ~ , ~ .  ~herefore E: E u(G c,~<~(c)) u cqgz E ~ ; 1  by 4 <4' 
ŝ+l the induction hypothesis. z E W;(C~ @ €3 (E;)){'} (Proposition 2), - 

A 
j 

therefore z E We(C fB (3.(~')){~}P[>m] E A;. So A t(z+l) E A;, and we 
4 J 9 n 

are done. 0 

Hence An Se C which is a contradiction. Therefore (3 .(c){~} 8 
4 ' J 

we(cq e Gj(c))V so 1 holds. 

By 1 we can choose a least y such that (3 .(c){~}(~) 8 
J 

@ Gj(c)){q}(Y) - 
From the construction w E €3 (C) if and only if there exist s E 

j.4 

T, z such that (s)~ = q. w = <z.q> and z E ~zt(~(~.s)+l). However 

limL(q,s) = y,  therefore 8 (C) is finite. 
SG j,s 



As in Case 1, Claim 2, we can show that for every z ,  there are 

only finitely many (q,z)-active stages. Choose a stage t such that 

Claim 7. For every z ) y , there are no (q ,z)-act ive stages 

after stage t. 

Proof. Suppose not. Choose z > y and a (q,z)-active stage 

s+l > t. Note L(q,s) > z > y and ES E E: E C. 
Y 

Then y E wS(C; e GI $(~~)){~}k~(q,s). Therefore y E 
A 

W (C @ B~(c)){Q} (Proposition 2). which contradicts the choice of y. 
e q 

h 

case 2. y E we(cq , ej(c)){q}. 
Then y E ef (c~){~}. If y E eS (c~){~} then <<y. q>, j> E 

3 jI<4 
-s (cs) (C) (Proposition 2). so y E Oj,<q (4) < 4 <4 

(c){q} G e j(c) , 

which contradicts the choice of y. Therefore y E 0' (c~){~} 
j.s 

(Proposition 1). Then y E A: (Claim 4). so y E (c:, =) ( 2 4  E 

C {w E An (Proposition 2). Choose u E T such that q = (u)~, 
'4 .z 

u L(q.u) = y and y E An. Then < ~ ~ . < ~ , q > >  is enumerated into 0 at 
j s 

stage u+l with C? C C. Therefore y E 0 .(c){~} which is a 
3 

contradiction. 0 



Therefore 9 (C) is finite for every k < kn, k # j, so 2 
k. q 

holds. 

Hence all requirements are satisfied. .I 

Corollary 2.3.2. For every pair of incomparable X2 e-degrees a 

and b there exists a z2 e-degree c such that c le a and c le b. 

Roof. This is easily proved using the same techniques as those 

used to prove Lemma 2.3.1. .I 



A NON-SPLITTING E-DEGREE 

53.1 INTRODUCTION 

D e f i n i t i o n  3.1.1. A degree a is said to be splitting if there 

exists a pair of degrees b and c strictly below a with a = b v c. 

Every r.e. Turing degree is a splitting degree by the Sacks 

Splitting Theorem (see Soare [I9871 (pp. 124-126)). In contrast to 

this, for the e-degrees. we have: 

Theorem 3.1.2. There exists a non-zero Low non-splitting e-degree. 

The Lowness of the non-splitting degree is needed to prove Theorem 

4.1.1. 

A feature of the proof worth noting is that while constructing a 

P2 set A, we simultaneously attempt to construct e-reductions of A 



to W(A) for various e-operators W. In general, given W(A),  the 

task of constructing an e-reduction of A  to W(A),  (given that one 

exists), is a difficult one. 

53.2 PROOF OF THEOREM 

Definition. Let n = <n n n >. 0' 1' 2 'n = w  , n = w  and en = 
"0 n n1 

We show that there exists a non-r.e. low set A  such that 

00 

-( V [A = V ( ( A )  9 ( A ) )  and Ri ( A )  le ei ( A )  1 ) . 
i d  

S 
Specifically, we construct a 12-approximation {A } 

SEW 
to A  and 

attempt to satisfy the following requirements, listed in order of 

priority. 

Po: ams [k E W~(A' ) ]  + k E W . ( A ) ,  where 0 = <k, j>. 
3 3 

PI: gms [k E w'(A")] + k € W  . ( A ) ,  where 1 = <k, j>. 
j 3 



In addition, for every i, we construct e-operators qi and Oi 

and attempt to meet requirement Ri. 

If all requirements Ni. Pi and Ri are met then it is clear 

that dege A satisfies the conditions of the theorem. 

k f  ini ti-. {9') Sa, {@S}sa and {xslsa are recursive 

enumerations of 9 and respectively. At certain stages of i' i 

the construction it is necessary to dump (permanently put) elements into 
N 

A for the sake of requirements Pi and Ri. A consists of all such 

elements. XS is the set of elements which have been enumerated into x 
by the end of stage s. 

F and Fe are binary partial recursive functions with range the R 
set of' finite sets. {~F;}sa and {Qsa are recursive approximations 

to Fn and Fe respectively, defined as follows. F:(i,x)l = D 

(~i(i.x)l = D) if there is a stage t s at which Fn(i,x) (Fe(i.x)) 

is explicitly defined to be D. 

and 



Each requirement Ni has a witness. If x is a witness for Ni 

then we attempt to arrange that A(x) # Wi(x). B denotes the set of 

all witnesses (at the end of the construction). { B ~ } ~ ~  is a 

A2-approximation to B, where 

hence once an element is enumerated into X, it cannot be a witness for 

S any requirement 
Ni . x denotes the e-th element of BS (in the e 

natural order), and is a witness for requirement N at stage s. 
e 

S Ble = {x:: n < e} . B:~, B ; ~  and B;~ are defined analogously. 

At every stage each witness has an associated i-state for every 

i. An i-state is an element of "'2 and is a technical tool for 

meeting requirements R where j i. It is not the ususal i-state 
j ' 

of the maximal set construction. For every i, a is a binary partial 
i 

recursive function with range 0 ,  1 a. (e,s)l for every i if and 
2. 

only if xS1: if xs*'l then ai(e.s+l) = ui(e.s), unless otherwise e e 
S specified. If x = x for some e then the i-state of x at stage 
e 

s is (uo(e.s),ol(e,s) ,..., ui(e.s)). For i l e, ui(e,s) = 0 

S indicates that at stage s, x is part of our strategy to achieve 
e 

* 
A = qi(Ri (A)). That is, we hope to arrange that ~(xz) = 

S i(Ri(~))(x). If oi(e.s) = 1 then x is part of our strategy to e 
* 

achieve A = Ot(Bi(A)). For a fixed i, i-states are ordered 

lexicographically. 



t At stage s+l we say that x is unused if x 4 U A . 
tss 

Requirements Ri present the greatest difficulty. In order to 

gain insight into the full construction, suppose that we were only 

interested in satisfying requirements Ni, Pi for every i, and the 

single requirement . Let us see how we could meet R in a manner Ro 0 

which would also allow us to meet the other requirements. For 

notational ease we omit the subscript 0 from the various e-operators. 

All elements of o enter A, in order, as witnesses. So U A~ = 
t - 

a;' it follows from the definition of B that x = B. X E 9(0) n 0(0) 

from the definition of O and . So if we can arrange that in the 

* 
case A = V(R(A) e B(A)), A n B * o(o(A)) n B or A n B = 

@(B(A)) fl B, then Ro is satisfied. Rather than monitoring lengths of 

agreement between AS and vS(OS(AS) Gs(~s)), we simply base our 

actions on the assumption that A = V(R(A) O B(A)). Assume x E B. 

When x first enters A we try to arrange that 'A(x) = 3(R(A))(x), so 

the initial 0-state of x is (0). If there follows a stage s such 

that AS(x) = v~(O~(A~) @ B~(A~))(X) = 1, then at stage s+l we set 

FO(O.x) = nS(AS) and Fe(O,x) = GS(AS). Note that x E 

V(Fn(O,x) O FB(O,x)). In addition we enumerate the members of A' 
N 

which are strictly greater than x into A. Now if there is a stage 

t N 

t > s such that A $ A x ,  then x is enumerated into A at 

t s+l stage t+l. But x Q since x E B, so A Ex = A Ex = AEx for 

every t > s. Then FO(O,x) O(A U { x ) ) ;  if x 4 A we would like 



Fn(O,x) p R(A). If this holds then A(x) = Q(R(A))(x). from the 

definition of 9, and we can either put x into A, or remove it, for 

the sake of a requirement N However, if at a later stage t we find 
j ' 

t t  
that x C A~ and FR(O,x) c R (A ) then we next try to arrange that 

A(x) = @(B(A))(x). So at stage t+l we change the 0-state of x to 

N 

(1). and we enumerate the members of A' greater than x into A. 

Then FR(O.x) R(A) and from the action taken at stage s+l we have 

FB(O.x) E B(A U {x)). Now assume A = V(R(A) O B(A)). Since x E 

V(Fn(O.x) @ Fe(O,x)), x Q A implies Fo(O,x) L B(A). So A(x) = 

9(B(A))(x) from the definition of 9. 

Once a witness y achieves a 0-state of (I), if A = 

V(R(A) @ B(A)) then A(y) = O(B(A))(y). Due to this foolproof quality. 

witnesses of 0-state (0) are replaced by witnesses of 0-state (1) 

when these are available and associated with lower priority 

requirements. Hence at the end of the construction, either all but 

finitely many members of B have 0-state (0). or every member of B 

has 0-state (1). So requirement Ro is satisfied. Once the 

witnesses associated with higher priority requirements have settled 

down, requirement 
' j  

can be satisfied by dumping (if necessary) 

finitely many elements into A. 

To satisfy requirement R1 we simply repeat the same strategy on 

B - {min B), and so on. The use of i-states captures this idea. 



Stage s+1 (s E 0 mod 6). 

Choose the least e < s such that {f. Set AS+' = AS U {x} 

where x is the least unused element. Set ui(e,s+l) = 0 for every 

i. 

Stage st1 (sElmod6).  

Choose the least e 5 s such that there exists m > e such that 

S x has a strictly greater e-state than x: at stage s. Choose the m 
S least such nt. Enumerate the members of B' - {xm} into x. Set 

2e 
-s+l S AS+' = AS U A U {xm} and rri(e,s+l) = oi(m.s) for every i. 

Stage s+l (s 2 mod 6). 

S S Choose the least e 6 s such that AS(<) = We(xe) = 1. Enumerate 

-s+l the members of B ; ~  into 2. Set AS+' = (As - {x:}) U A . 

Stage s+l (sE3mod6). 

Let i = (s)~. Choose the least e, i < e < s such that x: € 

S AS, x e E v:(O:(AS) @ B;(As)) and F;(i,xS)f. e Set Fn(i.xS) e = Q;(A~) 
N 

and ~ ~ ( i  ,<) = B;(AS). Enumerate the members of B' into A. Set >e 
-s+l A~+' = A' u A . we call s+l an (x:,li)-stage. 

Stage s+l ( s r 4 d 6 ) -  

Let i = (s)~. Choose the least e, i e s such that < P 
S AS, x E @:($(As)) and ui(e. s) = 0. Enumerate the members of B' 
e > e 



-s+l into a. set A'+' = A' u A and ui(e, s+l) = 1. We call s+l an 

(~z,~~)-sta~e. 

Stage st1 (s S 5 mod 6) .  

Choose the least e s such that k E wS(AS U BS~) and k P 
j 

w;([BZe f l  AS] U Xs), where e = <k.j>. Enumerate the members of B ; ~  

-s+l into x. Set AS+' = A' U A . We say Pe receives attention at 

stage s+l. 

Note. At each stage s+l we are asked to choose an element e 

satisfying a given set of conditions. Henceforth we refer to this 

element as e(s). If e(s)f. we do nothing at stage s+l. 

End of construction. 

Proposition 1. 
- 
N 

.I. A = B. 

S .2. For euery x E B there exist e and t such that x = xe for 

euery s 1 t .  

Proof. By the action taken at stages s+l (s 0 mod 6) of the 

construction, U A~ = o. 1 is immediate from the definition of 
t 

{ B ~ } ~ ~ .  2 follows from the fact that this is a A2-approximation to 



Proposition 2. 
N 

.I. A c A. 

-2- {ASlsEo is a A 2 -approximation to A. 

Roof. From the construction It A for every s 2 t . So 1 

holds . 
Fix x E B. Choose e and t such that x = x s for every s 2 t 

e 

(Proposition 1). It suffices to show that for every s 2 t, if x 4 A' 

then x E AS+'. Suppose not. Choose s 1 t such that x e AS and 

x € AS+'. An inspection of the construction shows that s l 1 mod 6. 

e(s)l < e and xS+' 
e(s) 

= x. This contradicts the choice of e and t. 

0 

Proposition 3. For every m, e, t. if m < e, xtl E B a.nd 
e 

xt E At then for every s 1 t. < E AS. m 

Roof. Suppose not. Choose m, e and t satisfying the 

t 
hypothesis and a least s such that s 2 t and < O A'+'. Then xm e 
"S t t S t A andsince x e E B ,  < t i s .  Therefore x m = x  and x e = x  

S 

m ' e ' 

for some in' < e .  By the choice of s, xS E AS and xS 4 A'+'. An 
m ' m ' 

inspection of the construction shows that s 2 mod 6, e(s) 1 = m e  and 

S -s+l -s+l B>m, E A  . But then xz, € A  , which isacontradiction. I3 



Proposition 4. 

.l. Fn and Fe are well-defined. 

.2. For euery x, i, there is at lost one (x,qi)-stage. 

Roof. 1-2 follow from the observation that s+l is an 

(x.qi)-stage if and only if F:(L.x)~, ~;(i.x)f, ( i x )  and 

F ~ . .  

Proposition 5. For euery x, t, if x E B and t+l is an 

(x.9.)-stage for some i then for euery s ) t. At - {x) GAS. 
L 

Proof. Assume x E B, t+l is an (~.9~)-stage and s > t .  From 

t t -t+l S stage t+l we have x = xett, and B>e(t) A C A . Suppose 
\ - J 

m < e(t) and 4 E At. Then x: E AS (Proposition 3). Therefore 

A - {x) AS. 0 

Proposition6. For euery x, s, i, if x E B ,  x = xS for some 
e 

e and ui(e,s) = l then there exist u and u, u < u < s such that 

.I. u+l is an (%,@.)-stage, 
L 

.2. u+l is an (x,q.)-stage, 
t 

.3. F;+l (i,x)l and ~i+~(i,x)~, 

A. ~ ~ ( i  ,XI G R:(A~), 

.5. E At for euery t 2 u. 



Proof. Assume x, s and i satisfy the hypothesis. Choose 

u+l u < s least such that x = xm for some m and a.(m,u+l) = 1. An 
L 

inspection of the construction shows that u+l must be an 

U (x,Ot)-stage. x = xm, x C A', x [h $~(Q:(A~)) and ~y~ G P 1 .  SO 

< must contain an instruction <x,F> where F 5 o~(A~). Since x O 

N 

A, it follows from the definition of 9 that ( i  x )  and F = 

Fn(i ,x). Choose u least such that ~:''(i.x)l. From the proof of 

u+ 1 Proposition 4. u+l must be an  stage and Fe (i,x)l. 

mu+ 1 Fix t 2 u. Since x P AU and ~y~ E A , in order to show that 

AU G A~ it suffices to show that BE fl AU E At. This follows from 

Proposition 3. 0 

Proposition 7. For euery e, 

. I .  x - lim xS exists, e -dfn e 
S 

e -2. ui zdfn lim a.(e,s) exists for every i 5 e, 
L 

S 

.3. We) # We(xe), 

.4. requirement P receives attention only finitely often. e 

.5. f s  [k [h wS(AS)] * k [h Wj(A), &re e = <k,j). 
J 

Proof- Assume that 1-5 hold for every e < e'. We show that 1-5 

hold for e = e ' .  Choose a stage u such that for every e < ee: 

S 1'. x has reached a limit by stage u, e 

2'. for every i 5 e, a.(e,s) has reached a limit by stage u. 
L 



3' . AS(xe) and w;(xe) have reached a limit by stage u (Proposition 

2) and We) z Webe) * 
4'. requirement P does not receive attention after stage us e 

5'. for every i 5 e, there are no  stages after stage u 

(Proposition 4). 

An inspection of stages s+l (s 0 mod 6). where s > u shows 

s+ 1 
that XI:' 1 for each such stage. Now if s > u and xe . # xz .L then 

s 1 mod 6. x;tll and the e'-state of is strictly greater 

xStl = xs '1 and the than the en-state of x .  Also if s > u. e 
S e'-state of xe, at stage s+l is different from its e'-state at 

S 
stage s, then s Z 4 mod 6 and the el-state of x at stage s+l e ' 

is greater than its el-state at stage s. The last two observations 

follow from the choice of u and an inspection of the construction. 

Since there are only finitely many e'-states. 1-2 hold. 

By 1 we can choose a least t such that <. = x t+l for every e ' 

s > t. From an inspection of the construction: e(t)l = el, and 

t+l 
t E O m o d 6  or tJlmod6. Ineithercase x €At+'. If xe, 0 e ' 

we ' then xe, is never later removed from A. Otherwise, for every 

s > max {u. t) (s E 2 mod 3). if xe. E w:, then xe, 0 AS+', so 

x e A. Therefore 3 holds. e ' 

Hence we may assume that u is chosen in such a way that in 

addition 1'-3' hold for e = e'. Let k = and j = (eD)l. 



Claim. 

- 1 .  If Pe, receives attention at stage s then k E 

.1 . k E w;([B:~, n AS] U T )  for every s 2 t , 

Roof. 1 follows from an inspection of the construction. By the 

choice of v, B& f l  AS = {x,: nz < e*) tl A for every s > u. - 
Therefore 2 holds. 0 

4 follows from the claim and the observation that if 
Pe, receives 

attention at stage s+1 then k P wf ([B;, , fl AS] U T ) .  
J - 

Assume ams [k E w?(As)]. Then we can choose t > v ( t a 5 mod 6) 
J 

t t  
such that k E W (A U B:~, ) . From stage t+l. either k E 5 

A ]  U ) or Pe, wj( CB<, * receives attention. So 5 follows from - 
the claim. 0 

Definition. If x = x for some e and i < e then the eventual. 
e 

e e i-state of x is (uo ...., 0.) = lim (u (e,s) ,..., ui(e,s)). 
L 

S 
0 

Proposition 8. For every i, e, e', if i e < e' then the 

eventual. i-state of x is greater than or equal to the eventual. 
e 

i-state of x 
e' ' 
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Proof. Suppose not. Choose i < e < e' giving a contradiction. 

S Choose a stage t I 1 mod 6 such that xz, x and the i-states of e ' 

x and x have reached a limit by stage t (Proposition 7). Then e e ' 
t the e-state of xt is greater than the e-state of xe at stage e ' 

t+l t t. Fromstage t+l wesee that e(t)l<e. Then xe #xe by the 

action taken at stage t+l, which contradicts the choice of t. 0 

Corollary 9. For every i there exists e' 2 i such that for 

e e ' every e ) e', ai = ai . 

Proof. It suffices to show that there exists e '  2 i such that 

forevery e > e '  theeventual i-states of x and x are the 
e  e  ' 

same. This follows from Proposition 8 and the fact that there are only 

finitely many i-states. 0 

Proposition 10. For every i, A # V.(Ri(A) B Bi(A)) or 
2. 

* * 
A = qi(ni(A)) or A = ai(Oi(A)). 

Proof. Fix 1. If A # Vi(ni(A) B Bi(A)) we are done, SO assume 

e  ' equality . Choose e ' 2 i such that for every e > e * , o: = o 
i 

(Corol lary 9) . 

Case 1. a:' = 0. 

* N 

Then A = qi(ni(A)). For every x, x E A or x = x for some e 

e (Proposition 1). Since X E Ii(0) it suffices to show that for 



every e 2 e' , 

Let e 2 e8. Choose a stage u such that for every k < e. < 
and the k-states of % have reached a limit by stage u 

(Proposition 7). and there are no (\,@i)-stages after stage u 

S (Proposition 4). Since {A is a low approximation (Proposition 

7), we can as'sume in addition that for every k e, AS(\), 

v:(nf(As) @ e:(AS) ) (\) and q:(i2:(AS) ) (\) have reached a 1 imi t by 

stage u. 

Assume xe E A. We show that ~~(i.x,)l. Choose a stage t > u 

(t . 3 mod6) such that (t)Q = i. By the choice of u ,  xe E At. 

t t t  t t  x E Vi(Ri(A ) @ Bi(A )) and t+l is not an (xk.qi)-stage for any e 
t t k < e. From stage t+l we see that Fn(i.x )1. Let u+l be the 

e 

unique (x .ly )-stage (Proposition 4). Then FQ(i.x ) = Q:(AU). xe E e i e 

A implies AU C A (Proposition 5). Therefore xe E li(Qi(A)). 

Assume xe f A and xe E qi(ni(A)). Choose a stage t > u 

(t r 4 mod 6) such that (t)O = i. By the choice of u, x e At, e 
t t  xe E *:(ni(A )) and ui(e,t) = 0. Inspecting stage t+l of the 

construction, we see that i < e(t)l 5 e. ui(e(t),t) = 0 and 

ui(e(t)t+1) = 1 But this contradicts the choice of u .  Therefore 

' x e *i(ni(A)). 



e ' Case 2. ui = 1. 
* 

We show that A = Gi(Bi(A)). As in Case 1 it suffices to show 

that for every e 2 e', A(xe) = Gi(Bl(A))(xe). Let e 2 e'. Choose a 

stage u such that < and u. ( e )  have reached a limit by stage u. 
L 

Then there exists an (xe.qi)-stage u+l (Proposition 6). and 

FB(i.xe) = B~(A~). 

Assume xe E A. Then G A (Proposition 5). Therefore x E 
e 

Qpi(A)) 

Assume xe f A and xe E @i(Bi(A)). Inspecting stage u+l of the 

construction, we see that xe E <(~~(i .xe) B Fe(i ,xe)). Fn(i ,xe) 5 

Ri(A) (Proposition 6). Since x f X. xe E Gi(€li(A)) implies 

FB(i .xe) E Bi(A). But then xe E Vi(Ri(A) B ei(A)). This contradicts 

the assumption that A = B Bt(A)). Therefore xe C @1(81(A)). 

0 

Hence all requirements Ni, Pi and Ri are satisfied 

(Propositions 7 and 10). 



A SPECIAL PAIR OF z2 E-DEQ(EES 

54.1 INTRODUCTION 

Theorem 3.1.2 suggests that it may be possible to prove: 

r 4 . 1 1  There exists a puir of incomparable I2 e-degrees 

a and b such that for every z (e a, z b. 

This naturally leads to the question of whether such a situation 

can be symmetric. This is answered by: 

Theorem 4.1.2. For every pair of distinct 3 e-degrees a and 

b, {z:  z Ce a} # {z:  z (e b}. 



54.2 PROOF OF THEOREM 4.1.1 

Definition 4.2.1. A sequence of 2 S t  q.JnE0 is uniformly 

% if there is a recursive function f(n,s,x) such that for every n, 

S 

{ B ~ S E ~  is a P approximation to Bn, where Bn(x) = f(n.s.x). 2- 

We let a be a low non-splitting e-degree (Theorem 3.1.2). Due to 

the density of the P2 e-degrees it suffices to show that there exists 

a e-degree b such that a je b and for every z <e a, z ie b. 

Let A E a. We first construct a uniformly z2 sequence of =2 

sets, Bo Se B1 Se ..., strictly below A, such that for every 

Z ce A. Z 5, Bt for some i. We then construct a 2, set B such 
Y 

that A fe B and Bi B for all i. b = deg B is the desired e 

degree. 

In Lemmas 4.2.2 and 4.2.3 the constructions are carried out in a 

more general setting, yielding Corollary 4.2.4, of which the theorem is 

an immediate consequence. 

LePPlPa 4.2.2, For euery non-r.e. low set A there exists a 

uniformly P sequence of 2 I2 sets, B < B < 0 -e 1 -e "" strictly below 

A, such that for euery Z Se A, Z ie Bi or Bi B Z A for some i. e 



Roof. Let A be non-r.e. and low. For notational convenience. 

rather than constructing each set Bi separately, we construct a single 

I2 set B, and show that there exists a uniformly z2 sequence of =2 

sets, Bo Se B1 Se ..., below B such that for every i, 

B < A and 3j [Wi(A) I B or A Ie B. b Wi(A)]. 
e j J 

which proves the lemma. 

Ideally, we would like to set Bi = Yi where {Yi)iEu is defined 

as follows. Set Yo = 0. Set Y1 = Yo @ Wo(A) if A fe Yo B WO(A), 

and Yo otherwise. Set Y2 = Yl @ Wl(A) if A fe Yl b W1(A). and Y1 

otherwise, and so on. It is clear that {BiIiG would satisfy all the 

requirements of the lemma except, possibly, that the sequence be 

uniformly z2. However, this obstacle can be overcome by noting that it 

suffices to have for every is Bi 6, Y for some j, and Yi 5, % 
j 

for some k. 

Definitions. 

L ' pk [A = Wk(Yi b Wi(A))], otherwise. 

<o 
T = 0 and Ti = (po. ..., pi). Y = (o U 1-11) consists of all -1 

possible values of T and Ye = Y -  (0). a+c(a) denotes an 
i 

arbitrary fixed recursive bijection from 9' to w, and i + a its 
i 



inverse. 

We construct B so that B{'} = Wk(A) if uj = rk and pk = -1. 

- and is finite otherwise. Bi - 8 B{'}. It is easy to check 
lh(u .)<i+l 

J 
that for every i, Bi Se Y for some j, and Yi Ie % for some k. 

j 

For each u E Y we define an e-operator qo by induction on 

if u(e(u)) > -1, 
% 

44 ' otherwise. 

Roof. The proof is by induction on i. T = 0, so @ (A) = 
-1 T -1 

0 = Yo. Assume Yi = f (A). If A ie Yi 8 w~(A), then Yi+l = 
i-1 

Yi 8 Wi(A). ri(i) = pi = -1, and qT (A) = (YT (A) @ Wi(A) = 
i i-1 

Yi O Wi(A) by the induction hypothesis. Otherwise Yi+l = Yi. ri(i) = 

pi > 1 and f (A) = qT (A) = Y. by the induction hypothesis. 
L 

0 
i i-1 

Requirements, 

We construct a Z approximation {B~} 2- to B and attempt to sEo 



satisfy the following requirements. 

L 
\ 0 .  otherwise. 

Ni: ( 7  Ye) [ h )  2 1 r 7 and ~(i) # pi o &(7)) is i-1 

finite] . 

In order of priority the requirements are Po, No. P1' N1. . . . If 

these requirements are met then it is clear from the preceding 

discussion that {BiIiEo satisfies the conclusion of the lemma. 

Let {As)sa be a low approximation to A, and for every a E Y ,  

let w z ~ ~ ~  denote the natural recursive enumeration of @ 
0- 

Length of agreement functions. 

For every a E Y o ,  

otherwise. 

m(u,s) = max {L(u.t): t I s). 

L(a,s) = min (m(7.s): 7 E Y' and 7 C a). 



Definition. For a € Y e ,  we say that stage s is a-expansionary 

if (s)~ = C(U) and for every t < s, (t)O = c(o) implies 

L(a,t) < L(0.s). 

At a a-expansionary stage there is evidence that ri = a where 

i = e(a). So at stages succeeding a-expansionary ones, we take action 

based on the assumption that si = a. 

Stage 0. 

Stage e l .  

Let a = a and i = e(a). 
(s)~ 

Case 1. s is a-expansionary. 

Subcase 1.1. u(i) = -1. 

Subcase 1.2. u(i) > -1. 

(Bs+'){j} = (BS){'}ba(i) for every j such that lh(o .) 1 i+1. 
3 

( r C a  and u (i) = - I .  
j .i 
(B~+~){'} = 0 for every j such that lh(o .) 1 i+1. 6 G u and 

J j 



Case 2. Otherwise. 

BS+l = BS. 

End of construction. 

Bepark. For every u E Y', if a(e(u)) # -1 then B Ma)) = 0. 

Proposition 2. For euery u E Yo, {m(u,s): s E o) is infinite if 

and only if u(e(u)) = -1 or A = W 
(4 (@&A) @ we(u)(A)) 

Proof. This is immediate from the definition of l(u,s) and the 

fact that { A ~ ) ~ ~  is a low approximation. 0 

Corollary 3- For euery a E Y', if 

then {m(u,s): s E o) is finite. 

Proof. Suppose not. Choose u E Yo and i satisfying 1-4 with 



{m(u,s): s E w) infinite. Then u(i) f -1 by 3 and 4, therefore A = 

(9 (A) @ Wi(A)) (Proposition 2). But @&A) = \ wu(i) u- (A) = Yi by 
i-1 

1, 2 and Proposition 1. So A = Wo(o (y @ wi(A))- 

Case 1. pi = -1. 

Then A Se Yi @ Wi(A) by definition of pi, which is a 

contradiction. 

Case 2. pi > -1. 
Then u(i) < pi, by 4, which contradicts p = 

i 

* CA = Wk(Yi @ Wi(A))l. 0 

Ropositirm 4. Requirements Pi and Nt are satisfied. 

Roof. Fix i. It follows from the definition of T and 
i 

Propositions 1 and 2 that there are infinitely many T~-expansionary 

stages. Suppose 7 E 9'. lh(7) 2 i+1, T ~ - ~  G 7, and 7(i) # pi. Let 

7' = 7t(i+l). 

Case 1. pi = -1. 

Then {m(vl,s): s E w) is finite (Corollary 3). Hence 

(L(7, s): s E O )  is bounded, by definition of L(T, S) , SO there are 

only finitely many ?.-expansionary stages. Since B {C(T)} can only 

grow at stages succeeding 7-expansionary ones, it must be finite. 

Therefore Ni is satisfied. 



An inspection of the construction shows that (B s+l) @(Ti 1) = 

S w;(A~) for infinitely many s. Fix j. Since {A IsG is a low 

approximation, (B '+' ) {c(Ti)}tj = Wi(A) tj for infinitely many s. If 

we can show that Wi(A)bj G B {C(Ti)}, then B {C(Ti)}b = Wi(A)f j. 

Inspecting the construction, we see that it suffices to show that 

and 

{L(s) u € 9 i+1 2 lh(u), 6 c  si and pe(o) > u(e(u)) > -1) 

are finite. But this follows from Corollary 3. Since the choice of j 

was arbitrary. B c T i  = W (A), so Pi is satisfied. 

Case 2. pi > -1. 

Subcase 2.1. ~'(i) = -1. 

By the action taken at stages succeeding T -expansionary ones, 
i 

B{c(7)} = B{c(7)) bpi 

Subcase 2.2. -1 < ~'(i) < pi. 
As in the proof that Ni is satisfied in Case 1, B{~(7)} is 

finite. 



Subcase 2.3. pi < ~'(i). 

By the action taken at stages succeeding ri-expansionary ones. 

Therefore Ni is satisfied. 

By the Remark following the construction. B{~(~)) = 0 for every 

o E Y '  such that (e()) # 1 Therefore Pi is satisfied. 

Hence the lemma is proved. I 

LePmPa 4.2.3- If B SO B, SO . is a uniformly E9 sequence of 
- - a -  a 

sets, A € 3 ond A je Bi for all 1, then there exists a 3 
set B such that A je B ond Bi Se B for all i. 

Proof. Assume A and {BiIiG satisfy the hypothesis. We first 

N 

define an auxiliary set B C B, by setting z{~} = Bi for every i. B 

is obtained by adding finitely many elements to each column of , in 

order to satisfy A je B. as follows. 

Since A je Bi. A is non-r.e., so A # WO(0). Set z0 = 

pz [A(z) # Wo(w)(z)]. Choose a finite set F such that Wb(w)(zo) = 1 

W0(F1)(zO), and put the elements of F1 into B. No other elements 

(0) are added to the 0-th column of B. Now B =* E{O) = Bo. Since 



P [A(z) # W~(B~OI U JL1])(z)]. Chose a finite set F~ o CL1l such - 

that wl(BCol U LI~'~~)(Z~) = wl(BCol U F2)(z1), and put the elements of 

F2 into B. and so on. For every i, it is clear that (B - %) Cil 

is finite, and Wi(B)(zi) = W~(B~<'] U oC2'1)(z. ) # A(zi). So A ie B 
1. 

- $ 1  =* B{i)* and B. de B for every i, since Bi - 
1 

We construct a Z approximation {B~) 2- SEW to B and attempt to 

satisfy the following requirements, listed in order of priority. 

Po: A # WO(B). 

No: (B - $)'01 is finite. 

N1: (B - ) I  is finite. 

From the definition of it is clear that if these requirements 

are met then the lemma is proved. 

~ e t  { A ~  o be a Z approximation to A @ with 
2- 

infinitely many true stages, T. 



Canstructian. 

Stage 0. 

Stage stl. 

For each i i s+l, we define a finite set Fi as follows. 

Fs+l = gs U (U {Bt+l: t < s and A' P Et AS P 5')). 
0 

s+l t 
In order to define Fi+l. set Ei,s+l = B  for every t 2 s, and 

s FS+l = U {u(Wi.Ei, s+l , x ,  s+1) - F'+': x 5 zi and u(Wi .Ei, s+l i+l 0 9 x 9  s+l) 1). 

where 

End of construction. 

Definition. Let B' = U BS+l. 
SET 



Proposition 1. 
N 

.l. B c B. 

.2. B' = B. 

Roof. 1 is immediate from the construction. 

B G Bo since B = {x: 3t (Vs > t) [x E B~]} and T is infinite. 

Assume u E T. Choose t such that @ E @ gS for every 

s > t. Then B~ F;+' B s + l  for every s > t, by definition of 

F:+' in the construction. So B ' G B. 

Rqposition 2. For euery i 

. 1 .  A # Wi(B). 

.z. at (vs , t )  [S E T F:+' = 03, ;+I 

.3. (B - ) is finite. 

Roof. The proof is by induction on i. Assume 1-3 hold for every 

i < m. We show that 1-3 hold for i = m. Since j? E B (Proposition 1) 

and (B - ) is finite by the induction hypothesis, j?[<ml e 

B ~ < ~ ~  . B U wCbl. Now B 
e 

"C<ml BO @ BI@ . . . e @ Bm-l le Bm-l* 
A Se E[<~]. Therefore, A ie B U wCtil. Choose z least such that 

A(z) # W m (B U wC2m1)(z). 



Claim, 

s+l s+l .I. For euery s E T ,  Wm ) l' (zs+l ) E Wm(B) . m 
s+l s+l .2. w m (B u u[Lml)~(z+l) = lim wm (Em, s+l )~z+I) = W~(B)P(Z+I). 

SET 

boot.  Suppose s E T and x E W:+~(E:::+~ ) ( z )   hen 

s+l s+l 
u(wmsEm, s+l .x,s+l) E FO U Fm+l E B s+l and by definition of Fm+l 

B'+'. But B'+' E B' = B. Therefore x E Wm(B), so 1 holds. 

moose a stage t E T such that w (B u w['ml) F (z+l) E m 
wt @+l (B' '+l u wCLml) . moose t > laax { t * . z) such that for every m 

s > t. Al(z+l) E As and At' @st' E AS @ gs. 

Suppose s > t and s E T. Then B t '+1 s+l from the EF0 CEm,s+l 
[ 1x1 s+l s+l construction. Therefore Wm(B U w )P(z+l) Wm (Em,s+l ) Suppose 

ws+l s+1 
m (Em.s+l )P(z+l) - W (B U wCtml) # 0. Choose x least such that r B m 
s+l s+l S 

wm (Em,s+l )l'(z+l) - Wm(B U wCLml). If x < z then z = x since m 

A'I~ = A P ~  = W~(B u JLml)rz. ~f x = 2 S S then f > x since A (2) = 

A(z) # W (B U wCLml)(z). In either case x E Wm(B) by 1, which m 

contradicts x d W (B U u(~)). Therefore W (B U ocLml)l'(z+l) = m m 
s+l s+l wS+'(~:+')t(z+i), m 2; = 2 and wm E )r(z+i) c W~(B) by 1. 

Therefore 2-3 hold. 0 

Since A(z) # Wm(B U wChl)(z), 1 follows from the Claim. 

moose t E T such that < and W:+'(E~::+~ )l'(z+l) have reached 



a limit (on stages s E T) by stage t, and for every x E 

W(B)(z+l) t > h(Wm.B.x). Suppose s > t and s E 7'. Then zz = t 

u and since Em,s+l = BU for every u < s, for every x E 

s+l s+l 
wm cEm.s+l )P(z+l) = Wm(B)b(z+l). we have U ( W ~ , E ~ , ~ + ~  ,x.s) = 

t+l s+l s+l U(W~.B.X. s) 1 E B E FO G E m  + ; therefore u(Wm,Em, s+l ,x.s+l) = 

u(W E m' m,s+l .x.s) E F;+'. Hence F:+' = 0. So 2 holds. 

Note that if s E T, t < s, and At @ Et E AS @ sS, then t E T. 

~lso F::: c JLiI for every i. Therefore 

(B - E)["] = [ U - g (Proposition 1) 
SET 

c U - U F;"] - F;"] (since F;" G [slS Bt+l] U E) 
sff [ [k<m+l 

which is finite from 2. Therefore 3 holds. 

Hence requirements S. Pi and Ni are satisfied (Propositions 1 

and 2). .. 



Corollary 4.2.4. For every non-zero low e-degree a there exists 

a % e-degree b such that a I[e b and for every z < a, either - e 
z < b or there exists y <e a such that y z = a and y b. - e 

Hence the lower cone of a is split into degrees which are below 

b and degrees whose join with a degree below both a and b, is a. 

54.3 PROOF OF THEOREM 4.1.2 

Due to the density of the e-degrees it suffices to show that 

for every pair of distinct incomparable I2 e-degrees a and b. 

{z: z <e a} # {z: z <e b}. Towards a contradiction, suppose degrees a 

and b are a counterexample. Let A E a and B E b. 

We first prove a general technical lemma (~e& 4.3.1), which 

implies that if there exist I2 approximations to A and We(B) for 

e E a, satisfying certain conditions, then there exists C <e A such 

that C I[e B. It only remains to show that such approximations exist. 

0 B must be non-r.e., so KB ze B is non-r.e.. Therefore 

- 0 0, G(KB) <, KB B from property 2 of G, the Gutteridge operator, which 

0 is described later. Hence G(KB) = W(A) for some e-operator W. We 

then use this fact and certain key properties of G to generate the 

desired approximations (Corollary 4.3.3). 



As an additional application of Lemma 4.3.1, we prove Corollary 

4.3.4. 

LEa 4.3.1. If A Se B, A E and there exists a 

z -approximation {A'} 2 sEo 
to A with infinitety many true stages T, 

and a strong array {B:)~,~~ such that for every e, x, tiin B;(x) = 
ta 

We(B)(x), then there exists C <e A such that C ie B. 

Roof. Assume A B. { A ~ } ~ ~ ~  and {':}e,s€u satisfy the 

conditions of the lemma. We construct an e-operator 8 such that 

@(A)  and @(A) Se B. Letting C = @ ( A \  yields the lenam. e \ J 

We attempt to meet the following requirements, listed in order of 

priority. 

The proof is virtually identical to that of Lemma 2.2.1. In order 



to satisfy requirement r, we construct an e-operator 8 and set r 

8' is the set of instructions <F,x> which have been enumerated into r 

Or by the end of stage s: is a recursive enumeration of 8 . r 

Set 

natural recursive enumerations of 8. 8 and respectively. 6- L. 

S generated by {8q}sEo. Using the technique of Proposition 1.4.3 we can 

redefine and {':}e,s~~ so that in addition, for every r, 

is a 2 approximation to A with infinitely many true 2- 

stages. T. 

Lemgth of agreement functions. 

We attend to requirement r at stages s+l, where ( s ) ~  = r. If 

r = 2e then we arrange that for z E w:(~~(A~)) bL(e, s) . z E 



w~(~~(F~UA~IZ)). where FSEAS is finiteand lim~'=FcA (F e s€T 

finite). This is done in such a way that if Z(e,s) as s 

increases in T, then z € We(9(F U Ak)) for every z € We(O(A)). If 

requirement r fails. We(9(A)) = A is r.e., which is a contradiction. 

If r = 2e+l. then we code A'PL(~, s) into B~(A~){'}. If requirement 

r fails. A B(A){~} ie 9(A) = We(B). which contradicts A le B. e 

Stage 0. 

Do nothing. 

Stage e l -  

Let r = ( s ) ~ .  

Case 1. r = 2e. 

For every z, set 

For every z, x such that 



enumerate <E;,X> into Or. If z satisfies 1.1 and E: G A, we say 

s+l is (r.2)-active. 

Case 2. r = 2e+l. 

For every z E ASb~(e.s). enumerate <A'. <z,r>> into €Ir. 

End of construction. 

12.1 Proposition 1. For every r. @,(a) G o . 

S Proof. It suffices to show that for every r, s, €Ir(,) G 

The proof is by induction on s. 8' = 0 for every r. Assume €IS(") G r r 

w ' for every r. If r # (s), then 8S+1 = €IS. Suppose r = (s), 
" r r V 

and <F.x> is enumerated into Br at stage s+l. 

Case 1. r 2e. 

Then x E u(We.8(A),z.s) - €lS(E;) for some z E w~(€I~(A~))P~(~.~). e 

Hence x E eS(AS) - €IS(E:). Now B;~(A') G 8:r(~E) (Proposition 2). 

S S Therefore x E €IS(AS) - B;~(A~) = e2,(A ) G 8sr(o) G oCLrl by the 

induction hypothesis. 

Case 2. r 2e+l. 

 hen x = <z.r> E JLr1 for some z. 



Proposition 2. For euery r, z, if r = (s)~ = 2e then, 

.I . 9;r(~s) E ~;~(f), 

.2. if z E f(BS(AS))Pl(e,s) then 

.l. z E 1: (€Is+' (E;) ) , 

.2. if s+l is (r.2)-active then Astz E A, O;,(AS) G O(,(A) 

zEWe(9(A)), 

Proof. Assume r = (s)~ = 2e. From the construction, 

S S S 
U(9<r.A,e<r(A ),s) E EZ, therefore 1 holds. 

Suppose z E ~~(9~(A~))Pl(e,s). Then either z E W:(O~(E:)) or by e 

the action taken at stage s+l , u(We.9(A) , t ,  s) E B'(E:) U gS+l(~:) C 

gS+'(~:). Therefore 2.1 holds. 

Ass= in addition that s+l is (r,z)-active. Then A'PZ C E: C 

A. By 1, B;~(A~) E ~S,(E;) G e+(A) and by 2.1. z E ~z(9~+~ (E;) ) C 

Proposition 3. For euery r, 

.l. requirement r is satisfied, 

.2. 9,(A) is finite. 

Proof. The proof is by induction on r. Assume 1-2 hold for every 

r < q .  We show that 1-2 hold for r = q .  It follows from the induction 

hypothesis that U(9 .A.BCq(A)) is finite. < q 



Case 1. q = 2e. 

Then requirement q is A # W e ( ( A ) )  Suppose A = W e ( 9 ( A ) ) .  

S We define a recursive enumeration {A '  of a set A '  as follows. 

Claim 1. A '  = A .  

Proof. We can easily show that A' '  E A for every s, by 

induction. Hence A '  C A .  

Since W: (9' (A ' ) A ' - for every s . Wo ( B ( A  ' ) ) C A ' . We show - 
that A E z  G A '  for every z, by induction. Hence A C A ' .  

Assume A E z  G A ' .  If z e A then we are done. 

Suppose z E A = We(9(A) ) .  Choose s E T such that ( s ) ~  = 4. 

z E ~ ~ ( f 3 ~ ( ~ ~ ) ) ~ l ( e . s ) .  e f 3 ? q ( ~ S )  = f3<q(A) and U(f3 , A . B ; ~ ( A ~ )  .s) = < q 

U(f3<q.A.f3<q(A)).  Then E: = U ( B < ~ . A .  B ; ~ ( A ~ ) .  s) U ~ ' r z  E U(BCq .  A.  B C q ( A ) )  

U A l z  G A '  by the induction hypothesis. Nor z E WZ(B~+~(E:)) 

(Proposition 2). so z E W (€ ) (A ' ) )  A ' .  Therefore A E ( z + l )  G A ' ,  and 
e 

we are done. 0 

A is r.e. by Claim 1, which is a contradiction. Therefore A # 

W e ( ( A ) )  SO 1 holds. 



Claim 2. For euery z, there are only finitely many (q,z)-active 

stages . 

Roof. Towards a contradiction, suppose z is a counterexample. 

Choose a (q.2)-active stage t+l such that U(f3 A,f3<q(A),s) has 
<4' 

reached a limit by stage t and for every s ;! t . A h  C A'. Then 

f3$At) = @<•÷(A) (Proposition 2). therefore Et = U(0,,q,A,f3<q(A)) U 
Z 

t t+l t A h .  and z E We(@ (EZ)) (Proposition 2). Let s+l > t 

(q.2)-active stage. It follows from the definition of E: 

be a 

and the 

choice of t that E: E E:. Theref ore z E ~z(€3~(~~)). which is a 

contradiction. 0 

By 1 we can choose a least y such that A(y) f W_(e(A))(y). 
G 

Choose a stage t such that 

Claim 3. For euery z ) y ,  there are no (q ,z)-active stages 

after stage t. 

Roof. Suppose not. Choose z > y and a (q,z)-active stage 

s+l > t. Note l(e,s) > z > y and from the construction, ES G E: C A. 
Y 

Case 1. y E A. 

Then y E ~;f(~~(A~))bl(e.s). Therefore y E We(B(A)) (Proposition 



2). which contradicts the choice of y. 

Case 2. y € We(9(A)). 

Then y E AS. Therefore y € A s h  E A (Proposition 2). which 

contradicts the choice of y. 0 

From the construction x E 8 (A) if and only if there exist 2, t 
4 

t such that <E ,x> is enumerated into 0 at (4.2)-active stage t+l. 
Z 4 

The set of stages t for which there exists z such that t is 

(4.2)-active is finite (Claims 2 and 3). Since only finitely many 

instructions are enumerated into 8 at each stage, 2 holds. 
4 

Case 2. q = 2e+l. 

m** Then requirement q is *W(A){~} g We(B) . 

Claim 4. For euery z ,  if z E then z € AS. 
4 

Roof. Assume z E B~(A~){~}. Then there exists an instruction 
4 

<F, <z. q>> E 0' such that F G AS. Suppose such an instruction is 
4 

enumerated into 9 at stage t+l s. An inspection of the 
4 

t t 
construction shows that q = (t)O, z € A PL(e.t) and F = A . 

Suppose B(A){'} = w~(B){~}. Since 0 (A) is finite. (by the < 4 
induction hypothesis), m = max (O<q(A) {4}) is defined. 



Proof- Let z > m. 

Suppose z E O(A){~}. Then z C 8 (A){~}, so z E 8 (A)'" < 4 4 

(Proposition 1). Choose s E T such that z E O~(A~){~}. Then 
4 

z E AS A (Claim 4). 

Suppose z E A. Choose s E T such that (s)~ = q and 

z E ASPL(e.s). Then A' C A and <AS, <zSq>> is enumerated into 8 
4 

(41 at stage s+l. Therefore z E 8(A) . 

By Claim 5 A Se @(A) = We(B) 5, B. which is a contradiction. 

Therefore 8(~){~} z w,(B){~}~ so 1 holds. 

By 1 we can choose a least y such that e(A){'}(y) f w~(B){'}(~). 

From the construction x E 8 (A) if and only if there exist 
4 

s E T. z such that (s)~ = q. x = (2.4) and z E AStL(e.s). However 

lim L(e,s) = y ,  therefore 8 (A) is finite. 
SET 4 

Hence all requirements are satisfied. I 

Definition 4.3.2 (Cooper). An s-operator. 9, is an e-operator 

such that for every <F,x> E e ,  <F.x> = <0,<i.j>> or <F.x> = 

<{i},<i,j>>, for some i, j. 



The Gutteridge [1971] (pp. 42-46) operator, G, is an s-operator 

with the following properties: 

1. G(X) is r.e. implies X <TO'. 

2. G(X)E X implies X is r.e. e 

3. For every i there exists j such that <{i}.<i,j>> € C and 

<0,<i,j>> e c. 

4. For every t, {j: <{i < i j > >  € G} is finite. 

0 Corollary 4.3.3. If A E %, A ie B and G(KB) 5, A then there 

exists C <e A such that C le B. 

Proof. Assume A and B satisfy the hypothesis. Choose an 

0 e-operator W such that W(A) = G(KB) . Let {A'}~~ be a 

t 2 approximation to A such that for every r .  {A }(t)O=r 2- is a 

S 2 approximation to A with infinitely many true stages. Let {W IsOo 2- 

be a recursive enumeration of W. 

Definition. For every e, let B: = {x: 3j [<<x,e>.j> E w'(A') 

and <<x,e>, j> 6 GS(0)]}. 

B' is our guess at We(B) at stage s. This makes sense due to e 



0 
the fact that W(A) = G(5). properties 3 and 4 of G. and the 

0 
definition of Kg. Let T denote the set of true stages in 

That B: is defined in terms of A gives: 

Proposition 1. For ewry e ,  x. lint B;(X) = We(B)(x). 
s a  

Roof- Fix e and x. Choose a stage t such that all 

instructions <F, <<x. e>, j>> E G are in G ~ .  and 

Assume s E 7' and s > t. 

Case 1. x E W,(B). 

0 
Then there exists j such that <<x, e>. j> E G(KB) and 

<<x. e>. j>  E C(0). By the choice of t . <<x, e>. j> E wS(AS). Hence 

x E BZ. 

Case 2. x E We(B). 

0 
Then for every j. G(KB)(<<x,e>. j>) = G(@)(<<x,e>, j>) . By the 

0 choice of t . wS(AS)(<<x,e>. j>) = G(KB)(<<x.e>. j>) and 

G(0) (<<x.e>, j>) = Gs(0) (<<x.e>, j>) for every j. Hence x P B:. 0 

An application of Lemma 4.3.1 completes the proof. I 



Corollary 4.3.4. For euery patr of X2 e-degrees a and b, if  

a je b and b is low then there exists c (e a such that c je b. 

Proof. Assume a and b satisfy the hypothesis, A E a and 

B E b. Let { A ' } ~ ~  be a Z2-approximation to A with infinitely 

many true stages, and let { B ~ } ~ ~  be a low approximation to B. Set 

BS = l;(BS). Then for every x, lin B;(x) = We(B)(x). Applying Lemma e 
S 

4.3.1 yields C Se A such that C je B. c = dege C is the desired 

degree. I 



CHAPTER v 

EXBEDDING THE DIAMOND IN THE E-DEGREES 

95.1 INTRODUCI'ION 

Lachlan [I9661 has shown that it is not possible to embed the 

diamond lattice in the r.e. Turing degrees while preserving least and 

greatest elements, that is, there do not exist incomparable r.e. Turing 

degrees a and b such that a A b = 0 and a v b = 0 ' .  Cooper 

[I9841 has asked if the r.e. Turing degrees are elementarily equivalent 

to the enumeration degrees below 0;. 

Such an embedding is possible in the I2 enumeration degrees, 

which implies a negative answer to Cooper's question. 

Theorem 5.1. There exist a pair of Low e-degrees a and b such 

thut  a A b = Oe Md a v b c  0;. 



55.2 PROOF OF THEOREM 

We show that there exist low sets A and B such that 

and 

Letting a = dege A and b = deg B yields the theorem. 
e 

Let { K ~ } ~ ~ ~  be a recursive enumeration of K such that 

Vs [max KS < s and 8 s  - - $s+l - - p + 2  1. 

Without loss of generality we may assume that: 

S We construct low approximations {A and {B~}~& to A and B 

respectively. 

The choice of enumerations of K and W allows a construction 
e 

which involves three different types of actions at each stage to be 

mimicked by one which involves a single type of action at each stage. 



Definitions, 

Lesgth of agreement functions. 

L(e,s) = pz [ z  = s or w~(A~)(z) # w~(B~)(z)]. 

n(e.s) = max {L(e,t): t s). 

M(e.s) is called a maximmi l w t h  of agreement function. 

The possible outcomes of the construction, with regard to equality 

between ( A )  and ( 3  for e < n, are indexed by elements of 

<W2. That is. u E <02 corresponds to the outcome We(A) = We(B) if 

u(e) = 1 and We(A) # We(3) if u(e) = 0. ' 

We define a recursive set C for every u E <*2 by induction on 
u 

lh(u) . 

ca = {s: s - 0 mod 3). 
lh(u) > 0: 

A = {s: s E Cr and ( V t  < S) [t ECr 
. u- (1) 

(2 A = c u - - c  . 
d- (0) d- (1) 

Intuitively. Cu may be viewed as the set of stages at which there 



is evidence that u corresponds to the true outcome of the 

construction. We denote Cub(s+l) by c:. From the definition of Co 

it is clear that c is fully determined by the sequences and 

Since we are interested only in those e for which We(A) = We(B). 

we restrict our attention to the following subset of <02: 

Y = {u: u E <02 - {0) and o(e(o)) = 1). 

We define an element c(u,s) and a finite set E(0.s) for each 

u E Y. 

- c:, if C: g 0 ,  
u s )  = { 

otherwise. 

0 otherwise. 

So c(0.s) is the greatest stage up to s, at which there is 

evidence that a is the true outcome of the construction, and E(u,s) 

is W (A) as it appears at stage c(u,s), below its point of 44 
disagreement with We(u)(B). 



Proposition 1. For every o. T E 'W2, 

..I. T G o  9 Co G CT, 

.2. s E Co fl Cr * o and T are computible. 

Proposition 2. For every n, i f  s E 0 mod 3 then there is a 

unique o 0 n2 such that s E Co. 

- Proof. The two propositions follow from the observation that CQ) - 
{s: s E 0 mod 3) and for every a, Ca = Col U Cd. 0 

denotes the following partial order on <W2: 

U < T  kr U = T  or [(on ~)1 G o  and T $01. 

n For s 0 mod 3, o(n.s) denotes the unique element of 2 such 
m 

that s E cS 
o(n. s) 

(Proposition 2). and o = pn (3 s [a = a(n.s)]). n 

Note that if { A ~ } ~ ~  a d  { B ~ } ~ ~  are low approximations, then o n 

corresponds to the true outcome of the construction. 

'n = {o E 9: e(o) = n), Yln = U Yk and Y>n = Y - Y'<,. 
k<n - 

Requirements. 

We attempt to satisfy the following requirements, listed in order 



of priority. 

QO: If  u1 € Y then 

3u (Vt > U) (VS > t) [E(ul. t) E W;(AS) or 

E(u~.~) E W;(B~)I. 

Po : aWs [k E WS(As)] ;) k € We(A), where 0 = <k.e>. 
e 

Q1: If u2 € Y then 

a. (vt > u) (VS > t) [E(u~, t) 5 w;(A') or 

E(u2. t) G W;(BS)]. 

PI: ams [k € WS(BS)] ;) k E We(B). where 0 = <k.e>. 
e 

%: If  u3 € Y then 

(vt > U) (VS > t) [~(u~,t) E W;(A') or - 
E(u3. t) G w@')]- 

P2: ams [k € WS(As)] o k E We(A). where 1 = <k,e>. 
e 

If these requirements are met then the theorem is proved. Assume 

that all requirements N, Pn and are satisfied. ie A@B from 

- 
requirement N. Now yK (Ke K since K is r.e. Hence y < A@B. K -e 

{Ask" a.nii {BS}sEu are low approximations, from requirements 'n. 

Thus A and B are low. Suppose We(A) = We(B). Then ue+l E Y and 



from requirement Qe we can choose u such that 

(Vt > U) (Vs > t) [E(q+l. t) E W:(A') or 

Let 

From * and the lowness of the approximations, Y G W ( A )  U W ((B) = e e 

We(A). We(A) = We(B), the lowness of the approximations and CD 
e 

infinite imply that We(A) E Y. Therefore We(A) = Y, and Y is r.e. 

since Cu is recursive. 
e+l 

Use function. 

Let V be an e-operator. 

u9(V.X.k) = 
where z = pi [k E V(Di) and Di E XI, otherwise. 

At each stage every a E 9' is assigned a status, ON or OFF. 

The status of a indicates whether the strategy for ensuring that 

W (A) isr.e., (inthecasethat a 44 W a )  
= a and We(o) (A) = 

W (B)), is active or not. Henceforth we will call this the strategy 44 



associated with a. When we refer to the status of a at stage s we 

mean the status of a at the end of stage s. If a is not explicitly 

assigned a status at stage s+l, then it is the same as at stage s. 

Restraint functions. 

- {[- u*(~~,~~,k)]+l, pl), if u*(w~,~~.k)l. 

pl . otherwise, 

where p = 2<k,e> and X = A, or p = 2<k,e>+l and X = B. 

R(p.s) is associated with requirement P If U'(W~.X~.~)~ and 
P ' 

(K tl A' tl ~~)t~(p.s) = 0 then unless a set of lesser canonical index, 

(respecting higher priority restraints), is found for putting k in 

We(X), the aim is not to disturb X below R(p,s) after stage s. 

r(a,A,s) and r(0,B.s) are defined in the construction, for every 

a E Y .  For X = A, B, we agree that if a is OFF at stage s then 

r(u,X.s) = 0. and if a is ON at stage s+l and r(a.X.s+l) is not 

explicitly defined then r(a.X,s+l) = r(a,X.s). 

( A s )  and r(a,B.s) are associated with requirement Q 
e(4 . 

. r(u,X,s) C xS for X = A, B. If o is ON at stage s then either 

E(0.s-1) C W:(,)(A~) tl w~(~)(B~) or E ( - 1  wS (r(o.X, s)) where 
e(4 

X is either A or B. 



In the construction certain stages are designated a-active for 

one or more a E 9. If s is a-active then one of the sets A or B 

is marked at stage s. 

At a a-active stage the strategy associated with a is 

potentially threatened and active measures are taken to preserve it. 

the greatest a-active stage < s, if one exists. 
a(u,s) = { 

s , otherwise . 

Construction. 

Stage 0. 

0 A' = B = w. All o E Y are OFF. 

Stage st1 (s z 0 nrod 3). 

Turn all a € Y such that u > a(s,s) OFF. 

Turn every a € Y such that a G a(s.s) ON and set 

r(a,X,s+l) = 0 for X = A. B. 



Stage 1 (s 1 ppod 3)- 

If there exists p 5 s such that 

1. p = 2<k9e> and there exists D such that 

.l. k E (D) , 

.2. (Vm < p) [DtR(m. s) E AS]. 

.3. (Vu E Y ) [D fl r(u.B,s) C A'], 
IP 

-4.  u'(~:.A~,k)f or the canonical index of D is strictly less 

than the canonical index of u ' (w: ,AS, k) . 

2. p = 2<kSe>+l and there exists D such that 

.l. k E w:+'(D). 

.2. (Vm < p) [DfR(m. s) C BS], 

.3. (VU E Y ) [D n r(u.A.s) c B~], 
IP 

.4. u'(~~.~~.k)f or the canonical index of D is strictly less e 

than the canonical index of u' (w~.B~ ,k) 

* 
then let p be the least such. Turn all u E Y * OFF. 

>P 

* 
Case 1. p = 2<k,e>. 

Choose D with least canonical index satisfying 1.1-1.4. Set 



* 
Case 2. p = 2<k,e>+l. 

Choose D with least canonical index satisfying 2.1-2.4. Set 

gS+l = gS U D and AS+l = AS. 

If no such p exists, do nothing. 

Stage s+l (s 2 mod 3). 

Let F' = A' n B' n P+'. 
If there exists p s such that 

then let p' be the least such. Otherwise set p' = s. 

Turn all a E Y 
>P ' 

OFF. 

Case 1. (Va E Y .) [r(o,A.s) fl FS = r(o.B.s) fl FS = 01. IP 

Subcase 1.1. p' 0 mod 2. 

set gS+l = gS - FS and AS+' = AS. Mark A. 

For every a E Y such that a is ON at the end of this stage 

and a E a(s-2,s-2), set 



and r(a,B.s+l) = 0. We call s+l a a-active stage. 

Subcase 1.2. Otherwise. 

Same as for Subcase 1.1 with A and B interchanged. 

Case 2. Otherwise. 

Choose a' E Y first I-minimal . and then of greatest length IP ' 
such that 

Turn all a > a' OFF. 

Subcase 2.1. A is marked at stage a(a8,s). 

Set 

Mark A. 

For every a E SP such that a is ON at the end of this stage 

and a C a', set 

r(u,A,s+l) = 
U(we (a) ,A,E(a,s) ,s+l) 

and r(a.B,s+l) = 0. We call s+l a a-active stage. 



Subcase 2.2. Otherwise. 

Same as for Subcase 2.1 with A and B interchanged. 

In either Case 1 or Case 2 if there exists p 2 p* such that 

then let p" be the least such. Otherwise set p" = p'. Turn all 

0 E 9>p.. OFF. 

If AS+l or BS+l is not explicitly defined then it is the same 

as AS or B' respectively. 

End of construction. 

Roof. A0 = B0 = o and the only elements which are removed from 

s+l A or B at a stage s+l are elements of K . 0 

The construction reflects our intuitive notion of C and the u 

priorities of the various requirements. If a, r E SP and a < T then 

the strategy associated with a is given prioirity over that associated 

with T .  This is due to the definition of an. 



At stage s (s 0 mod 3), a new candidate for a appears for 
P 

each p 5 s, namely a(p,s). So at stage s+l we abandon old 

candidates a E Y where a > a(p.s), an action which reflects the 

definition of a If a(p.s) E 9 then E(a(p.s) ,s) E 
P ' 

fl W~+'(B~+~) (Proposition 4.1). so ((p,s),X,s+l) can be 
P-1 

set to 0 for X = A, B. This allows greater opportunity to meet 

requirements P at the following stage, as there are no restraints n 

imposed on A or B by the strategies associated with a E Y where 

a C a(s,s). As far as these strategies are concerned, we have the 

freedom to remove elements of K from either A or B. 

At stage s+l (s 1 mod 3). we attempt to meet requirements pn. 
* 

Suppose p = 2<k,e>. The fact that only elements of K are ever 

removed from either A or B, and all such elements must be removed if 

we are to meet requirement N, necessitate conditions 1.2 and 1.3. 

t t  Though there may be infinitely many t such that u' (We,A ,k) 1, each 

such set may contain an element of K which must later be removed from 

A for the sake of a higher priority requirement. To overcome this 

difficulty the trick is to attempt to put k in We(A) at a stage when 

the restraints imposed by higher priority requirements are minimal and 

A tl B is disjoint from K on or below these restraints. This makes 

condition 1.4 necessary. 

At stage s+l ( s  2 mod 3), we attempt to meet requirement N, 

while doing the least amount of damage to our strategy for meeting the 

other requirements. We also pursue our strategy for meeting 

requirements . If Case 1 holds then the removal of F' from A or 



B does not disturb the strategy associated with requirement Q where 
P 

p 5 p' or with P where p < p'. If Subcase 1.1holds thenmeeting 
P 

requirement 
pP 

, involves attempting to put k in !,(A) where p' = 

2<k,e>. Hence removal of F' from B assures that if k E w:(A) then 

k € w~+~(A~+~). But then for u E Y such that u G 4s-2, s-2). e 

E(u,s) = E(0.s-2) is no longer necessarily contained in 

ws+l s+1 (BS+'). However since As-2 
e(o~(~ 'e(u) G A (Proposition 

4.1) E(0.s) G WS+l (A~+'). Therefore E(u,s) G WS+' (r(o.A,s+l)). 
e w  e(4 

which is as desired. 

If Case 2 holds then we consider the minimal a E Y of greatest 
<P ' 

Length such that the strategy associated with a is threatened, and we 

attempt to preserve the strategy associated with every T E a such that 

r E 9. The length condition is necessary if we hope to satisfy all the 

requirements Q The simplest remedy is to choose a set X, either A n ' 

or B, and arrange that for every T G u such that T E Y ,  E(T. S) C 

w:i:) (r(~,X,s+l)), and in choosing X to backtrack and choose the same 

set which was used at the last stage at which similar adjustments had to 

be made. There are two advantages to this approach. Firstly, it 

safeguards us against the following situation: there are T'. T" E u 
s+l with r'. T*' € Y, E(rl.s) G We(r.) ((T'As+~)) E(T".s) C 

s+l 
we(T**) (r(r",B,s+l)) and there is a stage t > s (t 2 mod 3) such 

that r(~* .A, t) = r(~' .A.s+l), r(TW,B, t) = r(TW.B.s+l) and 

d+l f l  r(r* .A, t) fl ~(T'*,B. t) # 0. NOW E(T, t) = E(T. t-1) for T = T* . 
r". So here the removal of F' from either A or B may disrupt the 

strategy associated with T' or T", and if this situation was 



repeated infinitely often, there is no guarantee that we could even 

satisfy the requirements & and Q1. Secondly, if u E 19 and 

u < u  
lh(d 

then backtracking allows the restraints associated with a 

to settle down. A danger inherent in this approach is that we may 

choose the same set too often and force one of the sets A or B to be 

w. But this difficulty can be overcome 'by noting that at stages 

t t t t 
t Cu. ( t )  G W T  ) W T B  ) for every T us with T E 9. 

So if Cu is infinite, then there are infinitely many opportunities to 

switch sets. If R(pW,s+l) # R(pW,s) or A or B is disturbed below 

R(p". s) then the strategy associated with requirement 
QP 

is abandoned 

for p > p W .  

The choice of enumeration of K and an inspection of the 

construction yield the next four propositions. 

Proposition 4. For every s, 

.I. P - - P+' E P+2 for x = A B, 

.2. A3s+2 A3s+3 
or B 3s+2 3s+3 - c B  Y 

A3' 5 A ~ ~ + ~  or B3s B3s+3 .3. Y 

A. K~ n A~ n B~ = 0 for t = 3s. 3~+1. 

Proposition 5. For every u E 9, if u is OFF at stage s and 

ON at stage s+l then s E 0 mod 3 and a E u(s,s). 



Proposition 6. For every a E Y, if a is ON at stage s+l 

then Zh(o) < s. 

Proposition 7. For every a E Y, if a > ~ ( 3 ~ ~ 3 s )  then a is 

OFF at stages 3s+l to 3s+3. 

Proposition 8. For every a, T E Y, if a is ON at stage s+l 

and T G a then T is ON at stage s+l. 

Proof. Suppose not. Choose a, T E 9 with T C a, and a least 

s such that a is ON at stage s+l and T is OFF. We arrive at a 

contradiction by showing that T is ON at stage s+l. 

Case 1. s I 0  mod 3. 

Since a is ON at stage s+l, a < a(s,s) or a C a(s.s) 

(Propositions 6 and 7). Therefore T < a(s.s) or T C a(s,s). If 

T E a(s.s) then T is turned ON at stage s+l. 

Assume T < u(s,s). Then a < a(s.s). a is not turned ON at 

stage s+l, therefore o must be ON at stage s. So T must be ON 

at stage s (by our choice of s), and T is not turned OFF at 

stage s+l. 

Case 2. s 1 mod 3. 

As in the previous case where T < a(s.s), a and T must be ON 

* 
at stage s. Since a is not turned OFF at stage s+l, either p f 



* 
or e(~) < e(a) < p . In either case T is not turned OFF at stage 

s+l . 

Case 3. s Z 2 mod 3. 

As in the previous case a and T must be ON at stage s. At 

stage s+l, e(~) < e(a) < p" since a is not turned OFF at stage 

s+l. Now either Case 1 holds, or a 1 u91 since a is not turned OFF 

at stage s+l, hence T 10'. In either case T is not turned OFF 

at stage s+l. 0 

Corollary 9. For every a, T E Y, if' s+l is a-active and 

T E a then s+l is T-active. 

Proof. This follows from the previous proposition and an 

inspection of the construction. 

Proposition 10. For every a E Y, if a E a(3s,3s) then 

.l. r(a,X,3s+l) = r(a,X,3s+2) = 0 for X = A, B, 

.2. E(a,3s) = E(a,t) for t = 3s+l, 3st2, 

.3. E(u.3~) tit A n w (  for t =3s, 3s+l, 3~+2. 
e(4 

Proof. Assume a E Y and a E ~(3~~3s). Then a(lh(a),3s) = a 

(Proposition 1.1), c(o,3s) = 3s and E(u.3~) = $s (A~~)~L(~(U).~S) = 
e(a) 

13s (B~~)~L(~(U) .3s). 1 follows from an inspection of the 
e(4 

construction. Cu C0 = {s: s 0 mod 3) gives 2. and 3 follows from 



Proposition 4.1. 0 

Definition. For every a € 9, 

O(a.s) = {u: V t  [(u 5 t 5 s) a is ON at stage t]). 

[min O(a,s)]'l, if O(a,s) # 0, 
o( s )  = { 

otherwise. 

m k -  Since all a are OFF at stage 0, if o(a,s)l then 

o(a,s) = [min O(a,s)]-1. So a is OFF at stage o(a,s). 

Proposition 11. If o(a,s)l, then o(a,s) 0 mod 3 and 

a G a(o(a,s) ,o(u,s)). 

Proof. This is an easy corollary to Proposition 5 and the previous 

Remark. 0 

Proposition 12. For every (I E 9, if s+l is a-active then 

.I. s=2lRod3, 

2 a is ON at stage s+l, 

. .3. r(a.~,s+l) E xS+l for x = A, B, 

.c. r(a,A,s+l) n B n K = r(o.B,s+l) n A'+' n K'+' = 0. 



Roof. Assume u E Y and s+l is u-active. An inspection of 

the construction yields 1-3, 4 follows from 3 and Proposition 4.4. 0 

Proposition 13. For every a, s E Y, if s+l is u-active and 

T ) u then T is OFF at stage s+l. 

Proof. Assume a, T E Y, s+l is u-active and T > a. Then 

s 2 mod 3 (Proposition 12.1). If Case 1 holds at stage s+l then 

u C u(s-2,s-2), so T is OFF at stage s+l (Proposition 7). If 

Case 2 holds then o (I a'; since T > a, T > a', therefore T is 

turned OFF at stage s+l. 

Proposition 14. For every u E Y, if u (I u(3s,3s) and a is 

ON at stage 3s+3 then 

.I. 3s+3 is u-active, 

.2. E(u,3s+2) E ~+3(r(o,~,3s+3)), &re X is the set murked at 
e(4 

stage 3s+3. 

Roof. Assume u E Y, u C u(3s.3~) and u is ON at stage 

3s+3. Then u is ON at stages 3s+l and 3s+2 (Proposition 5) and 

s+2 3s+2 E(us3s+2) = E(u, 3s) (I 9 (A ) n ~s:+(B~~+~) (Propositions 10.2 
eb) 

and 10.3). 

Suppose Case 1 holds at stage 3s+3. Then 1 clearly holds. If 

Subcase 1.1 holds then A is marked at stage 3s+3 and A 3s+3 = A3s+2 
s 



definition of r(aSA,3s+3). If Subcase 1.2 holds we get a similar 

result . 
Suppose Case 2 holds at stage 3s+3. Then r(ae,A.3s+2) # 0 or 

r(ae.B.3s+2) # 0, by definition of a', so a' must be ON at stage 

3s+2. Since a C a(3s,3s), a' Sf a and a' ? a (Propositions 10.1 and 

7). a ? a' since a is not turned OFF at stage 3s+3. Therefore 

a C a'. So 1 clearly holds. If Subcase 2.1 holds then A is marked at 

stage 3s+3 and A 3s+2 A3s+3 - , so E(o,3s+2) C $S+3(r(u.~.3s+3)). 
e(4 

If Subcase 2.2 holds we get a similar result. 

Corollary 15. For every a E 9, if r(0,A.s) # 0 or 

r(a,B,s) # 0 then O(a,s) contains a a-active stage. 

Proof. Assume r(a.A.s) f 0 or r(a,B,s) f 0 for some a E Y. 

Then a must be ON at stage s. Hence O(u.s) # 0, so o(u,s)l. 

Now s > o(a,s)+3 (Propositions 11 and 10.1), therefore 

o(a,s)+3 E O(a,s) is a-active (Propositions 11 and 14.1). 0 



Proposition 16. For every a E Y, if a is ON at stage s+1 

then 

1 r(a,X,s+l) C X s+l for X = A, By 

.2. r(oyAys+l) fl B ~ + ~  f l  = r(o,B.s+l) fl A s+1 fl ,s+i = a , 

.3. if -[s 0 mod 3 and a E a(s,s) or 

s n 1 mod 3 and a E a(s-1,s-l)] then 

.l. a(a,s+l) is a a-active stage in O(a,s+l), 

-2. r(a,X,s+l) = r(u,X,a(a,s+l)) for X = A, By 

a ( +  & .3. r(u.A,s+l) fl B~~~ = r(u.A.s+l) fl B 

r(o,B.s+l) fl = r(o.B,s+i) fl A a(a, s+l ) s 

.4. E(o,s) E wS+' (r(o,X.s+l)), where X is the set murked at 
.(a) 

stage a(a,s+l) . 

Proof. Fix a E Y. The proof is by induction on s. Assume 1-3 

hold for every s < t. We show that 1-3 hold for s = t. Assume a is 

ON at stage t+l. If Io(u. t+l) I 2 3 then 1-3 follow from 

Propositions 11, 10.1, 14 and 12. Suppose Io(u, t+l) I > 3. 

If t 0 mod 3 and a E  a(t,t), or t 1 mod 3 and 

a C a(t-1,t-1) then 1 and 2 follow from Proposition 10.1 and 3 holds 

vacuously. So assume that -[t 0 mod 3 and a C a(t.t) or 

t E 1 mod 3 and a E a(t-1,t-l)]. If t E 2 mod 3 and a E u(t-2,t-2) 

then 1-3 follow from Propositions 14 and 12, so assume that 

-[t 2 mod 3 and a C a(t-2.t-2)]. 



Then by the induction hypothesis the following hold: 

1'. r(u.X,t) c xt for x = A. B. 
t t 2'. r(u,A. t) n B' n K' = r(o,B, t) n A n K = 0. 

3'. .l. a(a,t) is a a-active stage in O(a,t). 

-2. r(a.X,t) =r(u.X,a(u,t)) for X = A .  B. 

a(0.t) and .3. r(u,~. t) n B~ = r(u,A, t) n B 
a(u. t) r(u.B, t) n A' = r(0.B. t) n A 

.4. E(u, t-1) C wt ( ( u X  t)), where X is the set marked at 44 
stage a(0.t). 

O(u.t+l) = O(u.t) U {t+l) and 3'.1 imply 3.1. Since u g u(t,t). 

E(u,t) = E(a,t-1). 

Case 1. t 0 mod 3. 

Then xt+' = X for X = A, B (Proposition 4.1). Since 

a g u(t, t) and a is not turned OFF at stage t+l, r(u,X, t+l) = 

r(u,X.t) for X = A, B. So 1 follows from 1'. 2 follows from 1 and 

Proposition 4.4. Since t S 2 mod 3. t+l cannot be a-active. so 

a(u,t+l) = a(u,t). 3.2-3.4 follow from 3'.2-3'.4. 

Case 2. t 1 mod 3. 

Since a is not turned OFF at stage t+l, r(u,X,t+l) = r(u,X.t) 

for X = A, B. So 1 follows from 1' and Proposition 4.1. As in Case 1, 

a(u,t+l) = a(0.t). So 3.2 and 3.4 follow from 3'.2 and 3'.4. 



Now Kt+' = K by the choice of enumeration of K. If pXf at 

stage t+l  then xt+' = X for x = A. B. so 2 and 3.3 follow from 2'  

and 3'.3. 

* 
Otherwise e(a) I p , since a is not turned OFF at stage t+l .  

t  Assume Case 1 holds at stage t+ l .  Then At+' = A U D and B ~ + '  = B t  

where D satisfies 1.1-1.4 (at stage t+l ) .  Now r(u.B, t+ l )  fl A ~ + '  = 

( r ( o . B . t ) f l ~ ~ ) ~ ( r ( o . B , t ) f l ~ )  = r ( ~ , ~ , t ) n ~ ~  b y 1 . 3 .  ~ 0 3 . 3  

follows from 3'.3. r(o,A, t+l)  fl B'+' fl Kt+' = r(a,A, t )  f l  B~ fl K t  and 

r(a,B, t+l)  fl A t+l  - - r(u.B,t) fl rt n Kt  from above. So 2 

follows from 2'. If Case 2 holds we get a similar result. 

Case 3. t S 2 m o d 3 .  

Since a is not turned OFF at stage t+ l ,  e(a) I p" I p'. 

If we can show that 1 holds then 2 follows from Proposition 4.4. 

Assume Case 1 holds at stage t+l .  Since a a(t-2, t-2), t+l  

cannot be a-active, so a (a , t+ l )  = a(a . t ) .  Since a is not turned 

OFF at stage t+ l ,  r(a.X,t+l) = r(a,X,t)  for X = A, B. So 3.2 and 

3.4 follow from 3' .2 and 3' .4. e(u) 6 p '  implies r(u.A, t )  fl F~ = 

s+l r(o.B.t) fl F~ = 0. So 1 and 3.3 follow from the definition of A 

and B ~ + ~ ,  1' and 3'.3. 

Assume Case 2 holds at stage t+l .  Then r ( a8 ,A , t )  # 0 or 

r (a1.B1t)  # 0,  so a ( a ' , t )  is a a'-active stage in O(a ' , t )  

(Corollary 15). Since a is not turned OFF at stage t+ l ,  a 1 a ' .  

so a C a ' ,  a < a' or a'  C a. 

Assume a C a ' .  Then t+l  is a-active and 1,  3.2 and 3.3 



clearly hold. Now O(a' . t) E O(a, t) (Proposition 8). so 

a(a9.t) E O(0.t) and a(a',t) is a-active (Corollary 9). 

Assume Subcase 2.1 holds at stage t+l. Now either E(a,t) = 

E(a,a(a', t)-1) or a(al. t) 5 c(a, t) 5 t. In the former case E(a. t) 

a(al f(u' *t)(r(u.~.a(a', t))) and r(uAa(u t)) A , by the 
e(4 
induction hypothesis; A ~ ( ~ ' * ~ )  t+l C A , by definition of 

At+l . so 

( a  t) G W ( A )  hence E(u. t) C wt+' (r(u.A. t+l)) by definition 4~) 
of r(o,A. t+l). In the latter case E(a, t) C W' A since 

e (4 
a(u1, t) 5 c(a. t) 5 t. A ~ ( ~ '  t, At+', by definition of A~+', and the 

rest goes as before. If Subcase 2.2 holds we get a similar result. 

Now assume that a < a' or a' C a. Then t+l is not a-active, 

so a(a,t+l) = a(0.t). Since a is not turned OFF at stage t+l. 

r(a,X,t+l) = r(a,X,t) for X = A, B. So 3.2 and 3.4 follow from 3'.2 

and 3'.4. a(a,t) 5 a(al,t) (Proposition 13 and Corollary 9). and 

a(al, t) E O(a. t), since a(a, t) E O(a, t). 

Assume Subcase 2.1 holds at stage t+l. For every u such that 

a(al,t) 5 u+l 5 t, -.[u 0 mod 3 and a E a(u,u) or u 1 mod 3 and 

a C a(u-1.u-l)]. Otherwise u+3 or u+2 would be a a-active stage 

less than or equal to t+l (Proposition 14) and no such stage exists. 

So by the induction hypothesis, for all such u, r(a.X,u+l) = 

r(a.X,a(a,u+l)) = r(a.X,a(a,t)) = r(a,X.t) for X = A. B, 

a(usU+l) = ( A t )  n B ( A u + l )  n BU+l = r(o.A.u+l) n B a(0-t) - - 

r(o.A, t) f l  Bt and r(o.B,u+l) fl AU+l = r(o.B.u+l) ll A a(a,u+l) - - 
t a(ust) = r(~,~,t) n A . r(a.B,t) n A 



Then r(u,B. t+l) f l  At+' = r(u.B, t) f l  

u (r(u,B, t) n A ~ )  = U , (r(u.B.u) n AU) = 
a(u',t)<u<t a(u',t)<u<t 

r(u.B, t) n At. Note that r(o.A, t) n Ft = r(u.B, t) fl Ft = 0 by the 

choice of u'. So r(o,A. t+l) f l  Bt+l = r(u,A. t) n [B' - (At+' n I?+')] 

= r(u.A. t) fl Bt since r(u.A, t) fl Bt f l  At+' fl Kt+' E 

r(u.A, t) n Bt n Kt+' = r(u.A, t) f l  Ft = 0 by 1'. SO 3.3 follows from 

We have already noted that r(u.X,t+l) = r(0,X.t) for X = A, B. 
t Now A E A t+l from stage t+l and f rom above, 

r(u,B.t) n Ft = 0. So 1 follows from 1'. If Subcase 2.2 holds we get a 

similar result. 0 

Proposition 17. For every a E Y, if u is ON at stage s+l 

then for every p ( e(u) , R(p,s+l) = R(p,o(u, s+l)) , 
As+l ER(p,s+l) = 

A~(u9~+ 1) rR(p, s+i) ~d B~+'ER(~, s+l) = ER(~, S+I ) . 

Roof. Fix a E Y and p < e(u). Let p = 2<k,e> or p = 

- 2<k,e>+l. The proof is by induction on s. Assume a is ON at stage 

- s+l. If I~(u,s+l) I = 1 then s = o(u,s+l) 0 mod 3 (Proposition 11) 

and the result follows from Proposition 4.1 and the fact that if1 = 

wS So assume that 0(s+l) 1 > 1 R(p, s) = R(p.o(o, s)) , A ~ E R ( ~ .  s) = e ' 

AO(~* s)r~(p, S) and B'PR(~, S) = B ~ ( ~ ~ ~ )  ER(~. S) . 



Now o(u,s+l) = o(u,s), so by the induction hypothesis it suffices 

s+ 1 to show that R(p,s+l) = R(p,s) and X ER(p.s) = X~ER(~,S) for 

Case 1. s 0 mod 3. 

wS+l = W: and Proposition 4.1 imply the result. 
e 

Case 2. s 2 1 mod 3. 

* 
If p f at stage s+l then the situation is similar to that in 

Case 1. 

* 
Otherwise p < e(u) ,( p . since u is not turned OFF at stage 

s+l. Assume Case 1 holds. Then A~+~ER(~,S) = A~IR(~,S) (by 1.2 at 

stage s+l) and BS+' = BS. R(ps s+l) = R(p.p) since wS+' ., = wS. If 
C e 

Case 2 holds we get a similar result. 

Case 3. s 2 mod 3. 

Since u is not turned OFF at stage s+l, e ( u )  5 p" and the 

result holds by definition of p". 



Propsitian 18. For every p, 

.l. if upIEY then 

3u (Vt > U) (VS > t ) [E(u t ) G w;(AS) or E(uwl 
ptl ' . t) E @P)I. 

.2. if owl C Y then 
A 

(3'*u E 9) [u (I) G u and 3s [r(u,A,s) z 0 or r(o.B.s) iC 011. 
P 

A 

-3. if u e Y then for every u E Y such that u (1) C a 
P+l P 

.I. Lim r(u,X,s) exists for X = A, B, 
S 

.2. lim r(u,B,s) fl AS and 2.1. r(u,A,s) f l  BS exist, 
S S 

.3. Lim r(u.B,s) ll AS and lirn r(u,A,s) fl BS are disjoint from 
S S 

.4. if p = 2Ck.e) then k E w;(AS) for sufficiently large s or 

lim U'(W~,A~.~) exists and 
S 

if p = 2<k,e)+I then k C w:(BS) for sufficiently large s or 

lim u'(~~,B~.k) exists, 
S 

.5. .I. Lim R(p,s) exists, 
S 

.2. ltm ~'k~(~,s) exists for X 
S 

Proof. The proof is by induction on p. Assume 1-5 hold for every 

p < q .  We show that 1-5 hold for p = q .  By the induction hypothesis 

we can choose a stage w > q such that for every q' < q the following 



hold: 

A 

3'. If uql+l Q Y then for every a E Y such that a (1) C a, 
4 ' 

reached a limit by stage w and the limits of the latter two are 

disjoint from K. 

4'. If q' = 2<k,e> then u'(~~.A~.k) has reached a limit by stage w 

or for every s > w, k 4 wS(AS) and e 

if q' = 2<k,e>+l then U'(W~.B~.~) has reached a limit by stage 

w or for every s > w, k Q wS(BS) . e 

5'. R(q',s). A~PR(•÷',S) and B~PR(~',S) have reached a limit by 

stage w and (A n B f l  K)t(lim R(q8,s)) = 0. 
S 

1. First assume that a E Y. Choose a stage u > w such that 
4+1 

Oq+l is ON at stage u and for every t 2 u, a(t.t) f a  . 
q+l 

Claim 1. For euery t 2 u. is ON at stage t. 

Roof. The proof is by induction on t .  uq+l is ON at stage 

u. Towards a contradiction, suppose that a 
4+1 

is ON at stage t 2 u 

and OFF at stage t+l. Note that e(~•÷+~) = q .  

Case 1. t 0 mod 3. 

From the construction a(t.t) < a 
q+ 1 

which contradicts the choice 

of u. 



Case 2. t 1 mod 3. 

* * 
Then p 1 < q at stage t+l. This contradicts 4' for q' = p . 

by the action taken at stage t+l. 

Case 3. t 2 mod 3. 

Then at stage t+l, p' < q, p" < q I p' , or Case 2 holds and 
a' < u ~ + ~ .  Suppose p' < q. Then p' < q < IU < t. But this 

contradicts 5' for qe = p', by definition of p'. By the same 

argument 1 [p" < q I p']. So Case 2 must hold with a' < a . Now 
4+ 1 

Hence for some 

Claim 2. 

since %+l 
E Y. Therefore a' < a 

•÷+l 
implies a' < a . 

A 
4 

4' < 4. uq~+l 6 Y and a (1) C a'. But •÷ ' 

# 0 or r(ol.B,s) n FS # 0. which contradicts 3'. 

Proof. Fix t 2 u. The proof is by induction on s 2 t. For 

s = t the result is clear. Assume E(a ,t) ~ E ( U ~ + ~ , S )  for some 
•÷+l 

s 2 t. By the induction hypothesis it suffices to show that 

E(U~+~.S) G E(uq+l ,s+l). If s+l 4 Cu then E(a ,s+l) = 
•÷+l 

•÷+l 

E(uq+l s). So assume that s+l E Cu . Let s' = C(U~+~,S). Then 
•÷+l 

. L(~,s+I) > L(~,S*), E(U~+~'s) = W~'(A~')~L(~,~*) and E(O .s+I) = 
•÷ 4+1 

w~+l (A s+1 )~(q,s+l) = W~+~(B~+~)PL(~,S+~). NOW E(U ,s) E wS+l(~"+l) 
9 4 4+1 4 

s+l s+l 
or E(uq+l .s) E Wq (B ) (Propositions 16.3.4 and 16.1). So 

E(U~+~. S) G E(U~+~. s+1) 



1 follows from Claims 1 and 2 and Propositions 10.2. 10.3, 16.3.4 

and 16.1. 

2-3. Now assume that a e Y. Then we can choose a stage v > u, such 
4+l 

A 

that for every s 2 v ,  if s 2 0 mod 3 then a (1) g a(s,s). By 
4 

A 

Propositions 6 and 5 no a with lh(a) > v and a (1) c a is ever 
4 

turned ON, whence for all such a, r(a.A.s) = r(a,B.s) = 0 for every 

s. Hence 2 holds. 

A 

Also note that if a E Y and a (1) c a then the status of a 
4 

reaches a limit since if a is turned OFF after stage u then a 

Y with remains OFF. So in addition we may assume that for every a € 
A 

a (1) G a the status of a has reached a limit by stage v. 
cl 

A 

If for every a E Y such that a (1) E a and a is ON 
4 

stage v there are only finitely many a-active stages then 

lim a(a,s) exists and 3 follows from Propositions 16.3.2. 16.3 
s 

16.2. 

.3 and 

Suppose not. Choose a E Y first <-minimal and then of 
A 

greatest 

length such that a (1) E a, a is ON at stage v and there are 
4 

infinitely many a-active stages. Choose u > v such that u+l is 

a-active and for every t > u and every T 3 a, t is not ?-active. 

Note that if all at stage t > u and a C a m ,  then t is a*-active 

since a' is ON at stage t, by the choice of v. 

R-k 1. If t > u and t is a-active then Case 2 must hold 
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at stage t since a a(t-3,t-3); also a' = a, by the choice of u. 

Assume that A is marked at stage u+l. 

Claim 3. For every t 2 u, 

.I. r(u,X,a(a,t+l)) = r(a,X,u+l) for X = A, B, 

.2. A is mark.ed at stage a(a,t+l). 

Roof. The proof is by induction on t. The result is clear for 

t = u. An inspection of the construction shows that since A is marked 

at stage u+l, r(o.B.u+l) = 0. Assume that for some t > u the 

following hold: 

1'. r(u,X,a(a,t)) = r(u.X,u+l) for X = A, B. 

2'. A is marked at stage a(u.t). 

If t+l is not u-active then a(a,t+l) = a(a,t) and 1-2 follow 

from 1'-2'. 

So assume that t+l is a-active. 2 follows from Remark 1, an 

inspection of the construction and 2'. Since a(u, t) 2 u+1. E(u. t) = 

E(a,a(a, t)-1) by the choice of u. Now E(u.a(a, t)-1) E 

P(~' t)(r(o,~,a(o, t))) (Proposition 16.3.4). r(u,A.a(u, t)) =dfn 
e(4 

t' 
U(We(o) .A.E(u,a(o, t)-1) ,a(o, t)) and r(u.A, t ' )  = r(o.A,a(u, t)) E A 

for every t' such that a(u,t) < t' t (Propositions 16.3.2 and 

t t+l 
16.1). From the construction A E A , hence r(u.A,t+l) =dfn 



U(we (a) 
.A.E(a, t), t+l) = r(a.A,a(a, t)), while r(a.B, t+l) = 0. 1 

follows from 1'. 

So for every t ) u, r(a,X,t+l) = r(a,X,u+l) for X = A. B 

(Claim 3.1 and Proposition 16.3.2). Hence we can choose U' > u such 

that u'+l is a-active, r(a,A.ut+l) fl I<U '+' = r(o.A,u'+l) n K and 

' P '  = 0 (Proposition 16.2). r(a,A,u'+l) t l  B 

Claim 4. For every t ) u', a(a,t+l) = u'+l. 

Proof. The proof is by induction on t. The result is clear for 

t = u'. Assume that a(a,t) = u'+l for some t > u'. 

If t+l is not a-active then a(a,t+l) = a(a,t) = u'+l. So 

assume that t+l is a-active. Then by Remark 1, a' = a so 

r(0,A.t) n F' # 0 or r(a.B.t) f l  F~ # 0. We have shown that 

r(a.B.t) = 0. t+l 
and r(a.A. t) fl F~ = r(o,A. t) f l  A~ fl B' t l  K G 

u'+l ,,t+l ( A t )  n B' n K'+' = r(o,A,u'+l) n B by the induction 

t 
hypothesis and Propositions 16.3.2 and 16.3.3. So r(0,A.t) fl F = 0 by 

the choice of u', which is a contradiction. Therefore t+l is not 

a-ac t ive . 0 

Claim 4 contradicts the assumption that there are infinitely many 

a-active stages. If B is marked at stage u+l we get a similar 
A 

result. So for every a E Y such that a (1) G a and a is ON at 
'I 

stage u there are only finitely many a-active stages. So 3 holds. 
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4-5. Assum q = 2<k.e>. Choose a stage u > u, such that for every 

o E Y such that u < uq+ll, r(uAs) ~ ( B s )  r(0.B.s) fl A' and 

r(a.A.s) fl B' have reached a limit by stage u and the limits of the 

latter two are disjoint from K. Suppose there exists D* such that 

Choose such a Do with least canonical index and a stage u > u such 

C u(u-1.u-1). k E ~u+'(D') and that u 1 mod 3, - e 

XLLqm {(m D*)+I, q+q) = Kr(m {(- D')+L q+l)). 

t t R a a r k 2 .  For every t > u, if D' At then u(We.A ,k)l = D'. 

This follows from the definition of D' and the choice of ID, u and 

u. 

Now for every a E 9 if a < a 
•÷+l 

or a c u  
•÷+l 

then 
14 

r(u,X,u) = 0 for X = A, B (Propositions 7 and 10.1). Examining stage 

+1 Au+l u+l, we see that u' ($ , .k)l = D'. 

u+ 1 Proof, Since D' _C A rR(q.u+l), by Remark 2 it suffices to show 

that ~~+~tR(q,u+l) E A ~ + ~ .  p' 2 q at stage u+2 by the choice of w. 



If Case 1 holds at stage u+2 and p' = q then AU+U+~ - - Au+u+l ; if 

FU+'rR(q.u+l) = 0, 
u+2 

p' > q then so ~~+~tR(q,u+l) E A , by 

u+2 
definition of A . 

Suppose Case 2 holds at stage u+2. If Subcase 2.1 holds at stage 

u+l u+2 u+2 thenclearly A C A  . 
So assume that Subcase 2.2 holds. Since r(a' ,A.u+l) fl FU+l # 0 

or r(o' .B,u+l) fl FU+l z 0, a' a - 1 - 1  (Proposition 7) and 

a' a - 1 , - 1  (Proposition 10.1). C a(u-1.u-1) implies 

a' 1 a 
q+l 

and a' E u ~ + ~ .  a' i a  
q+l 

by the choice of v. Therefore 

Og+ 1 C a'. Now q < e(a') and a(a'.u+l) is a a'-active stage in 
- 

u+2 - O(a'.u+l) (Corollary 15). Then B - U B~ and 
a(a'.u+l)$t$u+l 

u+l A ~ + ~  = A - ( B ~ + ~  n I?+2). B~+~~R(•÷,U+~) = 

U t u+l (B rR(q,u+I)) = R ER(q,-u+l] by Proposition 17, since 
a(a'.u+l)lt$u+l 

q < e(a' ) and O(U' ,u+l) < a(a' .u+l). SO 

(Au+ fl B ~ + ~  fl I?+2)r~(q,u+l) = (AU+l n BU+l fl ~+~)~R(q,u+l) = 

~~+~~R(q,u+l) = 0 since q < e(a') 5 g' . Therefore ~~+~~R(q,u+l) C 

Au+2 0 

Remark 3. Claim 5 implies that R(q.u+2) = R(q.u+l) . So 

. ( A ~ + ~  fl B ~ + ~  fl K)bR(q,u+2) = 0 by the choice of u and Proposition 

. 4.4. 



Claim 6. For euery t ) u, 

1. R(q,t+l) = R(q,u+2), 

At+l 
2. tR(q,t+l) = u+2 ~~+~t~(q,t+l) and ~~+'tR(~,t+l) = B  tR(q,t+l). 

Roof. The proof is by induction on t .  The result is clear for 

t = u+l. Assume that 1-2 hold for every t such that u < t < z. We 

show that 1-2 hold for t = z. D' G AZER(q,z) by the induction 

hypothesis. By Remark 2 and the induction hypothesis it suffices to 

show that 

Case 1. z 0 mod 3. 

This follows from Proposition 4.1. 

Case 2. z E 1 mod 3. 
* * 

If p f at stage z+l then t is clear. Otherwise p > q by 

the choice of w, u and D', so t holds by the choice of D at 

stage z+l. 

Case 3. z 2 2 mod 3. 

F~ER(~.~) = 0 by Remark 3 and the induction hypothesis. If Case 1 

holds at stage z+l then t follows from the definition of and 

B=+' . 

So assume that Case 2 holds at stage z+l. Then 



0'-active stage in O(aa,z) (Corollary 15) and a' < u 
q+l 

by the 

choice of u. Therefore u' > a' E a 
q+l Or Oq+l 

C a'. 

Assume that a' > a 
q+l 

or a' E a . If a' > a 
q+l 4+1 

then 

u > a - 1 - 1 ,  therefore u+2 < o(a',z) < a(u',z) I z (Proposition 

7). If a' C a 
q+l 

then a' E a(u-1,u-1); now either a' is OFF at 

stage u+2, whence u+2 I o(ug.z) < a(ul,z) I Z. or u+2 is 

a'-active (Proposition 14.1), whence u+2 I a(u',z) 5 z. So for every 

z' with a(a'.z) < z' < z, 

by the induction hypothesis. 

Assumethat a Cu'. Then q<e(u1). Soforevery z' such 

since o(a',z')= o(ua,z) < a(aa.z) (Proposition 17). So again for 

every z' with a(ua,z) < z' I z, $ holds. 

Assume that Subcase 2.2 holds at stage z+l. Then B ~ + ~ E R ( ~ . ~ )  = 

AZIR(q,z) since (Az n BZ fl P+~)PR(~.z) = ?ER(q,z) = 0. as noted 



earlier. If Subcase 2.1 holds, we get a similar result. 

t t  If no D' satisfies 6'-8' then k C We(A ) for every t 2 u by 

the choice of u and . So R(q.t) = q+l for every t 2 u and we 

can choose a stage u > u such that u 1 mod 3. uq+l u(u-1.u-1) 

and ( A ~ + ~  fl BU+2 fl K)bR(q,u+2) = 0. Claim 6 also holds for this choice 

of u by a similar proof. 

If q = 2<k,e>+l we get a similar result. 4 and 5 follow from 

Claim 6 and the choice of u (and Dl). 0 

Requirements N. 4, and Pn are satisfied (Propositions 3 and 

18). 
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APPENDIX 

OPEN QUESTIONS 

It is straightforward to show that an answer to the following 

question, combined with the results in this thesis would suffice to 

decide a1 1 sentences of the form (Vxl) (Vx2) (3y)a(xl .x2. y) . (a 

quantif ier-free) in 'I'h(g:(%)) : 

1. Do there exist incomparable I2 e-degrees a and b such that 

a v b = 0; and for every z < a. z Ie b? e 

Digressing from the I2 e-degrees, one of the most intriguing 

"open" questions about the e-degrees is: 

2. Are the e-degrees dense? 

Case's [I9711 result that no total e-degree is minimal relativises to 

show that no total e-degree is a minimal cover. Gutteridge [I9711 

showed that no total e-degree has a minimal cover and that any non-total 

' e-degree has at most countably many minimal covers. Cooper [I9821 

claimed to have constructed a minimal cover, however the result remains 

to be published, suggesting that the question is still an open one. 
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