SOME RESULTS ON THE STRUCTURE

OF THE Σ_{2} ENUMERATION DEGREES

by

Seema Ahmad
B.Sc., University of Toronto, 1982
M.A., University of Wisconsin (Madison), 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
 in the Department of Mathematics and Statistics

© Seema Ahmad, 1989
SIMON FRASER UNIVERSITY
April 1989

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Name: Seema Ahmad
Degree: Doctor of Philosophy
Title of Thesis: Some Results on the Structure of the Σ_{2} Enumeration Degrees

Examining Committee:

Chairman: C. Villegas

A.H. Lachlan

Senior Supervisor
A. Mekler
S. K. Thomason
A. R. Freedman
L. Newelski

> T. Slanaan
> External EXaminer
> Professor
> Department of Mathematics
> University of Chicago

Date approved: April 27, 1989

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
SOME RESUMES QQ THE STEUKTUOE OE THE
S ENUMERATION DEGREES

Author:
(signature)
$\frac{\text { SELMA AHMAD }}{\text { (name) }}$
$194 y$ 14, 1989
(date)

Cooper and McEvoy have defined a jump operator on the enumeration degrees (e-degrees) and have shown that the set of e-degrees of Σ_{2} sets is the same as the set of e-degrees below $\mathbf{0}_{e}^{0}$. They have also defined the concept of a low e-degree (in the natural way). Cooper has shown that the Σ_{2} e-degrees are dense. Gutteridge has proved the existence of a minimal pair of Σ_{2} e-degrees.

We have proved the following results about e-degrees:
Theorem 1. For every finite partial order ($\boldsymbol{S}^{\left(\leq^{*}\right)}$, if
$\boldsymbol{p}_{0}<^{*} \boldsymbol{p}_{1} \prec^{*} \ldots<^{*} \boldsymbol{p}_{\boldsymbol{n}} \in \mathscr{F}, \boldsymbol{a}_{0}<_{e} \boldsymbol{a}_{1}<_{e} \ldots<_{e} \boldsymbol{a}_{\boldsymbol{n}} \leq_{e} \mathbf{0}_{\boldsymbol{e}}^{\cdot}, \boldsymbol{p}_{0} \neq 0$ implies $\boldsymbol{a}_{0} \neq \mathbf{0}_{e}$ and $\boldsymbol{p}_{\boldsymbol{n}} \neq 1$ implies $\boldsymbol{a}_{\boldsymbol{n}} \neq \mathbf{0}_{\boldsymbol{e}}^{\prime}$, then there exists an embedding f of \mathscr{S} in the Σ_{2} degrees such that $f\left(p_{i}\right)=a_{i}$ for every $i \leq n$.

Definition. A degree a is said to be splitting if there exists a pair of degrees \mathbf{b} and \mathbf{c} strictly below \mathbf{a} with $\mathbf{a}=\mathbf{b} \vee \mathbf{c}$.

Theorem 2. There exists a non-zero low non-splitting degree.
Theorem 3. For every non-zero low degree a there exists a Σ_{2} degree b such that $a \perp_{e} b$ and for every $z \leq_{e} a$, either $z \leq_{e} b$ or there exists $y<_{e} a$ such that $y \vee z=a$ and $y \leq_{e} b$.

Corollary 4. There exists a pair of incomparable Σ_{2} degrees a and b such that for every $z<_{e}, \quad \mathbf{z} \leq_{e} b$.

Theorem 5. For every pair of distinct Σ_{2} degrees a and b, $\left\{z: z{ }_{e} a\right\} \neq\left\{z: z{ }_{e} b\right\}$.

Theorem 6 (Diamond). There exists a pair of low degrees a and b such that $a \wedge b=\mathbf{0}_{\boldsymbol{e}}$ and $\mathbf{a} \vee \mathbf{b}=\mathbf{0}_{\boldsymbol{e}}$.

To my parents,

Farhat and Iqbal Ahmad

I am indebted to my family, especially my parents, for the total committment and support they exhibited throughout, both emotional and, when required, financial, and to Sharaf for keeping me well-fed (and well-entertained) during the typing up of this thesis, and letting me do it on his computer.

I appreciate the financial support of N.S.E.R.C. and Simon Fraser University. My thanks to Sylvia Holmes for keeping me informed of important deadlines.

As for my advisor, Dr. A. H. Lachlan, I am at a loss to adequately express my gratitude for the extreme patience he exhibited through some fairly trying times, for his constant encouragement, for his readiness to help at all times, for his insightful suggestions and comments; for the painstaking manner in which he scrutinised all written work and for his financial support.
Page
APPROVAL ii
ABSTRACT iii
DEDICATION iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
CHAPTER I Introduction and Terminology 1
§1.1 Introduction 1
§1.2 Basic Notation 3
§1.3 Enumeration Reducibility 5
§1.4 Some Technical Tools 9
CHAPTER II Embedding Partial Orders in the Σ_{2} E-Degrees 15
§2.1 Introduction 15
§2.2 Proof of Theorem 16
§2.3 The Key Lemma 19
CHAPTER III A Non-Splitting E-Degree 38
§3.1 Introduction 38
§3.2 Proof of Theorem 39
CHAPTER IV A Special Pair of Σ_{2} E-Degrees 54
§4.1 Introduction 54
§4.2 Proof of Theorem 4.1.1 55
§4.3 Proof of Theorem 4.1.2 69
CHAPTER V Embedding the Diamond in the Σ_{2} E-Degrees 82
§5.1 Introduction 82
§5.2 Proof of Theorem 83
APPENDIX Open Questions 120
BIBLIOGRAPHY 121

CHAPTER I

INTRODUCTION AND TERMINOLOGY

§1.1 INTRODUCTION

Enumeration reducibility is a very natural reducibility between subsets of ω. It was first defined by Friedberg and Rogers [1959]. Intuitively, A is enumeration reducible to B (written $A \leq_{e} B$) if there is an effective procedure for producing an enumeration of A from any enumeration of B. For a more detailed discussion of the intuition, see Rogers [1967] (pp. 145-147). Turing reducibility is of ten viewed as a reducibility between total (everywhere defined) functions. The beauty of enumeration reducibility is that if we identify functions with their graphs (defined in $\S 1.2$) then e-reducibility extends Turing reducibility to the set of partial functions.

Enumeration degrees are defined in a manner analogous to Turing degrees. $\mathbf{O}_{\mathbf{e}}$ denotes the least e-degree, consisting of all the r.e. sets. Gutteridge [1971] has shown that there are no minimal e-degrees, hence the enumeration degrees are not elementarily equivalent to the Turing degrees. Of particular interest are those e-degrees containing a
Σ_{2} set. It is easy to work with these degrees as Σ_{2} sets allow effective approximations (see §1.3); Cooper [1984] has shown that the Σ_{2} e-degrees are dense, and are precisely the degrees below $\mathbf{O}_{\mathbf{e}}{ }^{-}$ (defined in $\S 1.3$), hence they possess the nice property that they are closed downwards under s_{e}. Some of these features suggest an analogy between the Σ_{2} e-degrees and the r.e. Turing degrees. In fact Cooper has asked if these two classes are elementarily equivalent. This is answered in the negative by the Diamond Theorem (see Chapter V) which contrasts with Lachlan's [1966] Non-Diamond Theorem for the r.e. Turing degrees. Cooper and Copestake [ta] have shown that the Σ_{2} e-degrees properly contain the simpler class of Δ_{2} e-degrees, hence the former is a proper class.

The results in this thesis may be viewed in the following context. Let $\boldsymbol{S}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)$ denote the Σ_{2} e-degrees with least element $\mathbf{O}_{\mathbf{e}}$ and greatest element $\mathbf{O}_{\mathbf{e}}^{\prime}$; let $\operatorname{Th}\left(\mathscr{S}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)\right)$ denote the theory of $\boldsymbol{S}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)$ in $L=\{\leq, 0,1\}$, the language of partial order with least and greatest elements. By Theorem 2.1.1 the sentences in $\operatorname{Th}\left(\mathscr{S}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)\right)$ of the form $(\forall x)\left(\exists y_{1}\right) \ldots\left(\exists y_{n}\right) \alpha\left(x, y_{1}, \ldots, y_{n}\right)$, where α is quantifier-free, are decidable; in fact, any such sentence which is consistent is true in $\mathbf{s}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)$. An answer to Question 1 (see Appendix) combined with the results in this thesis would suffice to decide all sentences of the form $\left(\forall x_{1}\right)\left(\forall x_{2}\right)(\exists y) \alpha\left(x_{1}, x_{2}, y\right), \quad(\alpha \quad$ quantifier-free $)$.

§1.2 BASIC NOTATION

ω is the set of non-negative integers. ψ and φ denote partial functions while f denotes total functions. Other lower case italic letters range over elements of ω or $\omega \cup\{-1\} . x-y={ }_{\mathrm{dfn}} x-y$ if $x \geq y$, and 0 otherwise. 2^{ω} denotes the power set of ω. Upper case italic letters range over subsets of ω with D, E and F being reserved for finite sets. X_{A} denotes the characteristic function of A : we write $A(x)$ for $X_{A}(x)$. Ar x denotes $\{y \in A: y<x\}$, while $\operatorname{Ar}[>x]$ denotes $\{y \in A: y>x\} . \quad|A|$ denotes the cardinality of A. $\max F$ denotes the greatest element of F if $F \neq 0$, and -1 otherwise. Analogously, min A denotes the least element of A if $A \neq 0, \quad$ and ∞ otherwise.
$A \subset B$ means $A \subseteq B$ but $A \neq B . \bar{A}$ denotes the complement of A and $A-B={ }_{d f n} A \cap \bar{B} . \quad A={ }^{*} B$ means that the symmetric difference of A and B is finite. $A \oplus B={ }_{d f n}\{2 x: x \in A\} \cup\{2 x+1: x \in B\}$. $C=A \cup B$ means $C=A \cup B$ and A and B are disjoint.

$$
\langle x, y\rangle=\operatorname{dfn} \frac{1}{2}\left(x^{2}+2 x y+y^{2}+3 x+y\right) .\langle\bullet, \cdot\rangle \text { is a recursive }
$$

bijection from $\omega \times \omega$ to ω (see Rogers [1967] (p. 64)). Note that $\max \{x, y\} \leq\langle x, y\rangle .\langle x, y, z\rangle$ denotes $\langle\langle x, y\rangle, z\rangle ;\left\langle\cdot,^{\bullet}, \cdot\right\rangle$ is a recursive bijection from $\omega x \omega x \omega$ to $\omega .(x)_{0}$ and $(x)_{1}$ are defined by $x=\left\langle(x)_{0},(x)_{1}\right\rangle$.
$A^{[y]}$ denotes $\left\{x \in A:(x)_{1}=y\right\}$ and $A^{\{y\}}$ denotes $\left\{(x)_{0}: x \in A^{[y]}\right\} . \quad A^{[\langle y]}$ denotes $U\left\{A^{[z]}: z<y\right\} ; A^{[\leq y]}, A^{[>y]}$ and
$A^{[\geq y]}$ are defined analogously. For a function $\varphi, \operatorname{graph} \varphi={ }_{d f n}$ $\{\langle x, y\rangle: \varphi(x)=y\}$.

If $D=\left\{x_{0}<x_{1}<\ldots<x_{n}\right\}$ then the canonical index of D is $2^{x_{0}}+2^{x_{1}}+\ldots+2^{x_{n}}$; the canonical index of 0 is $0 . D_{z}$ denotes the set with canonical index z. We of ten identify a finite set with its canonical index, and write $\langle D, x\rangle$ for $\langle z, x\rangle$ where $D=D_{z}$.
$\left\langle\omega_{2}\right.$ is the set of finite sequences of 0 's and 1 's. $\left\langle\omega_{\omega}\right.$ and ${ }^{<\omega}(\omega \cup\{-1\})$ are the sets of finite sequences of elements of ω and $\omega U\{-1\}$ respectively. σ, τ and γ range over elements of $\left\langle\omega_{2}\right.$, < ω_{ω} or ${ }^{<\omega}(\omega \cup\{-1\})$. The length of σ (written $\left.\operatorname{lh}(\sigma)\right)$ is |dom $\sigma \mid$. n_{2} is the set of finite sequences of 0 's and $1^{\prime} s$ of length n. $\sigma \upharpoonright x$ denotes the restriction of σ to $\{y: y<x\} . \quad e(\sigma)={ }_{\mathrm{dfn}} \operatorname{lh}(\sigma) \leq 1$ and $\sigma^{-}={ }_{\mathrm{dfn}} \sigma \operatorname{re}(\sigma), \quad \sigma \subseteq T$ means that σ is an initial segment of \boldsymbol{T} while $\sigma \subset T$ means $\sigma \subseteq T$ but $\sigma \neq T . \widehat{\sigma T}$ denotes the concatenation of σ followed by τ.

Lower case boldface letters range over e-degrees. In Chapter II they also range over elements of arbitrary partial orders. $\mathbf{a} \vee \mathbf{b}$ denotes the least upper bound of \mathbf{a} and \mathbf{b} and $\mathbf{a} \wedge \mathbf{b}$ the greatest lower bound.

Read "is defined" for \downarrow, "is undefined" for \uparrow, "the least x such that" for μx and "there exist infinitely many x such that" for $\exists^{\infty} x$. V denotes an infinite disjunction. \square and mark the end of a proof.

§1.3 ENUMERATION REDUCIBILITY

We assume that the reader is familiar with the basic concepts of recursion theory as found in Part A of Soare [1987].

Definition 1.3.1.

.1. A sequence of finite sets $\left\{F^{s}\right\}_{s \in \omega}$ is called a recursive sequence or strong array if there exists a recursive function $f(s)$ such that $\quad F^{s}=D_{f(s)}$ for every s.
.2. A recursive sequence of finite sets $\left\{A^{s}\right\}_{s \in \omega}$ is called a recursive enumeration of an r.e. set A if $A^{s} \subseteq A^{s+1}$ for every s, and $A=\underset{\mathbf{S} \in \omega}{\mathbf{U}} \mathrm{A}^{\mathbf{S}}$.
$\left\{W_{e}\right\}_{e \in \omega}$ denotes a fixed acceptable numbering of the r.e. sets and $\left\{W_{e}^{s}\right\}_{e, s \in \omega}$ denotes a fixed standard enumeration of the r.e. sets. The symbol K is reserved for $\left\{e: e \in W_{e}\right\}$ which has Turing degree 0^{\prime}.

Intuitively, A is enumeration reducible to B if there is an effective procedure for producing an enumeration of A from any enumeration of B. There is a natural one-one correspondence between all such procedures and the r.e. sets (see Rogers [1967] (pp. 145-147)). Hence the i-th enumeration operator (e-operator) is defined by

$$
\Psi_{i}(B)=\left\{x:\langle z, x\rangle \in W_{i} \text { and } D_{z} \subseteq B\right\}
$$

θ, Ω, Ψ and Φ range over e-operators. Note that for every i, Ψ_{i} is a mapping from 2^{ω} to 2^{ω} which is monotone, that is, if $A \subseteq B$ then $\Psi_{i}(A) \subseteq \Psi_{i}(B)$. We identify an e-operator with its associated r.e. set and write $W_{i}(B)$ for $\Psi_{i}(B)$. Formally:

Definition 1.3.2.

.1. A is enumeration reducible (e-reducible) to $B\left(A \leq_{e} B\right)$ if $A=$ $W_{i}(B)$ for some i.
2. $A \equiv{ }_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
.3. A and B are incomparable $\left(A \perp_{e} B\right)$ if $A \$_{e} B$ and $B \$_{e}$.

It is clear that \equiv_{e} is an equivalence relation. An enumeration degree (e-degree) is an equivalence class under \equiv_{e}. Lower case boldface letters range over e-degrees, and occasionally over Turing degrees. $\operatorname{deg}_{e} A$ denotes the e-degree containing A. If P is a property of sets then an e-degree has property P if it contains a set with property P. The e-degrees form an upper semi-lattice: $\mathbf{a} \vee \mathbf{b}=$ $\operatorname{deg}_{e}(A \oplus B)$, where $A \in a$ and $B \in b$. We also define a join operation on e-operators by: $\quad\left(\Psi_{i} \oplus \Psi_{j}\right)(\mathrm{A})=\Psi_{i}(\mathrm{~A}) \oplus \Psi_{j}(\mathrm{~A})$.

If we identify a function with its graph then e-reducibility may also be viewed as a reducibility between functions, both total and partial. The equivalence classes of partial functions are called partial degrees. The e-degrees and partial degrees are isomorphic as every e-degree contains the graph of a function: if $A \in a$ then consider $\{\langle x, 1\rangle: x \in A\}$. A is total if it is the graph of a total
function. It is easily proved that $A \leq_{T} B$ if and only if $x_{A} \leq x_{B}$ (see Rogers [1967] (pp. 151-153)). Hence the e-degrees restricted to the total degrees are isomorphic to the Turing degrees. We denote the upper semi-lattice isomorphism $\operatorname{deg}_{T} A \rightarrow \operatorname{deg}_{e} x_{A}$ by f^{*}. When we speak of a Turing degree as an e-degree we are referring to its image under f^{*}.
0_{e} denotes the least e-degree which consists of all the r.e. sets. If A is r.e. then $\bar{A} \equiv_{e} X_{A}$. Hence the r.e. Turing degrees are isomorphic to the Π_{1} e-degrees.

Definition 1.3.3. An e-degree a is quasi-minimal if a>e $\mathbf{o}_{\mathbf{e}}$ and for every non-zero $b \leq_{e} a, b$ is non-total.

Medvedev [1955] proved that there are quasi-minimal e-degrees, thereby showing that the e-degrees are indeed a proper extension of the Turing degrees. Case [1971] showed that the e-degrees do not form a lattice, that there is a minimal pair of e-degrees and that no total e-degree is minimal. Gutteridge [1971] showed that there is a minimal pair of r.e. Turing degrees which is a minimal pair of Π_{1} e-degrees. He also proved that there are no minimal e-degrees and relativised to show that no total e-degree has a minimal cover; furthermore he showed that any e-degree has at most countably many minimal covers.

Cooper [1984] has shown that the Σ_{2} e-degrees are dense. McEvoy and Cooper [1985] have proved that every low minimal pair of r.e. Turing degrees is a minimal pair of Π_{1}. e-degrees but that there is a minimal
pair of high re. Turing degrees which is not a minimal pair of e-degrees.

Cooper [1984] and McEvoy [1985] have defined a jump operator on the e-degrees:

Definition 1.3.4. $\left(\operatorname{deg}_{e} A\right)^{\prime}=\operatorname{deg}_{e} J(A)$, where $J(A)=X_{K_{A}} \quad$ and $K_{A}=\left\{e: e \in \mathbb{W}_{e}(A)\right\}$.
$\mathbf{a}^{\text {• }}$ denotes the jump of \mathbf{a}. McEvoy has shown that the jump is preserved under the isomorphism f^{*}. Hence $\mathbf{0}_{\mathbf{e}}^{\dot{0}}=\operatorname{deg}_{e} \chi_{K}$. Cooper has shown that the set of Σ_{2} e-degrees is exactly the set of e-degrees below $\mathbf{O}_{\mathbf{e}}$.

Definition 1.3.5. A sequence of recursive sets $\left\{A^{s}\right\}_{s} \in \omega$ is uniformly recursive if there is a recursive function $f(s, x)$ such that $A^{s}(x)=f(s, x)$ for every x, s.

It is easily seen that A is Σ_{2} if and only if there is a uniformly recursive sequence $\left\{A^{s}\right\}_{s \in \omega}$ such that

$$
A=\left\{x: \exists t(\forall s>t)\left[x \in A^{s}\right]\right\}
$$

Such a sequence is called a Σ_{2}-approximation to A. If, in addition, $\lim A^{s}(x)$ exists for every x, it is called a Δ_{2}-approximation.

Clearly A is Δ_{2} if and only if A has a Δ_{2}-approximation. Cooper and Copestake [ta] have constructed a $\quad \Sigma_{2}$ e-degree which is not Δ_{2}. McEvoy and Cooper [1985] have extended the concept of lowness to the e-degrees:

Definition 1.3.6.
-1. A is low if $J(A) \in \mathbf{O}_{\mathbf{e}}^{\circ}$.
2. A low approximation to A is a Δ_{2}-approximation $\left\{A^{s}\right\}_{s \in \omega}$ such that for every $e,\left\{W_{e}^{s}\left(A^{s}\right)\right\}_{s} \epsilon_{\omega}$ is a Δ_{2}-approximation to $W_{e}(A)$.

McEvoy has shown that a set is low if and only if it has a low approximation. A low approximation to A is equivalent to a Δ_{2}-approximation to $K_{A}^{0}={ }_{d f n}\left\{\langle x, e\rangle: x \in W_{e}(A)\right\}$, hence A is low if and only if K_{A}^{0} is Λ_{2}. Since the enumeration jump is an extension of the Turing jump every low Turing degree is a low e-degree, however McEvoy [1985] has shown that there is a low quasi-minimal degree, hence the low e-degrees are a proper extension of the low Turing degrees.

§1.4 SOME TECHNICAL TOOLS

The main results in this thesis involve the construction of Σ_{2} sets and e-operators, or equivalently, r.e. sets. We do this using the finite injury priority method, or methods similar to it in those cases
where the requirements are infinitary. Traditionally these methods are used to construct a recursive enumeration of an r.e. set, however the similarity between a strong array and a uniformly recursive sequence allows us to use the same methods to construct a Σ_{2}-approximation to a Σ_{2} set.

Typically we begin with a recursive list of conditions involving the $\operatorname{set}(s)$ to be constructed. Each such condition is called a requirement. We order the requirements in descending order of priority. Hence if R_{m} and R_{n} denote the m-th and n-th requirements with $m<n$ then R_{m} has higher priority than R_{n}, or equivalently, R_{n} has lower priority than R_{m}. We then outline a recursive procedure for constructing the recursive sequence which we call a construction. We think of the s-th member of the sequence as being constructed at stage s. We say that a requirement is satisfied or met if it holds at the end of the construction. Since requirement R_{0} has highest priority, our goal is to ensure that it is satisfied, then R_{1} and so on. Hence we may take an action at stage s to satisfy requirement $R_{m}(m<n)$ even if it means undoing an action taken at a previous stage in order to satisfy R_{n}, thereby injuring requirement R_{n} at stage s. If each requirement is injured only finitely of then is called the finite injury priority method. All the constructions in this thesis fit into this general framework though not all are finite injury.

At each stage we would like our actions to be based on true information about the various sets involved. Hence the following concept and related results are useful:

Definition 1.4.1. Let $\left\{A^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to $A \in$ Σ_{2}. We say that s is a true stage in the approximation if $A^{s} \subseteq A$.

Cooper has proved the following result, though the proof in [1984] is less direct than the one given here.

Proposition 1.4.2. Every Σ_{2} set has a Σ_{2}-approximation with infinitely many true stages.

Proof. Let $A \in \Sigma_{2}$ and $\left\{A^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to A. We can assume that A^{s} is finite for every s by replacing it with A^{s} rs if necessary. For every n, set $v(n)=\langle n, 0\rangle=\mu v\left[(v)_{0}=n\right]$ by definition of $\langle\bullet, \cdot\rangle$. For every s, set $B^{s}=$ $\cap\left\{A^{t}: v\left((s)_{0}\right) \leq t \leq s\right\}$. The desired Σ_{2}-approximation $\left\{\tilde{A}^{s}\right\}_{s \in \omega}$ is defined by:
$\tilde{A}^{s}= \begin{cases}A^{s}, & \text { if }(\exists t<s)\left[(t)_{0}=(s)_{0} \text { and } B^{t}=B^{s}\right], \\ B^{s}, & \text { otherwise. }\end{cases}$

Clearly $B^{s} \subseteq \tilde{A}^{s} \subseteq A^{s}$ and if $t<s$ and $(t)_{0}=(s)_{0}$ then $B^{t} \supseteq B^{s}$. Hence for every $n, B_{n}=\lim _{(s)_{0}=n} B^{s}$ exists, therefore $t(n)=$ $\mu t\left[(t)_{0}=n\right.$ and $\left.(\forall s \geq t)\left[(s)_{0}=n \Rightarrow B^{s}=B_{n}\right]\right]$ is defined.

Let \tilde{A} denote the Σ_{2} set to which $\left\{\tilde{A}^{s}\right\}_{s} \in_{\omega}$ is an approximation. Then $\tilde{A} \subseteq A$, since $\tilde{A}^{s} \subseteq A^{s}$ for every s. Suppose $x \in A$. Then we
can choose s^{\prime} such that $x \in A^{s}$ for every $s>s^{\prime}$. Let $F=\left\{(s)_{0}: s \leq s^{\prime}\right\}$ and $s^{*}=\max \left\{s^{\prime}\right\} \cup\{t(n)+1: n \in F\}$. Suppose $s>s^{*}$. If $(s)_{0} \in F$ then $x \in \tilde{A}^{s}=A^{s}$ by choice of s^{*}. Otherwise $v\left((s)_{0}\right)>s^{*} \geq s^{\prime}$, hence $x \in B^{s} \subseteq \tilde{A}^{s}$ by definition of B^{s} and choice of s^{\prime}. Therefore $x \in \tilde{A}$, so $\tilde{A}=A$.

For every $n, \tilde{A}^{t(n)}=B_{n} \subseteq \cap\left\{A^{s}: s \geq v(n)\right\} \subseteq A$, hence $\left\{\tilde{A}^{s}\right\}_{s \in \omega}$ contains infinitely many true stages.

Sometimes it is more convenient to take action on behalf of a requirement R_{n} at pre-designated stages, say stages $s+1$ where $(s)_{0}=n$.

Proposition 1.4.3. For every $A \in \Sigma_{2}$ there exists a Σ_{2}-approximation $\left\{A^{s}\right\}_{s \in \omega}$ to A such that for every $n,\left\{A^{t}\right\}_{(t)_{0}=n}$ is a Σ_{2}-approximation to A with infinitely many true stages.

Proof. Let $A \in \Sigma_{2}$ and $\left\{A^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to A with infinitely many true stages (Proposition 1.4.2). Set $\tilde{\mathrm{A}}^{\mathbf{s}}=$ $A^{(s)} O^{+(s)} 1$ for every s. Then $\left\{\tilde{A}^{t}\right\}_{(t)_{0}=n}=\left\{A^{n+(t)_{1}}\right\}_{(t)_{0}=n}=$ $\left\{A^{n+k}\right\}_{k \in \omega}$ since $\langle n, \cdot\rangle$ is an increasing function; hence $\left\{\tilde{A}^{t}\right\} \quad(t\}_{0}=n$ is a Σ_{2}-approximation to A with infinitely many true stages.

Suppose $x \in A$. Then we can choose s^{\prime} such that $x \in A^{s}$ for every $s>s^{\prime}$. Choose $s "$ such that $(s)_{0}+(s)_{1}>s^{\prime}$ for every $s>s^{\prime \prime}$. Then $x \in A^{(s)_{0}+(s)_{1}}=\tilde{A}^{s}$ for every $s>s^{\prime \prime}$. Hence $\left\{\tilde{A}^{s}\right\}_{s \in \omega}$
is a Σ_{2}-approximation to A. -

If $x \in W_{i}(A)$ then there must be $\langle D, x\rangle \in W_{i}$ such that $D \subseteq A$. We think of D as the reason that $x \in \mathbb{W}_{i}(A)$. If $A \in \Sigma_{2}$ and $\left\{A^{s}\right\}_{s \in \omega}$ is a Σ_{2}-approximation to A, then use functions help us keep track of the reason that an element $x \in W_{i}^{S}\left(A^{S}\right)$ or a finite set $F \subseteq W_{i}^{S}\left(A^{S}\right)$.

Use functions.

Let θ be an e-operator and $X \in \Sigma_{2}$. Let $\left\{\theta^{s}\right\}_{s \in \omega}$ be a fixed recursive enumeration of θ and $\left\{X^{s}\right\}_{s \in \omega}$ a fixed Σ_{2}-approximation to X.
$h(\theta, X, y, s)=\left\{\begin{array}{l}\uparrow \text { if } y \notin \theta^{\mathbf{s}}\left(X^{s}\right) \\ (\mu t \leq s) \exists D\left[y \in \theta^{t}(D) \text { and } \quad \forall u\left[t \leq u \leq s \Rightarrow D \subseteq X^{u}\right]\right],\end{array}\right.$ otherwise
$u(\theta, X, y, s)= \begin{cases}\uparrow & \text { if } h(\theta, X, y, s) \uparrow \\ D_{z} & \text { where } z=\mu x\left[y \in \theta^{h(\theta, X, y, s)}\left(D_{\chi}\right) \quad \text { and }\right.\end{cases}$ $\left.\forall u\left[h(\theta, X, y, s) \leq u \leq s \Rightarrow D_{x} \subseteq X^{u}\right]\right]$, otherwise
$H(\theta, X, F, s)=\left\{\begin{array}{l}\uparrow \text { if } F \nsubseteq \\ (\mu t \leq s) \exists D \\ \\ \text { otherwise. }\end{array}\right.$.
$U(\theta, X, F, s)=\left\{\begin{array}{l}\dagger \text { if } H(\theta, X, F, s) \uparrow \\ D_{z} \text { where } z=\mu i\left[F \subseteq W_{e}^{H(\theta, X, F, s)}\left(D_{i}\right) \text { and }\right.\end{array}\right.$ $\left.\forall u\left[H(\theta, X, F, s) \leq u \leq s \Rightarrow D_{i} \subseteq X^{u}\right]\right]$, otherwise.
$h(\theta, X, y, s)$ and $H(\theta, X, y, s)$ are called history functions.

Remark. If $u(\theta, X, y, s) \downarrow \subseteq X^{s+1} \quad\left(U(\theta, X, F, s) \downarrow \subseteq X^{s+1}\right) \quad$ then $h(\theta, X, y, s+1) \downarrow=h(\theta, X, y, s)$ and $u(\theta, X, y, s+1) \downarrow=u(\theta, X, y, s)$ $(H(\theta, X, F, s+1) \downarrow=H(\theta, X, F, s)$ and $U(\theta, X, F, s+1) \downarrow=U(\theta, X, F, s))$. Hence if $y \in \theta(X)(F \subseteq \theta(X))$, then $h(\theta, X, y, s)$ and $u(\theta, X, y, s)(H(\theta, X, F, s)$ and $U(\theta, X, F, s)$) reach limits denoted by $h(\theta, X, y)$ and $u(\theta, X, y)$ $(H(\theta, X, F)$ and $U(\theta, X, F))$ respectively.

Note that the definition of $h(\theta, X, y, s)$ and $u(\theta, X, y, s)$ only depends on $\left\{\theta^{t}\right\}_{t \leq s}$ and $\left\{X^{t}\right\}_{t \leq s}$. Hence given recursive sequences $\left\{\theta^{t}\right\}_{t \leq s}$ and $\left\{X^{t}\right\}_{t \leq s}, h(\theta, X, y, s)$ and $u(\theta, X, y, s)$ are defined as above.

CHAPTER II

EMBEDDING PARTIAL ORDERS IN THE Σ_{2} E-DEGREES

§2.1 INTRODUCTION

We denote the least and greatest elements of a partial order by 0 and 1, respectively. Cooper has shown that the Σ_{2} e-degrees are dense. Using essentially the same method as that used in [1984], we generalize this to:

Theorem 2.1.1. For every finite partial order ($\mathscr{S}^{\prime}, S^{*}$), if
 implies $\boldsymbol{a}_{0} \neq \mathbf{0}_{\boldsymbol{e}}$ and $\boldsymbol{p}_{\boldsymbol{n}} \neq 1$ implies $\boldsymbol{a}_{\boldsymbol{n}} \neq \mathbf{0}_{\boldsymbol{e}}$, then there exists an embedding f of s in $\boldsymbol{S}_{\boldsymbol{e}}\left(\Sigma_{2}\right)$ such that $f\left(\boldsymbol{p}_{\mathbf{i}}\right)=\boldsymbol{a}_{\boldsymbol{i}}$ for every $i \leq n$.

§2.2 PROOF OF THEOREM

Suppose $\left(\mathscr{S}, \Sigma^{*}\right), p_{0}, p_{1}, \ldots, p_{n}, \quad$ and $a_{0}, a_{1}, \ldots, a_{n}$ satisfy the hypothesis of the theorem. W.l.o.g. we can assume that \mathscr{f} contains least and greatest elements. For simplicity we first assume that $\mathbf{p}_{\mathbf{n}}=1$ and $\left.\mathbf{a}_{\mathbf{0}}\right\rangle_{\mathrm{e}} \mathbf{0}_{\mathbf{e}}$. Let $\mathbb{Q}=\boldsymbol{S}-\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}$. We partition \mathbb{Q} into sets \mathbb{Q}_{i}, where $i \leq n$ and $\mathbb{Q}_{i}=\left\{\mathbf{q} \in \mathbb{Q}: i=\mu j\left[\mathbf{q} \leq^{*} \mathbf{p}_{\boldsymbol{j}}\right]\right\}$. Let $A_{i} \in a_{i}$ for $i \leq n$. For every $q \in Q$ we construct a Σ_{2} set B_{q} such that for every $i \leq n, \quad q \in \mathbb{Q}_{i}$,
$B_{q} \leq{ }_{e} A_{i}$,
and the following maximal independence properties hold:

$$
\begin{equation*}
A_{i} \Phi_{e}\left(\underset{j<i}{\oplus} A_{j}\right) \oplus\left(\underset{r \in Q}{\oplus} B_{r}\right) \tag{2.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.B_{\mathbf{q}} \$_{\mathbf{e}}\left(\underset{j<i}{\oplus} A_{j}\right) \oplus \underset{\substack{\mathbf{r} \in \mathbb{Q} \\ \mathbf{r} \neq \mathbf{q}}}{\oplus} B_{\mathbf{r}}\right) \tag{2.2.3}
\end{equation*}
$$

For every sf \boldsymbol{E}, set

$$
\begin{aligned}
& f(s)=\operatorname{deg}_{e}\left(\left(\underset{j \leq n}{\oplus} A_{j}\right) \oplus\left(\underset{r \in Q}{\oplus} B_{r}\right)\right) . \\
& P_{j} \leq^{*} \mathbf{s} \quad r \leq^{*} s
\end{aligned}
$$

Then

$$
\left.f\left(\mathbf{P}_{i}\right)=\operatorname{deg}_{\mathbf{e}}\left(\left(\underset{j \leq i}{\oplus} A_{j}\right) \oplus \underset{\substack{r \in Q_{j} \\ j \leq i}}{(\oplus} B_{r}\right)\right)=\operatorname{deg}_{\mathbf{e}} A_{i}=\mathbf{a}_{\mathbf{i}}
$$

Now it is clear that $s \leq^{*} t$ implies $f(s) \leq_{e} f(t)$. Suppose $t \mathbb{f}^{*} s$. Assume $t=\mathbf{p}_{\mathbf{i}}(i \leq n)$. Then $f(t)=\mathbf{a}_{\mathbf{i}}$ and

$$
f(s) \leq_{e} \operatorname{deg}_{e}\left(\left(\underset{j<i}{\oplus} A_{j}\right) \oplus\left(\underset{r \in Q}{\oplus} B_{r}\right)\right)
$$

By 2.2.2 $f(t)=a_{i} \ddagger_{e} f(s)$.
Assume $t=\mathbf{q}$, where $\mathbf{q} \in Q_{i}(i \leq n)$. Then $\operatorname{deg}_{e} B_{\mathbf{q}} \leq_{e} f(t)$ and

$$
\left.f(\mathbf{s}) \leq_{e} \operatorname{deg}_{e}\left(\left(\underset{j<i}{\oplus} A_{j}\right) \oplus \underset{\substack{\mathbf{r} \in \mathbb{Q} \\ \mathbf{r} \neq \mathbf{q}}}{\oplus} B_{\mathbf{r}}\right)\right)
$$

By 2.2.3 $\operatorname{deg}_{e} B_{q} \$_{e} f(s)$, therefore $f(t) \$_{e} f(s)$. Hence f is the
desired embedding.

Lemma 2.3.1 below is the key to the proof of the theorem. In order to apply the lemma set $k_{i}=\left|Q_{i}\right|$ for $i \leq n$, and $Q_{i}=$ $\left\{\mathbf{q}_{\mathbf{i}, 0}, \mathrm{G}_{\mathbf{i}, 1}, \ldots \mathrm{G}_{\mathbf{i}, \boldsymbol{k}_{\mathbf{i}}-1}\right\}$. Then $B_{\mathbf{q}_{\mathbf{i}, \mathbf{j}}}$ is $B_{i, j}$ of the lemma. Let $Q_{i}^{*}=\underset{j \leq i}{U} Q_{j}$ for $i \leq n$. The lemma is a slightly stronger result than needed because it states that given $\left\{B_{\mathbf{q}}: \mathbf{q} \in Q_{k}^{*}\right\}$, for some $k<n$, such that for every $i \leq k, q \in Q_{i}, 2.2 .1,2.2 .2$ and 2.2.3 hold with Q replaced by Q_{k}^{*}, this set can be extended to $\left\{B_{q}: q \in Q_{k+1}^{*}\right\}$ such that for every $i \leq k+1, q \in Q_{i}, 2.2 .1,2.2 .2$ and 2.2 .3 hold with Q replaced by Q_{k+1}^{*}.

If $\mathbf{p}_{n} \neq 1$, then $a_{n} \neq 0_{\mathbf{e}}^{0}$, and we consider the extended sequences $\mathbf{p}_{0}<^{*} \mathbf{p}_{1}<^{*} \ldots<^{*} \mathbf{p}_{n}<^{*} 1$ and $a_{0}<{ }_{e} a_{1}<{ }_{e} \cdots<_{e} a_{n}<{ }_{e} 0_{e}^{\prime} . \quad$ If $a_{0}=O_{e}$, then $P_{0}=0$, and we set $f\left(P_{0}\right)=0_{e}, Q=$ $\mathscr{S}-\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$, and consider the truncated sequences $p_{1}<^{*} p_{2}<^{*} \ldots<^{*} p_{n}$ and $a_{1}<{ }_{e} a_{2}<{ }_{e} \ldots<_{e} a_{n}$.

§2.3 THE KEY LEMMA

Lemma 2.3.1. Given $n, k_{0}, k_{1}, \ldots, k_{n}, \Sigma_{2}$ sets $A_{0}<_{e} A_{1}<\ldots<{ }_{e} A_{n}$ and $B_{i, j}$, for $i<n, j<k_{i}$, such that for every $i<n$,
.1. $B_{i, j} \leq_{e} A_{i}$ for every $j<k_{i}$,
2. $\left.\quad A_{i} I_{e}\left(\underset{l<i}{\oplus} A_{l}\right) \oplus \underset{\substack{l<n \\ m<k_{l}}}{\underset{l}{\oplus}} B_{l, m}\right)$,
.3. $B_{i, j} \Phi_{e}\left(\underset{l<i}{\oplus} A_{l}\right) \oplus\left(\underset{l<n, m<k l}{\oplus} B_{l, m}\right)$ for every $j<k_{i}$, $l \neq i$ or $m \neq j$
there exist $B_{n, j}$, for $j<k_{n}$, such that $B_{n, j} \leq_{e} A_{n}$ for every $j<k_{n}$, and for every $i \leq n$,
.4. $\quad A_{i} \$_{l}\left(\underset{l<i}{\oplus} A_{l}\right) \oplus\left(\underset{l \leq n}{\oplus} B_{l, m}\right)$, $m<k_{l}$
5. $B_{i, j} \ddagger_{e}\left(\underset{l \mid c i}{\oplus} A_{l}\right) \oplus\left(\underset{\substack{l \leq n, m<k l \\ l \neq i \\ \text { or } m \neq j}}{\oplus} B_{l, m}\right)$ for every $j<k_{i}$.

Proof. Fix n, k_{0}, \ldots, k_{n}. Assume that $A_{i}(i \leq n)$ and $B_{i, j}$ ($i<n, j<k_{i}$) satisfy the hypothesis.

Let C be defined by:
$C^{\{2 i\}}=\left\{\begin{array}{ll}A_{i}, & \text { if } i \leq n, \\ 0, & \text { otherwise },\end{array}\right.$ and
$C^{\{2\langle i, j\rangle+1\}}=\left\{\begin{array}{l}B_{i, j}, \text { if } i<n, j<k_{i}, \\ 0, \quad \text { otherwise. }\end{array}\right.$

Note that $C \equiv{ }_{e} A_{n}$.

We will construct e-operators θ_{j}, for $j<k_{n}$, satisfying certain requirements and will set $B_{n, j}=\theta_{j}(C)$. In terms of the θ_{j} $\left(j<k_{n}\right)$ we define other e-operators $\tilde{\theta}$ and $\hat{\theta}_{j}$ by:

$$
\widetilde{\theta}=\left\{\langle F,\langle x, j\rangle\rangle: j\left\langle k_{n} \text { and }\langle F, x\rangle \in \theta_{j}\right\}\right.
$$

and

$$
\hat{\theta}_{j}=\left\{\langle F,\langle x, k\rangle\rangle: k\left\langle k_{n}, \quad k \neq j \text { and }\langle F, x\rangle \in \theta_{k}\right\},\right.
$$

for $j<k_{n}$. Note that $\tilde{\theta}(C) \equiv \underset{\substack{ \\j<k_{n}}}{\oplus} \theta_{j}(C)$ and $\hat{\theta}_{j}(C) \equiv \underset{\substack{k<k n \\ k \neq j}}{\oplus} \theta_{k}(C)$.

Elements $i(r), j(r)$ and $e(r), \Sigma_{2}$ sets C_{r} and $C_{r, z}$ and requirement r are defined as follows.

Case 1. $\quad r \equiv 0 \bmod 2$.
Subcase 1.1. $r=4\langle i, e\rangle$.
If $i \leq n$, then $i(r)=i, \quad e(r)=e$ and $j(r)$ is undefined.
Also:
$C_{r}\{2 l\}=\left\{\begin{array}{ll}0, & \text { if } i \leq l \leq n, \\ C_{C}\{2 l\}\end{array} \quad\right.$ otherwise, \quad and $C_{r}\{2 l+1\}=C^{\{2 l+1\}} ;$
$C_{r, z}^{\{l\}}= \begin{cases}C^{\{l\}} \mid z, & \text { if } l=2 i, \\ C_{r}\{l\}, & \text { otherwise } .\end{cases}$

Requirement r is:

$$
" A_{i} \neq W_{e}\left(C_{r} \oplus \tilde{\theta}(C)\right) " .
$$

Note $\left.C_{r} \equiv \underset{e}{\left(\underset{l<i}{\oplus} A_{l}\right)} \oplus \underset{\substack{l<n \\ m<k}}{\oplus} B_{l, m}\right)$. Therefore $A_{i} \Phi_{e} C_{r}$, and
$C_{r, z} \equiv e_{r} \oplus A_{i} \upharpoonright z \equiv C_{r}$.
If $i>n$ then $i(r), j(r), e(r), C_{r}$ and $C_{r, z}$ are undefined and requirement r is the empty requirement.

Subcase 1.2. $r=4\langle i, j, e\rangle+2$.
If $i<n$ and $j<k_{i}$ then $i(r)=i, j(r)=j$ and $e(r)=e$.

Also:
$C_{r}{ }^{\{2 l\}}=\left\{\begin{array}{ll}0, & \text { if } \quad i \leq l \leq n, \\ C_{C}\{2 l\}\end{array} \quad\right.$ otherwise, \quad and $C_{r}\{2 l+1\}= \begin{cases}0, & \text { if } l=\langle i, j\rangle, \\ C_{C}^{\{2 l+1\}}, & \text { otherwise; }\end{cases}$
$C_{r, z}\{l\}= \begin{cases}C^{\{l\}} \mid z, & \text { if } \quad l=2\langle i, j\rangle+1, \\ C_{r}\{l\} & \text { otherwise } .\end{cases}$

Requirement r is:

$$
" B_{i, j} \neq W_{e}\left(C_{r} \oplus \tilde{\theta}(C)\right) "
$$

and

$$
C_{r, z} \equiv{ }_{e} C_{r} \oplus B_{i, j} r z \equiv C_{r} .
$$

If $i \geq n$ or $j \geq k_{i}$ then $i(r), j(r), e(r), C_{r}$ and $C_{r, z}$ are undefined and requirement r is the empty requirement.

Case 2. $r=2\langle j, e\rangle+1$.
If $j<k_{n}$ then $j(r)=j, \quad e(r)=e$ and $i(r)$ is undefined.
Also:
$C_{r}\{l\}= \begin{cases}0 . & \text { if } \quad l=2 n \\ C^{\{l\}}, & \text { otherwise } ;\end{cases}$
$C_{r, z}^{\{l\}}=\left\{\begin{array}{l}C^{\{l\}}{ }^{\{l,} \text { if } \quad l=2 n, \\ C_{r}{ }^{\{l\}}, \text { otherwise. }\end{array}\right.$

Requirement r is:

$$
" \theta_{j}(C)^{\{r\}} \neq W_{e}\left(C_{r} \oplus \hat{\theta}_{j}(C)\right)^{\{r\}}
$$

and $C_{r, z} \equiv \mathrm{C}_{r} \oplus \mathrm{~A}_{\boldsymbol{n}} \mathrm{rz} \equiv \mathrm{e}_{\mathrm{r}}$.
If $j \geq k_{n}$ then $i(r), j(r), e(r), C_{r}$ and $C_{r, z}$ are undefined and requirement r is the empty requirement.

The natural order of the requirements is the order of priority. It is easily checked that if all the requirements are met then the lemma is proved. In order to satisfy requirement r, we construct e-operators $\theta_{j, r}$, for $j<k_{n}$, and set

$$
\theta_{j}=U_{r} \theta_{j, r}
$$

$\theta_{j, r}^{s}$ is the set of instructions $\langle F, x\rangle$ which have been enumerated into $\theta_{j, r}$ by the end of stage $s ;\left\{\theta_{j, r}^{s}\right\}_{s \in \omega}$ is a recursive enumeration of
$\boldsymbol{\theta}_{\boldsymbol{j}, \mathrm{r}} \quad$ Set

$$
\theta_{j,<r}=\bigcup_{q<r} \theta_{j, q}
$$

and $\theta_{j, 2 r}=\theta_{j}-\theta_{j,<r}$, and let $\tilde{\theta}_{\langle r}$ and $\hat{\theta}_{j,<r}$ be defined analogously. $\left\{\tilde{\theta}^{\mathbf{s}}\right\}_{\mathbf{s} \in \omega},\left\{\hat{\theta}_{j}^{\mathbf{s}}\right\}_{\mathbf{s} \in \omega},\left\{\tilde{\theta}_{\langle r}^{\mathbf{s}}\right\}_{\mathbf{s} \in \omega},\left\{\hat{\theta}_{j,\langle r}^{\mathbf{s}}\right\}_{\mathbf{s} \in \omega},\left\{\theta_{j,\langle r}^{\mathbf{s}}\right\}_{\mathbf{s} \in \omega}$ and $\left\{\theta_{j, \geq r}^{s}\right\}_{s \in \omega}$ denote the natural recursive enumerations of $\tilde{\theta}, \hat{\theta}_{j}, \tilde{\theta}_{<r}$. $\hat{\theta}_{j,\langle r}, \theta_{j,<r}$ and $\theta_{j, \geq r}$ respectively, generated by $\left\{\theta_{k, q}^{\mathbf{s}}\right\}_{s \in \omega}$ $\left(k<k_{n}\right)$.

Choose e-operators Ω_{i}, for $i<n$, and $\Psi_{i, j}$, for $i<n$, $j<k_{i}$, such that $A_{i}=\Omega_{i}\left(A_{n}\right)$ and $B_{i, j}=\Psi_{i, j}\left(A_{n}\right)$. Let $\left\{\Omega_{i}^{s}\right\}_{s \in \omega}$ and $\left\{\Psi_{i, j}^{s}\right\}_{s \in \omega}$ be recursive enumerations of Ω_{i} and $\Psi_{i, j}$ respectively. Let $\left\{A_{n}^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to A_{n} such that for every $r,\left\{A_{n}^{s}\right\}(s)_{0}=r$ is a Σ_{2}-approximation to A_{n} with infinitely many true stages. $\left\{A_{i}^{\mathbf{s}}\right\}_{s \in \omega}$ and $\left\{B_{i, j}^{\mathbf{s}}\right\}_{s \in \omega}$ are Σ_{2}-approximations to A_{i} and $B_{i, j}$ respectively, where $A_{i}^{s}=\Omega_{i}^{\mathbf{s}}\left(A_{n}^{s}\right)$ and $\quad B_{i, j}^{\mathbf{s}}=\Psi_{i, j}^{\mathbf{s}}\left(A_{n}^{\mathbf{s}}\right) . \quad\left\{C^{\mathbf{s}}\right\}_{s \in \omega},\left\{C_{r}^{\mathbf{s}}\right\}_{s \in \omega}$ and $\left\{C_{r, z}^{\mathbf{s}}\right\}_{s \in \omega}$ are the natural Σ_{2}-approximations to C, C_{r} and $C_{r, z}$ respectively, generated by $\left\{A_{i}^{\mathbf{s}}\right\}_{s \in \omega}$ and $\left\{B_{i, j}^{\mathbf{s}}\right\}_{s \in \omega}$.

Length of agreement functions.

If requirement r is empty then $L(r, s) \dagger$.
Assume requirement r is not empty.

Case 1. $\quad r \equiv 0 \bmod 2$.
Subcase 1.1. $\quad \mathbf{r}=4\langle i, e\rangle$.

$$
L(r, s)=\mu z\left[z=s \quad \text { or } \quad A_{i}^{s}(z) \neq W_{e}^{s}\left(C_{r}^{s} \oplus \tilde{\theta}^{\mathbf{s}}\left(C^{s}\right)\right)(z)\right]
$$

Subcase 1.2. $r=4\langle i, j, e\rangle+2$.

$$
L(r, s)=\mu z\left[z=s \quad \text { or } \quad B_{i, j}^{\mathbf{S}}(z) \neq W_{e}^{\mathbf{S}}\left(C_{r}^{\mathbf{S}} \oplus \tilde{\theta}^{\mathbf{S}}\left(C^{\mathbf{S}}\right)\right)(z)\right]
$$

Case 2. $r=2\langle j, e\rangle+1$.

$$
L(r, s)=\mu z\left[z=\mathbf{s} \quad \text { or } \quad \theta_{j}^{\mathbf{s}}\left(C^{s}\right)^{\{r\}}(z) \neq W_{e}^{\mathbf{s}}\left(C_{r}^{\mathbf{s}} \oplus \hat{\theta}_{j}^{\mathbf{s}}\left(C^{s}\right)\right)^{\{r\}}(z)\right]
$$

We attend to requirement r at stages $s+1$, where $(s)_{0}=r$. Let T denote the set of true stages in $\left\{A_{n}^{s}\right\}_{s \in \omega}$. Note that T is also a set of true stages in $\left\{C^{s}\right\}_{s \in \omega},\left\{C_{r}^{s}\right\}_{s \in \omega}$ and $\left\{C_{r, z}^{s}\right\}_{s \in \omega}$.

Suppose $r=4\langle i, e\rangle(i \leq n)$. We arrange that for $z \in$ $W_{e}^{s}\left(C_{r}^{\mathbf{s}} \oplus \tilde{\theta}^{\mathbf{s}}\left(C^{s}\right)\right) \uparrow L(r, s), \quad z \in W_{e}^{\mathbf{s}}\left(C_{r}^{\mathbf{s}} \oplus \tilde{\theta}^{\mathbf{s}}\left(F^{\mathbf{s}} \cup C_{r, z}^{\mathbf{s}}\right)\right)$, where $F^{\mathbf{s}} \subseteq C^{\mathbf{s}}$ is finite, and $\lim F^{s}=F \subseteq C \quad$ (F finite). This is done in such a way $\mathrm{s} \in \mathrm{T}$
that if $L(r, s) \rightarrow \infty$ as s increases in T, then $z \in$ $W_{e}\left(C_{r} \oplus \tilde{\theta}\left(F \cup C_{r, z}\right)\right)$ for every $z \in W_{e}\left(C_{r} \oplus \tilde{\theta}(C)\right)$. If requirement r fails, $A_{i} \leq C_{r}$, by a kind of back and forth construction as follows, which is a contradiction. Begin enumerating $W_{e}\left(C_{r} \oplus \tilde{\theta}\left(F \cup C_{r, z}\right)\right) \subseteq A_{i}$, for $z=0$. As elements enter this set add them to $C_{r}\{2 i\}$ to build $C_{r, z}$ for increasing values of z, and continue enumerating $W_{e}\left(C_{r} \oplus \tilde{\theta}\left(F \cup C_{r, z}\right)\right) \subseteq A_{i} . \quad$ Since $z \in W_{e}\left(C_{r} \oplus \tilde{\theta}\left(F \cup C_{r, z}\right)\right)$ for every $z \in W_{e}\left(C_{r} \oplus \tilde{\theta}(C)\right)=A_{i}$, every element of A_{i} is enumerated.

If $r=4\langle i, j, e\rangle+2\left(i<n, j<k_{i}\right)$, we use the above strategy, with A_{i} replaced by $B_{i, j}$ and $C_{r}\{2 i\}$ replaced by $C_{r}\{2\langle i, j\rangle+1\}$. Suppose $r=2\langle j, e\rangle+1 \quad\left(j<k_{n}\right)$. We code $A_{n}^{s} r(L(r, s)+1)$ into $\theta_{j}^{s}\left(C^{s}\right)^{\{r\}}$; in addition, as in the previous strategy, we arrange that
 where $F^{s} \subseteq C^{s}$ is finite, and $\lim _{s \in T} F^{s}=F \subseteq C \quad(F$ finite). Again, this is done in such a way that if $L(r, s) \rightarrow \infty$ as s increases in T, then $z \in W_{e}\left(C_{r} \oplus \hat{\theta}_{j}\left(F \cup C_{r, z}\right)\right)^{\{r\}}$ for every $z \in W_{e}\left(C_{r} \oplus \hat{\theta}_{j}(C)\right)^{\{r\}}$. If requirement r fails, $A_{n} \leq_{e} C_{r}$ as follows, which is a contradiction. There exists m such that $\left.\theta_{j}(C)^{\left.\{r\}_{r}[\rangle_{m}\right]=} A_{n} r[\rangle_{m}\right]$. Enumerate elements of $A_{n} r(m+1)$ and begin enumerating
 elements enter this set add them to $C_{r}\{2 n\}$ to build $C_{r, z}$ for increasing values of z. Continue enumerating $W_{e}\left(C_{r} \oplus \hat{\theta}_{j}\left(F \cup C_{r, z}\right)\right)^{\{r\}_{r}[>m] \subseteq A_{n}}$. Since $z \in W_{e}\left(C_{r} \oplus \hat{\theta}_{j}\left(F \cup C_{r, z}\right)\right)^{\{r\}}$
 element of A_{n} is enumerated.

Construction.

Stage 0.

Do nothing.

Stage s+1.
Let $r=(s)_{0}$. If requirement r is empty, do nothing.

Otherwise do the following. For every z, set

$$
E_{z}^{s}=U\left(\tilde{\theta}_{\langle r}, C, \tilde{\theta}_{\langle r}^{s}\left(C^{s}\right), s\right) \cup C_{r, z}^{s}
$$

Case 1. $\quad r \equiv 0 \bmod 2$.
Let $e=e(r)$.
For every z, x such that
1.1. $z \in W_{e}^{S}\left(C_{r}^{S} \oplus \tilde{\theta}^{S}\left(C^{S}\right)\right)+L(r, s)-W_{e}^{S}\left(C_{r}^{S} \oplus \tilde{\theta}^{s}\left(E_{z}^{s}\right)\right)$,
1.2. $x \in u\left(W_{e}, C_{r} \oplus \tilde{\theta}(C), z, s\right)-C_{r}^{s} \oplus \tilde{\theta}^{s}\left(E_{z}^{s}\right)$,
enumerate $\left\langle E_{z}^{\mathbf{s}, w\rangle}\right.$ into $\theta_{k, r}$, where $x=2\langle w, k\rangle+1$ for some k; (note $\left.k<k_{n}\right)$. If z satisfies 1.1 and $E_{z}^{s} \subseteq C$, we say $s+1$ is (r, z)-active.

Case 2. $\quad r \equiv 1 \bmod 2$.
Let $j=j(r)$ and $e=e(r)$.
For every $z \in A_{n}^{s} r(L(r, s)+1)$, enumerate $\left\langle C^{s},\langle z, r\rangle\right\rangle$ into $\theta_{j, r}$.
For every z, x such that
2.1. $z \in W_{e}^{s}\left(C_{r}^{s} \oplus \hat{\theta}_{j}^{s}\left(C^{s}\right)\right)^{\{r\}} r L(r, s)-W_{e}^{s}\left(C_{r}^{s} \oplus \hat{\theta}_{j}^{s}\left(E_{z}^{s}\right)\right)^{\{r\}}$,
2.2. $x \in u\left(W_{e}, C_{r} \oplus \hat{\theta}_{j}(C),\langle z, r\rangle, s\right)-C_{r}^{s} \oplus \hat{\theta}_{j}^{s}\left(E_{z}^{s}\right)$,
enumerate $\left\langle E_{z}^{\mathbf{S}, w\rangle}\right.$ into $\theta_{k, r}$, where $x=2\langle w, k\rangle+1$ for some k; (note
$k<k_{n}$ and $k \neq j$). If z satisfies 2.1 and $E_{z}^{s} \subseteq C$, we say $s+1$ is (r, z)-active.

End of construction.

Proposition 1. For every $k<k_{n}, r, \theta_{k, r}(\omega) \subseteq \omega^{[2 r]}$.

Proof. It suffices to show that for every $k<k_{n}, r, s$, $\theta_{k, r}^{s}(\omega) \subseteq \omega^{[\geq r]}$. The proof is by induction on s. $\theta_{k, r}^{0}=0$ for every $k<k_{n}, r$. Assume $\theta_{k, r}^{s}(\omega) \subseteq \omega^{[\geq r]}$ for every $k<k_{n}$, r. If $r \neq(s)_{0}$ then $\theta_{k, r}^{s+1}=\theta_{k, r}^{s}$ for every $k\left\langle k_{n}\right.$. Suppose $r=(s)_{0}$ and $\langle F, w\rangle$ is enumerated into $\theta_{k, r}$ at stage $s+1$, where $k<k_{n}$. From the construction, requirement r cannot be empty.

Case 1. $\quad r \equiv 0 \bmod 2$.
Let $e=e(r)$. Then $2\langle w, k\rangle+1 \in u\left(W_{e}, C_{r} \oplus \tilde{\theta}(C), z, s\right)-C_{r}^{S} \oplus \tilde{\theta}^{S}\left(E_{z}^{S}\right)$ for some $z \in W_{e}^{s}\left(C_{r}^{\mathbf{s}} \oplus \tilde{\theta}^{\mathbf{s}}\left(C^{\mathbf{s}}\right)\right) r L(r, s)$. Hence $\langle w, k\rangle \in \tilde{\theta}^{\mathbf{S}}\left(C^{\mathbf{s}}\right)-\tilde{\theta}^{\mathbf{s}}\left(E_{z}^{s}\right)$. Now $\tilde{\theta}_{<r}^{s}\left(C^{s}\right) \subseteq \tilde{\theta}_{\langle r}^{s}\left(E_{z}^{s}\right) \quad$ (Proposition 2). Therefore $w \in$ $\theta_{k}^{s}\left(C^{s}\right)-\theta_{k,\langle r}^{s}\left(C^{s}\right)=\theta_{k, \geq r}^{s}\left(C^{s}\right) \subseteq \theta_{k, \geq r}^{s}(\omega) \subseteq \omega^{[\geq r]}$ by the induction hypothesis.

Case 2. $\quad r \equiv 1 \bmod 2$.
Let $j=j(r)$ and $e=e(r)$. If $k=j$, then $w=\langle z, r\rangle \in \omega^{[\geq r]}$
for some z. Otherwise $2\langle w, k\rangle+1 \in$
$u\left(W_{e}, C_{r} \oplus \hat{\theta}_{j}(C),\langle z, r\rangle, s\right)-C_{r}^{s} \oplus \hat{\theta}_{j}^{s}\left(E_{z}^{s}\right)$ for some $z \epsilon$
$W_{e}^{s}\left(C_{r}^{s} \oplus \hat{\theta}_{j}^{s}\left(C^{s}\right)\right)^{\{r\}_{r L(}(r, s)}$. Hence $\langle w, k\rangle \in \hat{\theta}_{j}^{s}\left(C^{s}\right)-\hat{\theta}_{j}^{s}\left(E_{z}^{s}\right)$. The rest goes as in Case 1.

Proposition 2. For every r, z, if requirement r is not empty and $r=(s)_{0}$ then,
.1. $\tilde{\theta}_{\langle r}^{\mathrm{s}}\left(C^{\mathrm{S}}\right) \subseteq \tilde{\theta}_{\langle r}^{\mathrm{s}}\left(E_{z}^{\mathrm{s}}\right)$,
2. if $r \equiv 0 \bmod 2$ and $z \in W_{e(r)}^{\mathbf{s}}\left(C_{r}^{\mathbf{S}} \oplus \tilde{\theta}^{\mathbf{s}}\left(C^{\mathbf{s}}\right)\right) r L(r, s)$ then
.1. $z \in \mathbb{W}_{e(r)}^{s}\left(C_{r}^{\mathrm{s}} \oplus \tilde{\theta}^{\mathrm{s}+1}\left(E_{z}^{\mathrm{s}}\right)\right)$,
2. if $s+1$ is (r, z)-active then $C_{r}^{s} \subseteq C_{r}, C_{r, z}^{s} \subseteq C_{r, z}$,

$$
\tilde{\theta}_{\langle r}^{\mathrm{s}}\left(C^{\mathrm{S}}\right) \subseteq \tilde{\theta}_{\langle r}(C) \quad \text { and } \quad z \in W_{e(r)}\left(C_{r} \oplus \tilde{\theta}(C)\right)
$$

.3. if $r \equiv 1 \bmod 2$ and $z \in W_{e(r)}^{s}\left(C_{r}^{s} \oplus \hat{\theta}_{j(r)}^{s}\left(C^{s}\right)\right)^{\{r\}_{r L(r, s)} \text { then }}$
.1. $z \in W_{e(r)}^{s}\left(C_{r}^{s} \oplus \hat{\theta}_{j(r)}^{s+1}\left(E_{z}^{s}\right)\right)^{\{r\}}$,
2. if $s+1$ is (r, z)-active then $C_{r}^{s} \subseteq C_{r}, \quad C_{r, z}^{s} \subseteq C_{r, z}$, $\tilde{\theta}_{\langle r}^{s}\left(C^{s}\right) \subseteq \tilde{\theta}_{\langle r}(C)$ and $z \in W_{e(r)}\left(C_{r} \oplus \hat{\theta}_{j(r)}(C)\right)^{\{r\}}$.

Proof. Assume requirement r is not empty and $r=(s)_{0}$. From the construction, $U\left(\widetilde{\theta}_{\langle r}, C, \tilde{\theta}_{\langle r}^{s}\left(C^{s}\right), s\right) \subseteq E_{z}^{s}, \quad$ therefore 1 holds.

Suppose $r \equiv 0 \bmod 2$ and $z \in \mathbb{W}_{e(r)}^{s}\left(C_{r}^{\mathbf{S}} \oplus \tilde{\theta}^{\mathbf{s}}\left(C^{s}\right)\right) r L(r, s)$. Let $e=e(r)$. Then either $z \in W_{e}^{S}\left(C_{r}^{S} \oplus \tilde{\theta}^{S}\left(E_{z}^{S}\right)\right)$ or by the action taken at stage $s+1, u\left(W_{e}, C_{r} \oplus \tilde{\theta}(C), z, s\right) \subseteq C_{r}^{s} \oplus \tilde{\theta}^{s}\left(E_{z}^{s}\right) \cup C_{r}^{s} \oplus \tilde{\theta}^{s+1}\left(E_{z}^{s}\right) \subseteq$ $C_{r}^{\mathbf{s}} \oplus \tilde{\theta}^{\mathbf{s + 1}}\left(E_{z}^{s}\right)$. Therefore 2.1 holds.

Assume in addition that $s+1$ is (r, z)-active. Then $C_{r}^{s} \subseteq C_{r, z}^{s} \subseteq$ $E_{z}^{s} \subseteq C$. Therefore $C_{r}^{s} \subseteq C_{r}$ and $C_{r, z}^{s} \subseteq C_{r, z}$. By 1, $\tilde{\theta}_{\langle r}^{s}\left(C^{s}\right) \subseteq$ $\tilde{\theta}_{\langle r}^{s}\left(E_{z}^{s}\right) \subseteq \tilde{\theta}_{\langle r}(C)$ and by 2.1, $\quad z \in W_{e}^{s}\left(C_{r}^{s} \oplus \tilde{\theta}^{s+1}\left(E_{z}^{s}\right)\right) \subseteq W_{e}\left(C_{r} \oplus \tilde{\theta}(C)\right)$.

The proof of 3 is similar.

Proposition 3. For every r,
.1. requirement r is satisfied,
2. $\theta_{k, r}(C)$ is finite for every $k<k_{n}$.

Proof. The proof is by induction on r. Assume 1-2 hold for every $r<q$. We show that $1-2$ hold for $r=q$. If requirement q is empty then from the construction $\theta_{k, q}=0$ for every $k<k_{n}$, so we are done.

Assume requirement q is not empty. It follows from the induction hypothesis that $U\left(\tilde{\theta}_{\langle q}, C, \tilde{\theta}_{\langle q}(C)\right)$ is finite.

Case 1. $q \equiv 0 \bmod 2$.
Let $i=i(q)$ and $e=e(q)$. If $q \equiv 0 \bmod 4$ set $X=A_{i}$ and $l^{\prime}=2 i$. If $q \equiv 2 \bmod 4$ let $j=j(q) ; \quad \operatorname{set} X=B_{i, j}$ and $l^{\prime}=$ $2\langle i, j\rangle+1$. Then requirement q is $" X \neq W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right) "$. Suppose $X=$ $W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)$. We define enumerations, $\left\{X^{\prime s}\right\}_{s \in \omega}$ and $\left\{C_{q}^{\prime s}\right\}_{s \in \omega}$, of sets X^{\prime} and C_{q}^{\prime} respectively as follows.

$$
\begin{gathered}
C_{q}^{\prime 0}=U\left(\tilde{\theta}_{\langle q}, C, \tilde{\theta}_{\langle q}(C)\right) \cup C_{q} ; \quad X^{\prime 0}=0 \\
\left(C_{q}^{\prime s+1}\right)^{\{l\}}=\left\{\begin{array}{l}
\left(C_{q}^{\prime s}\right)^{\{l\}} \cup X^{\prime s}, \quad \text { if } l=l^{\prime}, \\
\left(C_{q}^{\prime s}\right)
\end{array}\right. \\
X^{\prime s+1}=X^{\prime s} \cup W_{e}\left(C_{q} \oplus \tilde{\theta}\left(C_{q}^{\prime s+1}\right)\right)
\end{gathered}
$$

It is clear that $X^{\prime} \leq_{e} C_{q}$.

Claim 1. $X^{\prime}=X$.

Proof. We show that $X^{\prime s} \subseteq X$ and $C_{q}^{\prime, s} \subseteq C$ for every s, by induction. Hence $X^{\prime} \subseteq X . \quad C_{q}^{\prime 0} \subseteq C$, since $C_{q} \subseteq C$, and $X^{\prime 0}=0$.

Since $W_{e}\left(C_{q} \oplus \tilde{\theta}\left(C_{q}^{\prime s+1}\right)\right) \subseteq X^{\prime s+1}$ for every $s, W_{e}\left(C_{q} \oplus \tilde{\theta}\left(C_{q}^{\prime}\right)\right) \subseteq$ X^{\prime}. We show that $X \vdash \subset \subseteq X^{\prime}$ for every z, by induction. Hence $X \subseteq X^{\prime}$.

Assume $X \subset z \subseteq X^{\prime}$. If $z \notin X$ then we are done.
Suppose $z \in X=W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)$. Choose $s \in T$ such that $(s)_{0}=$ $q, \quad z \in W_{e}^{s}\left(C_{q}^{s} \oplus \tilde{\theta}^{s}\left(C^{s}\right)\right)+L(q, s), \quad \tilde{\theta}_{\langle q}^{s}\left(C^{s}\right)=\tilde{\theta}_{<q}(C) \quad$ and $U\left(\tilde{\theta}_{<q}, C, \tilde{\theta}_{\langle q}^{s}\left(C^{s}\right), s\right)=U\left(\tilde{\theta}_{<q}, C, \tilde{\theta}_{<q}(C)\right)$. Then $C_{q}^{s} \subseteq C_{q}$ and $C_{q, z}^{s} \subseteq C_{q, z}$, since $s \in T$. Therefore $E_{z}^{S} \subseteq U\left(\tilde{\theta}_{\langle q}, C, \tilde{\theta}_{\langle q}(C)\right) \cup C_{q, z} \subseteq C_{q}^{\prime}$ by the induction hypothesis. Now $z \in W_{e}^{S}\left(C_{q}^{S} \oplus \tilde{\theta}^{s+1}\left(E_{z}^{S}\right)\right.$) (Proposition 2), so $z \in W_{e}\left(C_{q} \oplus \tilde{\theta}\left(C_{q}^{\prime}\right)\right) \subseteq X^{\prime}$. Therefore $X r(z+1) \subseteq X^{\prime}$, and we are done.
$X \leq C_{q}$ by Claim 1, which is a contradiction. Therefore $X \neq$ $W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)$, so 1 holds.

Claim 2. For every z, there are only finitely many (q, z)-active stages.

Proof. Suppose not. Choose z giving a contradiction and a (q, z)-active stage $t+1$ such that $U\left(\tilde{\theta}{ }_{\langle q}, C, \tilde{\theta}_{\langle q}(C), s\right)$ has reached a limit by stage t. Then $\tilde{\theta}_{\langle q}^{t}\left(C^{t}\right)=\tilde{\theta}_{\langle q}(C) \quad$ (Proposition 2), therefore $E_{z}^{t}=U\left(\tilde{\theta}_{<q}, C, \tilde{\theta}_{<q}(C)\right) U C_{q, z}^{t}$ and $z \in W_{e}^{t}\left(C_{q}^{t} \oplus \tilde{\theta}^{t+1}\left(E_{z}^{t}\right)\right.$) (Proposition 2). Since $C_{q}^{t} \subseteq C_{q}$ and $C_{q, z}^{t} \subseteq C_{q, z}$ (Proposition 2), we can choose a stage $t^{\prime}>t$ such that $C_{q}^{t} \subseteq C_{q}^{s}$ and $C_{q, z}^{t} \subseteq C_{q, z}^{s}$ for every $s>t^{\prime}$. Let $s+1>t^{\prime}$ be a (q, z)-active stage. It follows from the definition of E_{z}^{S} and the choice of t and t^{\prime} that $E_{z}^{t} \subseteq E_{z}^{S}$ Therefore $z \in W_{e}^{s}\left(C_{q}^{S} \oplus \tilde{\theta}^{s}\left(E_{z}^{S}\right)\right)$, which is a contradiction.

By 1 we can choose a least y such that $X(y) \neq W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)(y)$. Choose a stage t such that
$(\forall s \geq t)\left[X \vdash(y+1) \subseteq X^{s}\right.$ and $\left.W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right) r(y+1) \subseteq W_{e}^{s}\left(C_{q}^{s} \oplus \tilde{\theta}^{s}\left(C^{s}\right)\right)\right]$.

Claim 3. For every $z>y$, there are no (q, z)-active stages after stage t.

Proof. Suppose not. Choose $z>y$ and $a(q, z)$-active stage $s+1>t$. Note $L(q, s)>z>y$ and from the construction, $E_{y}^{s} \subseteq E_{z}^{s} \subseteq C$.

Case 1. $y \in X$.
Then $y \in W_{e}^{S}\left(C_{q}^{s} \oplus \tilde{\theta}^{s}\left(C^{s}\right)\right) \uparrow L(q, s)$. Therefore $y \in W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)$ (Proposition 2), which contradicts the choice of y.

Case 2. $y \in W_{e}\left(C_{q} \oplus \tilde{\theta}(C)\right)$.
Then $y \in X^{s}$. Therefore $y \in X^{s} \upharpoonright z=\left(C_{q, z}^{s}\right)^{\{l '\}} \subseteq C_{q, z}^{\{l \prime\}} \subseteq X$ (Proposition 2), which contradicts the choice of y.

Let $k<k_{n}$. From the construction $w \in \theta_{k, q}(C)$ if and only if there exist z, t such that $\left\langle E_{z}^{t}, w\right\rangle$ is enumerated into $\theta_{k, q}$ at (q, z)-active stage $t+1$. The set of stages t for which there exists x such that t is (q, x) -active is finite (Claims 2 and 3). Since only finitely many instructions are enumerated into $\theta_{k, q}$ at each stage, 2 holds.

Case 2. \quad q $\equiv 1 \bmod 2$.
Let $j=j(q)$ and $e=e(q)$. Then requirement q is $" \theta_{j}(C)\{q\} \neq$ $W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}$. . Suppose $\theta_{j}(C)^{\{q\}}=W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}$.

Since $\theta_{j,<q}(C)$ is finite, (by the induction hypothesis), $m=\max \left(\theta_{j,\langle q}(C)^{\{q\}}\right)$ is defined.

Claim 4. For every z, if $z \in \theta_{j, q}^{s}\left(C^{s}\right)^{\{q\}}$ then $z \in A_{n}^{s}$.

Proof. Assume $z \in \theta_{j, q}^{s}\left(C^{s}\right)^{\{q\}}$. Then there exists an instruction $\langle F,\langle z, q\rangle\rangle \in \theta_{j, q}^{s}$ such that $F \subseteq C^{s}$. Suppose such an instruction is enumerated into $\theta_{j, q}$ at stage $t+1 \leq s$. An inspection of the construction shows that $q=(t)_{0}, \quad z \in A_{n}^{t} r L(q, t)$ and $F=C^{t} \subseteq C^{s}$. Since $\left(C^{t}\right)^{\{2 n\}}=A_{n}^{t}, \quad z \in\left(C^{t}\right)^{\{2 n\}} \subseteq\left(C^{s}\right)^{\{2 n\}}=A_{n}^{s}$.

Claim 5. $\left.\left.\quad \theta_{j}(C)^{\{q\}} \upharpoonright[\rangle m\right]=A_{n} r[\rangle m\right]$.

Proof. Let z>m.
Suppose $z \in \theta_{j}(C)^{\{q\}}$. Then $z \notin \theta_{j,\langle q}(C)^{\{q\}}$, so $z \in \theta_{j, q}(C)^{\{q\}}$ (Proposition 1). Choose $s \in T$ such that $z \in \theta_{j, q}^{s}\left(C^{s}\right)^{\{q\}}$. Then $z \in A_{n}^{s} \subseteq A \quad$ (Claim 4).

Suppose $z \in A_{n}$. Choose $s \in T$ such that $(s)_{0}=q$ and $z \in$ $\left.A_{n}^{s}\right\rangle(L(q, s)+1)$. Then $C^{s} \subseteq C$ and $\left\langle C^{s},\langle z, q\rangle\right\rangle$ is enumerated into $\theta_{j, q}$ at stage $s+1$. Therefore $z \in \theta_{j}(C)^{\{q\}}$.

We define enumerations, $\left\{A_{n}^{\prime s}\right\}_{s \in \omega}$ and $\left\{C_{q}^{\prime s}\right\}_{s \in \omega}$, of sets A_{n}^{\prime} and $C_{q}^{\prime} \quad$ respectively as follows.

$$
\begin{aligned}
& C_{q}^{\prime 0}=U\left(\tilde{\theta}_{\langle q}, C, \tilde{\theta}_{<q}(C)\right) \cup C_{q} ; \quad A_{n}^{\prime 0}=A_{n} \upharpoonright(m+1) . \\
& \left(C_{q}^{, s+1}\right)^{\{l\}}=\left\{\begin{array}{l}
\left(C_{q}^{\prime s}\right)^{\{l\}} U\left(A_{n}^{, s}\right), \quad \text { if } l=2 n, \\
\left(C_{q}^{\prime s}\right)
\end{array}\right. \\
& A_{n}^{, s+1}=A_{n}^{, s} U W_{e}\left(C_{q} \oplus \hat{\theta}_{j}\left(C_{q}^{, s+1}\right)\right)^{\{q\}} r[>m] .
\end{aligned}
$$

It is clear that $A_{n}^{\prime} \leq_{e} C_{q}$.

Claim 6. $A_{n}^{\prime}=A_{n}$.

Proof. We show that $A_{n}^{\prime s} \subseteq A_{n}$ and $C_{q}^{\prime s} \subseteq C$ for every s, by induction. Hence $A_{n}^{\prime} \subseteq A_{n}$. Clearly $C_{q}^{\prime 0} \subseteq C$ and $A_{n}^{\prime 0} \subseteq A_{n}$. Assume
$C_{q}^{\prime s} \subseteq C$ and $A_{n}^{\prime s} \subseteq A_{n}$. Then $C_{q}^{\prime s+1} \subseteq C$ by definition of C. Therefore $\left.\left.A_{n}^{, s+1} \subseteq A_{n} \cup W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}} \upharpoonright[\rangle m\right]=A_{n} \cup \theta_{j}(C){ }^{\{q\}} \upharpoonright[\rangle m\right]=A_{n}$ (Claim 5), and we are done.

Since $\mathbb{W}_{e}^{s}\left(C_{q} \oplus \hat{\theta}_{j}\left(C_{q}^{, s+1}\right)\right) r[>m] \subseteq A_{n}^{\prime s+1}$ for every s, $\mathbb{W}_{e}\left(C_{q} \oplus \hat{\theta}_{j}\left(C_{q}^{\prime}\right)\right){ }^{\{q\}} r[>m] \subseteq A_{n}^{\prime}$. We show that $A \upharpoonright z \subseteq A_{n}^{\prime}$ for every z, by induction. Hence $A_{n} \subseteq A_{n}^{\prime}$.

Assume $A_{n} \upharpoonright z \subseteq A_{n}^{\prime}$. By definition of $A_{n}^{\prime 0}$, we can assume $z>m$. If $z \notin A_{n}$, we are done.

Suppose $\left.\left.z \in A_{n} \upharpoonright[>m]=\theta_{j}(C)^{\{q\}} \upharpoonright[\rangle m\right]=W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}} \upharpoonright[\rangle m\right]$.
Choose $s \in T$ such that $(s)_{0}=q, \quad z \in W_{e}^{s}\left(C_{q}^{\mathbf{s}} \oplus \hat{\theta}_{j}^{s}\left(C^{s}\right)\right)^{\left.\{q\}_{\Gamma L(q, s}\right)}$. $\tilde{\theta}_{<q}^{\mathbf{s}}\left(C^{\mathbf{s}}\right)=\tilde{\theta}_{<q}(\mathrm{C})$ and $U\left(\tilde{\theta}_{<q}, C, \tilde{\theta}_{\langle q}^{\mathrm{s}}\left(C^{\mathrm{s}}\right), s\right)=U\left(\tilde{\theta}_{<q}, C, \tilde{\theta}_{<q}(\mathrm{C})\right)$. Then $C_{q}^{\mathbf{s}} \subseteq$ C_{q} and $C_{q, z}^{s} \subseteq C_{q, z}$. Therefore $E_{z}^{s} \subseteq U\left(\tilde{\theta}_{\langle q}, C, \tilde{\theta}_{\langle q}(C)\right) \cup C_{q, z} \subseteq C_{q}^{\prime}$ by the induction hypothesis. $z \in \mathbb{W}_{e}^{s}\left(C_{q}^{s} \oplus \hat{\theta}_{j}^{s+1}\left(E_{z}^{s}\right)\right)$ (qu\} ~ (P r o p o s i t i o ~ n o) , ~ therefore $\left.z \in W_{e}\left(C_{q} \oplus \hat{\theta}_{j}\left(C_{q}^{\prime}\right)\right)^{\{q\}} \upharpoonright[\rangle m\right] \subseteq A_{n}^{\prime}$. So $A_{n} \upharpoonright(z+1) \subseteq A_{n}^{\prime}$. and we are done.

Hence $A_{n} \leq_{e} C_{q}$. which is a contradiction. Therefore $\theta_{j}(C)\{q]$ $W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}$, so 1 holds.

By 1 we can choose a least y such that $\theta_{j}(C)^{\{q\}}(y) \neq$ $W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}(y)$.

From the construction $w \in \theta_{j, q}(C)$ if and only if there exist $s \in$ T, z such that $(s)_{0}=q, w=\langle z, q\rangle$ and $\left.z \in A_{n}^{s}\right\rangle(L(q, s)+1)$. However $\lim _{\mathbf{s} \in T} L(q, s)=y$, therefore $\theta_{j, q}(C)$ is finite.

As in Case 1, Claim 2, we can show that for every z, there are only finitely many (q, z)-active stages. Choose a stage t such that

$$
\begin{gathered}
(\forall s \geq t)\left[\theta_{j}(C)^{\{q\}} r(y+1) \subseteq \theta_{j}^{s}\left(C^{s}\right)^{\{q\}}\right. \text { and } \\
\mathbb{W}_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\left.\{q\}_{r}(y+1) \subseteq W_{e}^{s}\left(C_{q}^{s} \oplus \hat{\theta}_{j}^{s}\left(C^{s}\right)\right)^{\{q\}}\right] .}
\end{gathered}
$$

Claim 7. For every $z>y$, there are no (q, z)-active stages after stage t.

Proof. Suppose not. Choose $z>y$ and a (q,z)-active stage $s+1>t$. Note $L(q, s)>z>y$ and $E_{y}^{s} \subseteq E_{z}^{s} \subseteq C$.

Case 1. $y \in \theta_{j}(C){ }^{\{q\}}$.
Then $y \in W_{e}^{s}\left(C_{q}^{s} \oplus \hat{\theta}_{j}^{s}\left(C^{s}\right)\right)^{\{q\}}+L(q, s)$. Therefore $y \in$ $W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}$ (Proposition 2), which contradicts the choice of y.

Case 2. $y \in W_{e}\left(C_{q} \oplus \hat{\theta}_{j}(C)\right)^{\{q\}}$.
Then $y \in \theta_{j}^{s}\left(C^{s}\right)^{\{q\}}$. If $y \in \theta_{j,\langle q}^{s}\left(C^{s}\right)^{\{q\}}$ then $\langle\langle y, q\rangle, j\rangle \in$ $\tilde{\theta}_{\langle q}^{s}\left(C^{s}\right) \subseteq \tilde{\theta}_{\langle q}(C) \quad$ (Proposition 2), so $y \in \theta_{j,\langle q}(C)^{\{q\}} \subseteq \theta_{j}(C)^{\{q\}}$, which contradicts the choice of y. Therefore $y \in \theta_{j, q}^{s}\left(C^{s}\right)\{q\}$ (Proposition 1). Then $y \in A_{n}^{s}$ (Claim 4), so $y \in\left(C_{q, z}^{s}\right)^{\{2 n\}} \underline{C}$ $C_{q, z}{ }^{\{2 n\}} \subseteq A_{n}$ (Proposition 2). Choose $u \in T$ such that $q=(u)_{0}$, $L(q, u)=y$ and $y \in A_{n}^{u}$. Then $\left\langle C^{\mu},\langle y, q\rangle\right\rangle$ is enumerated into $\theta_{j, q}$ at stage $u+1$ with $C^{\mu} \subseteq C$. Therefore $y \in \theta_{j}(C)^{\{q\}}$ which is a contradiction.

Therefore $\theta_{k, q}(C)$ is finite for every $k<k_{n}, k \neq j$, so 2 holds.

Hence all requirements are satisfied. -

Corollary 2.3.2. For every pair of incomparable Σ_{2} e-degrees a
and
b there exists $a \Sigma_{2} e$-degree c such that $c \perp_{e} a$ and $c \perp_{e} b$.

Proof. This is easily proved using the same techniques as those used to prove Lemma 2.3.1. -

CHAPTER III

A NON-SPLITTING E-DEGREE

§3.1 INTRODUCTION

Definition 3.1.1. A degree a is said to be splitting if there exists a pair of degrees \mathbf{b} and \mathbf{c} strictly below \mathbf{a} with $\mathbf{a}=\mathbf{b} \vee \mathbf{c}$.

Every r.e. Turing degree is a splitting degree by the Sacks Splitting Theorem (see Soare [1987] (pp. 124-126)). In contrast to this, for the Σ_{2} e-degrees, we have:

Theorem 3.1.2. There exists a non-zero low non-splitting e-degree.

The louness of the non-splitting degree is needed to prove Theorem 4.1.1.

A feature of the proof worth noting is that while constructing a Σ_{2} set A, we simultaneously attempt to construct e-reductions of A
to $W(A)$ for various e-operators W. In general, given $W(A)$, the task of constructing an e-reduction of A to $\mathbb{W}(A)$, (given that one exists), is a difficult one.

§3.2 PROOF OF THEOREM

Definition. Let $n=\left\langle n_{0}, n_{1}, n_{2}\right\rangle . \quad V_{n}=W_{n_{0}} \cdot \Omega_{n}=W_{n_{1}}$ and $\theta_{n}=$ W_{n}.

We show that there exists a non-r.e. low set A such that

$$
\neg\left(V_{i=0}^{\infty}\left[A=V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right) \text { and } \Omega_{i}(A) \perp_{e} \theta_{i}(A)\right]\right)
$$

Specifically, we construct a Σ_{2}-approximation $\left\{A^{s}\right\}_{s \in \omega}$ to A and attempt to satisfy the following requirements, listed in order of priority.
$N_{0}: \quad A \neq W_{0}$.
$P_{0}: \exists^{\infty} s\left[k \in W_{j}^{s}\left(A^{s}\right)\right] \Rightarrow k \in W_{j}(A)$, where $0=\langle k, j\rangle$.
$N_{1}: \quad A \neq W_{1}$.
$P_{1}: \exists^{\infty} s\left[k \in W_{j}^{s}\left(A^{s}\right)\right] \Rightarrow k \in W_{j}(A)$, where $1=\langle k, j\rangle$.

In addition, for every i, we construct e-operators Ψ_{i} and Φ_{i} and attempt to meet requirement $\mathrm{R}_{\boldsymbol{i}}$.
$R_{i}: \quad A \neq V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right) \quad$ or $A=\Psi_{i}\left(\Omega_{i}(A)\right) \quad$ or $A={ }^{*} \Phi_{i}\left(\theta_{i}(A)\right)$.

If all requirements N_{i}, P_{i} and R_{i} are met then it is clear that $\operatorname{deg}_{e} A$ satisfies the conditions of the theorem.

Definitions. $\quad\left\{\Psi_{i}^{\mathbf{s}}\right\}_{s \in \omega}, \quad\left\{\Phi_{i}^{\mathbf{s}}\right\}_{s \in \omega}$ and $\left\{\tilde{\mathrm{A}}^{\mathbf{s}}\right\}_{s \in \omega}$ are recursive enumerations of Ψ_{i}, Φ_{i} and \tilde{A} respectively. At certain stages of the construction it is necessary to dump (permanently put) elements into A for the sake of requirements P_{i} and $R_{i} . \widetilde{\mathbb{A}}$ consists of all such elements. \tilde{A}^{s} is the set of elements which have been enumerated into \tilde{A} by the end of stage s.
F_{Ω} and F_{θ} are binary partial recursive functions with range the set of finite sets. $\left\{F_{\Omega}^{s}\right\}_{s \in \omega}$ and $\left\{F_{\theta}^{s}\right\}_{s \in \omega}$ are recursive approximations to F_{Ω} and F_{θ} respectively, defined as follows. $F_{\Omega}^{S}(i, x) \downarrow=D$ $\left(F_{\theta}^{s}(i, x) \downarrow=D\right)$ if there is a stage $t \leq s$ at which $F_{\Omega}(i, x) \quad\left(F_{\theta}(i, x)\right)$ is explicitly defined to be D.

$$
\Psi_{i}^{s}=\left\{\langle x, 0\rangle: x \in \tilde{\mathbb{A}}^{s}\right\} \cup\left\{\left\langle x, F_{\Omega}^{\mathbf{s}}(i, x)\right\rangle: F_{\Omega}^{\mathbf{s}}(i, x) \downarrow\right\}
$$

and

$$
\Phi_{i}^{\mathbf{s}}=\left\{\langle x, \theta\rangle: x \in \tilde{\mathrm{~A}}^{\mathbf{s}}\right\} \cup\left\{\left\langle x, F_{\theta}^{\mathbf{s}}(i, x)\right\rangle: F_{\theta}^{\mathbf{s}}(i, x) \downarrow\right\}
$$

Each requirement N_{i} has a witness. If x is a witness for N_{i} then we attempt to arrange that $A(x) \neq W_{i}(x)$. B denotes the set of all witnesses (at the end of the construction). $\left\{B^{s}\right\}_{s \in \omega}$ is a Δ_{2}-approximation to B, where

$$
B^{s}=\left[\bigcup_{t \leq s}^{U} A^{t}\right]-\tilde{\Lambda}^{s} ;
$$

hence once an element is enumerated into \tilde{A}, it cannot be a witness for any requirement $N_{i} . x_{e}^{s}$ denotes the e-th element of B^{s} (in the natural order), and is a witness for requirement N_{e} at stage s. $B_{S e}^{s}=\left\{x_{n}^{s}: n \leq e\right\} . \quad B_{\langle e}^{s}, B_{\geq e}^{s}$ and $B_{>e}^{s}$ are defined analogously.

At every stage each witness has an associated i-state for every i. An i-state is an element of i_{2} and is a technical tool for meeting requirements R_{j}, where $j \leq i$. It is not the ususal i-state of the maximal set construction. For every i, σ_{i} is a binary partial recursive function with range $\{0,1\} . \sigma_{i}(e, s) \downarrow$ for every $i \quad$ if and only if $x_{e}^{s} \downarrow$; if $x_{e}^{s+1} \downarrow$ then $\sigma_{i}(e, s+1)=\sigma_{i}(e, s)$, unless otherwise specified. If $x=x_{e}^{s}$ for some e then the i-state of x at stage s is $\left(\sigma_{0}(e, s), \sigma_{1}(e, s), \ldots, \sigma_{i}(e, s)\right)$. For $i \leq e, \sigma_{i}(e, s)=0$ indicates that at stage s, x_{e}^{s} is part of our strategy to achieve $A={ }^{*} \Psi_{i}\left(\Omega_{i}(A)\right)$. That is, we hope to arrange that $A\left(x_{e}^{s}\right)=$ $\Psi_{i}\left(\Omega_{i}(A)\right)\left(x_{e}^{s}\right)$. If $\sigma_{i}(e, s)=1$ then x_{e}^{s} is part of our strategy to achieve $A={ }^{*} \Phi_{i}\left(\theta_{i}(A)\right)$. For a fixed i, $i-s t a t e s$ are ordered lexicographically.

At stage $s+1$ we say that x is unused if $x \notin \underset{t \leq s}{U} A^{t}$.

Requirements R_{i} present the greatest difficulty. In order to gain insight into the full construction, suppose that we were only interested in satisfying requirements N_{i}, P_{i} for every i, and the single requirement R_{0}. Let us see how we could meet R_{0} in a manner which would also allow us to meet the other requirements. For notational ease we omit the subscript 0 from the various e-operators.

All elements of ω enter A, in order, as witnesses. So $U A_{t}^{t}=$ ω; it follows from the definition of B that $\overline{\tilde{A}}=B . \tilde{A} \subseteq \Psi(0) \cap \Phi(0)$ from the definition of Ψ and Φ. So if we can arrange that in the case $A=V(\Omega(A) \oplus \theta(A)), \quad A \cap B=^{*} \Psi(\Omega(A)) \cap B$ or $A \cap B=^{*}$ $\Phi(\theta(A)) \cap B$, then R_{0} is satisfied. Rather than monitoring lengths of agreement between A^{s} and $V^{S}\left(\Omega^{S}\left(A^{S}\right) \oplus \theta^{S}\left(A^{S}\right)\right)$, we simply base our actions on the assumption that $A=V(\Omega(A) \oplus \theta(A))$. Assume $x \in B$. When x first enters A we try to arrange that $A(x)=\Psi(\Omega(A))(x)$, so the initial 0 -state of x is (0). If there follows a stage s such that $A^{s}(x)=V^{s}\left(\Omega^{s}\left(A^{s}\right) \oplus \theta^{s}\left(A^{s}\right)\right)(x)=1$, then at stage $s+1$ we set $F_{\Omega}(0, x)=\Omega^{S}\left(A^{s}\right)$ and $F_{\theta}(0, x)=\theta^{S}\left(A^{s}\right)$. Note that $x \in$ $V\left(F_{\Omega}(0, x) \oplus F_{\theta}(0, x)\right)$. In addition we enumerate the members of A^{s} which are strictly greater than x into \tilde{A}. Now if there is a stage $t>s$ such that $A^{t+1} r x \neq A^{t} r x$, then x is enumerated into \tilde{A} at stage $t+1$. But $x \notin \tilde{A}$ since $x \in B$, so $A^{t} r x=A^{s+1} r x=A \upharpoonright x$ for every $t>s$. Then $F_{\Omega}(0, x) \subseteq \Omega(A \cup\{x\}) ;$ if $x \notin A$ we would like
$F_{\Omega}(0, x) \nsubseteq \Omega(A)$. If this holds then $A(x)=\Psi(\Omega(A))(x)$, from the definition of Ψ, and we can either put x into A, or remove it, for the sake of a requirement N_{j}. However, if at a later stage t we find that $x \notin A^{t}$ and $F_{\Omega}(0, x) \subseteq \Omega^{t}\left(A^{t}\right)$ then we next try to arrange that $A(x)=\Phi(\theta(A))(x)$. So at stage $t+1$ we change the 0 -state of x to (1), and we enumerate the members of A^{t} greater than x into \tilde{A}. Then $F_{\Omega}(0, x) \subseteq \Omega(A)$ and from the action taken at stage $s+1$ we have $F_{\theta}(0, x) \subseteq \theta(A \cup\{x\})$. Now assume $A=V(\Omega(A) \oplus \theta(A))$. Since $x \in$ $V\left(F_{\Omega}(0, x) \oplus F_{\theta}(0, x)\right), \quad x \notin A$ implies $F_{\theta}(0, x) \nsubseteq \theta(A)$. So $A(x)=$ $\Phi(\theta(\mathrm{A}))(x)$ from the definition of Φ.

Once a witness y achieves a 0 -state of (1), if $A=$ $V(\Omega(A) \oplus \theta(A))$ then $A(y)=\Phi(\theta(A))(y)$. Due to this foolproof quality, witnesses of 0 -state (0) are replaced by witnesses of 0 -state (1) when these are available and associated with lower priority requirements. Hence at the end of the construction, either all but finitely many members of B have 0 -state (0), or every member of B has 0 -state (1). So requirement R_{0} is satisfied. Once the witnesses associated with higher priority requirements have settled down, requirement P_{j} can be satisfied by dumping (if necessary) finitely many elements into A.

To satisfy requirement R_{1} we simply repeat the same strategy on $B-\{\min B\}$, and so on. The use of i-states captures this idea.

Construction.

Stage 0. $\quad A^{0}=0$.

Stage $s+1 \quad(s \equiv 0 \bmod 6)$.
Choose the least $e \leq s$ such that $x_{e}^{s} \uparrow$. Set $A^{s+1}=A^{s} U\{x\}$ where x is the least unused element. Set $\sigma_{i}(e, s+1)=0$ for every i.

Stage $s+1 \quad(s \equiv 1 \bmod 6)$.
Choose the least $e \leq s$ such that there exists $m>e$ such that x_{m}^{s} has a strictly greater e-state than x_{e}^{s} at stage s. Choose the least such m. Enumerate the members of $B_{\underline{\geq}}^{s}-\left\{x_{m}^{s}\right\}$ into \tilde{A}. Set $A^{s+1}=A^{s} \cup \tilde{A}^{s+1} \cup\left\{x_{m}^{s}\right\}$ and $\sigma_{i}(e, s+1)=\sigma_{i}(m, s)$ for every i.

Stage $s+1 \quad(s \equiv 2 \bmod 6)$.

Choose the least $e \leq s$ such that $A^{s}\left(x_{e}^{s}\right)=W_{e}^{s}\left(x_{e}^{s}\right)=1$. Enumerate the members of $B_{l e}^{s}$ into \tilde{A}. Set $A^{s+1}=\left(A^{s}-\left\{x_{e}^{s}\right\}\right) \cup \tilde{A}^{s+1}$.

Stage $s+1 \quad(s \equiv 3 \bmod 6)$.
Let $i=(s)_{0}$. Choose the least $e, i \leq e \leq s$ such that $x_{e}^{s} \in$ $A^{\mathbf{S}}, \quad x_{e}^{\mathbf{S}} \in V_{i}^{\mathbf{S}}\left(\Omega_{i}^{\mathbf{S}}\left(A^{\mathbf{S}}\right) \oplus \theta_{i}^{\mathbf{S}}\left(A^{\mathbf{S}}\right)\right)$ and $\quad F_{\Omega}^{\mathbf{S}}\left(i, x_{e}^{\mathbf{S}}\right) \dagger$. Set $\quad F_{\Omega}\left(i, x_{e}^{\mathbf{S}}\right)=\Omega_{i}^{\mathbf{S}}\left(A^{\mathbf{S}}\right)$ and $F_{\theta}\left(i, x_{e}^{s}\right)=\theta_{i}^{s}\left(A^{s}\right)$. Enumerate the members of $B_{>e}^{s}$ into \tilde{A}. Set $A^{s+1}=A^{s} \cup \tilde{A}^{s+1}$. We call $s+1$ an $\left(x_{e}^{s}, \Psi_{i}\right)$-stage.

Stage $s+1 \quad(s \equiv 4 \bmod 6)$.
Let $i=(s)_{0}$. Choose the least $e, i \leq e \leq s$ such that $x_{e}^{s} \notin$ $A^{s}, \quad x_{e}^{s} \in \Psi_{i}^{s}\left(\Omega_{i}^{s}\left(A^{s}\right)\right)$ and $\sigma_{i}(e, s)=0$. Enumerate the members of $B_{>e}^{s}$
into \tilde{A}. Set $A^{s+1}=A^{s} \cup \tilde{A}^{s+1}$ and $\sigma_{i}(e, s+1)=1$. We call $s+1$ an $\left(x_{e}^{s}, \Phi_{i}\right)$-stage .

Stage $s+1 \quad(s \equiv 5 \bmod 6)$.
Choose the least $e \leq s$ such that $k \in W_{j}^{s}\left(A^{s} \cup B_{\lambda_{e}}^{s}\right)$ and $k \notin$ $W_{j}^{s}\left(\left[B_{\leq e}^{s} \cap A^{s}\right] \cup \tilde{A}^{s}\right)$, where $e=\langle k, j\rangle$. Enumerate the members of $B_{\rangle_{e}}^{s}$ into \tilde{A}. Set $A^{s+1}=A^{s} \cup \tilde{A}^{s+1}$. We say P_{e} receives attention at stage s+1.

Note. At each stage $s+1$ we are asked to choose an element e satisfying a given set of conditions. Henceforth we refer to this element as $e(s)$. If $e(s) \uparrow$, we do nothing at stage $s+1$.

End of construction.

Proposition 1.

.1. $\overline{\widetilde{A}}=B$.
.2. For every $x \in B$ there exist e and t such that $x=x_{e}^{s}$ for every $s \geq t$.

Proof. By the action taken at stages $s+1(s \equiv 0 \bmod 6)$ of the construction, $U A^{t}=\omega$. 1 is immediate from the definition of $\left\{B^{s}\right\}_{s} \epsilon_{\omega} .2$ follows from the fact that this is a Δ_{2}-approximation to B. \square

Proposition 2.

.1. $\tilde{\mathrm{A}} \subseteq \mathrm{A}$.
.2. $\left\{A^{s}\right\}_{s} \in \omega$ is a Δ_{2}-approximation to A.

Proof. From the construction $\tilde{A}^{t} \subseteq A^{s}$ for every $s \geq t$. So 1 holds.

Fix $x \in B$. Choose e and t such that $x=x_{e}^{s}$ for every $s \geq t$ (Proposition 1). It suffices to show that for every $s \geq t$, if $x \notin A^{s}$ then $x \notin A^{s+1}$. Suppose not. Choose $s \geq t$ such that $x \notin A^{s}$ and $x \in A^{s+1}$. An inspection of the construction shows that $s \equiv 1 \bmod 6$, $e(s) \downarrow<e$ and $x_{e(s)}^{s+1}=x$. This contradicts the choice of e and t.

Proposition 3. For every m, e, t, if $m<e, x_{e}^{t} \downarrow \in B$ and $x_{m}^{t} \in A^{t}$ then for every $s \geq t, \quad x_{m}^{t} \in A^{s}$.

Proof. Suppose not. Choose m, e and t satisfying the hypothesis and a least s such that $s \geq t$ and $x_{m}^{t} \notin A^{s+1}$. Then $x_{m}^{t} \notin$ \tilde{A}^{s} and since $x_{e}^{t} \in B, \quad x_{e}^{t} \notin \tilde{A}^{s}$. Therefore $x_{m}^{t}=x_{m}^{s}$, and $x_{e}^{t}=x_{e}^{s}$, for some $m^{\prime}<e^{\prime}$. By the choice of $s, x_{m}^{s}, \in A^{s}$ and $x_{m}^{s}, \notin A^{s+1}$. An inspection of the construction shows that $s \equiv 2 \bmod 6, e(s) \downarrow=m^{\prime}$ and $B_{\rangle_{m}}^{\mathbf{s}} \subseteq \widetilde{\mathrm{A}}^{\mathbf{s + 1}}$. But then $x_{e}^{\mathbf{s}} \in \widetilde{\mathrm{A}}^{s+1}$, which is a contradiction.

Proposition 4.

.1. F_{Ω} and F_{θ} are well-defined.
.2. For every x, i, there is at most one $\left(x, \Psi_{i}\right)$-stage.

Proof. 1-2 follow from the observation that $s+1$ is an $\left(x, \Psi_{i}\right)$-stage if and only if $F_{\Omega}^{s}(i, x) \uparrow, \quad F_{\theta}^{s}(i, x) \uparrow, \quad F_{\Omega}^{s+1}(i, x) \downarrow$ and $F_{\theta}^{s+1}(i, x) \downarrow$.

Proposition 5. For every x, t, if $x \in B$ and $t+1$ is an $\left(x, \Psi_{i}\right)$-stage for some i then for every $s>t, A^{t}-\{x\} \subseteq A^{s}$.

Proof. Assume $x \in B, t+1$ is an $\left(x, \Psi_{i}\right)$-stage and $s>t$. From stage $t+1$ we have $x=x_{e(t)}^{t}$ and $B_{>e(t)}^{t} \subseteq \tilde{A}^{t+1} \subseteq A^{s}$. Suppose $m<e(t)$ and $x_{m}^{t} \in A^{t}$. Then $x_{m}^{t} \in A^{s}$ (Proposition 3). Therefore $A^{t}-\{x\} \subseteq A^{s}$.

Proposition 6. For every x, s, i, if $x \in B, x=x_{e}^{s}$ for some e and $\sigma_{i}(e, s)=1$ then there exist u and $v, u<v<s$ such that

1. $u+1$ is an $\left(x, \Phi_{i}\right)$-stage,
.2. $u+1$ is an $\left(x, \Psi_{i}\right)$-stage,
.3. $F_{\Omega}^{u+1}(i, x) \downarrow$ and $F_{\theta}^{u+1}(i, x) \downarrow$,
.4. $F_{\Omega}(i, x) \subseteq \Omega_{i}^{v}\left(A^{v}\right)$,
2. $A^{v} \subseteq A^{t}$ for every $t \geq v$.

Proof. Assume x, s and i satisfy the hypothesis. Choose $v<s$ least such that $x=x_{m}^{v+1}$ for some m and $\sigma_{i}(m, v+1)=1$. An inspection of the construction shows that $v+1$ must be an $\left(x, \Phi_{i}\right)$-stage $, \quad x=x_{m}^{v}, \quad x \notin A^{v}, \quad x \in \Psi_{i}^{v}\left(\Omega_{i}^{v}\left(A^{v}\right)\right) \quad$ and $\quad B_{>_{m}}^{v} \subseteq \tilde{A}^{v+1}$. So Ψ_{i}^{v} must contain an instruction $\langle x, F\rangle$ where $F \subseteq \Omega_{i}^{v}\left(A^{v}\right)$. Since $x \notin$ \tilde{A}, it follows from the definition of Ψ_{i}^{v} that $F_{\Omega}^{v}(i, x) \downarrow$ and $F=$ $F_{\Omega}(i, x)$. Choose u least such that $F_{\Omega}^{u+1}(i, x) \downarrow$. From the proof of Proposition 4, $u+1$ must be an $\left(x, \Psi_{i}\right)$-stage and $F_{\theta}^{u+1}(i, x) \downarrow$.

Fix $t \geq v$. Since $x \notin A^{v}$ and $B_{>m}^{v} \subseteq \tilde{A}^{v+1}$, in order to show that $A^{v} \subseteq A^{t}$ it suffices to show that $B_{<m}^{v} \cap A^{v} \subseteq A^{t}$. This follows from Proposition 3.

Proposition 7. For every e,
.1. $\quad x_{e}=d f n \underset{s}{\lim } x_{e}^{s}$ exists,
2. $\quad \sigma_{i}^{e}=d f n \underset{s}{\lim \sigma_{i}(e, s)}$ exists for every $i \leq e$,
.3. $A\left(x_{e}\right) \neq W_{e}\left(x_{e}\right)$,
.4. requirement P_{e} receives attention only finitely often,
.5. $\exists^{\infty} s\left[k \in W_{j}^{s}\left(A^{s}\right)\right] \Rightarrow k \in W_{j}(A)$, where $e=\langle k, j\rangle$.

Proof. Assume that $1-5$ hold for every $e<e$. We show that $1-5$ hold for $e=e^{\prime}$. Choose a stage v such that for every $e<e^{\prime}$:
$1^{\prime} . x_{e}^{s}$ has reached a limit by stage v,
2'. for every $i \leq e, \sigma_{i}(e, s)$ has reached a limit by stage v,

3'. $A^{s}\left(x_{e}\right)$ and $W_{e}^{s}\left(x_{e}\right)$ have reached a limit by stage v (Proposition 2) and $A\left(x_{e}\right) \neq W_{e}\left(x_{e}\right)$,

4'. requirement P_{e} does not receive attention after stage v, 5^{\prime}. for every $i \leq e$, there are no $\left(x_{e}, \Psi_{i}\right)$-stages after stage v (Proposition 4).

An inspection of s tages $s+1 \quad(s \equiv 0 \bmod 6)$, where $s>v$ shows that $x_{e^{\prime}}^{s+1} \downarrow$ for each such stage. Now if $s>v$ and $x_{e^{\prime}}^{s+1} \neq x_{e}^{s}, \downarrow$ then $s \equiv 1 \bmod 6, \quad x_{e}^{s+1} \downarrow$ and the $e^{\prime}-s t a t e$ of $x_{e^{\prime}}^{s+1}$ is strictly greater than the $e^{\prime}-s t a t e$ of x_{e}^{s}. Also if $s>v, x_{e^{\prime}}^{s+1}=x_{e^{\prime}}^{\mathbf{s}} \downarrow$ and the $e^{\prime-}$ state of x_{e}^{s}, at stage $s+1$ is different from its $e^{\prime-s t a t e}$ at stage s, then $s \equiv 4 \bmod 6$ and the $e^{\prime}-$ state of x_{e}^{s}, at stage $s+1$ is greater than its e^{\prime}-state at stage s. The last two observations follow from the choice of v and an inspection of the construction. Since there are only finitely many $e^{\prime-s t a t e s, ~} \mathbf{1 - 2}$ hold.

By 1 we can choose a least t such that $x_{e^{\prime}}^{s}=x_{e^{\prime}}^{t+1}$ for every $s>t$. From an inspection of the construction: $e(t) \downarrow=e^{\prime}$, and $t \equiv 0 \bmod 6$ or $t \equiv 1 \bmod 6$. In either case $x_{e}^{t+1} \in A^{t+1}$. If x_{e}, Φ W_{e}, then x_{e}, is never later removed from A. Otherwise, for every $s>\max \{v, t\} \quad(s \equiv 2 \bmod 3), \quad$ if $x_{e}, \in W_{e}^{s}$, then $x_{e}, \notin A^{s+1}$, so x_{e}, \mathbb{A}. Therefore 3 holds.

Hence we may assume that v is chosen in such a way that in addition $1^{\prime}-3^{\prime}$ hold for $e=e^{\prime}$. Let $k=\left(e^{\prime}\right)_{0}$ and $j=\left(e^{\prime}\right)_{1}$.

Claim.

1. If P_{e}, receives attention at stage s then $k \in$ $W_{j}^{s}\left(\left[B_{S e}^{s}, \cap A^{s}\right] \cup \tilde{A}^{s}\right)$.
2. If $k \in W_{j}^{t}\left(\left[B_{S e}^{t} \cap A^{t}\right] \cup \tilde{A}^{t}\right)$ for some $t>v$ then .1. $k \in W_{j}^{S}\left(\left[B_{\leq e}^{S}, \cap A^{s}\right] \cup \tilde{A}^{S}\right)$ for every $s \geq t$,
.2. $k \in W_{j}(A)$.

Proof. 1 follows from an inspection of the construction. By the choice of $v, B_{s e}^{s}, \cap A^{s}=\left\{x_{m}: m \leq e^{\prime}\right\} \cap A \quad$ for every $s>v$. Therefore 2 holds.

4 follows from the claim and the observation that if P_{e}, receives attention at stage $s+1$ then $k \notin \mathbb{W}_{j}^{s}\left(\left[B_{\leq e}^{s}, \cap A^{s}\right] \cup \tilde{A}^{s}\right)$.

Assume $\exists^{\infty} s\left[k \in W_{j}^{s}\left(A^{s}\right)\right]$. Then we can choose $t>v(t \equiv 5 \bmod 6)$ such that $k \in \mathbb{W}_{j}^{t}\left(A^{t} \cup B_{>e^{\prime}}^{t}\right)$. From stage $t+1$, either $k \in$ $W_{j}^{t}\left(\left[B_{\leq e}^{t}, \cap A^{t}\right] \cup \tilde{A}^{t}\right)$ or P_{e}, receives attention. So 5 follows from the claim.

Definition. If $x=x_{e}$ for some e and $i \leq e$ then the eventual i-state of x is $\left(\sigma_{0}^{e} \ldots, \sigma_{i}^{e}\right)=\lim _{s}\left(\sigma_{0}(e, s), \ldots, \sigma_{i}(e, s)\right)$.

Proposition 8. For every i, e, e^{\prime}, if $i \leq e<e^{\prime}$ then the eventual i-state of x_{e} is greater than or equal to the eventual i-state of x_{e}..

Proof. Suppose not. Choose $i \leq e<e^{\prime}$ giving a contradiction. Choose a stage $t \equiv 1 \bmod 6$ such that x_{e}^{s}, x_{e}^{s}, and the $i-s t a t e s$ of x_{e} and x_{e}, have reached a limit by stage t (Proposition 7). Then the e-state of x_{e}^{t}, is greater than the e-state of x_{e}^{t} at stage t. From stage $t+1$ we see that $e(t) \downarrow \leq e$. Then $x_{e}^{t+1} \neq x_{e}^{t}$ by the action taken at stage $t+1$, which contradicts the choice of t.

Corollary 9. For every i there exists $e^{\prime} \geq i$ such that for every $e>e^{\prime}, \quad \sigma_{i}^{e}=\sigma_{i}^{e^{\prime}}$.

Proof. It suffices to show that there exists $e^{\prime} \geq i$ such that for every $e>e^{\prime}$ the eventual $i-s t a t e s$ of x_{e} and x_{e}, are the same. This follows from Proposition 8 and the fact that there are only finitely many instates.

Proposition 10. For every $i, A \neq V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right)$ or $A={ }^{*} \Psi_{i}\left(\Omega_{i}(A)\right)$ or $A={ }^{*} \Phi_{i}\left(\theta_{i}(A)\right)$.

Proof. Fix i. If $A \neq V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right)$ we are done, so assume equality. Choose $e^{\prime} \geq i \quad$ such that for every $e>e^{\prime}, \quad \sigma_{i}^{e}=\sigma_{i}^{e^{\prime}}$ (Corollary 9).

Case 1. $\quad \sigma_{i}^{e^{\prime}}=0$.
Then $A={ }^{*} \Psi_{i}\left(\Omega_{i}(A)\right)$. For every $x, x \in \tilde{A}$ or $x=x_{e}$ for some e (Proposition 1). Since $\tilde{A} \subseteq \Psi_{i}(0)$ it suffices to show that for
every $e \geq e^{\prime}$,

$$
A\left(x_{e}\right)=\Psi_{i}\left(\Omega_{i}(A)\right)\left(x_{e}\right)
$$

Let $e \geq e^{\prime}$. Choose a stage v such that for every $k \leq e, x_{k}^{s}$ and the $k-s t a t e s$ of x_{k} have reached a limit by stage v (Proposition 7), and there are no (x_{k}, Ψ_{i})-stages after stage v (Proposition 4). Since $\left\{A^{s}\right\}_{s \in \omega}$ is a low approximation (Proposition 7), we can assume in addition that for every $k \leq e, A^{s}\left(x_{k}\right)$, $V_{i}^{s}\left(\Omega_{i}^{s}\left(A^{s}\right) \oplus \theta_{i}^{s}\left(A^{s}\right)\right)\left(x_{k}\right)$ and $\Psi_{i}^{s}\left(\Omega_{i}^{s}\left(A^{s}\right)\right)\left(x_{k}\right)$ have reached a limit by stage v.

Assume $x_{e} \in A$. We show that $F_{\Omega}\left(i, x_{e}\right) \downarrow$. Choose a stage $t>v$ $(t \equiv 3 \bmod 6)$ such that $(t)_{0}=i$. By the choice of $v, x_{e} \in A^{t}$. $x_{e} \in V_{i}^{t}\left(\Omega_{i}^{t}\left(A^{t}\right) \oplus \theta_{i}^{t}\left(A^{t}\right)\right)$ and $t+1$ is not an $\left(x_{k}, \Psi_{i}\right)$-stage for any $k \leq e$. From stage $t+1$ we see that $F_{\Omega}^{t}\left(i, x_{e}^{t}\right) \downarrow$. Let $u+1$ be the unique $\left(x_{e}, \Psi_{i}\right)$-stage (Proposition 4). Then $F_{\Omega}\left(i, x_{e}\right)=\Omega_{i}^{u}\left(A^{u}\right) . \quad x_{e} \in$ A implies $A^{u} \subseteq A$ (Proposition 5). Therefore $x_{e} \in \Psi_{i}\left(\Omega_{i}(A)\right)$.

Assume $x_{e} \notin A$ and $x_{e} \in \Psi_{i}\left(\Omega_{i}(A)\right)$. Choose a stage $t>v$ $(t \equiv 4 \bmod 6) \quad$ such that $(t)_{0}=i$. By the choice of $v, x_{e} \notin A^{t}$, $x_{e} \in \Psi_{i}^{t}\left(\Omega_{i}^{t}\left(A^{t}\right)\right)$ and $\sigma_{i}(e, t)=0$. Inspecting stage $t+1$ of the construction, we see that $i \leq e(t) \downarrow \leq e, \sigma_{i}(e(t), t)=0$ and $\sigma_{i}(e(t), t+1)=1$. But this contradicts the choice of v. Therefore $x_{e} \notin \Psi_{i}\left(\Omega_{i}(A)\right)$.

Case 2. $\quad \sigma_{i}^{e^{\prime}}=1$.
We show that $A={ }^{*} \Phi_{i}\left(\theta_{i}(A)\right)$. As in case 1 it suffices to show that for every $e \geq e^{\prime}, A\left(x_{e}\right)=\Phi_{i}\left(\theta_{i}(A)\right)\left(x_{e}\right)$. Let $e \geq e^{\prime}$. Choose a stage v such that x_{e}^{s} and $\sigma_{i}(e, s)$ have reached a limit by stage v. Then there exists an $\left(x_{e}, \Psi_{i}\right)$-stage $u+1$ (Proposition 6), and $F_{\theta}\left(i, x_{e}\right)=\theta_{i}^{u}\left(A^{u}\right)$.

Assume $x_{e} \in A$. Then $A^{u} \subseteq A$ (Proposition 5). Therefore $x_{e} \in$ $\Phi_{i}\left(\theta_{i}(A)\right)$.

Assume $x_{e} \notin A$ and $x_{e} \in \Phi_{i}\left(\theta_{i}(A)\right)$. Inspecting stage $u+1$ of the construction, we see that $x_{e} \in V_{i}^{u}\left(F_{\Omega}\left(i, x_{e}\right) \oplus F_{\theta}\left(i, x_{e}\right)\right) . \quad F_{\Omega}\left(i, x_{e}\right) \subseteq$ $\Omega_{i}(A)$ (Proposition 6). Since $x \notin \tilde{A}, \quad x_{e} \in \Phi_{i}\left(\theta_{i}(A)\right)$ implies $F_{\theta}\left(i, x_{e}\right) \subseteq \theta_{i}(A)$. But then $x_{e} \in V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right)$. This contradicts the assumption that $A=V_{i}\left(\Omega_{i}(A) \oplus \theta_{i}(A)\right)$. Therefore $x_{e} \notin \Phi_{i}\left(\theta_{i}(A)\right)$. 0

Hence all requirements N_{i}, P_{i} and R_{i} are satisfied (Propositions 7 and 10).

CHAPTER IV

A SPECIAL PAIR OF Σ_{2} E-DEGREES

§4.1 INTRODUCTION

Theorem 3.1.2 suggests that it may be possible to prove:

Theorem 4.1.1. There exists a pair of incomparable $\Sigma_{2} e$-degrees a and b such that for every $z<_{e} a, z s_{e} b$.

This naturally leads to the question of whether such a situation can be symmetric. This is answered by:

Theorem 4.1.2. For every pair of distinct $\Sigma_{2} \quad e^{\text {-degrees } a} a$ and b, $\left\{z: z<_{e} a\right\} \neq\left\{z: z<_{e} b\right\}$.
§4.2 PROOF OF THEOREM 4.1.1

Definition 4.2.1. A sequence of Σ_{2} sets $\left\{B_{n}\right\}_{n \in \omega}$ is uniformly Σ_{2} if there is a recursive function $f(n, s, x)$ such that for every n, $\left\{B_{n}^{S}\right\}_{s \in \omega}$ is a Σ_{2}-approximation to B_{n}, where $B_{n}^{S}(x)=f(n, s, x)$.

We let a be a low non-splitting e-degree (Theorem 3.1.2). Due to the density of the Σ_{2} e-degrees it suffices to show that there exists $a \quad \Sigma_{2}$ e-degree b such that $a \leq_{e} b$ and for every $z \ll_{e} a, z \leq_{e} b$.

Let $A \in a$. We first construct a uniformly Σ_{2} sequence of Σ_{2} sets, $B_{0} \leq_{e} B_{1} \leq_{e} \ldots$ strictly below A, such that for every $Z \ll_{e} A, Z \leq_{e} B_{i}$ for some i. We then construct a Σ_{2} set B such that $A \rrbracket_{e} B$ and $B_{i} \leq_{e} B$ for all $i . \quad b=\operatorname{deg}_{e} B$ is the desired degree.

In Lemmas 4.2.2 and 4.2.3 the constructions are carried out in a more general setting, yielding Corollary 4.2.4, of which the theorem is an immediate consequence.

Lemma 4.2.2. For every non-r.e. low set A there exists a uniformly Σ_{2} sequence of Σ_{2} sets, $B_{0} \leq_{e} B_{1} \leq_{e} \ldots$ strictly below A, such that for every $Z \leq_{e} A, Z \leq_{e} B_{i}$ or $B_{i} \oplus Z \equiv_{e} A$ for some i.

Proof. Let A be non-r.e. and low. For notational convenience, rather than constructing each set B_{i} separately, we construct a single Σ_{2} set B, and show that there exists a uniformly Σ_{2} sequence of Σ_{2} sets, $B_{0} \leq B_{1} \leq_{e} \ldots$, below B such that for every i,

$$
B_{i}<_{e} A \text { and } \exists j\left[W_{i}(A) \leq_{e} B_{j} \text { or } A \leq_{e} B_{j} \oplus W_{i}(A)\right]
$$

which proves the lemma.
Ideally, we would like to set $B_{i}=Y_{i}$ where $\left\{Y_{i}\right\}_{i \in \omega}$ is defined as follows. Set $Y_{0}=0$. Set $Y_{1}=Y_{0} \oplus W_{0}(A)$ if $A Y_{0} \oplus W_{0}(A)$, and Y_{0} otherwise. Set $Y_{2}=Y_{1} \oplus W_{1}(A)$ if $A \ddagger_{e} Y_{1} \oplus W_{1}(A)$, and Y_{1} otherwise, and so on. It is clear that $\left\{B_{i}\right\}_{i \in \omega}$ would satisfy all the requirements of the lemma except, possibly, that the sequence be uniformly Σ_{2}. However, this obstacle can be overcome by noting that it suffices to have for every $i, B_{i} \leq_{e} Y_{j}$ for some j, and $Y_{i} \leq_{e} B_{k}$ for some k.

Definitions.

$p_{i}=\left\{\begin{array}{l}-1, \quad \text { if } A \coprod_{e} Y_{i} \oplus W_{i}(A), \\ \mu k\left[A=W_{k}\left(Y_{i} \oplus W_{i}(A)\right)\right], \quad \text { otherwise } .\end{array}\right.$
$\tau_{-1}=0$ and $\tau_{i}=\left(p_{0}, \ldots, p_{i}\right) . \quad \varphi={ }^{\langle\omega}(\omega \cup\{-1\})$ consists of all possible values of τ_{i} and $\boldsymbol{\varphi}^{\prime}=\boldsymbol{\varphi}-\{0\} . \quad \sigma \rightarrow c(\sigma)$ denotes an arbitrary fixed recursive bijection from φ^{\prime} to ω, and $i \rightarrow \sigma_{i}$ its
inverse.
We construct B so that $B^{\{j\}}=W_{k}(A)$ if $\sigma_{j}=\tau_{k}$ and $p_{k}=-1$, and is finite otherwise. $\quad B_{i}=\underset{\ln \left(\sigma_{j}\right) \leq i+1}{\oplus} B^{\{j\}}$. It is easy to check that for every $i, B_{i} S_{e} Y_{j}$ for some j, and $Y_{i} S_{e} B_{k}$ for some k.

For each $\sigma \in \mathscr{\varphi}$ we define an e-operator Ψ_{σ} by induction on $\operatorname{lh}(\sigma)$.
$\Psi_{0}=0$.
$\operatorname{lh}(\sigma)>0:$
$\Psi_{\sigma}=\left\{\begin{array}{l}\Psi_{\sigma}, \quad \text { if } \sigma(e(\sigma))>-1, \\ \Psi_{\sigma^{-}} \oplus W_{e(\sigma)}, \quad \text { otherwise } .\end{array}\right.$

Proposition 1. $\quad Y_{i}=\Psi_{\tau_{i-1}}$ (A).

Proof. The proof is by induction on $i . \quad \boldsymbol{T}_{-1}=0$, so $\Psi_{\tau_{-1}}(\mathrm{~A})=$ $\theta=Y_{0}$. Assume $\quad Y_{i}=\Psi_{\tau_{i-1}}(A)$. If $A \Psi_{e} Y_{i} \oplus W_{i}(A)$, then $Y_{i+1}=$ $Y_{i} \oplus W_{i}(\mathrm{~A}), \quad \tau_{i}(i)=p_{i}=-1, \quad$ and $\quad \Psi_{\tau_{i}}(\mathrm{~A})=\Psi_{\tau_{i-1}}(\mathrm{~A}) \oplus W_{i}(\mathrm{~A})=$ $Y_{i} \oplus W_{i}(A)$ by the induction hypothesis. Otherwise $\quad Y_{i+1}=Y_{i}, \quad \tau_{i}(i)=$ $p_{i}>-1$, and $\Psi_{\tau_{i}}(\mathrm{~A})=\Psi_{\tau_{i-1}}(\mathrm{~A})=Y_{i}$ by the induction hypothesis.

Requirements.

We construct a Σ_{2}-approximation $\left\{B^{s}\right\}_{s} \in_{\omega}$ to B and attempt to
satisfy the following requirements.
$P_{i}: \quad B^{\left\{c\left(\tau_{i}\right)\right\}}=\left\{\begin{array}{l}W_{i}(A), \quad \text { if } p_{i}=-1, \\ 0, \quad \text { otherwise } .\end{array}\right.$
$N_{i}: \quad\left(\forall \gamma \in \mathscr{\varphi}^{\prime}\right)\left[\operatorname{lh}(\gamma) \geq i+1, \quad \tau_{i-1} \subseteq \gamma\right.$ and $\gamma(i) \neq p_{i} \Rightarrow B^{\{c(\gamma)\}}$ is finite].

In order of priority the requirements are $\mathrm{P}_{0}, \mathrm{~N}_{0}, \mathrm{P}_{1}, \mathrm{~N}_{1}, \ldots$ If these requirements are met then it is clear from the preceding discussion that $\left\{B_{i}\right\}_{i \in \omega}$ satisfies the conclusion of the lemma.

Let $\left\{A^{s}\right\}_{s \in \omega}$ be a low approximation to A, and for every $\sigma \in \mathscr{P}$. let $\left\{\Psi_{\sigma}^{s}\right\}_{s \in \omega}$ denote the natural recursive enumeration of Ψ_{σ}.

Length of agreement functions.

For every $\sigma \in \boldsymbol{\varphi}^{\prime}$,
$l(\sigma, s)=\left\{\begin{array}{l}s, \quad \text { if } \sigma(e(\sigma))=-1, \\ \mu z\left[z=s \text { or } A^{s}(z) \neq W_{\sigma(e(\sigma))}^{\mathbf{s}}\left(\Psi_{\sigma}^{\mathbf{s}}\left(A^{s}\right) \oplus W_{e(\sigma)}^{\mathbf{s}}\left(A^{s}\right)\right)(z)\right],\end{array}\right.$ otherwise.
$m(\sigma, s)=\max \{l(\sigma, t): t \leq s\}$.
$L(\sigma, s)=\min \left\{m(\gamma, s): \gamma \in \mathscr{\varphi}^{\prime}\right.$ and $\left.\boldsymbol{\gamma} \subseteq \sigma\right\}$.

Definition. For $\sigma \in \varphi^{\prime}$, we say that stage s is σ-expansionary if $(s)_{0}=c(\sigma)$ and for every $t<s,(t)_{0}=c(\sigma)$ implies $L(\sigma, t)<L(\sigma, s)$.

At a σ-expansionary stage there is evidence that $\tau_{i}=\sigma$ where $i=e(\sigma)$. So at stages succeeding σ-expansionary ones, we take action based on the assumption that $\tau_{i}=\sigma$.

Construction.

Stage 0.
$B^{0}=0$.

Stage s+1.
Let $\quad \sigma=\sigma(s)_{0}$ and $i=e(\sigma)$.

Case 1. s is σ-expansionary.
Subcase 1.1. $\sigma(i)=-1$.

$$
\left(B^{s+1}\right)^{\{c(\sigma)\}}=W_{i}^{s}\left(A^{s}\right) \text { and }\left(B^{s+1}\right)^{\{j\}}=\left(B^{s}\right)^{\{j\}} \text { for } j \neq c(\sigma)
$$

Subcase 1.2. $\sigma(i)>-1$.
$\left(B^{s+1}\right)^{\{j\}}=\left(B^{s}\right)^{\{j\}} \operatorname{ro(i)}$ for every j such that $\operatorname{lh}\left(\sigma_{j}\right) \geq i+1$,
$\sigma^{-} \subseteq \sigma_{j}$ and $\sigma_{j}(i)=-1$.
$\left(B^{s+1}\right)^{\{j\}}=0$ for every j such that $\operatorname{lh}\left(\sigma_{j}\right) \geq i+1, \quad \sigma^{-} \subseteq \sigma_{j}$ and $\sigma_{j}(i)>\sigma(i)$.
$\left(B^{s+1}\right)^{\{j\}}=\left(B^{s}\right)^{\{j\}}$ for all remaining j.

Case 2. Otherwise,
$B^{s+1}=B^{s}$.

End of construction.

Remark. For every $\sigma \in \mathscr{S}^{\prime}$, if $\sigma(e(\sigma)) \neq-1$ then $B^{\{c(\sigma)\}}=0$.

Proposition 2. For every $\sigma \in \mathscr{S}^{\cdot},\{m(\sigma, s): s \in \omega\}$ is infinite if and only if $\sigma(e(\sigma))=-1$ or $A=W_{\sigma(e(\sigma))}\left(\Psi_{\sigma}(A) \oplus W_{e(\sigma)}(\mathrm{A})\right)$.

Proof. This is immediate from the definition of $l(\sigma, s)$ and the fact that $\left\{A^{s}\right\}_{s \in \omega}$ is a low approximation.

Corollary 3. For every $\sigma \in \mathscr{\varphi}^{\prime}$, if
.1. $\ln (\sigma)=i+1$,
.2. $\boldsymbol{T}_{i-1} \subseteq \sigma$,
.3. $\sigma(i) \neq p_{i}$,
.4. $p_{i}=-1$ or $-1<\sigma(i)<p_{i}$,
then $\{m(\sigma, s): s \in \omega\}$ is finite.

Proof. Suppose not. Choose $\sigma \in \mathscr{\varphi}^{\prime}$ and i satisfying 1-4 with
$\{m(\sigma, s): s \in \omega\}$ infinite. Then $\sigma(i) \neq-1$ by 3 and 4, therefore $A=$ $W_{\sigma(i)}\left(\Psi_{\sigma}(A) \oplus W_{i}(A)\right)$ (Proposition 2). But $\quad \Psi_{\sigma^{\prime}}(A)=\Psi_{\tau_{i-1}}(A)=Y_{i} \quad$ by 1, 2 and Proposition 1. So $A=W_{\sigma(i)}\left(Y_{i} \oplus W_{i}(A)\right)$.

Case 1. $p_{i}=-1$.
Then $A \rrbracket_{e} Y_{i} \oplus W_{i}(A)$ by definition of p_{i}, which is a contradiction.

Case 2. $p_{i}>-1$.
Then $\sigma(i)<p_{i}$, by 4 , which contradicts $p_{i}=$ $\mu k\left[A=W_{k}\left(Y_{i} \oplus W_{i}(A)\right)\right]$.

Proposition 4. Requirements P_{i} and N_{i} are satisfied.

Proof. Fix i. It follows from the definition of \boldsymbol{T}_{i} and Propositions 1 and 2 that there are infinitely many τ_{i}-expansionary stages. Suppose $\tau \in \mathscr{S}^{\prime}, \operatorname{lh}(\gamma) \geq i+1, \tau_{i-1} \subseteq \gamma$, and $\gamma(i) \neq p_{i}$. Let $\boldsymbol{r}^{\prime}=\boldsymbol{r} \boldsymbol{r}(i+1)$.

Case 1. $\quad p_{i}=-1$.
Then $\left\{m\left(\gamma^{\prime}, s\right): s \in \omega\right\}$ is finite (Corollary 3). Hence $\{L(\gamma, s): s \in \omega\}$ is bounded, by definition of $L(\gamma, s)$, so there are only finitely many γ-expansionary stages. Since $B^{\{c(\gamma)\}}$ can only grow at stages succeeding r-expansionary ones, it must be finite. Therefore N_{i} is satisfied.

An inspection of the construction shows that $\left(B^{s+1}\right)^{\left\{c\left(\tau_{i}\right)\right\}}=$ $W_{i}^{s}\left(A^{s}\right)$ for infinitely many s. Fix j. Since $\left\{A^{s}\right\}_{s \in \omega}$ is a low approximation, $\left(B^{s+1}\right)^{\left\{c\left(\tau_{i}\right)\right\}}{ }^{s} j=W_{i}(A) \upharpoonright j$ for infinitely many s. If we can show that $W_{i}(A) r j \subseteq B^{\left\{c\left(\tau_{i}\right)\right\}}$, then $B^{\left\{c\left(\tau_{i}\right)\right\}} r_{j=}=W_{i}(A) \upharpoonright j$. Inspecting the construction, we see that it suffices to show that

$$
\begin{aligned}
\left\{L(\sigma, s): \sigma \in \varphi^{\prime}, \quad i+1\right. & \geq \operatorname{lh}(\sigma), \quad \sigma \subseteq \tau_{i}, \quad p_{e(\sigma)}=-1 \text { and } \\
j & >\sigma(e(\sigma))>-1\}
\end{aligned}
$$

and

$$
\left\{L(\sigma, s): \sigma \in \mathscr{S}^{\prime}, \quad i+1 \geq \operatorname{lh}(\sigma), \quad \sigma \subseteq \tau_{i} \text { and } p_{e(\sigma)}>\sigma(e(\sigma))>-1\right\}
$$

are finite. But this follows from Corollary 3. Since the choice of j was arbitrary, $B^{\left\{c\left(\tau_{i}\right)\right\}}=W_{i}(A)$, so $\quad P_{i} \quad$ is satisfied.

Case 2. $p_{i}>-1$.
Subcase 2.1. $\quad \gamma^{\prime}(i)=-1$.
By the action taken at stages succeeding $\boldsymbol{T}_{\boldsymbol{i}}$-expansionary ones, $B^{\{c(\gamma)\}}=B^{\{c(\gamma)\}} r p_{i}$.

Subcase 2.2. $-1<\gamma^{\prime}(i)<p_{i}$.
As in the proof that N_{i} is satisfied in Case $1,{ }_{B}\{c(\gamma)\}$ is finite.

Subcase 2.3. $p_{i}<r^{\prime}(i)$.
By the action taken at stages succeeding $\boldsymbol{T}_{\boldsymbol{i}}$-expansionary ones, $B^{\{c(\gamma)\}}=0$.

Therefore N_{i} is satisfied.

By the Remark following the construction, $B^{\{c(\sigma)\}}=0$ for every $\sigma \in \mathscr{Y}^{\prime}$ such that $\sigma(e(\sigma)) \neq-1$. Therefore P_{i} is satisfied.

Hence the lemma is proved.

Lemma 4.2.3. If $B_{0} \leq_{e} B_{1} \leq_{e} \ldots$ is a uniformly Σ_{2} sequence of Σ_{2} sets, $A \in \Sigma_{2}$ and $A \sum_{e} B_{i}$ for all i, then there exists a Σ_{2} set B such that $A \Phi_{e} B$ and $B_{i} \leq_{e} B$ for all i.

Proof. Assume A and $\left\{B_{i}\right\}_{i \in \omega}$ satisfy the hypothesis. We first define an auxiliary set $\widetilde{B} \subseteq B$, by setting $\widetilde{B}^{\{i\}}=B_{i}$ for every i. B is obtained by adding finitely many elements to each column of \widetilde{B}, in order to satisfy $A \rrbracket_{e} B$, as follows.

Since $A 1_{e} B_{i}, A$ is non-r.e.. so $A \neq W_{0}(\omega)$. Set $z_{0}=$ $\mu z\left[A(z) \neq W_{0}(\omega)(z)\right]$. Choose a finite set F_{1} such that $W_{0}(\omega)\left(z_{0}\right)=$ $W_{0}\left(F_{1}\right)\left(z_{0}\right)$, and put the elements of F_{1} into B. No other elements are added to the 0 -th column of B. Now $B^{\{0\}}={ }^{*} \tilde{B}^{\{0\}}=B_{0}$. Since
$A \Psi_{\mathrm{e}} B_{0}$ and $B^{\{0\}} \equiv{ }_{\mathrm{e}} B^{[0]} \cup \omega^{[\geq 1]} . \quad A \neq \mathbb{W}_{1}\left(B^{[0]} \cup \omega^{[21]}\right)$. Set $z_{1}=$ $\mu z\left[A(z) \neq \mathbb{W}_{1}\left(B^{[0]} \cup \omega^{[\geq 1]}\right)(z)\right]$. Choose a finite set $F_{2} \subseteq \omega^{[\geq 1]}$ such that $W_{1}\left(B^{[0]} \cup \omega^{[21]}\right)\left(z_{1}\right)=W_{1}\left(B^{[0]} \cup F_{2}\right)\left(z_{1}\right)$, and put the elements of F_{2} into B, and so on. For every i, it is clear that $(B-\widetilde{B})^{[i]}$ is finite, and $w_{i}(B)\left(z_{i}\right)=\mathbb{w}_{i}\left(B^{[\langle i]} U \omega^{[\geq t]}\right)\left(z_{i}\right) \neq A\left(z_{i}\right)$. So $A \xi_{e} B$ and $B_{i} \leq_{e} B$ for every i, since $B_{i}=\tilde{B}^{\{i\}}={ }^{*} B^{\{i\}}$.

We construct a Σ_{2}-approximation $\left\{B^{s}\right\}_{s \in \omega}$ to B and attempt to satisfy the following requirements, listed in order of priority.

S: $\tilde{B} \subseteq B$.
$P_{0}: \quad A \neq \mathbb{W}_{0}(B)$.
$\mathrm{N}_{\mathrm{O}}: \quad(B-\widetilde{B})^{[0]}$ is finite.
$P_{1}: \quad A \neq W_{1}(B)$.
$\mathrm{N}_{1}:(B-\widetilde{B})^{[1]}$ is finite.

From the definition of \widetilde{B} it is clear that if these requirements are met then the lemma is proved.

Let $\left\{A^{s} \oplus \tilde{B}^{s}\right\}_{s} \in \omega$ be a Σ_{2}-approximation to $A \oplus \widetilde{B}$ with infinitely many true stages, T.

Construction.

Stage 0.

$B^{0}=0$.

Stage $s+1$.

For each $i \leq s+1$, we define a finite set F_{i}^{s+1} as follows.

$$
F_{0}^{s+1}=\widetilde{B}^{s} \cup\left(U\left\{B^{t+1}: t<s \text { and } A^{t} \oplus \widetilde{B}^{t} \subseteq A^{s} \oplus \widetilde{B}^{s}\right\}\right)
$$

In order to define F_{i+1}^{s+1}, set $E_{i, s+1}^{t}=B^{t}$ for every $t \leq s$, and $E_{i, s+1}^{s+1}=F_{0}^{s+1} \cup \omega^{[\geq i]}$. Then

$$
F_{i+1}^{s+1}=U\left\{u\left(\mathbb{W}_{i}, E_{i, s+1}, x, s+1\right)-F_{0}^{s+1}: x \leq z_{i}^{s} \text { and } u\left(W_{i}, E_{i, s+1}, x, s+1\right) \downarrow\right\}
$$

where

$$
z_{i}^{s}=\mu z\left[z=s \quad \text { or } \quad A^{s}(z) \neq W_{i}^{s+1}\left(E_{i, s+1}^{s+1}\right)(z)\right]
$$

Now $B^{s+1}=\bigcup_{i \leq s+1} F_{i}^{s+1}$.

End of construction.

Definition. Let $B^{\prime}=\underset{\mathrm{s} \in \mathrm{T}}{\mathrm{U}} B^{\mathrm{s}+1}$.

Proposition 1.

.1. $\widetilde{B} \subseteq B$.
.2. $B^{\prime}=B$.

Proof. 1 is immediate from the construction.
$B \subseteq B^{\prime}$ since $B=\left\{x: \exists t(\forall s>t)\left[x \in B^{s}\right]\right\}$ and T is infinite. Assume $u \in T$. Choose t such that $A^{u} \oplus \widetilde{B}^{u} \subseteq A^{s} \oplus \widetilde{B}^{s}$ for every $s>t$. Then $B^{u} \subseteq F_{0}^{s+1} \subseteq B^{s+1}$ for every $s>t$, by definition of F_{0}^{s+1} in the construction. So $B^{\prime} \subseteq B$.

Proposition 2. For every i

1. $\quad A \neq W_{i}(B)$,
.2. $\exists t(\forall s) t)\left[s \in T \Rightarrow F_{i+1}^{s+1}=0\right]$,
.3. $(B-\widetilde{B})^{[i]}$ is finite.

Proof. The proof is by induction on i. Assume $1-3$ hold for every $i<m$. We show that $1-3$ hold for $i=m$. Since $\widetilde{B} \subseteq B \quad$ (Proposition 1) and $(B-\widetilde{B})^{[<m]}$ is finite by the induction hypothesis, $\widetilde{B}^{[<m]} \equiv{ }_{\mathrm{e}}$ $B^{[<m]} \equiv \mathrm{E} B \cup \omega^{[\geq m]}$. Now $\tilde{B}^{[<m]} \equiv{ }_{e} B_{0} \oplus B_{1} \oplus \ldots \oplus B_{m-1} \leq_{e} B_{m-1}$, so $A \rrbracket_{\mathrm{B}} \tilde{B}^{[<m]}$. Therefore. $A \rrbracket_{\mathrm{e}} B \cup \omega^{[\geq m]}$. Choose z least such that $A(z) \neq W_{m}\left(B \cup \omega^{[\geq m]}\right)(z)$.

Claim.

1. For every $s \in T, W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) \uparrow\left(z_{m}^{s}+1\right) \subseteq W_{m}(B)$.
2. $W_{m}\left(B \cup \omega^{[\geq m]}\right) r(z+1)=\lim _{s \in T} W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) r(z+1)=W_{m}(B) r(z+1)$.
.3. $\lim _{s \in T} z_{m}^{s}=z$.

Proof. Suppose $s \in T$ and $x \in W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) r\left(z_{m}^{s+1}\right)$. Then $u\left(W_{m}, E_{m, s+1}, x, s+1\right) \subseteq F_{0}^{s+1} \cup F_{m+1}^{s+1} \subseteq B^{s+1}$ by definition of F_{m+1}^{s+1} and B^{s+1}. But $B^{s+1} \subseteq B^{\prime}=B$. Therefore $x \in W_{m}(B)$, so 1 holds.

Choose a stage $t^{\prime} \in T$ such that $W_{m}\left(B \cup \omega^{[\geq m]}\right) r(z+1) \subseteq$ $W_{m}^{t^{\prime+1}}\left(B^{t^{\prime+1}} \cup \omega^{[\geq m]}\right)$. Choose $t>\max \left\{t^{\prime}, z\right\}$ such that for every $s>t, A r(z+1) \subseteq A^{s}$ and $A^{t^{\prime}} \oplus \widetilde{B}^{t^{\prime}} \subseteq A^{s} \oplus \widetilde{B}^{s}$.

Suppose $s>t$ and $s \in T$. Then $B^{t+1} \subseteq F_{0}^{s+1} \subseteq E_{m, s+1}^{s+1}$ from the construction. Therefore $W_{m}\left(B \cup \omega^{[\geq m]}\right) r(z+1) \subseteq W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right)$. Suppose $\left.W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) r(z+1)-W_{m}\left(B \cup \omega^{[\geq m}\right]\right) \neq 0$. Choose x least such that $x \in$ $W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) r(z+1)-W_{m}\left(B \cup \omega^{[\geq m]}\right)$. If $x<z$ then $z_{m}^{s}=x$ since $A^{s} r z=A r z=W_{m}\left(B \cup \omega^{[\geq m}\right) r z$. If $x=z$ then $z_{m}^{s}>x$ since $A^{s}(z)=$ $A(z) \neq W_{m}\left(B \cup \omega^{[\geq m]}\right)(z)$. In either case $x \in W_{m}(B)$ by 1 , which contradicts $x \notin W_{m}\left(B \cup \omega^{(\geq m)}\right)$. Therefore $W_{m}\left(B \cup \omega^{[\geq m]}\right) r(z+1)=$ $W_{m}^{\mathbf{s + 1}}\left(E_{m}^{\mathbf{s + 1}}\right) r(z+1), \quad z_{m}^{\mathbf{s}}=z \quad$ and $W_{m}^{s+1}\left(E_{m}^{s+1}\right) r(z+1) \subseteq W_{m}(B)$ by 1.
Therefore 2-3 hold.

Since $A(z) \neq W_{m}\left(B \cup \omega^{[\geq m]}\right)(z), \quad 1$ follows from the Claim.

Choose $t \in T$ such that z_{m}^{s} and $W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) r(z+1)$ have reached
a limit (on stages $s \in T$) by stage t, and for every $x \in$ $W_{m}(B) r(z+1), \quad t>h\left(W_{m}, B, x\right)$. Suppose $s>t$ and $s \in T$. Then $z_{m}^{s}=z$ and since $E_{m, s+1}^{u}=B^{u}$ for every $u \leq s$, for every $x \in$ $W_{m}^{s+1}\left(E_{m, s+1}^{s+1}\right) \upharpoonright(z+1)=W_{m}(B) \upharpoonright(z+1)$, we have $u\left(W_{m}, E_{m, s+1}, x, s\right)=$ $u\left(W_{m}, B, x, s\right) \perp \subseteq B^{t+1} \subseteq F_{0}^{s+1} \subseteq E_{m, s+1}^{s+1} ;$ therefore $u\left(W_{m}, E_{m, s+1}, x, s+1\right)=$ $u\left(W_{m}, E_{m, s+1}, x, s\right) \subseteq F_{0}^{s+1}$. Hence $F_{m}^{s+1}=0$. So 2 holds.

Note that if $s \in T, t<s$, and $A^{t} \oplus \widetilde{B}^{t} \subseteq A^{s} \oplus \widetilde{B}^{s}$, then $t \in T$. Also $F_{i+1}^{s+1} \subseteq \omega^{[\geq i]}$ for every i. Therefore

$$
\begin{aligned}
& (B-\widetilde{B})^{[m]}=\left[\underset{s \in T}{U}\left(B^{s+1}\right)^{[m]}\right]-\widetilde{B} \quad \text { (Proposition 1) } \\
& =\left[\underset{s \in T}{U}\left[\left(B^{s+1}\right)^{[m]}-\underset{t \in T r s}{U} B^{t+1}\right]\right]-\widetilde{B} \\
& =\underset{s \in T}{U}\left[\left(B^{s+1}\right)^{[m]}-\left[\underset{t \in T r s}{U} B^{t+1}\right]-\widetilde{B}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq \underset{\mathbf{s} \in T}{\cup}\left[\underset{k \leq m}{U} F_{k+1}^{\mathbf{s + 1}}\right] \text {, }
\end{aligned}
$$

which is finite from 2. Therefore 3 holds.

Hence requirements S, P_{i} and N_{i} are satisfied (Propositions 1 and 2).

Corollary 4.2.4. For every non-zero low e-degree a there exists $a \Sigma_{2} e$-degree b such that $a \$_{e} b$ and for every $z s_{e} a$, either $z \leq_{e} b$ or there exists $y<_{e} a$ such that $y \quad z=a$ and $y \leq_{e} b$.

Hence the lower cone of a is split into degrees which are below \mathbf{b} and degrees whose join with a degree below both \mathbf{a} and \mathbf{b}, is \mathbf{a}.

§4.3 PROOF OF THEOREM 4.1.2

Due to the density of the Σ_{2} e-degrees it suffices to show that for every pair of distinct incomparable Σ_{2} e-degrees a and b, $\left\{z: z<e^{\mathbf{a}\}} \neq\left\{\mathbf{z}: \mathbf{z}<_{e} \mathbf{b}\right\}\right.$. Towards a contradiction, suppose degrees a and b are a counterexample. Let $A \in \mathbf{a}$ and $B \in \mathbf{b}$.

We first prove a general technical lemma (Lemma 4.3.1), which implies that if there exist Σ_{2} approximations to A and $W_{e}(B)$ for $e \in \omega$, satisfying certain conditions, then there exists $C<_{e} A$ such that $C \$_{e} B$. It only remains to show that such approximations exist. B must be non-r.e., so $K_{B}^{0} \equiv{ }_{e} B$ is non-r.e.. Therefore $G\left(K_{B}^{0}\right)<_{e} K_{B}^{0} \equiv e$ from property 2 of G, the Gutteridge operator, which is described later. Hence $G\left(K_{B}^{0}\right)=W(A)$ for some e-operator W. We then use this fact and certain key properties of G to generate the desired approximations (Corollary 4.3.3).

As an additional application of Lemma 4.3.1, we prove Corollary 4.3.4.

Lemma 4.3.1. If $A\rfloor_{e} B, A \in \Sigma_{2}$ and there exists a Σ_{2}-approximation $\left\{A^{s}\right\}_{s} \in \omega$ to A with infinitely many true stages T, and a strong array $\left\{B_{e}^{s}\right\}_{e, s \in \omega}$ such that for every $e, x, \lim _{t \in T} B_{e}^{s}(x)=$ $W_{e}(B)(x)$, then there exists $C<_{e} A$ such that $C \Phi_{e} B$.

Proof. Assume $A, B,\left\{A^{s}\right\}_{s \in \omega}$ and $\left\{B_{e}^{s}\right\}_{e, s \in \omega}$ satisfy the conditions of the lemma. We construct an e-operator θ such that $A \notin(A)$ and $\theta(A) \$_{e} B$. Letting $C=\theta(A)$ yields the lemma.

We attempt to meet the following requirements, listed in order of priority.
0. $A \neq W_{0}(\theta(A))$.

1. $\theta(A)^{\{1\}} \neq W_{0}(B)^{\{1\}}$.
2. $A \neq W_{1}(\theta(A))$.
3. $\theta(A)^{\{3\}} \neq W_{1}(B)^{\{3\}}$.

The proof is virtually identical to that of Lemma 2.2.1. In order
to satisfy requirement r, we construct an e-operator θ_{r} and set

$$
\theta=\underset{r}{U} \theta_{r}
$$

θ_{r}^{s} is the set of instructions $\langle F, x\rangle$ which have been enumerated into θ_{r} by the end of stage $s ;\left\{\theta_{r}^{s}\right\}_{s \in \omega}$ is a recursive enumeration of θ_{r}. Set

$$
\theta_{<r}=\underset{q<r}{\cup} \theta_{q}
$$

and $\theta_{\geq r}=\theta-\theta_{\langle r} . \quad\left\{\theta^{\mathbf{S}}\right\}_{s \in \omega},\left\{\theta_{\langle r}^{\mathbf{S}}\right\}_{s \in \omega}$ and $\left\{\theta_{\geq r}^{\mathbf{S}}\right\}_{s \in \omega}$ denote the natural recursive enumerations of $\theta, \theta_{<r}$ and $\theta_{\geq r}$ respectively, generated by $\left\{\theta_{q}^{s}\right\}_{s} \in \omega^{.}$. Using the technique of Proposition 1.4 .3 we can redefine $\left\{A^{s}\right\}_{s \in \omega}$ and $\left\{B_{e}^{s}\right\}_{e, s \in \omega}$ so that in addition, for every r, $\left\{A^{t}\right\}_{(t)_{0}=r}$ is a Σ_{2}-approximation to A with infinitely many true stages, T.

Length of agreement functions.

$l(e, s)=\mu z\left[z=s \quad\right.$ or $\left.\quad A^{s}(z) \neq W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right)(z)\right]$.
$L(e, s)=\mu z\left[z=s \quad\right.$ or $\left.\quad \theta^{s}\left(A^{s}\right)^{\{2 e+1\}}(z) \neq\left(B_{e}^{s}\right)^{\{2 e+1\}}(z)\right]$.

We attend to requirement r at s stages $s+1$, where $(s)_{0}=r$. If $r=2 e$ then we arrange that for $z \in W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right)+l(e, s), z \in$
$W_{e}^{s}\left(\theta^{s}\left(F^{s} \cup A^{s} r z\right)\right)$, where $F^{s} \subseteq A^{s} \quad$ is finite and $\quad \lim _{s \in T} F^{s}=F \subseteq A \quad(F$ finite). This is done in such a way that if $l(e, s) \rightarrow \infty$ as s increases in T, then $z \in W_{e}(\theta(F \cup A r z))$ for every $z \in W_{e}(\theta(A))$. If requirement r fails, $W_{e}(\theta(A))=A$ is $r . e$. which is a contradiction. If $r=2 e+1$, then we code $A^{s} r L(e, s)$ into $\theta^{s}\left(A^{s}\right)\{r\}$. If requirement r fails, $A \equiv \theta(A)^{\{r\}} S_{e} \theta(A)=W_{e}(B)$, which contradicts $A \$_{e} B$.

Construction.

Stage 0.
Do nothing.

Stage s+1.
Let $\quad r=(s)_{0}$.

Case 1. $r=2 e$.
For every z, set

$$
E_{z}^{s}=U\left(\theta_{<r}, A, \theta_{<r}^{s}\left(A^{s}\right), s\right) U A^{s} r z
$$

For every z, x such that
1.1. $z \in W_{e}^{S}\left(\theta^{S}\left(A^{s}\right)\right) \vdash l(e, s)-W_{e}^{S}\left(\theta^{S}\left(E_{z}^{S}\right)\right)$,
1.2. $x \in u\left(\mathbb{W}_{e}, \theta(A), z, s\right)-\theta^{S}\left(E_{z}^{S}\right)$,
enumerate $\left\langle E_{z}^{S}, x\right\rangle$ into θ_{r}. If z satisfies 1.1 and $E_{z}^{S} \subseteq A$, we say $s+1$ is (r, z)-active.

Case 2. $r=2 e+1$.
For every $z \in A^{s} \upharpoonright L(e, s)$, enumerate $\left\langle A^{\mathbf{s}},\langle z, r\rangle\right\rangle$ into θ_{r}.

End of construction.

Proposition 1. For every $r, \theta_{r}(\omega) \subseteq \omega^{[\geq r]}$.

Proof. It suffices to show that for every $r, s, \theta_{r}^{s}(\omega) \subseteq \omega^{[\geq r]}$. The proof is by induction on $s . \theta_{r}^{0}=0$ for every r. Assume $\theta_{r}^{s}(\omega) \subseteq$ $\omega^{[\geq r]}$ for every r. If $r \neq(s)_{0}$ then $\theta_{r}^{s+1}=\theta_{r}^{s}$. Suppose $r=(s)_{0}$ and $\langle F, x\rangle$ is enumerated into θ_{r} at stage $s+1$.

Case 1. $r \equiv 2 e$.
Then $x \in u\left(W_{e}, \theta(A), z, s\right)-\theta^{s}\left(E_{z}^{s}\right)$ for some $z \in W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right) H(e, s)$. Hence $x \in \theta^{s}\left(A^{s}\right)-\theta^{s}\left(E_{z}^{s}\right)$. Now $\theta_{\langle r}^{s}\left(A^{s}\right) \subseteq \theta_{\langle r}^{s}\left(E_{z}^{s}\right) \quad$ (Proposition 2). Therefore $x \in \theta^{s}\left(A^{s}\right)-\theta_{\langle r}^{s}\left(A^{s}\right)=\theta_{\geq r}^{s}\left(A^{s}\right) \subseteq \theta_{\underline{\geq r}}^{s}(\omega) \subseteq \omega^{[\geq r]}$ by the induction hypothesis.

Case 2. \quad ㅋ2e+1.
Then $x=\langle z, r\rangle \in \omega^{[\geq r]}$ for some z.

Proposition 2. For every r, z, if $r=(s)_{0}=2 e$ then,
.1. $\theta_{\langle r}^{\mathrm{S}}\left(\mathrm{A}^{\mathrm{S}}\right) \subseteq \theta_{\langle r}^{\mathrm{s}}\left(E_{z}^{\mathrm{S}}\right)$,
.2. if $z \in W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right) r l(e, s)$ then
.1. $z \in W_{e}^{s}\left(\theta^{s+1}\left(E_{z}^{s}\right)\right)$,
2. if $s+1$ is (r, z)-active then $A^{s} r z \subseteq A, \quad \theta_{\langle r}^{s}\left(A^{s}\right) \subseteq \theta_{<r}(A)$ and $z \in W_{e}(\theta(A))$,

Proof. Assume $r=(s)_{0}=2 e$. From the construction, $U\left(\theta_{<r}, A, \theta_{<r}^{s}\left(A^{s}\right), s\right) \subseteq E_{z}^{s}$, therefore 1 holds.

Suppose $z \in W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right) \upharpoonright l(e, s)$. Then either $z \in W_{e}^{s}\left(\theta^{s}\left(E_{z}^{s}\right)\right)$ or by the action taken at stage $s+1, u\left(W_{e}, \theta(A), z, s\right) \subseteq \theta^{s}\left(E_{z}^{s}\right) \cup \theta^{s+1}\left(E_{z}^{s}\right) \subseteq$ $\theta^{s+1}\left(E_{z}^{s}\right)$. Therefore 2.1 holds.

Assume in addition that $s+1$ is (r, z)-active. Then $A^{s} r z \subseteq E_{z}^{s} \subseteq$ A. By 1, $\quad \theta_{\langle r}^{\mathbf{s}}\left(A^{\mathbf{s}}\right) \subseteq \theta_{\langle r}^{\mathbf{s}}\left(E_{z}^{\mathbf{s}}\right) \subseteq \theta_{\langle r}(A) \quad$ and by 2.1, $\quad z \in W_{e}^{s}\left(\theta^{s+1}\left(E_{z}^{s}\right)\right) \subseteq$ $W_{e}(\theta(A))$.

Proposition 3. For every r,
.1. requirement r is satisfied,
.2. $\theta_{r}(A)$ is finite.

Proof. The proof is by induction on r. Assume $1-2$ hold for every $r<q$. We show that $1 \mathbf{- 2}$ hold for $r=q$. It follows from the induction hypothesis that $U\left(\theta_{<q}, A, \theta_{<q}(A)\right)$ is finite.

Case 1. $q=2 e$.
Then requirement q is $" A \neq W_{e}(\theta(A))$ ". Suppose $A=W_{e}(\theta(A))$. We define a recursive enumeration $\left\{A^{\prime s}\right\}_{s \in \omega}$ of a set A^{\prime} as follows.

$$
\begin{gathered}
A^{, O}=U\left(\theta_{\langle q}, A, \theta_{\langle q}(\mathrm{A})\right) \\
A^{, s+1}=A^{, s} \cup W_{e}^{s}\left(\theta^{s}\left(A^{, s}\right)\right)
\end{gathered}
$$

Claim 1. $\mathrm{A}^{\prime}=\mathrm{A}$.

Proof. We can easily show that $A^{\prime S} \subseteq A$ for every s, by induction. Hence $A^{\prime} \subseteq A$.

Since $\mathbb{W}_{e}^{s}\left(\theta^{s}\left(A^{\prime s}\right)\right) \subseteq A^{\prime s+1}$ for every $s, \mathbb{W}_{e}\left(\theta\left(A^{\prime}\right)\right) \subseteq A^{\prime}$. We show that $A \upharpoonright z \subseteq A^{\prime}$ for every z, by induction. Hence $A \subseteq A^{\prime}$.

Assume $A \upharpoonright z \subseteq A^{\prime}$. If $z \notin A$ then we are done.
Suppose $z \in A=W_{e}(\theta(A))$. Choose $s \in T$ such that $(s)_{0}=q$, $z \in W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right) \upharpoonright l(e, s), \quad \theta_{\langle q}^{s}\left(A^{s}\right)=\theta_{<q}(A) \quad$ and $\quad U\left(\theta_{<q}, A, \theta_{<q}^{s}\left(A^{s}\right), s\right)=$ $U\left(\theta_{<q}, A, \theta_{<q}(A)\right)$. Then $E_{z}^{s}=U\left(\theta_{\langle q}, A, \theta_{<q}^{s}\left(A^{s}\right), s\right) U A^{s} \upharpoonright z \subseteq U\left(\theta_{<q}, A, \theta_{<q}(A)\right)$ $U A r z \subseteq A^{\prime}$ by the induction hypothesis. Now $z \in W_{e}^{s}\left(\theta^{s+1}\left(E_{z}^{s}\right)\right)$
(Proposition 2), so $z \in W_{e}\left(\theta\left(A^{\prime}\right)\right) \subseteq A^{\prime}$. Therefore $A\left\ulcorner(z+1) \subseteq A^{\prime}\right.$, and we are done.

A is r.e. by Claim 1 , which is a contradiction. Therefore $A \neq$ $W_{e}(\theta(A))$, so 1 holds.

Claim 2. For every z, there are only finitely many (q, z)-active stages.

Proof. Towards a contradiction, suppose z is a counterexample. Choose a (q, z)-active stage $t+1$ such that $U\left(\theta_{<q}, A, \theta_{<_{q}}(A), s\right)$ has reached a limit by stage t and for every $s \geq t, A r z \subseteq A^{s}$. Then $\theta_{\langle q}^{t}\left(A^{t}\right)=\theta_{<q}(A) \quad$ (Proposition 2), therefore $\quad E_{z}^{t}=U\left(\theta_{<q}, A, \theta_{<q}(A)\right) U$ Arz, and $z \in W_{e}^{t}\left(\theta^{t+1}\left(E_{z}^{t}\right)\right.$) (Proposition 2). Let $s+1>t$ be a (q, z)-active stage. It follows from the definition of E_{z}^{S} and the choice of t that $E_{z}^{t} \subseteq E_{z}^{s}$. Therefore $z \in W_{e}^{s}\left(\theta^{s}\left(E_{z}^{s}\right)\right)$, which is a contradiction.

By 1 we can choose a least y such that $A(y) \neq W_{e}(\theta(A))(y)$. Choose a stage t such that
$(\forall s \geq t)\left[\operatorname{Ar}(y+1) \subseteq A^{s}\right.$ and $\left.W_{e}(\theta(A)) r(y+1) \subseteq W_{e}^{s}\left(\theta^{s}\left(A^{s}\right)\right)\right]$.

Claim 3. For every $z>y$, there are no (q, z)-active stages after stage t.

Proof. Suppose not. Choose $z>y$ and a (q,z)-active stage $s+1>t$. Note $l(e, s)>z>y$ and from the construction, $E_{y}^{s} \subseteq E_{z}^{s} \subseteq A$.

Case 1. $y \in A$.
Then $y \in W_{e}^{S}\left(\theta^{s}\left(A^{s}\right)\right) P l(e, s)$. Therefore $y \in W_{e}(\theta(A))$ (Proposition
2), which contradicts the choice of y.

Case 2. $y \in W_{e}(\theta(A))$.
Then $y \in A^{s}$. Therefore $y \in A^{s} r z \subseteq A$ (Proposition 2), which contradicts the choice of y.

From the construction $x \in \theta_{q}(A)$ if and only if there exist z, t such that $\left\langle E_{z}^{t}, x\right\rangle$ is enumerated into θ_{q} at (q, z)-active stage $t+1$. The set of stages t for which there exists z such that t is (q, z)-active is finite (Claims 2 and 3). Since only finitely many instructions are enumerated into θ_{q} at each stage, 2 holds.

Case 2. $q=2 e+1$.
Then requirement q is $" \theta(A)^{\{q\}} \neq W_{e}(B)^{\{q\} " .}$.

Claim 4. For every z, if $z \in \theta_{q}^{s}\left(A^{s}\right)^{\{q\}}$ then $z \in A^{s}$.

Proof. Assume $z \in \theta_{q}^{s}\left(A^{s}\right)^{\{q\}}$. Then there exists an instruction $\langle F,\langle z, q\rangle\rangle \in \theta_{q}^{s}$ such that $F \subseteq A^{s}$. Suppose such an instruction is enumerated into θ_{q} at stage $t+1 \leq s$. An inspection of the construction shows that $q=(t)_{0}, \quad z \in A^{t} \Gamma L(e, t)$ and $F=A^{t}$.

Suppose $\theta(A)^{\{q\}}=W_{e}(B)^{\{q\}}$. Since $\theta_{<q}(A)$ is finite, (by the induction hypothesis), $m=\max \left(\theta_{\langle q}(A)^{\{q\}}\right)$ is defined.

Claim 5. $\quad \theta(A)^{\left.\left.\{q\}_{r}[\rangle_{m}\right]=A r[\rangle m\right] . ~}$

Proof. Let $z>m$.
Suppose $z \in \theta(A)^{\{q\}}$. Then $z \notin \theta_{\langle q}(A)^{\{q\}}$, so $z \in \theta_{q}(A)^{\{q\}}$ (Proposition 1). Choose $s \in T$ such that $z \in \theta_{q}^{s}\left(A^{s}\right)\{q\}$. Then $z \in A^{S} \subseteq A$ (Claim 4).

Suppose $z \in A$. Choose $s \in T$ such that $(s)_{0}=q$ and $z \in A^{s} \upharpoonright L(e, s)$. Then $A^{s} \subseteq A$ and $\left\langle A^{s},\langle z, q\rangle\right\rangle$ is enumerated into θ_{q} at stage $s+1$. Therefore $z \in \theta(A)^{\{q\}}$.

By Claim 5 A $\leq_{e} \theta(A)=W_{e}(B) S_{e} B$, which is a contradiction. Therefore $\theta(A)^{\{q\}} \neq W_{e}(B)^{\{q\}}$, so 1 holds.

By 1 we can choose a least y such that $\theta(A)^{\{q\}}(y) \neq W_{e}(B)^{\{q\}}(y)$.
From the construction $x \in \theta_{q}(A)$ if and only if there exist $s \in T, z$ such that $(s)_{0}=q, \quad x=\langle z, q\rangle$ and $z \in A^{s} \uparrow L(e, s)$. However $\lim _{s \in T} L(e, s)=y$, therefore $\theta_{q}(A)$ is finite.

Hence all requirements are satisfied.

Definition 4.3.2 (Cooper). An s-operator, Ψ, is an e-operator such that for every $\langle F, x\rangle \in \Psi,\langle F, x\rangle=\langle 0,\langle i, j\rangle\rangle$ or $\langle F, x\rangle=$ $\langle\{i\},\langle i, j\rangle\rangle$, for some i, j.

The Gutteridge [1971] (pp. 42-46) operator, G, is an s-operator with the following properties:

1. $\mathrm{G}(\mathrm{X})$ is re. implies $X \leq_{T} 0^{\prime}$.
2. $G(X) \equiv_{e} X$ implies X is re.
3. For every i there exists j such that $\langle\{i\},\langle i, j\rangle\rangle \in G$ and $\langle 0,\langle i, j\rangle\rangle \notin G$.
4. For every $i,\{j:\langle\{i\},\langle i, j\rangle\rangle \in G\}$ is finite.

Corollary 4.3.3. If $A \in \Sigma_{2}, A \bigsqcup_{e} B$ and $G\left(K_{B}^{0}\right) \leq_{e} A$ then there exists $C<_{e} A$ such that $C \$_{e} B$.

Proof. Assume A and B satisfy the hypothesis. Choose an e-operator W such that $W(A)=G\left(K_{B}^{0}\right)$. Let $\left\{A^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to A such that for every $r,\left\{A^{t}\right\}_{(t)_{0}=r}$ is a Σ_{2}-approximation to A with infinitely many true stages. Let $\left\{W^{s}\right\}_{s} \in \omega$ be a recursive enumeration of W.

Definition. For every e, let $B_{e}^{s}=\left\{x: \exists j\left[\langle\langle x, e\rangle, j\rangle \in W^{s}\left(A^{s}\right)\right.\right.$ and $\left.\left.\langle\langle x, e\rangle, j\rangle \notin G^{s}(0)\right]\right\}$.
B_{e}^{s} is our guess at $W_{e}^{(B)}$ at stage s. This makes sense due to
the fact that $W(A)=G\left(K_{B}^{0}\right)$, properties 3 and 4 of G, and the definition of K_{B}^{0}. Let T denote the set of true stages in $\left\{A^{s}\right\}_{s} \in \omega$. That B_{e}^{s} is defined in terms of A gives:

Proposition 1. For every $e, x, \lim _{s \in T} B_{e}^{s}(x)=W_{e}(B)(x)$.

Proof. Fix e and x. Choose a stage t such that all instructions $\langle F,\langle\langle x, e\rangle, j\rangle\rangle \in G$ are in G^{t}, and
$(\forall s\rangle t) \forall j\left[s \in T \Rightarrow W^{s}\left(A^{s}\right)(\langle\langle x, e\rangle, j\rangle)=G\left(K_{B}^{0}\right)(\langle\langle x, e\rangle, j\rangle)\right]$.

Assume $s \in T$ and $s>t$.

Case 1. $x \in \mathbb{W}_{e}(B)$.
Then there exists j such that $\langle\langle x, e\rangle, j\rangle \in G\left(K_{B}^{0}\right)$ and $\langle\langle x, e\rangle, j\rangle \notin G(0)$. By the choice of $t,\langle\langle x, e\rangle, j\rangle \in W^{\mathbf{S}}\left(A^{s}\right)$. Hence $x \in B_{e}^{S}$.

Case 2. $x \notin W_{e}(B)$.

Then for every $j, G\left(K_{B}^{0}\right)(\langle\langle x, e\rangle, j\rangle)=G(0)(\langle\langle x, e\rangle, j\rangle) . \quad$ By the choice of $t, \quad W^{s}\left(A^{s}\right)(\langle\langle x, e\rangle, j\rangle)=G\left(K_{B}^{0}\right)(\langle\langle x, e\rangle, j\rangle)$ and $G(0)(\langle\langle x, e\rangle, j\rangle)=G^{\mathbf{S}}(\theta)(\langle\langle x, e\rangle, j\rangle)$ for every j. Hence $x \notin B_{e}^{s}$.

An application of Lemma 4.3.1 completes the proof.

Corollary 4.3.4. For every pair of $\Sigma_{2} e$-degrees a and b, if $a \rrbracket_{e} b$ and b is low then there exists $c<_{e} a$ such that $c \rrbracket_{e} b$.

Proof. Assume a and b satisfy the hypothesis, $A \in a$ and $B \in b$. Let $\left\{A^{s}\right\}_{s \in \omega}$ be a Σ_{2}-approximation to A with infinitely many true stages, and let $\left\{B^{s}\right\}_{s} \in \omega$ be a low approximation to B. Set $B_{e}^{s}=W_{e}^{s}\left(B^{s}\right)$. Then for every $x, \quad \underset{s}{\lim } B_{e}^{s}(x)=W_{e}(B)(x)$. Applying Lemma 4.3.1 yields $C \leq e A$ such that $C \Phi_{e} B . \quad c=\operatorname{deg}_{e} C$ is the desired degree.

CHAPTER V

EMBEDDING THE DIAMOND IN THE Σ_{2} E-DEGREES

§5.1 INTRODUCTION

Lachlan [1966] has shown that it is not possible to embed the diamond lattice in the r.e. Turing degrees while preserving least and greatest elements, that is, there do not exist incomparable r.e. Turing degrees \mathbf{a} and \mathbf{b} such that $\mathbf{a} \wedge \mathbf{b}=0$ and $\mathbf{a} \vee \mathbf{b}=0^{\circ}$. Cooper [1984] has asked if the r.e. Turing degrees are elementarily equivalent to the enumeration degrees below 0^{\prime}.

Such an embedding is possible in the Σ_{2} enumeration degrees, which implies a negative answer to Cooper's question.

Theorem 5.1. There exist a pair of low e-degrees a and b such that $a \wedge b=\mathbf{0}_{e}$ and $a \vee b * \mathbf{0}_{\mathbf{e}}^{\prime}$.

§5.2 PROOF OF THEOREM

We show that there exist low sets A and B such that

$$
\forall e\left[W_{e}(A)=W_{e}(B) \Rightarrow W_{e}(A) \text { is r.e. }\right]
$$

and

$$
x_{K} \leq_{e} A \oplus B .
$$

Letting $\mathbf{a}=\operatorname{deg}_{e} A$ and $b=\operatorname{deg}_{e} B$ yields the theorem.
Let $\left\{K^{\mathbf{S}}\right\}_{s \in \omega}$ be a recursive enumeration of K such that
$\forall s\left[\max K^{s}<s\right.$ and $\left.K^{3 s}=K^{3 s+1}=K^{3 s+2}\right]$.

Without loss of generality we may assume that:

$$
(\forall e)(\forall s)\left[w_{e}^{3 s}=w_{e}^{3 s+1}=w_{e}^{3 s+2}\right] .
$$

We construct low approximations $\left\{A^{s}\right\}_{s \in \omega}$ and $\left\{B^{s}\right\}_{s \in \omega}$ to A and B respectively.

The choice of enumerations of K and W_{e} allows a construction which involves three different types of actions at each stage to be mimicked by one which involves a single type of action at each stage.

Definitions.

Length of agreement functions.
$L(e, s)=\mu z\left[z=s \quad\right.$ or $\left.\quad W_{e}^{s}\left(A^{s}\right)(z) \neq W_{e}^{s}\left(B^{s}\right)(z)\right]$.
$M(e, s)=\max \{L(e, t): t \leq s\}$.
$M(e, s)$ is called a maximum length of agreement function.

The possible outcomes of the construction, with regard to equality between $W_{e}(A)$ and $W_{e}(B)$, for $e<n$, are indexed by elements of < ω_{2}. That is, $\sigma \in<\omega_{2}$ corresponds to the outcome $W_{e}(A)=W_{e}(B)$ if $\sigma(e)=1$ and $W_{e}(A) \neq W_{e}(B)$ if $\sigma(e)=0$.

We define a recursive set C_{σ} for every $\sigma \in<\omega_{2}$ by induction on $\operatorname{lh}(\sigma)$.

$$
C_{0}=\{s: s \equiv 0 \bmod 3\}
$$

$$
\operatorname{lh}(\sigma)>0:
$$

$$
\mathrm{C}_{\sigma^{-}(1)}=\left\{s : s \in C _ { \sigma ^ { - } } \text { and } (\forall t < s) \left[t \in C_{\sigma^{-}} \Rightarrow\right.\right.
$$

$$
\begin{aligned}
& M(e(\sigma), t)<M(e(\sigma), s)]\} ; \\
& C_{\sigma^{-}(0)}=\mathrm{C}_{\sigma^{-}}-\mathrm{C}_{\sigma^{-}(1)} .
\end{aligned}
$$

Intuitively, C_{σ} may be viewed as the set of stages at which there
is evidence that σ corresponds to the true outcome of the construction. We denote $C_{\sigma} \upharpoonright(s+1)$ by C_{σ}^{S}. From the definition of C_{σ} it is clear that C_{σ}^{s} is fully determined by the sequences $\left\{A^{t}\right\}_{t \leq s}$ and $\left\{B^{t}\right\}_{t \leq s}$.

Since we are interested only in those e for which $W_{e}(A)=W_{e}(B)$, we restrict our attention to the following subset of $<\omega_{2}$:

$$
\varphi=\left\{\sigma: \sigma \epsilon^{\left\langle\omega_{2}-\{0\} \quad \text { and } \sigma(e(\sigma))=1\right\} . . . ~}\right.
$$

We define an element $c(\sigma, s)$ and a finite set $E(\sigma, s)$ for each $\sigma \in \mathscr{S}$.
$c(\sigma, s)=\left\{\begin{array}{l}\max C_{\sigma}^{s} \quad \text { if } C_{\sigma}^{s} \neq 0, \\ \uparrow \text { otherwise } .\end{array}\right.$
$E(\sigma, s)=\left\{\begin{array}{l}W_{e(\sigma)}^{c(\sigma, s)}\left(A^{c(\sigma, s)}\right)+L(e(\sigma), c(\sigma, s)), \text { if } c(\sigma, s) \downarrow, \\ 0, \text { otherwise. }\end{array}\right.$

So $c(\sigma, s)$ is the greatest stage up to s, at which there is evidence that σ is the true outcome of the construction, and $E(\sigma, s)$ is $W_{e(\sigma)}(A)$ as it appears at stage $c(\sigma, s)$, below its point of disagreement with $W_{e(\sigma)}(B)$.

Proposition 1. For every $\sigma, \tau \in\left\langle\omega_{2}\right.$,

1. $\tau \subseteq \sigma \Rightarrow C_{\sigma} \subseteq C_{T}$,
2. $s \in C_{\sigma} \cap C_{T} \Rightarrow \sigma$ and T are compatible.

Proposition 2. For every n, if $s \equiv 0 \bmod 3$ then there is a unique $\sigma \in{ }^{n_{2}}$ such that $s \in C_{\sigma}$.

Proof. The two propositions follow from the observation that $\mathrm{C}_{\varnothing}=$ $\{s: s \equiv 0 \bmod 3\}$ and for every $\sigma, C_{\sigma}=C_{\sigma 1} \cup C_{\sigma 0}$.
\leq denotes the following partial order on $<\omega_{2}$:
$\sigma \leq T \Leftrightarrow \sigma=\tau \quad$ or $\quad[(\sigma \cap \tau) 1 \subseteq \sigma$ and $\tau \nsubseteq \sigma]$.

For $s \equiv 0 \bmod 3, \sigma(n, s)$ denotes the unique element of n_{2} such that $s \in C_{\sigma(n, s)}^{s}$ (Proposition 2), and $\sigma_{n}=\mu \sigma\left(\exists^{\infty} s[\sigma=\sigma(n, s)]\right)$. Note that if $\left\{A^{s}\right\}_{s \in \omega}$ and $\left\{B^{s}\right\}_{s \in \omega}$ are low approximations, then σ_{n} corresponds to the true outcome of the construction.

$$
\varphi_{n}=\{\sigma \in \mathscr{P}: e(\sigma)=n\}, \quad \mathscr{\varphi}_{\leq n}=\bigcup_{k \leq n} \mathscr{\varphi}_{k} \text { and } \mathscr{\varphi}_{>n}=\mathscr{\varphi}-\varphi_{\leq n}
$$

Requirements.

We attempt to satisfy the following requirements, listed in order
of priority.
$\mathrm{N}: \quad \forall e[e \in \bar{K} \Leftrightarrow e \in A \cap B]$.
$Q_{0}:$ If $\sigma_{1} \in \mathscr{\mathscr { S }}$ then
$\exists u(\forall t>u)(\forall s>t)\left[E\left(\sigma_{1}, t\right) \subseteq W_{0}^{S}\left(A^{S}\right)\right.$ or $\left.E\left(\sigma_{1}, t\right) \subseteq W_{0}^{s}\left(B^{s}\right)\right]$.
$P_{0}: \exists^{\infty} s\left[k \in W_{e}^{s}\left(A^{s}\right)\right] \Rightarrow k \in W_{e}(A)$, where $0=\langle k, e\rangle$.
$Q_{1}:$ If $\sigma_{2} \in \mathscr{S}$ then
$\exists u,(\forall t>u)(\forall s>t)\left[E\left(\sigma_{2}, t\right) \subseteq W_{1}^{s}\left(A^{s}\right)\right.$ or

$$
\left.E\left(\sigma_{2}, t\right) \subseteq w_{1}^{s}\left(B^{s}\right)\right]
$$

$P_{1}: \exists^{\infty} s\left[k \in W_{e}^{s}\left(B^{s}\right)\right] \Rightarrow k \in W_{e}(B)$, where $0=\langle k, e\rangle$.
$Q_{2}:$ If $\sigma_{3} \in \mathscr{S}$ then
$\exists u(\forall t>u)(\forall s>t)\left[E\left(\sigma_{3}, t\right) \subseteq W_{2}^{s}\left(A^{s}\right)\right.$ or
$\left.E\left(\sigma_{3}, t\right) \subseteq W_{2}^{s}\left(B^{s}\right)\right]$.
$P_{2}: \exists^{\infty} s\left[k \in W_{e}^{s}\left(A^{s}\right)\right] \Rightarrow k \in W_{e}(A)$, where $1=\langle k, e\rangle$.

If these requirements are met then the theorem is proved. Assume that all requirements N, P_{n} and Q_{n} are satisfied. $\bar{K} \leq_{e} A \oplus B$ from requirement N. Now $x_{K} \equiv \overline{\mathbf{K}}$ since K is re. Hence $x_{K} \leq \mathbf{x} A \oplus B$. $\left\{A^{s}\right\}_{s \in \omega}$ and $\left\{B^{s}\right\}_{s \in \omega}$ are low approximations, from requirements P_{n}. Thus A and B are low. Suppose $W_{e}(A)=W_{e}(B)$. Then $\sigma_{e+1} \in \mathscr{Y}$ and
from requirement Q_{e} we can choose u such that
(*)

$$
\begin{gathered}
(\forall t>u)(\forall s>t)\left[E\left(\sigma_{e+1}, t\right) \subseteq W_{e}^{s}\left(A^{s}\right)\right. \text { or } \\
\left.E\left(\sigma_{e+1}, t\right) \subseteq W_{e}^{s}\left(B^{s}\right)\right]
\end{gathered}
$$

Let

$$
Y=\underset{t>u}{U} E\left(\sigma_{e+1}, t\right)
$$

From $*$ and the lowness of the approximations, $Y \subseteq W_{e}(A) \cup W_{e}(B)=$ $W_{e}(A) . \quad W_{e}(A)=W_{e}(B)$, the lowness of the approximations and $C_{\sigma_{e}}$ infinite imply that $W_{e}(A) \subseteq Y$. Therefore $W_{e}(A)=Y$, and Y is re. since $C_{\sigma_{e+1}}$ is recursive.

Use function.

Let V be an e-operator.
$u^{\prime}(V, X, k)=\left\{\begin{array}{l}\uparrow \text { if } k \notin V(X), \\ D_{z} \text { where } z=\mu i\left[k \in V\left(D_{i}\right) \text { and } D_{i} \subseteq X\right], \text { otherwise. }\end{array}\right.$

At each stage every $\sigma \in \mathscr{Y}$ is assigned a status, $O N$ or $O F F$. The status of σ indicates whether the strategy for ensuring that $W_{e(\sigma)}(A)$ is re., (in the case that $\sigma_{\operatorname{lh}(\sigma)}=\sigma$ and $W_{e(\sigma)}(A)=$ $W_{e(\sigma)}^{(B)), ~ i s ~ a c t i v e ~ o r ~ n o t . ~ H e n c e f o r t h ~ w e ~ w i l l ~ c a l l ~ t h i s ~ t h e ~ s t r a t e g y ~}$
associated with σ. When we refer to the status of σ at stage s we mean the status of σ at the end of stage s. If σ is not explicitly assigned a status at stage $s+1$, then it is the same as at stage s.

Restraint functions.

$R(p, s)=\left\{\begin{array}{l}\max \left\{\left[\max u^{\prime}\left(W_{e}^{\mathbf{s}}, X^{\mathbf{s}}, k\right)\right]+1, p+1\right\}, \quad \text { if } u^{\prime}\left(W_{e}^{s}, X^{s}, k\right) \downarrow, \\ p+1, \quad \text { otherwise },\end{array}\right.$
where $p=2\langle k, e\rangle$ and $X=A$, or $p=2\langle k, e\rangle+1$ and $X=B$.
$R(p, s)$ is associated with requirement $\quad P_{p}$. If $u^{\prime}\left(W_{e}^{s}, X^{s}, k\right) \downarrow$ and $\left(K \cap A^{s} \cap B^{s}\right) r R(p, s)=0$ then unless a set of lesser canonical index, (respecting higher priority restraints), is found for putting k in $W_{e}(X)$, the aim is not to disturb X below $R(p, s)$ after stage s.
$r(\sigma, A, s)$ and $r(\sigma, B, s)$ are defined in the construction, for every $\sigma \in \mathscr{Y}$. For $X=A, B$, we agree that if σ is $O F F$ at stage s then $r(\sigma, X, s)=0$, and if σ is $O N$ at stage $s+1$ and $r(\sigma, X, s+1)$ is not explicitly defined then $r(\sigma, X, s+1)=r(\sigma, X, s)$.
$r(\sigma, A, s)$ and $r(\sigma, B, s)$ are associated with requirement $Q e(\sigma)$. $r(\sigma, X, s) \subseteq X^{s}$ for $X=A, B$. If σ is $O N$ at stage s then either $E(\sigma, s-1) \subseteq W_{e(\sigma)}^{s}\left(A^{s}\right) \cap W_{e(\sigma)}^{s}\left(B^{s}\right)$ or $E(\sigma, s-1) \subseteq W_{e(\sigma)}^{s}(r(\sigma, X, s))$ where X is either A or B.

In the construction certain stages are designated σ-active for one or more $\sigma \in \mathscr{\varphi}$. If s is σ-active then one of the sets A or B is marked at stage s.

At a σ-active stage the strategy associated with σ is potentially threatened and active measures are taken to preserve it. $\alpha(\sigma, s)=\left\{\begin{array}{l}\text { the greatest } \sigma \text {-active stage } \leq s, \text { if one exists, } \\ s, \quad \text { otherwise. }\end{array}\right.$

Construction.

Stage 0.
$A^{0}=B^{0}=\omega$. All $\sigma \in \varphi$ are $0 F F$.

Stage $s+1 \quad(s \equiv 0 \bmod 3)$.
Turn all $\sigma \in \mathscr{S}$ such that $\sigma>\sigma(s, s) \quad 0 F F$.
Turn every $\sigma \in \mathscr{P}$ such that $\sigma \subseteq \sigma(s, s) \quad O N$ and set

$$
r(\sigma, X, s+1)=0 \quad \text { for } \quad X=A, B .
$$

Stage $s+1 \quad(s \equiv 1 \bmod 3)$.
If there exists $p \leq s$ such that

1. $p=2\langle k, e\rangle$ and there exists D such that
.1. $k \in W_{e}^{s+1}(D)$,
.2. $(\forall m<p)\left[D \upharpoonright R(m, s) \subseteq A^{s}\right]$,
.3. $\left(\forall \sigma \in \mathscr{S}_{\leq p}\right)\left[D \cap r(\sigma, B, s) \subseteq A^{S}\right]$,
.4. $u^{\prime}\left(W_{e}^{s}, A^{s}, k\right) \uparrow$ or the canonical index of D is strictly less than the canonical index of $u^{\prime}\left(W_{e}^{S}, A^{S}, k\right)$,
or
2. $p=2\langle k, e\rangle+1$ and there exists D such that
.1. $k \in W_{e}^{s+1}(D)$,
.2. $(\forall m<p)\left[D \upharpoonright R(m, s) \subseteq B^{s}\right]$.
.3. $\left(\forall \sigma \in \mathscr{S}_{\leq p}\right)\left[D \cap r(\sigma, A, s) \subseteq B^{S}\right]$,
.4. $u^{\prime}\left(\mathbb{W}_{e}^{S}, B^{s}, k\right) \uparrow$ or the canonical index of D is strictly less than the canonical index of $u^{\prime}\left(W_{e}^{S}, B^{\mathbf{S}}, k\right)$
then let p^{*} be the least such. Turn all $\sigma \in \mathscr{S}_{>\boldsymbol{p}^{*}}$ OFF.

Case 1. $p^{*}=2\langle k, e\rangle$.
Choose D with least canonical index satisfying 1.1-1.4. Set
$A^{s+1}=A^{s} \cup D$ and $B^{s+1}=B^{s}$.

Case 2. $p^{*}=2\langle k, e\rangle+1$.
Choose D with least canonical index satisfying 2.1-2.4. Set $B^{s+1}=B^{s} \cup D$ and $A^{s+1}=A^{s}$.

If no such p exists, do nothing.

Stage $s+1 \quad(s \equiv 2 \bmod 3)$.
Let $\quad F^{s}=A^{s} \cap B^{s} \cap K^{s+1}$.
If there exists $p \leq s$ such that

$$
F^{s} \uparrow R(p, s) \neq 0
$$

then let p^{\prime} be the least such. Otherwise set $p^{\prime}=s$.
Turn all $\sigma \in \mathscr{S}_{>p^{\prime}} \quad O F F$.

Case 1. $\left(\forall \sigma \in \varphi_{\leq p^{\prime}}\right)\left[r(\sigma, A, s) \cap F^{s}=r(\sigma, B, s) \cap F^{s}=0\right]$.

Subcase 1.1. $p^{\prime} \equiv 0 \bmod 2$.
Set $B^{s+1}=B^{s}-F^{s}$ and $A^{s+1}=A^{s}$. Mark A.
For every $\sigma \in \mathscr{\varphi}$ such that σ is $O N$ at the end of this stage and $\quad \sigma \subseteq \sigma(s-2, s-2), \quad$ set

$$
r(\sigma, A, s+1)=U\left(W_{e(\sigma)}, A, E(\sigma, s), s+1\right)
$$

and $r(\sigma, B, s+1)=0$. We call $s+1$ a σ-active stage.

Subcase 1.2. Otherwise.
Same as for Subcase 1.1 with A and B interchanged.

Case 2. Otherwise.
Choose $\sigma^{\prime} \in \mathscr{S}_{\leq p^{\prime}}$ first $\leq-$ minimal and then of greatest length such that

$$
r\left(\sigma^{\prime}, A, s\right) \cap F^{s} \neq 0 \quad \text { or } \quad r\left(\sigma^{\prime}, B, s\right) \cap F^{s} \neq 0
$$

Turn all $\sigma>\sigma^{\prime}$ OFF.

Subcase 2.1. A is marked at stage $a\left(\sigma^{\prime}, s\right)$.
Set

$$
A^{s+1}=\underset{a\left(\sigma^{\prime}, s\right) \leq t \leq s}{U} A^{t} \quad \text { and } B^{s+1}=B^{s}-\left(A^{s+1} \cap K^{s+1}\right)
$$

Mark A.
For every $\sigma \in \mathscr{Y}$ such that σ is $O N$ at the end of this stage
and $\sigma \subseteq \sigma^{\prime}, \quad$ set

$$
r(\sigma, A, s+1)=U\left(W_{e(\sigma)}, A, E(\sigma, s), s+1\right)
$$

and $r(\sigma, B, s+1)=0$. We call $s+1$ a σ-active stage.

Subcase 2.2. Otherwise.
Same as for Subcase 2.1 with A and B interchanged.

In either Case 1 or Case 2 if there exists $p \leq p^{\prime}$ such that

$$
\begin{gathered}
R(p, s+1) \neq R(p, s) \text { or } \\
A^{s+1} \upharpoonright R(p, s) \neq A^{s} \upharpoonright R(p, s) \quad \text { or } \quad B^{s+1} \upharpoonright R(p, s) \neq B^{s} \upharpoonright R(p, s)
\end{gathered}
$$

then let $p^{\prime \prime}$ be the least such. Otherwise set $p^{\prime \prime}=p^{\prime}$. Turn all $\sigma \in \mathscr{S}_{>p^{\prime \prime}} \quad$ OFF.

If A^{s+1} or B^{s+1} is not explicitly defined then it is the same as A^{s} or B^{s} respectively.

End of construction.

Proposition 3. $\bar{K} \subseteq A \cap B$.

Proof. $A^{0}=B^{0}=\omega$ and the only elements which are removed from A or B at a stage $s+1$ are elements of K^{s+1}.

The construction reflects our intuitive notion of C_{σ} and the priorities of the various requirements. If $\sigma, \tau \in \mathscr{P}$ and $\sigma<\tau$ then the strategy associated with σ is given prioirity over that associated with τ. This is due to the definition of σ_{n}.

At stage $s(s \equiv 0 \bmod 3)$, a new candidate for σ_{p} appears for each $p \leq s$, namely $\sigma(p, s)$. So at stage $s+1$ we abandon old candidates $\sigma \in \mathscr{Y}$ where $\sigma>\sigma(p, s)$, an action which reflects the definition of σ_{p}. If $\sigma(p, s) \in \mathscr{S}$ then $E(\sigma(p, s), s) \subseteq$ $W_{p-1}^{s+1}\left(A^{s+1}\right) \cap W_{p-1}^{s+1}\left(B^{s+1}\right)$ (Proposition 4.1), so $r(\sigma(p, s), X, s+1)$ can be set to θ for $X=A, B$. This allows greater opportunity to meet requirements P_{n} at the following stage, as there are no restraints imposed on A or B by the strategies associated with $\sigma \in \mathscr{\varphi}$ where $\sigma \subseteq \sigma(s, s)$. As far as these strategies are concerned, we have the freedom to remove elements of K from either A or B.

At stage $s+1(s \equiv 1 \bmod 3)$, we attempt to meet requirements P_{n}. Suppose $p^{*}=2\langle k, e\rangle$. The fact that only elements of K are ever removed from either A or B, and all such elements must be removed if we are to meet requirement N, necessitate conditions 1.2 and 1.3. Though there may be infinitely many t such that $u^{\prime}\left(W_{e}^{t}, A^{t}, k\right) \downarrow$, each such set may contain an element of K which must later be removed from A for the sake of a higher priority requirement. To overcome this difficulty the trick is to attempt to put k in $W_{e}(A)$ at a stage when the restraints imposed by higher priority requirements are minimal and $A \cap B$ is disjoint from K on or below these restraints. This makes condition 1.4 necessary.

At stage $s+1(s$ 日 $2 \bmod 3)$, we attempt to meet requirement N, while doing the least amount of damage to our strategy for meeting the other requirements. We also pursue our strategy for meeting requirements Q_{n}. If Case 1 holds then the removal of F^{s} from A or
B does not disturb the strategy associated with requirement Q_{p} where $p<p^{\prime}$ or with P_{p} where $p<p^{\prime}$. If Subcase 1.1 holds then meeting requirement $P_{p}{ }^{\prime}$ involves attempting to put k in $W_{e}(A)$ where $p^{\prime}=$ $2\langle k, e\rangle$. Hence removal of F^{s} from B assures that if $k \in W_{e}^{s}(A)$ then $k \in W_{e}^{s+1}\left(A^{s+1}\right)$. But then for $\sigma \in \mathscr{S}$ such that $\sigma \subseteq \sigma(s-2, s-2)$,
$E(\sigma, s)=E(\sigma, s-2)$ is no longer necessarily contained in $W_{e(\sigma)}^{s+1}\left(A^{s+1}\right) \cap W_{e(\sigma)}^{s+1}\left(B^{s+1}\right)$. However since $A^{s-2} \subseteq A^{s+1} \quad$ (Proposition 4.1), $E(\sigma, s) \subseteq W_{e(\sigma)}^{s+1}\left(A^{s+1}\right)$. Therefore $E(\sigma, s) \subseteq w_{e(\sigma)}^{s+1}(r(\sigma, A, s+1))$, which is as desired.

If Case 2 holds then we consider the minimal $\sigma \in \mathscr{S}_{\leq p}$ of greatest length such that the strategy associated with σ is threatened, and we attempt to preserve the strategy associated with every $\tau \subseteq \sigma$ such that $\tau \in \mathscr{Y}$. The length condition is necessary if we hope to satisfy all the requirements Q_{n}. The simplest remedy is to choose a set X, either A or B, and arrange that for every $\tau \subseteq \sigma$ such that $\tau \in \mathscr{Y}, E(\tau, s) \subseteq$ $W_{e(\tau)}^{s+1}(r(\tau, X, s+1)), \quad$ and in choosing X to backtrack and choose the same set which was used at the last stage at which similar adjustments had to be made. There are two advantages to this approach. Firstly, it safeguards us against the following situation: there are $\tau^{\prime}, \tau^{\prime \prime} \subseteq \sigma$ with $\tau^{\prime}, \tau^{\prime \prime} \in \mathscr{Y}, E\left(\tau^{\prime}, s\right) \subseteq \mathbb{W}_{e\left(\tau^{\prime}\right)}^{s+1}\left(r\left(\tau^{\prime}, A, s+1\right)\right), \quad E\left(\tau^{\prime \prime}, s\right) \subseteq$ $W_{e\left(\tau^{\prime \prime}\right)}^{s+1}\left(r\left(\tau^{\prime \prime}, B, s+1\right)\right)$ and there is a stage $t>s(t \equiv 2 \bmod 3)$ such that $\quad r\left(\tau^{\prime}, A, t\right)=r\left(\tau^{\prime}, A, s+1\right), \quad r\left(\tau^{\prime \prime}, B, t\right)=r\left(\tau^{\prime \prime}, B, s+1\right)$ and $K^{t+1} \cap r\left(\tau^{\prime}, A, t\right) \cap r\left(\tau^{\prime \prime}, B, t\right) \neq 0$. Now $E(\tau, t)=E(\tau, t-1)$ for $\tau=\tau^{\prime}$, $\tau^{\prime \prime}$. So here the removal of F^{t} from either A or B may disrupt the strategy associated with τ^{\prime} or $\tau^{\prime \prime}$, and if this situation was
repeated infinitely of ten, there is no guarantee that we could even satisfy the requirements Q_{0} and Q_{1}. Secondly, if $\sigma \in \mathscr{S}$ and $\sigma<\sigma_{1 h(\sigma)}$ then backtracking allows the restraints associated with σ to settle down. A danger inherent in this approach is that we may choose the same set too of ten and force one of the sets A or B to be ω. But this difficulty can be overcome by noting that at stages $t \in C_{\sigma}, \quad E(\tau, t) \subseteq W_{e(\tau)}^{t}\left(A^{t}\right) \cap W_{e(\tau)}^{t}\left(B^{t}\right) \quad$ for every $\quad \tau \subseteq \sigma, \quad$ with $\quad \tau \in \mathscr{S}$. So if C_{σ} is infinite, then there are infinitely many opportunities to switch sets. If $R\left(p^{\prime \prime}, s+1\right) \neq R\left(p^{\prime \prime}, s\right)$ or A or B is disturbed below $R\left(p^{\prime \prime}, s\right)$ then the strategy associated with requirement Q_{p} is abandoned for $p>p^{\prime \prime}$.

The choice of enumeration of K and an inspection of the construction yield the next four propositions.

Proposition 4. For every s,

1. $X^{3 s}=X^{3 s+1} \subseteq X^{3 s+2}$ for $X=A, B$,
.2. $A^{3 s+2} \subseteq A^{3 s+3}$ or $B^{3 s+2} \subseteq B^{3 s+3}$,
.3. $A^{3 s} \subseteq A^{3 s+3}$ or $B^{3 s} \subseteq B^{3 s+3}$,
.4. $K^{t} \cap A^{t} \cap B^{t}=0$ for $t=3 \mathrm{~s}, 3 \mathrm{~s}+1$,

Proposition 5. For every $\sigma \in \mathscr{S}$, if σ is OFF at stage s and ON at stage $s+1$ then $s \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(s, s)$.

Proposition 6. For every $\sigma \in \mathscr{Y}$, if σ is $O N$ at stage $s+1$ then $\operatorname{lh}(\sigma) \leq s$.

Proposition 7. For every $\sigma \in \mathscr{P}$, if $\sigma>\sigma(3 s, 3 s)$ then σ is OFF at stages $3 s+1$ to $3 s+3$.

Proposition 8. For every $\sigma, \tau \in \mathscr{\varphi}$, if σ is $O N$ at stage $s+1$ and $\tau \subseteq \sigma$ then τ is $O N$ at stage $s+1$.

Proof. Suppose not. Choose $\sigma, \tau \in \mathscr{S}$ with $\tau \subseteq \sigma$, and a least s such that σ is $O N$ at stage $s+1$ and τ is OFF. We arrive at a contradiction by showing that τ is $O N$ at stage $s+1$.

Case $1 . \quad s \equiv 0 \bmod 3$.
Since σ is $O N$ at stage $s+1, \sigma<\sigma(s, s)$ or $\sigma \subseteq \sigma(s, s)$ (Propositions 6 and 7). Therefore $\tau<\sigma(s, s)$ or $T \subseteq \sigma(s, s)$. If $\tau \subseteq \sigma(s, s)$ then τ is turned $O N$ at stage $s+1$.

Assume $\tau<\sigma(s, s)$. Then $\sigma<\sigma(s, s) . \quad \sigma$ is not turned $O N$ at stage $s+1$, therefore σ must be $O N$ at stage s. So τ must be $O N$ at stage s (by our choice of s), and τ is not turned OFF at stage $s+1$.

Case 2. $s \equiv 1 \bmod 3$.
As in the previous case where $\tau<\sigma(s, s), \sigma$ and τ must be $0 N$ at stage s. Since σ is not turned $O F F$ at stage $s+1$, either $p^{*} \uparrow$
or $e(\tau)<e(\sigma) \leq p^{*}$. In either case τ is not turned OFF at stage $\mathbf{s}+1$.

Case 3. $s \equiv 2 \bmod 3$.
As in the previous case σ and T must be $O N$ at stage s. At stage $s+1, e(\tau)<e(\sigma) \leq p^{\prime \prime}$ since σ is not turned OFF at stage $s+1$. Now either Case 1 holds, or $\sigma \geqslant \sigma \nmid$ since σ is not turned $O F F$ at stage $s+1$, hence $\boldsymbol{T} \boldsymbol{\sigma} \sigma^{\prime}$. In either case T is not turned OFF at stage $s+1$.

Corollary 9. For every $\sigma, \tau \in \mathscr{Y}$, if $s+1$ is σ-active and $T \subseteq \sigma$ then $s+1$ is τ-active.

Proof. This follows from the previous proposition and an inspection of the construction.

Proposition 10. For every $\sigma \in \mathscr{Y}$, if $\sigma \subseteq \sigma(3 s, 3 s)$ then
.1. $r(\sigma, X, 3 s+1)=r(\sigma, X, 3 s+2)=0$ for $X=A, B$,
.2. $E(\sigma, 3 s)=E(\sigma, t)$ for $t=3 s+1,3 s+2$,
.3. $E(\sigma, 3 s) \subseteq W_{e(\sigma)}^{t}\left(A^{t}\right) \cap w_{e(\sigma)}^{t}\left(B^{t}\right)$ for $t=3 s, 3 s+1,3 s+2$.

Proof. Assume $\sigma \in \mathscr{Y}$ and $\sigma \subseteq \sigma(3 s, 3 s)$. Then $\sigma(\operatorname{lh}(\sigma), 3 s)=\sigma$ (Proposition 1.1), $c(\sigma, 3 s)=3 s$ and $E(\sigma, 3 s)=w_{e(\sigma)}^{3 s}\left(\mathrm{~A}^{3 \mathrm{~s}}\right) \uparrow L(e(\sigma), 3 \mathrm{~s})=$ $w_{e(\sigma)}^{3 s}\left(B^{3 s}\right) r L(e(\sigma), 3 s) . \quad 1$ follows from an inspection of the construction. $C_{\sigma} \subseteq C_{\varnothing}=\{s: s \equiv 0 \bmod 3\}$ gives 2 , and 3 follows from

Proposition 4.1.

Definition. For every $\sigma \in \mathscr{Y}$,
$O(\sigma, s)=\{u: \forall t[(u \leq t \leq s) \Rightarrow \sigma$ is $O N$ at stage $t]\}$.
$o(\sigma, s)=\left\{\begin{array}{l}{[\min O(\sigma, s)]-1, \quad \text { if } O(\sigma, s) \neq 0,} \\ \dagger \text { otherwise. }\end{array}\right.$

Remark. Since all σ are $O F F$ at stage 0 , if $o(\sigma, s) \downarrow$ then $o(\sigma, s)=[\min O(\sigma, s)]-1$. So σ is $O F F$ at stage $o(\sigma, s)$.

Proposition 11. If $o(\sigma, s) \downarrow$, then $o(\sigma, s) \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(o(\sigma, s), o(\sigma, s))$.

Proof. This is an easy corollary to Proposition 5 and the previous Remark.

Proposition 12. For every $\sigma \in \mathscr{Y}$, if $s+1$ is σ-active then .1. $\mathrm{s} \equiv 2 \bmod 3$,
.2. σ is $O N$ at stage $s+1$,
.3. $r(\sigma, X, s+1) \subseteq X^{s+1}$ for $X=A, B$,
.4. $r(\sigma, A, s+1) \cap B^{s+1} \cap K^{s+1}=r(\sigma, B, s+1) \cap A^{s+1} \cap K^{s+1}=0$.

Proof. Assume $\sigma \in \mathscr{Y}$ and $s+1$ is σ-active. An inspection of the construction yields $1 \mathbf{- 3}$. 4 follows from 3 and Proposition 4.4.

Proposition 13. For every $\sigma, \tau \in \mathscr{Y}$, if $s+1$ is σ-active and $\tau>\sigma$ then T is $0 F F$ at stage $s+1$.

Proof. Assume $\sigma, \tau \in \mathscr{Y}, \mathrm{s}+1$ is σ-active and $\tau>\sigma$. Then $s \equiv 2 \bmod 3$ (Proposition 12.1). If Case 1 holds at stage $s+1$ then $\sigma \subseteq \sigma(s-2, s-2)$, so τ is OFF at stage $s+1$ (Proposition 7). If Case 2 holds then $\sigma \subseteq \sigma^{\prime} ;$ since $\tau>\sigma, \tau>\sigma^{\prime}$, therefore τ is turned $O F F$ at stage $s+1$.

Proposition 14. For every $\sigma \in \mathscr{Y}$, if $\sigma \subseteq \sigma(3 s, 3 s)$ and σ is ON at stage $3 s+3$ then
.1. $3 s+3$ is σ-active,
.2. $E(\sigma, 3 s+2) \subseteq w_{e(\sigma)}^{3 s+3}(r(\sigma, X, 3 s+3))$, where X is the set marked at stage $3 s+3$.

Proof. Assume $\sigma \in \mathscr{Y}, \sigma \subseteq \sigma(3 s, 3 s)$ and σ is $O N$ at stage $3 s+3$. Then σ is $O N$ at stages $3 s+1$ and $3 s+2$ (Proposition 5) and $E(\sigma, 3 s+2)=E(\sigma, 3 s) \subseteq w_{e(\sigma)}^{3 s+2}\left(A^{3 s+2}\right) \cap w_{e(\sigma)}^{3 s+2}\left(B^{3 s+2}\right) \quad$ (Propositions 10.2 and 10.3).

Suppose Case 1 holds at stage $3 s+3$. Then 1 clearly holds. If Subcase 1.1 holds then A is marked at stage $3 s+3$ and $A^{3 s+3}=A^{3 s+2}$, so $E(\sigma, 3 s+2) \subseteq w_{e(\sigma)}^{3 s+3}\left(A^{3 s+3}\right)$. Hence $E(\sigma, 3 s+2) \subseteq w_{e(\sigma)}^{3 s+3}(r(\sigma, A, 3 s+3))$ by
definition of $r(\sigma, A, 3 s+3)$. If Subcase 1.2 holds we get a similar result.

Suppose Case 2 holds at stage $3 s+3$. Then $r\left(\sigma^{\prime}, A, 3 s+2\right) \neq 0$ or $r\left(\sigma^{\prime}, B, 3 s+2\right) \neq 0$, by definition of σ^{\prime}, so σ^{\prime} must be ON at stage $3 \mathrm{~s}+2$. Since $\sigma \subseteq \sigma(3 \mathrm{~s}, 3 \mathrm{~s}), \sigma^{\prime} \nsubseteq \sigma$ and $\sigma^{\prime}>\sigma$ (Propositions 10.1 and 7). $\sigma>\sigma^{\prime}$ since σ is not turned $0 F F$ at stage $3 s+3$. Therefore $\sigma \subset \sigma^{\prime}$. So 1 clearly holds. If Subcase 2.1 holds then A is marked at stage $3 \mathrm{~s}+3$ and $\mathrm{A}^{3 \mathrm{~s}+2} \subseteq \mathrm{~A}^{3 \mathrm{~s}+3}$, so $E(\sigma, 3 \mathrm{~s}+2) \subseteq w_{e(\sigma)}^{3 \mathrm{~s}+3}(r(\sigma, A, 3 \mathrm{~s}+3))$. If Subcase 2.2 holds we get a similar result.

Corollary 15. For every $\sigma \in \mathscr{Y}$, if $r(\sigma, A, s) \neq 0$ or $r(\sigma, B, s) \neq 0$ then $O(\sigma, s)$ contains a σ-active stage.

Proof. Assume $r(\sigma, A, s) \neq 0$ or $r(\sigma, B, s) \neq 0$ for some $\sigma \in \varphi$. Then σ must be $O N$ at stage s. Hence $O(\sigma, s) \neq \theta$, so $o(\sigma, s) \downarrow$. Now $s \geq o(\sigma, s)+3$ (Propositions 11 and 10.1), therefore $o(\sigma, s)+3 \in O(\sigma, s)$ is σ-active (Propositions 11 and 14.1).

Proposition 16. For every $\sigma \in \mathscr{Y}$, if σ is $O N$ at stage $s+1$ then
.1. $r(\sigma, X, s+1) \subseteq X^{s+1}$ for $X=A, B$,
2. $r(\sigma, A, s+1) \cap B^{s+1} \cap K^{s+1}=r(\sigma, B, s+1) \cap A^{s+1} \cap K^{s+1}=0$,
.3. if $\neg[s \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(s, s)$ or
$s \equiv 1 \bmod 3$ and $\sigma \subseteq \sigma(s-1, s-1)]$ then
.1. $a(\sigma, s+1)$ is a σ-active stage in $O(\sigma, s+1)$,
.2. $r(\sigma, X, s+1)=r(\sigma, X, a(\sigma, s+1))$ for $X=A, B$,
.3. $r(\sigma, A, s+1) \cap B^{s+1}=r(\sigma, A, s+1) \cap B^{\alpha(\sigma, s+1)}$ and $r(\sigma, B, s+1) \cap A^{s+1}=r(\sigma, B, s+1) \cap A^{\alpha(\sigma, s+1)}$,
.4. $E(\sigma, s) \subseteq W_{e(\sigma)}^{s+1}(r(\sigma, X, s+1))$, where X is the set marked at stage $a(\sigma, s+1)$.

Proof. Fix $\sigma \in \mathscr{\varphi}$. The proof is by induction on s. Assume $1-3$ hold for every $s<t$. We show that $1-3$ hold for $s=t$. Assume σ is $O N$ at stage $t+1$. If $|O(\sigma, t+1)| \leq 3$ then $1-3$ follow from Propositions 11, 10.1, 14 and 12. Suppose $|O(\sigma, t+1)|>3$.

If $t \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(t, t), \quad$ or $t \equiv 1 \bmod 3$ and $\sigma \subseteq \sigma(t-1, t-1)$ then 1 and 2 follow from Proposition 10.1 and 3 holds vacuously. So assume that $-[t \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(t, t)$ or $t \equiv 1 \bmod 3$ and $\sigma \subseteq \sigma(t-1, t-1)]$. If $t \equiv 2 \bmod 3$ and $\sigma \subseteq \sigma(t-2, t-2)$ then 1-3 follow from Propositions 14 and 12, so assume that $\neg[t \equiv 2 \bmod 3$ and $\sigma \subseteq \sigma(t-2, t-2)]$.

Then by the induction hypothesis the following hold:
$1^{\prime} . \quad r(\sigma, X, t) \subseteq X^{t}$ for $X=A, B$.
2'. $r(\sigma, A, t) \cap B^{t} \cap K^{t}=r(\sigma, B, t) \cap A^{t} \cap K^{t}=0$.
3^{\prime}. .1. $a(\sigma, t)$ is a σ-active stage in $O(\sigma, t)$.
.2. $r(\sigma, X, t)=r(\sigma, X, a(\sigma, t))$ for $X=A, B$.
.3. $r(\sigma, A, t) \cap B^{t}=r(\sigma, A, t) \cap B^{a(\sigma, t)}$ and $r(\sigma, B, t) \cap A^{t}=r(\sigma, B, t) \cap A^{a(\sigma, t)}$.
.4. $E(\sigma, t-1) \subseteq W_{e(\sigma)}^{t}(r(\sigma, X, t))$, where X is the set marked at stage $a(\sigma, t)$.
$O(\sigma, t+1)=O(\sigma, t) \cup\{t+1\}$ and $3^{\prime} .1$ imply 3.1. Since $\sigma \nsubseteq \sigma(t, t)$, $E(\sigma, t)=E(\sigma, t-1)$.

Case 1. $\quad t \equiv 0 \bmod 3$.
Then $X^{t+1}=X^{t}$ for $X=A, B \quad$ (Proposition 4.1). Since $\sigma \nsubseteq \sigma(t, t)$ and σ is not turned $O F F$ at stage $t+1, \quad r(\sigma, X, t+1)=$ $r(\sigma, X, t)$ for $X=A, B$. So 1 follows from $1^{\prime} .2$ follows from 1 and Proposition 4.4. Since $t \not \equiv 2$ mod 3 , $t+1$ cannot be σ-active, so $a(\sigma, t+1)=a(\sigma, t)$. 3.2-3.4 follow from $3^{\prime} .2-3^{\prime} .4$.

Case 2. $\quad t \equiv 1 \bmod 3$.
Since σ is not turned $O F F$ at stage $t+1, \quad r(\sigma, X, t+1)=r(\sigma, X, t)$ for $X=A, B$. So 1 follows from 1' and Proposition 4.1. As in Case 1, $a(\sigma, t+1)=a(\sigma, t)$. So 3.2 and 3.4 follow from 3'. 2 and 3'.4.

Now $K^{t+1}=K^{t}$ by the choice of enumeration of K. If $p^{*} \uparrow$ at stage $t+1$ then $X^{t+1}=X^{t}$ for $X=A, B$, so 2 and 3.3 follow from 2^{\prime} and $3^{\prime} \cdot 3$.

Otherwise $e(\sigma) \leq p^{*}$, since σ is not turned $O F F$ at stage $t+1$. Assume Case 1 holds at stage $t+1$. Then $A^{t+1}=A^{t} \cup D$ and $B^{t+1}=B^{t}$ where D satisfies 1.1-1.4 (at stage $t+1$). Now $r(\sigma, B, t+1) \cap A^{t+1}=$ $\left(r(\sigma, B, t) \cap A^{t}\right) \cup(r(\sigma, B, t) \cap D)=r(\sigma, B, t) \cap A^{t}$ by 1.3. So 3.3 follows from $3^{\prime} .3$. $r(\sigma, A, t+1) \cap B^{t+1} \cap K^{t+1}=r(\sigma, A, t) \cap B^{t} \cap K^{t}$ and $r(\sigma, B, t+1) \cap A^{t+1} \cap K^{t+1}=r(\sigma, B, t) \cap A^{t} \cap K^{t} \quad$ from above. So 2 follows from 2'. If Case 2 holds we get a similar result.

Case 3. $\quad t \equiv 2 \bmod 3$.
Since σ is not turned $0 F F$ at stage $t+1, \quad e(\sigma) \leq p^{\prime \prime} \leq p^{\prime}$.
If we can show that 1 holds then 2 follows from Proposition 4.4.
Assume Case 1 holds at stage $t+1$. Since $\sigma \llbracket \sigma(t-2, t-2), \quad t+1$ cannot be σ-active, so $a(\sigma, t+1)=a(\sigma, t)$. Since σ is not turned OFF at stage $t+1, \quad r(\sigma, X, t+1)=r(\sigma, X, t)$ for $X=A, B . \quad$ So 3.2 and 3.4 follow from $3^{\prime} .2$ and $3^{\prime} .4$. $e(\sigma) \leq p^{\prime}$ implies $r(\sigma, A, t) \cap F^{t}=$ $r(\sigma, B, t) \cap F^{t}=0$. So 1 and 3.3 follow from the definition of A^{s+1} and $B^{s+1}, 1^{\prime}$ and $3^{\prime} \cdot 3$.

Assume Case 2 holds at stage $t+1$. Then $r\left(\sigma^{\prime}, A, t\right) \neq \theta$ or $r\left(\sigma^{\prime}, B, t\right) \neq 0$, so $a\left(\sigma^{\prime}, t\right)$ is a σ^{\prime}-active stage in $O\left(\sigma^{\prime}, t\right)$ (Corollary 15). Since σ is not turned $O F F$ at stage $t+1, \sigma \geqslant \sigma^{\prime}$, so $\sigma \subseteq \sigma^{\prime}, \sigma<\sigma^{\prime}$ or $\sigma^{\prime} \subset \sigma$.

Assume $\sigma \subseteq \sigma^{\prime}$. Then $t+1$ is σ-active and $1,3.2$ and 3.3
clearly hold. Now $O\left(\sigma^{\prime}, t\right) \subseteq O(\sigma, t) \quad$ (Proposition 8), so $\alpha\left(\sigma^{\prime}, t\right) \in O(\sigma, t)$ and $\alpha\left(\sigma^{\prime}, t\right)$ is σ-active (Corollary 9).

Assume Subcase 2.1 holds at stage $t+1$. Now either $E(\sigma, t)=$ $E\left(\sigma, a\left(\sigma^{\prime}, t\right)-1\right)$ or $a\left(\sigma^{\prime}, t\right) \leq c(\sigma, t) \leq t$. In the former case $E(\sigma, t) \subseteq$ $W_{e(\sigma)}^{a\left(\sigma^{\prime}, t\right)}\left(r\left(\sigma, A, a\left(\sigma^{\prime}, t\right)\right)\right)$ and $r\left(\sigma, A, \alpha\left(\sigma^{\prime}, t\right)\right) \subseteq A^{\alpha\left(\sigma^{\prime}, t\right)}$, by the induction hypothesis; $A^{a\left(\sigma^{\prime}, t\right)} \subseteq A^{t+1}$, by definition of A^{t+1}, so $E(\sigma, t) \subseteq W_{e(\sigma)}^{t+1}\left(A^{t+1}\right)$, hence $E(\sigma, t) \subseteq W_{e(\sigma)}^{t+1}(r(\sigma, A, t+1))$ by definition of $r(\sigma, A, t+1)$. In the latter case $E(\sigma, t) \subseteq W_{e(\sigma)}^{c(\sigma, t)}\left(A^{c(\sigma, t)}\right) ;$ since $a\left(\sigma^{\prime}, t\right) \leq c(\sigma, t) \leq t, A^{c(\sigma, t)} \subseteq A^{t+1}$, by definition of A^{t+1}, and the rest goes as before. If Subcase 2.2 holds we get a similar result.

Now assume that $\sigma<\sigma^{\prime}$ or $\sigma^{\prime} \subset \sigma$. Then $t+1$ is not σ-active, so $a(\sigma, t+1)=a(\sigma, t)$. Since σ is not turned OFF at stage $t+1$. $r(\sigma, X, t+1)=r(\sigma, X, t)$ for $X=A, B$. So 3.2 and 3.4 follow from $3^{\prime} .2$ and 3'.4. $a(\sigma, t) \leq a\left(\sigma^{\prime}, t\right) \quad$ (Proposition 13 and Corollary 9), and $a\left(\sigma^{\prime}, t\right) \in O(\sigma, t)$, since $a(\sigma, t) \in O(\sigma, t)$.

Assume Subcase 2.1 holds at stage $t+1$. For every u such that $a\left(\sigma^{\prime}, t\right) \leq u+1 \leq t, \quad \neg u \equiv 0 \bmod 3$ and $\sigma \subseteq \sigma(u, u) \quad$ or $u \equiv 1 \bmod 3$ and $\sigma \subseteq \sigma(u-1, u-1)]$. Otherwise $u+3$ or $u+2$ would be a σ-active stage less than or equal to $t+1$ (Proposition 14) and no such stage exists. So by the induction hypothesis, for all such $u, \quad r(\sigma, X, u+1)=$ $r(\sigma, X, a(\sigma, u+1))=r(\sigma, X, a(\sigma, t))=r(\sigma, X, t)$ for $X=A, B$, $r(\sigma, A, u+1) \cap B^{u+1}=r(\sigma, A, u+1) \cap B^{a(\sigma, u+1)}=r(\sigma, A, t) \cap B^{a(\sigma, t)}=$ $r(\sigma, A, t) \cap B^{t}$ and $r(\sigma, B, u+1) \cap A^{u+1}=r(\sigma, B, u+1) \cap A^{a(\sigma, u+1)}=$ $r(\sigma, B, t) \cap A^{\alpha(\sigma, t)}=r(\sigma, B, t) \cap A^{t}$.

Then $r(\sigma, B, t+1) \cap A^{t+1}=r(\sigma, B, t) \cap\left[\begin{array}{c}U\left(\sigma^{\prime}, t\right) \leq u \leq t\end{array} A^{u}\right]=$ $\underset{a\left(\sigma^{\prime}, t\right) \leq u \leq t}{U}\left(r(\sigma, B, t) \cap A^{u}\right)=\underset{a\left(\sigma^{\prime}, t\right) \leq u \leq t}{U}\left(r(\sigma, B, u) \cap A^{u}\right)=$ $r(\sigma, B, t) \cap A^{t}$. Note that $r(\sigma, A, t) \cap F^{t}=r(\sigma, B, t) \cap F^{t}=0$ by the choice of σ^{\prime}. So $r(\sigma, A, t+1) \cap B^{t+1}=r(\sigma, A, t) \cap\left[B^{t}-\left(A^{t+1} \cap K^{t+1}\right)\right]$ $=r(\sigma, A, t) \cap B^{t}$ since $r(\sigma, A, t) \cap B^{t} \cap A^{t+1} \cap K^{t+1} \subseteq$ $r(\sigma, A, t) \cap B^{t} \cap K^{t+1}=r(\sigma, A, t) \cap F^{t}=0$ by 1^{\prime}. So 3.3 follows from 3'.3.

We have already noted that $r(\sigma, X, t+1)=r(\sigma, X, t)$ for $X=A, B$. Now $A^{t} \subseteq A^{t+1}$ from stage $t+1$ and from above, $r(\sigma, B, t) \cap\left(B^{t}-B^{t+1}\right)=r(\sigma, B, t) \cap\left(B^{t} \cap A^{t+1} \cap K^{t+1}\right)=$ $\left(r(\sigma, B, t+1) \cap A^{t+1}\right) \cap B^{t} \cap K^{t+1}=\left(r(\sigma, B, t) \cap A^{t}\right) \cap B^{t} \cap K^{t+1}=$ $r(\sigma, B, t) \cap F^{t}=0$. So 1 follows from 1^{\prime}. If Subcase 2.2 holds we get a similar result.

Proposition 17. For every $\sigma \in \mathscr{\varphi}$, if σ is $0 N$ at stage $s+1$ then for every $p<e(\sigma), \quad R(p, s+1)=R(p, o(\sigma, s+1)), A^{s+1} R R(p, s+1)=$ $A^{o(\sigma, s+1)} \uparrow R(p, s+1)$ and $B^{s+1} \uparrow R(p, s+1)=B^{o(\sigma, s+1)} \uparrow R(p, s+1)$.

Proof. Fix $\sigma \in \mathscr{P}$ and $p<e(\sigma)$. Let $p=2\langle k, e\rangle$ or $p=$ $2\langle k, e\rangle+1$. The proof is by induction on s. Assume σ is $O N$ at stage $s+1$. If $|O(\sigma, s+1)|=1 \quad$ then $s=o(\sigma, s+1) \equiv 0 \bmod 3($ Proposition 11) and the result follows from Proposition 4.1 and the fact that $W_{e}^{s+1}=$ W_{e}^{s}. So assume that $|O(\sigma, \mathrm{~s}+1)|>1, \quad R(p, \mathrm{~s})=R(p, o(\sigma, \mathrm{~s})), \quad A^{\mathrm{s}} \boldsymbol{r} R(p, \mathrm{~s})=$ $\mathrm{A}^{o(\sigma, \mathrm{~s})} \upharpoonright R(p, \mathrm{~s})$ and $B^{\mathrm{s}} \upharpoonright R(p, \mathrm{~s})=\mathrm{B}^{o(\sigma, \mathrm{~s})} \upharpoonright R(p, \mathrm{~s})$.

Now $o(\sigma, s+1)=o(\sigma, s)$, so by the induction hypothesis it suffices to show that $R(p, s+1)=R(p, s)$ and $X^{s+1} r R(p, s)=X^{s} r R(p, s)$ for $X=\mathbf{A}, B$.

Case 1. $s \equiv 0 \bmod 3$.

$$
W_{e}^{s+1}=W_{e}^{s} \text { and Proposition } 4.1 \text { imply the result. }
$$

Case 2. $s \equiv 1 \bmod 3$.
If $p^{*} \uparrow$ at stage $s+1$ then the situation is similar to that in Case 1.

Otherwise $p<e(\sigma) \leq p^{*}$, since σ is not turned OFF at stage $s+1$. Assume Case 1 holds. Then $A^{s+1} r R(p, s)=A^{s} r R(p, s)$ (by 1.2 at stage $s+1)$ and $B^{s+1}=B^{s} . \quad R(p, s+1)=R(p, s)$ since $W_{e}^{s+1}=W_{e}^{s}$. If Case 2 holds we get a similar result.

Case 3. $s \equiv 2 \bmod 3$.
Since σ is not turned $0 F F$ at stage $s+1, \quad e(\sigma) \leq p^{\prime \prime}$ and the result holds by definition of $p^{\prime \prime}$.

Proposition 18. For every p,
.1. if $\sigma_{p+1} \in \mathscr{Y}$ then
$\exists u(\forall t>u)(\forall s>t)\left[E\left(\sigma_{p+1}, t\right) \subseteq W_{p}^{s}\left(A^{s}\right)\right.$ or $\left.E\left(\sigma_{p+1}, t\right) \subseteq w_{p}^{s}\left(B^{s}\right)\right]$,
.2. if $\sigma_{p+1} \notin \mathscr{Y}$ then
$\left(\exists^{\langle\infty} \sigma \in \mathscr{\sigma}\right)\left[\sigma_{p} \hat{(1)} \subseteq \sigma\right.$ and $\exists s[r(\sigma, A, s) \neq 0$ or $\left.r(\sigma, B, s) \neq 0]\right]$,
.3. if $\sigma_{p+1} \notin \mathscr{S}$ then for every $\sigma \in \mathscr{S}$ such that $\sigma_{p}(1) \subseteq \sigma$
.1. $\lim r(\sigma, X, s)$ exists for $X=A, B$, s
2. $\lim r(\sigma, B, s) \cap A^{s}$ and $\lim r(\sigma, A, s) \cap B^{s}$ exist, $\mathbf{s} s$
.3. $\lim r(\sigma, B, s) \cap A^{s}$ and $\lim r(\sigma, A, s) \cap B^{s}$ are disjoint from $\mathbf{s} s$ K,
.4. if $p=2\langle k, e\rangle$ then $k \notin W_{e}^{S}\left(A^{s}\right)$ for sufficiently large s or $\lim _{s} u^{\prime}\left(\mathbb{W}_{e}^{s}, A^{s}, k\right)$ exists and
if $p=2\langle k, e\rangle+1$ then $k \mathbb{E} W_{e}^{s}\left(B^{s}\right)$ for sufficiently large s or $\lim _{s} u^{\prime}\left(W_{e}^{s}, B^{s}, k\right)$ exists,
.5. .1. $\underset{s}{\lim R(p, s)}$ exists,
2. $\underset{s}{\lim } X^{s} \upharpoonright R(p, s)$ exists for $X=A, B$,
.3. $(A \cap B \cap K) r(\lim R(p, s))=0$.

Proof. The proof is by induction on p. Assume $1-5$ hold for every $p<q$. We show that $1-5$ hold for $p=q$. By the induction hypothesis we can choose a stage $w>q$ such that for every $q^{\prime}<q$ the following
hold:

3'. If $\sigma_{q^{\prime}+1} £ \mathscr{\varphi}$ then for every $\sigma \in \mathscr{\varphi}$ such that $\sigma_{q^{\prime}}{ }^{\wedge}(1) \subseteq \sigma$, $r(\sigma, A, s), \quad r(\sigma, B, s), \quad r(\sigma, B, s) \cap A^{s}$ and $r(\sigma, A, s) \cap B^{s}$ have reached a limit by stage w and the limits of the latter two are disjoint from K.
4^{\prime}. If $q^{\prime}=2\langle k, e\rangle$ then $u^{\prime}\left(W_{e}^{s}, A^{s}, k\right)$ has reached a limit by stage w or for every $s>w, k \notin W_{e}^{s}\left(A^{s}\right)$ and
if $q^{\prime}=2\langle k, e\rangle+1$ then $u^{\prime}\left(W_{e}^{s}, B^{s}, k\right)$ has reached a limit by stage w or for every $s>w, k \notin W_{e}^{S}\left(B^{s}\right)$.
5'. $R\left(q^{\prime}, s\right), A^{s} \upharpoonright R\left(q^{\prime}, s\right)$ and $B^{s} \upharpoonright R\left(q^{\prime}, s\right)$ have reached a limit by stage w and $(A \cap B \cap K) r\left(\lim R\left(q^{\prime}, s\right)\right)=0$.

1. First assume that $\sigma_{q+1} \in \mathscr{\varphi}$. Choose a stage $v>w$ such that σ_{q+1} is $O N$ at stage v and for every $t \geq v, \sigma(t, t) \downarrow \sigma_{q+1}$.

Claim 1. For every $t \geq v, \sigma_{q+1}$ is $O N$ at stage t.

Proof. The proof is by induction on $t . \sigma_{q+1}$ is $O N$ at stage v. Towards a contradiction, suppose that σ_{q+1} is $O N$ at stage $t \geq v$ and $O F F$ at stage $t+1$. Note that $e\left(\sigma_{q+1}\right)=q$.

Case 1. $\quad t \equiv 0 \bmod 3$.
From the construction $\sigma(t, t)<\sigma_{q+1}$ which contradicts the choice of v.

Case 2. $\quad \mathrm{t} \equiv 1 \bmod 3$.
Then $p^{*} \downarrow<q$ at stage $t+1$. This contradicts 4^{\prime} for $q^{\prime}=p^{*}$. by the action taken at stage $t+1$.

Case 3. $\quad t \equiv 2 \bmod 3$.
Then at stage $t+1, p^{\prime}<q, \quad p^{\prime \prime}<q \leq p^{\prime}$, or Case 2 holds and $\sigma^{\prime}<\sigma_{q+1}$. Suppose $p^{\prime}<q$. Then $p^{\prime}<q<w<t$. But this contradicts 5^{\prime} for $q^{\prime}=p^{\prime}$, by definition of p^{\prime}. By the same argument $\neg\left[p^{\prime \prime}<q \leq p^{\prime}\right]$. So Case 2 must hold with $\sigma^{\prime}<\sigma_{q+1}$. Now $\sigma_{q+1}=\sigma_{q} \hat{(1)}$ since $\sigma_{q+1} \in \mathscr{S}$. Therefore $\sigma^{\prime}<\sigma_{q+1}$ implies $\sigma^{\prime}<\sigma_{q}$. Hence for some $q^{\prime}<q, \quad \sigma_{q^{\prime}+1} \nsubseteq \mathscr{Y}$ and $\sigma_{q^{\prime}}{ }^{\wedge}(1) \subseteq \sigma^{\prime}$. But $r\left(\sigma^{\prime}, \mathrm{A}, \mathrm{s}\right) \cap F^{\mathbf{s}} \neq 0$ or $r\left(\sigma^{\prime}, B, \mathrm{~s}\right) \cap F^{\mathbf{s}} \neq 0, \quad$ which contradicts 3^{\prime}.

Claim 2. $(\forall t \geq v)(\forall s \geq t)\left[E\left(\sigma_{q+1}, t\right) \subseteq E\left(\sigma_{q+1}, s\right)\right]$.

Proof. Fix $t \geq u$. The proof is by induction on $s \geq t$. For $s=t$ the result is clear. Assume $E\left(\sigma_{q+1}, t\right) \subseteq E\left(\sigma_{q+1}, s\right)$ for some $s \geq t$. By the induction hypothesis it suffices to show that $E\left(\sigma_{q+1}, s\right) \subseteq E\left(\sigma_{q+1}, s+1\right)$. If $s+1 \notin C_{\sigma_{q+1}}$ then $E\left(\sigma_{q+1}, s+1\right)=$ $E\left(\sigma_{q+1}, s\right)$. So assume that $s+1 \in C_{\sigma_{q+1}}$. Let $s^{\prime}=c\left(\sigma_{q+1}, s\right)$. Then $L(q, s+1)>L\left(q, s^{\prime}\right), \quad E\left(\sigma_{q+1}, s\right)=W_{q}^{s^{\prime}}\left(A^{s^{\prime}}\right) \upharpoonright L\left(q, s^{\prime}\right)$ and $E\left(\sigma_{q+1}, s^{+1}\right)=$ $W_{q}^{s+1}\left(A^{s+1}\right) \upharpoonright L(q, s+1)=W_{q}^{s+1}\left(B^{s+1}\right) \upharpoonright L(q, s+1)$. Now $\quad E\left(\sigma_{q+1}, s\right) \subseteq W_{q}^{s+1}\left(A^{s+1}\right)$ or $E\left(\sigma_{q+1}, s\right) \subseteq W_{q}^{s+1}\left(B^{s+1}\right) \quad$ (Propositions 16.3.4 and 16.1). So $E\left(\sigma_{q+1}, s\right) \subseteq E\left(\sigma_{q+1}, s+1\right)$.

1 follows from Claims 1 and 2 and Propositions 10.2, 10.3, 16.3.4 and 16.1 .

2-3. Now assume that $\sigma_{q+1} \notin \mathscr{P}$. Then we can choose a stage $v>w$ such that for every $s \geq v$, if $s \equiv 0 \bmod 3$ then $\sigma_{q}{ }_{q}(1) \nsubseteq \sigma(s, s)$. By Propositions 6 and 5 no σ with $\operatorname{lh}(\sigma)>v$ and $\sigma_{q}(1) \subseteq \sigma$ is ever turned $O N$, whence for all such $\sigma, \quad r(\sigma, A, s)=r(\sigma, B, s)=0$ for every s. Hence 2 holds.

Also note that if $\sigma \in \mathscr{Y}$ and $\sigma_{q} \hat{(1) \subseteq \sigma}$ then the status of σ reaches a limit since if σ is turned OFF after stage v then σ remains $O F F$. So in addition we may assume that for every $\sigma \in \mathscr{\varphi}$ with $\sigma_{q} \hat{(1) \subseteq \sigma}$ the status of σ has reached a limit by stage v.

If for every $\sigma \in \mathscr{Y}$ such that $\sigma_{q} \hat{(1) \subseteq \sigma}$ and σ is $O N$ at stage v there are only finitely many σ-active stages then $\lim a(\sigma, s)$ exists and 3 follows from Propositions 16.3.2, 16.3.3 and s 16.2 .

Suppose not. Choose $\sigma \in \mathscr{\varphi}$ first \leq-minimal and then of greatest length such that $\sigma_{q} \hat{(1) \subseteq \sigma,} \boldsymbol{\sigma}$ is $O N$ at stage v and there are infinitely many σ-active stages. Choose $u>v$ such that $u+1$ is σ-active and for every $t>u$ and every $\tau \supset \sigma, t$ is not τ-active. Note that if $\sigma^{\prime} \downarrow$ at stage $t>u$ and $\sigma \subseteq \sigma^{\prime}$, then t is σ^{\prime}-active since σ^{\prime} is $O N$ at stage t, by the choice of v.

Remark 1. If $t>u$ and t is σ-active then Case 2 must hold
at stage t since $\sigma \nsubseteq \sigma(t-3, t-3)$; also $\sigma^{\prime}=\sigma$, by the choice of u.

Assume that A is marked at stage $u+1$.

Claim 3. For every $t \geq u$,
.1. $r(\sigma, X, a(\sigma, t+1))=r(\sigma, X, u+1)$ for $X=A, B$,
.2. A is marked at stage $a(\sigma, t+1)$.

Proof. The proof is by induction on t. The result is clear for $t=u$. An inspection of the construction shows that since A is marked at stage $u+1, r(\sigma, B, u+1)=0$. Assume that for some $t>u$ the following hold:
$1^{\prime} . \quad r(\sigma, X, a(\sigma, t))=r(\sigma, X, u+1)$ for $X=A, B$.
2^{\prime}. A is marked at stage $a(\sigma, t)$.

If $t+1$ is not σ-active then $a(\sigma, t+1)=\alpha(\sigma, t)$ and $1-2$ follow from $1^{\prime}-2^{\prime}$.

So assume that $t+1$ is σ-active. 2 follows from Remark 1, an inspection of the construction and 2^{\prime}. Since $a(\sigma, t) \geq u+1, E(\sigma, t)=$ $E(\sigma, a(\sigma, t)-1)$ by the choice of v. Now $E(\sigma, a(\sigma, t)-1) \subseteq$ $W_{e(\sigma)}^{a(\sigma, t)}(r(\sigma, A, a(\sigma, t))) \quad$ (Proposition 16.3.4). $\quad r(\sigma, A, a(\sigma, t))=d_{f n}$ $U\left(\mathbb{W}_{e(\sigma)}, \mathrm{A}, E(\sigma, a(\sigma, t)-1), a(\sigma, t)\right)$ and $r\left(\sigma, A, t^{\prime}\right)=r(\sigma, A, a(\sigma, t)) \subseteq A^{t^{\prime}}$ for every t^{\prime} such that $a(\sigma, t) \leq t^{\prime} \leq t \quad$ (Propositions 16.3.2 and 16.1). From the construction $A^{t} \subseteq A^{t+1}$, hence $r(\sigma, A, t+1)={ }_{d f n}$
$U\left(W_{e(\sigma)}, A, E(\sigma, t), t+1\right)=r(\sigma, A, a(\sigma, t))$, while $r(\sigma, B, t+1)=0 . \quad 1$ follows from 1^{\prime}.

So for every $t \geq u, r(\sigma, X, t+1)=r(\sigma, X, u+1)$ for $X=A, B$ (Claim 3.1 and Proposition 16.3.2). Hence we can choose $u^{\prime}>u$ such that $u^{\prime+1}$ is σ-active, $r\left(\sigma, A, u^{\prime}+1\right) \cap K^{u^{\prime}+1}=r\left(\sigma, A, u^{\prime}+1\right) \cap K$ and $r\left(\sigma, A, u^{\prime}+1\right) \cap B^{u^{\prime}+1} \cap K^{u^{\prime}+1}=0 \quad$ (Proposition 16.2).

Claim 4. For every $t \geq u^{\prime}, \quad \alpha(\sigma, t+1)=u^{\prime}+1$.

Proof. The proof is by induction on t. The result is clear for $t=u^{\prime}$. Assume that $a(\sigma, t)=u^{\prime}+1$ for some $t>u^{\prime}$.

If $t+1$ is not σ-active then $\alpha(\sigma, t+1)=\alpha(\sigma, t)=u^{\prime}+1$. So assume that $t+1$ is σ-active. Then by Remark $1, \sigma^{\prime}=\sigma$ so $r(\sigma, A, t) \cap F^{t} \neq \theta$ or $r(\sigma, B, t) \cap F^{t} \neq \emptyset$. We have shown that $r(\sigma, B, t)=0$, and $r(\sigma, A, t) \cap F^{t}=r(\sigma, A, t) \cap A^{t} \cap B^{t} \cap K^{t+1} \subseteq$ $r(\sigma, A, t) \cap B^{t} \cap K^{t+1}=r\left(\sigma, A, u^{\prime}+1\right) \cap B^{u^{\prime}+1} \cap K^{t+1}$ by the induction hypothesis and Propositions 16.3.2 and 16.3.3. So $r(\sigma, A, t) \cap F^{t}=0$ by the choice of u^{\prime}, which is a contradiction. Therefore $t+1$ is not σ-active.

Claim 4 contradicts the assumption that there are infinitely many σ-active stages. If B is marked at stage $u+1$ we get a similar result. So for every $\sigma \in \mathscr{\varphi}$ such that $\sigma_{q}(1) \subseteq \sigma$ and σ is $O N$ at stage u there are only finitely many σ-active stages. So 3 holds.

4-5. Assume $q=2\langle k, e\rangle$. Choose a stage $v\rangle w$ such that for every $\sigma \in \mathscr{S}$ such that $\sigma<\sigma_{q+1}, r(\sigma, A, s), r(\sigma, B, s), r(\sigma, B, s) \cap A^{s}$ and $r(\sigma, A, s) \cap B^{s}$ have reached a limit by stage v and the limits of the latter two are disjoint from K. Suppose there exists D^{\prime} such that

6'. $k \in W_{e}\left(D^{\prime}\right)$,
$7^{\prime} .(\forall \sigma \in \mathscr{S})\left[\sigma<\sigma_{q+1} \Rightarrow D^{\prime} \cap r(\sigma, B, v) \subseteq A^{v} \cap r(\sigma, B, v)\right]$,
8'. $^{\prime}\left(\forall q^{\prime}<q\right)\left[D^{\prime} r R\left(q^{\prime}, v\right) \subseteq A^{v} r R\left(q^{\prime}, v\right)\right]$.

Choose such a D^{\prime} with least canonical index and a stage $u>v$ such that $u \equiv 1 \bmod 3, \quad \sigma_{q+1} \subseteq \sigma(u-1, u-1), \quad k \in W_{e}^{u+1}\left(D^{\prime}\right) \quad$ and $K^{U} r\left(\max \left\{\left(\max D^{\prime}\right)+1, q+1\right\}\right)=K r\left(\max \left\{\left(\max D^{\prime}\right)+1, q+1\right\}\right)$.

Remark 2. For every $t>u$, if $D^{\prime} \subseteq A^{t}$ then $u\left(W_{e}^{t}, A^{t}, k\right) \downarrow=D^{\prime}$. This follows from the definition of D^{\prime} and the choice of w, v and u.

Now for every $\sigma \in \mathscr{\varphi}_{\leq q}$ if $\sigma<\sigma_{q+1}$ or $\sigma \subseteq \sigma_{q+1}$ then $r(\sigma, X, u)=0$ for $X=A, B \quad$ (Propositions 7 and 10.1). Examining stage $u+1$, we see that $u^{\prime}\left(W_{e}^{u+1}, A^{u+1}, k\right) \downarrow=D^{\prime}$.

Claim 5. $u^{\prime}\left(W_{e}^{u+2}, A^{u+2}, k\right)=D^{\prime}$.

Proof. Since $D^{\prime} \subseteq A^{u+1} r R(q, u+1)$, by Remark 2 it suffices to show that $A^{u+1} r R(q, u+1) \subseteq A^{u+2}$. $p^{\prime} \geq q$ at stage $u+2$ by the choice of w.

If Case 1 holds at stage $u+2$ and $p^{\prime}=q$ then $A^{u+2}=A^{u+1} ;$ if $p^{\prime}>q$ then $F^{u+1} \upharpoonright R(q, u+1)=0$, so $A^{u+1} \upharpoonright R(q, u+1) \subseteq A^{u+2}$, by definition of A^{u+2}.

Suppose Case 2 holds at stage $u+2$. If Subcase 2.1 holds at stage $u+2$ then clearly $A^{u+1} \subseteq A^{u+2}$.

So assume that Subcase 2.2 holds. Since $r\left(\sigma^{\prime}, A, u+1\right) \cap F^{u+1} \neq 0$ or $\quad r\left(\sigma^{\prime}, B, u+1\right) \cap F^{u+1} \neq 0, \quad \sigma^{\prime} \ngtr \sigma(u-1, u-1) \quad$ (Proposition 7) and $\sigma^{\prime} \nsubseteq \sigma(u-1, u-1) \quad$ (Proposition 10.1). $\quad \sigma_{q+1} \subseteq \sigma(u-1, u-1) \quad$ implies $\sigma^{\prime}>\sigma_{q+1}$ and $\sigma^{\prime} \nsubseteq \sigma_{q+1} \cdot \sigma^{\prime} \ \sigma_{q+1}$ by the choice of v. Therefore $\sigma_{q+1} \subset \sigma^{\prime}$. Now $q<e\left(\sigma^{\prime}\right)$ and $a\left(\sigma^{\prime}, u+1\right)$ is a σ^{\prime}-active stage in $O\left(\sigma^{\prime}, u+1\right)$ (Corollary 15). Then $B^{u+2}=\underset{a\left(\sigma^{\prime}, u+1\right) \leq t \leq u+1}{U} B^{t} \quad$ and $A^{u+2}=A^{u+1}-\left(B^{u+2} \cap K^{u+2}\right) . \quad B^{u+2} \uparrow R(q, u+1)=$ $\underset{a\left(\sigma^{\prime}, u+1\right)<t \leq u+1}{U}\left(B^{t} \upharpoonright R(q, u+1)\right)=B^{u+1} \uparrow R(q, u+1)$ by Proposition 17: since $a\left(\sigma^{\prime}, u+1\right) \leq t \leq u+1$ $q<e\left(\sigma^{\prime}\right)$ and $o\left(\sigma^{\prime}, u+1\right)<\alpha\left(\sigma^{\prime}, u+1\right)$. So $\left(A^{u+1} \cap B^{u+2} \cap K^{u+2}\right) \vdash R(q, u+1)=\left(A^{u+1} \cap B^{u+1} \cap K^{u+2}\right) \upharpoonright R(q, u+1)=$ $F^{u+1} r R(q, u+1)=0$ since $q<e\left(\sigma^{\prime}\right) \leq p^{\prime}$. Therefore $A^{u+1} \upharpoonright R(q, u+1) \subseteq$ A^{u+2}.

Remark 3. Claim 5 implies that $R(q, u+2)=R(q, u+1)$. So $\left(A^{u+2} \cap B^{u+2} \cap K\right) \vdash R(q, u+2)=0$ by the choice of u and Proposition 4.4.

Claim 6. For every $t>u$,

1. $R(q, t+1)=R(q, u+2)$,
2. $A^{t+1} \uparrow R(q, t+1)=A^{u+2} \uparrow R(q, t+1)$ and $B^{t+1} \uparrow R(q, t+1)=B^{u+2} \uparrow R(q, t+1)$.

Proof. The proof is by induction on t. The result is clear for $t=u+1$. Assume that $1-2$ hold for every t such that $u<t<z$. We show that $1-2$ hold for $t=z$. $D^{\prime} \subseteq A^{z} \upharpoonright R(q, z)$ by the induction hypothesis. By Remark 2 and the induction hypothesis it suffices to show that

$$
\begin{equation*}
A^{z+1} \Gamma R(q, z)=A^{z} \upharpoonright R(q, z) \text { and } B^{z+1} r R(q, z)=B^{z} \upharpoonright R(q, z) \tag{t}
\end{equation*}
$$

Case $1 . \quad z \equiv 0 \bmod 3$.
This follows from Proposition 4.1.

Case 2. $z \equiv 1 \bmod 3$.
If $p^{*} \uparrow$ at stage $z+1$ then t is clear. Otherwise $p^{*}>q$ by the choice of w, u and D^{\prime}, so \dagger holds by the choice of D at stage $\quad z+1$.

Case 3. $\quad z \equiv 2 \bmod 3$.
$F^{z} R(q, z)=0$ by Remark 3 and the induction hypothesis. If Case 1 holds at stage $z+1$ then \dagger follows from the definition of A^{z+1} and $B^{z^{+!}}$.

So assume that Case 2 holds at stage $z+1$. Then
$r\left(\sigma^{\prime}, A, z\right) \cap F^{Z} \neq 0$ or $r\left(\sigma^{\prime}, B, z\right) \cap F^{Z} \neq 0$, so $a\left(\sigma^{\prime}, z\right)$ is a σ^{\prime}-active stage in $O\left(\sigma^{\prime}, z\right)$ (Corollary 15) and $\sigma^{\prime} \ \sigma_{q+1}$ by the choice of v. Therefore $\sigma^{\prime}>\sigma_{q+1}, \sigma^{\prime} \subseteq \sigma_{q+1}$ or $\sigma_{q+1} \subset \sigma^{\prime}$.

Assume that $\quad \sigma^{\prime}>\sigma_{q+1}$ or $\sigma^{\prime} \subseteq \sigma_{q+1}$. If $\sigma^{\prime}>\sigma_{q+1}$ then $\sigma^{\prime}>\sigma(u-1, u-1)$, therefore $u+2 \leq o\left(\sigma^{\prime}, z\right)<a\left(\sigma^{\prime}, z\right) \leq z$ (Proposition 7). If $\sigma^{\prime} \subseteq \sigma_{q+1}$ then $\sigma^{\prime} \subseteq \sigma(u-1, u-1)$; now either σ^{\prime} is OFF at stage $u+2$, whence $u+2 \leq o\left(\sigma^{\prime}, z\right)<\alpha\left(\sigma^{\prime}, z\right) \leq z$, or $u+2$ is σ^{\prime}-active (Proposition 14.1), whence $u+2 \leq a\left(\sigma^{\prime}, z\right) \leq z$. So for every z^{\prime} with $a\left(\sigma^{\prime}, z\right) \leq z^{\prime} \leq z$,

$$
R\left(q, z^{\prime}\right)=R(q, u+2)=R(q, z), \quad A^{z^{\prime}} \uparrow R\left(q, z^{\prime}\right)=A^{u+2} \upharpoonright R\left(q, z^{\prime}\right)=
$$

$$
A^{z} \upharpoonright R(q, z) \text { and } B^{z^{\prime}} \upharpoonright R\left(q, z^{\prime}\right)=B^{u+2} \upharpoonright R\left(q, z^{\prime}\right)=B^{z} \upharpoonright R(q, z)
$$

by the induction hypothesis.
Assume that $\sigma_{q+1} \subset \sigma^{\prime}$. Then $q<e\left(\sigma^{\prime}\right)$. So for every z^{\prime} such that $a\left(\sigma^{\prime}, z\right) \leq z^{\prime} \leq z, \quad R\left(q, z^{\prime}\right)=R\left(q, o\left(\sigma^{\prime}, z^{\prime}\right)\right)=R\left(q, o\left(\sigma^{\prime}, z\right)\right)=$ $R(q, z), A^{z^{\prime}} \uparrow R\left(q, z^{\prime}\right)=A^{o\left(\sigma^{\prime}, z^{\prime}\right)} \uparrow R\left(q, z^{\prime}\right)=A^{o\left(\sigma^{\prime}, z\right)} \uparrow R(q, z)=A^{z} \upharpoonright R(q, z)$ and $B^{z^{\prime}} \upharpoonright R\left(q, z^{\prime}\right)=B^{o\left(\sigma^{\prime}, z^{\prime}\right)} \uparrow R\left(q, z^{\prime}\right)=B^{o\left(\sigma^{\prime}, z\right)} \uparrow R(q, z)=B^{z} \upharpoonright R(q, z)$. since $o\left(\sigma^{\prime}, z^{\prime}\right)=o\left(\sigma^{\prime}, z\right)<\alpha\left(\sigma^{\prime}, z\right)$ (Proposition 17). So again for every z^{\prime} with $a\left(\sigma^{\prime}, z\right) \leq z^{\prime} \leq z, \ddagger$ holds.

Assume that Subcase 2.2 holds at stage $z+1$. Then $B^{z+1} \upharpoonright R(q, z)=$ $\underset{a\left(\sigma^{\prime}, z\right) \leq z^{\prime} \leq z}{U}\left(B^{\left.z^{\prime} \uparrow R(q, z)\right)}=B^{z} \upharpoonright R(q, z), \quad\right.$ from $\ddagger . \quad A^{z+1} \uparrow R(q, z)=$ $\left(A^{z}-\left(B^{z+1} \cap K^{z+1}\right)\right) \upharpoonright R(q, z)=A^{z} \upharpoonright R(q, z)-\left(B^{z} \upharpoonright R(q, z) \cap K^{z+1} \uparrow R(q, z)\right)=$ $A^{z} \upharpoonright R(q, z)$ since $\left(A^{z} \cap B^{z} \cap K^{z+1}\right) \upharpoonright R(q, z)=F^{z} \upharpoonright R(q, z)=\varnothing$, as noted
earlier. If Subcase 2.1 holds, we get a similar result. \quad -

If no D^{\prime} satisfies $6^{\prime}-8^{\prime}$ then $k \notin W_{e}^{t}\left(A^{t}\right)$ for every $t \geq u$ by the choice of v and w. So $R(q, t)=q+1$ for every $t \geq v$ and we can choose a stage $u>v$ such that $u \equiv 1 \bmod 3, \sigma_{q+1} \subseteq \sigma(u-1, u-1)$ and $\left(A^{u+2} \cap B^{u+2} \cap K\right) r R(q, u+2)=0$. Claim 6 also holds for this choice of u by a similar proof.

If $q=2\langle k, e\rangle+1$ we get a similar result. 4 and 5 follow from Claim 6 and the choice of u (and D^{\prime}).

Requirements N, Q_{n} and P_{n} are satisfied (Propositions 3 and 18).

APPENDIX

OPEN QUESTIONS

It is straightforward to show that an answer to the following question, combined with the results in this thesis would suffice to decide all sentences of the form $\left(\forall x_{1}\right)\left(\forall x_{2}\right)(\exists y) \alpha\left(x_{1}, x_{2}, y\right)$, (α quantifier-free) in $\operatorname{Th}\left(\mathscr{S}_{\mathbf{e}}^{+}\left(\Sigma_{2}\right)\right)$:

1. Do there exist incomparable Σ_{2} e-degrees a and b such that $\mathbf{a} \vee \mathbf{b}=0_{e}^{\circ}$ and for every $z<{ }_{e} \mathbf{a}, \quad z \leq_{e} b$?

Digressing from the Σ_{2} e-degrees, one of the most intriguing "open" questions about the e-degrees is:
2. Are the e-degrees dense?

Case's [1971] result that no total e-degree is minimal relativises to show that no total e-degree is a minimal cover. Gutteridge [1971] showed that no total e-degree has a minimal cover and that any non-total e-degree has at most countably many minimal covers. Cooper [1982] claimed to have constructed a minimal cover, however the result remains to be published, suggesting that the question is still an open one.

Case, J.
[1971] Enumeration reducibility and partial degrees, Annals of Math. Logic 2, 419-439.

Cooper, S. B.
[1982] Partial degrees and the density problem, J. Symbolic Logic 47, 854-859.

Cooper, S. B.
[1984] Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_{2} sets are dense, J. Symbolic Logic 49, 503-513.

Cooper, S. B., and Copestake, C. S.
[ta] Properly Σ_{2} enumeration degrees, to appear.
Friedberg, R. M., and Rogers, H., Jr.
[1959] Reducibility and completeness for sets of integers, Z. Math. Logik Grundlag. Math. 5, 117-125.

Gutteridge, L.
[1971] Some results on enumeration reducibility, Ph.D. dissertation, Simon Fraser University.

Lachlan, A. H.
[1966] Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. 16, 537-569.

McEvoy, K.
[1985] Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50, 839-848.

McEvoy, K., and Cooper, S. B.
[1985] On minimal pairs of enumeration degrees, J. Symbolic Logic 50, 983-1001.

Medvedev, Yu. T.
[1955] Degrees of difficulty of the mass problem, Dokl. Akad. Nauk SSSR 104, 501-504 (Russian).

Rogers, H., Jr.
[1967] Theory of Recursive Functions and Effective Computability, McGraw-Hill. New York.

Soare, R. I.
[1987] Recursively Enumerable Sets and Degrees, Springer-Verlag, New York.

